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A B S T R A C T 

Tooling technology is recognised as an element of vital importance within the 

manufacturing industry. Critical tooling decisions related to tool selection, tool Ufe 

management, optimal determination of cutting conditions and on-line machining process 

monitoring and control are based on the existence of reliable detailed process models. 

Among the decisive factors of process planning and control activities, tool wear and tool 

life considerations hold a dominant role. Yet, both off-line tool life prediction, as well as 

real tune tool wear identification and prediction are still issues open to research. The main 

reason lies with the large number of factors, influencing tool wear, some of them being of 

stochastic nature. The inherent variability of workpiece materials, cutting tools and 

machine characteristics, further increases the uncertainty about the machining optimisation 

problem. 

In machining practice, tool life prediction is based on the availability of data provided 

from tool manufacturers, machining data handbooks or from the shop floor. This thesis 

recognises the need for a data-driven, flexible and yet simple approach in predicting tool 

life. Model building from sample data depends on the availability of a sufficiently rich 

cutting data set. Flexibility requires a tool-life model with high adaptation capacity. 

Simplicity calls for a solution with low complexity and easily interpretable by the user. 

A neural-fuzzy systems approach is adopted, which meets these targets and predicts tool 

life for a wide range of turning operations. A literature review has been carried out, 

covering areas such as tool wear and tool life, neural networks, fuzzy sets theory and 

neural-fuzzy systems integration. Various sources of tool life data have been examined. It 

is concluded that a combined use of simulated data from existing tool life models and real 

life data is the best policy to follow. The neurofuzzy tool life model developed is 

constructed by employing neural network-like learning algorithms. The trained model 

stores the learned knowledge in the form of fuzzy IF-THEN rules on its structure, thus 

featuring desired fransparency. Low model complexity is ensured by employing an 

algorithm which constructs a rule base of reduced size from the available data. In addition, 



the flexibility of the developed model is demonstrated by the ease, speed and efficiency of 

its adaptation on the basis of new tool life data. 

The development of the neurofuzzy tool life model is based on the Fuzzy Logic Toolbox 

(vl.O) of MATLAB (v4.2cl), a dedicated tool which facilitates design and evaluation of 

fuzzy logic systems. Extensive results are presented, which demonstrate the neurofuzzy 

model predictive performance. The model can be directly employed within a process 

planning system, facilitating the optimisation of turning operations. Recommendations are 

made for fiirther enhancements towards this direction. 

n 



To my parents 

Man is soft and thirsty like grass, 
insatiable like grass, his nerves roots that spread; 
when the harvest comes 
he would rather have the scythes whistle in some other field; 
when the harvest comes 
some call out to exorcise the demon 
some become entangled in their riches, others deliver speeches. 
But what good are exorcisms, riches, speeches 
when the living are far away? 
Is man ever anything else? 
Isn' t this that confers life ? 

Last Stop, George Seferis 

from George Seferis, Collected Poems, Princeton UP, 1969, 

Edited and Translated by Edmund Keeley and Philip Sherrard 
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C h a p t e r 1 

INTRODUCTION 

1.1 Neurofuzzy and soft computing 

Within the last few years there is a growing number of engineering applications of 

artificial neural networks and fuzzy logic, ranging from consumer products, mdustrial 

decision support and control systems, to financial trading and forecasting. Neural 

networks and fuzzy logic are, in fact, computational metaphors for the human brain 

architecture, learning capacity and ability to perform approximate reasoning based on 

imprecise or incomplete information. Terms such as soft computing [Zadeh 1994] or 

computational intelligence [Bezdek 1994] have been used in the past to mark the distinct 

features shared by neural networks, fuzzy logic systems and some advanced gradient-free 

probabilistic optimisation techniques, such as evolutionary strategies, genetic algorithms 

and simulated annealing. These terms also aim at defining a different computational 

approach than those that "hard computing" or"artificial intelligence" adopt. In fraditional, 

hard computing, precision, certainty and rigour prevail, whereas in soft computing an 

allowance is made for imprecision and uncertainty. Within the context of computational 

intelligence, fuzzy logic is primarily concerned with imprecision, neural networks with 

learning and probabilistic reasoning with uncertainty (Figure 1.1) [Zadeh 1994]. 

Some of the most important characteristics of computational intelligence are [Jang et al. 

