W Durham
University

AR

Durham E-Theses

Theory and realization of novel algorithms for
random sampling in digital signal processing

Lo, King Chuen

How to cite:

Lo, King Chuen (1996) Theory and realization of novel algorithms for random sampling in digital signal
processing, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk,/5239/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/5239/
 http://etheses.dur.ac.uk/5239/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

School of Engineering

'Faculty of Science

" Theory and Realization of Novel Algofithms

for Random Sampling in Digital Signal Processing

by
King Chuen LO

A thesis submission in fulfilment of

the degree of Doctor of Philosophy

University of Durham

June 1996

The copyright of this thesis rests with the author.

No quotation from it should be published without
his prior written consent and information derived

from it should be acknowledged.

Supervisor : Professor A. Purvis

300CT 19%

Theory and Realization of Novel Algorithms for Random Sampling in
Digital Signal Processing

King Chuen LO
Abstract

Random sampling is a technique which overcomes the alias problem in regular
sampling. The randomization, however, destroys the symmetry property of the
transform kernel of the discrete Fourier transform. Hence, when transforming a
randomly sampled sequence to its frequency spectrum, the Fast Fourier transform

cannot be applied and the computational complexity is N,

The objectives of this research project are (1) To devise sampling methods for
random sampling such that computation may be reduced while the anti-alias property
of random sampling is maintained : Two methods of inserting limited regularities into
the randomized sampling grids are proposed. They are parallel additive random
sampling and hybrid additive random sampling, both of which can save at least 75%
of the multiplications required. The algorithms also lend themselves to the
implementation by a multiprocessor system, which will further enhance the speed of
the evaluation. (2) To study the auto-correlation sequence of a randomly sampled
sequence as an alternative means to confirm its anti-alias property : The anti-alias
property of the two proposed methods can be confirmed by using convolution in the
frequency domain. However, the same conclusion is also reached by analysing in the
spatial domain the auto-correlation of such sample sequences. A technique to
evaluate the auto-correlation sequence of a randomly sampled sequence with a
regular step size is proposed. The technique may also serve as an algorithm to convert
arandomly sampled sequence to aregularly spaced sequence having a desired Nyquist
frequency. (3) To provide a rapid spectral estimation using a coarse kernel : The
approximate method proposed by Mason in 1980, which trades the accuracy for the
speed of the computation, is introduced for making random sampling more attractive.
(4) To suggest possible applications for random and pseudo-random sampling : To

fully exploit its advantages, random sampling has been adopted in measurement

ii

instruments where computing a spectrum is either minimal or not required. Such
applications in instrumentation are easily found in the literature. In this thesis, two
applications in digital signal processing are introduced. (5) To suggest an inverse
transformation for random sampling so as to complete a two-way process and to
broaden its scope of application. Apart from the above, a case study of realizing in a
transputer network the prime factor algorithm with regular sampling is given in
Chapter 2 and a rough estimation of the signal-to-noise ratio for a spectrum obtained

from random sampling is found in Chapter 3.

Although random sampling is alias-free, problems in computational
complexity and noise prevent it from being adopted widely in engineering
applications. In the conclusions, the criteria for adopting random sampling are put

forward and the directions for its development are discussed.

Acknowledgements

First of all, I would like to express my gratitude to my supervisor, Professor A.
Purvis, who has shared with me his insight into the topic of random sampling and

provided me invaluable guidance to conduct the research.

I am grateful to the Staff Development Committee of The Hong Kong

Polytechnic University for the support of funding related to this programme.

Last but not least, I would like to thank Professor P. Mars and Professor JS.L.

Wong, without whom this programme would never have been realized.

v

Declaration
I'hereby declare that the work reported in this thesis was undertaken by myself,
that the research has not been previously submitted for a degree, and that all sources

of information have been duly acknowledged.

Copyright

The copyright of this thesis rests with the author. No quotation from it should
be published without his prior written consent and information derived from it should

be acknowledged.

Contents

1 Introduction

2 Review of some conventional algorithms for frequency analysis

2.1 The discrete Fourier transform 8

2.1.1 Symmetry property 10

2.2 Divide-and-conquer approach to compute the DFT 11

2.3 The fast Fourier transform 13
2.4 The prime factor algorithm 17
2.4.1 Address mapping 17
2.4.2 Computational complexity 20
2.4.3 In-place, in-order algorithm 20
2.4.4 Multidimensional transform 22
2.5 Realization of the PFA in a transputer network
2.5.1 The overall scheme 25
2.5.2 Addresses in a multi-processor system
2.5.2.1 Example 30
2.5.3 Procedure in a three-dimensional case
2.5.4 Analysis in timing 35
2.5.5 Concluding remarks 37

3 Sub-Nyquist sampling
' 3.1 Shannon sampling theorem 40

3.2 Randomized sampling 41
3.2.1 Theory of Shapiro and Silverman 43
3.2.2 Beutler’s Theory 44
3.2.3 Expectation value of spectrum 47
3.2.4 Jittered random sampling 49

3.3 Realization of additive random sampling 54
3.3.1 Computational complexity 56

3.3.2 Estimation of noise level 56

Vi

24

26

33

39

3.3.2.1 Noise and signal power 58
3.3.2.2 Noise and bandwidth 61
3.3.3 Word-length and bandwidth 62
3.3.4 Practical considerations 63
3.3.5 Typical applications in instrumentation 66
3.3.5.1 Spectrum analyzer 66
3.3.5.2 Meter 67
3.3.5.3 Oscilloscope and filter 67
3.4 Three-sampler system 70
3.4.1 Principle of the system 70
3.4.2 Numerical example 74
3.4.4 Nllustrative example 76
3.5 Concluding remarks 76

4 Parallel additive random sampling 79

4.1 Introduction 79
4.2 Timing of the sampling sequence 80
4.3 Anti-alias property 81
4.4 Computational algorithm and realization 85
4.4.1 Symmetry in timing 85
4.4.2 Computational algorithm 86
4.4.3 Saving in multiplications 88
4.5 Implementation with multiprocessor system 91
4.5.1 Sampling and computing 91
4.5.2 Simulation with transputers 92
4.5.3 Recovery of signal by variable threshold 97
4.6 Concluding remarks 99

5 Hybrid additive random sampling 101
5.1 Introduction 101
5.2 Reverse and hybrid a.r.s. 102
5.2.1 Timing 102
5.2.2 Anti-alias property 105

vil

5.2.3 Binning of noise 108

5.3 Computation of signal amplitude 111
5.3.1 Symmetry in timing 111
5.3.2 Saving in computation 112

5.4 Realization 115

5.5 Concluding remarks 116

6 Auto-correlation and power spectrum of randomly sampled
sequences 119

6.1 Introduction 119
6.1.1 Convolution in the frequency domain 119
6.1.2 Auto-correlation of a sequence 120
6.2 Circular auto-correlation 122 '
6.2.1 Regular sampling 122
6.2.2 Random sampling 126
, 6.2.2.1 A pseudo-continuous sampling 128
6.3 Evaluation of auto-correlation 129
6.3.1 Step size and window width 130
6.3.1.1 Nyquist limit and noise 133
6.3.2 Programming techniques 137
6.4 Auto-correlation of parallel a.r.s. and hybrid a.r.s. 141
6.4.1 Parallel a.rs. 142
6.4.1.1 Bursts of noise 142
6.4.1.2 Nyquist limit 145
6.4.2 Hybrid ars. 146
6.4.2.1 Binning of noise 147
6.4.2.2 Nyquist limit 151
6.5 Concluding remarks 152

7 Rapid evaluation of spectrum 155
7.1 Introduction 155
7.2 Approximate Fourier transforms 156
7.2.1 Coarse quantization of the kernel 156
7.2.1.1 Basic principle 156

viil

7.2.1.2 Computational complexity 159
7.2.2 Three-level kernel 160
7.2.2.1 Basic principle 160
7.2.2.2 Leakage and amplitude error 161
7.2.2.3 Computational complexity 164
7.3 Estimation of randomly sampled sequences 165 .
7.4 Three-level method with parallel a.r.s. and hybrid a.rs. 167
7.4.1 Accuracy and saving 167
7.4.2 Bandwidth 170
7.5 Concluding remarks 171

8 Application examples of random and pseudo-random sampling 173
8.1 Introduction 173
8.2 Motion detection in images 174
8.2.1 Segmentation by motion 174
8.2.2 Frequency domain technique 174
8.2.3 Applying random sampling 180
8.2.4 Pseudo-random sampling 182
8.2.5 Simulation results 184
8.3 Correlation detector 186
8.3.1 Cross-correlation of randomly sampled sequences 187
8.3.2 Cross-correlation with delayed signal 188
8.3.3 Advantages and disadvantages 194
8.4 Concluding remarks 195

9 Reconstructing randomly sampled signals by the FFT 196
9.1 Introduction 196 '
9.2 Reconstruction on a regular time grid 197
9.2.1 Length of sequence 197
9.2.2 Filtering of noise 198
9.2.3 Examples 198
9.3 Concluding remarks 206

10 Conclusions 207

10.1 A brief review 207

10.2 Relationship between random and regular sampling 208

10.3 Contributions of this thesis to random sampling 209
10.3.1 Estimation of noise spectral density and bandwidth 209
10.3.2 Sampling methods and computational algorithms 209
10.3.3 Study of auto-correlation sequences 210
10.3.4 Rapid spectral estimation using a coarse kernel 210
10.3.5 Applications in digital signal processing 211
10.3.6 Inverse transformation 211

10.4 Usefulness of random sampling 211

10.5 Further development 214
10.5.1 Mathematical representation 216
10.5.2 Computational algorithms 216
10.5.3 Multirate systems 217

10.5.4 Two-dimensional applications 217

References 220
Publications 224
Appendices 225

Appendix 1: Program listing for parallel a.rs. 225
Appendix 2 : Program listing for hybrid a.r.s. 245

Appendix 3 : Program listing for auto-correlation 246

CHAPTER 1

INTRODUCTION

When a continuous-time, analog signal is to be analysed for its frequency
spectrum by a digital system, the signal is usually sampled at regular time intervals and
the corresponding signal level is quantized. After the completion of the sampling
process, a sequence of discrete- valued samples of the original signal taken within a
finite period of time is obtained. On this sequence of sample data, the Discrete
Fourier Transform (DFT), or the Fast Fourier Transform (FFT) can be applied to
evaluate the frequency components accordingly. The FFT, of which the complexity is
Nlog N [1], is in general the most efficient algorithm for computing the frequency

components.

Although regular sampling is widely adopted, it is not without drawback.
Shannon’s (or Nyquist’s) theorem states that for regular sampling, the sampling
frequency must be at least twice the value of the highest frequency of the sampled
signal; otherwise aliases will occur. Aliases are in fact a by-product of regular sampling.
Their occurrences generate ambiguities in the spectral analysis of a signal. To avoid
such confusion, the signal to be sampled is usually treated by an anti-alias low-pass
filter before the sampling process is performed. However, practical difficulties may
arise in using the anti-alias filter. Suppose a wide-band signal is to be sampled, an
anti-alias filter which has a wide pass-band is required. It follows that a high sampling
frequency of at least twice the cut-off frequency of the filter is needed and fast

hardware must be used. Another approach is that the wide-band signal is separated

into different non-overlapping frequency bands by a bank of band-pass filters so that
each band of the signal can be sampled by a lower sampling frequency; hence the
advantages of sub-Nyquist sampling can be acquired. When designing the filters, one
has to compromise between the ripple within the pass-band, the attenuation in the
stop band, the slope of the roll-off at the cut-off frequency, etc. To implement a
satisfactory banks of such filters, especially to fulfill the requirement of

non-overlapping frequency bands, is not a simple job at all.

The objective of sub-Nyquist sampling is to sample an input signal by a
frequency lower than the Nyquist limit so that the sampling rate may be lowered and
inexpensive hardware may be used in the process. Measurement instruments have
actually beeﬁ built based on this method [2,3]. Sub-Nyquist sampling can be achieved
by two different approaches: (i) using regular sampling intervals and (ii) using
randomized sampling intervals. In principle, the former approach adopts a
multi-sampling system having two or three sampling frequencies to treat an incoming
signal having a single frequency. Then, judging from the locations of the aliases created
by the respective samplers, the frequency of the input signal can be determined. For
irregular or random sampling, a suitable random variable is added to a regular
sampling grid, e.g. ti = i.T +7i, where t is the sampling time, T a regular sampling
interval, 7 a random Variablé and i an integer. In theory random sampling is
“continuous" sampling, hence no Nyquist limit exists when evaluating the frequency
components. Instead of standing as sharp spikes in the spectrum, the aliases are turned
into a broadband noise, which can be distinguished from a signal. In practice, however,

the word-length of the digital system or computer processing the signal sets a bound

page 2

to the spectrum to be analysed. These two approaches will be discussed in detail in

Chapter 3.

Compared to the cdnventional regular sampling method, random sampling
overcomes the aliasing problem and enjoys the advantages of sub-Nyquist sampling.
There are certainly drawbacks for this method, among which is the heavy
computational effort in calculating the spectrum. For regular sampling, there are
trigonometrical symmetries found in the kernel of the transform. These
trigonometrical symmetries can be utilized to devise efficient computational
algorithms such as the Fast Fourier Transform (FFT), Prime Factor Algorithm, etc.
To illustrate this point, a review of some conventional algorithms for DFT is included
in chapter 2. Because the symmetry in timing is obviously destroyed as random
sampling is adopted, no regularities occur in the kernel. In computing the spectrum,
the direct Fourier calculation, in which a different 'random’ exponential term is
multiplied to each data point, must be performed. The complexity of the computation
is thus N If a higher speed of computation is desired, some sort of regularity in timing
must be inserted into the sampling process, but to such an extent that the anti-alias
property of random sampling is still maintained. To achieve this objective, two novel
algorithms are introduced. They are to interlace and to concatenate several suitable

random sampling sequences to form a resultant sequence for taking sample points.

The first approach, i.e. the interlacing method, is called the parallel random
sampling. Its computational algorithm exploits the trigonometrical symmetry to
reduce up to 87% of the multiplications required in computing the first band of
frequency components. For subsequent bands, the saving increases with the nunﬁber

of sampling blocks used. The whole process, from sampling to computation, can be

page 3

implemented by a multiprocessor system. With this sampling method, bursts of noise,
which are the reéidues of the aliases, appear in the spectrum. Although these bursts
can be used as another meaﬁs to identify the input frequency, one may want to
eliminate them. The second approach, which is the hybrid additive random sampling,
is devised to give a background noise nearly as "clean" as the genuine random sampling
method. The computational algorithm derived from this method saves at least 75%
of the multiplications required and it can be implemented in a modular form. The
reconstructed spectrum offers a signal-to-noise ratio close to that of genuine random

sampling. Chapter 4 and chapter 5 will elaborate on these two methods respectively.

The Wiener -Khinchine relation states that for a stationary random signal x(n):

Sux (@) = Y, Rux (k) exp(—=jwk)

k=—o

where Sxx (w)is the power spectrum and Rxx(k) is the auto-correlation of the signal.
In words, the power spectrum of a sequence is the Fourier transform of its
auto-correlation. Hence studying the auto-correlation of arandom sampling sequence
helps to explain its anti-alias property. Chapter 6 will show that the power spectrum
of a sequence of data obtained from random sampling can be estimated from the

circular auto-correlation of the sequence at regular time intervals.

In general, it takes more time for a computer to perform a multiplication than
an addition; therefore many fast computational algorithms for the DFT aim at
reducing the number of multiplications. Gaster and Roberts [4] proposed an
approximate method for estimating the DFT which uses only two levels (namely, -1
and + 1) to represent the kernel of the transform. Mason [5] also suggested to round

off the trigonometric terms to three levels (namely, -1,0 and +1). By doing so, all

page 4

multiplications are changed into additions or subtractions, so that the speed of
computation is enhanced at the expense of the accuracy of the results. These round-off
methods are justifiable to be applied to the data obtained by random sampling since
the frequency components, even if computed by the exact DFT, in practice will not
equal exactly to-those reconstructed from regular sampling. There will be more

information and discussion about this topic in chapter 7.

As the FFT is in general the most efficient and readily available computational
algorithm and it is based on a regular sampling grid, we expect to see that many
engineering applications adopt the regular sampling approach. Because the advantage
of random sampling is its anti-alias property, any applications which can benefit from
this property are suitable to adopt the random sampling scheme. Examples in the
areas of instrumentation and digital signal processing will be included in chapter 3

and chapter 8 respectively.

Although one may perform a spectral evaluation by transforming a randomly
sampled sequence from the spatial domain to the frequency domain, the direct inverse
transform is made impossible by the spectral noise generated by random sampling.
Chapter 9 will provide a different approach to realize such an inverse operation. When
random sampling is adopted, the designer has to compromise between the bandwidth
of the spectrum, the accuracy of the amplitude of the signal recovered, the background
noise level, the computational effort, etc. For example, if the computational effort is
reduced by using either the parallel random sampling or the hybrid additive random
sampling, the background noise level tends to increase. In the conclusions contained

in chapter 10, the properties of random sampling will be summarized. The

page 5

performance of random sampling and regular sampling will be compared. Finally,

some possible directions for the development of random sampling will be suggested.

page 6

CHAPTER 2

REVIEW OF SOME CONVENTIONAL
ALGORITHMS FOR FREQUENCY ANALYSIS

The study of computational algorithms for the DFT is amature subject. Cooley
and Tukey published the well-known FFT as early as 1965 [6]. Their approach is in
fact a radix-2 algorithm, which requires the length of the transform to be a power of
two, and the calculation is done in the field of complex number. There are many
transforms closely related to the DFT; to name a few, there are the Discrete Cosine
Transform (DCT), the Discrete Sine Transform (DST) and the Discrete Hartley
Transform (DHT), which can be obtained from the DFT by suitable algebraic
manipulations. Different directions of research in this area were also pursued, e.g.
using prime numbers for the sequence length of the transform [7,8], or using
mathematical structures in a finite field [9]. There is, however, a common ground for
all the above algorithms. They assume that the sample data are recorded at regular
intervals so that in the kernel of the transform, symmetry property exists. This property

can be exploited to reduce the complexity of the computation.

Since there are so many computational algorithms for the DFT based on
regular sampling, it is not the purpose of this chapter to list them exhaustively. Only
a few representative algorithms will be included here to give a flavour to this topic.
Emphasis will be put on the computational complexity and the use of trigonometric
symmetry to form a computational algorithm so as to set the scene for the discussion

of random sampling.

page 7

2.1 The Discrete Fourier Transform
Letus consider the sampling in the frequency domain of a discrete-time signal.
Recall that an aperiodic signal with finite energy has a continuous spectrum. For such
an aperiodic discrete-time signal x(n), its Fourier transform is given by :
X(@) =), x(n)e " @)
n=—oo
Suppose X(w) is sampled periodically in frequency at a spacing of dw radians between
successive samples. Since X(w) is periodic with period 2 =, only samples in the
fundamental frequency range are necessary. For convenience, let N equidistant

samples be taken in the interval 0 < w < 27 with spacing 0w = 27/ N. If we evaluate

(2-1) at w =2k /N, we obtain:

27 _ o —j2nnk/N = |
X(N k) = 2 x(n) e 37" k=0,1,.,N-1 2.-2)

n=—o

The summation in (2-2) can be written as an infinite number of summations :

o -1 L N-1 o 2N-1 W
P _ —j27enk/N —j2rnk/N —j2nnk/N
X(N) = ...-:l—}_:;l((n)e +n§_:0x(n)e +DZNx(n)e +...

If we change the index in the inner summation from n to n - IN and interchange the

order of the summation, we obtain :

X(Ek) _ N-1 l: i (n—lN)] e_jzymk/N
X 2-3)

page 8

fork = 0,1,2, ..., N-1. The signal xp = E x(n—IN) obtained by a periodic repetition
l=—o00

of x(n) every N samples, is obviously periodic with fundamental period N.

Consequently, it can be expanded in a Fourier series as

N-1

xp(n) = Y, ck KN n=0,1,.,N—-1 (2-4)
k=0
with Fourier coefficients
= .
o= > xp(n) ¢ I2EN k=0,1,.N-1 2-5)
k=0

Comparing (2-5) with (2-3), we conclude that

1 2
k= X(Nk) k=0,1,.,N-1 2-6)
N-1
Therefore, xp(n) = % X (%k) el¥rnk/N n=01,.N-1 (2-7)
k=0

Equation (2-7) provides the reconstruction of the periodic signal x p(n) from the

samples of the spectrum X (w). Since x p(n) is a periodic extension of x(n), the

x(n)

“Ir "

4‘
0 L

xp(n)
N=L

ree e e

Fig. 2-1 Aperiodic sequence x(n) of length L and its periodic extension for N=L

P

0

page 9

sequence x(n) can be recovered from xp(n) if there is no aliasing in the time domain,

that is, if x(n) is time-limited to less than the period N of xp(n).

In summary, when a sequence x(n) has a finite duration of length L < N, then

xp(n) is a periodic repetition of x(n), where xp(n) over a single period is given by :

 [xn) 0<nsL-1
xp(n) = {o L<nsN-1

Consequently, the frequency samples X(27k/N), k =0,1,..,N-1uniquely represent the

finite-duration sequence x(n). Hence the discrete Fourier transform of x(n):

N-1
X(k) = >, x(n) e IZRN k=0,1.2,...N—1 2-8)

n=0
In turn, the sequence x(n) can be recovered from the frequency samples by the inverse

discrete Fourier transform (IDFT) :

N-1
x(n) = > X 7N =012, N-1 2-9)
n=0

2.1.1 Symmetry property : The kernel of the DFT, which is e I/ N, consists of the

roots of unity in the complex plane. If N is an even number, e 17N s the complex

—j2r(N—i)/N —j2n(NA+i)/N _

conjugate of e ,and e —e /N Similar symmetry also
exists when N is odd. This simple relationship is the principle from which many fast

computational algorithms, including the FFT, are derived.

To illustrate the use of symmetry, let us consider a very simple algorithm. The
frequency spectrum of x(n) can be evaluated from eqn (2-8) by varying the parameter
k. It is obvious that the kernel is periodic and x(n) is also extended periodically, both

with a period of N points. Hence there are only N distinct values for X(k) to be

page 10

calculated. Even for these N distinct X(k), we need to compute only half of them
because of the symmetry mentioned above. If N is even, the first N/2 frequency

components are the complex conjugates of the remaining components :

X g) = —X(0) -

X(i) = X "(N-1i) fori=1,2,..,N/2—1

where * denotes the complex conjugate. The case for an odd N is similar and obvious.

L

2.2 Divide-and-Conquer Approach to Compute the DFT

This approach is based on the decomposition of an N-point DFT into smaller
DFTs. Let N be factorized as a product of two integers, that is, N = N1N2. The 'sequence
x(n), 0<sn<N-1, which is a one-dimensional array, can now be stored as a
two-dimensional array indexed by n1 and n2, where 0<n1=<Nj—1land 0<nz=Nz-1.
Suppose we select the mapping n =N2n1 + n2, we obtain an arrangement in which

the first row consists of the first N2 elements of x(n) and the second row consists of

" -0 1 2 N» -1
0 x(0) x(1) x(2) x(N2-1)
1 x(N?) x(N2+1) x(N2+2) x(2N2-1)
2 x(2N2) X(2N2+1) x(2N2+2) x(3Nz-1)
Ni-1 x([L-1]N2) x([L—'lTN2+ 1) | x([L—-1]N2+2) x(N1N2-1)

Fig 2-2 Two dimensional data array for storing x(n) withn = Neny + n2

page 11

the next N2 elements of x(n) and so on, as illustrated in Fig. 2-2. Another possible

mapping is, of course, n= n2 +Nin2 , which is a column-wise mapping.

A similar arrangement can be used to store the computed DFT values. Let the
mapping be from the index k to a pair of indices k1 and k2, where 0<ki<Ni1—1and

0<k2=<N2—1. The row-wise mapping is given by k =Nzk1 +k2.

Now that x(n) is mapped into a rectangular array x(n1,n2) and X(k) is mapped
into a corresponding array X(k1,k2). Then the DFT can be expressed as a double sum
over the elements of the fectangular array multiplied by suitable twiddle factors. To

be specific, let x(n) be mapped row-wise and the DFT mapped column-wise; then
No—1N;—-1

X(kpk2) = D, Y, x(ni,ng)Wy M+h)(me+Nun) @-11)

n2=0 n1=0

where WN = e—]ZT[/N- But Wy (N2kj+ka)(n1+Nqiny) =W]I\\112N1k1n2 WII\\JJlnzkg W[I\y\lzklnl

wike wReNkim _ g NpNp=N O, WRZKIT = WL = W™ and

whikenz = wlote — wien2 With these simplifications, eqn (2-11) may be expressed

as:
Nj—1 N>—1
X(kika) = X, { WA [3 x(ny,n2) Wi |} Wi 2-12)
n1=0 n>=0 .

The computation of eqn(2-11) can be carried out in three steps :

First, compute the N2-point DFI$
Np—1
Fnik2) = Y x(nn2)Wi'? 0skp=Np-1 2-13)

ny=0

for each of the rows n1 = 0,1, ..., N1-1.

page 12

Second, compute a rectangular array G(ni,k2)

— whikz <n1=N1-1 (2-14)
G(n1k2) = WN™ F(n,k2) 0<kz<N2—1
Finally, compute the N1-point DFTS
Ni—1
X(kikz) = D, G(nk2) Wt for kz =0,1,...,No—1 (2-15)
n1=0

- Apparently the above procedure looks more complex than directly computing the

DFT. However, let us evaluate its computational complexity. The first step requires
N1N2 2 complex multiplications and N1N2(N2-1) complex additions. The second step
requires N1N2 complex multiplications. Finally the third step requires NaNj 2
complex multiplications and N2N1(Ni1-1) complex additions. Recalling that N

=NiN2, the computational complexity of the whole process is therefore

N(N1+N2+ 1) complex multiplications and N(N1+N2 -2) complex additions. If

ngkz

1
2
/8
S-point DFT

3-point DFT
L
(N1 =5) _—7
L

(N2 = 3)

Fig. 2-3 Computation of DFT with N = 15 by 3-point and 5-point DFTs

page 13

N1=~Np2, then N1 or N2=VN, and the complexity for both multiplications and additions
is approximately 2NVN. Comparing to the direct computation which requires N2
complex‘ multiplications and N(N-1) complex additions, the divide-and-conquer

approach can reduce the complexity.

When N is a highly composite number, i.e. N=rir2 .. ry, then the
decomposition can be repeated u-1 times, which means that smaller DFT5 are formed
and a more efficient algorithm is available. If the factors (r’s) are mutually prime to
each other, we have the prime faétor algorithm. When all the r’s are equal, we have
| N =r"% then all the DFT5 are of size r. This number r is called the radix of the
computational algorithm. In particular when r = 2, we obtain the Fast Fourier

Transform. Proakis and Manolakis [10] provide a detailed discussion on this topic.

2.3 The Fast Fourier Transform

By far, the radix-2 algorithms are the most widely used FFT algorithms. When
the sequence length N is a power of 2, ie. N = 2 Y we can apply the
divide-and-conquer approach described above successively to form finally DFTs of
length 2. At first, let M = N/2 and L = 2. This selection splits the whole data sequence
.into two N/2-point data sequences, fi(n) and fz(n), corresponding to the
even-numbered and odd-numbered samples of x(n) respectively :

fi(n) = x(2n)

f2(n) = x(2n+1) n=0,1 N

,...,E‘—l

As f1(n) and f2(n) are obtained by decimating x(n) by a factor of 2, the resulting FFT
algorithm is called the decimation-in-time algorithm. Now the N-point DFT can be

expressed as follows :

page 14

NA—1 - Na—1 o (2-16)
X(k) = z X(Zm) Wn + Z x(2m+].) WN(m+1)

But W& = W, eqn (2-16) can be expressed as

N2-1 NAo-1
X(k) = D, fi(m) Wi + W Y. f2(m) Wil
m=0 m=0
=Fi)+WEFa(k) k=01..5-1 (2-17)

where Fi(k) and F2 (k) are the N/2 -point DFT} of the sequence fi(m) and f2(m)
respectively. In addition, Fi(k) and Fz(k) are periodic with period N/2 and
WETN2Z = _ W}f;, which is the symmetry property discussed in section 2.1.1. Hence

eqn (2-17) can be written as

- N

,...,5—1

X(k) = F1(k) + Wi Fo(k) k=0,

N

X <k+§) = F1(k) — WK Fa(k) k=0,1,..5-1 (2-18)

WE in eqn (2-18) is the twiddle factor.

Note that the direct computation of Fi(k) requires (N/2)2 complex

multiplications. The same is true for F2(k). Furthermore, there are N/2 additional

complex multiplications required to compute Wk F2(k). Hence the total number of
complex multiplications is N%2 + N/2. Thus the first step of decimation reduces the
number of multiplications from N? to N%2 + N/2, which is nearly half the original

number for a large N.

Having performed the decimation-in-time once, we can repeat the process for
each of the sequences f1(n) and f2(n), which will generate in total 4 sequences of N/4

points each. If the decimation process is repeated successively, in the last stage there

page 15

Stage 1 Stage 2 Stage 3
x(0) &— o »>- -7 X(0)
x(4) : X(1)
x(2) W3 \ /
- X(2)
we wi
— X(3)

-1
x(6) "

1 -l
1

1

*h A X()

_ > -— X(5)
-1
w} w2 /\\
" X(6)

x(5)

x(3)
-1
i >< Wi W

x(7)

P ()]

Fig . 2-4 Eight-point decimation-in-time FFT algorithm

will be N/2 2-point DFT5 to be computed. Each of these 2-point DFTS is called a
"butterfly" in the signal flow diagram of the algorithm. Fig. 2-4 shows the signal flow
diagram for an eight- point decimation-in-time FFT algorithrr’l, in which the
computation is done in place, that is, the same 2N storage locations are used
throughout the computation of the N-point DFT, and the output data sequence is in

order, that is, in the normal order.

From Fig. 2-4, we can estimate the number of complex multiplications
required. For a sequence of length N = 2", the decimation process is repeated u =
log2 N times until the resulting sequences are reduced to one point each. For each

stage there are N/2 multiplications of the twiddle factors to be performed. Hence the

page 16

number of complex multiplications is reduced to (N/2) logz N. The number of complex

additions can be shown to be N log2 N.

Another radix-2 FFT algorithm, called the decimation-in-frequency
algorithm, can be obtained by the divide-and-conquer approach with N2=2 and
N1=N/2 in the first step of decimation. Both the decimation-in-time and the
decimation-in-frequency algorithms need to shuffle the input data sequence in a
bit-reversed order so that the output data sequence can emerge in order if the
computation is to be done in place. Details of the decimation-in-frequency algorithm

and data shuffling are Well documented in many reference books [1,10].

2.4 The Prime Factor Algorithm

The aim of the divide-and-conquer approach described in section 2.2 is to
change a one-dimensional transform into a multi-dimensional transform so that the
computational complexity is reduced. The mapping leading to the derivation of
eqn(2-12) imposes no condition on the two transform lengths N1 and N2, but twiddle
factors Wﬁlkz, which requires complex multipliéations, are created between the two
different dimensions. Good [11] and Winograd [12], however, used a mapping that
requires N1 and N2 be relatively prime to each other. By algebraic manipulations
according to the number theory, each dimension is uncoupled to the others and the

undesirable twiddle factors can thus be eliminated.

2.4.1 Address Mapping : Let N = N1N2 where N1 and N2 are relatively prime to each
other. The indices may be mapped as :
n = Ani + Bn2 0<ni1<Ni—1and 0=n2=<N2-1

k = Ckj + Dky 0<ki<Ni—1and 0<kz<Np—1

page 17

then the transform becomes :

N>—1Nj-1
X(kl,kZ) = 2 2 x(nl,HZ)WN (An1+BH2)(Ck1+Dk2)

n2=0 n1=0
No—1N;—1 . (2-19)

= z Z x(n1,np) WACPk1yyADmkeyy BCnzkiyy BDnako

n2=0 n1=0

Note that WP = 1 and WVt =

= W%q, where m and i are integers. The index iforms
an arithmetic structure modulo N . To make eqn (2-19) a real two-dimensional
transform, we want |

AC=1 AD=0, BC=0and BD=1 (2-20)
There are, of course, many possiblé solutions to satisfy the above conditions. One
possible mapping for nisthatn = N2n1 + N1n2, giving A= Nz2and B = N1. Because
N1 and N2 are relatively prime to each other, this mapping must be one-to-one.
Substituting A= N2 and B= Ni1into eqn(2-19):

Na—1N;—1

X(k1,ko) = E 2 x(nl’nz)W§2Cn1k1W§2Dn1k2WI§1Cn2k1WlI\‘111Dn2k2

n2=0 n1=0
No—=1N;—-1

= 2 Z X(Ill nz)WNnlkleanlk')WNlCnoleDn7k7
n2=0 n1=0

2-21)
Now the index of the first exponential term, WN1, is modulo N1, and the last, WN2 is

modulo N2. In order to satisfy eqn (2-20), we can deduce, from the exponential terms
of eqn (2-21), that C = N2<N2_1>N1 and D #N1<Nf1>N2 , where <x> Nr denotes
the residue of x modulo Nr and x ™ its multiplicative inverse . Substituting these
choices into eqn (2-21) and omitting the < > Nr for simplicity :

Np—1Npj—-1

X(kl k2) z Ex(nl nz)WN')N') n1k1WN7N1N1 nlk')WN]N?N? n')leN]Nl n')k')
n2=0 n1=0

page 18

N;—1N;—1 (2-22)
= > x(n,n) WRNWRE

n2=0 n1=0

as <N2Nz _1>N1 = 1, <N1iNi _1>N2 = 1 and N1N2 = N making the second and the
third exponential terms equal to 1. Hence the mapping for the indices :

n = N2n1 + Nim2 (2-23)

k = No<N7 ">y, ki + N1<N7 1>y ko (2-24)

where 0<n1<N1—-1, 0<n2<N2—1, 0<ki1<Ni—1and 0<k2<N2-1

The order to evaluate the two summations in the transform expressed by eqn (2-22)
is immaterial, i.e. we can evaluate either n1 or n2 first. Conceptually the transform is
performed over a two-dimensional array, but in a single-processor system, the
elements belonging to a row or column are usually taken from the memory when
required for computation, after which the results are put back into the respective
memory locations. Fig. 2-5 illustrates a particular column being loaded into the
processor for computation and retrieved after computation. Suppose we choose to

evaluate n1 first, then the procedure becomes :

(1) Take x(n) according to eqn (2-23) one column at a time, i.e. for each n2,

n1=0,1,...,N-1.

(2) For each of the columns n2 =0,1,..., N2-1, compute the N1-point DFTS

Ni—-1
F(k1,n2) = Z x(m,nz)WRﬂkl k1 =0,1,..N1—1

n1=0

The results are stored in-place, i.e. in the corresponding locations of x(n1,n2).
(3) Take F(k1,n2) row by row; for each ki1 compute

page 19

N;—1
X(kik2) = Y, F(k1,n) Wi k2 = 0,1,..,No—1

n2=0

(4) Re-order or unscramble the results according to eqn (2-24).

To give a simple numerical example, let N = 15 = 3x5. ThenN1 = 3,N2 = 5
and n = 5n1 + 3 n2, where n1 = 0,1,2 and nz = 0,1,2,3,4. With this mapping for n,

we obtain conceptually a 3 x 5 data array similar to the one shown in Fig. 2-2. After

computing the inverses, we obtain <5 —1>3 = 2 and <37 1> 5 = 2; s0 the mapping for

k = 10k1 + 6 k2, which specifies the indices for unscrambling the resulting sequence.

2.4.2 Computational complexity : When a one-dimensional array of length N is
arranged as a two-dimensional array of N1xN2, there are N1 DFT} of length N2 and

N2 DFTs of length N1 to be computed. Assuming direct DFT calculation, there should

be NiN22+NaNpl= N(N1+N2) complex muitiplications and N(N1+N2-2)
complex additions. Referring to the 3x5 example, the original number of
multiplications is (15)2 = 225, but with the prime factor algorithm, the number
becomes 15(3 +5) = 120, which is a reduction by nearly a factor of 2. In fact, efficient
algorithms to compute short DFTS of length 2,3,4,5, 7,8,9 and 16 are available [13].
Moreover, when the length of the DFT is an odd prime, the DFT can also be evaluated
in high speed by a convolution [8]. One may even utilize fast hardware in the form of
a recursive filter to compute the short DFT5 [14]. If #(Nr) is the complexity of a
particular algorithm chosen for a short DFT of length-Nr, then the computational

complexity for multiplication for two stages can be written as N1 u(N2) + N2 u(Na).

2.4.3 In-place, In-order Algorithm : The mapping given by eqn (2-23) and (2-24) leads

only to an in-place algorithm since unscrambling is required after the last stage of

page 20

computation. By modifying slightly the mapping given by eqn (2-24), an in-place,

in-order algorithm can be achieved [15]. The procedure is as follows :
(1) Load from the memory array column by column according to n = N2n1 + Nin2.

(2) Perform the length-N1 DFT5 along each column. Place the intermediate results

F(k1,n2) into the memory according to the mapping k’ = NaN2- Y + Nino.
(3) Load from the memory row by row, also according to n = N2nj + N1in2.

(4) Perform the length-N2 DFT5 along each row . Place the results into the memory
according to the mapping k = N2k1 + NiN1 1.
By examining the above procedure, we see that the mapping specified by eqn

(2-24) is implemented in two phases; first for ki1 then for k2. Results are unscrambled

after every short DFT instead of at the end of the whole transform, but the final

x(0) N=15=3x5 x(0)
x(1) Loading : n= <5n1+3n2>15, where n2 = 1, m=0,1,2. x(1)
x(2) Retrieval : k¥’ = <10k1 + 3n2 >15,where n2 = 1,k1=0,1,2. x(2)
x(3) x(3)
x(4) \ / x(4)
igg; x(0,1) =x(3) F(0,1) =x(3) ig?
x(1,1) =x(8) F(1,1)=x(13
X(7) / x(2,1) =x(13) F(2,1) =x(8) \ x(7)
x(8) x(8)
x(9) x(9)
x(10) x(10)
x(11) x(11)
x(12) x(12)
x(13) v x(13)
x(14) x(14)

Fig. 2-5 Memory loading and retrieval for an in-place, in-order prime factor algo-
rithm

page 21

outcomes are the same for both cases. Each time when an unscrambling operation is
done, only a permutation of data within the same row or column is effected, which is
an in-place process. Fig. 2-5 shows the loading and retrieval of the second column
(n2=1) of a 3x5 example. The permutation is such that the elements of a particular
row or column will always stay together in the same row or column. Thus the
permutation does not affect the results of the short DFTS but only their addresses. For
a particular algorithm, all the addresses required for the transform can be calculated

in advance; therefore the generation of addresses should not affect the computation

time at all.

To find the multiplicative inverse of an integer in a finite field, the solution of
a diophantine equation is involved. One may refer to books about number theory

[16].

2.4.4 Multi-dimensional transform : To gain the full advantage of the prime factor
algorithm, small integers are desired to be the factors making up the product of the
sequence length, which enables the use of efficient short DFT algorithms as discussed
in section 2.4.2. If only a two-dimensional algorithm is used, i.e. N= N1.N2, the
resulting sequence length could be too small to be useful when both N1 and N2 are
small integers. One solution is that we select a highly composite sequence length, i.e.
N = | N1.N2....Nj, where the Ni’s are mutually prime to each others. Then more choices
are available for the sequence length and the two-dimensional prime factor algorithm

can be applied recursively as well.

Let N = N1.N2...Nj, where the Ni’s are mutually prime to each others. Define
amappingn = <N1 +Ninr >N, where Nr = N2.N3..Ni = N/Ng, n =0,1,...,N-1,
n1=0,1,..,N1-1and nr = 0,1,2,..,Nr-1. As N1 is prime to Nr by definition, the above

page 22

mapping forms a two-dimensional prime factor algorithm. We may first compute the
length-N1 DFTs , then followed by fhe length-Ny DFI5. When computing the
length-Nr DFT5, we can apply the prime factor algorithm here again by defining
another mapping n° = <Nr'nm2 +N2ny’ >N, where NI’ = N3.N4..Nj = Nr/Nz, n’
=0,1,..,Nr-1, n2=0,1,..,N2-1 and n/ = 0,1,2,..,N¢-1. It is obvious that this

decomposition of data can be continued till the very last factor of Nj is reached. A

multi-dimensional form of prime factor algorithm can thus be written as [17]:

N;j—1 N>;—1N1-1
X (kiyok2k)) = 3 . 3D x (ienzna) WA WL

ni=0 ny=0n1=0

and in the r-th dimension, the addresses for loading and retrieval of data can be given
by [18]:
n=<Nm’+ Rn>N

k = <Nrn ’ + RR—lnr>N (2-25)

for n’= 0,1,...,.R-1, nr = 0,1,...,Nr-1 where R= N/N; for the r-th dimension, and

<RR'1>Nr = 1. In the retrieval equation, n is used instead of kr for simplicity.

Let us take the sequence length N=3x5x7 = 105 as an example of a three-
dimensional algorithm. Assuming we evaluate length-3 DFT5 first, the addresses for
loading and retrieval are given respectively by :

n = <3n’ + 35nr>105, n’=0,1,..,34, nr=0,1,2

k = <3n’ + 70nr>105, n’=0,1,....34, nr=0,1,2

Following the concept of a two-dimensional array, after each of the 35 length-3 DFT5
is computed, the results are permuted and placed in the respective columns of the
array. To complete the computation, we have to perform 3 length-35 DFT3 along the

rows of the array, the indices of which are given by

page 23

n = <35n’ + 3nr>105 n’=0,1,2, n,=0,1,...,.34

Each of these rows can also be treated as a 5 by 7 array by the same method. Since
each row is handled independently, its indices may be mapped again from 0 to 34 in
order to simplify the addressing scheme in the calculation to follow. Performing the
length-5 DFT5 along the sub-columns, the mapping is :

n=<5n"+ 7nr>3s, n’=0,1,....6, nr=0,1,....4

k = <5n’ + 21nr>35, n’=0,1,..,6, nr=0,1,....4 (2-26)
and followed by the length-7 DFIs along the sub-rows with

n=<7n + 5n>35, n’=0,1,...,4, nr=0,1,..,6

k = <7n’ + 15nr>35, n’=0,1,....4, nr=0,1,..,6 (2-27)
In eqn (2-26) and (2-27),n=0o0r k = 0 refers to the first element of the row. Finally,
the results in each row must be permuted according to

k = <35n’ + 36nr>105, n’=0,1,2, nr=0,1,...,34

before they are in order.

2.5 Realization of the PFA in a Transputer Network

The prime factor algorithm converts a one-dimensional DFT into a
multi-dimensional DFT. When the algorithm is implemented in a general purpose
computer with a single processor, different dimensions must be computed one after
another. If special hardware or supercomputers are available, it is possible to share
the computation by several processors performing simultaneously in a suitable
configuration. Hypercube and pipeline architectures were suggested and studied by
G. Aloisio et al [19]. Basically the hypercube is a structure that maps naturally into
the Cooley-Tukey algorithm rather than the PFA; hence it is not surprising to see that

the Cooley-Tukey algorithm excels the PFA in several aspects when implemented in

page 24

11 1c 1r

21 2c 2r

31 b 41 4 sl 3¢ - 4¢ H 5c 3r b 4r | 5r
| | L] l]

Fig. 2-6 The tree network of transputers (adopted from the configuration of a
transputer system in the University of Durham)

a hypercube, especially the communication time required. There are, however, some
other networks that fit the PFA better. A particular example is the tree network shown
in Fig. 2-6 [20], which is suitable for calculating DFT of a sequence length of N =
3x5x7x11 = 1155 with a minimum communication time for exchanging partial results

between processors.

