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Abstract 

The work described in this thesis addresses the field of software reuse. Software reuse is 

widely considered as a way to increase the productivity and improve the quality and reliabil­

ity of new software systems. Identifying, extracting and reengineering software.components 

which implement abstractions within existing systems is a promising cost-effective way to 

create reusable assets. Such a process is referred to as reuse reengineering. A reference 

paradigm has been defined within the RE^ project which decomposes a reuse reengineering 

process in five sequential phases. In particular, the first phase of the reference paradigm, 

called Candidature phase, is concerned with the analysis of source code for the identification 

of software components implementing abstractions and which are therefore candidate to be 

reused. Different candidature criteria exist for the identification of reuse-candidate software 

components. They can be classified in structural methods (based on structural properties of 

the software) and specification driven methods (that search for software components imple­

menting a given specification). 

In this thesis a new specification driven candidature criterion for the identification and 

the extraction of code fragments implementing functional abstractions is presented. The 

method is driven by a formal specification of the function to be isolated (given in terms of 

a precondition and a postcondition) and is based on the theoretical frameworks of program 

slicing and symbolic execution. Symbolic execution and theorem proving techniques are 

used to map the specification of the functional abstractions onto a slicing criterion. Once the 

slicing criterion has been identified the slice is isolated using algorithms based on dependence 

graphs. The method has been specialised for programs written in the C language. Both 

symbolic execution and program slicing are performed by exploiting the Combined C Graph 

(CCG), a fine-grained dependence based program representation that can be used for several 

software maintenance tasks. 
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Chapter 1 

Introduction 

The introduction of the third generation computers coincides with the software crisis era. 

The power of these new machines and, at the. same time their cheapness has produced an 

increasing demand for software systems of higher and higher complexity. While the field of 

programming had made tremendous progress (through the systematic study of algorithms 

and data structures and the invention of structured programming [67]) there were still major 

difficulties in building large software systems. Then in the late 1960s the term software 

engineering was invented [31] to assert that the development of software systems is an engi­

neering discipline that cannot be simply based on a personal activity, such as programming. 

Parnas and Weiss [141] have defined software engineering as "multi-person construction of 

multi-version software". Indeed, software engineering deals with systems that are built by 

teams rather than individual programmers [89]. A system is built using engineering princi­

ples: while a programmer writes a complete program, the software engineer writes a software 

component that will be combined with the components written by other software engineers. 

The component one writes may be modified by others and may be used to build different 

versions of the system long after one has left the project. 

However, building large software.systems is different from building smaller systems. There 

were fundamental difficulties in scaling up the techniques of small program development to 

large software development. Indeed, the development of a large software system involves 

both technical and non-technical aspects [161]. During the first attempt in the production 

of large software systems, a number of difficulties were discovered: the problems being solved 

were not well understood by all the people involved in the project, people had to spend a 

lot of time communicating with each other rather than writing the code, people leaving 

the project affected the work of other people, replacing an individual required an extensive 

amount of training about the (poorly defined) project requirements and system design. Many 

solutions were proposed and tried, but the common consensus was to view the final software 



system as a complex product and the building of it as an engineering job. The engineering 

approach involves management, organisation, tools, theories, methodologies, and techniques 

to be applied for the design and the construction of computer programs and the cissociated 

documentation required to develop, operate and maintain them [21]. 

From the inception of an idea for a software system, until it is implemented and delivered 

to a customer, and even after that, the system undergoes gradual development and evolution. 

The software is said to have a life cycle composed of several phases. In the traditional 

waterfallWie cycle model, first introduced by Royce [152], each phase has well defined starting 

and ending points, with clearly identifiable deliverables to the next phase. The waterfall life 

cycle model, currently adopted for software development, comprises five phases [183]: 

Requirements analysis and specification. The purpose of this phase is to identify 

and document the exact requirements for the system, in end-user terms. It follows a 

feasibility study and can be performed by the customer, the developer, a marketing 

organisation or any combination of the three. Interaction between user and developer 

is often required. 

. System and software design. The purpose of this phase is to design a particular software 

system that will meet the stated requirements. This pheise is sometimes split into 

two subphases: architectural or high-level design (which deals with the overall module 

structure and organisation) and detailed design (which refines the high level design by 

considering each module in detail). 

Implementation and unit testing. This phase produces the actual code that will be 

delivered to the customer as the running system. The system design is coded in a set 

of modules written in some programming language. The individual modules are also 

tested (unit testing) in order to verify that each of them meets its specification. 

Validation, integration and system testing. Al l the modules that have been developed 

and tested individually are integrated in this phase and tested as a whole system to 

ensure that the software requirements have been met. 

Delivery and maintenance. Once the system passes all the tests, it is delivered to the 

customer and enters the maintenance phase. During this phase modifications can be 

made to the system to correct faults (that were not discovered in the earlier phases) 

improve performance, or other attributes, or adapt to a changed environment [184]. 

Although software engineering has made progress since the 1960s, the field is still far 

from achieving the status of a classic engineering discipline [89]. Many areas remain in the 



field that are still being taught and practised on the basis of informal techniques. Moreover, 

unlike other classical engineering disciplines, the software engineer lack of the mathemati­

cal maturity to specify the properties of the product separately from those of the design. 

Problems are in particular related to the maintenance phase, concerned with the evolution 

of existing systems to meet ever changing user needs [14, 15]. Changes may be driven by 

different reasons. Lientz and Swanson [126] subdivided maintenance activities into four 

categories: 

Perfective maintenance. Changes are required to respond to user requests (e.g., request 

of enhancing the functionalities of the system). 

Adaptive maintenance. Changes are needed as a consequence of changes in the data 

environment (e.g., system input and output formats), or in the processing environment 

(e.g., hardware, operating systems, etc.) 

Corrective maintenance. Changes are made to correct faults identified in the system, 

which cause incorrect output or abnormal termination of the system. 

Preventive maintenance. Changes are made to the software system to improve its. 

quality and reliability in order to anticipate future problems. 

Software systems that keep their usefulness in the real world are in continuous evolution [125]. 

I t has been estimated that software maintenance can consume 60-70% of the costs during the 

life cycle of the system [126]. Moreover, 50-65% of the maintenance phase is taken up with 

perfective maintenance [126]. Software maintenance is related with several technical and 

managerial problems [15]. As the system to be changed is already used, the client expects 

that changes are accomplished, quickly, cost-effectively and without degrading the reliabihty 

and the maintainability of the system. Unfortunately, these expectations are only rarely 

met. Usually, user changes are described in terms of behaviour of the software system to 

be mapped into changes to the source code. Moreover, when a change is made to the code, 

consequential ripple: effect may require substantial changes in the documentation, design, 

test suites, etc. 

Although the research in software maintenance has been in progress for the last few 

years, transforming the field from a practitioner activity to an academic discipline, many of 

the solutions working for laboratory scale pilots do not scale up to industrial sized software. 

Many system under maintenance are very large and were developed with obsolete techniques 

by pioneer software engineers. Software evolution increases the complexity of a software 

system [125]. Repeated changes often results in a degraded structure and increased entropy of 

the system, which becomes legacy. The code and the documentation are not on line anymore. 



Any further change can become a hard tiask, because of the difficulty of understanding the 

code and the impact of the change on the rest of the system. It has been estimated that 

50-90% of maintenance time is devoted to program comprehension [163], even when there is 

documentation present [150]. Remedial preventive maintenance actions are required to cope 

with legacy systems [16 . 

A way to improve the understandability and maintenability of a legacy system is mod­

ularisation. Modularising an existing system consists of replacing a single large program 

or module with a functionally equivalent collection of smaller modules [44]. Modularisation 

is also useful for downsizing large applications from mainframes to distributed cHent/server 

platforms [158]. Indeed, a changing hardware platform is becoming a question of vital im­

portance for the economy and the competitiveness of many companies. Therefore, software 

systems developed for the old platform have to be available on the new one. In many cases 

reengineering the existing systems and adapting them to the new platform is cost-effective 

and can be preferable to new development [159]. Another reason for modularising a system 

is the possibility to reuse its single modules in the development of new software systems [7]. 

Software reuse has long been recognised as a way to improve both the productivity and the 

quahty of new software projects [17, 83, 84,127, 168]. The reuse of software components that 

have been already tested may reduce the costs of software development and increase software 

productivity. Moreover, reuse-oriented software development can reduce the maintenance 

costs [11], because maintenance operations on a modularised system can be better localised. 

The concept of "software reuse" is not new, but as old as the name "software engineer­

ing" [133]. Software components should be massed produced and stored into repositories in 

order to be used during to compose, more complex components and systems during software 

development. This view is in line with other engineering disciplines, such as electronic and 

electrical engineering, where the production of hardware systems is accomplished in this way, 

often exceeding the demand. Nevertheless, at the state of the art, software productivity is 

still far to close the gap between the demands placed on software industry and what the 

state of the practice can deliver [22]. Frakes and Isoda [83] state that the goal of software-

reuse research is to discover systematic procedures for engineering new systems from existing 

assets. Reuse approaches raise a number of issues that may be divided into issues related 

to developing reusable assets and issues related to developing with reusable assets [134]. In 

particular, the most immediate problem in reuse is the building up of a repository of reusable 

software components [7]. The lack of reusable assets prevents reuse from being widely used 

in industrial environment [42 . 

A typical solution for the problem of obtaining reusable assets is to develop them ex-novo 

for reuse. Unfortunately, this solution requires a huge initial investment of money, people 



and time that gives reuse a long lead time before it starts to pay off in a significant way. One 

of the most promising ways to make the population of a repository of reusable assets cost 

effective and to obtain useful results in the short time is by extracting and reengineering 

them from existing software [7, 32, 42, 76, 91, 145]. Existing systems record in various 

forms (requirements or design documents, code, test cases, user manuals) a large amount of 

knowledge and expertise. Therefore, they can become a main source of reusable components. 

In this thesis the term reuse reengineering will refer to the process of obtaining reusable 

assets from existing system [42]. Reuse reengineering processes involve three types of activ­

ities: 

1. accessing the existing systems to identify reuse candidate components; 

2. modifying and packaging them independently; 

3. understanding their meaning and producing the related specifications. 

The correct planning and execution of these activities greatly depends on the availabifity of 

reverse engineering and reengineering techniques and tools. Reverse engineering has been 

defined [50] as the process of analysing a subject system to 

• identify the system components and their relationships; 

• create representations of the system in another form at higher levels of abstraction. 

On the other side, reengineering is the examination and alteration of a subject system 

to reconstitute-it in a new form and the subsequent implementation in the new form [50]. 

Reverse engineering techniques are mainly required at points 1 and 3 of a reuse reengineering 

process, while point 1 is mainly related to reengineering software components according to 

a predefined template. 

1.1 Criteria for Success 

This thesis deals with the identification and extraction from existing systems of reuse-

candidate [42] software components. In particular, the use of code scavenging techniques [44 

to search existing software systems for source code components implementing software ab­

stractions is investigated. The criteria for success, to be judged in the final chapter, are as 

follows: 

• review of existing program representations; 



• description and evaluation of existing methods for the identification of components 

driven by structural properties of the software; 

• description and evaluation of existing methods for the identification of components 

driven by the specification of the abstraction sought; 

• development of a new specification driven method for the identification of code frag­

ments implementing functional abstractions; 

• formalisation of the new method; 

• prototype implementation of the new method to show that i t is automatable; 

• evaluation of the new method by the use of a case study. 

1.2 Outline of the Thesis 

The remainder of the thesis is organised as follows. 

Chapter 2 describes a reference paradigm for setting up reuse reengineering processes. 

The paradigm has been defined within RE^ [42], a research project jointly carried out by DIS 

(Department of Tnformatica e Sistemistica') at the University of Naples and CSM (Centre for 

Software Maintenance) at the University of Durham and funded by CNR (Italian National 

Research Council). The key role of the paradigm is to define a framework where relevant 

methodologies and tools can be used, allowing partial solutions to different problems to be 

linked together, and experiments can be repeated. The chapter focus on the first phase 

of the RE^ reference paradigm, called Candidature phase. In this phase, existing software 

systems are searched for sets of components candidate to implement reusable modules. A set 

of diff'erent code scavenging methods proposed in the literature and looking for code compo­

nents implementing abstractions are presented. These methods are classified in structural 

methods and specification driven methods, depending on the way type of search: structural 

methods search for code components according to structural properties of the software, while 

specification driven methods search for code components implementing the specification of 

a given abstraction. 

Chapter 3 presents the new specification driven method looking for code fragments im­

plementing the specification of functional abstractions. The method is based on program 

slicing as a program decomposition technique for isolating code fragments, and uses sym-

boHc execution [60, 64, 111] and theorem proving [6, 29, 143] techniques in order to map the 

specification of the functional abstraction onto the slicing criterion to be used for isolating 



the slice implementing the required function. A different definition of slicing criterion is 

given in order to consider a program slice as a procedure. The specification driven program 

slicing process is then specialised to programs written in the C language [110]. First some 

problems involving the symbolic execution of C programs are outlined and then we show how 

both symbolic execution and program slicing can be performed by exploiting, an intermediate 

representation for C programs called Combined C Graph [112, 113, 114]. 

Chapter 4 describes a prototype implementation of a tool for isolating reusable functions 

written in C language [110] using the specification driven program slicing technique. The 

language chosen for implementing the prototype tool is Prolog [164]. The architecture of the 

prototype system is described together with the single module components. 

Chapter 5 shows the validity of the proposed method through its application to a small 

demonstrative examples and a case study. The system chosen to validate the method consists 

of over 5000 LOG (not including comments) of C code. Four large functions implementing 

more than one functionality have been identified and reengineered by decomposing them 

into smaller functions each of which implements one functionality. The case study demon­

strated the applicability of the method even to programming languages, like C, that provide, 

primitives for the implementation of functional abstractions. The evaluation of the method 

is also discussed. 

Some conclusions and further directions are finally given in chapter 6. 



Chapter 2 

Literature Review 

The reuse of software components can considerably reduce the development costs and im­

prove the quality and the reliability of new software systems [127]. The most immediate 

problem in reuse is the building up of a repository of reusable software components [7]. 

Although reusable software components can be designed and implemented during the de­

velopment of new software projects, existing software is widely considered to be the main 

source for the extraction of reusable assets [7, 32, 42, 76, 91, 145 . 

A reuse reengineering process consists of the set of activities for identifying software com­

ponents implementing abstractions, reengineering them according to a predefined template, 

associating them with their interface and functional specification and populating a repository 

with the reusable assets so obtained. In particular, the RE^ project [42] outlines the role 

that reverse engineering and reengineering techniques have in a reuse reengineering process 

involving existing source code. 

In this chapter the RE^ reference paradigm for setting up reuse reengineering processes 

is described. In particular we focus on the first phase of the paradigm, called the Candi­

dature phase, which is related to the identification of software components implementing 

abstractions in code. Several program representations proposed in the literature for software 

maintenance and in particular useful for reverse engineering and reengineering are described. 

A survey of both structural candidature criteria and specification driven candidature criteria 

is also presented. 

2.1 The R E ^ Reference Paradigm 

A reuse reengineering process is a complex process which may entail using methodos and 

tools from different fields as well as defining new methods and new tools. Each of these 

rriethods and tools often only provides a partial solution for a particular problem. Canfora 
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Figure 2.1: The RE^ Reference Paradigm 

et al. [42] show the need for a reference paradigm to set up reuse reengineermg processes. The 

key role of the paradigm is to define a framework where relevant methods and tools can be 

used allowing part ial solutions to be linked together. A reference paradigm is also necessary 

to allow the repetition of the experiments. Figure 2.1 shows the reference paradigm of the 

RE^ research project jo in t ly carried out by DIS (Department of ' Informaticae Sistemistica') 

at the University of Naples and CSM (Centre for Software Maintenance) at the University 

of Durham. The RE^ paradigm decomposes a reuse reengineering process in five sequential 

phases called Candidature, Election, Qualification, Classification and Storage and Search 

and Display. I n particular, the first three phases are related to the-identification, extraction 

and reengineering of software components for the production of reusable mcdules, vvhile the 

latter two phases populate the repository and set up the environment for the retrieval and 

the reuse of modules during the development of new systems. The RE^ project is currently 

involved w i t h the first three phases of its reference paradigm. 

The Candidature phase produces sets of software components by using source code anal­

ysis techniques. According to the taxonomy presented by Chikofsky and Cross [50], reverse 

engineering techniques are required to identify software components and the relations ex­

isting among them. Each set of software components is candidate to make up a reusable 

module when suitably de-coupled, re-engineered and possibly generalised. The Candidature 

phase is organised in three steps: 

1. Defining a. candidature criterion to produce a first approximation of the set of the 

reuse-candidate modules. This also entails the definition of the model of the system 

(typically a program representation) to apply the criterion and the information needed 

to make up an instance of the model. 

2. Defining and setting up a reverse engineering process to extract a set of software 

components f r o m code and make up an instance of the model defined in the previous 



step. 

3. Applying the candidature criterion to the particular model instance to produce the set 

of reuse-candidate modules. 

The Election phase transforms reuse-candidate modules in reusable modules by de­

coupling each set of software components f rom the external environment and clustering 

them into a module according to a predefined template. This phase consists of three steps: 

1. Defining a module template (according to the primitives provided by the particular 

programming language considered and the concepts of abstraction and information 

hiding) for reengineering the reuse-candidate modules. 

2. Defining and setting up a reengineering process for de-coupling the components f rom 

the external environment. 

3. Defining and setting up a reengineering process for clustering the components i n the 
template. 

Not al l the meaningful candidate sets w i l l be included in the reusable modules. Some of 

them w i l l be discarded during the election phase because of the complexity and the costs of 

the reengineering operations needed to de-couple and cluster them [72]. Moreover, a Concept 

Assignment [18] process^ can be required before the Election phase in order to select the 

subset of modules that can be associated wi th human-oriented concepts. Only such reuse-

candidate modules w i l l be de-coupled and reengineered. This also allows the validation of a 

candidature criterion [53 . 

Reverse engineering activities are also required in the Qualification phase which produces 

the interface and functional specifications of the reusable modules obtained in the election 

phase. The Qualification phase is organised in three steps: 

1. Defining, or choosing a specification formalism expressing the semantics of a reusable 

module and how i t should be used. 

2. Defining and setting up of the functional reverse engineering process to produce the 

functional and the interface specifications f r o m the source code module and to express 

them according to the defined formalism. 

3. Testing and fixing the specifications produced to ensure their correctness and consis­

tency wi th the code. 

^In agreement with BiggerstafF et al. [18] we call the problem of associating software components and 

related relationships with human oriented concepts the concept assignment problem. 

10 



The Classification and Storage phase groups together the activities that classify the 

reusable modules and related specifications according to a reference taxonomy. The aim 

is to define a repository system and populate i t w i th the reusable modules produced. 

The Search and Display phase groups together the activities that set up a front end user 

interface to interact wi th the repository system. The aim is to make finding the modules 

the user needs as simple as possible, for example by giving them visual supports to navigate 

trough the repository system. 

2.1.1 Candidature Criteria 

The definit ion of a candidature criterion and the model of the system to apply the criterion 

are a major problem in a reuse reengineering process. In the RE^ project [42] the software 

engineering principles of abstraction [67] and information hiding [140] are assumed as a 

guideline to define the reuse reengineering process. As a consequence, a candidature criterion 

should automatically produce a first approximation to the sets of components to extract 

f r o m a software system, each set being a candidate to constitute a reusable module that 

implements one abstraction. 

There are three search primitives f rom which candidature criteria can be defined [44]: 

Isolation, Aggregation, and Generalisation. 

Isolation consists of breaking a large monolithic system component that implements more 

than one abstraction into a set of components each of which implements one abstrac­

t ion. 

Aggregation consists of l inking together several low-level system components (i.e., routines, 

functions, paragraphs, data types, variables, chunks of code) whenever these contribute 

to implement a higher level abstraction. 

Generalisation consists of assigning a module w i t h a higher generality, thus extending the 

class of problems i t can solve. Generalising a module involves storing i t in a "generic" 

f o r m f r o m which several specific modules can be instantiated. 

Based on one or more search primitives, many candidature criteria (in the following they 

are also simply called methods) have been proposed that exploit a large set of technologies 

and tools. Following the taxonomy proposed by Canfora et al. [44], these methods can be 

grouped into three families: METhods driven by a metric MODel ( M E T M O D ) , METhods 

driven by the TYPe of the abstraction to be searched ( M E T T Y P ) , and METhods driven by 

a f u l l or part ial SPECification of the abstraction to be recovered (METSPEC). 

11 



M E T M O D candidature criteria entail the selection of a set of metrics [80] and the defini­

t ion, for each metric, of a value range that may be considered characteristic of code 

implementing a reusable abstraction. Typical M E T M O D methods are those which 

search pieces of code that exhibit high cohesion [182] and low coupling [182] wi th 

the rest of the system [76]. In these cases, metrics capturing data-binding [70, 105], 

control-binding [76] and similarity measures [156] are the main components of the 

metric model. Generally, M E T M O D methods are founded on simple metric models, 

which consists of very popular metrics such as the McCabe cyclomatic number [132], 

the Halstead volume [93], the number of lines of code and statements. In these cases 

the value range of each metric is defined heuristically, for example by analysing the 

values that metric assumes when applied to software components wi th high frequency 

of reuse [32, 76]. 

M E T T Y P candidature criteria are specialised to search for only one type of abstraction. 

Examples of abstractions that can be recovered include external and internal func­

tionalities [45, 65, 124, 136, 177], I / O and error handlers [158], front-end user inter­

faces [131], data base transactions [119, 157], data structures [36, 76, 129], abstract 

data types [37, 43, 128, 129], domain applications objects and classes [39, 47, 85, 181 . 

Based on a descriptions of the type of abstractions to be identified, candidature criteria 

par t i t ion the system into a set of components, each of which is candidate to implement 

an abstraction. Candidature criteria are generally defined in terms of summary rela­

tions [35] obtained by combining relations directly produced through static analysis of 

code (for example, call relations, data definitions, data uses). Typical M E T T Y P meth­

ods are those which re-arrange the components of a system into a hierarchy which may 

be mapped onto a possible functional decomposition of the system [46, 55]. M E T T Y P 

methods also identify clusters of data items, data types, and routines, each cluster 

being a candidate to implement an object or an abstract data type [167 . 

METSPEC candidature criteria presuppose the existence of a f u l l or partial specification 

of an abstraction. Existing systems are searched for code fragments (also delocalised) 

which satisfy the specification. Typical METSPEC methods are those that, start­

ing f r o m a funct ion partially specified by means of a characteristic subset of out­

put (and possibly input) data, analyse a system for identifying the minimum number 

of components that contribute to the values of the output data [124]. The spec­

ification can be a formal one [41, 59] ( in this case tools such as symbolic execu­

tors [64] and theorem provers [6, 29, 143] can be required to map the specification 

onto the code), or can be given in term of a set of test cases capturing the be-
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haviour of the abstraction [92, 177, 178], or can be encapsulated in a knowledge 

base [3, 115, 120, 142, 146, 180] in term of a library of programming plans [160] or 

cliches [148 . 

The first two families of methods are also called mass methods, because they are applied 

to one or more systems and produce a large set of candidate modules. In the following we 

w i l l refer to M E T M O D and M E T T Y P methods as structural candidature criteria [59], be­

cause they only analyse structural characteristics of a system (based on software metrics or 

programming languages primitives used for implementing abstractions). A concept assign­

ment process is required to be applied to the candidate modules produced by a structural 

candidature criterion, in order to associate them wi th human oriented meanings. Modules 

that cannot be associated w i t h any human oriented meaning w i l l be discarded. METSPEC 

methods are also called spot methods, because they are appHed to only one system, or sys­

tem component, and produce only one module. This is then a candidate to implement the 

specified abstraction and no concept assignment process has to be applied before the Election 

phase. 

2,2 Existing Program Representations 

Program representations play a key role i n a reuse reengineering process and in particular 

during the candidature phase. I t is very common to use static analysis techniques for trans­

lat ing the source code into an intermediate representation, that can be used as the model 

for the application of the candidature criterion. In this section we describe some of the 

program representations mainly used in software maintenance and software engineering and 

in particular in reverse engineering and reengineering. 

2.2.1 Control Flow Graph and Call Graph 

The simplest program representations used in software maintenance are the control flow 

graph [5, 100] and the call graph. Both the representation are based on the concept of flow 

graph^ 

Definition 2.1 A flow graph G = [s, N, E) is a directed graph where A'̂  is the set of nodes, 

s E: N and E is the set of edges. For each node n E N there exists a path f rom s to n . 

^In [100], a control flow graph is simply called a flow graph. 
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Control Flow Graph 

In a control flow graph (s, N, E), nodes in N represent single-entry/single-exit regions of ex­

ecutable code (called basic blocks) and edges in E represent possible execution flow between 

code regions. The node s represents the program's entry. Although for compiler optimisa­

t ion [5] a basic block consists of a maximal single-entry/single-exit sequence of statements, 

usually i n software maintenance each node of a control flow graph correspond to an indi­

vidual statement. A control flow graph is suitable to perform intraprocedural data flow 

analysis [5, 100] and program slicing [176]. 

