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Abstract 

Real-time sound synthesis means that the calculation and output of each 

sound sample for a channel of audio information must be completed within a 

sample period. At a broadcasting standard, a sampling rate of 32,000 Hz, the 

maximum period available is 31.25 [isec. Such requirements demand a large 

amount of data processing power. An effective solution for this problem is a 

multi-processor platform; a parallel and distributed processing system. 

The suitability of the M I D I [Music Instrument Digital Interface] standard, 

published in 1983, as a controller for real-time applications is examined. Many 

musicians have expressed doubts on the decade old standard's ability for real-time 

performance. These have been investigated by measuring timing in various 

musical gestures, and by comparing these with the subjective characteristics of 

human perception. 

An implementation and its optimisation of real-time additive synthesis programs 

on a multi-transputer network are described. A prototype 81-polyphonic-note-

organ configuration was implemented. By devising and deploying monitoring 

processes, the network's performance was measured and enhanced, leading to an 

efficient usage; the 88-note configuration. Since 88 simultaneous notes are rarely 

necessary in most performances, a scheduling program for dynamic note allocation 

was then introduced to achieve further efficiency gains. Considering calculation 

redundancies still further, a multi-sampling rate approach was applied as a further 

step to achieve an optimal performance. 

The theories underlining sound granulation, as a means of constructing complex 

sounds from grains, and the real-time implementation of this technique are 

outlined. The idea of sound granulation is quite similar to the quantum-wave 

theory, "acoustic quanta". Despite the conceptual simplicity, the signal processing 

requirements set tough demands, providing a challenge for this audio synthesis 

engine. 

Three issues arising f rom the results of the implementations above are discussed; 

the efficiency of the applications implemented, provisions for new processors and 

an optimal network architecture for sound synthesis. 
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Chapter 1. Introduction 

1.1. Preamble 

Composition and performance of music are plural activities that 

combine the outcomes of a number of procedures, many involving 

functions that operate in parallel. In terms of sound synthesis operations, 

a significant number of generative and Digital Signal Processing [DSP] 

processes involve a combination of concurrent elements, ranging from the 

production of simultaneous notes by a single instrument to the 

superimposition of totally independent outputs, where a number of 

different components contribute to the audio spectrum. 

Traditional computer processors are serial devices, restricted for the most 

part to the execution of instructions as a single stream of events. Hence 

processes that require the aggregation of functions executed in parallel 

have to be simulated by some means of cyclical tasking and data 

accumulation. In the case of digital audio synthesis and signal processing 

applications, the resultant effects on overall processor performance 

quickly become significant, thus limiting the number of individual 

components that can be handled in real-time. 

To synthesise a realistic tone of an acoustic instrument by additive 

[Fourier] synthesis using a bank of sine oscillators, a minimum of about 20 

to 30 individual sine waves are usually required; with an ideal specification 

extending to more than 50 components in certain circumstances. A 

number of approximations to sounds, such as organ tones, can be 

achieved with as few as eight or ten components, but to the discriminating 

listener, the results will often prove of restricted value other than in a 



purely synthetic context. Additive synthesis provides sophisticated control 

ability in complex timbres, and this technique has attracted the attention of 

many researchers since von Helmholtz (von Helmholtz 1863). The issue 

Is also related to the analysis and re-synthesIs of sound, which has led to 

systems such as the phase vocoder (Dolson 1986) and techniques such 

as group additive synthesis (KleczkowskI 1989). 

Real-time digital additive synthesis means that the computation has to 

proceed rapidly enough to provide sound samples without failure within 

the required time interval: In the case of a sampling rate of 32 kHz, the 

lowest practical rate for digital audio In broadcast quality, this Interval Is 

31.25 |isec. Solutions to meet the demands and constraints could be 

custom-made hardware like "Sine Circuitu" (Jansen 1991) and MIMIC 

(Wawrzynek and von Eicken 1990), a spectral modelling approach such 

as IFFT (Rodet and Depalle 1992), and stochastic decomposition (Serra 

1994). Another approach our Music Technology Group has taken Is 

based on a distributed parallel processing technique, using a multi­

processor-based audio computer. 

Since 1988, the Music Technology Group In Durham has reported on 

issues concerning multi-transputer audio processors on a number of 

occasions; for example (Purvis, Berry and Manning 1988) and (Bowler, et 

al. 1989). A prototype architecture for a transputer network, using sixteen 

T800 transputers, was described and demonstrated at the 1990 

International Computer Music Conference [ICMC] (Bailey, et al. 1990). 

This was developed into a distributed parallel audio processor using 160 

transputers inter-connected as a ternary tree. The network has 



subsequently been used as a test-bed for a variety of network 

architectures for real-time synthesis. 

In this introductory chapter, the criteria for real-time implementations of 

analogue and digital synthesis are reviewed, both in terms of traditional 

control methods and strategies, and also more modern approaches based 

on parallel and distributed processing, upon which the implementations 

described in this thesis are based. 



1.2. Analogue Synthesis 

In 1964, an American engineer Robert Moog built a transistor 

voltage-controlled oscillator and amplifier for the composer Herbert 

Deutsch. The development stimulated widespread interest, and led other 

American engineers to join the race to build a novel machine. 

To control a musical sound, the basic requirements are measurable in 

terms of frequency [oscillator], harmonics content [filter] and amplitude 

[amplifier]. These three components were made voltage controllable, thus 

providing a common denominator of control. Varying voltages are easy to 

generate and to distribute to one or a number of associated devices, 

hence their attraction as a means of regulating the generation of sound. 

Analogue synthesis is often misleadingly called "subtractive synthesis", 

due to the preference of most users for configurations where timbres are 

generated by filtering the harmonics of raw electronic wave forms. 

1.2.1. Voltage-Controlled Oscillator 

A typical Voltage-Controlled Oscillator [VCO] can produce a 

number of wave forms; such as saw-tooth, triangle and square [or pulse] 

waves, in addition to the basic sine wave. A change in the control voltage 

means a change in pitch [frequency]. A space/mark ratio of a "pure" 

square wave is one. By varying the space/mark ratio with the controlled 

voltage supplied by an oscillator, the harmonic structure of the sound is 

changed by the oscillation; a narrower mark produces richer harmonics. 

This technique is known as Pulse Width Modulation [PWM], a very useful 

feature of a VCO. 
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Figure 1.2.1.: Square Wave. 

1.2.2. Voltage-Controlled Filter 

The controlled variable of a typical Voltage-Controlled Filter [VCF] 

is either the cut off/centre frequency or the "Q" value [resonance]. For 

example, when the "Q" is kept constant [constant Q] and the frequency is 

set to track at a fixed harmonic spacing to the fundamental of a compound 

wave, such as a square or saw-tooth function, a variety of consistent 

timbres can be generated at different pitches. 

1.2.3. Voltage-Controlled Amplifier 

The controlled variable of a typical Voltage-Controlled Amplifier 

[VCA] is the output amplitude. VCAs are sometimes known as two-

quadrant multipliers. When a VCA is modulated at low frequencies, the 

result is a "tremolo" effect, but higher rates of modulation fuse the spectra 

to give sum and difference frequencies, a phenomenon known as 

"Amplitude Modulation" [AM]. 
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Figure 1.2.2.: Source Signal (500 Hz sine wave). 
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Figure 1.2.3.: Modified Signal (CV100 Hz, Source 500 Hz). 
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Figure 1.2.4.: Frequency Spectrum of Modified Signal (500 ± 100 Hz). 

The side-band frequencies are generated as the source frequency [carrier] 

plus the control voltage frequency [modifier] and the source frequency 

minus the control voltage frequency. When the control voltage becomes 

negative, the output of the VGA is zero. If, however, the design is 

modified to create a four-quadrant multiplier with two-inputs and one-

output, a device known as a "ring modulator", the negative control 

voltages can be used to produce negative frequencies with reversed 

phases by reflection. 



It is significant to note that the early digital software synthesis systems 

allowed easy replication of many of the features in analogue voltage-

controlled systems, and many of the techniques are still widely used in the 

current generation of software synthesis program, for example CSOUND. 

1.2.4. Frequency Modulation 

The theory behind the Frequency Modulation of high radio 

frequencies, in the order of MHz, dates back to the early twentieth century 

(Carson 1922). Chowning applied and explored the technique in the 

sound spectrum for musical synthesis purposes (Chowning 1973), 

commonly referred to as "simple FM" or "Chowning's FM", where a 

"carrier" oscillator is modulated in frequency by a "modulator" oscillator. 

Before the development of Chowning's FM method, most digitally 

generated sounds were produced by means of fixed wave forms based on 

fixed spectrum techniques, a consequence of the high computational 

costs of time-varying additive and subtractive synthesis. Chowning 

developed the FM technique as an efficient way of generating synthetic 

sounds that have time-varying spectral characteristics. In 1975, Yamaha 

[known as "Nippon Gakki" at that time] obtained a licence for the patent. 

In 1980, this Japanese firm introduced the algorithm as a hardware 

fabrication for the GS1 digital synthesiser. 



The basic FM technique is such that a carrier oscillator is modulated in 

frequency by a modulator oscillator. When the carrier and the modulator 

are both sine waves, the equation for a frequency modulated signal at 

time t\s; 

Axsin(Ct + [Ixsm(Mt)]) 

where 

A: amplitude of the carrier 

I : index of modulation 

Ct = 27ixC, Mt = 27rxM 

The positions of the modulated side-band frequencies depend on the ratio 

of the carrier to the modulator frequency; "C:M ratio". The side-bands are 

multiples of the carrier and modulator; C + nM and C -nM, where n is an 

integer number. If the "difference" frequencies turn negative, these are 

folded over to the positive side with phase inversion: the wave forms flip 

over the x-axis. This "fold-over" can cause cancellation of the positive 

partials if the negative partials overlap exactly with the positive 

counterparts. In the case of a digital implementation, this "fold-over" also 

occurs where the "sum" frequencies exceed the Nyquist limit, [see 

Chapter 1.3.1.], a phenomenon known as aliasing. 



1.3, Digital Technology and Sound Synthesis 

1.3.1. Conversion between Analogue and Digital 

A digital signal is represented in discrete-time, contrary to an 

analogue signal which is represented in continuous-time. The core 

concept of digital audio is sampling, converting continuous analogue 

signals into discrete time-sampled signals. An Analogue to Digital 

Converter [ADC] is employed for this job, the device converting analogue 

voltages to a string of binary numbers at each period of a sample clock; 

the timing, called "sampling period", "sampling frequency" or "sample 

rate", represents the resolution in the time domain. 

Another parameter, the number of bits, is responsible for the resolution of 

amplitude measurement. For an ADC for audio sampling, at least a 12-bit 

bandwidth is needed, whereas the Compact Disc [CD] uses a 16-bit 

format, to achieve a much better dynamic range; 96 dB as opposed to 72 

dB, much closer to that of the human ear which is about 120 dB between 

the threshold of hearing and that of pain (Roads 1996). 

When a continuous analogue signal is quantised, the signal turns into a 

stream of binary numbers. Each of these is in an integer format, and is 

often fractionally smaller or larger than the analogue figure at the sampled 

point. This difference is called "quantisation noise". As the available bit-

size is increased, the resolution in amplitude, "dynamic range", becomes 

higher [wider], and the associated distortion of the signal reduces 

proportionally. 



Two processes present in the digitisation of audio signals occur together, 

but can be considered separately; quantisation in amplitude and 

quantisation in time. The former measures the amplitude of a signal, and 

assigns it to a scaled value drawn from the finite range of binary numbers 

that are available. In the case of the latter, finite binary numbers are 

registered to span a finite time internally, corresponding to the signal 

generated. 

In the conversion process, the "sample-and-hold" method, is used. There 

is one practical problem; it assumes that the unknown voltage input does 

not change during the course of the conversion. If the voltage changes, 

significant conversion errors may occur. Thus the higher the rate at which 

the function is sampled, the lower the risk of error from rapid changes in 

the function itself [see below]. To convert a stream of binary numbers into 

an analogue signal, a Digital to Analogue Converter [DAC] is used. This 

device changes the string of numbers to a series of voltage levels that are 

smoothed with a low pass filter to a continuous-time waveform and 

amplitude. 

The "sampling theorem" is the theoretical basis of digital audio and 

specifies the relation between the sampling rate and the audio bandwidth. 

Nyquist described it as follows: 

For any given deformation of the received 
s i g n a l , the t r a n s m i t t e d frequency range must 
be increased i n d i r e c t p r o p o r t i o n to the 
s i g n a l l i n g speed. ... I n order t o be able t o 
re c o n s t r u c t a s i g n a l , the sampling frequency 
must be a t l e a s t twice the frequency of the 
s i g n a l being sampled. 

Nyquist (1928) "Certain topics in telegraph transmission theory." 
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The highest frequency that can be produced in a digital audio system is 

called the "Nyquist frequency", to honour his contribution. In musical 

applications, the limit is usually at or above the upper limit of the human 

auditory range [about 20 kHz]; for example a Compact Disc's sampling 

frequency is 44.1 kHz while its Nyquist limit is 22.05 kHz, In some earlier 

commercial applications, and some for broadcasting purposes [32 kHz 

sampling rate], the Nyquist frequency was set at 16 kHz, still within the 

range of hearing, but at a point where the sensitivity of the human ear 

starts to decline significantly. 

When a sine wave of 1 kHz and another of 7 kHz are sampled at a 

frequency of 8 kHz, the results of both are indistinguishable. In this case, 

where the Nyquist frequency is 4 kHz, the 7 kHz wave is folded over at the 

Nyquist frequency; 4 - (7-4) = 1, a phenomenon called "aliasing". To 

prevent aliasing, the input analogue signal would have to be filtered with a 

low pass filter set to cut off frequencies above the Nyquist limit. 

In the case of digital-to-analogue conversion, similar folding occurs at the 

higher frequency band of the Nyquist limit and on both sides at every 

multiple of the sampling frequency, called "image spectra". To remove the 

image spectra, the converted analogue signal has to be filtered with a low 

pass filter with a cut off frequency at or preferably just below the Nyquist 

limit. The filter is also called a "data recovery filter", because of the task it 

performs. 
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1.3.2. Compact Disc 

In 1982, digital sound reached the general public by means of the 

Compact Disc [CD] based upon specifications jointly developed by Sony 

[Japan] and Philips [Holland]. Their applications for the optical reader 

[Compact Disc Player], however, are slightly different, especially the 

movement of the reading laser head; Sony's moves on a straight line, 

whereas Philips' follows a banana-shaped slit. This leads to another 

difference in their control strategies of the disc rotation speed. The 

sampling rate of the format is 44.1 kHz and the digitised numbers are in 

16-bit integer format. 

In the mid 80's, many CD player manufacturers used a DAC chip set 

designed by Sony or Philips, the sole patent holders, that brought the 

benefits of over-sampling technology, using a Finite Impulse Response 

[FIR] filter, to home audiences. Digital filters in the DAC chips provide a 

much more linear phase response then the steep analogue filter used in a 

regular DAC chip. In a CD player, the original samples, at 44.1 kHz, may 

be "up-sampled" four or eight times to 176.4 kHz or 352.8 kHz, far higher 

then the human auditory range [maximum about 20 kHz], by interpolating 

the samples. 

In the case of the four-times-over-sampling mode, three interpolated 

samples are placed between two original samples to recover the required 

samples. To do so, the total quantisation noise is spread over a wider 

frequency range, thus providing a much higher signal-to-noise ratio in the 

human auditory range. The image spectrums are also shifted far away, 

thus a less steep data recovery filter can be introduced. If a steep filter 
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has to be used for the purpose, its phase response is not so satisfactory, 

and the computation cost of a steep digital filter is very expensive. This 

over-sampling technique is used in the optimisation of additive synthesis 

by application of multi-sampling-rate, described in Chapter 5. 

1.3.3. Wave-Table Synthesis 

Since musical sound waves are highly repetitive, a more efficient 

technique is to have the hardware calculate a digital waveform as a series 

of numbers, for just one cycle, which are then stored n a list called a 

"wave-table". To generate a periodic sound, the wave-table is read 

through repeatedly, and the samples are sent to a DAC. This process is 

called "wave-table synthesis", "table-lookup synthesis" or "fixed-waveform 

synthesis". Since a memory access operation is much faster than the 

calculation of a sample, the method is highly effective for a digital 

oscillator. 

To generate a frequency other than that obtained by reading every sample 

at the basic sampling rate, a read pointer, or an address generator, is 

employed that steps the wave-table and then outputs its contents. To 

generate an octave up, the pointer skips every other sample. In the case 

of an octave down, the pointer reads every sample twice. In this way, 

frequency multiples of the stored more can be generated. 

When a frequency between these octaves is needed, the frequency can 

be obtained by an accumulator/increment method. 
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where 

i : address increment, 

n: table size, 

^o: output frequency, 

^s: sampling frequency. 

The figure given by the equation is not always in integer. As the digitised 

table address is always in integer, the fractions of the increment have to 

be rounded. A more precise waveform, with a lower distortion factor, can 

be generated by interpolation of samples. This requirement, however, 

carries a significant computational overload (Mathews 1969). 

1.3.4. Analysis/Re-Synthesis 

One way to synthesise a sound is accumulating sine waves in 

different frequencies and phases. This method is called "additive 

synthesis" or "Fourier synthesis", and requires a large number of 

oscillators with accurate frequency and phase control. Most additive 

synthesisers imitate natural instruments by analysing sounds in terms of 

their harmonic profiles via filter banks or fast Fourier transforms [FFT] that 

bridge between the time domain, wave forms and sample values, and the 

frequency domain, the amplitude and phase of frequency components. 

In an early analysis/re-synthesis method (Fletcher et al. 1962), the system 

was entirely analogue. Filtered input signals were measured via filter 

banks, and the information was then used to drive a bank of oscillators 

14 



corresponding with the filter bank. Solutions to meet the demands and 

constraints could be custom-made hardware like "Sine Circuitu" (Jansen 

1991) and MIMIC (Wawrzynek and von Eicken 1990), a spectral modelling 

approach such as IFFT (Rodet and Depalle 1992), and stochastic 

decomposition (Serra 1994). The "FFT-""" or Inverse FFT [IFFT] method is 

a hybrid method of overlap-add and oscillator bank re-synthesis. At the 

re-synthesis stage, an inverse FFT is carried out, hence the naming of the 

method. 

1.3.5. Software Synthesis 

Software synthesis is the most precise and flexible way to generate 

digital sound on a general-purpose computer. Software controls all the 

computation involved in a stream of samples, and the control functions 

themselves can be changed in arbitrary ways by the programmer. 

Authoritative examples of the method include the "Music V" language 

(Mathews 1969), and its predecessors, the "Music A/" varieties. 

As the importance and the flexibility of the programming language C 

became more generally recognised, in 1980, Moore and Loy developed 

"CMUSIC"; a much expanded version of "Music V". In a similar vein, 

Vercoe translated "MUSIC 11" into a "C" based sound synthesis 

language, known as "CSOUND" (Vercoe 1986). These languages are 

based on the concept of "unit generators", which are signal processing 

modules, such as oscillators, filters and amplifiers, that can be introduced 

to form "instruments" or "patches" generating sounds. 
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The languages based software synthesis identified above requires a basic 

knowledge of computing that leads to user-unfriendly "instruments", 

especially in the case of musicians without such detailed prior technical 

knowledge. For example, in the case of CSOUND, two files, a "score file" 

and an "orchestra file", are required to generate a sound output. The 

"score file" dictates the timing of the sound and key performance data 

such as pitch and amplitude. The "orchestra file" consists of details of the 

"instruments" themselves. These files are "compiled", like that of "source 

files" in C-language. As a solution for the problem, a "toolkit" concept was 

introduced that offers musicians a set of modules for creating interactive 

performance situations. MAX (Puckette 1985) is an example of one of 

these approaches. 

MAX is an iconic toolkit targeted for interactive music performance. Some 

of the MAX icons take musical information from MIDI and others from 

audio sources. Other icons, connected by "patch cords" on the display 

screen of a NeXT or a Macintosh [MIDI data only, in a commercially 

released version], decode and transform these data. The icons, or 

"patches" are, therefore, black boxes for the musicians who only know the 

contents of input and output data. In the case of MAX, sound production 

control could be through MIDI input, or interaction with an icon or a 

programmed patch. What distinguishes these black boxes from 

equivalent functions in programs, such as CSOUND, is the case with 

which the various functions can be manipulated graphically as object-

oriented components, rather than in terms of integrated lines of 

programming code. 
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1.3.6. Real-Time Synthesis 

Real-time sound synthesis means the calculations for a sound 

sample must be completed within a sample period, such as 31.25 usee at 

a 32 kHz sampling rate, so that the stream of sound samples flow 

constantly without failure. This is a definition of "hard" real-time. For real­

time sound processing, therefore, a large amount of data processing 

power is often required. Measured by the processing time required [or 

computation costs], the task may prove too large to complete within the 

real-time window. The result, thus, is the introduction of some delay 

between the commencement of computation and the production of sound. 

In a wider meaning of "real-time" ["soft" real-time], however, about 10 to 

20 msec of constant delay can be tolerated, since the human auditory 

system can not detect such a short delay providing it is kept constant; [see 

Chapter 3.2.1.]. A system with a time-lag that is long enough to be 

detected is called a "non-real-time" system, and can only function with the 

aid of some intermediate storage and accumulations systems to 

aggregate the stream of sound samples for subsequent retrieval and 

output. 
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1.4. Controller for IVIusic Performance 

1.4.1. History of Electronic Music Keyboard Controller 

Early electronic synthesisers were usually monophonic and their 

keyboards only supplied one control voltage output corresponding to one 

of the keys pressed, used typically to feed a voltage controlled oscillator. 

The control voltage produced was directly proportional to the position of 

the key on the keyboard; usually one volt per octave irrespective of the 

absolute frequency; 0.0833 [1/12] V increase per key. In the case of a 

very simple design, when more than one key is pressed, serial key 

resistors are shorted and an untempered voltage is produced. More 

sophisticated keyboard designs disable all but one key whenever two or 

more keys are depressed. The usual arrangement is that only the highest 

key in a note cluster is allowed to made contact with the voltage source. 

key 
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R 
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R 

R 

R 
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sound out 
• 

Figure 1.4.1.: Basic Diagram of Voltage-Controlled Synthesiser. 



In electronic terms, this can be achieved by driving the keyboard chain 

with a constant current, instead of a constant voltage. Such a basic 

keyboard controller, however, is still not a suitable device to control a 

voltage controlled oscillator. When keys are pressed, no control voltage is 

generated with the result that the voltage controlled oscillator's pitch will 

be maintained only for the duration of the key-press. To solve this 

problem, a voltage memory for each key is required; this sample-and-hold 

facility is sometimes added as a module in its own right. 

Around 1976, an American company "Sequential Circuits" released a 

polyphonic synthesiser called "Prophet V" that was digitally controlled by a 

microprocessor, the Z80. This eight-bit microprocessor, released in 1975 

from Zilog, made many more features available for keyboard-synthesisers; 

such as a polyphonic mode, programmable sounds, automatic tuning and 

communication, and also required a DAC for the synthesiser itself, since 

the processor generates the control voltages in a digital format. As a 

minimum specification twelve bits are usually required for the generation 

of pitch control voltages of an adequate resolution in a standard equal 

musical temperament. For the control of amplitude, a minimum of eight 

bits are required for acceptable smooth envelopes. 

In 1981, an all-digital keyboard synthesiser, called "Synergy", was 

released from an American company; Digital Keyboards, Inc. The 

synthesiser was based on a digital circuit that simulated 32 oscillators and 

provided convenient mechanisms for controlling their amplitude and 

frequency independently in real-time with an inexpensive microprocessor; 

the Z80. 
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In the early 1980s', the development of commercial systems for electronic 

and computer music came to a turning point, as the technology 

progressively shifted from the analogue to the digital domain. This forced 

the synthesiser manufacturers to consider fundamental issues of 

compatibility more seriously than before and led to an historic agreement; 

a common protocol for connecting different items of equipment together at 

a control level. For example, without a common standard, especially in a 

control voltage environment, connecting one manufacturer's keyboard to 

another's synthesiser would result in some quite bizarre consequences, 

because of the different voltage-to-pitch rules employed. Although 

connecting unmatched analogue voltage-controlled devices will produce 

some form of response, any mismatch in digital systems will usually 

produce no response at all. 

In the early summer of 1981, the idea of establishing an industry-standard 

of digital protocol for connecting synthesisers and associated devices 

together at a control level was informally discussed at a meeting of the 

National Association of Music Merchants [NAMM], an American 

organisation. The initiative became a forum for a feasibility study of a 

universal communication system that came from the President of 

Sequential Circuits, Dave Smith. At an Audio Engineering Society [AES] 

convention. Smith and Chet Wood presented their proposal for the 

Universal Synthesizer Interface [USI] that was an outline description of a 

protocol to transmit note/event information between synthesisers. 
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In the summer of 1982, the initiative passed to the Japanese 

manufacturers, including Casio, Kawai, Korg, Roland and Yamaha, 

leaving only Sequential Circuits to represent the American interests. By 

September, this new grouping of companies completed a draft of an 

expanded specification for what became known as the Musical Instrument 

Digital Interface [MIDI] finally announced by Robert Moog in an article that 

appeared in the October edition of the magazine Keyboard. In the spring 

of 1983, the definitive version of the specification, MIDI specification 

Version 1.0, was published by the newly formed International MIDI 

Association based in the USA. 

MIDI is a specification of a communication protocol that makes it possible 

to exchange information such as musical notes and expression control 

between different musical instruments or other devices, such as a 

sequencer, computer and mixer. These abilities to transmit and to receive 

data to a common specification were originally conceived for live 

performance, although subsequent developments have had an impact in 

the recording studio, audio and video production, and also the composition 

environment. Now, it is regarded as a standard for the digital 

representation of musical events at a control level. 

The original motivation for the standard was to allow commercial 

synthesisers to be connected together, thus they might share performance 

information. Other benefits sought included hardware extendibility, 

protection from obsolescence, and interfacing to digital computers. It is 

important to note that MIDI was designed as an event-based network, not 

a sample-based one. MIDI was loosely adapted from the serial data 
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transmission teclinology developed for computer terminals. The basic 

idea involves a two-layer specification; a physical interconnection scheme, 

and a code to communicate information across the channels so created. 

MIDI has been an industrial standard for music instruments, including the 

keyboards, for more than ten years. This well-established standard is 

commonly the best available controller for real-time synthesis systems, 

rather than custom-made keyboards that became extremely rare. An 

additive synthesis implementation basically requires control of amplitude, 

frequency and possibly phase. The amplitude and frequency of a sine 

wave can be controlled with MIDI signals; key-number [frequency] and 

velocity [amplitude]. MIDI'S hardware and software specifications are 

described later in this Chapter. The suitability of a MIDI keyboard as a 

real-time controller is discussed in Chapter 3. 

1.4.2. MIDI Specification 

1.4.2.1. Physical Specification 

The physical medium is a simple point-to-point opto-isolated 5 mA 

current loop, utilising a unique 180 degree 5-pin DIN connector: pins 1 and 

3 are not used, and should be left unconnected. The cable is made of a 

shielded twisted pair; the shield being grounded only at the source end. 

Each twisted pair is a separate link that implements a one-direction 

transmission line. To avoid ground loops and subsequent data errors, the 

transmitter circuit and the receiver are internally separated by an opto-

isolator. 
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Figure 1.4.2.: MIDI Standard Hardware. 

A MIDI device will normally have a MIDI input [MIDI IN] jack and an output 

[MIDI OUT]. A device can have a through [MIDI THRU] jack, which 

passes a buffered electrical copy of the input signal: MIDI IN is connected 

to MIDI THRU through an opto-isolator, but not to MIDI OUT. Information 

is transmitted as asynchronous serial data at an aggregate data rate at 

31.25 Kbaud with an allowance of ± 1 % . Serial MIDI data is transmitted as 

ten-bit code bytes; a start bit, eight data bits [OOh to DOh] and a stop bit. 
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Some Interconnection schemes for multiple synthesisers are as follows: 

Uni-directional a master talks to a slave. 

[Chain one master drives several slaves.] 

Bi-directional two masters drive each other as slaves. 

[Ring bi-directional connection to more than two.] 

THRU IN I OUT a 

b I THRU I IN I OUT a+b 

THRU IN OUT a+c 

d R H R U I IN I OUT a+d 

THRU I IN OUT 

THRU IN OUT 

THRU I IN I OUT 

THRU IN roUT 

uni-directional (chain) bi-directional (ring) 

Figure 1.4.3.: MIDI Network Configurations. 

