
Durham E-Theses

Ada code reuse guidelines for design-for-reuse

Kim, Hyoseob

How to cite:

Kim, Hyoseob (1995) Ada code reuse guidelines for design-for-reuse, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4877/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4877/
 http://etheses.dur.ac.uk/4877/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests with the author

No quotation from it should be pubUshed without

his prior written consent and information derived

from it should be acknowledged.

Ada Code Reuse Guidelines for
Design-for-Reuse

Hyoseob Kim

M.Sc. Thesis

Centre for Software Maintenance

Department of Computer Science

University of Durham

October 1995

- I f l A Y 1996

Abstract

The phenomenal growth in the costs of producing software over the last three decades has
forced the computing industry to look for alternative strategies to that implied by the wa
terfal l model of computer system development. One frequently observed solution is that
of reusing the code f r o m previously designed systems in the construction of new ones; this
technique is known as software reuse.

Ada language was developed as a tool to address the above problems and is believed to have
many useful language features such as •package and generics to produce reusable software.
But programming in Ada does not guarantee the production of highly reusable software.
Therefore guidelines for users are needed to maximise the benefits f rom using Ada. In this
thesis, Ada code reuse guidelines are proposed, and as an attempt to prove the usefulness of
them, reuse metrics are studied.

The thesis concludes by stressing the novelty of the approach, the difficulties encountered,
and enhancements to the proposed methods to overcome these shortcomings.

Acknowledgements

A technical work of this size can obviously not be produced without a great deal of help,
advice and encouragement f rom others. A number of people have aided and abetted in its
production.

I owe a great debt of gratitude to my supervisor Cornelia Boldyreff, who was always on hand
to listen to my ideas and always wil l ing to contribute her own. Also, she took the t ime to
read the drafts of this thesis and provided invaluable feedback.

On a personal level, my deepest thanks are due to my parents who have always supported
their son emotionally and financially.

n

Copyright

The copyright of this thesis rests w i th the author. No quotation f rom i t should be published
without his prior wr i t ten consent and information derived f rom i t should be acknowledged.

Declaration

No part of the material offered has previously been submitted by the author for a degree in
the University of Durham or in any other University. A l l of the work presented here is the
sole work of the author and no-one else.

m

Contents

1 Introduction 1

1.1 Introduct ion 1

1.2 The Criteria for Success 3

1.3 Outhne of Thesis 3

2 Software Reuse 5

2.1 Introduct ion 5

2.2 Benefits of Software Reuse 6

2.3 Exist ing Software Reuse Methods 9

2.4 Factors mi l i t a t ing against Software Reuse 11

2.4.1 Technical Factors 11

2.4.2 Cultural Factors 12

2.4.3 Managerial Factors 13

2.4.4 Legal Factors 13

2.5 Summary 15

3 Ada Reuse Guidelines 16

3.1 Ada Language 16

3.1.1 History of Ada 16

3.1.2 The Major Features of Ada 17

3.2 Exist ing Guidehnes 19

I V

3.3 Characteristics of Reusable Components 20

3.4 Standards Possessed by Good Guidelines 21

3.5 Guidelines 22

3.5.1 Principle of Adaptabil i ty 22

3.5.2 Principle of Comprehensibility 30

3.5.3 Principle of Independence 40

3.5.4 Principle of Robustness 44

3.6 Summary 48

4 Reuse Metrics: Metrics regarding Software Reuse 49

4.1 Introduct ion 49

4.2 Software Metrics 50

4.2.1 Objectives of Reuse Metrics 50

4.2.2 Measurement Theory in Software Engineering 51

4.2.3 Characteristics possessed by Ideal Metrics 55

4.2.4 Reuse Metrics 56

4.3 Summary 60

5 Case Study 61

5.1 Introduct ion 61

5.2 Experimental Method 62

5.2.1 Experimental Goals 62

5.2.2 Experimental Materials 62

5.2.3 Experimental Framework 62

5.3 Experimental Results 64

5.3.1 Adaptabi l i ty 64

5.3.2 Comprehensibility 66

5.3.3 Independence 70

5.3.4 Robustness 73

5.3.5 Reusability 74

5.4 Experimental Analysis 75

5.5 Summary 77

6 Evaluation 80

6.1 Evaluation Against the Criteria for Success 80

6.2 Strengths and Weaknesses 81

6.3 Summary 82

7 Conclusions 83

7.1 The Main Achievements of the Research 83

7.2 General Conclusions of the Research 83

7.3 The Limitat ions of the Approach 84

7.4 Suggestions for Future Research 84

7.5 Summary 84

A Collected Ada Code Reuse Guidelines 85

A . l Principle of Adaptabihty 85

A.2 Principle of Comprehensibihty 86

A.3 Principle of Independence 87

A . 4 Principle of Robustness 88

B Materials used in the Case Study 89

B. l Introduct ion to 3 repositories used 89

B.1.1 AdaBasis 89

B.1.2 ELSA 89

B.1.3 L G L 90

B.2 Introduct ion to 3 CASE Tools used 90

V I

B.2.1 Ada System Dependency Analyzer 2.1 90

B.2.2 Cer t i f i e r^ 91

B.2.3 Met_Pars 92

B.3 Source Codes used 92

Bibliography 104

vn

List of Tables

5.1 Materials used in this Case Study 63

vni

List of Figures

1.1 Software Development Process 2

1.2 A Software System as a Collection of Components 3

1.3 Research Coverage 4

2.1 A n approach to modelling reusability 7

2.2 Adaptive Process 9

2.3 Parameterised Process 10

2.4 Engineered Process 10

3.1 Three steps relevant to the use of a generic unit 24

3.2 Kinds of Abstract Data Objects and Types available in Ada 27

3.3 Three Kinds of Independence 40

3.4 A method to improve independence of components 42

4.1 One-to-one mapping and one-to-many mapping 52

4.2 Measurement and the intelligent barrier 54

4.3 Relationships among classes of scales 55

5.1 The G Q M Model 61

5.2 Graph showing No. of Units in 7 Stacks wi th their Normal Curve 65

5.3 Adaptabi l i ty of 7 Stacks 66

5.4 Comprehensibility of 7 Stacks 70

5.5 Independence of 7 Stacks 73

I X

5.6 Robustness of 7 Stacks 75

5.7 Reusability of 7 Stacks 76

5.8 Relationship between disparity of properties and reusability of components . 76

5.9 Guideline Usage Statistics on Adaptabihty 77

5.10 Guideline Usage Statistics on Comprehensibility 78

5.11 Guideline Usage Statistics on Independence 78

5.12 Guideline Usage Statistics on Robustness 79

5.13 Guideline Usage Statistics on Reusabihty 79

6.1 Reusability as a combination of overlapped properties 81

Chapter 1

Introduction

1.1 Introduction

The software crisis has been wi th us for quite some time [1], and is not diminishing. As
many researchers express, the crisis is represented by two major phenomena. According to a
Software Engineering Insti tute (SEI) report [2], we lack the capacity to produce software. As
hardware prices dramatically decrease, these days more people can own their own hardware
systems^. So the demand for software by which hardware systems operate is exploding,
while programmers' product ivi ty is l imited. According to statistical data [3], demand for
software increases at a rate of 12%/year, while productivity and the number of personnel
involved i n software projects increase only at a rate of 4%/year each. Further evidence of
this diflference is the fact that many software projects finish over budget. This difference
between demand and supply for software resulted in an enormous gap between hardware
and software development during the past few decades. The SEI report states that post-
deployment software support [PDSS or maintenance) is the most rapidly growing workload
of the software process. Maintenence has long been known to be a large consumer of software
budgets, w i t h estimates f r o m 40 to 70 percent [1]. Increases in demand by the maintenance
phase lead to fur ther reduction in new software development capacity because personnel are
siphoned off. As one of the many attempts to address this problem of maintaining software,
the Centre for Software Maintenance was established at University of Durham, in England,
in 1987 [4 .

Another aspect of the software crisis is the lack of quality. Although quality can be a
subjective characteristic, overall system quality usually can be assessed in terms of providing
the funct ional i ty expected by the customer, meeting customer performance requirements,
and freedom f r o m defects. In addition to them, the quality factors of a software system
also contain working as advertised, having acceptable usage of t ime and space resources
[efficiency), being composable wi th other components (composibility), being understandable

^In this thesis, hardware systems will mean not only computers, but also other peripheral devices such

as printers, scanners, etc. which also need software to operate them.

1

Software Resources ^ocess

Figure 1.1: Software Development Process

by clients and maintainers (readability), and being usable in a possibly different context
[portability ov rehostability) [5].

Two different approaches to overcoming the software crisis, i.e. improving programmers'
product iv i ty and software quality have been tried. One is process-oriented approach and the
other is called component-oriented approach.

In the former approach, many software engineers have focussed on improving the software
development processes. As described in Figure 1.1, software products are produced through
a series of process w i t h resources.

This approach usually includes the use of computer-aided software engineering (CASE) tools.
The hope is that improvements in how an organisation goes about managing software devel
opment w i l l lead to better productivi ty and to higher quality systems [6].

Another approach to the quality and productivity problem, similar to but crucially different
f r o m the software-process approach, is improving the design and implementation of individ
ual components of a software system [5]. Compared to the above approach, this is bottom-up
thinking. Rather than working on a grand scale, this approach attempts to apply software
engineering principles to component design in order to achieve improvements one component
at a t ime. The idea is that small gains i n quality and productivity at the component level
w i l l accrue to substantial gains over the entire software system. Figure 1.2 represents a soft
ware systems as a compound comprising many components and their relationships. Because
we adopt already tested and validated, existing components, the mother system w i l l have
smaller faults than one developed f rom scratch. I t all results in cheaper maintenance cost.

Al though the former approach w i l l be briefly explained, chapter 2, the introductory chapter
on software reuse, mainly is targeted at the latter, wi th respect to "Ada".

/ >

D E F
-

Figure 1.2: A Software System as a Collection of Components

1.2 The Criteria for Success

The main objective of this research is to propose a method^ for producing Ada components
of high reusabihty. The criteria for the success of the method are the following:

1. ident i fying the differences between Ada code reuse and high level reuse or code reuse
in other programming languages;

2. establishment of the exact meaning of the term reusability;

3. suggesting guidelines for an approach to code reuse;

4. validating the usefulness and usability of the guidehnes by software measurement.

Those criteria w i l l be judged in chapter 6, Evaluation.

1.3 Outline of Thesis

The thesis is organised as follows. Chapter 2 introduces general principles and concepts
relating to software reuse. The chapter handles design with reuse and design reuse as well as
design for reuse, although the main topic of this thesis is the last one. Chapter 3 shows how
to maximise code reuse in Ada, which is believed broadly to be one of the best languages
in which to implement a reuse scheme efficiently and easily. In chapter 4, reuse metrics are

^In this context by method, the author means, a systematic approach with defined procedures.

3

Computer Science

Software Engineering

Software Reuse

High-Level

Reuse

Requirement

Reuse

Low-Level
Reuse

Specification

Reuse

Ada

Reuse

Figure 1.3: Research Coverage

studied to evaluate and validate the impact on applying the reuse guidelines of chapter 3
to Ada code. Af te r that, experiments w i t h the guidelines of chapter 3 and reuse metrics
of chapter 4 upon some Ada code are done in chapter 5. Validity of the Ada code reuse
guidelines and reuse measurement proposed is evaluated in chapter 6 on the basis of the
results f r o m chapter 5. Finally chapter 7 discusses possible future work and conclusions
drawn f r o m the work so far.

Figure 1.3 describes the whole structure of the thesis. The work presented in this thesis hcis
links w i t h other research topics in software engineering such as "software cost estimation",
"software safety" or "reengineering". For reuse to flourish, correct software cost estimation
is needed to investigate the impacts in organisations where reuse is being implemented. And,
in code reuse, especially in the case of Ada, i t is important for safe and reliable software
to be bu i l t , for Ada is mainly used in large projects. Code reuse is considered an approach
to building such safe software, along wi th formal methods. Reengineering techniques are
needed to make legacy systems more reusable.

Chapter 2

Software Reuse

This chapter attempts to provide a framework for the study of software reuse, and Ada code
reuse in particular. First of al l , definitions of software reuse and history of research carried
out on i t are studied. Then the potential benefits of the introduction of widespread reuse
are described to ident i fy the motives of reusing software. Af ter that, existing software reuse
methods are introduced and the reasons why code reuse is st i l l a viable proposition are ar
gued, although much bigger benefits are expected f rom so-called high-level reuse. Finally the
barriers that have to be overcome for successful adoption of reuse to happen are investigated.

2.1 Introduction

Software reuse is not a new idea. I t has existed since the early days of computing in spe
cialised domains i n the f o r m of shared programmer knowledge and subroutine libraries. As
early as 1953, Wilkes and others had already recognised the importance of subprogram h-
braries of reusable program [7]. However, i t had not been broadly advocated as a means
for program construction un t i l Mcl l roy [8] first proposed a component manufacturing facility
based on code at the N A T O Software Engineering Conference held at Garmisch in 1968. At
the t ime of his speech, his idea of a component manufacturing facil i ty was dismissed since
technologies then were not mature enough to implement i t . Large reductions in hardware
costs in the last decade, however, have increased the significance of software development
and maintenance expenditure. Namely, the main focus has shifted f rom hardware to software
as software costs have overtaken hardware costs. This shift of emphasis has led to software
reuse becoming an element of active software engineering research.

Among many reasons which caused this huge gap between hardware cost and software cost,
the representative one can be found in whether we reuse existing products or processes or not.
As a matter of fact, in the area of the electronics industry, reusing components is a common
practice. Hardware systems are now developed by the selection and combination of standard
integrated circuits, which encapsulate massive amounts of functionality. This packaging

concept has enabled hardware components to be created which perform a particular 'service'
without the designer needing to know details of internal operation [9]. The above methods
used by the hardware industry are also strong points which the Ada language supplies, and
will be discussed in chapter 3 in detail.

Regarding software reuse, there exist many definitions. Although a quite narrow definition
that "software reuse is re-application of source code" is possible, a much broader definition
is needed to get more benefits from reusing software artifacts since only 13% of the whole
investment during the software life-cycle is spent at the phase of coding. In terms of this,
Biggerstaff's following definition is more suitable [10]:

Software reuse is the re-application of various type of knowledge about a certain
system with the aim of reducing the burden of development and maintenance.
The reusable elements consist of domain knowledge, development experiences,
project choices, architectural structures, specifications, code, documentation and
so on.

According to the above definition, anything produced during a software project becomes
an object of reuse. As another important term, we need to know the correct meaning of
"reusability". It is defined as follows [11]:

The ability to reuse a software component or to use it repeatedly in applications
other than the one for which it was originally built.

In addition to the above definition, since we have little knowledge about the characteristics
of reusability, attempts to decompose it into better known characteristics have been carried
out. One model of them, where reusabiHty is broken into five factors, is shown in figure 2.1.
I t was drawn by Fenton [12] due to McCall and Boehm et al.

In the following sections, benefits of software reuse and existing software reuse methods and,
finally, factors to overcome to accomplish successful software reuse are studied.

2.2 Benefits of Software Reuse

The incentive for software reuse comes from the amount of replication that is performed in
software creation. In a California study of banking and insurance appHcations [13], 75% of
functions were found to be common to more than one program. Furthermore, only 30% of
software developed was concerned with the actual application, the other 70% being applica
tion independent (define/equate data items, format reports, perform validation). Lanergan
and Grasso [14] found 40-60% of actual program code in a missile factory repeated in more
than one application. Jones [13] tentatively concluded that up to 85% of all the code written
in 1983 may have been of a common, generic nature.

self-descriptiveness

generality

modularity

software system
independence

machine
independence

reusability

Figure 2.1: An approach to modelling reusability

Another important motive for software reuse is the economic aspect. Software costs continue
to escalate rapidly and this has lead to alarm within the computing profession. Indeed this
'software crisis', first identified over 25 years ago [8], continues to plague us. The costs of
producing software have been dramatically increasing, and this has only been slightly offset
by computer hardware productivity advances. According to Boehm's research, software costs
are increasing at a rate of approximately 12% per year [15 .

The huge software cost has been mainly caused from the following three reasons [16, 17 .

3.

User requirements for software are getting more and more complex.

The construction of larger and more ambitious software projects and the stringent en
vironments they operate in impose severe performance requirements on the production
of new software. Typical examples of these are found in real-time, embedded systems.

Demand for qualified personnel for building and maintaining software is ever increasing.

At present, there is a critical shortfall in the number of qualified personnel entering
the employment market. This fact, allied to a rapid escalation in salaries, makes the
cost of any software development expensive and the idea of reusing existing software
sensible.

Software development technologies developed during the last few decades failed to
catch up to needed and expected growth in software productivity.

Rates of software productivity have been creeping forward, as opposed to the leaps
and bounds achieved in hardware. With new tools and methodologies, only 4% per
year of the rate of the productivity growth has been achieved, while demand for new
software has been increasing 12% per year [18, pages 6-12].

In addition to economic benefit, the application of software reuse leads to the construction of
more reliable systems. The best test for reliability of code is its actual use within a system.
During its functioning within the system, errors within it should have been noticed and
fixed; thus it will have already conformed to an error-checking process. Theoretically, the
more times a component is reused, the more confidence can be placed in it . This aspect of
software reuse is especially important to persuade people to reuse other people's components.
The use of computer software in life-critical applications is ever increasing. From civil air
transports to nuclear power plants, computer software is finding its way into more life-critical
applications every year. There are two sources of error with which an ultra-reliable system
deal [19

1. system failure due to physical component failure

2. system failure due to design errors.

At the moment, as software engineers, neither can we handle the former one, nor are con
cerned with i t . Thus along with formal specification and verification, using reusable compo
nents makes sense in terms of software reliability.

Reusing such time-tested software also decreases maintenance cost substantially. It is esti
mated that 60% to 70% of the total life-cycle costs are spent on maintenance. In order to
make changes, it is necessary first to understand the software and this could involve around
47% to 60% of the maintenance effort. This means that some 30-35% of the total life-cycle
costs are consumed in understanding software after it has been delivered in order to make
changes [20]. Another investigation conducted by Horowitz and Munson shows almost same
result [16]. They estimate that maintenance of a software system exceeds the development
cost of the original system by a factor of three. Through reusing pre-validated software,
i t is anticipated that smaller number of defects would arise from built software. Another
advantage is that less time would be required to maintain software system since reusable
components are easier to adapt than ones which are not so.

Software reuse also aids in the production of standards within an organisation. A typical
source of inconsistency within a system is that fundamentally similar operations are carried
out in totally different ways. A reuse technology will promote the coding of frequently used
routines as components as done in electronics industry, and the reuse of these will guarantee
consistency within a suite of programs. Furthermore, this standardisation will aid the process
of writing more understandable and consistent code.

Another argument for the introduction of software reuse is the utilisation of specialised per
sonnels' knowledge and expertise beyond time and space. Personnel having been involved
in a certain project often are not available when needed. Therefore reusing software com
ponents allows reusers and maintainers to utilise experts without involving the persons who
had actually developed them.

Finally, software reuse can help developers and maintainers estimate cost more correctly
and quickly. Over budget and late delivery mean not only developing complex software is
difficult, but also the cost estimation itself is wrong. Through reusing previous software
products, more correct cost prediction can be performed.

Existing

software

Domaiii
artifact

Existing

software
New

artifact
Adaptive

engineering
Existing

software
Adaptive

engineering

Reused
software

Ported
software

Modified

Figure 2.2: Adaptive Process

2.3 Existing Software Reuse Methods

The adoption of reuse into software development will include the definition of new products
and processes. On the product side, we must identify the form of deliverables that can
support reuse; on the process side, the approach needed to develop and apply those products.
In order to move from the current, ad hoc approach to reuse, to a systematic reuse process,
we must be able to both abstract a problem domain and create reusable solutions [21 .

Three kinds of reuse which are the most representative are as follows:

1. Design-for-Reuse

2. Design-with-Reuse

3. Design Reuse.

It has been said that design-for-reuse should precede design-with-reuse. In other words,
components which were not developed for future reuse in mind would need modification
resulting in higher cost before reusing them than other reusable ones.

