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Abstract

This thesis extends the background theory of speech and major speech coding schemes used
in existing networks to an implementation of GSM full-rate speech compression on a RISC

DSP and a multirate application for speech coding.

Speech coding is the field concerned with obtaining compact digital representations of
speech signals for the purpose of efficient transmission. In this thesis, the background of
speech compression, characteristics of speech signals and the DSP algorithms used have

been examined. The current speech coding schemes and requirements have been studied.

The Global System for Mobile communication (GSM) is a digital mobile radio system
which is extensively used throughout Europe, and also in many other parts of the world. The
algorithm is standardised by the European Telecommunications Standardisation Institute

(ETSI). The full-rate and half-rate speech compression of GSM have been analysed.

A real time implementation of the full-rate algorithm has been carried out on a RISC
processor GEPARD by Austria Mikro Systeme International (AMS). The GEPARD code
has been tested with all of the test sequences provided by ETSI and the results are bit-exact.

The transcoding delay is lower than the ETSI requirement.

A comparison of the half-rate and full-rate compression algorithms is discussed. Both
algorithms offer near toll speech quality comparable or better than analogue cellular
networks. The half-rate compression requires more computationally intensive operations
and therefore a more powerful processor will be needed due to the complexity of the code.
Hence the cost of the implementation of half-rate codec will be considerably higher than

full-rate.

A description of multirate signal processing and its application on speech (SBC) and
speech/audio (MPEG) has been given. An investigation into the possibility of combining
multirate filtering and GSM full-rate speech algorithm. The results showed that multirate
signal processing cannot be directly applied GSM full-rate speech compression since this
method requires more processing power, causing longer coding delay but did not
appreciably improve the bit rate. In order to achieve a lower bit rate, the GSM full-rate
mathematical algorithm can be used instead of the standardised ETSI recommendation.
Some changes including the number of quantisation bits has to be made before the

application of multirate signal processing and a new standard will be required.
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1 Introduction

1.1 Introduction to Speech Coding

Speech coders are algorithms that compress digital representation of speech signals to
minimise the numbers of bits required to represent those signals. They achieve this by
taking advantage, to varying degrees, of redundancies in the speech signals, and the digital
storage of speech signals. In the first category are such applications as digital
communications systems, mobile radio, cellular telephony, and secure voice systems. In this
category, channel conditions, delay and data rate are important issues. In the second
category are such applications as digital answering machines and voice response systems. In

this category, speech quality requirements are generally the overriding concerns.

The most important issues in selecting a speech coder are those of perceived quality,
coder complexity, and bit rate or data rate; the optimal solution will involve some balance
between these features [KON95]. In general, to achieve high speech quality at low bit-rates
will require a coder of high complexity; a less complex coder, which may be implemented at

lower processor costs, would mandate a higher bit-rate or a reduction in speech quality.

In telecommunication systems, the design and subjective test of speech coders has been
extremely difficult. A speech coder is evaluated based on the amount of compression
achievable; the sound quality of the reconstructed speech; the complexity of the algorithm,
signifying how powerful, and therefore expensive, a computer processor is required upon
which to run it; and the delay introduced, that is, the time delay between when the speaker
utters a word and the listener hears it. The importance of each factor is dependent upon the
application. For example, in storage systems such as answering machines, the delay is
inconsequential since the message will not be listened for a while. However, in a telephone
system, large delays will make conversation particularly difficult for the users. To make
speech coding practical, implementations must consume little power and provide tolerable, if
not excellent speech quality. The goal of all speech coding systems is to transmit speech
with the highest possible quality using the least possible channel capacity. This has to be
accomplished while maintaining certain required levels of complexity of implementation
and communication delay. In general, there is a positive correlation between coder bit rate
efficiency and the algorithmic complexity required to achieve it. The more complex an
algorithm is, the more its processing delay and cost of implementation. A balance needs to

be ‘struck between these conflicting factors, and the aim of all speech processing
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developments is to shift the balance towards lower bit rates while maintaining acceptable

speech quality.

1.2 Low Bit Rate Speech Coding for Telecommunications

Low speech rate speech coding attempts to provide toll-quality speech at a minimum bit rate
for digital transmission or storage. In the 1960s, A-Law coding was selected for the first 24-
channel pulse code modulation (PCM) systems and the 64 kbps PCM was one of the earliest
speech coding scheme. Research into more complex lower bit rate coding schemes was
initially inhibited by practical implementation considerations imposed by the semiconductor
technology of the day. As a consequence, research into sophisticated low bit rate algorithms
did not gather the momentum until the 1970s. It was not until the 1980s that the first world-
wide lower bit rate coding standard was achieved [RAP96]. This standard was the
International Telegraph and Telephone Consultative Committee (CCITT) G.721
Recommendation for 32 kbps Adaptive Differential PCM (ADPCM).

Since that time, the major advances made in microelectronics and digital signal processor
technology have spurred research into increasingly complex speech coding schemes.
Sophisticated speech coding techniques are now commercially viable, and can be
implemented at low cost for more affordable mobile, computer and audio-visual terminals.
Organisations such as CCITT, International Telecommunications Union (ITU), European
Telecommunications Standards Institute (ETSI), Universal Mobile Telecommunication
System (UMTS), International Standard Organisation (ISO) and International Maritime
Satellite Organisation (Inmarsat) have achieved notable successes with in-house speech

coding technology.

There was a period in the early 1980s when the need for further speech coding
development was brought into question. With rapid migration to optical fibre transmission
that was occurring in world networks and the potentially vast bandwidth offered by full
exploitation of this technology, there is still a need for higher speech compression.
However, the limited available radio bandwidth makes speech coding essential for the
provision of viable services in radio communication systems. Furthermore, although the
introduction of optical fibre transmission has proceeded apace, bandwidth constraints remain
a significant issue in areas of the fixed network. This is particularly true for international
links, whether they are satellite or cable, where speech compression is increasingly
employed [CAR86]. Competition from other network operators has also been an important
driver for speech coding technology, since more efficient use of the transmission medium
permits lower tariffs, leading to increased market share. Another area where speech coding

plays a vital role is the new media services. In these applications, the reduced data rate
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1 INTRODUCTION

required for the transmission of the audio component maximises the bandwidth available to

the visual element.

The position today is that a number of low rate speech coding techniques have already
been adopted as international standards for various network applications. For many new
network developments such as global virtual private networks, third generation mobile,
cellular satellite and even the asynchronous transfer mode (ATM) networks, it is no longer a
question of whether speech compression should be used, but which speech coding

technology provides the target speech quality at lowest cost.

1.3 Objective of Thesis

This thesis extends the background theory of speech and major speech coding schemes used
in existing telecommunication systems to an implementation of GSM full-rate speech
compression on a RISC DSP and a multirate application for speech coding. Chapter 2
describes the production and characteristics of human speech. The sampling theorem,
quantisation schemes and modelling tools used in speech coding are discussed. This is

followed by a description of the procedure of short-term and long-term prediction of speech.

Chapter 3 discusses the requirements speech compression algorithm and describes the
current speech coding schemes under three categories: waveform coding, vocoding and

hybrid coding, giving their complexities and qualities at various bit rates.

Chapter 4 presents an overview of GSM full-rate speech algorithm which is one of the
existing low bit rate digital speech coding standards. An investigation into real time
implementation of the algorithm on the new generation processor for parameterised DSP

called GEPARD by Austria Mikro Systeme International (AMS) is discussed.

Chapter 5 gives a brief review of the new GSM half-rate speech algorithm which uses
Vector Sum Linear Excited Prediction (VSELP). A comparison to the full-rate algorithm

on speech quality, complexity and cost of implementation is made.

Chapter 6 describes multirate digital signal processing and its applications on speech. A
brief explanation of Subband Coding and the three layers of MPEG audio compression
which use the multirate technique will be given. An experiment of the investigation of
combining multirate filtering and GSM full-rate compression is described. The results is

discussed and compared with conventional GSM full-rate.




2 Speech Signal Analysis

2.1 Introduction

The frequency of speech waves is measured in Hertz (Hz), or number of cycles per second.
The human ear can typically perceive frequencies between 20 Hz to 20 kHz, although many
people have rather limited hearing above 15 kHz [TIP91]. Human voice can produce
frequencies between 40 Hz and 4 kHz. These limits are important factors as most systems
are designed to produce speech quality which encompasses a much smaller range of

frequencies than the range perceptible to humans.

The speech signal has been studied for various applications by many researchers for
many years. Some studies break down the speech signal into its smallest portions, called
phonemes. However, in this thesis speech signal will be described in terms of its general
characteristics. The traditional vocoders which have been in use for many years classify the
input speech signal either as voiced or unvoiced. A voiced speech segment is known by its
relatively high energy content, but more importantly it contains periodicity which is called
the pitch of voiced speech. The unvoiced part of speech, on the other hand, looks more like
random noise with no periodicity. However, there are some parts of speech that are neither
voiced nor unvoiced, but a mixture of the two. These are usually called the transition
regions, where there is a change either from the voiced to unvoiced or unvoiced to voiced

[ROB97].

2.2 Speech Production

When a voiced speech is pronounced, air is pushed out from the lungs, opening a gap
between the two vocal folds, which is the glottis. Tension in the vocal tracts increases until,
pulled by the muscles and a Bernoulli force from the stream of air, they close. After the
folds have closed, air from the lungs again forces the glottis open, and the cycle repeats,
between 50 to 500 times per second, depending on the physical construction of the larynx

and how strong you pull on the vocal tracts.

For voiceless consonants, air is blown past some obstacle in the mouth. During
transitions, and for some mixed phonemes, the same air stream is used twice, first to make a
low-frequency hum with the vocal tracts, then to make a high-frequency, noisy hiss in the

mouth. Before vibrations from a person's glottis reach the ear, those vibrations pass through
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the throat, over the tongue, against the roof of the mouth, and out through the teeth and lips
[MCE95].

The space that a sound wave passes through changes it. Parts of one wave are reflected
and mixed with the next oncoming wave, changing the frequency spectrum of the sound.
Every vowel has three to five typical frequencies, or formants, that distinguish it from
others. By changing the interior shape of the mouth, reflections that amplify the formant

frequencies of the phoneme being spoken can be created.

2.3 Characteristic of Speech Signals

Speech waveforms have a number of useful properties that can be exploited when designing
efficient coders. Some of the properties that are most often utilised in coder design include
the non-uniform probability distribution of speech samples, the non-flat nature of the speech
spectra, the existence of voiced and unvoiced segments in speech, and the quasi-periodicity
of voiced speech signals, produced by opening and closing the glottis as the air passes
through the vocal tract [TEM96]. The most basic property of speech waveforms that is
exploited by all speech coders is that they are bandlimited by passing through a low pass
filter. A finite bandwidth means that it can be sampled at a finite rate and reconstructed
completely from its input signal, provided that the sampling frequency is greater than twice
the highest frequency component in the filtered signal. The characteristics of speech can be

quantified in a number of ways as shown in the following sections.

2.3.1 Probability Density Function (PDF)

The non-uniform probability density function of speech amplitudes is perhaps the next most
exploited property of speech. The PDF [RAP96] of a speech signal is in general
characterised by a very high probability of near-zero amplitudes, a significant probability of
very high amplitudes, and a monotonically decreasing function of amplitudes between these
extremes. The exact distribution, however, depends on the input bandwidth and recording
conditions.  The two-sided exponential function given in (2.1) provides a good

approximation to the long-term PDF of telephone quality speech signals.

1
plx)=———expl- v2Ja| /o) @.1)
V2o,
This PDF shows a distinct peak at zero which is due to the existence of frequent pauses and
low level speech segments. Short-term PDFs of speech segments are also single-peaked

functions and are usually approximated as a Gaussian distribution. A plot of the PDF of

speech is shown in Figure 2.1.
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Non-uniform quantisers, including the vector quantisers, attempt to match the distribution

of quantisation levels to that of the PDF of the input speech signal by allocating more

A p(x)

N » X
»

Figure 2.1 Probability density function of speech.

quantisation levels in regions of high probability and fewer levels in regions where the

probability is low.

2.3.2 Autocorrelation Function (ACF)

The autocorrelation function [TEM96] [ROB97] is another very useful broperty of speech
signals as there exists considerable correlation between adjacent samples of a segment of
speech. This implies that in every sample of speech, there is a large component that is easily
predicted from the value of the previous samples with a small random error. All differential

and predictive coding schemes are based on exploiting this property.

The ACF gives a quantitative measure of the closeness or similarity between segments of

samples of a speech signal as a function of their time separation. This function is

mathematically defined as

Clk)= 71,— N%j;—;(n)x(n + lkl) (2.2)

where x(k) represents the kth speech sample. The autocorrelation function is often
normalised to the variance of the speech signal and hence is constrained to have values in

the range {-1,1} with C(0)=1. Typical signals have an adjacent sample correlation, (),
as high as 0.85 to0 0.9.
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2.3.3 Power Spectral Density Function (PSD)

The non-flat characteristic of the power spectral density [KON9S5] [RAP96] of speech makes
it possible to obtain significant compression by coding speech in the frequency domain. The

non-flat nature of the PSD is a frequency domain manifestation of the non-zero
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Figure 2.2 30 ms duration of speech. (a) A typical segment. (b) Power spectral density for the segment.

autocorrelation property. Figure 2.2 shows a typical segment of speech and its power
spectral density. Typical long-term averaged PSD’s of speech show that high frequency
components contribute very little to the total speech energy. This indicates that coding
speech separately in different frequency bands can lead to significant coding gain. However,

the high frequency components cannot be ignored and need to be adequately represented in

the coding system.
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The qualitative measure of the theoretical maximum coding gain that can be obtained by

exploiting the non-flat characteristics of the speech spectra is given by the spectral flatness

measure (SFM). The SFM is defined as the ratio of the arithmetic to geometric mean of the

samples of the PSD taken at uniform intervals in frequency. Mathematically,

SFM =22 - (2.3)

where, S; is the kth frequency sample of the PSD of a speech signal. Typically, speech

signals have a long-term SFM value of 8 and a short-time SFM value varying widely

between 2 and 500.

2.4 Sampling Theory

An analogue speech signal is continuous in time. Before it can be processed by digital

hardware it must be converted to a signal that is discrete in time. Sampling [MARV93]

[PAN93] is a process that converts a continuous-time signal by measuring the signal at

(a)

Figure 2.3 A sinusoidal signal. (a) the continuous signal and (b) the sampled signal.
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periodic instants in time. Figure 2.3 shows the effect of sampling on a sinusoidal signal. It is
clear that as the sampling rate increases the sampled signal approximates the continuous

signal more closely. The sampled signal can be represented by
s(n) =S, (nT)

where — o <n <, n is the integer, s, is the analogue signal, and T is the sampling time or

(2.4)

the time difference between any two adjacent samples, which is determined by the highest

frequency in the input signal.

The sampling theorem states that if a signal s,(f) has a band limited Fourier transform

S.(jw), given by

5, (jo)= [ s @erar 2.5)

such that S, (jo)=0 for > 2xf) , then the signal can be reconstructed from its sampled
version if T <1/2f,, . fyis called the Nyquist frequency.

The effect of sampling is shown is Figure 2.4. As can be seen from Figures 2.4(b) and
2.4(c), the band limited Fourier transform of the analogue signal shown in Figure 2.4(a) is

a Magnitude
@) Analogue Signal gl
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Figure 2.4 The effects of sampling. (a) original signal spectrum, (b) over sampled, and (c) under sampled
signal spectra.
duplicated at every multiple of the sampling frequency. This is because the Fourier
transform of the sampled signal is evaluated at multiples of the sampling frequency, which

forms the relationship
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sle ’”’T) ZS (o + j2m|T). (2.6)

Therefore, if the sampling frequency is less than twice the Nyquist frequency, the spectra of
two adjacent multiples of the sampling frequencies will overlap. The distortion caused by
high frequencies overlapping low frequencies is called aliasing. To avoid aliasing distortion,
either the input analogue signal has to be band limited to a maximum of half the sampling
frequency, or the sampling frequency has to be increased to at least twice the highest

frequency in the analogue signal.

The Nyquist sampling theorem states that a signal may be reconstructed if the sampling
rate is greater than or equal to twice the frequency of the highest frequency component of the
signal. In telecommunication networks, the analogue speech signal is band limited to 300 -

3400 Hz and sampled at 8000 Hz [SPA%4].

2.5 Short-Term Spectral Analysis

In some speech coding schemes the frequency domain representation of the speech signal is
necessary. For this purpose, the short-term Fourier transform [KON95] [ROB97] is very
useful. The short-term spectral transform is also important for looking at a segment of the
speech signal and to determine features that are not obvious from the time domain

representation.

The short-term Fourier transform plays a fundamental role in the frequency domain
analysis of the speech signal. It is used to represent the time-varying properties of the
speech waveform in the frequency domain. A useful definition of the time-dependent

Fouriér transform is
S(e™)= 3wl - () @)

where w(k - n) is a real window sequence used to isolate the portion of the input signal that
will be analysed at a particular time index, k. During the analysis of speech signals, the
shape and length of the window can affect the frequency representation of speech. Various
types of windows have been studied by various researchers producing window shapes and

characteristics suitable for various applications.

2.5.1 Role of Windows

The window, w(n), determines the portion of the speech signal that is to be processed by

zeroing out the signal outside the region of interest. The ideal window frequency response

10
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has a very narrow main lobe which increases the resolution, and no side lobes (or frequency
leakage). Since such a window is not possible in practice, a compromise is usually selected
for each specific application. There are many possible windows (e.g. Rectangular, Hanning,

Hamming, Blackman, Kaiser, etc.).

The rectangular window has the highest frequency resolution due to the narrowest main
lobe, but has the largest frequency leakage. On the other hand, the Blackman window has
the lowest resolution and the smallest frequency leakage [STR89]. The effect of these
windows on the time-dependent Fourier representation of speech is discussed by comparing

the rectangular window and the Hamming window.

The effects using Hamming and rectangular windows for speech spectral analysis are
shown in Figure 2.5, where in each figure, plot (a) show the windowed signal s(n)w(k - n)

using the rectangular window and (b) shows the log magnitude of its Fourier transform,
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Figure 2.5 Effects of window types on voiced speech with 40 samples window length. (a) and (b) are time
and frequency plots of speech using a rectangular window, (c) and (d) are time and frequency plots of speech

using a Hamming window.

Sw). Similarly, plots (c) and (d) show the windowed signal using the Hamming window,
and the corresponding log magnitude spectrum. Figure 2.5 shows the results for a window
duration of 40 samples (5 ms for 8 kHz sample rate) for a section of voiced speech. When
compared, the periodicity of the signal is clearly seen Figure 2.5(b) as well as in Figure
2.5(d). However, the harmonic peaks at multiples of the fundamental frequency are
narrower and sharper in rectangular windowed speech. The formant structure which consists

of a strong first peak at about 500 Hz, and three broader peaks at about 1350 Hz, 2300 Hz

11
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and 3400 Hz, as well as showing a tendency to fall off at higher frequencies due to the low-

pass nature of the glottal pulse spectrum is also noticeable in Figures 2.5(b) and 2.5(d).

Although both Figure 2.5(b) and 2.5(d) show considerable overall similarity in terms of
the pitch harmonics, formant structure and gross spectral shape, the pitch harmonics of
Figure 2.5(b) are sharper, due to a greater frequency resolution of the rectangular window
relative to that produced by the Hamming window in Figure 2.5(d). However, due to the
high frequency leakage of the rectangular window produced by its larger side lobes, the
windowed speech looks more noisy. This undesirable high frequency leakage between
adjacent harmonics tends to offset the benefits of the flat time domain response (greater
frequency resolution) of the rectangular window. As a result, rectangular windows are not

usually used in speech s'pectral analysis.