1997]: 

• Model-free learning: Neural networks and adaptive fuzzy inference systems 

posses the capability of building models based on sample data. A-priori knowledge 

relevant to the unknown system can ease the modelling procedure, without being a 

prerequisite. 
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Fuzzy Logic 
(FL) 

Imprecision 

Computational Intelligence 
("Soft" Computing) 

Probabilistic Reasoning 
(PR) 

Uncertainty 

Neural Networks 
(NN) 

Learning 

Figure 1.1 Attributes of computational intelligence approaches 

• Human expertise: Human knowledge can be incorporated into computational 

intelligence systems in the form of fiizzy IF-THEN rules, as well as in conventional 

knowledge representations, to facilitate practical problem solving. 

• Numerical computation: Soft computing allows for numerical processing of 

information, whereas fraditional artificial intelligence (AI) techniques are limited on 

symbolic information processing. 

• New optimisation techniques: Computational intelligence can employ innovative 

optimisation methods, such as genetic algorithms and evolutionary sfrategies 

(inspired by the evolution and selection processes), or simulated aimealing (inspired 

by thermodynamics), random search methods etc. Since these methods do not 

require the gradient of a vector, they are more flexible in complex optimisation 

tasks. 

• Intensive computation: Deriving rules or regularity in data sets usually involves 

intensive computation in most soft computing systems. However, no significant 

background knowledge concerning the problem to be solved is required. 

• New application domains: Soft computing has found successful applications in 

computationally intensive areas, such as adaptive signal processing, nonlinear 

system identification and confrol, pattern recognition, nonlinear regression and 

others. 

• Fault tolerance: Neurofiizzy systems encode information in a parallel, distributed 

or redundant manner. Therefore they are not particularly sensitive to faults such as 
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the deletion of a neuron in a neural network or of a fuzzy rule in a fuzzy inference 
system. 

• Goal driven: Neurofuzzy and soft computing systems are goal-driven, thus the 

path from a current state to the solution does not really matter, especially when 

derivative-free optunisation techniques are used. A-priori knowledge, when 

available, can be built mto them to facilitate the search or optimisation task. 

• Real world applications: Most real world applications are inherently complex, 

nonlinear and time varying with built-in uncertainties. Hence, detailed description of 

the problem is rarely available, precluding the use of conventional problem-solving 

approaches. Computational intelligence techniques are well suited to solving 

particularly these kind of problems, providing satisfactory engineering solutions to 

real-world problems. 

Methodology Strength 

Neural Networks Learning and adaptation 

Fuzzy Sets Theory Knowledge representation via fuzzy if-then rules 

Probabilistic Reasoning Systematic random search 

Conventional A I Symbolic manipulation 

Table 1.1: Strengths of soft computing and traditional artificial intelligence 
[Jangetal. 1997] 

The main sfrengths of soft computing and traditional artificial intelligence are summarised 

in table 1.1 [Jang et al. 1997]. Soft computing approaches have overlappmg application 

domains and they should be considered as complementary rather than competitive 

methodologies. It can be argued, however, that neural networks are usually more suitable 

in processing low absfraction level information, such as sensorial data, while fuzzy logic 

offers a model of reasoning at a rather higher abstraction level. Probabilistic reasoning, on 

the other hand, is suitable for efficient search in large parameter spaces, when applied to 

complex optimisation problems. Neurofuzzy and soft computing aims at taking full 

advantage of individual merits of each one approach by integrating them into a single 

framework. 
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1.2 Computational intelligence applications in manufacturing 

The thriving emergence of computational inteUigence applications in various engineering 

domains has also had its impact on manufacturing. The range of the problems met in 

today's manufacturing systems is probably wider than in any other system of human 

activity. Flexibility has become recognised as the key to success in pursuing continuous 

competitiveness. There is no unique measure of flexibility for all manufacturing activities. 

What is common in every decision level is the need to respond promptly to a changing 

manufacturing environment. The information abstraction level of each manufacturing 

activity w^orld model varies. Higher layers involve more abstract, less time critical 

information flows, whereas time considerations become crucial at lower organisational 

layers, together with a need for data-rich and more precise information. Yet, there is a 

common need for adopting a flexible world model at each level, equipped with some sort 

of adaptation capacity. At the very heart of that capacity is the concept of learning. 