In the meantime, design reuse indicates value of attempts to reuse the earher products during
the software life cycle since they are believed to be less machine or language-dependent than
source code.

Cohen of SEI classified the current reuse methods into three different processes [21]. The
first process, one widely used today, is to adapt an existing system to meet a new set of
requirements. The second, a relatively new practice, identifies families of programs, providing
support for parameterisation of commonality, and customisation for unique requirements.
The third process is an abstract-based engineering approach to discovering and exploiting
commonality in software systems as the basis for software development. Figure 2.2, 2.3 and
2.4 compare these three approaches.

Each process offers its own set of benefits and risks. The adaptive approach (figure 2.2) re
quires litt le new investment by an organisation, and can support new developments, provided

Existing

software

Domain
artifact

New
artifact

Parameterized

engineering

Domain
artifacts

Domain
resources

Paramderized
software

Feedback
Reused

software

Standard

products

Modified

Figure 2.3: Parameterised Process

Existing

software

Domain
artifacts

Domain
knowledge

Domain data
Technology base
IX)main expertise

Hieory

Domain
engineering

Domain
model &
software

architecture

Domain
analysis

Domain
ISS]1I££S

Redback

Reuse
engineering

Reuse-based software practices

Reuse-engineered
software

application

Figure 2.4: Engineered Process

10

they require only incremental changes from previous applications. However, applications that
require major modifications and upgrades typical of most aerospace applications, will only
achieve marginal benefits from adapting old software. The parameterised approach (figure
2.3) establishes a framework for all new implementations, a major investment for an organ
isation. There is a significant pay-off, provided the framework is stable. However, in areas
with rapidly evolving technology, there is no stable framework. The investment in establish
ing standard products may be at risk i f new requirements do not fit previously established
standards. Like the parameterised approach, engineered reuse approach (figure 2.4) requires
a large investment. The domain resources must meet the requirements of a wide range of
applications or this investment will also be at risk. I f the resources are properly developed
this approach offers a greater degree of flexibility than the parametrised method, and can
adapt to changing requirements.

Justification for Code Reuse

Even i f bigger benefits can be obtained from reusing higher-level software artifacts, code
reuse is still a worthwhile goal. The reasons are as follows:

First, code is a tangible entity. Among software products, few things are directly touchable
and perceivable. Source code and Z specification are two of them. This fact is shown by
that most of the software metrics developed until now are concerned with source code.

Secondly, code is more easily breakable into components than more abstract representations.
With respect to developing reusable components and emerging into the so-called "software
component industry", this kind of property is especially important. Simply we might not be
able to develop components i f we cannot divide software into components.

Thirdly, code reuse provides a higher possibility of successful implementation and diffusion
in the short term. This is especially important to minimise managerial problems which will
be explained in the following section.

2.4 Factors militating against Software Reuse

There are four kinds of barriers that have to be tackled before widespread reuse can be
realised. They are technical factors, cultural factors, managerial factors and legal factors.
And i t has been shown that non-technical aspects are as important as technical ones.

2.4.1 Technical Factors

Sommerville identified six technical problems to be solved to success of software reuse [22 .

Firstly, desirable attributes for reuse are to be investigated. Once we get to know about the
characteristic, reusability, we would be able to develop high reusable, new components or
re-engineer existing components in a cost-effective way to increase their reusability.

11

Secondly, methodology problems arise since most existing software design methods are in
tended to support software development without reuse. Therefore new development method
ology is needed to open the so-called "software component industry".

Thirdly, new documentation standards for reusable components are to established. The
documentation of a reusable component must specify both its functional and non-functional
characteristics. Usually, more documentation is required than for components which are
simply part of a larger system. Ideally, reusable components would be formally specified so
that there is no ambiguity about their behaviour. However, this is unlikely to happen in the
foreseeable future. Thus, more rigid documentation standards should be used to help users
reuse the components more easily.

The fourth problem is about how components can be certified as reusable. In order to
convince managers of the value of reuse, they must have confidence in the components which
will be reused. This implies that we need some kind of component certification scheme which
will certify the quality or usefulness of the component. But setting up such a scheme has
been known as diflficult and expensive. In chapter 5, "Case Study", a component certification
tool is used.

Fifthly, probably the most important and frequently mentioned problems in the reuse re
search community are about component retrieval. In a large company (such as an aerospace
company) there might be potentially hundreds of, if not thousands of, reusable components
available. They are collected from many different computers and projects. Therefore finding
what components exist and retrieving these components could be a major problem. Some
cataloguing scheme using existing database systems must be established.

Finally, we can think about configuration management (CM) in reuse environment. The
normal model of configuration management is currently project-based. The software devel
oped as part of a project is maintained in a project archive. On the contrary, reuse requires
software to be shared and, perhaps, components to be modified and stored in a software
library or a software repository. The following questions can be asked, associated with con
figuration management. What relationships should be maintained between the reuse Hbrary
and the original base components in the CM system? How should changes be propagated?
How can traceability back to the original components be implemented? The answers to these
questions are still being studied.

2.4.2 Cultural Factors

One of the fundamental questions that has to be answered is whether the structure of a
society has an effect on the acceptance of reuse. It has been claimed [23] that there is a
paradox between the application of a software reuse technology and the approach to life in a
Western society. In the West, society tends to be very individualistic, with competitiveness
rife in almost all fields of life. This results in an innovative approach to product development.
I t is argued that this conflicts with a reuse technology which relies on cooperation and trust
for its successful application. It is noticeable that one of the best examples of success in
applying reuse has occurred in "Japanese Software Factories" [24], in a society where a

12

cooperative and paternalistic ethos is supported. The adoption of the SIGMA project by
major industrial and academic bodies in Japan [25] is a venture that one would never expect
to be undertaken in the West.

There is a very widespread phenomenon called "Not-Invented-Here (NIH)" syndrome within
software community. This arises from the fact that software engineering is perceived as a
skilled profession, and reuse implies a form of de-skilling, thus there is a lack of motivation to
cultivate a reuse technology [9]. This can only be removed by supplying cheap components
of high quality and encouraging sufficient management motivation.

2.4.3 Managerial Factors

A major factor in the successful implementation of reuse is its acceptance and encouragement
by management [26]. Unless such backing is forthcoming, reuse stands little chance of success.
There are many obstacles which have to be reconciled with the potential benefits outlined
in section 2.2.

The first fact to be taken into consideration is the greater cost of producing reusable code
compared to "solution-specific" production [9]. It is not easy to produce general or "generic"
components that are suitable for reuse. This results in much more time and effort on the
part of a software team, and greater cost for the project as a whole. Since project managers
are rewarded for producing systems to deadline and within budgetary constraints, there is
little incentive for them to encourage the production of generic components.

There is litt le quantitative evidence of the successful application of reuse in many fields.
In incorporation of a reuse technology, management must be prepared to sacrifice short-
term returns to gain unquantifiable benefits in the long-term. This is something many
organisations are unprepared to risk. The only way this problem is likely to be alleviated is
by wider scale availability of component libraries.

Management obstacles to reuse may be the most intractable of all to surmount. The adoption
of risk-taking policies is necessary to promote the application of reuse, and demonstrate the
immense benefits that can accrue from it . It is very much a "chicken-or-the-egg" situation,
requiring go-ahead firms who are prepared to sacrifice returns in the short-term for the
undeniable but unquantifiable benefits in the long-term.

2.4.4 Legal Factors

There exist two kind of legal issues, i.e. intellectual property right and liability. The former
forces responsibility to keep copyright, patent, and trade secret laws, whereas the latter is
about handling with any damage caused by a certain piece of software. Many decisions about
the development, distribution, maintenance, enhancement and, especially, reuse of software
are likely to be affected by constraints imposed by intellectual property laws and liability
laws.

13

The primary purpose of the intellectual property laws is to encourage the development and
dissemination of innovative works for use by the pubhc. The creation or invention of useful
items and artistic works generally requires the investment of considerable time, energy, and
resources by skilled, talented people. To encourage such activities, the intellectual property
laws provide, as an incentive, the opportunity to obtain exclusive rights to commercial
exploitation of the innovative or artistic work for a specified period of time. Generally it is
said that developing reusable components needs a big initial investment. So the developers'
rights must be protected. Otherwise reuse would not happen. [27

Intellectual property systems may be thought of as consisting of six elements [28]:

1. A definition of the subject matter to which the intellectual property law applies (e.g.,
machines are within the subject matter of patent, but not copyright).

2. A set of requisites for protection, which includes:

• What qualities the subject matter must possess to be protectable (e.g., how much
creativity must be shown to be entitled to intellectual property rights).

• Who is entitled to assert the intellectual property right.

• What procedural steps must be taken to acquire or retain the intellectual property
rights.

3. A set of rights ("exclusive rights") to exclude other people from certain activities.

4. A public policy limitation on the extent of the owner's intellectual property rights.

5. A procedure for determining whether "infringement" has occurred. (An infringement
is a violation of one of the exclusive rights.)

6. A specification of what remedies are available.

Although there are some intellectual property systems that do not apply to software, there
are many that do. Many articles, books, and legal decisions discuss or hypothesise about the
appropriate forms of intellectual property protection for computer programs. Unfortunately,
there is as yet little certainty in this area of the law. Lawyers and legal scholars debate
not only the present state of the law, but also the directions in which the law should be
moving. For software is both a "writing" (traditionally copyright-protected) and a "machine"
(traditionally patent-protected).

Copyright issues arise not only in external reuse environment, but also in internal reuse. For
instance, if a component is developed by an employee, who will own its copyright between him
and his employer? As another problem, nowadays many components are reverse-engineered.
In this case, it must be made sure whether reverse-engineering old legacy codes is legal or
not.

Another thing that we should consider when we reuse software is software product liability.
A typical story of the topic is found in Armour and Humphrey's technical report [29] and is
quoted below.

14

Voyne Ray Cox settled into the radiation machine for the eighth routine treat
ment of his largely cured cancer. The operator went to the control room and
pushed some buttons. Soon, the machine went into action and the treatment be
gan. A soft whir and then an intense pain made him yell for help and jump from
the machine. The doctors assured him there was nothing to worry about. What
they didn't know was that the operator had inadvertently pushed an unusual
sequence of controls that activated a defective part of the software controlling
the machine. He didn't die for six months but he had received a lethal dose of
radiation. This software defect actually killed two patients and severely injured
several others.

It has been believed that software defects are rarely lethal and the number of injuries and
deaths is now very small. Software, however, is now the principal controlling element in many
industrial and consumer products. In particular, the Ada language has been used in safety-
critical applications such as nuclear power stations or aerospace industries. Thus, users are
starting to realise that software, particularly poor quahty software, can cause products to
do strange and even terrifying things. Software bugs are erroneous instructions and, when
computers encounter them, they do precisely what the defects instruct. As a worst case,
an error could cause a 0 to be read as a 1, an up control to be shut down, or, as with the
radiation machine quoted above, a shield to be removed instead of inserted. A software error
could mean life or death.

The best way to overcome this problem is to develop software of high quality. Software reuse
and SEI (Software Engineering Institute)'s CMM (Capability Maturity Model) are such
attempts to achieve that goal. But until i t becomes common practice, software products
liability laws are needed.

Although i t would be comforting to users to provide unequivocal answers to all important
questions on intellectual property and software product liability, the fact is that the intellec
tual property laws and liability laws are in the process of evolving to provide adequate and
appropriate protection for software.There are many questions for which there are as yet no
clear answers.

2.5 Summary

In this chapter, background topics relating to software reuse were discussed. The software
crisis was the main motivation for which the idea of reusing software was born. The benefits
which can arise from reusing software were also discussed. After that, three of the most rep
resentative reuse methods were introduced and briefly studied. They were adaptive process,
parameterised process, and engineered process. Finally, the reasons why software reuse is
still long way to success were identified in terms of technical, cultural, managerial and legal
factors.

15

Chapter 3

Ada Reuse Guidelines

This chapter proposes Ada reuse guidelines at the level of source code. To achieve that
goal, firstly, section 3.1 discusses Ada's strong points as well as weak points with respect to
reusing its source code. Then existing Ada code reuse guidelines are reviewed in section 3.2.
Having done this, the standards possessed by good guidelines and characteristics of reusable
components are discussed. Finally, guidelines are suggested on the basis of the above things
to maximise the Ada's strong points while complementing and minimising its weak ones.

3.1 Ada Language

3.1.1 History of Ada

Related to Ada, several things are interesting. First of all, Ada was the second woman and
a wife of Lamech after Eve who appeared in the Holy Bible with their names [30, Genesis
4:19]. However, the high level programming language Ada was named in honour of Augusta
Ada Byron, the Countess of Lovelace and the daughter of English poet Lord Byron. She was
the assistant, associate and supporter of Charles Babbage, the mathematician and inventor
of a calculating machine called the Analytical Engine. Because she wrote some programs at
that time, she is believed as the world's first computer programmer [31].

Ada, the language itself, was designed at the initiative and under the auspices of the United
States Department of Defence (DoD). DoD studies in the early and in the middle 1970s
indicated that enormous savings in software costs (about $24 biUion between 1983 and 1999)
might be achieved if the DoD used one common language for all its applications instead of
the over 450 programming languages and incompatible dialects used by its programmers [31].

Then, starting with Strawman (1975), the language's requirements were refined through
Woodenman (1975), Tinman (1976), Ironman (December 1978) and finally Steelman (1978) [32 .
After that, an international competition was held to design a language based on the above

16

requirements. Seventeen companies submitted proposals out of which four were selected as
semi-finalists. The competition was won by a language designed by a team of computer sci
entists lead by Jean Ichbiah of CII Honeywell Bull. After some modifications, this language
was named Ada by a member of Whitaker's group, navy commander John Cooper [33]. In
February 1983, Ada became an ANSI standard [34]. Since then, DoD Directives 3405.1 and
DoD Instruction 5000.2, as well as the FY91 DoD Appropriations Act, mandate use of Ada,
where cost effective, for all applications [35 .

3.1.2 The Major Features of Ada

Before explaining the unique features of Ada, it would be better to think of the motives for
developing Ada. In addition to economic reason described in section 3.1.1, it was developed
to address important and recognised problems in software development such as language
simplicity, completeness, program reliability, correctness, maintainability, portability, the
development of large programs, real-time programming and error handling [31].

As a result, Ada contains the following major features [36]:

Structured Constructs — Ada is a modern block-structured language with a complete
and regular set of program constructs.

Strong Typing — Ada can detect many errors at compile time, as well as at run time.
Languages such as Ada, for which it is possible to enforce type compatibility strictly,
are said to be strongly typed. Ada is one of only a few languages that are truly strongly
typed. Pascal, for example, often is said to be strongly typed, but it actually has an
obscure loophole in its typing system that permits incompatible types to be mixed.
Other languages, such as C, tout their lack of type checking as a feature.

Sometimes users want a language that doesn't have type checking. In writing software
such as compilers or operating systems, it sometimes is convenient to be able to ignore
the data type of a value. Thus some programmers may prefer languages that allow
them easily to forego compatibility checking. Of course, doing so requires that they
be especially careful when writing programs that use different types. It is a bit like
performing a high-wire act without the benefit of a safety net! [33 .

• Modularity — Ada is written in modules with well-defined interfaces. Interfaces and
internal implementations of modules are kept separate. This allows large and complex
systems to be successfully developed in Ada. One of the main language features to
implement this characteristic is package concept. Using it makes the text of a package
body hide from its users. Through it , we can expect two benefits. One is confidentiality.
A software producer supplying the services of a given package may want to protect his
investment by not showing the package implementation. Another reason is known as
information hiding. Letting a user read the implementation would create a danger
that the user derive some additional implicit assumptions based on an analysis of the
current implementation. Thus, in an Ada library, we can only access specifications,
but cannot access bodies.

17

• Tasking — Concurrent programs can be directly realised in Ada.

• Exception Handling — Ada provides special constructs to handle both expected and
unexpected errors.

• Generics — Ada provides a powerful means of developing reusable, tailorable compo
nents.

• Readability — Ada strongly supports the writing of clear, nearly self-documenting
programs. It has been argued that Ada has a high degree of readability, whereas
making writing programs a little more difficult than other languages. In other words,
Ada language has a high readability but a low writeability.

• Data Abstraction — Data can be structured and described in meaningful terms, hiding
unnecessary detail at each level through using private types and limited private types.

• Precision Specification — Programmers can specify the precision needed for different
types of numeric data, ensuring portability of mathematical software.

• External Interfacing — Ada provides a complete set of low-level facilities, for example
to handle interrupts and to control the exact layout of data and programs in memory.

Having the above features, Ada is believed to be suitable for developing software which has
the following attributes [36]:

1. An expected life-time of comparatively long years, with changes and upgrades expected
during this life-time.

2. A size and complexity that is too much for a single person to handle.

3. A requirement to deal with several simultaneous inputs, or to perform several concur
rent tasks.

4. A requirement for portability.

5. A requirement for reusability: The Ada language was designed so that creation of
reusable software would be relatively easy and straightforward [34].

6. A strong quality requirement (i.e. defects really matter, in financial and/or human
terms).

7. A strong performance requirement (i.e. run-time and/or reaction time is important).

Therefore questions like "Is Ada better than C-f—f or Pascal?" are neither suitable nor
useful. These considerations only make sense in terms of that environments or situations in
which the needed software will be used. Instead, the question "What kind of software do
we want to develop?" is more suitable to decide the programming languages to be used in
software projects.

18

3.2 Existing Guidelines

Software component reuse is the key to significant gains in productivity. However, to achieve
its fu l l potential, our attention should be focussed on development for reuse or, in other words,
design for reuse, which is a process of producing potentially reusable components [37]. It can
be easily predicted that we would experience difficulties when trying to reuse a component
that is not designed for reuse. In order to avoid such ad-hoc reuse style which is common
nowadays, first of all, it must be made clear what the term "reusability" means. Having
defined the characteristics of potentially reusable components, reuse guidelines are to be
developed to represent such characteristics clearly.

These days almost every journal relevant to software engineering contain some articles on
software reuse. Also in many conferences and workshops software reuse is a topic for discus
sion whether it is a main issue or a minor issue. It is also true that a substantial portion of
conferences and workshops is associated with Ada. Thus, many Ada code reuse guidelines
have been suggested. Among them, the following ones are notable:

• Nissen and Wallis's guidelines in 1984 [38

Theses guidelines were originally on "portability" issues, but also supply valuable
guidelines on "reusability".

• St. Dennis's guidelines in 1986 [39]

In his paper, he defines a set of characteristics of reusable software as well as guidelines
for implementing them in the Ada language.

• the Ada-Europe Software Reuse Working Group's guidelines in 1990 [40]

The Software Technology for Adaptable, Rehable Systems (STARS) Reusability Guide
lines in 1990 [41]

• Ramachandran and Sommerville's guidelines in 1992 [42

• Software Productivity Consortium (SPC) Services Corporation's guidelines in 1995 [43

Although it is observed that each set of guidelines have been enhanced, compared to the
previous ones, those guidelines are sometimes unreahsable and contradictory with respect to
other guidelines. Therefore more complete and well-organised guidelines are needed.

At large those guidelines can be divided into two different groups in terms of each guidelines'
structure. The first group of guidelines suggests guidelines enumerated in terms of language
features. The Ada-Europe Software Reuse Working Group's, STARS', and Ramachandran
and Sommerville's guideline belong to this group. On the other hand, the second group
contains guidelines classified with characteristics contributing to reusability. The typical
examples of this kind of guidelines are St. Dennis' ones and SPC's. In this thesis the second
classification scheme is used to propose guidehnes since the first one could become non-
readable like a "Reference Manual for the Ada Programming Language" and thus avoided

19

by users. Another reason is that the property of reusability can be addressed more easily
and efficiently with the second group of guidelines.

In the following sections of this chapter, characteristics of reusable components and standards
of useful guidelines are discussed. And then, based on the characteristics, guidelines with
rationale and specific examples are proposed.