Call Graph 

I n a call graph {s,N,E), nodes in A'̂  represent procedures^, edges in E represent call re­

lationships between procedures and edges labels represent actual parameters. The node s 

represents the main procedure. Since one procedure may call another at many points, a call 

graph may be a mult igraph w i t h more than one edge connecting two nodes. A program's 

call graph can be constructed eflSciently [154] and used for different applications, like flow-

insensitive interprocedural data flow analysis, e.g. [63, 166], and software salvaging [53, 55]. 

ft 
Interprocedural Control Flow Graph 

The features of these two representations have been combined in the interprocedural control 

flow graph [123]. A n interprocedural control flow graph is the union of the control flow graphs 

of the individual procedures i n the program; each control flow graph has unique entry and 

exit nodes and call sites are split into call and return nodes. Each call node is connected 

to the entry node of the procedure i t invokes, while each exit node is connected to return 

nodes of all call sites that invoke the procedure. The interprocedural control flow graph has 

been used to solve the reaching definitions problem (i.e., the problem of determining the 

set of variable deflnitions that reach each program point) in presence of pointers [139]. A 

similar representation has been used by Myers [135] for flow-sensitive interprocedural data 

flow analysis. 

2.2.2 Program Representations for Data Flow Analysis 

The control flow graph and the call graph can be enriched wi th information which allow flow-

sensitive data flow analysis. To this aim a variety of representations have been proposed in 

the Hterature. 

^We will refer to the primitives programming languages provide to implement functional abstractions, 

e.g. program, procedure, function, subroutine, with the generic name "procedure". 
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The Program Summary Graph 

A variant of the call graph which provides information for flow-sensitive data flow analysis 

is the program summary graph [33]. The program summary graph represents programs 

wr i t t en in a procedural language wi th call by reference parameters. For each procedure, 

there are entry and exit nodes for each formal parameter, while at each call site there are 

call and return nodes for each actual parameter. Binding edges relate call nodes wi th the 

corresponding entry nodes and exit nodes w i t h the corresponding return nodes. Data flow 

w i t h i n each procedure is summarised by reaching edges between the procedure control points 

such as entry, exit, call and return for formal and actual parameters. Callahan [33] presents 

iterative algorithms to solve a variety of data flow problems such as whether the values of 

actual reference parameters may-be-preserved over a procedure call. The program summary 

graph and the algorithms that use i t for flow-sensitive data flow analysis were developed to 

reengineer existing Fortran programs for parallel environments. 

The Interprocedural Flow Graph 

A n extension of the program summary graph, the interprocedural flow graph [96] allows 

the calculation of interprocedural definition-use pairs [5], by providing information at each 

node about the locations of definitions and uses of reference parameters and global variables 

that can be reached across procedure boundaries. Two algorithms compute the reaching 

definitions and reachable uses (i.e., the problem of determining the set of variable uses that 

can be reached f rom each program point) , by propagating the intraprocedural data flow 

informat ion throughout the program guided by the edges in the graph. To ensure that data 

flow informat ion is propagated only over possible execution paths in the program, new edges 

connecting call and return nodes {interprocedural reaching edges) are used to preserve the 

calling context of the called procedures during the interprocedural data flow analysis. The 

resulting sets of reaching definitions and reachable uses can be used to compute definition-use 

pairs for integration testing [97 . 

The Program Dependence Graph 

The program dependence graph [81] is an intraprocedural program representation consisting 

of two superimposed subgraphs, the control dependence subgraph and the data dependence 

subgraph. I n the control dependence subgraph nodes represent program's statements and 

edges represent control dependencies'* between statements. An algorithm to construct the 

^Given a control flow graph of a program, a node m is control dependent on a node n if and only if n has 

two outgoing edges, where one of them always results in m being reached, while the other edge may result 
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control dependence graph f r o m the control flow graph has been shown in [81]; the time com­

plexity of the algorithm in O(n^), where n is the number of nodes in the control flow graph. 

For structured programs, the control dependence graph corresponds to the control structure 

nesting tree [51], a program representation where internal nodes represent control structures 

and leaves represent elementary statements. The data dependence subgraph contains several 

types of edges representing different data dependence relations [122], enclosing definition-use 

pairs [5]. The program dependence graph was first introduced CLS an internal representation 

for optimising and parallelising compilers [81]. Its role in a software development and main­

tenance environment has been outlined by Ottenstein and Ottenstein [138 . 

The System Dependence Graph 

A n extension of the program dependence graph, the system dependence graph [103] combines 

dependence graphs for individual procedures wi th additional nodes and edges making up 

the call interfaces. Nodes are added to a procedure's dependence graph to model parameter 

passing by value-result. Each call-site node is connected to the entry node of the called 

procedure. Moreover, the call-site contains actual-in and actual-out nodes for each actual 

parameter, while formal-in and formal-out nodes are linked to the procedure's entry node for 

each formal parameter. Binding edges connect actual-in wi th formal-in nodes and formal-out 

w i t h actual-out nodes. The system dependence graph has been introduced by Horwitz et 

al. [103] for interprocedural slicing. The original interprocedural slicing algorithm proposed 

by Weiser [176] suffers of lack of precision, because i t fails to account for the calling context 

of a called procedure. Interprocedural data flow edges modeUing transitive data dependencies 

between actual parameters across a procedure call are then added to the system dependence 

graph and exploited, i n order to preserve the procedure calling context during interprocedural 

slicing. This edges permit a more precise computation of a slice across procedure boundaries. 

2.2.3 Combining Features of Different Representations 

I n a reuse reengineering environment and in general in a software maintenance environment, 

different program representations can be necessary in order to solve different problems. 

Program representations have been proposed in the literature that combine the features 

of several representations. 

in m not being reached [81]. 
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The Unified Interprocedural Graph 

Harrold and Malloy [98] identified the problem that a maintenance environment needs infor­

mation contained in different intermediate program representations. Instead of incorporating 

each of the existing representations and using the associated algorithms to develop program 

maintenance tools, they propose to use the unified interprocedural graph, an interprocedural 

program representation that integrates the features of four different representations: the 

call graph, the program summary graph, the interprocedural flow graph and the system 

dependence graph. Algorithms developed for each of these program representations are ap­

plicable to the unified interprocedural graph by simply considering subsets of nodes and 

edges. The main benefits of this approach are the reduction in storage space, deriving f rom 

the elimination of redundant information contained in the different representations, and the 

convenience of accessing a single program representation. Moreover, the construction of the 

unified interprocedural graph can be obtained incrementally. 

The Web Structure 

A similar approach has been followed in the Web structure oriented Software Development 

Workbench ( W S D W ) [71]. In WSDW, software development and maintenance tools are in­

tegrated through sharing the same program representation, called web structure [130]. A 

web structure is a particular relational structure [77] originally designed as internal program 

representation for compilers and interpreters. I t consists of a supporting tree structure wi th 

labelled nodes which represents the syntax of the program. A second structure is superim­

posed which consists of labelled edges, called web edges, connecting nodes of the underlying 

tree. Web edges provide semantic information, e.g., about control flow, call interface, scope 

of variables, and other properties that the tree alone cannot express. Program analysis and 

transformations are accomplished by rewrit ing the web representation according to rewriting 

rules called productions [130]. Software engineering tools in WSDW are wri t ten using the 

tool development language T D L [73] which allows web productions to be expressed graph­

ically. Tools based on the algebraic framework of web transformations can enrich the web 

representation w i t h new information or transform the program structure. For example, in 

W S D W a data dependency analyser adds data dependence edges [122] to the web representa­

t ion, while a program recoder'is used for program restructuring and a program paralleliser [74] 

transforms the web representation of a sequential program into the web representation of an 

equivalent parallel program. The web structure has also been used as intermediate repre­

sentation wi th in a reverse engineering environment [69 . 
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2.3 Structural Candidature Criteria 
Structural candidature criteria aim to recover software components that satisfy particular 
structural properties based on a metric model ( M E T M O D methods) or on the type of ab­
straction to be searched for ( M E T T Y P methods). In particular, several candidature criteria 
for the identification of different types of abstractions have been defined and used within the 
RE^ project [42]. These methods make use of structural reverse engineering techniques [50 
to extract a set of software components f rom code and make up instances of a predefined 
model of the abstraction's type. In some cases the type of abstraction to be recovered and 
a metric model are combined in order to achieve more accurate modules [38, 39]. Usually, a 
concept assignment process [18] has to be applied in order to associate the extracted compo­
nents and the related relationships wi th human oriented concepts. Such a process allows the 
selection of the set of meaningful software components (the components that actually im­
plement software abstractions) among the set of the recovered components, for the following 
reengineering phase. This is also useful to validate the candidature criterion [53 . 

I n general a structural candidature criterion for identifying reuse-candidate software com­

ponents consists in instantiating a model 

(P, CF,sf:P-^ 2^^, M , caf : 2^^ ^ 2^^>^^) 

where: 

• P is a set of programs. 

• CF is a set of code fragments of programs in P. 

• s / is a selection function. Given a program p G P i t selects the subset cfCCFof code 

fragments of P which satisfy particular structural properties. These code fragments 

are candidate to be reengineered and reused. 

• M is a set of human-oriented meanings about the domain of the programs in P. 

• caf is the concept assignment function. Given a program p E P, let cf = sf{p) be 

the set of reuse-candidate code fragments of P. The function caf selects the subset of 

fragments cf C cf that can be associated wi th a meaning in M. These code fragments 

only w i l l be reengineered and reused. 

In the following we illustrate some structural candidature criteria proposed in the liter­

ature. 
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2.3.1 Metric Based Candidature Criteria 

Metric based candidature criteria are based on a software reusability attributes model which 
attempts to characterise those attributes directly through measures of an attribute, or in­
directly through automatable measures of evidence of an attribute's existence [32]. A set 
of acceptable values are defined for each metrics. These values can be either simple ranges 
of values (e.g., measure a is acceptable between oci and 0:2) or more sophisticated relation­
ships among different metrics (e.g., measure a is acceptable between ai and a2, provided 
that measure P is less than /?o). The extremes of each measure depend on the application, 
the environment, the programming language, and many other factors not easily quantifi­
able. Therefore, the ranges of acceptable values for the measures are usually experimentally 
determined. 

Caldiera and BasiU [32] propose a reusability model for identifying reuse-candidate com­

ponents based on the attributes of reuse costs (they includes costs for extracting the compo­

nent f r o m the old system, packaging i t into a reusable components, finding and modifying 

the component, and integrating i t into the new system), usefulness (functional usefulness is 

affected by both the commonality and the variety of the functions performed by the com­

ponent), and quality (such as correctness, readability, testability, ease of modification, and 

performance of a component). The model uses four metrics: 

Halstead volume. The first metric used in the reusability model is the Halstead volume [93 

defined as: 

V = (A^i + A^2)log2(?7i+'72) 

where 771 is the number of the different operators used in the program (e.g., arithmetic 

operators, decisional operators, assignment operators, functions, etc.), A'̂ i is the to- . 

ta l number of occurrences of operators in the program, 772 is the number of different 

operands (e.g., constants, variables, etc.) defined and used in the program, and Â 2 is 

the total number of occurrences of operands in the program. The component volume 

affects both reuse costs and quality. Both a lower and an upper bound are needed 

in the reusability model to discard too small components (the reuse costs of such a 

component exceed its intrinsic value) and too large components (such a component is 

more error prone and has lower quali ty). 

Cyclomatic complexity. The McCabe cyclomatic number [132] is used to measure the 

complexity of the control flow of a component and is defined as: 

v{G) = e - n + 2 
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where e and n are the number of edges and nodes, respectively, in the control flow 

graph G. The component complexity affects reuse cost and quality. As for the Halstead 

volume, the reusability model needs both a lower and an upper bound: the reuse of 

components low complexity may mot repay the reuse cost, whereas high component 

complexity may indicate poor quality. Moreover, high complexity wi th regularity of 

implementation suggests high functional usefulness. 

Regularity. The economy of a component's implementation, or the use of correct program­

ming practices can be measured based on some regularity assumptions and using the 

Halstead Software Science Indicators [93]. I f the actual length of a component is: 

AT = iVi4- iV2 

and the estimated length is: 

N = T]i log2 rji + r]2 log2 7/2 

the closeness of the estimate is a measure of the regularity of the component's coding: 

_ , _ N-N _ N 
r - 1 ^ ~ N 

Component regularity measures the readability and the non-redundancy of a compo­

nent's implementation. Therefore, components whose regularity is in the neighbour­

hood of 1 are candidate to be reused. 

Reuse frequency. The reuse frequency of a component can be estimated by comparing the 

number of static calls addressed to the component wi th the number of calls addressed 

to a class of components assumed to be reusable. For example, let n{X) denote the 

number of static calls addressed to a component X in a system. I f ^ i , . . . , S'iv are the 

standard components (i.e., predefined in the standard environment) and C is a user-

defined component used in the system, the reuse-specific frequency of the component 

C can be defined as: 

FE£„n(S. - ) 

The reuse-specific frequency is an indirect measure of the functional usefulness of a 

component. 
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2.3.2 Functional Abstraction Candidature Criteria 

Functional abstraction is the first form of abstraction implemented in high level languages. 
Tradit ional programming languages (in which the major i ty of the existing software is written) 
provide primitives (that we call w i th the generic name of procedures) for the implementation 
of functional abstractions. The search for code implementing functional abstractions can be 
based on the primitives of isolation, aggregation and generalisation [42 . 

Isolating Reusable Functions Using Program Slicing 

The need for searching for functional abstractions by means of isolation is related to the lack 

of reusability as a quality at tr ibute to be taken, into account when developing a software 

system. Very often this lack of reusability fails to respect the fundamental principle of 

software engineering, according to which every procedure must implement one and only one 

abstraction. 

Two different techniques have been proposed in the literature [42] to isolate function­

alities w i th in a procedure: horizontal isolation (i.e., each piece of isolated code is a block 

of the procedure's text) and vertical isolation (i.e., each piece of isolated code is a set of 

statements that lie on a same dynamic path of the procedure). The horizontal isolation 

may be founded on primes [10, 79] and assumes the original procedure to be structured. A l -

, though methodologies and tools are available for restructuring software wi th respect to a set. 

of one-in/one-out primes [8, 23, 48, 144], very often horizontal decomposition is not suitable 

for isolating functions because of the interleaving of code fragments responsible for accom­

plishing more than one purpose in the same section [153]. This can arise either intentionally 

(for example, i n optimising a program, a programmer may use some intermediate result for 

several purposes) or unintentionally, due to patches, quick fixes, or other hasty maintenance 

practices. In such cases vertical isolation can be used and supported by techniques such as. 

program slicing [176].. 

Program slicing has been introduced by Weiser [174, 176] as a powerful method for 

automatically decomposing a program by analysing its control and data flow. Program 

slices help programmers to better understand programs while debugging [175] and can be 

used to parallelise sequential programs [176]. In the Weiser's definition a slicing criterion 

of a program P is a pair (^out, Vout) where Sout is a statement in P and Vout is a subset 

of variables in P. A slice of a program P on a slicing criterion (sout, Vout) consists of all 

statements and predicates of P that might affect the values of the variables in Vout just 

before the statement Sout is executed. The program dependence graph [81] can be used 

as representation for implementing efficient slicing algorithms both at intraprocedural [138 
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and interprocedural [103] level. A slice is computed by backward traversing the control and 

data dependence edges of the graph and corresponds to the subgraph containing the reached 

vertices and edges. In order to exploit these algorithms, all the variables in the set Vout of a 

slicing criterion (sout, Vout) are required to be used at Sgut-

Horwitz et al. [103] also defined forward slicing: given a a program point p and a variable 

V, a forward slice w i t h respect to the slicing criterion (p, v) consists of all statements and 

predicates of the program that might be affected by the value of v at point p. Gallagher 

and Lyle [86] introduced the concept of decomposition slice and outlined its role in software 

maintenance and testing. The decomposition slice wi th respect to a variable v consists of 

a l l the statement and predicates of the program that might affect the values of the variable 

u, regardless of any program point. Program shcing has been exploited in data-flow testing, 

thanks to the definition of the dynamic slicing [117, 118]. A dynamic slice on a slicing 

criterion { X , So^j, Vout) is an executable part of a program whose behaviour is identical, for 

the same set of input data X, to that of the original program w i t h respect to the subset of 

variables of interest Vout, at some execution position q^. Moreover, program slicing has been 

used for integration testing [97] and regression testing [90]. Finally, Venkatesh [169] proposes 

a hybr id approach to program slicing, called quasi static slicing. Quasi static slices fa l l 

between static slices [176] (which preserve a subset of the behaviour of the original program 

for all possible inputs to the slice) and dynamic sHces [118] (which are constructed for a 

particular execution of the program and are required to preserve the subset of the behaviour 

of the original program for just one specific input state). Indeed, in quasi static slices some 

of the input values are fixed, while the behaviour of the program must be analysed and 

understood when other input values vary. Quasi static slicing has been generalised and used 

in a process of semantic equivalent program transformations for program comprehension [95]. 

Due to its feature of program decomposition technique, program slicing has been used as 

structural method for recovering reusable components f r o m existing software by isolation. A 

slicing based structural model for isolating functional abstractions can be instantiated wi th 

reference to Ottenstein's definition of shcing criterion. In this Ccise the shcing algorithm is 

the selection funct ion, the variables in the set K u t of the shcing criterion correspond to the 

output data of the funct ion to be isolated and the selected code fragments (program slices) 

satisfy the transitive closure on the control and data-flow dependencies f rom the program 

point Sout- For example, Ning et al. [136] use program slicing wi th in the tool COBOL/SRE 

to segment large legacy systems wri t ten in COBOL. In particular, they use both backward 

and forward slicing techniques. 

Lanubile and Visaggio [124] give two definitions of slicing for identifying and extracting 

^The statement Sout holds the position q on the program execution path obtained with input X. 
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two main kinds of components in legacy systems wri t ten in COBOL: environment-dependent 

operations and domain-dependent functionalities. The former, environment-dependent com­

ponents, depend on the technological environment which holds a system and usually consist 

of basic operations on the database, report production, displaying of interface maps, or user-

machine dialogue. On the other hand, domain-dependent components characterise a class 

of problems in the same application domain and typically consist of computational formulcis 

or business rules. 

Environment-dependent components are identified and extracted by searching for direct 

slices. A direct slice of a program P on a slicing criterion {sout, K u t ) consists of all statements 

and predicates of P t h a t directly contribute to the values of Vout just before the statement Sout 

is executed (this includes the set SS of all statements that define the living [5] value of any 

variable i n Vout at the program point Sout and all predicates that give rise to the alternative 

control flow paths on which the statements in SS lie). Direct sfices can be used to identify 

structural information distributed throughout the program and to extract a source ( input) 

or sink (output) module [124] encapsulating that information. Human interaction is required 

both for ident ifying a slicing criterion, and refining the slice extracted, whenever this is too 

complex to be clustered in one module [65]. 

Domain-dependent components are identified and extracted by searching for transform 

slices. A transform slice of a program P on a shcing criterion {sout, K n , K u t ) , where Sout 

is a program statement and K n and K u t are subsets of program variables, consists of all 

statements and predicates of P that might affect the values of the variables in Vout starting 

f r o m the values of K „ , just before the statement Sout is executed. The computation of a 

transform slice terminates as soon as the definition of each of the variables in /K„ is found. 

Transform slices can be packaged in transform modules [124], i.e., components whose main 

purpose is to transform data into some other fo rm. A different approach to the extraction 

of domain-dependent functions has been proposed by Cutil lo et al. [66]. Given a slicing 

criterion {souti Vini K u t ) , the slice to be clustered into the transform module is computed 

as S{Vout) \ S{Vi„), where S{V) denotes the decomposition slice [86] on the set of program 

variables V. However, the accuracy of this technique is lower wi th respect to the transform 

slice algorithm presented in [124]. Indeed, the absence of a program point in the slicing 

criterion [86] may cause the addition of extraneous statements in the transform module or 

the deletion of necessary instructions. . 

Canfora et al. [45] use program slicing to isolate the external (user) functionalities of large 

monolithic programs. Slicing criteria of type (p, v), where p is an output statement and u is a 

program variable referenced at p, are used to extract output-including slices [45]. Afunctional 

slice [45] corresponding to an external functionality is obtained as the union of more output-
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including slices. When a functional slice has been obtained, a comparative analysis of the 

software documentation and of the slice must be performed in order to associate the latter 

w i t h a meaningful user functionality. Program slicing and concept assignment process are 

alternated into an iterative process in order to refine the functional shce. A functional slice 

can be decomposed in source, transform and sink modules [124], by isolating the statements 

that get the external input (to be clustered in the source module) and return the external 

output (to be clustered in the sink module) f rom the statements that compute the function 

(these statements w i l l compose the transform module). However, the transform module 

can s t i l l be too complex, because i t embeds several internal functionalities. In this case 

functional slices can be decomposed into more elementary internal subfunctionalities by a 

process of slice's intersection [45]. Moreover, a further decomposition of a functional slice 

can be obtained by intersecting the component output-including slices. The type of result 

obtained by intersecting slices is an index of the degree of cohesiveness of a module [137]. 

A case study [45] showed that only modules that exhibit communicational or sequential 

cohesion [182] can be decomposed into potentially reusable components. 

Aggregating Procedures on the Call Graph 

The need for searching for functional abstractions by means of aggregation is related to the 

poor quali ty of the high level design. Very often this poor quality of design means that i t is 

impossible to recognise the high level functions that a set of procedures implements and, thus, 

to create a software system as a set of potentially reusable modules [42]. The aggregation 

entails the identification of sets of procedures w i t h high functional cohesion [182], each set 

being a candidate to create a reusable module. 

The most elementary fo rm of aggregation consists of searching the call graph for particular 

sub-graphs, such us strongly connected sub-graphs, trees, one-in/one-out sub-graphs. More 

sophisticated forms of aggregation can be obtained by transforming a call graph into a tree. 

The transformation of a call graph into a tree is a reverse engineering process to abstract a 

high level design document, essentially a structure chart, f r o m a low level representation of 

the calls i n a software system [13]. 

Cimi t i le and Visaggio [55] propose a candidature criterion for the identification of func­

t ional abstractions based on the transformation of the call graph of the system into a tree 

by exploiting the dominance relation [100] among the nodes of the call graph. In [55] a 

program's call graph {s, PP,GALL)^ is referred to as Gall Directed Graph CDG. The Gall 

Directed Acyclic Graph (CDAG) is obtained f r o m the program CDG by collapsing each 

^PP is the set of procedures, s € PP is the main procedure and CALL describes the activation relation 
on PP X PP\{s}. 
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strongly connected subgraph'^ into a single node. 

In a CDAG a procedure dominates a procedure py if and only if each path from 5 to py 

contains p^. The reflexive and transitive closure of the dominance relation on the CDAG is 

the direct dominance relation. A procedure p^ directly dominates a procedure py if and only 

if p^ dominates Py and all the procedures that dominate Py dominate p^ too. A procedure 

Px strongly and directly dominates a procedure py if and only if p^ directly dominates Py and 

Px is the only procedure that calls Py. 

The direct dominance relation can be represented as a tree, called the Direct Dominance 

Tree (DDT), whose root is the main procedure s. The Strong and Direct Dominance Tree 

(SDDT) is obtained from DDT by marking all the edges representing the strong and direct 

dominance relation. The set of the subtrees of a SDDT can be divided in two subsets, 

the subset MET of the subtrees containing only marked edges and the subset UMET of 

the subtrees containing at least an unmarked edge. The Reduction of the Strong Direct 

Dominance Tree (RSDDT) is a tree obtained from the SDDT by collapsing each subtree in 

MET into a unique node. 

Four rules have been proposed to aggregate procedures into reuse-candidate modules and 

to identify the uses and is composed 0/relationships [89] between them: 

1. The set of procedures represented by the nodes of a strongly connected subgraph of a 

CDG is a candidate to constitute a reusable module. 

2. The set of procedures represented by the nodes of a subtree t G MET is a candidate 

to constitute a reusable module represented by the root of t. 

3. The set of procedures represented by nodes of a subtree t E UMET linked to the root 

of i by a marked edge is a candidate to constitute a reusable module. This module 

uses the modules represented by the nodes in t which are linked to the root by an 

unmarked edge. 

4. Each of the marked (unmarked) edges of RSDDT is a candidate to constitute an is 

composed of (uses) relationship between the modules represented by the nodes that 

the edge links. 

The criterion has been validated both in Pascal [53] and COBOL [46] environment. 

strongly connected subgraph of a C D G contains at least one cycle involving all its nodes. This cycle 

is due to the presence of recursion between the procedures of the program. 
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Generalising Functions 

The generalisation of a function implemented by one or more procedures increases the like­

lihood of the function to be reused. The generality of a function is often viewed as an index 

of its reusabihty [25 . 

A first elementary form of generalisation of a function consists of parametrising it . For 

example, a procedure for array sorting parametrised with respect to the length of the array 

is more general than one for arrays with a fixed length. However, excessive parametrisation 

should be avoided because a function with too many parameters may be difficult to use 

and to maintain [42]. Often a function that can be generalised is identified by locating 

instances of near-duplication in a software system [9, 58, 104], i.e., sections of code that are 

textually identical except for systematic substitution one set of variable names and constants 

for another. An experiment showed that 12% of the X Window System [155] was composed 

of duplicated code that could be removed by rewriting the system [9]. 