2.5.1 The Overall Scheme In Fig. 2-6, each box represents a transputer and each line
represents a two-way communication channel. The tree network is formed by
connecting the communication channels of the transputers together. Processor 0 is
the root transputer which is responsible for communicating with the host computer
system. Processors 11, 1c and 1r are called the branches with 1,c and r denoting left,
central and right respectively. Processors 2 to 5 are called the leaves. When the data

are fed into the root processor, they are rearranged into sets of three according to the

page 25

addresses of dimension 3. These sets are sent in parallel to the three branch
processors, each of which calculates one of the three transform components; Le.
processor 11 produces \X(O) while processors 1c and 1r calculates X(2) and X(1)
respectively. With this systolic-like operation, the partial results are naturally divided
into three groups coming out from the processors and the subsequent operations for
these three groups are identical, which is to perform the three-dimensional DFT of

5x7x11. This arrangement requires no exchange of partial results between the

branches.

Underneath each of the branch processors, there are another 4 leaf processors
linked together by communication channels. Hence there are three groups of 5
processor each. Since the operations in these three groups are identical, we may
concentrate our discussion on the left group. There are 385 data points to be
calculated by processor 1 for dimension 3. While performing the calculation, the
partial results can be distributed to the leaf processor according to the requirement
of dimension 5. Since there are 77 sets of data of S elements each to be distributed
among 5 processors, the load will be uneven. Following the loading is the procedure
for performing length-S DFT5. From this point onwards, each set of data points will
be contained and handled by the same processor, so efficient algorithms, like the short

DFT algorithms, can be applied.

2.5.2 Addresses in multi-processor system If the PFA is realized by a single-processor
system, the addresses of the data expressed as their order in a linear array are sufficient
to keep track of all data loading and retrieval. In case that several processors are
computing concurrently different parts of the transform, the processors must know

the order of the data in that particular dimension and their addresses in the following

page 26

dimension where the partial products are to be sent after this stage of computation.
The order of the data in the form of a linear array is essential only at the first loading
and the final retrieval process. The addressing problem of the PFA has been a
research topic for years. When the PFA is implemented in a multi-processor system,
the generation of addresses becomes more complicated. In our approach, the indices

of data at all dimensions are kept in an appropriate order as their addresses [20].

Since exchangesAof partial products among the processors should be kept as
few as possible, the in-place in-order algorithm expressed by eqn(2-25), where a
length-N sequence is converted to an Nr x R two-dimensional array, will be adopted.
As discussed previously, the algorithm can be extended to a multi-dimensional
transform by applying the method recursively. For example, if N = N1.N2.N3, we may

compute dimension N1 first followed by N2 and N3, The loading equation will be :

n=<N1n2zs+ N23ni>N, (2-28)
whereni = 0,1,2,..., N1-1 and n23 = 0,1,2,...,N2N3 -1. Having finished with dimension
N1, we can computed dimension N2 and N3. Keeping the original sequence order, the
loading equations for dimension N2 and N3 are given respectively by :

n=<Nzn + N1 <N2n3 + N3m>N, >N (2-29)

and n=<Nxnni+ N1 <N3n2+ N2n3>N; >N (2-30)

where n2= 0,1,2,..., N2 -1and n3= 0,1,2,..., N3 -1. Hence the address of a data point
in a three-dimensional PFA can be determined by three indices, i.e. n1,n2 and n3. Let
us call these indices the class number, group number and sequel number of a data
point. Eqn (2-28) divides the data of length N into N1 classes of N2 groups and in each

group, there are N3 data points. Rewriting eqn (2-28) and (2-29), we obtain :
n=<N23c+ N1 <N2gz+ N3s$2>N, >N (2-31)

page 27

and n=<Nypc+ N1 <N3g3z+ N2s3>N; >N (2-32)

where cis the class number, and gx and sxare the group and sequel number respectively
in dimension x. After the computation in dimension 1, we must determine the sets of
numbers associated with the data in the next dimension. Hence the relationship
between these numbers must be studied. The following theorems about their
relationship are useful in determining the routing of the partial products from one

processor to another.

Theorem 1 : In a two-dimensional PFA, the group number and sequel number of a
data in the first dimension become its sequel number and group number respectively

in the second dimension, i.e. g1 = s2 and s1 = g2.

Proof : Refer to n=<Ninz+ N2ni>N , a two-dimensional loading
equation. For dimension N1, n21s g1 and ni is s1 by definition. When dealing with the

second dimension N2, n1 becomes g2 and n2 becomes s2. Hence g1 = s2 ands1 = g2.

Theorem 2 : In a three-dimensional PFA, the sequel number in the first dimension is

the class number in the second and third dimensions.

Proof : In eqn (2-28) n1 is the sequel number of dimension 1. In eqn (2-29)

and (2-30), the same index n1 becomes the class number of dimensions 2 and 3.

Theorem 3 : The starting address of a class differs from its neighbouring class by

<N2N3 >N if loading is performed according to eqn (2-31) or (2-32).

Proof : In eqn (2-31) or (2-32), the starting address of each class is given by
<¢N23 >N sinceg=0ands =0. Asc = 0,1,2,...,N1-1, the first elements of the classes

are found at locations <(0>N, <N23>N, <2 N23>N, ..., <(N1—1) N23>N. Therefore

page 28

the starting addresses between two neighbouring classes differ by <N23>N

= <N2N3>N.

Theorem 4 : The group and sequel numbers in each class of the second and third

dimensions can be determined from the group numbers of the first dimension. For
dimension 2, g2 = <N, 1 g1>N;, and s2 = <Nz 1 g1>N,. It follows from Theorem 1

that g3 =szand s3 = g2.

Proof : From eqgn (2-28) and (2-31), n23 = <g1>Ny3 = < N2g2 + N381> Nys.
Taking modulo N3 on the above equation, we obtain g2 = <Nz 1 g1>N; whereN, Lig

the inverse of <N,>N;. Similarly, taking modulo N2, we obtain s2 = <N3 L 21>N,.

Theorem S : If n= < Nin2+ N2ni> N is the loading equation, the retrieval
addresses of a group can be obtained by updating the sequel numbers of the elements

as follows : si(i)=s1(i-1) + <N2>N,, where si(i) is the i-th sequel number in

dimension 1 andi = 0,1,...,N1-1, i.e. modulo N1.

Proof : The retrieval addresses are given by k = < N1n2 + N Ny ni> N It
is obvious that the changes in addresses are effected by the second term of the
equation. To express the retrieval addresses in terms of the loading addresses, we
make k = n and obtain

<N; 'N2ni> N = <N2n'1>N, (2-33)
where n’1 represents the loading indices. Since both n1 and n’1 = 0,1,...N1-1, eqn

(2-23) is modulo N1. Hence n1 = <Nz n’1>N; and adopting the i notation defined
above, we obtain ni(j) = ni(i-1) + <N2>N; as 0’1 increments by 1. Since ni is the

sequel number in dimension 1, we have proved the theorem.

page 29

2.5.2.1 Example :The use of the above theorems in calculating the addresses of the
data is illustrated here by a numerical example. Let N = 3x5x 7 = 105. The first
dimension is the length-3 DFT5, the second is length-5 and the third is length-7. The
loading equation is <3g1 + 35s1>105, where g1 and s1 are the group and sequel
number respectively in the first dimension. Since processor 1c computes X(2) and
processor 1r computes X(1), the retrieval equation <3g1 + 70s1>105 is already
realized if we keep s1=1to processor 1c and s1=2 to processor 1r. After computing
length-3 DFT, the partial products are stored as a 3 x 35 array. The following table

shows the arrangement conceptually.

| e=0 =1 | g=33 | g=34 | g=35
s=0 0 3 96 99 102
s=1] 35 38 e 26 29 32
s=21 170 73 61 64 67

When we load the transputer network with the partial results, we do so according to
the order of dimension 35, i.e. the data are stored in three columns of 35 rows each

as shown in the following table :

c=0 c=1 c=2
s =0 0 35 70
1 3 38 73
2 6 41 76
® ® []
o ® [
[J [J o
32 96 26 61
33 99 29 64
34 102 32 ' 67

page 30

Elements of column 1 are distributed in the left branch while those of columns 2 and
3 are in the central and right branches respectively. As stated in theorem 1, sequence

numbers in this dimension are the group numbers of dimension 3.

In dimension 35, we can predict from the known sequel numbers the indices
of data points in dimension 5 or 7 according to Theorem 4. In dimension 5, N2 = 5
andN3=7, <57 1>7= <771>5=3 Let us take data 96 (c =0, s=32) as an example.
From Theorem 4, g2 = <3X32>7 = S and s2 = <3X32>5 = 1; therefore data point
96 should be routed to (¢c= 0, g=5, s=1). We check this by listing the addresses

according ton = <0 + 3<5g2 + 7s2>35 >105 :

Table 2-1 : Loading addresses according to
n = <0+ 3<5g2 + 7s2>35 >105

c=0
g=0 1 2 3 4 5 6
s=0 0 15 30 45 60 75 90
1 21 36 51 66 81 96 6
2 42 57 72 87 102 12 27
3 63 78 923 3 18 33 48
4 84 99 9 24 39 54 69

From the above table, we can confirm that data 96 is at (¢=0,g=5,5=1)

After considering the loading addresses of the data, let us examine their
retrieval addresses. The purpose of the retrieval equation is to shuffle the data
according to the computed addresses. In fact this shuffling can be realized either by
switching the contents of cells in the array or by modifying the addresses associated
with these cells. Since we are using the in-place algorithm, the modification of
addresses is very simple because only the sequel numbers of the data need to be
updated. A recursive equation, which involves only simple addition, is stated in

page 31

Theorem S for updating the sequel numbers. Moreover, only one set of new sequel
numbers needs to be calculated for all the groups in a certain dimension as the
elements having the same sequel numbers are shuffled in exactly the same order
within their individual groups. The retrieval equation for dimension 5 is given by

= <0 + 3<5g2 + 21s2>35 >105. Table2-2 lists all the addresses of this 5x7 array.

{

Table 2-2 : Loading addresses according to
n = <0+ 3<5g2 + 21s2>35 >105

c=0
g=0_| 1 2 3 4 5 6
s=0 0 15 30 45 60 75 90
1 63 78 93 3 18 33 48
2 21 36 51 66 81 96 6
3 84 99 9 24 39 54 69
4 42 57 72 87 102 12 27

The scrambling can be easily predicted by s@)=s(-1) + <N3>N, (Theorem 53),
wherei = 0,1,..., N2-1. In the above example, N2=5,N3 = 7,51(0) = 0and <7>5 =
2. Hence s(i)=s(i-1) + 2 modulo 5, giving s =0,2,4,1,3. Mapping the sequel numbers
in Table 2-1into the new set of sequel numbers generates the addressing scheme shown
in Tabvle 2-3, which is equivalent to the scheme in Table 2-2, the retrieval addresses.

The sequel numbers are significant because they are related to the power of the kernel

Table 2-3 : Retrieval addresses obtained by re-mapping the
sequel numbers of the loading addresses.

c=0
g=0 | 1 2 3 4 5 6
0 15 30 45 60 75 90
21 36 51 66 81 96 6
42 57 72 87 102 12 27
63 78 93 3 18 33 48
84 99 9 24 39 54 69

page 32

N3—1

: o . 1 :

in the DFT; for example, in dimension N3, X(k) = N+ Zx(sl)W11§3S3. Provided that
3S3=O

the data points are maintained in the proper order for each computation, it is

insignificant whether these data are physically scrambled or not in the memory

storage.

2.5.3 Procedure in a three-dimensional case : As a summary to all the details
described above, let us go through a complete computational procedure of a transform

of N = 3x5x7 = 105.

(1) Load the input data group by group from the root processor to all three branch
processors 11,1c and Ir according to <3g1 + 35s1>, where g1 = 0,1,2,..,34 and s1=

0,1,2.

(2) Each processor is to compute one component of each length-3 transform.
Processor 1l computes the first component : X(0) = x(0) +x(1) +x(2), processor lc
computes the third component : X(2) = x(0) +x(1)W§ + x(l)W%, and processor 1r
computes the second : X(1) =x(0) + x(l)W% + x(2)W§ .

(3) The sequel numbers s1 become the class number of dimension 5x7. By labelling

the partial products from 11 as class 0, from 1c as class 1 and from Ir as class 2, the

retrieval equation for dimension 3 has been implemented.

(4) The group numbers g1=0,1,...,34 are used for computing the addresses for the

next dimensions in all classes according to g2 = <3g1>7and s2 = <3g1>5(Theorem

4).

page 33

(5) Each branch processor keeps a loading assignment for itself and its leaves
according to g2 so that the partial products can be routed to a suitable processor in

the following dimension. One possible assignment is :

Processor number Group number g7
1 0,1
2 2.3
3 4
4 5
5 6

(6) All branch and leaf processors compute concurrently the length-5 transforms of
the groups according to their sequel numbers. After the computation, re-map all

sequel numbers according to s2(i) = s2(i-1) + 2 (Theorem 5).

(7) For dimension 7, g3 = s2 and s3 = g2 (Theorem 1). Route the partial products with

their indices to the appropriate processors according to the assignment for g3.

(8) All branch and leaf processors compute concurrently the length-7 transforms of
the groups according to their sequel numbers. After the computation, re-map all

sequel numbers according to s3¢) = s3(i-1) + 5 (or -2) (Theorem 3).

(9) For all three classes, restore g1 (which is the sequel numbers of dimension 35) by

g1= <7g3 + 5s3 >35. Thenre-map gi(i) = g1i-1) + 3 (Theorem 5).
(10) Restore all the one-dimensional addresses by k = <35¢ + 3g1>105.

(11) Route the results to the host computer.

Although the above example is set for a three-dimensional case, the above

procedure can be extended into any number of dimension. Because the PFA is applied

page 34

recursively, at every stage we can choose to deal with at most three dimensions.
Supposing N =N1N2N3Njy, at the first stage we handle dimensions N1, N2 and N3xN4.
Then for the next stage we handle dimension N2 , N3 and N4. So in the second stage
there are 4 indices to represent each address. Although the addresses of the data can
be expressed implicitly by the addresses of their locations in the memory, it is safer to
include the addresses in form of the indices as a header to the data points. For a
four-dimensional case, only the indices of the last three dimensions are sufficient since
the first indices are implied by the location of the three branches. As the address
generation (by integer calculation) takes a negligible duration in comparison to the
complex calculation of DFTs, whether the addresses are pre-calculated or not is not

significant.

2.5.4 Analysis in timing : In a multiprocessor network, communication between
processors is usually time consuming and should be kept to a minimal. The
tree-network is so connected that it is most suitable for computing a transform of
sequencé length N = 3x5x..., where exchanges of partial products are required only
after dimension 5. If N = 3x5x7x11, after the computation of dimension 3, the data
are neatly distributed among the three branches which do no communication with
each other. After dimension 5, partial products must be exchanged between each
branch processor and its own leaves. Having completed the exchanges, each processor
holds all the 77 data required for the remaining computation, which means that no
further communication is needed. This is valid even if the sequence lengthis extended

to more than 4 dimensions.

A program was written in OCCAM for implementing a transform of N =

3x5x7x11=1155 and loaded into the tree-network simulated by our 16 -node

page 35

transputer network called SUPERLINK [21]. For each node, a T800 transputer is
used with 32 Kwords local memory. The clock rate of the system is 20 MHz and the
speed of the communication links is at 10 Mbits/sec. The process begins by passing
the 1155 points of data (in form of complex numbers, 2x32 bits) in groups of 3 and in
triplicate to all the branch processors simultaneously. The duration takes about 52 ms.
The DFT are performed by direct calculation. In dimension 3, 385 points of length-3
DFT are evaluated by each processor, with a maximum duration of 12 ms. The

loading assignment for the partial products is :

Processor number Group number
1 0to15
2 16 to 31
3 32to 46
4 47 to 61
5 62 to 76

The partial products are then distributed to the 4 leaf processors for the length-5
calculation. The passage of data from the root, the length-3 DFT collocation and the
distribution of partial products after dimensioq 3 are performed in a pipeline. Hence
the duration of the passage of data from the root (52 ms) covers the total processing
time for these three operations. Inthe dimension 5, the evaluation time for at most
80 data points (16x5) by 1 processor is about 4.2 ms. The communication time for
passing for the same number of data points from one processor to its neighbour is
about 3.6ms. The longest path, which involves routing through an intermediate
processor, takes 7.2 ms. The Transputer Technical Notes [22] suggest that the
computation and the communication process can be decoupled, but our simulation
reveals that these two processes cannot be totally independent of each other as

synchronous communication is adopted. Since there is also a set-up time for each

page 36

communication, to transfer the partial products in blocks are more efficient. In
dimension 7 and 11, no exchanges of data between processors are required. The
address generation time is very small as compared to that for evaluating the DFT - it
takes about 0.97 us to produce one set of group number and sequel number. After the
final stage of computation, the results are distributed among all the processors and
must be returned to the host system through the root processor. It takes another 52

ms to complete this passage. A summary of the timing is tabulated in Table 2-4.

2.5.5 Concluding remarks : From Table 2-4, it is obvious that the communication time,
which actually is associated with the hardware, dominates the total duration of the
process. Given that there are. available faster communication channels or alternative
arrangements in memory storage like dual port RAM or direct memory access, the
communication time can be greatly reduced. The address generation takes only a
negligible amount of time. Furthermore these addresses can be generated
beforehand. To make a fairer comparison, let us consider only the computational
time. The total computational time in the tree-network is 34.5 ms. Had the whole

process be implemented by a single transputer, the computational time would be 370

ms. Hence the speed-up factor :

computational time by 1 processor _ 370
. . = =10.7
computational time by network 34.5

Table 2-4 : Timing of the tree-network

max. data points |communication |computational |address gen.
/processor __|time /processor [time/processor |time
from root 1155 0 0
52 ms

length 3 365 12 ms 0.37 ms
length 5 80 3.6 ms* 4.2 ms 74 us
length 7 77 0 6.6 ms 74 us
length 11 77 0 11.7 ms 74 us

* The longest route takes twice the duration

page 37

Excluding the root processor, there aré 15 processors in the network carrying out the

evaluation. The efficiency is :

speed—up factor _10.7 _ 71%
total number of processors 15 ’

When a multi-processor system is used for evaluating DFT by PFA, the data
transfer between processors must be kept to a minimal level in order to achieve a high
turnover of results. The tree-network is a suitable topology for a PFA of 3x5x ...
because data transfer is done only after dimension S and among the processors within
the same branch. The addresses in the form of indices of different dimensions and the
address prediction scheme introduced are very convenient in determining the
addresses of data in the next dimension. In most practical cases, a sequence length of

3x5x7x11 = 1155 for DFT is quite sufficient. Therefore, a four-dimensional PFA

should be most common.

page 38

CHAPTER 3

SUB-NYQUIST SAMPLING

When an analog signal is processed by a digital system, sampling of the input
signal must be done. To choose a suitable sampling period T or equivalently a sampling
rate Fs = 1/T, we must have some information concerning the frequency content of
the signal. In general, all the signals related to engineering, such as speech or
televisilon, can be represented over a short time segment as a sum of sinusoids of
different amplitudes, frequencies and phases :

N
xa(t) = Y, Ai cos (2fit + 6)
i=1
For each of these signals, however, the maximum freciuency does not exceed a known
frequency Fmax . For example, Fmax = 3 kHz for speech and Fmax = 6 MHz for
television. Based on the knowledge of this Fmax , an appropriate sampling frequency
Fs can be determined. We know that the highest frequency in an analog signal which

can be unambiguously reconstructed is Fs/2 when the signal is sampled at Fs. Any

frequency above Fg/2 will yield sample values identical to a corresponding frequency

analog xa(t) X(m) y(n) ya(t) yYa(t)
signal Pre- | Digital | Post-
filter A/D | Processor | D/A 7| filter

Fig. 3-1 Block diagram of a digital system processing an analog signal

page 39

in the range -Fs/2 < f <Fs/2. These ambiguities arising from aliasing can be avoided

by selecting a sufficiently high sampling rate which is Fs = 2Fmax .

3.1 Shannon Sampling Theorem
A band-limited continuous-time signal, with highest frequency (bandwidth) B
hertz, can be uniquely recovered from its samples provided that the sampling rate Fs

> 2B samples per second.

According to this theorem, if the highest frequency contained in an analog
signal xa(t) is Fmax = B and the signal is sampled at a rate Fs >2Fmax = 2B, then xa(t)

can be exactly recovered from its sample values using the interpolation function

_ sin2nBt
80 =" &

Thus the signal is reconstructed by :
n n
1) = —lg(t—-),
Xa(t)) ;_:;‘“ (Fs) 8-)

where xq (Fi) = xq(nT) = x(n) are the samples of xa(¢). This is called the ideal
N

interpolation formula, of which the proof can be found in many reference books [1,10].

When the sampling of xg4(?) is done at a minimum sampling rate Fs = 2B, the

reconstruction becomes :

< _ (n) sin2zB(t-n/2B)
x“(‘)‘zx"(zB) 2B(t-n/2B)

n=—oo

The above series is known as the Cardinal Series of Shannon Sampling Theorem[23].
The sampling rate Fs = 2B= 2Fmax is called the Nyquist rate. When aliasing occurs

due to a sampling frequency lower than the Nyquist rate, the effect can be understood

page 40

Xa ()

B 0 B
(2)

f

X(fs)

1
~Xa(f—Fs)

1
/\ /
/ I . ‘ |
-Fs ,

0
(b)

XG5

==

(©)

Fig . 3 -2 Aliasing around the folding frequency (a) original spectrum
(b) reconstructed spectrum with no aliasing (c) reconstructed spectrum with

aliasing.

as a multiple folding of the frequency axis of the frequency variable f for the analog
signal. Any sampling process of which the average sampling rate is below the Nyquist

rate can be called a sub-Nyquist sampling process.

3.2 Randomized Sampling

A regular sampling sequence can be described mathematically by

page 41

i 3-1
u(t)=25(t—nT) G-

Hn=—o
where T is the sampling interval and 9 is the Dirac function. To make this description
applicable to irregular sampling, the above equation can be modified to a more
general form as

s (3-2)
u(t) = Y, 8(t — tn)

n=—o

where tn is the sampling time at interval n. For regular sampling, tn = nT. If sampling
is performed at random instants, we can write

th =nT + tn n= 0,1,2,... (3-3)

or
In =1Ith—1+7Tn n=2012,.. (3-4)

where 7 is a random variable. The sampling intervals chosen according to eqn (3-3)
adds a jitter to the regular sampling interval. Eqn (3-4) describes a process which is
known as additive random point process. It was proposed by Shapiro and Silverman
[24] as a convenient tool for performing randomized sampling. Hence we may call the
sampling derived from the above two process as the jittered sampling method and the
additive random sampling method. When performing the additive random éampling,
the randomness introduced into the sampling process can be controlled by one
parameter, the ratio o/u, where o and p are the standard deviation and the mean value
respectively of the sampling periods defined as tn - tn-1 at interval n. If 0/u = 0, the
sampling is periodic and the time intervals between the points are equal to T. By

increasing this ratio, it is possible to obtain an extremely randomized sampling.

As discussed in section 3-1, if the sampling rate of a regular sampling sequence

is below the Nyquist rate, aliasing will occur. In section 2.1, the periodic extension of

page 42

a regularly sampled signal is briefly mentioned. It can be shown that aliasing is in fact
associated with this extension on a regular sampling grid. Using a suitable randomized
sampling scheme, an alias-freel, sub-Nyquist sampling can be achieved. Shapiro and

Silverman [24], Beutler [25] and Masry [26] published various theorems and criteria

on alias-free sampling.

3.2.1 Theory of Shapiro and Silverman : Shapiro and Silverman argue that jittered
sampling is not alias-free since the sampling time tn are still "attracted” to the
equi-space value nkh, where h is the average sampling period. What is needed to break
up this regularity is some sort of "floating point" sampling scheme. Thus the additive
random sampling, in which each sampling time is derived from the preceding one by
the addition of an independent random variable, is introduced. Keeping their
notations, fn = th—1 + yn, where yn, n= ..,-2,-1,0,1,2,..., is a family of identically

distributed, independent random variables, with E [yx] =h < and a common

probability density p(z). Of course p(r)=0 and f ” p(r) dr = 1. The Fourier

transform of p(7)

p(w) = f io exp(iwt) p(r) dr = f : exp(iwt) p(r) dr 3-5)

is the characteristic function (in the sense of probability theory) of the distribution
p(7)-
Shapiro and Silverman study the correlation function of a random sequence

and subsequently propose the following theorem : Additive random sampling is alias

free if the characteristic function ¢(w) takes no value more than once on the real axis.

! Sampling is alias free iff the translates by 2 7zn (n any integer) of the support of the spectrum of x(t)

are all disjoint.
page 43

First they show that the correlation sequence ch(n) and its correlation function C (r)

of a random sequence xn(t) is given by :
en(n) = E ltmsn) xem)] = [C@)pale) de
where pn(7) = f (T) prn—1(v—u) p(u)du,n=2, and p1(r) = p(r). For an additive random
sampling sequeﬁce :
cn(n) = [: C@)pn()dr, n=1

ch(n) = C(0) .
By Parseval’s theorem and the convolution theorem for Fourier transform, ch(n) is

related to the power spectrum F(w) :

am =" Foyg'@do, =0 (3-6)

The question to be answered is : For which p (z) is there only one correlation function
which leads via eqn (3-6) to a given correlation sequence ch(n)? if no aliasing occurs,
eqn (3-6) is satisfied for only one distinct real (non-negative) function in LNz By
conformal mapping, it is found that the required p (z) has its characteristic function

¢(w) which is one-to-one on the real axis. This is the sufficient condition for additive

random sampling to be alias-free.
Finally, the "Poisson sampling" with an average rate p and p (v) = pexp(-p7)

forz = 0 and p (v) =0for 7 < 01is verified to be alias free.

3.2.2 Beutler’s Theory : Beutler defines that a sampling sequence {tn} is alias free
relative to S (a family of spectra) if no two random processes with different spectra

belonging to S yield the same correlation sequence {r(n)}.

page 44

The correlation sequence of the discrete process {x(tn)} is denoted by r(n) =
E [x(tm +n)x*(tm)] where * indicates complex conjugacy. It is also supposed that the
probability distributions of (tm+n - tm) do not depend on m. Under the assumption
that {x(t)} is wide-sense stationary, r(n) depends only on n. Two random processes
with respective spectra G1 and Gz are said to have different spectra if there exists a

continuous function f such that

{7 flw)dH(@) #0
where H = G1- G2. Thus spectra are regarded as identical iff they differ by at most

a constant at all their points of continuity.

Whether a given {tn} is alias free relative to S depends on the relation between
G and {r(n)}. The expectation on x(t) is most conveniently written in terms of its

spectral representation :

E [x(l‘m+n)x*(tm)] = % fo_ooo {exp[ia)(tm+n - tm)]} dG(w) 3-7)

Consequently :

i) =5 [_faliv) dGw).

By definition fi(n) = E{exp[—it:(tm+n = tm)]} = [" AR), 3-8

in which Fn is the probability distribution function for n successive sampling intervals.
Note that the difference in sign of the exponential in (3-7) and (3-8) is irrelevant
because of the character of G for a real stochastic process. For each possible set of
{tn} statistics, the mapping G ~> {r(n)} is a linear bounded transformation. Aninverse

exists in the sense that G can be inferred from {r(n)} iff this transformation is

page 45

one-to-one. Thus the definition identifies the spectral recovery capability with the

alias-free property.

Letf3 s be the family of measures induced by H of the form H = G1- G2, where

G1and G2 are any spectra belonging to S. In particular the null measure is in f§ s and

we have the following theorem : The sampling sequence {tn} is alias free relative to S
iffwith HE f3 §

J7 frdH@) forallnimplies H = 0. (3-9)

From the above theorem, the following corollaries are deduced.

Corollary 1 : Let s be a Banach space2 with dual 3§, and assume that each fn €

f3s. Then {tn} is alias free relative to S iff {fn}is closedinf3s.

Since closure and completeness are equivalent in a Banach space, Corollary 1

can be rephrased as :

Corollary 2 : Under the hypotheses of Corollary 1, {tn} is alias free with respect to S
iff every g € 35 can be approximated as closely as desired (in fs norm) by finite

linear combinations of the fr .

Assume that (tm+n - tm) has a probability density fn. A substitution of (3-8) in

(3-9) followed by an application of Fubini’s theorem yields the following.

Corollary 3 : Let D be the difference of two correlation functions corresponding to

spectra belonging to S. Then {tn} is alias free relative to S iff
| :fn(u) Dw)du forallnimpliesD = 0.

2 A Banach space is a normed space which is complete in the metric defined by its norm; this means
that every Cauchy sequence is required to converge [27].

page 46

After setting the above.criteria, three examples of {tn} are examined to see
whether they are alias free. The first example is the Poisson point process. The second
example is a sequence sampled on a finite interval by periodic sampling, in which
samples are randomly and independently skipped such that the average sampling rate
is an arbitrary small fraction of the Nyquist rate. The third example is the randomly

jittered sampling at Nyquist rate. All the three examples are found to be alias free.

3.2.3 Expectation value of Spectrum : The spectrum of a signal x(t) sampled in a
duration To can be given by the Fourier Series

S0 = = ["5 exp(~j2rfe) di G-10)

where fk =k/To and k is an integer. When x(t) is sampled by a randomized timing
sequence {tn}, according to Bilinskis and Mikelsons [28], the spectrum of the sampled
signal {x(tn)} :

r© (3-11)

Se(i) = 1M 2 1) u(e) exp(~j2fic)

>0 J

where © = EJ[tn], N is the number of samples processed, fk = k/© and k is an integer.
Making use of eqn (3-2), [x(tm)} = | _x(t) (¢ — ta) t, it follows that

N-1 (3-12)

. 2 .
Ss(fie) = Nhfioﬁ x(tn) exp(=j27efitn)
n=0

Let us consider the case when sampling is performed periodically. Then the function

u(t) = d (t - tn) is also periodic and its Fourier series is

1 12 (3-13)
u(t) =7 ?or;l[exp(—hrt/To) + exp(2rt/Tp)]

Substituting (3-13) into (3-11) and neglecting the scaling factor 1/To yields

page 47

Ss(fk) = elfioé x(t) exp(—j2nfit) {1+Z [exp(—j2nrt/ To) + exp(j2mrt/ To)]}
r=1

i 2 li
- f x(t) exp(—j2fit) dt + 21 o6 f ()
r=

X [exp(—j2nrt/To) + exp(j2nrt/Ty)] dt
_Sx(fk)+2[x(—+fk) +Sx(fk)}

where Sx(fx) = @1220 % x(t) exp(—j27fit) dt is the spectrum of the original signal

(3-14)

and S (fk) is the complex conjugate of Sx(fk). Eqn (3-14) shows that replicas of the
original spectrum are found periodically in the frequency domain as depicted in Fig.
3-2 (b). When the sampling frequency is lower than the Nyquist rate, aliasing will

occur because of insufficient separation as depicted in Fig. 3-2 (c).

Now assume that {tn} is a random sampling sequence, and pa(t) be the
probability density function (p.d.f.) of the nth random variable in u(t). From eqn

(3-11), the expectation value of the estimated spectrum :

- N (3-15)
1 lim 2 (© :
[@f‘wss(f >] = 0w), Efnm [x(t) exp(—j2fit)] dt
n=
u 1
If the "total" p.d.f. at time t, p(¢) = zpn(t) =g =a constant, then (3-16)
n=1

[e}inooss(f)] = @lgnw@zyf x(t) exp(—j2nfict) dt

Hence the expectation of the estimated spectrum approaches the original spectrum
if the condition specified by eqn (3-16) is satisfied. Note that no replicas of the original

spectrum nor any aliasing is produced.

page 48

3.2.4 Jittered Random Sampling : Bilinskis and Mikelsons discuss the alias-free
property of the jittered random sampling and the additive random sampling by looking
at the probability density functions (p.d.f.) of the random variable 7 inserted into the

sampling intervals. For the jittered random sampling, the timing model is given by

th = nT + 1, n= 0,1,2,...

where {zn} is a family of independent identically distributed random variables with

zero mean. Let to = 0, the "total" p.d.f. of the time intervals at time t from tg is

N

P =Y pu(), N-w

n=1

where pu(t) is the p.d.f. of 7a. To understand the meaning of the function p(t), imagine
that a narrow time window At is moved along the time axis. Under the condition that
At - 0, p(t) at any time t is equal to the probability that one of the sampling points ts
will fall within this window At. Fig. 3-3 shows the p.d.f. of a set of random variables
belonging to a stream of jittered sampling points forn = 1to 7. As can be seen from
the figure, this particular function has multiple maxima and minima and the peaks do

not change as t increases. Obviously, this p(t) does not satisfy eqn (3-16).

If the time intervals are distributed uniformly in the intervals nT+0.5T, then
the resulting p(t) of the sampling points is constant for t > 0.5T, which can be seen in
Fig. 3-4. When this sampling scheme is applied, all instantaneous signal values are
sampled with an equal probability and eqn(3-16) is satisfied. It seems, therefore, that
this method of generating random sampling points is acceptable. However, there are
a number of substantial disadvantages which preven.ts the wide application of this

method. These drawbacks are :

page 49

@ _ /\
% tO 1 1 1 Jo 1 1 L 4 t
ty — I
® = A
- z e 1) 2 1 2 1 N
0|-<-t2 - t0->|
© z, /\
E_" fo 1 1 1 1 1 1 1 1.z
I"<_t3 — tq———)—l
= [) g L 1 1 1 IS

o LAANNNNNIL,

Fig. 3-3 Probability density functions characterizing the jittered sampling. (a),(b),(c)
and (d) : Probability density functions of time intervals at ty, ta,t3 and ta. (e) Resulting
. sampling point density function. (From [28])

plt)

plt))

plty)
-
|
B

——— S — —— — ———— —— — —— — — —— —— — ———— —

plt;)
i_

plt}

[| 1 L] 1 1y

Fig . 3-4 The probability density function of a jittered sampling that Tn are distributed
uniformly in the range T+0.5T . (From [28])

page 50

1. The random variables {z }should be distributed strictly uniform within the given

intervals.

2. Time intervals between any two successive sampling instants tn and tn+1 may be

very short. The implementation of this scheme should be wide-band even at a

relatively low mean sampling rate.
3. The randomness introduced is considerably large.

4. Statistical errors resulting from the relatively powerful randomness introduced at

sampling are significant.

3.2.5 Additive Random Sampling : In case of additive random sampling, samples are
taken at instants

th =tht1+7n, n=012,..
where 7, is a realization of a random variable. Consider the time interval [0,ta] =t1
+12 +.. +tn. The random variables are characterized by their respective p.d.f.

{pn(t)}. We can write

pi(t) = pr()
p2(t) = p1#pz(t)

pn(t) = pn—1*pz(¢)

where * denotes the "additive" operation. As the interval [0,tn] is a sum of n
statistically independent random variables, we know from the central limit theorem
that whatever p.d.f. these variables may have, the probability distribution of the
random variable [0,tn] will approach the normal distribution as n approaches infinity.

Fig. 3-5 shows two different p.d.f:s; one is uniform and the other is exponential. The

page 51

’ p‘(r))) le\
[—., e,
2p,(t) 2p,(t)
‘A /” ‘\\
: /2 === /2

8pglt) 4
/]\ |
: t/8 /8

Fig. 3-5 Evolution of probability density function px(t) when p1(t) is (a) uniform and
(b) exponential. (From [28])

expected value of the time intervals {(tn-tn-1)} is #. In both cases the corresponding
pr(t) change and become more normally distributed as the summing of intervals

proceeds fromr=1to 8.

Consequently, when the additive random sampling is applied, no matter what
form of pz(t) a variable 7 may take, the sampling point density function p(t) will always
tend to the constant level 1/u when t exceeds a certain time Ta which depends on
pz(t). Fig. 3-6 shows the p.d.f. of an additive random sampling scheme from to to t8. It
can be seen that p(t) tends to become flat as t progresses. Hence when t is large, p(t)

= 1/u, which means that eqn (3-16) can be satisfied.

Bilinskis and Mikelsons also analyze the case when the sampling intervals {tn,
tn+1} are correlated. They give an example that the individual {tn} are distributed
normally with a mean value # and a standard deviation . The correlated additive

random point process can be defined as

page 52

n=to+11=1t0+u + 01

th=th-1+Th=u +p(rn_1—y)+aV1—p2§n forn > 1

where {&n} are the uncorrelated instantaneous values of a zero mean normal random

process with a variance of 1 and p is the correlation coefficient defined as

E[th th+m] _ m

Pm = 02

with |p| < land lim m-« pm = 0. Fig. 3-7 shows a positively correlated a.r.s. in (a)
and a negatively correlated a.r.s. in (b). It can be seen from the figure that a positive
correlation function helps the sampling point density function converge to the
constant level 1/u sooner. If, however, ‘the correlation function is negative, the

convergence of the sampling point density function will be slowed down.

to /l\ 1 1 L L Il 1 1 t

plt)

pity)

et — g5

..“_i, to [l 1 /l\ I | 1 1 | t
——— ¢, — to——»—l)

= |

E t0| | i 1 1 I P 1 /i\ L t
el t7"" to i

=

[

Q Ly 1 <4 1 ¢

Fig. 3-6 Probability denéity functions characterizing additive random sampling : (a),
(b), (c), (d) Probability density functions of time intervals at t1,to,t3 and t7. (e)Result-
ing sampling point density function. (From [28])

page 53

{a)

plt}

=-112
(b}

plt)

N

Fig. 3-7 Sampling point density functions for uncorrelated sampling (dashed lines)

and correlated sampling of a.r.s. when (a)p = 2, (b) p = — (From [28]).

From the analyses of various authors, we can conclude that additive random
sampling surpasses jittered sampling in acting as an alias-free sampling process. The
magnitude of the estimated spectrum recovered from the sequence sampled by a.r.s.

approaches the exact values if the number of sampling points is large enough.

3.3 Realization of Additive Random Sampling

To sample a signal x(t) by a.r.s., the timing is specified by eqn (3-4), which is

th =th—1+Tn,n =0]12,.. After a sampled sequence {x(tn)} is obtained, the

amplitude spectrum can be reconstructed by

1N—1
X(0) = 7 >, *(tn)
n=0

page 54

) N-1 3-17)
X(k) =5 > x(tn) exp(—j2nfitn), k=123, ...
n=0
where N is the number of samples and should be a large integer. Eqn(3-17) is a slight
modification of eqn (3-12). In the normalized case, the total sampling period To =1

second and fo = 1 Hz, then fk = k. Eqn (3-17) becomes

N-1

X(k) =]%Z x(tn) exp(—j2nktn), k=123, ... (3-17a)

n=0
Amplitude spectra of a signal reconstructed from regular sampling and a.r.s. are shown
in Fig. 3-8 for comparison. Note that the Nyquist limit is at k = 512. When a.r.s. is
adopted (Fig. 3-8 (b)), there are no longer any replicas of the original spectrum in the
frequency domain. The sharp aliases in this case are turned into a broad-band
background noise. Provided that the signal-to-noise ratio is high, the signal can be

recognized easily by setting a suitable threshold in amplitude to pick out the signal.

1.6]
e @
r -
0l |
0 ‘ I 2047
512
1.6 [
(b)
0
0 161 506 900 K 2047

Fig. 3-8 Amplitude spectra of a signal sampled for 1024 points by (a) regular sam-
pling, (b) additive random sampling. Note that the Nyquist limit is at k = 512.

page 55

In this example, the signal-to-noise ratio is 17.3 dB and the average accuracy of the

recovered signal is 95.3 %.

3.3.1 Computational Complexity : In Chapter 2, the computational complexity of a
few fast algorithms, including the best known radix-2 FFT, have been mentioned. The
main saving in computation of these fast algorithms, in fact, comes from the
trigonometric symmetry of the kernel of the transform, which is exp(-j2rkn/N). By
adopting the "divide-and-conquer" approach, the FFT exploits this symmetry to such

an extent that the complexity is reduced to Nlog2N.

When random sampling is adopted, the kernel of the transform becomes
exp(-j2nfktn), where tn is a random variable. At once we realize that the roots of unity
are no longer lying evenly on the unit circle in the complex plane. Hence no symmetry
is available and the complexity is obviously N2 By nature, when random sampling is
used, "fast" algorithms (in the sense of having a linear complexity, such as NlogN) are
not available. A heavy computation load is therefore the price that randomized

sampling has to pay.

3.3.2 Estimation of Noise Level : Assuming that the input signal is a simple sinusoid
of unity amplitude, i.e. x(t) = lexp (2nfit) volt, let us estimate the signal-to-noise ratio.
The sampling time of a randomized sampling scheme is tn = nT + fn, where T is the

mean sampling period and fn is the deviation from the mean value at time tn. Then

the sampled signal is given by

x(n) = exp [jznﬁT (n+ ﬂ—}’)} = exp [ﬂﬂ% (n+ %")]

since fi = k/NT. Then the DFT of x(n) is, according to Berkovitz and Rusnak[29]:

page 56

N—-1
x0 = Sesol 5 (14
n=0

oo | 2 (o)

(3-18)

N-1
] 201,
= Yexp {Jz—fvﬂ (k—l)} oxp |22 ﬁ” (k= z)}
n=0
To compute the power spectrum, eqn(3-18) is multiplied by its conjugate and then the

expected value is taken :

N 1IN— . .
E[IN(D] = E z exp [szvn (k—l)(n—m)J E{exp [%7;—, (k—l)(ﬂn—ﬂm):l }

(3-19)
The value of the expected value on the right hand side of eqn (3-19) is of the form :

1, n=m

Ep - E{exp[o ﬁm)}} {H

where i is an integer. When 1 =k, E[IN(1)] gives the spectrum of the original signal :

NSINSL T (3-20)
E[ND) ZN'E ex { (0)(n- m)J
n=0 m=0

When 1 # k, eqn (3-19) gives the noise in the background. When n=m,
[2mn _ -
exp |~y (k—=l)(n—m)| = 1and Eg = 1. There are totally N cases. Hence eqn (3-19)

becomes :

E[IND)] =%2 Zexp[o (e=D(n— m)} Eg+1

nEMMmM#*=n

1

=N 2 e [N kD= O)} Epo + exp [L (k=l)(n— 1)} Epi+..}+1
nx m

(3-21)

There are N of these exponential terms and all the Eg’s have the same value. Looking

at one of these exponential terms :

K L exp [%”— (k—zxn—p)} Ep + B - Eﬂ}
zm

page 57

(3-22)

N

z5

N-1 . 2
[Sexp [% (k—l)(n—p)} 1p= e
n=0

N-1 [P
because (k-1) and (n-p) are integers, so the summation is of the form . exp (%) =
i=0

0. Substituting eqn(3-22) into (3-21) yields :

ElNO] =1~ |q]? (3-23)

3.3.2.1 Noise and Signal Power : From eqn (3-20) and (3-23), the average
signal-to-noise ratiois N : (1 — |q| 2) and the maximum noise power is obtained when
lq] 250.Asa rough estimation, within the band from k =0 to N-1, if the input x(t)
=exp (2nfit +6), the minimum signal-to-noise ratio is N : 1. Hence in a band of N
frequency components, the signal-to-noise ratio for 1 watt of input is :
S/N=N:1(or 10logN dB) (3-24a)
If amplitude is concerned, for 1 volt of input in the same band, the ratio becomes :
S/N = VN : 1 (or 20 log1sVN dB) (3-24b)
From eqn(3-24a), it can be seen that noise power is 1/N watt in a band of N frequency
components per watt input. Hence the noise spectral density per watt input is :

n= -1\-115 (W per frequency resolution) (3-24¢)

The above analysis is based on the timing model of the jittered sampling. In
case of the additive random sampling, the expected value of the exponential term of

the random variable should be [29] :

o | 2 -} =

page 58

where qr is the value of the characteristic function of v at frequency fi. Since the

minimum signal-to-noise ratio of N : 1is obtained at |q| 2, 0, the result should give
a good indication to the additive random sampling as well. Simulation results about
the signal-to-noise ratios are tabulated in Table 3-1 and 3-2. From these tables, we can
see that the noise power in the band depends on the sequence length N as well as the
total input signal power. When N =480, the signal-to-noise ratios from simulations
are close to the estimated value, but when N = 1024, the signal-to-noise ratios drop

slightly below the estimated value.