2.6 Quantisation Techniques

Quantisation is the conversion of a discrete-time continuous-valued signal into a discrete-
time, discrete-valued signal. The value of each signal sample is represented by a value
selected from a finite set of possible values. The difference between the unquantised input
and the quantised output is called the quantisation error (or noise) and it is desirable to
minimise the perceived magnitude of this error. In order to achieve this objective several
quantisation techniques can be used. All the quantisation schemes can be made to adapt to
the input waveform’s statistics so that the quantiser will always by locally optimum and

provide the highest possible quality with the lowest possible bit rate.

2.6.1 Linear Quantisation

Linear or uniform quantisers [SPA94] are those in which the distances between all the
reconstruction levels are the same. They make no assumptions about the nature of the signal
being quantised. For this reason they normally do not give the best perceived performance.
However, they are usually the simplest and the cheapest to implement. To quantise

telephone speech a 13-bit uniform quantiser is necessary to provide toll quality speech.

2.6.2 Logarithmic Quantisation

Speech signals can have a dynamic range in excess of 60 dB so a large number of
reconstruction levels are necessary for the uniform quantiser to attain high quality speech.
However quantiser resolution is more important for the low amplitude parts of the signal
than for the large amplitude signals. Therefore it is obvious that the uniform quantiser is

wasteful of reconstruction levels and, hence, bandwidth. The situation could be improved if

12
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Figure 2.6 Companding characteristics. (a) g-law and (b) A-law.

the distance between the reconstruction levels increased as the amplitude of the signal

increased. This processing is called companding [RAP96].

Two very popular companding characteristics are A-law and g-law companding. They
are very similar and their transfer characteristics are shown in Figure 2.6. The A-Law

compression is defined by

Ax 1
m for0<x< ':4‘
AL(x)= 10
(X) JM for.l(x(] (28)
1+ log,,(4) A-7 7

where A is the compression parameter with typical values of 86 for 7 bit (North America
PCM) and 87.56 for 8 bit (European PCM) speech quantisers.

The g~Law compression, on the other hand, is defined by

V, logyo [l + %xl} 2.9)

0

) =signlx)—— oAl
10

where ¥} is given by ¥ = Lo,, in which L is the loading factor and o; is the rms value of

the input speech signal.

A typical value of compression factor 4 is 255. The above expression show that the A-
Law is a combination of logarithmic curve used for large amplitudes, while the smalil
amplitudes the curve becomes linear. The u-Law, on the other hand, is not exactly linear or
logarithmic in any range, but it is approximately linear for small and logarithmic for large
amplitudes [KON95].

13
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2.6.3 Non-Uniform Quantisation

The problem with uniform quantisation is that as the signal amplitude decreases the signal to
noise ratio also decreases. This problem is partially solved by the logarithmic quantiser.
However is the probability distribution function (PDF) of the input is known then the
reconstruction levels can be matched to the PDFs so that the mean squared quantisation error
is minimised [RAP96]. This means that most of the reconstruction levels occur in the
vicinity of the most likely inputs and has the effect of minimising the perceived quantisation

€rror.

In practice an estimate of the PDF can be used to design the quantisers. This can be
obtained from a large library of the data to be quantised. Iterative techniques can then be

used to determine the reconstruction levels using this library.

2.6.4 Vector Quantisation

In the previous methods each sample is quantised independently from its neighbouring
samples. Shannon [SHA48] proposed that the information rate of a continuous source could
be measured in terms of some specified distortion criterion. Appropriate digital source
coding then allows efficient information transmission over a channel whose capacity equals
the rate in question. This proposal has subsequently been developed into the field known as
rate-distortion theory which states that there exists a mapping from a source waveform to
output code words such that for é given distortion D, R(D) bits per sample are sufficient to
reconstruct the waveform with an average distortion arbitrarily close to D. Therefore, the
actual rate R has to be greater than R(D). The rate-distortion function R(D) represents a
fundamental limit on the achievable rate for a given distortion. Scalar quantisers do not
achieve performance close to this information theoretical limit. The theorem predicts that

better performance can be achieved by coding many samples at a time instead of one sample.

Vector quantisation [SPA94] [KON9S5] is a delayed-decision coding technique which
maps a group of input samples, called a vector, to a codebook index. A codebook is set up
consisting of a finite set of vectors covering the entire anticipated range of values. In each
quantising interval, the codebook is searched and the index of the entry that gives the best
match to the input frame is selected. Vector quantisers can yield better performance even
when the samples are independent of one another. Performance is greatly enhanced is there
is a strong correlation between the samples in the group. A block diagram of a simple vector

quantiser is shown in Figure 2.7.

Let x = [x1, X3, ..., xy]" be an N dimensional vector with real valued, continuous-amplitude

random varying components x, [ < £ < N (the superscript T denotes transpose), in a vector

14




2 SPEECH SIGNAL ANALYSIS
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Figure 2.7 Block diagram of a simple vector quantiser.
quantisation this vector is matched with another real-valued, discrete-amplitude, N
dimensional vector y. Thus, x is quantised as y, hence y is used to represent x. Usually, y is
chosen from a finite set of values Y =y;, | <i< L, where y; = [y, ys, ..., yN]T. The set Y is

called a codebook, L is the size of the codebook and y; are the set of codebook vectors.

The rate, R, of the vector quantiser is defined as

1
R= Oi; ” bits per sample. (2.10)

Where n is the size of the vector quantisation codebook. R may also take fractional values.
All the quantisation principles used in scalar quantisation apply to vector quantisation as a
straightforward extension. Instead of quantisation levels, quantisation vectors are used, and
distortion is measured as the squared Euclidean distance between the quantisation vector and

the input vector.

Vector quantisation is very efficient at low bit rates, where R = 0.5 bits/sample or less.
This is because when R is small, a large vector dimension N can be used and then vector
quantisation codebook can still have a reasonable size, 2. Use of large dimensions brings
out the inherent capability of vector quantisation to exploit the redundancies in the
components of the vector being quantised. Vector quantisation is a computationally
intensive operation and hence is not often used to code speech signals directly. It is also
more sensitive to transmission error compared with scalar quantisation. However, it is used
in many speech coding systems to quantise the speech analysis parameters like the linear

prediction coefficients and the spectral coefficients.

2.7 Linear Predictive Modelling of Speech

One of the most powerful speech analysis methods is that of Linear Predictive Coding, or
LPC analysis [MAK95] as it is commonly referred to. In LPC analysis the short-term

correlations between speech samples are modelled and removed by a very efficient short
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Figure 2.8 The lossless tube model of speech production.

order filter. Another equally powerful and related method is pitch prediction. In pitch

prediction, the long-term correlation of speech samples is modelled.

LPC analysis assumes that the vocal tract is a lossless tube which can be described by an

all pole infinite impulse response (IIR) filter with a transfer function described by

G

M
1+ Zbkz"k
k=1

H(z)= @2.11)

where G is a gain of the filter and z™' represents a unit delay operation. This lossless tube

model of speech production is shown in Figure 2.8. In other words, each speech sample is

Original Speech

| J N I fﬁ
b
LPC Residual

st e

mMoCH =9z

TIME (SAMPLES)
Figure 2.9 Waveform plots of original and LPC inverse filtered speech.

assumed to be a linear combination of the previous samples. The excitation to the linear
predictive filter is either a pulse at the pitch frequency or random white noise depending on
whether the speech segment is voiced or unvoiced. The coefficients of this filter are

calculated to minimise the error between the prediction and the actual sample [TEM96).

In the LPC filter a block of about 20 ms of speech is stored and analysed to determined
the predictor coefficients. The method is described in the next section. These coefficients

are then quantised and transmitted to the receiver. This speech is then passed through the
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inverse of the vocal tract filter to obtain the prediction error or residual. The effect of the
predictor is to remove the correlation between adjacent samples. This makes determining the

pitch period of the speech much easier by making the long term correlation more visible.

I mMﬁNWW’M
£ s

FREQUENCY (kHz)

Figure 2.10 Spectra of original and LPC inverse filtered speech. (a) original speech envelope, (b) original

speech spectrum, and (c) LPC residual spectrum.

Hence a more reliable voiced/unvoiced decision can be made using this residual. The plots
of the waveform and spectrum of the original and LPC inverse filtered speech are shown in

Figure 2.9 and 2.10.

LPC analysis is very popular because the all pole model of the vocal tract works very
well. It can be used to achieve highly intelligible speech at bit rate as low as 2.4 kbps
[SPA94]. The algorithm is explained in the next section.

2.7.1 Determination of Predictor Coefficients

The linear predictive coder uses a weighted sum of p past samples to estimate the present

sample,
P
S, =Zaks,,_k +e, (2.12)
k=1

where p is typically in the range of 8 - 14. Using this technique, the current sample s, can be

written as a linear sum of the immediately preceding samples s,

where, e, is the prediction error (residual). The predictor coefficients are calculated to
minimise the average energy E in the error signal that represents the difference between the

predicted and actual speech amplitude.

N N p 2
E=)Y el =2[Zaksn~kj (2.13)
n=1

n=1 \ k=0
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where ay = -1. Typically the error is computed for a time window of 20 ms which
corresponds to a value of N = 160. To minimise E with respect to a,, it is required to set the

partial derivatives equal to zero.

OF & 2
=25, , .8, =0 (2.14a)
aam n=1 k=0
p N
:zzsn_msn_kak :0 (2.14b)
k=0 n=1

The inner summation can be recognised as the correlation coefficient C,, and hence the

above equation can be rewritten as

p
kaak = 0
kZ:;, 2.15)

After determining the correlation the correlation coefficients C.,, (2.15) can be used to
determine the predictor coefficients [ROB97]. (2.15) is often expressed in matrix notation
and the prediction coefficients calculated using matrix inversion. A number of algorithms
have been developed to speed up the calculation of predictor coefficients, e.g. the
autocorrelation method and the covariance method. Normally the predictor coefficients are
not coded directly, as they would require 8 bits to 10 its per coefficients for accurate
representation. The accuracy requirements are lessened by transmitting the closely related
reflection coefficients which have a smaller dynamic range. These reflection coefficients can
be adequately represented by 6 bits per coefficients. Thus, for a 10th order predictor, the
total number of bits assigned to the model parameters per frame is 72, which includes 5 bits
for a gain parameter and 6 bits for the pitch period. If the parameters are estimated every 15
ms to 30 ms, the resulting bit rate is in the range of 2400 bps to 4800 bps. The coding of the
reflection coefficient can be further improved by performing a non-linear transformation of
the coefficients prior to coding. This non-linear transformation reduces the sensitivity of the
reflection coefficients to quantisation errors. This is normally done through a log-area ratio
(LAR) transform which performs an inverse hyperbolic mapping of the reflection

coefficients, R,(k)

LAR, (€)= tanh™ (R, (k))log{“—R"(k—)} 2.16)

2.8 Pitch Prediction

There are still considerable variations in the spectrum after the removal of the spectral

envelope in the signal spectrum in LPC analysis. The long-term correlations, especially
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during voiced regions, still exist between samples in the residual signal. In order to removal
the periodic structure of the residual or excitation signal, a second stage of prediction is
required [CHA96]. The objective of this second stage is to spectrally flatten the signal, i.e.
" to remove the fine structure. Unlike the LPC analysis, it exploits correlation between the
speech samples that are one pitch or multiple pitch period away. For this reason, the pitch
prediction filter is usually called the long-term prediction (LTP) and the filter delay is called
the lag.

2.8.1 Pitch Predictor Formulation

The aim of pitch prediction is to model the long-term correlation left in the speech residual

after LPC inverse filtering such that when the model parameters are used in a filter, it will

Pitch LpPC
x(n) > , AN s(n)
Synthesis Synthesis >
Filter Filter

Figure 2.11 A typical pitch-LPC formulation model.

- remove the long-term correlation as much as possible. The Long-Term Predictor (LTP) can

be interpreted as

P(z)=—1—1— 2.17)
1- ijz_(j”“)

j=—1

where T is the pitch period, and b; are the pitch gain coefficients which reflect the amount of
correlation between the distant samples. Referring to Figure 2.11, the combined analysis

model can be represented by a time domain difference equation

sn)=Gln) + 3 byrln—T - )+ 3 a s ) @.18)

j=-1 J=1

where r(n) is the past excitation signal. Following a similar procedure to that of the LPC
analysis, the aim is to determine estimates (f, 7, a;) of the model parameters (b, T, a)).
Then the prediction error is given by

!

e(n)=S(n)—Zﬂ,r(n—f—j)-iaﬁ(n—j) 2.19)

j=1 j=1
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2.9 Summary

This chapter describes background information characteristics of human speech. The DSP
algorithms used in speech coding for sampling, quantisation and modelling are discussed
and formulated. The short-term and long-term prediction of speech is described. The
application of the algorithms and description of current speech coding schemes can be found

in the next chapter.
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3 Speech Coding Strategies and
Algorithms

3.1 Introduction

Digital encoding of voiceband speech has been a topic of research for many years, and as a
result of this intense activity, many strategies and approaches have been developed for
speech coding. As these strategies and techniques matured, standardisation followed with
specific application targets. In this chapter, a brief review of speech coding techniques will
be presented. The requirements of the current generation of encoding standards will also be
discussed. The motivation behind the review is to highlight the different advantages and
disadvantages of various techniques employed in the past and present. The success of the
different coding techniques is revealed in the description of the many coding standards

currently, and soon to be, in active operation, ranging from 64 kbps down to 2 kbps.

3.2 Algorithms Objectives and Requirements

Table 3.1 Applications and networking requirments for speech coding. (Async. = asynchronous PCM

transcoding, Sync. = synchronous PCM transcoding, DCM = digital circuit multiplication)

Application Codec PCM Voiceband Other Non- Minimum Speech
Delay Transcoding Data Voice Quality

Land DMR + 70 ms 2 Async. - Tones Analogue
Portables (900 MHz)
Maritime Satellite 60 - 80 ms 2 Async. Upto2.4 Tones Companded FM
Systems kbps (6-bit PCM)
DCM Equipment 40 - 80 ms 2 Async. Yes Tones 6 -7 bit PCM
ISDN - 4 Sync. No No 6 - 7bit PCM
Digital Leased Lines 70 ms -- - Tones 7 bit PCM
Voice Store Forward -- -- No No 6 -7 bit PCM
Systems
Voice Messages for - - No No Speech Intel.
Announcement
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3 SPEECH CODING STRATEGIES AND ALGORITHMS

The design and coding capacity of a particular algorithm is often dictated by the target
application. Therefore, in the design of an algorithm the relative weighting of the
influencing factors requires careful consideration in order to obtain a balanced compromise
between the often conflicting objectives. Some of the factors which influence the choice of

algorithm for foreseeable network applications are shown in Table 3.1.

3.2.1 Quality and Capacity

Speech quality and bit rate are two factors that directly conflict with each other. The lower
the bit rate of the speech coder, i.e. higher signal compression, the more the quality
inevitably suffers (vocoders). For systems that connect to the Public Switched Telephone
Network (PSTN) and associated systems, the quality requirements are strict and must
conform to constraints and guidelines imposed by the relevant regulatory bodies, e.g. ETSI,
CCITT. Such systems demand a very high quality of encoding, the usual requirement being
toll or landline quality (waveform coders). However, for closed systems such as private
commercial network and military systems, the quality factor may be reduced to lower the
capacity requirements. Although absolute quality is often specified, it may be compromised
for a lower standard if other factors are more important [WON96]. For instance, in a mobile
radio system it is the overall average quality that usually takes into account both good and

bad transmission conditions, therefore is often the deciding factor.

It is plausible to assume that by combining vocoders and waveform coders, a high quality
speech coder operating at low bit rates (less than 8 kbps) could be produced. This is called
the hybrid coder and it attempts to preserve the perceptually important parts of the input

speech.

3.2.2 Coding Delay

The coding delay of a speech transmission system is a factor closely related to the quality
requirements. Coding delay includes algorithmic (the buffering of speech for analysis),
computational (time taken to process the stored speech samples) and transmission factors.
Only the first two concern the speech coding subsystem, although very often the coding
scheme is tailored such that transmission can be initiated even before the algorithm has
completed processing all the information in the analysis frame. For example, in the Pan-
European mobile system the encoder starts transmission of the spectral parameters as soon
as they are available. For PSTN applications, low delay is essential if the major problem of
echo is to be minimised. For mobile system applications and satellite communication

systems, echo cancellation is already employed as substantial propagation delays already
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3 SPEECH CODING STRATEGIES AND ALGORITHMS

exist. However, in the case of PSTN, where delay is very small, extra echo cancellers will
be required if coders with long delays are introduced. This increases the overall cost of the
system. The other problem of encoder/decoder delay is purely the subjective annoyance
factor. Most low rate algorithms introduce a substantial coding delay compared with the
standard 64 kbps PCM system [KON9S]. For instance, the Pan-European DMR system's
initial upper limit was 65 ms for a back-to-back configuration, whereas for the 16 kbps

CCITT specification it was a maximum of 5 ms with an objective of 2 ms.

3.2.3 Complexity and Cost

As ever more sophisticated algorithms are devised, the computational complexity is
increased. The advent of the digital signal processor (DSP) chips and custom application
specific integrated circuits (ASIC) chips has enabled the cost of processing to be
considerably lowered. However, complexity/power consumption, and hence cost, is still a
major problem, especially in applications where hardware portability is a prime factor. One
technique to overcome power consumption whilst also improving channel efficiency is
digital speech interpolation (DSI). DSI exploits the fact that only around half of speech
conversation is actually active, thus during inactive periods the channel can be used for other
important purposes, and it can be used to limit the transmitter activity, hence saving power.
An important subsystem of DSI is the voice activity detector (VAD) which must operate
efficiently and reliably to ensure that real speech is not mistaken for silence, and vice versa

[KON95]. Obviously, a silence mistaken for voice is tolerable, but the opposite can be very

annoying.

3.3 Speech Coding Algorithms

Speech coders [SPA94] are broadly classified based on the means by which they achieve
compression into two categories — waveform coders and vocoders. The hierarchy of speech

coders is shown is Figure 3.1.

Waveform coders essentially strive to reproduce the time waveform of the speech signal
as closely as possible. They are designed to be source independent and can hence code
equally well a variety of signals. However, this class of coders have only moderate
economy in transmission bit rate. Vocoders on the other hand achieve very high economy in
transmission bit rate but are in general more complex. They are based on using a priori

knowledge about the signal to be coded, and for this reason, they are signal specific.
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3 SPEECH CODING STRATEGIES AND ALGORITHMS

The general function of these speech coders is to analyse the signal, remove the
redundancies, and efficiently code the non-redundant parts of the signal in a perceptually

acceptable manner. As the coding capacity is reduced the strategies for redundancy removal

SPEECH CODERS

WAVEFORM CODERS SOURCE CODERS

TIME DOMAIN FREQUENCY DOMAIN VOCODERS HYBRID CODERS

I

NONDIFFERENTIAL DIFFERENTIAL SBC CHANNEL FORMANT CELP

[ [

PCM DPCM ADPCM APC CEPSTRUM MPE-LPC RELP

Figure 3.1 Hierarchy of speech coders.

and bit allocation need to be ever more sophisticated [RAP96]. The quality versus bit rate
for the three main coding strategies, waveform coding, vocoding and hybrid coding, are

shown in Figure 3.2. In this figure, the quality is represented by mean opinion scores (MOS)

SPEECH
QUALITY
Waveform Coding
5 i
4 = Hybrid Coding
3 r 4
2 pn
l —
] 1 1 1 | 1 >
1 2 4 8 16 32 64

BIT RATE (kbps)

Figure 3.2 Quality comparison of speech coders.
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3 SPEECH CODING STRATEGIES AND ALGORITHMS

ranging from 1 to 5, which corresponds to 1 = bad, 2 = poor, 3 = fair, 4 = good and 5 =
excellent. A summary of the application standards currently in operation and those in

development is shown in Table 3.2.