In manufacturing enterprises the need for learning tends to pertain to all production 

activities. This applies both to human workforce and production machines activities. As 

life-long learning is required more and more in the human factor, the same - up to a certain 

extent - applies to manufacturing equipment. The notion of learning is tightly coupled 

with the existence of intelligence. The nature of the intelligence needed varies accordingly 

with the hierarchical level that each manufacturing activity belongs to. Higher 

organisation layers require more conceptual learning with little concern for precision. 

Uncertainty handling becomes more crucial at lower, execution level activities. Traditional 

artificial intelligence exhibits high levels of conceptual, symbolic mformation processing 

capabilities, with good representation and explanation power. On the other hand, 

computational intelligence approaches, such as neural networks or neurofiizzy inference 

systems are well suited to handle more detailed information at lower abstraction levels. 

An extensive survey of modem machine learning applications in manufacturing has been 

reported, as a result of the activities of the CIRP Working Group on Applications of 

Artificial Intelligence in Manufacturing Engineering [Monostori et al. 1996]. A summary 

of the key characteristics of various learning approaches, as compiled in that survey, is 

shown in Figure 1.2. Neural networks and neuroflizzy methods are compared against 
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traditional artificial intelligence methods such as symbolic classification, explanation 

based reasoning and discovery/analogy methods. Statistical pattern recognition is also 

included, considering its rather overlapping application domain with some neural 

network-based of neurofuzzy methods. 

Explanation Generalisation Properties Uncertainty 
handling 

Robustness Representation 
power 

Discovery 
Learning Methods 
Symbolic classification 
Explanation based learning 
Discovery & analogy 
Statistical pattern recognition 
Neural networks 
Neurofu22y methods 

not 
characteristic low medium high 

Figure 1.2: Main attributes of learning approaches [Monostori et. al 1996] 

The requirements of various manufacturing activities in intelligence properties are 

illustrated in Figure 1.3. 

Requirements! 
lApplication domain 

Robustness Representation 
power 

Explanation Generalisation Discovery Uncertainty 
handling 

vanable 

vanable 

vanable 

vanable 

charactenstic medium 

Design 

Process planning 

Production modelling, 
monitoring and control 
Inspection, diagnosis & 

quality control 
Production planning & 

control 

Robotics & assembly 

Figure 1.3: Requirements of manufacturing application domains fMonostori et. al 1996] 

The information contained in these two figures is compiled into Figure 1.4, where the 

applicability of each learning approach to different application domains is illustrated. 

Evidently, soft computing techniques appear to be relevant to all manufacturing decision 
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Learning methods 
Application Domain 

Symbolic 
classification 

Expl. based 
learning 

Discovery 
& analogy 

Stat, pattern 
recognition 

Neural 
Networks 

Neurofuzzy 
methods 

Design m 
Process planning 

m 
Production modelling, 
monitoring and control 1 Inspection, diagnosis, 

quality control 

Production planning & 
control 

Robotics & assembly 

not 
characteristic low medium high 

Figure 1.4: Applicability of machine learning approaches [Monostori et. al 
1996] 

Although a detailed treatment of the applicability of computational intelligence methods 

to all aspects of manufacturing decision making is beyond the scope of the present work, 

it should be noted that there have already been reported numerous such applications. 

These include [Monostori and Barschdorf 1992, Udo and Gupta 1994, Huang and Zhang 

1994, Dagli 1994, Shin et al. 1992, Huang and Zhang 1995, Monostori et al. 1996]: 

• design (feature extraction and recognition, design retrieval) 

• group technology (part grouping aiming at cell configuration design, part feature 

recognition) and capacity constraints problems, (resource allocation and constraints 

satisfaction) 

• information management (database management, content-based information 

retrieval) 

• process planning (operations selection and sequencing, process modelling, tool 

selection, machining process parameter selection, machining feature recognition 

and processing, attribute selection and coding) 

• shop floor scheduling 

• real-time process modelling, monitoring and control 
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• process planning (operations selection and sequencing, process modelling, tool 
selection, machining process parameter selection, machining feature recognition and 
processing, attribute selection and coding,) 

• shop floor scheduling 

• real-tune process modelling, monitoring and control 

• production activity simulation 

• quality assurance 

• robotics and assembly (robot world model acquisition, planning and control) 

It should be noted that not all the above applications have reached a maturity level to be 

considered of industrial relevance. Indeed, lower hierarchical level applications such as 

process modelling, monitoring and control, quality assurance, robot planning and control 

are more well developed, while the upper level applications are still very much specialised 

and substantial effort is still needed for the development of more generic computational 

intelligence methods. 