Table 3-1 : Signal-to-noise ratios (as defined by eqn (3-24a))of spectra
reconstructed from jittered sampling

Input, V length N [recovered| total noise, | S/N,dB | S/N,dB
amp., V_|power, v? rms, mV |simulated | estimated

exp(27 x 30tn) 480 141 1.99 65.7 26.6 26.8
1024 1.42 2.02 46.7 29.6 30

2 cos (27 x 200 ty) 480 2.00 4.00 97.0 26.3 26.8

2 cos (27 x 600 tn) 1024 2.05 4.20 67.1 29.7 30

cos (2 x 30 ty) +sin (27 x 480 117,118, 7.51 127.3 26.6 26.8

200tn) +2 cos (27 x 400 ty) 2.18

cos (27 x 30 ta) +sin (27 x 1024]0,89,096,1 5.38 84.9 28.7 30

400tn) + 2 cos (2 x 800 tn) 1.92

Table 3-2 : Signal-to-noise ratios (as defined by eqn (3-24a)) of spectra
reconstructed from additive random sampling |

Input, V length N |recovered| total noise, | S/N,dB | S/N,dB
amp., V_|power, V2 rms, mV | simulated | estimated

exp(27 x 30tn) 480 1.42 2.02 61.2 273 26.8
1024 142 2.02 42.6 304 30

2 cos (27 x 200 tn) 480 1.96 3.84 86.4 27.1 26.8

2 cos (27 x 600 ty) 1024 2.05 4.20 67.1 29.7 30

cos (27 x 30 tn) +sin (27 x 480 |107,097,| 6.58 126.8 26.1 26.8

200tq) + 2 cos (27 x 400 tn) 2.12

cos (2 x 30 tp) +sin (27 x 1024 (0.93,1.08,| 6.92 84.7 29.8 30

400tn) +2 cos (27 x 800 tn) 2.03

page 59

From tables 3-1 and 3-2, we can also see that the total signal power to noise
power is a constant at a particular length N. This implies that the individual
signal-to-noise ratio will be lower when the input has more than 1 input frequency
components. Taking the last row of table 3-1 as an example, the individual
signal-to-noise ratios are 20.5dB, 20.5dB and 26.4dB while the total signal-to-noise
ratio is 28.2dB. If there are m frequency components of equal power, the individual
signal-to-noise ratio will be P¢/m : Pn, where Ps and Pn are the total signal power and

the r.m.s. noise power respectively. Hence

P P
S/N = 10 logio m—;,n = 10 logxo F,i — 10 logom

=total S/N — 10 logiom (3-25)
If m =3, the individual S/N should drop by 4.8dB from the total S/N. By simulation,
a signal x(t) = cos(2nx30t) + cos(2nx50t) +cos(27x80t) is sampled by jittered

sampling for 480 points. From eqn (3-24), the estimated total signal-to-noise ratio is

26.8 dB. The simulation results in a total signal-to-noise ratio of 26.4 dB and the

S/N, dB
0 T T T] T T I T
—'5 - p
10 L I i l | I]
1 2 3 4 s 6 7 8 9 10

Fig. 3-9 Drop in signal-to-noise ratio (dB) with the increasing number of frequency
components (m).

page 60

individual signal-to-noise ratios are 21.5,21.6 and 21.8 dB. Taking the median value,
the dropis 26.4 -21.6 =4.8 dB, which matches the predicted value. Since the individual
signal-to-noise ratio will decrease as the number of frequency components increases,
random sampling is suitable for an input signal with only a few frequency components

in order to maintain reasonable individual signal-to-noise ratios.

3.3.2.2 Noise and Bandwidth : To compute a band of N frequency components,
eqn(3-17) or (3-17a) may be used with k=0,1,2,...,N-1. When a higher band of another
N frequency components are to be evaluated, the same equation will be used, but in
this case k = N,N+ 1,N +2,..., 2N-1. If a sinusoidal signal is an input signal located in
this band, the noise analysis will be exactly the same as stated in section 3.3.2 and the
estimated signal-to-noise ratio will also be given by eqn(3-24). Theoretically, the
signal-to-noise ratio in a band of N components remains the same even if the
frequency indices increase, which implies that the background noise is independent

of the bandwidth. Table 3-3 shows the signal-to-noise ratios of different input signals,

Table 3-3 : Signal-to-noise ratios in different frequency bands

Input signal in V recovered Noise in mV, (S/N in dB),
N =480 p‘yf" with k=
. 0-479 480-959 960-1439 1440-1919
jitter, cos (2 x 30t) 0.98 48.01 61.47 64.64 64.05
(26.2) (24.1) (23.7) (23.8)
jitter, cos (27 x 530t) ‘ 0.96 5227 55.16 62.80 64.57

(255) | (25.0) | (23.9) | (23.6)
jitter, cos (2 x 200t) +sin(2 | 295 | 103.0 | 1012 | 1042 | 1093

x 800t) + cos (27 x 1200t) (24.4) | (24.6) | (243) | (23.9)
a.r.s., cos (27 x 30t) 1 43.26 68.20 61.26 66.06

(27.3) | (233) | (24.3) | (23.6)
a.r.s., cos (27 x 530t) 1.05 59.20 51.56 68.04 63.53

(24.8) (26.0) (23.6) | (24.2)
a.r.s., cos (27 x 200t) + sin(27 2.40 99.35 87.13 96.08 104.9
x 800t) + cos (27 x 1200t) (23.9) (25.0) | (24.1) | (234)

page 61

all of which have a sequence length N = 480. From this table, noise levels are
evaluated up to 4 times of N. We can see that the signal-to-noise ratios do not vary

more than 3 dB from band to band.

3.3.3 Word-length and Bandwidth : In theory, there is no fold-over frequency or
replicas in the frequency spectrum when random sampling is applied. This is true if
the sampling times can be represented with infinite word-length in a system.
Unfortunately, no practical digital systems have infinite word-length and a finite
word-length set a limit to the useful bandwidth of the reconstructed spectrum. It will
be shown that the resolution of the word-length is in effect the sampling frequency of

the system.

Assume that the frequency spectrum is evaluated in the normalized case as in
eqn (3-17a), which is :
) N-1 (3-17a)
X(k) =< > x(tn) exp(—j2nktn), k=123, ...
N
n=0
and tn is represented by d digits past the decimal point, i.e. ta is of the format 0.yyyy
.. tod .places. When k = 109 , we have in the kernel exp(—jznxlode.yy)y...)=
exp(—j27m Xyyyy...) = 1because the term inside the bracket becomes a whole multiple
of 27z. Since exp (0) =exp(-j2nm) =1, this is the "zero’ of the function and we have

made a complete revolution along the unit circle in the complex plane at k= 109 1t

can be checked by letting k= 104+ 1, then

exp(—j27 X (1044 1) X0 yyyy...) = exp(—j2 Xyyyy...)exp(—j2w X 0 yyyy...)

= exp(—j2 X 0.yyyy...)
which is the same as at k = 1. The case is exactly the same as in a regularly sampled

sequence of length N when the frequency index k reaches N + 1. Hence it is obvious

page 62

that the fold-over frequency is at k= 10%/2. Consider the following example. Let the
sequence length N =480 and the sampling times are recorded to 3 decimal places.
Then the fold-over frequency should be at k=1000/2 = 500. Fig. 3-10 shows the
reconstructed spectrum sampled by jittered sampling and the corresponding fold-over
frequency. In all digital systems, numbers are expressed in binary digits. Suppose the
timing is expressed in a normalized format (the value of the mantissa is between 0 and
1) by floating-point number with a b-bit mantissa and a positive x-bit exponent, then
the "period" of the spectrum will be 2% Hz and the fold-over frequency is at 2ol

Hz. Fig. 3-11 shows the useful bandwidth of a representation of timing by fixed-point

number when the fractional part varies from 8 bits to 20 bits.

3.3.4 Practical Considerations : As a summary, let us consider a numerical example.
Suppose a bandwidth of 4 GHz is to be covered by a random sampling scheme with
a frequency resolution of 0.5 MHz, then the total sampling period = 10°/05 =2
us. If we divide the whole band into 4 bands of 1 GHz each, then in each band we
need 10°/ (0.5x 10’6) = 2,000 frequency indices. We may choose to take 2,000 samples
in 2 us, then the mean sampling period = 2us/2000 = 1 ns, or the mean sampling
frequency is 1 GHz (as compared to 8§ GHz by regular sampling). The expected value
of the signal-to-noise ratio = 33 dB. For the whole band we need 8,000 points; hence
the sampling time should be accurate up to 5 decimal places or 14 bits after the decimal
point. The computational load for each band is 2,000° = 4x 106, and for the whole
band 1.6 x 10 (Suppose regular sampling is performed, 214 = 16,384 points of data

will be sampled. By FFT, the computational complexity is 2% 14 = 229,376

~229%10° .) If a signal -to-noise ratio having an expected value of 30 dB and a

frequency resolution of 1 MHz are acceptable, we may sample the signal for 1,000

page 63

Amplitude, V

1.4] | LB ¥ | | | I I

500

Fig. 3-10 An amplitude spectrum from a randomly sampled sequence of N =480
and sampling times expressed to 3 decimal places. Note that the fold-over frequen-
cy occurs at k = 500.

Bandwidth, Hz

1-10%
)"
=
L =
1°10° A
Ill
4
,
P
1+10* /
.4
&
/
1000
e
—
100
8 10 12 14 16 18 20
b, bits

Fig. 3-11 Useful bandwidth (Hz) and the number of bits representing the fractional
part of the sampling times.

page 64

points in 2 4s which gives a mean sampling frequency of 500 MHz. The computational
load becomes 4 x 1,0002 = 4x 105 The sampling time needs to be accurate up to 4

decimal places or 13 bits.

Random sampling is an alias-free, sub-Nyquist sampling; therefore, it is most
suitable to be adopted to any application that can benefit from this characteristic.
Since the background noise level increases with the number of frequency components,
the input signal to be sampled randomly should contain only a few sinusoids. Taking
all these into consideration, this sampling scheme has been adopted to build
measurement equipment, such as oscilloscope or frequency meter, where sub-Nyquist
sampling enables the use of slower, thus less expensive, hardware[2,28] and the input

signals are usually not too complex. Section 3.3.5 provides several typical examples.

In a random sampling scheme, the randomness of the random variable 7 can
be expressed by o/ u , where o is the variance of 7 and u is the mean sampling period.
If this ratio is too small, the sampling approaches a regular sampling so that alias may
occur. If, however, this ratio is too large, the error in the amplitude recovered will

also be large. Usually, wheno /g is around 30%, the result is satisfactory.

From section 3.3.2, we see that the signal-to-noise ratio depends on the input
power and the sequence length. It is found that the longer the sequence, the better
the signal-to-noise ratio. Unfortunately, a longer sequence length means much more
computation since the complexity of the computation is N2. When the sampling is
implemented by a digital system, the finite word-length of the system will set an upper

bound to the bandwidth of the spectrum.

page 65

3.3.5 Typical Applications in Instrumentation

3.3.5.1 Spectrum Analyzer : A spectrum analyzer displays in the frequency domain
the components of a stationary signal. When the input signal is to be processed
digitally, it has to be sampled and quantized before its spectrum can be computed. If
the signal is sampled regularly, an anti-alias filter must be inserted before the sampling
process. Since the bandwidth of this filter should be sufficiently wide to accommodate
a broad spectrum, the order of the filter would be high so as to achieve a reasonably
narrow transition band. A wide bandwidth also leads to a stringent requirement in the
speed of the hardware since the sampling frequency of the analyzer must be at least

twice the bandwidth of the anti-alias filter.

Random sampling is appropriate to be applied in spectral estimation. First of
all the anti-alias filter can be eliminated. The operation speed of the sampling
hardware can be reduced as the average sampling frequency can be made lower than
the Nyquist frequency. However, as discussed in section 3.3.3, the resolution in the
word-length of the sampling time must be high enough to support a wide spectrum.
Apart from gaining advantages in hardware, random sampling also provides a flexible
bandwidth. For a regularly sampled sequence of N points, only N/2 useful frequency
components can be recovered. With random sampling, the spectrum can be computed
to any index larger than N provided that the resolution in the word-length of the
sampling time is high enough and the background noise level is acceptable. The
appearance of a reconstructed spectrum would look similar to the spectrum shown in
Fig. 3-8 (b). Another numerical example can be found in section 3.3.4, which is

equivalent to an analysis of a spectrum of 4-GHz bandwidth with 0.5-MHz frequency

page 66

resolution. If a power spectrum is required, the auto-correlation method described in

section 6.4 may be adopted.

3.3.5.2 Meters : For detecting a simple signal comprising only a few sinusoids which
are located within a narrow frequency band, random sampling, especially hybrid
additive random sampling (section 5.5), is a suitable choice since the amount of
computation incurred is small. One such example is the frequency meter, which is
usually for measuring monotonic input. There are instruments whose operation is
based on non-linear signal conversion, e.g. true r.m.s. voltmeters and wattmeters.
When a non-linear converter is involved, it can be quite troublesome if high precision
and broad bandwidth are simultaneously required. For this type of instruments, after
the conversion process and sampling, the quantity to be measured is made
proportional to the d.c. term of the resulting spectrum [2]. If the converted signal is
regularly sampled, aliases produced could be very close to the d.c. value, making
subsequent filtering very difficult. When the signal is sampled randomly, aliases will
" become broadband background noise, which can be filtered easily. In this scheme,
only the d.c. value of the spectrum is to be computed; thus averaging, not
multiplication, is required for calculating the desired quantity. The computation is

therefore very simple.

3.3.5.3 Oscilloscope and Filter : Instruments may be so designed that its output signal
is reconstructed in the time domain from a periodic input sampled randomly or
irregularly. One example is the sampling oscilloscope which utilizes sub-Nyquist
sampling to improve its high-frequency performance [30]. Fig. 3-12 illustrates the
working principle-of the oscilloscope. From the timing diagram, it can be seen that

each sampling pulse turns on the sampling circuit for a very short interval. With

page 67

reference to the input waveform, the positions of the sampling pulses shift horizontally
such that different parts of the input cycle are sampled in each period. In this way,the
oscilloscope plots the output waveform point by point, using as many as 1,000 samples
to reconstruct the original input. The sampling frequency may be as low as
one-hundredth of the input signal frequency. If the input frequency is 1,000 MHz, the

required bandwidth of the amplifier would be only 10 MHz, which is much easier to

implement.

~ Non-recursive filtering in the spatial domain can also be realized with a
randomly sampled signal [28] . Recalling that with regular sampling, a filtered signal
y(n) can be expressed as y(n) = 2 x(k) h(n—k), where x(k) and h(k) are the input

k=—o
sequence and the impulse response of the filter respectively, a filtered output y(tk)
can similarly be calculated by weighted summation of a randomized input sequence
x(tk) except that the coefficients h(tn-tk) vary with both n and k, which implies that
the values of the filter coefficients are different for computing each output point. Fig.
3-13 shows the timing diagram for computing y; to ys by the equation yn» = hn1x1 +
hn2x2 + ...+ hnkxk , where yk=y(tk), xk=x(tk) and hnk = h(tn-tk) are the filter
coefficients which are the sample values of the impulse response h(t). Note that the
peak of h(t) is positioned to coincide in time with the corresponding output signal
value. If the two sets of timing {tn} and {tk}are fixed for all input signals and h(t) can
be explicitly expressed in time t, hnk can be calculated beforehand and stored in
memory. The filter can then be implemented by switching the input sequence to a

suitable set of filter coefficients for evaluating each output value.

page 68

Reconstructed
Input Woveform Wavetorm

Sompling Pulses A A A k A A A A L_
Trigger Pulses_j\]\ }\ h A ’\ j ﬁ J f\.

Real Time Ramp
Horizontal Deflection

Fig. 3-12 Waveforms illustrating the operation of a sampling oscilloscope (From
Helfrick and Cooper [49]).

x| x5 X111 X12
X113
4 VAN m
[! ' H A\VX AT t
| b X3l | i | x| 9; ! , : input
o Pl 1 A5 | } | 0 P
L£1151 1 | e | 19 ! '1
h ! |h14 1 : i 1 h
IR a1 92 N S T O
| | .
;..%/ (P12 i | i [1271 lhzg ' E filfer
l . .
% | 1123 i ! hae | }hm: i i cogfficients
I l 1| | ' = . : { ! I
’—W\‘/ : l ! f N : i E
[(' P! P |
L ! { | ! | b |
Col L
|
AR L
g ' Y3 | ya .
| Ys output

Fig. 3-13 Filtering of a signal xx by a filter of impulse response hnk. Five output data,
y1toys, are shown (From Bilinskis and Mikelsons[28]).

page 69

3.4 Three-sampler System

Apart from random sampling, there is another sampling method that can
achieve sub-Nyquist sampling by adopting a totally different approach. The input
signal is regularly sampled by three sampling frequencies which are below the Nyquist
rate[3,31]. Aliases occur in the three output spectra but the ambiguity can be resolved
by the mathematical relationship between the outputs and the sampling frequencies.
This method is suitable for sparsely populated spectra over an extremely wide

bandwidth.

3.4.1 Principle of the System : To explain the principle of this method, it is assumed
that the input signal contains only one frequency component. The results are then
readily generalized for a signal containing multiple components. Consider that a
signal fx is input to a sampler and a low-pass filter, which yields an output fo1 as shown
in Fig. 3-14. If fx <0.5 fs1, fo1 = fx. If fx is between 0.5 fs1 and fs1, the active element
is filtered out but its image fs1 - fxis below 0.5 fx and thus appears in the output. When
fx =fs,the outputfo1 = 0. This relationship between fo1 and fxis plotted in Fig. 3-15.
It is clear from this figure that the relationship is ambiguous and cannot yield a unique
value of fx for a given value of fo1.Itis possible, however, to describe their relationship

by the following pair of expressions :

fo1
LPF

fx ~ LPF fo1

| fs1/2

l fg < <fx

fx fsl 2 fsl 2fsl

Fig.3-14 The frequency spectrum from a sampler and a low-pass filter. The aliases
under the shaded area will appear in the output according to the relationship

shown in Fig. 3-15.
page 70

fs/2 | "N T T T AT T T T T TN T

| I | | fx

Fig. 3-15 Relationship in frequency between the input and output signals

fo1 = fx — Kfs1, Kfs1 < fi < (K+0.5)fs1
fo1 = Kfs1 — fx, (K+0.5)fs1 < fr < (K+1)fs1 (3-26)

where K is a positive integer. A possible means of removing the ambiguous
relationship between fx and fo1is to use a second sampling with a different sampling
frequency fs2 < <fxand fs2 -fs1 = Afs. The cut-off frequency of the corresponding
LPF is at 0.5 fs2 . This results in a different output frequency fo2 which can also be

expressed as :

fo2 = fx — Lfs2, Lfs2 < fr < (L+0.5)fs2

fo2 = Lfs2 — fx, (L+0.5)fs2 < fr = (L+1)f52 (3-27)
where L is a positive integer. We can choose either K=L or K=L+1 to relate
eqn(3-26) and eqn(3-27). Fig. 3-16 is the frequency characteristic of this joint
sub-Nyquist sampler. Close examination of Fig. 3-16 reveals that a point of symmetry
exists in the frequency patterns generated by the two graphs where

FR = nfs1 = (n—0.5)fs2

After this point, the frequency pattern is a mirror image of the pattern before FR.
Therefore, the highest frequency of the components must be less than the value of

FR. This operational frequency range is given by :

page 71

81 e et seeeeeaeee e s e eereanes
2 .
1 K=0 1 1 2 2 3 3 4
o !
51 fe 3Ms 20 | g, 4t g,
2 z
4 : :
Is2 | ... TR SO e I e e e e
s : R Rty
1 |L=0 1 1 \2 2 3 3
o :
s :fe oMl 20 gy
S T S
K|lo i 1 i1iy iz2i2:2 {2 3
T EREEDEN
rogion | 1 20 3 i4i1 12:31 4 hi 2

Fig. 3-16 Frequency characteristic of the joint sub-Nyquist sampler

S1
~_ LPF L
| fsl /2
lfsl
S2
fx ~ LPE e
input | fs2/2
lﬁZ
S3
~_ LPF o3
| fs3/2
l fs3

Fig. 3-17 Sub-Nyquist sampler with three sampling frequencies

page 72

_fife _fe? (3-28)
FR="20% = 20%;

The graphs in Fig. 3-16 and the corresponding table show that there are four

distinguishable regions labelled 1 to 4. The corresponding equations are :
Region 1 for=fc—Kfs1, fo2=f—Lfs2 K=L
Region 2 fo1=Kfs1 — fx , »foz =fx — Lfs2 K=L+1
Region 3 for=Kfs1—fr, foo=Lfs2—-f K=L

Region 4 for=fx — Kfs1, fo2z=Lf2—fx K=L (3-29)

Each of the above four pairs of equations can be solved separately for fx and three

possible input frequencies fx1,fx2 and fx3 can be obtained :

1= |fo?fs1 —fo]fs2|

fx Afs
_ foofs1 + foifs2
TN
fi3 = fsAl]]czyZ ~fa (3-30)

Unique solution for fx , however, cannot be obtained from eqn(3-30). To solve this
problem, a third sub-Nyquist sampler with sampling frequency fs3 = fs2 + Afs and a
LPF with cut-off frequency at 0.5 f3 is added. Similarly, samplers 2 and 3 yield three

possible inputs fx4, fx5 and fx6 :

Y= |fo3fs2 — foofs3|

fx Afs
fes = fo3fs2 A‘;sfo2fs3

page 73

pom B g, =

The desired input frequency is arrived at by selecting the pair of values derived from
the two sets which are equal. Any final ambiguous answer which may result if any two
false frequency ambiguities having equal values, thus giving equal numbers in the two
sets, can be resolved by a simple validity test :

| fe = foi = Nfsi
where i=1,2 and 3 and N is a positive integer. An invalid answer will give a

non-integer N for at least one sampling frequency while a real fx will pass such tests.

From eqn(3-28) the useful frequency range of the Si1 and S2 pair is

fs1 £, : : .
FR = ifiz Similarly, the useful frequency range of the Sz and S3 sampling pair is
S
, fs2 fs3 . .
FR = AR S FR since f3 > f1. Hence the working frequency range of the whole
S

system is determined the smaller value of the two, i.e. FR.

To illustrate the principle of the system, let the sampling frequencies fs1 = 9
MHz, f;» = 10 MHz and fs3 = 11 MHz. Then the frequency difference Afs = 1MHz
and the working frequency range is FR = 9x10/2 = 45 MHz (FR’ = 55 MHz). The
results of computing three incoming signals having different frequencies are tabulated

in Table 3-4.

3.4.2 Error Analysis : The characteristic graph of Fig. 3-16 which is used to derive eqn
(3-30) is subject to frequency errors in the presence of noise in the input and sampling
signals. The effect of frequency jitter associated with the periodic sampling impulse
is much more pronoﬁnced than that for the original signal. These errors have been

analyzed in detail by Sarhadi [32]. Another source of error is the limited resolution

page 74

of the FFT. If the number of points in the FFT is N, then any active element must be
represented by spreading over the coefficients of the FFT but assuming that most of
the energy is concentrated in the single nearest coefficient. The maximum frequency
error in the aliased spectral lines is given in [33] by :

fs (3-32)

2N

Afomax =

where fs is the sampling frequency. From Fig. 3-16, region 4 , the output is fx =

fs2 + 1 : . .
M. Errors on the aliased lines lead to an error in the calculated output of:

Afs
_ | Afoifs2 + Moofst (3-33)
Afy =
Afs
Since fs2 = fs1="{s, eqn (3-33) can be written as :
_ |24 (3-34)
Afy = Ay

The maximum errors are given by substituting Afomax in eqn (3-32) into eqn (3-34):

fs'2
NAfs

Afxmax =

Therefore, if Afxmax is to be less than fy/4 giving an error band less than fy/2 , then

I

2> NA; By rearranging the expression :

Table 3-4 : Examples of the three-sampler system (From Underhill et.
al. [3]) | |

input Samplers S1 and Sz Samplers S and S3 Calculated
signal frequency
34 16 T >45 34 34 541 >55 34
24 6t >45 34 24 >55 46 + 24
7.25 7.25 42.25* >45 7.25 >55 42.25* 7.25

*False ambiguity of fy in the relevant pair of samplers
T Real ambiguity of fx in the relevant pair of samplers

page 75

N 4 (3-35)

Afs
It should be noted that the ratio fs/Afs is a magnification factor of the error whichis a

consequence of the sub-Nyquist sampling.

3.4.3 Illustrative Example : Assume that it is required to analyze signals in a broad
bandwidth up to 10 GHz with a frequency resolution of 0.5 MHz and a population of
the active elements much less than 1%. With conventional techniques some 20,000
filters would be required to achieve the same resolution over the frequency range of

interest.

To design the sub-Nyquist system capable of operating over the 10 GHz range,

eqn (3-28) can be used. If the nominal sampling rate is chosen to be 1 MHz, then Af

612
must be 50 Hz to give FR = KZ%S% = 10 GHz. The number of frequency indices N

within fs is given by eqn (3-35) :

6
_4x10
N= 50

The length of the sequence of samples must then be 2N. The computational load for

= 80,000

the sub-Nyquist system is thus given by :

W = 3x2Nlog2 (2N)
For N=131,072 = 27

W =3x2x2"log2 (2x2) = 14,155,776

page 76

3.5 Concluding Remarks

From the discussions above, it is clear that random sampling and the
three-sampler method are two different approaches to achieve sub-Nyquist sampling.
One motivation of implementing sub-Nyquist sampling is to adopt slower hardware,
which can be regarded as a means to lower hardware cost or to push the operation
speeds of the components to their limit. The sequence length of the samples, in
contrast to regular sampling which observes Shannon’s theorem, can be curtailed. This
curtailment may save memory storage and even computation in some cases. Anti-alias

filters, which must appear in regular sampling, may also be eliminated or kept to a

minimum,

Random sampling turns aliases to a broadband background noise, which is
similar in nature to the leakage produced in the regular sampling. Since the noise
level tends to increase with the total power of the input signal, this approach is suitable
to detect a broadband signal with a sparse population of frequency components. Also,
if among these components there is one which is much weaker in power than the
others, this component could be covered up by the background noise and would not
be recognized. As variation in timing is deliberately introduced into the sampling grid,
noise or jitter inherent to the sampling hardware may be ignored if it is small, or it
may be incorporated into the random variable if the jitter is measurable. With the
introduction of randomness into the timing grid, symmetry is lost and the
computational complexity is N2 In chapters 4 and 5, we shall discuss how the
computational load may be alleviated. Although this method in principle is alias free,

when realizing the sampling in a digital system, its finite word-length sets an upper

page 77

bound to the bandwidth. The timing must, therefore, be kept in a word-length long

enough for a broad spectrum.

The three-sampler system adopts regular sampling which enables the use of
the FFT to compute the frequency spectrum. Having a complexity similar to the FFT,
its computational load is lighter than that of random sampling. With regular sampling,
noise in the timing will generéte error in the output, and this error is further magnified
by this sub-Nyquist sampling. This method is also suitable to detect abroadband signal
with a sparse population of frequency components. Here, three low-pass filters are
required. Baier and Fiirst [34] suggest a system with only two samplers and no filters.
This system can detect aliases and recover frequency components to a bandwidth only

half of the sampling frequency. Sub-Nyquist sampling is thus not achieved.

page 78

CHAPTER 4
PARALLEL ADDITIVE RANDOM SAMPLING

4.1 Introduction

In estimating the spectrum of a band-limited signal, discrete Fourier Transform
(DFT), or more often, Fast Fourier Transform (FFT) is applied to the samples of the
signal taken at regular intervals. Shannon’s sampling theorem states that the sampling
frequency must be at least twice that of the sampled signal, otherwise alias will occur.
Random sampling has been suggested to overcome the above limitation. Two methods
of random sampling, namely jittered sampling and additive random sampling (a.r.s.),
have been discussed in Chapter 3. When computing the frequency components from
a randomly sampled sequence, however, different "random" exponential terms must
be multiplied to each data point since the symmetry in regular sampling is now
relinquished, giving rise to an N2 complexity. If a higher speed of the computation is
desired, some sort of regularity must be inserted into the sampling process, but to such
an extent that the anti-alias property is still maintained. A sampler of m parallel
blocks, each operating with an additive random sampling sequence of p points, is
found to satisfy this requirement [35]. This scheme, which interlaces several a.r.s.
sequences to form an anti-alias sequence, exploits trigonometrical symmetry to
reduce up to 87% of the multiplications reqﬁired in computing the first band of
frequency components. The whole process, from sampling to computation, can be
implemented by a multiprocessor system [36]. With a variable threshold, a relatively

weak signal can also be recovered.

page 79

4.2 Timing of the sampling sequence

The structure of the parallel sampler is shown in Fig. 4-1, where there are m sampling
blocks working together. To have the maximum saving in computation, m should be
amultiple of 4. Each block takes p samples according to the additive random sampling
tn = th—1+ Tn where 7 is a uniformly distributed random variable of finite variance
[37]. The sequence length of the resultant signal x(tn) will be N, where N = m.p. The
starting time of the first sequence to = 0, and each subsequent sequence starts at t;j
=t0+1iT where T = 1/N of the sampling duration. With such an arrangement,

t1=to+T and t2 =to + 2T, etc. (see Fig. 4-1). In general

tim+q =tim +q.T “4-1)

where i=0,1,2...p-1, and q=0,1,2,... m-1.

to tm tm(p-1)
/ ' | - —- == —
I_ t1 lm+l 80
: 7| B tT+z 51
-~ T 02
x(t) | X(tn) L
— .
— — — tm-1 f2m-1
(m-)T —— | -
yd Sm-1
L
Sm-1

Fig. 4-1 Timing diagram of the parallel additive random sampling

page 80

4.3 Anti-alias property

Fig. 4-2 shows the frequency spectrum of a 1024-point sequence formed by
interlacing 32 a.r.s. sequences of 32 points each. The interlace is equivalent to linearly
convolving a 32-point a.r.s. sequence with a train of 32 unit pulses of uniform
separation T. Hence in the frequency spectrum, we expect to see a unit pulse at the
origin followed by groups of noise with relatively large amplitude centering at 1024.i,
where i is an integer. If the spectrum is, however, examined closely, it can be seen
that the phase angles of these groups are randomly distributed. Sampling in the time
domain with this sequence is equivalent to convolving with its frequency spectrum in

the frequency domain. By the randomness of the phase angles, the effects of these

Amplitude, V

1 ¥

(a)

0
0 2047

Phase, degree

179947, .7 -

. A T
N DL YR LA .
. : N .
. tael A w8 e ‘
DErrR e
. g W '

-179.723

Fig. 4-2 Frequency spectrum of a 1024-point (m =32, p = 32) parallel random sam-
pling sequence:

(a) amplitude (b) phase in degree

page 81

residual groups tend to average out, leaving behind "bursts of noise" rather than sharp

aliases.

When a signal of frequency f is sampled by this sequence, the reconstructed
spectrum will show a strong component at f and groups of noise with much weaker
amplitude at i.fs *+ f, where 1is an integer. Similar to the case of a normal a.r.s., as
long as the band of signal to be recovered is not congested with a large number of
frequencies, the signal can be easily identified. Fig.4-3 shows different spectra of a
signal, 1cos(2 7.160t +m) +0.3 sin (27. 400t) +1.5 cos (2 7.1,100t) V, sampled
regularly and by parallel random sampling. The ratio of the standard deviation of ¢
to the mean of the sampling period is about 10%. If sampled uniformly, the Nyquist
limﬁ is at 512Hz. With the parallel a.r.s., the 1,100Hz can clearly be identified. Its

anti-alias property is thus demonstrated.

As mentioned in section 3.2, the randomness of a sampling scheme can be
measured by a ratio o/u, where 0 is the standard deviation of the sampling periods and
u their mean. (The sampling periods are defined as tn - tn-1, where tn represents the
sampling time at interval n.) Basically the parallel a.r.s. is a random sampling scheme
with the original random variable "diluted" by a number of regular sampling intervals
having a value equal tou,which are inserted deliberately to the timing grid. In Fig. 4-4
there are five amplitude spectra of a signal sampled for 1024 points by a.r.s. and
parallel a.r.s. Table 4-1 summarizes the results of the simulation. We can see that the
signél-to-noise ratios depend on the .sequence length N (estimated value = 20 log
VN =30 dB) rather than m or p of the parallel a.r.s. As m increases, regularity

increases (or randomness decreases), the "bursts of noise" are "compressed" into

page 52

16 T
(a)
; |]
0 2047
1.6 |
(b)
0 s wuls L.me
0 2047
24 |
(0
ol xll L e P _ A
0 2047
1.6 |
! (d)
; |
0 160 400 1,100 2047

Fig.4-3 Spectra of a signal sampled for 1024 points :
(a) amplitude spectrum, by regular sampling,
(b) amplitude spectrum, by parallel a.rs.,m=32, p=32,
(c) power spectrum of (b),
(d) spectrum from (b) by variable threshold method.

page 83

Amplitude, V

!] ¥ T T T
(a)
05— p
o 500 1000 1500 2000
1 T T T T
0.5 |- -
o i, W
0 500 1000 1500 2000
1 T T T T
(©
0.5 — -
o - Jﬁm‘h&Mﬂ
0 500 1000 » 1500 2000
1 T T T T
05— —
0 FIRI ‘A“—M—‘LAL‘J
o 500 1000 1500 2000
1 T T T T
) (e)
os— —
0 - ~~L-AHLM‘LM
o 500 1000 1500 2000
300 k 2047

Fig. 4-4 Noise in the spectra of a signal sampled for 1024 points:

(@) bya.rs. (b) by parallel a.rs., m=4, p=256 (c) by parallel a.rs., m=8, p=128
(d) by parallel a.rs., m=16, p=64 (e) by parallel a.rs. m=32, p=32.

page 84

Table 4-1 : Noise in the spectrum and the randomness of the sampling
sequence

Sampling method Signal, V | Noise within k <1024 | S/N, dB 9 g

at 300 Hz |r.ms., mV peak, mV al
a.r.s., 1024 points 0.999 29.0 94 34.4 29.9
parallel a.r.s., 4 x 256 0.994 31.1 147 31.9 15.6
parallel a.r.s., 8 x 128 0.997 31.2 201 31.9 11.0
parallel a.r.s., 16 x 64 1.001 31.3 301 31.9 7.65
parallel a.r.s., 32 x32 0.998 31.3 262 31.8 6.18

: : : Y
narrower frequency windows and their peak values rises. If the ratio i 0, we return

to regular sampling so that the "bursts of noise" will become sharp aliases.

4.4 Computational Algorithm and Realization
4.4.1 Symmetry in Timing : The real and imaginary parts of the estimates of the

frequency components (except the d.c.) are given respectively by [37]:

2 N-1
Xe(k) = %) x(tn)cos(2kftn)
n=0

5 N-1 @-2)
Xi(k) =+ N x(tn)sin(2wkftn)
n=0

where k=1,2,3... and f=1/NT = 1 in the normalized case. Hence T= 1/N.

Using the timing specified by eqn (4-1), putting xn =x(tn) and neglecting the scaling

factor, eqn (4-2) can be written as :

X(k) = yko + yk1 + yk2 + ... + yk(p-1) where

YkO ' X0 X1 s Xm=-1 4. (1

yk1 Xm Xm+1 oo X2m—1| |exp(j27k/N)

yk2 | = Liy |x2m x2m+1 .. X3m—1| | exp(j2n.2k/N) :
Yk(p—-1) X(p~Dm X(p-1m+1 ... xN—1 | \exp(2m.(m—1)k/N)]| |

page 85

1 0 0 0 4-3)

0 exp(j2mktm) 0 0
with Lg= (0 . 0 exp(j2rktom) ... 0
0 0 0 oo exp(j27tkt(p—1ym)

a diagonal matrix for post-multiplication. For simplicity, eqn (4-3) may be
represented by:
Yk=Lk{D.Ex} =Lk {Mk}

When evaluating the base-band components, k = 0,1,2,...N-1. As xnp are real
numbers and m is a multiple of 4, an analogy may be drawn between Mk and the roots
of unity evenly distributed in the four quadrants of the complex plane. Taking N =16
as an example, real{E1} = real{Eo} and imag{E1} = -imag{Eg}. Similar symmetry
properties can be found in E7 and E15 with E1. For E1 and E3, the real and imaginary
parts are interchanged alternatively with appropriate changes in sign. In general, after
Miis evaluated, MN/2-i, MN/2 +i, MN-i and MN/4-i can be deduced. As Mo, MN/4, MN/2
and M3N/a dol not require any actual multiplications, only 1/8 of these Mk need actual

multiplications. The following describes the algorithm for computation in detail.
4.4.2 Computational Algorithm :

(Step 1) Evaluate Mo, MN/4, MN/2 and M3N/4. Multiply the corresponding Li to form

X(0), X(N/4), X(N/2) and X(3N/4).
(Step 2) Fori = 1to N/8, repeat the following :

(Step 2.a) Break M; into a sum of vectors:

X0 X1 Xm—1

X x iy X9 — e
M; = m + m+1 e]27n/N+m+ 2m—1 e]2.m(m 1)/N

X(p—-Dm X(p-1)m+1 XN-1

page 86

= bio+tbi1+...tbhim-1)

(Step 2.b) Defining Mjv and Mid as the sums of all even-index terms and all odd-index

terms of bin respectively:
Miv = bio + bi2 + ... + bi(m-2)
Mid = bi1 + biz + ... + bi(m-1)
then Mi = Miv + Mid and MNp2+i = Miv - Mid.

From M;j obtain MN.i = real{M;} - j.imag{Mi}, and

from MN/2+iobtain MNp2-i = real{ MN/2+i} - j.imag{Mn/2 +i}.

Multiply the corresponding Li to Mi to obtain X(i).

(Step 3) From bjr evaluated in (Step 2.a), deduce b(N/4-i),r as follows:

forr = 0, b(N/4-i),0 = bio
forr = even, real{b(N/a-i)r} = (-l)r/ 2.rea1{bir},

2+ 1.imag{bir},

imag{bN/4-i)r} = (-1)
forr = odd, real{bqva-iye} = (1) "2 imag{bir},

imag{bavai).r} = (-1 2real {bir).

Repeat (Step 2.b), taking i = N/4-i.

Fig. 4-S shows a signal flow diagram of the algorithm with N = 4x4 = 16. If a higher

band of N frequency components are to be evaluated, all the M; in the base band can

be re-used. Take i = N + k as an example, where i is the frequency index in the next

page 87

band, substituting k by N +k in (3) and noting that exp(j2 & [N +k}/N) = exp(j2 =

k/N), we get

YN+k = LN+k Mk, where

1 0 0 0
0 exp(j2r[N+k]tm) 0 0
LN+k= |0 0 exp(j2n[N+kltom) ... 0
0 0 0 woo XP2R[N+Kt(p—1)m)

@-4)

4.4.3 Saving in Multiplications : In general a complex multiplication is considered to
comprise 4 real multiplications. In our case, since the input sequence is real, we define
a complex multiplication to consist of 2 real multiplications. So when 2 complex
numbers multiply each other, there are 4 real multiplications, i.e. 2 complex
multiplications. With direct evaluation of N frequency indices of N sample points,
there are N° multiplications. Applying the above algorithm, in the first quadrant, only
N/8 of the points need to be multiplied by both E;j and Lj, the exponential vectors and
the diagonal matrices for post-multiplication respectively. Considering a single point
of full treatment, there are p(m-1) = N-p multiplications for Ej and 2(p-1) for L,
summing up to N +p-2. The remaining N/8-1 points are to be multiplied by Li, giving
another 2(N/8-1)(p-1). In the other 3 quadrants, only L are required, hence there are
altogether 6(N/4-1)(p-1) multiplications. For X(0), no multiplication is required. For
X(N/4), X(N/2) and X(3N/4), only Li are required, hence there are 6(p-1)
multiplications. The total is :

tm = N/8(N+p-2) +2(N/8-1)(p-1) +6(N/4-1)(p-1) +6(p-1)
= N8 -2N +p(15N/8 -2) +2

page 88

N =4x4 =16 D.Ei = bin

i=0 Eo=1
Mov (Msv) Mo S
boo O X()
baz Mod
bo1
-1
-1 Ls
Msd Mg
boo - bao bo1 » j ba1
bo2 - b4z bo3 -+ jba3
My
ba —> Ls o S X@)
*
O 3 X(12)
Mp L
*= complex conjugate S = summation
i=1 D.E1-bnn
Miv (Mov) M1
L1
bio O S XM
b2 Los 00— X(15)
b1
L7
bi3 o—2— XM
O X9
Lo S
bio » b3o
real{b11} » imag{b31} imag{b11} - real{b31}
real{b12} - - real{b32} imag{b12} - imag{b32}
real{b13} - - imag{b33} imag{b13} - - real{b33}

Fig. 4-5 (first part) : Signal flow diagram of the computational algorithm for N = 16.

page 89

Masv (M11v) M3 13

bso O ~ O— S X3)
O— X1
b3z L13 S @
b31
Ls X
b33 O0— S ©)
‘ Mi1d Mi11 O— X(11)
L1 S

* = complex conjugate S = summation

=2 DE»=>bn

May (Migv) Ma
L2
b2 A A o—S X@)
O— X4
b22 L14 S =
b21
Lg
bas oS . X©
1 Miog Mo 0— X(10)
Lio S

Fig. 4-5 (second part) : Signal flow diagram of the computational algorithm for N =
16.

The fraction saving: sv = 1- tm/N>. Since N = pm,

sv = 7/8 + 2/N - 15p/8N + 2p/N? - 2/N? (4-5a)

Since N >> 2, sv = 17/8-15/8m (4-5b)

With N = 1024, eqn (4-5b) gives an error smaller than 0.2%. Let N = 1024, Table 4-2
shows the saving obtained from eqn (4-5a). When m =4, each a.r.s. sequence is
comparatively long and the saving is also low. When m rises to 128, the saving seems

to be very high, but with only 8 points in each a.r.s. sequence, the residues of the aliases

page 90

will also be very strong. The case with m = p =VN is a satisfactory compromise
between the two extremes. The percentage savings with p =m are tabulated in Table

4-3.

