
Durham E-Theses

Real-time sound synthesis on a multi-processor

platform

Itagaki, Takebumi

How to cite:

Itagaki, Takebumi (1998) Real-time sound synthesis on a multi-processor platform, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4890/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4890/
 http://etheses.dur.ac.uk/4890/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Real-Time Sound Synthesis

on a Multi-Processor Platform

Ph. D Thesis
University of Durham

School of Engineering Department of Music
Music Technology Group

The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

January 1998

Takebumi ITAGAKI
B. Eng (Waseda, JAPAN), P.G.Dipl. (City)

t AUG lyy^

Real-Time Sound Synthesis on a Multi-Processor Platform
Ph.D Thesis January 1998 Takebumi ITAGAKI

Abstract

Real-time sound synthesis means that the calculation and output of each

sound sample for a channel of audio information must be completed within a

sample period. At a broadcasting standard, a sampling rate of 32,000 Hz, the

maximum period available is 31.25 [isec. Such requirements demand a large

amount of data processing power. An effective solution for this problem is a

multi-processor platform; a parallel and distributed processing system.

The suitability of the M I D I [Music Instrument Digital Interface] standard,

published in 1983, as a controller for real-time applications is examined. Many

musicians have expressed doubts on the decade old standard's ability for real-time

performance. These have been investigated by measuring timing in various

musical gestures, and by comparing these with the subjective characteristics of

human perception.

An implementation and its optimisation of real-time additive synthesis programs

on a multi-transputer network are described. A prototype 81-polyphonic-note-

organ configuration was implemented. By devising and deploying monitoring

processes, the network's performance was measured and enhanced, leading to an

efficient usage; the 88-note configuration. Since 88 simultaneous notes are rarely

necessary in most performances, a scheduling program for dynamic note allocation

was then introduced to achieve further efficiency gains. Considering calculation

redundancies still further, a multi-sampling rate approach was applied as a further

step to achieve an optimal performance.

The theories underlining sound granulation, as a means of constructing complex

sounds from grains, and the real-time implementation of this technique are

outlined. The idea of sound granulation is quite similar to the quantum-wave

theory, "acoustic quanta". Despite the conceptual simplicity, the signal processing

requirements set tough demands, providing a challenge for this audio synthesis

engine.

Three issues arising f rom the results of the implementations above are discussed;

the efficiency of the applications implemented, provisions for new processors and

an optimal network architecture for sound synthesis.

Acknowledgements

I would like to express my gratitude to the many people who have

supported and encouraged my research, including Dr Paul Archbold

(Music) who helped my subjective testing, and Dr Desmond Phillips and

other members of the Music Technology Group who gave various

suggestions, criticisms and contributions.

I would like to acknowledge my thanks to my supervisors Professor Peter

D. Manning (Music), whose enthusiasm for electro-acoustic music,

especially in sound granulation, has driven my work and Professor Alan

Purvis (Engineering) for his administrative support. I am also indebted to

Professor Robert Provine (Music) in his support and help for the

publication of my papers at international conferences.

I wish to thank Professor Barry Truax and Dr David Murphy of Simon

Fraser University (Vancouver, CANADA) for their generous help and

suggestions on the sound granulation techniques. My thanks are

extended to my parents for their support, including financial matters; not

only the university fees and my maintenance but also for a large portion of

the costs incurred in publication of my works.

11

Contents

Abstract i

Acknowledgements i i

Contents iii

List of Figures viii

List of Tables xi

List of Program Listings xi

Declaration xii

Statement of Copyright xii

Chapter 1. Introduction

1.1. Preamble 1

1.2. Analogue Synthesis 4

1.2.1. Voltage-Controlled Oscillator 4

1.2.2. Voltage-Controlled Filter 5

1.2.3. Voltage-Controlled Amplifier 5

1.2.4. Frequency Modulation 7

1.3. Digital Technology and Sound Synthesis 9

1.3.1. Conversion between Analogue and Digital 9

1.3.2. Compact Disc 12

1.3.3. Wave-Table Synthesis 13

1.3.4. Analysis/Re-Synthesis 14

1.3.5. Software Synthesis 15

1.3.6. Real-Time Synthesis 17

111

Chapter 1. Introduction (continued)

1.4. Controller for Music Performance 18

1.4.1. History of Electronic Music Keyboard Controller 18

1.4.2. MIDI Specification 22

1.4.2.1. Physical Specification 22

] .4.2.2. Code Specification of MIDI 22

1.5. Parallel and Distributed Processing 28

1.5.1. Background 28

1.5.2. Parallel Processors 28

1.6. Summary 31

Chapter 2. Transputers

2.1. Transputers and other DSP chips 32

2.1.1. Transputers 32

2.1.2. Other Architectures 34

2.1.2.1. DSP56000 34

2.1.2.2. TMS320C40 35

2.2. Transputer Development System 36

2.2.1. Introduction 36

2.2.2. Hardware Descriptions 36

2.2.3. Software Descriptions 37

2.3. Occam 39

2.3.1. Background 39

2.3.2. Structure of Occam 40

2.3.3. Variable Types 46

2.3.4. Communication Channels 47

2.4. 160 Transputer Network 49

2.5. Summary 54

I V

Chapter 3. Measurements of Keyboard Performance through MIDI

3.1. Hypotheses 56
3.2. Measurements 60

3.2.1. Distorted Chord 60
3.2.2. Timing in Piano Performance 63
3.2.3. The Quickest Gesture in Keyboard Performance 64

3.2.4. The Busiest Gesture in Keyboard Performance 68

3.2.5. The Shortest Timing in Keyboard Performance 71
3.3. Conclusion 78
3.4. Apres MIDI 79

Chapter 4. Implementation of Real-Time Additive Synthesis on The
Network

4.1. Sine Oscillation Method 80
4.1.1. Wavetable (Table Look-up) 80

4.1.2. Taylor Series Expansion 81
4.1.3. Polynomial Approximation 83

4,1.4. CORDIC 85

4.1.5. Summation Recursion 87
4.1.6. Chebyshev Recursion 88

4.2. 81-Fixed-Voice Implementation 93
4.2.1. Synthesis Method 93

4.2.2. Prototype Programme 94

4.3. Performance Monitoring 103

4.4. 88-Fixed-Voice Implementation 107

4.5. Improvements on the Network 109
4.6. Conclusion 111

Chapter 5. Optimisation of Real-Time Synthesis Additive on the
Network

5.1. "Pipe Organ Style" Borrowing 112

5.2. Dynamic Allocation of Notes 115

5.3. Multi-Rate Approach 119

5.4. Conclusion 125

V

Chapter 6. Granular Synthesis and Sound Granulation

6.1. History of Granular Synthesis 126

6.1.1. Acoustical Quanta: the theory behind the granulation 126

6.1.2. Past Implementations of Granular Synthesis/Sound Granulation 128

6.1.3. Terminology for Granular Synthesis / Sound Granulation 130

6.2. Related Applications 133

6.2.1. Wavelet Transform 133

6.2.2. Pitch Synchronous Granulation 135

6.2.3. Quasi-Synchronous Granulation 135

6.2.4. Asynchronous Granulation 136

6.2.5. FOF 136

6.3. Related Researches in Sound Granulation/Granular Synthesis 142

6.3.1. Granulation Systems in Simon Fraser University, Canada 142

6.3.2. Granular Sampling on ISPW, IRCAM 143

6.3.3. Granulation System on IRIS-MARS Workstation 144

6.3.4. Granular Synthesis on CSOUND 145

6.3.5. Granular Synthesis on SoundMaker 146

6.4. Time-Compression and Time-Stretching 148

6.5. Summary 153

6.6. Further Applications 154

6.6.1. Granular Morphing and Spatiaiisation of Sound 154

6.6.2. Time Stretching for Language Teaching 154

Chapter 7. Analysis of Grain (Granulation Parameters and Sound)

7.1. Shape of Grain 156

7.2. Length of Grain 164

7.3. Ramp-Body Rado 173

7.4. Interval between Grains 180

7.5. Summary 183

Chapter 8. Implementation of Real-Time Granular Synthesis and
Sound Granulation on the Network

8.1. Preliminary Implementation -using only on-chip memory- 185

8.2. Revised Implementation -using 256k external memory- 191

8.3. Conclusion 197

V I

Chapter 9. Discussion

9.1. Efficiency of the Applications 198

9.2. Provisions for New Processors 200

9.2.1. T9000 200

9.2.2. DSP 56300 201

9.2.3. ADSP-2106xSHARC 202

9.3. Shape of Network for Sound Synthesis 203

Chapter 10. Conclusion 205

References 208

Bibliography 216

Publications based on the work in Durham 230

Glossary of Terms and Abbreviations 231

Appendices

Appendix]. Sound Samples 242

Appendix 2. Pin Layouts of the 160 Transputer Network 244

Appendix 3. MIDI-to-Transputer Interface 246

V l l

List of Figures
Figure 1.2.1.: Square Wave. 5
Figure 1.2.2.: Source Signal (500 Hz sine wave). 6
Figure 1.2.3.: Modified Signal (CV 100 Hz, Source 500 Hz). 6
Figure 1.2.4.: Frequency Spectrum of Modified Signal (500 ± 100 Hz). 6
Figure 1.4.1.: Basic Diagram of Voltage-Controlled Synthesiser. 18
Figure 1.4.2.: MIDI Standard Hardware. 23
Figure 1.4.3.: MIDI Network Configurations. 24
Figure 2.1.1.: Block Diagram of T800. 33
Figure 2.1.2.: Block Diagram of DSP56000/1. 34
Figure 2.2.1.: Pin Alignment of the 37-Way D-Type Adapter. 37
Figure 2.4.1.: Basic Topology of the Transputer Network. 49
Figure 2.4.2.: 16-Transputer Network on a PCB. 50
Figure 2.4.3.: Monitoring LEDs on a PCB (part). 51
Figure 2.4.4.: Overview of the 160 Transputer Network with Six External Transputers.

52
Figure 2.4.5.: Connection Diagram of the 160 Transputer Network. 53
Figure 3.2.1.: Timing of the Distorted Chord (10 msec. Rise). 61
Figure 3.2.2.: Quick Gesture in Keyboard Performance (Glissando). 66
Figure 3.2.3.: Quick Gesture in Keyboard Performance (C-G-C Scale). 67
Figure 3.2.4.: Intervals of Notes (8 beat Cmaj). 69
Figure 3.2.5.: Intervals of Notes (Grace Notes 1). 72
Figure 3.2.6.: Intervals of Notes (Grace Notes 2). 72
Figure 3.2.7.: Quick Gesture in Keyboard Performance (Trill 1). 73
Figure 3.2.8.: Quick Gesture in Keyboard Performance (Trill 2). 74
Figure 3.2.9.: Traffic Analysis (Tune 1). 75
Figure 3.2.10.: Note Interval (Tune 1). 75
Figure 3.2.11.: Traffic Analysis (Tune 2). 76
Figure 3.2.12.: Note Interval (Tune 2). 76
Figure 3.2.13.: Traffic Analysis (Glissando). 77
Figure 4.1.1.: Second-Order Resonator Poles. 88
Figure 4.1.2a.: Saw-Tooth Wave by 8-Bit Integer. 91
Figure 4.1.2b.: Saw-Tooth Wave by 8-Bit Integer after 10000 Cycles, 91
Figure 4.2.1a.: Configuration Map (Left). 96
Figure 4.2.1b.: Configuration Map (Centre). 97
Figure 4.2.1c.: Configuration Map (Right). 98
Figure 4.2.2.: Result of Insufficient Buffer Size. 100
Figure 4.3.1.: Configuration of aMonitoring Program (Part). 104
Figure 4.3.2.: Monitoring Result (Part). 105
Figure 4.3.3.: Revised Implementation. 106
Figure 5.2.1.: Configuration Map 27-Voice Model (Part). 116

V l l l

List of Figures (continued)
Figure 7.2.4.: FFT Result of Granulated Speech (320-sample-long grain). 169
Figure 7.2.5a.: Granulation of 440 Hz Sine Wave by Ramp Envelope (640). 170
Figure 7.2.5b.: Frequency Response of Grain Model (640). 170
Figure 7.2.6.: FFT Result of Granulated Speech (640-sample-Iong grain). 171
Figure 7.2.7a.: Granulation of 440 Hz Sine Wave by Ramp Envelope (2560). 172
Figure 7.2.7b.: Frequency Response of Grain Model (2560). 172
Figure 7.2.8.: FFT Result of Granulated Speech (2560-sample-long grain). 173
Figure 7.3.1a.: Grain Envelope And Granulated Sound (1:8). 175
Figure 7.3.1b.: Frequency Response of Granulation (1:8). 175
Figure 7.3.2a.: Grain Envelope And Granulated Sound (1:4). 176
Figure 7.3.2b.: Frequency Response of Granulation (1:4). 176
Figure 7.3.3a.: Grain Envelope And Granulated Sound (1:2, Regular). 177
Figure 7.3.3b.: Frequency Response of Granulation (1:2, Regular). 177
Figure 7.3.4a.: Grain Envelope And Granulated Sound (1:1). 177
Figure 7.3.4b.: Frequency Response of Granulation (1:1). 177
Figure 7.3.5a.: Grain Envelope And Granulated Sound (Ramp Only). 178
Figure 7.3.5b.: Frequency Response of Granulation (Ramp Only). 178
Figure 7.3.6a.: Grain Envelope And Granulated Sound (Fixed Ramp, Ramp Only). 178
Figure 7.3.6b.: Frequency Response of Granulation (Fixed Ramp, Ramp Only). 178
Figure 7.3.7a.: Grain Envelope And Granulated Sound (Fixed Ramp, 1:1). 179
Figure 7.3.7b.: Frequency Response of Granulation (Fixed Ramp, 1:1). 179
Figure 7.3.8a.: Grain Envelope And Granulated Sound (Fixed Ramp, 1:2). 179
Figure 7.3.8b.: Frequency Response of Granulation (Fixed Ramp, 1:2), 179
Figure 7.3.9a.: Grain Envelope And Granulated Sound (Fixed Ramp, 1:4). 180
Figure 7.3.9b.: Frequency Response of Granulation (Fixed Ramp, 1:4). 180
Figure 7.3.10a.: Grain Envelope And Granulated Sound (Fixed Ramp, 1:8). 180
Figure 7.3.10b.: Frequency Response of Granulation (Fixed Ramp, 1:8). 180
Figure 7.3.11a.: Grain Envelope And Granulated Sound (110 Hz, 1:2). 181
Figure 7.3.11b.: Frequency Response of Granulation (110 Hz, 1:2). 181
Figure 7.4.1a.: Frequency Response of Grain With Space (1/4). 182
Figure 7.4.1b.: Frequency Response of Grain With Space (1/2). 182
Figure 7.4.1c.: Frequency Response of Grain With Space (3/4). 183
Figure 7.4.Id.: Frequency Response of Grain With Space (1/1). 183
Figure 7.4.le.: Frequency Response of Grain With Space (3/2). 183
Figure 7.4. If . : Frequency Response of Grain With Space (2/1). 183
Figure 7.4.2.: Frequency Response of Grain With Space (2560:2/1). 184
Figure 8.1.1.: Granular Synthesis with Short Wavetable. 187
Figure 8.1.2.: Granular Synthesis with Distributed Wavetable. 189
Figure 8.2.1.: Timing Chart of the Sound Granulation. 192
Figure 8.2.2.: Sound Granulation with Long Sound Storage (Part). 195

X

List of Tables
Table 3.2.1.: Listening Experiment (1) (Slightly Distorted Four Note Chord). 62
Table 3.2.2.: Listening Experiment (2) (Slightly Distorted Four Note Chord). 62
Table 3.2.3.: Quick Gesture in Keyboard Performance. (Glissando) 65
Table 3.2.4.: Quick Gesture in Keyboard Performance (C-G-C Scale). 67
Table 3.2.5.: Busy Gesture in Keyboard Performance (Eight Beat Chord). 69
Table 3.2.6.: Short Timing in Keyboard Performance (Grace Notes). 71
Table 3.2.7.: Quick Gesture in Keyboard Performance (Trill). 73
Table 4.2.1.: Computation Time Required in Sine Generation Methods. 93
Table 5.1.1.: Comparison Between "True" and "Borrowed" Harmonics. 113
Table 5.2.1.: Allocadon of Oscillators. 115
Table 5.3.1.: Allocation of Oscillators (1). 120
Table 5.3.2.: Allocation of Oscillators (2). 121
Table 5.3,3: Effect of Dynamic Allocadon -i- Multi-Rate. 121
Table 6,1.1.: Differences of "Granular Synthesis" and "Sound Granulation". 131
Table 6.1.2.: Terminology for Grain. 132
Table 6.2.1.: Major Differences between FOF and FOG. 141
Table 6.4.1.: Granuladon Parameters. 148
Table 8.2.1.: Specification of the Real-Time Sound Granulation Implementation. 194
Table 9.1.1.: Efficiency of the Applications. 198

List of Program Listings
List 2.3.1.: Example of PAR Structure. 40
List 2.3.2.: Example of PRI PAR Structure. 41
List 2.3.3.: Example of ALT Structure. 42
List 2.3.4.: Example of Channel Sharing. 43
List 2.3.5.: Example of "PROG" File. 45
List 4.1.1.: Sine Oscillator by Wavetable Method. 80
List 4.1.2.: Sine Oscillator by Taylor Series Method. 82
List 4.1.3a.: Polynomial Approximation. 83
List 4.1.3b.: Polynomial Approximation. 84
List 4.1.4a: Sine Oscillator by Summation Recursion Method. 87
List 4.1.4b: Sine Oscillator by Summation Recursion Method. 88
List 4.1.5.: Sine Oscillator by Chebyshev Recursion Method. 90

X I

Declaration

I confirm that no part of the material offered has previously

been submitted by me for a degree in this or in any other

University.

T. Itagaki

Statement of Cop3a-ight

The copy right of this thesis rests with the author. No

quotation from it should be published without his prior written

consent and information derived from it should be

acknowledged.

© Copyright 1998, Takebumi ITAGAKI

X l l

Chapter 1. Introduction

1.1. Preamble

Composition and performance of music are plural activities that

combine the outcomes of a number of procedures, many involving

functions that operate in parallel. In terms of sound synthesis operations,

a significant number of generative and Digital Signal Processing [DSP]

processes involve a combination of concurrent elements, ranging from the

production of simultaneous notes by a single instrument to the

superimposition of totally independent outputs, where a number of

different components contribute to the audio spectrum.

Traditional computer processors are serial devices, restricted for the most

part to the execution of instructions as a single stream of events. Hence

processes that require the aggregation of functions executed in parallel

have to be simulated by some means of cyclical tasking and data

accumulation. In the case of digital audio synthesis and signal processing

applications, the resultant effects on overall processor performance

quickly become significant, thus limiting the number of individual

components that can be handled in real-time.

To synthesise a realistic tone of an acoustic instrument by additive

[Fourier] synthesis using a bank of sine oscillators, a minimum of about 20

to 30 individual sine waves are usually required; with an ideal specification

extending to more than 50 components in certain circumstances. A

number of approximations to sounds, such as organ tones, can be

achieved with as few as eight or ten components, but to the discriminating

listener, the results will often prove of restricted value other than in a

purely synthetic context. Additive synthesis provides sophisticated control

ability in complex timbres, and this technique has attracted the attention of

many researchers since von Helmholtz (von Helmholtz 1863). The issue

Is also related to the analysis and re-synthesIs of sound, which has led to

systems such as the phase vocoder (Dolson 1986) and techniques such

as group additive synthesis (KleczkowskI 1989).

Real-time digital additive synthesis means that the computation has to

proceed rapidly enough to provide sound samples without failure within

the required time interval: In the case of a sampling rate of 32 kHz, the

lowest practical rate for digital audio In broadcast quality, this Interval Is

31.25 |isec. Solutions to meet the demands and constraints could be

custom-made hardware like "Sine Circuitu" (Jansen 1991) and MIMIC

(Wawrzynek and von Eicken 1990), a spectral modelling approach such

as IFFT (Rodet and Depalle 1992), and stochastic decomposition (Serra

1994). Another approach our Music Technology Group has taken Is

based on a distributed parallel processing technique, using a multi­

processor-based audio computer.

Since 1988, the Music Technology Group In Durham has reported on

issues concerning multi-transputer audio processors on a number of

occasions; for example (Purvis, Berry and Manning 1988) and (Bowler, et

al. 1989). A prototype architecture for a transputer network, using sixteen

T800 transputers, was described and demonstrated at the 1990

International Computer Music Conference [ICMC] (Bailey, et al. 1990).

This was developed into a distributed parallel audio processor using 160

transputers inter-connected as a ternary tree. The network has

subsequently been used as a test-bed for a variety of network

architectures for real-time synthesis.

In this introductory chapter, the criteria for real-time implementations of

analogue and digital synthesis are reviewed, both in terms of traditional

control methods and strategies, and also more modern approaches based

on parallel and distributed processing, upon which the implementations

described in this thesis are based.

1.2. Analogue Synthesis

In 1964, an American engineer Robert Moog built a transistor

voltage-controlled oscillator and amplifier for the composer Herbert

Deutsch. The development stimulated widespread interest, and led other

American engineers to join the race to build a novel machine.

To control a musical sound, the basic requirements are measurable in

terms of frequency [oscillator], harmonics content [filter] and amplitude

[amplifier]. These three components were made voltage controllable, thus

providing a common denominator of control. Varying voltages are easy to

generate and to distribute to one or a number of associated devices,

hence their attraction as a means of regulating the generation of sound.

Analogue synthesis is often misleadingly called "subtractive synthesis",

due to the preference of most users for configurations where timbres are

generated by filtering the harmonics of raw electronic wave forms.

1.2.1. Voltage-Controlled Oscillator

A typical Voltage-Controlled Oscillator [VCO] can produce a

number of wave forms; such as saw-tooth, triangle and square [or pulse]

waves, in addition to the basic sine wave. A change in the control voltage

means a change in pitch [frequency]. A space/mark ratio of a "pure"

square wave is one. By varying the space/mark ratio with the controlled

voltage supplied by an oscillator, the harmonic structure of the sound is

changed by the oscillation; a narrower mark produces richer harmonics.

This technique is known as Pulse Width Modulation [PWM], a very useful

feature of a VCO.

L 1 period . mark .
' ——•

i •
space

Figure 1.2.1.: Square Wave.

1.2.2. Voltage-Controlled Filter

The controlled variable of a typical Voltage-Controlled Filter [VCF]

is either the cut off/centre frequency or the "Q" value [resonance]. For

example, when the "Q" is kept constant [constant Q] and the frequency is

set to track at a fixed harmonic spacing to the fundamental of a compound

wave, such as a square or saw-tooth function, a variety of consistent

timbres can be generated at different pitches.

1.2.3. Voltage-Controlled Amplifier

The controlled variable of a typical Voltage-Controlled Amplifier

[VCA] is the output amplitude. VCAs are sometimes known as two-

quadrant multipliers. When a VCA is modulated at low frequencies, the

result is a "tremolo" effect, but higher rates of modulation fuse the spectra

to give sum and difference frequencies, a phenomenon known as

"Amplitude Modulation" [AM].

200 400 BOO 800
t i n e <sanples>

Figure 1.2.2.: Source Signal (500 Hz sine wave).

I I I I I I I I • I I
200 400 600 800

t i n e < s a n p l e s)

Figure 1.2.3.: Modified Signal (CV100 Hz, Source 500 Hz).

200 400 600 800
f r e q u e n c y <Hz>

Figure 1.2.4.: Frequency Spectrum of Modified Signal (500 ± 100 Hz).

The side-band frequencies are generated as the source frequency [carrier]

plus the control voltage frequency [modifier] and the source frequency

minus the control voltage frequency. When the control voltage becomes

negative, the output of the VGA is zero. If, however, the design is

modified to create a four-quadrant multiplier with two-inputs and one-

output, a device known as a "ring modulator", the negative control

voltages can be used to produce negative frequencies with reversed

phases by reflection.

It is significant to note that the early digital software synthesis systems

allowed easy replication of many of the features in analogue voltage-

controlled systems, and many of the techniques are still widely used in the

current generation of software synthesis program, for example CSOUND.

1.2.4. Frequency Modulation

The theory behind the Frequency Modulation of high radio

frequencies, in the order of MHz, dates back to the early twentieth century

(Carson 1922). Chowning applied and explored the technique in the

sound spectrum for musical synthesis purposes (Chowning 1973),

commonly referred to as "simple FM" or "Chowning's FM", where a

"carrier" oscillator is modulated in frequency by a "modulator" oscillator.

Before the development of Chowning's FM method, most digitally

generated sounds were produced by means of fixed wave forms based on

fixed spectrum techniques, a consequence of the high computational

costs of time-varying additive and subtractive synthesis. Chowning

developed the FM technique as an efficient way of generating synthetic

sounds that have time-varying spectral characteristics. In 1975, Yamaha

[known as "Nippon Gakki" at that time] obtained a licence for the patent.

In 1980, this Japanese firm introduced the algorithm as a hardware

fabrication for the GS1 digital synthesiser.

The basic FM technique is such that a carrier oscillator is modulated in

frequency by a modulator oscillator. When the carrier and the modulator

are both sine waves, the equation for a frequency modulated signal at

time t\s;

Axsin(Ct + [Ixsm(Mt)])

where

A: amplitude of the carrier

I : index of modulation

Ct = 27ixC, Mt = 27rxM

The positions of the modulated side-band frequencies depend on the ratio

of the carrier to the modulator frequency; "C:M ratio". The side-bands are

multiples of the carrier and modulator; C + nM and C -nM, where n is an

integer number. If the "difference" frequencies turn negative, these are

folded over to the positive side with phase inversion: the wave forms flip

over the x-axis. This "fold-over" can cause cancellation of the positive

partials if the negative partials overlap exactly with the positive

counterparts. In the case of a digital implementation, this "fold-over" also

occurs where the "sum" frequencies exceed the Nyquist limit, [see

Chapter 1.3.1.], a phenomenon known as aliasing.

1.3, Digital Technology and Sound Synthesis

1.3.1. Conversion between Analogue and Digital

A digital signal is represented in discrete-time, contrary to an

analogue signal which is represented in continuous-time. The core

concept of digital audio is sampling, converting continuous analogue

signals into discrete time-sampled signals. An Analogue to Digital

Converter [ADC] is employed for this job, the device converting analogue

voltages to a string of binary numbers at each period of a sample clock;

the timing, called "sampling period", "sampling frequency" or "sample

rate", represents the resolution in the time domain.

Another parameter, the number of bits, is responsible for the resolution of

amplitude measurement. For an ADC for audio sampling, at least a 12-bit

bandwidth is needed, whereas the Compact Disc [CD] uses a 16-bit

format, to achieve a much better dynamic range; 96 dB as opposed to 72

dB, much closer to that of the human ear which is about 120 dB between

the threshold of hearing and that of pain (Roads 1996).

When a continuous analogue signal is quantised, the signal turns into a

stream of binary numbers. Each of these is in an integer format, and is

often fractionally smaller or larger than the analogue figure at the sampled

point. This difference is called "quantisation noise". As the available bit-

size is increased, the resolution in amplitude, "dynamic range", becomes

higher [wider], and the associated distortion of the signal reduces

proportionally.

Two processes present in the digitisation of audio signals occur together,

but can be considered separately; quantisation in amplitude and

quantisation in time. The former measures the amplitude of a signal, and

assigns it to a scaled value drawn from the finite range of binary numbers

that are available. In the case of the latter, finite binary numbers are

registered to span a finite time internally, corresponding to the signal

generated.

In the conversion process, the "sample-and-hold" method, is used. There

is one practical problem; it assumes that the unknown voltage input does

not change during the course of the conversion. If the voltage changes,

significant conversion errors may occur. Thus the higher the rate at which

the function is sampled, the lower the risk of error from rapid changes in

the function itself [see below]. To convert a stream of binary numbers into

an analogue signal, a Digital to Analogue Converter [DAC] is used. This

device changes the string of numbers to a series of voltage levels that are

smoothed with a low pass filter to a continuous-time waveform and

amplitude.

The "sampling theorem" is the theoretical basis of digital audio and

specifies the relation between the sampling rate and the audio bandwidth.

Nyquist described it as follows:

For any given deformation of the received
s i g n a l , the t r a n s m i t t e d frequency range must
be increased i n d i r e c t p r o p o r t i o n to the
s i g n a l l i n g speed. ... I n order t o be able t o
re c o n s t r u c t a s i g n a l , the sampling frequency
must be a t l e a s t twice the frequency of the
s i g n a l being sampled.

Nyquist (1928) "Certain topics in telegraph transmission theory."

10

The highest frequency that can be produced in a digital audio system is

called the "Nyquist frequency", to honour his contribution. In musical

applications, the limit is usually at or above the upper limit of the human

auditory range [about 20 kHz]; for example a Compact Disc's sampling

frequency is 44.1 kHz while its Nyquist limit is 22.05 kHz, In some earlier

commercial applications, and some for broadcasting purposes [32 kHz

sampling rate], the Nyquist frequency was set at 16 kHz, still within the

range of hearing, but at a point where the sensitivity of the human ear

starts to decline significantly.

When a sine wave of 1 kHz and another of 7 kHz are sampled at a

frequency of 8 kHz, the results of both are indistinguishable. In this case,

where the Nyquist frequency is 4 kHz, the 7 kHz wave is folded over at the

Nyquist frequency; 4 - (7-4) = 1, a phenomenon called "aliasing". To

prevent aliasing, the input analogue signal would have to be filtered with a

low pass filter set to cut off frequencies above the Nyquist limit.

In the case of digital-to-analogue conversion, similar folding occurs at the

higher frequency band of the Nyquist limit and on both sides at every

multiple of the sampling frequency, called "image spectra". To remove the

image spectra, the converted analogue signal has to be filtered with a low

pass filter with a cut off frequency at or preferably just below the Nyquist

limit. The filter is also called a "data recovery filter", because of the task it

performs.

11

1.3.2. Compact Disc

In 1982, digital sound reached the general public by means of the

Compact Disc [CD] based upon specifications jointly developed by Sony

[Japan] and Philips [Holland]. Their applications for the optical reader

[Compact Disc Player], however, are slightly different, especially the

movement of the reading laser head; Sony's moves on a straight line,

whereas Philips' follows a banana-shaped slit. This leads to another

difference in their control strategies of the disc rotation speed. The

sampling rate of the format is 44.1 kHz and the digitised numbers are in

16-bit integer format.

In the mid 80's, many CD player manufacturers used a DAC chip set

designed by Sony or Philips, the sole patent holders, that brought the

benefits of over-sampling technology, using a Finite Impulse Response

[FIR] filter, to home audiences. Digital filters in the DAC chips provide a

much more linear phase response then the steep analogue filter used in a

regular DAC chip. In a CD player, the original samples, at 44.1 kHz, may

be "up-sampled" four or eight times to 176.4 kHz or 352.8 kHz, far higher

then the human auditory range [maximum about 20 kHz], by interpolating

the samples.

In the case of the four-times-over-sampling mode, three interpolated

samples are placed between two original samples to recover the required

samples. To do so, the total quantisation noise is spread over a wider

frequency range, thus providing a much higher signal-to-noise ratio in the

human auditory range. The image spectrums are also shifted far away,

thus a less steep data recovery filter can be introduced. If a steep filter

12

has to be used for the purpose, its phase response is not so satisfactory,

and the computation cost of a steep digital filter is very expensive. This

over-sampling technique is used in the optimisation of additive synthesis

by application of multi-sampling-rate, described in Chapter 5.

1.3.3. Wave-Table Synthesis

Since musical sound waves are highly repetitive, a more efficient

technique is to have the hardware calculate a digital waveform as a series

of numbers, for just one cycle, which are then stored n a list called a

"wave-table". To generate a periodic sound, the wave-table is read

through repeatedly, and the samples are sent to a DAC. This process is

called "wave-table synthesis", "table-lookup synthesis" or "fixed-waveform

synthesis". Since a memory access operation is much faster than the

calculation of a sample, the method is highly effective for a digital

oscillator.

To generate a frequency other than that obtained by reading every sample

at the basic sampling rate, a read pointer, or an address generator, is

employed that steps the wave-table and then outputs its contents. To

generate an octave up, the pointer skips every other sample. In the case

of an octave down, the pointer reads every sample twice. In this way,

frequency multiples of the stored more can be generated.

When a frequency between these octaves is needed, the frequency can

be obtained by an accumulator/increment method.

13

. ^ n x f o

fs

where

i : address increment,

n: table size,

^o: output frequency,

^s: sampling frequency.

The figure given by the equation is not always in integer. As the digitised

table address is always in integer, the fractions of the increment have to

be rounded. A more precise waveform, with a lower distortion factor, can

be generated by interpolation of samples. This requirement, however,

carries a significant computational overload (Mathews 1969).

1.3.4. Analysis/Re-Synthesis

One way to synthesise a sound is accumulating sine waves in

different frequencies and phases. This method is called "additive

synthesis" or "Fourier synthesis", and requires a large number of

oscillators with accurate frequency and phase control. Most additive

synthesisers imitate natural instruments by analysing sounds in terms of

their harmonic profiles via filter banks or fast Fourier transforms [FFT] that

bridge between the time domain, wave forms and sample values, and the

frequency domain, the amplitude and phase of frequency components.

In an early analysis/re-synthesis method (Fletcher et al. 1962), the system

was entirely analogue. Filtered input signals were measured via filter

banks, and the information was then used to drive a bank of oscillators

14

corresponding with the filter bank. Solutions to meet the demands and

constraints could be custom-made hardware like "Sine Circuitu" (Jansen

1991) and MIMIC (Wawrzynek and von Eicken 1990), a spectral modelling

approach such as IFFT (Rodet and Depalle 1992), and stochastic

decomposition (Serra 1994). The "FFT-""" or Inverse FFT [IFFT] method is

a hybrid method of overlap-add and oscillator bank re-synthesis. At the

re-synthesis stage, an inverse FFT is carried out, hence the naming of the

method.

1.3.5. Software Synthesis

Software synthesis is the most precise and flexible way to generate

digital sound on a general-purpose computer. Software controls all the

computation involved in a stream of samples, and the control functions

themselves can be changed in arbitrary ways by the programmer.

Authoritative examples of the method include the "Music V" language

(Mathews 1969), and its predecessors, the "Music A/" varieties.

As the importance and the flexibility of the programming language C

became more generally recognised, in 1980, Moore and Loy developed

"CMUSIC"; a much expanded version of "Music V". In a similar vein,

Vercoe translated "MUSIC 11" into a "C" based sound synthesis

language, known as "CSOUND" (Vercoe 1986). These languages are

based on the concept of "unit generators", which are signal processing

modules, such as oscillators, filters and amplifiers, that can be introduced

to form "instruments" or "patches" generating sounds.

15

The languages based software synthesis identified above requires a basic

knowledge of computing that leads to user-unfriendly "instruments",

especially in the case of musicians without such detailed prior technical

knowledge. For example, in the case of CSOUND, two files, a "score file"

and an "orchestra file", are required to generate a sound output. The

"score file" dictates the timing of the sound and key performance data

such as pitch and amplitude. The "orchestra file" consists of details of the

"instruments" themselves. These files are "compiled", like that of "source

files" in C-language. As a solution for the problem, a "toolkit" concept was

introduced that offers musicians a set of modules for creating interactive

performance situations. MAX (Puckette 1985) is an example of one of

these approaches.

MAX is an iconic toolkit targeted for interactive music performance. Some

of the MAX icons take musical information from MIDI and others from

audio sources. Other icons, connected by "patch cords" on the display

screen of a NeXT or a Macintosh [MIDI data only, in a commercially

released version], decode and transform these data. The icons, or

"patches" are, therefore, black boxes for the musicians who only know the

contents of input and output data. In the case of MAX, sound production

control could be through MIDI input, or interaction with an icon or a

programmed patch. What distinguishes these black boxes from

equivalent functions in programs, such as CSOUND, is the case with

which the various functions can be manipulated graphically as object-

oriented components, rather than in terms of integrated lines of

programming code.

16

1.3.6. Real-Time Synthesis

Real-time sound synthesis means the calculations for a sound

sample must be completed within a sample period, such as 31.25 usee at

a 32 kHz sampling rate, so that the stream of sound samples flow

constantly without failure. This is a definition of "hard" real-time. For real­

time sound processing, therefore, a large amount of data processing

power is often required. Measured by the processing time required [or

computation costs], the task may prove too large to complete within the

real-time window. The result, thus, is the introduction of some delay

between the commencement of computation and the production of sound.