3.3 Characteristics of Reusable Components

Regardless of development method, experience indicates that reusable code has certain
characteristics. St. Dennis posits the following 15 language-independent characteristics
of reusable software [39]:

1. Interface is both syntactically and semantically clear.

2. Interface is written at appropriate (abstract) level.

3. Component does not interfere with its environment.

4. Component is designed as object-oriented; that is, packaged as typed data with pro
cedures and functions which act on that data.

5. Actions based on function results are made at the next level up.

6. Component incorporates scaffolding for use during "building phase".

7. Separate the information needed to use software, its specification, from the details of
its implementation, its body.

8. Component exhibits high cohesion/low coupling.

9. Component and interface are written to be readable by persons other than the author.

10. Component is written with the right balance between generality and specificity.

11. Component is accompanied by sufficient documentation to make it findable.

12. Component can be used without change or with only minor modification.

13. Insulate a component from host/target dependencies and assumptions about its envi
ronment; Isolate a component from format and content of information passed through
it which it does not use.

14. Component is standardised in the areas of invoking controlling, terminating its func
tion, error-handling, communication and structure.

15. Components should be written to exploit domain of applicability; components should
constitute the right abstraction and modularity for the application.

20

In the mean time, SPC argues reusable software possesses the following four characteristics:

1. Reusable parts must be adaptable. To maximise its reuse potential, a part must be
able to adapt to the needs of a wide variety of users.

2. Reusable parts must be understandable. A reusable part should be a model of clarity.
The requirements for commenting reusable parts are even more stringent than those
for parts specific to a particular application.

3. Reusable parts should be independent. It should be possible to reuse a single part
without also adopting many other parts that are apparently unrelated. Also, they are
ideally required not to contain environment or machine-dependent facts.

4. Reusable parts must be of the highest possible quality. They must be correct, re
liable, and robust. An error or weakness in a reusable part may have far-reaching
consequences, and it is important that other programmers can have a high degree of
confidence in any parts offered for reuse. This is especially important to overcome the
managerial barrier against successful software reuse.

After thoroughly examining the above two groups, it can be said that the former group can
be incorporated into the latter one. Thus, the latter one is used to classify guidelines in the
thesis.

3.4 Standards Possessed by Good Guidelines

In order to produce highly reusable components explained in the previous section, we need
highly usable guidelines for users. Somerville et al. [44] argue that good guidelines must
adhere to the following standards:

• They must be understandable by software engineers with a reasonable level of Ada
programming expertise.

There is no point in producing complex guidelines which rely on subtle knowledge of
programming language semantics. Very few people understand such guidelines.

• They must be applicable without a great deal of additional effort.

Guidelines will not be applied during development if it means taking longer to develop
a component. In essence, they should help engineers make a design choice which has
to be made anyway as part of the development process.

• They must be unambiguous.

I f guidelines are unambiguous, it is possible to decide whether or not they have been
applied without detailed knowledge of the software component. This is important for
reuse certification. An assessor of component reusability cannot be expected to have
detailed knowledge of all components.

21

• They must recognise that embedded systems, which were the main goal of the devel
opment of Ada, usually have performance and memory utilisation requirements.

Wherever possible, the suggestions made should not degrade the efficiency of a com
ponent. I f changes are proposed, which affect the component's efficiency, this should
be explicit so that the efficiency implications may be analysed.

I n addit ion to the above things, good guidelines must supply rationale, and be validated
either through empirical experiments or by formal argument. Simple and clear examples are
needed to help users to understand and apply the guidelines.

Finally, i t has been observed that some guidelines are contradictory to the proposers' other
guidelines. A l l guidelines are to be consistent not to make users confused.

3,5 Guidelines

On the basis of the above characteristics of reusable components, guidelines follow below
to address them. Reusability of a component is investigated as the four constituents, i.e.
adaptability, comprehensibility, independence and, finally, robustness. Most of them were
f r o m existing guidelines found in the existing literature, although some were made by the
author. Guidelines are regrouped into 4 groups to which each guidelines contribute.

3.5.1 Principle of Adaptability

Reusable parts often need to be changed before they can be used in a specific application.
They should be structured so that change is easy and as localised as possible [43]. Here, two
factors are mainly related to adaptability of code. They are "completeness" and "generality".
Detailed explanations about them follow below.

Completeness

"Completeness" means that components should have all functions and operations for current
and fu tu re needs. Ideally, each component should contain all of the functionality that can
be associated w i t h such a component. Completeness, however, can cause development effort
to be spent on features not needed for the current project, but probably needed on future
projects. I t should be tempered by development cost, benefits provided by the component,
and likelihood of use.

There exist two kinds of completeness, i.e. intra-completeness and inter-completeness. They
means that not only should components themselves be complete, but also should the re
lationship between them be so. Guidelines A01-A03 are about the former, whereas A04
indicates the latter.

A O l : Make components as complete as possible [41 .

22

A02: Provide complete functionali ty in a reusable part or set of parts [43].

As explained above, i t is impossible to implement component in a perfectly complete manner,
but completeness is s t i l l a useful goal. To enhance reusability, components should be made
as complete as practical.

Related to "abstract data types (ADTs)" , the following three operator classes are needed:
constructors, observers, and iterators [33, chapter 4]. "Constructors" are operations that
alter the state of an abstract data type. "Observers" are operations that allow us to ob
serve the state of an abstract data type without changing i t . Finally, "iterators" indicate
operations that allow us to process all the components in an abstract data type.

Whi le this k ind of strategy can guarantee correctness in implementing abstraction, i t also
can cause performance problems. When we mention "performance", two things are related
to i t . They are t ime constraint and space constraint. Whenever this guideline is applied to
performance-critical situations, balancing between completeness and performance is needed.

A03: Provide initialisation and finalisation procedures for every data structure that may
contain dynamic data.

Any application that must control memory should use the initialisation and finalisation
routines to guard against memory leakage, which is concerned wi th space aspects of per
formance [18]. Al though i t is said much space problem was solved thanks to hardware
technology, but this guideline is st i l l needed, for Ada is mainly used for real-time, embedded
systems, where t ime and space constraints are severe.

A04: Make al l dependent components reusable.

This guideline is about "inter-completeness". A component is not fu l ly reusable unless
all the components i t includes through with^ are reusable. I f a component depends on
components that are not reusable, then potentially there may be portabil i ty and tailorability
problems [41 .

Generality

Matsumoto argues that component is wri t ten wi th the right balance between generality and
specificity [45]. W i t h respect to code generality, we can think of two things. One is use of
generic units. Sommerville et al call this kind of code characteristic "component genericity",
specifically [44]. Another is use of general names of units and identifiers.

Guidelines A05-A09 are about the former, whereas the latter is recommended in guidelines
AlO and A l l .

A05: Use generic units to avoid code duplication.

A06: Parameterise generic units for maximum adaptability.

A07: Use generic units to encapsulate algorithms independently of data type.

^In Ada community, the word with is used to mean the situation when a component includes other
component (s).

23

declare

Declaration

instantiate

Instantiation
call

Other Units

Figure 3.1: Three steps relevant to the use of a generic unit

Almost every author of each set of guidelines strongly recommends the use of the generic
faci l i ty of Ada since using generics can improve adaptability of components dramatically.
Another attractive point of using them is that the generic facilities in Ada have been specif
ically designed to support adaptability without run-time overhead [44]. As a matter of fact,
generics are instantiated at compile time.

Using generic units, i t is possible to produce as many objects as possible. Further, i f they
are parameterised, we can even get objects of different data types [43 .

Most algorithms can be described independently of the data type. So Ada's generic facil i ty
is very useful for that k ind of situations. As depicted in figure 3.1, normally, three steps —
declaration, instantiation and call — are involved for users to use a generic unit practically.

A simple example is given below to show the mechanism of generic facil i ty of Ada.

— Declaration of a generic unit

— S p e c i f i c a t i o n
generic

type Element i s lim i t e d private;
type Data i s array (P o s i t i v e range <>) of Element;
with function >><>> (Left : i n Element;

Right : in Element)
return Boolean i s <>;

with procedure Swap (Lef t : in out Element;

24

Right : in out Element) i s <>;
procedure Generic.Sort (Data_To_sort : in out Data);

— Body
procedure Generic_Sort (Data_To_Sort : in out Data) i s
begin

f o r I i n Data_To_Sort'range loop

i f Data_To_Sort(J) < Data_To_Sort(I) then
Swap(Data_To_Sort(I), Data_To_Sort(J));

end i f ;

end loop;

end Generic_Sort;

— Two po s s i b l e i n s t a n t i a t i o n s

— The f i r s t i n s t a n t i a t i o n
type Integer_Array i s array (P o s i t i v e range <>) of Integer;
procedure Swap (L e f t : in out Integer;

Right : in out Integer);
procedure Sort i s

new Generic_Sort (Element => Integer,
Data => Integer_Array);

— The second i n s t a n t i a t i o n
subtype String_80 i s s t r i n g (1 .. 80);
type String_Array i s array (P o s i t i v e range <>) of string_80;
procedure Swap (L e f t : in out String_80;

Right : in out String_80);
procedure Sort i s

25

new Generic_Sort (Element => String_80,
Data => String_Array);

— Two possible c a l l i n g s

— The f i r s t c a l l i n g

I n teger_Array_l : Integer_Array (1 .. ICQ);

Sort (I n t e g e r _ A r r a y _ l) ;

— The second c a l l i n g

S t r i n g _ A r r a y _ l : String_Array (1 .. 100);

Sort (S t r i n g _ A r r a y _ l) ;
AOS: Use abstract data types in preference to abstract data objects.
A09: Use generic units to implement abstract data types independently of their component
data type.

Guidelines AOS and A09 appeared in the SPC's guidelines [43]. Associated wi th abstract data
type or object, five different forms of implementation are possible. They are abstract data
object (ADO), abstract data type (ADT), generic abstract data object (GADO), parameterised
generic abstract data object (PGADO), and generic abstract data type (GADT).

Figure 3.2, which was drawn by the author due to the SPC's guidelines describes the 4
kinds of data objects and type implementable in Ada. A diagram of PGADO was omitted
for its d i f f icul ty in drawing i t . Below, each examples of the five kinds are given wi th some
explanation.

In Ada, five kinds of the abstract data object/type, "stack" can be implemented.

The first one is A D O . In the following example, only one stack of integers can be produced.
So i t is naturally lacking in genericity and powerfulness.

— An ADO
package Bounded_Stack i s

subtype Element i s Integer;
Maximum_Stack_Size : constant := 100;
procedure Push (New_Element : in Element);
procedure Pop (Top_Element : out Element);

26

object generic object

ADO

type genenc type
declaration

instantiation

ADT

GADT

Figure 3.2: Kinds of Abstract Data Objects and Types available in Ada

Overflow : exception;
Underflow : exception;

end Bounded.Stack;

The second one, A D T allows users to declare any number of stacks of integers by exporting
the Stack type.

-- An ADT
package Bounded_Stack i s

subtype Element i s Integer;
type Stack i s limited private;
Maximum_Stack_Size : constant := 100;
procedure Push (On_Top : i n out Stack;

New_Element : in Element);
procedure Pop (From_Top

Top_Element
Overflow : exception;
Underflow : exception;

in out Stack;
out Element);

27

p r i v a t e
type Stack_Information;
type Stack i s access Stack_Information;

end Bounded_Stack;

The t h i r d one is a parameterless generic abstract data object (G A D O) . Since i t is a generic
uni t , users can instantiate i t mult iple times to obtain multiple stacks of integers. I t should,
however, be noticed that only integer type of stacks can be obtained.

— A GADO
generic
package Bounded_Stack i s

subtype Element i s Integer;
Maximum_Stack_Size : constant := 100;
procedure Push (New_Element : in Element);
procedure Pop (Top_Element : out Element);
Overflow : exception;
Underflow : exception;

end Bounded.Stack;

The four th one is also a generic abstract data object but wi th parameters unlike the th i rd
one. Thus, stacks of data types other than "Integer" can be created.

~ A PGADO
generic

type Element i s li m i t e d private;
with procedure Assign (From : in Element;

To : in out Element);
Maximum_Stack_Size : in Natural := 100;

package Bounded_Stack i s
procedure Push (New_Element : i n Element);
procedure Pop (Top_Element : out Element);
Overflow : exception;
Underflow : exception;

28

end Bounded_Stack;

The last one, G A D T is considered as the most powerful and flexible. That is because i t allows
users to produce vi r tual ly any number of stacks of any types. So whenever we implement
an abstract data object / type, we should t ry to design as a G A D T .

~ A GADT
generic

type Element i s lim i t e d private;
with procedure Assign (From : in Element;

To : in out Element);
Maximum_Stack_Size : in Natural := 100;

package Bounded_Stack i s
type Stack i s l i m i t e d private;
procedure Push (On_Top : i n out Stack;

New_Element : in Element);
procedure Pop (From_Top : in out Stack;

Top_Element : out Element);
Overflow : exception;
Underflow : exception;

p r i v a t e
type Stack_Information;
type Stack i s access Stack_Information;

end Bounded_Stack;

The biggest advantage of an A D T over an A D O (or a G A D T over a GADO) is that the user
of the package can declare as many objects as desired wi th an A D T . Another gain is that an
A D T or a G A D T provides more protection of the data structure than an A D O or a GADO
since private types can be used in the formers.

Similarly, the biggest advantage of a G A D T or GADO over an A D T or an A D O is that the
formers can be parameterised wi th types, subprograms, and other configuration information
since they are generic. So f r o m the above facts, power and flexibility increase, approaching
f r o m an A D O to a G A D T .

I t is also observed that those advantages are not expensive in terms of complexity or devel
opment t ime. Therefore, wherever possible, a G A D T is to be preferred to an A D O .

29

AlO: Select the least restrictive names possible for reusable parts and their identifiers.

A l l : Select the generic name to avoid conflicting wi th the naming conventions of instantia
tions of the generic.

Choosing a general or application-independent name for a reusable part encourages its wide
reuse. When the part is used in a specific context, i t can be instantiated (i f generic) or
renamed w i t h a more specific name.

A n example of applying the above two guidelines for general-purpose stack follows below.

generic
type Item i s l i m i t e d private;

package Bounded.Stack i s
procedure Push (New_Item : in Item);
procedure Pop (Newest_Item : in Item);

end Bounded_Stack;

The above general purpose stack abstraction can be renamed appropriately for use in current
application as follows:

with Bounded.Stack;
package C a f e t e r i a i s

type Tray i s li m i t e d private;

package Tray_Stack i s new Bounded_Stack (Item => Tray, . . .) ;

end C a f e t e r i a ;

3.5.2 Principle of Comprehensibility

These properties are also known as readability, understandability or clarity. As explained
in chapter 2 of this thesis, program comprehension is the most expensive activity during
maintaining software. Thus any attempt to improve understandability of software is warmly
welcomed. According to the statistical data appearing in section 2.2, the implications are
that i f we want to improve software development, we should look at maintenance, and i f
we want to improve maintenance, we should facilitate the process of comprehending existing
programs. Rugaber of Georgia Institute of Technology identified the following gaps we should
bridge to comprehend a program [46]:

30

• Applicat ion domain/program domain — The gap between a problem f rom some ap
plication domain and a solution in some programming language.

• Concrete/abstract — The gap between the concrete world of physical machines and
computer programs and the abstract world of high level descriptions.

• Coherency/disintegration — The gap between the desired coherent and highly struc
tured description of the system and the actual system whose structure may have dis
integrated over t ime.

• Hierarchical/associational — The gap between the hierarchical world of programs and
the associational nature of human cognition.

• Bot tom-up/ top-down — The gap between the bottom-up analysis of the source code
and the top-down synthesis of the description of the application.

There exist two approaches to understanding a program while bridging those gaps: bottom-
up, starting w i t h the source code and generating a description; and top-down, formulating
hypotheses and confirming them by examining the program.

A n example of the former is the approach taken by Soloway and Ehrlich. They propose a
bottom-up model of analysis based on the recognition of plans in the source code [47 .

The top-down approach is championed by Ruven Brooks. In his approach , the program
understander attempts to create a series of mappings between the application domain and
the program. Exploration is driven by expectations derived f rom the application description
w i t h the aid of "beacons" [4S .

The fol lowing guidelines are suggested to support the top-down approach of Brooks. That
is, applying them can help users find "beacons" more easily.

Cohesion

Cohesion is the degree to which the statements in a component f rom a coherent whole.
The most coherent components do just one thing, whether i t be manipulating an object or
performing a funct ion. [1].

According to Stevens [49], there are six layers of cohesion. They are listed below f rom lowest
to highest:

1. Coincidental Cohesion: The module does tasks^ that are related loosely or not at all .

2. Logical Cohesion: The tasks are related in some logical way.

3. Temporal Cohesion: The tasks are related in some way and must be done in the same
t ime span.

^In this context, the term, task means a thing or a piece of work rather than a program unit of Ada

language that executes concurrently with other program units.

31

4. Communicational Cohesion: A l l processing elements of a task refer to the same set of
input or output data.

5. Sequential Cohesion: Output data f rom one element of the module is input for the
next element.

6. Functional Cohesion: A l l elements of a module are related to performing a single
funct ion.

I n this scheme, low levels of cohesion should be avoided as much as possible. Middle levels
of cohesion are about as good as high levels. I n practice, i t is not necessary to improve the
cohesion of a component once i t is in the middle range.

Another way to measure cohesion is found in Embley and Woodfield's paper [50]. They
classified the degree of cohesion in a module into four kinds — separable, multifaceted, non
delegation, and concealed. These are defined as follows for abstract data types (ADTs) , but
the ideas can be generalised to all reusable components. Details of the four kinds follow:

1. Separable Strength: A n A D T part has separable strength i f the part exports an oper
ator (funct ion or procedure) that does not use a domain of the A D T i t exports; or the
part has a logically exported domain of the A D T that no operator of the part uses; or
the part has two or more logically exported domains whose operators do not share any
of the domains of the A D T .

2. Mult ifaceted: A n A D T part has multifaceted strength i f i t does not have separable
strength, and i t exports two or more domains of the A D T . Because i t is not separable
some operator must share two or more exported domains.

3. Non-delegation: A n A D T part has non-delegation strength i f i t has neither separable
nor multifaceted strength, and i t has an operator that can be delegated to a more
pr imi t ive A D T .

4. Concealed: A n A D T part has concealed strength i f i t has neither separable, mul t i -
faceted, nor non-delegation strength and i t has a logically hidden A D T .

COl: Make cohesion high wi th in each component.

Al though not essential for reuse, cohesion is a desirable attribute, because components wi th
high cohesion are l ikely to be easier to understand and more tailorable, since related code
w i l l tend to concentrate in one place.

Commenting

The author believes that zero-commenting is the best. That means that i f source code itself
is perfectly self-documenting, then any comments or documents would not be necessary to
understand the code. However, that goal is not accomplishable; thus a suitable commenting
scheme is needed in real programming practice. Below, a general guideline C02 and 6 specific
guidelines C03-C08 are given.

32

C02: Make each comment adequate, concise and precise.

C03: Put a file header on each source file.

C04: Put a header on the specification of each program unit.

C05: Place informat ion required by the maintainer of the program unit in the body header.

COG: Comment on all data types, objects, and exceptions unless their names are self-
explanatory.

C07: Minimise comments embedded among statements.

COS: Use pagination markers to mark program unit boundaries.

Comments of suitable quantity and good quality wi l l obviously make the component more
readable and thus easier to tailor [43]. As one thing notable, comments often fa i l to change
in accordance w i t h the change of the source code which contains the comments. Thus i t is
important to make source code as self-documenting as possible. And , i f ever comments are
needed, they must be made in a concise manner to facilitate users' understanding.

I n the above 6 guidelines, C03-C08, i t is recommended the use of file header, program unit
specification header, program unit body header, data comment, minimal statement comment
and marker comments.

Identifier Qualification

Ada's "use" clause permits us to utilise package identifiers such as New_Line without qual
if icat ion. The advantage to using a use clause is that we do not have to type so many
characteristics when entering Ada program. As Ada programs are often longer than BASIC,
C, and Pascal programs, this is attractive to programmers familiar wi th these languages.