Table 3.2 Summary of available speech coders.

Coder Coding Technique Bit Rate (kbps)
G.711 PCM 32

G.722 SB-ADPCM 48/56/64
G.726 ADPCM 16/24/32/40
G.728 LD-CELP 16

G.729 CS-ACELP 8

GSM Full-Rate RPE-LTP 13

GSM Half-Rate VSELP 5.6

GSM Enhanced Full-Rate CELP | 13

[S-54 VSELP 7.95

3.4 Waveform Coding

Waveform coders attempt to reproduce the input signal’s waveform. They are generally
designed to be signal independent so they can be used to code a wide variety of signals.
They also exhibit a graceful degradation in the presence of noise and transmission errors.
However, to be effective they can only be used for medium bit rates. Waveform coding can

be carried out in either the time domain or the frequency domain.

3.4.1 Time Domain Coding

Time domain coding defines a range of input voltages, splits this range of input into bits, and
assigns a binary code to represent a number, in which the lowest number corresponds to the
lowest input voltage, and the largest number corresponds to the highest input voltage. The

resulting quality of this technique is approximately linearly proportional to the bits allocated

per sample.

3.4.1.1 Pulse Code Modulation (PCM)

The PCM waveform coding algorithm [CAR86] [WON96] may be used to convert any

band-limited analogue signal to a digital coded stream. Narrow-band speech is sampled 8
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kHz (see 2.4), and then each speech sample must be quantised. If linear quantisation is used
then about 12 bits per sample are need, giving a bit rate of about 96 kbps. However this can
be easily reduced by using a non-linear quantisation. For coding speech it has been found
that with non-linear quantisation 8 bits per sample is sufficient for speech quality which is
almost indistinguishable from the original. This gives a bit rate of 64 kbps, and two such
non-linear PCM coding algorithms were standardised in 1960s. In America u-law is the
standard, while in Europe the slightly different A-law compression is used. Because of their
simplicity, excellent quality and low delay both of these techniques are still widely used

today.

3.4.1.2 Differential Pulse Code Modulation (DPCM)

PCM makes no assumptions about the nature of the waveform to be coded, hence it works
very well for non-speech signals. However, when coding speech there is a very high
correlation between adjacent samples. This correlation could be used to reduce the resulting
bit rate. One simple method of doing this is to transmit only the differences between each
sample. This difference signal will have a much lower dynamic range than the original
speech, so it can be effectively quantised using a quantiser with fewer reconstruction levels.
In the above method the previous sample is being used to predict the value of the present
sample. The prediction could be improved if a much larger block of speech is used to make
the prediction. This technique is known as differential pulse code modulation (DPCM)
[SPA94] [KON9S].

3.4.1.3 Adaptive Delta Pulse Code Modulation (ADPCM)

The ADPCM waveform coding algorithm [SPA4] [RAP96] quantises the difference between
the speech signal instead of quantising the speech signal directly and a prediction that has
been made of the speech signal. If the prediction is accurate then the difference between the
real and predicted speech samples will have a lower variance than the real speech samples,
and will be accurately quantised with fewer bits than would be needed to quantise the
original speech samples. At the decoder the quantised difference signal is added to the
predicted signal to give the reconstructed speech signal. The performance is aided by using
adaptive prediction and quantisation, so that the predictor and difference quantiser adapt to

the changing characteristics of the speech being coded.

In the mid 1980s the CCITT standardised a 32 kbps ADPCM, known as G.721, which
gave reconstructed speech almost as good as the 64 kbps PCM coding algorithm. Later in
recommendations G.726 and G.727 operating at 40, 32, 24 and 16 kbps were standardised.
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3.4.2 Frequency Domain Coding

Frequency domain waveform coders split the signal into a number of separate frequency
components and encode these independently. The number of bits used to code each

frequency component can be varied dynamically.

3.4.2.1 Subband Coding (SBC)

This is the simplest of the frequency domain techniques. In the subband coder [PRO92]
[CRO93] [MARV93], the signal is passed through a bank of bandpass filters. Each sub-
band is then lowpass translated and the sampling rates are reduced to the Nyquist rate for
each band. The subbands are then coded using one of the time domain techniques. The
number of bits assigned to each band can be varied according to the band’s perceptual
importance. At the receiver the sampling rates are increased and the bands are modulated

back to their original positions. They are then summed to produce the output speech.

The main advantage of subband coding is that the quantisation noise produced in one
band is confined to that band. This means that separate quantiser set-sizes can be used for
each band. Therefore bands with lower energy can have lower step-sizes and hence are
preserved in the reconstructed signal. The confinement of the quantisation noise also allows

the perceptually weighted distribution of bits.

Subband coding has found widespread use in wide bandwidth, high quality commentary
channels for teleconferencing. These systems use a coder described in the CCITT’s G.722

standard. Subband coding using multirate techniques is described in chapter 6.

3.4.1.3 Adaptive Transform Coding (ATC)

This is a more complex technique and involves a block of transformation of a windowed
segment of the input signal. The idea is that the signal is transformed into the frequency
domain. Coding is then accomplished by assigning more bits to more important transform

coefficients. At the receiver the decoder carries out the inverse transform to obtain the

reconstructed signal.

The most commonly used transform is the Discrete Cosine Transform (DCT) [IFE93]. It
is used because it is significantly less computationally intense than other transforms and its
properties are almost the same. Most of the practical transform coding schemes vary the bit
allocation among different coefficients adaptively from frame to frame while keeping the
total number of bits constant. This dynamic bit allocation is controlled by time-varying

statistics which have to be transmitted as side information. This constitutes an overhead of
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about 2 kbps. The frame of N samples to be transformed or inverse-transformed is
accumulated in the buffer in the transmitter and receiver respectively. The side information

is also used to determine the step size of the various coefficient quantisers [RAP96].

3.5 Vocoding

Waveform coders make no assumptions about the nature of the signal to be coded.
However, if the signal is always a speech signal then it would be more efficient to take the
method of producing the signal into account. Vocoders [SPA94] [ROB97] assume an
explicit model of speech production, shown in Figure 3.3. This model assumes that speech
is produced by exciting a linear system, the vocal tract, by a series of periodic pulses if the

sound is voiced or noise if it is unvoiced.

If the speech is voiced the excitation consists of a periodic series of impulses, the distance
between these pulses equals the pitch period. If the speech is unvoiced the excitation is a
random noise sequence, corresponding to the hiss production by air blowing through a

constriction in the vocal tract.

The linear system models the vocal tract and its parameters can be determined using
several techniques. It is the methods of obtaining this model that distinguishes the many

different kinds of vocoders.

Vocoders attempt to produce a signal that sounds like the original speech, whether or not
the time waveform resembles the original. At the transmitter the speech is analysed to

determine the model parameters and the excitation. This information is then transmitted to

J pitch

periodic Voived/Unvoiced Spt:tu‘iil
Excitation Switch Paramerct
Spectral
\—D———! Enwelope ——»
Speech
Gain Model
Random
Noise

Figure 3.3 The speech production model used by vocoders.

the receiver where the speech is synthesised. The result of this is that they can produce
intelligible speech at very low bit rates. However the synthesised speech sounds unnatural,

so vocoders are normally used where bit rate is of utmost importance.
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The poor quality of the vocoder output is attributable to the very simple nature of its
speech production model. Especially the assumption that speech is either voiced or
unvoiced, allowing no intermediate states. The ear is very sensitive to pitch information so
for voiced speech the pitch must be accurately determined, a problem that has never been
satisfactorily solved. They also suffer from a sensitivity to errors in vocal tract model, the
error occurring in either calculating the model’s parameters or transmitting the data to the

receiver [MCCR95].

3.5.1 Channel Vocoders

The channel vocoder [SPA94] [RAP96] is the earliest of the vocoders. This coder takes
advantage of the ear’s insensitivity to short-time phase. For speech segments of about 20 ms
only the magnitude of the spectrum needs to be considered. The spectrum is estimated using
a filter bank. The more filters in the bank the better the results, but the higher the resulting
bit rate. The output of each of these filters is then rectified and lowpass filtered to find the
envelope of the signal. It is then sampled and transmitted to the receiver. The receiver does

the exact opposite to the transmitter.

The bandwidths of the filters used in the filter bank tend to increase with frequency. This

allows for the fact that the human ear responds logarithmically.

The channel vocoder can be implemented using either digital or analogue hardware and is

capable of providing highly intelligible speech at bit rates in the region of 2.4 kbps.

3.5.2 Cepstrum Vocoders

The cepstrum vocoder [RAP96] separates the excitation and vocal tract spectrum by inverse
Fourier transforming of the log magnitude spectrum to produce the cepstrum of the signal.
The low frequency coefficients in the cepstrum correspond to the vocal tract envelope, with
the high frequency excitation coefficients forming a periodic pulse train at multiples of the
sampling period. Linear filtering is performed to separate the vocal tract cepstral
coefficients from the excitation coefficients. In the receiver, the vocal tract cepstral
coefficients are Fourier transformed to produce the vocal tract impulse response. By

convolving this impulse response with a synthetic excitation signal, the original speech is

reconstructed.
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3.5.3 Formant Vocoders

The vast majority of the information in a speech signal is contained in the positions and
bandwidths of the vocal tract’s formants [ZOL96]. If these formats could be accurately
determined then it would be possible to obtain a very low bit rate. In fact, with this
technique it is possible to achieve less than 1 kbps. However, the formants are very difficult

to determine accurately. For this reason the formant vocoder has never been very popular.

3.6 Hybrid Coding

To overcome the deficiencies of pure waveform and vocoding schemes, hybrid coding
methods have been developed which incorporate the advantages offered by each of the pure

schemes.

3.6.1 Multi-Pulse Excited LPC (MPE-LPC)

The main problem with the linear predictive vocoder is the excitation for the vocal tract
model. The vocoder categorises the speech as either voiced or unvoiced. This has the effect
of producing a very synthetic sounding output. Multi-pulse excitation tries to rectify this

problem.

When a speech signal is passed through the linear predictor the correlation between
adjacent samples is removed. However, for voiced speech the pitch of the speech introduces
a long term correlation into the speech, resulting in the quasi-periodicity mentioned earlier.
This periodicity is not removed by the linear predictor and produces large spikes in the

residual.

This long term correlation can be removed by passing the residual through a second
predictor. This second predictor, the pitch predictor, is designed not to remove the
correlation from adjacent samples but to remove the correlation from adjacent periods of the
residual. This is achieved by inserting a delay corresponding to the pitch period into the
predictor. The output of this predictor will approximate Gaussian noise. The multi-pulse
coder then excites the cascade of the two linear predictors with a series of impulses.
Generally about four to six impulses are used as the excitation. The position and amplitudes
of these impulses are determined using an analysis-by-synthesis procedure [CUC96]. The

locations of the impulses are determined sequentially.

The multi-pulse coder is very effective at producing high quality speech at bit rate around
9.6 kbps and lower. A variation of the multi-pulse coder [KON95] is the regular pulse

excitation coder (RPE). This coder uses regularly spaced pulse patterns instead of the lone
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impulses of the multi-pulse coder. The GSM standard uses an RPE coder operating at 13
kbps.

3.6.2 Codebook Excited LPC (CELP)

As described above the main problem with vocoders is the simplistic model of the excitation

used. Codebook Excited Linear Prediction is another way of circumventing this problem.

In the CELP coder [SPA94] [PAI96] [ROB97] the speech is passed through the cascade
of the vocal tract predictor and the pitch predictor. The output of this predictor is a good

approximation to Gaussian noise. This noise sequence has to be quantised and transmitted

codebook speech
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Figure 3.4 The analysis-by-synthesis codebook search of a CELP coder.

to the receiver. Multi-pulse coders quantise it using a series of weighted impulses. CELP
coders use vector quantisation. The index of the codeword that produces the best quality

speech is transmitted along with a gain term for it.

The codebook search is carried out using an analysis-by-synthesis technique, see Figure
3.4. The speech is synthesised for every entry in the codebook. The codewnrd that produces
the lowest error is chosen as the excitation. The error measure used is perceptually weighted

so the chosen codeword produces the speech that sounds the best [BLA96].

The codebook search is very computationally intensive but fast algorithms have been
developed so that a CELP coder can now be implemented in real-time using modern digital
signal processing microprocessors. This technique is currently one of the most effective

method of obtaining high quality speech at very low bit rates.
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3.6.3 Residual Excited LPC (RELP)

The rationale behind the residual excited LPC (RELP) [KON95] [RAP96] is related to that
of the DPCM technique in waveform coding. In this class of LPC coders, after estimating
the model parameters (LP coefficients or related parameters) and excitation parameters
(voiced/unvoiced decision, pitch, gain) from a speech frame, the speech is synthesised at the
transmitter and subtracted from the original speech signal to form a residual. The residual
signal is quantised, coded, and transmitted to the receiver along with the LPC model
parameters. At the receiver the residual error signal is added to the signal generated using
the model parameters to synthesis an approximation of the original speech signal. The
quality of the synthesised speech is improved due to the addition of the residual error. More

information about RELP coders can be found in the Chapter 4.

3.7 Summary

This chapter discusses the current speech coding strategies and algorithms. The objectives
and requirements of speech compression which includes the quality and capacity, coding
delay, complexity and cost have been described. The current schemes have been outlined in
the following categories: the high quality waveform coders, the low bit rate vocoders and the
hybrid coders that attempts to fill the gap between waveform coders and vocoders. In the
next chapter, the procedure of a real time implementation of the GSM full-rate speech

compression which uses RELP enhanced by a long term predictor (LTP) will be described.
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4 Real Time Implementation of GSM
Full-Rate Codec on RISC DSP

4.1 Introduction

Raw digitised speech can be too large to store and requires more bandwidth than typically
available on ordinary telephone lines. The Global System for Mobile communication (GSM)
is a digital mobile radio system which is extensively used throughout Europe, and also in
many other parts of the world. The GSM full-rate speech transcoder operates at 13 kbps and
uses RPE-LTP (regular pulse excitation long-term predictor). The specification requires bit-
exactness which imposes strict constraints on an implementation using any fixed-point

digital signal processor (DSP).

A real time process is a task which is performed at a rate which can keep up with
incoming data within a specified time limit. The time limit may vary from 200 ns to 30 ms,
hence the delay can be detected if it is more than 30 ms [GAB47]. In digital speech coding,
assuming 8 kHz sampling rate, the real time processing needs to be performed within 125 s

for coders involving the sample-by-sample coding process.

In this chapter, an investigation into a real time implementation of GSM full-rate speech
compression algorithms was carried out on the new generation RISC processor for
parameterised DSP called GEPARD which is by Austria Mikro Systeme International
(AMS) is described and analysed.

4.2 Overview of GSM Full-Rate Speech Transcoding (GSM 06.10)

The GSM full-rate speech compression algorithm is a lossy technique which is based on a
residually excited linear predictive coder (RELP) and this is further enhanced by using a
long term predictor (LTP). This improves speech quality by removing the structure from
the vowel sounds prior to coding the residual data. It compresses frames of 160 13-bit
signed samples to 260-bit compressed frames. The specification of the coder/decoder

(codec) is fully defined in [ETS94]. The architecture of GSM is shown in Figure 4.1.

The simple block diagram of the speech encoder is shown in AFigure 4.2. The encoder is
comprised of four major processing blocks. The input speech frame consisted of uniform
13-bit PCM signed samples converted from 8-bit A-law companded format. The speech

sequence is first pre-emphasised to produce an offset-free signal, ordered into segments of
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As a results of the RPE analysis, the block of 40 input long term residual samples are
represented by four candidate excitation sequences of 13 pulses each. The energies of these

sequences are identified, and the one with the highest energy is selected to represent the LTP

L Preprocessing | Short Term Predictiorl L Long Term Prediction _(Residual Pulse Excitatiom
bre b »e gl

. error LTP excitation
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Window
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Filter coded
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Figure 4.2 Simple block diagram of GSM speech encoder.

residual. The subsequence selected is encoded using Adaptive Pulse Code Modualtion,

APCM, with estimation of the subblock amplitude which is transmitted at a rate of 9.6 kbps
[SCO95].

The RPE parameters are also fed to a local RPE decoding and reconstruction module
which produces a block of 40 samples of the quantised version of the long term residual
signal. By adding these 40 quantised samples of the long term residual to the previous block
of short term residual signal estimates, a reconstructed version of the current short term

residual signal is obtained.

The block of reconstructed short term residual signal samples is then fed to the long term
analysis filter which produces the new block of 40 short term residual signal estimates to be

used for the next subframe thereby completing the feedback loop.

A detailed block diagram of the encoder can be found in Appendix B. Table 1.1 shows

the input and output parameters of the encoder.

Figure 4.3 shows a simple block diagram of the GSM decoder. It consists of four blocks
which perform operations complementary to those of the encoder. The received excitation
parameters are RPE encoded and passed to the LTP synthesis filter which uses the pitch and
gain parameter to synthesise the long-term signal. Short-term synthesis is carried out using

the received reflection coefficients to recreate the original speech signal. The input and
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Figure 4.3 Simple block diagram of GSM speech decoder.

. output parameters are shown in Table 1.2. A detailed block diagram of the RPE-LTP

decoder is shown in Appendix B.

The ETSI standard for full rate must be bit-exact. The specification gives no allowance
for even minor deviations since in telecommunications different equipment from different
suppliers must be compatible. The algorithm is also explained in more detail in Appendix

A.

4.2.1 Encoded Parameters

The three different groups of data produced by the encoder are:
= the short term filter parameters

» the long term prediction (LTP) parameters

= the RPE parameters

The encoder produces this information in a unique sequence and format, and the decoder
must receive the same information in the same way. In Table C.1, the sequence of the

output bits b1 to b260 and the bit allocation for each parameter is shown.

4.3 Hardware Requirements

Real time implementation of a speech coding algorithm is very important from a cost point
of view. Any speech coding algorithm can be implemented using available digital signal
processor (DSP) chip technology, but the cost of that implementation will increase rapidly

with the increase in the number of DSP chip used. The other important consideration in real
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time implementation is the power consumption of the final product, especially in

applications where hand held mobile telephones are used.

The selection of a DSP for the implementation of a specific speech coding algorithm is
also affected by other factors. The two most important factors that need careful
consideration are the instruction cycle time of the DSP and the suitability of its instruction
set for the main processing in the speech coding algorithm [KUNR85]. The other useful

features of a DSP that should be taken into account are
* the amount of on-chip RAM/ROM |

» number of MIPS (million instructions per second)
» program and data bus structure

= off-chip memory capacity

=  boot memory controller

» on-chip peripherals

» fixed and floating-point arithmetic capability

*  on-chip cache

= addressing modes

= on-chip direct memory access (DMA)

» internal and external interrupts

» hardware/software programmable wait states

* on-chip emulation ports; power-down capability

= power dissipation

4.3.1 DSP Chips

The programmable DSPs [[FE93] are categorised by precision and arithmetic types
= fixed point

= floating point

The fixed-point DSPs tend to be faster and cheaper, but they are more difficult to program
and provide less precision. Fixed-point DSPs exist with a data precision of up to a 32-bit
word length. The overall number of gates in a DSP system is a function of the bits in its

numeric representation. The gate count increases with the available range and precision of
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the numeric representation used. Therefore one trade-off that must be made is mathematical

performance versus circuit and system complexity.