For any higher band of N frequency components, only the post- multiplications
of Lj are required. Therefore there are 2p multiplications per point. The total for N

components tm = 2pN = 2N2/m, since p = N/m. Therefore, the fraction saving:

sv=1-2/m 4-6)
4.5 Implementation with Multiprocessor System

4.5.1 Sampling and Computing : The parallel random sampling is naturally parallel
and fits perfectly into a concurrent structure. From sémpling to computation, each

process can be separated into several identical units which can perform

Table 4-2 : Percentage saving for p.m =N = 1024

m p saving % m p saving %
4 256 40.87 32 32 81.84
8 128 64.28 64 16 84.77
16 64 75.99 128 8 86.32
Table 4-3 : Percentage saving for p =m
p N tm N2 saving %
16 256 15,330 65,536 76.61
20 400 34,162 160,000 78.65
32 1024 190,420 1,048,576 81.84
64 4096 4096 16,777,216 84.62

page 91

independently. Fig. 4-1shows clearly that m samplers can be employed to read in data
concurrently with a fixed delay in time relative to each other. Each sampler is thus
working at only 1/m of the effective sampling rate, which offers the possibility of using

slower and cheaper hardware. Apart from the delay, all samplers are the same in every

aspect.

After sampling, the sequence obtained will be used to evaluate the frequency
componenfs of the spectrum. From the computational algorithm shown in Fig. 4-5,
the process is neatly divided into N/8 identical blocks. An example of realization with
four transputers is shown in Fig. 4-6. Since no exchange of intermediate data is
required between these blocks, they are truly independent of each other. Running
concurrently, the whole process can be speeded up by a maximum factor of N/8. If N

is 1024, the speed-up factor may go up to 128.

4.5.2. Simulation with Transputers : The computational algorithm of the parallel a.r.s.
is simulated in a computer system with an add-on transputer board of B008. On the
board there are five IMS T800 transputers, four of which contain 4 Mbytes RAM and
the fifth one contains 8 Mbytes RAM. T800 transputer is a 32-bit CMOS
micro-computer with a 64-bit floating point unit and graphic support [38]. It has 4
Kbytes on-chip RAM, a configurable memory interface and 4 communication links.
By establishing communication between these links, a concurrent system can be
constructed from a collection of transputers operating simultaneously. The T800 links
support the standard operating speed of 10 Mbits/sec, but they can also operate at 5
or 20 Mbits/sec. Each link can transfer data bi-directionally up to 2.35 Mbytes/sec.
IMS C004 programmable link switch is used to provide full switching capabilities

between 32 INMOS links.

page 92

Transputer 1, 1 = 0O

vo boo
—] Mov Moy Mo /\ X0>
Ve bge _/
V1l by Moa " —~

8 /\ X(8)
v3 b (<)) \Ls/ >
V3 g3 | g _/
VO k4o

L My

ve b4z

O X(4)
© O

VI DM Y T xa
V3 22/ _/
~ = b +by3

Transputer 2, 1 = 1

vg b1g My (Msy) M, @_D_>

ve /8\ bip

w e Mys @ . i(l5)

v

M X7
V1 b 7
1 Mg >
X(D)
V3 b M C) < >
f\ﬂ\ 13 2 Lo >
U Mgyq
LEGENDS :
multiplying with y @ complex conjugate

adding vector components
to form a scalor

odding vectors

VO = [xg X4 xg xlr,_,]T VI = [x; Xg Xg xm]T
Ve = [x5 Xg Xqq xM]T V3 = [x5 %x, Xy x15]T
WP = exp(jenp/l16)

* Fig.4-6 (first part) Realization of the computational algorithm shown in Fig. 4-5 with
four transputers. The first transputer computes {X(0), X(8), X(4), X(12)} and the
second transputer computes {X(1), X(15), X(7), X(9)}. Note that there is no data
communication between the transputers.

The data flows of the third and fourth transputers are shown in Fig. 4-6 (second

part).
page 93

Transputer 3, 1 = 2

X<e)
\4Y) bag Ma, (M, Ma @7<:>_>
Ve N bae
4 M X(14)
GO ()
" M X(6)
Vi 21 6
‘M2d 6 @
Vi (b Mo ™ N S
23 0)
W6 -1 L 4
f v/ Miog NN 4
Transputer 4, 1 = 3
X3
\4\ Ko M3, (Mj1 > Mg @7<:>__>
V2 N by ’
w6
| X(S)
Mag
X<
V3 , b Mi1
Mitd

Fig.4-6 (second part) Realization of the computational algorithm shown in Fig. 4-5
with four transputers. The third transputer computes {X(2), X(14), X(6), X(10)} and
the fourth transputer computes {X(3), X(13), X(5), X(11)}.

The ideal configuration for running the algorithm on 5 transputers is a star
connection with the root at the centre (see Fig. 4-7(a)). Unfortunately two of the links
of the root are reserved for special purposes; hence the configuration shown in Fig.
4.7(b) is adopted. Since there is no exchange of data between the transputers during
computation, the communication links are used only at the initial stage when the root
sends input data to the other transputers and at the final stage when the root collects

the results from the others.

page 94

The simulation program is written in 3L Parallel C of INMOS Ltd [39]. Parallel
C is based on the idea of communicating sequential processes on the transputer
systems. In auser program, there is a collection of one or more concurrently executing
tasks, each of which has its own region of memory for code and data, a vector of input
ports and a vector of output ports. Each processor can support any number of tasks
limited only by the availability of memory. Tasks placed on the same processor can
have any number of interconnecting channels since there is no external
communication involved. Tasks placed on different processors, however, can only
communicate where physical wires connect the links of the processors. Each logical
connection between two tasks placed on different processors is assigned the exclusive
use of one of the physicél links connecting the processors. The number of connections
between tasks is therefore limited by the number of hardware links each processor
possesses. Apart from the hardwire list specifying the physical connections of the
communication channels, there is a softwire list which describes where the tasks,

including the "Iserver" and "Filter", are to be placed on the transputer network.

Three programs are written to verify the saving in computation when using the
parallel a.r.s. A sequence of 1024 points are sampled by the parallel a.r.s. with m =32
and p =32. The first program is a direct evaluation of the sequence and the second is
an evaluation using the algorithm described in section 4.4.2. These two programs run
on a single transputer. The third program is also an evaluation using the same
~algorithm, but it runs concurrently on 4 transputers (excluding the root, which is
mainly for data communication) . The results of the simulations are tabulated in Table
4-4, which can be compared to the saving predicted by eqn (4-5) and (4-6). When

evaluating the components in the base band, the percentage saving, from eqn (4-5) or

page 95

Fig. 4-7(a)

Fig. 4-7(b)

T1

T2

Root

Ideal configuration for 5 transputers computing parallel a.r.s.
concurrently.

Host

T4

Root

T1

T4

Practical hardwire configuration for the 5 transputers

page 96

Table 4-2, is 82% for m =32, p =32, which means that 18 calculations is performed
per hundred calculations required by the direct evaluation. Hence the speed-up factor
is 100/18 = 5.6. From Table 4-4, the simulation result gives a speed-up of 5.9. It can
be seen that with 4 transputers operating concurrently, the calculation is further
speeded up by a factor of 4. From eqn (4-6), the saving for calculating the next band
of 1024 frequency components is 15/16, which means that 1 calculation is required per
16 in the direct evaluation. Hence the speed-up factor should be 16. From Table 4-4,
the simulation result gives 12, which is lower than expected. The difference should
come from the extra time consumed by the program overheads, such as fetching from
the memory those vectors Mk stated in eqn (4-4) for the multiplications with LN +k .

As a whole, the simulation results are close to the expected theoretical values.

4.5.3 Recovery of Signal by Variable Threshold : After an amplitude spectrum is
evaluated from a sequence, a threshold inay be applied to the spectrum to pick out its
relatively strong components. At a first glance, the amplitude of the bursts generated

by the aliases is relatively high. A closer look, however, reveals that these bursts

Table 4-4 : Computational time by transputers for a 1024-point (m =32,
p = 32) sequence sampled by parallel a.r.s.

method base band speed-up | next higher band (speed-up
direct evaluation, 127.7 sec. 1 127.7 sec. 1
1 transputer 1995584 ticks™ 1995535 ticks
‘parallel a.r.s. algorithm, 21.6 sec. 5.9 10.7 sec. 11.9
1 transputer 337840 ticks 167119 ticks
parallel a.r.s. algorithm, 5.3 sec. 24.1 2.9 sec. 42.6
4 transputers * 82528 ticks 46088 ticks

* excluding the root transputer
1 tick is equal to 64 us

page 97

exhibit a "ringing" which is absent froﬁ a frequency component (see Fig. 4-8). This
information provides one criterion to differentiate a signal from a residue of an alias.
When a strong signal is detected, its amplitude and frequency f are noted. From f, we
can predict that bursts are found at |ifs +f|, where i is an integer and fs is the
sampling frequency. Hence there are two tests for a signal : (1) Is the component
located within the "band" of a burst ? (2) Is there a ringing around the component ?
If a frequency component passes both tests, it should be classified as a signal with a

high degree of confidence.

Referring to the example in Fig. 4-3, fs is 1024Hz and we consider up to 2fs (4
times the Nyquist limit). An initial threshold of 0.5V may be set and two
voltages,-1.023V and 1.499V are detected at 160 Hz and 1,100 Hz respectively. Bursts
are expected to appéar at 864Hz, 1184Hz and 1888Hz (which are generated by the

160- Hz component), and at 76Hz, 948 Hz and 1972 Hz (which are generated by the

0 450

-0.4

0 450

Fig. 4-8 Residue of alias and signal
(@) real part (b) imaginary part

page 98

1,100 -Hz component). Let these frequencies be called burst centres and denoted
by fc . Judging from the spectrum of the sampling sequence, we may choose =15 Hz
from fc as the bandwidth of a burst. Within such a band, there are no less than 10

components of comparable amplitude but randomized phase angles.

Eliminating the two voltages at 160 Hz and 1,100 Hz, the maximum of the
remaining "noise" voltages is 0.42V and the average is 0.042V. Any frequency
component located within the bandwidth of a burst with a magnitude smaller than
0.42V is considered as noise. Now we may lower the threshold level to £0.1V
(=v4 {maximum - average noise }). At 400 Hz, avoltage of 0.296V is detected . Since
there is no component having a magnitude greater than 0.1V from 385 Hz to 415 Hz,
this voltage is taken as a signal. Hence the recovered signal is -1.023 cos(27
160t) +0.296 sin(2 400t) + 1.499 cos(27 1,100t), giving an average accuracy of 98.8%

in amplitude when compared with the original.

4.6 Concluding Remarks

The parallel random sampling maintains the anti-alias property of the additive
random sampling. A signal well above the Nyquist limit can be recovered by this
method. In general, saving in computation of a fast algprithm comes from the
symmetry in the trigonometrical terms being multiplied to the sampled data for
evaluating the frequency components. For FFT, there are so many symmetry terms
to be exploited that the complexity is reduced to NlogN [40]. Symmetry, héwever, is
the source of aliasing. Hence in parallel random sampling, only a limited degree of
symmetry is introduced in order to avoid the occurrence of sharp aliases. It is not

surprising that the complexity of the problem is still N? and the upper limit of the

page 99

saving in multiplications is only 87% in the base band . The number of additions

remains substantially the same as that of the direct evaluation.

This sampling scheme offers another advantage - a genuine concurrent
architecture in nature. During the sampling process, there can be as many as m
samplers working independently at 1/m of the composite sampling rate, which relaxes
the requirement of using fast hardware. The computation process is also neatly
divided into N/8 identical functional blocks , which can be implemented by similar
structures running concurrently, thus speeding up the whole process by a maximum

factor of N/8.

The insertion of a random variable into the timing of the sampling sequence
turns an alias into a burst of phasors having random phase angles. This characteristic
provides information to differentiate a weak signal from the residue of an alias. By
varying the threshold, a weak signal smaller than the burst can be detected provided
that the signal is not located within the burst. A high accuracy in the amplitude of the
recovered signal can be achieved when the ratio of the variance of the random

variable to the mean of the sampling period is around 10%.

page 100

CHAPTER 5
HYBRID ADDITIVE RANDOM SAMPLING

5.1 Introduction

In Chapter 3, additive random sampling (a.r.s.) is introduced as one of the
methods in random sampling which offers the advantage of being alias-free. When
applying this sampling technique, instead of getting a sharp alias at a particular
frequency, a broadband noise in the whole spectrum is seen. This method, however,
generates an N? complexity in computing the frequency components. For example,
when a signal is sampled regularly for 1024 points in one second, a frequency
resolution of 1 Hz is obtained. The Nyquist limit is at 512 Hz and the number of
complex multiplications required is 5,120 (V2 log2 N) by applying FFT. If a lower
frequency resolution of 4 Hz and the resulting noise are acceptable, we may sample
the signal for 128 points in 1/4 second with a randomized sampling method and
evaluate the spectrum up to 512 Hz. The number of complex multiplications required
is 16,384 (N2). To speed up the computation, a method of inserting limited regularity
into the random sampling process by interlacing a.r.s. sequences (parallel a.r.s.) has
been suggested and described in Chapter 4. With parallel a.r.s., bursts of residual
noise appear at the alias locations of the frequency spectrum (Fig. 5-1). A different
approach of inserting regularity, which does not generate these bursts of noise, can
also be achieved by concatenating a.r.s. sequences. (Three resulting spectra are shown
in Fig. 5-2). An anti-alias sampling sequence, called the hybrid additive random

sampling (a.r.s.) sequence, can be formed by concatenating an a.r.s. sequence to a

(a)

0 _ 2047
1.6 1
(b)
OJi A J. Mw
0 2047

Fig . 5-1 Amplitude spectra of a signal sampled for 1024 points (a) by regular sam-
pling and (b) by parallel a.rs.

reverse a.r.s. sequence [41]. Under suitable manipulation, at least 75% of the
multiplications and additions required in computing the frequency components are
saved. The computational algorithm for the hybrid a.r.s. can be implemented in

modular form, which can also be realized in either a "recursive” or parallel format.

5.2 Reverse and Hybrid a.r.s.

5.2.1 Timing : The timing of a.r.s.is defined astn =tn-1 + 7n , where 7 is a uniformly
distributed random variable of finite variance [37]. If tn runsin a reverse order,
another sequence t’, = ty., is obtained, where N is the sequence length . Obviously
£ is also an a.r.s. sequence which can be derived from the a.r.s. equation by
redefiningz . A hybrid a.r.s. sequence is formed by taking its first N/2 elements from

a normal a.r.s. sequence and the remaining elements from a reverse sequence, i.e..

forn=1,2,..,.N/2-1:

page 102

Table 5-1 : Comparison of Amplitude Spectra

- N = 1024; k up to N-1. Samples taken by :

(a) an a.r.s. sequence,

(b) a hybrid a.r.s. sequence with m=2, p=>512 and
(c) a hybrid a.r.s. sequence with m =4, p =256.

average noise level gignal-to-noise| peak noise |peak signal to
signal rm.s., V ratio*, dB level, V |peak noise,dB
accuracy,%
a 95.3 0.0722 29.1 0.189 17.3
b 99.1 0.0731 29.4 0.249 15.5
C 98.7 0.0730 29.3 0.294 14.0

* as defined in chapter 3.

Amplitude, V

1.6

0

161

506

900

2047

Fig. 5-2 Amplitude spectra (a), (b) and (c) as tabulated in Table 5-1. Note that the

Nyquist limitis atk = 512.

page 103

tn=tn-1+7Tn (5-1)

tN-n=1—t¢n

with to = 0, t N2 = 0.5 and the total sampling period is unity. To compare the
perfdrmance, a simulated signal, 1.2cos(27 x161t) + 1sin(27 x 506t) + 1.5cos(27 x
900t) volts is sampled for 1024 points by different a.r.s. sequences (with the ratio of
the standard deviation to the mean of the sampling periods = 30%) and the results
of reconstruction are recorded by Table 5-1and Fig. 5-2. It can be seen that the hybrid

a.r.s. (b) rivals the a.r.s. (a) in performance regarding noise and accuracy.

The method of concatenation can be extended by adding two N/2 -point

hybrid sequences sequentially. The timing equation is :

th=fn—1+Tn

INso—n = 05 —tn (5-2)

INs+n = 0.5 +tn

(In-n=1~tn

withn=1,2..N/4-1,t9 =0 ,t N4 =1/4 and t N2 =1/2.In general, let N samples
be taken in unit time and divided equally into m sections. N and m are multiples of 4
and N> >m. Defining q¢ = N/m, p=1,2,...,q-1 and s=1,2,...,m, the timing for the

N samples is given by:

-

tp = tp—l"‘Tp

t0=0, tsq = (5-3)

3 [w

t(s—l)q+p = %4‘[}7 fOI'OddS

—tp foreven s

_ S
bsq—p =

page 104

5.2.2 Anti-alias Property : The sequences from eqn (5-2) and eqn (5-3) are anti-alias.
The concatenation expressed by eqn (5-2) is equivalent to a linear convolution in the
time domain of an N/2-point hybrid a.r.s. sequence with a train of two unit impulses
6(0) + 0(n-N/2). The frequency spectrum of the N/2-point hybrid sequence
comprises a unit impulse at the origin and a broadband noise, while the spectrum of
the pulse train is also a pulse train with a period of 2/N. Convolution is equivalent to
multiplication in the frequency domain. Multiplying the above two spectra will give
a spectrum similar to that of an a.r.s. sequence, which implies that the hybrid a.r.s.

is anti-alias.

It can be shown that the distribution of the sampling periods of the reverse
a.r.s. is the same as that of normal a.r.s. For normal a.r.s., the timing at interval n :
n—1

tn=nT+Eri,
1=0

where T is the mean sampling period = 1/N. The sampling period at interval n is :
dn=th —th-1=T+1p

where n = 0,1,..., N-1. For reverse a.r.s., the timing at interval r :

N—r
tr=1T+ z Ti,

i=0

where r = 0,1,...,N-1. The sampling period at interval r is :
dr=tr—tr-1=T—-7r

Since 7 is a random variable having a zero mean and distributing symmetrically, dn
and dr have the same distribution. As the normal a.r.s. is alias free, the reverse a.r.s,
which has the same random variable and distribution, is thus alias free. When the

hybrid a.r.s. is formed according to eqn (5-2), it is obvious that the addition of a section

page 105

having the same sampling periods doubles the number of occurrences in each class
but the shape of the distribution and the ratio of 0/ u remain the same. Fig. 5-3 shows
the distributions of the sampling periods of the hybrid a.r.s. sequence which is
tabulated as item (c) in Table 5-1. There are 4 sections in this sampling sequence with
256 points in each section. Fig. 5-3 (a) shows the histogram for the 256 sampling
periods of the first section. The histograms of the sampling periods of the first two

sections, the first three sections and the whole sequence are depicted in Fig. 5-3 (b),

Il('[) n(t)
45 | | T 103}~ | -
- (a) 7] (b)
B _
[A[
L Al B B sin
o i | ” | o =1 H i I-L,
tx10 ¢ ’ (x10° y
n(t) n(t)
164 T T T s T T 1
()] - (d) .

AN A 1 L.

t x 10 ¢ ’ tx107* ¢
Fig. 5-3 The distributions of the sampling periods of a hybrid a.r.s. withm=4 and
p = 256 : (a) the histogram for the first 266 sampling periods (b) the histogram for
the first 512 sampling periods (c) the histogram for the first 768 sampling periods
and (d) the histogram for all the sampling periods.

page 106

Table 5-2 : Distributions of sampling periods for hybrid a.r.s. sequence
shown in Fig. 5-3 with m =4 and p =256.

periods
class (x 10 ™ 1t0 256 1t0512 110768 1101023
0-0.9 1 1 1 1
1-1.9 0 0 0 0
2-29 0 0 0 0
3-3.9 1 1 3 5
4-49 4 7 17 27
5-5.9 30 74 97 120
6-6.9 28 50 72 94
7-7.9 30 44 68 91
8-8.9 13 27 42 57
9-9.9 16 36 55 74
10-10.9 45 103 164 225
11-11.9 21 44 64 84
12-12.9 34 49 79 109
13-13.9 23 49 7 95
14 - 14.9 10 24 30 36
15-15.9 0 2 2 2
16 - 16.9 0 0 0 0
mean (x 10 ™ 9.722 9.747 9.753 9.759
standard deviation (x 10| 4.320 4.304 4.300 4300

(c) and (d) respectively. It can be seen that the shapes of the four distributions are

similar.

Another approach to explain this anti-alias property is by studying the circular
auto-correlation of the sampled sequence [42], which will be discussed in Chapter 6.
In brief, when assessing components at a higher frequency band, the width of the steps
in the time frame of the auto-correlation is reduced, hence a signal and its aliases
yield different auto-correlation sequences. In performing the auto-correlation, as the

sampled data have a higher probability to "overlap" at the instants when the a.r.s.

page 107

sequences are joined to form the hybrid a.r.s. sequence, noise tends to cluster at these
corresponding frequencies. For example, for the hybrid a.r.s. sequence denoted by
eqn (5-2), noise tends to cluster at the even or odd frequenpy indices depending on
whether the frequency of the signal being sampled is even or odd. This "binning" of

noise will be elaborated in the following section.

5.2.3 Binning of Noise : The hybrid a.r.s. sequence formed by concatenating several
a.r.s. sequences exhibits periodicity which is reflected from the spectrum of the
sampling Sequence or the spectrum of the reconstructed signal. In eqn (5-1), two
sequences are concatenated (m = 2), but the second sequence is not a repetition of
the first; hence no periodicity is observed. Fig. 5-4 (a) and (b) show respectively part
of the amplitude spectrum of a 1024-point a.r.s. sequence and a hybrid a.r.s. sequence
with m = 2. Spikes appear at every frequency index. When the sequence is formed
according to eqn (5-2) with m = 4, the last two sections are a repetition of the first
two sections, which gives a periodicity of 2 in the sampling sequence. In Fig. 5-4(c),
we can see that spikes appear at the even indices. Similarly, when m = 8§, the first
two sections are repeated 4 times so that a periodicity of 4 is expected. Fig. 5-4(d)

reveals that spikes appear at the indices which are a multiple of 4.

Suppose an input signal containing a component with an odd frequency index
is sampled by a hybrid a.r.s. sequence with m = 4, we expect that the background noise
will tend to gather at every odd index of the reconstructed spectrum. The sampling in
time domain is equivalent to a convolution in the frequency domain. As the spectrum
of the signal is convolved with the spectrum in Fig. 5-4(c), "overlapping" occurs at
every other step so that amplitude of the signal or the noise will appear on the odd

indices only. If the input contains both even and odd frequency components, the

page 108

Amplitude, V

(2)

- =

o;”HThTLHHTITITHTThTTTrLﬂ[ﬂ ITTTITIJJ“THLTIITIH;

20

(b)

—

o;mhLmU ANl Hd_ Ldﬂmﬂmmﬂm (it

20

H]H NIRRRIN TMM
1‘ © .(

I LMTIL]I |l

k

Fig. 5-4 Parts of the amplitude spectra of 1024-point sampling sequences to show
the "binning" of hybrid a.rs. :

(a) a.rs.
(b) hybrid a.rs. withm=2,p=512
(c) hybrid a.r.s. withm=4, p =256
(d) hybrid a.rs. withm =8, p =128.
page 109

"binning" of noise will not be apparent as noise will fill the whole spectrum. If m =
8, with an input of frequency index k, noise will gather at every index i = k modulo 4.
Fig. 5-5 shows part of the spectrum of a signal 1sin(27.506t) volt sampled by a hybrid
a.r.s. with m=8, p=128. The input frequency 506 Hz is congruent to 2 modulo 4,

hence noise is expected to gather at k =502, 510, 514, etc.

Although the overall signal-to-noise ratio does not depend on m (but on N, the
sequence length), the maximum noise level becomes higher as m increases because
of the "binning". In the worst case, with m =38, the maximum noise level could be 4
times that of a normal a.r.s. sequence. In Table 5-3, the results of two signals sampled
by a.r.s. and hybrid a.r.s. are tabulated for showing the effect on the noise levels. The
signal-to-noise ratios are about the same for all sampling sequences, but the ratios of
signal to peak noise drop about 4 to S dB from a.r.s. to hybrid a.r.s with m =4. A similar

drop is observed from hybrid a.r.s. withm=4 tom=8.

Amplitude, V

0.115 |

0 N [_ I[
500 506 514 522 530 540

Fig. 5-5 Part of an amplitude spectrum of a signal 1sin(2r.506t) sampled by a
hybrid a.rs. withm=8, p=128. Note that noise tends to gather at the indices
congruent to 2 modulo 4.

page 110

Table 5-3 : Noise levels of hybrid a.r.s. sequences

Input signal,V sampled by signal noise, peak [S/Nratio, | signal to
amp., V |r.m.s., mV|noise, mV dB peak
noise, dB
a.r.s., 1.202 34.6 120 30.8 20.0
1024 points
1.2 cos (2.161t) |hybrid a.rss., 1185 | 348 | 189 | 306 | 159
m=4,p=256
hybrid a.r.s., 1.199 35.5 294 30.6 12.2
m=8§,p=128
ar.s., 0.980 31.7 85 29.8 21.2
1024 points
1sin (271.506t) hybrid a.r.s., 1.004 31.0 160 30.2 16.0
m=4,p=256
hybrid a.r.s., 0.937 30.4 243 29.8 11.7
m=38§, p=128

5.3 Computation of Signal Amplitude
5.3.1 Symmetry in Timing : The estimates of the frequency components (except the
d.c.) are given by [37]:

(5-4)
X (k) =

2|

N-1
Y x(tn)exp (j 27k f tn)
n=0

where k = 1,2,3,... and f= 1in the normalized case. Let us consider the case m=4
in detail. Eqn (5-4) can be rearranged according to the timing given by eqn (5-2).
Because of the symmetry between tn, tN—n, t¥s+n and tns—n , we find groups of four
cosine terms in X (k) having the same magnitude but different signs . This is also
true for the sine terms. Using subscripts r and i to denote the real and imaginary parts

respectively and x(n) to represent x (t n), eqn (5-4) becomes :

2 Ny -1
Xr@) =5 { 2em+x®N-n)+ (D 2 x
n=1

page 111

(x (V2 +n) + x (V2 —n)) | cos 2k t n) +Cr (k) }

2 Ng —1
Xi(k) =+ N m) —x(N-n)) + (-1)>2 x
n=1

(x (%2 +n) —x (Va—n))] sin 2k t n) +Cj (k) }
where Cr(k) = [x (0)+(=1)¥>2x (¥8)]+[x (¥4)+x (3¥4)] cos (27k/4),
Ci (k)= [x (¥a)—x (3%)] sin (2tk/4) ,

and <k>2 = kmodulo 2. Neglecting the scaling factor, we can write :
N4 -1
Xr(k)= D [AMN-n)+ (-1)*724 (Vo+n,¥5-n) |

n=1

X ¢cos (2-7[](t n) + Cr (k)

W4 -1 ’
Xi()= X 1S N=-n) + (~1)*>2S (Yo+n, ¥2=n)

n=1
X sin (2nk t n) + Ci (k) 5-5)

where A(u,v)= x(u)+x(v) and S(u,v)=x(u)-x(v). Fig. 5-6 shows the signal flow

diagram of eqn (5-5) with N = 16.

5.3.2 Saving in Computation : In general, to compute N frequency components of a
randomly sampled real sequence, it takes approximately IN? real multiplications and
ON?real additions if N> > 1.In eqn (5-5), Ciand C; require no actual multiplications.
(Multiplications with only *1 are involved.) For the remaining part, since 1
multiplication is performed every 4 data points, there are in total N2 real
multiplications and 75% saving is attained. Evaluating all the partial sums of the
groups of A,S and C requires 3N additions. These partial sums may be stored and
subsequently multiplied to the appropriate sines and cosines. Each X(k) is then

computed by adding up N/2 of these products and a C. The total number of additions

page 112

Real Parts: Imaginary Parts :

X(O) N=16

x(4)
X(S) _1<k>2
x(4) ! x(12)

oS n E A

x(12) (2) | ““(7)
x(1) x(1)
x(15))

x(9)
x0) ok tn) k)
x(7) X(7) -1
@ X®) Xi(k)
x(14))
x(10) -' x(10)

n h(k,tn

© g(k,tn) 6) g)
x(3) X@)
x(13) 13)

x(11)
K1) (ko (ki)
x(5) x(5) -1

glktn) = (=1) ¥ cos(21k) Hlktn) = (~1) > sin(2nkty)

Fig. 5-6 Signal flow diagram of the computational algorithm for eqn (5-5)

page 113

is therefore N%2+ 3N, which is approximately N%2 ifNis large. The percentage
saving is approximately 75%. In eqn (5-5), <k>2 means keeping track of k being

odd or even. Since the operation is simple, the load incurred is minimal.

As m increases, the saving in multiplications also increases. If m=8, q=N/8.
Comparing to m = 4, there are more symmetry groups between exp(j2 « k tn) and
exp(j2 7 k t2q+n) available when k is even; namely, symmetry between exp(j4 7 tn)
and exp(j47 t2q+n) , between exp(j8 tn) and exp(j87 t2q+n), etc. For odd k, the
frequency components are given by eqn (5-5). Denoting TA(nk)= [4 (nN-n) +

(— 1)<k>2A (Va+n,¥—n) | and similarly for TS(n,k) , we have for evenk:

X, k)= qil[TA (1n,0) + (—1Y TA (29+n,0)] cos (2ktn)
n=1
+TA (g,0)c08(27k/8) + C (k)
Xi(k) = qil[TS (n,0) + (=1) TS (2g+n,0) | sin (2rtktn)
n=1
+TS (¢,0) sin(2k/8) + C i(k) (5-6)

where y= 0if 4 divides k and y=1 if otherwise. Only 1 multiplication is performed

every eight data points when computing the even components.

To estimate the saving, let us consider the odd and even indices separately.
For the odd indices, N%4 multiplications are required. When computing the even
indices, only N%/8 multiplications are performed. Hence the total work done is 3N8,
which means that the saving is about 81%. Roughly the same amount of additions
can also be reduced if more partial sums can be stored. Although the number of

symmetry groups having even indices increases with m, the number of symmetry

page 114

groups with odd indices remain the same as the case of m =4. So the upper bound in

the percentage savingis 87%.

When recovering a narrow band in the frequency spectrum, random sampling
may require fewer multiplications than regular sampling. Recall that for the FFT,
computation is performed in stages so as to reduce the complexity to N log N for a
sequence of length N. Owing to this arrangement, there is virtually no extra saving
even if fewer components than N are computed. Suppose we are interested in a band
of 40 frequency indices from 461 to 500, we need to sample 1,024 points from the input
and perform (in general) 10,240 complex multiplications to obtain the spectrum by
the FFT. Assuming that the background noise is acceptable, a scheme with
sub-Nyquist random sampling and a partial evaluation of the spectrum will meet the
specification. Keeping the same resolution, 256 points may be sampled and 40 x 256
= 10,240 multiplications are performed, which is a draw. However, by applying the
hybrid additive random sampling with 4 sections, 75 % of the multiplications will be

saved, i.e. only 2,560 are performed.

54 Realizatioﬁ

By examining the signal flow diagram in Fig. 5-6, we discover that a regular
pattern occurs in computing the signal amplitude. Fig. 5-7 shows a modular approach
to realize the algorithm, which can easily be implemented by either software or
hardware. The structure shown in Fig. 5-7 isin a "recursive" form, the beauty of which
is its simplicity. To speed up the computation, a parallel structure can also be derived
from this basic module. Referring to Fig. 5-6 or eqn (5-5), every 4 input data points

form a group. Therefore the computational algorithm can be implemented naturally

page 115

with N/4 processors, each of which is a module deleting the z'l, Ci and C; from the
basic module in Fig 5-7. With N = 1024, the number of processors is then 256. In
fact, the number of processors used can be reduced to any number smaller than N/4,
and Fig. 5-8 shows how four modules can be employed to share the computation. With

four of these modules working in parallel, the computation can be speeded up by a

factor of four.

5.5 Concluding Remarks

The amplitude spectra in Fig. 5-2 reveal that the hybrid a.r.s. sequences are
anti-alias. The signal amplitudes recovered from all the sampling sequences are
accurate and the signal to noise ratios are high. By exploiting the symmetry in timing
of a hybrid a.r.s. sequence, at least 75% of the computation required can be eliminated,
although the complexity is still N2, It is obvious that the percentage saving increases

with m, but so does the peak noise level. Reasonable choices of m are 4 and 8. (A

Cr/Ci

x(n)

] ' +
x(N-n) + ' +

1/1

gk tn)/h(k,tn) f X>
A

x(N/2+n)

x(N/2-n) +
1/-1

Xr(k)/Xi(k)

| -1

Fig . 5-7 Modular realization of the computational algorithm

page 116

trade-off between the computation load and the noise level is inevitable in random
sampling.) The hybrid a.r.s. can be implemented systematically either by software or
hardware. With the parallel implementation shown in Fig. 5-8, a speed-up factor of

N/4 can be attained when there are N/4 processors.

Another advantage of the hybrid a.r.s. is that the amount of saving in
computation is a constant irrespective of the number of frequency components to be
evaluated, i.e. we achieve 75% saving even if only one frequency component is
computed. With other algorithms, e.g. FFT, the maximum amount of saving is attained
only if the whole band of N components are computed. Hence this method is especially

beneficial for estimating a narrow band of frequency above the Nyquist limit.

page 117

x(nl)

x(N-n1)

1/-1

)
g(k,tn1)/h(k,tn1) ——-CX)

x(N/2+nl)

x(N/2- n1) ;l_j

x(n2)

X(N-DZ) 1/-1

4 C/Ci
g(k,tn2)/h(k,tn2)
x(N/2+1n2)

’(N2- 1)

Xr(k)/Xi(k)

x(n3)

x(N-n3)

ig2LE

/-1

g(k,tn3)/h(k,tn3) —-(X)

x(N/2 +n3) 1
x(N/2- n3) 1/:1j®-

x(n4)
x(N- nd) 11\ + } +

g(k,tna)/h(k,tna)

X(N/2+0d) -
x(N/2- nd) —7—1:] +

Fig. 5-8 Block diagram for the computational algorithm realized by 4 basic
modules. To share the load evenly, n1=1,2,

N N N N
...,16—1,n2 =16 16+1, 8—1,
N N 3N 3N 3N N
n3—8, 8+1,...,16—1,andn4 =15 16+1,..., 4—1.

page 118

CHAPTER 6

AUTO-CORRELATION AND POWER SPECTRUM
OF RANDOMLY SAMPLED SEQUENCES

6.1 Introduction

Correlation is a mathematical operation which closely resembles convolution.
An auto-correlation is performed when a sequence is correlated with itself . Since the
auto-correlation of a sequence is related to its power density spectrum, this operation
can be applied to a randomly sampled sequence as an aid to study and explain the
anti-alias property of random sampling. The process can also be regarded as a method
to convert a randomly sampled sequence to a regularly sampled sequence of a desired

sequence length.

Auto-correlation is only one of the possible means to explain the anti-alias
property of random sampling. The other meﬂliod is to study the outcome of the
convolution of the frequency spectra of the sampling sequence and the sample
sequence, which is already mentioned in chapters 4 and 5. (Note that auto-correlation
involves only the sample sequence but the convolution process involves both the
spectra of the sampling sequence and the sample sequence.) For the sake of

completeness, the convolution method is briefly repeated below.

6.1.1 Convolution in the Frequency Domain : When a signal is sampled in the time
domain, the resulting sequence is obtained by multiplying the signal with the sampling
sequence. Multiplication in the time domain is equivalent to convolution in the
frequency domain. Hence by examining the frequency spectrum of a sampling

page 119

sequence, one will easily envisage the speétrum of the sampled signal. Let us consider
the spectrum of a regular sampling impulse sequence which is also a periodicimpulse
sequence. Hence the spectrum of a signal sampled by it is repetitive as shown in Fig.
3-2 after the convolution is performed . With random sampling, the situation is very
different. Fig. 6-1 (a) shows the amplitude spectrum of a length-1024 additive random
sampling (a.r.s.) sequence which comprises a unit impulse at the origin and a
broadband noise. When this spectrum is convolved with a signal spectrum, the original
signal spectrum together with a background noise is obtained. Fig. 3-8 (b) shows a
typical result where no aliases are found. With parallel a.r.s., bursts of noise appear
as residues of the aliases, which can be seen in Fig. 6-1(b). A detailed discussion is
given in section 4.3. The spectrum of a hybrid a.r.s. sequence is found in Fig. 6-1(c).
Its anti-alias property is obvious since its spectrum resembles that of an genuine a.r.s.

sequence. The binning effect created by the concatenation is described in section

5.23.

6.1.2 Auto-correlation of a Sequence : Starting from here a totally different approach
will be introduced. This approach' is to study the auto-correlation of the sample (or
data) sequence in the time domain so as to confirm the anti-alias property of the

sampling sequence.

Suppose a signal sequence x(n) has finite energy. The linear auto-correlation

of x(n) is defined as a sequence :

® (6-1a)
ReD) = Dx(n+Dx(n) 1=0,%1, 2,...
i (6-1b)
or R) =D x(m)x(n—1) 1=0,%1, +2,...

page 120

Eqn(6-1a) represents that the sequence x(n) is shifted to the left and (6-1b) to the

right during the auto-correlation.

The Fourier transform of the auto-correlation function of a signal sequence is

" called the power spectral density function [43] and is denoted by Sx (ejw). The power

spectral density function is given by :

(a)

2047

(b)

e

2047

(0

Fig. 6-1 Amplitude spectra of 3 random sampling sequences having a sequence

length of 1024 points:

(a) additive random sampling (a.r.s.)sequence, (b) parallel a.r.s. sequence with 4

sections, and (c) hybrid a.r.s. sequence with 4 sections.

page 121

@ . 6-2
Sc (@)= > R(D) e (6-22)
/==

and its inverse is given by :

Rl) =5 [5e) ' do (6-2b)

Eqn (6-2) is called the Wiener-Khintchine relations, the proof of which can be found

in many books [10,43]. A plot of Sx (eiw) versus is the power density spectrum (or
simply the power spectrum), and its value at a given radian frequency w is called the

power spectral density.

The Wjener-Khinchine relations assert that auto-correlation of the sample
sequence is related to its power spectrum. This fact implies that studying the
auto-correlation of the sample sequence in the time domain can reveal the anti-alias
property of the sampling sequence. Before going into this study, the circular

auto-correlation must first be defined.

6.2 Circular Auto-correlation
6.2.1 Regular Sampling : As discussed in section 2.1, when a continuous signal is
sampled to become a sequence of finite length, a periodic extension of the sequence
in the time domain is assumed in calculating its Fourier transform. Corresponding to
this periodic extension, the auto-correlation of a sequence of finite length is to be
performed circularly rather than linearly. Parallel to eqn (6-1), the circular
auto-correlation of x(n) of lehgth Nis:

N-1 (6-3a)

Re(l) = Y, x(<n + I>) x(n)
=0

or

page 122

_ N-1 (6-3b)
Rx()) = Ex(n) x(<n —I>nN)
=0
where <y> N denotes y modulo N. Fig. 6-2 shows a graphical illustration of the

circular auto-correlation. For simplicity, auto-correlation will refer to circular

auto-correlation in this chapter when no ambiguity arises.

It can be shown that ﬁx(l) = §x(N —[) and whether the shifting of x(n) in the
correlation is to the left or right will give the same power spectrum. As an illustration
of the Wiener-Khinchine relations, consider a 16-point sequence {x(n)} = {2, 0.8,
2212, 6.498, -7, 0.346, -3.356, 8.035, 4, -4.557, 2.121, -2.741, 1,-12.588, 3.536, 4.208}.
The auto-correlation of x(n) according to eqn (6-3a) is a sequence {ﬁx(l)} = {26,
-8.096, 0.836, -7.312, 3.5, 0.948, -16.839, 14.46, -1, 14.46, -16.839, 0.948, 3.5, -7.312,

0.839, -8.096}. Let X(k) and FR(k) be the Fourier transform of x(n) and ﬁx(l), and it

is found that {|X(k)|*}= 2 { FR(k)} = {0, 1,9, 0, 16, 1, 0, 25}.The sequences

{Rx(D}, {IX(k)|* } and 3 { FR(k)} are plotted in Fig, 6-3.

When a continuous signal is sampled for N points in a total duration of T
seconds, the sampling period ts = T/N and the sampling frequency fs = 1/ts = N/T.
In the frequency spectrum, thére will be N spectral lines representing a bandwidth of
fs. Hence the frequency resolution of the Fourier transform Af = fs/N = 1/T. In
these N spectral lines there are only N/2 distinct values because after fy/2, the spectral
lines are the images of the first N/2 lines (see Fig. 6-4). In order to push up this Nyquist

limit, ts must be decreased.

Let us now consider the auto-correlation of x(n) and its power spectrum. When

the auto-correlation is performed, the step size of each shift is ts so that N values for

page 123

Fig. 6-2 Graphical illustration of the circular auto-correlation of an 8-point sequence

with [= 2, i.e. Rx (2).

T ‘4(a)‘ | | | B -
R 0

30— ‘(b)‘ | | | | {

A S R B

30& I(C)I | | | | i

| T R

o

Fig. 6-3 lllustrating the Wiener-Khintchine relations:
(a) the circular auto-correlation Rx(l) of a length-16 sequence x(n),
(b) the magnitude spectrum of the Fourier transform of Rx(/),

(c) the power spectrum of x(n).
page 124

ng(l) are obtained, thus yielding a power spectrum of a period of N. Suppose the step
size is now halved so that the number of points obtained for ﬁx(l) is doubled. Would
the Nyquist frequency be extended ? The answer is no. In this 2N-point sequence, all
the odd-numbered points are equal to zero and the even-numbered points are equal
to the values of the former N-point sequence. Zeros result in these "half steps” because
there are no sample values between two steps (or two sampling time intervals) in
regular sampling; hence there are no "overlaps" in the correlation. The 2N-point
ﬁx(l) padded with N zeros may be considered as an up-sampling or expansion of an
N-point sequence. Although the number of points is increased, its spectrum is
"compressed" in the frequency domain so that there is no change in the Nyquist limit

x(n)

4 ts

||||| H “||I
nt

<—T —_—

S

X(k) Af = UT

4

—p

e

kAf

fs
N
7 fs / 2

Fig. 6-4 Relationship between the timing of an extended sample sequence and the
resolution of its frequency spectrum.

page 125

[44]. Obviously, since there is no extra information obtained in the time sequence, the

information content in the frequency spectrum should remain unchanged.

6.2.2 Random sampling : One can argue that a randomly sampled sequence is alias-
free by considering the possibility of decreasing the step size of its auto-correlation
function. For a continuous signal, a linear auto-correlation can be performed at any
step size because there is a probability of finding overlaps everywhere within the
duration of the signal. When sampling is randomized in the time domain, the resulting
sequence is also a "continuous" signal in the sense that there is a probability, however
small, that a sampling point will fall into a particular instant. Hence, in contrast to
regular sampling, overlaps exist when the step size of the auto-correlation decreases,
which demonstrates that the Nyquist frequency with random sampling is not limited

by the apparent sequence length.