The advantage of avoiding "use" clause and qualifying all references to package identifiers is
the additional documentation provided. Ada was designed for wri t ing large programs. In a
program that contains hundreds of thousands of statements and hundreds of packages, the
informat ion supplied by qualification is invaluable [33].

C09: Minimise the use of "use" clauses [42 .

Two examples containing each unqualified identifiers and fu l ly qualified identifiers are given
below.

— A program containing an unqualified i d e n t i f i e r
Put (Item => P a r t) ;

— A program containing a f u l l y q u a l i f i e d i d e n t i f i e r
Integer_IO.Put (Item => P a r t) ;

33

In the first example, i t is impossible to determine whether the identifier Part is type Integer,
Float, or String f r o m this unqualified call to procedure Put. But , in the second one, i t is
immediately clear that Part is type Integer.

Informat ion Hiding

The rationale comes f r o m the good software engineering practice of minimising the amount
of informat ion visible to the outside world. The principle of information hiding [51] suggests
that modules be "characterised by design decisions that (each) hides f rom all others". In
other words, modules should be specified and designed so that information (procedures and
data) contained w i t h i n a module are inaccessible to other modules that have no need for
such informat ion.

The use of information hiding as a design criterion can help produce comprehensible codes,
for only needed codes are accessible to users.

I n Ada, this concept can be easily implemented by using package concept and two kinds of
private types.

The following five guidelines were made to promote information hiding principle in Ada.

CIO: Only place i n the specification section those declarations that must be seen externally.

C l l : Only " w i t h " those compilation units that are really needed.

In the Ada language, users only can access specifications of packages which they are using.
Thus, only i f the specification needs such visibility, the context clause should appear in the
specification; otherwise i t should appear in the body. And including unnecessary context
clauses could make understanding the code more difi icult [18]. As an note on automation, a
tool could be wr i t ten to catch unneeded "withs".

C12: Use private and l imi ted private types to promote information hiding.

C13: Try to use l imi ted private types.

Guidelines C12 and C13 were established on the basis of "Lovelace", an online Ada95
tutor iaP.

When declaring a type in a package declaration, we can declare the type as private, and then
complete the definit ion i n a section of the package declaration in a section called the "private
part". I f a type is declared as private, other packages can only use the operations that we
provide and the default assignment (:=) and equality (=) operations. Let's suppose that we
want to create a type called "Key", which uniquely identifies some resource; we only want
people to be able to request a key and determine i f one key was requested before another
(let's call that operation " < ") . Here's one way to implement this (this example is f rom the
Ada L R M section 7.3.1):

^Lovelace Ada Tutor is situated at "http://lglwww.epfl.ch/Ada/Tutorials/Lovelace/lovelace.htmr'. Like
other http addresses, this is correct at the time of writing this thesis.

34

package Key_Manager i s
type Key i s pr i v a t e ;
Null_Key i s constant Key; — a deferred constant,
procedure Get_Key(K : out Key); — Get a new Key value,
function "<"(X, Y : Key) return Boolean; — True i f X requested before Y

p r i v a t e
Max.Key : constant := 2 ** 16 - 1;
type Key i s 0 .. Max.Key;
Null : constant Key := 0;

end Key.Manager;

In the above example, the type declaration in the package declaration is declared as "private".
This is later followed by the word "private" introducing the "private part" of the package
specification. Here the type can be defined, as well as any constants necessary to complete its
defini t ion. Al though "Key" is actually a numeric type, other packages cannot use addition,
mul t ip l ica t ion, and other numeric operations because Key is declared as "private" — the
only operations are those defined in the package (and : = and =) .

I f we do not want the default assignment (:=) and equals-to (=) operations, we should
declare the type to be " l imited private". This means that not even assignment and equals-
to operations are automatically defined. I t is done by changing one sentence in the above
example as follows:

type Key i s l i m i t e d private;

A l imi ted private generic formal type prevents the generic unit f rom making any assumptions
about the structure of objects of the type or about operations defined for such objects. But
a non-l imited private type generic formal type allows the assumptions that assignment and
equality comparisons are defined for the type. Therefore, to be reusable in as many contexts
as possible, l imi ted private types should be used [42, 18 .

C14: Use mode " in out" rather than "out".

I n two situations, i t is advised not to use the mode "out".

The first situation is where the parameters are of an imported l imited type for parameters of a
generic fo rmal subprogram. According to the Ada Language Reference Manual [34, Section
7.4.4(4)], Ada allows an out mode parameter of a l imited private type on a subprogram
only when the subprogram is declared in the visible part of the package that declares the
private type. On the other hand, there is no such restriction in parameters of mode in out.
For instance, suppose we define a generic wi th a l imited generic formal type and a generic
formal subprogram w i t h an out parameter of that type. Then, a potential user who wants
to instantiate the generic w i th a l imited type defined in another package would not be able
to wri te a program to pass as the generic actual.

35

The second reason why we should avoid using the mode was explained by Sommerville et
al [44]. According to their guidelines, the parameter passing mode should always be in (for
read-only parameters) or in out. I f in i t ia l values to parameters are assigned in a procedure,
these in i t i a l values usually reflect the environment for which the procedure was originally
defined. This is not advisable as far as reuse is concerned. A further reason for avoiding the
out mode of parameter passing is that its semantics are nor well-defined.

Nesting

Nesting can make changing a program more difficult owing to the limitations of human
intelligence and perception. There are four kinds of situations where nesting happens. They
are when we use " i f " construct, "while" construct, "for" construct and, finally, "procedures".
Below are a general guideline and a specific guideline given.

C15: Do not nest expressions, control structures or procedures to an excessive degree un
necessarily [43, 33].

In the case of " i f " construct, "while" construct and "for" construct, SPC guidelines recom
mend not to nest the constructs beyond a nesting level of five. Meanwhile, as for the nesting
w i t h i n procedures, strict nesting, i.e. zero level of nesting, makes a procedure completely
self-contained and thus easy to reuse in other programs. I t can be compromised between
strict nesting and straight-line declarations of procedures by nesting those procedures that
are called by only one procedure, and globally declaring those that are widely used. The
documentation for procedures that make nonlocal calls should note which procedures are
needed for proper execution [33 .

C16: Use "elsif" for nested " i f " statements.

This reduces the nesting levels of the i f statements, giving the code as clean, uncluttered
appearance. I t also emphasises the equal status of each i f statement [52, page50]. Below are
two examples about this guideline given.

— A exajnple to be avoided
i f Order = L e f t then

Turn.Left;
e l s e

i f Order = Right then
Turn.Right;

e l s e
i f Order = Back then

Turn_Back;
end i f ;

end i f ;
end i f ;

36

— An excimple to be preferred
i f Order = L e f t then

Turn_Left;
e l s i f Order = Right then

Turn.Right;
e l s i f Order = Back then

Turn_Back;
end i f ;

Overloading

I n Ada, the same variable name in different declarative regions can represent different loca
tions i n memory. The vis ibi l i ty of homographs is determined by name precedence [32].

I n addit ion to i t , Ada provides a way to use the same identifier name for different sub
programs even i f they are declared in the same region. This is known as overloading of
subprograms. Unlike in the above case, overloaded procedures are distinguished wi th the
aid of both the number of parameters and the types of the parameters [33 .

Finally, Ada also allows the overloading of the predefined operators such as "-|-" or "-".

A guideline is suggested on the basis of the above things.

C17: Do not overload names f rom package "Standard" [53 .

Rymer argues that Ada names predefined in package Standard should not be redefined or
overloaded [53]. That is because this keeps the reader f rom confusing the overloaded names
w i t h the names predefined in package "Standard".

Self-descriptiveness

As explained in guidelines on commenting in detail, i t is important to make code as self-
documenting, i n other words, self-descriptive as possible.

The fol lowing 9 guidelines are recommended to increase code readability.

CIS: Make reserved words and other elements of the program visually distinct f rom each
other.

This guideline is instantiated as follows, although slightly different style can be adopted for
each organisations [43]:

• Use lower case for all reserved words (when used as reserved words).

37

• Use mixed case for all other identifiers, a capital letter beginning every word separated
by underscores.

• Use upper case for abbreviations and acronyms.

These kinds of style were also used in the Ada 95 Reference Manual [54].

C19: Use descriptive identifier names.

C20: Do not use any abbreviations in identifier or unit names.

Using descriptive identifier names is needed for the sake of programmer himself and other
users, for it promotes readability and self-documentation. Names should be as long as
necessary to provide the needed information and to promote readability. They should be
considered part of the documentation of the component.

Almost every set of guidelines mandates users not to use any abbreviations in identifiers.
Even if some abbreviations are well defined and known in a certain domain, they could cause
difficulties in understanding them. That is because reuse very often happens across domains
other than where the software components were built, thus the meanings of abbreviations
can be ambiguous to other users.

C21: Use names which indicate the behavioural characteristics of the reusable part, as well
as its abstraction.

If this general guideline is applied to names for procedures or functions, it can be instantiated
as follows [43]:

• Use action verbs for procedures and entries.

• Use predicate-clauses for boolean functions.

• Use nouns for nonboolean functions.

Some examples are given below.

— Sample pro c e d u r e neimes

procedure Get_Next_Token

procedure C r e a t e

— Saitiple f u n c t i o n names f o r boolean-valued f u n c t i o n s
f u n c t i o n I s _ L a s t _ I t e m

f u n c t i o n Is_Empty

— Sample f u n c t i o n names f o r nonboolean-valued f u n c t i o n s

38

f u n c t i o n S u c c e s s o r
f u n c t i o n Length
f u n c t i o n Top

C22; Do not hard code array index designations [41 .

Instead of hard coding array index designations as below, types or subtypes should be used,

t y p e T a b l e i s a r r a y (1..50) of Element_Type;

The reason is that the additional declaration will make the code more self-documenting and
thus more tailorable [41]. The upper or lower bound may be an index that will change at
some time. The subtype or type declaration will allow the change to be made once instead
of many times throughout the program.

C23: Use named constants for parameter defaults [38 .

Using named constants as parameter defaults would help the reader to better understand
the code as in the following examples:

Example

p r o c e d u r e Read (V a l u e : out Element.Type;

Group : i n Tag_Group_Type := Defau l t _ G r o u p) ;

is easier to understand than this.

procedure Read (V a l u e : out Element_Type;

Group : i n Tag_Group_Type := 0) ;

C24: Use named parameters association.

As in the case of Guideline C23, the added documentation from using named parameters
association would make code more understandable.

C25: Use descriptive named constants as return values.

Layout

Layout of code can be achieved through suitable vertical and horizontal spacing. It could
help perceive the semantics as well as the syntax of a certain code segment.

C26: Code program in a well-arranged manner horizontally and vertically.

Perhaps, current sophisticated pretty-printers can do this for programmers.

39

Environment

Software

Module
1

Module Module Module

1. Inter-module Independence

2. Software System Independence

3. Machine Independence

Figure 3.3: Three Kinds of Independence

3.5.3 Principle of Independence

Independence of a component means the degree to which a component is related to other
components or environment surrounding i t , either it is hardware or software environment.
Thus, independence has been represented as terms such as coupling or portability. Here, the
term independence is considered as a concept concept than coupling., portability, or rehosta-
bility.

There exist three kinds of independence as described in figure 3.3 [41]:

• inter-module independence

• software system independence

• machine independence

Below are guidelines given to improve the three kinds of independence.

Coupling

Inter-module independence mentioned above has also been known as coupling [1]. Pressman
defines coupling as a measure of interconnection among modules in a software structure. In
other words, coupling measures how much modules depend on one another. It depends on the
interfaces between modules, the data that pass between them, and the control relationships.

101: Make coupling low.

Coupling should be as low or loose as possible. This helps make dependencies both clear
and isolated, thus making components easier to reuse.

According to Stevens [49], there are several levels of coupling, listed below from lowest to
highest.

40

1. No Coupling: The modules are independent and do not communicate.

2. Data Coupling: Communication is limited to passing simple arguments.

3. Stamp Coupling: A variation of data coupling, where part of a data structure is passed,
rather than simple arguments.

4. Control Coupling: Data of a control nature are passed. An example is the passing of
a control flag.

5. External Coupling: Modules are tied to specific external environments. For some
modules this may be unavoidable, but environment dependence should be isolated as
much as possible.

6. Common Coupling: Modules share data in a global data area.

7. Content Coupling: One module uses the data within the boundary of another module.

In this scheme, coupling should be as low as possible, both for components and for modules
making up components. For some modules it may not be possible to achieve the lower
levels of coupling (no coupling, data coupling). An effort should be made, however, to build
modules with coupling as low as possible in the above scale.

Another way of to measure coupling comes from Embley and Woodfield's research [50]. In
this scheme two compilation units are visibly coupled if one directly accesses the data struc
tures of the other. They are surreptitiously coupled if one uses undocumented information
about the other's data structures. Finally, they are loosely coupled i f they are neither visibly
nor surreptitiously coupled. In this scheme, the goal is to make components loosely coupled.

102: Minimise "with" clauses on reusable parts, especially on their specifications [42 .

103: Use generic parameters instead of "with" statements to reduce the number of context
clauses on a reusable part, and to import portions of a package rather than the entire
package [41 .

It can assumed that the more "with" clauses a component has, the more difficult it would
be reused in the future, since the component can not be reused without the components on
which it depend.

Machine Independence

Machine Independence can be used in the nearly same meaning as retargetability or rehosta-
bility, and, perhaps, portability. Code should be written to ignore details of underlying
implementations. And components should be designed without reference to the surround
ing environment. Contact between a component and its environment should occur through
explicit parameters and explicitly invoked subprograms [55, page?].

The following 3 guidelines are concerned with the relationships between a component and
its hardware environments with which it interacts.

41

I D
I D

I D

1 iMachme-lndefendentFealures

D : Machine-Dependeiil Features

Figure 3.4: A method to improve independence of components

104: Machine-dependent and low-level Ada features should be avoided except when abso
lutely necessary [38, page 187].

105: Encapsulate input/output (I/O) uses into a separate I/O package [42, 41].

106: Minimise the use of implementation dependent I /O procedures [56].

In Ada, heavy emphasis is given to the use of packages to increase the independence of a
program by encapsulating machine dependencies.

SPC suggested the following 3 steps in order to increase machine independence of compo
nents [43]:

1. Don't use machine-dependent or environment-dependent features.

2. I f 1) is impossible, isolate those features.

3. I f 2) is also impossible, document them well for future users.

As depicted in figure 3.4 drawn by the author due to SPC guidelines, maintaining the source
code at the left side case will be definitely more expensive than ones at the right side.

Software System Independence

Software system independence indicates the relationships in more inner areas rather than
machine level.

107: Use the predefined packages for string handling.

The predefined Ada language environment includes string handling packages to encourage
portability. They support different categories of strings: fixed length, bounded length, and
unbounded length. Subprograms for string construction, concatenation, copying, selection,
ordering, searching, pattern matching, and string transformation. Thus, we no longer need
to define our own string handling packages [43 .

108: Avoid predefined and implementation defined types [41 .

42

Predefined types such as integer or float are not likely to be portable because their form,
i.e. range and precision, can vary from Ada implementation to Ada implementation [40].
Therefore, predefined defined types should be avoided except for the case of string.

109: Explicitly specify the precision required.

Each floating point or fixed point type should explicitly specify the precision, using the
"Delta" or "Digits" accuracy definition. This will make clear any assumptions made about
accuracy of calculations [41 .

110; Use "attributes" instead of explicit constraints.

An example from Nissen and Wallis' book well explains the reason why this guideline should
be followed [38].

A: a r r a y (D i s c r e t e _ T y p e) of F;

f o r I i n D i s c r e t e _ T y p e loop
e x i t when A (I) < Sum * F ' E p s i l o n ;
Sum := Sum + A (I) ;

end loop;

This example assumes that the series A (l) -|- A(2) -f- A(3) -|- ••• converges when afl terms are
positive. Because the loop depends on F's model numbers and not on explicit constraints,
all Ada implementations should have the same accuracy.

I l l : Use explicitly declared types for integer ranges in the loop statement.

If no type name is specified, then Integer is used as the default, which can result in a discrete
range being invalid under some Ada implementations. By using type designations, the logic
can be more independent of the data [41, 43].

— An example t o be avoided
f o r I i n 1..Max_Num_Apples loop

end loop;

— An example t o be p r e f e r r e d

t y p e Apple_count_Type i s range 1..Max_Num_Apples;

f o r I i n Apple_Count_type loop

end loop;

43

112: Avoid optional language features.

To make components portable, it is advised not to use optional language features and Ada
implementation dependencies, where this cannot be done, they should be isolated, so users
can plug in new versions easily [42]. For example, using "Unchecked-Deallocation" and
"Unchecked-Conversion" can cause portability problem in the future reuse. That is because
these two procedures are optional and implementation dependent. If ever they must be used,
their use should be documented.

113: Avoid using pragmas [41 .

Pragmas are generally environment dependent. Therefore, their use is not recommended.
However, sometimes, their use may be unavoidable. For instance, pragma "Interface" may
be needed to specify interfaces with subprograms of other languages. Pragma "Elaborate"
may be needed to insure that a program is correctly elaborated no matter what compiler is
used, since elaboration order varies from compiler to compiler [43 .

As in the above two instances, i f pragmas are used, they must be isolated and thoroughly
documented.

114: Close files before a program completes.

Different Ada implementations handle unclosed files in diff'erent ways. The state of unclosed
files after program termination is undefined. Therefore, to increase the independence of a
component, it is recommended to close all files before a subprogram terminates normally or
abnormally [41 .

115: Do not input or output "access" types.

The eff'ect of I /O of access types is undefined. If used, it may lead to components that are
not portable. To output an object pointed to, output the object. To output the address of an
object pointed to, the address of the object using "System.Address" should be output [56].

3.5.4 Principle of Robustness

High Robustness of a component means that the component is of the highest possible quality.
In other words, it is correct and rehable [43]. An error or weakness in a reusable part may
have very expensive consequences, and it is important that other programmers can have
a high degree of confidence in any parts offered for reuse. That is to say, robustness of
components are closely related with the cultural obstacles to a successful reuse adoption
which are represented as the term, "NIH syndrome".

Error Tolerance

"Error tolerance" has also been known as "defensive programming" [38]. Because Ada has
traditionally been used in real-time, embedded systems where a small fault could cause a
catastrophic results, it is important not only to prevent faults, but also to handle them, if
even happen.

44

Ada provides facilities to deal with these real problems which make handling them much
easier than in other programming languages. In Ada, an exception represents a kind of
exceptional situation, usually a serious error. At run-time an exception can be raised, which
calls attention to the fact that an exceptional situation has occurred.

The following guidelines are believed to improve error tolerance and hence software robust
ness.

ROl: Put a modest amount of "exception" and "raise" statements in code.

Exception declarations and handlings should be used in the situations where they are def
initely needed. Unnecessary "exception" and "raise" statements could do more harm than
good to the principle of defensive programming.

Good exception handling is important to software reuse for several reasons [33]:

• Components with good error exception handling have safety built in.

• Errors are isolated and well documented.

• The way interfaces work is made clear. There are fewer hidden assumptions. Thus i t
is safer than not so.

• The users have the freedom to decide whether to propagate exceptions further, to
retry the operation that raised the exception, to abandon the operation, or to continue
regardless.

• Good exception handling makes components more tailorable and thus more reusable.

R02: Propagate exceptions out of reusable parts.

The rationale behind this guideline is as follows. An exception is raised because an undesired
event has occurred. Such events often need to be dealt with entirely differently with different
uses of a particular software segment. Also, it is very difficult to anticipate all the ways that
users of the part may wish to have the exceptions handled. Passing the exception out of the
part is the safest and best treatment [43 .

R03: Never use the "when others" construct with the "null" statement [41 .

Use of the null statement suggests that the exception is not used for an abnormal condition.
Below is a typical of it shown.

b e g i n

loop

r a i s e M i s c e l l a n e o u s _ E r r o r ;

45

end;
e x c e p t i o n

when o t h e r s =>
n u l l ;

end;

— r e s t of normal program code

In the above example "raise" statement is used to exit the loop and to continue executing
normal control flow. This implies that there never was an abnormal condition and thus i t
was unnecessary.