There are a lot of advantages of floating-point implementation over fixed-point. These
advantages often lead to great savings in the development effort for a product or program.
The precision of a floating-point number remains constant throughout a program because of
automatic normalisation of the mantissa by the processor, whereas the precision of fixed-
point data varies with the size of the stored data. Rounding or truncation leads to much
smaller overall errors than for a fixed-point implementation [KON9S]. This constant
precision provided by the floating-point DSPs, coupled with the ability to represent very
large or very small numbers allows a for more precise placement of poles and zeros,

eliminating most of the implementation problems of filters.

4.3.2 RISC Machines

RISC stands for Reduced Instruction Set Computer [FUR96]. In the mid-1970's advances in
semiconductors technology began to reduce the difference in speed between main memory
and processor chips. As memory speed increased, and high-level language, computer
designers began to look at ways computer performance could be optimised beyond just
making faster hardware. One of the key realisation was that a sequence of simple
instructions produces the same results as a sequence of complex instructions, but can be
implemented with a simpler and faster hardware design, assuming that memory can keep up.

RISC machines were the result.

In a RISC machine, the instruction set contains simple, basic instructions, from which
more complex instructions can be composed. Each instruction is the same length, so that it
may be fetched in a single operation. Most instructions complete in one machine cycle,
which allows the processor to handle several instructions at the same time. This pipelining

is used to speed up RISC machines.

RISC machines offer the advantage of a smaller die size. They require fewer transistors
and less silicon area. A whole Central Processing Unit (CPU) can fit on a chip at an earlier
stage in process technology development. A RISC CPU leaves more die area free for
performance-enhancing features such as cache memory and memory management functions.
RISC machines also take less design effort and therefore have a lower design cost compared

to more conventional Complex Instruction Set Computer (CISC) [FUR96] architecture.
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4.4 GEPARD

The complexity of the software required to implement the GSM full-rate codec algorithm on
different DSPs strongly depend on the architecture of the processor (e.g. saturation logic).
The codec uses basic mathematical operations and requires bit-exact shift operations as well
as the multiply-accumulate (MAC) instruction. A bit-exact implementation is done using
GEPARD by AMS. One of the major objectives of this work was to use the GSM algorithm
to investigate optimisation technique for an Application Specific Integrated Circuit (ASIC)
[SCH92] processor core GEPARD, which is produced by AMS. The implementation of
GSM full-rate algorithm on the GEPARD processor will be discussed in the next section.

GEPARD is an embedded software programmable DSP core for telecommunication,
consumer and industrial applications. The GEPARD core is a RISC DSP as the instruction
set is reduced and simplified to achieve minimum silicon cost for good performance. Its

main features are as follows
» fixed point DSP with parameterised word length

= fully parallel multiplier with multiply-accumulate facility which has the extended
precision needed to overcome the growth of word length present in many DSP

algorithms
» four accumulators for efficient complex number calculations

= complete arithmetic/logic functions for implementation of high level language

constructs such as for-loops and if-then decisions

= software stack is implemented for interrupt support which has a latency of two cycles,

also used for function/procedure calls
= A macro-assembler and a simulator are available for a debugging environment.

More information about GEPARD programming can be found in [AMS96], [AMS97a] and
[AMS97b].

4.5 Implementation Strategies

The real time implementation is important in many communications systems, where as well
as requiring high quality speech, the equipment cost and power consumption must be very
low. Therefore it is very important to implement the algorithm in an optimised manner. The
real time implementation of the GSM full-rate speech coding algorithm on GEPARD was

approached in several stages
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»  Preparation

= Development of bit-exact C code

= Real time implementation on GEPARD

»  Optimisation of GEPARD assembly code

= Testing and debugging of GEPARD assembly code

The different stages are described in the following sections.

4.5.1 Preparation

The GSM full-rate algorithm was analysed. A‘ﬂoating point version of the algorithm was
.obtained from [DEG94] and tested with real speech signals. The waveform of the input file
is shown in Figure 4.4. Some mathematical algorithms used the in LPC analysis described
in 4.2, e.g. autocorrelation and linear prediction, were studied. The plots of the first nine
autocorrelation values and eight linear predictive coefficients of the first frame of the input
file are shown in Figure 4.5. The first frames of the original and decoded GSM compressed
signals are shown in Figure 4.6. As the GSM full-rate algorithm is a lossy technique, it can
be seen that some level of information of the original speech signal has been lost during the
process. A fast Fourier transform of each signal was performed and the results are shown in
Figure 4.7. The plots show that the algorithm work better at lower frequencies as some high

frequency components are missing in the decoded GSM compressed frame.

A GSM 06.10 RPE-LTP coder and decoder in C, called toast, developed by Jutta
Degener and Carsten Bormann [DEG94] were examined and tested with various speech

files. The C code is available at ftp:/ftp.cs.tu-berlin.de/pub/local/kbs/tubmik/gsm/ddj/gsm-
1010.zip.

Before the algorithm was implemented on GEPARD, some test programs were written in
GEPARD assembler in order to become familiar with the software. The programs.were
designed to carry out simple tasks including reading and writing a set of values and
performing arithmetic operations. A key feature of GEPARD was the parallelisation of
instructions. Several operations could be combined into a single instruction which will be
executed in a single cycle. However, the combinations of instructions were restricted and
required careful planning. For example, only one Arithmetic/Logic Unit (ALU) instruction
(e.g. ADD, ABS ) can be used per cycle. Therefore, an ADD instruction can be combined

with MUL which uses the multiplier, or a parallel memory load, or both in the same cycle.

40




4 REAL TIME IMPLEMENTATION OF GSM FULL-RATE CODEC ON RISC DSP
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Figure 4.4 The waveform of "no wonder we're dangling at the bottom of the food chain”.
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Figure 4.5 The autocorrelation values and linear predictive coefficients of the first frame. Calculated using

MATLAB commands X = xcorr (wavedata) and A = lpc(ac(1:9),8) respectively.
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Figure 4.6 Comparison of the first frame of original and reconstructed speech signal.

15
X10
2 L} T T
1.5} ;
=
=
= 1r 1
o
0.5} ;
ol bl
0 500 1000 1500__/ 2000
15 Frequency (Hz)
X 10
2 1 T L)
- X
Q
a1.5t ]
@
=
E 1} -
o
4]
= 05f .
IS Y R— AR
0 500 1000 1500/ 2000
Frequency (Hz)

Figure 4.7 Fast Fourier transform of the original and reconstructed speech signal. Calculated using
MATLAB command £ft (wavedata). The circled areas show the difference between the original
and GSM compressed frames at high frequencies.
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4.5.2 Development of Bit-Exact C Code

The ETSI specification was analysed and both coding and decoding parts were divided into
four sections as illustrated in Figure 4.1 and 4.2. As the decoder consisted fewer subblocks
and used some of the routines of the encoder, this was chosen to be implemented first. Both
the long term and short term synthesis parts were the reverse of the analysis. The extra
routines of the encoder included the autocorrelation and linear prediction subblocks, where

the algorithms had been studied from previous experiments described in 4.5.1.

A bit-exact version of GSM full-rate speech codec was written in C language and is listed
and Appendix F. The code was kept as similar to the specification as possible due the
requirement of bit-exactness and tested by using the test vectors provided by ETSI [ETS94].
Details of the test files are listed in 4.5.7. The C code was later used for the debugging of
the GEPARD assembly code.

4.5.3 Implementation on GEPARD

As GEPARD did not have a DSP cross compiler (i.e. from C-language to DSP machine
language), the C code written previously could not be translated directly into assembly
language. The algorithm was hand coded using the GEPARD instruction set. The C code
was converted to assembly language and some modification was made due to the special
characteristics of GEPARD including parallelisation. For example, for the scaling subblock
in the preprbcessing section which downscaled in input samples by a factor of two, the C
code was written as shown below,

void scaling (word sop[160], word so[160])

{
int k;

for (k = 0; k < 160; k++) {
sol[k] = soplk] >> 3; /* shift right 3x, LSBs lost */

so[k] = so(k] << 2; /* shift left 2x, Os fed into LSB bits */

}

The function of the code is explained in A.1.1. Five cycles would be required for the inner

loop. However, by using the instructions available in GEPARD the assembly code could be

written as
AND soplkl, [-8], solk]: /* -8, = 1111111111111000 */
RSHIFT solk], solk]: /* sol[k]) only right shifted once */
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From the above code only two cycles were needed. Therefore the code is reduced by a

factor of two and a half,

The algorithm required bit-exactness. It was decided that 16-bit data word length was
used in this implementation to save silicon costs and therefore the 32-bit operations specified
by ETSI had to be modified. For example, for a long multiplication
L_MULT (VAR1, VARZ) that produced a 32-bit result, two 16-bit registers were used to
represent a 32-bit number. The condition specified by ETSI was

L_MULT (VAR1,VAR2)=(VARl x VAR2) << 1
with the exception of
L MULT(-32768,-32628)

which did not occur in the algorithm [ETS94]. The assembly code was

MUL c, X; /* ¢ x x (the multiplier input is always c) */
MOV phl, z; /* move hiword << 1 to z */

MOV pl, y: /* move loword to y */

ADD Y, Yr Vi /* y << 1 (shifts explained below) */

The numbers were kept as 16 bit at all times in the program and a 32-bit number was stored
as two 16-bit numbers y and z. The frequently used shift operations were performed using

the multiply instruction, since
X << 1=x x 2!
X << 15 = x x 2%

x >> 15 = x / 2%°

An example of a shift operation, x << SHIFT, can be written as

LOAD [SHIFT]), c: /* load no of shifts from memory to ¢ */

MUL c, X; /% x x 25HIFT wy
For example, if ¢ = x = 3, the answer would be 3 x 2° = 24, which is equivalent to 3 << 3

shifting the value 3 in binary three places left). This method was generally more efficient if

the number of shifts was more than three or the operation was done within a loop.

One of the main features of GEPARD was the fully parallel multiplier with multiply-
accumulate (MAC) facility [AMS97a] which had the extended precision needed to overcome
increasing of word length present in many DSP algorithms. The multiply-accumulate
operation required by ETSI involves a 32-bit multiplication and a 32-bit addition. This
facility reduced the number of cycles required for this specific operation and simplified the

code without losing accuracy. The algorithm
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L TEMP = L MULT(s([i], s(i - k)]): /* L TEMP = s[i] x s[i - k] */
L_ACF[k] = L_ADD(L_ACF[k], L TEMP); /* L_ACF[k} = L_ACF{k] + L_TEMP */

was simplified by using the built-in MAC instruction which combines the above operations
MAC s{i], s{i - k):

At the end of the operation, the results were moved to the accumulators. Since it is a 32-bit
operation, the final result will be split into two parts and had to be stored in two separate
accumulators. The MAC instruction can be used in parallél with either a memory load or an
ALU instruction. This is very useful as the values for the next operation can be loaded from

memory within the same cycle.

4.5.3.1 Specification of Arithmetic Operations

The arithmetic operations used in the GSM full-rate codec are defined by ETSI to ensure the
bit-exactness of the code. The variables are represented in two's complement integer format
[SHOS87] (see Table 4.1). In this representation, the most significant bit (MSB) is the sign
bit. For a 16-bit wordlength, each number lies in the range from -32768 to 32767.

Table 4.1 Two's complement number system for a 16-bit wordlength.

Number 2's Complement (Binary) 2's Complement (Hexadecimal)
32767 0111111111111111 Ox7fff
16384 0100000000000000 ) 0x4000
8192 0010000000000000 0x2000
4096 0001000000000000 0x1000
0 0000000000000000 0x0000
-4096 1111000000000000 0xf000
-8192 1110000000000000 0xe000
-16384 1100000000000000 0xc000
-32768 1000000000000000 0x8000

Two's complement arithmetic is used in the operations specified by [ETS94]. The
operations performed include saturation controls which checks if the final result is within the
16-bit number range. The definitions of the arithmetic operations in the ETSI
recommendation could be directly translated into C code. However, it was more
complicated in assembly language. Since GEPARD does not provide the saturation

requirements specified, a set of macros for the operations with overflow control and
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saturation was written. For example, for a simple 16-bit operation like the ADD instruction,
in order to make sure that the result is between 32767 and -32768, the signs of the two
operands are checked and then one of them is compared with the result. The overflow (or

underflow) check is shown in Table 4.2.

Table 4.2 Saturation check for ADD (word VAR1,word VAR2).

VAR1 VAR2 RES

+ + + no overflow

+ - X no overflow

- + X no overflow

- - - no overflow

The GEPARD assembly code for a 16-bit ADD instruction with saturation check was

written as

XOR VAR1, VAR2, TEMP;

JN TEMP, END; /* jump if sign bits of operand different */

ADD VAR1, VAR2, RES; /* RES = VARl + VAR2 */

NOT VAR1, VARIL; /* NOT(VAR1l) */

XOR RES, VAR1l, TEMP;

JN TEMP, END; /* jump if sign bits of operands & result same */
ADD NULL, ONES, TEMP; /* ONES = 1111111111111111 */

JN VAR1, END; /* jump if NOT(VAR1l) negative */

RSHIFT TEMP, RES; /* set RES = 32767 */

NOT RES, RES; /* set RES = -32768 */

END:

The GEPARD macros for other arithmetic operations can be found in Appendix G.

4.5.3.2 Program Planning

The structure of the GEPARD code was similar to the C code. Both the encoder and the
decoder were divided into 4 sections. The subblocks were kept the same as the ETSI
specification. Some macros were written for the frequently used routines, e.g. shift routines
and loops and can be found in Appendix G. The constants used in the codec, including those
in the C program gsmtab. ¢ were organised in tables and data memory was allocated. This

can be seen in the GEPARD code in Appendix H.
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4.5.4 Real Time Implementation

The implementation on GEPARD was done in the same way as the C code, with the decoder
written first. The parameters of the encoder and decoder are listed in Appendix I. Each
subblock was tested separately before put together. The assembly code of GSM full-rate
speech codec for GEPARD is shown in Appendix H.

4.5.5 Optimisation of GEPARD Assembly Code

As the GEPARD assembly code was hand coded as mentioned in 4.5.3, an efficient way to
optimise the assembly code was the look for the critical loops which are executed
repeatedly. It was very important to reduce the number of cycles inside the loops, even if
this added extra instructions outside. The approximate number of cycles of each subblock

can be found in Appendix I. A typical example is the autocorrelation loop.

/* Compute the autocorrelation

* punp—
1 14

* ac(l) = > x(i) * x(i-1) for all i
* St
* for lags 1 between 0 and lag-1, and x(i) == 0 for i < 0 or i >=n
*/
void autocorrelation(
int n, double const * x, /* in: [0...n-1] samples x */
int lag, double * ac) /* out: [0...lag-1l] autocorrelation */

double d; int i;
while (lag—-) {
for (i = lag, d = 0; i < n; i++) d += x[1] * x[i-lag};

ac{lag] = d;

In this example, it can be seen that the for loop will be executed from 152 to 160 times, as
lag is 9. The while loop will be executed 9 times. Therefore this whole subblock will
require at least 1440 cycles in C code and possibly more in GEPARD code. Parallelisation
is very useful in this case and the number of cycles required this routine was reduced by a

factor of 4.

The techniques used for optimisation of the assembly code can be described using the

example code that reads 160 input values and stores them in memory.

/* code */
LOAD  #DATA, [i0}; /* load address of DATA to register */
LOAD  #0x4800, [i2]); /* load input file */
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LOAD #160, x; /* load constant 160 to accumulator x */

LOAD #-1, a: /* load constant -1 to accumulator a */

READ DATA: /* READ_DATA loop */

ADD X, a, X; /* decrement x */

LOAD [12]+1, vy, /* load input from memory to accumulator y */
NOT X, z; /* NOT(x) */

STORE vy, [i0]+1; /* store y in memory */

JN z, READ_DATA; /* check if all 160 values are read, if not go

back to READ_DATA */
NOP /* delay slot, no operation */
END: /* exit loop when all values are read */

The code can be optimised as shown below. The changes are printed in bold and the

methods used are numbered and explained.

/* data */

TABLE: -160, 1; (1)

/* code */ .

LOAD #DATA, ([iO0}; /* all constant load instructions, */
LOAD  #0x4800, [i2]; /* cannot be parallelised */
LOAD #TABLE, {id};

‘LOAD [14]41, x; (2)

LOAD [i4], a; (2)

READ DATA:

ADD X, a, X; LOAD [i2]1+1, y: (3)

/* NOT %, z; */ (2)

JN z, READ_DATA;

STORE y, [i0]+1; (4)

/* NOP */ (4)

END:

The optimisation techniques used for the GEPARD assembly code are

1. The frequently used constants were arranged in tables and loaded from memory. In this
example, the constants -160 and 1 are both stored in the same data memory to prevent a
constant load instruction being used twice since it cannot be parallelised with other
instructions. An extra cycle is actually needed to load the address of TABLE.
However, the memory load instruction can be combined with an ALU instruction or a

multiply (not shown here) and this is particularly useful if a lot of constants are used.

2. For the repetitive loops, the jumps were optimised by initialising the loop count register
to the negative of the number of iterations. The constant -160 is used in the example for
160 repetitions as it does not have to be made negative by using NOT (used in the
unoptimised example). The loop count is incremented by adding 1 until it becomes

positive and the loop is exited.
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3. The instructions were rearranged to make use of parallelisation. A memory load can be

combined with the ALU ADD.

4. The number of nop was minimised, and substituted with another instruction if possible
especially after a jump instruction. The delay slot is filled with a memory store in the

optimised example.
A list of other optimisation example code is listed in Appendix G.

Since the GEPARD core is a RISC DSP, the instruction set was reduced to minimum and
the program memory was sometimes sacrificed to cut down the execution time. Using the
previous example code, the total time for this code is 3 x 160 + 5 = 485 cycles. By
modifying the READ DATA loop,

/* data */

TABLE: -160, 1;

/* code */

LOAD  #DATA, [10]:

LOAD  #0x4800, [i2];

LOAD #TABLE, [i4];

LOAD  {id41+1, x;

LoAD  [(i4]), a;

READ_DATA:

ADD X, a, X; LOAD (i2)+1, vy:
STORE vy, [i0]1+1;

ADD X, a, X; LOAD [i2)+1, y:
JN z, READ_DATA; .

STORE vy, [10]1+1;

END:

The total time is now § x 80 + 5 = 405 cycles. The jump that instruction occupies one cycle,

is shared by two iterations of the original loop.

Global data structure planning was also important as this avoided loading constants (as
explained before). The two most expensive operations in GEPARD instruction set are load
constant and jumps as they are full moves and any other instructions could not be run in the

same cycle. It was often found to be effective to replace these with other instructions.

4.5.6 Testing and Debugging of GEPARD Assembly Code

Test sequences provided by ETSI were used for the testing of the GSM full-rate GEPARD
assembly code. Since the test sequence files are written in binary using 16 bit words, they
are first converted into text format using the program dataconv. c written in C language .

which can be found in Appendix F.
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The files provided are
= Files for input of the encoder (SEQxx . INP)

* Files for the input of the decoder or the comparison with the encoder output

(SEQxx.COD)
= Files for comparison with the decoder output (SEQxx . OUT)

Table 4.3 gives the contents of the files, the size in bytes, the number of frames and test area

for each test sequence file.

Table 4.3 Contents and size of test sequence files.