In a wider meaning of "real-time" ["soft" real-time], however, about 10 to

20 msec of constant delay can be tolerated, since the human auditory

system can not detect such a short delay providing it is kept constant; [see

Chapter 3.2.1.]. A system with a time-lag that is long enough to be

detected is called a "non-real-time" system, and can only function with the

aid of some intermediate storage and accumulations systems to

aggregate the stream of sound samples for subsequent retrieval and

output.

17

1.4. Controller for IVIusic Performance

1.4.1. History of Electronic Music Keyboard Controller

Early electronic synthesisers were usually monophonic and their

keyboards only supplied one control voltage output corresponding to one

of the keys pressed, used typically to feed a voltage controlled oscillator.

The control voltage produced was directly proportional to the position of

the key on the keyboard; usually one volt per octave irrespective of the

absolute frequency; 0.0833 [1/12] V increase per key. In the case of a

very simple design, when more than one key is pressed, serial key

resistors are shorted and an untempered voltage is produced. More

sophisticated keyboard designs disable all but one key whenever two or

more keys are depressed. The usual arrangement is that only the highest

key in a note cluster is allowed to made contact with the voltage source.

key

R

R

R

R

R

R

R

R

R

R

R

Voltage
Controlled
Oscillator

sound out
•

Figure 1.4.1.: Basic Diagram of Voltage-Controlled Synthesiser.

In electronic terms, this can be achieved by driving the keyboard chain

with a constant current, instead of a constant voltage. Such a basic

keyboard controller, however, is still not a suitable device to control a

voltage controlled oscillator. When keys are pressed, no control voltage is

generated with the result that the voltage controlled oscillator's pitch will

be maintained only for the duration of the key-press. To solve this

problem, a voltage memory for each key is required; this sample-and-hold

facility is sometimes added as a module in its own right.

Around 1976, an American company "Sequential Circuits" released a

polyphonic synthesiser called "Prophet V" that was digitally controlled by a

microprocessor, the Z80. This eight-bit microprocessor, released in 1975

from Zilog, made many more features available for keyboard-synthesisers;

such as a polyphonic mode, programmable sounds, automatic tuning and

communication, and also required a DAC for the synthesiser itself, since

the processor generates the control voltages in a digital format. As a

minimum specification twelve bits are usually required for the generation

of pitch control voltages of an adequate resolution in a standard equal

musical temperament. For the control of amplitude, a minimum of eight

bits are required for acceptable smooth envelopes.

In 1981, an all-digital keyboard synthesiser, called "Synergy", was

released from an American company; Digital Keyboards, Inc. The

synthesiser was based on a digital circuit that simulated 32 oscillators and

provided convenient mechanisms for controlling their amplitude and

frequency independently in real-time with an inexpensive microprocessor;

the Z80.

19

In the early 1980s', the development of commercial systems for electronic

and computer music came to a turning point, as the technology

progressively shifted from the analogue to the digital domain. This forced

the synthesiser manufacturers to consider fundamental issues of

compatibility more seriously than before and led to an historic agreement;

a common protocol for connecting different items of equipment together at

a control level. For example, without a common standard, especially in a

control voltage environment, connecting one manufacturer's keyboard to

another's synthesiser would result in some quite bizarre consequences,

because of the different voltage-to-pitch rules employed. Although

connecting unmatched analogue voltage-controlled devices will produce

some form of response, any mismatch in digital systems will usually

produce no response at all.

In the early summer of 1981, the idea of establishing an industry-standard

of digital protocol for connecting synthesisers and associated devices

together at a control level was informally discussed at a meeting of the

National Association of Music Merchants [NAMM], an American

organisation. The initiative became a forum for a feasibility study of a

universal communication system that came from the President of

Sequential Circuits, Dave Smith. At an Audio Engineering Society [AES]

convention. Smith and Chet Wood presented their proposal for the

Universal Synthesizer Interface [USI] that was an outline description of a

protocol to transmit note/event information between synthesisers.

20

In the summer of 1982, the initiative passed to the Japanese

manufacturers, including Casio, Kawai, Korg, Roland and Yamaha,

leaving only Sequential Circuits to represent the American interests. By

September, this new grouping of companies completed a draft of an

expanded specification for what became known as the Musical Instrument

Digital Interface [MIDI] finally announced by Robert Moog in an article that

appeared in the October edition of the magazine Keyboard. In the spring

of 1983, the definitive version of the specification, MIDI specification

Version 1.0, was published by the newly formed International MIDI

Association based in the USA.

MIDI is a specification of a communication protocol that makes it possible

to exchange information such as musical notes and expression control

between different musical instruments or other devices, such as a

sequencer, computer and mixer. These abilities to transmit and to receive

data to a common specification were originally conceived for live

performance, although subsequent developments have had an impact in

the recording studio, audio and video production, and also the composition

environment. Now, it is regarded as a standard for the digital

representation of musical events at a control level.

The original motivation for the standard was to allow commercial

synthesisers to be connected together, thus they might share performance

information. Other benefits sought included hardware extendibility,

protection from obsolescence, and interfacing to digital computers. It is

important to note that MIDI was designed as an event-based network, not

a sample-based one. MIDI was loosely adapted from the serial data

21

transmission teclinology developed for computer terminals. The basic

idea involves a two-layer specification; a physical interconnection scheme,

and a code to communicate information across the channels so created.

MIDI has been an industrial standard for music instruments, including the

keyboards, for more than ten years. This well-established standard is

commonly the best available controller for real-time synthesis systems,

rather than custom-made keyboards that became extremely rare. An

additive synthesis implementation basically requires control of amplitude,

frequency and possibly phase. The amplitude and frequency of a sine

wave can be controlled with MIDI signals; key-number [frequency] and

velocity [amplitude]. MIDI'S hardware and software specifications are

described later in this Chapter. The suitability of a MIDI keyboard as a

real-time controller is discussed in Chapter 3.

1.4.2. MIDI Specification

1.4.2.1. Physical Specification

The physical medium is a simple point-to-point opto-isolated 5 mA

current loop, utilising a unique 180 degree 5-pin DIN connector: pins 1 and

3 are not used, and should be left unconnected. The cable is made of a

shielded twisted pair; the shield being grounded only at the source end.

Each twisted pair is a separate link that implements a one-direction

transmission line. To avoid ground loops and subsequent data errors, the

transmitter circuit and the receiver are internally separated by an opto-

isolator.

22

f to U A R T

280 £2

IN914 2

I 220

Opto
Isolator

220 n
+ 5 V — A A ,

MIDI IN

from U A R T
220 I

220 I

220 ii
+5V — W

MIDI THRU

MIDI OUT

International MIDI Association. (1983)
"MIDI Musical Instrument Digital Interface Specification 1.0"

Figure 1.4.2.: MIDI Standard Hardware.

A MIDI device will normally have a MIDI input [MIDI IN] jack and an output

[MIDI OUT]. A device can have a through [MIDI THRU] jack, which

passes a buffered electrical copy of the input signal: MIDI IN is connected

to MIDI THRU through an opto-isolator, but not to MIDI OUT. Information

is transmitted as asynchronous serial data at an aggregate data rate at

31.25 Kbaud with an allowance of ± 1 % . Serial MIDI data is transmitted as

ten-bit code bytes; a start bit, eight data bits [OOh to DOh] and a stop bit.

23

Some Interconnection schemes for multiple synthesisers are as follows:

Uni-directional a master talks to a slave.

[Chain one master drives several slaves.]

Bi-directional two masters drive each other as slaves.

[Ring bi-directional connection to more than two.]

THRU IN I OUT a

b I THRU I IN I OUT a+b

THRU IN OUT a+c

d R H R U I IN I OUT a+d

THRU I IN OUT

THRU IN OUT

THRU I IN I OUT

THRU IN roUT

uni-directional (chain) bi-directional (ring)

Figure 1.4.3.: MIDI Network Configurations.

Nevertheless, due to signal degradation largely attributable to cable

capacitance and the response time of the opto-isolator, there are some

limitations on the length of cables and the number of devices that can be

chained in this function. The limitation on the number of chained devices

is not defined in the specification. The maximum cable length in any

chain, however, is restricted to 15 metres.

1.4.2.2. Code Specification of IVIIDI

MIDI communication is achieved through multi-byte messages

consisting of one "Status" byte followed by one or two "Data" bytes, the

only exceptions being "Real-Time" and "Exclusive" messages that permit

24

longer data strings. Thus each MIDI event is transmitted as a message

and consists of one or more bytes. Messages are divided into two main

categories: "Channel" and "System".

There are sixteen channels and three modes: the channels provide for

multi-synthesiser control with a single MIDI network, while the modes

establish the relationship between the channels and the voice assignment

method within a synthesiser. A "Channel" message uses four bits in the

"Status" byte to address the message to one of sixteen MIDI channels,

and four bits define the message. "Channel" messages are thereby

intended for those receivers in a system whose channel number match the

channel number encoded into the "Status" byte.

There are two types of "Channel" messages; "Voice" and "Mode". Voice

is to control an instrument's voices and Mode is to define the instrument's

response to Voice messages. The modes are called "Omni" [on/off],

"Poly" and "Mono". Four mode messages are available for defining the

relationship between the sixteen MIDI channels and the instruments.

These modes operate between a receiver and a transmitter assigned to

the channel N [one of sixteen channels]:

MODE ACTION

Omni on, Poly Voice messages are received from ALL channels, and
assigned to voices. All voice messages are transmitted
in Channel N.

Omni on, Mono Voice messages are received from ALL channels, and
control only one voice. Voice messages for ONE voice
are sent in Channel N only.

25

MODE ACTION

Omni off. Poly Voice messages are received in Channel N only, and are
assigned to voices. Voice messages for ALL voices are
sent in Channel N.

Omni off. Mono Voice mersages are received in Channel N through
N+M-1, and assigned monophonically to voices 1 through
M: where M is specified by the third byte of "Mono Mode"
Message.

"System" messages are not encoded with channel numbers. There are

three types of "System" messages: "Common", "Real-Time" and

"Exclusive". "Common" messages are intended for all receivers in a

system, regardless of channel. "Real-Time" messages are used for

synchronisation and are intended for all clock-based units in a system.

They contain "Status" bytes only. "Exclusive" messages can contain any

number of "Data" bytes, and can be terminated either by an "End of

exclusive" [EOX] or any other "Status" byte.

There are two types of bytes sent over MIDI: "Status" bytes and "Data"

bytes. "Status" bytes are eight-bit binary numbers in which the Most

Significant Bit [MSB] is set to binary one. They serve to identify the

message type, and also the purpose of the "Data" bytes that follow it,

except in the case of "Real-Time" messages. For the "Voice" and "Mode"

message only, when a "Status" byte is received and is processed, the

receiver remains in that status until a different "Status" byte is received;

called the "Running Status". Following a "Status" byte, there are either

one or two "Data" bytes that carry the content of message. "Data" bytes

are eight-bit binary numbers in which the MSB is always set to binary zero.

26

For each "Status" byte, the correct number of "Data" bytes must always be

sent.

In the case of a single keyboard performance, three bytes are required for

a note. Since the "running status" is applied in such cases, a status byte

is only sent whenever another controller, such as the pedal, is used or

other messages, such as "system exclusive" or "real-time", are sent. It

means that most "note" messages are coded in two bytes requiring about

640 |isec for each message.

These specifications were established more than a decade ago, based on

the technology available at that time. Due to the rapid evolution in the

speed of modern computing technology, the restrictions of such

components are now open to review, not least in the light of the far greater

communication demands which may be seen in contemporary MIDI

configurations. In order to assure the viability of MIDI as a control

mechanism for the systems which are inherently complex due to the

nature of their intensive parallel architecture developed for this research

project, it was deemed necessary to carry out an evaluation of these

characteristics in the context of recorded performances. The results of

these investigations are described in Chapter 3.

27

1.5. Parallel and Distributed Processing

1.5.1. Background

Parallel and distributed processing may be defined as a technique

for increasing the computation speed for a task by dividing the various

algorithms into several sub-tasks distributed between multiple processors

that execute the tasks concurrently. There are many problems to be

solved in implementing sub-tasks over a parallel and distributed system.

One of the classical examples is the producer/consumer problem: a

process [the producer, such as oscillators] generates a stream of data to

be sent to another process [the consumer, such as a DAC]. As there may

be fluctuations in the rate of production/consumption of data, failure in the

integrity of the data flow can lead to a deadlock of the system, locally or

globally. An overloaded processor often causes such fluctuations and,

where several processors are involved, the chances of any one failing to

maintain the required throughput is significantly increased. Such

problems can only be resolved by careful programming and real-time

performance monitoring.

1.5.2. Parallel Processors

A parallel processor is a computer consisting of two or more unitary

processing modules that are linked together physically and

computationally such that applied tasks can be divided up and computed

concurrently. There are two major features of a parallel processor:

1) the processing units themselves.

2) the inter-connection network which ties together the series of

processors.

28

Parallel processors can be categorised by the topology of their

interconnection network, and by their use either of shared-memory, such

as Cray Y-MP, or distributed memory, such as nCUBE. Within the shared-

memory category, the machines are further divided into "vector" or "MIMD"

types.

The simplest inter-connected network is a bus connecting many

processors to a single shared memory. A classical problem of designing a

bus connected network is that of cache memory design, since a bus-

structured processor without sufficient cache memory would quickly

saturate the bus.

Distributed-memory designs offer higher levels of parallelism through the

interconnection of thousands of processors that may require programmers

to adopt a message-passing paradigm, since there is no realistic

possibility of a global memory that could act as a shared resource for a

global program. The design of a distributed-memory processor places

great demands on communication speed and routing.

The distributed-memory approach is, in principle, scaleable to massive

proportions: the number of processors can be increased without a

significant decrease in the efficiency of the operation. When programmers

are willing to adopt a programming model based on message passing or

data parallelism, the scalability of a distributed memory computer

becomes attractive.

29

A distributed-memory inter-connected network consists of processors and

their local memories connected by communication links. Since there is no

global memory it is necessary to move data from one local memory to

another by message-passing, achieved by a send-receive pair of

commands which are software-generated.

The simplest network is a linear inter-connected network, where each

node contains a processor with its local memory, for example a one-

dimensional cascaded pipe-line; such as NeXT boards on an IMW

(Puckette 1991). A linear network of N nodes requires N-1 links to

construct. On average it takes approximately N/3 hops, or point-to-point

links, to send a message from a source processor to a destination one.

It is possible to reduce the number of hops by increasing the

dimensionality of the inter-connected network using configurations such as

ring, star network, mesh (Aspnas, et al. 1990, and de Vel and Thomas

1990) and tree (Boittiaux, et al. 1992, and Maehle and Obeloer, 1992).

The goal of inter-connected network design is often to reduce hardware

costs by reducing links, at the same time minimising the time taken to

send a message by reducing the number of hops.

30

1.6. Summary

In this chapter, the essential principals of key methods of analogue

and digital sound synthesis have been reviewed with particular reference

to the desired characteristics of keyboard interfaces and control methods,

notably those based on MIDI. Real-time implementations of digital

additive synthesis methods require large quantities of calculation power,

and whereas one solution to performance limitations clearly lies in simply

increasing the speed of processors, this overlook the possibility of

developing new architectures which make more efficient use of finite

resources, and may thus also be more cost-effective.

It is proposed that a suitable investigation of the latter approach may

ultimately reap greater reward. One such method of exploration lies in the

development of parallel and distributed computation techniques, and the

account which follows describes the result of research into a series of

such investigations using a specially fabricated network of processors

which are described in Chapter 2.

Subsequent chapters deal in turn with the requirements for real-time

control of a MIDI-based system; the implementation of real-time additive

synthesis on the network and the optimisation of this method for particular

applications, from organ-like synthesis engines to functions for granular

synthesis and sound granulation.

31

Chapter 2. Transputers

2.1 . Transputers and other DSP chips

2.1.1. Transputers

The Transputer™ family of devices, designed by INMOS Ltd. [now

a part of the SGS-Thomson Group], offer versatile building blocks for the

construction of multi-processor computing engines that are capable of

establishing a high degree of parallelism. The word "transputer" was

derived from TRANSmitter and comPUTER. Each transputer is a self

contained high-performance single-chip computer with a RISC [Reduced

Instruction Set Computer] architecture and distinctive inter-processor

communication facilities. The transputer architecture defines a family of

programmable VLSI [Very Large Scale Integration] components.

A typical member of the transputer family is a single chip consisting of

processor, memory and communication links. In comparison with other

micro-processors, the transputer has two very special features: it has on-

chip serial links for "talking" to other transputers and hardware support for

time-sharing. The serial communication links allow networks of

transputers to be connected by direct point-to-point connections without

additional external logic.

A T800 transputer, first announced in 1986, consists of a 32-bit CPU, a

64-bit Floating-point Processing Unit [FPU], four standard transputer

communication links, a 4k-byte of on-chip RAM and an external memory

interface. This general purpose DSP chip achieves 8.77 MIPS at a clock

speed of 17.5 MHz [10 MIPS at 20 MHz], that is almost as fast as

Motorola's DSP56000 [10.25 MIPS at 20 MHz], and its FPU performs in

32

excess of 1.32 MFLOPS sustained in 32-bit. The communication links can

perform a sustained 1.74 Mbyte/sec in a uni-directional mode or 2.35

Mbyte/sec bi-directional.

Floating Point Unit

P r o c S p e e d
S e l e c t O - 2 ->
R e s e t ->
A n a l y s e ->
E r r o r l n —>
E r r o r < —
BootFromROH
C l o c k i n ->
VCC —
GHD —
C a p P l u s —
CapMinus —

P r o c C l o c k O u t <•
notMemSO-4 < -
notMem¥rB0-3 <-
notHeHRd <—
nottlemRf < —
MemWait ->
HemConfig —>
HemReq —>
HemGranted <—

System
Serv ices

Timers

4k bytes
of

On-chip
RAM

External
Memory
Interface

32 bit
Processor

Link
Serv ices

Link
Interface

Link

Link
Interface

Link
Interface

Event

< - L i n k S p e c i a l
< - L i n k O S p e c i a l
< - L i n k l 2 3 S p e c i a l

< - L i n k I n O
- > LinkOutO

< - L i n k l n l
- > L i n k O u t l

<- L i n k l n 2
- > L i n k O u t 2

< - L i n k l n 3
- > L i n k O u t 3

< - EventReq
- > EventAck

MeMAD2-31
MemnotRfDl
Memnot¥rDO

Figure 2.1.1.: Block Diagram of T800.

33

2.1.2. Other Architectures

2.1.2.1. DSP56000

Motorola's DSP56000 family, announced in 1986, is a popular user-

programmable DSP chip that has been used for a number of applications

in our Music Technology Group and also features in a number of

commercial products for digital audio. As a general purpose DSP chip, a

DSP56000/1 has a 24-bit data-bus, a 15-bit parallel port, and a 9-bit SSI

and SCI interface for communication with another device.

Being read-only memory [ROM] based, the DSP 56000 version of the

processor is factory programmed with user software for minimum cost in

high-volume applications. Being random-access memory [RAM] based,

the DSP 56001 is also capable of loading its program from an external

source.

P O R T B
OR

H O S T
I

15
< >

<-̂ ..>
t

P O R T C
and /or
S S I , SC I

Address
Generation

UNIT

On-chip
Peripherals

Host, SSI, SCI
Parallel I/O

Internal Data
Bus Switch

Bit Manipulation
Unit

1 6 b i l s

24 bits

Y A B

XAB

PAB

Programme
ROM

X Memory
RAM + ROM

Y D B

Y Memory
RAM + ROM

X D B

PDB

GDB

External
Address

Bus
Switch

Bus
Controller

4

External
Data Bus
Switch

• * 1
Programme Programme Programme
Address Decode Interrupt
Generator Controller Controller

P R O G R A M M E C O N T R O L L E R

P O R T A

address
>

<.1..>

DATA
<===>

DATA A L U
24 X 24 + 5G -> 5B-bil MAC

2 X 5G-bit Accumulators

Figure 2.1.2.: Block Diagram of DSP56000/1.

34

The DSP 56000/1 can perform 10.25 MIPS at a 20 MHz clock rate, as fast

as the T800. Each on-chip execution unit, memory and peripheral

communications link operates independently and in parallel with other

units through the bus system: this is a self-contained time-multiplex

system establishing a significant degree of internal parallelism, but in other

respects is no different to a modern monolithic processing unit.

2.1.2.2. TMS320C40

Texas Instruments' TMS320C3x generation of processors took an

important first step in addressing the needs for parallel processing by

means of pipe-lined processing units, providing designers in addition with

two external ports with associated memory interfaces. In the next

generation, announced in 1987, TMS320C4x, the devices go several

steps further by incorporating on-chip hardware to facilitate high-speed

inter-processor communication and concurrent I/O without degrading

performance.

The TMS320C40 [C40] has six communication ports capable of 20-

Mbyte/sec asynchronous transfer-rate at each port, whereas the T800 has

four communication ports. The DSP chip has a register-based CPU

architecture that contains a pair of CPU-buses with register-buses. The

CPU is capable of 275 MOPS [25 MFLOPS], with 40-ns and 50-ns

instruction cycle times [25 MHz and 20 MHz]: this is thus a parallel DSP

chip with more than one CPU on board. The C40s have been used by our

Music Technology Group for the analysis and re-synthesis of musical

sound.

35

2.2. Transputer Development System

2.2.1. Introduction

The Transputer Development System [TDS] is an integrated

development system that can be used for developing Occam programs for

a transputer or a network of transputers. It consists of a plug-in board,

"mother board", for an IBM PC [Transtech TMB04] and all the appropriate

development software.

2.2.2. Hardware Descriptions

The TMB04 is an expandable transputer board for an IBM XT or AT

and their compatibles. The board consists of a transputer [T800] with

local memory and 2M Bytes of fast DRAM. There are four slots for adding

further transputer modules [TRAM] as daughter-boards.

Each slot on the mother-board is made up with 160 dual-in-line [DIL] pins

and is arranged in a hard wired pipeline: link No. 2 of the No. 1 daughter­

board is connected to link No. 1 of the No. 2 daughter-board. The TMB04

board is equipped with a 37 way D-type connector with a special adapter.

The adapter allows the master transputer's links to be connected to

external transputers and to the daughter boards' links that are not used for

forming the pipeline.

There are two ways to communicate between the mother-transputer on

the TMB04 and the host PC's IBM bus: the link adapter and a DMA

mechanism. The former is the simplest form of data transfer between the

PC bus and the TMB04. It is often referred to as a "B004" interface using

36

a transputer link adapter chip IMS C012. The latter is achieved with the

DMA interface chip 8237.

Down System
Sub System

L l l TRAM 0 Link 3
LIO TRAM 3 Link 2
L09 TRAM 0 Link 1
L08 TRAM 3 Link 3
L07 TRAM 3 Link 0
L06 TRAM 2 Link 0
LOS TRAI^ 1 Link 0
L04 TRAM 0 Link 0
LOS Master Link 3
L02 Master Link 2
LOl Master Link 1
LOO Master Link 0

• • • • Up System

Figure 2.2.1.: Pin Alignment of the 37-way D-type Adapter.

2.2.3. Software Descriptions

Most of the development system runs on the transputer mother

board; a program "server" on a host PC that provides the I D S with access

to the terminal and filing system of the PC. The I D S allows programmers

to edit, compile, run and debug Occam programs entirely within the

development system. Occam programs can be developed on the I D S

and configured to run on a network of transputers with the code being

loaded from the I D S . The I D S is accompanied by all the necessary

37

software tools and utilities to support this kind of development, including a

variety of Occam library routines to support mathematical functions and

input/output routines.

There are, however, few provisions for tools designated to the networked

transputers, with the exception of the network tester that examines each

processor and connection. This means that each program to be loaded

on to a networked transputer has to be developed and tested on the

single-transputer system on the motherboard without communication links

to others, and a configuration of the network has to be designed and

developed manually, without a tool on the TDS.

The current version of the TDS restricts access to the PC filing system to

one reading or one writing task only. This means, for example, that

programs requiring simultaneous file inputs with outputs cannot be

implemented. Also, the TDS is not equipped with a graphic interface or

library. It may, however, be possible to build the interface by means of

manipulating the PC bus and the PC interrupts, but this has not been

investigated.

38

2.3. Occam

2.3.1. Background

Transputers are designed to implement the Occam language but

also support other languages; C, Parallel C, Pascal and FORTRAN, that

may produce larger codes than Occam. Occam is a simple language

based on the Communication Sequential Processes [CSP] model of

concurrency and communication, and is a message-oriented language

where the basic unit is called a "process". Occam's processes

communicate using "channels", inter-process data paths that provide a

zero-buffered, uni-directional data path between two processes running in

parallel. A channel can be placed between two transputers; processes

are thus not restricted to the same transputer, allowing both internal and

external parallelism.

Traditional computers are designed for the sequential execution of

programs. A sequential programming language is thus characterised by

its actions occurring in a strict, single execution sequence. A parallel

program, however, may consist of a number of processes that themselves

are purely sequential, but which are executed concurrently. A parallel

programming language is required to handle a number of concurrent

processes that may communicate with each other to share variables or to

synchronise the processes.

Occam processes are built from three primitive processes:

assignment a := b

where "a" and "b" are variables.

39

input a ? b

where "a" is an input channel, and "b" is a variable,

output a ! b

where "a" is an output channel, and, "b" is a variable.

These are combined to form constructs: "SEQ"; sequential, "PAR";

parallel, "ALT"; alternative, "IF"; conditional and "WHILE"; iteration.

2.3.2. Structure of Occam

The "SEQ" construct signifies that statements under process are to

be executed sequentially, as in traditional sequential languages. The

"PAR" construct denotes that the following processes are to be executed

independently, but, concurrently.

PAR
process A
process B
process C

List 2.3.1.: Example of PAR Structure.

The processes under a "PAR" construct are supposed to be given equal

time slots, however, that depends upon the compiler's best decision and

load balancing of the concurrent processes. In some cases, concurrent

processes may actually require more execution time than a combined

sequential process, unless some background overheads, such as

communication with an external processor, are involved. It thus does not

necessarily follow that a parallel processing configuration will always be

more efficient than a sequential equivalent. When arranged in a suitably

efficient manner, the distribution of tasks is highly condition-dependent,

40

and therefore requires considerable programming skills. It is also worth

noting that each process placed in parallel should have as similar loading

as possible, otherwise the program sequence has to wait until all the main

processes have been executed.

In the case where one process has to be assigned more time slots than

another, the "PRI PAR" structure may be used, providing the construct

only involves two processes.

PRI PAR
process A
process B

List 2.3.2.: Example of PRI PAR Structure.

In the above example, priority, or allocation of more time slots, will be

given to process A. In some extreme cases, this will mean that no time

slots can be allocated to process B, if process A is heavily loaded.

Alternatively, if time slot is given to the lower priority process, incoming

communications to the higher priority process may be ignored, since the

T800 transputers are time-multiplex parallel processors without any

hardware buffer on their communication links. A solution to this is a

"software" buffer.

Another usage of the "PRI PAR" statement is for higher resolution clock

control. In a low-priority process, a "TIMER" input provides a 15.625 kHz

clock; 1 tick = 64 ^isec. When the TIMER function is used in a prioritised

process, the clock frequency changes to 1 MHz; 1 tick = 1 |isec. To avoid

41

loss of time slots, the "SKIP" statement is usually placed as a lower priority

process that literally does nothing and therefore consumes no time slot.

The "ALT" construct operates a "first-come-first-ser^ed" style switching

procedure.

ALT
channel A ? x

process A
channel B ? x

process B
TRUE

process C
List 2.3.3.: Example of ALT Structure.

In the above example, when the input to channel A comes first, process A

will be executed. If there are no inputs to either channel A or channel B,

process C will be executed. However, as long as one process under an

"ALT" structure is being executed, the "ALT" may not observe another

channel interrupt. This may result in a loss of the incoming data, since the

T800s have no hardware buffer on their communication links, and the

Occam does not place a communication buffer automatically. To prevent

the loss of incoming data, a buffering process for each channel may be

required, depending upon the frequency of interruption.

The Occam text books always recommend the use of a "TRUE" guard

whenever an "ALT" structure is placed as a safety precaution or a time-out

facility, since the absence of a "TRUE" may lead to a deadlock of the

program; an infinity loop accidentally caused by the compiler. Indentation

in the list above signifies the level of the nested process.

42

A variable or a communication channel cannot be shared among the

concurrent processes placed under a "PAR" construct that necessitate the

usage of an "ALT" structure. For example, consider the case where there

are two processes placed in parallel, and both results have to be

displayed on the terminal screen. If the "TRUE" guard is fired when no

input from either process is available, the "SKIP" process will be executed.

PAR
SEQ

process A
channel A ! r e s u l t A

SEQ
process B
channel B ! r e s u l t B

SEQ
ALT

channel A ? x
screen ! a, x

channel B ? x
screen ! b, x

TRUE
SKIP

List 2.3.4.: Example of Channel Sharing.

As in the "PAR" construct, a "PRI" can be applied over the "ALT" to

provide more attention to information from an input channel. In this case,

there can be more than two input channels under a "PRI ALT" structure.

Priority is given to the input channel immediately below an "PRI ALT"

statement.

In a sequential program, there is only one execution path, which is

relatively straightforward to terminate. Concurrent programs, however,

may have many execution paths. If a path is not terminated in the correct

manner, it may lead other processes to a deadlock situation.

43

When two processes are placed under a "PAR" structure, both processes

must be terminated within a "good" timing and in a proper manner. If one

process is ended far earlier than the other, the remaining process is

executed with the same time slot allocation, as if the process already

ended was still running. This means that load balancing between the

concurrent processes is a very important consideration. A possible

solution to synchronising the termination of two or more concurrent

processes is to employ a global variable as a flag to signal termination.

Since Occam does not allow the usage of shared variables, the

termination information should be sent through a communication channel.

Occam also has similar repetitive and conditional features in common with

other conventional computer languages, such as "IF", "FOR" loop,

"WHILE" loop and "SWITCH" case switch. The "WHILE" loop is often

used for controlling concurrent processes.

In a typical development procedure, an Occam program may be tested on

a single transputer, as an "EXE" file. The ultimate goal, however, is

usually to map a number of programs onto inter-connected transputers, by

means of a "PLACED PAR" statement in a "PROGRAM" file. The number

of processors does not always match the number of processes, since

more than one process can be situated on a processor under a "PAR"

structure.

44

A "PLACED PAR" statement is followed by at lest one placement

statement allocating a specific processor for the execution of the process

that follows, the hardware communication links to be used and where they

are to be connected, and a "PROC"; procedure for the processor. A

"PROC" declaration is followed by the name of the procedure and the

necessary communication links and given variables. The main body of a

"PROC" declaration, called the procedure body, consists of one or more

"SC" source code instructions.

SC extr a
SC mouse

[3]CHAN OF ANY s.out:

PLACED PAR
PROCESSOR 0 T8 -- T800-17 128k
PLACE s.out[0] AT l i n k O i n :
PLACE s . o u t [l] AT l i n k l o u t :
e x t r a (s . o u t [0] , s . o u t [l])

PROCESSOR 1 T8 -- T800-17 128k
PLACE s . o u t [l] AT l i n k l i n :
PLACE s.out[2] AT linkOout:
mouse (s . o u t [1] , s.out[2])

List 2.3.5.: Example of "PROG" File.

One or more "SC" codes for the processes under a "PLACED PAR" have

to be included in a "PROGRAM" file by means of the source code

themselves or a "#USE" statement for the inclusion of a function library;

this is similar to the "#include" statement in C-language.

The numbering of the processors has to be matched with the booting path

of the processors: TDS understands that the lowest numbered processor

is the first to be booted, and it then follows the hardware links specified.

This means that there should be a path that covers all the processors, and

45

it is sometimes necessary to introduce a dummy communication link to

bridge a gap, only for the purposes of booting.

2.3.3. Variable Types

Occam provides the following elementary data types:

B O O L Boolean logic value; TRUE or FALSE.

BYTE integer value between 0 and 255.

INT, INT64, INT32, and INT16 signed integer values; default

[32-bit in T800] , 64-bit, 32-bit and 16-bit.

REAL64 and REAL32 floating point values; 64-bit and 32-bit.

The "RETYPE" statement provides a quick type conversion between

different types of INT [INT64, INT32, INT16] values or from an INT value

to a BYTE array of four. Traditional type conversions are also available

between any type of variables, but this takes more time slots than a

"RETYPE".

The 32-bit based T800 transputer is capable of operations in boolean, 8-

bit [BYTE], 32-bit and 64-bit [double precision]. In the case of 16-bit,

however, the INT16 variables are handled as 32-bit integer types [INT32

or INT] with zeros in the upper bytes. This means that whenever an

operation using INT16 type is executed, the type conversions from INT16

to INT32 and from INT32 to INT16 are performed internally, requiring more

time slots than an operation using INT32 types.

46

2.3.4. Communication Channels

Communication between processes [or processors] is achieved by

means of channels. Occam communication is point-to-point, synchronised

and unbuffered. For this reason, a channel needs no process queue, no

message queue and no message buffer. For the same reason, however,

high density communications placed in parallel may cause loss of the

data, by overwriting or lack of a time slot, and a deadlock situation, by

waiting for an acknowledgement signal [for synchronisation] which can

never be sent.

A channel communication between two processes on the same transputer

is implemented by a single word in memory whereas a channel between

the processes executing on different transputers is created by point-to-

point links using two signal wires that provide two Occam channels, one in

each direction. In the case of the latter, as the T800 transputers do not

have a hardware buffer for the communication links, if a channel is placed

between two processes in a different priority, data loss may occur on the

receiver side unless a buffering process is employed. For communication

with non-transputer-family devices, an external link adapter, IMS C011 or

IMS C012, acts as an interface and a dummy transputer.

The link protocol provides the synchronised communication of Occam that

is based on "message-and-acknowledgement" protocol. An inter-

transputer link sometimes causes a local deadlock; when the receiver side

is busy and fails to send an acknowledgement to the sender, this lack of

acknowledgement freezes the sender process until the acknowledge

47

signal comes. This means that load-balancing between the processors is

also important.

48

2.4. 160 Transputer Network

A prototype architecture for a transputer network, using sixteen

T800s, was presented and demonstrated at the 1990 ICMC held in

Glasgow (Bailey, et al. 1990). This was developed into a distributed

parallel audio processor using 160 transputers inter-connected as a

ternary tree. The network has been used as a test-bed for network

architecture for real-time synthesis.

Each T800 transputer has four hardware communication ports that permit

the construction of a ternary tree, providing hierarchical control. While a

tree structure provides short path lengths between the arbitrary nodes, the

modified ternary tree can also achieve this between siblings at the same

level (Bailey 1992), thus increasing the scope for achieving both efficiency

and flexibility in the flow of data between transputers.

Root

B

H 3

i k 3

Transputer
LinK u i LinJ

L ink 1 - | | -

Link 2 '

Expansion Point

Single Element

Extent of PCB

Figure 2.4.1.: Basic Topology of the Transputer Network.

49

Four of these single elements, a total of 16 transputers, are

accommodated onto a standard 3U printed circuit board, as in the

prototype architecture published in 1990 (Bailey, et al. 1990). The

transputers are hard-wired to each other permanently. The software

configuration of the network, however, is flexible and re-programmable.

1

Figure 2.4.2.: 16-Transputer Network on a PCB.

A block of LEDs is situated on the edge of each PCB to monitor the status

of error flags and the activity of the links number one, two and three of the

transputers. The organisation of the LEDs is shown in the diagram below.

This is the only way to monitor the performance of the transputer, as there

is not a CPU performance measurement probe situated on a T800. In the

case of the latest T9000 transputer, there is a fifth link designed especially

for this purpose.

50

Error Links Transputers

1 2 3 o ooo Root No. 0 o ooo Root No. 1 o ooo Root No. 2 o ooo Root No. 3

o ooo A No. 0 o ooo A No. 1 o ooo A No. 2 o ooo A No. 3

Figure 2.4.3.: Monitoring LEDs on a PCB (part).

An unusual feature of the design is the absence of any external memory

local to the board. The rationale behind this is that a real-time distributed

system should not require a large amount of on-board memory for

intermediate data storage. It might be said that this expectation was a

little idealistic. As a number of applications, described in the later

Chapters, have proved, this limited storage size had to be overcome by

design modifications at a later stage.

Each transputer thus uses only its internal 4k-byte memory for

programming purposes. This results in a total of 160 transputers with

640k bytes of internal memory distributed across the network of our ten-

board system, and a maximum processing power of 1,400 MIPS. The

absence of local external memory necessitates compact algorithms for

execution at audio sampling rates and the use of a compact code that

leads to Occam.