R04: Avoid pragma "suppress".

The Ada Language reference Manual [34, Section 11.7] does not require that pragma suppress
be implemented. Program suppress does not guarantee that exceptions will not be propa
gated to a unit for which exception suppression is in effect. The execution of a program is
erroneous i f an exception occurs while pragma suppress is in effect.

R05: Do not propagate an exception beyond where its name is visible [40].

An exception should not be propagated beyond where its name is visible. Otherwise, it can
only be handled by a "when others" handler.

R06: Do not propagate predefined exceptions without renaming them.

Predefined exceptions have no corresponding "raise" statement in the source code, so it is not
always obvious that an exception can be propagated. Predefined exceptions can be raised by
many operations, making them difficult to locate. Renaming predefined expressions makes
it easier to pinpoint the exact cause of each exception [44, 41].

R07: Do not execute normal control statements from an exception.

Ada's exception handling should be only used for abnormal control flow, not for normal
control [41]. For instance, the following code contains an unnecessary exception statement.

b e g i n

loop

T e x t _ I O . G e t (D a t a _ F i l e , D a t a . V a l u e) ;

end loop;

e x c e p t i o n

when T e x t _ I O . E n d _ E r r o r (D a t a _ F i l e) =>

end;

46

This can be changed as below, where the exception statement was substituted for a normal
control statement "while".

w h i l e not T e x t _ I O . E n d _ O f _ F i l e (D a t a _ F i l e) loop;
T e x t _ I O . G e t (D a t a _ F i l e , Data_Value) =>

end loop;

R08: Use range constraints on numeric types.

This causes the compiler to issue a message if the range cannot be supported. The range
constraints should be meaningful to the application [52].

R09: Explicitly declare a type to use in defining discrete ranges [55] [page 28].

Use explicitly declared types for discrete ranges. That is, use

t y p e D i s c r e t e _ R a n g e i s range 1 . . T a b l e _ S i z e ;
t y p e T a b l e i s a r r a y (D i s c r e t e _ R a n g e) of Element_Type;

instead of

t y p e T a b l e i s a r r a y (1 . . T a b l e _ s i z e) of element_Type;

This provides several benefits. There will be fewer logic errors when components are tailored,
because the compiler will have already caught them when it checked for type inconsisten
cies. Also, the code will be more portable, since the compiler can select the best internal
representation for the numeric type requested by the range declaration.

Unfortunately, using explicitly declared types for integer discrete ranges does not always
lead to easy to read code. Type conversions may be needed to convert among explicitly
declared types. The combination of long type names and required type conversions results
in long multi-line Ada statements that are hard to read. Nevertheless, the advantages of
using explicitly declared types for integer discrete ranges outweigh the disadvantages.

RIO: Avoid using the "when others" clause of the "case" statement as a shorthand notation.

The when others clause of the case statement should not be used as a shorthand to handle
all cases that have not been listed. Instead, each case should be explicitly handled and the
when others clause must be omitted. I f the component is later modified to add more values
to the data type, this will call attention to the fact that the new values are not handled
in the case statement. I f the when others clause was used, the new data values would be
handled by this clause and the operation on the data might be incorrect [42, 44].

47

3.6 Summary

In this chapter, firstly, the history of Ada and Ada's major features were reviewed. Through
i t , the specific situations where Ada is most suitable were identified, as well as the language's
strong points and weak points especially in terms of code reuse.

After that, existing Ada code reuse guidelines were reviewed in section 3.2. Ways to im
prove their usability were investigated. On the basis of these considerations, guidelines
were suggested on the basis of the above things to maximise the Ada's strong points while
complementing and minimising its weak ones. The guidelines appearing in this thesis were
grouped in accordance with the constituent properties, i.e. adaptability, comprehensibility,
independence and robustness, which are believed to contribute towards code reusability.

48

Chapter 4

Reuse Metrics: Metrics regarding
Software Reuse

"When you can measure what you are speaking about, and express it in numbers,
you know something about i t ; but when you cannot measure i t , when you cannot
express i t in numbers, your knowledge is of a meager and unsatisfactory kind:
it may be the beginning of knowledge, but you have scarcely in your thoughts
advanced to the stage of science". — Lord Kelvin

Software Metrics are necessary to know the properties of the software we are developing and
predict the needed effort and development period. Moreover, they are needed when software
is maintained for various reasons which allow us to classify maintenance into four kinds, i.e
corrective maintenance, adaptive maintenance, perfective maintenance and preventive main
tenance [57].

In this chapter, first of all, the general background of software metrics is studied. The
background studies cover the objectives of software metrics, measurement theory applied
to software engineering and five types of scales relevant to software product and process
measurement. In addition to these studies, desirable characteristics of software metrics are
defined.

Finally, software metrics especially relevant to reuse are investigated.

4,1 Introduction

The history of measurement is as old as human history. Among those measuring units, some
such as foot still exist until now. I t is believed that one of the most important concepts
in engineering discipline is measurement [58], as is reuse. An engineer needs to know why

49

to make measurements, what can be measured, how to measure, and what to do with the
results.

As an engineering discipline, software engineering has faced the following questions while
building or maintaining software.

How good is a program? How reliable will a software system be once it is in
stalled? How much more testing should I do? How many more bugs can I expect
to find? How much will the testing cost? How difficult will it be to maintain a
system? How much will it cost to build a new system similar to one we built five
years ago? How long will it take?

In addition to the above things, especially in the view of software reuse, good measurement
skills are crucial to promote it in software industry communities.

4.2 Software Metrics

Confusion in using terms such as metrics and measurement proves that the area is still a
young discipline, and has been neglected by computer scientists.

Lorenz defines the terms as follows [59]. Metrics is a standard of measurement used to
judge the attributes of something being measured, such as quality or complexity, in an
objective manner. On the other hand. Measurement is the determination of the value of
a metric for a particular object. Therefore, considered with those definitions, the term,
measurement should be used, when mentioned about the activity itself to measure something.
However, since the term, metrics is generally accepted and used in the discipline of software
engineering, the distinction between two terms is not strictly made in this thesis.

4.2.1 Objectives of Reuse IVIetrics

Ford [58] suggested four reasons why engineers measure. For the sake of software, they can
be said as follows:

To understand the current state which software community is facing

Every software measurement describes an aspect of the current situation of software
communities and helps us discover patterns and trends. Thus valuable theories or
laws on software could be drawn by the results of measurements. Also, additional
measurements can be used to support or refute them, thereby leading to a better
explanation for the current situation.

To state software requirements quantitatively and demonstrate compliance

50

It is almost impossible to imagine an engineering project without quantitative require
ments. For example, suppose a civil engineer is designing a highway bridge over a
river. He should be concerned with the length of the bridge, the maximum traffic load,
the height and flow of the river at the flood stage, the maximum wind load the bridge
must withstand etc., which are likely to be expressed quantitatively. Otherwise, the
bridge might collapse in the future.

Software engineers also have to work with quantitative requirements. As a result of
these, engineers need to be able to demonstrate compliance with such requirements.

To track progress and predict results of a software project

In a large software project, periodic measurement of what has been accomplished or
complete allows the project manager to track progress quantitatively. That kind of
software measures can be specially useful in the identification of unusual trends, so
the manager can foresee problems and try to solve them before they get out of hand.
This can resolve not only technical problems, but also schedule or cost overruns. For
instance, software engineers use defect counts during testing to calibrate reliability
models, which in turn can predict when system testing will be complete and the desired
level of system reliability achieved.

• To analyse costs and benefits

In the real world, we are almost always not allowed to chase two rabbits. For example,
if we want to get a good mark in an examination paper, we might have to sacrifice
some entertaining times for study. Likewise, similar trade-offs happen when software is
built. There are almost always many ways to design software products and many ways
to design the components and subcomponents of those products. Each design offers
advantages and disadvantages, and the software engineers must trade one thing against
another. The classic trade-off in computer programming is time vs. space. The two
aspects very often conflict. Therefore, if quantitative data on the costs and benefits
are provided to software engineers, they would be able to make better decisions, as a
result, leading to reduced costs and increased costs.

4.2.2 IVEeasurement Theory in Software Engineering

Although originally measurement theory is from mathematics [58], for software engineering
to become a real engineering discipline, it is needed for those principles to be adopted in a
form of software engineering measurement.

Informally, as mentioned earher, we can think of a measure as a way of associating a number,
representing some attribute, with a physical object. Such association is usually called a
mapping or a function in mathematical terms. Formally the association is defined as the
following six formula [58 .

Definition 1

Let A be a set of physical or empirical objects. Let 5 be a set of formal objects, such as
numbers. A measure n is defined to be a one-to-one mapping fj, : A ^ B.

51

b l

- b 2

b3

b4

(a) (b)

Figure 4.1: One-to-one mapping and one-to-many mapping

The requirement that the measure be a one-to-one mapping guarantees that every object has
a measure, and every object has only one measure. It does not require that every number
in set B be the measure of some object in set A. As shown in figure 4.1, in the case of (a),
since each measure is unique, we can use them to expect the benefits described above. On
the other hand, i f our measures belong to the second case, they would cause confusion to
not only software engineers but also managers. Thus, we must try to get measures desirable
like in the first case.

i? be a measure.

Definition 2

Let A be a set of objects, let R be the set of real numbers, and let m : A
Then m is a metric i f and only if it satisfies these three properties:

m(x, y) = 0 for x = y

m[x,y) = m[y,x) for all x,y

m{x, z) < m{x, y) + m{y, z) for all x, y, z

The above definition clearly shows that metric has a smaller scope than measure, and that
our usage of the term, metrics is incorrect. Therefore "software measure" is a more precise
term than "software metric".

This definition on measure is extensible to other sets, as long as the set includes zero and
the addition and less-than-or-equal operations are defined on the set.

Definition 3

A relational system is defined as an ordered tuple (i ? , re/i, ...,re/„, opi, . . . , opm) , where:

5 is a nonempty set of objects;
re/i , ...,reln are Ar̂ -ary relations on objects in S (this means that the relation re/,
defines a relationship among ki objects);

opi,opjn are binary operations on objects in S (this means that each operation
operates on exactly two objects, producing a third object in S).

52

In the case of software engineering, we can draw an example of a relational system according
to the above definition. The following relational system can be defined.

A relational system is defined as an ordered tuple {S,reli,opi, ...,opm), where:
5 is a set of software components;

A binary relation "bigger than or smaller than or same size as", re/i exists.

Four binary operations exist. They are -|-, —,x, and -i-.

Definition 4

Let A = {SA,relAi,re/A„, opAi,op Am) be a relational system of physical or empirical
objects, and let B = [Ss^relBi, ...,relBn,opBi, ...,opBm) be a relational system of formal
objects(such as numbers). Let fx : SA SB he a measure. Then the triple {A,B,fx) is a
scale i f and only i f relAi{ai^,...,aiJ relBi{^{ai^),^{ai^))

and yu(a opAj b) = fi(a)opBjfj,(b)

for all values of i and j, and for all a, b, a^j,a,^^ G 5̂ 1.

More informally, this definition says two things. First, every relation defined on the physical
objects, there is a equivalent relation defined on the measures of those objects. By equivalent,
we mean that i f a statement about a relationship betwwn or among objects is true, then the
corresponding relationship between or among their measures is also true. Second, for every
operation defined on the physical objects, there is a corresponding operation defined on the
measures, such that the result of measuring the combined objects is the same as performing
the corresponding operation on the measures of the individual objects.

Definition 5

Let [A, B,^) be a scale, where the set of objects in B in the set of real numbers. Let the
notation //(A) mean the set of all real numbers that are measures of some object in A. (In
mathematics, we call this range of / i .) Then a mapping t : fJ-{A) —> 5 is defined to be an
admissible transformation if and only i f the triple {A, B,tofj,) is a scale.

This definition can be interpreted as saying that if we have one scale of measure for a
certain kind of object, we can invent other, equally good scales by applying admissible
transformations to the original scale.

Definition 6

Let (A, B, ji) be a scale, where the set of objects in B is the set of real numbers. A statement
about the measures ^(a) of objects in A is meaningful i f and only if the truth value space
(whether it is true or false) of that statement is unchanged after applying any admissible
transformation to / i .

As two important characteristics of engineering measurement, precision and repeatability are
considered. The former one means how much the measures collected approach to the correct
values. The latter one indicates that the same results are achieved whenever measurements
are carried out.

53

Intelligence
Barrier

Real-world Measurement Numerical
objects,relatlons

Measurement
objects, relations objects,relatlons objects, relations

operations operations
•

Mathematics,
aatlstlcs

Results Numerical
relevant to the Interpretation results

real worid Interpretation
^ '

Figure 4.2: Measurement and the intelligent barrier

In engineering disciplines such as applied physics, chemical engineering or civil engineering,
repositories of templates have been established over the centuries. So scientists and engineers
involved in those disciplines actively use measurements to propose theories and validate them.
But relatively new disciplines such as psychology or software engineering still have a long
way to go before they reach a similar level of theory and practice. This kind of phenomena
is well described as an intelligent barrier. This barrier is shown in the left side of figure 4.2.

Finally, relevant to measurement theory, five kinds of scales exist. Depending on each kind,
admissible transformations and operations on them are applied accordingly. Detailed expla
nations are followed below.

Let (A, B,iJ,) be a scale, where B is the set of real numbers, and transformations t.

Nominal scales

These scales simply give numeric "names" to objects. Thus, any numbering is as good as
any other, so any one-to-one function t is an admissible transformation. As an example
of nominal data, one can measure the type of program being produced by placing it into a
category of some kind — database program, operating system, etc. For such data, we cannot
perform arithmetic operations of any type or even rank the possible values in any "natural
order". The only possible operation is to determine whether program A is of the same type
as program B . Such data are said to have a nominal scale, and the particular example given
can be an important parameter in a model of the software development process [60]. The
data might be considered either subjective or objective, depending upon whether the rules
for classification allow equally qualified observers to arrive at different classification for a
given program.

Ordinal scales

These scales assign numbers to objects in a particular order, but any numbers that maintain
that order are equally good. Any strictly increasing function t is an admissible transforma
tion. For example, programmer experience level may be measured as low, medium, or high.
In order for this to be an objective metric, one must assume that the criteria for placement
in the various categories are well defined, so that different observers always assign the same
value to any given programmer.

54

Nominal Ordinal

Interval

Ratio

Absolute

Figure 4.3: Relationships among classes of scales

Interval Scales

These scales assign numbers to objects in such a way that the interval between two measure
values is meaningful throughout the range of values. Only positive linear functions t{x) =
ax + b are admissible transformations. A typical example of these is McCabe's complexity
measure [61]. Differences appear to be meaningful; but there is no absolute zero, and ratios
of values are not necessarily meaningful. For example, a program with complexity value
of 6 is 4 units more complex than a program with complexity of 2, but it is probably nor
meaningful to say that the first program is three times as complex as the second.

Ratio scales

These scales assign values in such a way that the ratio of two measures is meaningful. The
only admissible transformations are positive linear functions of the form t{x) = ax. An
example is program size, in lines of code(LOC). A program of 2,000 lines can reasonably be
interpreted as being twice as large as a program of 1,000 lines, and programs can obviously
have zero according to this measure.

Absolute scales

These scales have only one way of measuring objects, and so the only admissible transfor
mation is the identity t{x) = x. For instance, the number of "with" clauses which might
be needed to measure "inter-module independence" is got from counting i t directly, and the
value is uniquely fixed whenever measured.

It is noticed that this sequence of scales is increasingly restrictive as described in figure 4.3.
And computational power and usefulness increase from nominal scale to absolute one.

4.2.3 Characteristics possessed by Ideal Metrics

Good metrics should facilitate the development of models that are capable of predicting
process or product parameters, not just describing them. Thus, ideal metrics should be [60]:

55

• Simple, precisely definable^—so that it is clear how the metric can be evaluated;

• Objective, to the greatest extent;

Easily obtainable (i.e., at reasonable cost);

• Valid—the metric should measure what it is intended to measure; and

• Robust—relatively insensitive to (intuitively) insignificant changes in the process or
product.

In addition, for maximum utility in analytic studies and statistical analyses, metrics should
have data values that are on appropriate measurement scales [62, 63].

4.2.4 Reuse Metrics

To encourage use of reuse guidelines, we need reuse metrics to prove and validate the effi
ciency and benefits of using them. In terms of reuse, we can think of two kinds of metrics.
One is property metrics, with which we can evaluate or predict the reusability of a certain
component. Another group of metrics can be called impact metrics since we can be informed
of the impact such as productivity increase or defect decrease of reusing software during
development or maintenance. One main difference between the two groups of metrics is that
property metrics are used during development whereas impact metrics can be collected after
development of software. It can be safely said that the former can be collected in the shorter
term than the latter one. Detailed explanations are given below.

Property IVIetrics

Although some metrics such as size metrics or complexity are now available, most valuable
metrics for which the main purpose of software metrics is, are still unmeasurable. Software
engineers have identified a number of other properties or qualities or attributes of software
that seem to be desired but for which we currently have no way of measuring. Because of
many of their names, these properties are often referred to as ilities (pronounced like " i l l at
ease", which describes our emotional state when asked to measure them) [58]. The most rep
resentative measures belonging to that kind are accessibility, adaptability, comprehensibility,
fault tolerance, integrity, interoperability, maintainability, portability, reusability, robustness,
and testability.

One of methods to tackle this problem is to decompose them into lower level until we can
measure them. A model to decompose the property reusability already appeared in figure
2.1 The author of this thesis decomposes it into four lower-level properties, i.e. adaptability,
comprehensibility, independence and robustness, as shown below:

Reusability = kl x Adaptability -\- k2 x Comprehensibility

-\-k3 X Independence -|- A;4 x Robustness

where kl,k2,k3 and ki are propositional constants,

56

0 < each Metrics < 1, and

kl + k2 + kZ + kA = l

When we think about adaptability of a component, we find most guidelines concerning the
property are related to semantics, thus we can only get metrics by inspection and they are on
ordinal scales. For instance we can say that one component implementing an abstract data
type "stack" is complete, but another is not—Guidehnes AOl, A02 and A03. And it can
be said that the adaptability of components increases from "abstract data object (ADO)"
to "generics abstract data type (GADT)—Guidelines AOS and A09. In the above cases,
however, it is totally meaningless to say that a component is twice complete as another one,
or that the interval between "abstract data object (ADO)" and "abstract data type (ADT)"
in terms of their adaptability is the same as the interval between "generic abstract data
object (GADO)" and "generic abstract data type (GADT)".

With respect to comprehensibility, the current situation is better than in the case of adapt
ability. I t is natural to assume that the smaller the size and the lower the complexity of
components, the more comprehensible the components are as explained in the following
simple equations:

C omprehensibility = kl

C omprehensibility = k2

Size

1
Complexity

Complexity = k3 x Size

where kl,k2,k3 are propositional constants.

Fortunately, most research on software metrics has been concentrated in size and complexity
until now. We have a number of useful metrics such as "lines of code (LOG)" [64, 65], "func
tion points (FP)", McCabe's cyclomatic complexity measure [61] and Halstead's product
metrics, etc.

To measure independence of a certain component, we can count the number of "withs", but
like other properties, we have to depend on inspecting source code. Unfortunately the above
situation also happens in the case of measuring robustness. Overall, we can say in summary
that most metrics are lacking in computational power since they are on nominal scales or
ordinal scales. A fortunate thing is that we have some sophisticated size and complexity
metrics.

Impact IVIetrics

As defined above, impact metrics are used to investigate the impact of reusing software
components during software development or maintenance. An experiment conducted at the

57

University of Maryland [66] suggests some impact metrics also applicable to other projects.
They were enhanced by the author of this thesis, and are explained below.

In terms of measuring impact of reuse, "reuse rate", "effort", "productivity" and "number
of defects" are the most representative metrics. Before the four impact metrics are defined,
firstly size metrics and reusability metrics must be defined.

Size

Suppose a system 5* is a set consisting of components which are also sets consisting of source
codes as their elements. Then the following can be defined.