File No of Frames Size Test Area
SEQOL1.INP 186880
SEQ01.COD 584 88768 Over and underflow
SEQO01.0UT 186880
SEQO02.INP 303040
SEQ02.COD 947 143944 Jumps
SEQ02.0UT 303040
SEQO03.INP 215360
SEQ03.COD 673 102296 General
SEQ03.0UT 215360
SEQO4.INP 166400
SEQ04.COD 520 79040 Zeros
SEQO04.0UT 166400
SEQ05.COD 64 9728 Decoder only
SEQO05.0UT 20480

The GEPARD assembly code was debugged with the bit-exact C code. In GSM full-rate
algorithm, each new frame requires the results produced by the previous frame, hence the
test sequences could not be broken up into segments and tested separately as the information
from the previous frame would be lost. The C code was modified and used to generate the
variables required for each frame. The input frames (160 values) were isolated and the
output of each subblock was compared with the output of the C program. A section of
assembler which read in the memory values which should be in memory at the start of each

frame generated from the C program for testing purposes. Simulating a single frame was a
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much quicker using this method and there was also a possibility of simulating the rest of the
sequence after the frame to see if or where the next problem occurred.

Most of the bugs occur at shifts, e.g.,
MUL ¢, [(0x0008};

The result is equivalent to shifting x three times to the left. However if the number has to be
shifted 15 times to the left, it is multiplied by 0x8000 (which is recognised as a negative
number by GEPARD) and the sign is changed, e.g.,

MUL c, [0x8000];

The sign of the result is reversed in this case. Some other bugs are found in conditional

jumps, e.g. index registers point to different addresses after jumps. An example is given

below.

LOAD (i21, a0; /* load the value in [i2] to a0 */

JIN a0, NEXT; /* jump to NEXT if a0 is negative */

NOP

STORE a0, (i2]+1; /* store a0 in [i2]) and increment [i2] */
NEXT :

LOAD [(i2), ao0; /* address of [i2] will be different */

" There were also some bugs caused by saturation, i.e., if the result was greater than 32767 or
less than -32768, the sign of that result was changed automatically. Since GSM full-rate
speech codec depended mainly on previous results, if something went wrong in one frame,
the results of the following frames would be affected. This made testing and debugging a

very slow process.

The GEPARD code was tested with all of the test sequences and was bit-exact. The

performance of the code will be discussed in the next section.

4.6 Performance of GEPARD Assembly Code

Both compression and decompression times are proportional to the number of samples and
the processor clock rate. Timings and number of cycles required for a 20MHz GEPARD
processor per frame (160 samples) and per 8000 samples (one second of speech data at the

standard GSM sampling rate of 8 kHz) are shown in Table 4.4.
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Table 4.4 Performance of the GSM full-rate GEPARD assembly code.

Average Number of Cycles Average Time (ms)
Performance Per Frame Per 8000 Samples Per Frame Per Samples
Compression 105000 5250000 5.25 1050
Decompression 55000 2750000 2.75 550
Total 160000 8000000 8.0 400

The processing time and the frame size of an algorithm determine the transcoding delay
of the communication. The transcoding delay is the time interval between the instant speech
frame of 160 samples has been received at the encoder input and the instant the
corresponding 160 reconstructed speech samples have been output by the speech decoder at

an 8 kHz sample rate. The transcoding delay required by [ETS94] is less than 30 ms.

From Table 4.4 it can be seen that the transcoding delay is lower than the requirement.
The total time taken for sampling and processing each frame is around 28 ms. The assembly
code has been optimised by reducing the number of cycles of the critical loops which are
executed repeatedly. Tables 1.3 and 1.4 show that the majority of the cycles are taken up the
short term analysis and synthesis filtering subblocks, i filter and s _filter (see
Appendix I). Other critical loops occurs in offset, autocorr, lpc calc and

w_filter. The total time required to process these subblocks have been minimised.

Further optimisation of the assembly code has been constrained by saturation in these two
subblocks where overflow control is needed. In both subblocks, there is a pair of nested
loops, where the inner has more than 50 iterations, and the outer 160 iterations, resulting in
the inner loop being executed over 8000 times. A lot of saturation occurs in the inner loop
and therefore an overflow check was need in each ADD or MULT R (multiply with rounding)
operation. This step was done by using only ALU instructions and since they could not be
written in parallel, the number of cycles needed was increased from one instruction to about
seven on average. It was important that these two subblocks were as optimised as possible,

however, due to the problem with the overflow, the code could not be further reduced.

The optimisation can be improved by adding new instructions to GEAPRD with overflow
control and saturation. For example, an ADD instruction that sets the result at +32767 when
overflow occurs or at -32768 when underflow occurs. The instructions than require
overflow check are: ADD, SUB, MUL and ABS. The overflow is needed, however, when a
32-bit arithmetic operation is performed using 16 bit registers. The only 32-bit arithmetic
operation used in GSM 6.10 is long subtraction (I_sub).
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4.7 Summary

The GSM 06.10 full-rate speech compression algorithm is a lossy technique which is based
on a residually excited linear predictive coder (RELP) and this is further enhanced by using
a long term predictor (LTP). This improves speech quality by removing the structure from
the vowel sounds prior to coding the residual data. It compresses frames of 160 13-bit

signed samples to 260-bit compressed frames.

The GSM full-rate speech transcoder has been implemented on GEPARD. The
GEPARD code has been tested with all of the test sequences provided by ETSI and the
results are bit-exact. The total time taken for sampling and processing each frame is around
28 ms and is lower than the ETSI requirement for transcoding delay, which is less than 30
ms. The code has been optimised by reducing the number of cycles taken by critical loops in
the algorithm. The optimisation éan be further improved by adding new instructions with
overflow control and saturation. A comparison bétween this codec and the new half-rate

speech algorithm will be discussed in the next chapter.
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5 Comparison of GSM Full-Rate and
Half-Rate Speech Codecs

5.1 Introduction

The existing GSM full-rate channel fulfils its quality goals for the mobile phone user most of
the time. As the market for digital cellular telephones expands, non-mobile applications are
emerging, some of which demand high speech quality even in difficult conditions. Even
since the GSM full-rate standard was finalised, advances in speech coding technology have
reduced the bandwidth required for toll quality compression to less than 13 kbps GSM full-

rate codec. This can be seen with the advent of the new GSM half-rate speech codec.

ETSI specified the GSM half-rate codec with a bit rate of 5.6 kbps in 1995. The
algorithm is based on Motorola's Vector Sum Excited Linear Prediction (VSELP)
technology similar to IS-54 full-rate [KON9S5]. It uses two 7-bit codebooks for unvoiced
speech and one 9-bit codebook for voiced segments. The algorithm is a lot more complex
than the GSM full-rate. A brief description of the codec and a comparison to the full-rate

codec can be found in later sections.

There is very little literature on the GSM half-rate codec that is publicly available.

Therefore this comparison is based on the ETSI specification.

5.2 The VSELP Algorithm

The VSELP algorithm [SPA94] closely resembles the Codebook Excited Linear Prediction
(CELP) algorithm. For more information about CELP see 3.6.2. The difference lies in the
form and structure of the codebooks. Whereas CELP uses a stochastically overlapped
codebook, VSELP utilises two sets of basis vectors with a predefined structure such that a
brute-force search can be avoided. The stochastic codecook search of CELP corresponds to
two codebook searches in VSELP. There are seven basis vectors for each search. Each
basis vector contains 40 elements. The selection of the basis vectors is fundamental to
deriving fast codebook search procedures. The basis vectors with a vector V, the entire 128

(27 space, defined by the seven basis vectors, is also orthogonalised.

An open-loop LPC analysis is performed on a frame of speech to derive a set of LPC
filter coefficients. These coefficients are bandwidth expanded for use in perceptual error

weighting filters, H(z) and W(z), defined in (5.1) and (5.2). The input frame of speech is

54




5 COMPARISON OF GSM FULL-RATE AND HALF-RATE SPEECH CODECS

filtered through the filter #(z) to obtain a perceptually weighted frame of speech. Perceptual
weighting of the input speech improves the performance of the coder. The high-energy
formant regions of the speech spectrum mask noise better than lower energy portions of the
spectrum. The error signal generated by each synthesiser pass is weighted appropriately to
capitalise on the perceptual effect. The filter simplifies the error signal spectrum in non-

formant regions of the speech spectrum and attenuates the error signal spectrum in formant

regions.

The analysis by synthesis proceeds with three codebooks. First, the adaptive codebook is
searched and the resulting best entry and gain are found. This entry multiplied by its gain
factor is orthogonalised with the first set of seven basis vectors. Thus, the second codebook
search can be performed independently of the first codebook search. The new set of basis
vectors is used from the codebook for the second set of basis vectors. Finally the third
codebook search is performed. The gains of each of the three codebook searches are jointly

quantised and transmitted with the three codebook indices to the receiver.
The basic blocks in the VSELP coder are

*  Tenth-order LPC analysis

* Long term predictor

* Adaptive codebook search

* First basis vector codebook search

s Second basis vector codebook search

= Vector quantisation of the codebook gains

The VSELP algorithm was developed by Motorola and the Electronics Industries
Association [HIL97].

5.3 Overview of Half-Rate Speech Transcoding (GSM 06.20)

The GSM half-rate speech codec uses the VSELP algorithm, which is an analysis-by-
synthesis coding technique and belongs to Code Excited Linear Prediction (CELP). The
encoding process is performed on 20ms of speech at a time. A speech frame of the sampled
speech signal is read and based on the current signal and the past history of the signal. The

encoder derives 18 parameters that describes the speech in three general classes:
= energy parameters (RO and GSP0);

= gpectral parameters (LPC and INT LPC);
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» excitation parameters (LAG and CODE).

These parameters are quantised into 112 bits for transmission. Since the codec uses the
analysis-by-synthesis technique, the speech decoder is primarily a subset of the speech

encoder. The quantised parameters are decoded and synthetic excitation is generated using

GSM Half-Rate Speech Codec

transmitted speech
speech Speech parameters
>
Encoder
synthesised received speech
speech Speech parameters
<«
Decoder

Figure 5.1 Block Diagram of the GSM half-rate speech codec.

the energy and excitation parameters. The synthetic excitation is then filtered to provide the
spectral information resulting in the generation of the synthesised speech as shown in Figure

5.1. A detailed explanation of the codec can be found in [ETS95].

5.4 GSM Half-Rate Speech Encoder

A block diagram of the GSM half rate speech encoder is shown in Figure 5.2. The encoder
uses an analysis-by-synthesis approach to determine the code to use to represent the
excitation for each subframe. The codebook search procedure consists of trying each
codevector as a possible excitation for the CELP synthesiser. The synthesised speech s(n) is
compared against the input speech and a difference signal is generated. The difference
signal is then filtered by a spectral weighting filter, #(z), (and possibly a second weighting
filter, C(z) to generate a weighted error signal, e(n). The power in e(n) is computed. The
codevector which generates the minimum weighted vectors is chosen as the codevector for
that subframe. The spectral weighting filter serves to weight the error spectrum based on

perceptual considerations. This weighting filter is a function of speech spectrum and can be

expressed in terms of the o parameters of the short term (spectral) filter.

(5.1)
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Figure 5.2 Block diagram of the GSM Half Rate Speech Encoder (MODE = 1, 2 and 3).

The second weighting filter C(z), if used, is a harmonic weighting filter and is used to
control the amount of error in the harmonics of the speech signal. H(z) is a combination of

A(z), the short term (spectral) filter, and W(z), the long term spectral filter.

[am—

H(z)=— (5.2)

There are two approaches that can be used to calculate the gain, y. The gain can be
determined prior to codebook search based on residual energy. This gain would then be
fixed for the codebook search. The other approach is to optimise gain for each codevector

during the codebook search. The codevector which yields the minimum weighted error
would be chosen and its corresponding optimal gain would be used for y. This approach

yields better results.
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5.5 GSM Half-Rate Speech Decoder

The speech decoder is a subset of the speech encoder. The quantised parameters are
decoded and a synthetic excitation is generated using the energy and excitation parameters.
The synthetic excitation is then filtered to provided the spectral information resulting in the

generation of the synthesised speech.

A block diagram of the GSM half rate speech decoder for MODE = 1, 2, or 3 is shown in

Figure 5.3. The speech decoder creates the combined excitation signal, ex(n), from the long

LPC 1
LPC 2
LPC 3
RO
INT_LPC

Long Term |
Filter State

T
b.(n)

LAG_2 .
CODE_2 ex(n)»] Pitch Prefiiter—ex__(n) SYInES's e

CODE_3 [
LAG_4 : — s(n)
CODE_4 Y
Spectral
Postfilter

VSELP
Codebook

LPC1
LPC 2 Calculation of Automatic Output
’L?ZC 3 Gains Gain Control Speech
INT_LPC

Figure 5.3 The GSM half rate speech decoder for MODE = 1, 2 and 3.

term filter state and the VSELP codevector. For MODE = 0, the long term filter state is
replaced by another VSELP codebook and the pitch prefilter is not used. The combined
excitation is then processed by an adaptive pitch prefilter and gain. The prefiltered
excitation is applied to the LPC synthesis filter. After reconstructing the speech signal with
the synthesis filter, an adaptive spectral postfilter is applied followed by an automatic gain

control which is the final processing step in the speech decoder.

5.6 A Comparison to Full-Rate Codec

Both GSM full-rate and half-rate speech compression offer high speech quality and low cost.

The two algorithms are now compared. The speech quality, complexity and cost of
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implemehtation will be discussed. A brief summary of the characteristics of the two

algorithms in shown in table 5.1.

Table 5.1 A comparison between GSM full-rate and half-rate codecs.

Coder Full-Rate Half-Rate
Sampling Rate 8 kHz 8 kHz

Frame Length 160 samples (20 ms) | 160 samples (20 ms)
Subframe Length 40 samples (5 ms) 40 samples (5 ms)
Bit Rate 13 kbps 5.6 kbps
Short Term Predictor Order 8 10

Coding Technique RPE-LTP VSELP
Complexity - 4 times full-rate
Speech Quality near toll near toll

5.6.1 Quality of Speech

Speech quality is a very important criterion for algorithm requirement as explained in
chapter 3. Since all narrow band speech compression algorithms are lossy, speech quality
generally degrades as the bit rate decreases. The analogue bandwidth supported by a voice
coder also directly affects its speech quality, e.g. telephone bandwidth. An algorithm's

speech quality is a function of its bit rate and its mathematical approach.

However, algorithm quality and bit rate are not linearly not linearly related [KLE97].
Algorithms that produces twice the bit rate do not necessary provide twice the quality. GSM
full-rate codec operates at 13 kbps and half-rate at 5.6 kbps, however, they both offer near
toll quality speech comparable to or better than analogue cellular networks [HIL97]. There
is a demonstration of both full-rate and half-rate codecs on the World Wide Web at
http://www.eas.asu.edu/~speech/table.html.

5.6.2 Complexity of Algorithm

The GSM half-rate coder is four times as complex as that of full-rate [HIL97]. Both coders
derive the output parameters by reading a frame of the sampled speech waveform and using
the current waveform and past history of waveform. As previously stated, the encoded

parameters of the full-rate coder are

= the short term filter parameters
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= the long term prediction (LTP) parameters

» the RPE parameters

These parameters are quantised into 260 bits for transmission. The encoder output
parameters are shown in Table C.1. The encoded parameters of the half-rate coder are

* energy parameters (R0 and GSP0)

»  spectral parameters (LPC and INT_LPC)

= excitation parameters (LAG and CODE)

These parameters are quantised into 112 bits for transmission. The encoder output

parameters and a brief description are shown in and Appendix E.

The input speech frame of both coders consists of uniform 13-bit PCM signed samples
converted from 8-bit A-law companded format. For the full-rate coder, the speech signal is
initially proprocessed. After A-law to linear conversion (or directly from the A to D

converter) the following input sample (in two’s complement format) is obtained,
S .v-.v.v.v.v.v.v.v.v.v.v.v.x.x.x
where S is the signed bit, v a valid bit and x a “don’t care” bit [ETS94]. The input samples

are down-scaled by a factor of two and a notch filter is applied in order to remove the offset

of the signal s, to produce the offset-free signal s,

5o (k) =50 (k)= s(k = 1)+ as ., (k 1) (53)

where = 32735 x 2", The signal s,sis then applied to a first order FIR pre-emphasis filter
leading to the input signal s of the analysis section,

s(k)= s, (k) = Bsr (k =1) (5.4)

where f= 28180 x 2°. The speech signal s(k) is divided into non-overlapping frames
having a period of 20 ms (16 samples).

For the half-rate speech coder, the 13 bit linear PCM input speech, x(n), is filtered by a
fourth order pole-zero high pass filter which suppress frequencies below 120 Hz. The filter
is implemented as a cascade of two second-order Infinite Impulse Response (IIR) filters
[ETS95]. Incorporated into the filter coefficients is a gain of 0.5. The difference equation
for the first filter is

2 2
5(n)=> byxln-i)+ Y a,y(n-j) (5.5)
i=0 j=l
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where b;o = 0.335052, by, = -0.669983, b;; = 0.335052, a); = 0.926117, a, = -0.429413.
The difference equation for the second filter is
2 P
W)= buyln=i)+ 3 a;5(n - ) (56)
i=0 =l
where by = 0.335052, by, = -0.669434, b, = 0.335052, a;, = 0.965332, a;; = -0.469513.
A sample buffer containing the previous 195 input high pass filtered speech samples,

y(n), is shifted so that the oldest 160 samples are shifted out while the next 160 input

s(0) > s(194)

time D previous samples

analysis window

=
=

160

1

N

i buffer

VNV

Figure 5.4 Segmentation of speech signal.

samples are shifted in. The oldest 160 samples in the buffer correspond to the next frame of
samples to be encoded. The analysis interval comprises the most recent 170 samples in the
buffer [ETS95]. The samples in the buffer are labelled as s(r) where 0<n <194 and s(0) is

the oldest sample as shown in Figure 5.4.

The half-rate algorithm introduces new routines fixed point lattice technique (FLAT) and
autocorrelation fixed point lattice technique (AFLAT) [ETS95] which requires the divide

operation that is not included in most DSPs.

Table 5.2 Windowing coefficients for the FLAT algorithm.

w(0) 0998966 | w(5)  0.974915
w(l) 0996037 | w(6)  0.969054
w2) 0991663 | w(T)  0.963060

w3) 0986399 | w(@8)  0.956796

w(d) 0980722 | w(9) 0950127

The FLAT algorithm determines the reflection coefficients. Let 7; be the jth reflection

coefficient. The procedure is shown in Figure 5.5. The windowing coefficients, wﬂi - k|)

are found in Table 5.2.
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N
#(i, k)= 23(n+24—i)9(n+24—k) 0<i,k<N,

n=N,

¢'(i,k)= (. kwli- ) 0<ik<N,

windowing

By(i,k)=¢'i +1,k+1) 0<ik<N, -1
Colik)=¢'(i, k+1)

setj=1

C 1( ’0) ( P j’N —f)
Fa 00+ B, (00)+ FV, - j.N, ~ )+ BN, =7, =]

Ifj = N, then done

Foik)+r,(C, (k) + € (k)4 r2B, L i,K)
B+ Lk + )+ r(Co G+ Lk + 1)+ C (k4 it 1)+ r2F, 41,k +1)

C,i,k)=C oy ik + 1)+ 1, (B,o, ik + 1)+ Fy (i k + D)4 r2C,, (R +1,0)

Figure 5.5 Fixed Point Lattice Technique (FLAT).