51

One of the primary objectives is the use of many small and cheap

processors to increase the overall computing power in a cost-effective

manner. In other words, individual processors in such a network need not

offer exceptional performance since the allocated sub-tasks are

significantly smaller than the complete task when executed on a single

processor system.

Figure 2.4.4.: Overview of The 160 Transputer Network
with six external Transputers.

52

L extent of PCB
•4" transputer
4- connector

Figure 2.4.5.: Connection Diagram of The 160 Transputer Network.

53

2.5. Summary

In this chapter, the capabilities and the limitations of the transputer,

its software development system [TDS] and the programming language

designed for the transputers [Occam] have been described. Transputers

are time-multiplex parallel processors with non-buffered communication

links that allow high-speed communication between processors, and also

the development of software and hardware in a variety of configurations.

These resources offer considerable opportunity for the construction of

parallel and distributed networks which can be customised to the specific

requirements of audio synthesis, and this proposition is tested in practical

terms in the chapters which follow. Connectivity, however, does not

automatically solve in itself some functional problems of process control in

any system which makes significant use of parallel and distributed

architecture, and solving these is critical to the successful implementation

of any such algorithm whether for audio or any other computational

process.

The most fundamental of these concerns are the possibility of data loss in

the buffer-less communication hardware, which may require the

introduction of software buffers, and also the ever-present risk of timing

errors which may lead to problems of local deadlock and thence ultimately

system failure. Both considerations are described further in the

subsequent discussions of the various implementations which form the

core of the research project.

54

By way of further background, the essential hardware characteristics of

the 160 Transputer Network used for these investigations are also

described, as there will ultimately dictate what can and cannot be

achieved in software terms. It has also been noted in these constraints

that the software development system [TDS] imposes some important

limitations on essential communications, some of which will prove

significant, as will be described in due course.

55

Chapter 3. Measurements of Keyboard
Performance through MIDI

3.1. H3TD0theses

These tests are based on a question that is frequently asked by

professional musicians: is MIDI really fast enough to represent accurately

a piano performance played by a skilled executant? Such a proposition

raises a fundamental question from an engineers' point of view: is the

MIDI standard suitable as a real-time controller for contemporary multi-

voice and multi-device systems? When MIDI was standardised almost

fifteen years ago, user expectations, in terms of digital signal processing

devices and means of control, were constrained by the limitations of the

hardware available at the time, such as 8 MHz clocked eight-bit

processors with 64k-byte memory. Over the past decade, due to the rapid

evolution in the speed of modern computing technology, the restrictions of

such components are now open to review. The question will be discussed

by comparing the limitations of MIDI technology, using digital signal

processors and their technology, and their perceived characteristics on the

human side with specific reference to the target applications.

The MIDI specification is fifteen-year-old technology that was designed for

an eight-bit Z80 standard, some orders of magnitude less than that of a

modern PC. But, is it too slow to transmit musical information? Moore

made some assumptions in his article (Moore 1988) five years after the

standardisation. In this article, the following assumptions concerning MIDI

concepts were stated:

56

One of the fundamental assumptions of the
MIDI concept i s t h a t these small delays
introduced by s e r i a l transmission are e i t h e r
imperceptible or -- i f not exactly
imperceptible -- t h a t they don't make any
d i f f e r e n c e i n a musical context... The f i r s t
d y s f u n ction r e s u l t s from the f a c t t h a t i n
some musical s i t u a t i o n s , m i l l i s e c o n d delays
do matter.,. A second problem w i t h the MIDI
assumption i s t h a t there i s an unpredictable
amount of delay between the time a
performance gesture occurs and the time i t i s
communicated to the synthesizer... MIDI i s
designed to re p o r t on musical events i n a
t i m e l y manner... I t i s known, however, t h a t
even small amount of "sample j i t t e r " can
degrade a d i g i t a l recording s i g n i f i c a n t l y . . .

F. R. Moore (1988) "The Dysfunctions of MIDI"

I have some doubts about these claims. For example, in the case of the

first argument concerning small delays, if there is a few miiii-seconds of

"constant" delay, does it matter in most musical situations? How

significant in practice are any "special cases"? I would agree that there

are some buffers on a MIDI network communication; an opto-isolator

between a MIDI-IN and a MIDI-THRU, between a MIDI-IN and a

synthesiser, and between a controller and a MIDI-OUT. All of these cause

incremented delays, but these are constant for any given condition.

As to the second claim, an "unpredictable amount" of delay, unfortunately,

the author has not cited an example of it. I would assume that it can be

quantified to a certain degree, and might be regarded as a small amount

of "constant" delay. Such disagreements require a careful analysis.

57

I conducted a preliminary experiment of human auditory response to

different delay conditions described in the next section. The possibility of

unpredictable delay must be considered on the hardware side, such as

variations in the response of a MIDI key sensor. For example, in the case

of simultaneous events, like a multi-note-chord, information has to be

accumulated in time, and then sent serially via the communication protocol

of MIDI. This issue will be examined later in this chapter.

I totally agree with his third claim. The MIDI standard is clearly not

suitable for "sample oriented" tasks, since MIDI is an "event oriented"

standard. Other representations, such as those used in a software

synthesis program such as CSOUND (Vercoe 1986), can be more suitable

for "sample oriented" communication. Due to the difference of the

concepts, however, discussion of this particular claim is not relevant to this

project, because the matter that is concern of this thesis is event-oriented

communication. As well as the "event oriented" characteristics, I would

like to add another limitation; keyboard-oriented nature of MIDI: the MIDI

standard is basically specified to represent synthesiser performances

driven from keyboards, and to transmit this information, rather than the

more complex characteristics of orchestral instruments.

Hence the information transmitted over MIDI should ideally be limited to

simple on-off key-stroke actions, perhaps with the additions of key

pressure information to control amplitude. In other words, information

other than basic key actions will invariably require a higher bandwidth for

transmission. In this measurement, therefore, the target machine should

58

be a MIDI keyboard, and so, some MIDI information may thus be ignored

as irrelevant to the application; for instance, pitch bend [strings origin] and

after touch [extra controller]. Under these conditions, I would like to begin

my discussion: is MIDI fast enough?

My hypotheses are:

1) The MIDI standard may be still fast enough to represent a

keyboard performance without an extra controller.

2) If the performance is extended to include some

accompaniments, MIDI can be fast enough, provided the

transmission delay is constant and is small enough to be

ignored by listeners. Some claims about the "dysfunction of

MIDI" can therefore be attributed to their "misuse" of MIDI or

their "excessive demands" upon MIDI.

59

3.2. IVLeasurements

3.2.1. Distorted Chord

Some articles indicate that the minimum resolution of timing in the

human auditory systems between 10 and 30 msec, depending upon the

listener and some context-dependent conditions, including the pitch

[frequency] and the amplitude of the sound.

Gabor (1946) examined the "threshold information sensitivity" of the ear,

using 500 Hz and 1,000 Hz sine waves. He concluded that for the most

critical of listeners, a 10 msec sound could be recognised as a "tone",

rather than a "click" or "noise", but at least 21 msec was required to

recognise its "pitch".

Green (1971) also postulated that about 25 msec was needed to

distinguish differences in starting times between high- and low frequency

"sinusoids". To distinguish between a "click" or "two clicks", however, the

limit of temporal resolution was invariably about 1 or 2 msec. In Rasch's

examination (Rasch 1978) of on-set times of high and low tones, with 20

msec-long rising and decaying ramps, the results showed that a time

interval of 10 to 15 msec seems to be the largest detectable interval.

These claims suggest that a constant small amount of delay, less than 10

msec, should not be detectable, and that the limit of temporal resolution is

1 or 2 msec, whereas MIDI can send a note information in less than 1

msec.

60

I conducted an experiment designed to determine the minimum

distinguishable timing in the human auditory response, and to discover a

suitable resolution in timing for MIDI transmission. A sequencer software

program on a PC was used together with a MIDI keyboard to produce

sounds. A four-note-chord was played in an arpeggio in six varieties; in

different sequences [upward/downward] and at different intervals [10, 20

and 30 msec] for each component. Among the distorted chords, a

genuine chord [no interval between each component] was played twice.

In this experiment, four subjects, who happened to work in our laboratory,

sat near two loud speakers, at an approximate distance of 3 metres. Two

of these listeners were well-trained musicians, and the other two had

strong interests in music. The listeners were asked to judge whether the

chord was played as an upward arpeggio, a downward arpeggio or a plain

chord. They were not informed of the order of the chords that were

selected at random. To avoid possible external psychological effects, a

series of chords were played twice in different orders. The results are

shown in Tables 3.2.1. and 3.2.2.

A 1760 Hz

E1319 Hz
C# 1109 Hz
A 880 Hz

20 40 60 me fmsecj

Figure 3.2.1.: Timing of the Distorted Chord (10 msec, Rise).

61

direction and interval (msec)
down down down even even up up up

30 20 10 (1) (2) 10 20 30
pe i T i t it i ir i T

subjects pa i I it i t i t ? i I
a i i i ir i T T T
t i T 17 i T I T

down i
rise T

even 0
nor even i t

can't judge ?

Table 3.2.1.: Listening Experiment (1) (Slightly Distorted Four Note Cfiord).

direction and interval (msec)
down

30
down

20
down

10
even
(1)

even
(2)

rise
10

up
20

up
30

pe i I i i t ir it T T
subjects pa i i it it u i t T T

a i T i i ir i t T I
t i i T T i t i t i T

Table 3.2.2.: Listening Experiment (2) (Slightly Distorted Four Note Chord).

The above results suggest that more than half the listeners could

distinguish the sequence of arpeggi, upwards or downwards, in the case

of 20 and 30 msec intervals. Due to the small number of candidates,

these results can only be regarded as a preliminary experiment and

further experiments are therefore required for a more authoritative

analysis.

62

3.2.2. Timing in Piano Performance

Using a digital signal processing tool on an Apple-Macintosh,

another preliminary experiment was conducted. I assumed that the

quickest gesture in a piano performance is a "trill" or a "grace note".

These two cases were examined as follows. The sound source was from

a CD, performed by a well-trained executant. According to the Fourier

Transform analysis on the frequency domain, there were three peaks; two

strong peaks at the frequencies of "A flat" and "B flat", and the other at the

difference of these two; beating frequency. On the time-amplitude

domain, I could see the sound of the trill as a beating noise. The sound,

however, could not be separated into a single tone; one of "A flat" or "B

flat". This means that due to natural acoustical conditions, notably echo,

the original sound was distorted.

As a result of the first experiment, to avoid echo and other effects, a digital

audio tape recorder was used with a microphone situated immediately

above the piano strings. Some "trills" and "grace notes" of a piano

performance were played by a music student as a sound sample. These

were then analysed in the same manner as for the CD sound. On an

analysis, the onset of the notes was clearly identifiable; ranging between

about 5 and 10 msec. This suggests a minimum timing in the case of a

piano performance that lies somewhere between these limits, and

arguably towards the higher of the two figures. It seems reasonable to

presume that about 10 msec of constant delay would not be distinguished

by most listeners, and therefore would not effect a piano performance in

most cases.

63

3.2.3. The Quickest Gesture in Keyboard Performance

Along with those fundamentals shown before, Moore (1988) made

another assumption concerning capturing musical gestures from keyboard

performances; resolution and rapidity.

Assuming t h a t there are 88 notes on a
keyboard, we might s t a r t by considering how
q u i c k l y notes can be played by a s k i l l e d
p i a n i s t . I am able to play a glissando across
a l l 88 notes of a piano i n about h a l f a
second w i t h one hand. This means... about
176 events per second.

F. R. Moore (1988) "The Dysfunctions of MIDI"

This is an extreme, or an unrealistic example, but it could be acceptable

as a part of a modern piece. Another example using a different method is:

The f r o n t s of seven piano keys were f i l m e d
w i t h a Hicam camera at 2000 frames/s,
y i e l d i n g a v i s u a l record of about 1.5 seconds
of p l a y i n g . On one f i l m , the p i a n i s t was
p l a y i n g C to G back to C as q u i c k l y , l o u d l y
and evenly as possible. He made about 13 key
presses per second w i t h h i s r i g h t had.

C. L. MacKenzie (1985)
"Structural Constraints on Timing in Human Finger Movements"

This example is more realistic and is a controlled performance. I tried to

perform both cases on a MIDI keyboard, that had 60 non-weighted keys,

and to record the information, using the MIDI-to-transputer interface. In

the musical context, a glissando usually means that using some fingers,

white keys on a keyboard are pressed sequentially from low notes to high

[or vice versa] continuously. In Moore's assumption, however, he argued

that the measurement should be a "glissando over the 88 piano keys".

64

Since there are only 52 white keys on a conventional acoustic piano, I

interpreted and performed a gesture that placed some fingers on an initial

black key and the thumb on an adjacent white key, followed by a hand

movement from left to right.

Performance Gliss 1 Gliss 2
Length (sec) 4.716 0.9046
MIDI Events

note on 234 59
note off 234 59
status byte 27 6
total (bytes) 955 242

Transmission Rate
bits (baud) 2025 2675
keys (keys/s) 48.77 65.22

Interval of Notes
average (msec) 20.19 15.3
standard deviation 12.26 10.45
minimum (msec) 4.027 4.864

Duration of Notes
average (msec) 85.29 72.16
standard deviation 22.34 27.14
minimum (msec) 18.94 16.64

Table 3.2.3.: Quick Gesture in Keyboard Performance.
(Glissando through a keyboard)

65

"1 r 1^ r
o - i 1 lo loo looD (msec)

interval of notes

Figure 3.2.2.: Quick Gesture in Keyboard Performance
(Glissando through a keyboard) [glissando 1].

In the first performance, because of a shorter range keyboard, I had to

turn over my hand movement few times. This introduced some

unexpected time intervals between the note progressions. To avoid that,

only one movement was executed in the second. The graph above shows

the interval as a histogram; it is written using a logarithmic scale for time

and a linear scale for the intensity.

These results below show that the quickest gesture recorded in a piano

performance is in the order of 10 to 100 msec. This means that a piano

performer can just manage to play a 10 msec gesture.

66

Performance scale
Length (sec) 41.17
MIDI Events

note on 388
note off 387
status byte 229
total (bytes) 1779

Transmission Rate
bits (baud) 432.2
keys (keys/s) 9.401

Interval of Notes
average (msec) 106.2
standard deviation 24.85
minimum (msec) 60.06

Duration of Notes
average (msec) 106.7
standard deviation 15.93
minimum (msec) 53.08

Table 3.2.4.: Quick Gesture in Keyboard Performance (C-G-C scale).

0.1 10 loo looo (msec)
intePi'al of notes

Figure 3.2.3.: Quick Gesture in Keyboard Performance (C-G-C scale).

67

3.2.4. The Busiest Gesture in Keyboard Performance

Moore claims:

I t i s cl e a r t h a t MIDI transmission r a t e i s
j u s t on the edge of t h i s rough c a l c u l a t i o n
f o r s i n g l e notes. I f , however, we consider
the case of a piano chord i n which a dozen or
more keys are played simultaneously w i t h two
hands, we note t h a t the time needed to
tran s m i t the data representing the note
events i s now about iV msec (where N i s the
number of noted depressed)...

F. R. Moore (1988) "The Dysfunctions of MIDI"

Transmitting a note event as a MIDI signal actually takes three bytes; one

status byte, including channel information, with two data bytes, which are

a key number and a magnitude of the event. Each takes 320 ^sec; 960

(isec [about 1 msec] in total. In the case of the piano performance,

however, the situation is slightly different: only one channel is used, mainly

transmitting just "note on" and "note off" information, and, if required, the

"running status". It means that the status byte, the controller and its

channel information is not always necessary for each event, unless

another controller, such as a pedal, is used. For that reason, the time

needed to transmit the data representing A/note events from a MIDI piano

is less than N msec.

I tried to inspect another claim; a piano chord in which a dozen or more

keys are pressed simultaneously with two hands. It seemed, however, to

be impossible to play a conventional chord featuring more than five keys

per hand, since I could not spread my hand more than one and a half

octaves. For that reason, I tried to play a conventional four-note-C major

68

chord; C, E, G, C, with my right hand, and, then a five-note-Gy chord; G,

B, D, F, G, with both hands.

Performance C major G7
Length (sec) 30.66 3.513
MIDI Events

note on 681 214
note off 631 161
status byte 167 20
total (bytes) 2791 770

Transmission Rate
bits (baud) 910.4 2192
keys (keys/s) 20.58 45.83

Interval of Notes
average (msec) 6.62 16.29
standard deviation 3.077 28.16
minimum (msec) 3.44 2.375

Duration of Notes
average (msec) 71.54 63.54
standard deviation 39.34 23.22
minimum (msec) 38.3 3.379

Table 3.2.5.: Busy Gesture in Keyboard Performance (Eight Beat Chord).

31

•H

c
01

0.1 1 l O l O O

interval of notes
l o o o (m s e c)

Figure 3.2.4.: Intervals of Notes (SbeatCmaj).

69

Even when I played a ten-note-chord as quickly as possible, the

transmission rate was not more than 2.2 KBaud. In the MIDI specification,

the transmission rate is 31.25 KBaud on 16 channels; about 2 KBaud per

channel in average, it means that if I try to send a ten-note-chord per

channel multiplied through more than fourteen channels, it is possible to

saturate the MIDI transmission.

However, do we need such kinds of densely packed information in the

course of an ordinary performance? I believe that such a question is

inevitably speculative and subjective to some degree, since the boundary

between the classical ideas of music performance and the more

experimental modes of creating music in a contemporary manner, which

might prove complex enough to defect any conventional system, is ill-

defined. For the purposes of this investigation, the proposition tested was

that of a maximum requirement of eight channels to cover an expected

degree of complexity in a rhythm part.

70

3.2.5. The Shortest Timing in Keyboard Performance

I attempted to examine two other examples of quick keyboard

gestures; grace notes and trills, to measure the resolution of MIDI. Two

performances were recorded: one played with B flats as grace notes, and

Bs as main notes. The other one was done with C sharps, as grace

notes, and Bs, as main notes. The result shows that the resolution of

MIDI transmission is fast enough to send a ten-msec-long grace note.

Performance grace 1 grace 2
Length (sec) 20.61 19.35
MIDI Events

note on 182 192
note off 182 191
status byte 113 107
total (bytes) 841 873

Transmission Rate
bits (baud) 408 451.1
keys (keys/s) 8.83 9.869

Interval of Notes
average (msec) 113.3 101.3
standard deviation 94.83 78.94
minimum (msec) 8.861 10.6

Interval of Main Notes
and Grace Notes

average (msec) 19.8 20.26
standard deviation 5.852 10.6

Duration of Notes
average (msec) 33.14 35.33
standard deviation 16.78 17.78
minimum (msec) 11.9 10.24

Table 3.2.6.: Short Timing in Keyboard Performance (Grace notes).

71

O . 1 l O
i i U_L Mi I I

1 lO lOO
interval of notes

l o o o (m s e c)

Figure 3.2.5.: Intervals of Notes (Grace Notes 1).

J
O . l 1 10 lOO

interval of notes
i o o o (m s e c)

Figure 3.2.6.: Intervals of Notes (Grace Notes 2).

Two trill performances were recorded: one using an A flat key and a B flat,

and the other using an F and an F sharp keys. These results suggested

that the MIDI specification is fast enough to transmit an event of the order

of milli-seconds.

72

Performance trill 1 trill 2
Length (sec) 17.33 16.43
MIDI Events

note on 188 188
note off 188 188
status byte 97 92
total (bytes) 849 844

Transmission Rate
bits (baud) 489.8 513.6
keys (keys/s) 10.85 11.44

Interval of Notes
average (msec) 92.22 87.38
standard deviation 14.07 11.77
minimum (msec) 5.305 42.97

Duration of Notes
average (msec) 71.65 67.06
standard deviation 11.51 15.31
minimum (msec) 38.72 30.3

Table 3.2.7.: Quick Gesture In Keyboard Performance (Trill).

O . 1 1 lO IDO
interval of notes

l o o o (m s e c)

Figure 3.2.7.: Quick Gesture in Keyboard Performance (Trill 1).

73

J j l l

o - i 1 l o l o o l o o o (m s e c)

interval of notes

Figure 3.2.8.: Quick Gesture in Keyboard Performance (Trill 2).

From these experiments, I could presume that the transmission rate in the

MIDI specification is fast enough to send several channels of conventional

polyphony keyboard performance. To confirm this assumption, another

endeavour has been carried out; a traffic analysis of MIDI keyboard

performance.

This experiment is aimed measuring the traffic conditions on the MIDI

communication line. The information was collected using the MIDI-to-

Transputer interface. I performed a few tunes on a MIDI keyboard lasting

about 30 seconds each. All the MIDI bytes were time-stamped and their

intervals accumulated.

74

o.^ 1 lo loo looo (msec)

interval of MIDI byte

Figure 3.2.9.: Traffic analysis (tune 1).

o . l 1 l O l O O

interval of notes

Figure 3.2.10.: Note Interval (tune 1).

looo (msec)

75

o . l 1 l O l O O

i n t e r v a l of MIDI b y t e

Figure 3.2.11.: Traffic analysis (tune 2).

l o o o (m s e c)

c
01
c

o . l 1 10 l O O

interval of notes

Figure 3.2.12.: Note Interval (tune 2).

l o o o (m s e c)

As shown above, on each performance there is a strong peak at about

320 lisec, the shortest interval of the MIDI specification. Most of the

intervals, however, were not concentrated near the strongest peak. This

means that the MIDI connection is not always busy, with significant spare

capacity.

76

,L L.JIJUI
0.1 1 l O l O O

interval of MIDI byte

l o o o (msec)

Figure 3.2.13.: Traffic analysis (glissando).

In the case of the busiest performance, indeed, the MIDI line had some

spare capacity to carry more information. As a result, I can confirm that

the MIDI specification is fast enough to transmit multiple keyboard

performances on different multiplexed channels, despite the fact that the

standard is based on fifteen-year-old technology.

77

3.3. Conclusion

In time resolution wise, the minimum time interval for a piano

performance and the human auditory system is about ten milli-seconds,

whereas the MIDI standard can manage to send a note event packet of

information in less than one milli-second; about ten times faster than this

requirement. In terms of transmission capacity, it seems to be difficult to

saturate the MIDI transmission in terms of conventional keyboard

performances without using other non-event-based controllers. From

these experiments, the MIDI standard is shown to be fast and reliable

enough for the recording and transmission of a single multi-keyboard

performance when simple event-based instruments and controllers are

used as the standard originally anticipated.

It would seem clear, however, that problems will arise when a number of

different multi-keyboard performances are multiplexed together in a single

stream of MIDI data to be distributed to a number of MIDI instruments.

Hardware solutions to the problem described above have been developed

in the form of sophisticated electronic hubs for the interconnection of

multiple devices, using more than two MIDI data streams called "parallel

MIDI", which provide networked solutions to such communication

difficulties, and also solve another limitation; the maximum of sixteen

channels per MIDI data stream.

78

3.4. ApresMIDI

In 1994, about ten years after the publication of the MIDI

specification, ZIPI (McMillen 1994) was presented as a replacement to the

MIDI, a new language for describing music. There are some technical

improvements over the MIDI standard that have been proposed,

especially catching up with the latest computer and signal processing

technology. When the MIDI specification was originally announced, eight-

bit computers, such as Z80 or 8086, were common. Now a 32-bit PC has

become the norm and a 64-bit PC is soon to be realised, the software

should match with the new standards, in terms of word-length and speed.

Unlike the MIDI standard, ZIPI was led by academics without any strong

backup from the electronic instrument manufacturers. This could be one

of the reasons why a ZIPI equipped instrument has not yet materialised

from the commercial sector. Or, the users of MIDI might be satisfied with

this fifteen-year-old technology with some ad-hoc solutions, such as the

usage of multiple MIDI cables controlled by a high-power PC. As I

mentioned earlier in this chapter, in some extreme circumstances,

especially in non-event-oriented cases, MIDI users may remain

dissatisfied with its response characteristics. In general, however, it would

appear that the MIDI specification is still acceptable to the majority of its

users.

79

Chapter 4. Implementation of Real-Time
Additive Synthesis on the Network

4 .1. Sine Oscillation Method

4.1.1. Wavetable (Table Look-up)

This method has been reviewed in Chapter 1.3.3. Its

implementation in Occam is as follows:

f q : o u t p u t frequency
s f : sampling frequency [c o n s t a n t]
t b : t a b l e s i z e [c o n s t a n t]
amp: am p l i t u d e
i n c l : i n c l e m e n t
ag: angle
t p : temporary s t o r a g e [INT]
o u t : o u t p u t channel
t a b l e [: wavetable

-- s e t up
i n c l := (f q * t b) / s f
ag := 0.0 (REAL32)

-- c y c l e
ag:= ag + i n c l
I F

(ag > t b)
ag := ag - t b

e l s e
SKIP

t p := INT ROUND ag
out ! (t a b l e [t p] * amp)

List 4.1.1.: Sine Oscillator by Wavetable Method.

In the above implementation, the initial frequency set up needs 28 clock

cycles [1.4 jisec at a 20 MHz clock], and each oscillator cycle does 32.4

clock cycles [1.62 |isec] whereas Occam's sine function requires about 17

|isec.

80

For an implementation of this method over the Transputer Network,

however, there is a fundamental problem concerning the memory size,

since each T800 transputer has only a 4k-byte on-chip memory. For a

real-time implementation, the memory usage should be limited to less than

80% of the capacity, including the program code, to maintain a smooth

computation. When the program code is Ik-byte, about a 2.2k-byte of

memory space can be used for the wavetable, resulting in an 1100

sample-long table [about 34 msec at 32 kHz sampling rate] in 16-bit

integer format or 550 sample-long [about 17 msec] in 32-bit format.

The size of the wavetable directly affects the quality of synthesised sound.

The worst case signal-to-error noise ratio is given as 6 (k-1) dB, where the

table size is 2*̂ sample-long (Moore 1977). In the case of the 32-bit

wavetable above, the estimated worst case signal-to-error noise ratio is

about -48 dB [k=9, 512-sample-long] representing in an unacceptable

level of distortion. For the reasons above, this method is not suitable for

an implementation over the Transputer Network.

4.1.2. Taylor Series Expansion

The Taylor series expansion method is a simple and elegant

method of evaluating most functions.

C O i (m-l)
sin(x)= I — x^^™-!)

m : i (2 m - l) !

81

f q o u t p u t frequency
s f sampling frequency [c o n s t a n t]
p i 2n [c o n s t a n t]
amp: am p l i t u d e
i n c l : i n c l e m e n t
ag angle
to temporary s t o r a g e (0)
t l t emporary s t o r a g e (1)
t 2 temporary s t o r a g e (2)
t 3 temporary s t o r a g e (3) [INT]
t4 temporary s t o r a g e (4)
t 5 temporary s t o r a g e (5)
o u t : o u t p u t channel
— s e t up

i n c l := (f q * p i) / s f
ag : = 0.0 (REAL32)

-- c y c l e
t l 0
SEQ i = l

SEQ
to
t 2 :
t3
SEQ

0 (REAL32)
FOR 10

=REAL32
= POWER (-
:= 1
m=l FOR

ROUND (i - i ;
1.0(REAL32;

(2 * i) - 1

tO)

t3 := t3 * m
t5 := REAL32 ROUND t3
t4 := REAL3 2 ROUND ((2 * i ;
t l : - t l + (t 2 / t 5) * P O W E R (a g ,
out ! (t l * amp)
ag := ag + i n c l

-1)
t 4)

List 4.1.2.: Sine Oscillator by Taylor Series Method.

The initialisation takes 28 clock cycles [1.4 |isec], and each cycle with up

to 10 components 18849.3 clock cycles [942.5 jisec].

82

4.1.3. Polynomial Approximation

A minimal polynomial approximation presented by Hart et al. (1968)

can also deliver a high quality sine and cosine function.

1x1 = n j i -I- / where M < nil

sin(x) = sign (x) x sin(/) (- 1)

cos(x) = sin(x-i- 71/2)

The computation of sine or cosine involves three numerically distinct

steps: the reduction of the given argument x to a related argument f, the

evaluation of sin(0 over a small interval symmetrical about the origin, and

the reconstruction of the desired function value from these results. The

accuracy of the function values depends critically upon the accuracy of the

argument reduction (Cordy 1980).

f q : output frequency
s f : sampling frequency [constant]
p i : 2n [constant]
amp: amplitude
ag: angle
t p : temporary storage [INT]
Xwork, Rwork: temporary storage
out: output cliannel
VAL R IS [2.601903036E-6(REAL32),

-1.980741872E-4(REAL32),
8.3 3302 513 9E-3(REAL3 2),

-1.666665668E-1(REAL32)] :

-- set up
ag := (p i * fq) / sf
tp := INT ROUND (ag / (p i / 2.0 (REAL32)))
XWork := ag - ((REAL3 2 ROUND tp) * p i)
i n c l := ag

List 4.1.3a.: Polynomial Approximation.

83

The argument x has to be reduced to l7i:/2l which requires one "IF" trap

with a few type conversions. This reduction process requires a large

number of time slots, and therefore it is not suitable for a real-time

implementation.

-- cycle
t p := INT ROUND (ag / (p i / 2.0(REAL32))
IF

(tp > 2) OR (tp < -2)
tp := tp MOD 2

ELSE
SKIP

XWork := ag - ((REAL32 ROUND tp) * p i)
IF
ABS(XWorlc) > (p i /4 . 0 (REAL32))

IF
XWork < 0.0(REAL32)
RWork := - 1.0(REAL32)

TRUE
RWork := 1.0(REAL32)

TRUE
G := XWork * XWork :
RWork :- XWork +

((((((((R[0]*G)+R[1])*G)+R[2])*G)+R[3])*G)*XW
ork)

IF
(tp /\ 1) = 1
RWork := - RWork

TRUE
SKIP

out ! (RWork * amp)
ag := XWork + i n c l

List 4.1.3b.: Polynomial Approximation.

84

4.1.4. CORDIC

The CORDIC [COdinate Rotation Digital Computer] is an iterative

arithmetic algorithm introduced by Voider (1959). With a coordinate

rotation computat ion scheme, the CORDIC algorithm is a very efficient

method for computing many elementary functions. During the 1970's,

Hewlett-Packard incorporated a hardware implementation of thus

algorithm for their desktop calculators, subsequently in the 1980's Intel

began to use it for the computation of sine, cosine and other

t ranscendental functions on their numeric processors. In our Music

Technology Group, a CORDIC based digital sine generator was

implemented in a 0.7-|im double metal CMOS process (Itagaki et al. 1996)

and (Spanir 1998).

For the calculation of a sine or cosine of an angle 9, successive rotations

of a radius vector are required on the unit circle starting at x=1 , y=0 and

ending at x= cos 6, y= sin 0. Rotating a two dimensional vector [x,y] by an

angle (j), [counter-clockwise when ^ > 0, clockwise when (j) < 0] may be

achieved by multiplying it by a matrix :

[X', y'] = R(p[x,y]

RA = c o s (t)
1 -tan(|)

tan(j) 1
[1]

Rotating by angles (j) then co is equivalent to a rotation by angle of (j)+(o:

R(j)+(o = R(t)Rco. The radius vector is rotated by a series of angles, where

the absolute values of which are (^Q, (j)-], where = tan'"" 2 ' ' . The

first three terms of this monotonically decreasing series are 0.785, 0.464

85

and 0.245. This choice of angle simplifies the arithmetic of multiplying by

the corresponding rotation matrices. Their terms tan((j),) become divisible

by powers of two. Since, cos((!),) = cos{-<^j), the term:

K = COS((|)o) C0S((t)-|)...C0S(({)/y)

can be grouped for all ()),•, and used as a constant multiplying scalar.

The popularity of the CORDIC algorithm was primarily due to its

straightfonward implementation on a fixed point device using only the

arithmetic operations of addition, subtraction and binary right shift [division

by powers of two]. In case of the T800 transputer, as a processor with a

f loating-point processing unit, there is no provision for "fixed" point

operat ions. This means that for the implementation of the method on a

T800, some of the fixed-point operations have to be substituted by less

efficient f loating-point operations. [For example, a bit-shift has to be

replaced with a multiplication by 2.O.]

In addit ion, the CORDIC algorithm will only work in the first quadrant;

between 0 and 7i/2 radian in the case of a sine oscillator. To implement

this method as a continuous oscillator, it is necessary to restrict the angle

within that range and this requires a few "IF" traps, as shown in the

polynomial method where the working angle is between -K/2 and +7i/2.

This is another disadvantage for implementation on a T800.

86

4.1.5. Summation Recursion

This method, summation recursion in coupled form or a two-

dimensional vector rotation, uses two basic trigonometric identities, for the

sine and cosine of the sum of two angles:

sin(a+p) = cos(a)sin((3) -i- sin(a)cos(p)

cos(a+P) = cos(a)cos(p) - sin(a)sin(p)

This method could be very effective for a real-time implementation, as the

set-up [68 clock cycles] and the continuation costs [62 clock cycles each]

are not so high, and the memory demand is low. Due to the dependency

on both the sine and cosine components, however, this method is not so

effective for applications that require only one component.

[c o n s t a n t]
[c o n s t a n t]

f q : o utput frequency-
s f : s a m p l i n g f r e q u e n c y
p i : 2n
amp: a m p l i t u d e
i n c l : i n c l e m e n t
C : c o s i n e v a l u e
cO : c o s i n e (6)
c l : c o s i n e (0 - 1)
s : s i n e v a l u e
sO : s i n e (0)
s i : s i n e (0 - 1)
out: output c h a n n e l

-- s e t up
i n c l : = (f q * p i) / s f
cO : = 1.0 (REAL32)
sO : = 0.0 (REAL3 2)
c l : = COS (- i n c l)
s i : = SIN (- i n c l)

List 4.1.4a: Sine Oscillator by Summation Recursion Method.

87

-- c y c l e
s := (cO * s i) + (sO * c l)
c (cO * c l) - (sO * s i)
out ! (s * amp)
c l
s i
cO
sO

= cO
= sO
= c
= s

List 4.1.4b: Sine Oscillator by Summation Recursion Method.

4.1.6. Chebyshev Recursion

Considering the second-order linear difference equation and

applying the z-transform:

y(n) = OCy(n- l) + Py(n -2) + >^(n)

H (z) - - ^ -
1

X(2) 1 - a z - p z

Solving for the roots of the denominator leads to two cases. In the case

where a^+4^<0 the poles of H^^^ are complex conjugates. They appear in

the z-plane at z = Re^^^ and z = Re~j^<^.

z-plane

Figure 4.1.1.: Second-order Resonator Poles.

Here,

= 271 X = coT

f = T ~ ^

where s ^ : sample frequency

'5; frequency of a tone

R; the radial distance of the poles

: the angle off the real axis

The equation can be rewritten as:

1
(l - R e ^ ^ c z - i) (l - R e - j e c z - i)

^^^^ ~ 1 - 2RcosecZ-^ + R^z"^

Since the dual-output of sine and cosine is not needed, a simpler sine

wave can be implemented. For f?=1, with no zeros and the dumping set to

zero, the bi-quad transfer function becomes:

^^^^~l - 2 c o s e,z~^-fz~2

A simple oscillator may be computed by solving the corresponding

dif ference equat ion:

y (n) = 2 c O S 0 c y (n _ i) - y (n - 2)

To generate an oscillator of amplitude A, the difference equation is started

from

y(n-l) = 0

89

The ampli tude is set by seeding the correct ^{^.2) value:

y (n - 2) = A s i n e ,

f q : output f r e q u e n c y
s f : s a m p l i n g f r e q u e n c y
p i : 2n
amp: a m p l i t u d e
c o n t : c o n s t a n t
s: s i n e (0+1)
sO: s i n e (0)
s i : s i n e (0 - l)
t l : temporary s t o r a g e
out: output c l i a n n e l

-- s e t up
t l := (f q * p i) / s f
c o n t := 2.0 (REAL32) * COS (t l)
sO := 0.0 (REAL32)

[c o n s t a n t ;
[c o n s t a n t ;

s i SIN (- t i ; amp

-- c y c l e
s := (cont * sO) - s i
out ! (INT3 2 ROUND s)
s i := sO
sO := s

List 4.1.5.: Sine Oscillator by Chebyshev Recursion Method.

The initialisation requires 101 clock cycles [5.05 | isec], and each cycle

does 18 clock cycles [0.9 j isec].

This implementat ion typically gives between -80 and -120 dB signal-to-

noise ratio on a full 16-bit range [2^^=65536] sine wave calculated in 32-bit

f loating point format as implemented, comparable with a sine wave

calculated by the Taylor series expansion [see Chapter 4.1.2.] up to 100

components in 64-bit floating point format to achieve higher precision

when subsequently converted into 32-bit format for a quantitative

compar ison.