A more interesting form of generalisation consists of generalising the type of information 

that a function handles [42]. To obtain such a type of generalisation it is required to record 

the procedure that implements the generic function as a skeleton; the designer who is going to 

use the component must first instantiate i t to the required type. Modern languages, such as 

Ada [24], have syntactic primitives to write generic functions and instantiate them. However, 

most of the existing software systems are written in traditional that do not allow procedures 

to be written in a generic way. For these languages a formalism to express function skeletons 

can be defined and a library of procedures with generic parameters can be created [52 . 

The instances of one of the procedures in the library can be obtained by editing operations. 

To make sure that errors are not made during the instantiation process an environment 

should be created that accepts the description of the instantiation operations in a high-level 

user-oriented formalism and performs the corresponding low level operations [42]. 

2.3.3 Data Abstraction Candidature Criteria 

Several structural candidature criteria for searching data abstractions in code written using 

procedural languages have been proposed in the literature [36, 37, 38, 43, 47, 76, 85, 99, 128, 

129, 181]. A survey can be found in [167]. In the following we will illustrate some of the 

criteria proposed within the RE^ project [42 . 

Identifying Objects 

A logic based method for identifying objects (or data structures) has been proposed by 

Canfora and Cimitile [36]. This approach looks for the set of procedures PP, the set of 
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global variable DD and the set of references of procedures to global variables, which can be 

expressed by a relation DAT C PP x DD. It is worth noting that this relation can also be 

represented as a bipartite graph called variable-reference graph [34]. The criterion is based 

on two rules: 

1. Two global variables di and ĉ2 contribute to define the same candidate object if they 

belong to a reference cobweb, i.e. i f and only if® 

(<fi, c/2) G DSD AT - {trans{DAT) DAT)* C DD x DD 

2. A procedure c defines one of the methods of the object to which a global variable d 

belongs if c directly references one of the variables in the cobweb around d, i.e. if and 

only i f 

{d,c) e PPDAT = {trans{DAT) DAT)* trans{DAT) C DD x PP. 

A different criterion has been proposed [38] and validated in C environment [39] which 

treats undesired pairs in DAT, called coincidental and spurious connections^, that produce 

clusters of procedures and functions implementing more than one object. The candidature 

criterion considers for each p G PP the subgraph generated by clustering together the set 

DD{p) of global variables p references and the set PP{p) of procedures that only access 

these data items. These sets can be defined as: 

DD{p) = PostSet{p) 

pp{p) = u m p ) 
deDD(p) 

where, 

P{d,p) = {pi e PP I Pi G PreSet{d) A PostSet{pi) C PostSet{p)} 

PreSet{d) = {p G PP | (p, d) G DAT} 

PostSet{p) = {de DD\ (p, d) G DAT} 

^trans(R) and R* denote the transpose and reflexive transitive closure of the relation R, respectively, 

procedure which implements more than one function, each function logically belonging to a different 

object, generates coincidental connections. A procedure which implements system specific operations by 

directly accessing the supporting data structure of more than one object generates spurious connections. 

Coincidental connections can be eliminated by slicing the procedure and isolating the different functions. 

Spurious connections can be eliminated by deleting the procedure from the set PP. 
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For such a subgraph the index IC{p) defining its internal connectivity and the variation 

AIC{p) in the internal connectivity, due to the possible clustering with respect to procedures 

in PP{p), are calculated: 

IC{p) — ^dePostSetjp) #P{d;p) 
EdePostSet(p)#PreSet{d) 

AicM = icM- E ' ':;V:;lr 
where # A denotes the number of elements in the set A. 

The procedures whose associated A / C is greater than a given threshold are used to 

generate clusters. Al l the other routines are considered to introduce coincidental or spurious 

connections and are sliced or deleted, respectively. Moreover, some of the data items are 

merged into a unique item. These operations generate a new variable-reference graph on 

which the indexes are recalculated and the operations reexecuted. The process ends when 

the graph is partitioned into a set of isolated sub-graphs, each of which consists of one data 

node (corresponding to a set of global variables) and a collection of procedures that only 

access i t . Each one of these isolated sub-graphs defines a candidate object. 

Abstract Data Types Candidature Criteria 

A logic based method for identifying abstract data types has been proposed by Canfora et 

al. [37]. This approach looks for the set of procedures PP, the set of user defined data types 

TT and the set of uses of user defined data types in the headings of the procedures^", which 

can be expressed by the relation TYP C PP x TT. To take into account the relationships 

possibly existing among the different user defined data types used in the heading of a proce­

dure, this relation is refined by the relation STYP C TYP containing the pairs (p, t) such 

that p does not use any super-type^^ of t in the interface. The criterion is based on two 

rules: 

1. Two user defined data types ti and 2̂ contribute to define the same candidate abstract 

data type if they belong to a cobweb of formal parameters declarations, i.e. if and only 

if 

( i i , i2) € ABTYP = {trans{STYP) STYP)* C TT x TT 

procedure p uses a user defined type t if and only if t is used to define the type of a formal parameter 

or a return value of p [37] 

^^The user defined data type <i is a super-type of the user defined data type t2 if <2 is used to define 

h [129]. 
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2. A procedure p defines one of the operators of the abstract data types to which a user 

defined data type p belongs if p uses one of the user defined data types in the cobweb 

around t to declare a formal parameter, i.e. if and only if 

{t,p) G PPTYP = {trans{STYP) STYP)* trans{STYP) QTT X PP. 

The criterion above has been applied to a set of case studies written in Pascal [40]. 

Although the experiment gave satisfactory results, some modules were too large and difficult 

to understand and associate with data abstractions. This was in particular caused by a 

extensive use of user defined sub-range or enumeration types in the headings of procedures. 

Such user defined types were used in some procedures that could not be associated with 

operators of an abstract data type and procedures that could be associated with operators 

of different abstract data types. The criterion was also affected by another problem which 

caused lack of precision: procedures contributing to the implementation of an abstract data 

type, but that did not use any user defined data type (for example, procedures implementing 

a subfunction of an operator of an abstract data type), were not selected for the candidate 

module. To overcome these problems, an improved criterion has been proposed by Canfora 

et al. [43 . 

The problem of complex modules has been solved by identifying and deleting the user 

defined sub-range or enumeration types that caused large clusters of procedures and user 

defined data types. In this way complex modules can be divided in simpler ones that can 

be associated with human oriented concepts. To include all the procedures involved in the 

implementation of an ADT the previous method has been combined with an iterative pro­

cess based on the SDDT of the system. At each step, the process deletes from the CDAG 

the procedures that do not belong to some candidate modules and that are strongly and 

directly dominated by the main procedure. Moreover, new call edges are inserted between 

the main procedures and procedures that do not have any incoming edge and the SDDT is 

reconstructed. The last SDDT, so obtained, is only constituted by procedures that imple­

ment candidate ADTs. Moreover, the dominance relationships on this SDDT can be used 

to identify the structure of a module implementing an ADT (the procedures exported, i.e., 

the operators of the ADT, and those only used in the body for implementation purpose) and 

the uses relationships between modules. 

The details of the improved criterion can be found in [167]. The criterion has been applied 

to the same set of case studies used to validate the former criterion [54]. The results of the 

experiments were characterised by a greater number of reusable modules of higher quality. 
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2.4 Specification Driven Candidature Criteria 

The concept assignment function caf is very important to validate a structural method [53], 

because i t selects the subset cf of reuse candidate code fragments from the set cf produced 

by the selection function s f . The adequacy of a structural method can therefore be measured 

as the percentage of elements in cf which also are in cf [53]. 

On the other hand, specification driven methods presuppose the existence of information 

about the specification of the abstraction to be recovered and their application does not need 

to be followed by a concept assignment process. The specification of the abstraction can be 

given in different ways. For example, it can be expressed in a formal way [41, 59] or as a set of 

test cases capturing the behaviour of the abstraction [92, 177, 178]. A widely used approach 

is to build up a library of programming plans [160] or cliches [148] (each of which corresponds 

to an abstraction) and to search for their instances in code [3, 115, 120, 142, 146, 180]. 

In general a specification driven method consists in instantiating a model 

( P , C F , 5 , s / : P x 5 ^ 2 ^ ^ ) 

where: 

• P is a set of programs. 

• CF is a set of code fragments of programs in P. 

• 5 is a set of specifications. 

• s/ is a selection function. Given a program p G P and a specification s G 5 it 

selects the subset c/ C C F of code fragments of P which satisfy particular structural 

properties and implement the specification s. These code fragments are candidate to 

be reengineered and reused. 

The adequacy of a specification driven method is very high [44]. In the following we will 

illustrate some of the methods proposed in the literature. 

2.4.1 Formal Specifications for Candidature Criteria 

Formal specifications are generally beneficial because a formal language makes specifications 

more concise and explicit [27]. These techniques help the software engineer acquire greater 

insights into the system design, dispel ambiguities, maintain abstraction levels, and deter­

mine both his approach to the problem as well as its implementation. Formal specification 

languages such as Z [162] and VDM [108] have been used in several software development 
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projects [27, 28]. Reverse engineering techniques have also been exploited for recovering a 

formal specification from code [2, 3, 38, 57, 87, 171 . 

Canfora et al. [41] propose three specification driven candidature criteria for isolating 

code fragments implementing functional abstractions in large programs. The function to 

be isolated is partially specified in term of its sets of input and output data and first order 

logic formulas, called precondition and postcondition [101]. The precondition expresses the 

constraint which must hold on the input data to allow the execution of the function, while 

the postcondition expresses the condition which will hold on the output and input data after 

the execution of the function (i.e., it relates the output data to the input data); Other 

conditions that bind the execution of a function in the context of a program (for example, 

conditions on a variable carrying a selection from a menu of several functions that can be 

executed) are also considered. The formal specification of the function is used together with 

structural techniques based on the program dependence graph [81]. Humaji interaction is 

required to trace the data and conditions of the specification into the program variables and 

predicates. 

Three type of conditioned software components are identified and extracted: conditioned 

functions.^ conditioned programs and conditioned slices. 

Conditioned function. Given a program P and a condition C, the conditioned function 

F{C) consists of all the statements and predicates in P that are control dependent [81] 

on a program predicate implementing the condition C. A control dependence graph 

traversal algorithm is presented which searches for. a predicate node p corresponding 

to the precondition or a binding condition of the required functional abstraction. The 

nodes which are control dependent on p are candidate to implement the functional 

abstraction and are isolated and extracted. Human interaction is required to identify 

the program predicate implementing the condition. 

Conditioned program. Given a program P and a condition C, the conditioned program 

P(C) is an executable program containing all the statements and predicates of P 

that can be executed when the condition C holds true. An algorithm traversing the 

control dependence graph is used to identify all the nodes corresponding to statements 

and predicates of P that can be executed whenever a given condition holds true. 

This method is useful to isolate different behaviours of a program modules. These 

behaviours can be specified by a postcondition composed of the disjunction of several 

conditions, each of which corresponds to one behaviour. The software engineering is 

asked for proving implications between the condition and the program predicates, in 

order to discard execution paths. 
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Conditioned slice. Conditioned slicing is a generalisation of the quasi static slicing 

paradigm [169], where a general condition substitutes the set of value assigned to a 

subset of input data. A conditioned shcing criterion is of the form {sout, Vout, C), where 

Sout is a program statement, Vout is a set of program variables and C is a condition. 

A conditioned slice of a program P on a conditioned slicing criterion (so„i, Vouti C) 

consists of all the statements and predicates of P that might affect the values of the 

variable in Vout just before the statement Sout is executed, when the condition C holds 

true. As program slicing can be used to identify reusable functions in code, conditioned 

slicing can be used for identifying different behaviour of a functional abstraction imple­

mented by a program slice. An two phase algorithm is exploited which first compute 

the conditioned program P(C) and then the conditioned slice by exploiting the pro­

gram dependence graph of P(C). 

These methods can be improved by using formal method tools [28], such as a symbolic 

executor [64] and a theorem prover [29]. 

2.4.2 Candidature Criteria Based on Test Cases 

A way to provide the specification of a functionality is by carefully designing a set of test 

cases for a program. The set of test cases expresses a behaviour of the program corresponding 

to an external functionality. 

Mapping test cases to code 

Wilde et al. [177, 178] considers the problem of locating functionalities in code as the iden­

tification of the relation existing between the ways the user and the programmer see the 

program. From the user point of view, a program consists of a collection of, possibly over­

lapping, functionalities: 

FUNCS = { / i , / 2 , . . . , M 

while the programmer's view consists of a collection of program components: 

COMPS = { C I , C 2 , . . . , C M } 

The problem is the identification of the components in COMPS which contribute 

to implement a functionality in FUNCS, i.e., the construction of a relation 

IMPL C COMPS X FUNCS. The link between components and functionahties may be 

provided by test cases. A test case T,- exhibits a set of functionalities F{Ti) = {fi,i,fi,2i •••} 

which can be identified by a system user. On the other hand, a test case also exercises a set 
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of program components C(T,) = {c,-,i, Ci_2,...} which can be identified by instrumenting the 

code and monitoring its execution. 

Both a deterministic and a probabilistic techniques have been proposed to analyse the 

traces resulting from the program execution [177 . 

Probabilistic formulation. This approach is motivated by a statistical view of the problem. 

Given from a sample of test cases extracted from a population composed of every 

possible test sequences for the program, the approach tries to identify the best indicators 

of a given functionality. Let p/_c indicates the conditional probability that a test case 

that exercises the component c also exhibits the functionality / , i.e.: 

P/.C = P { f \ c ) = P ( / , C ) / P ( C ) 

The best indicator components for a given functionality / are those having the greatest 

Pf^c- I f T i , T j , a r e a random sample of test cases, an estimator of p/,c is 

p/,c = Freq{f,c)/Freq{c) 

The implements relation can be constructed as: 

IMPL, = {{cJ)eCOMPS xFUNCS\pf,c>z} 

for some threshold 0 < z < 1. 

Deterministic formulation. In the deterministic approach the implements relation for a 

given functionality / is builded by taking all the components exercised in tests cases 

exhibiting / and subtracting out those components exercised in the remaining test 

cases, i.e., the resulting relation would satisfy, for some T: 

IMPL'icJ) =^ c€C{T) and f e F{T) 

and as well there would be no T' such that: 

IMPL'icJ) =^ ceC{T') and ^f e F{T) 

where the symbol denotes the logical not. The relation IMPL' is simply a limiting 

case of the IMPL^, as it can be easily proved [177] the equivalence of: 

IMPLr.o{c.f) ^ IMPL'icJ) 
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The method was experimented in a set of case studies [178] conducted on software systems 

written in C language [110]. The probabilistic approach achieved slightly better results than 

the deterministic one. 

While this candidature criterion is cost-effective, very practical and easy to implement 

and use, it is only good to find components that are unique to a particular functionahty. In 

general, the method lacks in precision, because the software component identified could be 

too large and include more functionalities than the one sought. In some cases, the set of 

statements exercised by a set of test cases might enclose the whole program. 

Combining test cases and program slicing 

A more precise method by Hall [92] combines the use of a set of test cases with program 

slicing. The method is called simultaneous dynamic program slicing because it extends and 

simultaneously applies to a set of test cases the dynamic slicing technique [117, 118] which 

produces executable slices that are correct on only one input. The basic idea of this approach 

is that the end-user specifies which test cases illustrate the desired behaviour; the system 

then computes a simultaneous dynamic program slice that is guaranteed to be correct on 

the indicated test cases. This method takes into account the data flow of the program and 

then allows the reduction of the set of selected statements. Indeed, only the statements that 

might affect the values of the output variables of the function on the exercised paths will be 

considered. ^ 

A simultaneous program slice on a set of test cases is not simply given by the union of 

the dynamic slices on the component test cases. Indeed, simply unioning dynamic slices is 

unsound, in that the union does not maintain simultaneous correctness on all the inputs [92]. 

An iterative algorithm is presented that, starting from an initial set of statements, incre­

mentally constructs the simultaneous dynamic slice, by computing at each iteration a larger 

dynamic slice. The algorithm has been implemented in ISAT (Interactive Specification Ac­

quisition Tool) [92], a multi-functional apprentice system to aid the human developer in 

acquiring, validating, implementing, maintaining, and reusing a rule-based reactive system 

model consistent with an evolving set of requirements. Experiments conducted on a set of 

six case studies indicate that the method produces significantly smaller subsets than three 

competing approaches: static slicing [176], all-executed-code on the set of test cases, and the 

intersection of the outputs of the first two techniques. 

However, the method does not consider the problem of finding a slicing criterion and 

then it can only be used to identify external functionality. Lack of precision can result 

in identifying internal functions when dealing with large programs. Moreover, whenever a 

slicing criterion has not been adequately selected, the method might produce slices containing 
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more functionalities than the one expected or even not containing all the statements of the 

searched functional abstraction. In the next chapter we will show how the use of a formal 

specification and of symbolic execution helps in defining a suitable slicing criterion, allowing 

a better precision in identifying expected functions. 

2.4.3 Knowledge Based Candidature Criteria 

Several specification driven methods for identifying abstractions in code are knowledge-based 

approaches. They encode the knowledge about the functions to be identified in the form of 

programming plans and make use of an internal representation of the program for mapping 

program actions to these plans. The final result is a kind of tree, with program instructions 

at the leaves, programming plans in the internal nodes, and goals the program achieves as 

the root. Knowledge based methods can be classified as either top-down or bottom-up [146 . 

Top-Down Knowledge Based Methods 

Top-down methods [115, 120,121] use the knowledge about the goals the program is assumed . 

to achieve and some heuristics to locate what plans from the library can achieve these 

goals; then program statements and the plan from the library that can achieve these goals; 

then they attempt to connect these plans to the actual program statements. Typically, the 

program representation used consists of an abstract syntax tree [5] annotated with semajitic 

information [115, 121]. Once a plan achieving a program goal has been identified, i t is 

translated into a lower abstraction level representation (usually the same representation as 

the program). The process includes using matching rules to detect how the statements 

achieve the various subgoals within a plan, and difference rules to recognise how they differ 

from the statements expected in a plan. 

Pattern matching techniques have been developed by Kontogiannis et al. [116] both 

for code-to-code and concept-to-code matching. The code-to-code matching uses a dynamic 

programming algorithm to calculate the distance between two code fragments. The concept-

to-code matching uses Markov models to compute similarity measures between an abstract 

description, expressed in a concept language, and a code fragment. 

Bottom-Up Knovi^ledge Based Methods 

Bottom-up methods [3, 142, 146, 179, 180] are more precise but also more expensive. They 

start from the program statements and try to identify the plan which can have these state­

ments as components; then they attempt to infer program goals from these plans. Such 

methods are too expensive because they exhaustively search for plans in a program. For 
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example, Wills [179, 180] encodes the program into a flow-graph and uses a flow-graph 

grammar as library of cliches. Graph parsing is then exploited to identify all the notable 
It 

subgraphs in the program's flow-graph. This approach has also been used for recognising a 

program's design [149]. A different approach proposed by Ross [151] uses symbolic execution 

to derive an effects-based representation of a program, in term of a set of effect-trees. Each 

effect-tree describes the value a variable can assume through the possible feasible and non-

redundant paths. The program representation is then matched against a library of known 

effect-trees associated with high level abstraction descriptions. Paul and Prakash [142] use a 

finite state machine-based tool for searching patterns in C code. Source code is compiled into 

an attributed syntax tree (AST), while patterns (expressed by means of a pattern language) 

are compiled into an extended nondeterministic finite state automata, called code pattern 

automata (CPA). A CPA interpreter runs the CPA with the AST as input. A match occurs 

whenever the CPA reaches a final state. 

The time complexity of these methods is exponential because of the NP-completeness of 

the problem. A solution to limit the number of candidate plans considered during program 

understanding can be provided by using hierarchical [3] or indexed [146] organisations of 

the plan library. For example, Quihci and Chin [147] propose a cooperative environment 

where an automated program understander based on an indexed plan library is augmented 

with facilities for aiding programmers in extracting and recording additional program design 

information. 

However, the main limitation of knowledge-based methods is that they can require a large 

library of plans. Moreover, while this approach can be effective for recognising stereotypi­

cal domain independent plans, i t can be too expensive for dealing with domain dependent 

functions and then not convenient for a reuse reengineering process. Indeed, to apply a 

knowledge-based method to software written for a particular application domain we need to 

design and develop a new plan library for this domain and the cost of such a task might be 

comparable to the cost of designing and developing a library of reusable modules. 

2.5 Summary 

In this chapter the background for the work described in this thesis has been discussed. 

The reference paradigm of the RE^ project [42] has been outlined. The reference paradigm 

proposes a systematic approach for setting up a reuse reengineering process. It divides a 

reuse reengineering process into five sequential phases, each phase being characterised by 

the objects it produces. The first three phases produce the reusable modules from existing 

systems, while the latter two phases populate the repository and set up the environment for 
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the retrieval and the reuse of modules during the development of new systems. 

The work presented in this thesis is part of the first phase of the RE^ reference paradigm, 

called the Candidature phase, which is related to the identification of software components 

implementing abstractions in existing systems. The main problem of this phase is the defi­

nition of a candidature criterion and the model of the system to apply the criterion. Several 

program representations proposed in the literature and mainly used in software maintenance 

have been described. Such program representations are suitable to be used for applying 

different candidature criteria. 

Candidature criteria can be distinguished in structural candidature criteria and specifi­

cation driven candidature criteria. Structural candidature criteria aim to recover software 

components that satisfy particular structural properties based on a metric model or on the 

type of abstraction to be sought. A concept assignment process [18] is required in order 

to associate a human oriented concept with the recovered components. Several candidature 

criteria have been described based on simple software or searching for software components 

implementing functional and data abstractions. Specification driven methods presuppose 

the existence of information about the specification of the abstraction to be recovered and 

their application does not need to be followed by a concept assignment process. Specifica­

tion driven candidature criteria using formal specifications, test cases and knowledge bases 

to describe the abstraction to be sought have been outlined. 
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Chapter 3 

A New Specification Driven 
Candidature Criterion 

In this chapter a new specification driven candidature criterion, called specification driven 

program slicing is presented. The method is based on program slicing as a program de­

composition technique for isolating code fragments implementing functional abstractions. A 

different definition of slicing criterion is given in order to consider a program slice as a proce­

dure. The specification of the functional abstraction to be isolated is used to find a suitable 

slicing criterion.- To this aim symbolic execution [60, 64, 111] and theorem proving [6, 29,143 

techniques are used as a support for the maintainer. In section 3.1 the specification driven 

slicing process is defined and the main features of program slicing and symbolic execution 

are outlined. In section 3.2 we show how the process can be specialised for programs written 

in C language [110 . 

3.1 Specification Driven Program Slicing 

In the previous chapter program slicing has been introduced and structural criteria based on 

program slicing have been showed. In the Weiser's definition a slicing criterion of a program 

P is a pair (sout, where Sout is a statement in P and Vgut is a subset of variables in P. 

A program slice is therefore an executable code fragment composed of all the statements 

and predicates of P (starting from the entry of the program) that might affect the values 

of the variables in Vout just before the statement Sout is executed. Actually, such a code 

fragment cannot be always considered as a reusable function. Indeed, the use of program 

slicing for isolating reusable functions also involves the knowledge of the statements where 

the computation of the slice must terminate. For example, Lanubile and Visaggio [124] 

provide information about the input data of the function to be isolated by adding a set of 
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variables V;„ to the slicing criterion. They also introduce the definition of the transform slice 

of a program P on a slicing criterion (so„t, K„, Kut) as the set of statements and predicates 

of P that might affect the values of the variables in Vout just before the statement Sout is 

executed. The computation of a transform slice terminates as soon as the definition of each 

of the variables in K„ is found. Therefore, a transform slice fails to identify a function if 

the variables in Vn are defined more than once during its execution. A different approach 

can be followed if we consider that a function should have a unique entry point, i.e., a 

statement s,„ which dominates all the other statements on the control flow graph [5, 100]. A 

new definition of slice can be obtained by adding such a statement s,„ to the slicing criterion. 

Definition 3.1 A slicing criterion of a program P is a triple (s,„, s<,uf, Vout) where s,„ and 

Sout are statements in P, St„ dominates Sout and Vout is a subset of variables of P. 

Definition 3.2 A slice of a program P on a slicing criterion (s,„, Souti Vout) consists of 

all the statements and predicates of P that lie on a control flow path from s,„ to Sout and 

that might affect the values of the variables in Vout just before the statement Sout is executed. 

Cimitile and De Lucia [56] have defined algorithms based on the control flow graph [100] 

and the program dependence graph [81] to compute such a slice. 

3.1.1 Finding a Slicing Criterion 

The adequacy of a structural method can be measured as the percentage of elements pro­

duced that can be associated with a human oriented meaning [53]. While structural candi­

dature criteria have showed good results in several experiments conducted within the RE^ 

project [42] for the identiflcation of data abstractions [39, 40, 54] and functional abstractions 

through the aggregation of procedures on the call graph of the program [53, 46], a pure 

structural method like program slicing is not completely adequate to isolate code fragments 

implementing functional abstractions [56]. Program slicing might very often fail to isolate 

slices which can be associated with a human oriented meaning. Indeed, the most important 

problem in using program slicing for isolating reuse-candidate code fragments is the identi­

fication of a suitable slicing criterion. This task requires the knowledge of the specification 

of the function we are looking for in the code and cannot be completely automated. In 

particular, human interaction is required to trace the data of the function into the program 

variables of the slicing criterion [ I j . Moreover, a suitable program point has to be identified. 

A specification driven method is more suitable than a structural method in order to isolate 
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code fragments implementing functional abstractions. 