The algorithm can be simplified by noting that the ¢', F, and B correlation matrices are
symmetric such that only the upper triangular part of the matrices need to be computed or

updated.
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An autocorrelation version of the FLAT algorithm, AFLAT, is used to compute the

residual error energy for a reflection coefficient vector being evaluated. The autocorrelation

Poli)= R() 0<i<N,-1
Vo(i)=R(i +1) I-N,<isN,-1

1,(k) - index of 1* lattice stage in ™ segment
(k) - index of last lattice stage in k®

segment

P0)=(+72)P (V44 7,0 )+ v L) 0<isi,(k)-j-1

V() =V, (i+ 1)+ 72V, (i -1)+ 27,2, (i +1) +j-N,<isN,-j-1

Ifj < I,(k) go to (6)

Ifk <3, setj=I{k) F encoded with O bits

F,(,-)=(1+;}2)F,_.(i)+’5[?,_.(i)+ V(- i)] 0<i</,(k)-j-1
Vj(i):Vj-l(i-i-1)+FI-2V}'_1(—I'—1)+2?jF/_|qi+ll) 1+j—Np SiSNp “j_l

=i+l Ifj < 1(k) go to (12)

N N

Ifk<3goto(4)

Figure 5.6 Autocorrelation Fixed Point Lattice Technique (AFLAT).

sequence R(i), is computed from the optimal reflection coefficients, 7;, over the range

0<i<N,. The procedure is shown in Figure 5.6.

In order to minimise the storage requirements for the reflection coefficient vector

quantiser, eight bit codes for the individual reflection coefficients are stored in the vector
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quantiser table, instead of the actual reflection coefficient values. The codes are used to look

up the values of the reflection coefficients from a scalar quantisatibn table with 256 entries.

The full-rate coder uses LPC analysis to find the eight reflection coefficients. They are
converted to log area ratios. Since the LAR parameters have different dynamic ranges and
probability distribution functions, they are encoded with different number of bits. A

description of the procedure is shown in Figure A.1.

The half-rate coder also uses the voicing mode selection which is not used in the full-rate
coder. The new voiced and unvoiced modes reduces the bit rate needed but makes the
algorithm more complex. A multimode gain {P0,GS} codebook [ETS95], where PO is the
power contribution of the pitch prediction vector as a fraction of the total excitation power at
a subframe, and GS is the energy tweak factor which bridges the gap between the actual
energy in the coder excitation and its estimated value, contains the values needed to
determine the gain factors for the excitation vectors of a given subframe. The index of the
corresponding codebook entry is assigned to GSPO_x. The half-rate coder is a multimode

speech coder, defined by four voicing modes
MODE =0 unvoiced
MODE =1 slightly voiced
MODE =2  moderately voiced
MODE =3 strongly voiced

If MODE = 0, the adaptive codebook (long-term predictor) and the VSELP codebook are
replaced by two other VSELP codebooks [ETS95].

The half-rate uses a lot of intensive codebook search as explained in 5.2. The vector
quantisation used is also a computationally intensive operation (see 2.6.4). In order to
reduce the coding delay, the half-rate coder requires four times the computing power of the
full-rate. Its high circuit complexity and component count will also likely compromise

system reliability.

5.6.3 Cost of Implementation

System cost is very important in the selection an algorithm. A product's market typically
determines the product's price which determines the amount of MIPS, RAM and ROM that
can be used by the product's subsystem [WON96]. Algorithm resource requirements vary
drastically. Products that require standard algorithm must be able to compete in the market

given the costs associated with that algorithm's resource requirements.
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The half-rate codec requires a lot of internal memory for data storage such as the
coefficients used in the algorithm and the previous samples needed to process the current
frame, which some of these are not required in the full-rate codec. The power consumption
will be very high with the powerful processor in order to cope with the complexity of the
code. These resource requirements will considerably increase the cost of implementation of

the half-rate codec compared with the full-rate.

5.7 Summary

A brief description of VSELP coding technique and the GSM half-rate speech codec is given
in this chapter. ETSI specified the GSM half-rate codec with a bit rate of 5.6 kbps in 1995.
The algorithm is based on Motorola's VSELP technology similar to IS-54 full-rate. It uses
two 7-bit codebooks for unvoiced speech and one 9-bit codebook for voiced segments. A

comparison to the full-rate algorithm is discussed.

The half-rate algorithm takes advantage of more efficient speech compression than full-
rate techniques do, shriﬁking the bandwidth timeslice that each user requires. Although the
full-rate codec operates atV13 kbps and half-rate at 5.6 kbps, they both offer near toll speech
quality comparable or better than analogue cellular networks. The half-rate compression
introduces new algorithms such as FLAT and AFLAT and requires more computationally
intensive operations compared with the full-rate. Hence a four times more powerful
processor will be needed for the half-rate codec. The cost of the implementation of half-rate
codec will also be considerably higher than full-rate. In the next chapter, a multirate

approach to speech coding will be investigated.
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6 The Application of Multirate
Techniques for Speech Coding

6.1 Introduction

In many practical applications of digital signal processing (DSP), one is faced with the
problem of changing the sampling rate of signals, either increasing or decreasing them by
some amount. In telecommunication systems that transmit and receive different speech
source, there is a requirement to process the various data at different frequencies that
involves sample rate conversion [PRO92]. For example, a 1 kHz speech signal sampled at 2

kHz is four times more efficient than one sampled at 8 kHz.

This chapter investigates a multirate optimisation technique in digitised speech that is
based on the idea of eliminating redundant computation. In speech processing, multirate
techniques can be used to reduce the storage space required or the transmission rate of
speech data. Estimates of speech parameters are computed at a very low sampling rate for
storage or transmission. When required, the original speech is reconstructed from the low

bit rate representation at much higher rates using the multirate approach.

6.2 Multirate Digital Signal Processing

A simple way to changing the sampling rate of a digital signal is to convert it back into
analogue and then to redigitise it at the new rate. Errors inherent in digital-analogue-digital
conversion processes, such as quantisation and aliasing errors, would degrade the signal. As
the signal is already in a digital form, it is best to process it digitally throughout until
conversion to analogue is mandatory. Multirate processing [CRO93] [IFE93] is an efficient

technique for changing the sampling frequency of a signal digitally.

The processes of decimation and interpolation are the fundamental operations in multirate
signal processing, and they allow the sampling frequency to be decreased or increased

without significant, undesirable effects of errors such as quantisation and aliasing.

The process of sampling rate conversion in the digital domain can be viewed as a linear
filtering operation as illustrated in Figure 6.1. The input signal x(n) is characterised by the
sampling rate F, = 1/T; and the output signal y(m) is characterised by the sampling rate
F, = 1/T,, where T, and T, are the corresponding sampling intervals. The ratio of F,/F), is

constrained to be rational,
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F

X

F}’

L 6

m (6.1)
where M and L are relatively prime integers. The linear filter can be shown to be
characterised by a time-variant impulse response, A(n,m). Hence the input x(n) and the

output y(m) are related by the convolution summation for time-variant systems. The two

x(m) Linear Filter ¥m)
—P —p
F,=1/T, h(n,m) F,=1/T,

Figure 6.1 Sampling rate conversion viewed as a linear filtering process.

special cases of sampling rate conversion are the process of reducing the sampling rate by a
factor M (downsampling by M), called decimation, and the process of increasing the

sampling rate by a factor L (upsampling by L) is called interpolation [CRO93].

6.2.1 Filter Design for Multistage Approach to Sampling Rate Conversion

When large changes in the sampling rate are required it is more efficient to change the rate
in two or more stages than in one stage as described previously. The performance of a
multirate system depends critically on the type and quality of the filter used. A digital filter
for anti-alisaing in sampling rate converters is needed. Either finite impulse response (FIR)

or infinite impulse response (IIR) filters can be used for decimation or interpolation.

In multirate processing, the computation efficiency of the FIR filter is comparable with
that of IIR filters. Furthermore, FIR filters have many desirable attributes such as linear
phase response, low sensibility to finite word length effects and simple to implement

[IFE93]. Therefore, FIR filters are generally used. The implementation of a FIR filter is

=

W)= H)ln— ) (62)

0

=
[}

where x(n - k) are sampled data inputs are sampled data inputs, y(n) is the filtered output,

and h(k) are the filter coefficients that together represent the impulse response.

For an FIR filter, the overall requirements for decimation, to avoid alisaing after rate

reduction are,
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passband 021>, (6.3a)
stopband FIM>f>FJ2 (6.3b)
passband deviation 4, (6.3¢)
stopband deviation & (6.3d)

where f, < Fy/2M, and F; is the original sampling frequency and f, is the highest frequency of

interest in the original signal.

In the case of interpolation, the anti-imaging filter must remove all but the useful
information by bandlimiting the modified data to Fy/2 or less. Although the highest valid
frequency after raising the rate to F; is LFy2, according to the sampling theorem, it is
necessary to bandlimit to F/2 as this is the highest valid frequency in x(n). The overall

requirements for interpolation are

passband 0<f<f, (6.4a)
stopband FIM<f<FJ2 (6.4b)
passband deviation (6.4c)
stopband deviation & (6.4d)

where f, < Fy/2. A gain of L is necessary in the passband to compensate for the amplitude

reduction by the interpolation process.

6.2.2 Filter Requirement for Individual Stages

The optimal filter [IFE93] is often used for sampling rate conversion. The tolerance scheme

for an optimal lowpass filter is depicted in Figure 6.2(a).

For a multistage decimator shown in Figure 6.2(c) the filter requirements for each stage

to ensure that the overall filter requirements (shown in Figure 6.2(b)) are met are

passband 0<f<fy (6.5a)
stopband (Fi-FL2M)<f<F./2,i=1,2,..,1 (6.5b)
passband deviation  &/I (6.5¢)
stopband deviation & (6.5d)
filter length D \6,,6,

N= ——(A; ) - f((5p,5s )Af,. +1 (6.5¢)
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where F;, N; and Af; are the output sampling frequency, the filter length and the normalised
transition width for the ith-stage decimator respectively. The parameters Du(4,,6;) and
f&,0) are

2

D, (dp,(fs )= (log10 d, )[a1 (log10 s, )2 +a, (log10 5p)+ a, ]+ a, (log,0 5p)

+a (log,0 §p)+ a, (6.62)
£16,,68,)=11.01217 + 0.51244{log,, &, - log;, &, ) (6.6b)
where
@ =5309%10% &=7.114x107%
ay=-4761 x 107, a,=-2.660x 107
as=-5941 x 10",  as=-4278 x 10°".
The output sampling frequency for stage i is given by
F =F_[M, ©6.7)

where i = 1, 2, ..., ] and M; is the decimation factor for the stage. The initial and final

sampling rates are F, = F; and F; = F/M respectively.

For multistage decimation, a lower passband deviation is necessary for each stage to

ensure that the overall passband deviation is &, The stopband deviation for each stage is the

HN &
> |
S/ 0 5 Fi-F2M Fi 2
(a) (b)
Stage 1 Stage2 - Stage 3
X(n) ’ h] M| + hz —’ M2 F h3 -—’ M3 y(,i’
©

Figure 6.2 Filter requirement. (a) Tolerance scheme for an optimal lowpass filter; (b) multistage structure;

(c) filter specifications for stage i, i=1,2, ..., L.
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same as the overall stopband deviation because as the signal goes from stage to stage the
stopband components are attenuated further. For a one-stage decimator, the filter

requirements are the same as (6.4).

6.3 Subband Coding of Speech Signals

A variety of techniques have been developed to efficiently represent speech signals in digital
form for either transmission or storage as described in the previous chapters. Since most of
the speech energy is contained in the lower frequencies, more bits are needed to encode the
lower-frequency band than the high-frequency band. The speech signal can be subdivided

into several frequency bands allowing each band to be digitally encoded separately.

A block diagram of a subband speech coder coder [PRO92] [CRO93] [MARV93] is
shown in Figure 6.3. Let the sampling frequency of the speech signal F; kHz. The first
frequency subdivision splits the signal spectrum into two equal-width segments, a lowpass

signal (0 < F < F/4) and a high pass signal (F/4 < F < FyJ/2). The second frequency

Lowpass Decimator| Encoder

To
P filter P M=2 P 'Channel

Lowpass Decimator

P fiter [P M=2 []

Highpass Decimator, Encoder To
Lowpass | _ [Decimator P fer P M=2 [P —Prnannel
P fiker [P M=2 [

Speech Highpass Decimator Encoder To
Signal P fier [P M=2 [P Phannel
Highpass Decimator Encoder To
> filter P M=2 > > Channel

Figure 6.3 Block diagram of a subband speech coder.

subdivision splits the lowpass signal from the first stage into two equal bands, a low pass
signal (0 < F < F/8) and a highpass signal (Fy/8 < F < F/4). Finally, the third frequency
subdivision splits the lowpass signal from the second stage into two equal bandwidth
signals. Thus the signal is subdivided into four frequency bands, covering three octaves, as

shown in Figure 6.4.
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Decimation by a factor of two is performed after frequency subdivision. By allocating a
different number of bits per sample to the signal in the four subbands, a reduction in the bit

rate of the digitised speech signal can be achieved.

Filter design [WIS96] is particularly important in achieving good performance. Aliasing
resulting from decimation of the filtered signal must be negligible. Quadrature mirror filters
(QMF) [SPO92] are usually used as brickwall filters. The frequency response of such a

filter is shown in Figure 6.5.

The synthesis method for the subband encoded speech signal is the reverse of the

encoding process. The signal adjacent lowpass and highpass frequency bands are

A

0 5 5 3 ™
Figure 6.4 The frequency bands of the subband speech coder.

interpolated, filtered and combined as shown in Figure 6.6. A pair of QMF is used in the
signal synthesis for each octave of the signal.

Subband coding of signals is an effective method for achieving bandwidth compression

in a digital representation of the signal, when the signal energy is concentrated in a particular

A
Hy(w) Hy(w)
>
0 9 T w
(a) Brickwall filters
A
Hy(w) H(w)
| ,
0 5 T 0]
(a) QMF

Figure 6.5 Filter characteristics for subband coding.
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region of the frequency band. Multirate signal processing notions provide efficient

implementations of the subband encoder. It was considered worthwhile to investigate its use

—! Decoder P *2 | Filter

— Decoder —P» *2 —» Filter *2

Output

—{ Decoder —P» f?_ —p»  Filter ' -

—> Decoder — *2 — Filter

Figure 6.6 Synthesis of a subband-encoded speech signal.

in speech coding, and in particular their combination with other audio compression

techniques. More information on subband coding can be found in 6.5:

6.4 MPEG Audio Compression

A discussion of audio compression would not be complete without a consideration of the
Motion Picture Experts Group (MPEG) standard [PAN93] [PAN95]. Over the last five to
ten years, subband coding systems have been developed by many of the key companies and
laboratories in the audio industry. Beginning in the late 1980's, a standardisation body of the
International Standard Organisation (ISO) called MPEG developed generic standards for

coding of both audio and video.

MPEG audio is a group of three different SBC schemes, called layers. Each layer is a
self-contained SBC coder with its own time-frequency mapping, psychoacoustic model, and
quantiser, as shown in the Figure 6.7. Layer 1 is the simplest, but gives the poorest
compression. Layer 3 is the most complicated and difficult to compute, but gives the best
compression. An application of MPEG audio can use whichever layer that gives the best
tradeoff between computational burden and compression performance. Audio can be
encoded in any one layer. A standard MPEG decoder for any layer is also able to decode

lower layers of encoded audio. MPEG audio is intended to take a PCM audio signal
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Figure 6.7 MPEG. (a) Encoder. (b) Decoder.

sampled at a rate of 32, 44.1 or 48 kHz, and encode it at a bit rate of 32 to 192 kbps per

audio channel depending on layer.

MPEG encoders use time-frequency mapping to decompose the input signal into
subbands. The psychoacoustic model looks at these subbands as well as the original signal,
and determines masking thresholds using psychoacoustic information. Using these masking
thresholds, each of the subband samples is quantised and encoded so as to keep the
quantisation noise below the masking threshold. The final step is to assemble all these

quantised samples into frames, so that the decoder can figure it out without getting lost.

There is no need for a psychoacoustic model in the decoder. The frames are unpacked,
subband samples are decoded, and finally turned back into a single output audio signal by a

frequency-time mapping.

A simple block diagram of the process is shown in Figure 6.7. For practical systems that

need to run in real time, computation is a major issue, and is usually the main constraint.

6.4.1 MPEG Audio Layer 1

The layer 1 [PAN95] time-frequency mapping is a polyphase filter bank with 32 subbands.
Polyphase filters combine low computational complexity with flexible design and

implementation options. However, the subbands are equally spaced in frequency.

The layer 1 psychoacoustic model uses a 512-point fast fourier transform (FFT) to get
detailed spectral information about the signal. The output of the FFT is used to find both
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tonal (sinusoidal) and non-tonal (noise) maskers in the signal. Each masker produces a
masking threshold depending on its frequency, intensity, and tonality. For each subband, the
individual masking thresholds are combined to form a global masking threshold. The
masking threshold is compared to the maximum signal level for the subband, producing a

signal-to-masker ratio (SMR) which is the input to the encoder.

The layer 1 encoder first examines each subband's samples, finds the maximum absolute
value of these samples, and quantizes it to 6 bits. This is called the scale factor for the
subband. Then it determines the bit allocation for each subband by minimising the total
noise-to-mask ratio with respect to the bits allocated to each subband. It is possible for
heavily masked subbands to end up with zero bits, so that no samples are encoded. Finally,

the subband samples are linearly quantised to the bit allocation for that subband.

Layer 1 processes the input signal in frames of 384 PCM samples. At 48 kHz, each
frame carries 8 ms of sound. The MPEG specification does not specify the encoded bit rate,
allowing implementation flexibility. Highest quality is achieved with a bit rate of 384k bps.
Typical applications of layer 1 include digital recording on tapes, hard disks, or magneto-

optical disks, which can tolerate high bit rate.

6.4.2 MPEG-1 Audio Layer 2

The layer 2 [PAN95] time-frequency mapping is the same as in Layer 1 which is a
polyphase filter bank with 32 subbands.

The layer 2 psychoacoustic model is similar to the Layer 1 model, but it uses a 1024-
point FFT for greater frequency resolution. It uses the same procedure as the Layer 1 model

to produce signal-to-masker ratios for each of the 32 subbands.

The layer 2 encoder is similar to that used in Layer 1. It generates 6-bit scale factors for
each subband. However, layer 2 frames are three times as long as layer 1 frames, so layer 2
allows each subband a sequence of three successive scale factors, and the encoder uses one,
two, or all three, depending on how much they differ from each other. This gives a factor of
2 reduction in bit rate for the scale factors on average compared to layer 1. Bit allocations

are computed in a similar way to layer 1.

The layer 2 frame packer uses the same header and CRC structure as layer 1. The
number of bits used to describe bit allocations varies with. subband with 4 bits for the low
subbands, 3 bits for the middle subbands, and 2 bits for the high subbands. The scale
factors, one, two or three depending on the data, are encoded along with a 2-bit code
describing which combination of scale factors is being used. The subband samples are

quantised according to bit allocation, and then combined into groups of three, called
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granules. Each granule is encoded with one code word. This allows layer 2 to capture much

more redundant signal information than l.ayer 1.

Layer 2 processes the input signal in frames of 1152 PCM samples. At 48 kHz, each
frame carries 24 ms of sound. Highest quality is achieved with a bit rate of 256 kbps, but
quality is often good down to 64 kbps. Typical applications of Layer 2 include audio

broadcasting, television, consumer and professional recording, and multimedia.

6.4.3 MPEG-1 Audio Layer 3

Layer 3 [PAN95] is substantially more complicated than layer 2. It uses both polyphase and
discrete cosine transform filter banks, a polynomial prediction psychoacoustic model, and
sophisticated quantisation and encoding schemes allowing variable length frames. The
frame packer includes a bit reservoir which allows more bits to be used for portions of the

signal that need them.

Layer 3 is intended for applications where a critical need for low bit rate justifies the
expensive and sophisticated encoding system. It allows high quality results at bit rates as
low as 64 kbps. Typical applications are in telecommunication and professional audio, such

as commercially published music and video.