Nevertheless, due to signal degradation largely attributable to cable 

capacitance and the response time of the opto-isolator, there are some 

limitations on the length of cables and the number of devices that can be 

chained in this function. The limitation on the number of chained devices 

is not defined in the specification. The maximum cable length in any 

chain, however, is restricted to 15 metres. 

1.4.2.2. Code Specification of IVIIDI 

MIDI communication is achieved through multi-byte messages 

consisting of one "Status" byte followed by one or two "Data" bytes, the 

only exceptions being "Real-Time" and "Exclusive" messages that permit 
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longer data strings. Thus each MIDI event is transmitted as a message 

and consists of one or more bytes. Messages are divided into two main 

categories: "Channel" and "System". 

There are sixteen channels and three modes: the channels provide for 

multi-synthesiser control with a single MIDI network, while the modes 

establish the relationship between the channels and the voice assignment 

method within a synthesiser. A "Channel" message uses four bits in the 

"Status" byte to address the message to one of sixteen MIDI channels, 

and four bits define the message. "Channel" messages are thereby 

intended for those receivers in a system whose channel number match the 

channel number encoded into the "Status" byte. 

There are two types of "Channel" messages; "Voice" and "Mode". Voice 

is to control an instrument's voices and Mode is to define the instrument's 

response to Voice messages. The modes are called "Omni" [on/off], 

"Poly" and "Mono". Four mode messages are available for defining the 

relationship between the sixteen MIDI channels and the instruments. 

These modes operate between a receiver and a transmitter assigned to 

the channel N [one of sixteen channels]: 

MODE ACTION 

Omni on, Poly Voice messages are received from ALL channels, and 
assigned to voices. All voice messages are transmitted 
in Channel N. 

Omni on, Mono Voice messages are received from ALL channels, and 
control only one voice. Voice messages for ONE voice 
are sent in Channel N only. 
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MODE ACTION 

Omni off. Poly Voice messages are received in Channel N only, and are 
assigned to voices. Voice messages for ALL voices are 
sent in Channel N. 

Omni off. Mono Voice mersages are received in Channel N through 
N+M-1, and assigned monophonically to voices 1 through 
M: where M is specified by the third byte of "Mono Mode" 
Message. 

"System" messages are not encoded with channel numbers. There are 

three types of "System" messages: "Common", "Real-Time" and 

"Exclusive". "Common" messages are intended for all receivers in a 

system, regardless of channel. "Real-Time" messages are used for 

synchronisation and are intended for all clock-based units in a system. 

They contain "Status" bytes only. "Exclusive" messages can contain any 

number of "Data" bytes, and can be terminated either by an "End of 

exclusive" [EOX] or any other "Status" byte. 

There are two types of bytes sent over MIDI: "Status" bytes and "Data" 

bytes. "Status" bytes are eight-bit binary numbers in which the Most 

Significant Bit [MSB] is set to binary one. They serve to identify the 

message type, and also the purpose of the "Data" bytes that follow it, 

except in the case of "Real-Time" messages. For the "Voice" and "Mode" 

message only, when a "Status" byte is received and is processed, the 

receiver remains in that status until a different "Status" byte is received; 

called the "Running Status". Following a "Status" byte, there are either 

one or two "Data" bytes that carry the content of message. "Data" bytes 

are eight-bit binary numbers in which the MSB is always set to binary zero. 
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For each "Status" byte, the correct number of "Data" bytes must always be 

sent. 

In the case of a single keyboard performance, three bytes are required for 

a note. Since the "running status" is applied in such cases, a status byte 

is only sent whenever another controller, such as the pedal, is used or 

other messages, such as "system exclusive" or "real-time", are sent. It 

means that most "note" messages are coded in two bytes requiring about 

640 |isec for each message. 

These specifications were established more than a decade ago, based on 

the technology available at that time. Due to the rapid evolution in the 

speed of modern computing technology, the restrictions of such 

components are now open to review, not least in the light of the far greater 

communication demands which may be seen in contemporary MIDI 

configurations. In order to assure the viability of MIDI as a control 

mechanism for the systems which are inherently complex due to the 

nature of their intensive parallel architecture developed for this research 

project, it was deemed necessary to carry out an evaluation of these 

characteristics in the context of recorded performances. The results of 

these investigations are described in Chapter 3. 
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1.5. Parallel and Distributed Processing 

1.5.1. Background 

Parallel and distributed processing may be defined as a technique 

for increasing the computation speed for a task by dividing the various 

algorithms into several sub-tasks distributed between multiple processors 

that execute the tasks concurrently. There are many problems to be 

solved in implementing sub-tasks over a parallel and distributed system. 

One of the classical examples is the producer/consumer problem: a 

process [the producer, such as oscillators] generates a stream of data to 

be sent to another process [the consumer, such as a DAC]. As there may 

be fluctuations in the rate of production/consumption of data, failure in the 

integrity of the data flow can lead to a deadlock of the system, locally or 

globally. An overloaded processor often causes such fluctuations and, 

where several processors are involved, the chances of any one failing to 

maintain the required throughput is significantly increased. Such 

problems can only be resolved by careful programming and real-time 

performance monitoring. 

1.5.2. Parallel Processors 

A parallel processor is a computer consisting of two or more unitary 

processing modules that are linked together physically and 

computationally such that applied tasks can be divided up and computed 

concurrently. There are two major features of a parallel processor: 

1) the processing units themselves. 

2) the inter-connection network which ties together the series of 

processors. 
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Parallel processors can be categorised by the topology of their 

interconnection network, and by their use either of shared-memory, such 

as Cray Y-MP, or distributed memory, such as nCUBE. Within the shared-

memory category, the machines are further divided into "vector" or "MIMD" 

types. 

The simplest inter-connected network is a bus connecting many 

processors to a single shared memory. A classical problem of designing a 

bus connected network is that of cache memory design, since a bus-

structured processor without sufficient cache memory would quickly 

saturate the bus. 

Distributed-memory designs offer higher levels of parallelism through the 

interconnection of thousands of processors that may require programmers 

to adopt a message-passing paradigm, since there is no realistic 

possibility of a global memory that could act as a shared resource for a 

global program. The design of a distributed-memory processor places 

great demands on communication speed and routing. 

The distributed-memory approach is, in principle, scaleable to massive 

proportions: the number of processors can be increased without a 

significant decrease in the efficiency of the operation. When programmers 

are willing to adopt a programming model based on message passing or 

data parallelism, the scalability of a distributed memory computer 

becomes attractive. 
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A distributed-memory inter-connected network consists of processors and 

their local memories connected by communication links. Since there is no 

global memory it is necessary to move data from one local memory to 

another by message-passing, achieved by a send-receive pair of 

commands which are software-generated. 

The simplest network is a linear inter-connected network, where each 

node contains a processor with its local memory, for example a one-

dimensional cascaded pipe-line; such as NeXT boards on an IMW 

(Puckette 1991). A linear network of N nodes requires N-1 links to 

construct. On average it takes approximately N/3 hops, or point-to-point 

links, to send a message from a source processor to a destination one. 

It is possible to reduce the number of hops by increasing the 

dimensionality of the inter-connected network using configurations such as 

ring, star network, mesh (Aspnas, et al. 1990, and de Vel and Thomas 

1990) and tree (Boittiaux, et al. 1992, and Maehle and Obeloer, 1992). 

The goal of inter-connected network design is often to reduce hardware 

costs by reducing links, at the same time minimising the time taken to 

send a message by reducing the number of hops. 
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1.6. Summary 

In this chapter, the essential principals of key methods of analogue 

and digital sound synthesis have been reviewed with particular reference 

to the desired characteristics of keyboard interfaces and control methods, 

notably those based on MIDI. Real-time implementations of digital 

additive synthesis methods require large quantities of calculation power, 

and whereas one solution to performance limitations clearly lies in simply 

increasing the speed of processors, this overlook the possibility of 

developing new architectures which make more efficient use of finite 

resources, and may thus also be more cost-effective. 

It is proposed that a suitable investigation of the latter approach may 

ultimately reap greater reward. One such method of exploration lies in the 

development of parallel and distributed computation techniques, and the 

account which follows describes the result of research into a series of 

such investigations using a specially fabricated network of processors 

which are described in Chapter 2. 

Subsequent chapters deal in turn with the requirements for real-time 

control of a MIDI-based system; the implementation of real-time additive 

synthesis on the network and the optimisation of this method for particular 

applications, from organ-like synthesis engines to functions for granular 

synthesis and sound granulation. 
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Chapter 2. Transputers 

2.1 . Transputers and other DSP chips 

2.1.1. Transputers 

The Transputer™ family of devices, designed by INMOS Ltd. [now 

a part of the SGS-Thomson Group], offer versatile building blocks for the 

construction of multi-processor computing engines that are capable of 

establishing a high degree of parallelism. The word "transputer" was 

derived from TRANSmitter and comPUTER. Each transputer is a self 

contained high-performance single-chip computer with a RISC [Reduced 

Instruction Set Computer] architecture and distinctive inter-processor 

communication facilities. The transputer architecture defines a family of 

programmable VLSI [Very Large Scale Integration] components. 

A typical member of the transputer family is a single chip consisting of 

processor, memory and communication links. In comparison with other 

micro-processors, the transputer has two very special features: it has on-

chip serial links for "talking" to other transputers and hardware support for 

time-sharing. The serial communication links allow networks of 

transputers to be connected by direct point-to-point connections without 

additional external logic. 

A T800 transputer, first announced in 1986, consists of a 32-bit CPU, a 

64-bit Floating-point Processing Unit [FPU], four standard transputer 

communication links, a 4k-byte of on-chip RAM and an external memory 

interface. This general purpose DSP chip achieves 8.77 MIPS at a clock 

speed of 17.5 MHz [10 MIPS at 20 MHz], that is almost as fast as 

Motorola's DSP56000 [10.25 MIPS at 20 MHz], and its FPU performs in 

32 



excess of 1.32 MFLOPS sustained in 32-bit. The communication links can 

perform a sustained 1.74 Mbyte/sec in a uni-directional mode or 2.35 

Mbyte/sec bi-directional. 

Floating Point Unit 
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Figure 2.1.1.: Block Diagram of T800. 
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2.1.2. Other Architectures 

2.1.2.1. DSP56000 

Motorola's DSP56000 family, announced in 1986, is a popular user-

programmable DSP chip that has been used for a number of applications 

in our Music Technology Group and also features in a number of 

commercial products for digital audio. As a general purpose DSP chip, a 

DSP56000/1 has a 24-bit data-bus, a 15-bit parallel port, and a 9-bit SSI 

and SCI interface for communication with another device. 

Being read-only memory [ROM] based, the DSP 56000 version of the 

processor is factory programmed with user software for minimum cost in 

high-volume applications. Being random-access memory [RAM] based, 

the DSP 56001 is also capable of loading its program from an external 

source. 
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Figure 2.1.2.: Block Diagram of DSP56000/1. 
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The DSP 56000/1 can perform 10.25 MIPS at a 20 MHz clock rate, as fast 

as the T800. Each on-chip execution unit, memory and peripheral 

communications link operates independently and in parallel with other 

units through the bus system: this is a self-contained time-multiplex 

system establishing a significant degree of internal parallelism, but in other 

respects is no different to a modern monolithic processing unit. 

2.1.2.2. TMS320C40 

Texas Instruments' TMS320C3x generation of processors took an 

important first step in addressing the needs for parallel processing by 

means of pipe-lined processing units, providing designers in addition with 

two external ports with associated memory interfaces. In the next 

generation, announced in 1987, TMS320C4x, the devices go several 

steps further by incorporating on-chip hardware to facilitate high-speed 

inter-processor communication and concurrent I/O without degrading 

performance. 

The TMS320C40 [C40] has six communication ports capable of 20-

Mbyte/sec asynchronous transfer-rate at each port, whereas the T800 has 

four communication ports. The DSP chip has a register-based CPU 

architecture that contains a pair of CPU-buses with register-buses. The 

CPU is capable of 275 MOPS [25 MFLOPS], with 40-ns and 50-ns 

instruction cycle times [25 MHz and 20 MHz]: this is thus a parallel DSP 

chip with more than one CPU on board. The C40s have been used by our 

Music Technology Group for the analysis and re-synthesis of musical 

sound. 
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2.2. Transputer Development System 

2.2.1. Introduction 

The Transputer Development System [TDS] is an integrated 

development system that can be used for developing Occam programs for 

a transputer or a network of transputers. It consists of a plug-in board, 

"mother board", for an IBM PC [Transtech TMB04] and all the appropriate 

development software. 

2.2.2. Hardware Descriptions 

The TMB04 is an expandable transputer board for an IBM XT or AT 

and their compatibles. The board consists of a transputer [T800] with 

local memory and 2M Bytes of fast DRAM. There are four slots for adding 

further transputer modules [TRAM] as daughter-boards. 

Each slot on the mother-board is made up with 160 dual-in-line [DIL] pins 

and is arranged in a hard wired pipeline: link No. 2 of the No. 1 daughter­

board is connected to link No. 1 of the No. 2 daughter-board. The TMB04 

board is equipped with a 37 way D-type connector with a special adapter. 

The adapter allows the master transputer's links to be connected to 

external transputers and to the daughter boards' links that are not used for 

forming the pipeline. 

There are two ways to communicate between the mother-transputer on 

the TMB04 and the host PC's IBM bus: the link adapter and a DMA 

mechanism. The former is the simplest form of data transfer between the 

PC bus and the TMB04. It is often referred to as a "B004" interface using 
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a transputer link adapter chip IMS C012. The latter is achieved with the 

DMA interface chip 8237. 

Down System 
Sub System 

L l l TRAM 0 Link 3 
LIO TRAM 3 Link 2 
L09 TRAM 0 Link 1 
L08 TRAM 3 Link 3 
L07 TRAM 3 Link 0 
L06 TRAM 2 Link 0 
LOS TRAI^ 1 Link 0 
L04 TRAM 0 Link 0 
LOS Master Link 3 
L02 Master Link 2 
LOl Master Link 1 
LOO Master Link 0 

• • • • Up System 

Figure 2.2.1.: Pin Alignment of the 37-way D-type Adapter. 

2.2.3. Software Descriptions 

Most of the development system runs on the transputer mother 

board; a program "server" on a host PC that provides the I D S with access 

to the terminal and filing system of the PC. The I D S allows programmers 

to edit, compile, run and debug Occam programs entirely within the 

development system. Occam programs can be developed on the I D S 

and configured to run on a network of transputers with the code being 

loaded from the I D S . The I D S is accompanied by all the necessary 

37 



software tools and utilities to support this kind of development, including a 

variety of Occam library routines to support mathematical functions and 

input/output routines. 

There are, however, few provisions for tools designated to the networked 

transputers, with the exception of the network tester that examines each 

processor and connection. This means that each program to be loaded 

on to a networked transputer has to be developed and tested on the 

single-transputer system on the motherboard without communication links 

to others, and a configuration of the network has to be designed and 

developed manually, without a tool on the TDS. 

The current version of the TDS restricts access to the PC filing system to 

one reading or one writing task only. This means, for example, that 

programs requiring simultaneous file inputs with outputs cannot be 

implemented. Also, the TDS is not equipped with a graphic interface or 

library. It may, however, be possible to build the interface by means of 

manipulating the PC bus and the PC interrupts, but this has not been 

investigated. 
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2.3. Occam 

2.3.1. Background 

Transputers are designed to implement the Occam language but 

also support other languages; C, Parallel C, Pascal and FORTRAN, that 

may produce larger codes than Occam. Occam is a simple language 

based on the Communication Sequential Processes [CSP] model of 

concurrency and communication, and is a message-oriented language 

where the basic unit is called a "process". Occam's processes 

communicate using "channels", inter-process data paths that provide a 

zero-buffered, uni-directional data path between two processes running in 

parallel. A channel can be placed between two transputers; processes 

are thus not restricted to the same transputer, allowing both internal and 

external parallelism. 

Traditional computers are designed for the sequential execution of 

programs. A sequential programming language is thus characterised by 

its actions occurring in a strict, single execution sequence. A parallel 

program, however, may consist of a number of processes that themselves 

are purely sequential, but which are executed concurrently. A parallel 

programming language is required to handle a number of concurrent 

processes that may communicate with each other to share variables or to 

synchronise the processes. 

Occam processes are built from three primitive processes: 

assignment a := b 

where "a" and "b" are variables. 
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input a ? b 

where "a" is an input channel, and "b" is a variable, 

output a ! b 

where "a" is an output channel, and, "b" is a variable. 

These are combined to form constructs: "SEQ"; sequential, "PAR"; 

parallel, "ALT"; alternative, "IF"; conditional and "WHILE"; iteration. 

2.3.2. Structure of Occam 

The "SEQ" construct signifies that statements under process are to 

be executed sequentially, as in traditional sequential languages. The 

"PAR" construct denotes that the following processes are to be executed 

independently, but, concurrently. 

PAR 
process A 
process B 
process C 

List 2.3.1.: Example of PAR Structure. 

The processes under a "PAR" construct are supposed to be given equal 

time slots, however, that depends upon the compiler's best decision and 

load balancing of the concurrent processes. In some cases, concurrent 

processes may actually require more execution time than a combined 

sequential process, unless some background overheads, such as 

communication with an external processor, are involved. It thus does not 

necessarily follow that a parallel processing configuration will always be 

more efficient than a sequential equivalent. When arranged in a suitably 

efficient manner, the distribution of tasks is highly condition-dependent, 
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and therefore requires considerable programming skills. It is also worth 

noting that each process placed in parallel should have as similar loading 

as possible, otherwise the program sequence has to wait until all the main 

processes have been executed. 

In the case where one process has to be assigned more time slots than 

another, the "PRI PAR" structure may be used, providing the construct 

only involves two processes. 

PRI PAR 
process A 
process B 

List 2.3.2.: Example of PRI PAR Structure. 

In the above example, priority, or allocation of more time slots, will be 

given to process A. In some extreme cases, this will mean that no time 

slots can be allocated to process B, if process A is heavily loaded. 

Alternatively, if time slot is given to the lower priority process, incoming 

communications to the higher priority process may be ignored, since the 

T800 transputers are time-multiplex parallel processors without any 

hardware buffer on their communication links. A solution to this is a 

"software" buffer. 

Another usage of the "PRI PAR" statement is for higher resolution clock 

control. In a low-priority process, a "TIMER" input provides a 15.625 kHz 

clock; 1 tick = 64 ^isec. When the TIMER function is used in a prioritised 

process, the clock frequency changes to 1 MHz; 1 tick = 1 |isec. To avoid 
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loss of time slots, the "SKIP" statement is usually placed as a lower priority 

process that literally does nothing and therefore consumes no time slot. 

The "ALT" construct operates a "first-come-first-ser^ed" style switching 

procedure. 

ALT 
channel A ? x 

process A 
channel B ? x 

process B 
TRUE 

process C 
List 2.3.3.: Example of ALT Structure. 

In the above example, when the input to channel A comes first, process A 

will be executed. If there are no inputs to either channel A or channel B, 

process C will be executed. However, as long as one process under an 

"ALT" structure is being executed, the "ALT" may not observe another 

channel interrupt. This may result in a loss of the incoming data, since the 

T800s have no hardware buffer on their communication links, and the 

Occam does not place a communication buffer automatically. To prevent 

the loss of incoming data, a buffering process for each channel may be 

required, depending upon the frequency of interruption. 

The Occam text books always recommend the use of a "TRUE" guard 

whenever an "ALT" structure is placed as a safety precaution or a time-out 

facility, since the absence of a "TRUE" may lead to a deadlock of the 

program; an infinity loop accidentally caused by the compiler. Indentation 

in the list above signifies the level of the nested process. 
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A variable or a communication channel cannot be shared among the 

concurrent processes placed under a "PAR" construct that necessitate the 

usage of an "ALT" structure. For example, consider the case where there 

are two processes placed in parallel, and both results have to be 

displayed on the terminal screen. If the "TRUE" guard is fired when no 

input from either process is available, the "SKIP" process will be executed. 

PAR 
SEQ 

process A 
channel A ! r e s u l t A 

SEQ 
process B 
channel B ! r e s u l t B 

SEQ 
ALT 

channel A ? x 
screen ! a, x 

channel B ? x 
screen ! b, x 

TRUE 
SKIP 

List 2.3.4.: Example of Channel Sharing. 

As in the "PAR" construct, a "PRI" can be applied over the "ALT" to 

provide more attention to information from an input channel. In this case, 

there can be more than two input channels under a "PRI ALT" structure. 

Priority is given to the input channel immediately below an "PRI ALT" 

statement. 

In a sequential program, there is only one execution path, which is 

relatively straightforward to terminate. Concurrent programs, however, 

may have many execution paths. If a path is not terminated in the correct 

manner, it may lead other processes to a deadlock situation. 
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When two processes are placed under a "PAR" structure, both processes 

must be terminated within a "good" timing and in a proper manner. If one 

process is ended far earlier than the other, the remaining process is 

executed with the same time slot allocation, as if the process already 

ended was still running. This means that load balancing between the 

concurrent processes is a very important consideration. A possible 

solution to synchronising the termination of two or more concurrent 

processes is to employ a global variable as a flag to signal termination. 

Since Occam does not allow the usage of shared variables, the 

termination information should be sent through a communication channel. 

Occam also has similar repetitive and conditional features in common with 

other conventional computer languages, such as "IF", "FOR" loop, 

"WHILE" loop and "SWITCH" case switch. The "WHILE" loop is often 

used for controlling concurrent processes. 

In a typical development procedure, an Occam program may be tested on 

a single transputer, as an "EXE" file. The ultimate goal, however, is 

usually to map a number of programs onto inter-connected transputers, by 

means of a "PLACED PAR" statement in a "PROGRAM" file. The number 

of processors does not always match the number of processes, since 

more than one process can be situated on a processor under a "PAR" 

structure. 
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A "PLACED PAR" statement is followed by at lest one placement 

statement allocating a specific processor for the execution of the process 

that follows, the hardware communication links to be used and where they 

are to be connected, and a "PROC"; procedure for the processor. A 

"PROC" declaration is followed by the name of the procedure and the 

necessary communication links and given variables. The main body of a 

"PROC" declaration, called the procedure body, consists of one or more 

"SC" source code instructions. 

SC extr a 
SC mouse 

[3]CHAN OF ANY s.out: 

PLACED PAR 
PROCESSOR 0 T8 -- T800-17 128k 
PLACE s.out[0] AT l i n k O i n : 
PLACE s . o u t [ l ] AT l i n k l o u t : 
e x t r a ( s . o u t [ 0 ] , s . o u t [ l ] ) 

PROCESSOR 1 T8 -- T800-17 128k 
PLACE s . o u t [ l ] AT l i n k l i n : 
PLACE s.out[2] AT linkOout: 
mouse ( s . o u t [ 1 ] , s.out[2]) 

List 2.3.5.: Example of "PROG" File. 

One or more "SC" codes for the processes under a "PLACED PAR" have 

to be included in a "PROGRAM" file by means of the source code 

themselves or a "#USE" statement for the inclusion of a function library; 

this is similar to the "#include" statement in C-language. 

The numbering of the processors has to be matched with the booting path 

of the processors: TDS understands that the lowest numbered processor 

is the first to be booted, and it then follows the hardware links specified. 

This means that there should be a path that covers all the processors, and 
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it is sometimes necessary to introduce a dummy communication link to 

bridge a gap, only for the purposes of booting. 

2.3.3. Variable Types 

Occam provides the following elementary data types: 

B O O L Boolean logic value; TRUE or FALSE. 

BYTE integer value between 0 and 255. 

INT, INT64, INT32, and INT16 signed integer values; default 

[32-bit in T800] , 64-bit, 32-bit and 16-bit. 

REAL64 and REAL32 floating point values; 64-bit and 32-bit. 

The "RETYPE" statement provides a quick type conversion between 

different types of INT [INT64, INT32, INT16] values or from an INT value 

to a BYTE array of four. Traditional type conversions are also available 

between any type of variables, but this takes more time slots than a 

"RETYPE". 

The 32-bit based T800 transputer is capable of operations in boolean, 8-

bit [BYTE], 32-bit and 64-bit [double precision]. In the case of 16-bit, 

however, the INT16 variables are handled as 32-bit integer types [INT32 

or INT] with zeros in the upper bytes. This means that whenever an 

operation using INT16 type is executed, the type conversions from INT16 

to INT32 and from INT32 to INT16 are performed internally, requiring more 

time slots than an operation using INT32 types. 
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2.3.4. Communication Channels 

Communication between processes [or processors] is achieved by 

means of channels. Occam communication is point-to-point, synchronised 

and unbuffered. For this reason, a channel needs no process queue, no 

message queue and no message buffer. For the same reason, however, 

high density communications placed in parallel may cause loss of the 

data, by overwriting or lack of a time slot, and a deadlock situation, by 

waiting for an acknowledgement signal [for synchronisation] which can 

never be sent. 

A channel communication between two processes on the same transputer 

is implemented by a single word in memory whereas a channel between 

the processes executing on different transputers is created by point-to-

point links using two signal wires that provide two Occam channels, one in 

each direction. In the case of the latter, as the T800 transputers do not 

have a hardware buffer for the communication links, if a channel is placed 

between two processes in a different priority, data loss may occur on the 

receiver side unless a buffering process is employed. For communication 

with non-transputer-family devices, an external link adapter, IMS C011 or 

IMS C012, acts as an interface and a dummy transputer. 

The link protocol provides the synchronised communication of Occam that 

is based on "message-and-acknowledgement" protocol. An inter-

transputer link sometimes causes a local deadlock; when the receiver side 

is busy and fails to send an acknowledgement to the sender, this lack of 

acknowledgement freezes the sender process until the acknowledge 
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signal comes. This means that load-balancing between the processors is 

also important. 
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2.4. 160 Transputer Network 

A prototype architecture for a transputer network, using sixteen 

T800s, was presented and demonstrated at the 1990 ICMC held in 

Glasgow (Bailey, et al. 1990). This was developed into a distributed 

parallel audio processor using 160 transputers inter-connected as a 

ternary tree. The network has been used as a test-bed for network 

architecture for real-time synthesis. 

Each T800 transputer has four hardware communication ports that permit 

the construction of a ternary tree, providing hierarchical control. While a 

tree structure provides short path lengths between the arbitrary nodes, the 

modified ternary tree can also achieve this between siblings at the same 

level (Bailey 1992), thus increasing the scope for achieving both efficiency 

and flexibility in the flow of data between transputers. 

Root 

B 
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i k 3 

Transputer 
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Link 2 ' 

Expansion Point 

Single Element 

Extent of PCB 

Figure 2.4.1.: Basic Topology of the Transputer Network. 
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Four of these single elements, a total of 16 transputers, are 

accommodated onto a standard 3U printed circuit board, as in the 

prototype architecture published in 1990 (Bailey, et al. 1990). The 

transputers are hard-wired to each other permanently. The software 

configuration of the network, however, is flexible and re-programmable. 

1 

Figure 2.4.2.: 16-Transputer Network on a PCB. 

A block of LEDs is situated on the edge of each PCB to monitor the status 

of error flags and the activity of the links number one, two and three of the 

transputers. The organisation of the LEDs is shown in the diagram below. 

This is the only way to monitor the performance of the transputer, as there 

is not a CPU performance measurement probe situated on a T800. In the 

case of the latest T9000 transputer, there is a fifth link designed especially 

for this purpose. 
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Error Links Transputers 

1 2 3 o ooo Root No. 0 o ooo Root No. 1 o ooo Root No. 2 o ooo Root No. 3 

o ooo A No. 0 o ooo A No. 1 o ooo A No. 2 o ooo A No. 3 

Figure 2.4.3.: Monitoring LEDs on a PCB (part). 

An unusual feature of the design is the absence of any external memory 

local to the board. The rationale behind this is that a real-time distributed 

system should not require a large amount of on-board memory for 

intermediate data storage. It might be said that this expectation was a 

little idealistic. As a number of applications, described in the later 

Chapters, have proved, this limited storage size had to be overcome by 

design modifications at a later stage. 

Each transputer thus uses only its internal 4k-byte memory for 

programming purposes. This results in a total of 160 transputers with 

640k bytes of internal memory distributed across the network of our ten-

board system, and a maximum processing power of 1,400 MIPS. The 

absence of local external memory necessitates compact algorithms for 

execution at audio sampling rates and the use of a compact code that 

leads to Occam. 
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One of the primary objectives is the use of many small and cheap 

processors to increase the overall computing power in a cost-effective 

manner. In other words, individual processors in such a network need not 

offer exceptional performance since the allocated sub-tasks are 

significantly smaller than the complete task when executed on a single 

processor system. 