The need to know the specification of the function to be isolated has been outlined by 

Canfora et al. [41]. In this work a new slicing method, called conditioned slicing, heis been 

defined in order to isolate slice fragments that can be executed whenever given conditions 

in the specification of the function hold true. This approach allows to isolate a particular 

behaviour of a function. A related work by Hall [92] introduces the simultaneous dynamic 

program slicing to compute a functional subset of an existing program. The approach extends 

and applies to a set of test cases the dynamic slicing [117, 118] which produces executable 

slices that are correct on only one input. However, in these works the specification of the 

function to be isolated is not used to identify the slicing criterion. 

In this thesis we introduce a specification driven program slicing process for identifying 

a slice which implements a given specification of a functional abstraction. The specification 

of the functional abstraction is used together with symbolic execution and theorem proving 

techniques in order to identify a suitable slicing criterion. We assume that the specification 

of a function is given in terms of its sets of input and output data and two first order 

logic formulas called precondition and postcondition [101]. The precondition expresses the 

constraint which must hold on the input data to allow the execution of the function, while 

the postcondition expresses the condition which will hold on the output and input data after 

the execution of the function (i.e., it relates the output data to the input data). Figure 3.1 

shows the specification driven program slicing process. From the source code of the program 

a static analyser produces a control flow based program representation. A symbolic executor 

processes the program representation and associates each statement with the symbolic state 

holding before its symbohc execution. Such a symbolic state contains the precondition 

of the statement. The precondition of a statement is also called invariant assertion [82], 

because it holds before the execution of the statement for each assignment to the symbolic 

constants. As the problem of finding invariant assertions is undecidable, human interaction is 

required to provide the assertions that cannot be automatically derived. Human interaction 

is also required to associate the data of the specification with the program variables and in 

particular to define the set of variables Vout corresponding to the output data of the function. 

These assertions and the specification of the function to be searched for are the input to the 

slicing criterion finder. Once a statement has been annotated with its entry symbolic state, 

the finder checks the equivalence of the statement precondition with the precondition and 

postcondition of the specification. A statement whose precondition is equivalent to the input 

precondition is candidate to be the statement s,„ of the slicing criterion, while a statement 

whose precondition is equivalent to the input postcondition is candidate to be the statement 

Sout of the slicing criterion. If 5 ,„ also dominates Sout the shcing criterion ( 5 , „ , 5ou<, Vout) 
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Figure 3.1: The specification driven program slicing process 

is produced as output. Finally, a program slicer computes the slice and isolates the code 
implementing the functional abstraction. 

3.1.2 Symbolic Execution 

Symbolic execution was first introduced as a powerful tool for program testing [60, 111] and 

program verification [68, 94]. More recently, it has been used for software specialisation [61] 

and for recovering the formal specifications of reusable software components [2, 57]. 

The traditional execution model of a program is based on the control flow and on the 

concept of state. A program state is a set of pairs 
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{ ( M l , Vi), (M2, V2), . . ., (Mn, 

where M i , M2, . . . , M „ are the memory locations corresponding to the program's variables 

and for 1 < 2 < n, u, is the value stored in M,- at some point of the execution. An execution 

of a program can be represented by a sequence SoPiSi.. .pfSf, where each 5i, 0 < i < f , 

is a program state and each Pj, 1 < j < / , is a program statement or predicate. 5*0 is the 

initial state and Si, I < i < f , is the state resulting from the execution of p,- in the state 

5,-1; Sf IS the final state. If p j , 1 < j < / , is a predicate, the information contained in Sj-i 

unequivocally allows the selection of the branch to follow. Moreover, the resulting state Sj 

will not change (with respect to the state Sj-i) if pj does not contain side-effects. 

While in traditional execution the values of program's variables are constants, in symbolic 

execution they are represented by symbolic expressions, i.e., expressions containing sj'mbolic 

constants. For example, the value w of a variable x might be represented by "2 * a + /?", 

where o; and /? are symbolic constants. Like a traditional execution, a symbolic execution of 

a program might be represented by a sequence alternating states and statements. However, 

if Pj is a predicate, the information contained in the state S'j-i may not suffice to select 

the branch to follow. Indeed, the symbolic boolean expression obtained by replacing the 

variables in pj with the corresponding values in Sj-i could hold true for some assignments 

to the symbolic constants and false for other ones. For example, let us consider the following 

piece of code 

i f ( a > b) 

c = a; 

else 

c = b; 

The result of the evaluation of the predicate a > b in the state 

{(a, a + ^ ) , (b, a - / ? ) , (c, undef)} 

(where undef stands for an undefined value and for the sake of simplicity each memory 

location is indicated with the name of the corresponding variable) will be a + / ? > q — 

which can be simplified in /? > 0. As a consequence, it allows the selection of the true branch 

for all the positive values of P and the selection of the false branch otherwise. 

In the following, the symbols A, V and will denote the logical and, or and not, respec­
tively. 

Multiple Execution Paths 

Whatever the selected branch is we must keep track of the condition which caused the 

branch to be selected, i.e., if p j { S j - i ) is the symbolic boolean expression resulting from the 
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evaluation of the predicate pj in the state S'j-i, we must associate with the resulting state 

Sj the expression pj{Sj-i), if the true branch has been selected, the expression -'Pj(Sj-i), 

otherwise. Therefore, a symbolic state is a pair {State, PC), where State is as usual a set 

of pairs of the form ( M , a), M and a being a memory location and a symbolic expression 

respectively, and PC is a first order logic formula called path-condition and representing the 

condition which must be satisfied in order for an execution to follow the particular associated 

path on the control flow. For example, let us consider the piece of code above. The symbolic 

execution of the predicate a > b in the symbolic state 

{SuPi) = {{{B.,a + (3),{h,a-P),{c,undef)},a>0) 

generates two possible independent executions depending on the selected branch. The re­

sulting symbolic state will be 

(52 ,^2 ) = {{{3i,a-\-/3),{h,a-(3),{c,undef}},a>0 A P>0) 

whenever the true branch is selected, 

(53,^3) = {{{3.,a + P),{h,a-f3),{c,undef)},a>0Ap<0) 

otherwise. On the contrary, i f the predicate a > b is symbolically executed in the symbolic 

state 

({(a, a + P), (b, a - /?), (c, undef)}, /? > 1) 

only the true branch can be selected and the path-condition of the resulting symbolic state 

will remain unchanged (because / ? > l A / ? > O i s equivalent to p > 1). Indeed, the path-

condition of the symbolic state resulting from the selection of the false branch would be 

P > 1 A P < 0 which is identically false. 

The previous example shows that when a predicate p is encountered in the symbolic state 

(5, PC), at most one of the following two implications can hold true (if PC is not identically 

false): 

(a) PC =^ p{S) 

(b) PC ^ - ip(5) 

If exactly one implication holds true, the execution continues on the true branch, when 

the implication (a) holds true, or on the false branch, when the implication (b) holds true, 

and the path-condition PC does not change. When neither the implication (a) nor the 

implication (b) holds true there exists at least one set of inputs to the program satisfying the 

implication (a) and another set satisfying the implication (b). In this case, both the true and 
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the false branches must be selected and two symbolic executions will proceed independently. 

Whenever the true branch is selected p(S) must hold true and this information has to be 

recorded in the path-condition which changes in PC A p{S}. Analogously, whenever the 

false branch is selected the path-condition becomes PC A ~'p{S). The evaluation of the 

implications (a) and (b) can be made by a theorem prover [6, 29, 143]. However, as in 

general this problem is undecidable, human interaction is required to make some decisions 

whenever the theorem prover is not able to reach a result. 

Joining Execution Paths 

The presence of predicates in a program and their dependence on the program's input gen­

erates more than one symbolic execution of a program [111]. However, two independent 

symbolic executions could join at a program statement. For example, let us consider again 

the piece of code above. As already seen, the evaluation of the predicate of the i/statement 

in the symbolic state ( ^ i . Pi) generates two independent executions. Whenever the true 

branch is selected, the statement c = a is executed in the symbolic state {82, P2) producing 

the symbolic state 

{S4,P4) = ({(a,a-h/5), ( b , a - / ? ) , ( c , a + / 3 ) } , a > 0 A ^ > 0 ) 

The selection of the false branch will generate the execution of the statement c = b in the 

symbolic state (S3, P3) producing the symbohc state 

{Ss,P,) = {{{B.,a + p),{h,a-(3),{c,a-(3)},a>QAP<0) 

At this point, the two symbolic executions could be joined in a single execution by collapsing 

the two symbolic states. The state folding operator .° [61] takes as arguments two symbolic 

states and produces a new symbolic state resulting from the composition of its arguments. 

Given two symboHc states {Statei, PCi), and {State2, PC2), where 

Statei = { ( M l , a i ) , . . . , (M„, a„)} 

State2 = { ( M i , ^ i ) , (M„,/3„)} 

the result of the application of the operator ° is the following: 

{Statei, PCi) ° {State2, PC2) = {State^, PC3) 

where {States, PC3) is defined such that 

States = { ( M i , 7 i ) , ( M „ 7 , ) , (M„,7„)} 
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w here V z, 1 < i < n, 

a n d 

= Pi = ^ 7i = (Xi = Pi a n d 

Qij- 7̂  A = ^ 7J- i s a n e w s y m b o l 

PQ = {PCi A n,) y {PC2 A ^2) 

where 

i\l<i<nAai^Pi 

^2 ^ A (7. = A) 
t | l < t < n A a i / f t 

If a variable has the same value in both the input symbolic states its value remains unchanged 

in the resulting state, otherwise i t receives a new symbolic value. The path-condition of the 

resulting state is the disjunction of two parts corresponding to the two input symbolic states, 

respectively. Each part is the conjunction of the path-condition of the input symbolic state 

and a predicate binding the new symbolic constants assigned to the memory locations in 

the new state to the symbolic expressions the memory locations had in the input symbolic 

state. For example, the result of the composition of the states (54, P4) and {S^, P5) by the 

state folding operator will be the state 

(56, Pe) = { ( a , a + ^ ) , ( b , a - / ? ) , ( c ,7 )} , 

( a > 0 A / ? > 0 A 7 = a 4 - / ? ) V ( a > 0 A / ? < 0 A 7 = a - / ? ) 

The memory location c has different values in S4 and S5 {a + P and a — P, respectively) 

and receives a new symbolic value 7 in Se- The path-condition PQ is the disjunction of two 

parts. The first part is the conjunction of the path-condition P4 (i.e., a > 0 A P > 0) and 

a predicate binding the value the memory location c has in the states Pe (i.e., 7) and P4 

(i.e., a + P). Analogously, the second part is the conjunction of the path-condition P 5 (i.e., 

a > 0 A /3 < 0) and a predicate binding the values the memory location c has in the states 

PQ (i.e., 7) and P5 (i.e., a - P). 

Dealing with Loops 

Whenever the number of times a loop can be executed is not known symbolic execution fails 

to keep track of all the paths the loop can generate. This happens when the current path-

condition does not imply neither the loop condition nor its negation. To correctly handle 
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this problem we need to find a logical formula that is true at the beginning of the loop 

(before the evaluation of the loop condition) after an arbitrary number n > 0 of iterations. 

Such a formula is called loop invariant. The symbolic execution of the invariant in the state 

holding before the first execution of the loop produces the symbolic state holding before any 

execution of the loop. To exit the loop and continue the symbolic execution, it is sufficient to 

assume the loop condition false by the conjunction of its negation with the path-condition. 

Although the problem of finding inductive assertions for a given program is undecidable, 

many methods and tools [12, 78, 88, 109, 165, 170, 173] based both on heuristic and de­

terministic approaches have been proposed in the past to automatically derive invariants 

(see [165], for a survey). This attempts were related to the problem of proving partial pro­

gram correctness. Heuristic or top-down methods, e.g. [12, 173], presuppose the existence of 

a specification (hypothesis) and use the postcondition and the loop exit test to form candi­

dates for invariants. On the other hand, deterministic or bbttom-up methods, e.g. [109, 170], 

do not need input hypotheses and algorithmically extract information from the body and 

the exit test of the loop. A different approach by Waters [172] tries to analyse loops by 

decomposing them into smaller code fragments and using a hbrary of plans. This approach 

allows to deal with more complex loops but has to face with space and time problems to 

store and search for plans. A variant of this knowledge-based method by Abd-El-Afiz and 

Basili [3, 4] allows to mechanically annotate a loop with a formal specification and try to 

cope with search problems by using a hierarchical organisation for the plan library. However, 

in general the user interaction is required to find and provide an appropriate invariant for a 

loop in order to continue the symbolic execution of the function. 

Module Calls 

Another problem in symbolic execution concerns module calls. Two approaches have been 

. proposed in the literature. The macro-expansion approach [26, 61] consists in expanding a 

call statement by symbolically executing the called module. The execution of the module 

is then repeated each time it is invoked. On the other side, the lemma approach [49, 94] 

symbolically executes a module once, and then uses the results each time the module is 

invoked. 

Considerations similar to the ones made for loops can be made for finding invariants for 
recursive functions [151]. Like for loop invariants, the problem of finding invariant assertions 
for recursive functions is undecidable and the user interaction is in general necessary to find 
a solution. 
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3.2 Specialising Specification Driven Slicing for C Pro­
grams 

In this section we show how the specification driven program slicing process can be spe­

cialised to programs written in the C language [110]. First some problems involving the 

symbolic execution of C programs are outlined and then we show how both symbolic execu­

tion and program slicing can be performed by exploiting an intermediate representation for 

C programs called Combined C Graph [112, 113, 114]. 

3.2.1 Problems in Symbolic Execution of C Programs 

Two main problems have to be considered during the symbolic execution of C programs. 

First aliasing can arise in the presence of pointer variables. Second the C language allows 

expressions containing embedded side-effects and control flows. 

Pointer Variables and Aliasing 

To deal with alias variables each memory location is associated with its symbolic address 

and with the type of the stored information. Hence, a memory location M in a symbolic 

state [State, PC) is a pair (/x, T") where // and T are the symbolic address and the type, 

respectively, of M^. Moreover, given a symbolic address / i , the expression p(/i) is meant to 

refer to the memory location having fi as symbolic address. For example, the declaration 

i n t X [ 3 ] , *p; 

will generate four memory locations^: 

x [0 ] = (x , in t ) 

x [ l ] = (x + 2, int) 

x [2 ] = (x + 4, int) 

p = (TT, *int) 

In general, the symbolic address of an array element ^[z] of type Tis X'^^*sizeof[T) where x 

is the symbolic address of X[0] and the operator szzeo/returns the number of bytes required 

to store a value of type T. The extension to the case of multidimensional arrays can be easily 

obtained. 

^ We consider the memory as being an array of bytes. As a consequence, an address is any of the array 
positions. 

^We assume that two bytes are required to store an integer value. 
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Let us suppose to symbolically execute the following program fragment 

p = x; 
*p = *p + 1; 
P++; 

in the symbolic state 

({(xCO], Q i ) , ( x [ l ] , az), (x[2] , as), (p, undef)}, PC) 

The assignment p = x gives rise to the aliases *p and x [0]. Its symbolic execution will result 

in the assignment of the symbolic address of x [0] to the memory location p producing the 
state 

( { ( x [ 0 ] , a,), ( x [ l ] , ^2), (x[2] , as), (p, x)} , PC) 

As the symbolic value of p is X) the expression *p in the statement *p = *p + 1 will refer 
to the memory location p{x)^ i-e., the location x [0 ] . The state resulting from the symbolic 
execution of this statement is 

( { ( x [ 0 ] , + 1), (xCl ] , ^2), (x[2] , as), (p, x)}, PC) 

Finally, the symbolic execution of the statement (3) will produce the state 

( { ( x [ 0 ] , a i + 1), ( x [ l ] , a2) , (x[2] , a3) , (p, X + 2)}, PC) 

where the symbolic value of p is obtained as 

X-I-l*5ueo/(mi) = x + 2 

In general, i f the type and the symbolic value of a memory location M are *T and a^, 

respectively, the symbolic value of the expression M+i will be a-\-i*sizeof{T). I f such a value 

is generated during a symbolic execution i t should coincide with the symbolic address of 

a memory location M' in the current symbolic state. However, symbolic execution in the 

presence of pointer arithmetics suffers of the same problems as symbolic execution in the 

presence of arrays. Indeed, the variable i above has the same role of an array subscript 

and whenever it is input dependent, the address of the involved memory location cannot 

be decided. A solution to deal with this problem is to consider the disjunction of different 

symbolic executions for all the feasible values of i in the path-condition. Although the value 

of i is not input dependent, the value of the expression above could not coincide with any 

symbolic address, because in C pointers can be used to simulate arrays without fixed length 

or dynamic structures. In this case a new memory location {a-\-i*sizeof{T), T) is created 

and added to the symbolic state. 

is the memory location of a pointer variable and a is the symbolic address of a memory location. 
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Embedded Side-Effects and Control Flows 

Embedded side-effects and control flows also play a critical role in symbohc execution of C 

programs. Side-effects occur when a variable is defined during the evaluation of an expression. 

In C side-effects can arise as a result of assignment operators, increment and decrement 

operators, comma operator and function calls. For example, the variables a, b and c are 

defined as side-effects of the evaluation of the assignment expression 

a += b = C++ + f ( d ) 

and other variables could be defined during the execution of the function f . Embedded 

side-effects involve a state change for each variable definition. Hence, while the evaluation 

order of the operands in a commutative binary operation should not affect the final result, it 

plays a critical role i f the operands may contain embedded side-effects. This is in particular 

true whenever a C expression also contains embedded control flows that occur .with the 

conditional operator ?: and the boolean operators && and I I . For example, the conditional 

expression 

a ? b : c 

evaluates either b or c depending on the value of a. Moreover, due to the short-circuiting 

evaluation of boolean expressions in C [110], i f a is false in the expression 

i f (a ScSc b) 

the value of the entire expression is false and b will not be evaluated. This leads to changes in 
the control flow of the program execution and, whenever the expressions contain embedded 
side-effects, also in the state. For example, let us consider the symbolic execution of the 
statement 

i f ( a > b I I a > c++) { . . . > 

in the symbolic state 

({(a, a), (b, /?), (c, 7)}, Pq 

Whenever PC => a > P the right-hand side operand of the I I operator is not evaluated and 
the variable c is not incremented, while if PC =^ a < j3 a change in the symbolic state will 
result because of the increment operator. 
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3.2.2 The Combined C Graph 

Symbolic execution of C programs requires a program representation able to represent em­

bedded side-eff'ects and control flows, in order to take into account embedded state changes. 

We use the Combined C Graph (CCG), a fine-grained representation for the maintenance 

of C programs designed by Kinloch and Munro [112, 113, 114] to provide a solution for two 

problems: 

1. combining the features of different program representations into a unique unified in­

termediate representation for a maintenance environment, on the same line as Harrold 

and Malloy [98]; 

2. understanding problems induced by pointers and expressions containing embedded 

side-effects (resulting from assignment operators, increment and decrement operators, 

comma operator and function calls) and control flows (due to the short-circuit evalua­

tion of the boolean expressions [110]). 

The first problem has been solved by: (i) designing a representation for C functions which 

consists of superimposing several types of intraprocedural edges (enclosing control and data 

dependences) on a control flow graph and (ii) interconnecting the representations for the 

different functions by various interprocedural edges. The second problem has been solved 

by: (i) considering pointer-induced aliasing during data flow analysis; (ii) providing explicit 

representation on the FCCGs for embedded side-effects and control-flows. The use of CCG 

is also motivated by the fact that its features allow to integrate different tools in a reuse 

reengineering environment [75 . 

The CCG is composed of a collection of Function CCGs (FCCGs), each representing an 

individual function of the C program, connected by various interprocedural edges, like call 

interface edges and interprocedural data dependencies [103]. Each FCCG is a control flow 

graph [100] with a variety of superimposed edge types, enclosing control and data dependen­

cies [81]. Rather than a one to one correspondence between the function's statements and 

its FCCG vertices, a finer-grained representation of these statements is required to deal with 

embedded side-effects and control flows. Whenever a statement contains embedded side-

effects or control flows an additional vertex is created for each sub-expression containing a 

definition or a possible change in control flow. For example, for an assignment expression 

a = b; 

the following vertices are created 

• (a = b) : no side-effects 

50 



• (a) , (= b) : side-effect in a 

• (b) , (a =) : side-effect in b 

• (a) , (b) , (=) : side-effect in a and b 

The control flow between these vertices is from left to right. In this way the vertex rep­

resenting the complete statement is always the last of the sequence. Moreover, two edge 

types are used to relate these extra vertices, expression-use edges and lvalue-definition edges. 

An expression-use edge from vertex p to vertex q, p —>-e„ q indicates the evaluation of an 

expression at vertex p followed by a use of the resulting value at q. This situation occurs 

when the expression in the right-hand side of an assignment contains a side-effect or an 

embedded control flow. For example, a side effect in b in the expression above generates the 

expression-use edge 

(b) ->e« (a =) 

An lvalue is an expression referring to a named region of storage in the left-hand side of 

an assignment. An lvalue-definition edge from vertex p to vertex q, p -^id q indicates the 

evaluation of an lvalue at vertex p followed by a writing to the corresponding storage location 

at vertex q. This situation occurs when the operand in the left-hand side of an assignment 

contains a side-effect. For example, a side-effect in a in the expression above generates the 

lvalue-definition edge 

(a) (= b) 

Figure 3.2 shows the CCG subgraph corresponding to the statement 

*p++ = ++b + a; 

Each node corresponds to an operator which produces a variable change. 

Analogously, a boolean expression with short-circuiting evaluation 

• a && b I I c 

generates the three vertices 

• (a) , (&& b) , ( I I c) 

and the internal control flow edges 

• (a) (&& b) 

• (a) ( l i e ) 
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^ control flow edge 
> expression-use edge 
^ • lvalue definition edge 

Figure 3.2: Example CCG subgraph 

. (&& b) ( l i e ) 

while a conditional expression 

• a ? b : c 

gives the three vertices 

• (a) , (b) , (c) 

and the control flow edges 

• (a) ^ c / . . „ . (b) 

• (a) - ) ^ c / ; „ „ , (c) 

An FCCG is completed by control dependencies and intraprocedural data dependencies. 

The CCG is constructed interconnecting the FCCGs by interprocedural edges such cis: 

• call edges from a call vertex in the calling function to the entry vertex of the called 

function; 

• parameter binding edges from each actual parameter vertex to its corresponding formal 

parameter vertex; 

• return expression-use edges from a return statement vertex in the called function to 

the call site in the calling function; 

• interprocedural data dependence edges. 

A more complete discussion is contained in [114 . 

The CCG has been extended to allow the representation of the abstract syntax tree [5] 

of each function in a C program. The abstract syntax tree of a function is important to 
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mainO { 

i n t a, b; 

a = 1 + (b = 0); 
whi le (a <= 10) 

b += double(&a); 

} 

i n t double( in t *p) { 

r e t u r n (*p)++ * 2; 

} 

Figure 3.3: Example C program 

represent the control structures and the expressions contained in a program. The control 

flow graph and other edges are superimposed to the abstract syntax tree. As an example, 

let us consider the sample C program in figure 3.3, where the main function contains a call 

to the function double. Figure 3.4 shows the CCG representation of the program above. 

For sake of simplicity, variable and formal parameter declarations and variable references in 

the syntax tree are represented by the corresponding identifiers, without semantic informa­

tion. Figure 3.4.a shows the abstract syntax tree and some of the superimposed edge types. 

Control and data flow dependence edges are depicted in figure 3.4.b. 

3.2.3 Symbolic Execution Using C C G 

The symbolic execution of a function is performed on its FCCG representation. A token 

containing the initial state is placed on the entry node of the FCCG and moves across 

the control flow edges. In the current implementation of the symbolic executor ambiguous 

expressions like 

*p++ = ++b + a— + b; 

are not allowed. Indeed, with the exception of the boolean operators && and I I , the con­

ditional operator ?: and the comma operator, the order of evaluation for operands within 

C expressions is undefined [110]. I f a and (3 are the values of the variable a and b before 

the execution of the expression above, a left to right evaluation of the right-hand side of 

the assignment expression gives a + 2*f3-\-2a.s result, while a right to left evaluation gives 
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a -|- 2 * /? -F 1. However, compilers impose an evaluation order for operands within expres­

sions and usually they allow ambiguous expressions. 

Symbolic Execution in Absence of Ambiguous Expression 

If ambiguous expressions are not allowed, the symbolic executor can evaluate an expres­

sion containing embedded side-effects or control flows, incrementally, by evaluating the sub­

expressions containing a variable definition or a change in the control flow whenever the 

corresponding vertices are encountered on the control flow subgraph. For example, let us 

consider again the expression *p++ = ++b + a whose CCG subgraph is depicted in figure 3.2. 