1.3 Tool wear and tool life 

One of the areas wherein soft computing is considered as a promising problem solving 

approach is detailed process modelling. In contrast with high level models which are 

relevant to product development phases, detailed process modelling is essential for 

planning and execution of specific operations. It can be distinguished into predictive (off­

line) modelling for process planning and optimisation and real-time (on-line) for process 

monitoring and control [Maropoulos 1995]. This work examines the application of 

neurofuzzy methods for an important machining process modelling problem, namely that 

of tool life prediction for turning operations. Tool wear and tool life considerations are of 

vital importance for a range of critical tooling decision making activities, such as tool 

selection [Maropoulos and Hinduja 1990, Maropoulos and Hinduja 1991, Maropoulos 

1992, Maropoulos and Gill 1995], tool life management [Maropoulos and Alamin 1996, 

Alamin 1996], optimal determination of cutting conditions and process monitoring and 

control [Ulsoy and Koren 1993]. 
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Reliable off-line tool life prediction is a very formidable task, due to the high degree of 
uncertainty about how wear progresses at different tool faces and for various combinations 
of the parameters, which give rise to variations in the way that tool wear evolves. On the 
other hand, in-process or real-time tool life prediction, i.e. prediction based on information 
about the actual wear status, usually suffers from the increased cost, the complexity of the 
required signal processing and the low reliability of the instrumentation involved. The tool 
life prediction approaches reported in the literature are: 

Use of tool life data provided by tool manufacturers and machining data 

handbooks 

• Deterministic empirical modelling, based on adopting some simple tool life 

formulae 

• Analytical tool life modelling based on cutting process theory 

• Probabilistic modelling of (usually) the first one or two statistical moments of tool 

life 

• Probabilistic mterpretation of empirical or analytical tool life models 

• Tool wear evolution modelling based on the theory of random processes, such as 

reliability based tool life modelling, or other Markovian process modelling 

• Chaotic models of tool wear process 

• Alternative approaches to tool life modelling such as neural networks or models 

based on fuzzy sets theory. 

Among the above approaches to tool life prediction only those based on tabled machining 

data from tool manufacturers and handbooks, empirical tool life modelling and to a lesser 

extent probabilistic modelling or probabilistic interpretation of empirical or analytical tool 

life models are currently reported to be of industrial relevance. Al l the above modelling 

methods heavily depend on data availability in order to define values for their free 

parameters for a range of operations. Machining data can be derived from tool 

manufacturers' catalogues, machining data handbooks, laboratory experiments and shop 

floor operations. Cutting data found in catalogues and handbooks usually tends to be very 
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conservative to ensure stable operation, while laboratory tests often significantly deviate 
fi-om the machining results obtained at the shop floor. 

Shop floor data contains rich information about the performance of the cutting process for 

the specific combinations of operation, machine tool, workpiece material and cutting tool. 

Yet such data are often discarded in machining practice and no advantage is taken fi'om 

the information they contain. Provision for utilising such approved operations data is a key 

feature m several prototype systems recently developed at Durham University, including 

Computer Aided Process Planning systems for turning [Maropoulos 1992, Maropoulos 

and Gill 1995, Maropoulos and Alamin 1995], Tool Life Prediction and Management 

system for turning [Alamin 1996, Maropoulos and Alamin 1996] and Machinability 

Assessment and Tool Selection for milling [Carpenter 1996]. 

Due to the significant tool life variability observed in machining practice, deterministic 

interpretation of tool life formulae is inadequate to handle the existing uncertainty about 

the cutting process. Probabilistic methods work well as long as their statistical 

assumptions are valid. However tool life variability can not always be described by simple 

tool life distributions, such as the normal distribution. Adopting more complex and 

flexible distributions inevitably increases the complexity of the computation mvolved for 

the determination of the distribution fi-ee parameters from available data. Reliability 

approaches and those methods based on the theory of random or chaotic processes are 

even more complicated and they can only achieve improved precision at the cost of 

significantly increased complexity. 

Admittedly, there is still a need for improved and yet sunple and data-driven tool life 

models which overcome some of the shortcomings that existing models present. 