6.5 Application of Multirate Processing to GSM Full-Rate Speech Codec

From the discussions in this and previous chapters, it was considered appropriate to apply
multirate filtering to GSM full-rate speech compression. It was hoped that higher data
compression ratio will be obtained by this method, hence a lower bit rate and a decrease in
required network bandwidth. The results of this investigation was compared with

conventional GSM coding.

6.5.1 Experimental Procedure

Various speech samples were passed through a subband speech coder implemented in
MATLAB. The initial implementation was kept as simple as possible. A block diagram of
the subband analysis filter used is shown in Figure 6.8. The sampling frequency of the
speech signals F; was 8 kHz. The signal spectrum is divided into 3 frequency bands, a
lowpass signal (0 < F < FJ/8), a bandpass signal (Fy/8 < F < F/4) and a highpass signal
(F/4<F <FJ2).
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Decimation by factors of two and four is performed in the bandpass and lowpass
frequency band respectively. Filter design is particularly important in achieving good

performance. Aliasing resulting from decimation of the filtered signal must be negligible.

Lowpass Decimator
Filter D=4 > ToGSM
Speech Bandpass Decimator
Signal Filter D=2 > ToGSM
Highpass o
Filter > ToGSM

Figure 6.8 Block diagram of the subband coding analysis filter.

Three 10" order FIR filters were designed with bandpasses from 0 to 1 kHz, 1 to 2 kHz and
2 to 4 kHz to separate the different frequencies. The filter was created with the FIR1
command in MATLAB,

Al=[1 00000000 Q];
B1=fir1(10,0.25);
xl=filter(B1l,Al,s):

A2=(1 000 00O0O0CO0O0};
B2=fir1(10,[0.25 0.5]1);
x2=filter(B2,A2,s);

A3={1 00 0000O0O0 0}:
B3=firl(10,0.5, 'high');
x3=filter (B3,A3,s):

The frequency response of the three filters is shown in Figure 6.9. The output of the three

subbands was read by the bit-exact version of the GSM full-rate C encoder written for the

1.2

0.8

0.6

04t

N | K‘ |
4] ‘ »—4/// ——
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Feaguanty 042)

Log. of amplitude offrequency response

Figure 6.9 Frequency response of the 1 kHz, 2kHz and 4 kHz filters.
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and bandpass frequency bands were interpolated, filtered and combined. The output sigﬁals

were compared with the originals. This experiment was not done in real time.

6.5.2 Results

The original waveform of one of the files used for this experiment is shown in Figure 6.13.

The FFT of this waveform was obtained using

S=fft(s,512);

w=(0:255)/256* (Fs/2);
plot(w,abs{[S(1:256)]), 'w');
hold;

xlabel ('Frequency (Hz)');

ylabel ('Mag. of Fourier transform');

The result is shown in Figure 6.14. After the three frequency bands were filtered and their
frequency contents were compared with the original plot (see Figure 6.13). The three bands
were then GSM encoded and decoded. The three decoded bands were compared with their
originals, both in time and frequency domain. The output signals were synthesised by the
subband decoder and the reconstructed signal was obtained. The results are shown in Figure
6.15-23.

x10* QOriginal

1.5 T . . . .

0 1000 2000 3000 4000 5000 6000

Figure 6.13 The waveform of "eat him".
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Figure 6.14 The FFT of the waveform of "eat him".
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Figure 6.15 The FFT of the 1 kHz, 2 kHz and 4 kHz subbands.
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Figure 6.16 The original and compressed waveform of the 1 kHz subband.
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Figure 6.17 The original and compressed waveform of the 2 kHz subband.
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Figure 6.20 The FFT original and compressed waveform of the 1 kHz subband.
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Figure 6.21 The FFT original and compressed waveform of the 2 kHz subband.
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Figure 6.22 The FFT original and compressed waveform of the 4 kHz subband.

X10

3.5

T

2.5

21 v j ]
/1 | .
i H i
i1 | mi
osf] i || LRI
y f‘i*m}z'ﬁ AN i T
L L e Vi A R LAV

1 T T T

8 B?éssed 1

500

1000

1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 6.23 The FFT original and compressed waveform.
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Figure 6.24 The reconstructed waveform "eat him".

The reconstructed signals were compared with the original ones. A plot of one of the

signals can be found in Figure 6.24.

The modified speech files were played. The degradation of the signals was quite
noticeable since both GSM full-rate speech compression and subband coding are lossy
techniques. Even though the input data of the GSM encoder is a lot smaller after subband
coding, the bit rate was not lower than GSM due to the constraints specified by ETSI and the
number of bits produced per frame is restricted. Since GSM full-rate required 160 samples
per frame, the frame rate of the subbands were different, ranging from 12.5 Hz to the usual
50 Hz. The signal could not be reconstructed by the subband decoder until all of the
required data have been GSM decoded.

Figure 6.11 shows that for the 4 kHz subband, it operates at the same frame rate as GSM.
However it has to wait for three more frames before all of its data is processed and ready to
be read by the subband decoder. This introduces longer coding delay and therefore the
algorithm will not be real-time. Other 4 kHz and 2 kHz frames can be processed at the same

time while waiting for the 1 kHz frame but this also involves more processing power.
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The 4 kHz frame produces the same number of bits as GSM full-rate codec. Therefore
there will be an increase in bit rate from the output of the other two subbands. However, this
time division multirate filtering technique is still a good way to use the spare capacity. In
the next section, further enhancement of this codec and the possibility of a more efficient

implementation are discussed.

6.5.3 Discussion

Multirate signal processing cannot be directly applied GSM full-rate speech compression as
this requires more processing power, causing longer coding delay but does not appreciably
improve the bit rate. The quality of the speech signal can be improved by designing better
filters including using QMFs. However, this will not solved the other problems caused by

other factors.

The GSM full-rate speech codec is very restricted and gives no allowances for any
deviations. No modification of the algorithm can be made as it requires bit exactness. Since
the output number of bits is specified, the bit rate cannot be reduced. Therefore, a direct
application multirate filtering to GSM full-rate speech compression is not possible. Subband

coding is more flexible and the number of quantisation bits can be altered.

The different properties of the three frames produced by the subband coder can be
investigated. The complexity of the algorithm can be simplified as the capacity of the
frames are reduced. The full-rate algorithm can be modified to concentrate on the different
characteristics of each frame. For example, less reflection coefficients would be needed for
the higher subbands since most of the speech energy is contained in the lower frequencies.
They could also be sent at a lower resolution. More emphasis can be put on the RPE section
of the algorithm as there could be more information about the unvoiced speech signal at this
frequency. The output samples of the three GSM encoded frames can be sent at a lower bit

rate as they are only the components of the original speech signal.

For better compression to be achieved, the GSM full-rate mathematical algorithm can be
used instead of the standardised ETSI recommendation. Some changes including the
number of quantisation bits has to be made before the application of multirate signal
processing. Hence the bit rate of the three subbands would be different, with more bits
assigned to the algorithm which best describes the property of speech at a particular

frequency. In order to combine multirate filtering and GSM codec a new standard will be

required.

The ETSI Special Mobile Group (SMG) has been studying into the feasibility of the
Adaptive Multirate (AMR) speech concept for the past year. AMR was initially aimed at
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enhanced full-rate (EFR) GSM codec. The EFR-GSM voice codec developed by Nokia in
1995 [MARS95] is a coding algorithm that facilitates the conversion of analogue speech into
a digital data stream that can be modulated for transmission over the radio channel. The
algorithm is fully compatible with a GSM 13 kbit per second speech channel. However,
there are other candidates including UMTS and other ITU third generation systems which
are being defined over the next two years [GAS98a] [GAS98b].

6.6 Summary

In telecommunication systems that transmit and receive different speech source, there is a
requirement to process the various data at different frequencies that involves sample rate
conversion. Multirate signal processing discussed in this chapter is an efficient technique
for changing the sampling frequency of a signal digitally. Filter design and requirement for
sample rate conversion have been explained. Subband coding and MPEG audio
compression which use the multirate technique have been described. The possibility of
applying multirate filtering to GSM full-rate speech compression has been investigated. The
results showed that multirate signal processing cannot be directly applied GSM full-rate
speech compression since this method requires more processing power, causing longer
coding delay but did not appreciably improve the bit rate. However, this time division

multirate filtering technique is still a good way to use the spare capacity.

Further enhancement of this codec can be made. For lower bit rate to be achieved, the
standardised ETSI recommendation needs to be modified. The method used can be based on
the exisitng GSM full-rate mathematical algorithm. The different properties of the three
frames produced by the subband coder can be investigated. The complexity of the algorithm
can be simplified as the capacity of the frames are reduced. Some changes including the
number of quantisation bits has to be made before the application of multirate signal
processing. Therefore in order to combine multirate filtering and GSM codec a new
standard will be required. The ETSI Special Mobile Group (SMG) has been studying into
the feasibility of the Adaptive Multirate (AMR) speech concept and the codec will be
defined in the near future.
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7 Conclusions and Further Work

Spéech coding is the field concerned with obtaining compact digital representations of
speech signals for the purpose of efficient transmission. They achieve this by taking
advantage, to varying degrees, of redundancies in the speech signals, and the digital storage

of speech signals.

The work presented in this thesis concerns the background theory of speech and the
current speech coding schemes, a real time implementation on DSP and an application of

multirate filtering to GSM full-rate speech compression.

The properties and perception of speech and the DSP mathematical algorithms used in
speech coding including sampling theory, short-term spectral analysis, quantisation
techniques, linear predictive coding and pitch prediction have been described. The
objectives and requirements of speech compression which includes the quality and capacity,
coding delay, complexity and cost have been discussed. The current speech coding schemes
have been described in the following categories: the high quality waveform coders, the low
bit rate vocoders and the hybrid coders that attempts to fill the anp between waveform

coders and vocoders.

An overview of GSM full-rate speech compression have been presented. The GSM full-
rate speech compression algorithm is a lossy technique which is based on a residually
excited linear predictive coder (RELP) and this is further enhanced by using a long term
predictor (LTP). This improves speech quality by removing the structure from the vowel
sounds prior to coding the residual data. It compresses frames of 160 13-bit signed samples

to 260-bit compressed frames.

One of the major objectives of this work was to use the GSM algorithm to investigate
optimisation technique for an ASIC processor core GEPARD, which is produced by AMS.
GEPARD is an embedded software programmable DSP core for telecommunication,
consumer and industrial applications. The hardware requirement, implementation strategies,
optimisation techniques, testing and debugging of code and the performance of the assembly
code for this implementation have been discussed. The GEPARD code has been tested with
all of the test sequences provided by ETSI and the results are bit-exact. The code has been
fully optimised and the transcoding delay is 28 ms which is lower than the ETSI 30 ms

requirement. Further optimisation can be made by adding new instructions with overflow

control and saturation.
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A brief review of GSM half-rate speech compression have been presented. ETSI
specified the GSM half-rate codec with a bit rate of 5.6 kbps in 1995. The algorithm is
based on Motorola's VSELP technology similar to IS-54 full-rate. It uses two 7-bit
codebooks for unvoiced speech and one 9-bit codebook for voiced segments. A comparison

with the full-rate algorithm is discussed.

The half-rate algorithm takes advantage of more efficient speech compression than full-
rate techniques do, shrinking the bandwidth timeslice that each user requires. Although
GSM full-rate codec operates at 13 kbps and half-rate at 5.6 kbps, they both offer near toll
speech quality comparable or better than analogue cellular networks. The half-rate
compression introduces new algorithms such as FLAT and AFLAT and requires more
computationally intensive operations compared with the full-rate. Hence a four times more
powerful processor will be needed for the half-rate codec. The cost of the implementation of

half-rate codec will also be considerably higher than full-rate.

A description of multirate signal processing and its application on speech (SBC) and
speech/audio (MPEG) has been given. Multirate signal processing is an efficient technique
for changing the sampling frequency of a signal digitally. An investigation into the
possibility of combining multirate filtering and GSM full-rate speech algorithm. The results
showed that multirate signal processing cannot be directly applied GSM full-rate speech
compression since this method requires more processing power, causing longer coding delay
but did not appreciably improve the bit rate. However, this time division multirate filtering

technique is still a good way to use the spare capacity.

Further enhancement of this codec can be made. For lower bit rate to be achieved, the
standardised ETSI recommendation needs to be modified. The method used can be based on
the existing GSM full-rate mathematical algorithm. Therefore in order to combine multirate

filtering and GSM codec a new standard will be required.

Other new research in the field of low bit rate speech coding includes variable frame rate
speech coding [CHU94], forward-backward waveform prediction [YAN95], parametric
filtering [LI96], formant vocoders using mixtures of Gaussian [ZOL96] [ZOL97a)
[ZOL97b], variable-rate CELP [MCCL97] and adaptive multirate codec[GAS98a]

[GAS98b).
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Appendix A Full Rate Speech
Transcoding (G'SM 06.10)

A.1 Introduction

The GSM full-rate speech compression algorithm is a lossy technique which is based on a
residually exited linear predictive coder (RELP) and this is further enhanced by using a long
term predictor (LTP). It compresses frames of 160 13-bit signed samples to 260-bit
compressed frames. A full description of GSM full-rate speech transcoding can be found in

[ETS94].

A.2 Encoder

The input speech frame consisted of uniform 13-bit PCM signed samples converted from 8-
bit A-law companded format. The encoder output parameters are shown in Table D.1. A

block diagram of the Encoder is shown in Figure B.1.

A.2.1 Preprocessing Section

After A-law to linear conversion (or directly from the A to D converter) the following input

sample (2’s complement format) is obtained

S.V.V.V.V.V.V.V.V.V.V.V.V.X.X.X

where S is the signed bit, v a valid bit and x a “don’t care” bit. The input samples are
downscaled by a factor of two and a notch filter is applied in order to remove the offset of

the signal s, to produce the offset-free signal s,

sof[k]=s0[k]—s[k—l]+ asof[k—l] (A.1)

where a= 32735 x 2. The signal s, is then applied to a first order FIR preemphasis filter

leading to the input signal s of the analysis section,

slk]= s [k]- s, [k 1] (A2)

where f=28180 x 2.
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A.2.2 LPC Section Analysis
The speech signal s[k] is divided into non-overlapping frames having a period of 20 ms (160
samples). A new LPC analysis of order p =8 is performed for each frame. The first nine
values of the autocorrelation function are calculated by
159
ACFlk] =Y slilsli - k] (A3)

i=k

where 0 < k£ < 8. The reflection coefficients are calculated as shown in Figure A.1 using the
Schur Recursion algorithm. The reflection coefficients r(7), where 1<i<8, calculated by
the Schur algorithm, are in the range —13r[i]£+1. Due to the favourable quantisation
characteristics, the reflection coefficients are converted to log area ratios which are defined
in (2.13).
Since it is the companding characteristic of this transformation that is of importance, the
following segmented approximation is used.
i ; Ir[i] <0.675
. LAR[i]= sign{r[iJ{2)r[i] - 0.675};0.675 <|r[i] < 0.950 (A4)
sign{r[il}fg]rli] - 0.375};0.975 <|r[i] <1.000
with the result that instead of having to divide and obtain the logarithm of particular values,

it is merely necessary to multiply, add and compare these values. The following equation is

used for the inverse transformation.
LAR'[i] ; Ir[i] <0.675
rli]= sign{LARTi}o.500|L4R 3] + 0.337500};0.675 <[ri] <1.225 (A.5)
sign{LARi{0.125|L4R [i] + 0.796875},0.975 < |r[i] <1.625
The log area ratios LAR[i] had different dynamic ranges and different asymmetric
distribution densities. For this reason, the transformed coefficients LAR[{] is limited and

quantised differently according to (A.6), with LAR[i] denoting the quantised and integer
coded version of LAR[i].

LAR_|i]=Nint{4[i]LAR[i] + B[] (A.62)
with

Nint{z} = int{z + 0.5sign{z}} (A.6b)

95




APPENDIX A FULL RATE SPEECH TRANSCODING (GSM 06.10)
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Figure A.1 LPC analysis using Schur recursion.

Function Nint defined the rounding to the nearest integer value with the coefficients 4[],

B[i], and the different extreme values of LAR; [i] for each coefficient LAR[i] given in Table
C.l.
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A.2.3 Short Term Analysis Filtering Section

The current frame of the speech signal s is retained in memory until calculation of the LPC
parameters LAR[i] is completed. The frame is then read out and fed to the short term

analysis filter of order p=8. However, prior to the analysis filtering operation, the filter

coefficients are decoded and preprocessed by interpolation. In this block the quantised and
coded LAR, [{] are decoded according to (A.7).

LAR"[i]=(L4R, [i]- Bli])/ A[i] (A7)

To avoid spurious transients which might occur if the filter coefficients are changed

_abruptly, two subsequently sets of log area ratios are interpolated linearly. Within each

Output
dy : ds dek)

Input
s(k)

8o

Figure A.2 Short term analysis filter.

frame of 160 analysed speech samples the short term analysis filter and the short term
synthesis filter operate with four different sets of coefficients derived according to Table

C.2.

The reflection coefficients are finally determined using the inverse transformation
according to (A.5). The short term analysis filter is implemented according to the lattice

structure shown in Figure A.2.

d, [k]=s[k] (A.8a)
uolk]=s{k] (A85)
d,[k)=d,[k]+ rfu [k -1] (A.8¢)
w; k] =,y [k = 1]+ rd,  [k] (A.8d)
dlk]=dy|k] (A.8¢)
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A.2.4 Long Term Prediction Analysis Section

Each input frame of the short term residual signal contained 160 samples, corresponding to
20 ms. The long term correlation is evaluated four times per frame, for each 5 ms
subsegment. For each of the four subsegments a long term correlation lag N; and an

associated gain factor b, where 0< j <3, are determined. The crosscorrelation R; [4] of the
current subsegment of short term residual signal d[k ; +iJ, 0<i<39, and the previous
samples of the reconstructed short term residual signal is evaluated signal d’lk ; +i],

—120<i<-1, are evaluated.
Rj[/l]=329:d[kj ik, +i-4] (A9)
i=0

where 0<j<3, k; =k, +40;, 0<2<120. The crosscorrelation is evaluated for lags

greater than or equal to 40 and less than or equal to 120, i.e. corresponding to samples

outside the current subsegment and not delayed by more than two subsegments.

The position n; of the peak of the crosscorrelation function within this interval is then

found

R, v j |= max{Rj 4]} (A.10)

The gain factor b; is evaluated according to
bjsz[ij/Sj[Nj] (A.11a)

with
2., ) (A.11b)
s,V ]=3a%k, +i-n)]
i=0
The last 120 samples of the reconstructed short term residual signal d '[k it i] is retained
until the next subsegment.

The long term correlation lags N, had values in the range between 40 and 120, and is

coded using 7 bits with N, =N;. At the receiving end, assuming an error free
transmission, the decoding of these values would restore the actual lags N;".

The long term prediction gains b, are encoded with 2 bits each, according to the following

algorithm,
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if bi < DBL[i] then b;=0; i=0
if DBL[i-1] < b < DBL[] then by;=0; i=1,2 (A.12)
if DBL[i-1] < b then b;=0;, i=3

where DBL[i], 0<i<2 denoted the decision levels of the quantiser, and b, represents the

coded gain value. Decision levels and quantising levels are given is Table C.3. The
decoding rule is implemented according to

' A.13

b} =QLBJb, | (A1)

where QLB([i] denoted the quantising levels, and b;’ represented the decoded gain value.