Let a sample sequence of N points be sampled by a random sampling scheme
with a mean sampling period u, and the auto-correlation is performed with a step size
ts smaller than #. Assume that the probability density function (p.d.f.) of a point has
a gaussian distribution as shown in Fig. 6-5. Since the f)robability of finding a sampling
point exactly at time t is zero, we consider a region in the time frame. The probability
of finding a sampling point between t2 and t1 is:

PO = [p(e)de “

When this point is shifted by a step, the probability of finding a sampling point in the
corresponding region is :

| f 6-5
Pey= [t,j p'(0) de ©-5)

Then the probability of an overlap is :

page 126

+P@

t’

/

-t’s I to

Fig. 6-56 The overlapping of the probability density function of a point in an auto-
correlation when the step size is smaller than the mean sampling period.

P() = PO).P(t") > 0

since for a gaussian distribution, P(t) and P(t’) are non-zero. For example, if the
standard deviationo = 0.3 and the step size = (.54, and the whole step is considered
as the region of overlapping, then the probability P(t) = P’(t) = 0.4082, and P(v)
=(.1666. According to Bilinskis and Mikelsons [28], the probability density function
of a sampling point in an additive random sampling scheme approaches 1/u when the
time t is large enough (see Fig. 3-7). Hence the probability of finding a sampling point

in an interval At is At/u and this probability is greater than zero so long as At is greater

than zero.

Let us consider the effect of reducing the step size successively. Suppose the
step size is #/2 (a regular step size) so that there will be 2N points in the

auto-correlation sequence Ex(l). Since the probability of finding an overlap in each

page 127

step is non-zero, Ex(l) will not be a sequence with zero values in alternate positions,
which is the case with regular sampling, although there are zeros distributed randomly
inside the sequence. In effect there are 2N distinct data points in ﬁx(l) so that its power
spectrum has N distinct values, which means that the Nyquist limit is twice that of an
auto-correlation of N points while the frequency resolution remains unchanged. Thus
if the step of the auto-correlation is a regular size of u/2i, the Nyquist limit of the
resulting powér spectrum will be further extended to 2"IN distinet values, where 11§
an integer. Following this argument, the Nyquist limit could be extended in principle
to any even multiple of N. Intuitively speaking, the extra information in the frequency

spectrum is obtained because information in the time domain may be available

between two consecutive points of a regular time grid.

6.2.2.1 A Pseudo-continuous sampling : Coming back to those zeros distributed
randomly inside Ex(l) mentioned previously, they are the source of the random
background noise seen in the frequency spectrum. Conceptually the random sampling
is a corrupted case of continuous sampling. Suppose ste(l) is the exact auto-
correlation, then conceptually we can write :

Ree(l) — Re(l) = N(I)

or N _
Rxe(l) = Rx(l) + N() (6-6)

where N(1) is the sequence of "drop-outs" whose non-zero values corresponds to the
positions of those zeros in Ex(l). Therefore, according to eqn(6-6), the exact spectrum
of the sampled signal is split into two parts, and both the spectra of ﬁx(l) and N()
contain the frequency information of the exact spectrum but corrupted by noise. From

the above argument, a random sampling scheme may be considered an irregular

page 128

selection of points from a continuous or an infinitesimally dense and regular time

grid.

For illustration, consider a sequence {y1(n)} which contains 32 non-zero data
points sampled irregularly from a regular sequence {y(n)} of 128 points. At those
locations j where data are not selected, y1(j) = 0. Therefore, the difference between
{y(n)} and {y1(n)}is a sequence {y2(n)} having 96 non-zero values. The power
spectrum of these three sequences are shown in Fig. 6-6. It can be seen that the Nyquist
limit is not affected by the irregular down-sampling and it remains at k = 64 for all
three spectra. From Fig. 6-6 (b), where only one-quarter of the original sequence is
selected, the signal at k =60 can still be recognized although the signal-to-noise ratio
is low (13.6 dB) as compared to the case in Fig. 6-6 (c), where the signal-to-noise ratio

is 23 dB.

The aim of the above example is to show that a randomly sampled sequence,
as an irregular down-sampling from a continuous signal, would maintain the Nyquist
limit of a continuous signal, i.e. at infinity. However, in handling the missing data
problem that drop-outs occur in a sequence, interpolation methods and linear
least-square fitting such as Lomb’s algorithm [45,46] can be applied to construct a

better periodogram than a direct Fourier transform of the sequence.

6.3 Evaluation of Auto-correlation

The theoretical background of the circular auto-correlation has been covered
and the next step is to write computer programs for computing its numerical values.
When doing so, practical difficulties are encountered and solutions to them are

suggested in the following sections.

page 129

V2 (a)
° 60 k i
0.15] 1 i
[
| — b -
V2 (b)
o o;ﬂ_]’_ﬂ{[ﬂﬂ]ﬂ{&ﬂg,&ﬂ]f_ﬁf_ﬁ_dh—_r i z_ﬂr_r_ﬁ_l' ﬂ'ﬂ'rﬁjr‘lr‘];ﬂrﬂqiﬂ'ﬁh
K 127
C
2 ()
o . e 1 - =T
o k 127

Fig. 6-6 Power spectra of :
(a) a sequence {y(n)} sampled regularly for 128 points,

(b) a sequence {y1(n)} of 32 samples selected unevenly from the above 128-point
sequence, and

(c) the sequence {y2(n)} containing the remaining 96 samples.

6.3.1 Step Size and Window Width : The auto-correlation of a randomly sampled
sequence x(tn) can be written as :

_ N-1 (6-7a)
Re(l) =), x(<tn + Lis>n) x(tn)
=0
or
N-1 (6-7b)

R(l) =), x(tn) x(<tn = Lts>N)
=0

where ts is the step size, u is the mean sampling period, and Nu is the total sampling
period. To evaluate the auto-correlation of a sequence sampled randomly is more

page 130

complicated than a sequence sampled uniformly. For a uniformly spaced sequence,
the step size is always one sampling interval (ts in Fig. 6-4). So in programming eqn
(6-3), the rotation of the input array in the time frame is achieved simply by modifying
their indices n. Then the products between the corresponding elements of the two
arrays can easily be formed. When evaluating a randomly sampled sequence, the
results are sensitive to the computational errors of the host system. Unlike regular
sampling, the sampling times of a randomized sequence must be recorded. To rotate
the sequence means adding the value of the required step to the sampling times of the
input sequence (see eqn (6-7)). The next step after rotation is to compare point by
point the original times with the shifted times to search for equal values. (In theory, a
point has no width. As discussed in section 6.2.2 and shown in Fig. 6-5, we have to
consider aregion for the overlapping.) Besides the involvement in searchingl, another
problem arises when comparing the time values, which are not integers but most likely
floating-point numbers. Usually the sampling times for random sampling are
represented by many significant digits. Thus an exact match of two points requires that
all the bits representing the values, up to the least significant bit, are equal. When the
step size is added to the original set of times, rounding off is Bounded o oceur,
especially in circular auto-correlation where modulo arithmetic is involved. So the
probability of finding exact matches in the two sets of times would be extremely low,

and many zeros will be obtained in the results.

To overcome this problem, a tolerance may be incorporated into the
comparison such that the chance of matching can be increased. Instead of comparing

the two sets of time values by points, windows of width w are opened in one of the

1 The techniques to avoid modulo arithmetic and to reduce search effort will be discussed in section
6.3.2. '

page 131

sets. Now the process becomes checking whether or not a set of points fall into these
windows. By this modification, the influence of machine errors is completely
eliminated and the probability of matching is enhanced. The idea is illustrated
graphically in Fig. 6-7, where part of a randomly sampled sequence shown in (a) is
shifted by a step ts as shown in (b). No overlaps can be found although there are three
pairs of points lying closely together in time. In Fig. 6-7 (c), windows are opened and
the three points in (a) are now captured. Referring to eqn (6-4), P(t) is the probability
of finding a sampling point in the original sequence in a region where t1 and t2
correspond to the beginning and the end of a specific window, i.e. w =t2 - t1. In an
N-point sequence with a mean sampling period of , the total sampling period is Nu

in which N windows appear. The probability of the occurrence of a window is thus

%. The probability of an overlap in time is then :
@ .| step
ts
It
. : |
(b) : : !
| : |
: : I l ’ t’
[| : "
© : Z | "
Z
o U w Z

Fig. 6-7 Using windows in auto-correlation :

(a) part of a randomly sampled sequence,

(b) the sequence in (a) shifted by a step ts in the time frame, and
(c) windows of width w opened in the shifted sequence.

page 132

PO =15 [Z p(e)dr = 3 PO
According to Bilinskis and Mikelsons [28], the probability density function of a
sampling point in an additive random sampling scheme approaches 1/4 when the time
t is large enough. Therefore, P(t) = w/u and P(v) = (w/,u)z. Hence P(v) increases
with the increasing window width w. Returning to the example in section 6.2.2 where
the gaussian distribution has a standard deviation of 0.3 u. The step size of correlation
is 0.5 (= the region of interest) and windows are not used in the shifted sequence.
Given that a sampling point is found in the original sequence between to and ts, i.¢.
P(t) = 1, then P(v) =P(t’) = 0.4082. If a window centred at t’p of w = 0.8 u is used,

the conditional probability of P(v) will become 0.8, i.e. nearly doubled.

6.3.1.1 Nyquist Limit and Noise : Consider a signal x(t) = 1.5 cos (27 .50t) +2sin
(27.5061t) + 1 cos (2. 1400 t) sampled by a.r.s. for 512 points in 1 second. Its power
spectrum is recovered up to k = 1535 and shown in Fig. 6-8 for reference. To illustrate
the effects of the step size and window width in auto-correlation, the above sequence
x(tn) is auto-correlated with a step size of 1/1024 = 976.5 us and different window
widths. The results ﬁx(l) withl = 1,2, ..., 200 are shown in Fig. 6-9 where the window
width decreases from +146 us in (a) to =24.4 us in (d). It can be seen that all the
sequences share a similar "shape" in the time frame, implying that their frequency
contents are more or less similar. Their corresponding DFT’s are shown in Fig. 6-10,
where the Nyquist limit is at k=512 as the time sequences comprise 1024 points
regularly spaced in time. The component at k = 1,400 is aliased to 376 and 648. The
amplitudes of R}(Z) and their DFT’s are proportional to the widow width, e.g. the
maximum amplitudes in Fig. 6-9 (a) and 6-10(a) are about 6 times those in Fig. 6-9

(d) and 6-10 (d) respectively. This happens because the chances of overlapping are 6

page 133

times higher in (a) than in (d). It can also be seen in Fig. 6-10(d) that drop-outs are
prominent, which results in high noise in its power spectrum. Turning to their Fourier
transforms in Fig. 6-10, the signal-to-noise ratios are 19.3 dB in (a), 17.6 dB in (b),
14.7 dB in (c) and 11.8 dB in (d). In Fig. 6-10 (d), the maximum noise level is even
higher than the weakest signal component. As a reference, the signal-to-noise ratio
of the spectrum obtained by direct evaluation and shown in Fig. 6-8 is 24.8 dB. In Fig.

6-10 (a) and (b), the power of the three signal components maintain roughly a ratio

of 2.25to 1 to 4.

Let us continue the auto-correlation with finer step sizes. Fig. 6-11 (a) shows
the correlation results I?x(l), 1 = 0,1,..., 200, with a step size of 1/2048 = 488 us and
(b) shows the correlation results with a step size of 1/4096 = 244 us. The window
widths are =20 % of the respective step size in both cases. Hence the sequence lengths
are 2,048 points and 4,096 points respectively. It is obvious, even in the time domain,
that the auto-correlation sequence in Fig. 6-11 (b) should contain a higher frequency
content than in (a). Their corresponding Fourier transforms confirm the above
conjecture. In Fig. 6-12 (a), the Nyquist limit is at k = 1,024 since the sequence length

is 2,048. Comparing to the spectra in Fig. 6-10, the aliases at 376, 518 and 974 are

power, V2
4 1 T 1 1 T 1 1
3.89
227
1.06
O L PTNITIoN [N d YE'N LL‘“‘&A‘L—_—‘—-‘—‘-L_L“
° 50 506 k 1400

Fig. 6-8 The power spectrum of a signal x(t) = 1.5 cos (2n.501) + 2sin (2. 5061)
+ 1cos (2rn.1400t) sampled by a.r.s. for 512 points in 1 second.

page 134

R())

300

(a) -I

- 40

i
l'“llh.

Tl
||-u'|'

"I-- 1 g 518 ||
Ll G

I!L." i
i

1 200
1
200 ¥ i I
I 1] i | II I H I | , II'I”illl. =y I _ "II I .I | .
(b) AT T e e | fIL 0 LIy
b -
-300 I |]
1 1 200
150 T I I
5 I |
(C) .I I. I i 'I...fiulll it b I I 1 II I l" "i 'III'I G]h TAILL I I II | illll II_ I""l
200]] 1
l 200
100 I T T
o N 0 P i ,
(d) g - i I e Tl I-'I : II'
150, 1 1]
l 200

Fig 6-9 Parts of the auto-correlation results ﬁx(/)in time domain of an a.r.s. sequence
sampled for 512 points in 1 second. The step size for correlation is 976.5 us, i.e. half
of the average sampling period and the window widths are:

(a) +15% of step size = =146 us , (b)=10% of step size = +97.6 us,
(c) +£5% of step size = =48.8 us , (d)+£2.5% of step size = +=24.4 us.
page 135

amplitude

150 T T T T
147
|90 (a) i
o 32.7 _
0
0 Pl 1023
50 376 586 518 648 974
110 T T T T
B 101 -
60.9 (b)
26.1
0
0 1023
60 T T T
52.8
— 324 (c) _
_ 16.7 _
0
0 1023
30 T T T T
272
1638 (d) }

Fig. 6-10 The Fourier transforms corresponding to the auto-correlation sequences

shown in Fig. 6-9 (a) to (d).

t
512

page 136

1023

removed, but aliases at 1,542 and 1,998 are generated because of the change in
Nyquist limit. In Fig. 6-12 (b), the Nyquist limit is at k = 2048 so that all aliases are
removed and a spectrum similar to the one shown in Fig. 6-8 is achieved. The data of

the above spectra are summarized in Table 6-1.

From the above discussion, we can conclude that a randomly sample sequence

is alias-free so long as a proper evaluation method is adopted.

6.3.2 Programming Techniques : The auto-correlation results are computed by
programming eqn (6-7a) with Microsoft C. In the equation, modulo arithmetic and
searching are involved, both of which are time consuming. Two techniques may be

used to speed up these operations.

To eliminate the usage of modulo arithmetic with floating point numbers,
circular correlation is replaced by linear correlation using the concept of periodic
extension of an aperiodic signal shown in Fig. 2-1. For illustration, Fig. 6-13 (a) shows
a sequence of 4 points from which Ex(l) is to be computed. The sequence is circularly

shifted to the left by 1 step as shown in (b). Correlating the above two sequences yields

Table 6-1 : Auto-correlation results of a sequence sampled by a.r.s. for
512 points in 1 second using different step sizes and window widths.
(Mean sampling period is 1/512 = 1.95 ms.)

Spectrum| Step size | Window width | Nyquist | aliasing |component]S/N (dB)
in Fig. (us) (Poofstep (us) limit (Hz) power

ratio
6-10(a) | 976.5 +15% | =+ 146 512 yes 27:1:45] 193
6-10(b) | 9765 | =10% | =97.6 512 yes |23:1:39] 17.6
6-10(c) | 976.5 +5% | +48.8 512 yes 19:1:32] 147
6-10(d) | 976.5 | +2.5% | *24.4 512 yes 16:1:26| 11.8
6-12 (a) 488 +20% | +97.6 1024 yes 25:1:41| 203
6-12 (b) 244 +20% | +4338 2048 no 21:1:37] 203

page 137

amplitude

200‘ T T ¥

| -
(a) |0 |‘ a 1' ! ! I {i i | | l I'! l i il !.’ |l ITll]

j’*l“' ! 'Illl"r‘“ ’,““ : ‘|lllil] il'i'~|

—zonl ! 411 1 200
| t T '
(b) p“'.-"-i, i 14 g Ill’lql!h“,,h L k5 4 I .!.“I:”. A ﬂi.".-.u,._
[H T i Il_\l T rrrTEmEpe®]
|]
.l5oll 1 ; 1 o0

Fig. 6-11 Parts of the auto-correlation results of the same sample sequence in Fig. =
6-9 but with different step sizes :

(a) step size = 488 us, window width = +97.6 us, (b) step size =244 us, win-
dow width = +48.8 us

amplitude
100] 085 T T T
a
58.6 ()
239
0l
[2047
50 506 648 k 1400 1542 1998
60 ! 1 1 I
50.1
u (b)

Fig. 6-12 The Fourier transforms corresponding to the auto-correlation sequences
shown in Fig. 6-11 (a) and (b).

page 138

a result of 24. Suppose the sequence is now extended to two periods as shown in (c).
When it is correlated with the sequence in (d), which is the original sequence linearly
shifted to the right by one step, the result is the same as before. Hence the circular

shift in eqn (6-7a) can be programmed as a linear shift as follows :

(i) Let x(tn) and tn be the input data sequence and time sequence respectively.
Assuming that the total sampling time (Nu) is known, the input sequences can be
extended to two periods as shown in Fig. 6-13 (c). In the second period :

x(tN+n) = x(tn) and tn+n =tn + Nu

where n = 0,1,....N-1.Denote these sequences by {x2n(i)} and {t2n(i) } respectively.

] 4 4
(a) 3 (© 3
2 2
L L[]
0 n 0 n
(b) 4 (d) 4
— 3 3 [R—
27 2
L L]
\\0 /’ n=<n+1>4 0 n’=n-1
Result:
2+6+12+4=24 2+6+12+4=24

Fig. 6-13 Circular correlation is replaced by an equivalent linear correlation:

(a) The original sequence x(n) is to be correlated with (b);

(b) x(<n+1>4), which is obtained by shifting x(n) to the left circularly one step .
(c) x(n) is extended to two periods and to be correlated with (d);

(d) x(n-1), which is x(n) shifted to the right linearly one step.

The results of the two correlations are identical.

page 139

(i) Set/ = 0.

(iii) The input sequences are modified by keeping the data values x(tn) but shifting
the corresponding sampling times by :

1) =t + Lis

where j=0,1,...,N-1 and ts is the correlation step size.
(iv) Set 1’?;(1) = (. For each t(j) search for a tan(i) such that

|t(5) - t2n(i) | < % . where w is the window width.

If a match is found, compute Ry(l)= Re(l) + x(¢())x2n()
(v) Increment / by land repeat steps (iii) and (iv) until/ = N.
Note that step (i) is performed only once for the whole process.

Instep (iv), there are potentially 2N?searches to be performed for each/since
there are N time values in the shifted sequence and 2N time values in extended
sequence. For computing N éorrelations, the order of magnitude for searches is
therefore N3, which is undesirable. Fortunately all time values are stored in an
ascending order, i.e. t(j + 1) >t(j), the index j can be treated as a pointer to minimize
the number of searches. Let us specify a "distance" D, say, equal to one step size ts. In
the search process, t2N(i) is fetched as a target to be compared with t(j), where j is
being incremented. When t(j) - t2N(i) is greater than D, we know that we have passed
the target and the search should stop. Then we decrement j by 2if j >2, otherwise we
set j to 0, to ensure that we do not pass the next target before the next search starts
since we have set back the pointer. A new search begins by fetching the next target in

{ton(i)} with i incremented by 1 until i = 2N-1. After one value of ﬁx(l) is computed,

page 140

the pointer j is reset to 0. By this method, only a few (about 2 or 3) searches are done
per t(j) so that the order of magnitude is N for each/ and NZ for the whole process,

which is one order lower than that of an exhaustive search.

The following is the search times spent in performing the auto-correlation with

a 80486 machine having a 33-MHz clock. The programs are written in Microsoft C

version 6 :
programming method length N search timeicomp. time| overhead
(seconds) | (seconds) | (seconds)
(a) with preset distance but no 1,024 2,314 0.5 1.8
pointer
(b) with preset distance and 1,024 8.8 0.5 1.8
pointer
(c) with preset distance and 4,096 39 0.9 6.4
pointer

When a "distance" in time is set, the search for matches for a particular point stops
when that distance is reached, but, without the pointer, the search will resume at the
initial time for the next point. The average number of searches is thus N/2 per point,
i.e. 512 per point ih (a). With a pointer installed, about 2 or 3 searches are required
per point. Indeed the ratio of the search time in (b) to that in (a) is 1 to 260. For

computing 4,096 points, it takes, as shown in (c), asearch period 4 times as long as in
(b).

6.4 Auto-correlation of Parallel a.r.s. and Hybrid a.r.s.

In Chapters 4 and S, the generation and the implementation of the parallel
a.r.s. and the hybrid a.r.s., as well as their savings in computation, are fully described.
In this section, the sequences sampled by these two methods will be analyzed by the
auto-correlation approach developed above with an aim to confirm their anti-alias

property. The principle is to check whether a valid auto-correlation sequence is

page 141

available (as described in section 6.3.1.1) when the step size is smaller than the
sampling period. For consistency, the input signal used in this section, namely x(t)

= 1.5 cos(2. 50t) +2sin(2. 506t) + cos(27. 1400t), is the same as the one in section

6.3.

6.4.1 Parallel a.rs. : Let the input signal x(t) be sampled by a 32 x 32 parallel a.r.s.
format (refer to section 4.3) yielding a data sequence {x(tn)} of 1024 points. This
sequence {x(tn)} can, of course, be used directly to reconstruct a power spectrum,
but here it is auto-correlated with a regular step size equal to 1/4 of the mean sampling
period to generate an ng (),1 =0,1,2,...,4097. Part of the auto-correlation sequence
and the power spectrum (computed by FFT) are shown in Fig. 6-14 (a) and (b), from

which the characteristics of the parallel a.r.s. can be observed.

6.4.1.1 Bursts of Noise : Comparing to those auto-correlation sequences of a genuine
a.r.s. shown in Fig. 6-9, one can easily observe that I'va ()) in Fig. 6-14(a) has 22
relatively large components from | = 0 to 88 at an interval of 4. To illustrate this point
numerically, the first 9 values of ﬁx (1) are {3715, 12.45,-1.624, 6.04, -983.5, 5.08, 9.73,
8.06, 1606, . . . }, where the large values are underlined. This phenomenon is easily
explicable if we recall that in the 32 x 32 parallel a.r.s. there are 32 groups of sampling
points separated from each other by a random variable (see Fig. 4.1). Within each of
these groups, there are 32 sampling points equally spaced in time. Since every 4
correlation steps correspond to one sampling period, a strong correlation is expected
every 4 steps where overlaps occur certainly when the shift / is equal to the first 32
sampling periods . As the shift/ progresses, randomness increases and we can see that

the shape of IEx (1) begins to look similar to those in Fig. 6-11. In fact the " block effect"

page 142

() -

ol FEEEPID® T WA W | EPURTY TP B | 1 2toaudh. PR S U TG 1

(d)

Fig. 6-14 :

(a) Part of the 4096-point auto-correlation result, ﬁx (), of a 1024-point data se-
quence sampled by a 32x32 parallel a.rs.; step size of correlation = 1/4 of the
mean sampling period and window width = * 20% of the step size.

(b) The spectrum of Fr?vx .
(c) The spectrum of Rx (I) with the prominent bursts of noise removed.
(d) Part of the sequence Ey () which is the inverse DFT of (c) .

page 143

exists in the whole auto-correlation sequence but it is most prominent in the first 88

steps and the last 88 steps since ﬁx) =§x (N—-10), where N is the sequence length.

Let us remove the prominent bursts of noise in the power spectrum and
observe the effect in the auto-correlation sequence. The resulting spectrum is shown
in Fig. 6-14(c) anditsinverse DFL I%; (D), is partly depicted in Fig. 6-14 (d). Itis obvious
that the large components in the original Ex (/) shown in Fig. 6-14 (a) are absent here,

which is an evidence that the bursts of noise are generated by the blocks in the time

domain.

The block effect in the auto-correlation sequence also lends itself to the
explanation of the appearance of the bursts of noise seen in the power spectrum.
Recall that a rectangular pulse in the time domain transforms to a sinc pulse
(sine x/x) in the frequency domain, and the wider the pulse width is in time, the
narrower in frequency and higher in amplitude is the main lobe of the sinc pulse . By
~analogy, the wider a block we have in the parallel a.r.s. (i.e. a larger value in p of
eqn(4-1)), the narrower and higher the burst of noise in the spectrum. This effect is

illustrated in Fig. 4-4.

To further demonstrate the block effect of the parallel a.r.s., let us suppress the
first 21 large components and the last 21 components of the sequence, which are
Ex (D) with1=4,8, ..., 88 and 1=4008, 4012, . . ., 4092, by 100 times to force them
into the same order of magnitude of its neighbours. The resulting spectrum is shown
- in Fig. 6-15 (b), which, when compared to the original spectrum, has lower bursts of
noise. Note that the total noise power is not reduced but spread out more evenly

instead. The signal-to-noise ratios of both spectra are about 22 dB, but the peak noise

page 144

levelin (a)is 22.6 V2, whereas in (b) it is only 12.6 V2. In (a) the ratio of the weakest
y

component to peak noise is about 0.12 dB but in (b) the ratio increases to 2.53 dB.

6.4.1.2 Nyquist Limit : In section 6.4, it is pointed out that if a uniformly sampled data
sequence is auto-correlated with a step size smaller than the sampling period, zeros
(null information) will be found in a regular pattern inside the resulting sequence. For
example, a regularly sampled sequence auto-correlated with a step size of 1/4 of the
sampling period would yield a sequence {R0,0,0,0, R4,0,0,0, R, ...} where R; stands
for non-zero values. Although the sequence length is increased by four times, the
effective sampling period, which is the interval between the non-zero values, remains

unchanged. Such an up-sampling by padding with zeros does not change the Nyquist

limit [44].
VZ
llOl_ ' ! T 1
(a)
o |} | -1._‘.‘_...“
] 2048
V2 k
IIOL 1 ' ¥ ¥
(b)
o PR Y I._.‘A DU ST N T l‘.“m“-_‘h -.J...&I. bt st ntaadiiing
(1] 2048
k
Fig. 6-15

(a)The original spectrum of Ex (), which is the same as Fig. 6-14 (b).

(b) Spectrum of ﬁx () with the amplitude of the first 21 and last 21 large com-
ponents reduced by 100 times.

page 145

Since the auto-correlation sequence I?x (D) of ihe parallel a.r.s. contains 4,096
data regularly spaced in time, the Nyquist limit of its spectrum should be at k = 2048
if its effective sampling period is indeed 1/4096. Referring to Fig. 6-14 (a), in the first
88 steps, we do see a regular pattern of low values (effectively zeros) enclosed by large
values in every interval of 4 steps. At about /= 100, however, the low values begin to
grow in amplitude whilst the large components disappear. As anumerical illustration,
let us compare the two auto-correlation sequences in Fig. 6-14 (a) and (d) for / = 200,

201,...,209:

Re() :{...-1385,-13.5, 100, 6.8, -91.2, -134.4, -343.8, -332.1, -67.67, -146, ... },

and
Ey (D:4...,-192.5,-6,96.8, -3.41, -60.74, -140.5, -413.5, 269.3, -128.1, -122,,).

In Ry (1) no fixed pattern of zeros is discernible. The values are also close to those in
Ey () , which is a filtered version of R (1). Observing from the simulation result, in
the 4,096-point sequence ﬁx (1), patterns of zeros appear only in a very small portion
of the total sampling period, revealing that information is available most of the steps.
Hence we can conclude that the effective sampling period is 1/4096 and the Nyquist
limit is at k = 2048. The spectrum in Fig. 6-14 (b) in fact confirms this assertion; the

component at k = 1,400 can be clearly seen.

6.4.2 Hybrid a.r.s. : To study the properties of the hybrid a.r.s., an input signal, x(t) =
1.5 cos(27. 50t) +2 sin(27. 506t) + cos(27. 1400t), is sampled by a 4 x 256 hybrid a.r.s.
sequence and an 8 x 128 hybrid a.r.s. for 1,024 points (refer to section 5.2). The
resulting sequences are auto-correlated with a step size of - 1/4 of the mean sampling
period and a window width equal to £20% of the step size. The auto-correlation

page 146

sequences, together with its Fourier transforms, are shown in Fig. 6-16 and Fig. 6-17

respectively.

6.4.2.1 Binning of Noise : By scrutinizing the auto-correlation sequence from the 4 x
256 hybrid a.r.s. in Fig. 6-16 (a), we can observe that the overall shape of this sequence
is similar to the auto-correlation sequences of data sampled by genuine a.r.s. (shown
in Fig. 6-11 but with a different scale) except that there is a large value at /=2,048,
which is the mid-point of Ry(1). This value, Re(2,048), is as large as Ry(0). Recall that
the timing of the second half section of this hybrid a.r.s. sequence is equivalent to the
first half plus 1/2 if the total sampling period is unity (see eqn 5-2) ; therefore when
the shift / of the correlation reaches half of the total sampling period, a total match in
timing occurs as at /=0 so that a large correlation result is obtained. These
components at / =0 and at / =2,048 are part of a pulse train of a periodicity of 1/2.
Thué in the reconstructed power spectrum, we expect to see the effect from this pulse
train. In Fig. 6-16(c), it can be seen that the amplitudes of the background noise at the
even frequency indices are substantially larger than those at the odd frequency indices,
which means that noise tends to gather at the even indices. In fact, if the frequency of
the input signal is f, noise will cluster at indices congruent to f modulo 2. As all the
components of the input signal in this case have even frequency indices, the
background noise accumulates at the even indices. To show that this binning effect is
attributed to 15;((2,048), let us set this value to 0 and perform the DFT again. The
resulting spectrum in Fig. 6-16 (d) shows that noise is redistributed into the odd indices

making the peak noise level lower than that in (c).

All other formats of hybrid a.r.s., e.g. 8 x 128, exhibit this binning of noise in

the frequency spectrum. For the 8 x 128 format, the whole sampling period is divided

page 147

4000

4095

(b)

2048

-

400
2

V..«

500

HIHMUIL i L”;Ik L I-m””rr I

—

I ﬂrﬂrﬂrrr[mhrr,rrrmfmrmIﬂmfmﬂﬁrmﬂﬂmLTW [LIL T[LIJJTT I

T I | 1 T I 1 T I

400

300

k

Fig. 6-16 : (a) The auto-correlation result, f’?} (), of a 1024-point data sequence
sampled by a 4 x 256 hybrid a.rs.; step size of correlation = 1/4 of the mean sam-
pling period and window width = x 20% of the step size.

(b) The spectrum of Rx (/).
(c) Part of the spectrum in (a). Noise tends to cluster at even indices.

(d)Part of the spectrum of the same sequence in (a) with Ex(2,048)set to 0. Noise
is spread out more evenly.

page 148

into four sections (see eqn 5-3). The timing of the second, third and fourth sections
are the same as the first if the timing in each section is referred to the beginning of
the respective sections. Hence for the 4,096-step auto-correlation, total match in
timing is expected when the shift / reaches 1,024, 2,048 and 3,072 . These three
conspicuous values can be seen in Fig. 6-17(a). (Note that the phase reversal of
§x(1,024) and §X(3,O72) is attributed to the phase change of the input signal.) Together
with IEX(O) these three components form part of a pulse train having é frequency of
4. Therefore, for an input frequency f, noise will cluster at indices congruent to f
modulo 4. Since our input components have frequencies at 56, 506 and 1,400, noise is
expected to accumulate at k = 0 and 2 modulo 4, which are even integers (see Fig.
6-17 (c)). Two input components at 56 and 506 are, however, congruent to 2 modulo
4. Thus noise at these indices are relatively stronger. If the component at 1,400 is
changed to 1,402, then all the indices of the components are 2 modulo 4 and noise will
accumulate at only one index per period of 4, which is shown in Fig. 6-18. When
Ex(1,024), ﬁx(2,048) and Ex(3,072) are all set to 0, noise in the frequency spectrum is

redistributed more evenly as shown in Fig. 6-17 (d).

Filtering the extra large components in R}(l) does not improve the overall
signal-to-noise ratio of the power spectra, but only reduces the peak noise level. The
signal-to-noise ratios of the 4x 256 or 8x 128 hybrid a.r.s.in Fig. 6-16 and 6-17, whether
filtered or not, are about 23 dB. After filtering, for the 4 x 256 format, the peak noise
level is reduced from 8 V2 t0 7 V2, making the ratio of the weakest signal to peak noise
increase from 5.5 dB to 5.9 dB. For the 8 x 128 format, the peak noise level is reduced

from 14.8 V210 12.7 V2, making the ratio of the weakest signal to peak noise increase

from 2.5 dB to 3.3 dB.

page 149

(b)

o I ﬂ TIT I T,I.JJ_T TlTrr TUTLJJT LJTLJ—‘

k

8f 1 T |] T | I ' 1

L y (d) —

I

00

err UARIANIN ITJI[TmlﬂmHWJWT[THTTHUT[MTHHJMIs

Fig. 6-17 : (a) The auto-correlation result, Rx (/), of a 1024-point data sequence
sampled by an 8 x 128 hybrid a.rs.; step size of correlation = 1/4 of the mean sam-
pling period and window width = + 20% of the step size. (b) The spectrum of

Ry (I).(c) Part of the spectrum in (a); noise tends to cluster at indices congruent to
Qand 2.mod 4. (d)Part of the spectrum of the same sequence in (a) with
Rx(1,024),Rx(2,048) and Rx(3,072) set to 0. Noise is spread out more evenly.

page 150

6.4.2.2 Nyquist Limit : Similar to the analysis in section 6.4.1.2, if the effective
sampling period of a 4,096-point auto-correlation sequence generated by the hybrid
a.r.s. is 1/4,096, then the Nyquist limit is at k = 2,048. Although there are large
. components at the beginning of each section, the auto-correlation sequences of both
4 x 256 and 8 x 128 formats contain no patterns of zeros at all. Parts of Ex(l) from the
4x 256 and 8 x 128 hybrid a.r.s are shown in Fig. 6-19 (a) and (b), and the numerical

values of ﬁx(l) with/ = 10 to 20 are listed below :

For 4 x 256 hybrid a.r.s. (Fig. 6-19 (a)) :

{...101.4,-38.2,-43.4,-176,42.6, 192.1, 149.8, 28.2, 69.5, -208.1,-71.95 .. .}
For 8 x 128 hybrid a.r.s. (Fig. 6-19 (b)) :

{...96.1,-29.4,-67.3,-181.9, 37.8, 103.9, 130.4, 9.4, 29.5, -181.1,-126.2 . . .}

From Fig. 6-19 and the values of ﬁx(l) listed above, we can conclude that information

is available at every step of the auto-correlation; thus the Nyquist limitisatk = 2,048.

N el 1T

400
k 500

Fig. 6-18 Part of the power spectrum of an input x(t) = 1.5 cos(2r. 50t) +2 sin(2x.
506t) +cos(2r. 14021) reconstructed from the auto-correlation sequence of an 8 x
128 hybrid a.r.s. Noise clusters at indices congruent to 2.mod 4.

page 151

Lok oo Lok L
(a) '||”-;'! ”||| I ||.|,!|1I|”|,u Ill"';' 1Tk \.y'..lmlul_l 6
i il i) I[1 ¥ I Ix
2Rk FHE T T
_500212 1 i i ll i 1 1 1 200
| ki) i
a!.. (| dibr-] .I ! 4) .l 1 t i] l it 1)
(b) [HIL, wll u I'”l' ”J'I||| i 2l ll!' “I I]ll l;!ll " ’% llg il fr xl?,_hdl " Illl diy
~ %00 1 1 - 1 [1 | 1 1 1] -E
[+ l 200
Fig. 6-19 :

(a) Part of the auto-correlation sequence in Fig. 6-16(a) generated from the 4 x 256
hybrid a.r.s.

(b) Part of the auto-correlation sequence in Fig. 6-17(a) generated from the 8 x 128
hybrid a.r.s.

In their respective spectra shown in Fig. 6-16 (b) and 6-17 (b), the component atk =

1,400 can be unambiguously recognized.

6.5 Concluding Remarks

Since the auto-correlation of a sequence is related to its power spectrum, the
anti-alias property of a randomly sampled sequence can be studied and explained via
its auto-correlation sequence. For a regularly sampled sequence, the step size of its
auto-correlation cannot be smaller than its sampling period ; otherwise null
information (zero values) is obtained between two consecutive points of the sampling
grid. The randomly sampled sequence, however, is a pseudo-continuous signal, and it

holds information (with a certain probability) along the whole sampling period.

page 152

Hence, in theory, the step size of the auto-correlation can be reduced to an arbitrarily
small interval so as to squeeze out the information of the high frequency components.

In section 6.3, the effect of the step size on extending the Nyquist limit is illustrated.

Based on the above theory, the auto-correlation of the parallel a.r.s. and the
hybrid ars. are studied in section 6.4. Apart from some large values, the
auto-correlation sequences derived from both methods contain information in every
step even if the step size is smaller than the mean sampling period, thus confirming
their anti-alias characteristics. The large values in these auto-correlation sequences
are related to noise in their frequency spectrum. Eliminating these large values in the
time domain does not improve the overall signal-to-noise ratio of the spectrum, but
redistributes the noise more evenly within the spectrum so that the peak noise level
is reduced. If a weak signal component exists in the spectrum, it may be desirable to

lower the peak noise level to make the signal more conspicuous.

In general, using the DFT to reconstruct a spectrum of a randomly sampled
sequence is more direct than using the auto-correlation method. Assuming that an
N-point real sequence is obtained by random sampling, it takes N 2real multiplications
(= N%/16 complex multiplications) for evaluatingits spectrum by the DFT and another
N complex multiplications for computing their power, i.e. a total of N%16 + N
complex multiplications. For auto-correlation, N?/16 complex multiplications are
required for computing the auto-correlation sequence and N loga N complex
multiplications are required for transforming the sequence to the frequency domain
by the FFT, i.e. a total of N%16 +N logz N complex multiplications. Although the
order of magnitude of computation is the same for both methods, the auto-correlation

method needs extra time in searching for overlaps. With the auto-correlation program

page 153

written in C, both the computation and the search process are implemented by using
the mathematical functions of the Clibrary. It turns out that the search time dominates
the whole process time, making the computational time a negligible factor. In section
6.3, we can see that the search time is 39 seconds for a 4,096-point auto-correlation

while the computational time is less than a second.

The auto-correlation method, however, may be considered a means to convert
a randomly sampled sequence to a regularly sampled sequence since the resulting
auto-correlation sequence is regularly spaced in time. If a randomly sampled sequence
is so "pre-processed” once, the timing information of the sampling points may be
discarded and the FFT may be used to compute the power spectrum. In some cases
where correlation is desired, e.g. checking similarity between two randomly sampled

signals, the techniques introduced in this chapter can be adopted.

page 154

CHAPTER 7

RAPID EVALUATION OF SPECTRUM

7.1 Introduction
After an N-point data sequence x(n) is obtained by sampling, its frequency

spectrum can be reconstructed by the DFT :

N-1 : (7-1)

Xky= Y xm)y Wi, k=01,...N-1
n=0

where W%q = exp (—j27i/N). It is well known that for the above evaluation, the
complexity of computation is N2 For gene;al-purpose computers manufactured
before the nineties, the computational time required to perform a multiplication is
significantly longer than an addition (e.g. a 8086 microprocessor takes a few clock
cycles to do an ADD but over 100 clock cycles to do a MUL). To speed up the
computation, fast algorithms were devised with a target to reduce as many
multiplications as possible, even if in exchange more additions had to be performed.
Among those fast algorithms, radix-2 FFT is the one most commonly used. Nowadays,
however, microprocessors (like 80486 and Pentium S) can perform floating-point

multiplication as fast as floating-point addition. Hence overall optimization in both

multiplication and addition must be considered.

In eqn (7-1), W]I\ljk is the kernel of the transform, which, if programmed in a
high-level language, requires the use of trigonometric functions in the library. Suppose

the accuracy of X(k) can be sacrificed for the sake of computational speed, the kernel

page 155

may be approximated in value such that multiplications required can be reduced to a
small number or even totally eliminated. This approach of optimization is completely
different from exploiting the symmetry property of the kernel, which is adopted by all

conventional fast algorithms discussed in Chapter 2.

Considering all factors, the FFT may still be a more appropriate algorithm than
the approximate method for evaluating a uniformly sampled sequence. However,
when the sequence is randomly or irregularly sampled, the FFT cannot apply and the

approximate method will become an attractive choice to speed up the computation.

7.2 Approximate Fourier Transforms

7.2.1 Coarse Quantization of the Kernel

7.2.1.1 Basic Principle : The kernel of the DFT, W&k, is composed of a set of orthogonal
sine and cosine basis functions. Let us consider the case whenk = 1; X(1)is evaluated
by multiplying the input sequence by cos (2zn/N) and sin (27n/N). Suppose the
sequence length N is 1,024, then there are 1,024 different values (if the sign is also
considered) for the sine and cosine functions respectively. By representing values lying
within a range by their mean, which is basically a clustering or re-quantization, fewer

values remain and the computational load can also be reduced.

Let the magnitude of cos (27n/N) and sin (27n/N) be divided into m levels
and denoted by ¢(m) and s(m) respectively. If, for example, the positive range of s(m)

is represented by five levels, we may have

[=0 for 0 < s(m) < 0.125
=025 for0.125 < s(m) < 0.375
s(m)=41=05 for 0.375 < s(m) < 0.625
=075 for 0.625 < s(m) < 0.875

=1 for 0.875 <s(m) < 1

page 156

which is illustrated in Fig. 7-1. Similarly, the negative range of s(m) can also be so
represented, yielding a 9-value representation scheme. Given a fixed sequence length
N, the arc-sine of the quantization levels in s(m) can be evaluated to find the
corresponding value in n. For N = 1,024, we obtain for the above scheme :

[

-1 for 682 < n < 850

—0.75 for662<n <682 or 850 <n <914

—-0.5 for575<n <622 or 914 =< n < 961

—0.25 for532 <n <575 or 961 <n < 1004

s(n)=1=0 for0<n <20 or 492 <n <532 or 1004 < n < 1024
=(0.25 for20 <n <63 or 449 <n <492

=05 for63 <n < 110 or 402 < n < 449

= (.75 for110<n < 174 or 338 <n <402

=1 for 174 <= n < 338

(7-2)

It is obvious that é(n) can be represented in a similar way. When X(1) is to be
evaluated, each element of {x(n)} is sorted according to the values of s(n) and ¢(n)

it is to be multiplied, which can be achieved simply by looking at the values of n as

sin(27n/1024)
_ quantization steps
1 _
/\ 0.875
| I
0.75 |— : :
| ! 0.625
|
L I |
I] I i
! : { : 0.375
| ! | |
I l | | !
0251 | l !
I I [!
I ! I || 0.125
T | I [!
I I I 1! :\
0 bl I I . .

20 63 110 174 338 402 449 492

Fig. 7-1 Representing the magnitude of the positive half cycle of a sine function by
5 values, namely, 0, 0.25, 0.5, 0.75 and 1.

page 157

specified in eqn(7-2) for s(n) and a similar equation for c(n). The real and imaginary

parts of X(1) are respectively given by :

Real{X(1)} = Y. LE x(n)) 20

i€n €d;
and Imaglx(D)} = LZ x(n)) s(i)
i€n Ee;

where iis one of the levels specified by n, and di and e are the groups formed according
to c(i) and s(i) respectively. Fig. 7-2 shows the block diagram for the computation, in
which only 2 groups of x(n) are depicted. As multiplications by 0, 1 and -1 are trivial,
there are only 6 non-trivial multiplications required for a 9-level kernel. If the sums
of x(n) corresponding to s(n)=-m and c(n)=-m are first subtracted from those
corresponding to s(n) = m and c(n) = m respectively before doing the multiplications,

there are only 3 multiplications required for computing X(1).