Neurofii2zy methods offer an attractive altemative of handling uncertainty with reduced 

complexity. Such a neurofiizzy model is developed in this thesis for tool life prediction in 

turning operations. The model is non-parametric in the statistical sense, i.e. it does not rely 

on any statistical assumption about the underlying probability distribution fimction of tool 

life. It is also flexible enough and can be easily adapted to capture modelling 

discrepancies, based on available tool life cutting data. 
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1.4 Research objectives 

The main objectives of the research work described in the present thesis are: 

• To study the main requirements for the specification and development of a reliable 

neurofiizzy tool life model. 

• To obtain a neurofuzzy tool life model of reduced complexity. 

• To provide a single generic model for a wide range of combinations of cutting 

conditions, type of cut, cutting tool and workpiece material, which can facilitate 

machining optimisation. 

• To build a complete data-driven model, i.e. to derive a neurofuzzy tool life model 

whose structure and parameters can be completely defined based on available 

cutting data. 

• To incorporate a priori knowledge about the cutting process by accommodating 

results of tool life modelling research recently carried out at Durham University 

[Alamin 1996]. 

• To achieve flexible tool life modelling, which is easily adaptable on the basis of 

new tool life data. 

The computational platform on which the present research work was carried out was a 

166MHz Pentium computer with 32MB of RAM, equipped with the Fuzzy Logic Toolbox 

(v 1.0) of the MATLAB (v. 4.2c 1) software package for numerical computation and 

visualisation (The Mathworks Inc.). 

1.5 Thesis structure 

The thesis comprises eight chapters whose content, apart from the introduction, can be 

summarised as follows: 

Chapter 2 introduces some basic concepts of artificial neural networks with a focus on two 

specific types of feedforward layered networks, namely the multi-layer perceptron and the 
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radial basis fimction network, whose learning algorithms are relevant to the training of the 
neurofiizzy model developed. 

Fundamental definitions of fiizzy sets theory are provided in Chapter 3. A brief description 

of the key constituents of a basic fiizzy logic system is given. This introduction to fijzzy 

logic is the necessary background required for the description of neurofiizzy inference 

systems presented in Chapter 4. The motivation and the benefits for obtaining neurofiizzy 

representations are briefly discussed, followed by a more detailed description of the 

fiinctionality of the specific neurofiizzy structure employed in the present work, i.e. that of 

adaptive, network-based fiizzy inference system (ANFIS) [Jang 1993]. This model possess 

the capacity of learning from examples via neural network-like learning algorithms. 

Chapter 5 provides with a basic background on tool wear and tool life. The importance of 

tool wear considerations for machining process optimisation is noted and the main 

parameters influencing tool wear are mentioned. The tool life modelling problem is then 

discussed. In recognition of the fact that little commercial interest has so far been shown to 

real-time tool wear identification and tool life prediction, this work focuses on off-line tool 

life prediction methods, and a review of the main adopted approaches is presented. 

In Chapter 6 the main requirements for the development of a neurofiizzy tool life model 

are studied. The reasons for selecting the ANFIS model are explained and the data 

availability issue is discussed. The ANFIS structure identification procedure is then 

described. The representation power of neurofiizzy systems is also demonstrated to 

facilitate the model building for the tool life prediction problem. 

Chapter 7 describes the ANFIS training procedure and explains problems met and how 

they were overcome. A series of indicative results are then presented which validate the 

developed model and confirm its adequacy for tackling the off-line tool life prediction 

problem. Finally, the flexibility of the model is demonstrated, which is of particular 

importance for its successfiil application on the shop floor. 

The thesis concludes in Chapter 8 with a synopsis of the main results obtained, and 

conclusions drawn from the work carried out, including suggestions for fiirther research. 

11 



C h a p t e r 2 

NEURAL NETWORKS 

2.1 Introduction 

The development of artificial neural networks has been motivated in recognition of the 

powerful information processing capabilities of the human bram. The speed of response of 

human brain cells to stimuli is five to six orders of magnitude slower than of hard silicon 

implementations of logic gates [Jain et al. 1996]. However, the efficiency of the brain in 

performing tasks such as perception and pattern recognition is unreachable by even the 

fastest available digital computer. The main characteristics of human brain cells activity, 

which are up to a certain extent present in artificial neural networks, are [Hertz et al. 1991, 

Haykin 1994, Jain et al. 1996]: 

• Nonlinearity: Neurons are nonlinear elements, highly interconnected. The whole 

neural network exhibits complex nonlinear behaviour as a result of the interaction 

between the neurons. 