Let "int" be the type of a, b and *p and 

({(a, a), (b, /?), (p, x), (x[0], 7), ( x [ l ] , ^ ) , . . . } , PC) 

be the symbolic state before the execution of the expression, where x and x + 2 are the sym­

bolic addresses of x [0] and x [1] , respectively. The execution of the expression is obtained 

by the following steps, each of which corresponds to a CCG node in figure 3.2: 

• symbolic execution of the expression *p++: evaluate the value stored in p and increment 

i t ; the evaluation result is val{*-p++) = p(x)'* which corresponds to the memory location 

X [0] , while the resulting state is: 

({(a, a), (b, (3), (p, X + 2), (x[0], 7), (x Cl] , 5), . . . } , PC) 

• symbolic execution of the expression b++: increment the value stored in b and evaluate 

the result; the evaluation result is val{++h) =/?-)-1 and the new state is: 

({(a, a), (b, ^ - F l ) , (p, x + 2), (x[0], 7), { M , 5 ) , ...}, PC) 

• symbolic execution of the expression Da/(*p++) = val{++'b) + a: evaluate the expression 

tia/(++b) + a = ^ - | - l - f a and assign it to x [0]; the resulting state will be 

({(a, a), (b, (3 - f 1), (p, X + 2), (x [0] , a -F ^ -f 1), (x [1] ,5),...}, PC) 

Symbolic Execution of Ambiguous Expression 

I f ambiguous expressions are allowed we must decide an evaluation order for the expressions. 

However, in this case we cannot take advantage of the CCG extra-vertices representing 

embedded side-effects. Indeed, nodes representing embedded side-effects of an expression 

^The operator val returns the value of an expression. 
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must be skipped until the node representing the whole expression statement is reached 

(a node representing an embedded side-effect can be recognised because of its outgoing 

expression-use or lvalue definition edge). Whenever the token reaches a statement node the 

symbohc evaluation of the corresponding expression starts with respect to the symbolic state 

associated with the token. The symbolic evaluation is made by traversing the abstract syntax 

tree of the expression according to the chosen evaluation order. Whenever a subexpression 

contains a side-effect (it is linked to a vertex in the control flow graph) the symbolic state 

associated with the token changes. For example, let us assume that the evaluation order 

of the operands is left to right (i.e., in the binary expression a ® b, the operand a is 

first evaluated, then the operand b is evaluated and finally, the result of the operation is 

computed). The symbolic execution of the expression 

•p++ = ++b + a— + b 

where the type of a, b and *p is "int", in the symbolic state 

({(a, a), (b, p), (p, x), (xCO], 7), ( x [ l ] , J), . . . } , PC) 

where x and x + 2 are the symbolic addresses of x [0] and x [ l ] , respectively, is obtained by 

the following steps: 

• evaluate the expression *p referring to the memory location pointed by p and increment 

the pointer p; the evaluation result is the memory location t;a/(*p++) = p[x) — x CO], 

while the resulting state is 

({(a, a), (b, P), (p, X + 2), (x [0] , 7), (x [1] , ^ ) , . . . } , PC) 

• increment the value stored, in b and evaluate the result; the evaluation result is 

t;a/(++b) =/?-(-1 and the neŵ  state is 

({(a, a), (b, P + 1), (p, X + 2), (xCO], 7), ( x [ l ] ,5),...}, PC) 

• evaluate the value stored in a and decrement it; the evaluation result will be 

ua/(a—) = a, while the new state is 

({(a, a - 1), (b, P + I), (p, X + 2), (x[0] , 7), ( x [ l ] ,6),...}, PC) 

• evaluate the symbolic expression 

ua/(++b) + val{5.—) + b = p + \ + a + p-\-\ = a^2*p + 2 

56 



nl expr : change: <p, X + 2> 

n2 expr : P+1 change <b, P + 1> 

n3 expr : a change <a, a - i> 

n7 expr : a+2*p+2 change : <x[0], a+2*P+2> 

control flow edge 
expression-use edge 
lvalue definition edge 

Figure 3.5: Example CCG subgraph of ambiguous expression and execution sequence 

and assign it to x [0] ; the resulting state will be 

({(a, a - 1), (b, p + 1), (p, X + 2), (x [0] , a + 2 * /? + 2), (x [1] , <J), . . . } , PC) 

Figure 3.5 shows the CCG representation and the sequence of evaluations and state changing 

at each node of the syntax tree. The evaluation is made by a depth-first left traversal of the 

abstract syntax tree of the expression. 

Splitting and Folding Tokens 

As seen in the previous section, a symbolic execution can generate two symbolic executions 

whenever, the current path-condition does not imply the truth value of a predicate (a vertex 

of the CCG with two outgoing control flow edges). In this case the corresponding token is 

replaced by two new tokens corresponding to the symbolic states produced by the "forking" 

operation. As a consequence, several tokens can execute concurrently. Moreover, two or 

more tokens can be folded in a unique token wheriever they reach the same vertex. This 

leads to synchronisation problems among the different tokens which actually advance on the 

CCG representation like concurrent processes. Figure 3.6 shows the state transition diagram 

of a token. In particular, one token at a time is executing^ while tokens which lie on a vertex 

joining different execution paths are waiting and the other tokens are ready. The symbolic 

executor is interactive. The user interaction may be required to schedule the tokens for the 

advancement. Indeed, as the symbolic executor is just an automatic support for program 

understanding, the user should choose the execution path to follow. Hence, the user can 

decide to suspend a token (by making it ready) and execute another one which is in the 
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Figure 3.6: State transition diagram for tokens 

ready state. Two or more waiting tokens lying on a same vertex, are folded in one token 

and eventually the user can decide to move them in the ready state. The user interaction is 

also required to assert an implication and to force an execution to follow only one branch of 

a predicate, whenever the theorem prover is not able to do it . 

Loop Invariants 

Loop invariants are recovered using a deterministic approach based on symbolic execution. 

I f a loop is encountered on the execution path, a symbolic execution starts in a fictitious 

state containing the values of the variables after n — 1 iterations. The symbolic execution 

of the loop body produces the state holding after n iterations. From the two states the 

recurrence equations can be extracted, where the initial conditions are given by the values 

in the symbolic state holding before the first iteration of the loop. The solution of the 

recurrence equation gives the loop invariant. 

For more complex loops a library of (domain independent) plans can be used to recover 

invariants [3]. However, the problem of finding the loop invariant is undecidable and the 

user interaction is in general required. If a loop invariant cannot be automatically recovered, 

and the user is not able to provide i t , a solution is to symbolically execute the loop a fixed 

number n of times, by keeping track of this constraint in the path-condition. The number 

n is chosen by the user; however, a loop should be symbohcally executed a number of times 

sufficient to understand its behaviour. Where possible, the user can try to generalise the 
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loop's behaviour from the sample iterations. The generalised behaviour can be inductively 

verified by symbolically executing the loop body for the n + l " * time and proving that the 

behaviour of the 71'-'^ iteration implies the behaviour of the n + 1*'' iteration [62 . 

Function Calls 

The macro-expansion approach is used for symboHc execution of function calls. Whenever a 

token reaches a call site on the CCG, the called function is symbolically executed. To keep 

track of the call site and of the local variables of the calling function a Stack is used. The 

stack is used like the activation stack of traditional execution. Every time a function / is 

called, a quadruple 

(5, local-stack, (/, 5), rp) 

is pushed on the stack. S is a sequence of pairs ( M , a), where M is the memory location of 

a formal parameter of the function and a is its symbolic value; local-stack is a stack where 

the local variables declared at the 'beginning of a compound statement are allocated; 5 is 

the return value of the function and rp indicates the return point to the calling function. A 

symbolic state for symbolic execution of C programs also contains a set of pairs for global 

variables and a set for dynamic variables. However, for sake of simplicity only the stack is 

shown in the examples of the next section. 

3.2.4 Slicing C Programs 

In this section an algorithm to perform program slicing using the Combined C Graph rep­

resentation of a program is defined. The algorithm considers slicing criteria of the type 

(•Sin, Sout, Vout), where Sin and Sout are vertices of the same FCCG, s,„ dominates Sout on 

the control flow, and Ku< is the set of variables referenced at Sout- The algorithm speciaHse 

to C programs the intraprocedural shcing algorithm presented in [56] and extend it to the 

interprocedural case. 

Previous slicing algorithms computes slices on a slicing criterion of the type {sout, K)ut)-

A first iterative algorithm proposed by Weiser [176] computes a slice by backward traversing 

the control flow of the program starting from the statement of the slicing criterion. The 

slice is computed as the transitive closure of the direct influence relation. The complexity 

of the intraprocedural algorithm is O(neloge), where n and e are respectively the number 

of vertices and edges in the control flow graph. Ottenstein and Ottenstein [138] propose an 

intraprocedural slicing algorithm which exploits the program dependence graph [81]. The 

slice is computed by backward traversing the control and data dependencies from the state­

ment of the slicing criterion and coincides with the transitive closure of these dependencies. 
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Therefore, the time complexity is linear in the number of vertices of the program dependence 

graph. The restriction of this algorithm is that the set of variables Kut of the slicing criterion 

must be referenced at Sgut-

The interprocedural slicing algorithm proposed by Weiser [176] is imprecise. Horwitz et 

al. [103] show that it fails to account for the calling context of a called procedure. Indeed, 

a called procedure returns to all call sites and not just the one which generated the call on 

the specific interprocedural path. The interprocedural slicing algorithm presented in [103] 

solves this problem by using the system dependence graph. The algorithm extends the 

intraprocedural algorithm presented in [138] and consists of two phases. A new type of 

interprocedural transitive dependencies between the actual input and output parameters is 

exploited to account the calling context: in the first phase the algorithm does not descend 

into the called procedures, while in the second phase i t does not ascend into callee procedures. 

Such algorithms do not consider problems arising in C programs in the presence of arrays 

and pointer variables and do not deal with statements such as breaJs, continue and goto 

which have effects on the slice. Jiang, et .al. [106] describe these problems and present en­

hancements to both the intraprocedural and interprocedural Weiser's slicing algorithms- [176 . 

A major problem in static data flow analysis is that the elements of an array or specified by 

a pointer cannot be distinguished. Al l the elements are treated as one object. Modification 

and reference to different elements are considered as references to the whole object [106]. 

Other problems arise because of pointer-induced aliasing [123]. Although this problem is in 

general undecidable., several approximating solutions have been proposed in the literature 

(see [114] for a survey). Moreover, the occurrence of break, continue and goto statements 

in a program are not considered properly during slicing because they do not reference any 

variable [106]. This leads to incorrect slices. Collecting rules are proposed [106] to allow a 

correct inclusion of such statements in a slice. 

While control and data dependencies . [81] are sufficient to compute a program slice on a 

slicing criterion {sout, Vout), where Vout are variables referenced at Souti they do not suffice for 

computing a slice on the slicing criterion defined above for isolating functional abstractions. 

Indeed, the program dependence graphs based algorithms [138, 103] calculate a program 

slices, by backward traversing control and data dependencies, until the entry node of the 

program is reached. To calculate a slice based on the new definition of slicing criterion, 

the control flow must be considered in order to restrict the computation to only the CCG 

vertices lying on a path between s,„ and Sout- To this aim the proposed slicing algorithm 

consists of three phases, each phase implemented by a speciflc algorithm. Table 3.1 show 

the convention used for the CCG edges in the algorithms. 

In the first phase (algorithm ControlPaths in figure 3.7), the list Pathlist of all the nodes 
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— ^ c / i X G {true, false, uncond} control flow edge 

—^eu expression-use edge 

—>-id lvalue-definition edge 

-^cda: X 6 {true, false, uncond] control dependence edge 

-^d} data flow dependence edge 

—)-p6 parameter binding edge 

-^reu return-expression-use edge 

-^ci call edge 

Table 3.1: CCG edges reference table 

lying on an intraprocedural control flow path between the two vertices of the slicing criterion 

is detected. The control flow edges are backward traversed from the vertex Soutt until the 

vertex 5 , „ is reached. The algorithm constructs the fist Pathlist incrementally and uses the 

list Worklist storing all vertices already reached and to be included in the list Pathlist. At 

each step a vertex n is selected from the list Worklist and added to the list Pathlist. All 

vertices m such that m - > c / i n that have not yet been considered (i.e., they have not yet 

been included in Pathlist) are added to the list Worklist. 

The second phase is interprocedural (algorithm CallPaths in figure 3.8) and computes the 

list F u n l i s t of functions that can be reached through a call chain from a call site contained 

in Pathlist. For each call site in Pathlist the algorithm computes the initial set of the called 

functions; then i t forward traverses the call edges and add to the list Funlist all the functions 

that can be reached. The algorithm uses a fist Worklist to store all the functions that have 

already been reached but not yet considered for inclusion in the list Funlist. The algorithm 

behaves in a similar way to the algorithm ControlPaths. 

Finally, the slice is computed (algorithm Slice in figure 3.9) by backward traversing the 

CCG dependence edges {control dependence, data flow dependence, expression-use, lvalue-

definition, parameter binding, return-expression-use, and call edges). The list Slicelist is 

constructed incrementally. At each step a vertex n is selected from the list Worklist (con­

taining the vertices to be inserted in the slice) and added to the list Slicelist. Moreover, each 

vertex m linked to n by a CCG dependence edges (and not already in the slice) is added 

to the list Worklist, if either m G Pathlist or m belongs to a function mboxg- G FunList. In 

chapter 4 a Prolog implementation of the algorithm is shown. 

Note that at intraprocedural level this algorithm produce more precise slices than other 

algorithms [138, 176], because of the extra vertices in the CCG representing embedded side-
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procedure ControlPaths{G, 5 , „ , Sout, Pathlist) 

declare 

G: a FCCG; 

: FCCG vertices such that 5 , „ dominates Sout 

on the control flow; 

n, m: FCCG vertices; 

Pathlist, Worklist: sets of FCCG vertices; 

begin 

Worklist <r- {sout}; 

Pathlist <r- 0; 

while Worklist / 0 do 

Select and remove a node n from Worklist] 

Pathlist ^ Pathlist U { n } ; 

if n 7̂  Sin then 

Vm such that m ^ Pathlist and m —^cU ^ ̂ i ^h 
X € {^rue, false, uncond} 

Worklist f - VForM'si U { m } ; 

endif 

endvi^hile 

end 

Figure 3.7: Algorithm for computing all nodes lying on control flow paths between the 

vertices of the slicing criterion 
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procedure CallPaths(G, Pathlist, FunList) 

declare 

G: a CCG; 

n, m: CCG vertices; 

/ , g: functions; 

Pathlist: set of FCCG vertices such as computed 

by the procedure ControlPaths; 

Worklist, FunList: sets of functions; 

begin 

Worklist f - 0; 

V n e Pathlist such that n —>ci m where 

m is the entry FCCG node of the function / 

Worklist <r- Worklist U { / } ; 

Funlist ^ 0; 

while Worklist 7̂  0 do 

Select and remove a function / from Worklist; 

Funlist <- Funlist U { / } ; 

yg such that g 0 Funlist and n —>c/ where n is a FCCG 

call vertex of / and m is the FCCG entry vertex of g 

Worklist <- Worklist U {^r} ; 

endwhile 

end 

Figure 3.8: Algorithm for computing all functions reachable from call sites lying on control 

flow paths between the vertices of the slicing criterion 
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procedure Slice{G, f , Sout-, Slicelist) 

declare 

G: a CCG; 

/ , g: functions; 

Sin-, Sout' FCCG vertices of the function / such that S i „ dominates Sout 

on the control flow; 

n, m: FCCG vertices; 

Pathlist, Worklist, Slicelist: sets of CCG vertices; 

FunList: set of functions; 

begin 

ControlPaths{G, 5 , „ , Sout-, Pathlist); 

CallPaths{G, Pathlist, FunList); 

Worklist <r- {sout}; 

Slicelist 0; 

while Worklist 7̂  0 do 

Select and remove a node n from Worklist; 

Slicelist <— Slicelist U { n } 

Vm such that m ^ Slicelist and 

((m belongs to the FCCG of the function / and m G Pathlist) or 

(m belongs to the FCCG of the function g 

with g ^ f and g G Funlist)) and 

(m —>x n with x G {eu,ld,df,pb,reu,cl} or m -^cd^ n 

with X G {true, false,uncond}) 

Worklist <— Worklist U {m}; 

endw^hile 

end 

Figure 3.9: Algorithm for computing a program slice 
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effects and control flow [113]. Indeed, each vertex can define at most one variable. The 

control and data dependencies are used as usual [138]. Moreover, expression-use and lvalue-

definition edges due to embedded side-effects and control flows, ensure that a slice reaching 

a refined vertex also includes vertices affecting the value of the expression at the refined 

vertex. At interprocedural level the data flow dependencies, the parameter binding edges, 

the return expression-use edges and the call edges are considered. Due to the use of the 

the list Funlist the algorithm only considers functions that can be reached from a call site 

in the list Pathlist. In this way the slice does not include functions that do not belong to 

an interprocedural path between the two nodes of the slicing criterion. However, inaccurate 

overly-conservative slices can result due to the lack of calling context information. Unlike 

Horwitz et al. algorithm [103], the algorithm proposed in this thesis uses direct instead 

of transitive interprocedural data flow dependencies. This prevents the use of a two phase 

algorithm. However this choice is more appropriate in the presence of aliasing due to pointer 

variables [114]. In chapter 5 the candidature criterion is evaluated and a discussion about 

advantages and limitations of the slicing algorithm is given, together with suggestions for 

further improvements. 

3.3 Summary 

In this chapter a new specification driven candidature criterion has been presented. The 

candidature criterion is based on the theoretical framework of program slicing [176], a pro­

gram decomposition technique. We use a new definition of program slice which contains two 

statements i n the slicing criterion. The two statements, delimit the region of code in which 

the slice must be computed. In this way we can obtain more precise shces with respect to 

the functional abstraction to be recovered. The slice extracted can be easily reengineered 

and clustered into a module. 

The specification of the function to be isolated is used together with symbolic execution 

and theorem proving techniques to correctly identify the initial and final statements of 

the slicing criterion. Symbolic execution allows the association of a program statement or 

predicate with its precondition, i.e. the condition which must hold on the program variables 

before its execution. The specification of the functional abstraction, given in terms of a 

precondition and a postcondition, is then compared with the conditions associated with 

program statements, also called invariant assertions. The statement whose precondition is 

equivalent to the precondition of the functional abstraction is candidate to be the initial 

statement of the slicing criterion, while the statement whose precondition is equivalent to 

the postcondition of the functional abstraction is candidate to be the final statement of the 
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slicing criterion. The slicing criterion is produced whenever the initial statement dominates 

the final statement on the control flow. Human interaction is required during this task. First, 

the software engineer must associate the output data of the specification with the program's 

variables. Moreover, as the problem of finding invariant assertions is in general undecidable, 

symbolic execution can require human interaction in order to prove some implications and 

assert some invariants. 

The specification driven program slicing process is language independent. However, the 

candidature criterion has been specialised for programs written in C language. A fine-grained 

representation for C programs, the Combined C Graph (CCG) [114], is used to perform both 

symbolic execution and program shcing. The CCG contains the features of several different 

program representation and can be used for most of the software maintenance tasks allowing 

a better integration of different software tools. Some problems arising in symbolic execution 

of C programs, such us pointer variables and embedded side-effects and control flows have 

also been outUned. 
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Chapter 4 

Implementation 

This chapter describes a prototype implementation of a tool for isolating reusable functions 

written in C language [110] using the specification driven program slicing technique. The 

prototype is intended to be used for the evaluation of the case studies and not for commercial 

reasons. Therefore, issues like time/space performance and user-friendhness have not been 

taken into account. 

The language chosen for implementing the prototype tool is Prolog [164]. The choice 

of the Prolog environment has been made for several reasons. First, the Prolog language 

allows the easy implementation of logic theories needed for proving implications between' 

predicates. Second, tool integration in a reuse reengineering environment can be easily 

achieved through sharing the common data base of Prolog facts [75]. Moreover, a prototype 

tool can be extended and enhanced by simply adding new rules. Finally, the Prolog runtime 

system provides a query language that can be exploited for user interaction. 

The architecture of the prototype system is shown in figure 4.1. The system is com­

posed of four main subsystems: the CCG Analyser (CCGA), the Slicing Criterion. Finder 

(SCF), the Slicer and the Graphical Display Tool (GDT). The source C code is translated 

into Prolog facts forming the CCG fact base by the CCGA. The CCG fact base and the 

function specification are the input for the module SCF embedding a symbohc executor and 

a theorem prover for the production of the slicing criterion. The Slicer takes as input the 

CCG fact base and the slicing criterion and produces the slice implementing the function 

specification. Finally, the graphical display tool allows the visualisation of the slice. The 

following subsections show the architecture of the system modules. 
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Figure 4.1: The prototype system architecture 

4.1 The C C G Analyser 

The first module of the prototype system is the analyser CCGA whose architecture is shown 

in figure 4.2. The construction of the CCG fact base consists of two stages. In the first 

stage, syntax directed translation techniques [5] are used to produce a partial CCG fact 

base from the C source files. This task is accomplished by a static analyser written using 

the YACC [107] compiler-compiler. The YACC analyser is an enhanced version of the 

CCG translator cc '̂-̂ rans described by Kinloch [114]. It is based on the C analysis tool 

PERPLEX [30] and uses a grammar corresponding to. that in [110]. PERPLEX produces 

a generic control-flow based program representation in the form of Prolog facts to allow 

the easy development of software engineering tools. Problems like embedded side-effects and 

control flows are not considered. The CCG translator ccgJrans modifles PERPLEX by taking 

in account these problems and providing an explicit representation for. them. It produces 

Prolog facts for representing the vertices of the CCG, the expuse and Ivaldef dependencies, 

variable, function and type declarations of the source program and the control flow within 

each C function. 

In order to allow symbolic execution using the CCG fact base, the CCG YACC tool 

has been enhanced with the production of facts for representing the abstract syntax tree 

(vertices and edges) of each C function, the scope of each compound statement (useful for 

identifying the scope of local variables) and semantic edges between the syntax tree vertices 

and the control flow graph vertices. 

The second stage of the CCG construction is to augment the partial CCG fact base 
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Figure 4.2: The CCG analyser architecture 

to give the complete CCG representation, the CCG fact base [114]. This task is achieved 

by loading in the Prolog environment three Prolog metaprograms together with the partial 

CCG fact base. A brief description of the three metaprograms follows. 

build_ccc This program implements algorithms for interconnecting the different FCCGs 

by various interprocedural edges, like call interface edges (enclosing binding edges 

between actual and formal parameters and between return statements and calling 

sites). Moreover, the original version [114] has been modified by adding rules for 

producing facts linking each identifier in the syntax tree with its declaration. 

control_dep This program implements algorithms for computing control dependencies [81]: 

post-dominator sets and relations are easily computed by making extensive use of the 

control flow graph. 

data_dep This program implements algorithms for computing data dependencies in pres­

ence of pointer variables, structures and dynamic analysis. The method employed [114] 

is based on that described by Horwitz et al. [102] which addresses the reaching defini­

tions problem in terms of memory locations, rather than variable names and aliases. 

The metaprograms above are executed in the order in the Prolog environment and modify 

the CCG fact base. 

A ful l description of the architecture of the CCG fact base is given in appendix A. A 

complete CCG fact base for the sample C program of figure 3.3, whose graphical represen­

tation is depicted in figure 3.4 is contained in appendix B. Further implementation details 

of the CCG analyser can be found in [114]. 
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The CCG analyser has been implemented following the logic based paradigm for reverse 

engineering tool production described by Canfora et al. in [35]. Actually, the partial CCG 

fact base contains a set of direct relations that are obtained from the source code by static 

analysis, while the Prolog metaprograms allow the abstraction of a set of summary relations 

that complete the CCG fact base. 

4.2 The Symbolic Executor and Slicing Criterion Finder 

The symbolic executor and slicing criterion finder is the core of the system and is used to 

find a slicing criterion from a CCG representation of a program and the specification of a 

functional abstraction. This subsystem is composed of four Prolog modules, as depicted in 

figure 4.3 which are loaded into the Prolog environment together with the CCG fact base 

and the specification of the functional abstraction given in term of a precondition and a 

postcondition and binding between the the data of the function and the program's variables. 

The logic formulas of the function specification are universally quantified as well as the path-

condition in a symbolic state. A logic formula is expressed as a Prolog term corresponding 

to the syntax tree of the expression. As an example, the formula: 

( a - 6 > 0 A c = a - 6 ) V ( 6 - a > 0 A c = 6 - a ) 

is expressed by the Prolog term: 

expr(or , 

expr(and, 

expr (g t , expr(minus, a , b ) , 0 ) , expr(eq, c, expr(minus, a , b ) ) ) , 

expr(and, 

expr(geq, expr(minus, b, a ) , 0 ) , expr(eq, c, expr(minus, b, a ) ) ) ) 

Figure 4.4 shows the initial phase of the execution of the prototype tool. The four 

modules of the symbolic executor and slicing criterion finder are loaded together with some 

CCG Prolog libraries by consulting the program symb_exec.pl. The symbolic execution and 

the search for the slicing criterion start with the query start.exec. Once the CCG file, the 

specification file, the starting function and the initial path-condition have been entered, the 

first token is created and the control passes to the scheduler for the selection of an operation. 

The format of a token is: 

token(Tok_id, CCG_Vertex, Tok_state, State, PC, Call_stack) 

where: 
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Figure 4.3: The symbolic executor and slicing criterion finder architecture 

Tok_id is the token identifier; 

CCG_Vertex is the CCG control flow graph vertex; 

Tok_state is. the state of the token (execution, ready, wait, terminated); 

S ta te is the program state, defined as: 

s t a t e ( L o c a l , Heap, Global) 

where L o c a l , Heap and Global are Heap and Global are lists corresponding to dynamic 

and global variables, respectively, and Loca l is the stack for the local variables. Each 

element contained in Loca l has the form: 

local(Form4)ar, Local_stack, Ret_point, Ret_value) 

where Form_par is the list of formal parameters, Local_stack is the stack for the local 

variables of a function, Ret_point is the return point of the function on the CCG and 

Ret-value is the return value; 

PC is the path-condition; 

C a l l _ s t a c k is a stack containing all the call sites still to which the execution has not returned 

yet on the interprocedural control flow path. This is information is necessary to avoid 

folding two tokens executing a function from different call-site chains. 