To compute X(k) other than k = 1, the same sorting procedure can apply with

k regarded as a "scaling factor". Recall that sin (27nk/N), with a period of N/k in the
time domain, is a compressed version of sin (27n/N). Hence for a kernel Wiks:

[= -1 for 682 < nk < 850

—0.75 for 662 < nk < 682 or 850 < nk <914

—0.5 forS575 <mnk <622 or 914 < nk < 961

= —0.25 for 532 < nk =575 or 961 < nk < 1004
s(nk)y=41=0 for 0 < nk <20 or 492 <n <532 or 1004 <n < 1024
= (.25 for 20 < nk < 63 or 449 < nk < 492

=0.5 for 63 < nk < 110 or 402 < nk < 449

= (.75 for 110 < nk < 174 or 338 < nk < 402

=1 for 174 < nk < 338

(7-3)
where nk = nk modulo N because the period of s(nk) in eqn (7-3) is now scaled to the

| sequence length N, which is 1,024 in this example.

page 158

7.2.1.2 Computational Complexity : Consider that the data sequence x(n) is sampled
regularly in time. With the approximate method, there are only a few complex
multiplications for evaluating one frequency component. In the above example of a
9-level kernel, the actual multiplications required are only 3 per frequency
component. In general, therefore, the total number of multiplications required is u.N,
where u is a small integer. As compared to the FFT whose complexity is Nlog2N, both
algorithms have a linear complexity, but the number of multiplications required by
the approximate method can even be smaller by making u < <log2N. The kernel may
also be rounded off to the nearest integer power of 2, thus making the multiplications

merely binary shifts, which can be effectively implemented by hardware or low-level

languages.
O—10
\[c(n)=-1lor
] s(n)=-1
x(n)
—] sort(n,k) /;-\ X _D_E(l)
k ¢(n)=-0.75 or
21 s(n)=-0.75

Fig. 7 - 2 Block diagram of the approximate evaluation of X(k) by grouping x(n) ac-
cording to the values of c(n) and s(n).

page 159

In principle N-1 additions are required for computing each frequency
component, although those data points to be multiplied by 0 need not be added at all.
Thus the complexity for addition is N 2 which is significantly higher than that of the
FFT. This approximate method could be faster than the FFT if both programs were

run on a computer which took a much longer interval in executing multiplication than

addition.

Suppose the data sequence is not uniformly sampled, then the FFT is not
applicable and the computational complexity is N2 for both multiplication and
addition. It is obvious that, with the approximate method being used, computational
effort will be significantly saved in multiplication, and even for addition, it is also

slightly lessened. The problem remaining to be considered is the trade-off in the

accuracy of the recovered spectrum.

7.2.2 Three-level Kernel

7.2.2.1 Basic Principle : In the previous section, the kernel of the transformis rounded
off to a few levels. Obviously, the computational speed increases as the number of
levels in the kernel decreases. This rounding off can get coarser and coarser until
ultimately two levels, i.e. + 1 and -1 are left, which is equivalent to a set of rectangular
waves being used as the kernel [4]. Multiplications by *1 are trivial; hence only
additions and subtractions are required for the computation. A penultimate round
off to 3 levels (+ 1, -1 and 0) corresponding to addition, subtraction and ’do-nothing’
was proposed by Mason[5]. The three-level round-off was reported to have less
leakage than the two-level truncation while maintaining the computational effort

substantially the same as the latter. In fact it could even be marginally less because

page 160

there is a "do-nothing" that requires no operation at all. Fig. 7-3 shows how a sine

function is quantized to three levels.

7.2.2.2 Leakage and Amplitude Error : Fig. 7-4 shows a typical truncated sine
function, sal, and its corresponding cosine counterpart, cal. (The terms sal and cal are
borrowed from Hughes and Herron [47].) The truncation level to generate these
functions is V2 = 0.707, which corresponds to a "cut-in angle" of 0.257. Note that in
this case, the duration for the occurrence of 1 is equal to that of 0. If the truncation

level is lowered, the duration for the 1 will be lengthened.

'An interesting property of these sal and cal functions is that they keep the
geometric symmetry of the sine and cosine functions, which can be clearly seen in Fig.
7-4. Hence a set of "almost orthogonal"1 basis functions can be generated by sal(k6)
and cal(kf), where k is an integer. Consequently, when these functions are used as a

transform kernel, the results retain the frequency characteristics of the DFT except

sinf, sal6

-1 L=

Fig. 7-3 Quantization of the sine function. A is the truncation level and 6 is the cut-
in angle.

1. The functions sal(kf) and cal(kf) are orthogonal in its own right. When they are, however, used as
substitutes for sin(kf) and cos(k8), orthogonality is lost.

page 161

sal @

b

0.625 0.875

0.125 0.375

cal @

0.375 0.625 0
0.125 ‘ 0.875 1

Fig. .7-4 The truncated sine function, sal 6, and cosine function, cal 8 [46]. The trun-
cation level is at V2 (=0.707) and the period of the function, 2r, is scaled to 1.

that leakage occurs and generates a background noise in the spectrum. The Fourier

series of the cal and sal functions can be written as :

cal 8 = % + 2 axk cos k0 and sal 0 = bi sin kO
k=1 k=1
where
2 s —0,
- (f 0 - f:/2+6cd0) B
H—6.
ak = 3{2— (foz cos k6do — f;w cosS kOdG)
_ 2 . T . 4 (74
= E{sm[k(z 6c)] + sin [k (5+60)] }
and
(7-5)

—6,
bk = % f: sin k0d6 = é{cos kfc — cos [k (n—Hc)]}

page 162

Hence for the functions in Fig. 7-4 where 6., = 0.257x :

(i sin&n—) coskO foroddk
| \km 4
cal 8 = { 6
0 for even k (7-6)
and
(i cos@‘) sink@ foroddk
kr 4
sal 9= 7
0 for even k 77

which are shown in Fig. 7-5. Since sal € and cal 6 correspond to sin 6 and cos 0
respectively, the coefficients other than k = 1 represent leakage terms. The desired
coefficients at k - 1 contain about 44% of the total energy of the series. A different 6,
of course, yields different series for the sal and cal functions, but the desired
coefficients will still be the most significant terms. This property is illustrated in
Hughes and Herron [47], where the distributions of the Fourier coefficients for four

different 6, are shown.

[[_I_I__I_I_I_I_I_I_I_I_z_z_I:_z_:_:_:_z:_:_x_-_-_.

-0.5 i i 1 1 1 1 1] A
o 50

k

1 T 1 i T L) T 1 ! I

(b)

_I_I_I_I_I_I_I_I_I_I_I_I_I_I_r_::_::_,:_z_z_:_z___—_

-0.5 1 - | 1 1 1] 1 1 1
[} 50

k

Fig. 7-6 The Fourier coefficients of (a) sal 6 and (b).cal 8 with 6c = 0.257.
page 163

Equations (7-4) and (7-5) also indicate the amount of error in amplitude when
the cal and sal functions are used as the kernel. By definition, k = 1 in the above
equations corresponds to the desired frequency index and the desired values for a1
and by are 1. Hence the actual values of a1 and b1 are related to the amplitude of the
components being recovered. For example, in Fig. 7-5 where 6 = 0257, a1 = b1 =
0.9003. Thus the real and imaginary parts of the computed components are expected
to be 10% smaller in amplitude. Referring to Table 7-1, the relative accuracy of the
3-level kernel is 92%, which is about 8% smaller than expected. The set of amplitudes
in (a) are used as reference for computing the error incurred in (b) because the input
data x(n) is the same for column (a) and (b). More numerical examples will be given

in Table 7-3 of section 7-4.

Numerically, 6c can vary between 0 to 0.5. When 6. = 0, we have a two-level
kernel of values + 1 and -1, which gives an estimated error of 27.3 % (larger than the
expected value) in the amplitude of a real component or imaginary component. As
¢ approaches 0.5, the truncation level approaches 1, which means that the all input

data will be discarded and the evaluation fails. Hence a practical value of 6 falls

within 0 to 0.257.

7.2.2.3 Computational Complexity : Since no multiplications are required by this
algorithm, the only computational load derives from additions (including
subtractions). Fig. 7-6 shows a block diagram of the computation using the three-level
kernel. Assuming that all input data x(n) in Fig. 7-6 are to be added, there are N-1
additions per X(k) and the overall complexity is thus N The actual numbers required
will be a fraction of N” since the "duty cycle" of the rectangular waves forming the

kernel is always less than 100% (see Fig. 7-4).

page 164

+
x(n) /I' - \ /D X(k)
I ‘

0

n,k

—] sign(n,k) z

Fig.7-6 Block diagram of the evaluation of a frequency spectrum by a three-level
truncation of the kernel values.

7.3 Estimation of Randomly Sampled Sequences

As pointed out in section 7.2.2, the approximate Fourier transform using the
truncated sine and cosine functions requires no multiplications at all, which is very
attractive for evaluating randomly sampled sequences. Fig. 7-7 shows two amplitude
spectra of the same signal, x(t) = 1.5 cos(27.50t) + 2 sin(27.506t) + cos(27.1,400t),
sampled for 1,024 points and evaluated to k = 2,047. It can be seen that the spectrum
recovered by the three-level kernel retains the anti-alias property of the additive
random sampling (a.r.s.) although the amplitudes of the components are slightly less
than those obtained by direct evaluation. Table 7-1 summarizes the results of the
spectral estimation. Note that the ratios of the component amplitudes and the
signal-to-noise ratios for both evaluation methods are virtually the same, which shows
that the key dimensions of the spectrum are preserved. Taking the set of component
amplitudes computed by the DFT as the reference, the accuracy of the three-level
method is about 92%. The method also reduces the time required for computation by

57% because of the saving in multiplications.

page 165

amplitude, V

2|

1.504

¥
1.974

(a) 1.083

1.39

b

1.82

(b) 0.991

Fig. 7-7 Amplitude spectra of a signal x(t) = 1.5 cos(2x .50t) + 2 sin (2n
.506¢t) + cos(2x .1,400t) sampled for 1,024 points by a.r.s. and evaluated by :

(a) direct computation, and
(b) the rapid method with a 3-level kernel shown in Fig. 7-4.

Table 7-1 : Data of the spectra shown in Fig. 7-5.

Computed by :
(a) DFT (b) 3-level kernel

Signal amplitude (V) 1.504, 1.974, 1.083 1.39, 1.82, 0.991
Amplitude ratio 1.39:182:1 140:1.84:1
Average accuracy (%) 96.7 94.3

Rel. accuracy (average) 1 0.92

S/N ratio (dB) 28.3 274

Peak noise (mV) 311 317
Computation time (sec) 78.55 33.61

page 166

7.4 Three-level Method with Parallel a.r.s. and Hybrid a.r.s

7.4.1 Accuracy and Saving : The algorithms for parallel a.r.s. and hybrid a.r.s., which
are covered in Chapters 4 and 5 respectively, aim at reducing the number of
multiplications required for evaluating the frequency components of a randomly
sampled sequence. Both of these algorithms save at least 75% of the multiplications
when compared to direct evaluation. It will be shown that data sequences sampled by
i)arallel a.r.s. and hybrid a.r.s. can also be reconstructed with the three-level kernel.

The most obvious advantage is that even the remaining 15% of multiplications can be

saved as well.

The amplitude spectrla of a signal x(t) = 1.5 cos(2m .50t) + 2 sin (27 .506t)
+ cos(27 .1,400t) sampled for 1,024 points by parallel a.r.s. and hybrid a.r.s. are shown
in Fig. 7-8 (a) and (c) respectively. In (d) and (e), the sequences sampled by the above
methods respectively are reconstructed using the three-level kernel with the
trunczition level at 0.707. It can be seen that the spectra reconstructed by using a
three-level kernel maintain the anti-alias property. Table 7-2 lists the results of the
computatién. Since the principle of applying the three-level kernel to both of the
above sampling methods is the same, hybrid a.r.s. will be chosen as the representative

for further discussion.

To illustrate the effect of the cut-in angle on the relative accuracy, Table 7-3
lists a set of results when the above signal x(t) is sampled by hybrid a.r.s. and computed
by three-level kernels of different 6. Thé first row (DFT) is the result of direct
evaluation used as the set of references. The column of expected relative accuracy is
in fact the magnitude of a1 or b1 given by eqn 7-4 or 7-5. It is obvious that the values

of relative accuracy obtained by computation match closely with the expected values.

page 167

amplitude,V

2 1 I 1]
1.993
1.501
(a) 0.964
o 2047
k
2 I T T T
. 1.801
1.369
b) | 0.865
4]
0 k 2047
2 T I 1
2011
1.532
©) 1.027
0
0 . k 2047
2] 1 1 T 1
1.776

1371

(d)

Fig. 7-8 Amplitude spectra of a signal x(t) = 1.5 cos(2r .50t) + 2 sin (2 .506t)
+cos(2r .1,400t) sampled for 1024 points by :

(a) parallel a.rs. and reconstructed by the DFT,

(b) parallel a.r.s. and reconstructed by a three-level kernel with 8¢ = 0.25x,
(c) hybrid a.r.s. and reconstructed by the DFI; and

(d) hybrid a.rs. and reconstructed by a three-level kernel with ¢ = 0.257.

page 168

Table 7-2 : Data of the spectra from parallel a.r.s. and hybrid a.r.s.
shown in Fig. 7-8.

Parallel a.r.s. Hybrid a.r.s.
(a) (b) © (d)

DFT 3-level kernel DFT 3-level kernel
Signal 1.501,1.993, 1.369, 1.801, 1.532, 2.011, 1.371, 1.776,
amplitude (V) 0.964 0.865 1.027 0.959
Amplitude 1.56:2.07:1 | 1.58:2.08:1 | 1.49:198:1 | 143:185:1
ratio
Rel. accuracy 1 0.91 1 0.90
(average)
S/N ratio 28.2 271 28.4 274
(dB)
Peak noise 754 734 478 484
(mV)
Computation 77.9 31.2 77.4 30.9
time (sec)

Since these expected values are readily available, they can be used as scaling factors
to adjust the amplitudes computed by a three-level kernel closer to those by direct
evaluation. For example, in the second row of Table 7-3 where 6; = 0.25x, the
expected relative accuracy = 0.9. When the computed components are divided by 0.9,
their values become 1.52, 1.96 and 1.06, which are close to the reference values in the

first row and also to the exact values of 1.5, 2 and 1.

The three-level kernel is devised to save multiplications, and so are the
algorithms of parallel a.r.s. and hybrid a.r.s. When this kernel is applied to either of
the two algorithms, the effort in determining the sal and cal values will also be reduced.
Referring to the signal flow diagram for computing the hybrid a.r.s. shown in Fig. 5-6,
for a sequence length of 16, only 4 instead of 16 cal and sal values are needed per data
point. This results in a 75% saving in the load of determining the cal and sal values,

which is exactly the same percentage. of saving in multiplications by the cosine and

page 169

Table 7-3 : Effect of the cut-in angle 6. on the relative accuracy of the
component amplitude. The input sequence is sampled by hybrid a.r.s.

expected computed amplitude in V
rel. accuracy (relative accuracy)
DFT 1 1.532 (1) 2.011 (1) 1.027 (1)
0.=0.257,A=V2 0.90 1.371 (0.90) | 1.766 (0.88) | 0.959 (0.93)
0:=0.166m,4=0.5 1.10 1.689 (1.10) | 2.214 (1.10) | 1.123 (1.09)
0:=0.096m,4=0.3 1.22 1.853 (1.21) | 2.451(1.22) | 1.202(1.17)

sine values. In practice, the saving of cal and sal in terms of computation time is hardly
observable because the time for determining such a value by a 486 system is so short
that this amount becomes an insignificant factor. Referring to column (d) of Table 7-2,

from a total of 30.9 seconds of computation time, about 0.83 second can be saved .

7.4.2 Bandwidth : In principle, the substitution of the sine and cosine by the sal and
cal does not affect the anti-alias property of a random sampling algorithm so that the
resulting Nyquist frequency is also infinite. However, similar to the case discussed in
section 3.3.3, the bandwidth of the spectrum will be limited by the characteristics of

the host system that implements the reconstruction.

The situation is clear when we refer to the block diagram of the evaluation
shown in Fig. 7-6. Assuming that the evaluation is realized by hardware, the sal and
cal are generated by a switching action depending on the input indices n and k. The
upper bound in frequency is obviously determined by how fast the switching can be.
When realization is by software, the switching rate is reflected by the resolution of the
word-iength representing the sampling times, which is equivalent to the limiting
frequency of the system. The limiting frequency index km occurs when the product

kmtn becomes an integer for all n, where {tn} is the set of sampling times. If, for

page 170

example, tn is in seconds expressed in fixed point decimal number which holds values
to 6 digits past the decimal point, then km = 10° Hz and the fold-over frequency is at

Vykm = 5x10° Hz. Proofs are omitted here since the analysis parallels that in section

3.3.3.

7.5 Concluding Remarks

The rapid evaluation method using a three-level kernel requires no
multiplications at all for estimating a spectrum. Giyen a randomly sampled sequence
that has a computation complexity of N? in both multiplication and addition, such a
method is certainly an attractive solution to speed up the computation. In Tables

7-1and 7-2, we can see that this method saves about 60% of the original computation

time.

The speed of computation is gained at the expense of the accuracy in the
amplitude of the resulting spectrum. From the major coefficients of the Fourier series
of sal 8 and cal 6, nevertheless, a scaling factor can be obtained to adjust the computed
amplitude. Another drawback is the leakage which occurs in the form of a broadband
noise, but with random sampling, background noise exists anyway. By observation,
these two types of noi»se are random in nature and exhibit no reinforcement to each
other. Tables 7-1 and 7-2 show that the signal-to-noise ratios are not degraded by the

rapid evaluation method.

From the frequency-domain representation in Fig. 7-5, it can be seen that the
major components of the sal and cal functions map to the frequency indices (or wave
numbers) of the sine and cosine functions. Consequently, the anti-alias property of

random sampling is unaffected by using the sal and cal as substitutes for the sine and

page 171

cosine respectively. The rapid evaluation method can also be applied to parallel a.r.s.
and_hybfid a.r.s. to eliminate all the multiplications required by these two algorithms.
In fact, with either of these algorithms, the load in detérmining the sal and cal values
can also be saved. This load, however, is insignificant when realized in a modern

computer and the saving will not enhance the speed of computation significantly.

If speed is a crucial factor to consider, the rapid evaluation method is the best
candidate in computing the spectrum from a randomly sampled sequence. This
evaluation method can also be éxploited to reduce the hardware cost of
implementation. As neither trigonometric functions nor multiplications are involved,
amicro-processor having no floating-point operation (e.g. Intel 8086), or even a binary

adder, is also suitable for computing the spectrum.

page 172

CHAPTER 8

APPLICATION EXAMPLES OF RANDOM AND
PSEUDO-RANDOM SAMPLING

8.1 Introduction

Random sampling, also known as randomized sampling, irregular sampling, or
time dithering [48, 49], is one of the sub-Nyquist sampling methods that can recover
without aliasing a spectrum which is not band-limited. As discussed in Chapter 3, the
use of rand}or»n sampling may facilitate the adoption of slower hardware and save
memory storage in some cases, but in general the loading in computation is heavier
than regular sampling. Owing to this reason, specially designed hardware can be more
efficient than a general purpose computer for computing a spectrum from a randomly
sampled sequence. Besides the loading in computation, there are other costs
associated with random sampling as well. Hence this sampling method finds its
applications where the alias-free property or the reduction in the number of samples

outweighs other considerations.

Random or irregular sampling applies naturally when signals being observed
occur irregularly in time, such as those in astrophysics and space science. Another area
of application is in instrumentation where anti-alias filtering is not desired or a speed
higher than the normal operational speed of the available hardware is required.
Typical applications in instrumentation have been introduced in Chapter 3. Two
applications in digital signal processing, which are motion detection in images and

the correlation detector, will be suggested in this chapter.

page 173

8.2 Motion Detection in Images

8.2.1 Segmentation by motion : For our visual perception, motion is a powerful cue
to extract objects of interest from a background. Inimaging applications, motion arises
from a relative displacement between the sensing system and the object being viewed.
The use of motion in segmentation can be achieved in both spatial and frequency
domain [50,51]. The basic approach of the spatial domain technique is to compute
the difference between the images taken at different instants whilst the frequency
domain technique uses the Fourier transform to detect objects moving at a constant
speed. In the following discussion, we shall focus on the latter approach equipped

with random or pseudo-random sampling.

8.2.2 Frequency Domain Technique : Assuming an object moves at a constant speed,
a sequence of T digital images of the scene of size MxN pixels per frame may be

obtained as shown in Fig. 8-1. The projections of the object onto the x-axis and y-axis

N-1 M=1
are given b f(x,y,t) and) f(x,y,t) respectively, where t=0,1,..,T-1. A complex
y y y p

y=0 x=0

-, time — M
|]

f(x,y,ti)
— — — N

Y o f(xy, 1)

| o f(x,y, to) I

x to t1 i

projection onto the x-axis

Fig. 8-1 A sequence of image frames.

page 174

sinusoid of frequency ki1 can be multiplied to the sums of pixel values added along the

y direction. The sum of the weighted projections onto the x-axis at time t is [52]:

M-1 N-1 ok (8-1)
gx(tky =), D f(xy,t) el

x=0y=0

where t = 0,1,...,T-1, and k1 is a positive integer.

Similarly, the sum of the weighted projections onto the y- axis is :

N-1 M-1 D kovA (8-2)
gy(tkay = D, Y f(xyt) 7N

y=0x=0

where t = 0,1,..., T-1, and k2 is a positive integer.

Let vi and v2 be the velocities of the motion in the x and y directions

respectively. The 1-D Fourier transforms of eqns (8-1) and (8-2) respectively become:

T-1 (8-3)

1 _:
Gx(urka) = 7 3, gk e 2T
t=0

where u1 = 0,1,...,7—1 and
T-1 (8-4)
1 .
Gy(uzka) = 5 D, gy(tka) e 272/
t=0
where u2 = 0,1,...,7—1. Obviously u1 = k1vi and u2 = kov2. Here v1 and v2 are in

pixels per total frame time and the actual physical speeds depend on the frame rate.

Let us consider a particular case that a point object is moving in the x-direction

in a background with a high but constant level. Hence eqn(8-1) applies. Note that the

ZrkixAL g orthogonal to the projection of the

multiplication of the complex sinusoid, el
image. The result is that any moving point will be characterized by a complex sinusoid

and any static level, no matter how large, will be averaged to zero or nearly so.

page 175

N-1
Referring to eqn (8-1), let S(x,t) = z f(x,y,t). The plot of S versus x at two
y=0
particular times t1 and t2 is shown in Fig. 8-2 (b), where A is the background level and

A > >(B- A), the projection of the object above the background. Then eqn (8-1) can

be written as :

M-1 _
gx(t,kl) = Z S(x,t) e]2nk1xAt

x=0

=Mz_l [B(X,t) — A] o 2kixAt +Mz—1 A elZrkixt (8-1a)
x=0

x=0

For the first term in the above equation, at each At there exists only 1 value of B(x,t)

at a particular x. Hence the summation gives a complex sinusoid :

M-1
Z [B(x,t) - A} I ZHKIXAL _ o J2rkixAL C a constant
x=0

Image
projection, S
X
: B(x1,t1) B(x2,t2)
motion A .
projection
image
projection
X1 X2 X
@) (b)

Fig. 8-2 (a) The orthogonality of the projections. (b) The image projections of a
high background level A and a moving point B at different times t7 and tz..

page 176

To have a proper DFT with no smearing, k1At must be chosen such that el ZkixAt
traverses a number of complete cycles in the M frames. Hence the second term of
eqn (8-1a) can be written as :

M-1
A Y Al

x=0

Therefore gx(t.k1) = C elZPKXA a0 its DFT should look similar to those in Fig. 8-4.
From the above example, we can generalize that a moving object is characterized by
a complex sinusoid, hence contributes to a frequency component in the DFT. Any
static background, however, will be suppressed to zero or a very small value in the

spectrum.

A practical example is taken from p.474 to 477 of [52]. Fig. 8-3 (a) shows one
of a 32-frame sequence of LANDSAT images with white noise added to it. There is
an object moving at (.5 pixel per frame in the x direction and 1 pixel per frame in the
y direction. The target, which is circled in Fig. 8-3 (b), has a Gaussian intensity
distribution spread over a small area and is hardly discernible. The spectra Gx and Gy,
computed according to eqns (8-3) and (8-4), are shown in Fig. 8-4. The indices k1 and
k2 are chosen to be 6 and 4 respectively. Taking Gx as example, there should be two
peaks, one at frequency index 3 (= kivi) and the other at 29 (=T - k1v1). From the
location of the first peak and the frame rate, we can deduce the speed of the object.
This method is especially effective for checking an object moving slowly in a stable
background scene corrupted by white noise, e.g. satellite images. Because of aliasing,
there is limitation in choosing the values of k1 and k2. Suppose ki1 is chosen to be 34
instead of 6, there will be two peaks at frequency indices 15 and 17 in the spectrum.

If 15 is taken as the solution, the result will be incorrect.

page 177

rt, Snyder and Ruedger [53])

3(a) A LANSAT frame (From Cowa

Fig. 8-

3 (b) Intensity plot of the above frame with target circled. (From Rajala, Rid-
page 178

and Snyder [51])

Fig. 8
dle,

6401
560
(@

480

400 1

3204

Intensity (x 10)

240+

80+

4 8 12 20 24 28

32

36

0 16
Frequency
1001
' (b)
804
S (ol
x
Lol
E
£ 404
£
201
0 D SR~ NN DU NN - , . .
0 4 8 12 16 20 24 28 32 36
Frequency

Fig. 8-4 Spectra of a moving object in an image :
(a) Gx with 2 peaks at frequency indices 3 and 29;
(b) Gy with 2 peaks at frequency indices 4 and 28.
(From Rajala, Riddle and Snyder [561])

page 179

8.2.3 Applying Random Sampling : Referring to the frequency domain technique
discussed above, if the timing of the input frame is a continuous variable, i.e. an image
frame can be taken at any moment, random sampling can be applied so as to gain the
advantage of being alias-free. One of the consequences is that the range of the

multipliers k1 and k2 described above can be extended [54].

Let us return to the previous numerical example that k1 is chosen to be 34.
Assume that 32 frames are taken in a duration of one unit of time, the timing for each
frame is given by ¢; = i/32 + ;i , where 7 is a uniformly distributed random variable.
Fig. 8-5 (a) shows the power spectrum of a simulated sequence of length 32 with
random noise added. A peak is seen only at frequency index 17, hence no ambiguity
arises in choosing the solution. Two more examples are shown in Fig 8-5 (b) and (c)
where a sequence is sampled by two random sampling methods, namely jittered
random sampling and additive random sampling respectively for 64 points. Note that

the input frequency is 41 and the Nyquist limit is 32, but no alias occurs in both cases.

8.2.4 Pseudo-random Sampling : In many practical cases, frames of images are
recorded uniformly in time, hence genuine random sampling may not be applicable.
We can, however, under-sample the input sequence of images by adopting a scheme
which selects the samples f(x,y,tn) from T frames recorded regularly at an interval of
At between frames at :

th = (nP + on) At (8-5)
where n = 0,1,2,...,Q-1, Q is an integer which divides T, P = T/Q and 0 is a random

variable with integer values distributing uniformly between +P/2.

page 180

2.5

2.5

2.5

0

Fig. 8

(@

o
-~

31

(b)

(©)

0 k 63

-5 Power spectra of a sequence (with random noise added) sampled by :

(a) jittered random sampling for 32 points. The input frequency (peak) is atk = 17.

(b) jittered random sampling for 64 points. The input frequency (peak) is atk = 41.

(c) additive random sampling for 64 points. The input frequency (peak) is atk =41.

page 181

8.2.4.1 Advantages : The spectrum of the above sequence selected by this pseudo-
random sampling scheme differs from that of a sequence of samples obtained by
down-;ampling the input sequence regularly with zeros padded in between. The
former method retains the original fold-over frequency whilst the latter does not. For
example, if the total number of input frames available (T)is 128 and the number of
frames selected (Q) is 32, i.e. a down-sampling of 4, for the pseudo-random sampling
method , the fold-over frequency is at 64 (=T/2), whereas for the regular case, the
fold-over frequency is effectively at 16 (=Q/2) only. By regularly skipping the data,
" only a repetition of a compressed version of the original spectrum is obtained (see
Fig. 8-6(a)). Fig 8-6 (b) and (c) show the spectra of two sequences with 32 points
selected by the pseudo-random scheme from 128 and 256 points respectively. Clearly
the frequencies at k=60 and k =120 of the two input sequences are in place. Hence
with the pseudo- random scheme, the ranges for the multipliers ki1 and k2 are

extended comparing to the regular down-sampling.

In order to detect a slow movement of a target, a long period of observation,
hence a large number of frames may be required for the analysis. In doing so, more
memory space is required. One solution is that frames are skipped regularly, which
effectively lowers the sampling rate and may generate alias. If the pseudo-random
sampling is adopted, not only the fold-over frequency remains as if no skipping is
done, but also the memory space required is less than storing the original input
sequence. Suppose a sequence of T words is obtained and down-sampled by the
pseudo-random sampling method by a factor of 4, at most T/2 words, which includes
T/4 words of the sampled data and T/4 words denoting the corresponding timing, will

be stored. If the timing sequence is not stored, the data sequence should contain

page 182

(@)

0 k 127

2.5
)

0 k 127

2.5

(©)

0 !
0 k 255
Fig. 8-6 Power spectra of a sequence (with random noise added)

(a) down-sampled regularly by a factor of 4 with zeros padded. Original length is
128 points.

(b) down-sampled with pseudo-random sampling by a factor of 4. Original length
is 128 points and input frequency is at k = 60.

(c) down-sampled with pseudo-random sampling by a factor of 8. Original length is
256 points and input frequency is at k = 120.

page 183

zeros at all instants where samples are discarded. Let u(x,y,ti) be the values of the
sampled sequence, then
ux,y, i) = fee, y, ti), ifti Etn (8-6)

ux,y, ti) = 0, ift; &ty

Since these zeros appear consecutively in the form of short sequences, encoding

methods, e.g. run-length encoding, may be used to reduce the amount of memory

storage.

8.2.5 Simulation results : When random or pseudo-random sampling is adopted to
sample a signal, the amplitude of the signal recovered cannot be exact since
randomness is introduced in the timing. Table 8-1 summarizes the percentage errors
in the signal amplitude from the spectrum estimated by the above methods described.
We can see that all errors are below 10 %. Since different sets of random variables
are used, we cannot judge their relative performance by directly comparing the

numerical values of these errors.

Random sampling and pseudo-random sampling methods can be applied in
detecting moving objects recorded by a sequence of image frames, e.g. satellite
images. As random sampling is alias free, there is no ambiguity in choosing the correct
peak of frequency in the spectrum for calculating the speed of the object.
Pseudo-random-sampling effectively retains the usable frequency range of a long
sequence although data points are in fact discarded. This scheme is especially suitable

for detecting a slow moving object as discussed in section 8.2.4.1.

With either random or pseudo-random sampling, background noise is

generated and error is introduced in the amplitude spectrum. From Fig. 8-5 and Fig.

page 184

8-6, however, we can seé that the peak frequencies are strong enough to be extracted
even with random noise deliberately added to the input sequences. Table 8-1 shows
that the signal amplitude estimated by the above methods are at least 90% accurate.
For the pseudo-random method, if zeros are inserted in the sequence where samples
are discarded, the evaluation of the spectrum can be performed with the FFT provided

that the original sequence length is a power of two.

Table 8-1 : Percentage error of the signal amplitude recovered from
different random sampling methods

Sampling Method % error
jitter, 32 points, Fig. 8-5 (a) 4.95
jitter, 64 points, Fig. 8-5 (b) 9.47
additive random sampling, 64 points , Fig. 8-5 (c) 9.19
seudo-random, 128 points*, Fig. 8-6 (b) 1.98
seudo-random, 256 points*, Fig. 8-6 (¢) 5.30

*32 points of the original sequences are selected

page 185

8.3 Correlation Detector

The cross-correlation of two sequences x(n) and s(n) can be defined as :

N-1
Rex(l) = Y, x(n) s(n—1) 8-7)
=0
where n = (,1,2,..., N-1 and N is the sequence length. This function measures how

similar these two sequences are and it can be used for signal comparison such as in
the detection of a signal in white noise or a one-dimensional template matching in
image processing. The block diagrams for both of the mentioned applications would
be similar to the one shown in Fig. 8-7, where x(n) is the input signal to be compared
with a replica signal s(n). Although the operation is performed in the time domain,
with regular sampling, the problem of aliasing still exists if the input is sinusoidal or
periodic. Suppose s(n) = A cos (27 f n/N), then the system will not be able to
distinguish x(n) = A cos (27 f n/N) from x(n) = A cos [27 f(N +n)/N]. Another
example is illustrated in Fig. 8-8, where two patterns of grating are sampled regularly
Both of them will yield a sequence {1,1,1,0,0,1,1,1,0, .. .}. If either of them is taken as
the template, both patterns will be announced the same. One approach is to increase

the sampling rate, which will elongate the sequences and increase the number of

x(n)
= threshold > detection

l cross-correlation

s(n)

Replica sequence

' Fig. 8-7 Detection of a deterministic signal in white noise [42].

page 186

operations. Another approach is to adopt random or irregular sampling. Suppose the
sampling instants 1,2 and 5 are shifted slightly to the left, the sequence from the first
pattern may become {1,0,0,0,0,0,1,1,0, . . . } while the sequence from the second

pattern will remain unchanged. The two patterns can now be differentiated.

8.3.1 Cross-correlation of Randomly Sampled Sequences : Let us define, according
to the format in section 6.4, the linear cross-correlation of two signals as :
N-1
Rae (D= x(ta)s (ta — Lts) (8-8)
=0
where n =0,1,2, . .. and ts is step size of the correlation. This equation can be used

to demonstrate the anti-alias property and noise immunity of random sampling.

Assume that, in Fig. 8-7, the replica signal is s(t) = 1.5 cos (27.50 t) and it is
sampled by additive random sampling for 512 points to yield a replica sequence

s(tn) = 1.5 cos (27.50 tn). The input signal x(t) will also be sampled by the same timing

N
1 P = |
L |
b I
Lo I
[|
' _ 0] I
I I
1
0
I
I

I
I |
I | |
sample number

001 2 3456 78
(a) (b)

I
1
I
I
I
I
|
I
I
|

.
L |
I
l
I
o
I
L
I
b

Fig. 8-8 (a) Two patterns of grating and (b) their corresponding intensity profiles
obtained by regular sampling such that the resulting sequences are the same.

page 187

sequence to give x(tn). Fig. 8-9 shows the results of cross-correlations of s(tn) with
different x(tn) using a step size of 1/512 and a window size of +10% of the step size
(section 6.3.1). In Fig. 8-9(a), x(tn) = s(tn), and the matching is reflected by a large
value in Rsx(0) =580.7. In Fig. 8-9(b), x(tn) = s(tn) +e(tn), where e(tn) is a random
noise of 0.58 V r.m.s., giving a signal-to-noise ratio of 8.25 dB. In spite of such strong
noise, Rsx(0) =587.5. In Fig. 8-9(¢c), x(tn) = 1.5 cos (27.562 tn), which would be an
alias of s(tn) if sampling were performed regularly. With random sampling, however,

aliasing is suppressed and Rsx(0) is only -29.2.

The correlation detector works not only with monotonic sinusoids, but also
with signals having several frequency components. Table 8-2 shows another set of
results of a template s(tn) = 1.5 cos (27.50 tn) +2 sin (27.506 tn) + cos (27.1400 tn)
correlating with different inputs. Only the first terms of the correlation, i.e. Rsx(0),
are listed because these are the most significant terms. The first two rows of Table
8-2 show the results of a perfect match and a perfect match corrupted by noise. It can
be seen that Rsx(0) are large. In row three to row six, matches are partial so that the
values of Rsx(0) are smaller than the previous cases. In row seven, the input has
components which are aliases of the template s(tn); and in the last row, the input
frequencies are close, but not equal, to those of the template. For these cases of
mis-matches, the results are small in value and negative in sign. Note that in this
example the Nyquist frequency is 256, but an input frequency more than 5 times this

value (i.e. 1,400) can also be handled.

8.3.2 Cross-correlation with Delayed Signal : In regular sampling, an input being a
delayed version of a template can be detected by cross-correlation using eqn (8-7).

Suppose the input x(n) = s (n-m), then the maximum value Rgx(m) in the resulting

page 188.

Rex(1), V2

600 T ' T T T |
[| (@ .
- il ¥ sl O Zdm= LK
l l 2 I~ : =chp » P -
_1solL ! ' | | | |
0 s11
|
Rsx(1), V2
600[7 I T T T T
Jr
. i. I.] ... 2 !\ia ! 4 aay - -
-150]] L '] |
0 s11
|
Rex(1), V2
600 T T T T T T
(© 7]

-150 10 I I J L 1
st
1

Fig. 8-9 Cross-correlation of a template s(tn) = 1.5 cos (2. 50tn) with :
(a) x(tn) = s(tn). A large Rsx(0) indicates a match at/ = 0.

(b) x(tn) = S(tn) + noise. Rsx(0) is also large.

(c) x(tn) = 1.5 cos (27. 562 tn). This alias is rejected since Rsx(0) is small.

page 189

sequence will indicate a match at/ = m. With random sampling, however, a linear
shift in the time or spatial domain cannot align two randomly sampled sequences. A
different approach, which uses a delayed version of the template for detecting a
delayed signal, is suggested :

N-1

Roc ()=, x (ta) 5, (tn) 8-9)
n=0

where s, (tn) = s (tn — L.d), lis an integer and d is a fixed delay interval. Obviously d is

the resolution of the cross-correlation. Fig. 8-10 shows three cases of correlation using
eqn(8-9). The input sequences in (a) and (b) are sampled regularly. In (b) the input
signal is delayed by 14 sampling periods with reference to (a) and in (c) the input signal
is a randomized version of (b). From these examples, we can see that the maximum
values in Rsx(l), which are Rsx(0) in (a) and Rsx(14) in (b) and (c) , are not much larger
than some other correlation values, making the subsequent thresholding very
unreliable, especially when the input sequence is randomized. Despite a strong
correlation, an input sequence may be close, but not necessarily identical, to a
particular template. For example, in Fig. 8-10 (c), Rsx(14) = 3075, Rsx(18) = 2883

and Rsx(73) = 2967. The corresponding templates are sq4 (tn) = {-6.35,2.829, -0.385,

Table 8-2 : Cross-correlation of s(tn) = 1.5 cos (272.50 tn) +2 sin
(27.506 tn) + cos (271.1400 tn) with different inputs x(tn).

X(tn) Rsx(0) matching |
same as S(tn) 1863.9 yes
same as s(tn) + noise 1906.5 yes
2 sin (271.506 tn) + cos (27.1400 tn) + noise 1332.4 partial
2 sin (27.506 tn) + noise 1060.2 partial
1.5 cos (271.50 tn) + noise 616.6 partial
cos (21.1400 tn) +noise 314.8 partial
2 cos (271.562ty) - 2 sin (2.6 tn) + 3cos (271.376 tn) -1354 no
2 cos (27.51tn) +2 sin (27.505 tn) + 3sin (27.1400 tn) -230.5 no

page 190

e

I HHI ILLHTUJJ (il l_UIH{
® j]lf i IUM] HTHI [I]rm” i ”r

ey

x XnUu.S
[7,) —
eeeeee

L o Qo B~

e O S
eeeeee
nnnnnn

5.475, -5.685,3.434, . .. }, 515 (ta) = {-6.916, 0.6181, -1.802, 3.997, -6.17,2.797, . . . }
and s (tn) = {-7.507,2.713, -1.173, 4.921, -6.134,3.799, }. To make the result of

a matched template distinct, instead of performing the correlation, we can compare
the magnitude of each data point between the input and the template, i.e. checking
whether |input [i] — template [i]| < 0 where 0 is a preset threshold, and count the
number of pairs satisfying the requirement. Fig. 8-11 shows the block diagram of the
scheme and Fig. 8-12 shows the counts obtained from masking three inputs with the
same set of templates. The delay interval d is equal to one averaging sampling period
ts. As the correlation is performed in regular intervals, the count will repeat after
I = N/2, where N = 1/t;. From Fig. 8-12 (a) and (b), it is clear that the delay in a
randomly sampled sequence can be determined uniquely up to N/2. A set of counts is
tabulated in Table 8-3. In each of the first three rows of the table, a large count
indicates a detection of the signal at a delayed interval. Row three illustratgs how
resistant to noise the scheme is. Adding a random noise of 0.58 V r.m.s. to the input

signal in row two decreases the maximum count from 218 to 187, but raises the second

Table 8-3 : Masking s,(tn) = 1.5 cos [27.50 (tn - .ts)] +2 sin [27.506

(tn - L.ts)] + cos [27.1400 (tp - L.ts)] with different inputs x(tn).
0 = 5% of |s(tn)].

Input x(tp) = max. count l
s 14(tn) 239 14
s 200(tn) 218 200
s 200(tn) + noise 187 200
2 sin (27.506 tn) + cos (27.1400 tn) + noise 32* 253
1.5 cos (27.50 tn) + noise 18* 245
cos (27.1400 tn) + noise : 19* 83
1.5c08(27.5tn) + 2sin(27.501tn) + cos(27.1402ty) 17* 136

*low counts which will be rejected by thresholding.

page 192

X(tn)

compare
magnitude :
|x(tn) =s)(tn) |
<0?

true

count

Compare to

threshold

5;(tn) =5 (ta — Ld), 1 = 0,1,2..., N/2-1

announce
detection

Fig. 8-11 Correlation by comparing the magnitude of input with a set of templates.

Counts

250

239

250

218

(b)

250

1]

[

511

Fig. 8-12 Masking s(tn — 1.d), where s(tn) = 1.5c0s(27.50tn) + 2sin(27.5061n)
+ cos(2n.1400tn), ! = 0,1,2,...511,d = 1/512 and 6 = 0.05 |s/(tn)|, with :

(@) x(tn) = s(tn — 14d) sampled by jittered random sampling.
(b) x(tn) = s(tn — 200d) sampled by additive random sampling.

(c) x(tn) = 1.5cos(27.5tn) + 2sin(27.501tn) + cos(2r.1402tn) sampled by a.rs.
Low counts are obtained.

page 193

largest count (not tabulated here) slightly from 32 to 33 only. The last four rows show

cases of mis-matches where the counts are low.

8.3.3 Advantages and Disadvantages : Random sampling is one of the sub-Nyquist
sampling methods. Its anti-alias property in the cross-correlation of two similar signals
is shown in Table 8-2 and Fig. 8-9. As fewer samples require fewer operations for a
correlator, random sampling has an advantage over regular sampling in detecting

periodic signals, such as the image of a texture pattern or grating.