Figure 2.4.4.: Overview of The 160 Transputer Network 
with six external Transputers. 
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Figure 2.4.5.: Connection Diagram of The 160 Transputer Network. 
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2.5. Summary 

In this chapter, the capabilities and the limitations of the transputer, 

its software development system [TDS] and the programming language 

designed for the transputers [Occam] have been described. Transputers 

are time-multiplex parallel processors with non-buffered communication 

links that allow high-speed communication between processors, and also 

the development of software and hardware in a variety of configurations. 

These resources offer considerable opportunity for the construction of 

parallel and distributed networks which can be customised to the specific 

requirements of audio synthesis, and this proposition is tested in practical 

terms in the chapters which follow. Connectivity, however, does not 

automatically solve in itself some functional problems of process control in 

any system which makes significant use of parallel and distributed 

architecture, and solving these is critical to the successful implementation 

of any such algorithm whether for audio or any other computational 

process. 

The most fundamental of these concerns are the possibility of data loss in 

the buffer-less communication hardware, which may require the 

introduction of software buffers, and also the ever-present risk of timing 

errors which may lead to problems of local deadlock and thence ultimately 

system failure. Both considerations are described further in the 

subsequent discussions of the various implementations which form the 

core of the research project. 
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By way of further background, the essential hardware characteristics of 

the 160 Transputer Network used for these investigations are also 

described, as there will ultimately dictate what can and cannot be 

achieved in software terms. It has also been noted in these constraints 

that the software development system [TDS] imposes some important 

limitations on essential communications, some of which will prove 

significant, as will be described in due course. 
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Chapter 3. Measurements of Keyboard 
Performance through MIDI 

3.1. H3TD0theses 

These tests are based on a question that is frequently asked by 

professional musicians: is MIDI really fast enough to represent accurately 

a piano performance played by a skilled executant? Such a proposition 

raises a fundamental question from an engineers' point of view: is the 

MIDI standard suitable as a real-time controller for contemporary multi-

voice and multi-device systems? When MIDI was standardised almost 

fifteen years ago, user expectations, in terms of digital signal processing 

devices and means of control, were constrained by the limitations of the 

hardware available at the time, such as 8 MHz clocked eight-bit 

processors with 64k-byte memory. Over the past decade, due to the rapid 

evolution in the speed of modern computing technology, the restrictions of 

such components are now open to review. The question will be discussed 

by comparing the limitations of MIDI technology, using digital signal 

processors and their technology, and their perceived characteristics on the 

human side with specific reference to the target applications. 

The MIDI specification is fifteen-year-old technology that was designed for 

an eight-bit Z80 standard, some orders of magnitude less than that of a 

modern PC. But, is it too slow to transmit musical information? Moore 

made some assumptions in his article (Moore 1988) five years after the 

standardisation. In this article, the following assumptions concerning MIDI 

concepts were stated: 

56 



One of the fundamental assumptions of the 
MIDI concept i s t h a t these small delays 
introduced by s e r i a l transmission are e i t h e r 
imperceptible or -- i f not exactly 
imperceptible -- t h a t they don't make any 
d i f f e r e n c e i n a musical context... The f i r s t 
d y s f u n ction r e s u l t s from the f a c t t h a t i n 
some musical s i t u a t i o n s , m i l l i s e c o n d delays 
do matter.,. A second problem w i t h the MIDI 
assumption i s t h a t there i s an unpredictable 
amount of delay between the time a 
performance gesture occurs and the time i t i s 
communicated to the synthesizer... MIDI i s 
designed to re p o r t on musical events i n a 
t i m e l y manner... I t i s known, however, t h a t 
even small amount of "sample j i t t e r " can 
degrade a d i g i t a l recording s i g n i f i c a n t l y . . . 

F. R. Moore (1988) "The Dysfunctions of MIDI" 

I have some doubts about these claims. For example, in the case of the 

first argument concerning small delays, if there is a few miiii-seconds of 

"constant" delay, does it matter in most musical situations? How 

significant in practice are any "special cases"? I would agree that there 

are some buffers on a MIDI network communication; an opto-isolator 

between a MIDI-IN and a MIDI-THRU, between a MIDI-IN and a 

synthesiser, and between a controller and a MIDI-OUT. All of these cause 

incremented delays, but these are constant for any given condition. 

As to the second claim, an "unpredictable amount" of delay, unfortunately, 

the author has not cited an example of it. I would assume that it can be 

quantified to a certain degree, and might be regarded as a small amount 

of "constant" delay. Such disagreements require a careful analysis. 
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I conducted a preliminary experiment of human auditory response to 

different delay conditions described in the next section. The possibility of 

unpredictable delay must be considered on the hardware side, such as 

variations in the response of a MIDI key sensor. For example, in the case 

of simultaneous events, like a multi-note-chord, information has to be 

accumulated in time, and then sent serially via the communication protocol 

of MIDI. This issue will be examined later in this chapter. 

I totally agree with his third claim. The MIDI standard is clearly not 

suitable for "sample oriented" tasks, since MIDI is an "event oriented" 

standard. Other representations, such as those used in a software 

synthesis program such as CSOUND (Vercoe 1986), can be more suitable 

for "sample oriented" communication. Due to the difference of the 

concepts, however, discussion of this particular claim is not relevant to this 

project, because the matter that is concern of this thesis is event-oriented 

communication. As well as the "event oriented" characteristics, I would 

like to add another limitation; keyboard-oriented nature of MIDI: the MIDI 

standard is basically specified to represent synthesiser performances 

driven from keyboards, and to transmit this information, rather than the 

more complex characteristics of orchestral instruments. 

Hence the information transmitted over MIDI should ideally be limited to 

simple on-off key-stroke actions, perhaps with the additions of key 

pressure information to control amplitude. In other words, information 

other than basic key actions will invariably require a higher bandwidth for 

transmission. In this measurement, therefore, the target machine should 
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be a MIDI keyboard, and so, some MIDI information may thus be ignored 

as irrelevant to the application; for instance, pitch bend [strings origin] and 

after touch [extra controller]. Under these conditions, I would like to begin 

my discussion: is MIDI fast enough? 

My hypotheses are: 

1) The MIDI standard may be still fast enough to represent a 

keyboard performance without an extra controller. 

2) If the performance is extended to include some 

accompaniments, MIDI can be fast enough, provided the 

transmission delay is constant and is small enough to be 

ignored by listeners. Some claims about the "dysfunction of 

MIDI" can therefore be attributed to their "misuse" of MIDI or 

their "excessive demands" upon MIDI. 
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3.2. IVLeasurements 

3.2.1. Distorted Chord 

Some articles indicate that the minimum resolution of timing in the 

human auditory systems between 10 and 30 msec, depending upon the 

listener and some context-dependent conditions, including the pitch 

[frequency] and the amplitude of the sound. 

Gabor (1946) examined the "threshold information sensitivity" of the ear, 

using 500 Hz and 1,000 Hz sine waves. He concluded that for the most 

critical of listeners, a 10 msec sound could be recognised as a "tone", 

rather than a "click" or "noise", but at least 21 msec was required to 

recognise its "pitch". 

Green (1971) also postulated that about 25 msec was needed to 

distinguish differences in starting times between high- and low frequency 

"sinusoids". To distinguish between a "click" or "two clicks", however, the 

limit of temporal resolution was invariably about 1 or 2 msec. In Rasch's 

examination (Rasch 1978) of on-set times of high and low tones, with 20 

msec-long rising and decaying ramps, the results showed that a time 

interval of 10 to 15 msec seems to be the largest detectable interval. 

These claims suggest that a constant small amount of delay, less than 10 

msec, should not be detectable, and that the limit of temporal resolution is 

1 or 2 msec, whereas MIDI can send a note information in less than 1 

msec. 
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I conducted an experiment designed to determine the minimum 

distinguishable timing in the human auditory response, and to discover a 

suitable resolution in timing for MIDI transmission. A sequencer software 

program on a PC was used together with a MIDI keyboard to produce 

sounds. A four-note-chord was played in an arpeggio in six varieties; in 

different sequences [upward/downward] and at different intervals [10, 20 

and 30 msec] for each component. Among the distorted chords, a 

genuine chord [no interval between each component] was played twice. 

In this experiment, four subjects, who happened to work in our laboratory, 

sat near two loud speakers, at an approximate distance of 3 metres. Two 

of these listeners were well-trained musicians, and the other two had 

strong interests in music. The listeners were asked to judge whether the 

chord was played as an upward arpeggio, a downward arpeggio or a plain 

chord. They were not informed of the order of the chords that were 

selected at random. To avoid possible external psychological effects, a 

series of chords were played twice in different orders. The results are 

shown in Tables 3.2.1. and 3.2.2. 

A 1760 Hz 

E1319 Hz 
C# 1109 Hz 
A 880 Hz 

20 40 60 me fmsecj 

Figure 3.2.1.: Timing of the Distorted Chord (10 msec, Rise). 
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direction and interval (msec) 
down down down even even up up up 

30 20 10 (1) (2) 10 20 30 
pe i T i t it i ir i T 

subjects pa i I it i t i t ? i I 
a i i i ir i T T T 
t i T 17 i T I T 

down i 
rise T 

even 0 
nor even i t 

can't judge ? 

Table 3.2.1.: Listening Experiment (1) (Slightly Distorted Four Note Cfiord). 

direction and interval (msec) 
down 

30 
down 

20 
down 

10 
even 
(1) 

even 
(2) 

rise 
10 

up 
20 

up 
30 

pe i I i i t ir it T T 
subjects pa i i it it u i t T T 

a i T i i ir i t T I 
t i i T T i t i t i T 

Table 3.2.2.: Listening Experiment (2) (Slightly Distorted Four Note Chord). 

The above results suggest that more than half the listeners could 

distinguish the sequence of arpeggi, upwards or downwards, in the case 

of 20 and 30 msec intervals. Due to the small number of candidates, 

these results can only be regarded as a preliminary experiment and 

further experiments are therefore required for a more authoritative 

analysis. 
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3.2.2. Timing in Piano Performance 

Using a digital signal processing tool on an Apple-Macintosh, 

another preliminary experiment was conducted. I assumed that the 

quickest gesture in a piano performance is a "trill" or a "grace note". 

These two cases were examined as follows. The sound source was from 

a CD, performed by a well-trained executant. According to the Fourier 

Transform analysis on the frequency domain, there were three peaks; two 

strong peaks at the frequencies of "A flat" and "B flat", and the other at the 

difference of these two; beating frequency. On the time-amplitude 

domain, I could see the sound of the trill as a beating noise. The sound, 

however, could not be separated into a single tone; one of "A flat" or "B 

flat". This means that due to natural acoustical conditions, notably echo, 

the original sound was distorted. 

As a result of the first experiment, to avoid echo and other effects, a digital 

audio tape recorder was used with a microphone situated immediately 

above the piano strings. Some "trills" and "grace notes" of a piano 

performance were played by a music student as a sound sample. These 

were then analysed in the same manner as for the CD sound. On an 

analysis, the onset of the notes was clearly identifiable; ranging between 

about 5 and 10 msec. This suggests a minimum timing in the case of a 

piano performance that lies somewhere between these limits, and 

arguably towards the higher of the two figures. It seems reasonable to 

presume that about 10 msec of constant delay would not be distinguished 

by most listeners, and therefore would not effect a piano performance in 

most cases. 
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3.2.3. The Quickest Gesture in Keyboard Performance 

Along with those fundamentals shown before, Moore (1988) made 

another assumption concerning capturing musical gestures from keyboard 

performances; resolution and rapidity. 

Assuming t h a t there are 88 notes on a 
keyboard, we might s t a r t by considering how 
q u i c k l y notes can be played by a s k i l l e d 
p i a n i s t . I am able to play a glissando across 
a l l 88 notes of a piano i n about h a l f a 
second w i t h one hand. This means... about 
176 events per second. 

F. R. Moore (1988) "The Dysfunctions of MIDI" 

This is an extreme, or an unrealistic example, but it could be acceptable 

as a part of a modern piece. Another example using a different method is: 

The f r o n t s of seven piano keys were f i l m e d 
w i t h a Hicam camera at 2000 frames/s, 
y i e l d i n g a v i s u a l record of about 1.5 seconds 
of p l a y i n g . On one f i l m , the p i a n i s t was 
p l a y i n g C to G back to C as q u i c k l y , l o u d l y 
and evenly as possible. He made about 13 key 
presses per second w i t h h i s r i g h t had. 

C. L. MacKenzie (1985) 
"Structural Constraints on Timing in Human Finger Movements" 

This example is more realistic and is a controlled performance. I tried to 

perform both cases on a MIDI keyboard, that had 60 non-weighted keys, 

and to record the information, using the MIDI-to-transputer interface. In 

the musical context, a glissando usually means that using some fingers, 

white keys on a keyboard are pressed sequentially from low notes to high 

[or vice versa] continuously. In Moore's assumption, however, he argued 

that the measurement should be a "glissando over the 88 piano keys". 
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Since there are only 52 white keys on a conventional acoustic piano, I 

interpreted and performed a gesture that placed some fingers on an initial 

black key and the thumb on an adjacent white key, followed by a hand 

movement from left to right. 

Performance Gliss 1 Gliss 2 
Length (sec) 4.716 0.9046 
MIDI Events 

note on 234 59 
note off 234 59 
status byte 27 6 
total (bytes) 955 242 

Transmission Rate 
bits (baud) 2025 2675 
keys (keys/s) 48.77 65.22 

Interval of Notes 
average (msec) 20.19 15.3 
standard deviation 12.26 10.45 
minimum (msec) 4.027 4.864 

Duration of Notes 
average (msec) 85.29 72.16 
standard deviation 22.34 27.14 
minimum (msec) 18.94 16.64 

Table 3.2.3.: Quick Gesture in Keyboard Performance. 
(Glissando through a keyboard) 
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"1 r 1^ r 
o - i 1 lo loo looD (msec) 

interval of notes 

Figure 3.2.2.: Quick Gesture in Keyboard Performance 
(Glissando through a keyboard) [glissando 1]. 

In the first performance, because of a shorter range keyboard, I had to 

turn over my hand movement few times. This introduced some 

unexpected time intervals between the note progressions. To avoid that, 

only one movement was executed in the second. The graph above shows 

the interval as a histogram; it is written using a logarithmic scale for time 

and a linear scale for the intensity. 

These results below show that the quickest gesture recorded in a piano 

performance is in the order of 10 to 100 msec. This means that a piano 

performer can just manage to play a 10 msec gesture. 
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Performance scale 
Length (sec) 41.17 
MIDI Events 

note on 388 
note off 387 
status byte 229 
total (bytes) 1779 

Transmission Rate 
bits (baud) 432.2 
keys (keys/s) 9.401 

Interval of Notes 
average (msec) 106.2 
standard deviation 24.85 
minimum (msec) 60.06 

Duration of Notes 
average (msec) 106.7 
standard deviation 15.93 
minimum (msec) 53.08 

Table 3.2.4.: Quick Gesture in Keyboard Performance (C-G-C scale). 

0.1 10 loo looo (msec) 
intePi'al of notes 

Figure 3.2.3.: Quick Gesture in Keyboard Performance (C-G-C scale). 
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3.2.4. The Busiest Gesture in Keyboard Performance 

Moore claims: 

I t i s cl e a r t h a t MIDI transmission r a t e i s 
j u s t on the edge of t h i s rough c a l c u l a t i o n 
f o r s i n g l e notes. I f , however, we consider 
the case of a piano chord i n which a dozen or 
more keys are played simultaneously w i t h two 
hands, we note t h a t the time needed to 
tran s m i t the data representing the note 
events i s now about iV msec (where N i s the 
number of noted depressed)... 

F. R. Moore (1988) "The Dysfunctions of MIDI" 

Transmitting a note event as a MIDI signal actually takes three bytes; one 

status byte, including channel information, with two data bytes, which are 

a key number and a magnitude of the event. Each takes 320 ^sec; 960 

(isec [about 1 msec] in total. In the case of the piano performance, 

however, the situation is slightly different: only one channel is used, mainly 

transmitting just "note on" and "note off" information, and, if required, the 

"running status". It means that the status byte, the controller and its 

channel information is not always necessary for each event, unless 

another controller, such as a pedal, is used. For that reason, the time 

needed to transmit the data representing A/note events from a MIDI piano 

is less than N msec. 

I tried to inspect another claim; a piano chord in which a dozen or more 

keys are pressed simultaneously with two hands. It seemed, however, to 

be impossible to play a conventional chord featuring more than five keys 

per hand, since I could not spread my hand more than one and a half 

octaves. For that reason, I tried to play a conventional four-note-C major 
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chord; C, E, G, C, with my right hand, and, then a five-note-Gy chord; G, 

B, D, F, G, with both hands. 

Performance C major G7 
Length (sec) 30.66 3.513 
MIDI Events 

note on 681 214 
note off 631 161 
status byte 167 20 
total (bytes) 2791 770 

Transmission Rate 
bits (baud) 910.4 2192 
keys (keys/s) 20.58 45.83 

Interval of Notes 
average (msec) 6.62 16.29 
standard deviation 3.077 28.16 
minimum (msec) 3.44 2.375 

Duration of Notes 
average (msec) 71.54 63.54 
standard deviation 39.34 23.22 
minimum (msec) 38.3 3.379 

Table 3.2.5.: Busy Gesture in Keyboard Performance (Eight Beat Chord). 

31 

•H 

c 
01 

0.1 1 l O l O O 

interval of notes 
l o o o ( m s e c ) 

Figure 3.2.4.: Intervals of Notes (SbeatCmaj). 
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Even when I played a ten-note-chord as quickly as possible, the 

transmission rate was not more than 2.2 KBaud. In the MIDI specification, 

the transmission rate is 31.25 KBaud on 16 channels; about 2 KBaud per 

channel in average, it means that if I try to send a ten-note-chord per 

channel multiplied through more than fourteen channels, it is possible to 

saturate the MIDI transmission. 

However, do we need such kinds of densely packed information in the 

course of an ordinary performance? I believe that such a question is 

inevitably speculative and subjective to some degree, since the boundary 

between the classical ideas of music performance and the more 

experimental modes of creating music in a contemporary manner, which 

might prove complex enough to defect any conventional system, is ill-

defined. For the purposes of this investigation, the proposition tested was 

that of a maximum requirement of eight channels to cover an expected 

degree of complexity in a rhythm part. 
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3.2.5. The Shortest Timing in Keyboard Performance 

I attempted to examine two other examples of quick keyboard 

gestures; grace notes and trills, to measure the resolution of MIDI. Two 

performances were recorded: one played with B flats as grace notes, and 

Bs as main notes. The other one was done with C sharps, as grace 

notes, and Bs, as main notes. The result shows that the resolution of 

MIDI transmission is fast enough to send a ten-msec-long grace note. 

Performance grace 1 grace 2 
Length (sec) 20.61 19.35 
MIDI Events 

note on 182 192 
note off 182 191 
status byte 113 107 
total (bytes) 841 873 

Transmission Rate 
bits (baud) 408 451.1 
keys (keys/s) 8.83 9.869 

Interval of Notes 
average (msec) 113.3 101.3 
standard deviation 94.83 78.94 
minimum (msec) 8.861 10.6 

Interval of Main Notes 
and Grace Notes 

average (msec) 19.8 20.26 
standard deviation 5.852 10.6 

Duration of Notes 
average (msec) 33.14 35.33 
standard deviation 16.78 17.78 
minimum (msec) 11.9 10.24 

Table 3.2.6.: Short Timing in Keyboard Performance (Grace notes). 
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interval of notes 
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Figure 3.2.5.: Intervals of Notes (Grace Notes 1). 

J 
O . l 1 10 lOO 

interval of notes 
i o o o ( m s e c ) 

Figure 3.2.6.: Intervals of Notes (Grace Notes 2). 

Two trill performances were recorded: one using an A flat key and a B flat, 

and the other using an F and an F sharp keys. These results suggested 

that the MIDI specification is fast enough to transmit an event of the order 

of milli-seconds. 
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Performance trill 1 trill 2 
Length (sec) 17.33 16.43 
MIDI Events 

note on 188 188 
note off 188 188 
status byte 97 92 
total (bytes) 849 844 

Transmission Rate 
bits (baud) 489.8 513.6 
keys (keys/s) 10.85 11.44 

Interval of Notes 
average (msec) 92.22 87.38 
standard deviation 14.07 11.77 
minimum (msec) 5.305 42.97 

Duration of Notes 
average (msec) 71.65 67.06 
standard deviation 11.51 15.31 
minimum (msec) 38.72 30.3 

Table 3.2.7.: Quick Gesture In Keyboard Performance (Trill). 

O . 1 1 lO IDO 
interval of notes 

l o o o ( m s e c ) 

Figure 3.2.7.: Quick Gesture in Keyboard Performance (Trill 1). 
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J j l l 
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interval of notes 

Figure 3.2.8.: Quick Gesture in Keyboard Performance (Trill 2). 

From these experiments, I could presume that the transmission rate in the 

MIDI specification is fast enough to send several channels of conventional 

polyphony keyboard performance. To confirm this assumption, another 

endeavour has been carried out; a traffic analysis of MIDI keyboard 

performance. 

This experiment is aimed measuring the traffic conditions on the MIDI 

communication line. The information was collected using the MIDI-to-

Transputer interface. I performed a few tunes on a MIDI keyboard lasting 

about 30 seconds each. All the MIDI bytes were time-stamped and their 

intervals accumulated. 
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Figure 3.2.9.: Traffic analysis (tune 1). 

o . l 1 l O l O O 

interval of notes 

Figure 3.2.10.: Note Interval (tune 1). 
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75 



o . l 1 l O l O O 

i n t e r v a l of MIDI b y t e 

Figure 3.2.11.: Traffic analysis (tune 2). 

l o o o ( m s e c ) 
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interval of notes 

Figure 3.2.12.: Note Interval (tune 2). 

l o o o ( m s e c ) 

As shown above, on each performance there is a strong peak at about 

320 lisec, the shortest interval of the MIDI specification. Most of the 

intervals, however, were not concentrated near the strongest peak. This 

means that the MIDI connection is not always busy, with significant spare 

capacity. 
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Figure 3.2.13.: Traffic analysis (glissando). 

In the case of the busiest performance, indeed, the MIDI line had some 

spare capacity to carry more information. As a result, I can confirm that 

the MIDI specification is fast enough to transmit multiple keyboard 

performances on different multiplexed channels, despite the fact that the 

standard is based on fifteen-year-old technology. 
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3.3. Conclusion 

In time resolution wise, the minimum time interval for a piano 

performance and the human auditory system is about ten milli-seconds, 

whereas the MIDI standard can manage to send a note event packet of 

information in less than one milli-second; about ten times faster than this 

requirement. In terms of transmission capacity, it seems to be difficult to 

saturate the MIDI transmission in terms of conventional keyboard 

performances without using other non-event-based controllers. From 

these experiments, the MIDI standard is shown to be fast and reliable 

enough for the recording and transmission of a single multi-keyboard 

performance when simple event-based instruments and controllers are 

used as the standard originally anticipated. 

It would seem clear, however, that problems will arise when a number of 

different multi-keyboard performances are multiplexed together in a single 

stream of MIDI data to be distributed to a number of MIDI instruments. 

Hardware solutions to the problem described above have been developed 

in the form of sophisticated electronic hubs for the interconnection of 

multiple devices, using more than two MIDI data streams called "parallel 

MIDI", which provide networked solutions to such communication 

difficulties, and also solve another limitation; the maximum of sixteen 

channels per MIDI data stream. 
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3.4. ApresMIDI 

In 1994, about ten years after the publication of the MIDI 

specification, ZIPI (McMillen 1994) was presented as a replacement to the 

MIDI, a new language for describing music. There are some technical 

improvements over the MIDI standard that have been proposed, 

especially catching up with the latest computer and signal processing 

technology. When the MIDI specification was originally announced, eight-

bit computers, such as Z80 or 8086, were common. Now a 32-bit PC has 

become the norm and a 64-bit PC is soon to be realised, the software 

should match with the new standards, in terms of word-length and speed. 

Unlike the MIDI standard, ZIPI was led by academics without any strong 

backup from the electronic instrument manufacturers. This could be one 

of the reasons why a ZIPI equipped instrument has not yet materialised 

from the commercial sector. Or, the users of MIDI might be satisfied with 

this fifteen-year-old technology with some ad-hoc solutions, such as the 

usage of multiple MIDI cables controlled by a high-power PC. As I 

mentioned earlier in this chapter, in some extreme circumstances, 

especially in non-event-oriented cases, MIDI users may remain 

dissatisfied with its response characteristics. In general, however, it would 

appear that the MIDI specification is still acceptable to the majority of its 

users. 
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Chapter 4. Implementation of Real-Time 
Additive Synthesis on the Network 

4 .1. Sine Oscillation Method 

4.1.1. Wavetable (Table Look-up) 

This method has been reviewed in Chapter 1.3.3. Its 

implementation in Occam is as follows: 

f q : o u t p u t frequency 
s f : sampling frequency [ c o n s t a n t ] 
t b : t a b l e s i z e [ c o n s t a n t ] 
amp: am p l i t u d e 
i n c l : i n c l e m e n t 
ag: angle 
t p : temporary s t o r a g e [INT] 
o u t : o u t p u t channel 
t a b l e [ : wavetable 

-- s e t up 
i n c l := ( f q * t b ) / s f 
ag := 0.0 (REAL32) 

-- c y c l e 
ag:= ag + i n c l 
I F 

(ag > t b ) 
ag := ag - t b 

e l s e 
SKIP 

t p := INT ROUND ag 
out ! ( t a b l e [ t p ] * amp) 

List 4.1.1.: Sine Oscillator by Wavetable Method. 

In the above implementation, the initial frequency set up needs 28 clock 

cycles [1.4 jisec at a 20 MHz clock], and each oscillator cycle does 32.4 

clock cycles [1.62 |isec] whereas Occam's sine function requires about 17 

|isec. 
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For an implementation of this method over the Transputer Network, 

however, there is a fundamental problem concerning the memory size, 

since each T800 transputer has only a 4k-byte on-chip memory. For a 

real-time implementation, the memory usage should be limited to less than 

80% of the capacity, including the program code, to maintain a smooth 

computation. When the program code is Ik-byte, about a 2.2k-byte of 

memory space can be used for the wavetable, resulting in an 1100 

sample-long table [about 34 msec at 32 kHz sampling rate] in 16-bit 

integer format or 550 sample-long [about 17 msec] in 32-bit format. 

The size of the wavetable directly affects the quality of synthesised sound. 

The worst case signal-to-error noise ratio is given as 6 (k-1) dB, where the 

table size is 2*̂  sample-long (Moore 1977). In the case of the 32-bit 

wavetable above, the estimated worst case signal-to-error noise ratio is 

about -48 dB [k=9, 512-sample-long] representing in an unacceptable 

level of distortion. For the reasons above, this method is not suitable for 

an implementation over the Transputer Network. 

4.1.2. Taylor Series Expansion 

The Taylor series expansion method is a simple and elegant 

method of evaluating most functions. 

C O i (m-l ) 
sin(x)= I — x^^™-!) 

m : i ( 2 m - l ) ! 
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f q o u t p u t frequency 
s f sampling frequency [ c o n s t a n t ] 
p i 2n [ c o n s t a n t ] 
amp: am p l i t u d e 
i n c l : i n c l e m e n t 
ag angle 
to temporary s t o r a g e (0) 
t l t emporary s t o r a g e (1) 
t 2 temporary s t o r a g e (2) 
t 3 temporary s t o r a g e (3) [INT] 
t4 temporary s t o r a g e (4) 
t 5 temporary s t o r a g e (5) 
o u t : o u t p u t channel 
— s e t up 

i n c l := ( f q * p i ) / s f 
ag : = 0.0 (REAL32) 

-- c y c l e 
t l 0 
SEQ i = l 

SEQ 
to 
t 2 : 
t3 
SEQ 

0 (REAL32) 
FOR 10 

=REAL32 
= POWER (-
:= 1 
m=l FOR 

ROUND ( i - i ; 
1.0(REAL32; 

( 2 * i ) - 1 

tO) 

t3 := t3 * m 
t5 := REAL32 ROUND t3 
t4 := REAL3 2 ROUND ( ( 2 * i ; 
t l : - t l + ( t 2 / t 5 ) * P O W E R ( a g , 
out ! ( t l * amp) 
ag := ag + i n c l 

-1) 
t 4 ) 

List 4.1.2.: Sine Oscillator by Taylor Series Method. 