The size of a system S is function Size[S) that is characterised by the properties:

Property Size 1. Size{C) > 0

Property Size 2. Size{Ci + C^) = Size{Ci) + Size{Cj) when d D Cj = 0.

Let us assume an operator called Components which, when applied to a system S, gives the
distinct components of the system S such that:

Components(S) = C\,C„, such that if C,- = Cj then i = j, where i,j = 1 , n .

The size of a system S is given by the following function: Size{S) = T,C£Components{S) Size{C)

where Size{C) is equal to the number of lines of code in the component C.

Reusability

The "amount" of reused code in a system 5 is a function Reuse{S). Since it is a type of
size metric, it inherits its basic properties from the properties Size 1 and 2. If we formalise
them, they are as follows:

Let us assume an operator called Reused-Code which, when applied to a component C, gives
the reused code in the component. Then,

Property Reuse 1. Reuse{C) > 0

Property Reuse 2. Reuse(Ci + Cj) — Reuse(Ci) + Reuse{Cj)

when Reused_Code{Ci) f l Reused.Code{Cj) = 0.

Here, we can think four kinds of reuse according to Reuse{C) of each component C:

1. Verbatim Reuse: A component is reused without being modified

Reuse{C) = Size{C)

2. Slightly modified: More than or equal to 75% of source code of a component is reused
without being deleted or modified

Reuse{C) > 0.75 x Size{C)

58

3. Extensively Modified: Less than 75% of source code of a component is reused without
being deleted or modified

Reuse{C) < 0.75 x Size{C)

4. New: Component C is created from scratch

Reuse{C) = 0

On the basis of the above assumptions, the reuse of a system S is given by the following
function:

Reuse{S) = ^ Reuse{C)
C£Components(S)

Thus, reuse rate in a particular system is measured as follows:

Reuse_Rate{S) = Reuse{S)/Size{S)

Effort

Two metrics are included in this group. One is "person-hours across development activi
ties" during analysis, design and implementation. Another is "person-hours across errors
(rework)" and this includes the number of hours spent on isolating an error and correcting
i t .

Productivity

Productivity during software development can be defined as shown below:

Productivity{S) = Size{S)/DE{S)

where DE{S) means development effort and is defined the total number of hours spent on
analysing, defining, implementing and repairing the system S.

Number of Defects

Finally, to inspect the impact of reuse on software quality, we need the number and density
of defects found in each system/component. Defect density is simply defined as:

Defect.Density{S) = #Defects{S)/Stze{S)

where ^Defects{S) is the total number of defects detected in the system S across the test
phases.

An experiment conducted at the University of Maryland [66] shows us that the higher the
reuse rate of a system, the higher the productivity is achieved, whereas effort and defect
density decrease.

59

4.3 Summary

In this chapter, various aspects of software metrics were reviewed. Through i t , the purposes
of using metrics in software engineering were identified, and the reasons of the current
immature state of software measurement were explained.

Having reviewed the above, reuse metrics were classified into two groups which are "property
metrics" and "impact metrics". Associated with guidelines in chapter 3, attempts to extract
useful metrics were performed.

As a conclusion, it was found that to increase the powerfulness and usefulness of use of
metrics, efforts to find metrics which are on interval, ratio or absolute scales should be
made. It is necessary to move from subjective metrics to more objective metrics to avoid
confusion happening between users. Some metrics introduced in this chapter are used in
chapter 5, Case Study.

60

Chapter 5

Case Study

In this chapter, experiments are carried out to validate and evaluate the proposed Ada code
reuse guidelines. Through these experiments, the usefulness and limitations of the Ada reuse
guidelines proposed here are shown.

5.1 Introduction

"Divide and conquer" strategy is well known as an approach to tackling complex tasks.
"Quick sort" algorithm and top-down software development are typical examples. The strat
egy has also been adopted to measure various quality or characteristics of software. McCall
and Boehm's approach to modelling software quality [12, pages 222-227], and Basili's GQM
paradigm are on the basis of this kind of philosophy. Figure 2.1 appearing in the section 2.2
and figure 5.1 depict the approaches.

In the previous chapters, as approaches to producing software components of high reusability,
Ada reuse guidelines and reuse metrics were discussed. Experiments are needed to see

Goal 1 Goal 2

Question Question Question Question Question

, Metric J [Metric " Metric] Metric Metnc MetricJ

Figure 5.1: The GQM Model

61

whether the reuse guidelines and associated metrics are suitable.

In section 5.2, the experimental method is described, and i t , first of all, discusses the ex
perimental goals. This is followed by a description of the experimental materials and the
experimental framework.

Experimental results are shown in the following section 5.3 in detail.

After that, an analysis of them is made in section 5.4.

5.2 Experimental Method

5.2.1 Experimental Goals

The main goal of the experiments is to investigate the usefulness of reuse guidelines in
terms of producing software components of high reusability. As accompanying subgoals,
inter-relationships between properties of software are inspected, and, finally, CASE tools
necessary for automating the reuse-engineering processes are identified.

5.2.2 Experimental IVIaterials

In this case study, 7 stacks were used from 3 different repositories. The table 5.1 shows the
origins of the 7 stack components.

The reason why "stacks" are used here, is that abstract data types (ADTs) including "stacks"
have been well defined during the last decades. Thus, manual checking of whether they
are following the reuse guidelines is comparatively easier than other software components.
This aspect is especially attractive considering that few CASE tools, if any, with basic
functionality, exist in the area of software reuse.

5.2.3 Experimental Framework

The 7 stacks mentioned in the previous section are examined to get their values of "reusabil
i ty". The metrics were named "property metrics" in chapter 4, "Reuse Metrics" of this thesis.
A l l metrics originated from the guidelines. As explained earlier, the property, "reusability"
is decomposed into lower-level factors until measurable ones appear. In those decomposition
schemes, each constituents are equally valued. Since the correct weighting is not yet known,
allotting equal weighting is the best feasible strategy for now. Therefore the "reusability
formula" suggested in section 4.2.4 is instantiated as follows.

62

Components Author Organisation Date Repository
Stackl David Blanchard Science Applications

International Corporation
16 August

1989

AdaBasis

Stack2 Ron Kownacki AdaBasis
Stack3 Bil l Toscano,

Michael Gordon
Intermetrics, Inc. 15 October

1985

ELSA

Stack4 Bil l Toscano,

Michael Gordon
Intermetrics, Inc. 15 October

1985

ELSA

Stack5 Tom Duke T I Ada

Technology Branch
16 April

1985

ELSA

Stack6 A Strohmeier LGL

at EPFL

10 July

1987

LGL

Stack7 A Strohmeier LGL

at EPFL
18 August

1987

LGL

Table 5.1: Materials used in this Case Study

Reusability =
Adaptability + C omprehensibility + Independence + Robustness

Further steps of decomposition are omitted here, for they are explained in the next section
in great detail.

Another important thing related to measuring reusability of components is how to assign
suitable values to each empirical object. The author here uses the "normal distribution"
to map each empirical object to formal objects. The normal distribution curve has been
broadly used in schools and universities where a comparative evaluation of their students'
academic records was adopted. Mapping between empirical and formal objects was explained
in section 4.2.2. An example of this can be found in figure 5.2.

Suppose y represents the normal variable, then the height of the probability distribution for
a specific value of y is represented by / (y) ^ [67, chapter 3].

Finally many metrics were collected with three CASE tools. Detailed description on those
tools can be found in Appendix 2.

^For the normal distribution
f { y) = (l/V2;^<T)e-i/2[(!/-^)/-P

where fj. and a are the mean and standard deviation, respectively, of the population of y values.

63

5.3 Experimental Results

5.3.1 Adaptability

(1) Completeness

Guidelines relating completeness are guidelines AOl and A02 appearing in chapter 3. And
they were checked automatically with CASE tools.

Component No. of Units Completeness
Stackl 27 0.75
Stack2 22 0.50
Stack3 10 0.25
Stack4 18 0.50
Stack5 12 0.50
Stack6 38 1.00
Stack7 44 1.00

Let fj. be mean, a be standard deviation, y be a physical object. Then ^ = 24 and a =
EL, (y-f^r

n-l 13 are obtained. Through a mapping g, a physical object y can be converted
into a formal object on the basis of the "normal distribution curve" as follows:

g{y < 11) = 0.25,

^(11 < y < 24) = 0.50,

^(24 <y < 37) = 0.75, and

g{y > 37) = 1.00

(2) Generality

Guidelines A05 to A09 are concerned with generality. Unfortunately CASE tools are available
for checking them. But they were checked comparatively easily by code inspection.

In line with the powerfulness of generahty, GADT (Generic Abstract Data Type), PGADO
(Parameterised Generic Abstract Data Object), GADO (Generic Abstract Data object),
ADT (Abstract Data Type) and ADO (Abstract Data Object) are assigned points of 1.00,
0.75, 0.50, 0.25 and 0.00 accordingly.

64

10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

Sid. Dev - 12.80
Mean - 24.4
N - 7.00

No. of Units

Figure 5.2: Graph showing No. of Units in 7 Stacks with their Normal Curve

Component Classification Point Generality
Stackl GADT 1.00 0.75
Stack2 GADT 1.00 0.75
Stack3 ADO 0.00 0.25
Stack4 ADO 0.00 0.25
Stack5 GADT 1.00 0.75
Stack6 GADT 1.00 0.75
Stack7 GADT 1.00 0.75

The same procedures as in the case of completeness were used to obtain component generality.

(3) Adaptability

As a whole, the property adaptability can be calculated through composing the above two
properties as shown below. Figure 5.3 shows relationships among them.

Adaptability
Completeness + Generality

Components Adaptability Ranking
Stackl 0.75 3
Stack2 0.63 4
Stacks 0.25 7
Stack4 0.38 6
Stack5 0.63 4
Stack6 0.88 1
Stack7 0.88 1

65

stackl stacK4

Component

. Qonoratily

I ComplGlenass

Figure 5.3: Adaptability of 7 Stacks

5.3.2 Comprehensibility

(1) Conciseness and Communicativeness

These properties can be inspected by two things, i.e. the quantity and quality of commenting,

(i) The Quantity of Commenting

Guideline C02 is applied in this aspect, and it is automatic-checkable.

Comments
Ada Statements

= Comment Rate

Components Comment Rate Metric
Stackl 6.90 0.75
Stack2 1.77 0.50
Stacks 3.21 1.00
Stack4 3.25 0.75
Stack5 2.58 0.50
Stack6 0.85 0.50
Stack7 0.86 0.50

It is noteworthy that stackl has an excessive amount of comments, so a penalty was given
to i t . The author believes that excessive commenting is as bad as scarce commenting, for it
means the poor expressiveness of the code itself. The metric of stackl was lowered one level
from 1.00 to 0.75.

(ii) The Quality of Commenting

66

The quality of comments inserted into code is as important as the quantity for its readability.
Guidelines C03 to COS recommend uses of "file header", "program unit specification header",
"program unit body header", "data comments", "statement comments" and "marker com
ments". For now, they are only checked manually.

Components C03 C04 COS C06 C07 COS Points metric
Stackl 0 X X 0 0 X 3 0.25
Stack2 X 0 0 0 0 X 4 0.75
Stacks X 0 0 0 0 0 5 1.00
Stack4 X 0 0 0 0 0 5 1.00
Stack5 0 X X 0 0 X 3 0.25
Stack6 0 0 X 0 0 X 4 0.75
Stack7 0 0 X 0 0 X 4 0.75

(iii) Conciseness and Communicativeness

Through the composition of the above two factors, conciseness and communicativeness are
computed as shown in the following table.

Components Conciseness & Communicativeness
Stackl 0.50
Stack2 0.63
Stacks 1.00
Stack4 0.88
Stacks 0.38
Stack6 0.63
Stack7 0.63

(2) Identifier Qualification

Here the usage statistics of "use" clauses are surveyed. Guideline C09, which is automatically
checkable, is related to them. A detailed explanation of the harmfulness of using "use" clauses
in Ada can be found in chapter 3, where the relevant Ada reuse guidelines were proposed.

Here, the more "use" clauses code contains, the worse the code is. Therefore the values are
given in reverse below.

I_i = 0.86, a = 1.46

g{y < -0.60) = 1.00,

^(-0.60 <y < 0.86) = 0.75,

^(0.86 <y < 2.32) = 0.50, and

g{y > 2.32) = 0.25

67

Components No. of Use Clauses Metric
Stackl 0 0.50
Stack2 0 0.75
Stack3 3 0.25
Stack4 3 0.25
Stacks 0 0.75
Stack6 0 0.75
Stack7 0 0.75

(3) Nesting

Both guideline C15 and C16 were automatically checked to produce the needed data. The
investigated data were obtained by multiplying the number of occurrences of nesting con
structs by their nesting level.

Components Nesting Metric
Stackl 0 0.75
Stack2 1 0.75
Stack3 3 0.75
Stack4 5 0.75
Stacks 0 0.75
Stack6 17 0.25
Stack7 17 0.25

As in the the above case, the reverse assignment of values was done since deeper nesting
should be avoided.

(4) Self-descriptiveness

This property is especially difficult to measure since it is sematic. Thus the relevant guide
lines C18, C19, C20, and C22 are only checked whether they are well applied.

Components C18 C19 k C20 C22 Points Metric
Stackl 0 0 0 3 0.75
Stackl X X 0 1 0.25
Stackl 0 X 0 2 0.50
Stackl 0 X 0 2 0.50
Stackl 0 0 0 3 0.75
Stackl 0 0 0 3 0.75
Stackl 0 0 0 3 0.75

(5) Layout

Relating to code layout, both horizontal spacing and vertical spacing can be said as one of
important factors.

68

Guideline C26 can be checked automatically with tools.

Lines — Comments
Statements

Components Spacing Metric
Stackl 2.53 0.50
Stack2 2.93 0.75
Stacks 2.97 0.75
Stack4 3.16 1.00
Stacks 2.81 0.75
Stack6 1.82 0.25
Stack7 1.74 0.25

(6) Volume

Although this was not included in the list of guidelines, we can easily guess that more readable
code is of lower complexity. The representative methods were studied by McCabe and
Halstead. Here, Halstead's complexity metrics are used. Further, the following relationships
can be safely drawn:

C omprehensibility — ki
1

Complexity

Complexity — k2 x Volume

where ki and k2 are proportional constants, respectively.

Components Volume Metric
Stackl 0.00 1.00
Stack2 851.60 0.75
Stacks 363.90 0.75
Stack4 550.00 0.75
Stacks 444.00 0.75
Stack6 3073.10 0.25
Stack7 2924.20 0.25

As source code of lower complexity is better than ones of higher complexity, values are given
reversely. Since stackl does not contain any operators and operands, its volume is 0.00.

(7) Comprehensibility

On the basis of the above data, comprehensibility is calculated as below, and figure 5.4 is
about this.

69

V
a

I

MMMMMmm
Component

• • Volume

H Layout

^ ^ ^ B Sel l -descrpl iveness

Nesting

1̂ ^̂ Idontitier
Qualilication

^^^1 Conciseness &
Communicaiivonesa

Figure 5.4: Comprehensibility of 7 Stacks

Components Comprehensibility Ranking
Stackl 0.71 1
Stack2 0.65 5
Stacks 0.67 4
Stack4 0.69 2
Stacks 0.69 2
StackG 0.48 6
Stack? 0.48 6

5.3.3 Independence

(1) Coupling

Coupling between modules can be detected through counting the number of "withs". This
is originated f r o m guidelines 102 and 103.

Components No. of withs Metric
Stackl 4 0.50
Stack2 2 0.75
Stacks 3 0.50
Stack4 3 0.50
Stacks 0 1.00
Stack6 3 0.50
Stack7 5 0.25

70

Having more " w i t h " clauses means higher couphng. So the reverse assignment is used to
assign values as shown below:

^ ^ 2.86, a = 1.57

g{y < 1.29) = 1.00,

5(1.29 <y< 2.86) = 0.75,

^(2.86 <y < 4.43) = 0.50, and

g{y > 0.25) = 0.25

(2) Machine Independence

The relevant guidelines to machine independence are guidelines 104 and 106. The former is
automatic-checkable, whereas the latter is checked manually by inspecting code itself.

Five items were investigated:

• number of machine code statements,

• interfaces to non-Ada routines,

• X11R4 interfaces,

• M o t i f 1.1 interfaces, and

• number of implement dependent 10 packages.

A n exhaustive list of implement dependent 10 packages appears in chapter 3.

As a result of checking the above things, i t has found no components have contain those
features. Thus, equally the highest value Is are given to each components.

(3) Software System Independence

(i) Ada predefined types

Why Ada predefined types such as "integer" or "real" can alfect portabil i ty of code was
explained in guidelines 108 of chapter 3. Here, the occurrences of their usage are inspected.
These were obtained w i t h CASE tools.

Components Integer Natural Positive Total Metric
Stackl 0 2 0 2 0.75
Stack2 0 3 0 3 0.75
Stacks 0 0 0 0 0.75
Stack4 0 0 0 0 0.75
Stack5 0 4 1 5 0.50
Stack6 1 9 1 11 0.25
Stack7 1 9 1 11 0.25

71

(ii) Pragmas

The numbers of Ada predefined pragmas and compiler-specific pragmas were collected wi th
respect to guideline 113. These were easily detected wi th tools.

Components Ada predefined Compiler-specific Total Metric
pragmas pragmas occurrences

Stackl 1 0 1 0.25
Stack2 0 0 0 0.75
Stack3 0 0 0 0.75
Stack4 0 0 0 0.75
Stacks 0 0 0 0.75
Stack6 0 0 0 0.75
Stack7 0 0 0 0.75

(iii) Software System Independence

Software system independence of each 7 stacks was calculated wi th the above two groups (i)
and (i i) of data.

Components Metric
Stackl 0.50
Stack2 0.75
Stacks 0.75
Stack4 0.75
Stacks 0.63
Stack6 0.50
Stack7 0.50

(4)Independence

On the whole, independence of the 7 stacks was obtained as follows:

Independence
Coupling + Machine Independence + Software Independence

Components Independence Ranking
Stackl 0.67 5
Stack2 0.83 2
Stacks 0.75 3
Stack4 0.7S 3
Stacks 0.88 1
Stack6 0.67 5
Stack7 0.58 7

72

s t a c k l S l a c k s Stack3 Stack4 Stacks

Component

I Software System
Independence

I Machine fndependence

I Coupling

Figure 5.5: Independence of 7 Stacks

5.3.4 Robustness

Only few guidelines on robustness are checkable either manually or automatically. Guidelines
ROl and R03 are the relevant guidelines. Here, the number of "exception declarations" and
"raise" statements were counted wi th regard to measuring robustness of components, for
they are believed to contribute to fault tolerance. The number of occurrences of "when
others" following "nul l" statement were also checked.

(1) No. of exception declarations

Components Exception declarations Metric
Stackl 3 1.00
Stack2 2 0.75
Stack3 2 0.75
Stack4 2 0.75
Stack5 3 1.00
Stack6 1 0.25
Stack7 1 0.25

73

(2) No. of raise statements

Components Raise statements Metric
Stackl 6 0.75
Stack2 10 1.00
Stacks 3 0.25
Stack4 5 0.50
Stacks 7 0.75
Stack6 4 0.50
Stack7 4 0.50

(3) The number of when others + null statement

A l l stacks do not contain the constructs. So the values of Is are given to each of them
equally. Since both fj, and a are 0, all metrics become 1.00 .

(4) Robustness

Based upon the above 3 groups (1), (2) and (3) of data, robustness was computed as follows.

Components Robustness Ranking
Stackl 0.92 1
Stack2 0.92 1
Stacks 0.67 5
Stack4 0.75 4
Stacks 0.92 1
Stack6 0.58 6
Stack7 0.58 6

5.3.5 Reusability

The fol lowing table shows each properties of the 6 stacks. Reusability was calculated on the
basis of the 4 constituent properties. A t the last column, the rankings of the stacks appear.
The best stack, i.e. the highest reusable stack was identified as Stacks, whereas the worst
one is Stack3.