Alignment of timing between the input and the template is necessary whether
sampling is performed regularly or irregularly. To obtain useful cross-correlation
results, the initial sampling times of both signals must be aligned to a suitable point,
for example, the beginning of a periodic waveform. If the input and the template are
continuous signals that can be synchronized and sampled simultaneously, alignment
is achieved. Without synchronization, alignment is also feasible by trial and error for
signals coming from a source that can be re-sampled. Assuming that the the input is
in phase with the template, i.e. no delay between the two signals, only one template
is required. In this case, alignment should be accurate within one average sampling
period since the correlation result is still acceptable within siich a phase error. For
example, in row 1 of Table 8-2, if the input signal is delayed by one average sampling
period (= 1/512), the result will become 1,452.1, which is 78% of the value of a perfect

match.

If delays in terms of a whole multiple of the average sampling period are
introduced in the input, the scheme depicted in Fig. 8-11 may be used to detect the
delays. In order to save computation time, the set of templates required can be

generated beforehand but a memory space must then be assigned to store them.

page 194

Performing magnitude comparison takes approximately the same amount of time as
computing correlation. Simulation results for 512-point sequences matching with 512
templétes indicate that computation time is increased slightly by 4% as compared to
correlation. Simulation also reveals that the phase error in time alignment must be
less than 4% of a sampling period, which is true for both randomly and regularly

sampled sequences.

8.4 Concluding Remarks

In this chapter, two applications in digital signal processing which exploit the
anti-alias property of random sampling have been proposed. The first application,
which is to detect a moving object in a sequence of images, requires spectral
reconstruction. As discussed previously in Chapter 3, random sampling loses the
advantage to apply the FFT, which will slow down the process when a general purpose
computer is used. Fortunately, the sequence length in this application is usually so
short, say a few tens of frames, that computation will not become a prohibitive factor.
The second application, which is the correlation detector, operates in the spatial
domain and requires no extra work-load for computing a spectrum, although for the
sampling process itself, a more complicated hardware, such as a synchronized circuit,

may be needed for taking sample values from the input signals.

A detailed discussion on the criteria to choose random sampling for an

engineering application will be found in Chapter 10, the conclusions.

page 195

CHAPTER 9

RECONSTRUCTING RANDOMLY SAMPLED
SIGNALS BY THE FFT

9.1 Introduction

In regular sampling, the DFT is a reversible operation since the transform
kernel is a set of orthogonal functions. When a sequence is randomly sampled, the
randomized timing destroys the orthogonality of the transform kernel for estimating

the frequency spectrum, which can be seen in eqn (3-17) and repeated below :

SN (9-1)
X(k) = N x(tn) exp(—j2nktn), k=123,...
n=0
Hence given a set of frequency components X(k) and sampling times tn, we cannot
recover the time sequence x(tn) from an inverse DFT corresponding to eqn (9-1).
Bilinskis and Mikelsons [28] propose an unorthogonal transform method which is
basically a minimization of the mean square error of a reconstructed time sequence.
Applying this method to reconstruct a randomly sampled sequence will involve heavy
computation in manipulating the transform kernel, but the reconstructed signal may

not keep the details of the original waveform even though a minimization process is

performed.

When a spectrum is estimated by eqn (9-1), the resulting spectrum X(k) is in
fact mapped to a regular grid in the frequency domain. Therefore, when X(k) is

eventually transformed to a time sequence x(n), the result will correspond to a

page 196

regularly sampled version of x(tn). In this reconstruction, there are three conditions

to be satisfied :

(1) The reconstructed signal x(n) must be a real sequence since the input x(tn) is real.

(2) The sequence length of the reconstructed signal x(n) must be long enough to
convey the required frequency information although the original sequence x(tn) may

be sampled at a sub-Nyquist rate.

(3) The broadband noise in the frequency spectrum introduced by random sampling

must be eliminated.

9.2 Reconstruction on a regular time grid

9.2.1 Length of Sequence :Ineqn(9-1), N is the number of samples taken in the time
domain and k corresponds to the index of the frequency component being evaluated.
In regular sampling, the spectrum can be evaluated uniquely to only N/2 - 1 when the
length of the input time sequence is N. Nevertheless, with random sampling, the
frequency index k should go beyond this limit in order to take advantage of the

sub-Nyquist sampling.

In general, we have a randomly sampled real sequence x(tn) of length N and
we may evaluate its frequency spectrum X(k) to a length M such that M>N. The
spectrum X(k) is now on a regular grid but its value is unique up to k = M-1. If the
input sequence x(tn) were regularly sampled, to obtain M unique frequency
components, we should have sampled 2M points and the fold-over frequency in its
spectrum would be at k = M. To exploit this symmetry property of a real signal, we

can extend X(k) to 2M points by putting :

page 197

XM) =0
Real {X (2M~k)} = Real {X (k)}
| Imag {X 2M~k)} = —Imag {X ()} (9-2)
where k = 1,2,3,... M-1, and Real and Imag stands for the real and imaginary parts
of X(k) respectively. Then we can perform an inverse DFT (or FFT if M is a power
of 2) on the extended spectrum and the result x(n) of length 2M will be a regular time

sequence containing all the information carried by X(k).

9.2.2 Filtering of Noise : Filtering in the frequency domain can be implemented by
choosing a suitable window function. The simplest window is, of course, the
rectangular window, but it will create an adverse effect, which is the well-known
Gibb’s phenomenon, in the recovered time sequence [55,56]. There are many
different windows available to solve this problem, such as the Hanning window, the
Hamming window, the Blackman window, etc., and the choice is not crucial for this
application. On the other hand, we need some knowledge of the characteristics of the
spectrum so as to determine which type of filter, e.g. low-pass or band-pass, we should

apply to recover the desired information.

9.2.3 Examples : Three examples are to be given : (i) a rectangular wave, (ii) a
triangular wave and (iii) a triangular wave mixed with two sinusoidal waves. The first
two waves are reconstructed by low-pass filtering below the Nyquist frequency. The
purpose is to show the effects of windowing. The third example demonstrates the

alias-free property of random sampling by extracting components above the Nyquist

frequency.

Fig. 9-1 shows the process of recovering a rectangular wave from a randomly

sampled sequence of length 256. The sampling sequence is a jittered sampling

page 198

sequence, of which the ratio of the standard deviation of the random variable to the
mean sampling period (o/u) is equal to 33%. Fig. 9-1 (b) depicts the amplitude
spectrum of the randomly sampled sequence. Since the information of the input signal
lies maiﬁly in the low-frequency band, a low-pass FIR filter using the Hamming
window may be used to filter out the wide-band noise generated by random sampling.

" The Hamming window is defined as :

0.54 + 0.46 cos(2nk/m), —(m—1)/2 <k <(m—1)/2 9-3)
wh(k) =
0, elsewhere
where wh(k) is the window coefficient and m, an odd integer, is the length of the filter.
The spectrum, after modified by a Hamming window with m =31 (cut-off frequency
¢ = 15) and extended according to eqn(9-2), is shown in Fig. 9-1(c). Its inverse DFT,
i.e. the recovered signal in the time domain, is shown in Fig. 9-1(d). In this example,

although the length of the resulting sequence is doubled to 512 points, it can actually

be down-sampled to 256 points without losing any details in the waveform.

The effects of windowing are illustrated in Fig. 9-2, where Hamming windows
of ke=15, 30 and 50 are used to filter the spectrum in Fig. 9-1 (b). The respective
mean square errors of the reconstructed signals are 6.15 x 10'3, 1.82x 10° and 1.00 x
107 . Tt is obvious that a wider window returns sharper corners and edges in the
recovered waveforms since these features correspond to the high frequency
components in the spectrum. However, passing more high frequency content into the
output signal will generate larger ripples on the top part of the waveform which should

be flat. Another example with a triangular wave as input is shown in Fig. 9-3. The

same effects are also visible.

page 199

amplitude

1.2 1

(a)

0 1
time
amplitude

o7l | | 1 ! B

)

0 50 100 150 200 250

amplitude

07|l | 1 1 I I [i | 1 !

01 I | 1 1 | | | | i J_j
0

50 100 150 200 250 300 350 400 450 500
k
amplitude
1.2 T
(d)
1
0 s
n

Fig. 9-1 Reconstructing a rectangular wave :
(a) the input signal,

(b) the amplitude spectrum from a 256-point sequence sampled from (a) by jittered
random sampling;

(c) the amplitude spectrum in (b) after filtering and extending to 512 points;
(d) result after performing the inverse DFT on (c).

page 200

amplitude

1.1 | 1 ! 1 1 I l | | I

l

L] | 1]]

0 50 100 150 200 250 500
amplitude n
1l J
!
0 500
: n
amplitude
Lt T T T
(c)
—- -
1 I I

0 50 100 150 200 250 300 350 400 450 500

Fig. 9-2 Results of reconstructing a rectangular wave by random sampling and fil-
tering with Hamming windows of a cut-off frequency :

(a) kc =15; mean square error = 6.15x 10 3.
(b) ke =30; mean square error = 1.82x 10 '3;
(b) ke =50; mean square error = 1.00x 10 3,
In each plot, the dash line represents the original signal.

page 201

A()

Ll I
(a)
I
0 _ 1
time, t
amplitude
Ll T T T T] T T T T T
(b)
1 | 1 1 ! 1 ! ! !
0 50 100 150 200 250 300 350 400 450 500
_ n
amplitude

L1 | ! ! | I I | 1 I |

0 50 100 150 200 250 300 350 400 450 500

amplitude

0 50 100 150 200 250 300 350 400 450 500

Fig. 9-3 (a) A triangular wave, A(t), and its reconstruction by random sampling and
filtering with different cut-off frequencies :

(b) ke =15; mean square error = 5.10x 10 '4;
(c) ke =30; mean square error = 1.18 x 10 .
(d) ke =50; mean square error = 2.97 x 10 4,

page 202

The third example shown in Fig. 9-4 utilizes the alias-free property of random
sampling in reconstructing a time sequence. The reference signal, depicted in Fig. 9-4
(a), consists of the triangular wave A(t) plotted in Fig. 9-3 (a) mixed with two sinusoids,
0.5 sin (27. 1Sdt) and 0.4 cos (27.154t). To exploit the sub-Nyquist sampling, the signal
is sampled randomly for 256 points so that the frequency indices of the two sinusoids
are above the Nyquist limit at 128. The resulting spectrum is plotted in Fig. 9-4 (b)
and it is filtered and extended to 512 points as shown in Fig. 9-4 (c). The filtering
consists of three Hamming windows, which are a low-pass filter centred atk = O with
a length of 31 (kc=15) and two band-pass filters centred at k = 150 and 154, both
having a length of 5. Even if we do not know beforehand the characteristics of the
input, the choices of such filters can also be made basing on the spectrum in Fig. 9-4
(b), which clearly indicates low frequency content near the d.c. region and two

sinusoids at k=150 and 154.

Since the reconstructed sequence will be regularly spaced, the Nyquist
criterion applies. Having performed the inverse DFT, the resulting sequence shown
inFig. 9-4 (d) has a length of 512, which is a suitable length for conveying the frequency
information. If it is down-sampled to 256 points, the result will be identical to the
samples of the triangular wave A(n) plus the aliaées of the two input sinusoids, which

102n . 106n
256) - 0.5 sin (27 x 256

are 0.4 cos (2.). As the highest frequency content is 154,

the fold-over of the spectrum can in fact be made at any point above that value, say
160, thus producing a sequence of length 320. The result of this reconstruction can be
seen in Fig. 9-5 and the mean square error is found to be the same as with length 512.

However, if the FFT is adopted for computing the inverse, 512 is a reasonable length

page 203

amplitude

1.8 T) | ! 1 I L T 1
1l
| it
] AR A I itk .
l i | AL
i
-1 1] 1] | 1] 1 1 1
/] 50 100 150 200 250 300 350 400 450 500
: (a) n
amplitude
0.5}§ l I I T I
O
0 50 100 150 200 250
(b) k
amplitude

0.5 T 1 1 1 | ! I 1 I !

0 50 100 150 200 250 300 350 400 450 500
(©) k
amplitude
1.8 1 T 1 I T 1 | 1 T I
HHL
ILf Akl I it {
il i i
‘ it ik ||| { []
' { j ||] | i”
-1 | 1 i 1 1 [l 1] i 1
0 50 100 150 200 250 300 350 400 450 500
(d) n

Fig. 9-4 Recovering a signal sampled at a sub-Nyquist rate :

(a) the reference signal : the triangular wave A(t) in Fig. 9-3 (@) + 0.5 sin (27.1501)
+ 0.4 cos (2r.154t) sampled regularly for 512 points;

(b) the amplitude spectrum of the reference signal sampled randomly for 256
points; the frequencies of the two sinusoids are above the Nyquist limit at 128;

(c) the amplitude spectrum in (b) after filtering and extending to 512 points;

(d) the siggal recovered by applying the inverse DFT to (c); mean square error =
1.53x10°.

page 204

amplitude

1.8 I

-1 i
0 50 100 150 200 250 300
' @ n
amplitude
0.5 I ' | I 1 1
1 i 1 i 1_41
0 50 100 150 200 250 300
' W) k
amplitude
18 T T T T T T
1 8
it i
] 1 13 ’
1]
| _
AR
_] i 1 | | 1
0 50 100 150 (C) 200 250 300 n

Fig. 9-5 Reconstruction of the composite wave A(t) + 0.5 sin (27.150t) + 0.4 cos
(27.154t) using a sequence length of 320 :

(a) the input sampled regularly for 320 points and taken as the reference signal;
(b) the amplitude spectrum in Fig. 9-4 (b) after filtering and extending to 320 points;
(c) th2e signal recovered from the inverse DFT of Fig.9-5 (b); mean square error =1.53

x10°.

Table 9-1 : Mean square errors of the reconstructed signals.

Waveform Shown in Low-pass cut-off | Mean square error
Rectangular Fig. 9-2(a) ke =15 6.15x 10°
Rectangular Fig. 9-2(b) ke =30 1.82x 107
Rectangular Fig. 9-2(c) ke =50 1.00x 107
Triangular Fig. 9-3(b) ke =15 5.10x 10™
Triangular Fig. 9-3(c) ke =30 1.18x 10™
Triangular Fig. 9-3(d) ke =50 2.97x10°
Composite Fig. 9-4(d) ke =15 1.53 x 10'2
Composite Fig. 9-5(c) ke =15 1.53x 10”2

page 205

since it produces a Nyquist frequency of 256, which is the smallest power of 2 greater

than 154.

9.3 Concluding Remarks

The previous three examples illustrate how a time sequence may be recovered
from the spectrum of a randomly sampled signal by filtering, extending the spectrum
and performing the inverse DFT (or FFT). For aregularly sampled sequence, a direct
inverse of its frequency spectrum leads to a perfect reconstruction of the time
sequence, but for random sampling the two extra processes mentioned above are
essential because filtering preserves the recovered signal from distortion and the
extension of the spectrum guarantees the existence of a real sequence after the
inverse transform. With the inversion process made possible, a two-way transform
between the time and the frequency domains for random sampling is complete. The
usefulness of this sampling method can be broadened, such as to reconstruct
one-dimensional patterns, and is no longer limited to spectral estimation.
Computational complexity is. not a concern as the FFT can be used for finding the

inverse provided that a suitable sequence length is chosen.

The advantages of adopting random sampling are obviously its alias-free
property and the reduction in the number of samples. Tomography is one example
that might benefit from adopting random sampling since data from a patient are
acquired by x-ray scanning, in which reducing the number of samples is highly
desirable. Although it is straightforward to extend random sampling from one
dimension to two dimensions, the effects of random sampling to the Radon transform,

which is involved in computing tomography, are yet to be studied.

page 2006

CHAPTER 10

CONCLUSIONS

10.1 A Brief Review

In various fields of engineering involving the use of digital signal processing,
input signals may be processed by algorithms which require heavy computation.
Nowadays, with the development in fabrication technology that produces fast chips
(microprocessors, memory, etc.) at alow cost, computing power is no longer a problem
in most cases, although computing speed may still be a concern in real-time
applications. In thé ages when only vacuum tubes and transistors were available, it
was obviously important to develop methods that could simplify or speed up the
computation. Some examples of those methods are the Monte Carlo simulation,
statistical estimation and stochastic computation. Randomized signal processing
(including sampling, quantization, correlation, etc.), which is also a statistical
appfoach, was proposed and developed during that time. Apart from being a
mathematical topic, random sampling finds its applications in engineering. By using
this technique to extend the‘ input frequency range in measuring a signal,
Hewlett-Packard produced and marketed successfully high-quality instruments such
as the sampling voltmeter HP 3406 A (in 1985) and the high-speed digitizing
oscilloscope HP 54100 A/D. According to Bilinskis and Mikelsons [28],
"Hewlett-Packard is the only company which has enough knowledge of, and

confidence in, this approach to apply it over and over again with remarkable results".

page 207

10.2 Relationship between Random and Regular Sampling

The conventional sampling method assumes that all sampling instants occur
precisely at regular intervals, but in practice this may not be true as the sampling time
might be affected by noise or the inaccuracy of the hardware. While one rniéht simply
ignore this minor deviation, there were researchers who showed interest in studying
how the inexact timing would affect the frequency spectrum [24,29]. When the
deviation is considered to be a random variable in time being added to each
occurrence of a regular sampling impulse, the result is identical to a randomized
sampling sequence. Hence randomized sampling may be related to regular sampling

through this field of study.

Mathematical proofs of the alias-free property of random sampling can be
dated back to 1960 [24]. Conceptually, random sampling may be c;onsidered apseudo-
continuous sampling process as a sampling impulse can occur, with a certain
probability, at any instant throughout a sampling period, which implies that the
separation between two successive sampling periods can be infinitely small. In other
words, the effective sampling rate is very high. This topic is discussed in Chapter 6
“:/ith the aid of auto-correlation which converts a randomly sampled sequence to its

power spectrum on a regular grid.

The major motivation of using randomized sampling is its alias-free property
which enables an input signal to be sampled at a sub-Nyquist rate. In fact, sub-Nyquist
sampling can also be achieved by another approach - manipulating several regular
sampling sequences to obtain more information from the input signal. Underhill et.
al. [3] proposed to sample the input independently by three sampling sequences of a

slightly different frequency. Kohlenberg[57], and recently Coulson [58], discussed an

page 208

Nth order nonuniform sampling where N uniform sample streams of separation T
were interleaved with time offsets ki<T between successive streams. In principle,
the above methods resolve the ambiguities in the frequency domain by the properties
of the aliases themselves. However, when random sampling is adopted, aliases are

turned to a broadband noise and thus no ambiguities arise in the spectrum.

10.3 Contributions of This Thesis to Random Sampling

10.3.1 Estimation of Noise Spectral Density and Bandwidth : When a sequence is
randomly sampled, an alias-free spectrum can be recovered from a sequence sampled
below the Nyquist rate. In exchange, we have to pay a much higher cost in computation
and to tolerate a background noise in the whole spectrum. In section 3.3.1, it is pointed
out that the computational complexity is N2, and in section 3.3.2 , the noise spectral
density per watt input in the spectrum is shown to be approximately 1N? watt per
frequency resolution, where N is the length of the data sequence. Theoretically the
bandwidth of a randomly sampled sequence is infinite, but in practice it is limited by

the word-length of the host system. Detailed discussion is found in section 3.3.3.

10.3.2 Sampling Methods and Computational Algorithms : Twvo methods of speeding
up the calculation of a spectrum, which are based on the principle of inserting limited
regularities into random sampling sequences, are proposed and described in Chapters
4 and S. In Chapter 4, parallel additive random sampling is exposed to show how it
can save 87% of the multiplications required. Since this scheme forms a naturally
parallel process, several processors may be employed to compute the spectrum
simultaneously, which can further speed up the evaluation. When examining the

resulting spectrum, it is seen that aliases are turned into bursts of noise. Should these

page 209

bursts be found undesirable, an adaptive thresholding is suggested to filter them out.
Another sampling procedure without generating these bursts of noise is hybrid
additive random sampling, which is described in Chapter 5. Saving in multiplications

is between 75% to 87% depending on the format chosen.

10.3.3 Study of Auto-correlation Sequences : In Chapter 6, a technique of determining
the auto-correlation of a randomized sequence using a regular step size is proposed
and elaborated. With the aid of auto-correlation, the anti-alias characteristics of
parallel additive random sampling and hybrid additive random sampling are further
examined and verified. This technique may also be used as a means to convert a
randomly sampled sequence to an equivalent regularly spaced sequence having a

desired Nyquist frequency.

10.3.4 Rapid Spectral Estimation using a Coarse Kernel : Since most fast algorithms
were based on the principle of reducing multiplicationsl, researchers would consider
simplifying the transform kernel as such to obtain a similar effect. Walsh and
Hadamard transforms are examples that use only 1 and -1 in their transform matrices.
Parallel to this line of thought, one might look for a simplified representation of the
kernel of the Fourier transform. For example, we may approximate the sine and cosine
functions by binary fractions (V2,% , . . ., etc.), as in computer arithmetic these
multiplications can be realized by a linear shift of the multiplicand. To push this idea
further, a two-level representation by 1 and -1 [4] and a three-level representation by
1, 0 and -1 [5] of the sine and cosine functions were proposed. The motive in so doing
is, of course, that all multiplications become additions and subtractions. (This method

1. With the advent of microprocessor having a built-in mathematical co-processor capable of
performing floating point multiplications, e.g. Intel 80486 and Pentium, the cycle time of a
multiplication is in the same order of magnitude to an addition. When designing a fast algorithm for
these processors, one should consider minimizing the total operations in multiplications and additions
rather than replacing multiplications by additions.

page 210

is known by various names. It is cited as the Poorman’s transform by Lamoureux [59].)
Although this approximation can be applied to uniformly sampled sequences as seen
in the examples of the above mentioned papers, the computation process is slower
than the FFT unless special hardware (but not a general purpose computer) is used
for the evaluation because its complexity for additions is N2. Therefore the
approximation method is particularly suitable for estimating the spectrum of a
randomly sampled sequence to which the FFT cannot be applied. In Chapter 7, the

three-level kernel is analysed and recommended for random sampling.

10.3.5 Applications in Digital Signal Processing : Application examples in the
literature of random sampling are mostly related to instrumentation for spectral
estimation. In Chapter 8, two applications in the field of digital signal processing are
proposed. They are a method for detecting a moving object in an image sequence and

a correlation detector.

10.3.6 Inverse Transformation : In regular sampling, the Fourier transform is
reversible. An inverse transform always exists as the kernel is orthogonal and
transform between the spatial (or time) domain and the frequency domain is
straightforward. Random sampling, however, destroys the orthogonality and makes
the inverse transform impossible. In Chapter 9, a reconstruction process which
converts the spectrum of a randomly sampled sequence to a uniformly spaced time
sequence is suggested. Although the process is rigorously not an inverse transform, it
serves as a means to channel data from the frequency domain to the spatial domain,
which is required by many applications. The conversion process may now be regarded

as two-way and complete.

page 211

10.4 Usefulness of Random Sampling

The advantage of using random sampling is apparently the possibility of
recovering an alias-free spectrum from a sequence sampled at a sub-Nyquist rate,
which is definitely a feature superior to regular sampling. Before jumping on the
bandwagon, however, one should consider the whole picture of a certain application
when adopting random sampling. Typical aspects for consideration are the mode of

operation, the computation load and the type of hardware available.

Whenever the situation of an application permits, computation should be
avoided or minimized. Computation arises when a spectrum is evaluated. Hence it is
more effective to manipulate the data in the data domain without taking any
transforms. An example illustrated in section 3.3.5.3 is a sampling oscilloscope, which
reconstructs a periodic waveform in the time domain. Another efficient use of random
sampling includes those applications requiring minimal computation. Examples are
digital r.m.s. voltmeters and wattmeters by which the quantity to be measured is made
proportional to the d.c. term of the spectrum [2]. As the d.c. term is obtained by

averaging, no multiplications are needed.

In terms of efficiency, the radix-2 FFT is the best algorithm for computing the
DFT when a general purpose computer is used as the host system. Unfortunately, with
a randomly sampled sequence, the FFT cannot be applied. A simple (but expensive)
solution is to build a concurrent structure composing of many fast multipliers and
adders. (To the extreme, there are as many multipliers and adders as the number of
data points. A result will be obtained after the cycle of one multiplication and one
addition.) A more cost-effective approach is to replace multiplications by linear shifts,

which can be realized if the values of the sine and cosine functions of the transform

page 212

kernel are all represented by binary fractions. Suppose the accuracy of computation
can be traded for the speed, one may adopt a two- or three-level kernel so as to
eliminate all operations related to multiplication. If only general purpose computers
are available, one may choose the parallel or hybrid additive random sampling to

speed up the calculation.

Although the FFT is in general the most efficient algorithm for computing a
spectrum, there is a particular case that a random sampling algorithm may win. An
example given at the end of section 5.2.3 shows how fewer multiplications than
regular sampling can be achieved with random sampling when a narrow frequency

band is computed.

In a word, one must be cautious in recommending random sampling without
qualification. There is much speculation about the usefulness of random sampling and
the complexity which a nonuniform time axis introduces is esoteric. In general it is
always better to use uniform sampling with the FFT except for the specific cases listed
above, or when one is dealing with a very broadband single frequency signal such as
radio jammer transmissions, or when the cost of sampling is more expensive than

computation, etc.

The crux of applying this technique as widely as uniform sampling to spectral
estimation is the loading in computation, which is related to the choice of the
transform kernel. The insertion of a random variable to the kernel comprising
sinusoidal functions destroys the condition for performing the inverse transform as
well. Ideally another set of basis functions suitable for random sampling should be
generated, but it seems to be too ambitious a task in mathematics. Failing that, fast

computational methods could be devised to make random sampling more

page 213

competitive. In the time domain, a systematic representation or modelling of a time
sequence could be helpful. In spectral analysis, efficient algorithms or effective
hardware structures for computation are desirable. As a challenge in mathematics or
engineering application, this area is worth studying and will be elaborated in the

following section.

10.5 Further Development

10.5.1. Mathematical Representation : Besides using the Fourier transform, the
frequency content of a signal sampled uniformly can also be manipulated by
operations in the time domain. The most usual case is to convolve an input sequence
~ with a mask or template. Many discrete-time systems, such as recursive filters, linear
systems, control systems etc., can be modelled by linear shift invariant (LSI) constant
coefficient difference equations and the z transform is a mathematical operator for
solving these equations. If a mathematical operator similar to the z transform could
be devised for randomly sampled sequences, then a productive study parallel to the
discrete-time system would be developed. Unfortunately, a genuine randomized
sampling sequence will create a shift variant system. Consider the impulse response
function of the non-recursive FIR filter shown in section 3.3.5.3. Since the coefficients
vary with each set of sampling times, one needs as many equations as the number of
the sets of sampling times to fully describe the function. Such a representation is very

complicated, if not impossible, to handle.

In case that the analytical approach is still preferred for a non-recursive system,
one may accept an approximation using pseudo-random sampling as a substitute. To
make this approach successful, a suitable scheme of mapping a set of randomized

timing to a uniform reference grid must be designed. Using the concept about

page 214

auto-correlation discussed in Chapter 6, the interval T of the reference grid can be

determined by the highest frequency of interest fm according to the Nyquist criterion,

. 1 . o .
ire. T = T . The randomized sampling instants are mapped to the nearest points on
m

the reference scale (see Fig. 10-1). The sample values form accordingly a new
sequence which contains many zero values as there should be fewer points in the
original grid than the reference. Since the resulting sequence is now equally spaced,
all mathematical tools tailored for regular sampling can be applied. Convolution or
correlation with other regular sequences is easily performed. However, if the
sequence represents a system function and its frequency response is evaluated, noise
reflected by those zero coefficients will mar the result. The case is similar to the
discussion on the inverse DFT in Chapter 9. The zero coefficients may, of course, be
filled up with values by interpolation, but the result will become dubious when too

many fictitious values are inserted. Since the pseudo-random sampling is also a

(a)

time

etc.

ﬂ._§~

(b)

- ———— —

[

Fig. 10-1 Mapping a sequence with randomized timing to a regular time grid :

— ¢ € — — —

time

(a) The original sequence.

(b) The pseudo-random sequence formed by mapping sample values in (a) to the
nearest regular grid points.

page 215

random process, the resulting sequence mapped from random sampling retains the
original characteristics except the infinite bandwidth. If aliasing occurs after the

mapping, a denser grid may be chosen to remove it.

10.5.2 Computational Algorithms : Intrinsically the complexity for computing a
spectrum from random sampling is N?, Any attempt to trim the complexity to a linear
class will be in vain. When methods are devised to reduce the number of
multiplications, a loss in another aspect is expected. Considering a random sequence
of N points being down-sampled to N/2 points and N components being evaluated in
the spectrum, the number of multiplications (as well as additions) is N2 , whereas it
would be N for a length-N sequence. Being alias-free, the spectrum will appear the
same as the one without down-sampling except that the signal-to-noise ratio is lower.
Thus in this case the saving in computation is achieved at the expense of a higher noise
level. In other cases, the trade-off may be a lower frequency resolution or a higher
hardware cost. Hence the optimal use of random sampling in terms of the above

parameters for certain applications forms a topic to study.

One of the motives for »desigm‘ng computational algorithms is to reduce the
cost of a hardware structure built for spectral evaluation. For example, when
performing a multiplication is much more expensive than an addition, a strategy is to
minimize the number of multiplications even if more additions are thus required.
Since the cost of integrated circuits is going down, one may eventually opt for the
massively parallel structure comprising many processors as described in the previous
section. Meanwhile one may adopt a moderate approach of concurrent processing,
| which requires clever algorithms to break the computation into several independent

parts (like the parallel additive random sampling). The concept of pipe-line may also

page 216

be exploited whenever possible. Even though the complexity may remain unchanged,
the process time is still shortened considerably. The direction of designing algorithms

intended for parallel computing should be more rewarding than for asingle processor.

10.5.3 Multirate Systems : Returning to the example of down-sampling in section 10.4,
one may have noticed the difference caused by the sampling method. For random
sampling, only the noise level is affected, whereas for regular sampling, the Nyquist
frequency will be lowered. Multirate system with regular sampling is a very fruitful
topic, and wavelet transform can also be realized by a collection of multirate filter
banks. It is interesting to see whether random sampling can be applied to this area.
Can multi-resolution analysis or polyphase representation be established with random
sampling? How will the property of perfect reconstruction of filter banks be affected?
Can mother wavelets survive randomized timing? Vaidyanathan [44] and Benedetto

[60] may be referred to as a starting point for the study.

10.5.4 Two-dimensional Applications : In the spatial domain, a two-dimensional
sampling function usually consists of impulses lying on a uniform square lattice.
Randomization could be introduced in either one or both of the axes to form a random
éampling scheme. Assuming the separability of the transform kernel, the row-column
decomposition can be used for estimating the DFT of randomly sampled sequences.
Although it is not difficult to realize a two-dimensional random or pseudo-random
sampling, it may not be easy to find an application justifiable for using such a process.
One would spontaneously connect two-dimensional signal processing with image
processing, but to one’s disappointment, image processing in general does not benefit

from random sampling. Making things even worse, the associated noise will degrade

page 217

the quality of an image composed of grey-level or colour pixels. Despite the above
disadvantage, at least two successful cases can be quoted. Random and
pseudo-random sampling can be adopted for tracking a moving object in a sequence
of images as described in Chapter 8. Dithering improves a half-tone picture by
removing the blocking effect left behind by compression using transform coding or by

any process which manipulates data in blocks.

Another possible candidate to adopt random sampling is tomography.
Computed tomography refers to the cross-sectional imaging of an object from either
transmission or reflection data collected by illuminating the object from many
different directions. With sufficient cross-sectional images (called slices), a
three-dimensional model of the object can be established. This method is extremely
helpful for exploring nondestructively internal organs of the human body. Sub-Nyquist
sampling is an advantage here because, for medical ground, one may prefer to reduce
samples which are taken with an x-ray scanner. The mathematical tools utilized in the
computation, i.e. the Radon transform and Fourier slice theorem, are related to the
Fourier transform [61, 62]. To reconstruct a slice from the projections requires the
inverse Radon transform. Hence the effects of random sampling on both the forward
and the inverse Radon transform must be carefully studied. A more efficient algorithm
for finding an inverse transform is preferred even if the techniques proposed in
Chapter 9 are applicable. Adding an extra filtering process prior to finding the inverse,
which is already computationally intensive, will be too much a burden. The accuracy
of the reconstructed image is a decisive factor affecting the suitability of the
application. For locating the position of an internal organ, a high accuracy in the

physical dimension of a reconstructed image is required. Suppose it is intended for

page 218

examining the function of an organ, then the exactness in the physical dimension may

not be a concern. Apparently random sampling is more suitable for the latter.

Sampling may also be performed in the transform domain. For example, in
designing an FIR filter, the frequency sampling method is one of the techniques often
used. Angelidis proposes to .sample nonuniformly in the frequency plane when
designing zero-phase FIR filters for acquiring flexibility in the placement of the
frequency samples [63]. The computation involves recursive polynomial
interpolation, which is claimed to be fast and simple. Pseudo-random sampling is
obviously feasible in the case of one-dimensional frequency sampling and its viability
in a two-dimensional procedure is yet to be studied. Randomized sampling in the
spatial domain gains a wider bandwidth in its frequency spectrum, but this advantage
does not exist (or has no meaning) in frequency sampling since the corresponding
spatial sequence, such as the impulse response of a low-pass filter, should be
band-limited. Instead one has to hunt for other advantages in terms of saving in the
computation, the convergence in the solutions, the accuracy of the results, etc. to

justify the adoption of such an unconventional process.

page 219

References :

[1]

[2]

3]
[4]
[5]

[6]

[7]

[8]

(9]

[10]
[11]
- [12]

[13]

[15]
[16]

(17]

Oppenheim, A.V. and Schafer, RW. : Discrete-time Signal Processing,
Prentice Hall, 1989.

Filicori, F.,, Iuculano,G., Menchetti, A. and Mirri, D. : "Randofn Asynchronous
Sampling Strategy for Measurement Instruments based on Non-linear Signal
Conversion", IEE Proc., vol. 136, pt A, no.3, 1989, pp. 114-150.

Underhill,M.J., Sarhadi,M. and Aitchison,C.S. : " Fast Sampling Frequency
Meter", Electronics Letters, vol. 14, no.12, 1978, pp. 366-367.

Gaster, M. and Roberts, J.B. : " Rapid Method of Forming Spectra from
Rectangular Wave Transforms", IEE Proc., vol. 126, no. 7, 1979, pp. 658-663.

Mason, J.S.D. : " Power Spectra from Approximate Transforms", IEE Proc., pt
A, vol. 127, no.4, 1980, pp. 250-25.

Cooley, J.W. and Tukey, J.W. : " An Algorithm for the Machine Computation of
Complex Fourier Series", Mathematics of Computation, vol 19, Apr. 1965, pp.
297-301.

Rader, CM. : " Discrete Transforms When the Number of Data Samples is
Prime", the IEEE Proceedings, vol. 56 no. 6, June 1968, pp. 1107-1108.

Kolba, D.P. and Parks, TW. : " A Prime Factor FFT Algorithm using High-speed
Convolution ", IEEE Trans. on ASSP, vol. ASSP-25, no. 4, Aug. 1977, pp.
281-294.

Reed, I.S. and Truong, TK. : " The Use of Finite Fields to Compute
Convolutions ", IEEE Trans. on Information Theory, vol. IT-21, no. 2, Mar. 1975,
pp- 208-213.

Proakis, J.G. and Manolakis, D.M. : Introduction to Digital Signal Processing,
Macmillan, 1988.

Good, LJ. : " The Interaction Algorithm and Practical Fourier Analysis", J. Roy.
Stat. Soc., vol. B-20, 1958, pp 361-372; vol. 22, 1960, pp. 372-375.

Winograd, S. : " On Computing the Discrete Fourier Transform", Proc. National
Academy of Science, U.S.A., vol. 73, 1976, pp. 1005-1006.

Nussbaumer, H.J. : Fast Fourier Transform and Convolution Algorithms,
Springer- Verlag, 1981.

Siu, W.C. and Lo, K.C. : " A New Hardware-based Realization of Prime Radix
Discrete Fourier Transform", Proc., The IEEE Asian Electronics Conference,

- 1987, Hong Kong, pp. 77-82.

Burrus, C.S. and Eschenbacher, PW. : " An In-place, In-order Prime Factor FFT
Algorithm", IEEE Trans. on ASSP, vol. ASSP-29,no. 4, August 1981, pp. 806-817.

McClellan, J.H. and Rader, C.M. : Number Theory in Digital Signal Processing,
Prentice Hall, 1979.

Burrus, C.S. : " Index Mapping for Multidimensional Formulation of the DFT
and Convolution", IEEE Trans., ASSP vol. 25, 1977, pp. 239-242.

page 220

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Arambepola, B. : "Discrete Fourier Transform Processor based on the Prime
Factor Algorithm", IEE Proc., vol. 130, pt. G, 1983, pp. 138-144.

Aloisio, G., Fox, FEC, Kim, J.S. and Veneziani, N. : "A Concurrent
Implementation of the Prime Factor Algorithm on Hypercube", IEEE Trans.
on Signal Processing, vol 39, 1991, pp. 160-170.

Lo, K.C,, Siu W.C., Lun, DPK and Purvis, A. :" Address Generation of Prime
Factor Algorithm in a Multiprocessor System", Proc. China 1991 International
Conference on Circuits and Systems, vol 1, pp 133-136, June 1991, Shenzhen,
China. '

Lun, D.P. and Siu, W.C.: "Heterogenous Computing System - SUPERLINK *,
Dept. of Electronic Engineering, Hong Kong Polytechnic, 1991.

INMOS Ltd. : Transputer Technical Notes, Prentice Hall 1989.

Marks, R.J. II : Introduction to Shannon Sampling and Interpolation Theory,
Springer-Verlag, 1991.

Shapiro, H.S. and Silverman, R.A. : " Alias-free Sampling of Random Noise", J.
SIAM, vol. 8, 1960, pp. 225-248.

Beutler, FJ. : " Alias-free Randomly Timed Sampling of Stochastic Processes",
IEEE Trans. on Information Theory, vol. IT-16, no. 2, 1970, pp. 147-152.

Masry, E. : " Alias-free Sampling : an Alternative Conceptualization and its
Applications ", IEEE Trans. on Information Theory, vol. IT-24, no. 3, 1978, pp.
317-324.

Rudin, W. : Functional Analysis, 2nd Edition, McGraw Hill, 1991.

Bilinskis, 1. and Mikelsons, A. : Randomized Signal Processing, Prentice Hall,
1992.

Berkovitz, A. and Rusnak, L. : " FFT Processing of Randomly Sampled Harmonic
Signals", IEEE Trans. on Signal Processing, vol. 40, no.11, 1992, pp.2816-2819.

Helfrick, A.D. and Cooper, D.W. : Modern Electronic Instrumentation and
Measurement Techniques, Prentice Hall, 1990.

Sarhadi, M. : " Spectral Analysis at High Frequencies using a Modified FFT *,
Proc. International Symposium on Computer Architecture and Digital Signal
Processing, vol.1, pp.242-246, Oct. 1989, Hong Kong.

Sarhadi, M. and Aitchison, C.S. : " Sub-Nyquist Sampling Process in the Presence
of Noisy Sampling Signal", Electronics Letters, vol. 16, no. 10, May 1980.

Sarhadi, M. and Catchpole, J.L. : " Progress towards a Discrete Sub-Nyquist
Fourier Transform", Proc. IEE Collogium on Digital Signal Processing,
University of Durham, 14th Sept., 1989.

Baier, J. and Fiirst, H.W. : " A Novel Method for Detection of Aliased Frequency
Components in FFT-based Spectrum Analysers and Digital Oscilloscopes’,
Proc. IEEE International Symposium of Circuits and Systems, vol. 1, pp.
770-773, May 1993, Chicago, U.S.A.

‘Lo, K.C. and Purvis, A. :" Fast Computational Algorithm in Paralle] Random

Sampling ", Electronics Letters, vol.28, no.12. June 1992, pp. 1115-1117.
page 221

[36]

[37]

[38]
[39]
[40]

[41]

[44]
[45]

[46]
[47]

[48]

[49]

[50]

[51])

[52]
[53]

Lo, K.C. and Purvis, A. :" Parallel Random Sampling with Multiprocessor
System", Proc. IEEE International Symposium on Circuits and Systems, vol. 3,
pp. 1979-1982, May 1993, Chicago, U.S.A.

Bilinsky, LY., Vystavkin, A.N. and Mikelson, A.K. : " Processing of Randomly-
sampled Signals", Proc. 3rd European Signal Processing Conference, vol. 1, pp.
109-112, Sept. 1986, The Hague, The Netherlands.

INMOS : Transputer Reference Manual, Prentice Hall, 1988.
INMOS : 3L Parallel C User Guide, INMOS Ltd., 1989.

Brigham, E.O. : The Fast Fourier Transform and Its Applications, Prentice Hall,
1988.

Lo, K.C. and Purvis, A. : " Hybrid Additive Random Sampling and its
Realization", Proc. IEEE International Symposium on Circuits and Systems, vol.
2, pp. 105-108, June, 1994, London, U .K.

Lo, K.C. and Purvis, A. : " On Interlacing and Concatenating Additive Random
Sampling Sequences ", Proc. International Conference on Signal Processing, vol.
1, pp. 48 - 51, Oct. 1993, Beijing, China.

Therrien, C.W. : Discrete Random Signals and Statistical Signal Processing,
Prentice Hall, 1992.

Vaidyanathan, PP. : Multirate Systems and Filter Banks, Prentice Hall, 1993.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery B.P. : Numerical
Recipes in C, Cambridge University Press, 1992.

Lomb, N.R. : Astrophysics and Space Science, vol. 39, pp. 447-462, 1976.

Hughes, R.D. and Heron, M.L.: " Approximate Fourier Transform using Square
Waves", IEE Proc., vol. 136, pt A, no.4, 1989, pp. 223-228.

Bilinsky, I. and Mikelsons, A. : "Applications of Randomized and Irregular
Sampling as an anti-aliasing technique”, Proc., European Signal Processing
Conference 1999, Barcelona.

US Patent 5115189 : Anti-aliasing Dithering Method and Apparatus for
Low-frequency Signal Sampling, Hewlett-Packard Company, Palo Alto 1992.

Jain, J.R. and Jain, AK. : "Displacement Measurement and Its Application in
Interframe Image Coding", IEEE Trans. Comm. vol. COM-29, 1981, pp. 1799 -
1808.

Rajala, S.A., Riddle, AN. and Snyder, WE. : "Application of the
One-dimensional Fourier Transform for Tracking Moving Objects in Noisy
Environment", Comput. Vis. Graph. Image Proc., vol. 21, 1983, pp. 280 - 293.

Gonzalez, R.C. and Woods, R.E. : Digital Image Processing, Prentice Hall, 1992.

Cowart, A.E., Snyder, W.E. and Ruedger, W.H. : "The Detection of Unresolved
Targets Using the Hough Transform", Comput. Vis. Graph. Image Proc., vol. 21,
1983, pp. 222 - 238. .

page 222

[54]

[55]
[56]

[57]
[58]

[59]

[60]

[61]
[62]

[63]

Lo, K.C. and Purvis, A. : " Application of Random and Pseudo-random Sampling
for Tracking Moving Objects", Proc. IEEE 1994 International Symposium on
Speech, Image Processing and Neural Networks, vol. 1, pp. 260 - 263, April 1994,
Hong Kong.