90

The measurements were done starting after the generation of 32,000

cycles, about one second after the beginning of a sine wave. In the case

of the saw tooth waves consisting of a number of sine waves in different

frequencies, however, some phase drifting was observed after generation

for about ten minutes. Since the oscillators are operating independently,

without synchronisation in their phase except at the initial set-up, the

phase of the sine waves in different frequencies, but as a part of harmonic

series, may not be aligned at each corresponding cycle, due to the

precision of the calculation. For example, the third cycle of an 880 Hz sine

wave may not begin at exactly the same time as the second cycle of a 440

Hz sine wave.

/
Figure 4.1.2a.: Saw-Tooth Wave by 8-bit integer.

Figure 4.1.2b.: Saw-Tooth Wave by 8-bit integer after 10000 cycles.

91

This phase distortion problem is marginal, as most musical notes are not

as long as ten minutes, and individual sine waves are accurate enough to

keep the original pitch.

92

4.2. 81-Fixed-Voice Implementation

4.2.1. Synthesis Method

To comply with the hardware limitations of the 160 Transputer

Network, in particular, the availability of only 4k-byte of local memory on

each networked transputer, a Chebyshev recursion method was chosen

for the sine wave generation. The recursive method requires a minimal

size of memory for multiple oscillators implemented in parallel [see

Chapter 4 . 1 . and Gordon and Smith 1985], and generates high resolution

sine waves by computing the projection of a rotating vector on the x- and

y-axes. Advantages of the method are:

a) Few stored data components are required.

b) Each value needs few computations.

c) The waveform has a low distortion factor, since the difference

equation simulates a physical system whose solution is a perfect

sine.

Recursion requires the handling of limit cycles over the long-term, but they

can be made to lock on to periodic values.

calculation cost (clock cycle)

method set up oscil lat ion

Wavetable 28.0 32.4

Taylor Series 28.0 18849.3

Polynomial 61.0 246.6

Summation 68.0 62.0

Recursion 101.0 18.0

Table 4.2.1.: Computation Time Required in Sine Generation Methods.

93

For the preliminary implementation, the seeding method described in

Chapter 4.1.6. was appl ied; starting from phase 0. Due to lack of an

ampli tude envelope, a click noise can be heard at the end of each tone.

Using this method, it is also difficult to change the frequency of a sine

wave without an extra calculation to keep the output continues. An

initialisation of an oscillator, however, requires only a few operations;

about 5.05 | isec in a 20 MHz clocked T800 transputer. In this

implementat ion, a 32-bit integer format is used internally for data

communicat ion, although the DAC has only a 16-bit bandwidth, since this

achieves optimal performance from the transputer software [see Chapter

2] and also ensures that changes in amplitude level do not result in a loss

of quantisation accuracy.

To improve the tumbrel quality, the initial phase information was later set

using the SHARC Timbre Database (Sandell 1994). This means,

however, that the initial value of the synthesised sound is not always zero,

and this necessitates the introduction of an anti-clicking process, using a

short ampli tude envelope, at the beginning and the end of a tone. Despite

the introduction of phase information the quality of synthesised sound was

not improved, due to the lack of a long amplitude envelope.

4.2.2. Prototype Programme

A transputer at the top of a single element works as a mixer and the

other three members of the group work as a unit of oscillators. At a 32

kHz sampl ing frequency, each oscillator unit placed in a transputer is able

to contain eight recursive sine oscillators that can be controlled

94

independently in both amplitude and frequency. At 44.1 kHz, representing

CD quality, five sine oscillators can be situated in a transputer.

This combinat ion, consisting of one mixer and three oscillator units, is

expanded on to a larger network, recursively. As a prototype

configurat ion, an 81 note-organ was implemented and tested. In this

conf igurat ion, the network is capable of accommodating 81 oscillator

groups [one group per transputer] that provide 648 recursive sine

oscil lators in total, at a 32 kHz sampling rate or 405 oscillators at a 44.1

kHz sampl ing rate. Each oscillator group corresponds with a fixed MIDI

key.

Calculat ions for the oscillators are executed in 32-bit floating point format.

When a sound sample exits from an oscillator unit placed on a transputer,

it is converted into an integer number in 32-bit format that is then

accumulated with other synchronous samples throughout the network.

This bottom-up sample accumulation on a tree structure provides equal

path length to each oscillator group, thus causing no phase delay.

The figures below show the configuration of the 81-voice organ. To

present the processes implemented in parallel but in the opposite signal

direction, the map is drawn as the revised ternary tree with its mirror

image.

95

from/to P C B No. 0

— connection in use

connection unused

connector

signal divider

oscillator unit

signal mixer

flow of —f
control information

flow of sound sample
fimp/emenfed in paral/el

shown as mirror imagej

Figure 4.2.1a.: Configuration Map (Left).

96

from/to P C B Nos 7-9

from
H O S T

from/to P C B Nos 1-3

Figure 4.2.1b.: Configuration Map (Centre).

97

from/to P C B No. 0

Figure 4.2.1c.: Configuration Map (Right).

98

As described earlier, a standard MIDI keyboard has been used as the

primary control device for the synthesis engine, and a custom-designed

MIDI-to-transputer interface board [see Appendix 3] provides the

communicat ion link between the MIDI keyboard and the network. For the

purposes of initial development, MIDI commands were restricted to

primitives such as "note on" and "note off", assigned to the audio

transputers via the MIDI controller unit. The "raw" MIDI information is

fi ltered to the above primitives and then transformed to a single packet of

t ransputer control data, consisting of the key number and its associated

velocity [amplitude].

These messages are led to the top of the network and passed down the

branches to the bottom of the tree, where the synthesis instructions are

al located to individual oscillators. On the way to the bottom the message

is sorted at signal routers according to the key number. This top-down

control method enables groups of oscillators implemented in parallel to

work entirely independently.

Over the network the flow of control information and the flow of the sound

output are both implemented in parallel, but in opposite directions. The

latter is a constant continuous flow at a 32 kHz bandwidth. The former is

handled on an on-demand basis, but could involve a data rate of up to 150

packets per second.

If the control signal is periodic, the processes in parallel could be

control led cycle by cycle. Or, if the control signal is at a low frequency,

such as a few packets a second, the processes could be handled in "ALT"

99

structure using a channel guard that costs 24 clock-cycles [1.2 ^sec on a

20 MHz clocked transputer] per execution where at 31.25 |isec is available

for processing a sound sample at a 32 kHz sampling rate. This leads to

both of the processes having to be placed in a high-prioritised simple

parallel structure. When the sound sample stream is placed in higher

priority and the control signal is In normal [low] priority, the latter may not

obtain a time slot, since the high-demand higher priority process occupies

most of the processing time.

Due to the nature of the transputer, a time-multiplex parallel processor, it

is necessary to incorporate a sound buffer to ensure a constant flow of

data to the sound output. A balance has to be struck between a long

buffer, which will result in a noticeable performance lag, and a short buffer,

which will not allow the reliable accumulation of events for a steady output

data stream.

K I K U S U)

Figure 4.2.2.: Result of Insufficient Buffer Size.

100

If the output sound sample stream is not constant, but the disruption is

short enough to sustain the clock operation, as shown in the above figure,

the DAC produces a corrupted output; usually a lower pitch as a result of

old samples being retained in the cache.

With a 16 msec-long sound buffer situated between the network and the

DAC the system performs reliably, providing the input event control rate is

less than about 150 keystrokes per second. In real-time processing, late

data almost always result in computing errors. Viewed from the human

perception side, it has been shown that the introduction of a very small

response delay to reduce this possibility can generally be tolerated by a

performer, providing it is kept constant.

Since the raw MIDI data from a keyboard are filtered to essential

note/event commands, ignoring other higher density information such as

that associated with continuous controllers and system exclusive

messages, the peak data rate through the network should not normally

exceed the 150 MIDI-event per second boundary, although this may

depend to some degree upon the characteristics of the key sensor and

other components integral to specific designs of MIDI keyboards.

Subjective tests have confirmed that the 16-msec-long buffer is

acceptable to most performers, and given the conflicting considerations

identified above perhaps it is the best compromise that can be achieved in

this particular context. [See Chapter 3]

101

When a higher rate of MIDI information is supplied, the system will

temporari ly halt until the control information has been distributed to its

target processors (Itagaki, Pun/is and Manning 1994). This is an

interesting example of the transputer's fault tolerant behaviour in certain

circumstances, if correctly programmed; the result of pseudo-parallel

processes with a standard communication protocol that is based on

"message" and "acknowledgement". This means that if the receiver side

is busy the sender process is frozen until an acknowledgement comes in

f rom the receiver.

Providing all subsequent processes can be sequentially halted in a similar

manner without loss of data, the deadlock is not fatal either locally to the

processor concerned or globally in terms of processes that are in parallel.

Under these condit ions the system will always recover at the earliest

opportunity without further corrective action.

The set-up latency of the system, the timing between "key press" and

"sound out", is about 20 ^isec prior to the buffer at the DAC, that is short

enough to satisfy the conditions for real-time synthesis at a sampling rate

of 32 kHz where, as already noted, a maximum interval of 31.25 j isec is

available for computat ion between successive samples.

Because of the fixed hardware architecture, however, some of the

transputers have to work as connectors. To improve the efficiency of the

network, a monitoring programme is introduced; a simple process situated

in each transputer as a lower priority parallel process.

102

4.3. Performance Monitoring

The monitoring routine measures the execution time of a simple

process and returns the figure to the host transputer through the network,

together with the address of the transputer that is assigned by the host.

Due to the hardware limitations of the tree architecture, this monitoring

information should be sent through a single output, sharing a channel with

the sound output. The software language imposes another limitation; one

process can only have an access to a single channel. To avoid this

violat ion, it is necessary to attach an extra process to control the

communicat ion channel, using an "ALT" structure.

If such a constraint is used to manipulate the sound output and the

monitoring information for each oscillator unit, in turn, the effect is to

reduce the capacity of each oscillator unit by 50%; from eight oscillators to

just four. Accordingly, the configuration at the bottom of the tree has to be

changed; one mixer, two oscillator units and a dummy oscillator. The

monitoring information from an oscillator unit is then diverted to an

adjacent "dummy" oscillator that works as a mixer of monitoring

information.

As a result, it was deduced that some transputers at higher stages in the

tree-structure assigned as "signal routers" are under-util ised, with spare

processing t ime that may be used for additional synthesis operations.

103

from/to PCB Nos 7-9

from
HOST

fromAo PCB Nos 1-3

Figure 4.3.1.: Configuration of a Monitoring Program (part).

104

to/from
HOST

120 +

(m s e c)

Figure 4.3.2.: Monitoring Result (part).

105

A signal router, or connector, is re-designed so that the information in both

directions is diverted to an adjacent transputer on the same level, using

link number one or link number three. The spare processing capacity thus

released may then be used for an additional small oscillator unit, half of

the standard provision, as a process in parallel with the connector.

control information from PCB No. 0

iHiHil

sound output to PCB No.O

lecter - ^ - conn(

oscillator unit

•Ĵ l" signal distributer

signal mixer
[implemented in parallel]

connecter + oscillator unit
[implemented in parallel]

Figure 4.3.3.: Revised Implementation.

106

4.4. 88-Fixed-Voice Implementation

Since the processes of synthesis to be employed are entirely

addit ive, working from basic sinusoids, the generation of interesting

t imbres becomes a function of how many individual sine wave oscillators

are assigned to each note, and how they are regulated in terms of both

f requency and amplitude.

When further consideration was given to the harmonic content of the notes

to be synthesised, especially those in higher octaves, and the limitation of

the DAC in terms of the Nyquist frequency was also taken into account, it

became clear that it is not always necessary to assign all the component

oscil lators available at each transputer to the synthesis of the harmonic

content of a single note.

For example, in the case of the highest sounding A in an acoustic piano; a

fundamental frequency of 3,520 Hz, its fifth harmonic [17,600 Hz] is

already higher then the Nyquist rate of a 32 kHz DAC [16,000 Hz]. This

means that four oscillators are quite sufficient to reproduce such a high

order note with acceptable fidelity, releasing spare oscillators to enrich the

spectra of notes with lower fundamental frequencies, and the addition of

some extra notes at the lower end to create a standard acoustic piano

range.

In the light of the above assessment, the program was optimised to

accommodate a range of 88 notes over the network, serviced by a total of

752 oscil lators at a 32 kHz sampling rate [sound sample 4.3.]. The

allocations of oscillators range from sixteen per note at the lower end of

107

the range to four per note at the top. The overall availability of harmonic

components for each note, however, still falls significantly short of the

minimum criteria stated earlier for the approximation of most instrumental

sounds other than those associated with electronic organs except, given

the Nyquist considerations, at the very top of the range.

The oscil lator units, additionally implemented to the revised configuration,

are situated at a middle level of the tree structured network, where the

signal routers were located in the original 81-voice model. Since most of

the oscil lator units are at the bottom of the tree structure, each additional

oscil lator unit has a slightly shorter path to the tree-top and this

conceivably may cause some latency and phase differences. As

ment ioned in the 81-voice-configuration, the start-up latency for a note

synthesised with the oscillator units at the bottom of the tree is about 20

fO-sec, where that of the oscillators at the middle level is about 18 |isec.

The dif ference, about 2 [isec, is far shorter than the sample period, 31.25

)isec, and thus can be considered as marginal.

108

4.5. Improvements on the Network

After implementing these programs, the network was physically

modif ied to allow connections from the left side, the right side, and the

bottom of the tree to external resources, such as other transputers with

larger on-board memory capacity. These modifications were made partly

in response to a need to allow the functionality of the audio processor to

be expanded. It is worth noting that in setting out to design such an audio

processor, the research group had a unique opportunity to build a

massively parallel architecture essentially from first principles.

Expandabil i ty has, nevertheless, been a paramount consideration from the

outset, and the relative ease with which modifications such as the above

could be made demonstrates the versatility of the transputer and its serial

link system of communicat ions.

The only significant engineering problem so far encountered has been

heat emission from the transputers which are placed densely on the

PCBs. According to the data book published by the manufacturer (INMOS

1989), the T800 transputer civilian models should work reliably under

condit ions of temperature between 0 and 70 °C with transverse air flow of

about 1 m/s. For a real-time processing application like an 88-note organ,

however, the condition seems to be lowered to about 35 °C: the network

ceases to work after 20 minutes of processing when the processors are

hotter than an average human body temperature. This heat emission

problem necessitates some forced air-flows through the network, and

providing adequate cooling for such a densely accommodated multi­

processor system proved a major design challenge which could only be

partially solved in the time available. In summer t ime, when the room

109

temperature is about 25 °C or more, the system is still unable to perform a

real-time job reliably if left switched on for more than about thirty minutes.

Solutions to the problem would be a significant reduction of the processor

density on a PCB and a wider distance between the PCBs; about 25 mm

between the PCBs on the current system [less than 20 mm between the

mounted transputers and the adjacent PCB].

110

4.6. Conclusion

The real-time additive synthesis applications, 81-fixed-voice and

88-f ixed-voice, were implemented on the 160 transputer network. In the

88-voice model , 752 real-time recursive sine oscillators are available over

the network, at a sample rate of 32 kHz. These configurations reliably

operate up to 150 keystrokes per second.

The set-up latency of about 20 | isec is at an acceptable level for a hard

real-time system, as the interval of consecutive sound samples should be

produced within a sampling period of 31.25 |isec. This demonstrates the

potential of the 160 transputer network as a self-contained real-time audio

processor, in particular when configured as an additive synthesis engine.

To establish fully its credentials as a self-contained audio synthesiser,

however, further research is required into the dynamic control of

ampl i tude.

Due to the hardware limitations of the network, it has not proved possible

to implement independently controlled amplitude envelope generators

over the entire 8 1 - or the 88-fixed-voice models, and it may be necessary

to reconsider the network architecture in order to achieve such an

objective, possibly at the expense of the total number of oscillators.

I l l

Chapter 5. Optimisation of Real-Time Additive
Synthesis on the Network

5.1. "Pipe Organ Style" Borrowing

Having revised the implementation of the 88-voice organ, the

immediate priority was to improve the tumbrel quality, since only 16

oscil lators per key maximum and about eight per key average are

available. Al though the priority might have been given at this stage to the

requirement of the envelope generation facilities, it was felt that improving

the specif ication of the tone generation facilities was a more logical first

step, since this directly tested and sought improvements in the basic

distributed processing architecture which paves the way to the efficient

operation of the network as a whole.

There are, however, some redundancies over the network, since several

oscil lators operate at the same frequency. For example, the eighth

harmonic of the 110 Hz note is 880 Hz, that is also the fourth harmonic of

the octave at 220 Hz, the second harmonic of 440 Hz and the

fundamental of 880 Hz. Fortunately, there is a way to reduce the number

of oscil lators required for the configuration of fixed-note allocations by

using ampli tude information.

A suitable technique has been applied in a conventional pipe organ

design: high pitch stop-ended pipes are used to boost the high harmonic

components of a low pitch open-ended pipe (Audsley 1905). The even

number harmonic components may thus be "borrowed" from other tones.

[Organ builders prefer to use the word "duplication" instead of

112

"borrowing".] For the odd numbered components, however, some

compromise must be made.

An acoustic piano and other fixed-pitch modern instruments are tuned to

equal temperament, in which each semitone is made an equal interval. In

a twelve-tone system, commonly used in modern instruments, the interval

is 2 ' - of a base key frequency. This leads to another type of "pipe organ

style" borrowing. For example, the ninth harmonic of A 110, 990 Hz, may

be replaced with the sixth harmonic of E above A 110 [110x2'^ =16481],

988.88 Hz, with a 0.1128% difference in frequency.

A subjective feasibility test was conducted; a comparison between a note

with true harmonics and that of some borrowed harmonics. A "true" note,

a triangle wave of A 110, was synthesised with up to the sixteenth

harmonic components [sound sample 5.1.1.].

Harmonic Frequency (Hz) Origin Harmonic
real (A) borrowed + / - (%)

Origin

base 110.00
2nd 220.00
3rd 330.00
4th 440.00
5th 550.00
6th 660.00
7th 770.00
8th 880.00
9th 990.00 988.88 -0.113 E 6th
10th 1100.00 1108.73 0.794 C# 8th
11th 1210.00 1222.30 1.016 F7th
12th 1320.00 1318.51 -0.113 E8th
13th 1430.00 1453.57 1.648 7th
14th 1540.00 1567.98 1.817 G 8th
15th 1650.00 1661.22 0.680 G#8th

Table 5.1.1.: Comparison between "true" and "borrowed" Harmonics.

113

A "borrowed" note was then synthesised with the front eight harmonics

using components of "true" tones and ninth to sixteenth harmonics using

"borrowed" tones [sound sample 5.1.2.].

The dif ferences, in terms of frequency, are less then a few cents. For my

ears, however, the notes have slight but recognisable differences in their

tumbrel features, especially in the brightness of the sound, the slight

mistunings leading to a blurring of the overall definition quite different to

any conventional chorusing characteristics. As Audsley concluded in his

research on borrowing [of pipes] and duplication [of upper partial tones]:

I n conclusion, we may say t h a t beyond the
formation of an expressive a u x i l i a r y Pedal
Organ, as above alluded t o , we st r o n g l y
condemn the p r a c t i c e of borrowing and
d u p l i c a t i o n as u n s c i e n t i f i c , i n a r t i s t i c and
f a t a l to a p e r f e c t t o n a l appointment: i t s
absurd side i s eloquently set f o r t h i n the
"Nouveau Systeme" of M Leonard Dryvers.

"Borrowing and Duplication."

in The Art of Pipe Organ Building (Audsley 1905)

For the reasons above, the full implementation of the "pipe organ style

borrowing" was abandoned.

114

5.2. Dynamic Allocation of Notes

In the configuration of the network as an 88-voice organ described

above, the situation arises in "normal" performance, or even in the case of

a simple duet, where a static allocation of oscillators to specific notes

frequently involves a high degree of redundancy. Therefore, there are

significant advantages to be gained from a dynamic note allocation

algori thm that allows optimal deployment of oscillators, thus increasing the

range of t imbres that can be generated.

In the revised configuration, the system is programmed to accommodate

27 simultaneous notes with up to 24 oscillators per note, or 9 notes with

up to 72 oscillators each; a total of 648 oscillators over the network.

voices oscillators per voice
81 (fixed) 8
88 (fixed) 16, 12, 8, 4

27 24
13 48
9 72

N.B. The program in italic has not been implemented.

Table 5.2.1.: Allocation of Oscillators.

The voices are controlled by a voice allocation unit that sends control

signals to the top of the network. At this stage, some latency for the voice

select ion, 150 nsec per voice, has to be expected in addition to the set-up

latency of about 20 | isec.

In the worst case, the 27-voice model operating at full capacity,

whereupon a 28th note is activated, forcing release of the longest-

115

sounding note, the maximum latency at voice selection is estimated to be

about 8 }isec. A control signal packet now has to contain an additional

byte for voice information, thus the stream of sound output is interrupted

more frequently, in turn requiring a longer sound buffer.

control information from PCB No. 0

uHmi

sound output to PCB No.O

ecter

'Xyf- oscillator unit

signal distributer

1̂ signal mixer
[implemented in parallel]

extent of a voice (27 voice model)

Figure 5.2.1.: Configuration Map 27-voice Model (part).

116

As an initial step to overcome these problems, the size of buffer was

doubled to 32 msec. Despite this significant increase in its length,

however, the longer buffer still failed to reliably return an

acknowledgement signal to the network, resulting in a non-recoverable

t ime-out condit ion with loss of data in the DAC driver. This problem was

solved by means of a double buffering arrangement: whereby a very small

[less than 1 msec] second buffer is added between the network and the

main buffer to ensure quick acknowledgements to the network. To many

performers, however, the resulting response delay of almost 33 msec is

uncomfortably close to the maximum that can be reasonably tolerated. By

shortening the main buffer length to overcome this objection, this itself,

unfortunately, reintroduces the risk of time-out errors.

After the implementation above, three extra functions were introduced;

harmonics, phase and amplitude envelope. A few sets of simple

ampl i tude information were given to the oscillator units that create saw­

tooth, square and triangle waves [sound sample 5.2.1.]. Thence, using

Sandell 's "SHARC Timbre Database" (Sandell 1994), the amplitude and

the initial phase for each harmonic content were supplied: the former was

distributed to each oscillator unit and the latter was stored over the

network, residing in the on-chip memory area. Despite an effort to keep

the memory load to less than 75%, this extra memory requirement

introduced a significant overload into the sound processing itself. The

problem was solved by means of reducing phase information by way of a

compromise. Due to the lack of an amplitude envelope, however, the raw

synthesised sound was still very raw and unshaped.

117

A few types of simple independently controlled amplitude envelopes were

then implemented at the top of the routing for the each voice where a

transputer works as a connector. Since the available time slots only

permit a few operations per sound sample, and the memory capacity for

the envelope are limited, less than 3.2k-bytes, only basic functions were

chosen and tested; half-sine rise/decay, parabolic curb and hyperbolic

[sound sample 5.2.2.]. A combination of the hyperbolic decay curb and a

saw-tooth wave creates a passable string instrument-like sound, but, it

remained evident that more sophisticated envelope shaping facilities are

necessary, if the synthesis engine is to reduce its full potential. Most

strongly, it is apparent that the potential trade-off of oscillator resources

against envelope shaping routines will be even more severe than in the

case of the simpler implementations of discussed in the previous chapter,

and these need further investigation.

118

5.3. Multi-Rate Approach

Addit ive synthesis using a large set of digital sine oscillators is a

f ine-grain parallel algorithm and particularly compatible with the

architecture of the T800 tree. The high control bandwidth required,

however, has meant that its computation in real-time has only become

economic in recent years, due to advances in VLSI technology. This has

led to a re-awakening of interest in the research community for methods to

optimise computat ion; such as multi-rate DSP techniques that integrate

well with the traditional oscillator-set model of additive synthesis and thus

with its implementation on the 160 Transputer Network.

A multi-rate optimisation is based on the idea of eliminating redundant

computat ion. For instance, a sine oscillator producing a tone of 1 kHz

requires a minimum of 2 kHz sampling frequency. On the other hand,

preferred sample rates for audio output are 32 kHz [NICAM], 44.1 kHz

[CD] and 48 kHz [DAT], some 16 to 24 times higher than the minimum

requirement. Researchers in the area, however, suggest that a geometric

progression of sample rates across the audio spectrum generally satisfies

the greatest number of demands on a note-based synthesis engine

(Phill ips, Purvis and Johnson 1994). Theoretical research on the subject

using complex oscillators has also been conducted; (Phillips, Purvis and

Johnson 1996) and (Phillips 1997).

In the initial implementat ion, three sampling rates were used; 8 kHz, 16

kHz and 32 kHz [sound sample 5.3.]. Two FIR filters are placed at the top

of each branch of the lower sampling rate groups to convert the output to

a standardised sampling rate of 32 kHz: the technique applied here is

119

known as "over-sampling" the procedure common to many designs of

compact disc players.

The constraints of real-time sound processing restrict the permitted length

of the interpolation filter; a long filter performs a suitably sharp response,

but results in a long delay that should be avoided for the real-time

operat ion. This leads to some degree of compromise, involving a

combinat ion of a short FIR filter with an optimal grouping of the note and

the oscil lators. The filters have to be distributed over a part of the

network, since a transputer has infinite capability in calculation speed.

The smallest dividable unit, a leaf of the network, consists of four

transputers, therefore, the number of transputers for a filter has to be a

multiple of four.

For a f ixed 88-voice application, up to sixteen oscillators are assigned for

a note, except for the twelve notes in the lowest octave where the

assignment is increased to 24. Notes are grouped according to their

fundamental frequency and their harmonic contents. In this configuration,

1,296 oscil lators are available over the network, in comparison with the

single-rate model with 752 oscillators.

sampling rate
oscillators
per group

(transputer)

groups
on

network
sub total

8 kHz (1/4) 32 21 672

16 kHz (1/2) 16 18 288

32 kHz 8 36 336

T O T A L 75 1296

Table 5.3.1.: Allocation of Oscillators (1).

120

An alternative 44.1 kHz based configuration, which has not been

implemented, would show a similar result.

oscillators groups
sampling rate per group on sub total

(transputer) network
7.35 kHz [1/6] 30 15 450

22.05 kHz [1/2] 10 27 270
44.1 kHz 5 33 165
T O T A L 75 885

Table 5.3.2.: Allocation of Oscillators (2).

In the case of a multi-rate application using dynamically allocated notes

(Itagaki, et al. 1995), the effects, measured by the number of oscillators

al located to a voice, are estimated as shown in the table below.

sampling rate [kHz]
[production-output ration]

number of
voices

oscillators
per voice

total
oscillators

10.7 [1/3], 32 [1/1] 22 36 792
4 [1/8], 8 [1/4], 32 [1/1] 15 80 1200

Table 5.3.3: Effect of Dynamic Allocation + Multi-Rate.

121

from A to B

8 kHz

•|/̂ -̂̂ oscillator unit

flow of sound output

F IR filter 8k-> 32k

16 kHz

oscillator unit

«J flow of sound output

• j ^ F IR filter 16k-> 32k

32 kHz

-FvT= oscillator unit

J flow of sound output

r flow of control signal

•f-»̂ signal router

J+X signal mixer

Figure 5.3.1a.: Configuration Map of Multi-rate Application (left).

122

E]
from
H O S T

Figure 5.3.1b.: Configuration Map of Multi-rate Application (centre).

123

from C toI lD

Figure 5.3.1c.: Configuration Map of Multi-rate Application (right).

124

5.4. Conclusion

The optimised methods, resource management by the dynamic

allocation of notes and the multi-rate approach usefully increase the

number of harmonics per note, representing a significant improvement in

the quality of t imbrel detail. The multi-rate optimisation alone has been

shown to be effective for accelerating the process of dynamic tone

generat ion, provided the notes are efficiently allocated to optimal sampling

rates, and the combination of the sampling rates applied is suitable.

Due to the hardware restrictions on the network, especially in memory

capacity and structure, there are limits when seeking to improve the

tumbrel quality. As already noted, a new network structure, therefore,

should be considered for future investigations, such as an asymmetrical

tree or non-homogeneous tree in terms of memory capacity and

calculation power.

125

Chapter 6. Granular Sjmthesis and Sound
Granulation

6.1. History of Granular Synthesis

6.1.1. Acoustical Quanta: the theory behind the
granulation

Granular synthesis or sound granulation is a means of constructing

complex sounds from grains originally proposed as a representation of

"acoustic quanta" by a British engineer Denis Gabor (Gabor 1946), who

also invented the idea of the hologram. The basic idea of sound

granulation for narrow bandwidth transmission / reproductive purposes is

quite similar to the quantum-wave theory in physics: sound may be

descr ibed as a sequence of elementary acoustic elements. It can be seen

in c inema and video images where a rapid sequence of static images

gives the impression of moving objects.

Gabor firstly presented his method of sound analysis in a three-part article

(Gabor 1946). He expanded the uncertainty theorem of quantum

mechanics to sound signals, by using a complex representation of the

signal, then proposed an "elementary signal"; a short term sound or pulse

with an ampli tude envelope; equivalent to a quanta in the physical theory.

[A year later, this part was modified and appeared in another article

(Gabor 1947) as a proposal of "acoustic quanta".] In part two, he

conducted some experiments to illuminate the limitations and the range of

human perception in listening for determining the size of grain. In the final

part, he described the principles of frequency compression and expansion

using his theories of "elementary signal" and "sliding window", and then

their practical application; the frequency converter. This part became the

126

basis of asynchronous sound granulation, especially in its application to

t ime-stretch and t ime-compression.

He concluded that the minimum duration of the "acoustic quanta" should

be 10 msec with an amplitude envelope generated by the Gaussian

method;

1
-t2

s (t) = ^ e 2 d t

7271

A variation of this is a quasi-Gaussian curve that has a flat top between

the rise and the delay of the original Gaussian curve (Roads 1978). In the

case of analysis-synthesis, a Hanning window may be more convenient,

hence its usage in the fast Fourier transform. Gabor also suggested line-

segment envelopes for practical reasons in the original article (Gabor

1946). The shape of grain is discussed later in this thesis.

Gabor appl ied his theory of "elementary signal" for frequency conversion

by means of a kinematical method. Using as an example the sound track

of a f i lm, he explained the relation between the sound frequency at the

original film speed and at a faster one. [At this t ime, 1946, a sound track

on a film was optically recorded and reproduced using a photocell behind

the moving fi lm, unlike the method which replaced it; a magnetic strip.]

The film moves across the fixed window, and the moving slit is effective

whi le it t raverses the window. To obtain a continuous sound, a second slit

should appear at or just before the instant at which the first slit moves out

127

of the window, after that the third slit would appear, and so on. Assuming

the window has a continuously graded transmission; full in the middle and

fading out at both sides, abrupt clicks thus can be avoided. This is the

basis of the kinematic frequency converter and can be applied for sound in

any application, as Gabor described in his theory on "acoustic quanta".

These hypothesis were verified mathematically by Bastiaans (Bastiaans

1980, 1985).

Gabor presented the proposal as a means of sound granulation for the

purposes of signal transmission and signal conversion by "windowing".

There are many other analysis-transformation techniques developed in the

field of digital signal processing that can also be used for granular

synthesis. For example analysis and synthesis systems such as wavelets

or the short-t ime Fourier transform [STFT or SFT] supply a local

representation of the signal, by means of grains or wavelets multiplied by

coeff icients, that provides another theoretical foundation for granular

synthesis such as pitch synchronous granular synthesis.

6.1.2. Past Implementations of Granular
Synthesis/Sound Granulation

Granular synthesis has proved quite attractive to a number of

composers, in particular for the power and flexibility it offers for the tumbrel

transformation of sampled sounds, and also its conceptual simplicity: small

f ragments of sounds are superimposed to construct more complex sound

material. Various composers have explored this technique since the early

1970's, inspired by researchers such as Barry Truax and Curtis Roads.

128

Xenakis developed the technique initially in an analogue electronic

domain. He considered the grains as "music quanta", and suggested a

method of composit ion based on the organisation of these elements in

terms of graphic projections of the key parameters of frequency and

ampl i tude (Xenakis 1971).

Roads implemented granular synthesis using a computer that allowed a

greater accuracy of control over the organisation of grains (Roads 1978).

He suggested a high-level organisation of grains based on the concepts of

tendency masks, or "clouds" in Xenakis' definition, implemented in the

t ime-frequency domain.

Truax also applied the technique as a development of his own work with

tendency masks applied to random-generated spectra, in due course

extending usage of "acoustic quanta" for the granulation of sampled

sound in real-time (Truax 1988). The latter involves a process of

stretching and compressing the sound in a manner identified as variable-

rate t ime shift ing.

There are several software programs now available for non-real-time

granular synthesis, such as CSOUND (Lee 1995). Due to the nature of

the synthesis method, however, composers generally prefer to interact

with the control parameters, thus requiring a real-time implementation.

Despite the conceptual simplicity, the signal processing requirements of

this application, especially in real-time, set tough demands for both

hardware and software.

129

Most of the established working systems which are not only real-time, but

also fully interactive in terms of user control, have been developed using

custom-designed hardware (Truax 1994) or a purpose-built "music

workstat ion"; such as IRIS-MARS (de Tintis 1995) and IRCAM Signal

Processing Workstation (Lippe 1993).

As a part of our Music Technology Group's on-going investigations into

real-time audio synthesis using a multi-processor network, granular

techniques have provided an interesting challenge in terms of devising

and mapping suitable algorithms onto a parallel architecture.

6.1.3. Terminology for Granular Synthesis / Sound
Granulation

There are a number of different streams of research in this field,

and each of them uses slightly different terminology. To clarify the

problem, I define the following terms to be used in this thesis.

"Granular Synthesis" is a sound synthesis technique using Gabor's

acoustic quanta theory. In the narrower definition, mainly used by Xenakis

and Roads, the technique is referred to as sound modification using short

grain models that change the texture of the source sound. "Sound

Granulat ion" may be included in "Granular Synthesis" in the wider context.

In the narrower interpretation, however, the method could be referred to

as employing long grain models to maintain the source sound.

130

The main differences are;

Granular Synthes is Sound Granulation
S o u r c e Sound synthetic sound synthetic and

natural sound
Grain Model short

less than 10 msec
long

more than 10 msec

Effects

extra harmonics (side
bands)caused by
the granulation

pitch change caused by
the granulation and
its parameters

time-stretch/compress;
preserving the
original timbre

Table 6.1.1.: Differences of "Granular Synthesis" and "Sound Granulation".

There are many similar techniques and effects in both methods, such as

echo effects, enriching sound by overlapping sound streams, and sound

spatial isation.

There are a few ways to describe the granulation parameters; some of

them are dependent on individual systems and on the particular

phi losophy employed.

0

gram

k-offset->^

ramp
time

Figure 6.1.1.: Terminology for Grain.

131

delay interval between the consecutive grains
(interval, gap)

grain body sustain part, between the ramps, of grain
grain density number of grains

per voice per second (gps)
grain ramp rising and decaying part of grain
grain speed = grain density
(initial) offset timing until the first grain
voice / channel a stream of grain

Table 6.1.2.: Terminology for Grain.

132

6.2. Related Applications

6.2.1. Wavelet Transform

Wavelet Transform was originally developed for applications in

physics and acoustics (Dutilleux et al. 1988). A wavelet is a signal that

forms a sinusoid with a smooth attack and decay. From a musical

perspective, the wavelet transform can be considered as a special case of

the constant O filter paradigm. Wavelets inject the notion of a "short-time"

or "granular" representation into the constant Q filter model. The

transform represents and manipulates sounds mapped onto a time-

frequency "plane" or "grid" that is also implicit in constant 0 methods.

In the wavelet theory, every input signal is expressed as a sum of

wavelets with a precise starting time, duration, frequency and initial phase.

The peculiar aspect of the wavelet is that no matter what frequency it

contains, it always encapsulates a constant number of cycles. The size of

the wavelet window, therefore, can be expanded or compressed,

according to the frequency being analysed.

Dilations and translations of the "Mother function" 0(x), define an

orthogonal basis:

<D(,,,)(x) = 2 2 ® (2 - ^ x - l)

The variables s and / are integers that scale and dilate the mother function

O to generate the wavelet. The scale index s indicates the wavelet's

width, and the location index / gives the position. The mother functions

133

are re-scaled, or "dilated", by a power of two, and translated by an integer.