The initialisation takes 28 clock cycles [1.4 |isec], and each cycle with up 

to 10 components 18849.3 clock cycles [942.5 jisec]. 
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4.1.3. Polynomial Approximation 

A minimal polynomial approximation presented by Hart et al. (1968) 

can also deliver a high quality sine and cosine function. 

1x1 = n j i -I- / where M < nil 

sin(x) = sign (x) x sin(/) ( - 1 ) 

cos(x) = sin(x-i- 71/2) 

The computation of sine or cosine involves three numerically distinct 

steps: the reduction of the given argument x to a related argument f, the 

evaluation of sin(0 over a small interval symmetrical about the origin, and 

the reconstruction of the desired function value from these results. The 

accuracy of the function values depends critically upon the accuracy of the 

argument reduction (Cordy 1980). 

f q : output frequency 
s f : sampling frequency [constant] 
p i : 2n [constant] 
amp: amplitude 
ag: angle 
t p : temporary storage [INT] 
Xwork, Rwork: temporary storage 
out: output cliannel 
VAL R IS [2.601903036E-6(REAL32), 

-1.980741872E-4(REAL32), 
8.3 3302 513 9E-3(REAL3 2), 

-1.666665668E-1(REAL32)] : 

-- set up 
ag := ( p i * fq) / sf 
tp := INT ROUND (ag / ( p i / 2.0 (REAL32))) 
XWork := ag - ((REAL3 2 ROUND tp) * p i ) 
i n c l := ag 

List 4.1.3a.: Polynomial Approximation. 
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The argument x has to be reduced to l7i:/2l which requires one "IF" trap 

with a few type conversions. This reduction process requires a large 

number of time slots, and therefore it is not suitable for a real-time 

implementation. 

-- cycle 
t p := INT ROUND (ag / ( p i / 2.0(REAL32)) 
IF 

(tp > 2) OR (tp < -2) 
tp := tp MOD 2 

ELSE 
SKIP 

XWork := ag - ((REAL32 ROUND tp) * p i ) 
IF 
ABS(XWorlc) > ( p i /4 . 0 (REAL32) ) 

IF 
XWork < 0.0(REAL32) 
RWork := - 1.0(REAL32) 

TRUE 
RWork := 1.0(REAL32) 

TRUE 
G := XWork * XWork : 
RWork :- XWork + 

((((((((R[0]*G)+R[1])*G)+R[2])*G)+R[3])*G)*XW 
ork) 

IF 
(tp /\ 1) = 1 
RWork := - RWork 

TRUE 
SKIP 

out ! (RWork * amp) 
ag := XWork + i n c l 

List 4.1.3b.: Polynomial Approximation. 
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4.1.4. CORDIC 

The CORDIC [COdinate Rotation Digital Computer] is an iterative 

arithmetic algorithm introduced by Voider (1959). With a coordinate 

rotation computat ion scheme, the CORDIC algorithm is a very efficient 

method for computing many elementary functions. During the 1970's, 

Hewlett-Packard incorporated a hardware implementation of thus 

algorithm for their desktop calculators, subsequently in the 1980's Intel 

began to use it for the computation of sine, cosine and other 

t ranscendental functions on their numeric processors. In our Music 

Technology Group, a CORDIC based digital sine generator was 

implemented in a 0.7-|im double metal CMOS process (Itagaki et al. 1996) 

and (Spanir 1998). 

For the calculation of a sine or cosine of an angle 9, successive rotations 

of a radius vector are required on the unit circle starting at x=1 , y=0 and 

ending at x= cos 6, y= sin 0. Rotating a two dimensional vector [x,y] by an 

angle (j), [counter-clockwise when ^ > 0, clockwise when (j) < 0] may be 

achieved by multiplying it by a matrix : 

[X', y'] = R(p[x,y] 

RA = c o s ( t ) 
1 -tan(|) 

tan(j) 1 
[1] 

Rotating by angles (j) then co is equivalent to a rotation by angle of (j)+(o: 

R(j)+(o = R(t)Rco. The radius vector is rotated by a series of angles, where 

the absolute values of which are (^Q, (j)-], where = tan'"" 2 ' ' . The 

first three terms of this monotonically decreasing series are 0.785, 0.464 
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and 0.245. This choice of angle simplifies the arithmetic of multiplying by 

the corresponding rotation matrices. Their terms tan((j),) become divisible 

by powers of two. Since, cos((!),) = cos{-<^j), the term: 

K = COS((|)o) C0S((t)-|)...C0S(({)/y) 

can be grouped for all ()),•, and used as a constant multiplying scalar. 

The popularity of the CORDIC algorithm was primarily due to its 

straightfonward implementation on a fixed point device using only the 

arithmetic operations of addition, subtraction and binary right shift [division 

by powers of two]. In case of the T800 transputer, as a processor with a 

f loating-point processing unit, there is no provision for "fixed" point 

operat ions. This means that for the implementation of the method on a 

T800, some of the fixed-point operations have to be substituted by less 

efficient f loating-point operations. [For example, a bit-shift has to be 

replaced with a multiplication by 2.O.] 

In addit ion, the CORDIC algorithm will only work in the first quadrant; 

between 0 and 7i/2 radian in the case of a sine oscillator. To implement 

this method as a continuous oscillator, it is necessary to restrict the angle 

within that range and this requires a few "IF" traps, as shown in the 

polynomial method where the working angle is between -K/2 and +7i/2. 

This is another disadvantage for implementation on a T800. 
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4.1.5. Summation Recursion 

This method, summation recursion in coupled form or a two-

dimensional vector rotation, uses two basic trigonometric identities, for the 

sine and cosine of the sum of two angles: 

sin(a+p) = cos(a)sin((3) -i- sin(a)cos(p) 

cos(a+P) = cos(a)cos(p) - sin(a)sin(p) 

This method could be very effective for a real-time implementation, as the 

set-up [68 clock cycles] and the continuation costs [62 clock cycles each] 

are not so high, and the memory demand is low. Due to the dependency 

on both the sine and cosine components, however, this method is not so 

effective for applications that require only one component. 

[ c o n s t a n t ] 
[ c o n s t a n t ] 

f q : o utput frequency-
s f : s a m p l i n g f r e q u e n c y 
p i : 2n 
amp: a m p l i t u d e 
i n c l : i n c l e m e n t 
C : c o s i n e v a l u e 
cO : c o s i n e ( 6 ) 
c l : c o s i n e ( 0 - 1 ) 
s : s i n e v a l u e 
sO : s i n e ( 0 ) 
s i : s i n e ( 0 - 1 ) 
out: output c h a n n e l 

-- s e t up 
i n c l : = ( f q * p i ) / s f 
cO : = 1.0 (REAL32) 
sO : = 0.0 (REAL3 2) 
c l : = COS ( - i n c l ) 
s i : = SIN ( - i n c l ) 

List 4.1.4a: Sine Oscillator by Summation Recursion Method. 
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-- c y c l e 
s := (cO * s i ) + (sO * c l ) 
c (cO * c l ) - (sO * s i ) 
out ! (s * amp) 
c l 
s i 
cO 
sO 

= cO 
= sO 
= c 
= s 

List 4.1.4b: Sine Oscillator by Summation Recursion Method. 

4.1.6. Chebyshev Recursion 

Considering the second-order linear difference equation and 

applying the z-transform: 

y(n) = OCy(n- l ) + Py(n -2) + >^(n) 

H ( z ) - - ^ -
1 

X(2) 1 - a z - p z 

Solving for the roots of the denominator leads to two cases. In the case 

where a^+4^<0 the poles of H^^^ are complex conjugates. They appear in 

the z-plane at z = Re^^^ and z = Re~j^<^. 

z-plane 

Figure 4.1.1.: Second-order Resonator Poles. 



Here, 

= 271 X = coT 

f = T ~ ^ 

where s ^ : sample frequency 

'5; frequency of a tone 

R; the radial distance of the poles 

: the angle off the real axis 

The equation can be rewritten as: 

1 
( l - R e ^ ^ c z - i ) ( l - R e - j e c z - i ) 

^^^^ ~ 1 - 2RcosecZ-^ + R^z"^ 

Since the dual-output of sine and cosine is not needed, a simpler sine 

wave can be implemented. For f?=1, with no zeros and the dumping set to 

zero, the bi-quad transfer function becomes: 

^^^^~l - 2 c o s e,z~^-fz~2 

A simple oscillator may be computed by solving the corresponding 

dif ference equat ion: 

y ( n ) = 2 c O S 0 c y ( n _ i ) - y ( n - 2 ) 

To generate an oscillator of amplitude A, the difference equation is started 

from 

y(n-l) = 0 
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The ampli tude is set by seeding the correct ^{^.2) value: 

y ( n - 2 ) = A s i n e , 

f q : output f r e q u e n c y 
s f : s a m p l i n g f r e q u e n c y 
p i : 2n 
amp: a m p l i t u d e 
c o n t : c o n s t a n t 
s: s i n e (0+1) 
sO: s i n e ( 0 ) 
s i : s i n e ( 0 - l ) 
t l : temporary s t o r a g e 
out: output c l i a n n e l 

-- s e t up 
t l := ( f q * p i ) / s f 
c o n t := 2.0 (REAL32) * COS ( t l ) 
sO := 0.0 (REAL32) 

[ c o n s t a n t ; 
[ c o n s t a n t ; 

s i SIN ( - t i ; amp 

-- c y c l e 
s := (cont * sO) - s i 
out ! (INT3 2 ROUND s) 
s i := sO 
sO := s 

List 4.1.5.: Sine Oscillator by Chebyshev Recursion Method. 

The initialisation requires 101 clock cycles [5.05 | isec], and each cycle 

does 18 clock cycles [0.9 j isec]. 

This implementat ion typically gives between -80 and -120 dB signal-to-

noise ratio on a full 16-bit range [2^^=65536] sine wave calculated in 32-bit 

f loating point format as implemented, comparable with a sine wave 

calculated by the Taylor series expansion [see Chapter 4.1.2.] up to 100 

components in 64-bit floating point format to achieve higher precision 

when subsequently converted into 32-bit format for a quantitative 

compar ison. 
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The measurements were done starting after the generation of 32,000 

cycles, about one second after the beginning of a sine wave. In the case 

of the saw tooth waves consisting of a number of sine waves in different 

frequencies, however, some phase drifting was observed after generation 

for about ten minutes. Since the oscillators are operating independently, 

without synchronisation in their phase except at the initial set-up, the 

phase of the sine waves in different frequencies, but as a part of harmonic 

series, may not be aligned at each corresponding cycle, due to the 

precision of the calculation. For example, the third cycle of an 880 Hz sine 

wave may not begin at exactly the same time as the second cycle of a 440 

Hz sine wave. 

/ 
Figure 4.1.2a.: Saw-Tooth Wave by 8-bit integer. 

Figure 4.1.2b.: Saw-Tooth Wave by 8-bit integer after 10000 cycles. 
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This phase distortion problem is marginal, as most musical notes are not 

as long as ten minutes, and individual sine waves are accurate enough to 

keep the original pitch. 
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4.2. 81-Fixed-Voice Implementation 

4.2.1. Synthesis Method 

To comply with the hardware limitations of the 160 Transputer 

Network, in particular, the availability of only 4k-byte of local memory on 

each networked transputer, a Chebyshev recursion method was chosen 

for the sine wave generation. The recursive method requires a minimal 

size of memory for multiple oscillators implemented in parallel [see 

Chapter 4 . 1 . and Gordon and Smith 1985], and generates high resolution 

sine waves by computing the projection of a rotating vector on the x- and 

y-axes. Advantages of the method are: 

a) Few stored data components are required. 

b) Each value needs few computations. 

c) The waveform has a low distortion factor, since the difference 

equation simulates a physical system whose solution is a perfect 

sine. 

Recursion requires the handling of limit cycles over the long-term, but they 

can be made to lock on to periodic values. 

calculation cost (clock cycle) 

method set up oscil lat ion 

Wavetable 28.0 32.4 

Taylor Series 28.0 18849.3 

Polynomial 61.0 246.6 

Summation 68.0 62.0 

Recursion 101.0 18.0 

Table 4.2.1.: Computation Time Required in Sine Generation Methods. 
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For the preliminary implementation, the seeding method described in 

Chapter 4.1.6. was appl ied; starting from phase 0. Due to lack of an 

ampli tude envelope, a click noise can be heard at the end of each tone. 

Using this method, it is also difficult to change the frequency of a sine 

wave without an extra calculation to keep the output continues. An 

initialisation of an oscillator, however, requires only a few operations; 

about 5.05 | isec in a 20 MHz clocked T800 transputer. In this 

implementat ion, a 32-bit integer format is used internally for data 

communicat ion, although the DAC has only a 16-bit bandwidth, since this 

achieves optimal performance from the transputer software [see Chapter 

2] and also ensures that changes in amplitude level do not result in a loss 

of quantisation accuracy. 

To improve the tumbrel quality, the initial phase information was later set 

using the SHARC Timbre Database (Sandell 1994). This means, 

however, that the initial value of the synthesised sound is not always zero, 

and this necessitates the introduction of an anti-clicking process, using a 

short ampli tude envelope, at the beginning and the end of a tone. Despite 

the introduction of phase information the quality of synthesised sound was 

not improved, due to the lack of a long amplitude envelope. 

4.2.2. Prototype Programme 

A transputer at the top of a single element works as a mixer and the 

other three members of the group work as a unit of oscillators. At a 32 

kHz sampl ing frequency, each oscillator unit placed in a transputer is able 

to contain eight recursive sine oscillators that can be controlled 
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independently in both amplitude and frequency. At 44.1 kHz, representing 

CD quality, five sine oscillators can be situated in a transputer. 

This combinat ion, consisting of one mixer and three oscillator units, is 

expanded on to a larger network, recursively. As a prototype 

configurat ion, an 81 note-organ was implemented and tested. In this 

conf igurat ion, the network is capable of accommodating 81 oscillator 

groups [one group per transputer] that provide 648 recursive sine 

oscil lators in total, at a 32 kHz sampling rate or 405 oscillators at a 44.1 

kHz sampl ing rate. Each oscillator group corresponds with a fixed MIDI 

key. 

Calculat ions for the oscillators are executed in 32-bit floating point format. 

When a sound sample exits from an oscillator unit placed on a transputer, 

it is converted into an integer number in 32-bit format that is then 

accumulated with other synchronous samples throughout the network. 

This bottom-up sample accumulation on a tree structure provides equal 

path length to each oscillator group, thus causing no phase delay. 

The figures below show the configuration of the 81-voice organ. To 

present the processes implemented in parallel but in the opposite signal 

direction, the map is drawn as the revised ternary tree with its mirror 

image. 
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from/to P C B No. 0 

— connection in use 

connection unused 

connector 

signal divider 

oscillator unit 

signal mixer 

flow of —f 
control information 

flow of sound sample 
fimp/emenfed in paral/el 

shown as mirror imagej 

Figure 4.2.1a.: Configuration Map (Left). 

96 



from/to P C B Nos 7-9 

from 
H O S T 

from/to P C B Nos 1-3 

Figure 4.2.1b.: Configuration Map (Centre). 
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from/to P C B No. 0 

Figure 4.2.1c.: Configuration Map (Right). 
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As described earlier, a standard MIDI keyboard has been used as the 

primary control device for the synthesis engine, and a custom-designed 

MIDI-to-transputer interface board [see Appendix 3] provides the 

communicat ion link between the MIDI keyboard and the network. For the 

purposes of initial development, MIDI commands were restricted to 

primitives such as "note on" and "note off", assigned to the audio 

transputers via the MIDI controller unit. The "raw" MIDI information is 

fi ltered to the above primitives and then transformed to a single packet of 

t ransputer control data, consisting of the key number and its associated 

velocity [amplitude]. 

These messages are led to the top of the network and passed down the 

branches to the bottom of the tree, where the synthesis instructions are 

al located to individual oscillators. On the way to the bottom the message 

is sorted at signal routers according to the key number. This top-down 

control method enables groups of oscillators implemented in parallel to 

work entirely independently. 

Over the network the flow of control information and the flow of the sound 

output are both implemented in parallel, but in opposite directions. The 

latter is a constant continuous flow at a 32 kHz bandwidth. The former is 

handled on an on-demand basis, but could involve a data rate of up to 150 

packets per second. 

If the control signal is periodic, the processes in parallel could be 

control led cycle by cycle. Or, if the control signal is at a low frequency, 

such as a few packets a second, the processes could be handled in "ALT" 
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structure using a channel guard that costs 24 clock-cycles [1.2 ^sec on a 

20 MHz clocked transputer] per execution where at 31.25 |isec is available 

for processing a sound sample at a 32 kHz sampling rate. This leads to 

both of the processes having to be placed in a high-prioritised simple 

parallel structure. When the sound sample stream is placed in higher 

priority and the control signal is In normal [low] priority, the latter may not 

obtain a time slot, since the high-demand higher priority process occupies 

most of the processing time. 

Due to the nature of the transputer, a time-multiplex parallel processor, it 

is necessary to incorporate a sound buffer to ensure a constant flow of 

data to the sound output. A balance has to be struck between a long 

buffer, which will result in a noticeable performance lag, and a short buffer, 

which will not allow the reliable accumulation of events for a steady output 

data stream. 

K I K U S U ) 

Figure 4.2.2.: Result of Insufficient Buffer Size. 

100 



If the output sound sample stream is not constant, but the disruption is 

short enough to sustain the clock operation, as shown in the above figure, 

the DAC produces a corrupted output; usually a lower pitch as a result of 

old samples being retained in the cache. 

With a 16 msec-long sound buffer situated between the network and the 

DAC the system performs reliably, providing the input event control rate is 

less than about 150 keystrokes per second. In real-time processing, late 

data almost always result in computing errors. Viewed from the human 

perception side, it has been shown that the introduction of a very small 

response delay to reduce this possibility can generally be tolerated by a 

performer, providing it is kept constant. 

Since the raw MIDI data from a keyboard are filtered to essential 

note/event commands, ignoring other higher density information such as 

that associated with continuous controllers and system exclusive 

messages, the peak data rate through the network should not normally 

exceed the 150 MIDI-event per second boundary, although this may 

depend to some degree upon the characteristics of the key sensor and 

other components integral to specific designs of MIDI keyboards. 

Subjective tests have confirmed that the 16-msec-long buffer is 

acceptable to most performers, and given the conflicting considerations 

identified above perhaps it is the best compromise that can be achieved in 

this particular context. [See Chapter 3] 
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When a higher rate of MIDI information is supplied, the system will 

temporari ly halt until the control information has been distributed to its 

target processors (Itagaki, Pun/is and Manning 1994). This is an 

interesting example of the transputer's fault tolerant behaviour in certain 

circumstances, if correctly programmed; the result of pseudo-parallel 

processes with a standard communication protocol that is based on 

"message" and "acknowledgement". This means that if the receiver side 

is busy the sender process is frozen until an acknowledgement comes in 

f rom the receiver. 

Providing all subsequent processes can be sequentially halted in a similar 

manner without loss of data, the deadlock is not fatal either locally to the 

processor concerned or globally in terms of processes that are in parallel. 

Under these condit ions the system will always recover at the earliest 

opportunity without further corrective action. 

The set-up latency of the system, the timing between "key press" and 

"sound out", is about 20 ^isec prior to the buffer at the DAC, that is short 

enough to satisfy the conditions for real-time synthesis at a sampling rate 

of 32 kHz where, as already noted, a maximum interval of 31.25 j isec is 

available for computat ion between successive samples. 

Because of the fixed hardware architecture, however, some of the 

transputers have to work as connectors. To improve the efficiency of the 

network, a monitoring programme is introduced; a simple process situated 

in each transputer as a lower priority parallel process. 
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4.3. Performance Monitoring 

The monitoring routine measures the execution time of a simple 

process and returns the figure to the host transputer through the network, 

together with the address of the transputer that is assigned by the host. 

Due to the hardware limitations of the tree architecture, this monitoring 

information should be sent through a single output, sharing a channel with 

the sound output. The software language imposes another limitation; one 

process can only have an access to a single channel. To avoid this 

violat ion, it is necessary to attach an extra process to control the 

communicat ion channel, using an "ALT" structure. 

If such a constraint is used to manipulate the sound output and the 

monitoring information for each oscillator unit, in turn, the effect is to 

reduce the capacity of each oscillator unit by 50%; from eight oscillators to 

just four. Accordingly, the configuration at the bottom of the tree has to be 

changed; one mixer, two oscillator units and a dummy oscillator. The 

monitoring information from an oscillator unit is then diverted to an 

adjacent "dummy" oscillator that works as a mixer of monitoring 

information. 

As a result, it was deduced that some transputers at higher stages in the 

tree-structure assigned as "signal routers" are under-util ised, with spare 

processing t ime that may be used for additional synthesis operations. 
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from/to PCB Nos 7-9 

from 
HOST 

fromAo PCB Nos 1-3 

Figure 4.3.1.: Configuration of a Monitoring Program (part). 
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to/from 
HOST 

120 + 

( m s e c ) 

Figure 4.3.2.: Monitoring Result (part). 
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A signal router, or connector, is re-designed so that the information in both 

directions is diverted to an adjacent transputer on the same level, using 

link number one or link number three. The spare processing capacity thus 

released may then be used for an additional small oscillator unit, half of 

the standard provision, as a process in parallel with the connector. 

control information from PCB No. 0 

iHiHil 

sound output to PCB No.O 

lecter - ^ - conn( 

oscillator unit 

•Ĵ l" signal distributer 

signal mixer 
[implemented in parallel] 

connecter + oscillator unit 
[ implemented in parallel] 

Figure 4.3.3.: Revised Implementation. 
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4.4. 88-Fixed-Voice Implementation 

Since the processes of synthesis to be employed are entirely 

addit ive, working from basic sinusoids, the generation of interesting 

t imbres becomes a function of how many individual sine wave oscillators 

are assigned to each note, and how they are regulated in terms of both 

f requency and amplitude. 

When further consideration was given to the harmonic content of the notes 

to be synthesised, especially those in higher octaves, and the limitation of 

the DAC in terms of the Nyquist frequency was also taken into account, it 

became clear that it is not always necessary to assign all the component 

oscil lators available at each transputer to the synthesis of the harmonic 

content of a single note. 

For example, in the case of the highest sounding A in an acoustic piano; a 

fundamental frequency of 3,520 Hz, its fifth harmonic [17,600 Hz] is 

already higher then the Nyquist rate of a 32 kHz DAC [16,000 Hz]. This 

means that four oscillators are quite sufficient to reproduce such a high 

order note with acceptable fidelity, releasing spare oscillators to enrich the 

spectra of notes with lower fundamental frequencies, and the addition of 

some extra notes at the lower end to create a standard acoustic piano 

range. 

In the light of the above assessment, the program was optimised to 

accommodate a range of 88 notes over the network, serviced by a total of 

752 oscil lators at a 32 kHz sampling rate [sound sample 4.3.]. The 

allocations of oscillators range from sixteen per note at the lower end of 
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the range to four per note at the top. The overall availability of harmonic 

components for each note, however, still falls significantly short of the 

minimum criteria stated earlier for the approximation of most instrumental 

sounds other than those associated with electronic organs except, given 

the Nyquist considerations, at the very top of the range. 

The oscil lator units, additionally implemented to the revised configuration, 

are situated at a middle level of the tree structured network, where the 

signal routers were located in the original 81-voice model. Since most of 

the oscil lator units are at the bottom of the tree structure, each additional 

oscil lator unit has a slightly shorter path to the tree-top and this 

conceivably may cause some latency and phase differences. As 

ment ioned in the 81-voice-configuration, the start-up latency for a note 

synthesised with the oscillator units at the bottom of the tree is about 20 

fO-sec, where that of the oscillators at the middle level is about 18 |isec. 

The dif ference, about 2 [isec, is far shorter than the sample period, 31.25 

)isec, and thus can be considered as marginal. 
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4.5. Improvements on the Network 

After implementing these programs, the network was physically 

modif ied to allow connections from the left side, the right side, and the 

bottom of the tree to external resources, such as other transputers with 

larger on-board memory capacity. These modifications were made partly 

in response to a need to allow the functionality of the audio processor to 

be expanded. It is worth noting that in setting out to design such an audio 

processor, the research group had a unique opportunity to build a 

massively parallel architecture essentially from first principles. 

Expandabil i ty has, nevertheless, been a paramount consideration from the 

outset, and the relative ease with which modifications such as the above 

could be made demonstrates the versatility of the transputer and its serial 

link system of communicat ions. 

The only significant engineering problem so far encountered has been 

heat emission from the transputers which are placed densely on the 

PCBs. According to the data book published by the manufacturer (INMOS 

1989), the T800 transputer civilian models should work reliably under 

condit ions of temperature between 0 and 70 °C with transverse air flow of 

about 1 m/s. For a real-time processing application like an 88-note organ, 

however, the condition seems to be lowered to about 35 °C: the network 

ceases to work after 20 minutes of processing when the processors are 

hotter than an average human body temperature. This heat emission 

problem necessitates some forced air-flows through the network, and 

providing adequate cooling for such a densely accommodated multi­

processor system proved a major design challenge which could only be 

partially solved in the time available. In summer t ime, when the room 
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temperature is about 25 °C or more, the system is still unable to perform a 

real-time job reliably if left switched on for more than about thirty minutes. 

Solutions to the problem would be a significant reduction of the processor 

density on a PCB and a wider distance between the PCBs; about 25 mm 

between the PCBs on the current system [less than 20 mm between the 

mounted transputers and the adjacent PCB]. 
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4.6. Conclusion 

The real-time additive synthesis applications, 81-fixed-voice and 

88-f ixed-voice, were implemented on the 160 transputer network. In the 

88-voice model , 752 real-time recursive sine oscillators are available over 

the network, at a sample rate of 32 kHz. These configurations reliably 

operate up to 150 keystrokes per second. 

The set-up latency of about 20 | isec is at an acceptable level for a hard 

real-time system, as the interval of consecutive sound samples should be 

produced within a sampling period of 31.25 |isec. This demonstrates the 

potential of the 160 transputer network as a self-contained real-time audio 

processor, in particular when configured as an additive synthesis engine. 

To establish fully its credentials as a self-contained audio synthesiser, 

however, further research is required into the dynamic control of 

ampl i tude. 

Due to the hardware limitations of the network, it has not proved possible 

to implement independently controlled amplitude envelope generators 

over the entire 8 1 - or the 88-fixed-voice models, and it may be necessary 

to reconsider the network architecture in order to achieve such an 

objective, possibly at the expense of the total number of oscillators. 
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Chapter 5. Optimisation of Real-Time Additive 
Synthesis on the Network 

5.1. "Pipe Organ Style" Borrowing 

Having revised the implementation of the 88-voice organ, the 

immediate priority was to improve the tumbrel quality, since only 16 

oscil lators per key maximum and about eight per key average are 

available. Al though the priority might have been given at this stage to the 

requirement of the envelope generation facilities, it was felt that improving 

the specif ication of the tone generation facilities was a more logical first 

step, since this directly tested and sought improvements in the basic 

distributed processing architecture which paves the way to the efficient 

operation of the network as a whole. 

There are, however, some redundancies over the network, since several 

oscil lators operate at the same frequency. For example, the eighth 

harmonic of the 110 Hz note is 880 Hz, that is also the fourth harmonic of 

the octave at 220 Hz, the second harmonic of 440 Hz and the 

fundamental of 880 Hz. Fortunately, there is a way to reduce the number 

of oscil lators required for the configuration of fixed-note allocations by 

using ampli tude information. 

A suitable technique has been applied in a conventional pipe organ 

design: high pitch stop-ended pipes are used to boost the high harmonic 

components of a low pitch open-ended pipe (Audsley 1905). The even 

number harmonic components may thus be "borrowed" from other tones. 

[Organ builders prefer to use the word "duplication" instead of 
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"borrowing".] For the odd numbered components, however, some 

compromise must be made. 

An acoustic piano and other fixed-pitch modern instruments are tuned to 

equal temperament, in which each semitone is made an equal interval. In 

a twelve-tone system, commonly used in modern instruments, the interval 

is 2 ' - of a base key frequency. This leads to another type of "pipe organ 

style" borrowing. For example, the ninth harmonic of A 110, 990 Hz, may 

be replaced with the sixth harmonic of E above A 110 [110x2'^ =16481], 

988.88 Hz, with a 0.1128% difference in frequency. 

A subjective feasibility test was conducted; a comparison between a note 

with true harmonics and that of some borrowed harmonics. A "true" note, 

a triangle wave of A 110, was synthesised with up to the sixteenth 

harmonic components [sound sample 5.1.1.]. 