In the following a description of the four modules of the subsystem follows. 
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a l t a i r ( s u n 4 ) : d c s 3 a d l [ 3 8 ] : prolog 
Welcome to SWI-Prolog (Version 1.8.6 December 1993) 
Copyright (c) 1993, University of Amsterdam. A l l rights reserved. 

1 ?- consult('symb_exec.pi'). 
c c g _ l i b . p l compiled, 0.07 sec, 12,052 bytes. 
ccgquery.pl compiled, 0.10 sec, 16,652 bytes. 
scheduler.pl compiled, 0.08 sec, 13,228 bytes. 
executor.pl compiled, 0.12 sec, 19,580 bytes. 
evaluator.pl compiled, 0.10 sec, 16,968 bytes. 
thebrem_prover.pl compiled, 0.03 sec, 4,324 bytes. 
symb_exec.pl compiled, 0.51 sec, 63,564 bytes. 

Yes 
2 ?- s t a r t _ e x e c . 

CCG F i l e Name I : fact_and_sum.pl. 
fact_cmd_sum.pl compiled, 0.12 sec, 18,312 bytes. 

S p e c i f i c a t i o n F i l e Darae |: f a c t o r i a l . p l 
f a c t o r i a l . p l compiled, 0.03 sec, 1,084 bytes. 

S t a r t i n g Function I : main. 

I n i t i a l path-condition I : true. 

... Token state l i s t s ... 

Execution 

token(0, cf_node(l, main, 0 ) , [ ] ) 

Ready 
Wait 

... Operations . . . 

1. cheinge token state 
2. execute token 
3. f o l d tokens 
4. terminate 

Select Operation |: 2. 

Figure 4.4: Unix script for symbolic executor 
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scheduler This module is invoked whenever an operation has to be performed. The user is 

asked for the operation (see figure 4.4) and its feasibility is checked. The user is also 

asked about the token (or the tokens) on which the operation must be performed. The 

operation to change the state of a token and to fold two tokens are also contained in 

this module. 

e x e c u t o r This module is invoked whenever a token has been selected to advance its exe­

cution. Different cases are considered for the execution of loops, predicates, function 

calls and funct ion returns. The token moves on the CCG accordingly. 

e v a l u a t o r This module is invoked whenever an expression must be evaluated. The ex­

pression is evaluated by traversing the CCG abstract syntax tree and producing an 

expression in the same format described above.for a logic formula. The expression is 

simplified when possible and linked to the root of the corresponding CCG abstract 

syntax subtree. This is useful when evaluating side-effected sub-expressions of an ex­

pression. 

t h e o r e m _ p r o v e r This module is invoked whenever an implication must be proved. In 

particular, a proof is required each time a predicate is encountered during symbolic 

execution. Moreover, after each token execution, the user can invoke the module to 

prove the implication between the current path condition and the specification of the 

funct ion, i n order to f ind a slicing criterion. 

Whenever a slicing criterion has been found (or the symbolic execution terminates un­

successfully) the execution of the subsystem terminates. The slicing criterion is produced in 

the fo rm: 

s l ic ing_cr i ter ion(Fid , FNcime, NodeFrom, NodeTo) 

where Fid is the file identifier, FName is the function name, NodeFrom and NodeTo are the 

CCG vertices corresponding to the statements Sin and Sout, respectively. 

4.3 The Program Slicer 

The program slicer is a Prolog program which takes the slicing criterion produced by the 

module SCF as input and produce the program slice (see figure 4.5). The appendix C 

contains the listing of the program. The slicing algorithm implemented considers slicing 

criteria of the type (5,„, Sout, Kti<) as defined in chapter 3, where Vout is the set of variables 

referenced at Sout- The slicing criterion is given as input to the procedure^: 

Prolog procedure is a set of clauses with the same predicate in the head [164]. 
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s l i c e ( F i d , FMame, NodeFrom, NodeTo) 

where Fid and Fname are the file identifier and the function name containing the statements 

Sin and SQU^I^ while NodeFrom and NodeTo are the CCG control flow nodes corresponding to 

the two statements, respectively. 

The algori thm implemented works both at intraprocedural and interprocedural level. A t 

intraprocedural level, i t only considers in the slice the set Pathlist of CCG nodes lying on a 

control flow path between the statements Si„ and Sout of the sHcing criterion [56]. A t interpro­

cedural level, the algorithm only considers the set Funlist of functions that can be reached 

through a call chain f r o m a call site contained in Pathlist . I n this way only interprocedural 

control flow paths between 5,„ and Sout can be considered. The sets Pathlist and Funlist 

are computed by the procedures f ind_path and f ind_call_chain, respectively. The slice is 

computed by backwards traversing CCG dependence edges (procedure traverse). A t each 

step a CCG control flow node n is considered and added to the current slice. Moreover, all 

nodes m linked to n by one of the following edges: 

• control dependence edge; 

• data flow dependence edge; 

• expression-use edge; 

• lvalue-definition edge; 

• parameter binding edge; 
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• return-expression-use edge; 

• call edge 

are added to the list of the nodes to be st i l l considered for inclusion in the slice (procedure, 

backwards j t r av ) . The control dependencies, the data flow dependencies, the parameter 

binding edges and the call edges are considered as usual [103] to affect the value of the 

variable defined at a CCG vertex. Moreover, as an expression containing embedded side-

effects and control flows is represented i n the CCG as a set of refined vertices, expression-use, 

lvalue-definition and return-expression edges ensure that a slice reaching a refined vertex also 

includes vertices contributing values to the expression at the refined vertex. 

4.4 The Graphical Display Tool 

The CCG Graphical Display system consists of two modules [114], as shown in figure 4.6. 

The first module is a Prolog metaprogram for tool bridge technology. This metaprogram is 

loaded in the Prolog environment together w i th the CCG and slice fact base and its execution 

produces an alternative representation format {GDT f.) of the data base. The new data­

base is the input for the Graphical Display Tool developed by Bodhuin [20] which allow the 

visualisation of program slices and other program views. 
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4.5 Summary 

This chapter has described the prototype implementation of a system for identifying speci­

fication driven program slices. The system uses the CCG analyser for the production of the 

CCG fact base and a Graphical Display Tool for the visualisation of a slice. The core of the 

system consists of a symbolic executor and a theorem prover for the selection of a slicing cri­

terion, according to an input specification. Finally, a slicer produces the slice implementing 

the functional abstraction. The system has been integrated in Prolog environment. A static 

analyser wr i t t en using the YACC compiler-compiler and embedded in the CCG analyser 

produces a partial CCG fact base f rom the C source code. The Graphical Display Tool is 

wr i t ten in C and takes as input an alternative representation format of the CCG fact base 

produced by a Prolog metaprogram. . , 
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Chapter 5 

Evaluation 

I n this chapter the specification driven program slicing method is evaluated. In the first sec­

t ion of this chapter we w i l l demonstrate the specification driven slicing process through an 

example conducted on a simple C program. In the second section we present a summary of 

a case study in identifying, extracting and reengineering code fragments implementing func­

t ional abstractions in an existing C software system, after i t has undergone two meaningful 

maintenance interventions [58]. Finally, the method and the results obtained are evaluated 

and some conclusions are outlined in the last section. 

5.1 A Simple Example 

The precondition of a statement is a first order logic formula which must hold true in order 

for the statement to be executed. The precondition of a statement can be derived f rom the 

symbolic state holding before its execution. Each vertex in the control flow subgraph of a 

program's CCG is therefore annotated wi th the symbolic state holding before its execution. 

During symbolic execution the finder first looks for a statement 5,„ whose precondition is 

equivalent to the precondition of the functional abstraction. Once such a statement has been 

found, i t looks for a statement Sout whose precondition is equivalent to the postcondition of 

the functional abstraction. I f also the statement SQUJ is found and s,„ dominates Sout, the 

slicing criterion { s i n , Sout, Vout) is produced, where Vout is the set of the program variables 

corresponding to the output data of the function. Finally, the slice is computed. 

Let us consider the sample program in figure 5.1 which computes the factorial f a c t and 

the sum sum of the absolute difference of two integers a and b. . Let us suppose to extract 

the slice implementing the factorial function, whose specification is: 

factorial: n € No -> m € N 

precondition: true 
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mainO 

{ 

i n t a, b , d i f f , f a c t , sum, i ; 

s can f ( "%d" , & a ) ; 

s can f ( "%d" , & b ) ; 

i f (a > b) 

d i f f = a - b ; 

else 

d i f f = b - a; 

f a c t = i = 1; 

sum = 0 ; 

w h i l e ( i <= d i f f ) { 

f a c t *= i ; 

sum += i + + ; 

. } . . 

p r i n t f ("y,d \n" , f a c t ) ; 

p r i n t f ( " % d \n" , sum); 

} 

Figure 5.1: A sample C program 

postcondition: m — n\ 

where N is the set of the natural numbers and No is the set of natural numbers enclosing 0. 

The software engineer must provide some assertions to associate the data of the specification 

w i t h the variables of the program. In this case he w i l l associate the variable d i f f wi th the 

input data n and the variable f a c t w i th the output data m . Moreover, as d i f f and f a c t 

are integers variables while n and m are natural numbers, the specification of the function 

must be changed according to the program variables in : 

factorial: n G Z -> m G Z 

precondition: n > 0 

postcondition: m = n! 

where Z is the set of relative numbers. Let us symbolically execute the program above. The 
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symbolic execution w i l l start in the symbolic state^: 

Pi) = ( { } , irwe) 

After the allocation of the local variables and the execution of the two input statements, the 

symbolic state becomes: 

{S2, P2) — ( { (a , a), (b, /?), ( d i f f , unde/), ( f a c t , undef), (sum, undef), ( i , undef)}, true) 

A t this point the i f statement is encountered. As the path-condition does not implies the 

i f predicate nor its negation, the two symbolic states are generated on the true and false 

branches, respectively: 

('S'3, P3). — ( { ( a , a ) , (b, /?), ( d i f f , undef),. ( f a c t , undef), (sum, undef), ( i , undef)},. 

a - f 3 > 0 ) 

{S4, P4) = ( { ( a , a), (b, P), ( d i f f , undef), ( f a c t , undef), {sum, undef), ( i , undef)}, 

- a > 0) , 

The symbolic execution of the statement d i f f = a - b in the state (S'3, P3) produces the 

symbolic state: 

{S5, P5) = ( { (a , a), (b, (3), ( d i f f , a - /?),. ( f a c t , undef), (sum, undef), {i, undef)}, 

a - p > 0 ) 

while the symbolic execution of the statement d i f f = b - a in the state (S'4, P4) produces 

the symbolic state: 

(56, Pe) = ({ (a , a), (b, /?), ( d i f f , /? - a ) , ( f a c t , undef), (sum, undef), ( i , undef)}, • 

/3-a>0) 

A t this point, the two symbolic executions can be joined in a single execution by folding.the 

two symbolic states. The resulting state is: 

(57, P7) = ( { ( a , a ) , (b, p), ( d i f f , 7), ( f a c t , undef), (sum, undef), ( i , undef)}, 

( a - / ? > 0 A 7 = a - / ? ) V ( / ? - a > 0 A 7 = / 3 - a ) ) 

This symbolic state holds before the execution of the expression i = l ' ^ whose precondition 

is therefore: 

^For sake of simplicity, in this example the empty lists of dynamic and global variables are not shown. 

Moreover, as the main function does not contain any function call and does not return any value, the local 

stack is simplified into a list of local variables, to make easier the reading. 

^The statement fact = i = 1 gives rise the two C C G vertices ( i = 1) and (fact =) in that order. 
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( a - / 3 > O A 7 = a - / 0 ) V ( / ? - Q > O A 7 = / 5 - a ) 

From this formula the precondition n > 0 of the function factorial can be deduced, under the 

assumption n = 7 (n has been associated wi th d i f f and 7 is the symbolic value of d i f f ) , 

i.e., V a and /3 

( ( a - / ? > 0 A 7 = a - / ? ) V ( / ? - a > 0 A 7 = ^ - a ) ) A n = 7=>n>0 

This also means that once the values of a and /3 have been assigned (i.e., they are constants) 

and n and d i f f have been bound, the path-condition above and the precondition of the 

funct ion factorial can be considered equivalent. Therefore, i = 1 is candidate to be the 

in i t i a l statement of the slicing criterion. The symbolic state holding before the execution of 

the w h i l e statement is: 

(Ss, Ps) = ( { ( a , a), (b, (3), ( d i f f , 7 ) , ( f a c t , 1), (sum, 0), ( i , 1)}, 

{a-P>0Aj = a - p ) y { / 3 - a > 0 A j ^ f } - a ) ) 

A t this point, the w h i l e loop is encountered. Symbolic execution can be used to obtain the 

recurrence equations f rom which the loop invariant is generated [57]. Let 

{LSuLP^) = ({(a, A), (b,y^), ( d i f f , i / ) , ( f a c t , / ? ) , ( sum,^) , ( i , e ) } , P C ) 

be the symbolic state resulting f rom n — 1 iterations of the loop and let us execute the n"* 

iteration (supposing that the PC ^ i < u). The execution of the loop body produces the 

state: 

(X52, LP,) - ({(a. A), (b, / . ) , ( d i f f , t/), ( f a c t , / ) * 0 , (sum, V + ( i , ^ + 1)}, ^ C ) 

From the analysis of the symbolic values in the states (-Z^5i, LPi) and (LS'2, LP,) i t is easy 

to see that the variables that change their value during the execution of the loop are f a c t , 

sum and i . The recurrence equations for these variables can be wri t ten as: 

f a c t „ = f a c t „ _ i * i „ _ i 

sum„ = sum„_i + i „ _ i 

i „ = i „ _ i - I - 1 

i „ < d i f f o 

f a c t o = 1 

sumo = 0 

io = 0 

d i f f o = 7 
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where the value for f a c t o , sumo, io and d i f f o are obtained f rom the ini t ia l state {Ss, Pg)-

The solution for the system above is: 

f a c t „ = n! 

sum„ = n * ( n - ( - l ) / 2 

i „ = n - M 

in < 7 

f r o m which, substituting the value of n obtained f rom the th i rd equation in the first and 

second equation and eliminating the subscript n , we obtain the loop-invariant: 

f a c t = ( i - 1 ) ! 

sum = i * ( i - l ) / 2 

i < 7 

By associating f a c t , sum and i w i th the new symbolic constants S, cr and t, respectively, 

and executing the loop invariant.in the symbolic state {Sg, Ps) we obtain the state holding 

before any iteration: 

(59, P9) = ( { ( a , a ) , (b,/?), ( d i f f , 7 ) , ( f a c t , ^ ) , (sum, a) , ( i , i)}, 

((a - y5 > 0 A 7 = a - ^) V (/? - a > 0 A 7 = ^ - a))A 

5 = { i - l ) \ A a = L*{i- 1)12 A t < 7) 

To obtain the symbohc state holding at the exit of the loop, let us suppose that the condition 

of the loop is false (i.e. t = 7 - |-1). The resulting state wi l l be: 

(5io, Pio) = ({ (a , a), (b, /?), ( d i f f , 7 ) , ( f a c t , 8), (sum, cr), ( i , i)}, 

( ( a - / ? > 0 A 7 = a - / ? ) V ( / ? - a > 0 A 7 = /? - a))A 

(J = (t - 1)! A (7 = t * (i - l ) / 2 A t = 7 -h 1) 

This symbolic state holds before the execution of the statement p r i n t f ("'/.d \ n " , f a c t ) 

whose precondition is then: 

( ( « - / ? > OA7 = a - ; 9 ) V ( / ? - a > OA7 = / ? - a ) ) At = 7-}-1A5 = ( t - 1 ) ! A C T = t * ( t - l ) / 2 

which can also be wr i t ten as: 

( ( a - ^ > 0 A 7 = a - / ? ) V ( / ? - a > 0 A 7 = / ? - a ) ) A t = 7 + lA(^ = 7!A(7 = 7*(7-{-1)/2 
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I t is easy to prove, in a similar way as before, that whenever the precondition of the spec­

ification of the funct ion factorial holds true, the condition above is equivalent to the post­

condition of the specification. Moreover, as the statement i = 1 dominates the statement 

p r i n t f C y . d \ n " , f a c t ) the slicing criterion ( i = 1, p r i n t f ( " y , d \ n " , f a c t ) , f a c t ) is 

produced. The slice on this slicing criterion can be easily extracted using the algorithm 

described in chapter implementation. The slice produced is: 

f a c t = i = 1; 

w h i l e ( i <= d i f f ) { 

f a c t *= i ; 

i++; . 

} 

5.2 A Case Study 

The program chosen to demonstrate the specification driven program slicing process is the 

P E R P L E X tool [30], a subsystem of the CCG analyser [113, 114]. The CCG system is 

concerned w i t h the production of a data base of Prolog [164] facts containing the CCG 

representation of a C program and consists of two subsystems (see section 4.1). 

The first subsystem is the PERPLEX tool which is wri t ten using the YACC [107 

compiler-compiler and uses a grammar corresponding to that in [110]. PERPLEX produces 

a Prolog data base containing several types of facts that support intraprocedural informa­

t ion about the individual FCCGs. I n particular, the data base contains facts for syntax tree 

nodes, syntax tree edges, control flow nodes, control flow edges, type declarations, function 

declarations, variable declarations, formal parameter declarations. Other fact types represent 

expression-use and lvalue-definition edges, which carry information about the internal data 

fiow in expressions containing embedded side-effects or control flows, and the scope of the 

identifiers i n the syntax tree. 

The second subsystem consists of three analysis meta programs [113, 114] wri t ten in Pro­

log that enrich the data base produced by PERPLEX wi th interprocedural information [call 

edges, parameter binding edges and return expression-use edges), to connect the individual 

FCCGs and make up the CCG, and control and data dependencies. 

The P E R P L E X subsystem is over 5000 LOG long (not including comments) and consists 

of four header files, seven C files and one YACC file. The original version of the system [30] 

did not produce the abstract syntax tree in the FCCG representation. Moreover, i t did not 

produce extra vertices for sub-expressions containing embedded side-effects or control flows, 

nor expression-use and lvalue-definition edges. The latter functionality has been added to 
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F i l e LOC 1 LOC 2 LOC 3 diff. 1/2 diff. 2/3 diff. 1/3 

b u n t e r . h 9 9 9 0 0 0 

d a t a . h 141 153 164 12 11 23 

g l o b a l . h 86 86 86 0 0 0 

l e x . h 7 7 7 0 0 0 

a l l o c . c 367 393 393 26 0 26 

c c g _ l d . c 78 78 78 0 0 0 

i n t e r f a c e . c 73 123 123 50 0 50 

l e x . c 353 353 386 0 33 33 

main .c 119 143 144 24 1 25 

p r i n t _ f u n . c . . 766 1550 2542 784 992 1776 

s u p p l y _ f u n . c 399 489 498 90 9 99 

p e r p l e x . y 1014 1020 1041 6 21 27 

T o t a l 3412 4404 5481 992 1067 2059 

Table 5.1: PERPLEX files: LOC of original (1), second (2). and th i rd (3) versions 

P E R P L E X during a first perfective maintenance intervention which allowed the computa­

t ion of more accurate data dependencies and program slices [114]. A second mainteiiance 

intervention allowed PERPLEX to produce the FCCG syntax trees, in order to use CCG 

for symbolic execution [57]. Table 5.1 shows the number of LOC of each file of the system 

in the original version (1) and after the two perfective maintenance operations (2 and 3, 

respectively). The final version is over 2000 LOC longer than the original one. 

5.2.1 The sample functions 

I n both the maintenance operations most functionalities have been added to the p r i n t . f un . c 

file, as the new version has over 1700 LOC more than the original one. This file contains the 

functions for the production of the file containing the Prolog data base, while the other C 

files concern lexical analysis ( l e x . c ) , dynamic memory allocation ( a l l o c . c ) , data structure 

traversal ( s u p p l y . f u n . c ) , interface management ( i n t e r f a c e . c ) and multiple input files 

management ( c c g _ l d . c ) , besides the main program file (main .c) . After the first mainte­

nance operation the number of functions in the p r i n t _ f u n . c file increased f rom 20 to 30 

and the new functions were composed of over 600 LOC. On the contrary, after the second 

maintenence operation, although the number of new functions has increased f rom 30 to 54, 
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F u n c t i o n LOG 1 LOG 2 LOG 3 d i f f 1/2 diff. 2/3 diff. 1/3 

s t m t _ p r i n t 179 266 392 87 126 126 

l e a f _ e x p r 0 130 230 130 100 230 

a c c e s s _ p r i n t 0 123 202 123 79 202 

anon_access_pr in t 0 96 168 96 72 168 

T o t a l 179 615 992 436 377 813 

Table 5.2: File p r i n t j f u n . c : LOG of original (1), second (2) and th i rd (3) versions of the 

sample functions 

the number of LOG' for the new functions is about 500 only. Therefore, the other LOG have 

been added to earlier functions and in particular, about 400 LOG have been added to four 

functions only, each of them is over 150 LOG in the final version, as shown in table 5.2. 

A l l the other functions i n the p r i n t _ f u n . c file have less than 150 LOG. The four functions 

are s t m t _ p r i n t , for the production of information about statements {expression statements, 

compounc? statements, 5e/ecfzon statements, loop statements, jump statements and /a6e/state­

ments), l e a f _expr, for the production of information about atomic expressions (like iden­

tifiers w i t h increment or decrement operators), access_pr in t and anon_access_print for 

the access to funct ion parameters, arrays, structures and pointers. In particular, the function 

a c c e s s _ p r i n t is called by the function l e a f _expr to access atomic side-effected structures, 

like for example a [2] [1]++, while the function anon_access_print deals w i th expressions 

without side-effects, like for example (*(a+2)) [1] or *(a+2) [1]. Note that the last three 

functions were not present in the original version of PERPLEX and have been introduced 

during the first maintenance intervention. 

Meaningful subfunctionalities have been isolated in these functions using the specification 

driven slicing process. Af te r the isolation phase, the functions have been reengineered. The 

interface of each new funct ion has been defined and its code in the existing functions has been 

substituted w i t h a funct ion call. The case study also revealed the existence of duplicated code 

in the functions l e a f _ e x p r , access_pr in t and anon_access_print , as the code of some 

of the isolated subfunctions was found more than once. The reengineering phase allowed to 

eliminate the duplicated code and to cluster similar functions into a more general one. 

5.2.2 The function stmt_print 

The funct ion s t m t _ p r i n t has been decomposed in 6 functions as shown in table 5.3. The 

main funct ion s t m t _ p r i n t calls the other functions depending on the type of the statement 
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Function L O C 

stmt_print 58 

comp_stmt_print 39 

sele_stmt_print 87 

iter_stmt_print 150 

label_stmt_print 62 

jump_stmt_print 90 

Total 486 

Table 5.3: Decomposition of s t m t _ p r i n t 

to be printed. In particular: 

• comp_s tmt_pr in t deals w i t h compoun</statements 

• s e l e _ s t m t _ p r i n t deals w i th selection statements 

• i t e r . s t m t _ p r i n t deals w i th loop statements 

• l a b e l _ s t m t _ p r i n t deals with/a6e/statements 

• jump_ stmt . p r i n t deals w i t h jump statements 

while in the earlier version a funct ion e x p r _ p r i n t dealing wi th expression statements was 

already called by the funct ion s t m t _ p r i n t . For each of the identified functions i t was very 

easy to find the statement Sin of the corresponding shcing criterion. Indeed, the function 

s t m t _ p r i n t is characterised by a s w i t c h statement on the expression statement->type^ 

carrying the type of the statement. The result of the symbolic execution of the s w i t c h 

statement was the generation of several execution paths corresponding to the different case 

labels. Each of the resulting path-conditions was equivalent to the precondition in the 

specification of one of the functions above. For example, the precondition of the subfunction 

comp_s tmt_pr in t was found after the execution of the statement: 

s w i t c h ( s t a t emen t -> type ) { 

case COMP: 

block_c_up (block_counter); 

^The variable statement is a pointer to a structure modelling a statement node in the syntax tree. The 

structure is defined in the file data.h. 
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F u n c t i o n L O G 

l e a f _ e x p r 68 

f u n _ c a l l _ e x p r 59 

c r e a t e _ l e a f _ e x p r 75 

no_c rea t e_ lea f_expr 45 

T o t a l 247 

Table 5.4: Decomposition of l e a f _expr 

As s ta tement is a formal parameter of the funct ion s t m t _ p r i n t , let a be the value of the 

field s t a tement -> type . A t this point the symbolic state contains the path-condition: 

a = COMP 

which is equivalent to the precondition of the function. Therefore, the statement: 

b lock_c_up ( b l o c k _ c o u n t e r ) ; 

was chosen as in i t i a l statement of the slicing criterion. The function block_c_up increments 

a counter carrying information about the control nesting. I t was more difficult to find the 

postcondition of the functions, due to the recursive nature of s t m t _ p r i n t . User interaction 

was required to understand the code and to provide some assertions. Symbolic execution 

was used to understand the behaviour of the recursive calls. For example, for the function 

c o m p _ s t m t . p r i n t the following break statement'was chosen as final statement of the slicing 

criterion: 

block_c_down ( b l o c k _ c o u n t e r ) ; 

b reak ; 

Indeed, the precondition of the breeik statement above was equivalent to the postcondition 

of the funct ion. Note that the function block_c_down decrements the counter carrying 

information about the control nesting and therefore, i t is actually the last statement of the 

funct ion comp_s tmt_pr in t . 