74

I when oihora + nul

I raise statements

I exception
declarations

Figure 5.6: Robustness of 7 Stacks

Components Adaptabi l i ty Comprehensi-
bi l i ty

Independence Robustness Reusability Ranking

Stackl 0.75 0.71 0.67 0.88 0.75 2
Stack2 0.63 0.65 0.83 0.88 0.75 2
Stacks 0.25 0.67 0.75 0.50 0.54 7
Stack4 0.38 0.69 0.75 0.63 0.61 4
Stack5 0.63 0.69 0.88 0.88 0.77 1
Stack6 0.88 0.48 0.67 0.38 0.60 5
Stack7 0.88 0.48 0.58 0.38 0.58 6

5.4 Experimental Analysis

Through the above experimental results, the following two facts were observed.

First ly, when a component has the 4 constituents, i.e. adaptability, comprehensibility, in
dependence and robustness, of a small disparity, i t tends to be highly reusable. Figure 5.8
shows the relationship between disparity of 4 properties and reusability of components.
Here, we can say that a strong relationship exists between them, and i t forces us to develop
components w i t h high measures of all 4 properties.

Secondly, to investigate the usability of the proposed guidelines, guideline usage statistics
were collected. The following 5 pie charts show the portions of automatic checkable guide
lines, manually checkable guidelines and non-checkable guidelines to the total number of
guidelines. Generally, guidelines, except for robustness, are well checked. The most ver
ifiable guidelines are on independence. This means much research has been focussed on

75

V
a

I

s t a c k l StackZ Stacks StacK4 Stacks

Component

Stacke Stack?

Robustness

^ 1 Independence

Comprohensibilily

H Adaptability

Figure 5.7: Reusability of 7 Stacks

Dispanty

Reusabirity

Component

Figure 5.8: Relationship between disparity of properties and reusability of components

76

Noivchockable Human-checkaW9

Maohine^*8ckabte

Figure 5.9: Guideline Usage Statistics on Adaptabil i ty

increasing independence. There has also been much research on increasing portability; the
ories on modular programming or object-oriented programming are representative ones of
this research. However, a large portion of other guidelines can only be checked by manual
inspection. This suggests that more effort needs to be spent in those areas, especially, in the
case of robustness, where only two out of fourteen were checkable.

5.5 Summary

I n this chapter, experiments were carried out to validate the proposed Ada reuse guidelines.
Also reusability of components was measured through the "divide and conquer" strategy, in
other words, following the "decomposition and recomposition" principle. Through these ex
periments, two conclusions were obtained. They were about property disparity and guideline
usage.

This k ind of experimentation can be done wi th other ADTs or components. I f more compre
hensive data are collected and a deeper knowledge on "reusability" is obtained, then more
correct weighting and mapping strategies can be established. Subsequently, this would lead
to the production of components that have high reusability which can be established through
a reliable means of measurement.

77

Humaivc*»ckable

Noivcheckabto
1W42%

Machin»<iieckable

Figure 5.10: Guidefine Usage Statistics on Comprehensibifity

MachTO-chMkaU
6/40%

Non-cnsckable
9/60%

Figure 5.11: Guideline Usage Statistics on Independence

78

Human-chedtaWd

Noivched(abl«

Madins-dieckable

Figure 5.12: Guidehne Usage Statistics on Robustness

Human-ch«ckabld

Non-c*i«ckable
3 / 5 0 %

Machirw-chsckablo
16/26%

Figure 5.13: Guidefine Usage Statistics on Reusabifity

79

Chapter 6

Evaluation

I n this chapter the proposed Ada code reuse method is evaluated against the criteria for
success, its strength and weaknesses are discussed.

6.1 Evaluation Against the Criteria for Success

Chapter 1 presented a list of the criteria against which this thesis can be evaluated. Each
of these cri teria is now addressed.

1. Ident i fy ing the differences between Ada code reuse and high level reuse or code reuse
in other programming languages.

This was addressed mainly in chapter 2 and 3. Although bigger benefits are expected
f r o m reusing higher-level components such as requirements, specifications or design, at
the current phase, code reuse is more feasible than reuse of higher level components.
The reasons were explained in section 2.2 in f u l l . The advantages of implementing
reuse w i t h Ada against other languages were identified wi th respect to the language's
distinctive features such as generics or packages in section 3.1.2. Through the study,
i t was learnt that choosing the most suitable language for a certain situation is more
important than insisting a language's superiority.

2. Establishment of the exact meaning of the term reusability.

Hooper's definition of reusability was adopted, and i t was further decomposed wi th
McCal l and Boehm's theory. The decomposition strategy allowed reusability to be
broken down into more measurable and visible constituents.

3. Suggesting guidelines as an approach to code reuse.

Ada reuse guidelines were used as a means to improve code reusability. A total of
62 guidelines was collected either as-it-is or in a modified manner f rom the previous
research work done in the last decade.

80

Reusability-

Robustness Adaptability

Comprehenajbility
dependence

Figure 6.1: Reusability as a combination of overlapped properties

Validating the usefulness and usability of the guidelines wi th software measurement.

Reuse metrics were used to validate the improvement of code reusability. In the case
study, i t was demonstrated that applying the guideline to Ada code improves the
reusability of code. To promote the use of the proposed reuse guidelines, using them
should be cost-effective. In the case study conducted, 22.39% of guidelines were known
as machine-checkable. Thus i t can be argued that increasing the rate of automatically-
checkable guidelines is as crucial point for programming-in-the-large.

6,2 Strengths and Weaknesses

One of the strong points possessed by the proposed reuse guidelines is that they follow
property-oriented approach, not language-oriented approach. That is, the guidelines were
enumerated according to their constituent properties. Thus, users can get to know the weak
aspects of components which they have produced, and subsequently, strengthen them. This
enable users to attack various aspects of components to improve their reusability.

One weakness is depicted in figure 6.1. As shown in the figure, many unknown factors
contributing to code reusability are st i l l missing. Also, the four identified factors of reusabil
i t y overlap. This was experienced when guidelines were divided into the four groups, i.e.
adaptability, comprehensibility, independence and robustness. But i t is fair to say that they
adequately cover code reusability. The fact was demonstrated through experiments done in
the chapter 5. I n the future, when more abundant and correct information on code has been
obtained, we may be able to know more exactly what contributes to code reusability than
we do at present.

Another unsatisfactory feature of the guidelines is that general guidelines were mixed wi th
very specific ones. I t is believed that two-level scheme, i.e. general guidelines and their
instantiations, is better for applying and checking the guidelines.

81

6.3 Summary

In this chapter, the proposed Ada code reuse method was evaluated. The criteria for the
success of this research appearing in chapter 1 were discussed.

I n the next section, its strong points and weak points were identified.

Through the above evaluation, i t can be said that the soundness and usefulness of the
guidelines have been demonstrated.

82

Chapter 7

Conclusions

7.1 The Main Achievements of the Research

The main achievements and results of this research are Ada code reuse guidelines for design-
for-reuse, divided into 4 groups, i.e. adaptability, comprehensibility, independence and ro
bustness.

Another useful result was succeeding in measuring component reusability wi th the aid of
software metrics. Through this, usability of the guidelines and relationships between the
constituents of reusability were shown.

7.2 General Conclusions of the Research

Through the study and experiments done, there are 4 conclusions which can be inferred:

• I t is meaningless to insist that a certain language is better than others in terms of
producing reusable components. But i t is right to say that using Ada is more suitable
for large projects which require a strong quality and team work than many other
commonly used languages.

Simply programming in Ada does not guarantee that highly reusable code wi l l be
produced. Therefore guidelines are needed for users. And the guidelines must possess
good standards allowing users easily to adopt them into their programming habits or
projects.

As an i l l i c i t , i.e. an intangible concept, the property "reusability" has been long be
lieved unmeasurable, thus not attackable. But in this thesis, i t was observed that
"reusability" can be addressed and measured by the "decomposition and recomposi
t ion" strategy.,

83

As a result of the case study conducted, i t was uncovered that highly reusable com
ponents maintain a good balance of their properties. This means that i f a component
has adaptabili ty of a low level, while having other properties of high levels, i t would
become a low reusable component.

7.3 The Limitations of the Approach

Firstly, i n this research, each proposed reusabihty property was evaluated wi th respect to
each components, not as part of software development. Studying the impacts of using
reusable components i n real industrial environments would be valuable.

Secondly, an equal weighting was adopted in the case study. Since we cannot say all factors
of reusability have the same weight, more exact weighting methods must be established.

Finally, the proposed approach may not be suitable to be used in the programming-in-the-
large situations. Processes for reuse engineering and CASE tools for producing reusable Ada
components semi-automatically, i f not automatically, should be studied and developed.

7.4 Suggestions for Future Research

What is missing in the research described here are guidelines related to "concurrency" and
"OOP (Object-Oriented Programming)" concepts, which are both available in Ada. The
reason why the former was not addressed here was its complexity. The latter was not
handled since validated "Ada 95" compilers wi th which OOP is possible, do not exist yet.
But two of the above things are desperately needed to achieve the goals, i.e. developing
reliable real-time embedded systems, for which Ada was developed.

Finally, another field of fur ther work would be to investigate the applicability of the proposed
reuse method to other languages such as C-f-+. That is because C-|--l- is one of the most
heavily used languages nowadays together w i th Ada. Benefits f rom reusing those components
programmed in C++ would be enormous as in the case of Ada.

7.5 Summary

As mentioned earlier, software engineering, especially reuse engineering, is s t i l l at its imma
ture phase. Therefore, we should learn by example of other mature engineering disciplines,
where high-level reuse such as specification reuse or design reuse is a common practice, while
t ry ing to find the most feasible solution such as code reuse.

84

Appendix A

Collected Ada Code Reuse Guidelines

The following is a complete list of the Ada code reuse guidelines presented in this thesis.

A . l Principle of Adaptability

Completeness

AOl : Make components as complete as possible.

A02: Provide complete functionali ty in a reusable part or set of parts.

A03: Provide initialisation and finalisation procedures for every data structure that may
contain dynamic data.

A04: Make al l dependent components reusable.

Generality

AOS: Use generic units to avoid code duplication.

A06: Parameterise generic units for maximum adaptability.

A07: Use generic units to encapsulate algorithms independently of data type.

AOS: Use abstract data types in preference to abstract data objects.

A09: Use generic units to implement abstract data types independently of their component
data type.

A I D : Select the least restrictive names possible for reusable parts and their identifiers.

A l l : Select the generic name to avoid conflicting wi th the naming conventions of instantia-

85

tions of the generic.

A.2 Principle of Comprehensibility

Cohesion

COl: Make cohesion high within each component.

Conciseness and Communicativeness

C02: Make each comment adequate, concise and precise.

C03: Put a file header on each source file.

C04: Put a header on the specification of each program unit.

C05: Place information required by the maintainer of the program unit in the body header.

C06: Comment on all data types, objects, and exceptions unless their names are self-
explanatory.

C07: Minimise comments embedded among statements.

COS: Use pagination markers to mark program unit boundaries.

Identifier Qualification

C09: Minimise the use of "use" clauses.

Information Hiding

CIO: Only place in the specification section those declarations that must be seen externally.

C l l : Only "with" those compilation units that are really needed.

C12: Use private and limited private types to promote information hiding.

C13: Try to use limited private types.

C14: Use mode "in out" rather than "out" for parameters of a generic formal subprogram,
when the parameters are of an imported limited type.

Nesting

C15: Use "elsif" for nested "if" statements.

C16: Do not nest expressions or control structures beyond a nesting level of five.

Overloading

86

C17: Do not overload names from package "Standard".

Self-descriptiveness

C18: Make reserved words and other elements of the program visually distinct from each
other.

C19: Use descriptive identifier names.

C20: Do not use any abbreviations in identifier or unit names.

C21: Use names which indicate the behavioural characteristics of the reusable part, as well
as its abstraction.

C22: Do not hard code array index designations.

C23: Use named constants for parameter defaults.

C24: Use named parameters association.

C25: Use descriptive named constants as return values.

Layout

C26: Code program in a well-arranged manner horizontally and vertically.

A.3 Principle of Independence

Coupling

101: Make coupling low.

102: Minimise "with" clauses on reusable parts, especially on their specifications.

103: Use generic parameters instead of "with" statements to reduce the number of context
clauses on a reusable part, and to import portions of a package rather than the entire package.

Machine Independence

104: Machine-dependent and low-level Ada features should be avoided except when abso
lutely necessary.

105: Encapsulate input/output (I/O) uses into a separate I/O package.

106: Minimise the use of implementation dependent I/O procedures.

Software System Independence

107: Use the predefined packages for string handling.

87

108: Avoid predefined and implementation defined types.

109: Explicitly specify the precision required.

110: Use "attributes" instead of explicit constraints.

I l l : Use explicitly declared types for integer ranges in the loop statement.

112: Avoid optional language features.

113: Avoid using pragmas.

114: Close files before a program completes.

115: Do not input or output "access" types.

A.4 Principle of Robustness

Error Tolerance

ROl: Put a modest amount of "exception" and "raise" statements in code.

R02: Propagate exceptions out of reusable parts.

R03: Never use the "when others" construct with the "null" statement.

R04: Avoid pragma "suppress".

R05: Do not propagate an exception beyond where its name is visible.

R06: Do not propagate predefined exceptions without renaming them.

R07: Do not execute normal control statements from an exception.

R08: Use range constraints on numeric types.

R09: Explicitly declare a type to use in defining discrete ranges.

RIO: Avoid using the when others clause as a shorthand notation.

88

Appendix B

Materials used in the Case Study

B . l Introduction to 3 repositories used

Source codes and CASE tools used in this thesis were from the following 3 software repositories^

B.1.1 AdaBasis

AdaBasis - an acronym for the German phrase "Bibliothek anwendungsbezogener Ada
Software-Komponenten in Stuttgart" - is a repository of free Ada Software, presented in
a way that is (hopefully) easy to use and allows flexible access and effective searching.

The software in this repository is based mainly on the "PAL (Public Ada Library)" and is
still extending. I t is presented in a hierarchical manner, separated in different application
domains, and, for some domains, with an additional searching facility. The repository is
found in

http; / / www.informatik.uni-stuttgart.de/ifi/ps / ada-software/ada-software.html

B.1.2 E L S A

ELSA (Electronic Library Services & Apphcations) is a NASA funded service provided by
MountainNet, providing access to a large selection of high quality software examined for
integrity and compatibility. ELSA project is the operational part of the Repository Based
Software Engineering (RBSE) program. RBSE is a National Aeronautics and Space Ad
ministration (NASA) sponsored program dedicated to introducing and supporting common,

^The H T T P (Hyper-Text Transfer Protocol) addressed of the 3 repositories are correct at the time of
writing of the thesis.

89

eff'ective approaches to designing, building, and maintaining software systems by using ex
isting software assets stored in a specialised library or repository.

In addition to operating a software life-cycle repository, RBSE promotes software engi
neering technology transfer, academic and instructional support for reuse programs, the
use of common software engineering standards and practices, software reuse technology re
search, and interoperability between reuse libraries/repositories. During its life cycle, the
ELSA project responded to emerging technologies, the growing sophistication of its client
base, and industry trends by advancing the capabilities of its management software. Thus,
ELSA stands as a customer-driven environment employing an advanced library management
mechanism, MORE (Multimedia Oriented Repository Environment). The HTTP address is
"http: / / rbse.mountain.net/ELSA/elsaJob.html".

B.1.3 L G L

The Software Engineering Lab (DI-LGL), at the Swiss Federal Institute of Technology in
Lausanne (EPFL), distributes reusable Ada software components by FTP.

These components have been used (and re-used :-) since the mid-80's both by students (in
a software engineering course) and in industrial applications. Al l of the package specifica
tions as well as the documentation are now available through WWW. This repository is at
"http://Iglwww.epfl.ch/Components/".

B.2 Introduction to 3 C A S E Tools used

B.2.1 Ada System Dependency Analyzer 2.1

The authors of this tool are Richard Conn (Design / Code), Grace Baratta-Perez (Code /
Test / Document), Charles Finnell (Consultant), and Thomas Walsh (Group Leader) of the
MITRE Corporation. It was developed in 1994. A short abstract from ELSA repository,
where the tool is stored, follows below.

The Ada System Dependency Analyzer (SDA) is a software architecture analysis tool that
generates a quantitative snapshot of an Ada application's software architecture. It can pro
cess thousands of Ada source files (at rates as high as 24,000 lines of code per CPU minute
on some platforms) during a single run and report on them as a group of files comprising
a single Ada system. It identifies Ada source code dependencies on Commercial Off'-The-
Shelf (COTS) products such as operating systems, compilers, the X Window System, and on
routines written in other languages. With this analysis, it aids in predicting software porta
bility and reliability problems. Finally, it presents statistics on the files analysed (number
of lines of code, program units in each file, etc.), compilation order information, exception
declaration and usage information, details on withing relationships between program units.

90

and other useful items of information on the system analysed.

I t has been released through the PAL in binary only. Release of the source code is on a
case-by-case basis; contact the authors to obtain the source code.

A user's manual is included in the distribution. Additional information can be found in the
February 1994 issue of IEEE Computer magazine, Volume 27, Number 2, pages 49 to 55 in
the article entitled "Ada System Dependency Analyzer Tool."

This tool was developed by employees of The MITRE Corporation. Funding was provided
by PM Common Hardware/Software of the U.S. Army.

B.2.2 Certifier.l

This tool was developed by Richard Conn, Manager of Public Ada Library in 1994. A short
abstract from him follows below.

The second stage in the development of the Public Ada Library (PAL) has begun with
the introduction of the concept of certification to the Ada source code in the library. A
program, Certifier_l, has been created that will be initially used to evaluate all Ada source
code submitted to the PAL. Certifier.l has the ability to analyse thousands of files in a single
pass, checking on their interdependencies. It ranks the files it is asked to analyse as OK or
NOT OK and assigns a letter grade to the system (A, B, or C is OK, D and F are NOT
OK).

Certifier.l contains a lexical analyser and a parser for the Ada83 language. A grade of F is
assigned to the system if syntax or lexical errors are encountered. Certifier_l also builds an
internal data structure describing the interdependencies of the library units and subunits. If
stubs (subunit bodies) are missing and there are no syntax or lexical errors, a grade of D is
assigned to the system indicating that major parts of it are missing. This is not necessarily
bad; the Abstractions library from Intermetrics, for instance, received a letter grade of D
because of missing subunits, but, when the Intermetrics Standards Checker was evaluated
with Abstractions, the Standards Checker code filled in the missing subunits, giving the
combined Standards Checker and Abstractions system a grade of A.

Certifier_l also checks on compiler-specific pragmas, the use of machine code, and the withing
of library units that are not a part of the analysed code. It awards lower grades (B and C)
if all else is OK and one of these issues comes up. A grade of a B or a C may or may
not mean there is a problem. Compiler-specific library units may be employed, causing the
lower grade, for example. Also, it may be possible to raise the grade by including another
components library, like CS Parts or New Abstractions, in the evaluation to fill in the missing
library units. However, a B or a C may also mean that code has been omitted.

Certifier_l generates two reports: a report for inclusion in the PAL database entry on the item
and a log file which describes details on the problems encountered, including line numbers
and file names on or near which the problems can be found. Log reports can be found for
each item in the PAL by checking in the directory languages/ada/userdocs/catalog/cl_rpts.

91

Reports are named after the items on which they report; ada_sda.cl, for instance, is the
report associated with the Software ID file ada_sda.sid.

Certifier-l is by no means a final solution to the problem of certification of reusable software
in a library. However, it is a start. It does not beat a compiler by any means, but it does
provide a quick, first-look solution. It does not determine logical errors or problems with
completeness. Many things can slip through Certifier-l, but, likewise, many things do not.
It is a first step.

B.2.3 MetJPars

MET_PARS is a program that measures the complexity of Ada source code. It was developed
in June 1991 by "Source Translation &; Optimization (STO)". Researchers have found that
complexity metrics are correlated with the understandability of the source code, development
and maintenance costs, and error rates. STO (Source Translation & Optimization) sells a
library of reusable Ada software for $450 from which MET.PARS and other tools are built.

This version of MET_PARS measures the Halstead metric, and displays a wide variety of
information about components in the Ada program, as well as values for Halstead's metric.
The parser does not handle the PRAGMA statement of Ada.