Harmonic Frequency (Hz) Origin Harmonic 
real (A) borrowed + / - ( % ) 

Origin 

base 110.00 
2nd 220.00 
3rd 330.00 
4th 440.00 
5th 550.00 
6th 660.00 
7th 770.00 
8th 880.00 
9th 990.00 988.88 -0.113 E 6th 
10th 1100.00 1108.73 0.794 C# 8th 
11th 1210.00 1222.30 1.016 F7th 
12th 1320.00 1318.51 -0.113 E8th 
13th 1430.00 1453.57 1.648 7th 
14th 1540.00 1567.98 1.817 G 8th 
15th 1650.00 1661.22 0.680 G#8th 

Table 5.1.1.: Comparison between "true" and "borrowed" Harmonics. 
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A "borrowed" note was then synthesised with the front eight harmonics 

using components of "true" tones and ninth to sixteenth harmonics using 

"borrowed" tones [sound sample 5.1.2.]. 

The dif ferences, in terms of frequency, are less then a few cents. For my 

ears, however, the notes have slight but recognisable differences in their 

tumbrel features, especially in the brightness of the sound, the slight 

mistunings leading to a blurring of the overall definition quite different to 

any conventional chorusing characteristics. As Audsley concluded in his 

research on borrowing [of pipes] and duplication [of upper partial tones]: 

I n conclusion, we may say t h a t beyond the 
formation of an expressive a u x i l i a r y Pedal 
Organ, as above alluded t o , we st r o n g l y 
condemn the p r a c t i c e of borrowing and 
d u p l i c a t i o n as u n s c i e n t i f i c , i n a r t i s t i c and 
f a t a l to a p e r f e c t t o n a l appointment: i t s 
absurd side i s eloquently set f o r t h i n the 
"Nouveau Systeme" of M Leonard Dryvers. 

"Borrowing and Duplication." 

in The Art of Pipe Organ Building (Audsley 1905) 

For the reasons above, the full implementation of the "pipe organ style 

borrowing" was abandoned. 
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5.2. Dynamic Allocation of Notes 

In the configuration of the network as an 88-voice organ described 

above, the situation arises in "normal" performance, or even in the case of 

a simple duet, where a static allocation of oscillators to specific notes 

frequently involves a high degree of redundancy. Therefore, there are 

significant advantages to be gained from a dynamic note allocation 

algori thm that allows optimal deployment of oscillators, thus increasing the 

range of t imbres that can be generated. 

In the revised configuration, the system is programmed to accommodate 

27 simultaneous notes with up to 24 oscillators per note, or 9 notes with 

up to 72 oscillators each; a total of 648 oscillators over the network. 

voices oscillators per voice 
81 (fixed) 8 
88 (fixed) 16, 12, 8, 4 

27 24 
13 48 
9 72 

N.B. The program in italic has not been implemented. 

Table 5.2.1.: Allocation of Oscillators. 

The voices are controlled by a voice allocation unit that sends control 

signals to the top of the network. At this stage, some latency for the voice 

select ion, 150 nsec per voice, has to be expected in addition to the set-up 

latency of about 20 | isec. 

In the worst case, the 27-voice model operating at full capacity, 

whereupon a 28th note is activated, forcing release of the longest-
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sounding note, the maximum latency at voice selection is estimated to be 

about 8 }isec. A control signal packet now has to contain an additional 

byte for voice information, thus the stream of sound output is interrupted 

more frequently, in turn requiring a longer sound buffer. 

control information from PCB No. 0 

uHmi 

sound output to PCB No.O 

ecter 

'Xyf- oscillator unit 

signal distributer 

1̂  signal mixer 
[implemented in parallel] 

extent of a voice (27 voice model) 

Figure 5.2.1.: Configuration Map 27-voice Model (part). 
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As an initial step to overcome these problems, the size of buffer was 

doubled to 32 msec. Despite this significant increase in its length, 

however, the longer buffer still failed to reliably return an 

acknowledgement signal to the network, resulting in a non-recoverable 

t ime-out condit ion with loss of data in the DAC driver. This problem was 

solved by means of a double buffering arrangement: whereby a very small 

[less than 1 msec] second buffer is added between the network and the 

main buffer to ensure quick acknowledgements to the network. To many 

performers, however, the resulting response delay of almost 33 msec is 

uncomfortably close to the maximum that can be reasonably tolerated. By 

shortening the main buffer length to overcome this objection, this itself, 

unfortunately, reintroduces the risk of time-out errors. 

After the implementation above, three extra functions were introduced; 

harmonics, phase and amplitude envelope. A few sets of simple 

ampl i tude information were given to the oscillator units that create saw­

tooth, square and triangle waves [sound sample 5.2.1.]. Thence, using 

Sandell 's "SHARC Timbre Database" (Sandell 1994), the amplitude and 

the initial phase for each harmonic content were supplied: the former was 

distributed to each oscillator unit and the latter was stored over the 

network, residing in the on-chip memory area. Despite an effort to keep 

the memory load to less than 75%, this extra memory requirement 

introduced a significant overload into the sound processing itself. The 

problem was solved by means of reducing phase information by way of a 

compromise. Due to the lack of an amplitude envelope, however, the raw 

synthesised sound was still very raw and unshaped. 
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A few types of simple independently controlled amplitude envelopes were 

then implemented at the top of the routing for the each voice where a 

transputer works as a connector. Since the available time slots only 

permit a few operations per sound sample, and the memory capacity for 

the envelope are limited, less than 3.2k-bytes, only basic functions were 

chosen and tested; half-sine rise/decay, parabolic curb and hyperbolic 

[sound sample 5.2.2.]. A combination of the hyperbolic decay curb and a 

saw-tooth wave creates a passable string instrument-like sound, but, it 

remained evident that more sophisticated envelope shaping facilities are 

necessary, if the synthesis engine is to reduce its full potential. Most 

strongly, it is apparent that the potential trade-off of oscillator resources 

against envelope shaping routines will be even more severe than in the 

case of the simpler implementations of discussed in the previous chapter, 

and these need further investigation. 
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5.3. Multi-Rate Approach 

Addit ive synthesis using a large set of digital sine oscillators is a 

f ine-grain parallel algorithm and particularly compatible with the 

architecture of the T800 tree. The high control bandwidth required, 

however, has meant that its computation in real-time has only become 

economic in recent years, due to advances in VLSI technology. This has 

led to a re-awakening of interest in the research community for methods to 

optimise computat ion; such as multi-rate DSP techniques that integrate 

well with the traditional oscillator-set model of additive synthesis and thus 

with its implementation on the 160 Transputer Network. 

A multi-rate optimisation is based on the idea of eliminating redundant 

computat ion. For instance, a sine oscillator producing a tone of 1 kHz 

requires a minimum of 2 kHz sampling frequency. On the other hand, 

preferred sample rates for audio output are 32 kHz [NICAM], 44.1 kHz 

[CD] and 48 kHz [DAT], some 16 to 24 times higher than the minimum 

requirement. Researchers in the area, however, suggest that a geometric 

progression of sample rates across the audio spectrum generally satisfies 

the greatest number of demands on a note-based synthesis engine 

(Phill ips, Purvis and Johnson 1994). Theoretical research on the subject 

using complex oscillators has also been conducted; (Phillips, Purvis and 

Johnson 1996) and (Phillips 1997). 

In the initial implementat ion, three sampling rates were used; 8 kHz, 16 

kHz and 32 kHz [sound sample 5.3.]. Two FIR filters are placed at the top 

of each branch of the lower sampling rate groups to convert the output to 

a standardised sampling rate of 32 kHz: the technique applied here is 
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known as "over-sampling" the procedure common to many designs of 

compact disc players. 

The constraints of real-time sound processing restrict the permitted length 

of the interpolation filter; a long filter performs a suitably sharp response, 

but results in a long delay that should be avoided for the real-time 

operat ion. This leads to some degree of compromise, involving a 

combinat ion of a short FIR filter with an optimal grouping of the note and 

the oscil lators. The filters have to be distributed over a part of the 

network, since a transputer has infinite capability in calculation speed. 

The smallest dividable unit, a leaf of the network, consists of four 

transputers, therefore, the number of transputers for a filter has to be a 

multiple of four. 

For a f ixed 88-voice application, up to sixteen oscillators are assigned for 

a note, except for the twelve notes in the lowest octave where the 

assignment is increased to 24. Notes are grouped according to their 

fundamental frequency and their harmonic contents. In this configuration, 

1,296 oscil lators are available over the network, in comparison with the 

single-rate model with 752 oscillators. 

sampling rate 
oscillators 
per group 

(transputer) 

groups 
on 

network 
sub total 

8 kHz (1/4) 32 21 672 

16 kHz (1/2) 16 18 288 

32 kHz 8 36 336 

T O T A L 75 1296 

Table 5.3.1.: Allocation of Oscillators (1). 
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An alternative 44.1 kHz based configuration, which has not been 

implemented, would show a similar result. 

oscillators groups 
sampling rate per group on sub total 

(transputer) network 
7.35 kHz [1/6] 30 15 450 

22.05 kHz [1/2] 10 27 270 
44.1 kHz 5 33 165 
T O T A L 75 885 

Table 5.3.2.: Allocation of Oscillators (2). 

In the case of a multi-rate application using dynamically allocated notes 

(Itagaki, et al. 1995), the effects, measured by the number of oscillators 

al located to a voice, are estimated as shown in the table below. 

sampling rate [kHz] 
[production-output ration] 

number of 
voices 

oscillators 
per voice 

total 
oscillators 

10.7 [1/3], 32 [1/1] 22 36 792 
4 [1/8], 8 [1/4], 32 [1/1] 15 80 1200 

Table 5.3.3: Effect of Dynamic Allocation + Multi-Rate. 
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from A to B 

8 kHz 

•|/̂ -̂̂  oscillator unit 

flow of sound output 

F IR filter 8k-> 32k 

16 kHz 

oscillator unit 

«J flow of sound output 

• j ^ F IR filter 16k-> 32k 

32 kHz 

-FvT= oscillator unit 

J flow of sound output 

r flow of control signal 

•f-»̂  signal router 

J+X signal mixer 

Figure 5.3.1a.: Configuration Map of Multi-rate Application (left). 
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E ] 
from 
H O S T 

Figure 5.3.1b.: Configuration Map of Multi-rate Application (centre). 
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from C toI lD 

Figure 5.3.1c.: Configuration Map of Multi-rate Application (right). 
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5.4. Conclusion 

The optimised methods, resource management by the dynamic 

allocation of notes and the multi-rate approach usefully increase the 

number of harmonics per note, representing a significant improvement in 

the quality of t imbrel detail. The multi-rate optimisation alone has been 

shown to be effective for accelerating the process of dynamic tone 

generat ion, provided the notes are efficiently allocated to optimal sampling 

rates, and the combination of the sampling rates applied is suitable. 

Due to the hardware restrictions on the network, especially in memory 

capacity and structure, there are limits when seeking to improve the 

tumbrel quality. As already noted, a new network structure, therefore, 

should be considered for future investigations, such as an asymmetrical 

tree or non-homogeneous tree in terms of memory capacity and 

calculation power. 
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Chapter 6. Granular Sjmthesis and Sound 
Granulation 

6.1. History of Granular Synthesis 

6.1.1. Acoustical Quanta: the theory behind the 
granulation 

Granular synthesis or sound granulation is a means of constructing 

complex sounds from grains originally proposed as a representation of 

"acoustic quanta" by a British engineer Denis Gabor (Gabor 1946), who 

also invented the idea of the hologram. The basic idea of sound 

granulation for narrow bandwidth transmission / reproductive purposes is 

quite similar to the quantum-wave theory in physics: sound may be 

descr ibed as a sequence of elementary acoustic elements. It can be seen 

in c inema and video images where a rapid sequence of static images 

gives the impression of moving objects. 

Gabor firstly presented his method of sound analysis in a three-part article 

(Gabor 1946). He expanded the uncertainty theorem of quantum 

mechanics to sound signals, by using a complex representation of the 

signal, then proposed an "elementary signal"; a short term sound or pulse 

with an ampli tude envelope; equivalent to a quanta in the physical theory. 

[A year later, this part was modified and appeared in another article 

(Gabor 1947) as a proposal of "acoustic quanta".] In part two, he 

conducted some experiments to illuminate the limitations and the range of 

human perception in listening for determining the size of grain. In the final 

part, he described the principles of frequency compression and expansion 

using his theories of "elementary signal" and "sliding window", and then 

their practical application; the frequency converter. This part became the 
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basis of asynchronous sound granulation, especially in its application to 

t ime-stretch and t ime-compression. 

He concluded that the minimum duration of the "acoustic quanta" should 

be 10 msec with an amplitude envelope generated by the Gaussian 

method; 

1 
-t2 

s ( t ) = ^ e 2 d t 

7271 

A variation of this is a quasi-Gaussian curve that has a flat top between 

the rise and the delay of the original Gaussian curve (Roads 1978). In the 

case of analysis-synthesis, a Hanning window may be more convenient, 

hence its usage in the fast Fourier transform. Gabor also suggested line-

segment envelopes for practical reasons in the original article (Gabor 

1946). The shape of grain is discussed later in this thesis. 

Gabor appl ied his theory of "elementary signal" for frequency conversion 

by means of a kinematical method. Using as an example the sound track 

of a f i lm, he explained the relation between the sound frequency at the 

original film speed and at a faster one. [At this t ime, 1946, a sound track 

on a film was optically recorded and reproduced using a photocell behind 

the moving fi lm, unlike the method which replaced it; a magnetic strip.] 

The film moves across the fixed window, and the moving slit is effective 

whi le it t raverses the window. To obtain a continuous sound, a second slit 

should appear at or just before the instant at which the first slit moves out 
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of the window, after that the third slit would appear, and so on. Assuming 

the window has a continuously graded transmission; full in the middle and 

fading out at both sides, abrupt clicks thus can be avoided. This is the 

basis of the kinematic frequency converter and can be applied for sound in 

any application, as Gabor described in his theory on "acoustic quanta". 

These hypothesis were verified mathematically by Bastiaans (Bastiaans 

1980, 1985). 

Gabor presented the proposal as a means of sound granulation for the 

purposes of signal transmission and signal conversion by "windowing". 

There are many other analysis-transformation techniques developed in the 

field of digital signal processing that can also be used for granular 

synthesis. For example analysis and synthesis systems such as wavelets 

or the short-t ime Fourier transform [STFT or SFT] supply a local 

representation of the signal, by means of grains or wavelets multiplied by 

coeff icients, that provides another theoretical foundation for granular 

synthesis such as pitch synchronous granular synthesis. 

6.1.2. Past Implementations of Granular 
Synthesis/Sound Granulation 

Granular synthesis has proved quite attractive to a number of 

composers, in particular for the power and flexibility it offers for the tumbrel 

transformation of sampled sounds, and also its conceptual simplicity: small 

f ragments of sounds are superimposed to construct more complex sound 

material. Various composers have explored this technique since the early 

1970's, inspired by researchers such as Barry Truax and Curtis Roads. 
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Xenakis developed the technique initially in an analogue electronic 

domain. He considered the grains as "music quanta", and suggested a 

method of composit ion based on the organisation of these elements in 

terms of graphic projections of the key parameters of frequency and 

ampl i tude (Xenakis 1971). 

Roads implemented granular synthesis using a computer that allowed a 

greater accuracy of control over the organisation of grains (Roads 1978). 

He suggested a high-level organisation of grains based on the concepts of 

tendency masks, or "clouds" in Xenakis' definition, implemented in the 

t ime-frequency domain. 

Truax also applied the technique as a development of his own work with 

tendency masks applied to random-generated spectra, in due course 

extending usage of "acoustic quanta" for the granulation of sampled 

sound in real-time (Truax 1988). The latter involves a process of 

stretching and compressing the sound in a manner identified as variable-

rate t ime shift ing. 

There are several software programs now available for non-real-time 

granular synthesis, such as CSOUND (Lee 1995). Due to the nature of 

the synthesis method, however, composers generally prefer to interact 

with the control parameters, thus requiring a real-time implementation. 

Despite the conceptual simplicity, the signal processing requirements of 

this application, especially in real-time, set tough demands for both 

hardware and software. 
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Most of the established working systems which are not only real-time, but 

also fully interactive in terms of user control, have been developed using 

custom-designed hardware (Truax 1994) or a purpose-built "music 

workstat ion"; such as IRIS-MARS (de Tintis 1995) and IRCAM Signal 

Processing Workstation (Lippe 1993). 

As a part of our Music Technology Group's on-going investigations into 

real-time audio synthesis using a multi-processor network, granular 

techniques have provided an interesting challenge in terms of devising 

and mapping suitable algorithms onto a parallel architecture. 

6.1.3. Terminology for Granular Synthesis / Sound 
Granulation 

There are a number of different streams of research in this field, 

and each of them uses slightly different terminology. To clarify the 

problem, I define the following terms to be used in this thesis. 

"Granular Synthesis" is a sound synthesis technique using Gabor's 

acoustic quanta theory. In the narrower definition, mainly used by Xenakis 

and Roads, the technique is referred to as sound modification using short 

grain models that change the texture of the source sound. "Sound 

Granulat ion" may be included in "Granular Synthesis" in the wider context. 

In the narrower interpretation, however, the method could be referred to 

as employing long grain models to maintain the source sound. 
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The main differences are; 

Granular Synthes is Sound Granulation 
S o u r c e Sound synthetic sound synthetic and 

natural sound 
Grain Model short 

less than 10 msec 
long 

more than 10 msec 

Effects 

extra harmonics (side 
bands)caused by 
the granulation 

pitch change caused by 
the granulation and 
its parameters 

time-stretch/compress; 
preserving the 
original timbre 

Table 6.1.1.: Differences of "Granular Synthesis" and "Sound Granulation". 

There are many similar techniques and effects in both methods, such as 

echo effects, enriching sound by overlapping sound streams, and sound 

spatial isation. 

There are a few ways to describe the granulation parameters; some of 

them are dependent on individual systems and on the particular 

phi losophy employed. 

0 

gram 

k-offset->^ 

ramp 
time 

Figure 6.1.1.: Terminology for Grain. 
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delay interval between the consecutive grains 
(interval, gap) 

grain body sustain part, between the ramps, of grain 
grain density number of grains 

per voice per second (gps) 
grain ramp rising and decaying part of grain 
grain speed = grain density 
(initial) offset timing until the first grain 
voice / channel a stream of grain 

Table 6.1.2.: Terminology for Grain. 
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6.2. Related Applications 

6.2.1. Wavelet Transform 

Wavelet Transform was originally developed for applications in 

physics and acoustics (Dutilleux et al. 1988). A wavelet is a signal that 

forms a sinusoid with a smooth attack and decay. From a musical 

perspective, the wavelet transform can be considered as a special case of 

the constant O filter paradigm. Wavelets inject the notion of a "short-time" 

or "granular" representation into the constant Q filter model. The 

transform represents and manipulates sounds mapped onto a time-

frequency "plane" or "grid" that is also implicit in constant 0 methods. 

In the wavelet theory, every input signal is expressed as a sum of 

wavelets with a precise starting time, duration, frequency and initial phase. 

The peculiar aspect of the wavelet is that no matter what frequency it 

contains, it always encapsulates a constant number of cycles. The size of 

the wavelet window, therefore, can be expanded or compressed, 

according to the frequency being analysed. 

Dilations and translations of the "Mother function" 0(x), define an 

orthogonal basis: 

<D(,,,)(x) = 2 2 ® ( 2 - ^ x - l ) 

The variables s and / are integers that scale and dilate the mother function 

O to generate the wavelet. The scale index s indicates the wavelet's 

width, and the location index / gives the position. The mother functions 
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are re-scaled, or "dilated", by a power of two, and translated by an integer. 

The scaling function W{x) for the mother function ^ is given as; 

W(x) -Y ( - l ) ^Ck+iO(2x + k) 
k = - l 

where C|< are the wavelet coefficients that must satisfy linear and quadratic 

constraints; 

N - 1 N - 1 

k=0 k=0 

where 5 is the delta function and / is the location index. It is helpful to 

think of the coefficients {CQ, C I , Cn} as a filter that is placed in a 

transformation matrix. The coefficients are ordered using two dominant 

patterns; one works as a smoothing filter, and the other brings out the 

"detail" information from the data. These two orderings of the coefficients 

are called a "quadrate mirror filter pair". 

One of the major dissimilarities between Fourier transform and Wavelet 

transform is that individual wavelet functions are localised in space 

whereas that of Fourier sine and cosine functions are not. This 

localisation feature along with a wavelet's localisation of frequency make 

many functions and operators using wavelets "sparse" when transformed 

into the wavelet domain. This sparseness, in turn, results in a number of 

useful applications such as data compression. 
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6.2.2. Pitch Synchronous Granulation 

Pitch-synchronous granular synthesis is an analysis-synthesis 

technique that is designed for granulation of pitched sounds with one or 

more formant regions in their spectra. The technique starts from a 

spectrum analysis that is divided into significant time-frequency areas, 

each of them corresponding to a grain. The pitch detection is followed by 

the re-synthesis that consists of a train of pulses at the detected pitch. At 

each grain time frame, the system emits a waveform that is overlapped 

with the previous grain to create a smoothly varying signal. An 

implementation of the technique features several transformations that can 

create variations of the original sound (de Poli and Piccialli 1988). 

6.2.3. Quasi-Synchronous Granulation 

Quasi-Synchronous Granulation is a technique that creates sounds 

by means of generating one or more streams of grain, one grain following 

another with a variable interval. The technique is called "quasi-

synchronous", since the grains follow each other approximately at equal 

interval. 

If the gaps between successive grains are constant, the overall envelope 

of a stream of grains forms a periodic function. Since the envelope is 

periodic, the generated sound can be analysed as a case of Amplitude 

Modulation [AM] that occurs when the shape of one signal [modulator] 

determines the amplitude of another [carrier]. The result created by the 

modulation effect of the periodic envelope is that of formant surrounding 

the carrier frequency. The quasi-synchronous granulation, in this sense. 
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is similar to the formant synthesis method; for example, formant-wave-

function synthesis known as FOF (Rodet 1984). 

If the gaps between successive grains are irregular, perfect grain 

synchronisation is foregone along with its predictable side effects. Sounds 

are still created by one or more streams of grains with randomised onset 

timing to each grain that leads to a controllable thickening of the sound 

texture through a "blurring" of the formant structure (Truax 1988). 

6.2.4. Asynchronous Granulation 

In asynchronous granulation, the concept of linear streams of grain 

is abandoned, and the grains are scattered over specified regions 

inscribed on the frequency-time plane in the manner of a "cloud" (Xenakis 

1971). A "cloud" is specified by the following parameters; start time and 

duration of the cloud, grain duration, density of grain per second, 

frequency band of the cloud, amplitude envelope of the cloud, 

waveform(s) in the grains, and spatial dispersion of the cloud. Later in this 

chapter and the following chapters, the effects of some of the parameters 

above are examined. 

6.2.5. FOF 

A "formant" is a peak of energy in the frequency domain that can 

include both harmonic and inharmonic partials. Formant regions serve as 

a kind of tumbrel cue to the source of many sounds. Formant wave-

function synthesis [or in French; Fonction d'onde formantique; FOF] is the 
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basis of the CHANT sound synthesis system. CHANT has been 

implemented on various platforms; for example (Asta et al. 1980), and 

later, FOF generators have also been implemented in CSOUND (Clarke 

1990). The basic sound model in CHANT is the human voice, as 

understanding the formant nature of human speech has long been a 

scientific goal. 

FOF, the core of the CHANT system, originated from formant synthesis 

methods based on a traditional subtractive approach; a source signal with 

a broad bandwidth filtered by a complicated filter bank to a few resonant 

peaks. The complicated filters banks used in subtractive synthesis 

systems [see Chapter 1.2.] can be broken down to an equivalent set of 

parallel bandpass filters excited by pulses (Rodet et al. 1984). A filter 

such as Fcan be represented by its z-transfer functions: 

H(z)= " ^ ^ 

that include p poles and q zeros: this is linear prediction (Moorer 1977). 

This can be rewritten in another form; 

H ( z ) = i c . 
i = l 1 + ajZ + b j Z 

The above form describes the H filter as a set of parallel / cells, each of 

these composed of a first-order filter and of a section of the second-order 
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series, with a gain c,-. The parameters a and b determine the centre 

frequency of a pass band and its local form, and d, signifies the slope of 

the envelope. 

When the excitation is a series of impulses; 

E ( k ) = I e n ( k ) 

where n indexes the impulses in turn. The response S from the previous 

filter can be calculated as the sum of the responses sjk) shifted from a 

period of the fundamental T=1/F0, where FO is the fundamental frequency 

of the excitation and the response. A response sjk) is the sum of the J 

responses; 

s (k ) - i s ( , , i ) (k) 
i=l 

where the s^^ j^(k) are called formant wave-functions [FOF], because they 

correspond with the formant or main modes of the response of the system. 

By changing the durations of the fundamental periods T=1/F0, the 

beginning of successive FOFs, variations of fundamental frequency can 

be realised. The characteristic of each FOF determines the envelope of 

the spectrum. 

An FOF cell [or grain] is a damped sine wave with an attack and a quasi-

exponential decay. The response to a unitary impulse of a cell; 
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l + ajz"^ + b i Z " ^ ' ( l - r i Z " ^ ) ( l - r i Z " ^ ) 

is the FOF 

with 

Si(k) = Gxe"'^sin(cok + 0 ) 

co = Arg(ri), 
^ , sin(co-e~") 
0 = arc{ ^ — — 

dj-aj-cosCco-e 
G= 

sin(0) 

where the G is the gain, the <t> is the initial phase of the formant. The local 

envelop is formally defined as follows; 

k<0 s(k) = 0 

0 < k < | s(k) = i [ l -cos(pk)-e-*] 

' " ' ^ i s(k) = e-*. 

The range [0<k<7r/p] is the attack, followed by the decay [k>7r/(3]. The co is 

the central frequency of the response. The an signifies the pass band 

width at -6 dB, and the length of the decay part. The (3 governs the pass 
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band width [or skirt width] at -40 dB, and the length of the attack part. 

Since the duration of each FOF cell usually lasts just a few milliseconds, 

the envelopes create audible side-bands around the source signal [the 

contents of the FOF cell; sine wave], creating a formant. 
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Figure 6.2.1a.: FOF Envelope. 
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Figure 6.2.1c.: Frequency Response of FOF Cell. 
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Due to its time-domain nature, the FOF technique could be referred to as 

a pitch-synchronous granular synthesis technique. 

An extended FOF generator is FOG. This technique is somewhat similar 

to some aspects of the asynchronous granular synthesis (Eckel et al. 

1995). The main differences between the original FOF and the FOG are 

as follows; 

FOF FOG 
source sound sine wave arbitrary sound 

trigger of formant periodically any 

Table 6.2.1.: Major Differences between FOF and FOG. 
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6.3. Related Researches in Sound Granulation/Granular 
Synthesis 

6.3.1. Granulation Systems in Simon Fraser 
University, Canada 

The original granulation system, called PODX, was implemented on 

a DMX-1000 signal processor (Truax 1988). Sound samples are stored 

on a hard disk, then loaded into a 4k-byte window on the DMX. Unlike the 

TDS, the DMX has a high-speed hard disk and interface to support the 

real-time sound granulation and time-shifting which acts as a cache 

memory for the source sound communications with the DMX in real-time. 

All the granulation parameters [centre frequency, frequency range, offset, 

offset range, grain duration, duration range, and delay or density of grain] 

are controlled from the console keyboard of the host computer for the 

DMX, a PDP11/23. A variety of grain envelopes are available, by 

changing the length of ramp. For real-time user controls, a new value may 

be typed in for any parameter through the computer keyboard at any point. 

The new system for granulation and time-shifting (Bartoo et al. 1994) is 

implemented over quad DSP56002 DSP chips [a total of 80 MIPS at 40 

MHz] with a 68EC020 micro-processor hosted by an Apple Macintosh. 

One of the new features is that the sound sample which is being 

processed can be utilised as a signal processing effect in a mix-down 

environment, having a 256k to 16M-word [16-bit] audio sample memory at 

its disposal. 