5.2.3 The function leaf_expr 

The funct ion l e a f _expr has been decomposed in 4 functions as shown in table 5.4. The 

main funct ion l e a f _expr calls the other functions. In particular, f un_ca l l _exp r is called 

whenever the sub-expression is a function call, c r e a t e _ l e a f _expr is called whenever the 
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sub-expression contains an embedded side-effect or control flow ( in this case a node in the 

control flow graph must be created), while no_crea te_ lea f_expr is called to deal wi th 

sub-expressions without embedded side-effects or control flows (no node in the control flow 

graph has to be created). For these functions also the identification of the preconditions was 

very easy. For example, the precondition of the function f un_ca l l _exp r was found after 

the execution of the statements^: 

s w i t c h ( e x p r - > o p e r a t o r ) { 

case ID: 

} 

i f ((expr->in != NULL) && 

(expr -> in -> type == FUN)) { 

call_node_no = *node_countp; 

As expr is a fo rmal parameter let a, x and /? be the values of the fields expr ->opera tor , 

expr->in and expr ->in ->type, respectively^. Before the execution of the statement: 

call_node_no = *node_countp; 

the symbolic state contains the path-condition: 

a = ID A X / NULL A /3 = FUN 

which is equivalent to the precondition of the function. Therefore, this statement was cho­

sen as the in i t i a l statement of the slicing criterion for the isolation of the function. User 

interaction was required to find the postcondition of the function and the final statement for 

the slicing criterion. The statement chosen was the r e t u r n statement in the following code 

fragment: 

i f ( v a l == LVALNODE) 

int_list_add (Ivalp, call_node_no) ; 

else 

in t_ l i s t_add ( r v a l p , call_node_no); 

r e t u r n ; 

Similarly, the two different symbolic states generated by the execution of the i f statement: 

''The variable expr is a pointer to a structure, modelling an expression node in the syntax tree. The 

structure is defined in the file data.h. 
^The variable expr->in is a pointer of the same type as expr. Therefore, the value x is the symbolic 

address of the structure pointed by expr->in. 
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F u n c t i o n L O G 

access_pr in t . 48 

anon_access_print 42 

a c c _ f u n _ p r i n t 52 

a c c _ a r r _ p r i n t 35 

a c c _ p t r _ p r i n t 24 

a c c _ p t r _ r e f _ p r i n t 23 

a c c _ s t r j . r e f _ p r i n t 30 

s e t _ d e f _ r e f 38 

T o t a l 292 

Table 5.5: Decomposition of access_pr int and anon_access_print • 

i f ( (makenode == NOTCREATE) && 

( e x p r _ i n _ p o s t ^ p r e ( e x p r ) == FALSE)) 

carry the preconditions for the functions no_create_leaf_expr and createJ .eaf_expr , i-e-

spectively. Indeed, the variable makenode is a parameter of the function which asserts that 

a node in the control flow must be created for the current expression (pointed by expr) , 

while the funct ion expr_ in_pos t_pre checks for embedded side-effects due to increment or 

decrement operators. User interaction was required to find the postconditions of the two 

functions. The in i t ia l and the final statements of the slicing criteria were a s w i t c h statement 

and a r e t u r n statement, respectively, for both the functions, as shown in the following code 

fragment: 

s w i t c h ( e x p r - > d e f _ r e f ) • { . . . } 

r e t u r n ; 

5.2.4 The functions access_print and anon_access_print 

Some interesting cases of duplicated code and generalisation have been found in the func­

tions access_pr in t and anon_access_print. Indeed, the only difference between the two 

functions is that the former also deals wi th the access to the actual parameters of a function 

call expression. The code for this funct ion has been identified, isolated and reengineered in 

the funct ion acc_f u n _ p r i n t . The other subfunctionalities of the two functions are the same 
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and concern the access to array subscripts, pointers, structure fields and pointer structure 

fields (e.g., a->b, where a is a pointer variable). The code of each of these functionalities 

was the same in both the original functions. This duplication was justified because in the 

original design the two functions were intended to deal w i th two different Ccises. Moreover, 

as the common subfunctionalities were too simple (and the resulting code too small), the 

designer decided to not create functions for them and to have small pieces of duplicated code. 

However, during the perfective maintenance phase, the same code has been added to these 

subfunctionalities, making the dimension of the duplicated code meaningful. This problem 

has been discovered during the isolation phase and eliminated in the reengineering phase, 

by clustering the code of the common.subfunctionalities in the functions a c c _ E L r r _ p r i n t , 

a c c _ p t r _ p r i n t , a c c _ p t r _ r e f _ p r i n t and a c c _ s t r _ r e f _ p r i n t , respectively, as shown in 

table 5.5. 

The precondition of each function was found after the execution of a case label of a 

s w i t c h statement, while the postcondition was equivalent to the precondition of the breaJs 

statement terminating the switch case. For example, for the funct ion a c c _ a r r _ p r i n t the 

in i t i a l and final statements of the slicing criterion were s w i t c h ( exp r ->de f _ r e f ) and breeik, 

respectively, in the following code fragment: 

s w i t c h ( e x p r - > t y p e ) { 

case ARR: 

s w i t c h ( e x p r - > d e f _ r e f ) { . . . } 

b reak ; 

Table 5.5 also contains the function se t_def _ r e f . This function updates the fist of 

the definitions and uses of the identifiers in . the current sub-expression node of the con­

t ro l flow graph. This information is used for the data flow analysis. Moreover, the 

funct ion returns the label of the node in the syntax tree whenever the current operator 

is an increment or decrement operator or the & unary operator (which returns the ad­

dress of a variable). The code for this funct ion was found in different versions in the 

functions a c c _ a r r _ p r i n t , a c c _ p t r _ p r i n t , a c c _ s t r _ r e f _ p r i n t , c r e a t e _ l e a f _ e x p r and 

n o _ c r e a t e _ l e a f _expr. Again, in the original design this functionali ty was too simple to be 

implemented as a function, but after the perfective maintenance the number of duplicated 

LOG was meaningful. 

Figure 5.2 and 5.3 show part of the code fragments isolated in the functions 

a c c _ a r r _ p r i n t and a c c _ p t r _ p r i n t , respectively. Actually, the only difference among the 

different versions of isolated code fragments was in one of the actual parameters appearing . 
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char * p t r = 

char *no_op = 

char *labnode; 

labnode = NULL; 

s w i t c h ( e x p r - > d e f _ r e f ) { 

case DEF_AND_REF: 

v a r _ l i s t _ a d d ( v a r . l i s t p , p t r , R E F ) ; 

/ * compute labnode and v a r _ l i s t p f o r 

increment/decrement opera to r s and use no_op * / 

b reak ; 

case DEF_OMLY: 

v a r _ l i s t _ a d d ( v a r _ l i s t p , p t r , D E F ) ; 

break; 

case ADDRESS: 

v a r _ l i s t _ a d d ( v a r _ l i s t p , p t r , ADDR); 

labnode = make_s t r i ng ( "add re s s_o f " ) ; 

b reak ; 

d e f a u l t : 

v a r _ l i s t _ a d d ( v a r _ l i s t p , p t r , R E F ) ; } 

Figure 5.2: Code fragment isolated in acc_ar r_pr in t 
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char *dot = " . " ; 

char i d e n t [ 2 0 0 ] ; 

char +no_op = " 0 " ; 

char *labnode; 

labnode = NULL; 

s t r c p y ( i d e n t , d o t ) ; 

s t r c a t ( i d e n t , e x p r - > i d e n t ) ; 

s w i t c h ( e x p r - > d e f _ r e f ) { 

case DEF_AND_REF: 

v a r _ l i s t _ a d d ( v a r _ l i s t p , i d e n t , R E F ) ; 

/ * compute labnode and v a r _ l i s t p f o r 

increment/decrement ope ra to r s and use no_op * / 

brecLk; 

case DEF.ONLY: 

v a r _ l i s t _ a d d ( v a r _ l i s t p , i d e n t , D E F ) ; 

breeik; 

case ADDRESS: 

v a r _ l i s t _ a d d ( v a r _ l i s t p , i d e n t , ADDR); 

labnode = make_s t r i ng ( "add re s s_o f " ) ; 

breaJj; 

d e f a u l t : 

v a r _ l i s t _ a d d ( v a r _ l i s t p , i d e n t , R E F ) ; } 

Figure 5.3: Code fragment isolated in acc_p t r_p r in t 
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in the calls to the funct ion v a r _ l i s t _ a d d . This function updates the list v a r _ l i s t p con­

taining the variables defined and used in the current expression. For example, in figure 5.2 

the actual parameter is p t r , while in figure 5.3 i t is i d e n t . The different versions of isolated 

code fragments have been generalised and clustered in a function at a higher abstraction 

level, as shown in figure 5.4. 

5.3 Evaluation and Conclusion 

I n this chapter an example and a case study have been shown to demonstrate the specification 

driven program slicing process. The example showed some typical problems of symbolic 

execution, like loop invariants and theorem proving. Due to the possible presence of loops 

and recursion in a funct ion the problem of abstracting the precondition of a statement is 

undecidable and the user interaction is necessary. However, where possible a deterministic 

approach based on symbolic execution can be used to automatically recover the recurrence 

equations for the variables involved in a loop. The solution of these equations provides 

invariant assertions which allow symbolic execution to continue. In particular loops involving 

pointer and array variables are diff icult to deal wi th . A solution to the problem of finding 

loop invariants for programs wi th arrays has been proposed by Ellozy [78]. On the same line 

and using symbolic addresses for memory locations as proposed in this paper, a solution can 

be provided whenever a loop involves arithmetics on pointer variables. For more complex 

loops a l ibrary of (domain independent) plans can be used to recover invariants [3 . 

However, symbolic execution allows the user to follow the different execution paths of a 

program and then to understand how the program variables change on the different paths. In 

this case symbolic execution can be used as a tool for program comprehension [19]. Finally, 

whenever the user is not able to provide a suitable loop invariant, a "partial" specification 

can be obtained by executing the loop a fixed number of times and adding this constraint 

to the path-condition. 

Theorem proving is a fundamental aspect of the specification driven program slicing. 

Implications have to be proved between the path-condition and the pre and postcondition 

of the funct ion specification. Moreover, implication must also be proved between the path 

condition and a predicate encountered, in order to avoid infeasible paths. Theorem proving 

is a very expensive activity, in particular i f a proof involving the path condition and the 

funct ion specification is required at each step. The interactivity of the tool makes more 

flexible this task, because the user can decide when a proof is necessary. Also the user 

can decide to discard some execution paths, so reducing the number of proofs involving 

path-conditions and program predicates. 
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char * s e t _ d e f _ r e f ( e x p r , v a r _ l i s t p , i d _ p t r ) 

EXPR_PTR exp r ; 

V A R _ L I S T _ P T R * v a r _ l i s t p ; 

char * i d _ p t r ; 

{ 

char *no_op = "@"; 

char *labnode; 

labnode = NULL; 

s w i t c h ( e x p r - > d e f _ r e f ) { 

case DEF_AND_REF: 

v a r _ l i s t _ a d d ( v a r _ l i s t p , i d . p t r , R E F ) ; 

/ + compute labnode and v a r _ l i s t p f o r 

increment/decrement ope ra to r s and use no_op * / 

breaJs; 

case DEF_ONLY: 

v a r _ l i s t _ a d d ( v a r _ l i s t p , i d _ p t r , D E F ) ; 

breaJs; 

case ADDRESS: 

v a r _ l i s t _ a d d ( v a r _ l i s t p , i d _ p t r , ADDR); 

labnode = m a k e _ s t r i n g ( " a d d r e s s _ o f " ) ; 

b reak; 

d e f a u l t : 

v a r _ . l i s t _ a d d ( v a r _ l i s t p , i d _ p t r , R E F ) ; } 

r e t u r n (mcLke_st r ing( labnode)) ; 

} 

Figure 5.4: Reengineered function set_def _ref 
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Another problem in symbolic execution is due to module calls. We adopt the macro-

expansion approach, rather than the less expensive lemma approach, because i t considers 

the symbolic state at the call site, which actually contains the precondition for the called 

funct ion. Besides an improved precision of the process, this approach also allows the user to 

understand the function behaviour in the context of the calling function. 

The case study demonstrated the feasibility of the method and its applicability to any 

programming language. Although unt i l now program slicing has been used to isolate reusable 

functions i n large monolithic programs wri t ten in COBOL language [45, 41 , 65, 66,124, 136], 

we are confident that this approach can give good results also for programs writ ten in C lan­

guage. Indeed, even though the C language provides a pr imit ive for implementing functional 

abstractions, very often a single C function implements more than one functional abstrac­

tions. The case study presented in . this chapter validated this assertion. The specification 

driven program slicing process has been applied to PERPLEX [30], a subsystem of the CCG 

analyser [114] for C programs. Four large functions implementing more than one functional­

i t y ha,ve been identified and reengineered by decomposing them into smaller functions each-

of which implements one functionality. Figure 5.5 shows the call graph of the reengineered-

functions. Solid lines represent call edges, while dashed lines denote the existence of a path 

between two functions on the call graph. The effort, required for the comprehension process 

during the maintenance of these functions has been reduced and their reusability has been 

improved as a result of the reengineering process. The case study demonstrated that even 

though the original design has been made following software engineering principles, main­

tenance operations ( in particular perfective maintenance) can add new functionalities (in. 

terms of code) to existing functions and sometime the same code in different functions or 

even in different places in the same function. 

Other considerations can be made about the use of CCG for program slicing. The 

refined vertices of the CCG ensure that only a single program object is defined at any 

single vertex and that any flow dependency incident on that vertex also involves a single 

variable contributing to the defined object [113, 114]. As a result, more accurate shoes can 

be obtained; For example, note that in the statement sum += i + + of the sample program 

of section 5.1 only the expression i++ is considered in the resulting slice. This accuracy 

is possible thanks to the extra vertices representing embedded side-effects in the CCG. 

Figure 5.6.a shows a partial view of the CCG corresponding to the code fragment: 

f a c t = i = 1; 

sum = 0 ; 

w h i l e ( i <= d i f f ) { 

f a c t *= i ; 
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stmt_pnnt 

sele_stmt_pnnt 
5 

comp_stmt_pnnt label_stmt_print iter_stmt_pnnt jump_stmt_pnnt 

leaf_expr 

fun_call_expr create_leaf_expr no_create_Ieaf_expr 

access_pnnt anon_access_pnnt 

acc_ptr_ref_print acc_arr_pnnt acc_ptr_pnnt acc_fun_print 

call graph edges 

call graph paths set_def_ref Lg_ 

Figure 5.5: Call graph of the reengineered functions 
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sum += i + + ; 

> 

p r i n t f ( " % d \ n " , f a c t ) ; 

Control and data dependence edges and expression-use edges are represented in the figure. 

I f no extra nodes are created for the embedded side-effects i = 1 and i++ the graph in 

figure 5.6.b results and the program slice becomes 

f a c t = i = 1; 

sum = 0; 

w h i l e ( i <= d i f f ) { 

f a c t *= i ; 

sum += i + + ; 

} 

However, the algorithm accuracy is affected by two limitations of the CCG implementa­

t ion. First, the absence of information about the memory location involved by a data flow 

dependency allows accurate slices only on a variable defined at a given vertex, or on each 

variable defined or used at the vertex. Slices on a single variable used at the vertex would 

not be precise. For example, let us consider the statement: 

a = X + y ; 

A slice on variable a w i l l include any vertices which contribute to the values of x and y . 

As both X and y contribute to the value of a, the slice is correct. On the contrary, a 

slice on the variable x would not be precise, because the result would also include vertices 

affecting the value of y which does not contribute to the value of x. This problem could 

be overcome by annotating each flow dependency in the CCG wi th information about the 

memory location involved. The program sheer can be consequently modified to take into 

account this information. 

Another l imi ta t ion of the CCG is the lack of calling context information in the graph 

during interprocedural slicing. Calling context information allows a slice descending into a 

funct ion to correctly return to only the call site f rom which the function was entered. On 

the contrary, the lack of such information causes the slice to return to any other call site, 

resulting .in an inaccurate overly-conservative slice [176 . 

This problem has been solved by Horwitz et al. [103] by developing a two-phase traversal 

algori thm based on the SDG representation modelling multiple-procedure programs wi th pa­

rameters passed by value-result. Explici t vertices represent actual and formal input/output 

parameters while binding edges link actual input to formal input parameters and forrrial 
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while 
i<=diff sum=0 

suin+ 

(a): Refined C C G 

control dependency 
data flow dependency 

=̂  expression-use edge 

svim=0 

sum+=i+ 

(b): Embedded side-effects 

Figure 5.6: Enhanced slicing accuracy wi th refined CCG 
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output to actual output parameters. In this way, transitive inter procedural data flow de­

pendencies due to the effects of procedure calls are computed by an attribute grammar and 

encapsulated between the actual input and actual output parameters of the call interfaces, 

so avoiding the use of explicit data flow dependencies between vertices of the SDG. The two-

phase graph traversal algorithm makes use of these new transitive edges to solve the problem 

of calling context. In the first phase the algorithm traverses the graph moving 'across' a call 

(through the transitive dependencies) without descending in the called procedure. In the 

second step the graph is traversed without ascending to call sites. 

Horwitz et al. [103] do not consider pointer variables and pointer-induced aliasing. These 

problems that are typical of C programs are considered in the. data-flow analysis algorithm 

performed on the CCG representation [112, 114]. In order define a two phase traversal 

algori thm based on that described in [103] a new representation for pointer parameters 

would be required to explicitely model the referenced objects by formal and actual parameter 

vertices. However, the presence of explicit data dependence edges in the CCG prevents the 

application of the SDG traversal algorithm. A program slice proceeds throughout the CGG 

representation via the CCG dependences and the absence of calling context information 

causes the backward slicing algorithm to consider all the incoming interprocedural edges of 

a CCG vertex, so resulting in an inaccurate slice. 

A simple solution to this problem, in absence of recursive functions, has been, suggested 

by Kinloch [114] and. consists in introducing.separate copies of each FCCG for each individual 

call site. Although in this way calling context problems are eliminated completely, the space 

requirements of mult iple FCCG representations are prohibitive. 

A n alternative, but not expensive solution to this problem can be provided by adding 

calling context information to the interprocedural flow dependencies. In particular, any in­

terprocedural flow dependency should contain the list of the call sites encountered in the 

interprocedural control flow path between the vertex which defines the value of a memory 

location and a vertex which uses this value. This information can be carried during the 

data flow analysis performed on the CCG. The order of the call sites in the fist must be. in­

verted for ascending flow dependencies^ (enclosing return-expression-use edges) wi th respect 

to descending flow dependencies (enclosing parameter binding edges and call edges). The 

algorithm can then be modified in the following way: 

1. control dependence, expression-use and lvalue-definition edges are considered as usual 

^An interprocedural flow dependency between a vertex n in the F C C G of.a function p and a vertex m 

in the F C C G of a function q is descending if and only if it has been generated through an interprocedural 

control flow path containing a call chain from p to q. The interprocedural flow dependency is ascending if 

and only if the function p returns the control to the function q through the interprocedural control flow path. 
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during the backward traversal of the graph; 

2. an ascending flow dependency is considered as usual during the backward traversal of 

the graph and the information about the corresponding list of the call sites is saved in 

the slice 

3. a descending flow dependency is not considered unt i l the corresponding list of call sites 

is not a sublist of an already considered ascending dependency's list. 

This prevents a program slice propagating along any interprocedural edges f rom a given 

funct ion and returning out of the context call sites along these edges. Moreover, the algorithm 

terminates when a fixed point is reached (no flow dependency can be added anymore to the 

slice). 
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Chapter 6 

Conclusion 

The work described in this thesis addresses the field of software reuse. Software reuse is a 

most promising approach to solve the problem of the software crisis. The reuse of software 

components, either design and specification documents or pieces of code, can increase the 

product ivi ty and improve the quality and reliability of new software systems, leading software 

engineering to the state of an assessed engineering discipline. 

Although reusable software components can be designed and implemented during the 

development of new software projects, existing software is widely considered to be the main 

source for the extraction of reusable assets; Moreover, existing software systems play an i m ­

portant role i n the economy of a company. Very often the evolution of a legacy system is a 

crit ical problem and its modularisation according to the software engineering principles can 

drastically reduce the maintenance effort. Modularising an existing system involves search­

ing i t for software components to be reengineered and reused in the modularised system. 

However, the reuse of these software components should not be l imi ted to the system to be 

modularised. On the contrary, reusable software components should be qualified, classified 

and stored in a repository in order to reuse them during the development of new software 

systems. 

The te rm reuse reengineering refers to processes aiming to exploit reverse engineering 

and reengineering techniques for identifying and extracting reuse-candidate software compo­

nents f r o m existing systems, reengineering them according to predefined module templates 

and interconnection standards, producing their specifications,, in order to populate a repos­

i tory of reusable assets. Different paradigms for setting up reuse reengineering processes . 

have been proposed in the literature. In particular, a reference paradigm has been defined 

wi th in the RE^ project. The key role of the paradigm is to define a framework where rele­

vant methodologies and tools can be systematically used and experiments can be repeated. 

The thesis has focused on the first phase of the RE'^ project reference paradigm, called Can-
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didature phase, which is concerned wi th the analysis of source code for the identification 

of software components implementing abstractions. Such components are candidate to be 

reengineered and reused. Several program representations and code scavenging techniques 

have been described. Candidature criteria have been classified in structural and specification 

driven criteria. A new specification driven candidature criterion has been presented which 

uses a formal specification of the functional abstraction to be recovered and is based on the 

theoretical frameworks of program slicing and symbolic execution. The implementation and 

the evaluation of the method have also been presented. In the next section a discussion of 

the criteria for success stated in the introduction is outlined. 

6.1 Evaluation of the Criteria for Success 

I n chapter 1 the criteria for success are stated as follows: 

• review of existing program representations; 

• description and evaluation of existing methods for the identification of components 

driven by structural properties of the software; 

• description and evaluation of existing methods for the identification of components 

driven by the specification of the abstraction sought; 

• development of a new specification driven method for the identification of code frag­

ments implementing functional abstractions; 

• formalisation of the new method; . 

• prototype implementation of the new method to show that i t is automatable; 

• evaluation of the new method by .the use of a case study. 

Each of the criteria is now addressed for the evaluation of the thesis. 

Review of existing program representations 

Program representations play a key role in a reuse reengineering process. Several program 

representations have been proposed in the literature that can be used in reuse reengineer­

ing and in general, in software maintenance and software engineering environments. Each 

representation t ry to model a particular aspect of the program. For example, the control 

flow graph statically models the internal execution flow of a procedure, while the call graph 



considers the possible flow of control at the interprocedural level. Other representations 

outline the control and dependencies between the statements in a program. 

However, i n a reuse reengineering process different program representations can be nec­

essary in order to solve different problems. Several attempts have been made to combine 

the features of different representations. Merging different representations has to deal wi th 

efficiency and space problems. Two representations have been identified that better achieve 

these results, the web representation [130] and the unified interprocedural graph [98]. How­

ever, for the purpose of the work of this thesis the two representation deal wi th complemen­

tary aspects of a program: the web representation is more suited for combining syntactic and 

semantic aspects of the program, while the unified interprocedural graph better summarises 

interprocedural level information. 

Description and evaluation of existing methods for the identifica­
tion of components driven by structural properties of the software 

Most existing methods search for reuse-candidate software components based on structural 

properties of the software. Structural candidature criteria are applied to one or more systems 

and produce a large set of candidate modules. A concept assignment process is required to be 

applied to the candidate modules in order to associate them wi th human oriented meanings. 

Modules that cannot be associated wi th any human oriented meaning are discarded. 

. Structural candidature criteria can be classified in methods driven by a metric model • 

( M E T M O D ) and methods driven by the type of the abstraction to be sought ( M E T T Y P ) . 

M E T M O D methods entail the selection of a set of metrics and the definition, for each metric, 

of a value range that may be considered characteristic of code implementing a reusable 

abstraction. M E T T Y P methods are specialised to search for only one type of abstraction 

and are generally defined in terms of summary relations [35] obtained by combining, relations • 

directly produced through static analysis of code. M E T T Y P methods searching for both . 

functional and data abstractions have been described. 

Structural candidature criteria have been experimented in several successful case studies. 

They are generally easy to implement and efficient, because only require static analysis of the. 

code and of the model of the program chosen to apply the criterion. However, some, of these 

criteria ( in particular methods searching for data abstractions) have only been experimented 

on programs wri t ten in languages such as C and Pascal and are not yet mature to be scaled 

up to large software systems wri t ten in COBOL. 

On the other hand, slicing methods, that have been extensively used on monolithic 

C O B O L systems, suffers of the difficulties in identifying a suitable slicing criterion for iso-
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lating the functions of interest. Very often, they are. only successful in identifying external 

functionalities, by using slicing criteria involving output statements. 