• Massive parallelism: Computational power is dramatically increased due to the 

massively parallel neurons interconnections. 

• Learning ability: The adaptive nature of neural networks is a particularly important 

characteristic. Neural networks perform learning by examples instead of traditional 

"programming". 

• Generalisation ability: Neural networks posses the capacity of generalising a 

solution, given sufficiently rich learning examples. Therefore, they extract 

knowledge from examples instead of performing simple pattern matching. 

12 
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• Inherent contextual information processing: Knowledge is globally represented 
in the whole structure and neuronal activity of the network. Therefore, artificial 
neural networks exhibit a natural contextual information processing capability. 

• Robustness and fault tolerance: Neural networks can be robust in dealing with 

corrupted, missing or inconsistent information. The deletion or damage of a neuron 

has a minimum effect to the overall network performance, since knowledge 

representation is distributed over the whole network structure. 

• Energy efficiency (VLSI implementability): Due to tiieir massively parallel 

structure, neural networks are convenient structures for hardware VLSI 

implementation, which can achieve high computational performance with very low 

energy consumption. 

• Data fusion ability: Artificial neural networks can receive and process multiple 

inputs and establish complex interrelationships between them in a distributed way 

throughout their structure. 

Artificial neural networks have found numerous engineering applications. They can be 

effectively employed in tasks such as pattem recognition, clustering, fiinction 

approximation, prediction, optimisation, control and they can serve as content-addressable 

or associative memories. The following paragraphs briefly review the basic concepts of 

neural networks, including architectural and learning issues, with a focus on multilayered 

feed forward networks. In particular, some emphasis will be given to multilayer 

perceptrons and radial basis fimctions networks whose learning capabilities and structure 

are relevant to the neurofiizzy modelling approaches that are employed in this work. 

2.2 General concepts 

Artificial neural networks are biologically inspired structures of computational elements, 

called neurons, nodes, network units or simply units. Each one of these nodes is a 

simplified model of the human brain cells. Neurons are interconnected with synapses and 

each synapse is assigned a, strength or weighting factor, called synaptic weight or simply 

weight. Each neuron receives at its input signals from other neurons. The fiinctional 
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behaviour of the neuron depends on the neuronal model employed. Generally, i f X is the 
input vector and W is the corresponding synaptic weight matrix, the neuron output is: 

V = g [ W © X ] (2-1) 

where © is a confluence operator, providing a measure of similarity between W and X, 

and g(») the activation function of the neuron. There are two basic categories of 

confluence operations, the inner product of W and X and the Euclidean distance measure 

between W and X. The most common activation functions employed are linear, piecewise 

linear, hard limiter, sigmoid (unipolar, bipolar, multimode) and Gaussian. A basic 

taxonomy of the existing artificial neural network architectures distinguishes three broad 

categories, namely feedforward, recurrent and modular neural networks. Feedforward 

neural networks are hierarchically ordered structures without any connections directed 

from a higher in hierarchy node towards a node of a lower layer. Recurrent networks are 

those that allow for at least on feedback loop to exist between nodes of different layers. 

Complex architectures consisting of several different neural structures acting in synergy 

are referred to as modular neural networks. Hybrid architectures which amalgamate neural 

networks with other intelligent information processing approaches such as traditional 

artificial intelligence (Al) and fuzzy logic have also been developed. A more detailed 

architectural taxonomy of neural networks can be found in [Gupta and Rao 1994, Hassoun 

1995, Jain et al. 1996, Mehrota et al. 1997]. 

The learning paradigms involved in neural network training are error-based learning 

(supervised, reinforcement) and output-based learning (unsupervised). Within this 

broad categorisation, a plethora of learning rules for neural network training has been 

suggested. A thorough compilation of such rules can be found in [Hassoun 1995]. Of 

particular interest for the present work are the multi-layered feed forward structures and 

the learning algorithms which are applicable to them. These algorithms can be properly 

modified to apply also to the neurofuzzy models which are examined in later chapters. 
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Figure 2.1: Feed forward neural network with two hidden layers 

2.3 Feed forward neural networks 

Feed forward neural networks have multilayer hierarchical structure. The first layer is the 

input layer, while the last one is the output layer. Any other layer is called hidden layer. 