The system has eight channels of analogue input and output, digital 

control interfaces; SCSI and MIDI [IN and OUT]. The analogue input and 

the large audio sample memory make real-time feeding and processing of 
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a live source sound possible, whereas the PODX system and my 

transputer based system only accept digitised and pre-stored sound. 

6.3.2. Granular Sampling on ISPW, IRCAM 

The IRCAM Musical Workstation [IMW] was designed to facilitate 

real-time sound processing and interactive musical composition, and was 

based on one or more NeXT computers with between 2 and 24 Intel 1860 

processors [80 MFLOPS each at 40 MHz] as co-processors for sound 

controlling and one Motorola's DSP56001 chip for I/O processing; a serial 

port for digital audio at a 44.1 kHz sampling rate [CD quality], an RS-442 

serial port for MIDI, another controller interface, and a DMA transfer 

between other NeXT boards through a NeXTBus (Puckette 1991, 

Lindemann, Starkuerand Dechelie 1990). 

The same architecture called the IRCAM Signal Processing Workstation 

[ISPW] is described in an article by Lindemann (Lindemann et al. 1990). 

[In this thesis, I use the term ISPW to refer to the architecture, since most 

of the papers published after 1991 adopt this labelling.] 

Lippe used the term "Granular Sampling" in his paper on the subject 

(Lippe 1993), however, the application he outlined is more appropriately 

described as "sound granulation". His system is based on Xenakis' 

description of the granular synthesis, using control valuables of pitch, 

envelope description, maximum amplitude, grain duration, rate of grain 

production [grain density], overlap of grain [delay] and spatial location of 

grain [pan]. 
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The algorithm was implemented on an ISPW running under MAX, a sound 

processing language. MAX supports various inputs from MIDI 

instruments, including sliders and pedals, and the ISPW with dual 1860 co­

processors is able to handle a high rate of control information. Lippe 

suggested the usage of algorithmic mapping for the parameters. 

However, none of the details on controlling mechanisms nor their method 

are included in the paper. 

6.3.3. Granulation System on IRIS-MARS Workstation 

"Grains" is a system for quasi-synchronous granular synthesis 

implemented on the IRIS-MARS workstation (de Tintis 1995). Musical 

Audio Research Station, MARS, developed by IRIS s.r.l. [Italy] is a 

programmable and open system for real-time digital signal processing. 

MARS is based on a sound generation board SMI000; two IRIS X20 DSP 

chips [25.6 MIPS each at 25 MHz] for sound processing controlled by a 

Motorola 68302, and an integrated package EDIT20, supported by an 

Atari or a Macintosh, for graphical environment (Andrenacci et al. 1992). 

The former has a pair of MIDI ports [IN / OUT], an RS-232 interface, a 

parallel port, and a serial IIS port for communication. 

There are four voices that are generated sequentially and controlled by 

five granulation parameters; frequency, grain length, waveform [source 

sound] and amplitude. Another parameter, horizontal density [grain 

density/speed ^ delay], determines when another grain should be 

activated. Since the end of one voice triggers another with or without 
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delay, it would appear that there is little scope for overlapping of two or 

more grains. Also, a Gaussian random number generator initiates the 

firing process, thus providing micro-modulation on the output sound. 

Three of the parameters; grain length, amplitude and grain density, are 

generated with normal distribution in a range controlled independently 

through three MIDI sliders. The system can also be controlled by using a 

mouse through an Atari platform. In this case, only one parameter can be 

changed at a time, due to hardware restrictions. There are some features 

for a graphic interface to provide information on wave forms and 

envelopes, but these are not described in any detail. The system works in 

real-time at an unusual sampling rate of 39 kHz, slightly less than an audio 

standard of 44.1 kHz [CD quality]. 

6.3.4. Granular Synthesis on CSOUND 

Granular synthesis using CSOUND could be achieved by applying 

conditional statements or a combination of existing unit generators, if a 

complicated and large "score file" and an associated "orchestra file" are 

provided. Recently, two new unit generators were developed to provide 

different levels of control specifically for granular synthesis (Lee 1995), 

and these can be integrated into normal CSOUND composition. Thus, 

source sounds can be obtained from existing CSOUND function tables, 

ranging from simple sine waves to sampled sound. 
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The control valuables for the grain generation unit are amplitude, grain 

size, gap [delay], pitch shift, attack [grain rising ramp size] and decay 

[grain decaying ramp size]. This suggests that grains created by the unit 

generator are not always symmetrical; the size of rising ramp can be 

different from the size of decaying one, where the conventional grain is 

symmetrical. All the parameters, except the amplitude, can be modified 

with a random number generated by another unit generator. 

The other unit generator controls grains in a stream, by controlling the 

parameters of amplitude, skip [offset], grain size, gap [delay], offset, ratio 

[time-shift/stretch] and number of voices. This provides a multi-voice 

granular synthesis and sound granulation on CSOUND. This scheduling 

method allows grains to be overlapped in a voice by changing the gap 

parameter, whereas my system does not allow the overlap in a voice; the 

minimum delay is zero. 

These unit generators have been tested on high-performance 

workstations like Sun and SGI, as well as conventional PCs. Due to the 

high demand in computation, the process however is quite time 

consuming, with only limited possibilities for real-time operation. 

6.3.5. Granular Synthesis on SoundMaker 

"SoundMaker" (Ricci 1997) is an offspring of a shareware sound 

application for Apple Macintosh; "SoundEffects". "SoundMaker" allows 

third-party developers to create new sound-manipulation modules in its 

environment using the plug-in paradigm. A plug-in module for sound 
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granulation; granular synthesis and time stretching, was published by 

Norris (1997). 

The granulation parameters are; grain size [20 to 60 msec], grain 

distribution [linear synchronous or asynchronous by randomise], grain 

density [by percentage] and grain shape. A figure in the article suggests 

that a selection of grain shapes might be available, and the grain-body 

ratio seems to be variable. At the time of publication, the program works 

only on a non-real-time basis. 

147 



6.4. Time-Compression and Time-Stretcliing 

Granular representation has made possible another powerful 

technique in sound processing; time-compression/stretching. This 

involves the granulation of the time-domain signal and re-synthesis of the 

grains with new time order. In 1946, Gabor built one of the earliest 

electro-mechanical time changers; "Kinematical Frequency Converter". 

The basic idea was time-granulation of recorded sound. A similar method 

is also used for slow-motion cinema and video images by repeating a 

frame a few times [see Chapter 6.1.1.]. 

In my digital implementation, recorded sound is stored on a 256k-byte 

external memory of a transputer in 16-bit integer format. Gabor's 

mechanical "sliding window" technique is modified with the wave-table 

digital synthesis method: a movement of the window turns into a change 

of read address. 

A sine wave [440 Hz] was granulated with the following parameters: 

number of channels 9 
grain size 640 sample-long (160-320-160) 

ramp 160 sample-long simple ramp 
grain speed 3.7 grains per second per channel 

Table 6.4.1.: Granulation Parameters. 

The grain speed is chosen to ensure that a half of each grain, both ramp 

parts, is partially covered with the ramp segment of adjacent grains: the 

result being no interval between grains in the overall stream. The initial 

offset values for each channel were specified to match the overlap 
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condit ion above: 480 samples offset per channels with the exception of 

the first channel . The increment value for the address generator was 

selected for x2 t ime compression [sound sample 6.4.1.]; x2 grain size and 

x2 t ime stretch [sound sample 6.4.2.]; half the grain size. [All the figures 

of FFT results in this Chapter, both frequency and intensity axes, are on a 

linear scale.] 
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Figure 6.4.1.: Frequency Response of Granulation (x2 compression). 
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Figure 6.4.2.: Frequency Response of Granulation (x2 stretched). 

These FFT results show a strong peak at the source frequency of 440 Hz 

and some low intensity surroundings. This confirms the theory of time 

shift ing is correct. 

The below figure shows the FFT result of the recorded speech element 

which was used for source sound of the granulation. The FFT was 

conducted using a 32,768 [=2^^] point-window, about 1 second long, that 

is shifted 15 t imes to cover the granulated sound. [The same sequence 

will be appl ied for the later FFTs of granulated natural sound, unless 

specif ied.] 
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Figure 6.4.3.: FFT Result of Speech (32768 sample-long-window x 15). 

Similar results are obtained from a granulation of speech with the same 

condit ions, [sound sample 6.4.3.; original speech, 6.4.4.; compressed, 

6.4.5.; stretched] Since the output-length of granulation was fixed for the 

convenience of the FFT program, there could be slight differences on 

these results. However, the overall shape of the result is similar to the 

original sound. 
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Figure 6.4.5.: Frequency Response of Granulation (x2 stretched). 
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6.5. Summary 

The history of granular synthesis/sound granulation was reviewed 

together with similar applications, such as FOP and wavelet 

t ransformation. A number of implementations of granular synthesis and 

sound granulation methods were also studied. The technique of t ime-

stretching and t ime-compression by sound granulation were also 

examined. In the next Chapter, the effects of the granulation and the 

granulation parameters will be investigated. 
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6.6. Further Applications 

6.6.1. Granular Morphing and Spatialisation of Sound 

Sound granulation could be used for smooth transition of sound, 

such as fade-in and fade-out, by changing grain density and other 

granulat ion parameters. Todoroff implemented the technique on an ISPW 

under a MAX environment, controlled by MIDI faders (Todoroff 1995). 

The system is capable of the fade-in/fade-out mode of two synchronised 

voices from 32 voices that operate at the maximum aggregated grain 

density of 2,500 gps, and offer voice spatialisation. 

Mult i-channel spatial distribution enhances the distinctive characteristics of 

granular synthesis and sound granulation. Granulated textures are 

articulated by scattering individual grains in different spatial locations. The 

perception of the spatial position of a stream of grain is determined by the 

physical properties of the signal and the "localisation blur" introduced by 

the human auditory system. The spatial distribution of the grains can be 

specif ied by distributing grains over the available channels, which are in 

turn panned across the stereo listening area. 

6.6.2. Time Stretching for Language Teaching 

Gabor's original idea of the sound granulation was meant for 

kinematic f requency conversion without changing the pitch (Gabor 1946). 

This may still have further applications for other subjects, such as 

language teaching and research. For example, language students are 

often required to hear recorded speech at a slower tape speed than the 

original. This results in a lower pitch than the original and distorted 
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tumbrel contents. Using the sound granulation technique, a recorded 

sound could be t ime-stretched without causing such distortions. The 

technique is also useful for measurements of timing in sound, since the 

t ime scale can be enlarged. 
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Chapter 7. Analysis of Grain (Granulation 
Parameters and Sound) 

7.1. Shape of Grain 

Gabor (1946) proposed granulation by a Gaussian amplitude 

envelope. 

1 f(x) = ̂ e 2 dx 

A variation of this is the quasi-Gaussian curve that consists of a half 

Gaussian rise, sustain part and a half Gaussian decay that was used in 

Roads' system (Roads 1978). Truax (1994), however, applied a simple 

straight ramp. [Gabor also suggested it, for practical reasons (Gabor 

1946).] Truax selected the ramp for his envelope for efficiency in terms of 

computat ion t ime and memory space: the calculation for a simple ramp 

requires a few operations per sample, an overhead that is quite important 

for "real-t ime" granular synthesis if the envelope is re-calculated for each 

grain. 

An investigation into the effects caused by grain shapes was conducted. 

Four sine waves [27.5, 55.0, 110 and 440 Hz] were granulated by four 

different ampli tude envelopes; simple-ramp, half-cosine, parabolic and 

quasi-Gaussian. [Only 27.5 Hz and 440 Hz examples are shown below.] 

Then the granulated signals were analysed by 65,536 point-FFTs, about 

two seconds in sound length. The sine waves, the envelopes and other 

calculations were performed in 32-bit floating point format. These figures 

show the granulated wave based on 440 Hz sine waves and the frequency 

response of the granulation [sound samples 7.1.1. , 7.1.2., 7.1.3. and 

7.1.4.]. 
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Figure 7.1.1a.: Granulation of 440 Hz Sine Wave by Ramp Envelope. 
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Figure 7.1.1b.: Frequency Response of Grain (ramp, 440 Hz). 
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Figure 7.1.2a.: Granulation of 440 Hz Sine Wave by Half-Cosine Envelope. 
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Figure 7.1.2b.: Frequency Response of Grain (half-cosine, 440 Hz). 
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Figure 7.1,3a.: Granulation of 440 Hz Sine Wave by Parabolic Envelope. 
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Figure 7.1.3b.: Frequency Response of Grain (Parabolic, 440 Hz). 
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Figure 7.1.4a.: Granulation of 440 Hz Sine Wave 
by Quasi-Gaussian Envelope. 
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Figure 7.1.4b.: Frequency Response of Grain (Quasi-Gaussian, 440 Hz). 

A few extra harmonics appear on all the FFT results, showing the effect of 

ampli tude modulat ion caused by the granulation; a grain size of 640 

samples [50 Hz at 32 kHz sampling rate]. 
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The results below are from the granulation of a 27.5 Hz sine wave. 
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Figure 7.1.5a.: Grain Shape (ramp, 27.5 Hz). 
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Figure 7.1.5b.: Frequency Response of Grain (ramp, 27.5 Hz). 
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Figure 7.1.6a.: Grain Shape (half-cosine, 27.5 Hz). 
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Figure 7.1.6b.: Frequency Response of Grain (half-cosine, 27.5 Hz). 
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Figure 7.1.7a.: Grain Shape (parabolic, 27.5 Hz). 
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Figure 7.1.7b.: Frequency Response of Grain (parabolic, 27.5 Hz). 
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Figure 7.1.8a.: Grain Shape (Gaussian, 27.5 Hz). 
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Figure 7.1.8b.: Frequency Response of Grain (Gaussian, 27.5 Hz). 
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The result for the 27.5 Hz sine wave shows that in the frequency domain, 

there are some minute differences in high harmonic components and the 

intensity of the fundamental frequency. Some peaks are supposed to be 

reflections of negative frequencies: such as 23 Hz [27.5 - 50 = -22.5] and 

73 Hz [27.5 - 100 = -72.5] where 50 Hz is the grain frequency [640 

sample-long-grain in 32 kHz sampling rate]. Another example using a 440 

Hz sine wave shows similar results without the reflections. 

The fol lowing figures are the frequency responses of the granulation of a 

440 Hz sine wave by a 1,280 sample-long model. The grain length was 

doubled in order to create more extra harmonics [or decrease the group 

frequency]. 
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Figure 7.1.9a.: Frequency Response (ramp, long grain). 
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Figure 7.1.9b.: Frequency Response (half-cosine, long grain). 
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Figure 7.1.9c.: Frequency Response (parabolic, long grain). 
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Figure 7.1.9d.: Frequency Response (Gaussian, long grain). 

Generally, as Roads claims: 

A m u s i c a l l y i m p o r t a n t g r a i n parameter i s the 
waveform i n s i d e the g r a i n . 

Roads, C. 1991. "Asynchronous Granular Synthesis." 

In the case of a long ramp, this may be expected to cause some 

differences in frequency characteristics; extra harmonics caused by the 

granulation will be concentrated around the strong peaks, since the grain 

f requency is low. It means that the modulation is the main effect and the 

grain shape is not. In the case of a short ramp, the grain frequency is high 

enough to create a wide range of harmonics. 
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A short ramp, however, means few steps between 0 and 1 which makes it 

hard to differentiate between one type of ramp and another. The shape of 

grain, therefore, does not have an important effect on the granulation. It 

is, however, clear that there are some differences in appearance and 

intensity of extra harmonic components that may significantly affect the 

t imbre of the granulated sound. 
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7.2. Length of Grain 

As an initial step towards the implementation of real-time granular 

synthesis, an 80-sample-long [2.5 msec at 32 kHz sampling rate] model 

was investigated. The model consists of a 20-sample-long rising ramp, a 

40-sample- long sustain part and a 20-samp!e-long decaying ramp 

implemented onto a part of the 160 Transputer Network [see Chapter 8 for 

details]. A sine wave [440 Hz, "concert A"] was then granulated. The 

waveform, envelope shape and FFT result are shown below. [All the 

f igures of FFT results in this Chapter, both frequency and intensity axes 

are in linear scales.] 
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Figure 7.2.1a.: Source Signal (440 Hz Sine Wave). 
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Figure 7.2.1b.: Granulation of 440 Hz Sine Wave by Ramp Envelope (80). 
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Figure 7.2.1c.: Frequency Response of Short Grain Model (80). 
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The frequency response of the grain model shows that there are a few 

extra harmonics created by the granulation. The grain frequency is 400 

Hz [at 32 kHz sampling rate] such that modulation causes measurable 

upper-band-harmonics at 840 [440+400], 1240 [440+800] and 1640 

[440+1200] Hz, and lower-band-harmonics at 40 [440-400], 360 [440-800; 

-360], 760 [440-1200; -760] and 1960 [440-2400; -1960] Hz. 
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Figure 7.2.2a.: Granulation of 440 Hz Sine Wave by Ramp Envelope. 
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Figure 7.2.2b.: Frequency Response of Short Grain Model (160). 

The grain length was doubled to 160-sample-long. This model creates a 

smoother sound but not smooth enough for sound reproduction, because 

of the wide gap between the ramp envelope steps. The source sound is 

heavily distorted by the extra harmonics. The granulated waveform, the 

envelope shape and an FFT result are shown above. The FFT result is 

quite similar to the shorter grain model, except the grain frequency is now 

200 Hz. 

165 



80 160 80 

mmsmmMimmMMimmMS 
wwmwwwwmmmmwwww% 

1 1 1 1 
lOOO 2000 3000 4000 sanp l e s 

Figure 7.2.3a.: Granulation of 440 Hz Sine Wave by Ramp Envelope (320). 
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Figure 7.2.3b.: Frequency Response of Short Grain IVlodel (320). 

The grain lengtli was again doubled to 320-sample-long [10 msec at 32 

kHz sampl ing rate] and the same tests were conducted [sound sample 

7.2.1]. The FFT result shows similar side-band-harmonics with 100 Hz, 

the grain frequency, as the spanning interval. These are weaker than the 

shorter models, but are still strong enough to affect the source sound. 

Gabor (1946) est imated a 10 msec-long grain model is the minimum size 

for sound granulat ion. This might be appropriate for a single sine wave 

granulat ion, but not for reproduction and time-stretching of natural sounds, 

since natural sounds have more than one peak in their spectrum 

characterist ics that may interfere with each other's artefacts. 

At this point, the 320-sample-long model was implemented onto a part of 

the 160 Transputer Network linked up to 9 external transputers that were 

conf igured for 9 channels of real-time sound granulation for recorded 

sounds [see Chapter 8 for details]. This enabled the use of recorded 

natural sounds, such as speech and random noise, for listening tests. 
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A single-stream granulation of the same recorded speech extract was 

performed with the 320-sample-long grain model [sound sample 7.2.2.]. 
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Figure 7.2.4.: FFT Result of Granulated Speech (320-sample-Iong grain). 

The FFT result of the granulated sound above shows the strong peaks 

around 400 Hz and 800 Hz, but the surrounding frequency characteristics 

are changed [see Figure 6.4.3. for the source sound]. There are extra 

harmonics appearing around 200, 300, 500 and 600 Hz; -200, -100, +100 

and +200 Hz where the grain frequency is 100 Hz. In the high frequency 

regions above 2,200 Hz, the peaks are diminished as if the granulation 

works like a low pass filter. 
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In terms of hearing, the granulated speech still contains some artefacts; 

distorted speech, like speaking with a sheet of paper held in front of the 

mouth. The sound is not so smooth, compared with the granulated A 440 

sine wave using the shorter grain model, especially during periods when 

consonance parts are processed, a result of the short steep ramp 

envelope against high frequency components. 

The grain length was then doubled to 640-sample-long; 20 msec at 32 

kHz sampling rate, and granulated A 440 sine wave [sound sample 7.2.3.] 

and recorded speech [sound sample 7.2.4.] conducted using a single 

stream of grain envelope. 
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Figure 7.2.5a.: Granulation of 440 Hz Sine Wave by Ramp Envelope (640). 
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Figure 7.2.5b.: Frequency Response of Grain Model (640). 

The result shows the similar effects of amplitude modulation with the grain 

frequency of 50 Hz. In the case of the granulation of speech, the sound 

became smoother, and the artefacts were weak enough for reproducing 

original sound. 
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Figure 7.2.6.: FFT Result of Granulated Speech (640-sample-long grain). 

The FFT result shown above also looks like the original without 

granulat ion. In the light of these assessments, I decided to use the 640-

sample- long model as a standard reference and this is applied for the 

implementat ion of real-time granulation [see Chapter 8]. 

For further investigations into the size of grain, a longer grain model was 

tested: a 2,560-sample-long or 80 msec-long with a sine wave [440 Hz] 

[sound sample 7.2.5.] and the speech element [sound sample 7.2.6.]. The 

result of this frequency response analysis shows a high concentration of 

intensity at and around 440 Hz, the source sound, with amplitude 
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modulat ion of the grain where the grain frequency is 12.5 Hz at 32 kHz 

sampl ing rate. In terms of hearing, the granulated sound is a source 

sound with a low frequency amplitude envelope, tremolo, rather than a 

cont inuous sound. 
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Figure 7.2.7a.: Granulation of 440 Hz Sine Wave by Ramp Envelope (2560). 
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Figure 7.2.7b.: Frequency Response of Grain Model (2560). 

These experiments suggest that a longer grain model can produce a 

smooth sound that closely approximates to the source sound in terms of 

f requency response. A longer grain model is able to reproduce the source 

sound better than a shorter one, since it creates narrow side-bands, and 

the intensity of each artefact is lower. In other words, the size of grain has 

some effects on the bandwidth of the granulated sound. 

For the purposes of t ime-stretching and sound reproduction, a longer grain 

model would be preferred, since a longer grain can preserve the original 

sound texture. For sound modification, or "Granular Synthesis", a shorter 

grain model would be better, because of the wider side-bands and other 
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effects of a shorter grain. Gabor's estimation, a minimum of 10 msec-long 

grain, was thus confirmed. The minimum, however, might not work as well 

for some natural sounds with rapid change, like speech. 
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Figure 7.2.8.: FFT Result of Granulated Speech (2560-sample-long grain). 

2,560-sample- long [80 msec] and longer grain models, that require a large 

memory to store the ramp coefficients, might not be suitable for a real-time 

implementat ion on a single transputer without external memory; for 

example a 640 sample-long ramp occupies 2.56k-byte out of the 4k-byte 

memory available on a networked transputer. In the case of a long grain 

model , it may be feasible to divide the granulation task implemented on a 
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t ransputer to two individual transputers; one generating ramp coefficients, 

instead of storing them, and the other multiplying the source sound with 

the coeff icients. 
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7.3. Ramp-Body Ratio 

Ramp-body ratio is another parameter for the control of sound 

granulat ion. The regular ramp-body ratio is one-to-two. In other words, a 

grain consists of a quarter-grain length rising ramp, a half-grain sustain 

part and a quarter-grain length decaying ramp. 

For the investigation into the significance of the ratio, firstly, the size of the 

grain was fixed to about 640 sample-long. The effect of the granulation is 

the ampli tude modulat ion, where the grain frequency is 50 Hz, and extra 

harmonic contents should appear every 50 Hz. Secondly, the size of the 

ramp is f ixed to 160 sample-long and the size of the grain body is 

changed. This should provide results that exclude the effects from the 

artefact of short ramps. A 440 Hz ["concert" A] sine wave was used as the 

source sound of granulation in both cases. 
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Figure 7.3.1a.: Grain Envelope and Granulated Sound (1:8). 
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Figure 7.3.1 b.: Frequency Response of Granulation (1:8). 
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The above graphs show the granulated waveform, the amplitude envelope 

and their f requency response to the 64-512-64 grain model, where ramp-

body ratio is 1:8. 

Extra harmonics in the upper-band appear every 50 Hz, the grain 

frequency, up to 740 Hz, and in the lower-band, down to 140 Hz. Their 

intensities are not so significant; less than 10% of the source frequency 

440 Hz. In cases of 1:16, 1:32, 1:64 models, their results are quite similar 

to the 1:8 model except the deviation of the extra harmonics is wider. 

The results of 1:4 and 1:2 models below are quite similar to the 1:8 model, 

except the deviation of extra harmonics becomes narrower and the 

intensity of first and second harmonics in both side-bands are higher. 
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Figure 7.3.2a.: Grain Envelope and Granulated Sound (1:4). 
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Figure 7.3.2b.: Frequency Response of Granulation (1:4). 
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Figure 7.3.3a.: Grain Envelope and Granulated Sound (1:2, regular). 
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Figure 7.3.3b.: Frequency Response of Granulation (1:2, regular). 
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Figure 7.3.4a.: Grain Envelope and Granulated Sound (1:1). 
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Figure 7.3.4b.: Frequency Response of Granulation (1:1). 
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Figure 7.3.5a.: Grain Envelope and Granulated Sound (ramp only). 
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Figure 7.3.5b.: Frequency Response of Granulation (ramp only). 

The above results are based on the fixed grain size analysis. To avoid 

effects from the size of ramp, the following analysis of the ramp-body ratio 

was conducted using a 160-sample-long fixed-ramp and variable sizes of 

grain body. It means that the grain size and the grain frequency are not 

constant. 
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Figure 7.3.6a.: Grain Envelope and Granulated Sound 
(fixed ramp, ramp only). 
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Figure 7.3.6b.: Frequency Response of Granulation 

(fixed ramp, ramp only). 
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Figure 7.3.7a.: Grain Envelope and Granulated Sound (fixed ramp, 1:1). 

I I — —I ' ' I 1 
200 400 600 800 lOOO 

frequency <Hz) 
Figure 7.3.7b.: Frequency Response of Granulation (fixed ramp, 1:1). 
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Figure 7.3.8a.: Grain Envelope and Granulated Sound (fixed ramp, 1:2). 
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Figure 7.3.8b.: Frequency Response of Granulation (fixed ramp, 1:2). 

The above examples show that the results are similar to the fixed grain-

size models: a low body-ramp ratio means narrow deviation of extra 

harmonics and low intensity of the source sound frequency. 
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Figure 7.3.9a.: Grain Envelope and Granulated Sound (fixed ramp, 1:4). 
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Figure 7.3.9b.: Frequency Response of Granulation (fixed ramp, 1:4). 
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Figure 7.3.10a.: Grain Envelope and Granulated Sound (fixed ramp, 1:8). 
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Figure 7.3.10b.: Frequency Response of Granulation (fixed ramp, 1:8). 

The results of 1:8 and 1:16 models show a significant concentration of 

intensity at the source sound frequency; 440 Hz. Total intensities of extra 

harmonic contents are less than 10% of the main frequency. The 1:32 

and the 1:64 model also show similar results. These results suggest that 
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changes in the ramp-body ratio effect the deviation of the extra harmonics 

and their intensities. 

To confirm the reflection of "negative" frequencies, a 110 Hz sine wave 

was granulated with a standard 1:2 grain model. The side bands appear 

at an interval of 50 Hz [grain frequency] and are similar to those of the 

source frequency at 440 Hz. 
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Figure 7.3.11a.: Grain Envelope and Granulated Sound (110 Hz, 1:2). 
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Figure 7.3.11b.: Frequency Response of Granulation (110 Hz, 1:2). 

Ramp-body ratio governs the basic profiles of the side-band-width of the 

granulated sound, regardless of the size of the grain. Since extra 

harmonics appear at the interval of the grain frequency, which depends 

upon the size of the grain, the extra harmonics are controlled firstly by the 

body-ramp ratio and are multiplied by the grain frequency. For the 

eff iciency of grain calculations, the fixed-ramp algorithm is applied for the 

real-time implementation [see Chapter 8]. 
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7.4. Interval between Grains 

Another main parameter for granular synthesis is the interval 

between the grains that is also called "delay" or "space". The grain-space 

ratio is usually defined backwards from "grain density" or "grain speed"; 

grain-per-second [gps]. The experiments in previous sections were 

conducted with a single stream of grains without interval. In this section, 

further investigations into the effects of a short interval between grains 

were conducted. 

Using the standard 640-sample-long grain model, a sine wave [440 Hz] 

was granulated with various sizes of space, then its frequency 

characteristics were analysed. The intervals between the grains were as 

fol lows; 1/4 grain-long [160 sample-long], 1/2, 3/4, 1, 3/2 and 2 grain-long. 
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Figure 7.4.1a.: Frequency Response of Grain with Space (1/4). 
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Figure 7.4.1b.: Frequency Response of Grain with Space (1/2). 
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Figure 7.4.1c.: Frequency Response of Grain witli Space (3/4). 
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Figure 7.4.1d.: Frequency Response of Grain with Space (1/1). 
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Figure 7.4.1 e.: Frequency Response of Grain with Space (3/2). 
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Figure 7.4.1f.: Frequency Response of Grain with Space (2/1). 
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The FFT results above show some peaks around the source frequency 

[440 Hz] with an interval of "group frequency"; frequency of grain + 

interval. The strongest peak, however, is not at the source frequency. 