Hamming, R.W. : Digital Filters, 2nd Edition, Prentice Hall, 1989.

Antoniou, A. : Digital Filters; Analysis, Design, and Applications, McGraw Hill,
1993.

Kohlenberg, A. : "Exact Interpolation of Band-limited Functions", J. Appl. Phys.,
vol. 47, no.12, Dec. 1953, pp. 1432-1436.

Coulson, A.J. : "A Generalization of Nonuniform Bandpass Sampling", IEEE
Trans. on Signal Processing, vol. 43, no. 3, March 1995, pp.694-704.

Lamoureux, M.P. : "The Poorman’s Transform : Approximating the Fourier
Transform without Multiplication", IEEE Trans. on Signal Processing, vol. 41,
no. 3, March 1993, pp. 1413-1415.

Benedetto, J.J. :"Irregular Sampling and Frames", Wavelet Analysis and Its
Applications, vol. 2, pp.445 - 505, Edited by C.K. Chui, Academic Press, 1992.

Macovski, A. : Medical Imaging Systems, Prentice Hall, 1983.

Cho, Z.H., Jones, J.P. and Singh, M. : Foundations of Medical Imaging, John
Wiley, 1993.

Angelidis, E. : "A Recursive Frequency-Sampling Method for Designing
Zero-Phase FIR Filters by Nonuniform Samples”, IEEE Trans. on Signal
Processing, vol. 43, no. 6, June 1995, pp.1461-1467.

page 223

Publications :

(1]

[2]

[3]

[4]

[5]

Lo, K.C., Siu W.C., Lun, DPK and Purvis, A. : " Address Generation of Prime
Factor Algorithm in a Multiprocessor System", Proc. China 1991 International
Conference on Circuits and Systems, vol 1, pp 133-136, June 1991, Shenzhen,
China.

Lo, K.C. and Purvis, A. : " Fast Computational Algorithm in Parallel Random
Sampling ", Electronics Letters, vol.28, no.12. June 1992, pp. 1115-1117.

Lo, K.C. and Purvis, A. : " Parallel Random Sampling with Multiprocessor
System", Proc. IEEE International Symposium on Circuits and Systems, vol. 3,
pp- 1979-1982, May 1993, Chicago, U.S.A.

Lo, K.C. and Purvis, A. : " On Interlacing and Concatenating Additive Random
Sampling Sequences ", Proc. International Conference on Signal Processing, vol.
1, pp. 48 - 51, Oct. 1993, Beijing, China.

Lo, K.C. and Purvis, A. : " Application of Random and Pseudo-random Sampling
for Tracking Moving Objects", Proc. IEEE 1994 International Symposium on
Speech, Image Processing and Neural Networks, vol. 1, pp. 260 - 263, April 1994,
Hong Kong.

Lo, K.C. and Purvis, A. : " Hybrid Additive Random Sampling and its
Realization", Proc. IEEE International Symposium on Circuits and Systems, vol.
2, pp. 105-108, June, 1994, London, U.K.

Lo, K.C. and Purvis, A. : " Reconstructing Randomly Sampled Signals by the
FFT", Proc. 1996 IEEE International Symposium on Circuits and Systems, vol.
2, pp. 124-127, May, 1996, Atlanta, U.S.A.

Lo, K.C. and Purvis, A.:" A New Approach to Estimate Spectra from Randomly
Sampled Sequences ", under review.

page 224

Appendix 1: Program Listing

The following programé are written in 3L Parallel C for the
realization of parallel a.r.s. using 5 transputers.

Configuration file :

processor host
processor root
processor T1
processor T2
processor T3
processor T4

wire jumper root[0] host[0]
wire ? root[2] T1[1]

wire ? T1[2] T2[1]

wire ? T2[2] T3[1]

wire ? T3[2] T4[1]

wire ? T3[3] root[3]

task master file ="getroott.b4" ins =3 outs =3
task s1 file ="getlt.b4" ins =2 outs =2

task s2 file ="get2t.b4" ins =2 outs =2

task s3 file ="get3t.b4" ins =3 outs =3

task s4 file ="get4t.b4" ins=2 outs =2

task iserver ins =1 outs=1

task filter ins =2 outs =2 data =30k

place iserver host
place master root
place s1T1

place s2 T2

place s3 T3

place s4 T4

place filter root

connect ? filter[0] iserver[0]
connect ? iserver[0] filter[0]

connect ? master[1] filter[1]
connect ? filter[1] master[1]

connect ? master[0] s1[0]
connect ? s1[0] master[0]

connect ? s1[1] s2{0]
connect ? s2[0] s1[1]

connect ? s2[1] s3[0]
connect ? s3[0] s2[1]

connect ? s3[1] s4[0]
connect ? s4[0] s3[1]

connect ? s3[2] master{2]
connect ? master[2] s3[2]

page 225

Root transputer

/* program name: getroott.c

description: parallel ARS 32x32 points taking for 1 second under
5 transputers nodes with channel method, include
high order band

related progarm: getlt.c
get2t.c
get3t.c
getdt.c
gett.cfg

date : 11/3/1993 */

#include < stdio.h>
#include <stdlib.h>
#include < math.h>
#include <time.h>
#include <chanh>

#define pi 3.141592
#define T 1.0

#define f 1.0

#define ESC 27

#define Y 89

#define y 121

#define n 110

#define node 5

#define node_address 0
#define MAXDATA 1024

/***‘k*‘k‘k‘k‘k**************** Global Variable **********************/

float **x;
float *t;
CHAN **in, **out;
int p, m, N; /* p - row size

m - column size

N - p*m size of matrix

*

/

int order; /* high order band indicator */

/********************** FunCtiOIl prOtOCOl ok o ok sk ok ok sk ok sk sk ok sk sk ke sk ok sk ok sk ko okok

void error_message(int);

void Initialize(void);

struct MATRIX *MakeMatrix(void);

int get_input(int *, float *);

void get_time(void);

void gen_sample(int * float *,int);

void Insmat(struct MATRIX *, int);

void Calculate(struct MATRIX *, int, float *, float *);
void KillMat(void);

void Process(float *, float *, int, int);

void output(float *, float *);

void send_input(int *, float *, int, int);

void send_matrix_size(int, int, int);

void get_result(float *, float *, int);

void main(int, char **, char **, CHAN **, int, CHAN **, int);

page 226

/********************* Matrix Structure *************************/

struct MATRIX

float **real;
float **imag;
}*Mmatl, *Mmat2;

/********************* error message printout *******************/

void error_message(error_no)
int error_no;

switch (error_no)

case 1: printf("error allocating memory\n");
printf("*** program ended abnormally ***\n");
exit(1);
break;

case 2: printf("error open file\n");
printf("*** program ended abnormally ***\n");
exit(1);
break;

case 3: printf("error reading file\n");
printf("*** program ended abnormally ***\n");
exit(1);
break;

default: printf("unexpected error\n");
printf("*** program ended abnormally ***\n");
exit(1); :
break;
}
}

/*****:k******************** Get matrix SIZC **********************/

void get_matrix_size()
int temp, done, valid =0;
printf("Get matrix size parameter\n");
prin[f("::::==========:=:====::::\n");
while(!valid)

printf("Row size? ");
§canf("%d“,&p);

if(p< = 1)
printf("Invalid input\n");
else
done =0;

temp = p;
while(templ && done! =1)

if (temp%?2! =0) done =1,
temp = temp/2;

}

}
if (done) printf("Invalid input\n");
else valid =1;

page 227

valid =0;
while(!valid)

printf("Column size? ");
scanf("%d",&m);
if(lm< =1)

printf("Invalid input\n");
else

done =0;
temp =m;
while(templ && done! =1)

if (temp%?2! =0) done=1;
temp = temp/2;

}

}
if (done) printf("Invalid input\n");
else valid=1;

}
N=p*m;
}

o ok kK * * % 1
/=!<>l<=‘l=>l<>l<=l<=l<‘l= EEEEEEEEEE S * Memoryallocatlon ********************/

void Initialize()
int i

printf("Initialization memory\n");
printf'=====================\n");
x = (float **)malloc(p*sizeof(float *));

if (x= =NULL) error_message(1);

for(i=0ji<psi+ +)

x[i] = (float *)malloc(m*sizeof(float));
if (x[i]= = NULL) error_message(1);

} ‘
t =malloc(p*sizeof(float));
if (t= =NULL) error_message(1);

/*‘l<********T*************** Create Matrix ************************/

struct MATRIX *MakeMatrix()

struct MATRIX *mat;
int i;

mat = (struct MATRIX *)malloc(sizeof(struct MATRIX));
if (mat = =NULL) error_message(1);
mat- >real = (float **)malloc(p*sizeof(float *));
if (mat- > real= = NULL) error_message(1);
mat- > imag = (float **)malloc(p*sizeof(float *));
if (mat- >imag= = NULL) error_message(1);
for (=0ji<p;i+ +)
mat- > real[i] = (float *)malloc(m*sizeof(float));
if (mat- > real[i] = = NULL) error_message(1);
mat- > imag[i] = (float *)malloc(m*sizeof(float));
if (mat- >imag][i] = = NULL) error_message(1);

return (mat);

page 228

/********************** Get frequency& amplitude ****************/

int get_input(freq,amp)
int *freq;
float *amp;

int count =0, end_input=0;
char input;

printf("Get input frequency and amplitude\n");

printf(“::::::::====::====:=====::====::==

while(end_input! =1)

printf("frequency ");
scanf("%d" freq + +);
printf("amplitude ");
scanf("%f",amp + +);
count + +;
printf("More (y/n) ");
scanf("%s",&input);
if (input = =n) end_input =1,
else

end_input =0;

return(count);

/*********************** Get Variable ti.mi.ng ********************/

void get_time()

FILE *fp;
int i;
float input;

printf("Getting variable timing\n");
printf('=======================\n");
fp = fopen("uniform.prn”,"r");

if (fp= =NULL) error_message(2);

t[0] = 0.0;

i=1;

while(i< p)

if(fscanf(fp,"%f",&input) = = EOF) error_message(3);

t[i] = (float) (input + 1)/N;
i+ +;

}
fclose(fp);

/**************** Generate Sample matrixelement ****************/

void gen_sample(freq,amp,count)
int *freq, count;
float *amp;

int i, j, row, column;
float tm, comp_value, angle;

printf("Generating sampling sequence\n"); :
printf(”:=:::::::::=:=:==_—_=:=:===::=:\n");

for (row=0;row <p;row+ +)
for (column = 0;column < m;column + +)

if (column = =0)

tm+ = t[row];
t[row] = tm;

else tm + = (float) 1.0/N;
comp_value =0.0;
for (1=0;i< count;i+ +)

angle =2.0*pi*freq[i]*tm;
comp_value = amp(i]*cos(angle) + comp_value;

x[row][column] = comp_value;

JrAF kR kR Rk Rk ok % [pgert elements to matrix *RFERFERRIEEERRERRA)

void Insmat(mat,i)

int i;

struct MATRIX *mat;
{

intr, c;
float angle, cosine, sine;

if (i= =0)

for(c=0;c<m;c+ +)
for(r=0;r<p;r+ +)

mat- >real[r][c] = xr][c];
mat- >imag[r][c] = 0.0;

}

else
for (c=0;c<myc+ +)

angle =2.0*pi*c*YN;
cosine = cos(angle);
sine = sin(angle);

for (r=0;r<p;r+ +)

mat- >real[r][c] = x[r][c]*cosine;
mat- > imag[r][c] = x[r][c]*sine;

/****‘k‘k‘k*********** Calculate freqUGHCy SpeCtI‘um ****************/

void Calculate(mat,comp,real,imag)
struct MATRIX *mat;

int comp;

float *real, *imag;

float x_real, x_imag, row_sum_real, row_sum_imag;
float angle, cosine, sine;
int r, ¢, 1, component;

page 230

for(i=0ji<order;i+ +)

component = comp +i*N;
x_real = 0.0;

x_imag = 0.0;

for (r=0;r<p;r+ +)

row _sum_real = mat->real[r][0];
row_sum_imag = 0.0;
for (c=Lic<myc+ +)

{
row_sum_real + = mat- >real[r][c];
row_sum_imag + = mat- >imag|r][c];
}
if (r==0)
{
x_real =row_sum_real;
X_lmag=row_sum_imag;
}
else
{ :
angle = 2.0*pi*component™t{r];
cosine = cos(angle);
sine =sin(angle);
x_real + = (row_sum_real*cosine-row_sum_imag*sine);
X_imag + = (row_sum_imag*cosine + row_sum_real*sine);
}

real[component] = x_real;
imag[component] = x_imag;

void KillMat()
{int i
for G=0ji<p;i+ +)

free(Mmat1- > realli]);
free(Mmat1- > imag]i]);
free(Mmat2- > realli]);
free(Mmat2- > imag[i]);
free(x[i]);

free(Mmat1- > real);
free(Mmat1- > imag);
free(Mmat2- > real);
free(Mmat2- > imag);
free(x);

free(Mmat1);
free(Mmat2);.
free(t);

/:(e:k:k**:l::k:k:{:*:k*;k:k:k:k******** Process matrix ************************/

void Process(real,imag,start,stop)
float *real, *imag;
int start, stop;

page 231

int row, column, i, j, comp;
float power_index1, power_index2;

- printf("Processing data\n");
printff('===============\n");
/* calculate M[0] */

Mmatl = MakeMatrix();
if (Mmatl = =NULL)
error_message(1);

Mmat2 = MakeMatrix();
if (Mmat2= =NULL)
error_message(1);

comp = 0;
Insmat(Mmat1,comp);
Calculate(Mmat1,comp,real,imag);

/* calculate M|N/2] */

comp = N/2;
for (column = 0;column < m;column + =2)
for (row =0;row < p;row + +)

Mmat2- > real[row][column] = Mmat1- > real[row][column];

Mmat2- > imag[row][column] = Mmat1- >imag[row][column];

Mmat2- > real[row][column + 1] = -1.0 * (Mmat1- > real[row][column + 1]);
Mmat2- > imag[row][column + 1] = -1.0 * (Mmat1- > imag{row]{column + 1]);

Calculate(Mmat2,comp,real,imag);
/* calculate M[N/4] */

comp = N/4;
for (row =0;row < p;row+ +)

Mmat2- > real[row][0] = Mmat1- > real{row][0];
Mmat2- > imag[row][0] = Mmat1- > imagfrow][0];

for (column = 1;column < m;column + =2)

{
power_index1 = pow(-1.0,(float)((column + 1)/2));

power_index2 = pow(-1.0,(float)((column + 3)/2));
for (row =0;row < p;row+ +)

Mmat2- > real[row][column + 1] = Mmat1- > real[row][column + 1]*power_index1;
Mmat2- > imag[row][column + 1] = Mmat1- > imag[row][column + 1]*power_index1*-1.0;
Mmat2- > real[row][column] = Mmat1- > imag[row][column]*power_index2;

Mmat2- >imag[row][column] = Mmat1- >real[row][column]*power_index2;

}
Calculate(Mmat2,comp,real,imag);
/¥ calculate M[3N/4] */
comp = 3*N/4;
for (column = 0;column < m;column + +)
for (row =0;row < p;row + +)

Mmat2- > imag[row][column] = Mmat2- >imag[row][column] * -1.0;

Calculate(Mmat2,comp,real,imag);

/* for start to stop calculate Mi */

page 232

for (i=start;i < stop;i+ +)
{
comp = i;
Insmat(Mmat1,comp);
Calculate(Mmat1,comp,real,imag);

/* Mat[N/2 +i] */
comp = N/2 +ij;
for (column = 0;column < m;column + =2)
for (row =0;row < p;row + +)
{
Mmat2- > real[row][column] = Mmat1- > real[row][column];
Mmat2- > imag[row][column] = Mmat1- > imag[row][column];
Mmat2- > real[row][column + 1] = Mmat1- > real[row][column + 1] * -1.0;
Mmat2- >imag[row][column + 1] = Mmat1- >imag[row][column + 1] * -1.0;

Calculate(Mmat2,comp,real,imag);

/* Mat|N-i] */

comp = N-i;

for (column =0;column < m;column + +)
for (row=0;row< p;row+ +)

Mmat2- > real[row][column] = Mmat1- > real[row][column];
Mmat2-i > mag[row][column] = Mmat1- > imag[row][column] * -1.0;

Calculate(Mmat2,comp,real,imag);

/* Mat[N/2-1] */

comp = N/2-1;

for (column = 0;column < m;column + =2)
for (row =0;row < p;row+ +)

Mmat2- >real[row][column + 1] = Mmat1- > real[row][column + 1] * -1.0;
Mmat2- >imag[row][column + 1] = Mmat1- >imag[row][column + 1};

Calculate(Mmat2,comp,real,imag);
/* calculate N/4 -1 */

j=N/d-i
if (jI=1)
/* Mmat{j] */
comp = j;
for (row =0;row < p;row + +)

Mmat2- > real[row][0] = Mmat1- > real[row][0];
Mmat2- > imag[row][0] = Mmat1- > imag[row][0];

for (column = 1;column < m;column + =2)

power_index1 = pow(-1.0,(float)((column + 1)/2));
power_index2 = pow(-1.0,(float)((column + 3)/2));
for (row=0;row < p;row+ +)

Mmat?2 > -real[row][column + 1] = Mmat1- > real[row][column + 1]*power_index1;
Mmat2- >imag|row][column + 1] = Mmat1- > imag[row]{column + 1]*power_index1*-1.0;
Mmat2- > real[row][column] = Mmat1- >imag[row][column]*power_index2;
Mmat2-imag[row][column] = Mmat1-real[row][column]*power_index2;

Calculate(Mmat2,comp,real,imag);

/* Mat[N/2 +j] */
page 233

comp = N/2 + J;
for (column = 0;column < m;column + =2)
for (row=0;row < p;row + +)
{
Mmatl- > real[row][column] = Mmat2- > real[row]{column];
Mmatl- > imag[row][column] = Mmat2- > imag[row}[column];
Mmat1- > real[row][column + 1] = Mmat2- >real[row][column + 1] * -1.0;
Mmat1- >imag[row][column + 1] = Mmat2- > imag[row][column +1] * -1.0;

Calculate(Mmat1,comp,real,imag);

/* Mmat[N-j] */

comp = N-j;

for (column = 0;column < m;column + +)
for (row=0;row<p;row+ +)

Mmat1- > real[row][column] = Mmat2- > real[row][column];
Mmat1- > imag[row][column] = Mmat2- >imag|[row][column] * -1.0;

Calculate(Mmat1,comp,real,imag);

/* Mat[N/2-j] */

comp = N/2 -j;

for (column = 0;column < m;column + =2)
for (row=0;row<p;row+ +)

Mmat1- > real[row][column + 1] = Mmat2- > real[row][column + 1] * -1.0;
Mmat1- > imag[row][column + 1] = Mmat2- >imag[row][column + 1];

Calculate(Mmat1,comp,real,imag);

}
}
}

/************************* Olltput to file ***********************/

void output(real,imag)
float *real, *imag;

FILE *fp;
int i;

printf("Output to file\n");
printf("'==============\n");
fp = fopen("gett.prn","W");

if (fp= =NULL) error_message(2);

else

real[0] = real[0]/N;
fprintf(fp,"%.10f\t%.10f\n" real{0].imag[0});
for (i=Lji<order*N;i+ +)

{

reali] = real[i][/N*2;

imagli] = imag[i]/N*2; :
fprintf(fp,"%.10f\t%.10f\n",real[i],imag[i]);

fclose(fp);
}

[rEEedirrr Gond message information to other processors ***####ss/

void send_input(freq,amp,freq_count,port)
int *freq, freq_count, port;
float *amp;

{
page 234

/* chan out message to port */
chan_out_word(freq_count,out[port]);
chan_out_message(freq_count*sizeof(int),freq,out[port}]);
chan_out_message(freq_count*sizeof(float),amp,out[port]);
chan_out_message(p*sizeof(float),t,out[port]);

fre#Esrix Send matrix size to other processors ****#*xsknrniris

void send_matrix_size(port)
int port;

/* chan out message to port */
chan_out_word(p,out[port]);
chan_out_word(m,out[port]);
chan_out_word(order,out[port]);

}

/************** Get reSultS from Other proeessors ****************/

void get_result(real,imag,port)
float *real, *imag;
int port;

int count, cntf MAXDATA], i, comp;
float inp_real[2*MAXDATA], inp_imag[2*MAXDATA];

/* chan in message from port */
chan_in_word(&count,in[port]);

chan_in _message(count*sizeof(float),inp_real Jin[port]);
chan_in_message(count*sizeof(float),inp_imag,in[port]);
chan_in_message(count*sizeof(int),cnt,in[port]);

for (i=0;i<count;i+ +)

comp = cnt[i];
real[comp] =inp_real[i];
imag[comp] =inp_imag]i];

B E ¥k ok k 3k ok ok k ok ok M sk k k ok ook
/**k*‘k***‘l’****‘k‘k********?‘k Malnprogram *********************/

void main(argc,argv,envp,in_ports,inlen,out_ports,outlen)
int argc,inlen,outlen;

char *argy[], envp[l;

CHAN *in_ports[],*out_ports[];

int freq{MAXDATA], freq_count, countfMAXDATA];

float amp[MAXDATA];

int start, stop;

floaty real[2*MAXDATA], y_imag{2*MAXDATA], real MAXDATA];
int tm1, tm2, tnl, tn2;

int size_int, size_remain;

if(argc) order =1,
else
switch(*argv[1])

{

case 'H’: order=2;
break;

case ’h’: order=2;
break;

page 235

case ’L: order=1;

break;
case’l: order=1;

break;
default: order=1;

break;

}

in=in_ports;
out = out_ports,

get_matrix_size();

Initialize();
send_matrix_size(0);

/* get input frequency component & amplitude */
freq_count = get_input(freq,amp); -

/* get random variable */
get_time();

/* send message to workers */
printf("sending packets to workers\n");
printf(”:=====:==========:==:==:==\n");

send_input(freq,amp,freq_count,0);

/* generate sampling sequence */
gen_sample(freq,amp,freq_count);

/* generate no. of processing element */
size_int = N/8/node;
size_remain = N/8%node;
switch(node_address) {
case 0: start =1,
stop = start + size_int;
break;
case 1: start=size_int +1;
stop = start + size_int;
break;
case 2: start =2%size_int+1;
stop =start + size_int;
break;
case 3: start =3%size_int +1;
stop = start + size_int;
break;
case 4: start =4*size_int+1;
stop =start + size_int + size_remain;
break;
default: exit(1);

tm1 = time(NULL);
tnl =timer_now();

/* Processing Data */
Process(y_real,y_imag,start,stop);

/* get result from workers */
printf("get result from workers\n");
prin[f("::=====::====:=========\n");

get_result(y_realy imag,0);
get_result(y_realy imag,2);

page 236

tm2 =time(NULL);
tn2 =timer_now();

printf("time needed = %d\n",tm2-tm1);
printf("tick time = %d\n",tn2-tn1);

output(y realy imag);

/* free memory from matrix allocation */

KillMat();

Node transputer

Since the programs for all nodes are the same execpt the node addresses, only the
programs for node 1 are listed below.

/***

program name: getlt.c

description: parallel ARS 32x32 points taking for 1 second under
5 transputers nodes with channel method, include
high order band

related progarm: getroott.c
get2t.c
get3t.c
getdt.c
gett.cfg

***/

#include < stdlib.h >
#include <math.h>
#include <chan.h>

#define pi 3.141592
#define T 1.0

#define f 1.0

#define node 5

#define node address 1
#define MAXDATA 1024

/************************* Global Variable **********************/

float **x;
float *t;
CHAN **in, **out;
int p,m, N; /*p-rowsize

m - column size

N - p*m size of matrix

*

/

int order; /* high order band indicator */

/********************** Function protocol o sk e o sk sk ok sk sk skok ckok kok kR sk ok kok kok

void error_message(int);
void Initialize(void);
struct MATRIX *MakeMatrix(void);

page 237

int get_input(int *, float *);

void gen_sample(int * float *,int);

void Insmat(struct MATRIX *, int);

int Calculate(struct MATRIX *, int, float *, float * float *,int);
void KillMat(void);

int Process(float *, float *, int, int);

void send_input(int *, float *, int, int);

void send_matrix_size(int, int, int);

void send_result(float *, float *, int *, int, int);

int get_result(float *, float *, int);

void main(int, char **, char **, CHAN **, int, CHAN **, int);

/********************* Matrix Structure *************************/

struct MATRIX

float **real;
float **imag;
}*Mmat1, *Mmat2;

/************************* Memory allocation ********************/

void Initialize()
int 1;

x = (float **)malloc(p*sizeof(float *));
for(i=0;i<p;i+ +)

x[i] = (float *)malloc(m*sizeof(float));
t =malloc(p*sizeof(float));

/*******=k**********=k******* Create Matrix ************************/

struct MATRIX *MakeMatrix()

{
struct MATRIX *mat;
int 1;

mat = (struct MATRIX *)malloc(sizeof(struct MATRIX));
mat- > real = (float **)malloc(p*sizeof(float *));

mat- > imag = (float **)malloc(p*sizeof(float *));

for (i=0ji<pji+ +)

mat- > real[i] = (float *)malloc(m*sizeof(float));
mat- > imag[i] = (float *)malloc(m*sizeof(float));

return (mat);

/* Get input frequency component & amplitude from other processors */

int get_input(freq,amp,port)
int *freq, port;
float *amp;

int count;
chan_in_word(&count,in[port]);
chan_in_message(count*sizeof(int),freq,in[port]);

chan_in_message(count*sizeof(float),amp,in[port]); chan_in_message(p*sizeof(float),t,in[port])

page 238

2

return(count);

/**************** Generate Sample matrix element ****************/

void gen_sample(freq,amp,count)
int *freq, count;
float *amp;

int i, j, row, column;
float tm, comp_value, angle;

tm =0.0;
for (row=0;row<p;row+ +)
for (column = 0;column < m;column + +)

if (column = =0)

tm + = t[row];
t[row] = tm;

else tm + = (float) 1.0/N;
comp_value =0.0;
for (1=0;i< count;i+ +)

angle =2.0*pi*freq[i] *tm;
comp_value =amp][i]*cos(angle) + comp_value;

x[row][column] = comp_value;

}

/******************** Insert elements to matrix *****************/

void Insmat(mat,i)
int i
struct MATRIX *mat;
{
intr,c;
float angle, cosine, sine;

if (i= =0)

for(c=0;c<m;c+ +)
for(r=0;r<p;r+ +)

mat- > real[r][c] =x][r][c];
mat- > imag][r][c] = 0.0;

}

else
{ for{c=0;c<m;c+ +)

{
angle =2.0*pi*c*i/N;
cosine = cos(angle);
sine = sin(angle);
for (r=0;r<p;r+ +)

mat->real[r][c] = x[r][c]*cosine;
mat->imag[r][c] = x[r][c]*sine;

page 239

/****************** Calculate frequency SpCCtrum ****************/

Calculate(mat,comp,real,imag,cnt,element)
struct MATRIX *mat;

int comp, *cnt, element;

float *real, *imag;

float x_real, x_imag, row_sum_real, row_sum_imag;
float angle, cosine, sine;
int r, ¢, i, key, component;

key =clement;
for(i=0;i<order;i+ +)
{
component = comp +i*N;
x_real = 0.0;
x_imag = 0.0;
for (r=0;r<p;r+ +)

row_sum_real = mat- >real[r][0];
row_sum_imag = 0.0;
for (c=1l,c<myc+ +)

{
row_sum_real + = mat- > real[r][c];
row_sum_imag + = mat- >imagfr][c];
}
if (r==0)
{

x_real =row_sum_real;
X_imag =row_sum_imag;

else

angle = 2.0*pi*component*t[r];

cosine = cos(angle);

sine = sin(angle);

x_real + = (row_sum_real*cosine-row_sum_imag*sine);
x_imag + = (row_sum_imag*cosine +row_sum_real*sine);

} reallkey] = x_real;
imag[key] = x_imag;
cnt[key] = component;
key+ +;

return(key);

void KillMat()
nt 1;
for (=0ji<p;i+ +)
free(Mmat1- > realli]);
free(Mmat1- > imagfi]);
free(Mmat2- > real[i]);

free(Mmat2- > imag]i]);
free(x[i]);

free(Mmat1- > real);
free(Mmat1- > imag);
free(Mmat2- > real);
free(Mmat2- >imag);

page 240

free(x);
free(Mmat1);
free(Mmat2);
free(t);

}

/************************ PI‘OCCSS matrix ************************/

int Process(real,imag,start,stop,count)
float *real, *imag;
int start, stop, *count;

int row, column, i, j, k, comp;
float power_index1, power_index2;

/* for start to stop calculate Mi */

Mmat1 = MakeMatrix();
Mmat2 = MakeMatrix();
k=0;

for (i=start;i<stop;i+ +)

comp = i;
Insmat(Mmat1,comp);
k = Calculate(Mmat1,comp,real,imag,count,k);

/* Mat[N/2+i] */ comp = N/2 +1;
for (column = 0;column < m;column + = 2)
for (row =0;row < p;row + +)

Mmat2- > real[row][column] = Mmat1-> real[row][column];

Mmat2- > imag[row][column] = Mmatl-> imag[row][column];

Mmat2- > real[row][column + 1] = Mmatl-> real[row][column + 1] * -1.0;
Mmat2- > imag[row][column + 1] = Mmat1-> imag[row][column + 1] * -1.0;

}
k = Calculate(Mmat2,comp,real,imag,count,k);

/* Mat[N-i] */

comp = N-i;

for (column =0;column < m;column + +)
for (row =0;row < p;row + +)

Mmat2- > real[row][column] = Mmatl-> real[row][column];
Mmat2- > imag[row][column] = Mmat1- >imag[row][column] * -1.0;

}
k = Calculate(Mmat2,comp,real,imag,count,k);

/* Mat[N/2-1] */

comp = N/2-i;

for (column = 0;column < m;column + = 2)
for (row =0;row < p;row + +)

Mmat2- > real[row][column + 1] = Mmat1-> real[row][column + 1] * -1.0;
Mmat2- > imagfrow|{column + 1} = Mmat1-> imag[row][column + 1];

}
k = Calculate(Mmat2,comp,real,imag,count,k);
/* calculate N/4 -1 */
j=N/4-i
if (j! =1)
{ .
/* Mmat[j] */

comp = J;
for (row = 0;row < p;row + +)

page 241

[rRExrREEHREE Get matrix size from other processors

int port;

Mmat2- > real[row][0] = Mmat1- > real[row][0];
Mmat2- > imag[row][0] = Mmat1- > imag[row][0];

for (column = 1;column < m;column + =2)

power_index1 = pow(-1.0,(float)((column + 1)/2));
power_index2 = pow(-1.0,(float)((column + 3)/2));
for (row=0;row < p;row + +)

Mmat2- > real[row][column + 1] = Mmat1-> real[row][column + 1]*power_index1;
Mmat2- > imag[row][column + 1] = Mmat1- >imag[row] [column + 1]*power_index1*-1.0;
Mmat2- > real[row][column] = Mmatl- > imag[row][column]*power_index2;

Mmat2- > imag[row][column] = Mmat1-> real[row]{column]*power_index2;

} k= Calculate(Mmat2,comp,real,imag,count,k);

/* Mat[N/2 +j] */
comp = N/2 + j;
for (column = 0;column < m;column + =2)
for (row =0;row < p;row + +)
{
Mmat1- > real[row][column] = Mmat2-> real[row][column];
Mmat1- > imag[row][column] = Mmat2-> imag[row][column];
Mmatl- > real[row][column + 1] = Mmat2- > real[row][{column + 1] * -1.0;
Mmat1- > imag[row][column + 1] = Mmat2-> imag[row][column + 1] * -1.0;

k = Calculate(Mmat1,comp,real,imag,count,k);

/* Mmat[N-j] */

comp = N-j;

for (column = 0;column < m;column + +)
for (row=0;row < p;row + +)

Mmat1- > real[row][column] = Mmat2-> real[row][column];
Mmat1- >imag[row][column] = Mmat2- > imag{row][column] * -1.0;

k= Calculate(Mmatl,comp,real,imag,count,k);

/* Mat[N/2-j] */

comp = N/2 -j;

for (column = 0;column < m;column + =2)
for (row =0;row < p;row + +)

Mmat1- > real[row][column + 1] = Mmat2- > real[row][column + 1] * -1.0;
Mmat1- > imag{row][column + 1] = Mmat2- > imag[row][column + 1];

k = Calculate(Mmat1,comp,real,imag,count,k);

}

return(k);

************/

void get_matrix_size(port)

/* chan in message from port */
chan_in_word(&p,in[port]);
chan_in_word(&m,in[port]);
chan_in_word(&order,in[port]);
N = p*m;

page 242

jexs#xxxe% Send message information to other processors ****** wrE

void send_input(freq,amp,freq_count,port)int *freq, freq_count, port;
float *amp;

chan_out_word(freq_count,out[port]);
chan_out_message(freq_count*sizeof(int),freq,out[port]);
chan_out_message(freq_count*sizeof(ﬂoat),amp,out[port]);
chan_out_message(p*sizeof(ﬂoat),t,out[port]);

}

Jexsikssarrs Qend matrix size to other processors ks kR AOR
void send_matrix_size(port)
int port;

/* chan out message to port */
chan_out_word(p,out[port]);
chan_out_word(m,out{port]);
chan_out_word(order,out[port]);

}

/************* Send result to Other processors ‘k*****************l

void send_result(real,imag,count,comp_count,port)
float *real, *imag;
int *count, comp_count, port;

chan_out_word(comp_count,out[port]);
chan_out_message(comp_count*sizeof(ﬂoat),real,out[port]);
chan_out_message(comp_count*sizeof(ﬂoat),imag,out[port]);
chan_out_message(comp_count*sizcof(int),count,out[port]);

}

/****‘k************ Get result from Other processor **************/
int get_result(real,imag,count,comp_count,port)

float *real, *imag;

int comp_count, port, *count;

int inp_cnt[MAXDATA], i, comp, inp_count;
float inp_real[MAXDATA], inp_imag]MAXDATA];

/* chan in message from inport 1 */
chan_in_word(&inp_count,in[port]);
chan_in_message(inp_count*sizeof(ﬂoat),inp_real,in[port]);
chan_in_message(inp_count*sizcof(ﬂoat),inp_imag,in[port]);
chan_in_message(inp_count*sizeof(int),inp_cnt,in[port]);
for (i=0;i<inp_count;i+ +)

real[i + comp_count] =inp_reali];

imag[i + comp_count] =inp_imag[i];

count[i + comp_count] =inp_cnt[i];
} return(inp_count + comp_count);

ok EEEEEE L L L] Hgkk M s ok ook ok ok sk ok ok ook sk kR kR ok Roekok ok ok
/* &k * * * Hkokk * mamprogram * * * * * * * /

void main(argc,argv,envp,in_ports,inlen,out _ports,outlen)
int argc,inlen,outlen;

char *argv[],*envp(};

CHAN *in_ports[],*out_ports];

{
int freq{MAXDATA], freq_count, count[2*MAXDATA], comp_count;
‘ page 243

float amp[MAXDATAJ;

int start, stop;

float y_real[2*MAXDATA], y_imag[2*MAXDATA];
int size_int, size_remain;

in=in_ports;
out = out_ports;

get_matrix_size(0);
send_matrix_size(1);
Initialize();

/* get frequency component & amplitude */
freq_count = get_input(freq,amp,0);

/* send message to workers */
send_input(freq,amp,freq_count,1);

/* generate sampling sequence */
gen_sample(freg,amp,freq_count);

/* generate no. of processing element */
size_int = N/8/node;
size_remain = N/8%node;

switch(node_address) {
case 0: start =1,
stop =start + size_int;
break;
case 1: start =size_int +1;
stop = start -+ size_int;
break;
case 2: start =2*size_int +1;
stop = start + size_int;
break; .
case 3: start =3%size_int+1;
stop = start + size_int;
break;
case 4: start =4*size_int+1;
stop = start +size_int +size_remain;
break; default: start=0;
stop=0;
break;
}

/* Processing Data */
comp_count= Process(y_realy imag,start,stop,count);

/* get result from worker */
comp_count = get_result(y_real,y_imag,coun[,comp_count,l);

/* send to root */
send_result(y_real,y_imag,count,comp_count,O);

KillMat();

page 244

Appendix 2 : Program Listing

C routines for calculating the DFT according to hybrid a.r.s. and
generating random numbers.

/*** */

I *
/* Hyrbid.c *
/* *

[KRR R R R O

#include <math.h>
#include < conio.h>
#include <malloch>
#include <stdlib.h >
#include <complex.h>

long int Number Add =0, Number Mult=0;
static complex w;
static long int 1,j,N;

/* a = pointer, point to input data */
/* *(a) = starting address of input data */
/* r = pointer, point to "Random Number" table */
/¥ *(r) = starting address of table */
/*Noof points =2 ~ m */
* */
/* After transformation, output data is stored in */
/* the same address. */

rft(complex huge *a, int m, float huge *r)

float randomyj;
complex huge *b;
double sign;
double Cr,Cj, PI,

N = (long)pow(2.0,(double)m);
PI = 4.0*atan(1.0);

/* Get the memory for temporary storage */

b = (complex huge *) _fecalloc ((N + 1),sizeof(complex));

if (!b) { printf ("\nNot enough memory for temporary buffer");
exit(1);}

/* evaluating the DFT */
for(i=0;i<N;i++)
{ *(b+1) = complex(0,0); /* Initialization */
for(j=1;j<N/4;j++)
{ randomj = (float)j] + *(r +j);
if ((1%2) = = 0) sign = 1.0; else sign = -1.0;
Cr = real((*a + sign * *(a+N/2)) +
(*(a+N/4) + *(a+(3*N/4))) * cos(2*PI*i/4));
Ci = real((*(a+N/4) - *(a+ (3*N/4))) * -sin(2*PI*V/4));
(b+i) + = complex(real((a+j) + *(a+N-j) + sign * (*(a+N/2-j) +
*(a+NJ2+]))) * cos(2*PI*i*randomj/N),
real(*(a+j) - *(a+N-j) + sign * (*(a+N/2+j) -
*(a+N/2-)))) * -sin(2*PI*i*randomj/N));
Number Add + = (4+6);
Number Mult + = (4+3);

}
*(b+1) + = complex(Cr,Ci);
page 245

Number_Add + = 1;

/* Transfer Data */
for(i=0;i<Nj;i++)
*(a+1) = *(b+1);

free (b);
return 0;

}

/* Random number generator */

Gen_Random(float huge *Random_Number, int length)
{intj;
randomize();

for (i = 1;i<length/4;i+ +)

{ *(Random_Number +1) = (float)(random(length) - (length > > 1))/length;
(Random_Number + length/2-1) = -(Random_Number +1);
*(Random_Number + length/2+1) = *(Random_Number +i);
(Random_Number +length -1) = -(Random_Number +1);

}
for (i = 0;i<length;i+ = length/4)
*(Random_Number + i) = 0;

return 0;

}

Remarks :

(1) The header < complex.h> contains a type definition :
typedef struct {
) float real, imag;
} complex;

(ii) In the second routine, Gen_Random(), randomize() and random() are functions of Borland C.

Appendix 3 : Program Listing

C routines for computing circular auto-correlation

[R o

* */
/* CCOR.C */
/* */

/*********************/

#include < stdio.h>
#include <stdlib.h>
#include <conio.h>
#include < math.h>

/* Inputs : timing file, data file, step size and % tolerance */

float match (int k, float step, double frac);
float *tim, *input, *dtime, *dinput, *output, *temp;
int len, N;

main (void)

{ int ij,ch,divn;
float st;
double t,fr;

page 246

char fname1[20], fname2[20};

FILE *t, *in, *out;

tim = malloc(1024*sizeof(float));

if (!tim) { printf ("\n Cannot allocate tim \n");
exit (1);

input = malloc(1024*sizeof(float));
if (tinput) { printf ("\n Cannot allocate input \n");

exit (1);

dtime = malloc(2048*sizeof(float));
if (1dtime) { printf ("\n Cannot allocate dtime \n");
exit (1);

}
dinput = malloc(2048*sizeof(float));
if ('dinput) { printf ("\n Cannot allocate dinput \n");
exit (1);

output = malloc(4096*sizeof(float));
if (foutput) { printf ("\n Cannot allocate output \n");
exit (1);

}
temp = malloc(1024*sizeof(float));
if (Itemp) { printf ("\n Cannot allocate temp in sub.\n");
exit (1);

printf("\n input timing file = ");

gets(fnamel);

if ((ti= fopen(fnamel, "r")) = =NULL)

{ printf ("\n Cannot open %s \n", fnamel);
exit(1);

for 1=0;;i+ +)
{ fscanf(ti, "%f", &tim[i]);
if (feof(ti) ! = 0) break;

fclose (ti);
len = i;
printf("\n length = %d\n", len);

printf ("\n input data file = ");

gets(fname?2);

if ((in = fopen(fname2, "r")) = =NULL)

{ printf ("\n Cannot open %s \n", fname2),
exit(1);

for (i=0;;i+ +)
{ fscanf(in, "%f", &input[i]);
if (feof(ti) ! = 0) break;

fclose (in);

/* repeat the input sequences */
for i=0;i<len;i+ +) dtime[i] = tim][i];
for (i=len;i<2*len;i+ +) dtime[i] = 1.0+ tim[i-len];
for (i=0;i<len;i+ +) dinput[i] = inputfi];
for (i=len; i<2*len; 1+ +) dinput[i] = input[i-len];
/* for (i=0;i<2*len;i+ +)
printf(" dinput[%d] = %f\n", i, dinput[i]); */

/* correlate input and dinput with STEP size */
printf("\n Input division = ");
scanf("%d",&divn);
printf("\n *);

page 247

printf(" Input tolerance as a percentage of step size = ");
scanf("%lf" &t);
printf("\n");

N = divn*len;

st = 1.0/(float)N;

fr = (double)st*t/200.0;

printf(" divn = %d, N = %d, st = %f, fr = +- %If\n",divn,N,st,fr);

output{0] = 0.0;
for i=0ji<len;i+ +)
output[0] = output[0] + input[i]*input[i];
for i=1;1<N;i+ +)
output[i] = match(j, st, fr);
printf("\n');
for i=0;i< N;i+ = N-2)
printf(" output[%d] = %f output[%d] = %f \n", \
i,output[i],i + 1,output[i+ 1]);

if ((out = fopen ("output.prn”, "w")) = =NULL)
{ printf(" Cannot open output.prn for writing.\n");
exit(1);

for (i=0;i<N;i+ +)
fprintf (out, "%f\n", output[i]);

float match (int k, float step, double tol)
{ float result, dt;

double apart, diff ;

int i,j,ch, back;

printf(" %d\r"k);
for (i=0;i<len;i+ +)
temp[i] = tim[i] + (float)(k*step); /* time shift by k steps */
result = 0.0;
apart = (double)step;
i=6

for i=0;i<len;i+ +)
{ dt = temp}i};

while (j<2*len)
{ diff = dtime][j] - dt;
if (diff > apart)
{ back =j-2;

if (back > 0)

j = back; /* set pointer back */
else

i=0
break;

/* dtime[j] passes target temp][i]; next i */

if (fabs(diff) < tol) /* match */
{ result = result + inputfi]*dinput[j];
break;
} /* nexti*/
j+ +; /* next j */
}
}
return result;

)