The scaling function W{x) for the mother function ^ is given as;

W(x) -Y (- l) ^Ck+iO(2x + k)
k = - l

where C|< are the wavelet coefficients that must satisfy linear and quadratic

constraints;

N - 1 N - 1

k=0 k=0

where 5 is the delta function and / is the location index. It is helpful to

think of the coefficients {CQ, C I , Cn} as a filter that is placed in a

transformation matrix. The coefficients are ordered using two dominant

patterns; one works as a smoothing filter, and the other brings out the

"detail" information from the data. These two orderings of the coefficients

are called a "quadrate mirror filter pair".

One of the major dissimilarities between Fourier transform and Wavelet

transform is that individual wavelet functions are localised in space

whereas that of Fourier sine and cosine functions are not. This

localisation feature along with a wavelet's localisation of frequency make

many functions and operators using wavelets "sparse" when transformed

into the wavelet domain. This sparseness, in turn, results in a number of

useful applications such as data compression.

134

6.2.2. Pitch Synchronous Granulation

Pitch-synchronous granular synthesis is an analysis-synthesis

technique that is designed for granulation of pitched sounds with one or

more formant regions in their spectra. The technique starts from a

spectrum analysis that is divided into significant time-frequency areas,

each of them corresponding to a grain. The pitch detection is followed by

the re-synthesis that consists of a train of pulses at the detected pitch. At

each grain time frame, the system emits a waveform that is overlapped

with the previous grain to create a smoothly varying signal. An

implementation of the technique features several transformations that can

create variations of the original sound (de Poli and Piccialli 1988).

6.2.3. Quasi-Synchronous Granulation

Quasi-Synchronous Granulation is a technique that creates sounds

by means of generating one or more streams of grain, one grain following

another with a variable interval. The technique is called "quasi-

synchronous", since the grains follow each other approximately at equal

interval.

If the gaps between successive grains are constant, the overall envelope

of a stream of grains forms a periodic function. Since the envelope is

periodic, the generated sound can be analysed as a case of Amplitude

Modulation [AM] that occurs when the shape of one signal [modulator]

determines the amplitude of another [carrier]. The result created by the

modulation effect of the periodic envelope is that of formant surrounding

the carrier frequency. The quasi-synchronous granulation, in this sense.

135

is similar to the formant synthesis method; for example, formant-wave-

function synthesis known as FOF (Rodet 1984).

If the gaps between successive grains are irregular, perfect grain

synchronisation is foregone along with its predictable side effects. Sounds

are still created by one or more streams of grains with randomised onset

timing to each grain that leads to a controllable thickening of the sound

texture through a "blurring" of the formant structure (Truax 1988).

6.2.4. Asynchronous Granulation

In asynchronous granulation, the concept of linear streams of grain

is abandoned, and the grains are scattered over specified regions

inscribed on the frequency-time plane in the manner of a "cloud" (Xenakis

1971). A "cloud" is specified by the following parameters; start time and

duration of the cloud, grain duration, density of grain per second,

frequency band of the cloud, amplitude envelope of the cloud,

waveform(s) in the grains, and spatial dispersion of the cloud. Later in this

chapter and the following chapters, the effects of some of the parameters

above are examined.

6.2.5. FOF

A "formant" is a peak of energy in the frequency domain that can

include both harmonic and inharmonic partials. Formant regions serve as

a kind of tumbrel cue to the source of many sounds. Formant wave-

function synthesis [or in French; Fonction d'onde formantique; FOF] is the

136

basis of the CHANT sound synthesis system. CHANT has been

implemented on various platforms; for example (Asta et al. 1980), and

later, FOF generators have also been implemented in CSOUND (Clarke

1990). The basic sound model in CHANT is the human voice, as

understanding the formant nature of human speech has long been a

scientific goal.

FOF, the core of the CHANT system, originated from formant synthesis

methods based on a traditional subtractive approach; a source signal with

a broad bandwidth filtered by a complicated filter bank to a few resonant

peaks. The complicated filters banks used in subtractive synthesis

systems [see Chapter 1.2.] can be broken down to an equivalent set of

parallel bandpass filters excited by pulses (Rodet et al. 1984). A filter

such as Fcan be represented by its z-transfer functions:

H(z)= " ^ ^

that include p poles and q zeros: this is linear prediction (Moorer 1977).

This can be rewritten in another form;

H (z) = i c .
i = l 1 + ajZ + b j Z

The above form describes the H filter as a set of parallel / cells, each of

these composed of a first-order filter and of a section of the second-order

137

series, with a gain c,-. The parameters a and b determine the centre

frequency of a pass band and its local form, and d, signifies the slope of

the envelope.

When the excitation is a series of impulses;

E (k) = I e n (k)

where n indexes the impulses in turn. The response S from the previous

filter can be calculated as the sum of the responses sjk) shifted from a

period of the fundamental T=1/F0, where FO is the fundamental frequency

of the excitation and the response. A response sjk) is the sum of the J

responses;

s (k) - i s (, , i) (k)
i=l

where the s^^ j^(k) are called formant wave-functions [FOF], because they

correspond with the formant or main modes of the response of the system.

By changing the durations of the fundamental periods T=1/F0, the

beginning of successive FOFs, variations of fundamental frequency can

be realised. The characteristic of each FOF determines the envelope of

the spectrum.

An FOF cell [or grain] is a damped sine wave with an attack and a quasi-

exponential decay. The response to a unitary impulse of a cell;

138

l + ajz"^ + b i Z " ^ ' (l - r i Z " ^) (l - r i Z " ^)

is the FOF

with

Si(k) = Gxe"'^sin(cok + 0)

co = Arg(ri),
^ , sin(co-e~")
0 = arc{ ^ — —

dj-aj-cosCco-e
G=

sin(0)

where the G is the gain, the <t> is the initial phase of the formant. The local

envelop is formally defined as follows;

k<0 s(k) = 0

0 < k < | s(k) = i [l -cos(pk)-e-*]

' " ' ^ i s(k) = e-*.

The range [0<k<7r/p] is the attack, followed by the decay [k>7r/(3]. The co is

the central frequency of the response. The an signifies the pass band

width at -6 dB, and the length of the decay part. The (3 governs the pass

139

band width [or skirt width] at -40 dB, and the length of the attack part.

Since the duration of each FOF cell usually lasts just a few milliseconds,

the envelopes create audible side-bands around the source signal [the

contents of the FOF cell; sine wave], creating a formant.

01
•c

a t t a c k

3
.H

c

c

01
T3
3

Q
C

in

200

t in£

Figure 6.2.1a.: FOF Envelope.

t i n e

Figure 6.2.1b.: FOF Cell.

p a s s band at -6dB

skirt a t -40dB

400 600
f r e q u e n c y <Hz>

800

Figure 6.2.1c.: Frequency Response of FOF Cell.

140

Due to its time-domain nature, the FOF technique could be referred to as

a pitch-synchronous granular synthesis technique.

An extended FOF generator is FOG. This technique is somewhat similar

to some aspects of the asynchronous granular synthesis (Eckel et al.

1995). The main differences between the original FOF and the FOG are

as follows;

FOF FOG
source sound sine wave arbitrary sound

trigger of formant periodically any

Table 6.2.1.: Major Differences between FOF and FOG.

141

6.3. Related Researches in Sound Granulation/Granular
Synthesis

6.3.1. Granulation Systems in Simon Fraser
University, Canada

The original granulation system, called PODX, was implemented on

a DMX-1000 signal processor (Truax 1988). Sound samples are stored

on a hard disk, then loaded into a 4k-byte window on the DMX. Unlike the

TDS, the DMX has a high-speed hard disk and interface to support the

real-time sound granulation and time-shifting which acts as a cache

memory for the source sound communications with the DMX in real-time.

All the granulation parameters [centre frequency, frequency range, offset,

offset range, grain duration, duration range, and delay or density of grain]

are controlled from the console keyboard of the host computer for the

DMX, a PDP11/23. A variety of grain envelopes are available, by

changing the length of ramp. For real-time user controls, a new value may

be typed in for any parameter through the computer keyboard at any point.

The new system for granulation and time-shifting (Bartoo et al. 1994) is

implemented over quad DSP56002 DSP chips [a total of 80 MIPS at 40

MHz] with a 68EC020 micro-processor hosted by an Apple Macintosh.

One of the new features is that the sound sample which is being

processed can be utilised as a signal processing effect in a mix-down

environment, having a 256k to 16M-word [16-bit] audio sample memory at

its disposal.

The system has eight channels of analogue input and output, digital

control interfaces; SCSI and MIDI [IN and OUT]. The analogue input and

the large audio sample memory make real-time feeding and processing of

142

a live source sound possible, whereas the PODX system and my

transputer based system only accept digitised and pre-stored sound.

6.3.2. Granular Sampling on ISPW, IRCAM

The IRCAM Musical Workstation [IMW] was designed to facilitate

real-time sound processing and interactive musical composition, and was

based on one or more NeXT computers with between 2 and 24 Intel 1860

processors [80 MFLOPS each at 40 MHz] as co-processors for sound

controlling and one Motorola's DSP56001 chip for I/O processing; a serial

port for digital audio at a 44.1 kHz sampling rate [CD quality], an RS-442

serial port for MIDI, another controller interface, and a DMA transfer

between other NeXT boards through a NeXTBus (Puckette 1991,

Lindemann, Starkuerand Dechelie 1990).

The same architecture called the IRCAM Signal Processing Workstation

[ISPW] is described in an article by Lindemann (Lindemann et al. 1990).

[In this thesis, I use the term ISPW to refer to the architecture, since most

of the papers published after 1991 adopt this labelling.]

Lippe used the term "Granular Sampling" in his paper on the subject

(Lippe 1993), however, the application he outlined is more appropriately

described as "sound granulation". His system is based on Xenakis'

description of the granular synthesis, using control valuables of pitch,

envelope description, maximum amplitude, grain duration, rate of grain

production [grain density], overlap of grain [delay] and spatial location of

grain [pan].

143

The algorithm was implemented on an ISPW running under MAX, a sound

processing language. MAX supports various inputs from MIDI

instruments, including sliders and pedals, and the ISPW with dual 1860 co­

processors is able to handle a high rate of control information. Lippe

suggested the usage of algorithmic mapping for the parameters.

However, none of the details on controlling mechanisms nor their method

are included in the paper.

6.3.3. Granulation System on IRIS-MARS Workstation

"Grains" is a system for quasi-synchronous granular synthesis

implemented on the IRIS-MARS workstation (de Tintis 1995). Musical

Audio Research Station, MARS, developed by IRIS s.r.l. [Italy] is a

programmable and open system for real-time digital signal processing.

MARS is based on a sound generation board SMI000; two IRIS X20 DSP

chips [25.6 MIPS each at 25 MHz] for sound processing controlled by a

Motorola 68302, and an integrated package EDIT20, supported by an

Atari or a Macintosh, for graphical environment (Andrenacci et al. 1992).

The former has a pair of MIDI ports [IN / OUT], an RS-232 interface, a

parallel port, and a serial IIS port for communication.

There are four voices that are generated sequentially and controlled by

five granulation parameters; frequency, grain length, waveform [source

sound] and amplitude. Another parameter, horizontal density [grain

density/speed ^ delay], determines when another grain should be

activated. Since the end of one voice triggers another with or without

144

delay, it would appear that there is little scope for overlapping of two or

more grains. Also, a Gaussian random number generator initiates the

firing process, thus providing micro-modulation on the output sound.

Three of the parameters; grain length, amplitude and grain density, are

generated with normal distribution in a range controlled independently

through three MIDI sliders. The system can also be controlled by using a

mouse through an Atari platform. In this case, only one parameter can be

changed at a time, due to hardware restrictions. There are some features

for a graphic interface to provide information on wave forms and

envelopes, but these are not described in any detail. The system works in

real-time at an unusual sampling rate of 39 kHz, slightly less than an audio

standard of 44.1 kHz [CD quality].

6.3.4. Granular Synthesis on CSOUND

Granular synthesis using CSOUND could be achieved by applying

conditional statements or a combination of existing unit generators, if a

complicated and large "score file" and an associated "orchestra file" are

provided. Recently, two new unit generators were developed to provide

different levels of control specifically for granular synthesis (Lee 1995),

and these can be integrated into normal CSOUND composition. Thus,

source sounds can be obtained from existing CSOUND function tables,

ranging from simple sine waves to sampled sound.

145

The control valuables for the grain generation unit are amplitude, grain

size, gap [delay], pitch shift, attack [grain rising ramp size] and decay

[grain decaying ramp size]. This suggests that grains created by the unit

generator are not always symmetrical; the size of rising ramp can be

different from the size of decaying one, where the conventional grain is

symmetrical. All the parameters, except the amplitude, can be modified

with a random number generated by another unit generator.

The other unit generator controls grains in a stream, by controlling the

parameters of amplitude, skip [offset], grain size, gap [delay], offset, ratio

[time-shift/stretch] and number of voices. This provides a multi-voice

granular synthesis and sound granulation on CSOUND. This scheduling

method allows grains to be overlapped in a voice by changing the gap

parameter, whereas my system does not allow the overlap in a voice; the

minimum delay is zero.

These unit generators have been tested on high-performance

workstations like Sun and SGI, as well as conventional PCs. Due to the

high demand in computation, the process however is quite time

consuming, with only limited possibilities for real-time operation.

6.3.5. Granular Synthesis on SoundMaker

"SoundMaker" (Ricci 1997) is an offspring of a shareware sound

application for Apple Macintosh; "SoundEffects". "SoundMaker" allows

third-party developers to create new sound-manipulation modules in its

environment using the plug-in paradigm. A plug-in module for sound

146

granulation; granular synthesis and time stretching, was published by

Norris (1997).

The granulation parameters are; grain size [20 to 60 msec], grain

distribution [linear synchronous or asynchronous by randomise], grain

density [by percentage] and grain shape. A figure in the article suggests

that a selection of grain shapes might be available, and the grain-body

ratio seems to be variable. At the time of publication, the program works

only on a non-real-time basis.

147

6.4. Time-Compression and Time-Stretcliing

Granular representation has made possible another powerful

technique in sound processing; time-compression/stretching. This

involves the granulation of the time-domain signal and re-synthesis of the

grains with new time order. In 1946, Gabor built one of the earliest

electro-mechanical time changers; "Kinematical Frequency Converter".

The basic idea was time-granulation of recorded sound. A similar method

is also used for slow-motion cinema and video images by repeating a

frame a few times [see Chapter 6.1.1.].

In my digital implementation, recorded sound is stored on a 256k-byte

external memory of a transputer in 16-bit integer format. Gabor's

mechanical "sliding window" technique is modified with the wave-table

digital synthesis method: a movement of the window turns into a change

of read address.

A sine wave [440 Hz] was granulated with the following parameters:

number of channels 9
grain size 640 sample-long (160-320-160)

ramp 160 sample-long simple ramp
grain speed 3.7 grains per second per channel

Table 6.4.1.: Granulation Parameters.

The grain speed is chosen to ensure that a half of each grain, both ramp

parts, is partially covered with the ramp segment of adjacent grains: the

result being no interval between grains in the overall stream. The initial

offset values for each channel were specified to match the overlap

148

condit ion above: 480 samples offset per channels with the exception of

the first channel . The increment value for the address generator was

selected for x2 t ime compression [sound sample 6.4.1.]; x2 grain size and

x2 t ime stretch [sound sample 6.4.2.]; half the grain size. [All the figures

of FFT results in this Chapter, both frequency and intensity axes, are on a

linear scale.]

U1
c
c . ^Au...

•N I 1 " • " l " * " " ' " ' I 1 i
O 200 400 600 800 1000

f reciuency <Hz)

Figure 6.4.1.: Frequency Response of Granulation (x2 compression).

I i n " I 1 1
o 200 400 600 800 1000

frequency (Hz)

Figure 6.4.2.: Frequency Response of Granulation (x2 stretched).

These FFT results show a strong peak at the source frequency of 440 Hz

and some low intensity surroundings. This confirms the theory of time

shift ing is correct.

The below figure shows the FFT result of the recorded speech element

which was used for source sound of the granulation. The FFT was

conducted using a 32,768 [=2^^] point-window, about 1 second long, that

is shifted 15 t imes to cover the granulated sound. [The same sequence

will be appl ied for the later FFTs of granulated natural sound, unless

specif ied.]

149

1 —
o

' —T ^
200 400

1 •
600 800

' 1
lOOO

.
1
lOOO 1200 1400 1600

• ™ " - ' f
1800

" • ' • " " 1
2000

r
2000

1
2200 2400

]

2600
f -

2800
1

3000

3000
"' " ' ' !

3200
1

3400
1

3600
• " " 1 '"

3800
1

4000

1" •'
4000

1 ^
4200 4400 4600 4800

. . . ,—, . 1
5000

1
5000 5200 5400 5600 5800 6000

1
eooo

1
6200

6400
1

6600 6800 7000

7000
r'

7200 7400
frequency

7600
CHz)

• T"̂
7800 8000

Figure 6.4.3.: FFT Result of Speech (32768 sample-long-window x 15).

Similar results are obtained from a granulation of speech with the same

condit ions, [sound sample 6.4.3.; original speech, 6.4.4.; compressed,

6.4.5.; stretched] Since the output-length of granulation was fixed for the

convenience of the FFT program, there could be slight differences on

these results. However, the overall shape of the result is similar to the

original sound.

150

200 400
. 1. ^ -

600 800 lOOO

1400
• i l x i m i

1800 lOOO 1200 1600 2000

2000 2200 2400 2600 2800 3000

g 3000 3400 3200 3600 3800 4000

4000
> k L . i . i . ^ . i , • — 1 —

4800 4200 4400 4600 50G0

5000 5200 5400 5600 5800 6000

r
6000

1—
6400 6200 6600 6800 7000

l ~ — ^ 7000 p-^
7800 8000 7200 7400 7600

frequency <Hz >

Figure 6.4.4.: Frequency Response of Granulation (x2 compression).

151

r
o

J i i i l i
200 400 ' — r —

600 800
1

1000

1 -
1400 1600 1

1000 1200 1800 2000

.f.lulLljLilbkllii lUi I I ,
2000 2200 2400 2600 2800 3000

I
W 3000
01

3400 3200 3600 3800 4000

' \—
4400 4000 4200 4600 4800 5000

5000 5200 5400 5600 5800 6000

6000 6200 6400 6600 6800 I
7000

I
7000

— •

7800 7200 7400 7600
frequency <Hz)

8000

Figure 6.4.5.: Frequency Response of Granulation (x2 stretched).

152

6.5. Summary

The history of granular synthesis/sound granulation was reviewed

together with similar applications, such as FOP and wavelet

t ransformation. A number of implementations of granular synthesis and

sound granulation methods were also studied. The technique of t ime-

stretching and t ime-compression by sound granulation were also

examined. In the next Chapter, the effects of the granulation and the

granulation parameters will be investigated.

153

6.6. Further Applications

6.6.1. Granular Morphing and Spatialisation of Sound

Sound granulation could be used for smooth transition of sound,

such as fade-in and fade-out, by changing grain density and other

granulat ion parameters. Todoroff implemented the technique on an ISPW

under a MAX environment, controlled by MIDI faders (Todoroff 1995).

The system is capable of the fade-in/fade-out mode of two synchronised

voices from 32 voices that operate at the maximum aggregated grain

density of 2,500 gps, and offer voice spatialisation.

Mult i-channel spatial distribution enhances the distinctive characteristics of

granular synthesis and sound granulation. Granulated textures are

articulated by scattering individual grains in different spatial locations. The

perception of the spatial position of a stream of grain is determined by the

physical properties of the signal and the "localisation blur" introduced by

the human auditory system. The spatial distribution of the grains can be

specif ied by distributing grains over the available channels, which are in

turn panned across the stereo listening area.

6.6.2. Time Stretching for Language Teaching

Gabor's original idea of the sound granulation was meant for

kinematic f requency conversion without changing the pitch (Gabor 1946).

This may still have further applications for other subjects, such as

language teaching and research. For example, language students are

often required to hear recorded speech at a slower tape speed than the

original. This results in a lower pitch than the original and distorted

154

tumbrel contents. Using the sound granulation technique, a recorded

sound could be t ime-stretched without causing such distortions. The

technique is also useful for measurements of timing in sound, since the

t ime scale can be enlarged.

155

Chapter 7. Analysis of Grain (Granulation
Parameters and Sound)

7.1. Shape of Grain

Gabor (1946) proposed granulation by a Gaussian amplitude

envelope.

1 f(x) = ̂ e 2 dx

A variation of this is the quasi-Gaussian curve that consists of a half

Gaussian rise, sustain part and a half Gaussian decay that was used in

Roads' system (Roads 1978). Truax (1994), however, applied a simple

straight ramp. [Gabor also suggested it, for practical reasons (Gabor

1946).] Truax selected the ramp for his envelope for efficiency in terms of

computat ion t ime and memory space: the calculation for a simple ramp

requires a few operations per sample, an overhead that is quite important

for "real-t ime" granular synthesis if the envelope is re-calculated for each

grain.

An investigation into the effects caused by grain shapes was conducted.

Four sine waves [27.5, 55.0, 110 and 440 Hz] were granulated by four

different ampli tude envelopes; simple-ramp, half-cosine, parabolic and

quasi-Gaussian. [Only 27.5 Hz and 440 Hz examples are shown below.]

Then the granulated signals were analysed by 65,536 point-FFTs, about

two seconds in sound length. The sine waves, the envelopes and other

calculations were performed in 32-bit floating point format. These figures

show the granulated wave based on 440 Hz sine waves and the frequency

response of the granulation [sound samples 7.1.1. , 7.1.2., 7.1.3. and

7.1.4.].

156

01
T3
3

1G0 u.320+j1G0

— I —
lOOO

I
4000 2000 3000 sa n p l e s

Figure 7.1.1a.: Granulation of 440 Hz Sine Wave by Ramp Envelope.

391
Ai 90

540

L
590

200 1
400 ^ 600 800

frequency <Hz)

Figure 7.1.1b.: Frequency Response of Grain (ramp, 440 Hz).

01
•c

1G0 u320*j1G0

— I —
lOOO 2000 3000 sanp l e s 4000

Figure 7.1.2a.: Granulation of 440 Hz Sine Wave by Half-Cosine Envelope.

2 9 0 ^ ^ °
_ ^ L

391 490
540

590
J u

200 ''°°440
frequency (Hz >

800

Figure 7.1.2b.: Frequency Response of Grain (half-cosine, 440 Hz).

157

1G0 l .320-»|1G0

lOOO 2000 3000
sanples 4000

Figure 7.1,3a.: Granulation of 440 Hz Sine Wave by Parabolic Envelope.

c
01 340

391 490
540

590

200 400 600 440
frequency <Hz)

1—
800

111 •D
3

Figure 7.1.3b.: Frequency Response of Grain (Parabolic, 440 Hz).

1G0 jt320^1G0

wmryiiii^iiiiu^Mi^iiiiyiM
I

lOOO
i I 2000 3000 sanp l e s

I
4000

Figure 7.1.4a.: Granulation of 440 Hz Sine Wave
by Quasi-Gaussian Envelope.

340
391 490

540
590

200 '*°°440
frequency <Hz >

800

Figure 7.1.4b.: Frequency Response of Grain (Quasi-Gaussian, 440 Hz).

A few extra harmonics appear on all the FFT results, showing the effect of

ampli tude modulat ion caused by the granulation; a grain size of 640

samples [50 Hz at 32 kHz sampling rate].

158

The results below are from the granulation of a 27.5 Hz sine wave.

Q £
HI 1

1000
I

4000 2000 3000
sanp l e s

Figure 7.1.5a.: Grain Shape (ramp, 27.5 Hz).

2 3 7 3 7 7 1 2 7

J L _

1 7 7

T
lOO

— \ 1—
200 300

frequency <Hz>
2 7 400

Figure 7.1.5b.: Frequency Response of Grain (ramp, 27.5 Hz).

160 u320+|1G0
» t I

— i
lOOO

1
4000 2000 3000 sanp l e s

Figure 7.1.6a.: Grain Shape (half-cosine, 27.5 Hz).

2 3

A
7 3 7 7 1 2 7 1 7 7

• i J . _

2 2 8

2 7 lOO 200 300
frequency <Hz)

400

Figure 7.1.6b.: Frequency Response of Grain (half-cosine, 27.5 Hz).

159

1 1 1 1
lOOO 2000 3000 4000

sanp l e s
Figure 7.1.7a.: Grain Shape (parabolic, 27.5 Hz).

23 73 77 127 177 228

Q 7 n ' 1 ' r I
^' lOO 200 300 400

frequency (Hz)

Figure 7.1.7b.: Frequency Response of Grain (parabolic, 27.5 Hz).

I 1 1 1 1
lOOO 2000 3000 4000 sanp l e s

Figure 7.1.8a.: Grain Shape (Gaussian, 27.5 Hz).

23 73 77 127 177 223 228 278

A 1 ^
27 100 200 300 400

frequency <Hz >

Figure 7.1.8b.: Frequency Response of Grain (Gaussian, 27.5 Hz).

160

The result for the 27.5 Hz sine wave shows that in the frequency domain,

there are some minute differences in high harmonic components and the

intensity of the fundamental frequency. Some peaks are supposed to be

reflections of negative frequencies: such as 23 Hz [27.5 - 50 = -22.5] and

73 Hz [27.5 - 100 = -72.5] where 50 Hz is the grain frequency [640

sample-long-grain in 32 kHz sampling rate]. Another example using a 440

Hz sine wave shows similar results without the reflections.

The fol lowing figures are the frequency responses of the granulation of a

440 Hz sine wave by a 1,280 sample-long model. The grain length was

doubled in order to create more extra harmonics [or decrease the group

frequency].

200 400 600 800
frequency <Hz)

Figure 7.1.9a.: Frequency Response (ramp, long grain).

51

g

T — ' I I I I 1 r
200 400 600 800

frequency <Hz)

Figure 7.1.9b.: Frequency Response (half-cosine, long grain).

161

200 400 600 800
frequency <Hz)

Figure 7.1.9c.: Frequency Response (parabolic, long grain).

200 400 600 800
frequency CHz)

Figure 7.1.9d.: Frequency Response (Gaussian, long grain).

Generally, as Roads claims:

A m u s i c a l l y i m p o r t a n t g r a i n parameter i s the
waveform i n s i d e the g r a i n .

Roads, C. 1991. "Asynchronous Granular Synthesis."

In the case of a long ramp, this may be expected to cause some

differences in frequency characteristics; extra harmonics caused by the

granulation will be concentrated around the strong peaks, since the grain

f requency is low. It means that the modulation is the main effect and the

grain shape is not. In the case of a short ramp, the grain frequency is high

enough to create a wide range of harmonics.

162

A short ramp, however, means few steps between 0 and 1 which makes it

hard to differentiate between one type of ramp and another. The shape of

grain, therefore, does not have an important effect on the granulation. It

is, however, clear that there are some differences in appearance and

intensity of extra harmonic components that may significantly affect the

t imbre of the granulated sound.

163

7.2. Length of Grain

As an initial step towards the implementation of real-time granular

synthesis, an 80-sample-long [2.5 msec at 32 kHz sampling rate] model

was investigated. The model consists of a 20-sample-long rising ramp, a

40-sample- long sustain part and a 20-samp!e-long decaying ramp

implemented onto a part of the 160 Transputer Network [see Chapter 8 for

details]. A sine wave [440 Hz, "concert A"] was then granulated. The

waveform, envelope shape and FFT result are shown below. [All the

f igures of FFT results in this Chapter, both frequency and intensity axes

are in linear scales.]

lOO
T r

200 300
sanp l e s 400

Figure 7.2.1a.: Source Signal (440 Hz Sine Wave).

20 20

01
3

I,—2.5 ms_«

— I —
300 lOO 200

i
400 sa n p l e s

Figure 7.2.1b.: Granulation of 440 Hz Sine Wave by Ramp Envelope (80).

40
3B0

_ L _

440

7GG
840

400 200
1240

600 800
1G40 19G0

1200 1400 1600
frequency <Hz)

1800

Figure 7.2.1c.: Frequency Response of Short Grain Model (80).

164

The frequency response of the grain model shows that there are a few

extra harmonics created by the granulation. The grain frequency is 400

Hz [at 32 kHz sampling rate] such that modulation causes measurable

upper-band-harmonics at 840 [440+400], 1240 [440+800] and 1640

[440+1200] Hz, and lower-band-harmonics at 40 [440-400], 360 [440-800;

-360], 760 [440-1200; -760] and 1960 [440-2400; -1960] Hz.

lOO
- i r

zoo 300 s a n p l e s
r

400

Figure 7.2.2a.: Granulation of 440 Hz Sine Wave by Ramp Envelope.

440

S 40
1G0

240

200 400 600

640
7G0

840

800
1040

1 1 —
1400 1600
frequency <Hz)

1200 1800

Figure 7.2.2b.: Frequency Response of Short Grain Model (160).

The grain length was doubled to 160-sample-long. This model creates a

smoother sound but not smooth enough for sound reproduction, because

of the wide gap between the ramp envelope steps. The source sound is

heavily distorted by the extra harmonics. The granulated waveform, the

envelope shape and an FFT result are shown above. The FFT result is

quite similar to the shorter grain model, except the grain frequency is now

200 Hz.

165

80 160 80

mmsmmMimmMMimmMS
wwmwwwwmmmmwwww%

1 1 1 1
lOOO 2000 3000 4000 sanp l e s

Figure 7.2.3a.: Granulation of 440 Hz Sine Wave by Ramp Envelope (320).

31
•M
Ifl
c
01 340

240
A

540
640

J
440

frequency <Hz)
— I — • ——r~
200 400

Figure 7.2.3b.: Frequency Response of Short Grain IVlodel (320).

The grain lengtli was again doubled to 320-sample-long [10 msec at 32

kHz sampl ing rate] and the same tests were conducted [sound sample

7.2.1]. The FFT result shows similar side-band-harmonics with 100 Hz,

the grain frequency, as the spanning interval. These are weaker than the

shorter models, but are still strong enough to affect the source sound.

Gabor (1946) est imated a 10 msec-long grain model is the minimum size

for sound granulat ion. This might be appropriate for a single sine wave

granulat ion, but not for reproduction and time-stretching of natural sounds,

since natural sounds have more than one peak in their spectrum

characterist ics that may interfere with each other's artefacts.

At this point, the 320-sample-long model was implemented onto a part of

the 160 Transputer Network linked up to 9 external transputers that were

conf igured for 9 channels of real-time sound granulation for recorded

sounds [see Chapter 8 for details]. This enabled the use of recorded

natural sounds, such as speech and random noise, for listening tests.

166

A single-stream granulation of the same recorded speech extract was

performed with the 320-sample-long grain model [sound sample 7.2.2.].

r
o 200 400 600 800 lOOO

r—'
1000 1200

—*~—
1400 ' • T " "

1600 1800 2000

p" '—'
2000

11 1 1 MnitT ••
2200 2400 2600 2800 3000

r
3000

1
3200

• "• "1 '
3400 3600 "•• ~ r

3800 4000

r " " ' ' '
4000 4200 " ' ' T "" 4400 •• " T " '

4600 4800 • — 1 5000

1
5000

""" "(
52DO 5400 5600 ' ' ' (•" 5800 6000

6000 6200 6400 1
6600 6800 7000

1
7000

1
7200

1
7400

1 ' ' ' 7600 • 1 • 7800 1
8000 frequency <Hz)

Figure 7.2.4.: FFT Result of Granulated Speech (320-sample-Iong grain).

The FFT result of the granulated sound above shows the strong peaks

around 400 Hz and 800 Hz, but the surrounding frequency characteristics

are changed [see Figure 6.4.3. for the source sound]. There are extra

harmonics appearing around 200, 300, 500 and 600 Hz; -200, -100, +100

and +200 Hz where the grain frequency is 100 Hz. In the high frequency

regions above 2,200 Hz, the peaks are diminished as if the granulation

works like a low pass filter.

167

In terms of hearing, the granulated speech still contains some artefacts;

distorted speech, like speaking with a sheet of paper held in front of the

mouth. The sound is not so smooth, compared with the granulated A 440

sine wave using the shorter grain model, especially during periods when

consonance parts are processed, a result of the short steep ramp

envelope against high frequency components.

The grain length was then doubled to 640-sample-long; 20 msec at 32

kHz sampling rate, and granulated A 440 sine wave [sound sample 7.2.3.]

and recorded speech [sound sample 7.2.4.] conducted using a single

stream of grain envelope.

1B0

W W W W W W W ^ M I
1 1 1 1 lOOO 2000 3000 4000 sanp l e s

Figure 7.2.5a.: Granulation of 440 Hz Sine Wave by Ramp Envelope (640).

•H

c
u
c

391 491
340 1 540

. I 1 I
'• ' 1

200
T 400 ̂ i

600 800
frequency <Hz)

Figure 7.2.5b.: Frequency Response of Grain Model (640).

The result shows the similar effects of amplitude modulation with the grain

frequency of 50 Hz. In the case of the granulation of speech, the sound

became smoother, and the artefacts were weak enough for reproducing

original sound.

168

200 400 600 800 lOOO

.. . .
1 — '
lOOO

f—
1200

• ' l
1400

T
1600

\
1800 1

2000

1 '
2000 2200 2400 2600 1

2800
. 1—.|

3000

3000 3200 3400 T " ' ' 3600 J , . . . - . - , - .
3800

1
4000

1, ,
4000

1 4200 1
4400

1
4600 4800 5000

I"*"
5000

1
5200

1
5400 5600 5800 6000

6000 6200 6400 6600 6800 7000

7000 1
7200 7400

frequency
1

7600
<Hz)

1 •
7800 8000

Figure 7.2.6.: FFT Result of Granulated Speech (640-sample-long grain).

The FFT result shown above also looks like the original without

granulat ion. In the light of these assessments, I decided to use the 640-

sample- long model as a standard reference and this is applied for the

implementat ion of real-time granulation [see Chapter 8].

For further investigations into the size of grain, a longer grain model was

tested: a 2,560-sample-long or 80 msec-long with a sine wave [440 Hz]

[sound sample 7.2.5.] and the speech element [sound sample 7.2.6.]. The

result of this frequency response analysis shows a high concentration of

intensity at and around 440 Hz, the source sound, with amplitude

169

modulat ion of the grain where the grain frequency is 12.5 Hz at 32 kHz

sampl ing rate. In terms of hearing, the granulated sound is a source

sound with a low frequency amplitude envelope, tremolo, rather than a

cont inuous sound.

•D

a z

25B0
640—«L 1280 1 — 6 4 0 .

ŝiirtnnnniiMinnnth.ĵ ^
IllUUUMlllllli^

1 1 1 1 lOOO 2000 3000 4000 S3nples
Figure 7.2.7a.: Granulation of 440 Hz Sine Wave by Ramp Envelope (2560).

428
415

J. —i •—r
200 400

453
,465

440 ^ ^
frequency (Hz >

Figure 7.2.7b.: Frequency Response of Grain Model (2560).

These experiments suggest that a longer grain model can produce a

smooth sound that closely approximates to the source sound in terms of

f requency response. A longer grain model is able to reproduce the source

sound better than a shorter one, since it creates narrow side-bands, and

the intensity of each artefact is lower. In other words, the size of grain has

some effects on the bandwidth of the granulated sound.

For the purposes of t ime-stretching and sound reproduction, a longer grain

model would be preferred, since a longer grain can preserve the original

sound texture. For sound modification, or "Granular Synthesis", a shorter

grain model would be better, because of the wider side-bands and other

170

effects of a shorter grain. Gabor's estimation, a minimum of 10 msec-long

grain, was thus confirmed. The minimum, however, might not work as well

for some natural sounds with rapid change, like speech.

200 400 600 800 lOOO

1 ^ 1
lOOO

1 ^
1200 1400 1600 1800 2000

1
2000

' l""*"
2200

ITT iiij yillliii
2400 2600 2800 3000

r
3000

' —r
3200 3400 3600

' ' '"T •
3800

1
4000

4000 4200
• ' T ' " " "
4400 4600

~"l
4800

1
5000

T"" " " • —
5000

' " 1 '
5200

• " • 1 - • • •
5400 5600

I
S800 6000

eooo 6200 6400 1
6600 6800 1

7000

7000 7200 7400 7600 1
7800

8000
frequency CHz)

Figure 7.2.8.: FFT Result of Granulated Speech (2560-sample-long grain).

2,560-sample- long [80 msec] and longer grain models, that require a large

memory to store the ramp coefficients, might not be suitable for a real-time

implementat ion on a single transputer without external memory; for

example a 640 sample-long ramp occupies 2.56k-byte out of the 4k-byte

memory available on a networked transputer. In the case of a long grain

model , it may be feasible to divide the granulation task implemented on a

171

t ransputer to two individual transputers; one generating ramp coefficients,

instead of storing them, and the other multiplying the source sound with

the coeff icients.