Description and evaluation of existing methods for the identifica­
tion of components driven by the specification of the abstraction 
sought 

A different approach in the identification of reusable software components in code is to use the 

specification of the abstraction to be sought. The system is then searched for code fragments 

which implement the specification. The code component extracted does not require to be 

vahdated by a concept assignment process. 

Specification driven candidature criteria have been classified, depending on the fo rm of 

specification, i n methods driven by a formal specification of the abstraction, methods based 

on a set of test cases, and knowledge based methods. 

Knowledge based methods encode the knowledge about the functions to be identified in 

the f o r m of programming plans and make use of an internal representation of the program for 

mapping program actions to these plans. The main l imi ta t ion of knowledge-bcised methods 

is that they can require a large library of plans. Moreover, bottom-up approaches can also, 

suffer of a combinatorial explosion. While this approach can be effective for recognising 

stereotypical domain independent plans, i t can be too expensive for deahng wi th domain 

dependent functions and then not convenient for a reuse reengineering process. 

A way to provide the specification of a functionahty is by carefully designing a set of test 

cases for a program. The set of test cases expresses a behaviour of the program corresponding 

to an external functionality. The functionali ty can be isolated by simply instrumenting the 

program and extracting the components exercised. Methods based on test cases are very 

efficient and and easy to implement, but can suffer of lacking of precision when different 

functionalities share same components. In this case the reuse-candidate module identified 

could be too large and include more functionalities than the one sought. 

A more precise method consists in using a set of test cases together wi th slicing techniques. 

This method, called simultaneous slicing [92], is a generahsation of dynamic slicing [118] and 

produces more refined modules than the method above. Indeed, i t also takes into account 

the data flow of the program by allowing the reduction of the set of selected statements. 

However, the method does not consider the problem of flnding a slicing criterion and then i t 

can only be used to identify external functionality. Lack of precision can result in identifying 

internal functions. 

Methods driven by a formal specification of the abstraction to be sought can be suitably 
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used to isolate both external and internal functionalities. However, methods proposed in 

the literature for the isolation of different k ind of software components, do not use formal 

method tools for achieving a greater automation. User interaction is intensively required to 

map the specification of the abstraction onto the code. 

Development of a new specification driven method for the identifi­
cation of code fragments implementing functional abstractions 

A new candidature criterion driven by a formal specification of the abstraction to be recovered 

has been developed. The effort has been devoted to the identification of formal method tools 

useful to map the specification of the function onto code. The method proposed looks, for 

code fragments implementing functional abstractions and is based on program slicing, as an 

isolation pr imi t ive . 

The main result has been the use of symbolic execution and theorem proving techniques 

to automate the identification of the slicing criterion f rom which, the slice implementing 

the required functional abstraction can be extracted. To this aim the forrnal specification 

of a funct ion, given in terms of a pre and postcondition is compared, by theorem proving 

techniques, w i t h the invariant assertions for the statements abstracted by using symbolic 

execution. 

Although the method allows more automation compared wi th other methods based on 

program slicing, i t is not completely automatable, due to some undecidable problems. Hu-

irian interaction is required in this cases. Human, interaction is also required to associate the 

data of the functional abstractions wi th the program statement. This is mainly a concept 

assignment problem [18] where human factors are involved [1 . 

Formalisation of the new method 

The method proposed has been specialised and formalised for programs wri t ten in C lan­

guage. First , a combined interprocedural representation for C programs [112, 113, 114] 

suitable to perform program slicing has been identified and enhanced wi th syntactical in­

formation useful for symbolic execution. Problems involved in symbolic execution of C 

programs have been identified and solutions have been formally outlined. Also, an execution-

model based on the CCG has been proposed. Finally, an algorithm for slicing C programs 

using CCG and based on a new definition of slicing criterion and program slice, useful for 

isolating functional abstractions in code, has been described. 
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Prototype implementation of the new method to show that it is 
automatable 

The method proposed has been implemented in Prolog. The Prolog environment has been 

chosen because it allows to easily implement logic theories, integrate tool,, enhance a tool, 

and interact with the user. 

The CCG representation of the program is obtained in terms of a data base of Prolog 

facts by a static analyser and three Prolog metaprograms. The core of the system consists 

of th symbolic executor and the theorem prover that allow the selection of a slicing criterion 

(in terms of vertices on the CCG), driven by to the input specification. Finally, the slicing 

algorithm is implemented in Prolog for the extraction of the slice implementing the functional 

abstraction. 

Evaluation of the new method by the use of a case study 

The method has been experimented in a case study conducted on a system written in C lan­

guage. Four large functions implementing more than one functionality have been identified 

and reengineered by decomposing them into smaller functions each of which implements one 

functionality. The effort required for the comprehension process during the maintenance of 

these functions has been reduced and their reusability has been improved as a result of the 

reengineering process. 

The case study demonstrated the feasibility of the method and the applicability of slicing 

techniques not only to monolithic programs written in a language like COBOL, but also to 

programs written in languages like C and Pascal that provides a primitive for implement­

ing functional abstractions. Indeed, very often a single procedure implements more than 

one function. This happens in particular as a consequence of maintenance (in particular 

perfective) operations. 

6.2 Further Work 

A number of further researches issues can be addressed from the results of the work presented 

in this thesis. A first issue can be to scale up the method to large sized software systems. For 

example, the method could experimented to isolate functionalities in large and monolithic 

COBOL programs, where program shcing has already been used as structural candidature 

criterion. 

Moreover, other approaches could be used based on program slicing and symbolic execu­

tion for the isolation of functional abstractions in code. For example, conditioned slicing [41], 
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used for isolating function behaviours in code, could exploit symbolic execution techniques 

to instrument the program and identify the portion of the program that can be executed 

under the given condition. Program slicing could then be applied to the statements of the 

program that have been excited by the symbolic executor. 

Finally, symbolic execution has already been used in the Qualification phase of the RE^ 

reference paradigm for abstracting the. specification from code of a module implementing 

a functional abstraction. The interactive symbolic executor can also be used as a tool for 

program understanding in a reuse reengineering environment [75] to support the concept 

assignment process [18] and select the subset of meaningful reuse-candidate modules (identi­

fied and extracted by structural methods) to be de-coupled and reengineered in the Election 

phase. 
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Appendix A 

CCG Fact Base 

In the following, the a,rchitecture of the data base of Prolog facts for the representation of 

declarations, abstract syntax tree, control flow graph, interprocedural edges and program 

dependences of the CGG is illustrated. 

Declarations 

The data base contains the following facts for representing source code files and the symbol 

table: 

• f i l e (File-Name, F i l e - ID) associates a source code file name with a unique identifier; 

• type(Fi le -ID, Function, sc(Stint-Block, Storage-Specifier), 

Type-Specifier, Name, Access-List) for user-defined type declarations; 

• tag (F i l e - ID , Function, sc(Stmt-Block, Storage-Specifier), 

Tag-Type, Neime, Member-List) for struct, union or enum definitions; 

• object (Fi le -ID, Function, sc(Stmt-Block, Storage-Specifier), 

Type-Specifier, Name, Access-List) for variable and function declarations. 

In the facts type, tag and object, the terms Fi l e - ID, Function, Stmt-Block and 

Storage-Specifier are sufficient to determine the scope of the declaration. In the facts 

type and obj ect, the terms Type-Specifier and Access-List express the type of the item 

identified by the term Name. In the fact tag, the term Tag-Type can assume the values 

struct, union or enum. Name is the name of the structured item and Member-List is a fist 

of the, item's components (enumerated constants or terms of type mem(Type-Specif ier , 

Name, Access-List) for struct and union. 
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Abstract Syntax Tree 
Two types of facts are used for representing the nodes and the edges of the Abstract Syntax 

Tree (AST): 

• st_node(File-ID, Function, Node-Type, Node-ID) 

• s t _ l i n k ( F i l e - I D , Function, Edge-Type, Node-From, Node-To) 

where F i l e - I D , Function and Node-ID identify a node of the AST, Node-Type and 

Edge-Type denote the types of a node and of an edge, respectively. Moreover, each node 

representing a compound statement (Node-Type is group) is associated with its scope by 

the fact 

• scope(File-ID, Function, Stmt-Block, Node-ID) 

while each node corresponding to an identifier (Node-Type is id) is associated with its 

declaration by the fact 

• id_decl (Fi le-ID, Function, Node-ID, obj_loc(File-ID, Function, 

sc(Stmt-Block, Storage-Specifier), Name)) 

Control Flow Graph 

Two types of facts are used for representing the nodes and the edges of the Control Flow 

Graph (CFG): 

• node(File-ID, Function, Node-ID, Node-Type, Node-Qual, Expr-List) 

• edge(File-ID, Function, Node-From, Node-To, Edge-Label) 

where F i l e - I D , Function and Node-ID identify a node of the CFG, Node-Type is the type of 

the node and Node-Qual is an identifier that qualifies the node or 0 if undefined. Expr-List 

is a list of terms ex(Access, Elem) that expresses the accesses (definitions and/or uses) to 

the variables or constants of an expression, while Edge-Label denotes the label of a control 

flow edge (true, false , uncond). Expression-use and lvalue definition edges are respectively . 

represented by the facts 

• expuse(File-ID, Function, Node-From, Node-To) 

• Iva lde f (F i l e - ID , Function, Node-From, Node-To) 

while links between syntax tree and control flow graph nodes are expressed by facts of type • 

• s t_c f_ l ink(F i l e - ID , Function, Edge-Type, Node-AST, Node-CFG) 
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Interprocedural Edges 

Interprocedural edges consist of call edges, between the call site and the entry of the 

called procedure, parameter-binding edges between actual and formal parameters and return 

expression-use edges between a return node and the node using the expression evaluated by 

the called function: 

• c a l l ( F i l e - I D l , Calling-Fun, Call-Node, File-ID2, Called-Fun, 0) 

• b i n d ( F i l e - I D l , Calling-Fun, Actual, File-ID2, Called-Fun, Formal) 

• return_expuse(File-ID2, Called-Fun, Return-Node, F i l e - I D l , 
Calling-Fun, Call-Site) 

Program Dependencies 

The control dependencies are represented by facts of the type: 

• c o n t r o l ( F i l e - I D , Function, Node-From, Node-To, Edge-Label) 

where Edge-Label can be true or false. The data flow dependencies are represented by 
facts of the type: 

• f l o w ( F i l e - I D l , Functionl, Nodel, File-ID2, Function2, Node2) 

that model both intraprocedural and interprocedural dependencies. 
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Appendix B 

Example CCG Fact Base 

In the following the listing of the Prolog fact base produced by the CCG analyser for the 

sample C program of figure 3.3 is shown. 

b i n d ( l , main, 5, 1, double, 1) 

c a l l d , main, 4, 1, double, 0) 

c o n t r o l ( 1 , double, 0, 3, true) 
c o n t r o l ( l , double, 0, 2, true) 
c o n t r o l ( 1 , double, 0, 1, true) 
c o n t r o l ( l , main, 3, 7, t r u e ) , 
c o n t r o l ( 1 , main, 3, 4, t r u e ) , 
c o n t r o l ( 1 , main, 0, 3, t r u e ) , 
c o n t r o l ( 1 , main, 0, 2, t r u e ) , 
c o n t r o l ( 1 , main, 0, 1, t r u e ) . 
c o n t r o l ( l , main, 4, 5, t r u e ) . 

edge(l, double, 0, 1, t r u e ) , 
edged, double, 0, 4, f a l s e ) . 
edge(l, double, 1, 2, uncond) 
edge(l, double, 2, 3, uncond) 
edge(l, double, 3, 4, uncond) 
edge(l, main, 0, 1, t r u e ) . 

110 



edged, main, 0, 8, f a l s e ) . 
edge(l, main, 1, 2, uncond). 
edge(l, main, 2, 3, uncond). 
edge(l, main, 3, 4, t r u e ) . 
edge(l, main, 3, 8, f a l s e ) . 
edge(l, main, 4, 5, t r u e ) . 
edge(l, main, 4, 6, f a l s e ) . 
edge(l, main, 4, 7, uncond). 
edged, main, 5, 6, uncond). 
edge(l, main, 7, 3, uncond). 

expuse(l, double, 2, 3). 
expuse(l, main, 1, 2). 

fi l e ( ' e x c c g . c ' , 1). 

f l o w d , double, 1, 1, double, 2). 
f l o w ( l , main, 2, 1, double, 2). 
f l o w d , double, 2, 1, double, 2). 
f l o w ( l , main, 2, 1, main, 3). 
f l o w d , double, 2, 1, main, 3). 
f l o w ( l , main, 1, 1, main, 7). 
f l o w ( l , main, 7, 1, main, 7). 

i d _ d e c l ( l , main, 14, o b j _ l o c ( l , main, s c ( [ l ] , 0 ) , a ) ) . 
i d _ d e c l ( l , main, 18, o b j _ l o c ( l , main, s c ( [ l ] , @), a ) ) . 
i d _ d e c l ( l , main, 21, o b j _ l o c ( l , 'Oexternal', s c ( [ ] , 0 ) , double)) 
i d _ d e c l ( l , main, 23, o b j _ l o c d , main, s c ( [ l ] , 0 ) , b ) ) . . 
i d _ d e c l ( l , main, 3, o b j _ l o c ( l , main, s c ( [ l ] , 0 ) , b ) ) . 
i d _ d e c l ( l , main, 9, o b j _ l o c ( l , main, s c ( [ 1 ] , 0 ) , a ) ) . 
i d _ d e c l ( l , double, 5, o b j _ l o c ( l , double, s c ( [ ] , @), p ) ) . 

node(l, double, 0, entry, <§,[]). 
node(l, double, 1, formal, 0, [ex(def, p ) ] ) . 
noded, double, 2, expr, 0, [ex ( r e f , p),ex(ref, *) ,ex(postdef, 0 ) ] ) 
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node(l, double, 3, expr, 0, [ex(ref, '©constant')])• 
node(l, double, 4, end, ®, [ ] ) . 
node(l, main, 0, entry, 0, [ ] ) . 

node(l, main, 1, expr, 0, [ e x ( r e f , 'Oconstant'),ex(rval, @),ex(def, b ) ] ) 
node(l, main, 2, expr, 0, [ e x ( r e f , '©constant') ,ex(rval, (§),ex(def, a ) ] ) 
node(l, main, 3, expr, <9, [ e x ( r e f , '©constant') ,ex(ref, a ) ] ) . 
node(l, main, 4, c a l l , double, [ ] ) • 
node(l, main, 5, expr, @, [ex(address, a ) ] ) . 
node(l, main, 6, end_params, (3, []) . 

node(l, main, 7, expr, ©, 
[ex(r e f , double),ex(rval, ©),ex(ref, b),ex(def, ©)]). 

node(l, main, 8, end, ©,[]). 

obj ect (1, '©external', s c ( n , ©), ®, main, ['©fun']), 
o b j e c t d , '©external', s c ( [ ] , ©), i n t , double, ['©fun']), 
obj ect d , double, s c ( [ ] , ©) , i n t , p, ['©pointer']), 
obj ect (1, main, s c ( [ l ] , @) , i n t , a, [ ] ) . 
o b j e o t d , main, s c ( [ l ] , @), i n t , b, [ ] ) . 

return.expused, double, 3, 1, main, 7 ) . 

scoped, double, [1] , 8) . 

scope(l, main, [ l ] , 26). 

St. _c f _ l i n k d . double, expr_stat, 5, 2) . 

St. . c f _ l i n k ( l , double, expr_stat, 6, 3 ) . 

St. . c f - l i n k d . double, group_begin, 8, 2) 

St. -Cf. - l i n k d , main. expr_stat, 10, 2) . 

St. . c f . l i n k d . main. expr_stat, 15, 3) . 

St. . c f . l i n k d . main. expr_stat, 18, 5) . 

St. . G f . l i n k d . main. expr_stat, 20, 4 ) . 

St. . c f . l i n k d . main. expr_stat, 24, 7 ) . 

St. . c f . . l i n k C l , main, expr_stat, 4, 1). 

St. . c f . . l i n k d . main. group_begin, 26, 1). 

St. . c f . . l i n k d . main. group_exit, 26, 3 ) . 

St. . c f . . l i n k d . main. while_body, 25, 4 ) . 
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s t _ c f _ l i n k ( l , main, while_continue, 25, 7) 
s t _ c f _ l i n k ( l , main, w h i l e _ e x i t , 25, 3). 
s t _ c f _ l i n k ( l , main, while_test, 25, 3). 

s t _ l i n k d 
s t _ l i n k ( l 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k ( l 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 
s t . l i n k d 

st.node(l 
st.node(l 
st.node(l 
st.node(l 

double, compound, 8, 7). 
double, i n , 5, 3). 
double, l e f t , 6, 5). 
double, op, 3, 4 ) . 
double, ret.expr, 7, 6). 
double, r i g h t , 6, 1). 
double, value, 1, 0). 
main, act.par, 20, 18). 
main, body, 25, 24). 
main, compound, 26, 10). 
main, compound, 26, 25). 
main, condition, 25, 15), 
main, i n , 20, 21). 
main, l e f t , 10, 9). 
main, l e f t , 15, 14). 
main, l e f t , 24, 23). 
main, l e f t , 4, 3). 
main, l e f t , 7, 6). 
main, op, 18, 19). 
main, r i g h t , 10, 7). 
main, r i g h t , 15, 12). 
main, r i g h t , 24, 20). 
main, r i g h t , 4, 1). 
main, r i g h t , 7, 4 ) . 
main, value, 1, 0). 
main, value, 12, 11). 
main, value, 6, 5). 

double, 2 , 0 ) . 
double, const.int, 1). 
double, group, 8). 
double, i d , 5) . 
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st_node(l, double, mul, 6). 
st_node(l, double, pointer. 3). 
st_node(l, double, postadd. 4). 
st_node(l, double, r e t u r n , 7). 
st_node(l, main. 0, 0). 
st_node(l, main, 1, 5). 
st_node(l, main, 10, 11). 
st_node(l, main. add, 7). 
st_node(l, main. addass, 24) • 
st_node(l, main. address_of, 19) 
st_node(l, main. assign, 10) • 
st_node(l, main. assign, 4 ) . 
st_noded, main, const_int, 1). 
st_node(l, main, const_int, 12). 
st_node(l, main, const_int, 6).^ 
st_node(l, main. f u n _ c a l l , 20). 
st_node(l, main. group, 26). 
st_node(l, main. i d , 14). 
st_node(l, main. i d , 18). 
st_node(l, main. i d , 21). 
st_node(l, main, i d , 23). 
st_node(l, main. i d , 3). 
st_node(l, main. i d , 9). 
st_node(l, main. leq, 15). 
st_node(l, main. while, 25). 
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Appendix C 

The Prolog Slicing Program 

In the following the Prolog, implementation of the program slicing algorithm is given. 

s i i c e ( F i d , FName, NodeFrom, NodeTo) :-
node(Fid, FName, NodeTo, ., _, . ) , 
fi n d _ p a t h ( F i d , FName, NodeFrom, NodeTo, P a t h l i s t ) , 
f i n d . c a l l . c h a i n s ( P a t h l i s t , F u n l i s t ) , 
traverse(Fid, FName, NodeFrom, NodeTo, P a t h l i s t , F u n l i s t , 

[node(Fid, FName, NodeTo)], [ ] , Result), 
length(Result, I n t ) , 
write_list.with.header(Result, 'Slice :- ' ) , 
n l , writef(''/,w nodes i n the s l i c e ' , [ I n t ] ) . 

f i n d . p a t h ( F i l e , Fun, NodeFrom, NodeTo, P a t h l i s t ) :-
node(Fid, FName, NodeTo, . , _ , . ) , 
back_path(Fid, FName, NodeFrom, NodeTo, [node(Fid, FName, NodeTo)], 

[ ] , P a t h l i s t ) . 

back_path(., ., _, ., [ ] . P a t h l i s t , P a t h l i s t ) . 

back_path(Fid, FName, NodeFrom, NodeTo, [node(Fid, FName, NodeFrom)I Rest], 
Pathin, PathOut) :-

not(member(node(Fid, FName, NodeFrom), Pathin)), !, 
back_path(Fid, FName, NodeFrom, NodeTo, Rest, 

[node(Fid, FName, NodeFrom)IPathin], PathOut). 
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back_path(Fid, FName, NodeFrom, NodeTo, [node(Fid, FName, No)I Rest], 
Pathin, PathOut) :-

d i f f ( N o , NodeFrom), 
not(member(node(Fid, FName, No), Pathin)), !, 
fin d a l l ( n o d e ( F i d , FName, Nol), 

(edge(Fid, FName, Nol, No, _ ) ) , 
PredList), 

append(PredList, Rest, NextSet), 
lis t _ t o _ s e t ( N e x t S e t , Open), 
back_path(Fid, FName, NodeFrom, NodeTo, Open, 

[node(Fid, FName, No)|PathIn], PathOut). 

back_path(Fid, FName, NodeFrom, NodeTo, [_| Rest], 
Pathin, PathOut) :-

.back_path(Fid, FName, NodeFrom, NodeTo, Rest, Pathin, PathOut). 

traverse(_, _, _, _, _, _, [ ] , S l i c e , S l i c e ) . 

traverse(Fid, FName, NodeFrom, NodeTo, P a t h l i s t , F u n l i s t , 
[node(Fid, FName, NodeFrom)IRest], S l i c e i n , SliceOut) :-

not(member(node(Fid, FName, NodeFrom), S l i c e i n ) ) , !, 
traverse(Fid, FName, NodeFrom, NodeTo,.Pathlist, FunList, 

Rest, [node(Fid, FName, NodeFrom) ISlicein], SliceOut) 

traverse(Fid, FName, NodeFrom, NodeTo, P a t h l i s t , Funlist,. 
[node(Fid, FName, No)I Rest], S l i c e i n , SliceOut) :-

not(member(node(Fid, FName, No), S l i c e i n ) ) , 
d i f f ( N o , NodeFrom), 
member (node (Fid, FNsime, No), P a t h l i s t ) , !, 
backwards_trav(node(Fid, FName, No), NextSet), 
append(NextSet, Rest, ListOpen), 
l i s t _ t o _ s e t ( L i s t G p e n , Open), 
traverse(Fid, FName, NodeFrom, NodeTo, P a t h l i s t , F u n l i s t , 

Open, [node(Fid, FName, No) I S l i c e i n ] , SliceOut). 
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traverse(Fid, FNajae, NodeFrom, NodeTo, P a t h l i s t , F u n l i s t , 
[node(Fidl, FNamel, No)iRest], S l i c e i n , SliceOut) :-

diff(FName, FNamel), 
not(member(node(Fidl, FNainel, No), S l i c e i n ) ) , 
member(fun(Fidl, FNamel), F u n l i s t ) , !, 
backwards_trav(node(Fidl, FNamel, No), NextSet), 
append(NextSet, Rest, ListOpen), 
l i s t . t o . s e t ( L i s t O p e n , Open), 
traverse(Fid, FName, NodeFrom, NodeTo, P a t h l i s t , F u n l i s t , 

Open, [node(Fidl, FNamel, N o ) i S l i c e I n ] , SliceOut) 

traverse(Fid, FNcime, NodeFrom, NodeTo, P a t h l i s t , F u n l i s t , 
[ . I Rest], S l i c e i n , SliceOut) :-

traverse(Fid, FNajue, NodeFrom, NodeTo, P a t h l i s t , F u n l i s t , 
Rest, S l i c e i n , SliceOut). 

backwards.trav(node(Fid, FNajne, No), NextNodes) :-
f indall(node(Fid2, FName'2, No2), 

(flow(Fid2, FName2, No2, Fid, FName, No); 
bind(Fid2, FName2, No2, Fid, FName, No); 
return_expuse(Fid2, FName2, No2, Fid, FName, No); 
c a l l ( F i d 2 , FName2, No2, Fid, FName, No)), 

InterNodes), 
f i n d a l l ( n o d e ( F i d , FName, No3), 

(controKFid, FName, No3, No, . ) ; 
expuse(Fid, FName, No3, No); 
Iv a l d e f ( F i d , FName, No3, No)), 

IntraNodes), 
append(InterNodes, IntraNodes, NodeList), 
l i s t _ t o . s e t ( N o d e L i s t , NextNodes). 

f ind.call.chains ( [] , [ ] ) . 
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find_call_chains([node(Fid, FName, No) | P a t h l i s t ] , Funlist) 
f i n d a l l ( f u n ( F i d 2 , FName2), 

( c a l K F i d , FName, CallNode, Fid2, FName2, 0), 
member(node(Fid, FName, CallNode), P a t h l i s t ) ) , 
S t a r t s e t ) , 

c a l l _ c h a i n ( S t a r t s e t , [ ] , F u n l i s t ) . 

c a l l _ c h a i n ( [ ] , F u n l i s t , F u r i l i s t ) . 

c a l l . c h a i n ( [ f u n ( F i d , FName)I Rest], Funin, FunOut) :-
not (member (fun (Fid, FNajne), FunIn)), !, 
f i n d a l l ( f u n ( F i d l , FNamel), 

( c a l l ( F i d , FName, CallNode, F i d l , FNamel, 0 ) ) , 
C a l l e d l i s t ) , 

append(Calledlist, Rest, Nextset), 
l i s t . t o _ s e t ( N e x t s e t , Open), 
call.chain(Open, [ f u n ( F i d l , FNamel)iFunIn], FunOut). 

c a l l . c h a i n ( [ _ | R e s t ] , FunIn, FunOut) :-
call.chain(Rest, FunIn, FunOut). 
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