A similar set of analyses was done with a 2,560-sample-long grain model; 

four times longer than the standard. Their FFT results show the same 

phenomenon; peaks are distributed around the source frequency, 440 Hz, 

with the interval of group frequency. The central frequency of the group of 

peaks seems to be at the source frequency. 

200 400 600 800 
frequency <Hz) 

Figure 7.4.2.: Frequency Response of Grain with Space (2560:2/1). 

These results suggest that the space between the grains contributes to 

amplitude modulation at a "group frequency" around the source frequency. 

In terms of frequency, the strongest peaks on the frequency analyses are 

not always at the source frequency. The tendency of the peaks, however, 

shows that the central frequency is at the source frequency. 
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7.5. Summaiy 

The artefacts of granulation are controlled as follows. The side­

bands appear both sides of each strong peak in the source sound. When 

an extra harmonic component appears in the negative frequency, this will 

be reflected into the positive side. The intervals of the extra harmonics 

depend upon the size of the grain and the delay ["group" length]; 

amplitude modulation by the source frequency with the group frequency. 

It means that a high grain speed [i.e. low "grain frequency"] makes a wider 

interval. The number of side-bands is determined by the body-ramp ratio, 

however, that does not depend on the size of the body. The side-bands 

are, therefore, firstly controlled by the body-ramp ratio, as a profile of the 

side-bands, and then are multiplied by the group frequency. In other 

words, the side-band-width can be changed by altering either the grain-

body size or the ramp size. This leads to a real-time implementation of a 

fixed ramp-size grain model. The details of the implementation are 

discussed in the next chapter. 

The granulation model used in this chapter [160-320-160] could be seen 

as a special case of FOR cell. In the case of a standard FOF, the shape 

of the cell is asymmetric without a sustained part, and the size of the cell 

is not longer than 10 msec whereas the grain model is symmetrical and far 

longer [20 msec]. The frequency response of a standard FOF cell, 

however, is similar to that of the granulation model; one strong peak with a 

few side-bands. In the case of the FOF, the top- and the skirt-pass band 

width are determined by the length of the attack- and the decay parts 

whereas the side-band-width of the granulation model is basically dictated 

by the body-ramp ratio and multiplied by the group frequency. Also, the 
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behaviour of the granulation model could be described as that of a wavelet 

with a mother function [or envelope; rise-sustain-decay]. 
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Chapter 8. Implementation of Real-Time Granular 
Sjmthesis and Sound Granulation on 
the Network 

8.1. Preliminary Implementation -using only on-chip memory-

At a preliminary stage of the implementation, a short fixed sound 

sample was used, as an experiment for controllability. A nine-voice 

system was implemented over 16 transputers, a branch of the 160 

Transputer Network, using a 160-sample-long grain model; 40-sample-

long rising ramp, 80-sample-long sustained part, 40-sample-long decaying 

ramp. A 320-sample-long sine wave-table in 440 Hz is the source of the 

granulation. 

The grain parameters; grain-body size, delay, source sound frequency 

and amplitude are controlled from a PC keyboard that is connected with 

the root transputer. A set of keys on the PC keyboard are assigned for 

controlling the parameters; pressing a key causes a parameter to increase 

or decrease. Since a short-grain-model is employed, the frequency of the 

granulated sound is determined by the interval of the grain, "delay": the 

group [grain + delay] frequency is the output frequency. 

The source sound frequency is controlled using a wave-table synthesis 

technique; note A in each octave synthesised from the original source 440 

Hz. When the required output frequency is not equal to the source 

frequency, the output should be synthesised by means of changing the 

length of "delay". When "delay" is changed gradually, a glissando effect 

[gradual change in frequency] is available with this configuration. The 
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minimum increment of the frequency depends on the size of grain and the 

source sound frequency. 

Since a short grain model, 160-sample-long, is employed, a full cycle for 

low frequency tones of less than 200 Hz cannot be fitted into a grain. For 

example, a 55 Hz tone requires at least 582 samples to complete a full 

cycle, at a 32 kHz sampling rate. This causes a difference in the output 

sound texture between sounds above 200 Hz, where at least one whole 

cycle occurs in a grain, and those below, where less than one cycle 

occurs in a grain. As the grain size becomes larger, this threshold is 

lowered. If the threshold is 20 Hz, however, the lower limit of the human 

auditory system, a 1,600-sample-long model is needed, and this may not 

create enough artefacts of the granulation process unless a steep ramp is 

applied. 

A change of parameters is allowed only at the end of a grain, due to the 

restrictions on the software: some ALT structures have to be introduced to 

enable interactions within a grain period that necessitates a long delay. If 

a change of parameters is made during a grain period, the new 

information is held firstly by the key buffer of the PC, where no software 

control is available from TDS, and then at a transputer assigned for the 

granulation task. The latency of the system against a parameter change 

is less than a grain period (4 msec). If the configuration is expanded over 

the 160 Transputer Network, 81 voices become available. 

As a first step towards improving control flexibility, two coefficients; 

amplitude and frequency, can be communicated to the network through 
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the MIDI-to-Transputer interface. The MIDI inputs, "velocity" and "key 

number", are converted to the amplitude and the frequency of the output 

sound. The latter is done using the method described above. Possibilities 

exist for controlling other key parameters through MIDI using continuous 

controllers (de Tintis 1995), program change or system exclusive 

messages, but these have yet to be fully investigated. 
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I flow of sound output 

Figure 8.1.1.: Granular Synthesis with Short Wavetable. 
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Since a networked transputer has a 4k-byte on-chip memory, there are 

some limitations on programming. For example, to synthesise the lowest 

A on an acoustic piano [fundamental frequency: 27.5 Hz] using a wave-

table, at least an 1,164-sample-long table is required for a complete cycle, 

at a 32 kHz sampling rate. If a 1,200-sample-long wave-table is in 32-bit 

integer format, it requires 4.8k bytes of memory space, more than the on-

chip memory of a transputer. If it is in 16-bit integer format [that of the 

DAC used in the system] and occupies 2.4k bytes, this unconverted 

format, nevertheless, requires an additional overhead in calculation, due 

to the lack of a 16-bit processor on the 32-bit based T800 transputers. 

This led to the idea of a distributed wave-table. The wave-table for 

granulation is distributed over three transputers and is controlled by 

another transputer. 

This distributed wave-table provides an 800 sample-long (or 25 msec at a 

32 kHz sampling rate) sample storage facility. In a "grain generator", a 

static 160-sample-long simple ramp is implemented. The ramp could be 

replaced with that of half-cosine or Gaussian characteristics with a simple 

change in the initialisation program. The parameters that describe a grain; 

grain-body size, grain-body range, amplitude and source frequency, are 

controlled in real-time from a PC keyboard through a host transputer. The 

size of the ramp can be re-programmed, but altering the grain-body size 

makes the body-ramp ratio change, so providing a variety of side-band 

widths [see Chapter 7]. 
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Figure 8.1.2.: Granular Synthesis with Distributed Wavetable. 

The system reliably performs real-time granulation. Due to the lack of a 

long sample storage facility, however, the experiment was limited to 

granular synthesis using a short sine wave and a similarly brief extent of 

"synthetic" sounds. From this experiment, I ascertained that it is possible 
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to implement nine voices of real-time granular synthesis over the 160 

Transputer Network with some external sample storage. 
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8.2. Revised Implementation -using 256k external memory-

In the configuration described above, due to the lack of on-board 

local memory, some of the transputers had to be assigned solely for the 

purposes of sound sample storage. This has not proved particularly 

efficient, since only 800 samples, in 32-bit floating point format, can be 

accommodated within a transputer's on-chip memory; 4k-byte. This is 

also against the original rationale of the network architecture, whereby a 

large memory storage should not be required for real-time systems. It 

became clear, however, that the minimum memory requirements for a 

sampled sound granulation are far greater than that available on the core 

network. The architecture of the main network, nevertheless, makes 

provisions for the attachment of extra processors and memory on 

peripheral links; a possibility wisely anticipated at the design stage. 

For the revised configuration for asynchronous granular synthesis, a 

series of transputer cards consisting of a T800 transputer [20 MHz 

clocked] with 256k bytes of external memory, are connected to the 

network at the bottom of the tree structure through extension cables. The 

manufacturer of the transputer recommends that the maximum length of 

such cable should be less than 0.5 metre and it should be twisted (INMOS 

1987). Because of the hardware architecture of the 160 Transputer 

Network, however, the extension cable had to be longer than the limit. 

This unfortunately resulted in occasional failures of signal transmission. 

The problem was eventually solved by shielding the cables with a metallic 

cover and a grounded copper board. 
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Currently there are nine such external boards that allow granular synthesis 

with nine voices. Each voice is distributed between the left and right 

channels in a fixed ratio, creating a spread of sound images for the final 

two-channel stereo output. In this configuration, the grain parameters; 

offset, grain speed, grain speed range [randomise factor], grain size, grain 

range [randomise factor] and time stretch ratio are controlled from a PC 

keyboard: a pair of keys are assigned to each parameter. Whenever a 

key interaction is made, a set of fresh parameters are sent to the tree top 

of the network . 
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Figure 8.2.1.: Timing Chart of the Sound Granulation. 
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This top-down approach allows each voice to granulate the sound 

individually. In addition, each voice has its own random number generator 

with a different seed. These measures assure genuine "asynchronous" 

granulation that is not compromised by the subsequent processes of 

accumulating sound data, which uses the same bottom-up method as 

described in the case of the additive synthesis model. This approach 

ensures a much richer depth of granulation in subjective terms than other 

methods that frequently economise on computation by using a single 

random number generator for all voices. 

The current program is based on a 20 msec [or 640 samples in 32 kHz 

sampling rate] grain that consists of a 160 sample-long rising ramp, a 320 

sample-long body and a 160 sample-long decaying ramp. As in the core 

of the original implementation, due to the on-chip memory size limitation 

[4k bytes], the length of the ramp is fixed. The length of the grain body is 

variable from 0 to 3,200 sample-long, and this facilitates a variety of body-

ramp ratios that controls the frequency profile of the side-bands. In the 

case of Truax's system (Truax 1988), the size of the grain ramp is also 

variable. In this configuration, the size of the grain ramp is fixed, avoiding 

the re-calculation of the ramp, but this limitation is compensated for by 

making the grain-body size variable, since the ramp-body ratio dictates the 

frequency bandwidth of the granulated sound, regardless of the size of the 

ramp, as shown in Chapter 7. 

At a preliminary stage, I employed shorter grain models; 20, 40, 80, 160 

and 320 samples long. The grain speed can be changed from 0.1 to 50 

gps per voice. The maximum available grain density is determined by the 
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grain size; for instance, the maximum grain speed for the 160 sample-long 

model is 100, providing that the time interval between the grains is kept at 

zero. 

Using Gabor's "sliding window" technique (Gabor 1946), the sound 

granulation program becomes capable of time stretch/compress 

applications, by means of a technique derived from wave-table synthesis; 

address generation. In traditional sound granulation [without time 

stretch/compress factor], a duration of sound [equivalent length to a grain] 

is read from the sound storage, then the next reading point is moved the 

length of a grain. In the case of the sound stretch/compress, the next 

reading point of the source sound is not always moved the length of a 

grain. In this implementation, the movement of the window could be 

varied from zero [that is repeating a window, thus producing sound 

freezing; infinite stretching] to double the grain size [2x time compression]. 

The specification of the program is shown in the Table below. 

Number of Voices 9 

Grain Size 320-3200 sample-long 

Ramp Size 160 sample-long (fixed) 

Grain Density 0.01-50 gps per voice 

Time-stretch Ratio 0.5 - infinity (freeze) 

Memory Size (each voice) 256k bytes (128k samples) 

Table 8.2.1.: Specification of the Real-Time 
Sound Granulation Implementation. 
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Figure 8.2.2.: Sound Granulation with Long Sound Storage (part). 
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For a granulation of speech, it is often necessary to use grain-models 

longer than 320 samples [or 10 msec] to avoid the artefacts of the ramp. 

In the case of natural musical sounds, however, subjective tests have 

shown that a 320 sample-long model may often prove acceptable at the 

upper boundary and in many situations much shorter grains can produce 

interesting transformations, see Chapter 7 for details. 

Since a change of the parameters can be made only at the end of the 

grain, the reaction of the system would be slow at a low grain speed, and 

the change may cause a deadlock, because of the difference between the 

size of data in the PC's keyboard buffer and the speed of data processed 

that is beyond the control of the TDS; the operation system for the host 

transputer and a host PC. At a fast speed, such as 20 gps or more [an 

interval of 50 msec or less], the change of the parameter is almost in real­

time. 

For additive synthesis programs, the network can handle an audio data 

flow at a 32 kHz sampling rate with a control data flow up to 500 bytes-

per-second. In the case of the granular synthesis programs, a deadlock of 

the type described above has not occurred, since the control data traffic is 

not so high as in the case of the additive synthesis and a constant stream 

of sound output is maintained. 
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8.3. Conclusion 

A real-time granular synthesis and a real-time sound granulation 

were implemented on to a part of the 160 Transputer Network. In the 

granular synthesis configuration, some transputers had to be assigned 

solely for the purposes of memory storage, and this arrangement resulted 

in the use of fixed short sound samples. This was actually against the 

original concepts of the network and thus not optimal. By using external 

transputers with extra memory, the sound granulation application allows 

more flexible applications, such as time-shifting and time-stretching of 

much longer sampled sounds. 

The system for sound granulation requires a large amount of sample 

storage. This, however, does not necessarily have to be an independent 

memory block for each voice, unless the system is used for sound 

morphing. Therefore, the ideal shape of a network for sound granulation 

would be a tree structured network such that the bottom layer is 

connected to a large block of memory through a high-speed bus. For real­

time sound processing, the bus must additionally be connected to an ADC 

or a digital sound interface. 
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Chapter 9. Discussion 

9 . 1 . Efficiency of the Applications 

In the optimised configuration for tlie nine-voice polyphony with a 

dynamic note allocation at a single-sampling-rate, 72 oscillators are 

allocated to each note: there is a significant element of inefficiency in their 

deployment. As noted earlier, due to the relationship between the Nyquist 

frequency and the harmonic contents, some of the higher order harmonics 

have to be muted. 

For example, in the case of "concert" A [440 Hz], its 37th harmonic 

[16,280 Hz] is above the Nyquist rate [16,000 Hz] of the 32 kHz sample 

frequency. This means that half of the allocated oscillators are kept 

muted. Real efficiency of the configurations should be measured by an 

average of "active" harmonics per key, by applying all the available 

oscillators per voice to every 88 keys in an acoustic piano range, instead 

of the number of oscillators allocated to a voice. 

Sampling Allocation Available Average 
Program Type Rate(s) Voices of Oscillators Active 

Oscillators in Harmonics 
[kHz] per Voice Total per Key 

Fixed Allocation [1] 32 81 8 648 6.136 
Fixed Allocation [2] 32 88 16, 12, 8, 4 752 8.341 

Dynamic Allocation [1] 32 27 24 648 16.06 
Dynamic Allocation [2] 32 13 48 624 26.08 
Dynamic Allocation [3] 32 9 72 648 33.66 

Multi-Rate Fixed 8, 16, 32 88 24, 16 1296 13.61 
Multi-Rate Dynamic [1] 10.6, 32 22 36 816 21.46 
Multi-Rate Dynamic [2] 4, 8, 32 15 80 1200 32.71 

N.B. The program in italic has not been implemented. 

Table 9.1.1.: Efficiency of the Applications. 
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Another matter concern Is the usage of processors. In the case of the 

program for multi-rate 13-dynamic-voice synthesis, several processors are 

unused, due to the underlying network architecture: 3n grouping [where n 

= 1,2, 3...]. Since a T800 transputer has four communication links, the 

network that is formed is the "1-3" revised ternary-tree structure [see 

Figure 2.4.1.]. This leads to 3n division-based configurations, due to the 

software's controlling and accumulation purposes. If the processor had 

been designed with five links rather than four, the network could have 

been constructed using a "1-4" revised quadruped-tree structure, resulting 

in a 2n [binary-tree] or 4n division-based configuration which would be 

altogether more flexible than the 3n approach adopted on the 160 

Transputer Network. 

In the multi-rate applications, a part of the network has to be assigned as 

two filter banks to boost the production of sounds at the lower sampling 

rates to match with that of the desired output. The number of processors 

assigned for the filter banks has to be 4n: four is the number of 

transputers on a leaf [the smallest dividable section] of the network. The 

constraints of real-time synthesis restrict the permitted length of the 

interpolation filters. Also, a transputer has finite capabilities, thus a 

number of them are required for a single filter. This leads to some degree 

of compromise, involving a FIR filter of reasonable length with an optimal 

distribution of it on a part of the network. 
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9.2. Provisions for New Processors 

9.2.1. T9000 

Details of the successor to the T800, the T9000, were announced 

in 1991 (INMOS 1991), but production difficulties significantly delayed the 

shipment of commercial quantities. The figures on the data-sheet show 

that the T9000 [50 MHz clocked] has about ten times the performance of 

the T800 [20 MHz] and 16k bytes of on-chip memory [4k bytes on the 

T800], representing a significant improvement on the existing generation 

of transputer products in both capacity and performance (May, et al. 

1992). 

Our research group obtained a few of the processors in a prototype form, 

de-rated to 20 MHz, and tested them in a PC-based environment. It was, 

however, difficult to make a straight forward comparison between the 

T800 and the T9000, since the T9000 was still not fully functional at the 

time of writing and the language used for these tests was parallel C, which 

creates larger and potentially less efficient codes than Occam used on 

T800S. 

There are also some significant differences between the transputers; the 

T9000 has a 64-bit FPU [32-bit FPU on T800], a calculation power of 200 

MIPS [whereas the T800 performs 20 MIPS peak at 20 MHz clock] and 

the four links of the T9000 provide a maximum bi-directional data 

bandwidth of 70 Mbytes per second, whereas the four links of the T800 

are restricted to 11.2 Mbytes per second. When these performance data 

were fully implemented, the T9000 would be able to execute a sound 
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synthesis task, such as a bank of recursive sine oscillators, at a 

significantly higher sampling rate and in higher precision than its 

predecessors. 

Also, the 16k bytes on-chip memory is sufficient for use as local data 

storage for multi-segmented amplitude envelopes. For the granulation of 

sampled sound, a number voices may be implemented on a single T9000 

providing each can share the contents of an external memory. 

In late 1996, SGS-Thomson [the parent company of INMOS] announced 

that the production of T9000 would cease in 1997, thence, the company 

would focus on to its own ST020 product family rather than the Transputer 

family acquired with the company; INMOS. At this time, the fastest T9000 

model available is still 25 MHz clocked, half of the figure announced in 

1991, resulting in less than 100 MIPS. The T9000 equivalent in the 

ST020 family is ST020-450; a 32-bit processor [32 MIPS at 40 MHz] with 

four communication links at 20 Mbit/s which is supported by ANSI C 

compiler (Beckett 1996). 

9.2.2. DSP 56300 

Motorola's latest DSP product, the DSP 56300 family, was 

announced in 1995. The first family member of the 24-bit DSPs, DSP 

56301, provides 80 MIPS at 80 MHz clock rate (Motorola 1995). Its 

performance is eight times faster than its predecessor, DSP 56000, and is 

thus comparable to a T9000 [200 MIPS at 50 MHz]. A 100 MIPS at 100 
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MHz clock version is expected in 1997 (Motorola 1996). The DSP chip 

has two ESSI and one SCI interfaces for communication with external 

processes, useful for communication with non-family devices. 

In case of INMOS's Transputer family, however, the high speed links are 

primarily designed for communicating with other transputers, hence 

connections to devices other than members of the Transputer family 

require special signal converters, such as C011. This means that the true 

potential of transputers is realised when a number of them are 

interconnected to create a mesh array or a tree structure, thus creating a 

self-contained massively parallel distributed architecture. 

9.2.3. ADSP-2106X SHARC 

Another example of the modern processors is Analog Devices' 

SHARC [Super-Harvard ARchitecture Computer] family. ADSP-21060 is a 

32-bit processor that is capable of 40 MIPS and 120 MFLOPS [peak] at 40 

MHz clock with ten DMA channels supported by a DMA controller that 

allows ten simultaneous channels communication without processor 

overhead, separate on-chip buses, and six point-to-point links and two 

serial ports for connection with other processors (Analog Devices 1996). 

Its dual ported 4-megabit SRAM is the largest in size on-chip memory of 

any processor (BittWare 1997). The processor is as powerful as the DSP 

56300 family. There is, however, a significant feature to note: the high­

speed DMA channels [240 Mbytes/s] also allow memory-access intensive 

operations, such as FFT. 
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9.3. Shape of Network for Sound Synthesis 

In arguing the case for parallel architectures based on the 

transputers, it has to be acknowledged that a number of high-speed DSP 

chips in a unitary fabrication are now available. For many tasks, however, 

a single high-speed DSP chip is not necessarily superior in terms of 

performance to a parallel and distributed system based on a number of 

less powerful and financially attractive processors, especially if the latter 

have high-speed communication links. The network structure, basically, 

should be a tree or hyper-cube, since such arrangements are good for 

distributing control information and accumulating sound output. A tree or 

a cube, however, is not necessarily homogeneous in calculation power 

and memory size. 

When a DSP chip has four communication links and is configured as a 

three-to-one signal mixer, a minimum requirement for real-time operation 

is the capacity to fetch a data packet from each channel, to sum them up 

and to output the new data packet within a sampling period that requires 

less than 10 MIPS at standard audio sampling rates; 32 kHz, 44.1 kHz or 

48 kHz. This gives weight to the argument that tasks demanding 

environments such a multi-processor network, as an audio processor, 

could be more efficiently realised by a hybrid network consisting of high­

speed processors with signal routers, rather than a homogeneous 

configuration of high-speed processors. 

The idea of an "hybrid" network also can be applied to memory allocation, 

such that the tasks associated with sound synthesis, such as amplitude 
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envelopes, can have larger local cache memories than those associated 

with the processes of data accumulation and distribution, such as routers 

and mixers. 

For example, because of the design restrictions on the networked 

transputers, just 4k-byte of on-chip memory each, and the general 

architecture of the network, only simple amplitude envelopes can be 

applied to the additive synthesis methods described above. If the 

processors at the bottom of the tree were to be replaced with ones offering 

more calculation power and memory, this combination may be able to 

produce more sophisticated amplitude envelopes. In other words, length 

and strength of tree branches and nodes are not necessarily 

homogeneous. 

When the 160 Transputer Network was designed, the memory access 

speed was not so fast, hence the larger on-board memory meant a 

heavier load to the CPU. Naturally, the original rationale behind the 

design of the network was that a real-time distributed system should not 

require a large amount of on-board memory for intermediate data storage. 

These days, most of the modern DSP chips have a fast memory access 

facility, such as DMA channels. Besides, thanks to technical advances in 

the fabrication of semiconductors, the price of high-performance memory 

became lower and then the size became larger. Therefore, large on-chip 

or on-board memory may no longer become an obstacle to building a 

distributed system. 
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Chapter 10. Conclusion 

The potential application of the 160 Transputer Network as a 

dedicated real-time audio processor was confirmed, in particular, as an 

additive synthesis engine. The network was also tested as a resource for 

other methodologies such as granular synthesis and sound granulation. 

The processing power of the network can only be fully extracted with an 

optimal software configuration, especially in terms of load balancing and 

smooth communication protocols. 

The original rationale behind the network architecture was that a real-time 

distributed system should not require a large amount of on-board memory 

for intermediate data storage. At the time of building the network, this was 

acceptable, since the access speed to ancillary memory space would not 

have satisfied the conditions for real-time operation, certainly at a modern 

audio quality like CD [44.1 kHz sampling rate] or DAT [48 kHz sampling 

rate]. This unique feature of the design, the absence of any external 

memory local to the networked transputers, brought some restrictions for 

programming; such as no memory intensive applications like data storage 

for wavetables and amplitude envelopes. It now has to be acknowledged 

that due to rapid innovations in both processors and memory-chips, a 

large quantity of high-speed memory on a processor and that local to a 

node have become the norm and are not a significant cause of delay for 

system design. 

The capability of the fifteen-year-old MIDI standard, as a keyboard driven 

controller for real-time sound synthesis, was examined by practical testing. 

It was confirmed that as an event oriented standard, there is still some 
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spare capacity to transmit a multiple-keyboard performance. This 

suggests that it may not be necessary to have an alternative to the MIDI 

standard in near future, as some ad-hoc improvisations, such as a multiple 

MIDI cable application supported by a high-power PC, are currently 

satisfactory to most musicians. 

The network architecture, the modified ternary tree, provides short path 

lengths between the arbitrary nodes, also between the siblings at the 

same level, and the same path length between the tree-top and each leaf 

of the tree leads to no phase delay on the additive synthesis programs. 

The extra path at the same level serves to route the information avoiding 

the hub, "hot spots", that othenA/ise interrupt the functions of the network 

as a whole. However, this research also suggests that the network 

structure for sound synthesis is not necessarily homogeneous, in terms of 

calculation power and memory size, since a large on-chip or on-board 

memory is not an obstacle for real-time processing, thanks to high-speed 

memory access technology. 

The optimised methods for additive synthesis, by resource management 

and by multi-rate approach, are effective by a significant order of 

magnitude in enhancing the quality of tumbrel detail. The real-time 

implementations of the methods on to the network, however, brought 

limited success, due to lack of memory for amplitude envelopes; each 

networked transputer has a 4k-byte on-chip memory without any external 

memory. The multi-sample-rate optimisation has also been shown to be 

effective for accelerating the processes of dynamic tone generation. For 

the real-time implementations of the multi-rate technique on to the 
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network, however, the up-sampling filters may introduce some phase 

delay and other distortions, due to hardware limitations in memory size for 

filter coefficients and in calculation power. 

In the case of the implementation of granular synthesis and sound 

granulation in real-time, despite the conceptual simplicity, the signal 

processing requirements were tough. Because of the nature of the 

synthesis methods, composers' demands for real-time implementation is 

enormously high. Only a few fully developed real-time models are now 

available wortd-wide, including this application on the 160 Transputer 

Network. The implementation with adequate control proved the viability of 

parallel and distributed computing for the applications, especially in the 

independence of each voice implemented in parallel that provides extra 

depth of the sound. The sound granulation on the system is, however, 

restricted to short sampled sounds or simple synthetic sounds, due to lack 

of sample storage, in terms of memories and a high speed hard disc. 

The T800 transputers used for these configurations are no longer ranked 

as top-of-the-range in terms of performance. Besides, the Transputer 

family itself has disappeared from the production lines, after the 

manufacturer lost its commercial independence. The long term 

significance of these investigations, however, lies in the knowledge 

acquired in implementing concepts of parallel audio processing in a 

practical context. The algorithms with which the architectures were 

developed can also be transplanted onto the various ranges of higher 

performance processors now available for parallel and distributed 

computing. 
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Glossary of Terms and Abbreviations 
A C 

acyclic graph 

A D C 

additive synthesis 

address generation 

AES 

A M 

A N S I 

array processor 

asynchronous 

BPS 

CD 

chain 

channel 

CISC 

clock cycle 

Alternative Current 

a graph without any cycles 

Analogue to Digital Converter 

Fourier synthesis, sound synthesised by super-position of sine 

waves. 

a process during execution of an instruction in which an 

effective address is calculated by means of indexing or indirect 

addressing. 

Audio Engineering Society 

Amplitude Modulation 

American National Standards Institute 

A computer designed primarily to perform data parallel 

calculations on arrays or matrices. The two principle 

architectures used are the processor array and the vector 

processor. 

A method of transmission which does not require a common 

clock, but separates fields of data by stop and start bits. 

bytes per second, a unit of memory access speed or 

communications transfer speed. 

Compact Disc, a digital sound storage media, 16-bit format at 

44.1 kHz sampling rate. 

A topology in which every processor is connected to two others, 

except for two end processors that are connected to only one 

other. 

A point-to-point connection between two processes or processors 

through which messages can be sent. Programming systems that 

rely on channels are sometimes called connection-oriented, to 

distinguish them from the more widespread connectionless 

systems in which messages are sent to named destinations rather 

than through named channels. 