172

7.3. Ramp-Body Ratio

Ramp-body ratio is another parameter for the control of sound

granulat ion. The regular ramp-body ratio is one-to-two. In other words, a

grain consists of a quarter-grain length rising ramp, a half-grain sustain

part and a quarter-grain length decaying ramp.

For the investigation into the significance of the ratio, firstly, the size of the

grain was fixed to about 640 sample-long. The effect of the granulation is

the ampli tude modulat ion, where the grain frequency is 50 Hz, and extra

harmonic contents should appear every 50 Hz. Secondly, the size of the

ramp is f ixed to 160 sample-long and the size of the grain body is

changed. This should provide results that exclude the effects from the

artefact of short ramps. A 440 Hz ["concert" A] sine wave was used as the

source sound of granulation in both cases.

I [iiiiniimiifnfni»fiiM
i U i i l U H w ^ u ^ ^

1 1 1 1 —
lOOO 2000 3000 4000 sanp l e s

Figure 7.3.1a.: Grain Envelope and Granulated Sound (1:8).

in
c

C

200 400 440
frequency <Hz)

1 1 —
600 800

Figure 7.3.1 b.: Frequency Response of Granulation (1:8).

173

The above graphs show the granulated waveform, the amplitude envelope

and their f requency response to the 64-512-64 grain model, where ramp-

body ratio is 1:8.

Extra harmonics in the upper-band appear every 50 Hz, the grain

frequency, up to 740 Hz, and in the lower-band, down to 140 Hz. Their

intensities are not so significant; less than 10% of the source frequency

440 Hz. In cases of 1:16, 1:32, 1:64 models, their results are quite similar

to the 1:8 model except the deviation of the extra harmonics is wider.

The results of 1:4 and 1:2 models below are quite similar to the 1:8 model,

except the deviation of extra harmonics becomes narrower and the

intensity of first and second harmonics in both side-bands are higher.

107
|*-426->j H H

1 1 1 1 —
lOOO 2000 3000 4000 sanples

Figure 7.3.2a.: Grain Envelope and Granulated Sound (1:4).

J u
200 4 0 o J ^ 600 800

frequency CHz)

Figure 7.3.2b.: Frequency Response of Granulation (1:4).

174

160 160
4320-1 N H |*JZU-») M M

— I —
lOOO 2000 3000 sanp l e s 4000

Figure 7.3.3a.: Grain Envelope and Granulated Sound (1:2, regular).

, 1 ,

200 400^ 600 800
frequency <Hz >

Figure 7.3.3b.: Frequency Response of Granulation (1:2, regular).

212 212 212
01

— I —
lOOO 2000 3000 sanples

I
4000

Figure 7.3.4a.: Grain Envelope and Granulated Sound (1:1).

200 400 600 440
frequency <Hz)

1 —
800

Figure 7.3.4b.: Frequency Response of Granulation (1:1).

175

01 [•320W

lOOO 2000 3000 4000 saMPles

Figure 7.3.5a.: Grain Envelope and Granulated Sound (ramp only).

200 400 440
frequency <Hz)

—I 1 —
600 800

Figure 7.3.5b.: Frequency Response of Granulation (ramp only).

The above results are based on the fixed grain size analysis. To avoid

effects from the size of ramp, the following analysis of the ramp-body ratio

was conducted using a 160-sample-long fixed-ramp and variable sizes of

grain body. It means that the grain size and the grain frequency are not

constant.

160 160
01 •0
3

I I 1 1 — lOOO 2000 3000 4000 sanp l e s

Figure 7.3.6a.: Grain Envelope and Granulated Sound
(fixed ramp, ramp only).

I 1
O 200 400 600 800 1000

frequency <Hz)
Figure 7.3.6b.: Frequency Response of Granulation

(fixed ramp, ramp only).

176

160 160 160
HI

1

1 1 1 — I
lOOO 2000 3000 4000 sanples

Figure 7.3.7a.: Grain Envelope and Granulated Sound (fixed ramp, 1:1).

I I — —I ' ' I 1
200 400 600 800 lOOO

frequency <Hz)
Figure 7.3.7b.: Frequency Response of Granulation (fixed ramp, 1:1).

160 160
•320 H

I I I 1
lOOO 2000 3000 4000 sanp l e s

Figure 7.3.8a.: Grain Envelope and Granulated Sound (fixed ramp, 1:2).

I I I 1 1 1
O 200 400 600 800 lOOO

frequency (Hz)
Figure 7.3.8b.: Frequency Response of Granulation (fixed ramp, 1:2).

The above examples show that the results are similar to the fixed grain-

size models: a low body-ramp ratio means narrow deviation of extra

harmonics and low intensity of the source sound frequency.

177

160

lOOO — I 1 —
2000 3000 sanp l e s

I
4000

Figure 7.3.9a.: Grain Envelope and Granulated Sound (fixed ramp, 1:4).

• 1 I ,
200 400 600

frequency (Hz>
8 o b 1

lOOO

Figure 7.3.9b.: Frequency Response of Granulation (fixed ramp, 1:4).

160
>l f f 12m M

I —
lOOO 2000 3000 sanp l e s

I
4000

Figure 7.3.10a.: Grain Envelope and Granulated Sound (fixed ramp, 1:8).

c
01
c

200 400 eoo
frequency (Hz)

800 1000

Figure 7.3.10b.: Frequency Response of Granulation (fixed ramp, 1:8).

The results of 1:8 and 1:16 models show a significant concentration of

intensity at the source sound frequency; 440 Hz. Total intensities of extra

harmonic contents are less than 10% of the main frequency. The 1:32

and the 1:64 model also show similar results. These results suggest that

178

changes in the ramp-body ratio effect the deviation of the extra harmonics

and their intensities.

To confirm the reflection of "negative" frequencies, a 110 Hz sine wave

was granulated with a standard 1:2 grain model. The side bands appear

at an interval of 50 Hz [grain frequency] and are similar to those of the

source frequency at 440 Hz.

1G0 uO20*j1G0

1 i 1 i
lOOO 2000 3000 4000 sanp l e s

Figure 7.3.11a.: Grain Envelope and Granulated Sound (110 Hz, 1:2).

,110

10 60 160 210 260

1 1 1

lOO 200 300 400
frequency <Hz)

Figure 7.3.11b.: Frequency Response of Granulation (110 Hz, 1:2).

Ramp-body ratio governs the basic profiles of the side-band-width of the

granulated sound, regardless of the size of the grain. Since extra

harmonics appear at the interval of the grain frequency, which depends

upon the size of the grain, the extra harmonics are controlled firstly by the

body-ramp ratio and are multiplied by the grain frequency. For the

eff iciency of grain calculations, the fixed-ramp algorithm is applied for the

real-time implementation [see Chapter 8].

179

7.4. Interval between Grains

Another main parameter for granular synthesis is the interval

between the grains that is also called "delay" or "space". The grain-space

ratio is usually defined backwards from "grain density" or "grain speed";

grain-per-second [gps]. The experiments in previous sections were

conducted with a single stream of grains without interval. In this section,

further investigations into the effects of a short interval between grains

were conducted.

Using the standard 640-sample-long grain model, a sine wave [440 Hz]

was granulated with various sizes of space, then its frequency

characteristics were analysed. The intervals between the grains were as

fol lows; 1/4 grain-long [160 sample-long], 1/2, 3/4, 1, 3/2 and 2 grain-long.

200 400 600 800
frequency (Hz)

Figure 7.4.1a.: Frequency Response of Grain with Space (1/4).

200 400 600 800
frequency (Hz>

Figure 7.4.1b.: Frequency Response of Grain with Space (1/2).

180

1 r
200 400 600

f I eciuency <Hz>
800

Figure 7.4.1c.: Frequency Response of Grain witli Space (3/4).

1 r —T—
200 400 600

frequency <Hz>
T 1 r

800

Figure 7.4.1d.: Frequency Response of Grain with Space (1/1).

c

c

1 • "T
ZOO 400 600

f requency < Hz)
-I 1 r

800

Figure 7.4.1 e.: Frequency Response of Grain with Space (3/2).

5
•H
in
c m

1 r —r~
zoo 400 BOO

frequency <Hz)
— I r
800

Figure 7.4.1f.: Frequency Response of Grain with Space (2/1).

181

The FFT results above show some peaks around the source frequency

[440 Hz] with an interval of "group frequency"; frequency of grain +

interval. The strongest peak, however, is not at the source frequency.

A similar set of analyses was done with a 2,560-sample-long grain model;

four times longer than the standard. Their FFT results show the same

phenomenon; peaks are distributed around the source frequency, 440 Hz,

with the interval of group frequency. The central frequency of the group of

peaks seems to be at the source frequency.

200 400 600 800
frequency <Hz)

Figure 7.4.2.: Frequency Response of Grain with Space (2560:2/1).

These results suggest that the space between the grains contributes to

amplitude modulation at a "group frequency" around the source frequency.

In terms of frequency, the strongest peaks on the frequency analyses are

not always at the source frequency. The tendency of the peaks, however,

shows that the central frequency is at the source frequency.

182

7.5. Summaiy

The artefacts of granulation are controlled as follows. The side­

bands appear both sides of each strong peak in the source sound. When

an extra harmonic component appears in the negative frequency, this will

be reflected into the positive side. The intervals of the extra harmonics

depend upon the size of the grain and the delay ["group" length];

amplitude modulation by the source frequency with the group frequency.

It means that a high grain speed [i.e. low "grain frequency"] makes a wider

interval. The number of side-bands is determined by the body-ramp ratio,

however, that does not depend on the size of the body. The side-bands

are, therefore, firstly controlled by the body-ramp ratio, as a profile of the

side-bands, and then are multiplied by the group frequency. In other

words, the side-band-width can be changed by altering either the grain-

body size or the ramp size. This leads to a real-time implementation of a

fixed ramp-size grain model. The details of the implementation are

discussed in the next chapter.

The granulation model used in this chapter [160-320-160] could be seen

as a special case of FOR cell. In the case of a standard FOF, the shape

of the cell is asymmetric without a sustained part, and the size of the cell

is not longer than 10 msec whereas the grain model is symmetrical and far

longer [20 msec]. The frequency response of a standard FOF cell,

however, is similar to that of the granulation model; one strong peak with a

few side-bands. In the case of the FOF, the top- and the skirt-pass band

width are determined by the length of the attack- and the decay parts

whereas the side-band-width of the granulation model is basically dictated

by the body-ramp ratio and multiplied by the group frequency. Also, the

183

behaviour of the granulation model could be described as that of a wavelet

with a mother function [or envelope; rise-sustain-decay].

184

Chapter 8. Implementation of Real-Time Granular
Sjmthesis and Sound Granulation on
the Network

8.1. Preliminary Implementation -using only on-chip memory-

At a preliminary stage of the implementation, a short fixed sound

sample was used, as an experiment for controllability. A nine-voice

system was implemented over 16 transputers, a branch of the 160

Transputer Network, using a 160-sample-long grain model; 40-sample-

long rising ramp, 80-sample-long sustained part, 40-sample-long decaying

ramp. A 320-sample-long sine wave-table in 440 Hz is the source of the

granulation.

The grain parameters; grain-body size, delay, source sound frequency

and amplitude are controlled from a PC keyboard that is connected with

the root transputer. A set of keys on the PC keyboard are assigned for

controlling the parameters; pressing a key causes a parameter to increase

or decrease. Since a short-grain-model is employed, the frequency of the

granulated sound is determined by the interval of the grain, "delay": the

group [grain + delay] frequency is the output frequency.

The source sound frequency is controlled using a wave-table synthesis

technique; note A in each octave synthesised from the original source 440

Hz. When the required output frequency is not equal to the source

frequency, the output should be synthesised by means of changing the

length of "delay". When "delay" is changed gradually, a glissando effect

[gradual change in frequency] is available with this configuration. The

185

minimum increment of the frequency depends on the size of grain and the

source sound frequency.

Since a short grain model, 160-sample-long, is employed, a full cycle for

low frequency tones of less than 200 Hz cannot be fitted into a grain. For

example, a 55 Hz tone requires at least 582 samples to complete a full

cycle, at a 32 kHz sampling rate. This causes a difference in the output

sound texture between sounds above 200 Hz, where at least one whole

cycle occurs in a grain, and those below, where less than one cycle

occurs in a grain. As the grain size becomes larger, this threshold is

lowered. If the threshold is 20 Hz, however, the lower limit of the human

auditory system, a 1,600-sample-long model is needed, and this may not

create enough artefacts of the granulation process unless a steep ramp is

applied.

A change of parameters is allowed only at the end of a grain, due to the

restrictions on the software: some ALT structures have to be introduced to

enable interactions within a grain period that necessitates a long delay. If

a change of parameters is made during a grain period, the new

information is held firstly by the key buffer of the PC, where no software

control is available from TDS, and then at a transputer assigned for the

granulation task. The latency of the system against a parameter change

is less than a grain period (4 msec). If the configuration is expanded over

the 160 Transputer Network, 81 voices become available.

As a first step towards improving control flexibility, two coefficients;

amplitude and frequency, can be communicated to the network through

185

the MIDI-to-Transputer interface. The MIDI inputs, "velocity" and "key

number", are converted to the amplitude and the frequency of the output

sound. The latter is done using the method described above. Possibilities

exist for controlling other key parameters through MIDI using continuous

controllers (de Tintis 1995), program change or system exclusive

messages, but these have yet to be fully investigated.

from T o p Leve l

to T o p Leve l

signal router signal mixer

wave table + grain shape tlow of control signal

I flow of sound output

Figure 8.1.1.: Granular Synthesis with Short Wavetable.

187

Since a networked transputer has a 4k-byte on-chip memory, there are

some limitations on programming. For example, to synthesise the lowest

A on an acoustic piano [fundamental frequency: 27.5 Hz] using a wave-

table, at least an 1,164-sample-long table is required for a complete cycle,

at a 32 kHz sampling rate. If a 1,200-sample-long wave-table is in 32-bit

integer format, it requires 4.8k bytes of memory space, more than the on-

chip memory of a transputer. If it is in 16-bit integer format [that of the

DAC used in the system] and occupies 2.4k bytes, this unconverted

format, nevertheless, requires an additional overhead in calculation, due

to the lack of a 16-bit processor on the 32-bit based T800 transputers.

This led to the idea of a distributed wave-table. The wave-table for

granulation is distributed over three transputers and is controlled by

another transputer.

This distributed wave-table provides an 800 sample-long (or 25 msec at a

32 kHz sampling rate) sample storage facility. In a "grain generator", a

static 160-sample-long simple ramp is implemented. The ramp could be

replaced with that of half-cosine or Gaussian characteristics with a simple

change in the initialisation program. The parameters that describe a grain;

grain-body size, grain-body range, amplitude and source frequency, are

controlled in real-time from a PC keyboard through a host transputer. The

size of the ramp can be re-programmed, but altering the grain-body size

makes the body-ramp ratio change, so providing a variety of side-band

widths [see Chapter 7].

f rom Top Level

to Top Level

lal router - signt

• j ^ • a d d r e s s generator

- • wavetable

4- flow of control information

switch

[7\ - grain shaper

P+d= signal mixer

flow of sound output

Figure 8.1.2.: Granular Synthesis with Distributed Wavetable.

The system reliably performs real-time granulation. Due to the lack of a

long sample storage facility, however, the experiment was limited to

granular synthesis using a short sine wave and a similarly brief extent of

"synthetic" sounds. From this experiment, I ascertained that it is possible

189

to implement nine voices of real-time granular synthesis over the 160

Transputer Network with some external sample storage.

190

8.2. Revised Implementation -using 256k external memory-

In the configuration described above, due to the lack of on-board

local memory, some of the transputers had to be assigned solely for the

purposes of sound sample storage. This has not proved particularly

efficient, since only 800 samples, in 32-bit floating point format, can be

accommodated within a transputer's on-chip memory; 4k-byte. This is

also against the original rationale of the network architecture, whereby a

large memory storage should not be required for real-time systems. It

became clear, however, that the minimum memory requirements for a

sampled sound granulation are far greater than that available on the core

network. The architecture of the main network, nevertheless, makes

provisions for the attachment of extra processors and memory on

peripheral links; a possibility wisely anticipated at the design stage.

For the revised configuration for asynchronous granular synthesis, a

series of transputer cards consisting of a T800 transputer [20 MHz

clocked] with 256k bytes of external memory, are connected to the

network at the bottom of the tree structure through extension cables. The

manufacturer of the transputer recommends that the maximum length of

such cable should be less than 0.5 metre and it should be twisted (INMOS

1987). Because of the hardware architecture of the 160 Transputer

Network, however, the extension cable had to be longer than the limit.

This unfortunately resulted in occasional failures of signal transmission.

The problem was eventually solved by shielding the cables with a metallic

cover and a grounded copper board.

191

Currently there are nine such external boards that allow granular synthesis

with nine voices. Each voice is distributed between the left and right

channels in a fixed ratio, creating a spread of sound images for the final

two-channel stereo output. In this configuration, the grain parameters;

offset, grain speed, grain speed range [randomise factor], grain size, grain

range [randomise factor] and time stretch ratio are controlled from a PC

keyboard: a pair of keys are assigned to each parameter. Whenever a

key interaction is made, a set of fresh parameters are sent to the tree top

of the network .

ir&naomisel
factor

g r a i n body s i z e
chO

ch l

ch2

ch3

ch4

ch5

ch6

chl

ch8

\randomisei
factor

d e l a y (i n t e r v a l)

time
stretcii
factor

c a l c u l a t e d f r o m g r a i n speed

o f f s e t
i n i t i a l v a l u e

0 time

Figure 8.2.1.: Timing Chart of the Sound Granulation.

192

This top-down approach allows each voice to granulate the sound

individually. In addition, each voice has its own random number generator

with a different seed. These measures assure genuine "asynchronous"

granulation that is not compromised by the subsequent processes of

accumulating sound data, which uses the same bottom-up method as

described in the case of the additive synthesis model. This approach

ensures a much richer depth of granulation in subjective terms than other

methods that frequently economise on computation by using a single

random number generator for all voices.

The current program is based on a 20 msec [or 640 samples in 32 kHz

sampling rate] grain that consists of a 160 sample-long rising ramp, a 320

sample-long body and a 160 sample-long decaying ramp. As in the core

of the original implementation, due to the on-chip memory size limitation

[4k bytes], the length of the ramp is fixed. The length of the grain body is

variable from 0 to 3,200 sample-long, and this facilitates a variety of body-

ramp ratios that controls the frequency profile of the side-bands. In the

case of Truax's system (Truax 1988), the size of the grain ramp is also

variable. In this configuration, the size of the grain ramp is fixed, avoiding

the re-calculation of the ramp, but this limitation is compensated for by

making the grain-body size variable, since the ramp-body ratio dictates the

frequency bandwidth of the granulated sound, regardless of the size of the

ramp, as shown in Chapter 7.

At a preliminary stage, I employed shorter grain models; 20, 40, 80, 160

and 320 samples long. The grain speed can be changed from 0.1 to 50

gps per voice. The maximum available grain density is determined by the

193

grain size; for instance, the maximum grain speed for the 160 sample-long

model is 100, providing that the time interval between the grains is kept at

zero.

Using Gabor's "sliding window" technique (Gabor 1946), the sound

granulation program becomes capable of time stretch/compress

applications, by means of a technique derived from wave-table synthesis;

address generation. In traditional sound granulation [without time

stretch/compress factor], a duration of sound [equivalent length to a grain]

is read from the sound storage, then the next reading point is moved the

length of a grain. In the case of the sound stretch/compress, the next

reading point of the source sound is not always moved the length of a

grain. In this implementation, the movement of the window could be

varied from zero [that is repeating a window, thus producing sound

freezing; infinite stretching] to double the grain size [2x time compression].

The specification of the program is shown in the Table below.

Number of Voices 9

Grain Size 320-3200 sample-long

Ramp Size 160 sample-long (fixed)

Grain Density 0.01-50 gps per voice

Time-stretch Ratio 0.5 - infinity (freeze)

Memory Size (each voice) 256k bytes (128k samples)

Table 8.2.1.: Specification of the Real-Time
Sound Granulation Implementation.

194

from Top Level

from
H O S T

to Top Level

F r n L random number generator
with signal buffer

^ p address generator

wavetable on an extern
transputer with 255k-byt

_ / ~ \ . grain shaper

+<t|= signal mixer

al - - signal
te memory

router

flow of source sound 4- flow of sound output

Figure 8.2.2.: Sound Granulation with Long Sound Storage (part).

195

For a granulation of speech, it is often necessary to use grain-models

longer than 320 samples [or 10 msec] to avoid the artefacts of the ramp.

In the case of natural musical sounds, however, subjective tests have

shown that a 320 sample-long model may often prove acceptable at the

upper boundary and in many situations much shorter grains can produce

interesting transformations, see Chapter 7 for details.

Since a change of the parameters can be made only at the end of the

grain, the reaction of the system would be slow at a low grain speed, and

the change may cause a deadlock, because of the difference between the

size of data in the PC's keyboard buffer and the speed of data processed

that is beyond the control of the TDS; the operation system for the host

transputer and a host PC. At a fast speed, such as 20 gps or more [an

interval of 50 msec or less], the change of the parameter is almost in real­

time.

For additive synthesis programs, the network can handle an audio data

flow at a 32 kHz sampling rate with a control data flow up to 500 bytes-

per-second. In the case of the granular synthesis programs, a deadlock of

the type described above has not occurred, since the control data traffic is

not so high as in the case of the additive synthesis and a constant stream

of sound output is maintained.

196

8.3. Conclusion

A real-time granular synthesis and a real-time sound granulation

were implemented on to a part of the 160 Transputer Network. In the

granular synthesis configuration, some transputers had to be assigned

solely for the purposes of memory storage, and this arrangement resulted

in the use of fixed short sound samples. This was actually against the

original concepts of the network and thus not optimal. By using external

transputers with extra memory, the sound granulation application allows

more flexible applications, such as time-shifting and time-stretching of

much longer sampled sounds.

The system for sound granulation requires a large amount of sample

storage. This, however, does not necessarily have to be an independent

memory block for each voice, unless the system is used for sound

morphing. Therefore, the ideal shape of a network for sound granulation

would be a tree structured network such that the bottom layer is

connected to a large block of memory through a high-speed bus. For real­

time sound processing, the bus must additionally be connected to an ADC

or a digital sound interface.

197

Chapter 9. Discussion

9 . 1 . Efficiency of the Applications

In the optimised configuration for tlie nine-voice polyphony with a

dynamic note allocation at a single-sampling-rate, 72 oscillators are

allocated to each note: there is a significant element of inefficiency in their

deployment. As noted earlier, due to the relationship between the Nyquist

frequency and the harmonic contents, some of the higher order harmonics

have to be muted.

For example, in the case of "concert" A [440 Hz], its 37th harmonic

[16,280 Hz] is above the Nyquist rate [16,000 Hz] of the 32 kHz sample

frequency. This means that half of the allocated oscillators are kept

muted. Real efficiency of the configurations should be measured by an

average of "active" harmonics per key, by applying all the available

oscillators per voice to every 88 keys in an acoustic piano range, instead

of the number of oscillators allocated to a voice.

Sampling Allocation Available Average
Program Type Rate(s) Voices of Oscillators Active

Oscillators in Harmonics
[kHz] per Voice Total per Key

Fixed Allocation [1] 32 81 8 648 6.136
Fixed Allocation [2] 32 88 16, 12, 8, 4 752 8.341

Dynamic Allocation [1] 32 27 24 648 16.06
Dynamic Allocation [2] 32 13 48 624 26.08
Dynamic Allocation [3] 32 9 72 648 33.66

Multi-Rate Fixed 8, 16, 32 88 24, 16 1296 13.61
Multi-Rate Dynamic [1] 10.6, 32 22 36 816 21.46
Multi-Rate Dynamic [2] 4, 8, 32 15 80 1200 32.71

N.B. The program in italic has not been implemented.

Table 9.1.1.: Efficiency of the Applications.

198

Another matter concern Is the usage of processors. In the case of the

program for multi-rate 13-dynamic-voice synthesis, several processors are

unused, due to the underlying network architecture: 3n grouping [where n

= 1,2, 3...]. Since a T800 transputer has four communication links, the

network that is formed is the "1-3" revised ternary-tree structure [see

Figure 2.4.1.]. This leads to 3n division-based configurations, due to the

software's controlling and accumulation purposes. If the processor had

been designed with five links rather than four, the network could have

been constructed using a "1-4" revised quadruped-tree structure, resulting

in a 2n [binary-tree] or 4n division-based configuration which would be

altogether more flexible than the 3n approach adopted on the 160

Transputer Network.

In the multi-rate applications, a part of the network has to be assigned as

two filter banks to boost the production of sounds at the lower sampling

rates to match with that of the desired output. The number of processors

assigned for the filter banks has to be 4n: four is the number of

transputers on a leaf [the smallest dividable section] of the network. The

constraints of real-time synthesis restrict the permitted length of the

interpolation filters. Also, a transputer has finite capabilities, thus a

number of them are required for a single filter. This leads to some degree

of compromise, involving a FIR filter of reasonable length with an optimal

distribution of it on a part of the network.

199

9.2. Provisions for New Processors

9.2.1. T9000

Details of the successor to the T800, the T9000, were announced

in 1991 (INMOS 1991), but production difficulties significantly delayed the

shipment of commercial quantities. The figures on the data-sheet show

that the T9000 [50 MHz clocked] has about ten times the performance of

the T800 [20 MHz] and 16k bytes of on-chip memory [4k bytes on the

T800], representing a significant improvement on the existing generation

of transputer products in both capacity and performance (May, et al.

1992).

Our research group obtained a few of the processors in a prototype form,

de-rated to 20 MHz, and tested them in a PC-based environment. It was,

however, difficult to make a straight forward comparison between the

T800 and the T9000, since the T9000 was still not fully functional at the

time of writing and the language used for these tests was parallel C, which

creates larger and potentially less efficient codes than Occam used on

T800S.

There are also some significant differences between the transputers; the

T9000 has a 64-bit FPU [32-bit FPU on T800], a calculation power of 200

MIPS [whereas the T800 performs 20 MIPS peak at 20 MHz clock] and

the four links of the T9000 provide a maximum bi-directional data

bandwidth of 70 Mbytes per second, whereas the four links of the T800

are restricted to 11.2 Mbytes per second. When these performance data

were fully implemented, the T9000 would be able to execute a sound

200

synthesis task, such as a bank of recursive sine oscillators, at a

significantly higher sampling rate and in higher precision than its

predecessors.

Also, the 16k bytes on-chip memory is sufficient for use as local data

storage for multi-segmented amplitude envelopes. For the granulation of

sampled sound, a number voices may be implemented on a single T9000

providing each can share the contents of an external memory.

In late 1996, SGS-Thomson [the parent company of INMOS] announced

that the production of T9000 would cease in 1997, thence, the company

would focus on to its own ST020 product family rather than the Transputer

family acquired with the company; INMOS. At this time, the fastest T9000

model available is still 25 MHz clocked, half of the figure announced in

1991, resulting in less than 100 MIPS. The T9000 equivalent in the

ST020 family is ST020-450; a 32-bit processor [32 MIPS at 40 MHz] with

four communication links at 20 Mbit/s which is supported by ANSI C

compiler (Beckett 1996).

9.2.2. DSP 56300

Motorola's latest DSP product, the DSP 56300 family, was

announced in 1995. The first family member of the 24-bit DSPs, DSP

56301, provides 80 MIPS at 80 MHz clock rate (Motorola 1995). Its

performance is eight times faster than its predecessor, DSP 56000, and is

thus comparable to a T9000 [200 MIPS at 50 MHz]. A 100 MIPS at 100

2 0 1

MHz clock version is expected in 1997 (Motorola 1996). The DSP chip

has two ESSI and one SCI interfaces for communication with external

processes, useful for communication with non-family devices.

In case of INMOS's Transputer family, however, the high speed links are

primarily designed for communicating with other transputers, hence

connections to devices other than members of the Transputer family

require special signal converters, such as C011. This means that the true

potential of transputers is realised when a number of them are

interconnected to create a mesh array or a tree structure, thus creating a

self-contained massively parallel distributed architecture.

9.2.3. ADSP-2106X SHARC

Another example of the modern processors is Analog Devices'

SHARC [Super-Harvard ARchitecture Computer] family. ADSP-21060 is a

32-bit processor that is capable of 40 MIPS and 120 MFLOPS [peak] at 40

MHz clock with ten DMA channels supported by a DMA controller that

allows ten simultaneous channels communication without processor

overhead, separate on-chip buses, and six point-to-point links and two

serial ports for connection with other processors (Analog Devices 1996).

Its dual ported 4-megabit SRAM is the largest in size on-chip memory of

any processor (BittWare 1997). The processor is as powerful as the DSP

56300 family. There is, however, a significant feature to note: the high­

speed DMA channels [240 Mbytes/s] also allow memory-access intensive

operations, such as FFT.

202

9.3. Shape of Network for Sound Synthesis

In arguing the case for parallel architectures based on the

transputers, it has to be acknowledged that a number of high-speed DSP

chips in a unitary fabrication are now available. For many tasks, however,

a single high-speed DSP chip is not necessarily superior in terms of

performance to a parallel and distributed system based on a number of

less powerful and financially attractive processors, especially if the latter

have high-speed communication links. The network structure, basically,

should be a tree or hyper-cube, since such arrangements are good for

distributing control information and accumulating sound output. A tree or

a cube, however, is not necessarily homogeneous in calculation power

and memory size.

When a DSP chip has four communication links and is configured as a

three-to-one signal mixer, a minimum requirement for real-time operation

is the capacity to fetch a data packet from each channel, to sum them up

and to output the new data packet within a sampling period that requires

less than 10 MIPS at standard audio sampling rates; 32 kHz, 44.1 kHz or

48 kHz. This gives weight to the argument that tasks demanding

environments such a multi-processor network, as an audio processor,

could be more efficiently realised by a hybrid network consisting of high­

speed processors with signal routers, rather than a homogeneous

configuration of high-speed processors.

The idea of an "hybrid" network also can be applied to memory allocation,

such that the tasks associated with sound synthesis, such as amplitude

203

envelopes, can have larger local cache memories than those associated

with the processes of data accumulation and distribution, such as routers

and mixers.

For example, because of the design restrictions on the networked

transputers, just 4k-byte of on-chip memory each, and the general

architecture of the network, only simple amplitude envelopes can be

applied to the additive synthesis methods described above. If the

processors at the bottom of the tree were to be replaced with ones offering

more calculation power and memory, this combination may be able to

produce more sophisticated amplitude envelopes. In other words, length

and strength of tree branches and nodes are not necessarily

homogeneous.

When the 160 Transputer Network was designed, the memory access

speed was not so fast, hence the larger on-board memory meant a

heavier load to the CPU. Naturally, the original rationale behind the

design of the network was that a real-time distributed system should not

require a large amount of on-board memory for intermediate data storage.

These days, most of the modern DSP chips have a fast memory access

facility, such as DMA channels. Besides, thanks to technical advances in

the fabrication of semiconductors, the price of high-performance memory

became lower and then the size became larger. Therefore, large on-chip

or on-board memory may no longer become an obstacle to building a

distributed system.

204

Chapter 10. Conclusion

The potential application of the 160 Transputer Network as a

dedicated real-time audio processor was confirmed, in particular, as an

additive synthesis engine. The network was also tested as a resource for

other methodologies such as granular synthesis and sound granulation.

The processing power of the network can only be fully extracted with an

optimal software configuration, especially in terms of load balancing and

smooth communication protocols.

The original rationale behind the network architecture was that a real-time

distributed system should not require a large amount of on-board memory

for intermediate data storage. At the time of building the network, this was

acceptable, since the access speed to ancillary memory space would not

have satisfied the conditions for real-time operation, certainly at a modern

audio quality like CD [44.1 kHz sampling rate] or DAT [48 kHz sampling

rate]. This unique feature of the design, the absence of any external

memory local to the networked transputers, brought some restrictions for

programming; such as no memory intensive applications like data storage

for wavetables and amplitude envelopes. It now has to be acknowledged

that due to rapid innovations in both processors and memory-chips, a

large quantity of high-speed memory on a processor and that local to a

node have become the norm and are not a significant cause of delay for

system design.

The capability of the fifteen-year-old MIDI standard, as a keyboard driven

controller for real-time sound synthesis, was examined by practical testing.

It was confirmed that as an event oriented standard, there is still some

205

spare capacity to transmit a multiple-keyboard performance. This

suggests that it may not be necessary to have an alternative to the MIDI

standard in near future, as some ad-hoc improvisations, such as a multiple

MIDI cable application supported by a high-power PC, are currently

satisfactory to most musicians.

The network architecture, the modified ternary tree, provides short path

lengths between the arbitrary nodes, also between the siblings at the

same level, and the same path length between the tree-top and each leaf

of the tree leads to no phase delay on the additive synthesis programs.

The extra path at the same level serves to route the information avoiding

the hub, "hot spots", that othenA/ise interrupt the functions of the network

as a whole. However, this research also suggests that the network

structure for sound synthesis is not necessarily homogeneous, in terms of

calculation power and memory size, since a large on-chip or on-board

memory is not an obstacle for real-time processing, thanks to high-speed

memory access technology.

The optimised methods for additive synthesis, by resource management

and by multi-rate approach, are effective by a significant order of

magnitude in enhancing the quality of tumbrel detail. The real-time

implementations of the methods on to the network, however, brought

limited success, due to lack of memory for amplitude envelopes; each

networked transputer has a 4k-byte on-chip memory without any external

memory. The multi-sample-rate optimisation has also been shown to be

effective for accelerating the processes of dynamic tone generation. For

the real-time implementations of the multi-rate technique on to the

206

network, however, the up-sampling filters may introduce some phase

delay and other distortions, due to hardware limitations in memory size for

filter coefficients and in calculation power.

In the case of the implementation of granular synthesis and sound

granulation in real-time, despite the conceptual simplicity, the signal

processing requirements were tough. Because of the nature of the

synthesis methods, composers' demands for real-time implementation is

enormously high. Only a few fully developed real-time models are now

available wortd-wide, including this application on the 160 Transputer

Network. The implementation with adequate control proved the viability of

parallel and distributed computing for the applications, especially in the

independence of each voice implemented in parallel that provides extra

depth of the sound. The sound granulation on the system is, however,

restricted to short sampled sounds or simple synthetic sounds, due to lack

of sample storage, in terms of memories and a high speed hard disc.

The T800 transputers used for these configurations are no longer ranked

as top-of-the-range in terms of performance. Besides, the Transputer

family itself has disappeared from the production lines, after the

manufacturer lost its commercial independence. The long term

significance of these investigations, however, lies in the knowledge

acquired in implementing concepts of parallel audio processing in a

practical context. The algorithms with which the architectures were

developed can also be transplanted onto the various ranges of higher

performance processors now available for parallel and distributed

computing.

207

References
Analog Devices, Inc. 1996. ADSP-2J062/ADSP-2J060. Norwood, Massachusetts:

Analog Devices, Inc.

Andrenacci, P., E. Favreau, N. Larosaa, A. Prestigiacomo, C. Rosati, and S. Sapir. 1992.

"MARS: RT20M/EDrr20 Development tools and graphical user interface for a

sound generation board." In Proceedings of the 1992 International Computer Music

Conference. San Francisco, California: International Computer Music Association,

pp. 340-343.

Aspnas, M. , R. J. R. Back, and T-E. Malen. 1990. "Hathi-2 Multiprocessor System."

Microprocessors and Microsystems. 14(7): 457-466.

Asta, v . , A. Chauveau, G. di Giuhno, and J. Kott. 1980. "The 4X: a real-time digital

synthesis system." Automazione e Strumenlazione. 28(2): 119-133.

Audsley, G. A. 1905. Tlie Art of Organ-Building. London: Marston & Co. Ltd.

Bailey, N. J., I . Bowler, A. Purvis, and P. D. Manning. 1990. "An Highly Parallel

Architecture for Real-time Music Synthesis and Digital Signal Processing

Application." In Proceedings of the J 990 International Computer Music Conference.

San Francisco, California: International Computer Music Association, pp. 169-171.

Bailey, N. J. 1992. On the Synthesis & Processing of High Quality: Audio Signals by

Parallel Computers. PhD Thesis, University of Durham.

Bartoo, T., D. Murphy, R. Ovans, and B. Truax. 1994. "Granulation and Time-Shifting of

Sampled Sound in Real-Time with a Quad DSP Audio Computer System." In

Proceedings of the 1994 International Computer Music Conference (Arhus,

DENMARK). San Francisco, California: International Computer Music Association,

pp. 335-337.