The short term residual signal d [k0 + k] , 0<k <159, is processed by subsegments of 40
samples. From each of the four subsegments of short term residual samples, denoted here

a’lk ;+ k], and estimate d ”[k it k] of the signal is subtracted to give the long term residual
signal e[kj + k].

ek, +k|=dlk; +k]-d"lk, + k| (A.14)
where 0<j<3, 0<k<39, k; =k, +40;. Prior to this subtraction, the estimated samples

d ”[k it k] are computed from the previously reconstructed short term residual samples d°,

adjusted to the current sub-segment LTP lag Nj’ and weighted with the subsegment LTP

gain b;’.

d'lk, +k|=bld'lk; +k-N'] (A.15)

where 0< <3, 0<k<39, k; =k, +40j. The reconstructed long term residual signal
e'[k it kJ is processed by subsegments of 40 samples. To each subsegments, e'[k i+ k], the

estimated d ”[k it i] of the signal is added to give the reconstructed short term residual
signal d'|k; +k|.
d'lk; +k|=elk; +k|+d"k; + k| (A.16)

where 0< <3, 0<k<39, k, =ky +40/.

A.2.5 RPE Encoding Section

A FIR block filter algorithm is applied to each subsegment by convolving 40 samples e[]

with the impulse response H[i], with 0<i<10, see Table C.4. The conventional
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convolution of a sequence having 40 samples with an 11-tap impulse response would
produce 50 samples. In contrast to this, the block filter algorithm produces the 40 notational

convenience the block filtered version of each subsegment is denoted by x{k]
10
k)= Hlilelk +5-1] (A17)
i=0

with elk +5-i]=0 for [k+5-i]<0 and [k+5-i]>39. The filtered signal x is then
downsampled by a ratio of 3 resulting in 3 interleaved sequences of lengths 14, 13 and 13,
which are split up again into 4 subsequences x,, of length 13.

Xy [i]=xlkj +m+3iJ (A.18)

with 0<i<12 and 0<m <3. m represented the position of the decimation grid. According
to the explicit solution of the RPE mean squared error criterion, the optimum candidate

subsequence x,/is selected which is the one with maximum energy.
12 ’
E), =max ) x2[i] (A.19)
)

The optimum grid position M is coded as M, with 2 bits. The selected subsequence x[i] is
quantised, applying APCM (Adaptive Pulse Code Modulation). For each RPE sequence
consisting of a set of 13 samples x)/[i], the maximum Xn,, of the absolute values P[]} is

selected and quantised logarithmically with 6 bits as Xpaxc.

For the normalisation, the 13 samples are divided by the decoded version x'p.x of the

block maximum. Finally the normalised samples
[i]= 5y [ -

are quantised uniformly with 3 bits to xx[i] as given in Table C.5. The x.[i] are decoded to
x,’[{] and denormalised using the decided value of x'n.y leading to the decoded subsequence
x'[i]. The quantised subsequence is upsampled by a ratio of 3 by inserting zero values

according to the grid position given with Mc.

A.3 The Decoder

Most of the subblocks used in the encoder are also used here. Only the short tern synthesis
filter and the deemphasis filter are added in the decoder as new subblocks. A block diagram

of the decoder is shown in Figure B.2.
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A.3.1 . RPE Decoding Section

The input signal of the long term synthesis filter (reconstruction of the long term residual
signal) is formed by decoding and denormalising the RPE samples and by placing them in
the correct time position. At this stage, the sampling frequency is increased by a factor of 3

by inserting the appropriate number of intermediate zero-valued samples.

A.3.2 Long Term Prediction Synthesis Section

The reconstructed long term residual signal e, is applied to the long term synthesised filter
which produced the reconstructed short term residual signal d,’ for the short term

synthesiser.

A.3.3 Short Term Synthesis Filtering Section

38
Qutput
sAk)
‘___
"

Figure A.3 Short term synthesis filter.

The coefficients of the short tern synthesis filter are reconstructed applying the identical
procedure to that in the encoder. The short tern synthesis filter implemented according to

the lattice structure shown in Figure A.3.

soilkl=d; [k]

(A21a)
skl =5,y l] + 7w [ 1] (A21b)
Vg_i [k]= Ug_; [k - 1] + rilsr[;][k] (A2lc)
sy lk]=s,5 k] (A21d)

Vo [k] = Sr[S][k] ‘ (A2le)
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A.3.4 Postprocessing Section

The output of the synthesis filter s,[£] is fed into the IIR deemphasis filter leading to the

output signal s,.

$,olk]=5,[k]- Bs,, [k -1] (A22)
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Appendix C Tables Used in the
Implementation of the GSM Full-Rate
Codec

Table C.1 Quantisation of the log area ratios.

i Ali} BIi] MIC[i] | MACII]
1| 20480 0 -32 31
2 | 20480 0 -32 31
3 | 20480 | 2048 -16 15
4 | 20480 | -2560 -16 15
5 | 13964 94 -8 7
6 | 15360 | -1792 -8 7
7| 8534 -341 -4 3
8 | 9036 -1144 -4 3

Table C.2 Tabulation of /A[1...8].

1 | INVA[]
1 13107
2 13107
3 13107
4 13107
5 19223
6 17476
7 31454
8 29708
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Table C.3 Decision level of the LTP gain quantiser.

bc | DLB[be]
0 6554
1 16384
2 26214
3 32767

Table C.4 Quantisation levels of the LTP gain quantiser.

be QLB[bc]
0 3277

1 11469
2 21299
3 32767

Table C.5 Coefficients of the weighting filter.

i HI[i]
0 | -134
1| -374
2 0

3 | 2054
4 | s
5 | 8192
6 | 57141
7 | 2054
8 0

9 | -374
10 | -134
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Table C.6 Normalised inverse mantissa used to compute xM/xmax.

i NRFACIi]
0 29128
1 26215
2 23832
3 21846
4 20165
5 18725
6 17476
7 16384

Table C.7 Normalised direct mantissa used to compute xM/xmax.

i | FAC[]
0 | 18431
1| 20479
2 | 22527
3| 24575
4 | 26623
5 | 28671
6 | 30719
7| 32767
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Appendix D GSM Full-Rate Encoder

Output Parameters

Table D.1 GSM full-rate encoder output parameters in order of occurrence and bit allocation within the speech

frame of 260 bits/20 ms.
Parameter Parameter Parameter Variable | Number of Bits Bits Number
Number Name Name (LSB-MSB)
1 LAR 1 6 bl - b6
2 LAR 2 6 b7 -bl2
3 Log-Area LAR3 5 b13 -bl7
Filter 4 ratios LAR4 5 b18 - b22
Parameters 5 i-8 LARS 4 b23 - b26
6 LAR 6 4 b27 - b30
7 LAR7 3 b31-b33
8 LAR 8 3 b34 - b36
Sub-frame no. 1
LTP 9 LTP lag Ni 7 b37 - b43
Parameters 10 LTP gain bl 2 b44 - b45
1 RPE grid positions Ml 2 b46 - b47
12 Block amplitude xmax 6 b48 - bS53
13 RPE - pulse no. 1 x1(0) 3 b54 - b56
14 RPE - pulse no. 2 xI{1) 3 b57 - b59
15 RPE - pulse no. 3 x1(2) 3 b60 - b62
16 RPE - pulse no. 4 x1(3) 3 b63 - b65
RPE 17 RPE - pulse no. 5 x1(4) 3 b66 - b68
Parameters 18 RPE - pulse no. 6 x1(5) 3 b69 - b71
19 RPE - pulse no. 7 x1(6) 3 b72 - b74
20 RPE - pulse no. 8 x1(7) 3 b75 - b77
21 . RPE - pulse no. 9 x1(8) 3 b78 - b80
22 RPE - pulse no. 10 x1(9) 3 b81 - b83
23 RPE - pulse no. 11 x1(10) 3 b84 - b86
24 RPE - pulse no. 12 x1(11) 3 b87 - b89
25 RPE - pulse no. 13 x1(12) 3 b90 - b92
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Sub-frame no. 2

LTP 26 LTP lag N2 7 b93 - b99
Parameters 27 LTP gain b2 2 b100 - b101
28 RPE grid positions M2 2 b102 - b103
29 Block amplitude xmax2 6 b104 - b109
30 RPE - pulse no. 1 x2(0) 3 b110-bl12
3] RPE - pulse no. 2 x2(1) 3 b113 - bil5
32 RPE - pulse no. 3 x2(2) 3 bl16 - bl118
33 RPE - pulse no. 4 x2(3) 3 b119-b121
RPE 34 RPE - pulse no. 5 x2(4) 3 bl122-b124
Parameters 35 RPE - pulse no. 6 x2(5) 3 bl125 - b127
36 RPE - pulse no. 7 x2(6) 3 b128 -b130
37 RPE - pulse no. 8 x2(7) 3 b131-bl133
38 RPE - pulse no. 9 x2(8) 3 b134 -bl136
39 RPE - pulse no. 10 x2(9) 3 b137-b139
40 RPE - pulse no. 11 x2(10) 3 b140 - b142
41 RPE - pulse no. 12 x2(11) 3 b143 - bi45
42 RPE - pulse no. 13 x2(12) 3 bl146 - bl148

Sub-frame no. 3

LTP 43 LTP lag N3 7 b149 - b155
Parameters 44 LTP gain b3 2 b156 - b157
45 RPE grid positions M3 2 b158 - b159
46 Block amplitude xmax3 6 b160 - b165
47 RPE - pulse no. 1 x3(0) 3 b166 - b168
48 RPE - pulse no. 2 x3(1) 3 b169 - b171
49 RPE - pulse no. 3 x3(2) 3 b172 -bl174
50 RPE - pulse no. 4 x3(3) 3 b175-b177
RPE 51 RPE - pulse no. 5 x3(4) 3 b178 - b180
Parameters 52 RPE - pulse no. 6 x3(5) 3 b181 -bl183
53 RPE - pulse no. 7 x3(6) 3 bi184 - b186
54 RPE - pulse no. 8 x3(7) 3 b187 - b189
55 RPE - pulse no. 9 x3(8) 3 b190 - 192
56 RPE - pulse no. 10 x3(9) 3 b193 - b195
57 RPE - pulse no. 11 x3(10) 3 b196 - b198
58 RPE - pulse no. 12 x3(11) 3 b199 - b201
59 RPE - pulse no. 13 x3(12) 3 b202 - b204
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Sub-frame no. 4

LTP 60 LTP lag N4 7 b205 - b211
Parameters 61 LTP gain b4 2 b212 - b213
62 RPE grid positions M4 2 b214 - b215

63 Block amplitude xmax4 6 b216 - b221

64 RPE - pulse no. | x4(0) 3 b222 - b224

65 RPE - pulse no. 2 x4(1) 3 b225 - b227

66 RPE - pulse no. 3 x4(2) 3 b228 - b230

67 RPE - pulse no. 4 x4(3) 3 b213 - b233

RPE 68 RPE - pulse no. 5 x4(4) 3 b234 - b236
Parameters 69 RPE - pulse no. 6 x4(5) 3 b237 - b239
70 RPE - pulse no. 7 x4(6) 3 b240 - b242

71 RPE - pulse no. 8 x4(7) 3 b243 - b245

72 RPE - pulse no. 9 x4(8) 3 b246 - b248

73 RPE - pulse no. 10 x4(9) 3 b249 - b251

74 RPE - pulse no. 11 x4(10) 3 b252 - b254

75 RPE - pulse no. 12 x4(11) 3 b255 - b257

76 RPE - pulse no. 13 x4(12) 3 b258 - b260
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Appendix E GSM Hali-Rate Encoder
Output Parameters

Table E.1 shows a list of all the parameters which are coded for each 20 ms speech frame.

The data rate of the speech coder is 5.6 kbps. Therefore 20 ms speech frame consists of 112

bits.

Table E.1 GSM half-rate encoder output parameters in order of occurrence and bit allocation within the speech

frame of 112 bits/20 ms.
Parameter | Parameter Parameter Variable | Number of | Bits Number
Number Name Name Bits (LSB-MSB)
1 Voicing mode MODE 2 bl - b2
2 Frame energy RO 5 b3 - b7
Filter 3 Reflection coefficient vector rl - r3 LPC1 11 b8 - b18
Parameters 4 Reflection coefficient vector r4 - r6 LPC2 9 b19 - b27
5 Reflection coefficient vector r4-rl10 LPC3 8 b28 - b35
6 Soft interpolation bit for frame INT_LPC 1 b36
7 Lag for first subframe LAG_1 8 b37 - bd4
8 Lag delta code for second subframe LAG 2 4 b45 - b48
9 Lag delta code for third subframe LAG_3 4 b49 - b52
Subframe 10 Lag delta code for fourth subframe LAG 4 4 b53 - b56
Bits 11 Codebook, I, for first subframe CODE_1 9 b57 - b65
(MODE = 12 Codebook, 1, for second subframe CODE_2 9 b66 - b74
1,2, 0r3) 13 Codebook, 1, for third subframe CODE 3 9 b75 - b83
14 Codebook, I, for fourth subframe CODE_4 9 b84 - 92
15 {P0,GS} code for first subframe GSPO_1 5 b93 - b97
16 {P0,GS} code for second subframe GSP0_2 5 b98 - b102
17 {P0,GS} code for third subframe GSP0_3 5 b103 - b107
18 {P0,GS} code for fourth subframe GSP0_4 5 bi08 - bl112
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7 Codebook, I, for first subframe CODEL 1 7 b37 - b43
8 - Codebook, H, for first subframe CODE2_1 7 b44 - b50
9 Codebook, I, for second subframe CODEIl_2 7 b51 - b57
10 Codebook, H, for second subframe CODE2 2 7 b58 - b64
Subframe 11 Codebook, I, for third subframe CODE1_3 7 b65 - b71
Bits 12 Codebook, H, for third subframe CODE2_3 7 b72 - b78
(MODE = 0) 13 Codebook, I, for fourth subframe CODE1_4 7 b79 - b85S
14 Codebook, H, for fourth subframe CODE2 4 7 b86 - b92
15 {P0,GS} code for first subframe GSPO_1 5 b93 - b97

16 {P0,GS} code for second subframe GSP0_2 5 b98 - b102

17 {P0,GS} code for third subframe GSPO_3 5 b103 - b107

18 {P0,GS} code for fourth subframe GSPO_4 5 b108 - bl12

E.1 MODE

The speech coder is defined by four voicing modes. MODE is a 2 bit code which specifies
which of the four voiving modes is used at the current frame. The MODE indicates which

definition of the frame bits to apply to the current frame.

E.2 RO

RO represents the average signal power of the input speech for the frame. The average

signal power is computed using an analysis window which is centred over the last 100

samples of the frame.

E.3 LPCI1 -LPC3

The 10 reflection coefficients are vector quantised in three vector segments. The first vector
segment codes reflection coefficients r1 - r3, the second vector segment codes coefficients r4

- 16, the third vector segment codes coefficients r7 - r10.

E4 LAG 1-LAG 4

LPG 1, the lag for the first subframe, can take on the value in the range of 21 to 142. Eight
bits are used to encode the lag which may be fractional in value. Each of the remaining lag

values (LAG_2 through LAG_4) is delta coded relative to the preceding subframe's coded
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value of the lag, with a deviation of -8 to +7 allowable lag value levels specified by a four

bit code.

E.5 CODEx _1-CODEx_4

If MODE 0, the code value for the VSELP codebook is the codework I as derived by the
codebook search procedure. If MODE = 0, two VSELP codebooks are sequentially
searched, with codeword I, specifying the codevector from the first VSELP codebook,
assigned onto CODEI_x, and codeword H, specifying the codeword selected from the
second VSELP codebook, assigned onto CODE2_x, which x is the subframe number.

E.6 GSPO 1-GSP0 4

The {P0,GS} codebook contains the values needed to determine the gain factors for the
excitation vectors of a given subframe. The index of the corresponding codebook entry is
assigned to GSPO_x. The half-rate coder is a multimode speech coder, defined by four

voicing modes
MODE =0 unvoiced
MODE =1 slightly voiced
MODE =2  moderately voiced
MODE =3  strongly voiced

If MODE = 0, the adaptive codebook (long-term predictor) and the VSELP codebook are
replaced by two other VSELP codebooks.
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Appendix I Results and Tables of

Implementation of GSM Full-Rate
GEPARD Code

Table 1.1 Parameters of GSM full-rate encoder.

Input sop[160] input data
z1 stored value of vector z1
122 stored value of vector |_z2
mp stored value of vector mp
last_LARpp([8] stored value of vector last_LARpp
u[8] stored value of vector u[§]
dp[121] stored value of vector dp

Output | LARc[8], Nc[4], be[4], Mc[4], xmaxc[4], xMc[52] | coded parameters

Table 1.2 Parameters of GSM full-rate decoder.

Input LARc(8], Nc[4], bc[4], Mc[4], xmaxc{4], xMc[52] coded parameters
last_ LARpp[8] stored value of vector last_LARpp
v[9] stored value of vector u[8]
msr stored value of vector mp

Output | sop{160] output data vector
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APPENDIX I RESULTS AND TABLES OF IMPLEMENTATION OF GSM FULL-RATE GEPARD CODE

Table 1.3 Subblocks of the GSM full-rate encoder.

Section Input Output Used Approximate Number
Variables Variables Variables of Cycles

Preprocessing
scaling (4.2.1) sop[160} so[160] 1000
offset (4.2.2) so[160] sof[160] 3000
preemp (4.2.3) sof]160] s[160] 1000
LPC Analysis
autocorr (4.2.4) s[160] 1_ACF[9], s[160] 5000
schur (4.2.5) 1_ACF{9) {8] 1500
lars (4.2.6) 18] LAR[8] 50
code lar (4.2.7) LAR[8] LARc[8] A[8], B[8], MAC[8}, MIC[8] 50
Short Term Analysis Filtering
decode_lar (4.2.8) LARCc[8] LARpp[8] INVA[S8], MICI[8], B[8] 150
inte_lar (4.2.9.1) LARpp(8] LARp({32] 200
coeffs (4.2.9.2) LARp([32] rp[32] 300
i_filter (4.2.10) s[160], rp{32] d[160] 46000
Long Term Prediction (LTP)
Itp_calc (4.2.11) df40] d[40] DBL[4] 10000
ltp_filter (4.2.12) d[40] e[40] QLB[4] 700
RPE Encoding
w_filter (4.2.13) e[40] x[40] H[11] 1500
rpe_select (4.2.14) x[40] xM[13] NRFAC[8] 400
apcm_quant (4.2.15) xM[13] xMc[13] FACIS8] 300
apcm_iquant (4.2.16) xMc[13] xMp[13] 400
rpe_posit (4.2.17) xMp[13] ep[40] 100
update_dp (4.2.18) ep[40] dp[121} 500
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Table 1.4 Subblocks of the GSM full-rate decoder.

Section Input Output Used Approximate Number
Variables Variables Variables of Cygles

RPE Decoding
rpe_decode (4.3.1) Xmaxc exp_p, mant_p 50
apcm_iquant (4.2.16) xMc[13] xMp[13] 300
rpe_posit (4.2.17) xMp[13] erpf{40} 100
LTP Synthesis
Itp_synth (4.3.2) erp[40] drp{40] QBL[4] 1200
Short Term Synthesis Filtering
decode_lar (4.2.8) LARc[8] LARppl[8] INVA[8], MIC[8], B[8] 150
inte_lar (4.2.9.1) LARpp|[8] LARp(32] 200
coeffs (4.2.9.2) LARp[32] rp[32] 300
s_filter (4.3.4) drp{160], rrp[32] d[160] 44000
Postprocessing
deemph (4.3.5) sr[160] sro[160] 2000
upscale (4.3.6) sro[160] srop[160] 2000
truncate (4.3.7) srop{ 160} srop[160] 600
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