Complicated Instruction Set Computer; a computer that provides 

many powerful but complicated instructions. This term is also 

applied to software designs that give users a large number of 

complex basic operations. See also RISC. 

The fundamental period of time in a computer. 
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clock time Physical or elapsed time, as seen by an external observer. Non 
relativistic time. 

communication overhead A measure of the additional workload incurred in a 

parallel algorithm due to communication between the nodes of 

the parallel system. 

CMOS 

concurrent compute 

Complementary Metal Oxide on Silicon 

A generic category, often used synonymously with parallel 

computer to include both multi-computer and multi-processor. 

concurrent processing simultaneous execution of instructions by two or more 
processors within a computer. 

configuration 

control process 

co-processor 

CORDIC 

CPU 

A particular selection of the types of processes that could make 

up a parallel program. Configuration is trivial in the SPMD 

model, in which every processor runs a single identical process, 

but can be complicated in the general M M D case, particularly i f 

user-level processes rely on libraries that may themselves require 

extra processes. 

A process which controls the execution of a program on a 

concurrent computer. The major tasks performed by the control 

process are to initiate execution of the necessary code on each 

node and to provide I/O and other service facilities for the nodes. 

an additional processor attached to a main processor, to 

accelerate arithmetic, VO or graphics operations. 

COdinate Rotation Digital Computer 

Central Processing Unit 

cube-connected cycles network a processor organisation that is a variant of a 

hyper cube. Each hyper cube node becomes a cycle of nodes, 

and no node has more than three connections to other nodes. 

CSOUND 

cycle 

D A C 

D A T 

DC 

deadlock 

software synthesis language (Vercoe 1986) 

a cycle of the computer clock. 

Digital to Analogue Converter 

Digital Audio Tape 

Direct Current 

A situation in which each possible activity is blocked, waiting on 

some other activity that is also blocked. I f a directed graph 

represents how activities depend on others, then deadlock arises 

i f and only i f there is a cycle in this graph. 
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D I N 

DSP 

distributed computer 

distributed memory 

D M A 

D R A M 

EPROM 

FFT 

FIFO 

FIR 

FLOPS 

Flynn's Taxonomy 

F M 

EOF 

FPU 

gps 

German Industrial Standard: Deutsche Industrie Norm 

Digital Signal Processing 

A computer made up of many smaller and potentially 

independent computers, such as a network of workstations. This 

architecture is increasingly studied because of its cost 

effectiveness and flexibil i ty. 

Memory that is physically distributed amongst several modules. 

A distributed memory architecture may appear to users to have a 

single address space and a single shared memory or may appear 

as disjoint memory made up of many separate address spaces. 

Direct Memory Access; allows devices on a bus to access 

memory without requiring intervention by the CPU. 

Dynamic R A M ; memory which periodically needs refreshing, 

and is therefore usually slower than SRAM but is cheaper to 

produce. 

Electronically Programmable ROM; a memory whose contents 

can be changed using special hardware. This usually involves 

removing the chips f rom their environment in order to "burn" a 

new pattern into them. 

Fast Fourier Transform is a technique for the rapid calculation of 

discrete Fourier transform of a function specified discretely at 

regular intervals. The technique makes use of a butterfly data 

structure. 

First In First Out 

Finite Impulse Response (Filter) 

Floating Point Operations: unit for measurement of floating point 

operation 

A classification system for architectures that has two axes: the 

number of instructions streams executing concurrently, and the 

number of data sets to which those instructions are being 

applied. The scheme was proposed by Flynn in 1966. 

Frequency Modulation 

Fonction d'Onde Formantique (French), Formant wave-function 

Floating Point Unit: either a separate chip or an area of silicon 

on the CPU specialised to accelerate floating point arithmetic. 

grain per second: grain density in granular synthesis/sound 

granulatioji 
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heterogeneous 

guard A logical condition that controls whether a communication 

operation can take place. Guards are usually defined as part of 

the syntax and semantics of CSP-based languages. In OCCAM, 

guards are used in " A L T " ; such as communication port, channel 

and timer, with or without conditions with Boolean variables. 

Containing components of more than one kind. A heterogeneous 

architecture may be one in which some components are 

processors, and others memories, or it may be one that uses 

different types of processor together. 

Made up of identical components. A homogeneous architecture 

is one in which each element is of the same type; processor 

arrays and multi-computers are usually homogeneous. 

A network connection between two distant nodes. 

an interference phenomenon observed in multi-processors caused 

by memory access statistics being slightly skewed from a 

uniform distribution to favour a specific memory module. 

A topology of which each node is the vertex of a d-dimensional 

cube. In a binary hyper cube, each node is connected to n others, 

and its co-ordinates are one of the 2'^n different n-bit sequences 

of binary digits. 

the system of logic and conductors that connects 

the processors in a parallel computer system; such as bus, mesh 

and hyper cube. 

inter-processor communication the passing of data and information among the 

processors of a parallel computer during the execution of a 

parallel program. 

homogeneous 

hop 

hot-spot contention 

hyper-cube 

interconnection network 

I/O 

I C M A 

I C M C 

IFFT 

IIR 

I M W 

I R C A M 

IRIS 

ISPW 

input/output 

International Computer Music Association 

International Computer Music Conference 

Inverse FFT 

Infinite Impulse Response (Filter) 

I R C A M Music Workstation 

Paris based research institution: 

Coordination Acoustique/Musique. 

Institut de Recherche et 

Paliano (Italy) based research organisation: Istituto di Ricerca 

per rindustria dello Spettacolo. 

I R C A M Sound Processing Workstation (= I M W ) 
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1860 

latency 

L E D 

link 

load balance 

LSB 

mapping 

M A R S 

M A X 

message passing 

M I D I 

M I M D 

general-purpose processor developed by Intel capable of 80 
MFLOPS at 40 M H z 

The time taken to service a request or deliver a message which is 

independent of the size or nature of the operation. The latency 

of a message passing system is the minimum time to deliver a 

message, even one of zero length that does not have to leave the 

source processor. 

Light- Emitting Diode 

A one-to-one connection between two processors or nodes in a 
multi-computer. 

The degree to which work is evenly distributed among available 

processors. A program executes most quickly when it is 

perfectly load balanced, that is when every processor has a share 

of the total amount of work to perform so that all processors 

complete their assigned tasks at the same time. One measure of 

load imbalance is the ratio of the difference between the 

finishing times of the first and last processors to complete their 

portion of the calculation to the time taken by the last processor. 

Least Significant Bit 

often used to indicate an allocation of processes to processors; 

allocating work to processes is usually called scheduling. 

Musical Audio Research Station, MARS, developed by IRIS 

s.r.l. [Italy]. See IRIS. 

interactive graphic programming environment created by Opcode 

(Pucketteand Zicarelli 1990) 

A style of inter-process communication in which processes send 

discrete messages to one another. Some computer architectures 

are called message passing architectures because they support 

this model in hardware, although message passing has often been 

used to construct operating systems and network software for 

uni-processors and distributed computers. 

Musical Instrument Digital Interface, published in 1983 by 

International M I D I Association [23634 Emelita Street, 

Woodland Hills , California 91367 USA.] 

Mult iple Instruction, Multiple Data; a category of Flynn's 

taxonomy in which many instruction streams are concurrently 

applied to multiple data sets. A M I M D architecture is one in 

which heterogeneous processes may execute at different rates. 
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MIPS 

M I S D 

MOPS 

motherboard 

MSB 

multi-computer 

multi-processor 

multi-programming 

multi-(sampling)rate 

multi-taskins 

N A M M 

N e X T 

Mi l l i on Instructions Per Second: unit for measurement of 

processor performance, referring to integer or non-floating point 

instructions. 

Mult iple Instructions, Single Data. A member of Flynn's 

taxonomy almost never used. 

Mi l l i on Operations Per Second, usually used for a general 

operation, either integer, floating point or otherwise. 

A printed circuit board or card on which other boards or cards 

can be mounted. Motherboards wi l l generally have a number of 

slots for other boards, by which means the computer system may 

be expanded. 

Most Significant Bit 

A computer in which processors can execute separate instruction 

streams, have their own private memories and cannot directly 

access one another's memories. Most multi-computers are 

disjoint memory machines, constructed by joining nodes (each 

containing a micro-processor and some memory) via links. 

A computer in which processors can execute separate instruction 

streams, but have access to a single address space. Most multi­

processors are shared memory machines, constructed by 

connecting several processors to one or more memory banks 

through a bus or switch. 

the ability of a computer system to time share its (at least one) 

CPU with more than one program at once. 

digital sound processing using more than one sampling rate. 

Executing many processes on a single processor. This is usually 

done by time-slicing the execution of individual processes and 

performing a context switch each time a process is swapped in or 

out, but is supported by special-purpose hardware in some 

computers. Most operating systems support multi-tasking, but it 

can be costly i f the need to switch large caches or execution 

pipelines makes context switching expensive in time. 

National Association of Music Merchants, USA based 
association. 

a music workstation based on a 68030 as main processor with a 

68882 as floating-point co-processor and DSP 56001 as sound 

processor and a DAC. 
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network 

N I C A M 

node 

note 

NTSC 

Nyquist frequency 

O C C A M 

optimal 

P A L 

parallel computer 

parallelisation 

partitioning 

PC 

PCB 

pipe 

A physical communication medium. A network may consist of 
one or more buses, a switch, or the links joining processors in a 
multi-computer. 

Nearly Instantaneous Compounded Audio Multiplex, 
standardised by IB A, BREMA and BBC. 

generic term used to refer to an entity that accesses a network. 

1. music event, tone 

2: (polyphonic) note, voice, channel: a sound generating unit in a 

synthesis system. 

National Television System Committee; a TV/video signal 

format 

the highest frequency that can be produced in a digital audio 
system; a half of the sampling rate 

programming language for the Transputer family 

Cannot be bettered. An optimal mapping is one that yields the 

best possible load balance; an optimal parallel algorithm is one 

that has the lowest possible time-processor product. 

Phase Alternation Line; TV/video signal format 

A computer system made up of many identifiable processing 

units working together in parallel. The term is often used 

synonymously with concurrent computer to include both multi­

processor and multi-computer. The term concurrent generally 

dominates in usage in the USA, whereas the term parallel is the 

more widely used in Europe. 

Turning a serial computation into a parallel one. Also 

sometimes turning a vector computation into a parallel one. This 

may be done automatically by a parallelising compiler or (more 

usually) by rewriting (parts of) the program. 

process of restructuring a program or algorithm into independent 
computational segments. 

Personal Computer: usually means I B M compatible one 

Printed Circuit Board 

A communication primitive which involves the transmission of 

information through a linearly connected subset of the nodes of a 

parallel computer. 
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process 

processor array 

pipelining Overlapping the execution of two or more operations. Pipelining 

is used within processors by perfecting instructions on the 

assumption that no branches are going to preempt their 

execution; and in multi-processors and multi-computers, in 

which a process may send a request for values before it reaches 

the computation that requires them. 

the fundamental entity of the software implementation on a 

computer system. 

A computer that consists of a regular mesh of simple processing 

elements, under the direction of a single control processor. 

Processor arrays are usually SIMD machines, and are primarily 

used to support data parallel computations. 

Pulse Width Modulation 

Random Access Memory; computer memory which can be 

written to and read from in any order. 

A topology in which each node is connected to two others to 

form a closed loop. 

Reduced Instruction Set Computer; a computer that provides 

only a few simple instructions but executes them extremely 

quickly. RISC machines typically rely on instruction prefetching 

and caching to achieve higher performance than CISC machines. 

The term is also applied to software designs that give users a 

small number of simple but efficient operations 

Read-Only Memory; a computer memory which cannot be 

written to during normal operation. 

The act of moving a message f rom its source to its destination. 

A routing technique is a way of handling the message as it passes 

through individual nodes. 

sampling rate (frequency) the rate at which digital sound samples are taken. It 

signifies the bandwidth of a digital audio system. 

P W M 

R A M 

nng 

RISC 

R O M 

routmg 

scalar processor 

scheduling 

SCI 

SCSI 

A computer in the traditional von Neumann sense of operating 

only on scalar data. 

Deciding the order in which the calculations in a program are to 

be executed, and by which processes. Allocating processes to 

processors is usually called mapping. 

Sequential Circuit Interface 

Small Computer Systems Interface; a hardware standard for 

interfacing to devices such as discs. 
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SHARC 

shared memory 

shared variables 

S I M D 

SISD 

SMPTE 

S M I 000 

SPMD 

S R A M 

synchronisation 

Super-Harvard ARchitecture Computer: a family of DSP 
produced by Analog Devices. 

Memory that appears to the user to be contained in a single 

address space and that can be accessed by any process. In a uni­

processor or multi-processor, there is typically a single memory 

unit, or several memory units interleaved to give the appearance 

of a single memory unit. 

Variables to which two or more processes have access, or the 

model of parallel computing in which inter-process 

communication and synchronisation are managed through such 

variables. 

Single Instruction Multiple Data; a category of Flynn's taxonomy 

in which a single instruction stream is concurrently applied to 

multiple data sets. A SIMD architecture is one in which 

homogeneous processes synchronously execute the same 

instructions on their own data, or one in which an operation can 

be executed on vectors of fixed or varying size. 

Single Instruction Single Data; a category of Flynn's taxonomy 

in which a single instruction stream is serially applied to a single 

data set. Most uni-processors are SISD machines. 

Society of Motion Picture and Television Engineers; SMPTE 

time-code (format); used in f i l m and T V , a data-rate of 2400 bps. 

sound generation board on IRIS-MARS workstation, consisting 

of two IRIS X20 DSP chips [25.6 MIPS at 25 M H z each] for 

sound processing controlled by a Motorola 68302. 

Single Program, Multiple Data; a category sometimes added to 

Flynn's taxonomy to describe programs made up of many 

instances of a single type of process, each executing the same 

code independently. SPMD can be viewed either as an extension 

of SIMD, or as a restriction of M I M D . 

Static R A M ; memory which stores data in such a way that it 

requires no memory refresh cycle and hence has low power 

consumption. Generally this type of R A M is faster but more 

expensive than D R A M . 

The act of bringing two or more processes to known points in 

their execution at the same clock time. Explicit synchronisation 

is often necessary in SPMD and M I M D programs. 
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synchronous 

TDS 

tick 

time sharing 

topology 

T R A M 

Transputer 

tree 

U A R T 

uni-processor 

USI 

V C A 

V C F 

V C O 

vector processor 

Occurring at the same clock time. For example, i f a 
communication event is synchronous, then there is some moment 
at which both the sender and the receiver are engaged in the 
operation. 

Transputer Development System. The operation system for the 

host transputer and a host PC 

unit for timing in M I D I . 

Dividing the effort of a processor among many programs so they 

can run concurrently. Time sharing is usually managed by an 

operating system. 

A family of graphs created using the same general rule or that 

share certain properties. The processors in a multi-computer, 

and the circuits in a switch, are usually laid out using one of 

several topologies, including the mesh, the hyper cube, the 

butterfly, the torus and the shuffle exchange network. 

TRAnsputer Modules 

A single integrated circuit which contains a CPU, 

communications links, memory and some cache memory. The 

name transputer refers to a proprietary series of chips 

manufactured by INMOS, although other node chips have had 

similar characteristics. 

a connected, undirected, acyclic graph. The most commonly 

encountered tree in computer science is the regular binary tree, 

in which a root node has two children but no parent, each interior 

node has a single parent and two children, and leaf nodes have a 

single parent but no children. 

Universal Asynchronous Receiver-Transmit(ter); a standard 

protocol for device drivers or a integrated circuit. 

A computer containing a single processor. The term is generally 

synonymous with scalar processor. 

Universal Synthesizer Interface, proposed by Dave Smith (the 

president of Sequential Circuits) and Chet Wood in 1981. 

Voltage Controlled Ampli f ier 

Voltage Controlled Filter 

Voltage Controlled Oscillator 

A computer designed to apply arithmetic operations to long 

vectors or arrays. Most vector processors rely heavily on 

pipelining to achieve high performance. See also array processor. 
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velocity amplitude of a M I D I key press information. 

V L S I Very Large Scale Integration; applied to technologies capable of 

putting hundreds of thousands or more components on a single 

chip, or sometimes applied to those chips so manufactured. 

von Neumann architecture Used to describe any computer which does not employ 

concurrency or parallelism. Named after John von Neumann 

(1903-1957) who is credited with the invention of the basic 

architecture of current sequential computers. 

voice (see "note") 
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Appendix 1. Sound Samples 

The software for the sound generation, described in Chapters 5, 6 

and 8 is basically for real-time sound production, and is not designed for 

sound recording. I attempted to re-write these programs to accommodate 

a recording process. Some of them, however, did not perform as 

designed, due to restrictions and limitations in the hardware, mainly 

memory shortage, and in the software [see Chapter 2]. In addition, some 

of the programs reached the limit of the transputers' performance, leaving 

no room for extra tasks. For the reasons above, some of the 

implementations are only available for live performance. 

All the sound samples attached to this thesis were produced at a 32 kHz 

sampling rate and monaural format, with two exceptions at a 44.1 kHz 

sampling rate. The original files were written in a 16-bit raw binary [Zilog 

format; high-byte followed by low-byte], and could be converted into other 

formats by the "SOX" program (Norskog 1993). As I did not have access 

to a PC with a sound-card, I was not able to test the conversion to a WAV 

format, that is a standard multi-media format for Windows software. 

In this edition, an analogue audio cassette tape is attached. 
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List of Sound Samples 

4.4. -voice organ (fixed allocation) 24" 

5.1.1. 110 Hz triangle wave with true harmonics 

5.1.2. 110 Hz triangle wave with "borrowed" harmonics 

5.2.1. 9-voice organ: "pipe organ" like [44.1 kHz sampling rate] 

5.2.2. 9-voice organ: saw-tooth wave based with hyperbolic envelope 
[44.1 kHz sampling rate] 

5.3. Multi-rate 88-voice organ (fixed allocation) 

7" 

7" 

21" 

21" 

21" 

6.4.1. 2x time compressed granulated 440 Hz sine wave 

6.4.2. 2x time stretched granulated 440 Hz sine wave 

6.4.3. segment of speech 

6.4.4. 2x time compressed granulated speech segment 

6.4.5. 2x time stretch granulated speech segment 

7.1.1. granulated 440 Hz sine wave with simple-ramp 

7.1.2. granulated 440 Hz sine wave with half-cosine ramp 

7.1.3. granulated 440 Hz sine wave with parabolic ramp 

7.1.4. granulated 440 Hz sine wave with quasi-Gaussian ramp 

7.2.1. granulated 440 Hz sine wave with 320-sample-long model 

7.2.2. granulated speech with 320-sample-long model 

7.2.3. granulated 440 Hz sine wave with 640-sample-long model 

7.2.4. granulated speech with 640-sample-long model 

7.2.5. granulated 440 Hz sine wave with 2560-sample-long model 

7.2.6. granulated speech with 2560-sample-long model 

8.1. an example of sound granulation 

2" 

6" 

5" 

2" 

6" 

5" 

5" 

5" 

5" 

5" 

5" 

5" 

5" 

5" 

5" 

20" 
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Appendix 2. Pin Layouts of the 160 Transputer 
Network 

PIN column column PIN column left column right 
No. left right No. 

1 GND GND 16 Up Not Reset Dn Not Analyse 
2 GND GND 17 Up Not Analyse Up Not Error 
3 GND GND 18 Dn Not Error Link 00 Out 
4 NO NC 19 Link 00 In Link 01 Out 
5 NC NC 20 Link 01 In Link 13 Out 
6 GND GND 21 Link 13 In Link 02 Out 
7 GND GND 22 Link 02 In Link 03 Out 
8 GND GND 23 Link 03 In Link 04 Out 
9 NO NC 24 Link 04 In Link 05 Out 
10 +5V +5V 25 Link 05 In Link 06 Out 
11 -1-5V +5V 26 Link 06 In Link 07 Out 
12 NC NC 27 Link 07 In Link 08 Out 
13 NC NC 28 Link 08 In Link 09 Out 
14 NC NC 29 Link 09 In Link 10 Out 
15 NC NC 30 Link 10 In Link 11 Out 

31 Link 11 In Link 12 Out 
32 Link 12 In Dn Not Reset 

Table A2.1.: 32-Pin Socket Layout of a PCB 

03 04 05 06 07 08 09 10 11 
Figure A2.1.: Link Numbering of a PCB 
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Pin No. column left column right 
1 Board 9 Link 12 Out Board 9 Link 12 In 
2 Board 9 Link 13 Out Board 9 Link 13 In 
3 Board 1 Link 01 Out Board 1 Link 01 In 
4 Board 1 Link 02 Out Board 1 Link 02 In 
5 Up Not Reset NO 
6 Up Not Analyse Up Not Error 
7 Board 0 Link 00 Out Board 0 Link 00 In 
8 Board 0 Link 01 Out Board 0 Link 01 In 
9 Board 0 Link 13 Out Board 0 Link 13 In 
10 Board 0 Link 02 Out Board 0 Link 02 In 
11 Board 0 Link 12 Out Board 0 Link 12 In 
12 GND GND 
13 GND GND 

Table A2.2.: Pin Layout of Connector out of Main PCB (Tree Top Side) 

Pin No. Column Left Column Right 
1 NO NO 
2 Link 03 In Link 03 Out 
3 Link 04 In Link 04 Out 
4 Link 05 In Link 05 Out 
5 Link 06 In Link 06 Out 
6 Link 07 In Link 07 Out 
7 Link 08 In Link 08 Out 
8 Link 09 In Link 09 Out 
9 Link 10 In Link 10 Out 
10 Link 11 In Link 11 Out 

Table A2.3.: Pin Layout of Connector out of Main PCB 
(Tree Bottom side) 
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Appendix 3. MIDI-to-Transputer Interface 

The basic requirements for the interface board are to enable data to 

be converted between two serial formats; MIDI data and transputer link 

data, and their transmission speed; 31.25 KBaud and 20 MBaud. MIDI 

data is sent with a start bit followed by eight data bits and a stop bit. The 

transmission is continuous and asynchronous. On the other hand, 

transputer link data is sent with two start bits followed by eight data bits 

and a stop bit. When the data packet is received, the transputer sends an 

acknowledgement, a high bit followed by a low bit, to the other end of the 

link. 

Although both data formats are serial, a standard MIDI interface converts 

serial data into an internal parallel format and vice-versa. To convert 

decoded signals from MIDI to a format suitable for a transputer link an 

intermediate parallel processing stage is thus necessary. To convert a 

MIDI serial signal into a parallel format, the Universal Asynchronous 

Receiver Transmitter [DART] 6402 is recommended in the MIDI 

specification. Its basic operation is to convert data between serial protocol 

and a handshake parallel data port. The UART 6402 is a general purpose 

device. Hence, its users have to define the data format and speed. For 

receiving and sending the MIDI data, 31.25 KBaud, a clock signal of 500 

kHz is recommended. The devices of the transputer family communicate 

through links. However, to enable the easy connection of links to non-

transputer devices, a link adapter is used. 
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R e c e i v e r R e g i s t e r 

V C C 
N C 
G N D 

R e c e i v e r R e g i s t e r D i s a b l e d 
7 
6 
5 
4 
3 
2 
1 
0 

P a r i t y E r r o r 
F a r m i n g E r r o r 
Overturr i E r r o r 
S t a t u s F l a g D i s a b l e d 
R x C l o c k 
D a t a R e c e i v e d D i s a b l e d 
D a t a R e c e i v e d 
R x Input 

T x C l o c k 
E v e n P a r i t y E n a b l e 
C h a r a c t e r Length S e l e c t 1 
C h a r a c t e r Length S e l e c t 2 
S t o p Bit S e l e c t 
Par i ty Inhabit 
Contro l R e g i s t e r L o a d 
T r a n s m i t t e r R e g i s t e r 7 

6 
5 
A 
3 
2 
1 
0 

T x Output 
T r a n s m i t t e r R e g i s t e r E m p t y 
T r a n s m i t t e r R e g i s t e r L o a d 
T r a n s m i t t e r Buffer E m p t y 
R e s e t 

Figure A3.1.: UART 6402 pinout. 

C011 is designed for full duplex transputer link communication with a 

standard microprocessor and sub-system architecture, by converting 

between bi-directional serial link data and parallel data streams. The link 

adapter runs at a speed of either 10 Mbits/sec or 20 Mbits/sec, and has 

two modes. In this project, a 20 Mbits/sec link was used and a C011 was 

configured into Mode 1; that is where the C011 converts between a 

parallel link and two independent fully handshaken byte-wide interfaces; 

one input and one output, for a transputer family device. [Mode 2 is the 

other way around; from transputer link serial format to parallel format.] 
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Link Out-
Link In -
I V a l i d -

Ack 
0 
1 
2 
3 
4 
5 
6 
7 

Reset 
GND 

VCC 
Cap Minus 
Q V a l i d 
Q Ack 
Q 0 
Q 1 
Q 2 
Q 3 
Q 4 
Q 5 
Q 6 
Q 7 
Separate IQ 
Clock In 

Figure A3.2.: C011 pin-out (Mode 1). 

Figure A3.3.: Prototype IVIIDI-to-Transputer Interface Board. 
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The handshaking pins of the UART can not be directly connected with 

those of the 0011 , due to their incompatibility. An additional logic circuit is 

required. This circuit was designed and its prototype version built onto a 

multipurpose circuit board, about nine years ago (Dale 1988). Parts were 

wire wrapped and the circuit proved unreliable. Eventually the board 

failed all together. 

After some reviews and improvements, a new circuit on a printed circuit 

board was assembled, as a replacement. The main changes were as 

follows: 

1. To reduce micro disturbance of noise in to the lines, 

a) The number of jumper lines was minimised. 

b) The length of clock and signal circuits were consequently 

minimised. 

2. To obtain a sharp reset signal, a switch was added. 

As a result, the circuit board is smaller and offers a higher reliability than 

the original one. Its diagram and its overview picture are shown below. 

Figure A3.4.: Overview Picture of MIDI-to-Transputer Interface Board. 
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r e s e l 

5 V G N D 

- t 

UART 6402 

74LS 

4017B 

74LS04 

coil 74LS04 
4n7 

R 2 r A - H | - ^ 

5 MHz n33 

R 1 : R 5 : 84QQ 0 1 : 103 / iF 
R 2 : 1kf2 RG: 125kQ C 2 : 2 .7^F 
R 3 : 30 f2 R 7 : 680Q 0 3 : 47 / iF 
R 4 : 50f^ 

Figure A3.5.: Circuit Diagram of IVIIDI-to-Transputer Interface Board. 

Nevertheless, I discovered some problems with this circuit which may be 

attributable to the quality of the parts; especially the gate ICs 74LS04 and 

74LS00, and the link adapter C011. According to the data sheets for the 

parts, they should work with a 5 V DC power supply, with an allowance of 

±5%. In practice, however, the circuit runs only between 4.80 V and 4.90 

V, a strange limitation which was investigated further. 
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Firstly, I suspected the clock block. Using an oscilloscope, all the clock 

signal circuits were checked. The circuits work as follows: 

An activated crystal creates a 5 MHz signal. 

A gate IC 74LS04, which is supposed to work on a 5 MHz signal, 

cleans the signal. 

The clock signal is fed into the 0011 and a counter IC 4017B, which 

forms a 500 kHz signal for the UART. 

At this point, a clear 500 kHz equal template square wave should be 

obtainable if the circuit is driven with a current at the specified potential of 

5 V. What I found, however, was that the circuit ran only outside two 

points; below 4.90 V and over 5.20 V, where the clock signal was 

stabilised. Between those points, the square wave became distorted; 

jittering at the rising phase. 

By changing the power supply and the chips, and after some trial and 

error combining different components, the jittering problem was finally 

cleared. Apart from the quality of the chips, the quality of power supply 

could have been suspected. Replacement with another power supply, 

however, resulted in the same operating characteristics and the voltage 

problem on the circuit has still not been solved. 

In the case of over 4.90 V, the UART or the C011 misinterprets the MIDI 

data, which is usually shifted: for example, from 90h to COh. In the other 

case, under 4.80 V, due to the problems in the C011 or the handshaking 

block, data reflections occurred several times in every one hundred bytes 

251 



received; typically every 57 jisec after a packet of MIDI data was received. 

Around 4.85 V, however, it would seem that all the parts are working well. 

K% tIMC/OIV 

Figure A3.6.: Wave Form at 4.85 V (Top: 5 MHz, Bottom: 500 KHz). 
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