Bastiaans, M . J. 1980. "Gabor's Expansion of a Signal into Gaussian Elementary

Signals." In Proceedings of the IEEE. 68 (4): 538-539.

Bastiaans, M . J. 1985. "On the Sliding-Window Representation in Digital Signal

Processing." IEEE Transactions on Acoustic, Speech, and Signal Processing. ASSP-

33(4): 868-873.

208

Beckett, D. 1996. "SGS-Thomson ST020-450 Transputer Datasheet." On

URL=http://www.hensa.ac.uk/parallel/transputer/documentation/st020-

450/datasheets/index .html.

BittWare. 1997. "SHARC ADSP-21060/62." On

URL=http://www.bittware.com/products/tech/sharc.htm.

Boittiaux, B., G. Goncalves, and M. P. Haye. 1992. "A Transputer Network for a Device

Simulator." Microprocessing and Microprogramming. 35: 127-132.

Bowler, I . , P. D. Manning, A. Purvis, and N. J. Bailey. 1989. "Additive Sound Synthesis

on a Multi-transputer Network." In Proceedings of the 1989 International Computer

Music Conference. San Francisco, California: International Computer Music

Association.

Carson, J. 1922. "Notes on the theory of modulation." In Proceesings of the Institute of

Radio Engineers 10: 57-64.

Chowning, J. 1973. "The synthesis of complex audio spectra by means of frequency

modulation." Journal of the Audio Engineering Societ}'. 21(7): 526-534.

Clarke, J. 1990. "An FOF synthesis tutorial." In B. Vercoe (ed.) Csound: A Manual for

the Audio Processing System. Cambridge, Massachusetts: MIT Media Laboratory.

Cordy, W. J. and W. Waite. 1980. Software Manual for the Elementaiy Functions.

Englewood Cliff, N.J.: Prentice-Hall.

Dolson, M . 1986. "The Phase Vocoder: A Tutorial." Computer Music Journal. 10(4): 14-

27.

Dutilleux, H., A. Grossmann, and R. Kronland-Martinet. 1988. "Applications of the

wavelet transform to the analysis, transformation, and synthesis of musical sound."

Presented at the 85th Convention of the Audio Engineering Society. New York:

Audio Engineering Society.

Eckel, G., M . R. Iturbide, and B. Becker. 1995. "The development of GiST, a Granular

Synthesis Toolkit Based on an Extension of the FOF Generator." In Proceedings of

the 1995 International Computer Music Conference. San Francisco, California:

Internationa] Computer Music Assocciation. pp. 296-302.

209

Fletcher, H., E. Blackham, and R. Stratton. 1962. "Quality of piano tones." Journal of the

Acoustical Society of America. 34(6): 749-761.

Gabor, D. 1946. "Theory of Communication." Journal of Institution of Electrical

Engineers. 17(3): 429-457.

Gabor, D. 1947. "Acoustical Quanta and the Theory of Hearing." Nature 159(4044): 591-

594.

Gordon, J. W., and J. O. Smith. 1985. "A Sine Generation Algorithm for VLSI

Applications." In Proceedings of the 1985 International Computer Music

Conference. San Francisco, California: International Computer Music Association,

pp. 165-168

Green, D. M . 1971. "Temporal Auditory Acuity." Psychological Review. 78(6): 540-551.

Hart, J. F., E. W. Cheney, C. L. Lawson, H. J. Maehly, C. K. Mesztenyi, J. R. Rice, H. C.

Thacher, and C. Witzgall. 1968. Computer Approximations. Wiley: New York.

von Helmholtz, H. L. F. 1863. On the Sensations of Tone as a Physiological Basis for the

Theoiy of Music. (Translation of the 1877 Edition) Dover, 1954.

INMOS Limited. 1987. IMS T800 Transputer: product data. Bristol: INMOS Limited.

INMOS Limited. 1989. The Transputer Databook. Trowbridge UK: Redwood Burn Ltd.

INMOS Limited. 1991. The T9000 Transputer Products Overview Manual. INMOS

Limited.

International MIDI Association. 1983. MIDI Musical Instrument Digital Interface

Specification I.O. North Hollywood, California: International MIDI Association.

Itagaki, T., A. Purvis, and P. D. Manning. 1994. "Real-time Synthesis on a Multi­

processor Network." In Proceedings of the 1994 International Computer Music

Conference. San Francisco, California: International Computer Music Association,

pp.382-385.

Itagaki, T., D. K. Phillips, P. D. Manning, and A. Purvis. 1995. "An Implementation of

Optimised Methods for Real-time Sound Synthesis on a Multi-processor Network."

In Book of Abstracts of Parallel Computing 95. Gent, Belgium, p. 100.

210

Itagaki, T., P. D. Manning, and A. Purvis. 1996. "Real-time Granular Synthesis on a

Distributed Multi-processor Platform." In Proceedings of the 1996 International

Computer Music Conference. San Francisco, California: International Computer

Music Association, pp. 287-288.

Itagaki, T., S. Johnson, P. D. Manning, D. J. E. Nunn, D. K. Phillips, A. Purvis, and J. R.

Spanier. 1996. "Durham Music Technology: Activity Report." In Proceedings of the

1996 International Computer Music Conference (Hong Kong). San Francisco,

California: International Computer Music Association, pp 126-128.

Jansen, C. 1991. "Sine Circuitu." In Proceedings of the 1991 International Computer

Music Conference. San Francisco, California: International Computer Music

Association, pp. 222-225.

Kleczkowski, P. 1989. "Group Additive Synthesis." Computer Music Journal. 13(1):12-

20.

Lee, A. S. C. 1995. "CSOUND Granular Synthesis Unit Generator." In Proceedings of

the 1995 International Computer Music Conference. San Francisco, California:

International Computer Music Association, pp. 230-231.

Lindemann, E., M . Starkuer, and F. Dechelle. 1990. "The IRCAM Musical Workstation:

Hardware Overview and Signal Processing Feature." In Proceedings of the 1990

International Computer Music Conference. San Francisco, California: International

Computer Music Association, pp. 132-135.

Lindemann, E., M . Puckette, E. Viara, and M. Starkier. 1990. "The IRCAM Signal

Processing Workstation - An Environment for Research in Real-Time Musical Signal

Processing Performance." Microprocessing and Microprogramming. 30: 167-174.

Lippe, C. 1993. "A Musical Application of Real-time Granular Sampling Using the

IRCAM Signal Processing Workstation." In Proceedings of the 1993 International

Computer Music Conference. San Francisco, California: International Computer

Music Association, pp. 190-193.

MacKenzie, C. L. 1985. "Structural Constraints on Timing in Human Finger

Movements." In Goodman, D., R. B. Wilberg, and I . M. Franks (eds.) Advances in

Psychology: Differing Perspectives in Motor Learning, Memory and Control. North-

Holland: Elsevier Science Publications B.V.

211

Maehle, E., and W. Obeloer. 1992. "DELTA-T: A User-Transparent Software-

Monitoring Tool for Multi-Transputer Systems." Microprocessing and

Microprogramming. 35: 245-252.

Mathews, M . V. 1969. The Technology of Computer Music. Cambridge, Massachusetts:

MIT Press.

May, D., R. Shepherd, and P. Thompson. 1992. "The T9000 Transputer." On

URL=http://www.hensa.ac.uk/parallel/vendors/inmos/T9000/T9000.ps.Z.

McMillen, K. 1994. "ZIPI: Origins and Motives." Computer Music Journal. 18(4): 47-51

Moore, F. R. 1977. "Table Lookup Noise for Sinusoidal Digital Oscillators." Computer

Music Journal. 1(2): 26-39.

Moore, F. R. 1988. "The Dysfunctions of M I D I " Computer Music Journal. 12(1): 19-28.

Moorer, I . A. 1977. "Signal processing aspects of computer music." Proceedings of the

IEEE. 65(8): 1 108-1137.

Motorola. 1995. "DSP 56301 Data Sheet." On

URL=http://www.mot.com/SPS/DSP/home/eng/tec/56301ds.html.

Motorola. 1996. "DSP 56300 Family Overview." On

URL=http://www.mot.com/SPS/DSP/home/prd/owr/DSP56300.html.

Norris, M . 1997. "SoundMaker Plug-Ins." Computer Music Journal. 21(1): 43-46.

Norskog, L. 1993. "SOX - SOund eXchange." On URL=http://www.spies.com/Sox/.

Nyquist, H. 1928. "Certain topics in telegraph transmission theory." Transactions of the

American Institute of Electrical Engineers. April.

Phillips, D. K., A. Purvis, and S. Johnson. 1994. "A Multirate Optimisation for Real-

Time Additive Synthesis." In Proceedings of the 1994 International Computer Music

Conference. San Francisco, California: International Computer Music Association,

pp. 364-367.

Phillips, D. K„ A. Purvis, and S. Johnson. 1996. "Multirate Additive Synthesis." In

Proceedings of the 1996 International Computer Music Conference. San Francisco,

California: International Computer Music Association, pp. 496-499.

212

Phillips, D. K. 1997. Algorithms and architectures for the Multirate Additive Synthesis of

musical tones. PhD Thesis, University of Durham.

de Poli, G., and A. Piccialli. 1988. "Forme d'onda per la sintesi granulare sincronica." In

the Proceesings of VII Colloquio de Informatica Musicale. Rome: Associazione

Musica Verticale. pp. 70-75.

Puckette, M . 1985. A real-time music performance system. Cambridge, Massachusetts:

MIT Experimental Music Studio.

Puckette, M . 1991. "FTS: A Real-Time Monitor for Multiprocessor Music Synthesis."

Computer Music Journal. 15(3): 58-67.

Purvis, A., R. Berry, and P. D. Manning, 1988. "A Multi-transputer Based Audio

Computer with MIDI and Analogue Interface." Presented at Euromicro 1988, Ziirich,

Switzerland. Reprinted in Microprocessing and Microcomputing 25 (1989): 271-276.

Rasch, R. A. 1978. "The Perception of Simultaneous Notes such as in Polyphonic

Music." Acustica. 40: 21-33.

Ricci, A. 1997. "SoundMaker." On URL=ftp://ftp.a]pcom,it/software/mac/Ricci.

Roads, C. 1978. "Automated Granular Synthesis of Sound." Computer Music Journal

2(2):61-62.

Roads, C. 1991. "Asynchronous Granular Synthesis." In de Poli, G., A. Picciali., and

Roads, C. (eds.) Representations of Musical Signals. London: MIT Press, pp. 143-

186.

Roads, C. 1996. Computer Music Tutorial. Cambridge, Massachusetts: MIT Press. ISBN:

0-262-68082-3.

Rodet, X. 1984. "Time domain format-wave-function synthesis." Computer Music

Journal. 8(3):9-14.

Rodet, X., Y. Potard, and J. B. Barriere. 1984. "The CHANT Project: From the Synhesis

of the Singing Voice to Synthesis in General." In Road. C. (ed.) 1989. The Music

Machine. London, England: MIT Press, pp. 449-465.

213

Rodet, X., and Ph. Depalle. 1992. " A new additive synthesis method using inverse

Fourier transform and spectral envelopes." In Proceedings of the 1992 International

Computer Music Conference. San Francisco, California: International Computer

Music Association, pp. 410-411.

Sandell, G. J. 1994. "SHARC Timbre Database." On

URL=ftp://ftp.ep.susx.ac.uk/pub/sandell/README.html

Serra, X. 1994. "Sound hybridization based on a deterministic plus stochastic

decomposition model." In Proceedings of the 1994 International Computer Music

Conference. San Francisco, California: International Computer Music Association,

pp. 348-351.

Spanier, J. R. (1998, in preparation). Algorithms and VLSI Architectures for Parametric

Additive Synthesis. PhD Thesis, University of Durham.

de Tintis, R. 1995. "GRAINS: a software for real-time granular synthesis and sampling

running on the IRIS-MARS workstation." In Proceedings of XI CIM Colloquio di

Informatica Musicale. Bologna, Italy: Associazione di Informatica Musicale Italiana.

pp. 221-223.

Todoroff, T. 1995. "Real-Time Granular Morphining and Spatialisation of Sound with

Gestural Control within MAX/FTS." In Proceedings of the 1995 International

Computer Music Conference. San Francisco, California: International Computer

Music Association, pp. 315-318.

Truax, B. 1988. "Real-Time Granular Synthesis with a Digital Signal Processor."

Computer Music Journal. 12(2): 14-26.

Truax, B. 1994. "Discovering Inner Complexity: Time Shifting and Transposition with a

Real-time Granulation Technique." Computer Music Journal 18(2): 38-48.

de Vel, O. Y., and P. Thomas. 1990. "Multitransputer Architecture for the Low-level

Characterization of Speech Spectrograms." Microprocessors and Microsystems.

14(5): 267-275.

Vercoe, B. 1986. CSOUND Reference Manual. London: MIT Press.

Voider, J.E. 1959. "The CORDIC trigonometric computing technique." IRE Transactions

of Electronic Computing. 8(3): 330-334.

214

Wawrzynek, J., and T. von Eicken. 1990. "VLSI PARALLEL PROCESSING FOR

MUSICAL SOUND SYNTHESIS." In Proceedings of the 1990 International

Computer Music Conference. San Francisco, California: International Computer

Music Association, pp. 136-139.

Xenakis, I . 1971. Formalized Music. Bloomington: Indiana University Press. ISBN: 0-25-

4332378-9.

215

Bibliography
Adams, R., and T. Kown. 1994. "A Stereo Asynchronous Digital Sample-Rate Converter

for Digital Audio." IEEE Journal of Solid-State Circuits. 29(4): 481-488.

Anderson, A. J. 1992. "Selection criteria in the development of a multiple processor

based DSP system." Journal of Microcomputer Applications 15: 327-346.

Anderson, D. P., and R. Kuivila, R. 1986. "A Model of Real-Time Computation for

Computer Music." In Proceedings of the 1986 ICMC {The Hague). San Francisco,

CA:ICMA. pp. 35-41.

Anderson, K. H. 1977. "A Digital Sound Synthesizer Keyboard." Computer Music

Journal. 2(3): 16-23.

Armani, F., L. Bizzarri, E. Favreau, and A. Paladin. 1992. "MARS - DSP environment

and applications." In Proceedings of the 1992 ICMC {San Jose, CA). San Francisco,

CA: ICMA. pp. 344-347.

Armani, F., A. Paladin, and C. Rosati, 1994. "MARS Applications Using APPLI20

Development Tools: a Case of Study." In Proceedings of the 1994 ICMC (Arhus).

San Francisco, CA: ICMA. pp.230-235.

Bailey, N., and A. Purvis. 1989. "An Implementation of CSOUND on the Transputer." In

Proceedings of the International Conference on the Applications of Transputers

1989. Liverpool, UK.

Bailey, N., I . Bowler, A. Purvis, and P. Manning. 1990. "Concurrent CSOUND: Parallel

Execution for High Speed Direct Synthesis." In Proceedings of the 1990 ICMC

(Glasgow)- San Francisco, CA: ICMA. pp. 46-49.

Bailey, N., A. Purvis, P. D. Manning, and I . Bowler. 1991. "Some Observations on

Hierarchical, Mulliple-Instruction-Multiple-Data Computers." In Proceedings of

EuroMicro 1991. Vienna, AUSTRL^.

Bartoo, T., and B. Truax. 1992. "Electroacoustic composer's workstation project." In

Proceedings of the 1992 ICMC {San Jose, California). San Francisco, CA: ICMA.

p.446.

216

Bate, J. A. 1990. "UNISON - A Real-Time Interactive System for Digital Sound

Synthesis." In Proceedings of the 1990ICMC (Glasgow). San Francisco, CA: ICMA.

pp. 172-174.

Bate. J. A. 1992. "MAX+Unison- Interactive control of a digital signal processor." In

Proceedings of the 1991 ICMC (San Jose, CA). San Francisco, CA: ICMA. pp. 356-

357.

Behrens, U., L. Hagge, and W. O. Vogel. 1994. "The ZEUS Eventbuilder: Experience

with a Distributed Real-time Parallel Transputer System." IEEE Transactions on

Nuclear Science. 41(1): 239-245.

Bekker, H., and M . Renardus. 1990. "Design of a Transputer Network for Searching

Neighbours in M.D. Simulations." Microprocessing and Microprogramming. 30:

159-166.

Bischoff, J., R. Gold, and I . Horton. 1978. "Music for an Interactive Network of

Microcomputers." Computer Music Journal. 2(3): 24-29.

Bosi, M . 1990. "The Sound Accelerator as a Real-Time DSP Environment:

Encoding/Decoding Audio Signals." In Proceedings of the 1990 ICMC (Glasgow).

San Francisco, CA: ICMA. pp. 175-177.

Bowcott, P. 1990. "High Level Control of Granular Synthesis using the concepts of

Inheritance and Social Interaction." In Proceedings of the 1990 ICMC (Glasgow).

San Francisco, CA: ICMA. pp. 50-52.

Bowler, I . , P. Manning, A. Purvis, and N. Bailey. 1989. "A Transputer-Based Additive

Synthesis Implementation." In Proceedings of the 1989 ICMC (Columbus, Ohio). San

Francisco, CA: ICMA.

Bowler, I . , P. Manning, A. Purvis, and N. Bailey. 1990. "New Techniques for a Real-

Time Phase Vocoder." In Proceedings of the 1990 ICMC (Glasgow). San Francisco,

CA: ICMA. pp. 178-180.

Bowler, I . , P. Manning, A. Purvis, and N. Bailey. 1990. "On Mapping N Articulation

onto M Synthesiser-Control Parameters." In Proceedings of the 1990 ICMC

(Glasgow). San Francisco, CA: ICMA. pp. 181-184.

217

Bregman, A. S., and J. Campbell. 1971. "Primary Auditory Stream Segregation and

Perception of Order in Rapid Sequence of Tones." Journal of Experimental

Psychology. 89(2): 244-299.

Bresin, R., and A. Vedovetto. 1994. "Neural Network for Musical Tones Compression,

Control, and Synthesis." In Proceedings of the 1994 ICMC {Arhus). San Francisco,

CA:ICMA. pp. 368-371.

Briimmer, L. 1994. "Using a Digital Synthesis Language in Composition." Computer

Music Journal. 18(4): 35-46.

Cavaliere, S., G., di Giugno, and E. Guarino. 1992. "MARS - The X20 device and the

SMI 000 board." In Proceedings of the 1992 ICMC (San Jose, CA). San Francisco,

CA: ICMA. pp. 348-351.

Chamberline, H. 1985. Musical Applications of Microprocessors. Indianapolis, Indiana:

Hayden Books. ISBN: 0-8104-5768-7.

Chapman, D., M Clarke, M . Smith, and P. Archbold. 1996. "Self-Similar Grain

Distribution: A Fractal Approach to Granular Synthesis." In Proceedings of the 1996

ICMC (Hong Kong). San Francisco, CA: ICMA. pp. 212-213.

Chareyron, J. 1990. "Digital Synthesis of Self-modifying Waveforms by Means of Linear

Automata." Computer Music Journal. 14(4): 25-41.

Clarke, E. F. 1982. "Timing in the Performance of Erik Satie's Vexations'." Acta

Pyschologica. 50: 1-19.

Clarke, J. M. , P. D. Manning, R. Berry, and A. Purvis. 1988. "VOCEL: New

implementation of the EOF synthesis method." In Proceedings of the 1988 ICMC

(Cologne, West Germany). San Francisco, CA: ICMA. pp. 333-348.

Comerford, P. 1993. "Simulating an Organ with Additive Synthesis." Computer Music

Journal. 17(2): 55-65.

Cox, S., S. Y. Huang, P. Kelly, J. X. Liu, and F. Taylor. 1992. "An Implementation of

Static Functional Process Networks." Lecture Notes in Computer Science. 605: 497-

512.

Crochiere, R. E., and L. R. Rabiner. 1983. Multirate Digital Signal Processing. London:

Preintice-Hall International Inc. ISBN: 0-13-605162-6.

218

Dale, S. M . 1988. MIDI Interfacing of a transputer based system. 3H Project, School of

Engineering and Applied Science, University of Durham.

Dannenberg, R. 1989. "Real-Time Scheduling and Computer Accompaniment."

Mathews, M . V., and J. R. Pierce (eds.) Current Directions in Computer Music

Research. Cambridge, Massachusetts: MIT Press. ISBN: 0-262-13241-9.

Dechelle, F., M . de Cecco, E. Maggi, and N. Schnell. 1996. "New DSP Application on

FTS." In Proceedings of the 1996 ICMC (Hong Kong). San Francisco, CA: ICMA.

pp. 188-189.

Denyer, P., and D. Renshaw. 1985. VLSI SIGNAL PROCESSING: A Bit-Serial Approach.

Workington, UK: Addison-Wesley Publishing Co. ISBN: 020 1144042.

Depalle, Ph., and X. Rodet. 1990. "U.D.I. : A Unified D.S.P. Interface for sound signal

analysis and synthesis." In Proceedings of the 1990 ICMC (Glasgow). San Francisco,

CA: ICMA. pp. 225-227.

Depalle, Ph., and G. Poirot. 1991. "SVP: A Modular System for Analysis, Processing and

Synthesis of Sound Signals." In Proceedings of the 1991 ICMC (Montreal). San

Francisco, CA: ICMA. pp. 161-164.

Desain, P., and H. Honing. 1989. "The Quantization of Musical Time: A Connectionist

Approach." Computer Music Journal. 13(3): 56-66.

Dingle, A., and I . H. Sudborough. 1993. "Simulation of Binary Trees and X-Trees on

Pyramid Networks." Journal of Parallel and Distributed Computing. 19: 119-124.

Douglas, A. 1968. The Electronic Musical Instrument Manual. London: Sir Isaac Pitman

and Sons Ltd. ISBN: 0 273 36193 7.

Feiten, B., and T. Ungvary. 1990. "Sound Data Base using Spectral Analyse Reduction

and an Additive Synthesis Model." In Proceedings of the 1990 ICMC (Glasgow). San

Francisco, CA: ICMA. pp. 72-64.

Fitz, K., W. Waker, and L. Haken. 1992. "Extending the McAulay-Quatieri Analysis for

Synthesis with a Limited Number of Oscillators." In Proceedings of the 1991 ICMC

(San Jose, CA). San Francisco, CA: ICMA. pp. 381-382.

Fleming, P. J. (ed.) 1988. Parallel Processing in Control - transputer and other

architectures. (EEE computing series; 38.) London: Peter Peregrinud Ltd.

219

Freed, A., X. Rodet, and Ph. Depalle. 1993. "Synthesis and Control of Hundreds of

Sinusoidal Partials on a Desktop Computer without Custom Hardware." In

Proceedings of the 1993 ICMC (Tokyo). San Francisco, CA: ICMA. pp. 98-101.

Freed, A., X. Rodet, and Ph. Depalle. 1993. "Synthesis and Control of Hundreds of

Sinusoidal Partials on a Desktop Computer without Custom Hardware." In

Proceedings of International Conference on Signal Processing Applications and

Technology, pp. 1024-1030.

Freed, A. 1995. "Bring Your Own Control to Additive Synthesis." In Proceedings of the

1995 ICMC (Banff). San Francisco, CA: ICMA. pp. 303-306.

Fujinaga, I . , and J. Vantomme. 1994. "Genetic Algorithms as a Method for Granular

Synthesis Regulation." In Proceedings of the 1994 ICMC (Arhus). San Francisco,

CA: ICMA. pp. 138-141.

George, E. B., and M . J. T. Smith. 1992. "Analysis-by-Synthesis/Overlap-Add Sinusoidal

Modeling Applied to the Analysis and Synthesis of Musical Tones." Journal of

Audio Engineering Society 40(6): 497-516.

Germain, C , J. L. Bechennec, D. Etiemble, and J. P. Sansonnet. 1993. "A

Communication Architecture for a Massively Parallel Message-Passing

Multicomputer." Journal of Parallel and Distributed Computing. 19: 338-348.

Gogins, M . 1995. "Gabor Synthesis of Recurrent Iterated Function Systems." In

Proceedings of the 1995 ICMC (Banff). San Francisco, CA: ICMA. pp. 349-350.

Goodwin, M. , and X. Rodet. 1994. "Efficient Fourier Synthesis of Nonstationary

Sinusoids." In Proceedings of the 1994 ICMC (Arhus). San Francisco, CA: ICMA.

pp. 333-334.

Goodwin, M. , and A. Kogon. 1995. "Overlap-Add Synthesis of Nonstationary

Sinusoids." In Proceedings of the 1995 ICMC (Banff). San Francisco, CA: ICMA.

pp. 355-356.

Graps, A. 1995. "An Introduction to Wavelets." In IEEE Computational Science and

Engineering. Summer 1995. 2(2).

Gupta, A. K., and S. E. Hambrusch. 1993. "Multiple Network Embeddings into

Hypercubes." Journal of Parallel and Distributed Computing. 19 (1993): 73-82.

220

Haken, L. 1992. "Computational Methods for Real-Time Fourier Synthesis." IEEE

Transactions on Signal Processing. 40(9): 2327-2329.

Haken, L. 1995. "Real-Time Timbre Modification using Sinusoidal Parameter Streams."

In Proceedings of the 1995 ICMC (Banff). San Francisco, CA: ICMA. pp. 162-163.

Hamman, M . 1991. "Mapping Com^ilex Systems Using Granular Synthesis." In

Proceedings of the 1991 ICMC (Montreal). San Francisco, CA: ICMA. pp. 475-478.

Helmuth, M. , and A. Ibrahim. 1995. "The FCurve Sound Generator with Granular

Synthesis." In Proceedings of the 1995 ICMC (Banff). San Francisco, CA: ICMA. pp.

63-64.

Higgins, R. J. 1990. Digital Signal Processing in VLSI. New Jersey: Prentice Hall. ISBN:

012212887X.

Holm, F. 1994. "Control of Frequency and Decay in Oscillating Filters Using Multirate

Technique." In Proceedings of the 1994 ICMC (Arhus). San Francisco, CA: ICMA.

pp. 372-375.

Hou, E. S. H., N. Ansari, and H. Ren. 1994. "A Genetic Algorithm for Multiprocessor

Scheduling." IEEE Transaction on Parallel and Distributed Systems. 5(2): 113-120.

Houghton, A. D., A. J. Fisher, and T. F. Malet. 1995. "An ASIC for Digital Additive

Sine-wave Synthesis." Computer Music Journal. 19(3): 26-31.

Hu, Y. H. 1992. "The Quantization Effects of the CORDIC Algorithm." IEEE

Transactions on Signal Processing. 40(4) April 1992: 834-844.

INMOS Limited. 1988. Transputer Development System. Hemel Hempstead, Herts.:

Prentice Hall International (UK) Ltd.

INMOS Limited. 1998. occam 2 Reference Manual. Hemel Hempstead, Herts.: Prentice

Hall International (UK) Ltd.

Itagaki, T., P. D. Manning, and A. Purvis. 1995. "An Implementation of Real-time

Granular Synthesis on a Multi-processor Network." In Proceedings of the 1995

ICMC (Banff, CANADA). San Francisco, CA: ICMA. pp. 493-494.

2 2 1

Itagaki, T., D. J. E. Nunn, D. K. Phillips, D. Batjakis, A. Purvis, and P. D. Manning.

1995. "Activity Report from Durham Music Technology." In the Proceedings of XI

CIM Colloquio di Informatica Musicale, November 1995, Bologna, Italy, pp. 51-54.

(in English)

Itagaki, T., P. D. Manning, and A. Purvis. 1997. "Distributed Parallel Processing:

Lessons Learned from a 160-Transputer Network." Computer Music Journal. 21(4):

42-54, back cover.

Jaffe, D. A. 1985. "Ensemble Timing in Computer Music." Computer Music Journal.

9(4): 38-48.

Jaffe, D. A. 1990. "Efficient Dynamic Resource Management on Multiple DSPs, as

implemented in the NeXT Music Kit." In Proceedings of the 1990 ICMC (Glasgow).

San Francisco, CA: ICMA. pp. 188-190.

Jaffe, D. A., and J. O. Smith. 1993. "Real Time Sound Processing & Synthesis on

Multiple DSPs Using the Music Kit and the Ariel QuintProcessor." In Proceedings of

the 1993 ICMC (Tokyo). San Francisco, CA: ICMA. pp. 464-467.

Jansen, C. 1992. "Sine Circuitu." In Proceedings of the 1991 ICMC (San Jose, CA). San

Francisco, CA: ICMA. pp. 451-452.

Kaper, H., D. Ralley, J. Restrepo, and S. Tipei. 1995. "Additive Synthesis with

DL\SS_M4C on Argonne National Laboratory's IBM POWERparallel System (SP)."

In Proceedings of the 1995 ICMC (Banff). San Francisco, CA: ICMA. pp. 351-352.

Kaplane, S. J. 1981. "Developing a Commercial Digital Sound Synthesizer." In Road. C.

(ed.) 1989. The Music Machine. London, England: MIT Press, pp. 611-622.

Kirk, R., and R. Orton 1990. "MIDAS: A Musical Instrument Digital Array Signal

Processor." In Proceedings of the 1990 ICMC (Glasgow). San Francisco, CA: ICMA.

pp. 127-131.

Kriese, C , and S. Tipei. 1992. "A compositional approach to additive synthesis on

supercomputers." In Proceedings of the 1991 ICMC (San Jose, CA). San Francisco,

CA: ICMA. pp. 394-395.

Kronland-Martinet, R. 1988. "The Wavelet Transform for Analysis, Synthesis, and

Processing of Speech and Music Sound." Computer Music Journal.\2(^): 11-20.

222

Lee, M. , A. Freed, and D. Wessel. 1991 "Real-Time Neural Network Processing of

Gestural and Acoustic Signals." In Proceedings of the 1991 ICMC (Montreal). San

Francisco, CA: ICMA. pp. 277-280.

Lee, M. , and D. Wessel. 1992 "Connectionist Models for Real-Time Control of

Compositional Algorithms." In Proceedings of the 1991 ICMC (San Jose, CA). San

Francisco, CA: ICMA. pp. 277-280.

Lee, P. J. 1986. "Design of a Transputer Evaluation System." MSc Electronics Project

Report, University of Durham.

Lewis, T. G., and H. El-Rewini. 1992. Introduction to Parallel Computing. London:

Prentice-Hall International Inc.

Lin, Y. C. 1993. "Perfectly Overlapped Generation of Long Runs for Sorting Large

Field." Journal of Parallel and Distributed Computing. 19: 136-142.

Lippe, C , and M . Puckette. 1991. "Musical Performance Using the IRCAM

Workstation." In Proceedings of the 1991 ICMC (Montreal). San Francisco, CA:

ICMA. pp. 533-535.

Loy, G. 1985. "Musicians Make a Standard: The MIDI Phenomenon." Computer Music

Journal. 9(4): 8-26.

Maggi, E., and F. Armani. 1994. "The MARS Station: Algorithm Design and Real Time

Performance." In Proceedings of the 1994 ICMC (Arhus). San Francisco, CA: ICMA.

pp. 237-238.

Maggi, E., and F. Dechelle. 1996 "The evolution of the graphic editing environment for

the IRCAM musical workstation." In Proceedings of the 1996 ICMC (Hong Kong).

San Francisco, CA: ICMA. pp.185-187.

Manning, P. 1993. Electronic and Computer Music, (second edition) Oxford: Oxford

University Press. ISBN: 0-19-816328-2.

Marans, M . 1991. "Timing is Everything." Keyboard. 1991 (December): 95-103.

Marans, M . 1992. "Timing is Still Everything." Keyboard. 1992 (January): 35-37.

223

Mathews, M . V., and J. R. Pierce (eds.). 1989. Current Directions in Computer Music

Research, (paperback edition, 1991) Cambridge, Massachusetts: MIT press. ISBN: 0-

262-63139-3.

McAulay, R. J., and T. F. Quatieri. 1986. "Speech Analysis/Synthesis Based on a

Sinusoidal Representation." IEEE Transactions on Acoustics, Speech, and Signal

Processing. ASSP-34(4): 744-754.

McGee, W. F., and P. Merkley. 1991. "A Real-Time Logarithmic-Frequency Phase

Vocoder." Computer Music Journal. 15(1): 20-27.

McMillen, K., D. L. Wessel, and M. Wright. 1994. "The Z M Music Parameter

Description Language." Computer Music Journal. 18(4): 52-73.

McMilien, K., D. L. Wessel, and M . Wright. 1994. "A Summary of the ZIPI Network."

Computer Music Journal. 18(4): 74-80.

Miguet, S., and Y. Robert. 1992. "Reduction Operation on a Distributed Memory

Machine with a Reconfigurable Interconnection Network." IEEE Transactions on

Parallel and Distributed Systems. 3(4): 500-505.

Miranda, E. R. 1995. "Cellular Automata Synthesis of Acoustic Particles." In

Proceedings of the 1995 ICMC (Banff). San Francisco, CA: ICMA. pp. 233-234.

Moog, R. A., and T. L. Rhea. 1990. "Evolution of the Keyboard Interface: The Bosender

290 SE Recording Piano and the Moog Multiply-Touch-Sensitive Keyboards."

Computer Music Journal. 14(2): 52-60.

Moore, F. R. 1977. Realtime Interactive Computer Music Synthesis. Doctoral

dissertation, Department of Electrical Engineering, Stanford University.

Motorola. 1990. DSP56000/DSP56001 Digital Signal Processor User's Manual.

Phoenix, Arizona: Motorola.

van Oostrum, P. 1996. "Bibliography on synthesizers, Midi, Computer and Electronic

Music" on URL=ftp://ftp.cs.ruu.nl/pub/MIDI/DOC/bibliography.html

Orlarey, Y. 1990. "An Efficient Scheduling Algorithm for Real-Time Musical Systems."

In Proceedings of the 1990 ICMC (Glasgow). San Francisco, CA: ICMA. pp. 194-

198.

224

Orton. R, A. Hunt, and R. Kirk. 1991. "Graphical Control of Granular Synthesis using

Cellular Automata and the Freehand Program." In Proceedings of the 1991 ICMC

(Montreal). San Francisco, CA: ICMA. pp. 416-418.

Otto, P., R. Bidlack, and S. Master. 1992. "-MixNet- A Comprehensive Digital Audio

Production System." In Proceedings of the 1991 ICMC (San Jose , CA). San

Francisco, CA: ICMA. pp. 247-248.

Ovans, R., D. Murphy, and T. Bartoo. 1995. "THE INFINITE DELAY LINE Granulation

as an In-Line Effect." In Proceedings of the 1995 ICMC (Banff). San Francisco, CA:

ICMA. pp. 241-242.

Palmer, C. 1989. "Mapping Musical Thought to Musical Performance." Journal of

Experimental Psychology: Human Perception and Performance 15(12): 331-346.

Palmieri, G., and S. Sapir. 1992. "MARS - Musical Applications." In Proceedings of the

1992 ICMC (San Jose, CA). San Francisco, CA: ICMA. pp. 352-353.

Parash, A., and U. Shimony. 1992. "An Expandable Real-Time Transputer Sound

Generator." In Proceedings of the 1991 ICMC (Montreal). San Francisco, CA:

ICMA. pp. 226-228.

Parent, N. 1991. "Parametric Spectrumization." In Proceedings of the 1991 ICMC

(Montreal). San Francisco, CA: ICMA. pp. 127-128.

Penfold, R. A. 1986. MIDI projects. London: Bernard Babani LTD.

Phillips, D., A. Purvis, and S. Johnson. 1994. "A Multirate Optimisation for Real-Time

Additive Synthesis." In Proceedings of the 1994 ICMC (Arhus). San Francisco, CA:

ICMA. pp. 364-367.

Pinkston, R. F. 1990. "DSP-Sound: A Software Synthesis Package for Real-Time DSP-

based Systems." In Proceedings of the 1990 ICMC (Glasgow). San Francisco, CA:

ICMA. pp. 199-201.

de Poli, G., A. Picciali, and C. Roads, (eds.) 1991. Representations of Musical Signals.

Cambridge, Massachusetts: London: MIT Press. ISBN 0-262-04113-8.

Pope, S. T., and G. van Rossum. 1995. "Machine Tongues XVni : A Child's Garden of

Sound File Formats." Computer Music Journal. 19(1): 25-63.

225

Fountain, D. 1987. A tutorial introduction to OCCAM programming. Bristol: INMOS

Ltd.

Raytchev, R. 1993. "Global representation of local time measurements in transputer

networks." Microprocessing and Microprogramming. 36: 215-222.

Roads, C. 1978. "Automated Granular Synthesis of Sound." Computer Music Journal.

2(2): 61-62.

Roads, C. 1988. "Introduction to Granular Synthesis." Computer Music Journal. 12(2):

11-13.