B.3 Source Codes used

The following are source codes of two stacks which are each of highest and lowest reusability.

stacks.ada

S I M T E L 2 0 Ada Software Repository Prologue

Unit name
Version
Author

DDN Address
Copyright
Date created
Release date

stack_package
1.0

Tom Duke
TI Ada Technology Branch
PO Box 8 0 1 , MS 8 0 0 7

McKinney, TX 7 5 0 6 9
DUKEXTI-EG at CSMET-RELAY
(c) N/A
16 Apr 8 5
16 Apr 8 5

92

Last update : 16 Apr 85
Machine/System Compiled/Run on :DG MV 10000, ROLM ADE

-*

— Keywords stack, generic stack

— Abstract This i s a generic package that provides the types,
procedures, and exceptions to define an abstract stack
and i t s corresponding operations. Using an
i n s t a n t i a t i o n of t h i s generic package, one can declare
multiple versions of a stack of type GENERIC_STACK.
The stack operations provided include:
1. c l e a r the stack,
2. pop the stack,
3. push an element onto the stack, and
4. access the top element on the stack.

Revision history

DATE VERSION AUTHOR
4/16/85 1.0 Tom Duke

HISTORY
I n i t i a l Release

D i s t r i b u t i o n and Copyright

— This prologue must be included i n a l l copies of t h i s software.

This software i s released to the Ada community.
This software i s released to the Public Domain (note:

software re l e a s e d to the Public Domain i s not subject
to copyright protection).

R e s t r i c t i o n s on use or d i s t r i b u t i o n : NONE

Disclaimer

93

-*
This software and i t s documentation are provided "AS I S " and
without any expressed or implied warranties whatsoever.
No warranties as to performance, merchantability, or f i t n e s s
f o r a p a r t i c u l a r purpose e x i s t .

Because of the d i v e r s i t y of conditions and hardware under
which t h i s software may be used, no warranty of f i t n e s s f o r
a p a r t i c u l a r purpose i s offered. The user i s advised to
t e s t the software thoroughly before r e l y i n g on i t . The user
must assume the e n t i r e r i s k and l i a b i l i t y of using t h i s
software.

In no event s h a l l any person or organization of people be
held responsible f or any d i r e c t , i n d i r e c t , consequential
or inconsequential damages or l o s t p r o f i t s .

-*
END-PROLOGUE

generic

type ELEMENTS i s private;
SIZE : POSITIVE;

package STACK_PACKAGE i s

type GENERIC.STACK i s private;

function TOP_ELEMENT(STACK : in GENERIC.STACK)
return ELEMENTS;

function STACK_IS_EMPTY(STACK : in GENERIC.STACK)
return BOOLEAN;

procedure CLEAR_STACK(STACK : in out GENERIC.STACK) ;

94

procedure PUSH (FRAME : in ELEMENTS;
STACK : in out GENERIC.STACK) ;

procedure POP (FRAME : out ELEMENTS;
STACK : in out GENERIC_STACK) ;

NULL_STACK : exception;
STACK.OVERFLOW : exception;
STACK_UNDERFLOW : exception;

p r i v a t e

type STACK_LIST i s array (1 .. SIZE) of ELEMENTS;

type GENERIC_STACK i s
record
CONTENTS : STACK.LIST;
TOP : NATURAL range NATURAL'FIRST .

end record;
SIZE := NATURAL'FIRST;

end STACK.PACKAGE;

package body STACK.PACKAGE i s

— function TOP.ELEMENT — This function returns the value of the top
element on the stack. I t does not return a

•- pointer to the top element. I f the stack i s empty, a constraint error
— occurs. The exception handler w i l l then r a i s e the NULL_STACK

95

exception and pass i t to the c a l l i n g procedure.

function TOP_ELEMENT(STACK : in GENERIC_STACK) return ELEMENTS i s
begin
return STACK.CONTENTS(STACK.TOP);
exception

when CONSTRAINT.ERROR =>
r a i s e NULL.STACK;

when others =>
r a i s e ;

end TOP.ELEMENT;

I s stack empty?

function STACK.IS_EMPTY(STACK : in GENERIC.STACK)
return BOOLEAN i s

begin
return (STACK.TOP = NATURAL'FIRST);

exception
when OTHERS =>

r a i s e ;
end STACK.IS.EMPTY;

— procedure CLEAR_STACK ~ This procedure resets the stack pointer, TOP,
to a value representing an empty stack.

procedure CLEAR_STACK(STACK : in out GENERIC.STACK) i s
begin
STACK.TOP := NATURAL'FIRST;

end CLEAR.STACK;

96

— procedure PUSH — This procedure attempts to push another element onto
the stack. I f the stack i s f u l l , a constraint error

— occurs. The exception handler w i l l then r a i s e the STACK.OVERFLOW
exception and pass i t to the c a l l i n g procedure.

procedure PUSH (FRAME : in ELEMENTS;
STACK : in out GENERIC.STACK) i s

begin
STACK.TOP := STACK.TOP + 1;
STACK.CONTENTS(STACK.TOP) := FRAME;
exception

when CONSTRAINT.ERROR =>
r a i s e STACK.OVERFLOW;

when others =>
r a i s e ;

end PUSH;

— procedure POP — This procedure attempts to pop an element from
the stack. I f the stack i s empty, a constraint error

— occurs. The exception handler w i l l then r a i s e the STACK_UNDERFLOW
-- exception and pass i t to the c a l l i n g procedure.

procedure POP (FRAME : out ELEMENTS;
STACK : in out GENERIC.STACK) i s

begin
FRAME := STACK.CONTENTS(STACK.TOP);
STACK.TOP := STACK.TOP - 1;
exception

when CONSTRAINT_ERROR =>
r a i s e STACK_UNDERFLOW;

when others =>
r a i s e ;

end POP;

97

end STACK.PACKAGE;

stacks.ada

— $Source: /nosc/work/parser/RCS/ParseStk.spc,v $
— $Revision: 4.0 $ ~ $Date: 85/02/19 11:33:03 $ — $Author: carol $

with ParserDeclarations;
use ParserDecleirations;

— declarations for the Parser

package ParseStack i s — I Elements awaiting parsing

-| Overview

The ParseStack used by the parser.

This data s t r u c t u r e has the following sets of operations;

1) A set that add and delete elements. This set can
r a i s e the exceptions: UnderFlow and OverFlow.
The set includes:

Pop
Push
Reduce

2) A function that returns the number of elements i n the
data s t r u c t u r e . This set r a i s e s no exceptions.
The set includes:

Length

Notes

98

I Under some implementations the exception
I ParserDeclarations.MemoryOverflow could be raised.
I

package PD renames ParserDeclarations;

Declarations Global to Package ParseStack

OverFlow : exception;
— I r a i s e d i f no more space in stack.

UnderFlow : exception;
— I r a i s e d i f no more elements in stack.

procedure Push(— I Adds new top element to stack
Element: i n PD.ParseStackElement); — | element to add

— I Raises
~ l
— I OverFlow - no more space in stack.

— I E f f e c t s
- - I
— I This subprograjn adds an element to the top of the stack.

function Pop — I Removes top element in stack
return PD.ParseStackElement;

— I Rai i s e s

99

•-I UnderFlow - no more elements in stack.

E f f e c t s

I This subprogram obtains the element at the top of the stack.
I

function Length — I Returns the number of
— I elements i n the stack

return PD.StateParseStacksIndex;

— I E f f e c t s
- I
— I This subprogram returns the number of elements i n the stack.

procedure Reduce(— I Pops and discards top n elements on
— I the stack.

TopN : in PD.StateParseStacksIndex);
— I Number of elements to pop.

— I Raises
— I
— I Underflow - no more elements in stack.

~ | E f f e c t s
- - I
— I Pops and discards top N elements on the stack.
— I I f TopN i s greater than the number of elements in the stack,
— I Underflow i s r a i s e d .
— I This subprogram i s used by the parser to reduce the stack during
— I a reduce action.

100

— I This stack reduction could be done with a for loop and
— I the Pop subprogram at a considerable cost in execution time.
- - I

end ParseStack;

— $Source: /nosc/work/parser/RCS/ParseStk.bdy,v $
— $Revision: 4.0 $ — $Date: 85/02/19 11:34:13 $ — $Author: carol $

with ParseTables;

use ParseTables;

with Grajnmar_Constants;
use Grajnmar_Constants;

package body ParseStack i s

— I Overview

state tables generated by parser
generator

to have v i s i b i l i t y on operations
on type Parserlnteger declared there.

— I The data s t r u c t u r e i s implemented as an array.
- - I

Declarations Global to Package Body ParseStack

Index : PD.StateParseStacksIndex
— I top element i n stack.

:= 0;

101

Space : a r r a y (PD.StateParseStacksRange) of PD.ParseStackElement;
— I S t o r a g e used to hold s t a c k elements

— Subprogram Bodies G l o b a l to Package P a r s e S t a c k

— (d e c l a r e d i n package s p e c i f i c a t i o n) .

p r ocedure Push(Element : i n PD.ParseStackElement) i s

b e g i n

i f (I n d e x >= PD.StateParseStacksRange'Last) then

r a i s e OverFlow;
end i f ;

Index := Index + 1;

Space (I n d e x) := Element;

end Push;

f u n c t i o n Pop r e t u r n PD.ParseStackElement i s

b e g i n

i f (I n d e x < P D . S t a t e P a r s e S t a c k s R a n g e ' F i r s t) then

r a i s e UnderFlow;
end i f ;

Index := Index - 1;
r e t u r n Space (Index + 1) ;

end Pop;

102

f u n c t i o n Length r e t u r n PD.StatePaxseStacksIndex i s

begin

r e t u r n Index;

end Length;

procedure Reduce(TopN : i n PD. S t a t e P a r s e S t a c k s I n d e x) i s

be g i n

i f (TopN > Index) then
r a i s e UnderFlow;

end i f ;

Index := Index - TopN;

end Reduce; — procedure

end P a r s e S t a c k ;

103

Bibliography

1] Roger S. Pressman. Software Engineering: A Practitioner's Approach. McGraw-Hill,
Inc., third edition, 1992.

2] J. A. Siegel et al. National software capacity: Near-term study. Technical Report
CMU/SEI-90-TR-12, Carnegie Mellon University/Software Engineering Institute, May
1990.

3] Ada Joint Program Office. A strategy for a software initiative. Technical report, De
partment of Defense, 1985.

4] Research in progress. University of Durham/The Centre for Software Maintenance,
January 1995.

5] Joseph Eugene Hollingsworth. Software Component Design-for-Reuse: A Language-
Independent Discipline Applied to Ada. PhD thesis, Department of Computer and
Information Science, The Ohio State University, 1992.

[6] M . C. Paulk et al. Capability maturity model for software. Technical Report CMU/SEI-
91-TR-24, Carnegie Mellon University/Software Engineering Institute, November 1991.

7] M . V. Wilkes, D. J. Wheeler, and S. Gill. Programming for the Digital Computer.
Addison-Wesley, 1953.

8] M . D. Mcllroy. Mass produced software components. In P. Naur, B. Randell, and J. N.
Buxton, editors, Proceedings of NATO Conference on Software Engineering, pages 88-
98, New York, 1969. Petrocelh/Charter.

[9] Edward Stewart Garnett. Software Reclamation: Upgrading Code for Reusability. PhD
thesis, Lancaster University, September 1990.

[10] Ted Biggerstaff. Software Reusability, Concepts and Models., volume I , page xv. ACM
Press, 1989.

11] James W. Hooper and Rowena 0 . Chester. Software Reuse Guidelines and Methods.
Plenum Press, 1991.

[12] Norman E. Fenton. Software Metrics: A rigorous approach. Chapman &; Hall, second
edition, 1991.

104

13] T. C. Jones. Reusability in programming: A survey of the state of the art. IEEE
Transactions on Software Engineering, 10(5):488-494, September 1984.

14] R. G. Lanergan and C. A. Grasso. Software engineering with reusable designs and code.
IEEE Transactions on Software Engineering, 10(5):498-501, September 1984.

15] B. W. Boehm. Improving software productivity. IEEE Computer, pages 43-58, Septem
ber 1987.

16] E. Horowitz and J. B. Munson. An expansive view of reusable software. IEEE Trans
actions on Software Engineering, 10(5):477-487, September 1984.

17] T. A. Standish. An essay on software reuse. IEEE Transactions on Software Engineer
ing, 10(5):494-497, September 1984.

[18] Grady Booch. Software Engineering with Ada. The Benjamin/Cummings Series in Ada
and Software Engineering. The Benjamin/Cummings Publishing Company, Inc., second
edition, 1987.

19] Ricky W. Butler and Sally C. Johnson. Formal methods for life-critical software. In The
AIAA Computing in Aerospace 9 Conference, pages 319-329, San Diego, Ca., October
1993. American Institute of Aeronautics and Astronautics Inc.

[20] P. A. V. Hall. Software reuse, reverse engineering, and re-engineering. In P. A. V. Hall,
editor. Software Reuse and Reverse Engineering in Practice, chapter 1, pages 3-31.
Chapman k Hall, 1992. First edition.

[21] Sholom Cohen. Process and products for software reuse and domain analysis. Software
Engineering Institute.

22] Ian Sommerville. Software reuse courses. Software Reuse Course Slides, 1994.

23] I . Sommerville. Software Engineering. Addison-Wesley, third edition, 1989.

24] Y. Matsumoto et al. SWB system: A software factory. Software Engineering Environ
ments, pages 305-314, 1981.

25] N. Akima and F. Ooi. Industrializing software development: A Japanese approach.
IEEE Software, pages 13-22, March 1989.

26] K. Geary. Practical problems in introducing software reuse, May 1987. lEE Colloquium
on Reusable Software Components.

27] Congress of the United States, Office of Technology Assessment. Intellectual property
rights in an age of electronics and information. Technical report, Washington, D.C.:
U.S. Government Printing Office, 1986.

28] Pamela Samuelson and Kevein Deasy. Intellectual property protection for software. SEI
Curriculum Module SEI-CM-14-2.1, Carnegie Mellon University, Software Engineering
Institute, July 1989.

105

[29] Jody Armour and Watts S. Humphrey. Software product liability. Technical Report
CMU/SEI-93-TR-13, ESC-TR-93-190, Carnegie Mellon University/Software Engineer
ing Institute, August 1993.

30] International Bible Society. The Holy Bible, New International Version. Hodder &
Stoughton, 1994.

31] Narain Gehani. Ada, an advanced introduction. Prentice-Hall Software Series. Prentice-
Hall, Inc., 1984.

32] Peter Wegner. Programming with Ada. Prentice-Hall Software Series. Prentice-Hall,
Inc., 1980.

33] Nell Dale, Chip Weems, and John McCormick. Programming and Problem Solving with
Ada. D. C. Heath and Company, 1994.

34] The Ada Joint Program Office (AJPO). Reference Manual For The Ada Programming
Language. United States Department of Defense, 1983. ANSI/MIL-STD-1815A.

35] Lloyd K. Mosemann. Ada and C-f—|-:a business case analysis. Pre-delevery draft, US
Air Force, Air Force, SAF/AQK, Washington, June 1991. Press Conference Remarks by
Lloyd K. Mosemann, I I Deputy Assistant Secretary of the Air Force (Communications,
Computers, and Logistics) on July 9, 1991.

[36] Brian Tooby. A brief introduction to Ada. In Chris Loftus, editor, Ada Yearbook 1993,
chapter 1, pages 3-8. lOS Press, 1993. Studies in Computer and Communications
Systems Volume 5.

[37] M . Ramachandran and I . Sommerville. Software reuse guidehnes. Department of Com
puting, Lancaster University, Lancaster.

38] John Nissen and Peter Wallis, editors. Portability and style in Ada. The Ada Companion
Series. Cambridge University Press, 1984.

39] R. J. St. Dennis. Reusable Ada software guidelines. In Proceedings of the Twentieth
Hawaii International Conference on System Sciences, pages 513-520, January 1987.

40] The Ada-Europe Software Reuse Working Group. Ada reusability guidelines. In R. J.
Gautier and P. J. L. Wallis, editors. Software Reuse with Ada, pages 99-173. Peter
Peregrinus Ltd., 1990.

41] I B M Systems Integration Division. STARS reusability guidelines. Technical report.
Electronic Systems Division, Air Force Systems Command, USAF, Hanscomb AFB,
Massachusetts, April 1990. Contract No. F19628-88-D-0032, Task IR40: Repository
Integration, Delivered as part of: CDRL Sequence No. 1550.

42] M . Ramachandran. An Investigation into Tool Support for the Development of Reusable
Software. PhD thesis, Lancaster University, 1992.

43] Software Productivity Consortium Services Corporation. Ada 95 Quality and Style:
Guidelines for Professional Programmers. Draft Baseline Version, SPC-94093-CMC.
Software Productivity Consortium Corporation, February 1995.

106

44] I . Sommerville, L. Masera, and C. Demaria. Practical guidelines for ada reuse in an
industrial environment. APPRAISAL Project Public Results, Lancaster University,
1995.

[45] Y. Matsumoto. Some experiences in promoting reusable software presentation in higher
abstract levels. IEEE Transactions on Software Engineering, SE-10(5), September 1981.

46] Spencer Rugaber. Program comprehension for reverse engineering. College of Comput
ing, Georgia Institute of Technology, Atlanta, Georgia.

[47] E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE Trans
actions on Software Engineering, SE-10(5):595-609, 1984.

48] R. Brooks. Towards a theory of the comprehension of computer programs. International
Journal of Man-Machine Studies, 18:543-554, 1983.

[49] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design. IBM Systems
Journal, (2), 1974.

50] David W. Embley and Scott N. Woodfield. Cohesion and coupling for abstract data
types. In Proceedings of Sixth Phoenix Conference on Computers and Communications,
Phoenix, Arizona, 1987.

51] D. L. Parnas. On criteria to be used in decomposing systems into modules. Communi
cations of ACM, 14(l):221-227, April 1972.

52] J. G. P. Barnes. Programming in Ada. Addison-Wesley Publishers Limited, second
edition, 1984.

53] John Rymer and Tom McKeever. The FSD Ada style guide, 1986.

[54] Intermetrics, Inc. Information Technology - Programming Languages - Ada. Inter
national Organization for Standardization, International Electrotechnical Commission,
1995. INTERNATIONAL STANDARD ISO/IEC 8652:1995(E).

55] Frank Pappas. Ada portability guidelines. Technical report, SofTech Inc., March 1985.

56] E. R. Matthews. Observations on the portabihty of Ada I /O. ACM SIC Ada Letters,
VII(5) , September 1987.

[57] E. B. Swanson. The dimensions of maintenance. In Proceedings of the Second Interna
tional Conference on Software Engineering, pages 492-497. IEEE, October 1976.

[58] Gary Ford. Lecture notes on engineering measurement for software engineers. SEI ed
ucational materials package CMU/SEI-93-EM-9, Carnegie Mellon University, Software
Engineering Institute, 1993.

59] Mark Lorenz. Object-oriented software metrics: a practical guide. PTR Prentice Hall,
1994.

60] Everald E. Mills. Software metrics. SEI Curriculum Module SEI-CM-12-1.1, Carnegie
Mellon University, Software Engineering Institute, December 1988.

107

61] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308-320, December 1976.

62] S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering Metrics and
Models. BenjaminCummings, Menlo Park, Cafif., 1986.

63] V. R. Basili and D. M. Weiss. A methodology for collecting valid software engineering
data. IEEE Transactions on Software Engineering, SE-10(6):728-738, November 1984.

[64] B. W. Boehm. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, N.
J., 1981.

65] T. C. Jones. Programming Productivity. McGraw-Hill, New York, 1986.

66] Walcelio L. Melo, Lionel C. Briand, and Victor R. Basili. Measuring the impact of reuse
on quality and productivity in object-oriented systems. Technical Report CS-TR-3395,
University of Maryland, Department of Computer Science, January 1995.

[67] Lyman Ott. An introduction to statistical methods and data analysis. PWS-KENT
Publishing Company, Boston, Massachusetts, third edition, 1988.