Roads, C. (ed.) 1989. The Music Machine. London, England: MIT Press. ISBN 0-262-

18131-2.

Roads, C. 1993. "Musical Sound Transformation by Convolution." In Proceedings of the

1993 ICMC (Tokyo). San Francisco, CA: ICMA. pp. 102-109.

Rodet, X., Y. Potard, and J.B. Barriere. 1984. "The CHANT Project: From the Synthesis

of the Singing Voice to Synthesis in General." In Road. C. (ed.) 1989. The Music

Machine. London, England: MIT Press, pp. 449-465.

Rubine, D., and P. McAvinney. 1990. "Programmable Finger-tracking Instrument

Controllers." Computer Music Journal. 14(1): 26-40.

Rumsey, F. 1990. MIDI systems and control. Cambridge, Massachusetts: Butterworth &

Co. Ltd.

Serra, M. , D. Rubine, and R. Dannenberg. 1990. "Analysis and Synthesis of Tones by

Spectral Interpolation." Journal of Audio Engineering Society^ 38(3). pp. 111-128.

Shen, H. 1992. "Occam implementation of process-to-processor mapping on the Hathi-2

transputer system." Microprocessing and Microprogramming. 33: 173-189.

Shimony, U., and Y. Zarfati. 1990. "Second-Order Universal Processing Device for Real-

Time Music Synthesis." In Proceedings of the 1990 ICMC (Glasgow). San Francisco,

CA: ICMA. pp. 205-207.

Sindler K. W. 1984. "Dynamic Timbre Control for Real-Time Digital Synthesis."

Computer Music Journal. 8(1): 28-42.

226

Smith, J. O. 1985. "Fundamentals of Digital Filter Theory." In Road. C. (ed.) 1989. The

Music Machine. London, England: MIT Press, pp. 509-519.

Smith in, J. O. 1991. "Viewpoints on the History of Digital Synthesis." In Proceedings of

the I99I ICMC (Montreal). San Francisco, CA: ICMA. pp. 1-10.

Smith, J. O., and J. B. Angell. 1982. "A Constant-Gain Digital Resonator Tunes by a

Single Coefficient." Computer Music Journal. 6(4): 36-40.

Spanier, J. R., S. Johnson, and A. Purvis. 1996. "Optimisations of the FOE Algorithm for

VLSI Implementaion." In Proceedings of the 1996 ICMC (Hong Kong). San

Francisco, CA: ICMA. pp 126-128.

Steffensen, K., B. Slipsager, M . Folmer, and S. Brandorff. 1993. "DIEM Multi DSP box

for live performance." In Proceedings of the 1993 ICMC (Tok}>o). San Francisco,

CA: ICMA. pp. 409-411.

Strasburger, H., S. Kohler, and I . Radauer. 1990. "Score Input to CSound via the Midi

Keyboard." In Proceedings of the 1990 ICMC (Glasgow). San Francisco, CA: ICMA.

p.208.

Sundberg, J., and V. Verrilllo. 1980. "On the anatomy of the retard: A study of timing in

music." Journal of the Acoustical Society of America 68(3): 772-779.

Sundberg, J., L. Fryden, and A. Askenfelt. 1983. "WHAT TELLS YOU THE PLAYER

IS MUSICAL? An analyses-by-synthesis study of music performance." In Sundberg,

J. (ed.) Studies of Music Performance. No. 39. Royal Swedish Academy of Music,

pp. 61-75.

Sundberg, J., A. Friberg, and L. Fryden. 1991. "Common Secrets of Musicians and

Listeners: An analysis-by-synthesis Study of Musical Performance." In Howell, P., R.

West, and I . Cross, (eds.) Representing Musical Structure. London: Academic Press

Limited.

Tan, B. T .G., and S. L. Gan. 1993. "Real-Time Implementation of Asymmetrical

Frequency-Modulation Synthesis." Journal of Audio Engineering Society. 41(5):357-

363.

Texas Instruments. 1991. TMS320C4x User's Guide. Houston, Texas: Texas Instruments.

227

Transtech Devices Limited. 1989. Transtech TMB04 User Manual. High Wycombe,

Bucks.: Transtech Devices Ltd.

Truax, B. 1990. "Chaotic Non-linear Systems and Digital Synthesis; An Exploratory

Study." In Proceedings of the 1990 ICMC (Glasgow). San Francisco, CA: ICMA. pp.

100-103.

Truax, B. 1991. "Composition with Time-Shifted Environmental Sound using a Real-

Time Granulation Technique." In Proceedings of the 1991 ICMC (Montreal). San

Francisco, CA: ICMA. pp. 487-490.

Truax, B. 1993. "Time-Shifting and Transposition of Sampled Sound with a Real-Time

Granulation Technique." In Proceedings of the 1993 ICMC (Tokyo). San Francisco,

CA: ICMA. pp. 82-85.

Truax, B. 1994. "Discovering Inner Complexity: Time Shifting and Transposition with a

Real-time Granulation Technique." Computer Music Journal. 18(2): 38-48.

Truax, B. 1996. "Time-Stretching of Hyper-Resonated Sound Using a Real-Time

Granulation Technique." In Proceedings of the 1996 ICMC (Hong Kong). San

Francisco, CA: ICMA. pp. 491-492.

Tyrrell, A. M. , D. M . Howard, and N. A. Beasley. 1992. "Transputer Model of the

Human Peripheral Hearing System." Microprocessing and Microprogramming. 35:

619-624.

Vail, M . 1991. "Digital Pianos." Keyboard. April 1991. pp 80-102,

Vercoe, B. and D. Ellis. 1990. "Real-Time CSOUND: Software Synthesis with Sensing

and Control." In Proceedings of the 1990 ICMC (Glasgow). San Francisco, CA:

ICMA. pp. 209-211.

Voss, R. F., and J. Clarke. 1978. "1/f Noise in Music: Music from]/f Noise." Journal of

the Acoustical Society of America 63(1): 258-263.

Weinreich, G. 1979. "The Coupled Motions of Piano Strings." Scientific American.

January 1979. pp. 94-102.

Winker, T. 1992. "FollowPlay: A M A X Program for Interactive Composition." In

Proceedings of the 1992 ICMC (San Jose, CA). San Francisco, CA: ICMA. pp. 433-

434.

228

Wright, M . 1994. "Examples of ZIPI Application." Computer Music Journal. 18(4): 81-

85.

Wright, M . 1994. "A Comparison of M I D I and ZIPI." Computer Music Journal. 18(4):

86-91.

Wright, M . 1994. "Answers to Frequently Asked Questions about ZIPI." Computer Music

Journal. 18(4): 92-96.

Zaversek, P., and P. Kolbezen. 1992. "Dynamic Allocation on the Transputer Network."

Lecture Notes in Computer Science. (634): 825-826.

abbreviations used in this Bibliography
ICMC: International Connputer Music Conference
ICMA: International Computer Music Association
CA: California

2 2 9

Publications based on the work in Durham
Itagaki, T., A . Purvis, and P. D. Manning. 1994. "Real-time Synthesis on a Mul t i ­

processor Network." In Proceedings of the 1994 International Computer Music

Conference (Arlms, Denmark). San Francisco, California: International Computer

Music Association, pp. 382-385.

Itagaki, T., P. D. Manning, and A. Purvis. 1995. "An Implementation of Real-Time

Granular Synthesis onto a Multi-Processor Network." In Proceedings of the 1995

International Computer Music Conference (Banff, Canada). San Francisco,

California: International Computer Music Association, pp. 493-494.

Itagaki, T., D. K . Phillips, P. D. Manning, and A . Purvis. 1995. "An Implementation of

Optimised Method for Real-time Sound Synthesis on a Multi-processor Network." In

Book of Abstracts of 5th International Conference on Parallel Computing, September

1995, Gent, Belgium, p. 100.

Itagaki, T., D. J. E. Nunn, D. K. Phillips, D. Batjakis, A. Purvis, and P. D. Manning 1995.

"Activi ty Report f rom Durham Music Technology." In the Proceedings of XI CIM

Colloquio di Informatica Musicale, November 1995, Bologna, Italy, pp. 51-54. (in

English)

Itagaki, T., P. D. Manning, and A. Purvis. 1996. "Real-time Granular Synthesis on a

Distributed Multi-processor Platform." In Proceedings of the 1996 International

Computer Music Conference (Hong Kong). San Francisco, California: International

Computer Music Association, pp. 287-288.

Itagaki, T., S. Johnson, P. D. Manning, D. J. E. Nunn, D. K. Phillips, A. Purvis, and J. R.

Spanier. 1996. "Durham Music Technology: Activity Report." In Proceedings of the

1996 International Computer Music Conference (Hong Kong). San Francisco,

California: International Computer Music Association, pp. 126-128.

Itagaki, T., P. D. Manning, and A. Purvis. 1997. "Distributed Parallel Processing:

Lessons Learned f rom a 160-Transputer Network." Computer Music Journal.2l(4):

42-54, back cover.

2 3 0

Glossary of Terms and Abbreviations
A C

acyclic graph

A D C

additive synthesis

address generation

AES

A M

A N S I

array processor

asynchronous

BPS

CD

chain

channel

CISC

clock cycle

Alternative Current

a graph without any cycles

Analogue to Digital Converter

Fourier synthesis, sound synthesised by super-position of sine

waves.

a process during execution of an instruction in which an

effective address is calculated by means of indexing or indirect

addressing.

Audio Engineering Society

Amplitude Modulation

American National Standards Institute

A computer designed primarily to perform data parallel

calculations on arrays or matrices. The two principle

architectures used are the processor array and the vector

processor.

A method of transmission which does not require a common

clock, but separates fields of data by stop and start bits.

bytes per second, a unit of memory access speed or

communications transfer speed.

Compact Disc, a digital sound storage media, 16-bit format at

44.1 kHz sampling rate.

A topology in which every processor is connected to two others,

except for two end processors that are connected to only one

other.

A point-to-point connection between two processes or processors

through which messages can be sent. Programming systems that

rely on channels are sometimes called connection-oriented, to

distinguish them from the more widespread connectionless

systems in which messages are sent to named destinations rather

than through named channels.

Complicated Instruction Set Computer; a computer that provides

many powerful but complicated instructions. This term is also

applied to software designs that give users a large number of

complex basic operations. See also RISC.

The fundamental period of time in a computer.

2 3 1

clock time Physical or elapsed time, as seen by an external observer. Non
relativistic time.

communication overhead A measure of the additional workload incurred in a

parallel algorithm due to communication between the nodes of

the parallel system.

CMOS

concurrent compute

Complementary Metal Oxide on Silicon

A generic category, often used synonymously with parallel

computer to include both multi-computer and multi-processor.

concurrent processing simultaneous execution of instructions by two or more
processors within a computer.

configuration

control process

co-processor

CORDIC

CPU

A particular selection of the types of processes that could make

up a parallel program. Configuration is trivial in the SPMD

model, in which every processor runs a single identical process,

but can be complicated in the general M M D case, particularly i f

user-level processes rely on libraries that may themselves require

extra processes.

A process which controls the execution of a program on a

concurrent computer. The major tasks performed by the control

process are to initiate execution of the necessary code on each

node and to provide I/O and other service facilities for the nodes.

an additional processor attached to a main processor, to

accelerate arithmetic, VO or graphics operations.

COdinate Rotation Digital Computer

Central Processing Unit

cube-connected cycles network a processor organisation that is a variant of a

hyper cube. Each hyper cube node becomes a cycle of nodes,

and no node has more than three connections to other nodes.

CSOUND

cycle

D A C

D A T

DC

deadlock

software synthesis language (Vercoe 1986)

a cycle of the computer clock.

Digital to Analogue Converter

Digital Audio Tape

Direct Current

A situation in which each possible activity is blocked, waiting on

some other activity that is also blocked. I f a directed graph

represents how activities depend on others, then deadlock arises

i f and only i f there is a cycle in this graph.

2 3 2

D I N

DSP

distributed computer

distributed memory

D M A

D R A M

EPROM

FFT

FIFO

FIR

FLOPS

Flynn's Taxonomy

F M

EOF

FPU

gps

German Industrial Standard: Deutsche Industrie Norm

Digital Signal Processing

A computer made up of many smaller and potentially

independent computers, such as a network of workstations. This

architecture is increasingly studied because of its cost

effectiveness and flexibil i ty.

Memory that is physically distributed amongst several modules.

A distributed memory architecture may appear to users to have a

single address space and a single shared memory or may appear

as disjoint memory made up of many separate address spaces.

Direct Memory Access; allows devices on a bus to access

memory without requiring intervention by the CPU.

Dynamic R A M ; memory which periodically needs refreshing,

and is therefore usually slower than SRAM but is cheaper to

produce.

Electronically Programmable ROM; a memory whose contents

can be changed using special hardware. This usually involves

removing the chips f rom their environment in order to "burn" a

new pattern into them.

Fast Fourier Transform is a technique for the rapid calculation of

discrete Fourier transform of a function specified discretely at

regular intervals. The technique makes use of a butterfly data

structure.

First In First Out

Finite Impulse Response (Filter)

Floating Point Operations: unit for measurement of floating point

operation

A classification system for architectures that has two axes: the

number of instructions streams executing concurrently, and the

number of data sets to which those instructions are being

applied. The scheme was proposed by Flynn in 1966.

Frequency Modulation

Fonction d'Onde Formantique (French), Formant wave-function

Floating Point Unit: either a separate chip or an area of silicon

on the CPU specialised to accelerate floating point arithmetic.

grain per second: grain density in granular synthesis/sound

granulatioji

2 3 3

heterogeneous

guard A logical condition that controls whether a communication

operation can take place. Guards are usually defined as part of

the syntax and semantics of CSP-based languages. In OCCAM,

guards are used in " A L T " ; such as communication port, channel

and timer, with or without conditions with Boolean variables.

Containing components of more than one kind. A heterogeneous

architecture may be one in which some components are

processors, and others memories, or it may be one that uses

different types of processor together.

Made up of identical components. A homogeneous architecture

is one in which each element is of the same type; processor

arrays and multi-computers are usually homogeneous.

A network connection between two distant nodes.

an interference phenomenon observed in multi-processors caused

by memory access statistics being slightly skewed from a

uniform distribution to favour a specific memory module.

A topology of which each node is the vertex of a d-dimensional

cube. In a binary hyper cube, each node is connected to n others,

and its co-ordinates are one of the 2'^n different n-bit sequences

of binary digits.

the system of logic and conductors that connects

the processors in a parallel computer system; such as bus, mesh

and hyper cube.

inter-processor communication the passing of data and information among the

processors of a parallel computer during the execution of a

parallel program.

homogeneous

hop

hot-spot contention

hyper-cube

interconnection network

I/O

I C M A

I C M C

IFFT

IIR

I M W

I R C A M

IRIS

ISPW

input/output

International Computer Music Association

International Computer Music Conference

Inverse FFT

Infinite Impulse Response (Filter)

I R C A M Music Workstation

Paris based research institution:

Coordination Acoustique/Musique.

Institut de Recherche et

Paliano (Italy) based research organisation: Istituto di Ricerca

per rindustria dello Spettacolo.

I R C A M Sound Processing Workstation (= I M W)

2 3 4

1860

latency

L E D

link

load balance

LSB

mapping

M A R S

M A X

message passing

M I D I

M I M D

general-purpose processor developed by Intel capable of 80
MFLOPS at 40 M H z

The time taken to service a request or deliver a message which is

independent of the size or nature of the operation. The latency

of a message passing system is the minimum time to deliver a

message, even one of zero length that does not have to leave the

source processor.

Light- Emitting Diode

A one-to-one connection between two processors or nodes in a
multi-computer.

The degree to which work is evenly distributed among available

processors. A program executes most quickly when it is

perfectly load balanced, that is when every processor has a share

of the total amount of work to perform so that all processors

complete their assigned tasks at the same time. One measure of

load imbalance is the ratio of the difference between the

finishing times of the first and last processors to complete their

portion of the calculation to the time taken by the last processor.

Least Significant Bit

often used to indicate an allocation of processes to processors;

allocating work to processes is usually called scheduling.

Musical Audio Research Station, MARS, developed by IRIS

s.r.l. [Italy]. See IRIS.

interactive graphic programming environment created by Opcode

(Pucketteand Zicarelli 1990)

A style of inter-process communication in which processes send

discrete messages to one another. Some computer architectures

are called message passing architectures because they support

this model in hardware, although message passing has often been

used to construct operating systems and network software for

uni-processors and distributed computers.

Musical Instrument Digital Interface, published in 1983 by

International M I D I Association [23634 Emelita Street,

Woodland Hills , California 91367 USA.]

Mult iple Instruction, Multiple Data; a category of Flynn's

taxonomy in which many instruction streams are concurrently

applied to multiple data sets. A M I M D architecture is one in

which heterogeneous processes may execute at different rates.

2 3 5

MIPS

M I S D

MOPS

motherboard

MSB

multi-computer

multi-processor

multi-programming

multi-(sampling)rate

multi-taskins

N A M M

N e X T

Mi l l i on Instructions Per Second: unit for measurement of

processor performance, referring to integer or non-floating point

instructions.

Mult iple Instructions, Single Data. A member of Flynn's

taxonomy almost never used.

Mi l l i on Operations Per Second, usually used for a general

operation, either integer, floating point or otherwise.

A printed circuit board or card on which other boards or cards

can be mounted. Motherboards wi l l generally have a number of

slots for other boards, by which means the computer system may

be expanded.

Most Significant Bit

A computer in which processors can execute separate instruction

streams, have their own private memories and cannot directly

access one another's memories. Most multi-computers are

disjoint memory machines, constructed by joining nodes (each

containing a micro-processor and some memory) via links.

A computer in which processors can execute separate instruction

streams, but have access to a single address space. Most multi­

processors are shared memory machines, constructed by

connecting several processors to one or more memory banks

through a bus or switch.

the ability of a computer system to time share its (at least one)

CPU with more than one program at once.

digital sound processing using more than one sampling rate.

Executing many processes on a single processor. This is usually

done by time-slicing the execution of individual processes and

performing a context switch each time a process is swapped in or

out, but is supported by special-purpose hardware in some

computers. Most operating systems support multi-tasking, but it

can be costly i f the need to switch large caches or execution

pipelines makes context switching expensive in time.

National Association of Music Merchants, USA based
association.

a music workstation based on a 68030 as main processor with a

68882 as floating-point co-processor and DSP 56001 as sound

processor and a DAC.

2 3 5

network

N I C A M

node

note

NTSC

Nyquist frequency

O C C A M

optimal

P A L

parallel computer

parallelisation

partitioning

PC

PCB

pipe

A physical communication medium. A network may consist of
one or more buses, a switch, or the links joining processors in a
multi-computer.

Nearly Instantaneous Compounded Audio Multiplex,
standardised by IB A, BREMA and BBC.

generic term used to refer to an entity that accesses a network.

1. music event, tone

2: (polyphonic) note, voice, channel: a sound generating unit in a

synthesis system.

National Television System Committee; a TV/video signal

format

the highest frequency that can be produced in a digital audio
system; a half of the sampling rate

programming language for the Transputer family

Cannot be bettered. An optimal mapping is one that yields the

best possible load balance; an optimal parallel algorithm is one

that has the lowest possible time-processor product.

Phase Alternation Line; TV/video signal format

A computer system made up of many identifiable processing

units working together in parallel. The term is often used

synonymously with concurrent computer to include both multi­

processor and multi-computer. The term concurrent generally

dominates in usage in the USA, whereas the term parallel is the

more widely used in Europe.

Turning a serial computation into a parallel one. Also

sometimes turning a vector computation into a parallel one. This

may be done automatically by a parallelising compiler or (more

usually) by rewriting (parts of) the program.

process of restructuring a program or algorithm into independent
computational segments.

Personal Computer: usually means I B M compatible one

Printed Circuit Board

A communication primitive which involves the transmission of

information through a linearly connected subset of the nodes of a

parallel computer.

2 3 7

process

processor array

pipelining Overlapping the execution of two or more operations. Pipelining

is used within processors by perfecting instructions on the

assumption that no branches are going to preempt their

execution; and in multi-processors and multi-computers, in

which a process may send a request for values before it reaches

the computation that requires them.

the fundamental entity of the software implementation on a

computer system.

A computer that consists of a regular mesh of simple processing

elements, under the direction of a single control processor.

Processor arrays are usually SIMD machines, and are primarily

used to support data parallel computations.

Pulse Width Modulation

Random Access Memory; computer memory which can be

written to and read from in any order.

A topology in which each node is connected to two others to

form a closed loop.

Reduced Instruction Set Computer; a computer that provides

only a few simple instructions but executes them extremely

quickly. RISC machines typically rely on instruction prefetching

and caching to achieve higher performance than CISC machines.

The term is also applied to software designs that give users a

small number of simple but efficient operations

Read-Only Memory; a computer memory which cannot be

written to during normal operation.

The act of moving a message f rom its source to its destination.

A routing technique is a way of handling the message as it passes

through individual nodes.

sampling rate (frequency) the rate at which digital sound samples are taken. It

signifies the bandwidth of a digital audio system.

P W M

R A M

nng

RISC

R O M

routmg

scalar processor

scheduling

SCI

SCSI

A computer in the traditional von Neumann sense of operating

only on scalar data.

Deciding the order in which the calculations in a program are to

be executed, and by which processes. Allocating processes to

processors is usually called mapping.

Sequential Circuit Interface

Small Computer Systems Interface; a hardware standard for

interfacing to devices such as discs.

2 3 8

SHARC

shared memory

shared variables

S I M D

SISD

SMPTE

S M I 000

SPMD

S R A M

synchronisation

Super-Harvard ARchitecture Computer: a family of DSP
produced by Analog Devices.

Memory that appears to the user to be contained in a single

address space and that can be accessed by any process. In a uni­

processor or multi-processor, there is typically a single memory

unit, or several memory units interleaved to give the appearance

of a single memory unit.

Variables to which two or more processes have access, or the

model of parallel computing in which inter-process

communication and synchronisation are managed through such

variables.

Single Instruction Multiple Data; a category of Flynn's taxonomy

in which a single instruction stream is concurrently applied to

multiple data sets. A SIMD architecture is one in which

homogeneous processes synchronously execute the same

instructions on their own data, or one in which an operation can

be executed on vectors of fixed or varying size.

Single Instruction Single Data; a category of Flynn's taxonomy

in which a single instruction stream is serially applied to a single

data set. Most uni-processors are SISD machines.

Society of Motion Picture and Television Engineers; SMPTE

time-code (format); used in f i l m and T V , a data-rate of 2400 bps.

sound generation board on IRIS-MARS workstation, consisting

of two IRIS X20 DSP chips [25.6 MIPS at 25 M H z each] for

sound processing controlled by a Motorola 68302.

Single Program, Multiple Data; a category sometimes added to

Flynn's taxonomy to describe programs made up of many

instances of a single type of process, each executing the same

code independently. SPMD can be viewed either as an extension

of SIMD, or as a restriction of M I M D .

Static R A M ; memory which stores data in such a way that it

requires no memory refresh cycle and hence has low power

consumption. Generally this type of R A M is faster but more

expensive than D R A M .

The act of bringing two or more processes to known points in

their execution at the same clock time. Explicit synchronisation

is often necessary in SPMD and M I M D programs.

2 3 9

synchronous

TDS

tick

time sharing

topology

T R A M

Transputer

tree

U A R T

uni-processor

USI

V C A

V C F

V C O

vector processor

Occurring at the same clock time. For example, i f a
communication event is synchronous, then there is some moment
at which both the sender and the receiver are engaged in the
operation.

Transputer Development System. The operation system for the

host transputer and a host PC

unit for timing in M I D I .

Dividing the effort of a processor among many programs so they

can run concurrently. Time sharing is usually managed by an

operating system.

A family of graphs created using the same general rule or that

share certain properties. The processors in a multi-computer,

and the circuits in a switch, are usually laid out using one of

several topologies, including the mesh, the hyper cube, the

butterfly, the torus and the shuffle exchange network.

TRAnsputer Modules

A single integrated circuit which contains a CPU,

communications links, memory and some cache memory. The

name transputer refers to a proprietary series of chips

manufactured by INMOS, although other node chips have had

similar characteristics.

a connected, undirected, acyclic graph. The most commonly

encountered tree in computer science is the regular binary tree,

in which a root node has two children but no parent, each interior

node has a single parent and two children, and leaf nodes have a

single parent but no children.

Universal Asynchronous Receiver-Transmit(ter); a standard

protocol for device drivers or a integrated circuit.

A computer containing a single processor. The term is generally

synonymous with scalar processor.

Universal Synthesizer Interface, proposed by Dave Smith (the

president of Sequential Circuits) and Chet Wood in 1981.

Voltage Controlled Ampli f ier

Voltage Controlled Filter

Voltage Controlled Oscillator

A computer designed to apply arithmetic operations to long

vectors or arrays. Most vector processors rely heavily on

pipelining to achieve high performance. See also array processor.

2 4 0

velocity amplitude of a M I D I key press information.

V L S I Very Large Scale Integration; applied to technologies capable of

putting hundreds of thousands or more components on a single

chip, or sometimes applied to those chips so manufactured.

von Neumann architecture Used to describe any computer which does not employ

concurrency or parallelism. Named after John von Neumann

(1903-1957) who is credited with the invention of the basic

architecture of current sequential computers.

voice (see "note")

241

Appendix 1. Sound Samples

The software for the sound generation, described in Chapters 5, 6

and 8 is basically for real-time sound production, and is not designed for

sound recording. I attempted to re-write these programs to accommodate

a recording process. Some of them, however, did not perform as

designed, due to restrictions and limitations in the hardware, mainly

memory shortage, and in the software [see Chapter 2]. In addition, some

of the programs reached the limit of the transputers' performance, leaving

no room for extra tasks. For the reasons above, some of the

implementations are only available for live performance.

All the sound samples attached to this thesis were produced at a 32 kHz

sampling rate and monaural format, with two exceptions at a 44.1 kHz

sampling rate. The original files were written in a 16-bit raw binary [Zilog

format; high-byte followed by low-byte], and could be converted into other

formats by the "SOX" program (Norskog 1993). As I did not have access

to a PC with a sound-card, I was not able to test the conversion to a WAV

format, that is a standard multi-media format for Windows software.

In this edition, an analogue audio cassette tape is attached.

2 4 2

List of Sound Samples

4.4. -voice organ (fixed allocation) 24"

5.1.1. 110 Hz triangle wave with true harmonics

5.1.2. 110 Hz triangle wave with "borrowed" harmonics

5.2.1. 9-voice organ: "pipe organ" like [44.1 kHz sampling rate]

5.2.2. 9-voice organ: saw-tooth wave based with hyperbolic envelope
[44.1 kHz sampling rate]

5.3. Multi-rate 88-voice organ (fixed allocation)

7"

7"

21"

21"

21"

6.4.1. 2x time compressed granulated 440 Hz sine wave

6.4.2. 2x time stretched granulated 440 Hz sine wave

6.4.3. segment of speech

6.4.4. 2x time compressed granulated speech segment

6.4.5. 2x time stretch granulated speech segment

7.1.1. granulated 440 Hz sine wave with simple-ramp

7.1.2. granulated 440 Hz sine wave with half-cosine ramp

7.1.3. granulated 440 Hz sine wave with parabolic ramp

7.1.4. granulated 440 Hz sine wave with quasi-Gaussian ramp

7.2.1. granulated 440 Hz sine wave with 320-sample-long model

7.2.2. granulated speech with 320-sample-long model

7.2.3. granulated 440 Hz sine wave with 640-sample-long model

7.2.4. granulated speech with 640-sample-long model

7.2.5. granulated 440 Hz sine wave with 2560-sample-long model

7.2.6. granulated speech with 2560-sample-long model

8.1. an example of sound granulation

2"

6"

5"

2"

6"

5"

5"

5"

5"

5"

5"

5"

5"

5"

5"

20"

243

Appendix 2. Pin Layouts of the 160 Transputer
Network

PIN column column PIN column left column right
No. left right No.

1 GND GND 16 Up Not Reset Dn Not Analyse
2 GND GND 17 Up Not Analyse Up Not Error
3 GND GND 18 Dn Not Error Link 00 Out
4 NO NC 19 Link 00 In Link 01 Out
5 NC NC 20 Link 01 In Link 13 Out
6 GND GND 21 Link 13 In Link 02 Out
7 GND GND 22 Link 02 In Link 03 Out
8 GND GND 23 Link 03 In Link 04 Out
9 NO NC 24 Link 04 In Link 05 Out
10 +5V +5V 25 Link 05 In Link 06 Out
11 -1-5V +5V 26 Link 06 In Link 07 Out
12 NC NC 27 Link 07 In Link 08 Out
13 NC NC 28 Link 08 In Link 09 Out
14 NC NC 29 Link 09 In Link 10 Out
15 NC NC 30 Link 10 In Link 11 Out

31 Link 11 In Link 12 Out
32 Link 12 In Dn Not Reset

Table A2.1.: 32-Pin Socket Layout of a PCB

03 04 05 06 07 08 09 10 11
Figure A2.1.: Link Numbering of a PCB

2 4 4

Pin No. column left column right
1 Board 9 Link 12 Out Board 9 Link 12 In
2 Board 9 Link 13 Out Board 9 Link 13 In
3 Board 1 Link 01 Out Board 1 Link 01 In
4 Board 1 Link 02 Out Board 1 Link 02 In
5 Up Not Reset NO
6 Up Not Analyse Up Not Error
7 Board 0 Link 00 Out Board 0 Link 00 In
8 Board 0 Link 01 Out Board 0 Link 01 In
9 Board 0 Link 13 Out Board 0 Link 13 In
10 Board 0 Link 02 Out Board 0 Link 02 In
11 Board 0 Link 12 Out Board 0 Link 12 In
12 GND GND
13 GND GND

Table A2.2.: Pin Layout of Connector out of Main PCB (Tree Top Side)

Pin No. Column Left Column Right
1 NO NO
2 Link 03 In Link 03 Out
3 Link 04 In Link 04 Out
4 Link 05 In Link 05 Out
5 Link 06 In Link 06 Out
6 Link 07 In Link 07 Out
7 Link 08 In Link 08 Out
8 Link 09 In Link 09 Out
9 Link 10 In Link 10 Out
10 Link 11 In Link 11 Out

Table A2.3.: Pin Layout of Connector out of Main PCB
(Tree Bottom side)

245

Appendix 3. MIDI-to-Transputer Interface

The basic requirements for the interface board are to enable data to

be converted between two serial formats; MIDI data and transputer link

data, and their transmission speed; 31.25 KBaud and 20 MBaud. MIDI

data is sent with a start bit followed by eight data bits and a stop bit. The

transmission is continuous and asynchronous. On the other hand,

transputer link data is sent with two start bits followed by eight data bits

and a stop bit. When the data packet is received, the transputer sends an

acknowledgement, a high bit followed by a low bit, to the other end of the

link.

Although both data formats are serial, a standard MIDI interface converts

serial data into an internal parallel format and vice-versa. To convert

decoded signals from MIDI to a format suitable for a transputer link an

intermediate parallel processing stage is thus necessary. To convert a

MIDI serial signal into a parallel format, the Universal Asynchronous

Receiver Transmitter [DART] 6402 is recommended in the MIDI

specification. Its basic operation is to convert data between serial protocol

and a handshake parallel data port. The UART 6402 is a general purpose

device. Hence, its users have to define the data format and speed. For

receiving and sending the MIDI data, 31.25 KBaud, a clock signal of 500

kHz is recommended. The devices of the transputer family communicate

through links. However, to enable the easy connection of links to non-

transputer devices, a link adapter is used.

246

R e c e i v e r R e g i s t e r

V C C
N C
G N D

R e c e i v e r R e g i s t e r D i s a b l e d
7
6
5
4
3
2
1
0

P a r i t y E r r o r
F a r m i n g E r r o r
Overturr i E r r o r
S t a t u s F l a g D i s a b l e d
R x C l o c k
D a t a R e c e i v e d D i s a b l e d
D a t a R e c e i v e d
R x Input

T x C l o c k
E v e n P a r i t y E n a b l e
C h a r a c t e r Length S e l e c t 1
C h a r a c t e r Length S e l e c t 2
S t o p Bit S e l e c t
Par i ty Inhabit
Contro l R e g i s t e r L o a d
T r a n s m i t t e r R e g i s t e r 7

6
5
A
3
2
1
0

T x Output
T r a n s m i t t e r R e g i s t e r E m p t y
T r a n s m i t t e r R e g i s t e r L o a d
T r a n s m i t t e r Buffer E m p t y
R e s e t

Figure A3.1.: UART 6402 pinout.

C011 is designed for full duplex transputer link communication with a

standard microprocessor and sub-system architecture, by converting

between bi-directional serial link data and parallel data streams. The link

adapter runs at a speed of either 10 Mbits/sec or 20 Mbits/sec, and has

two modes. In this project, a 20 Mbits/sec link was used and a C011 was

configured into Mode 1; that is where the C011 converts between a

parallel link and two independent fully handshaken byte-wide interfaces;

one input and one output, for a transputer family device. [Mode 2 is the

other way around; from transputer link serial format to parallel format.]

247

Link Out-
Link In -
I V a l i d -

Ack
0
1
2
3
4
5
6
7

Reset
GND

VCC
Cap Minus
Q V a l i d
Q Ack
Q 0
Q 1
Q 2
Q 3
Q 4
Q 5
Q 6
Q 7
Separate IQ
Clock In

Figure A3.2.: C011 pin-out (Mode 1).

Figure A3.3.: Prototype IVIIDI-to-Transputer Interface Board.

2 4 8

The handshaking pins of the UART can not be directly connected with

those of the 0011 , due to their incompatibility. An additional logic circuit is

required. This circuit was designed and its prototype version built onto a

multipurpose circuit board, about nine years ago (Dale 1988). Parts were

wire wrapped and the circuit proved unreliable. Eventually the board

failed all together.

After some reviews and improvements, a new circuit on a printed circuit

board was assembled, as a replacement. The main changes were as

follows:

1. To reduce micro disturbance of noise in to the lines,

a) The number of jumper lines was minimised.

b) The length of clock and signal circuits were consequently

minimised.

2. To obtain a sharp reset signal, a switch was added.

As a result, the circuit board is smaller and offers a higher reliability than

the original one. Its diagram and its overview picture are shown below.

Figure A3.4.: Overview Picture of MIDI-to-Transputer Interface Board.

2 4 9

r e s e l

5 V G N D

- t

UART 6402

74LS

4017B

74LS04

coil 74LS04
4n7

R 2 r A - H | - ^

5 MHz n33

R 1 : R 5 : 84QQ 0 1 : 103 / iF
R 2 : 1kf2 RG: 125kQ C 2 : 2 .7^F
R 3 : 30 f2 R 7 : 680Q 0 3 : 47 / iF
R 4 : 50f^

Figure A3.5.: Circuit Diagram of IVIIDI-to-Transputer Interface Board.

Nevertheless, I discovered some problems with this circuit which may be

attributable to the quality of the parts; especially the gate ICs 74LS04 and

74LS00, and the link adapter C011. According to the data sheets for the

parts, they should work with a 5 V DC power supply, with an allowance of

±5%. In practice, however, the circuit runs only between 4.80 V and 4.90

V, a strange limitation which was investigated further.

250

Firstly, I suspected the clock block. Using an oscilloscope, all the clock

signal circuits were checked. The circuits work as follows:

An activated crystal creates a 5 MHz signal.

A gate IC 74LS04, which is supposed to work on a 5 MHz signal,

cleans the signal.

The clock signal is fed into the 0011 and a counter IC 4017B, which

forms a 500 kHz signal for the UART.

At this point, a clear 500 kHz equal template square wave should be

obtainable if the circuit is driven with a current at the specified potential of

5 V. What I found, however, was that the circuit ran only outside two

points; below 4.90 V and over 5.20 V, where the clock signal was

stabilised. Between those points, the square wave became distorted;

jittering at the rising phase.

By changing the power supply and the chips, and after some trial and

error combining different components, the jittering problem was finally

cleared. Apart from the quality of the chips, the quality of power supply

could have been suspected. Replacement with another power supply,

however, resulted in the same operating characteristics and the voltage

problem on the circuit has still not been solved.

In the case of over 4.90 V, the UART or the C011 misinterprets the MIDI

data, which is usually shifted: for example, from 90h to COh. In the other

case, under 4.80 V, due to the problems in the C011 or the handshaking

block, data reflections occurred several times in every one hundred bytes

251

received; typically every 57 jisec after a packet of MIDI data was received.

Around 4.85 V, however, it would seem that all the parts are working well.

K% tIMC/OIV

Figure A3.6.: Wave Form at 4.85 V (Top: 5 MHz, Bottom: 500 KHz).

252