The static feedforward neural networks (Fig. 1) either in the form of multilayer 

perceptrons with sigmoid activations, or of radial basis fimctions networks are particularly 

popular architectures. Any arbitrary continuous function on a compact set may be 

approximated to any desired degree of accuracy by a multilayer perceptron with sigmoid 

activations or by a radial basis fiinctions network, i.e. these networks behave as universal 

approximators. Detailed analysis of the approximation capabilities of neural networks can 

be foimd in [Jin et al. 1996, Chen and Chen 1995]. Any lack of success in the application 

of such a neural network for fiinction approximation, must arise from inadequate learning, 

insufficient number of hidden units (units that have no direct connections with network 

inputs or outputs), or lack of deterministic relationship between the input and the target. 

Different neural network architectures result in different learning difficulties. Therefore, 

the choice of an appropriate approximation structure will ultimately determine the success 

of an application. From this point of view, a successfiil neural approximation procedure 

may be divided into the following steps [Jin et al. 1996]: 
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• Determination of the universal approximation structure of the neural network, that 
is to ensure the inherent approximation capabilities of the neural network through 
adjusting the number of hidden units and layers. 

• Choice of an adequate weight learning algorithm. 

• Selection of learning signals that contain sufficient information. 

2.3.1 Multilayerperceptrons (backpropagation networks) 

These are by far the most popular neural architectures. Backpropagation networks 

neuronal activity involves inner product confluence operation followed by a sigmoid 

activation function. The main algorithm employed for their training is the 

backpropagation, which is a gradient descent stochastic approximation algorithm, but 

random optimisation techniques can also be employed. The backpropagation algorithm is 

characterised by relative computational simplicity and convenience for parallel 

implementation, but quite often is a long and tedious procedure, prone to stuck in local 

minima. Fortunately, there have already been proposed numerous variations of the basic 

backpropagation algorithm which improve its convergence. A brief description of the 

standard backpropagation algorithm follows. 

The output of tiie z-th neuron of the m-th layer (/=1,2,..., and m^\,2,---M, where n 

is the number of nodes in the w-th layer and Mis the number of layers) is: 
m 

V„>=g[K) = g t.K-^)J • ' m = 2,...,M (2-2) 

where, Vmi, hmi is the output and the net input of the /-th neuron of the m-th layer 

respectively, ^" ' -1 )7 is the synaptic weight connecting tiie _/-th neuron of the (/w-l)-th layer 

with the /-th neuron of the w-th layer. When a pattern ^ is applied to the input layer, i.e. 

V^^ = 4''r , r=l..«i, die signal is propagated forward towards the output layer until all the 

network outputs have been calculated. The aggregated error of the network over the whole 

set of patterns (i.e., the cost function to be minimised) is: 
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(2-3) 

where i^f is the desired output of the /-th output neuron cortesponding to the /u -th pattem 

and the notation ^ denotes aggregation over the whole set of patterns. This is a 

continuous differentiable function of every weight, so by applying gradient descent the 

weight update rule can be derived. For the (M-l)-th to M-th layer connections, the weight 

updates /sW^_^y, which decrease the cost fianction, are on the negative direction of the 

cost fimction gradient with respect to the weight W, Mi 
( M - l ) j 

( M - \ ) j 

1 "M 

=>(2-4) 

1)7 (2-5) 

where the "delta" at each output node is defined as the product of the derivative of the 

activation fimction by the output error, i.e.: 

(2-6) 

For the lower layer's synapses differentiation should be performed with respect to weights 

which are more deeply embedded in (2-3). Thus,: 

(2-7) 

where the hidden layers deltas are defined as: 

=m)-2<'" - ' ^ ( *^» ' ' r = l,..,n,,„J = l,..,n,,, (2-8) 
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Equation (2-7) enables the determination the 5 for a given hidden unit in terms of the ^'s 
of the units that it feeds, i.e. by propagating the 5's backwards; hence the name error-back 
propagation or simply backropagation. 

Several modifications of the basic backpropagation algorithm have been proposed that can 

improve its convergence, including the presence of a momentum term in (2-8), the delta-

bar-delta rule and learning-rate adaptation through training. The latter can be achieved by 

the adoption of some simple heuristics to confrol the learning rate. In fact these heuristics 

can easily be coded into a fuzzy representation, resulting in a fiizzy control approach for 

the backpropagation algorithm [Haykin 1994]. Other techniques are aiming at 

simultaneously optimising both the parameters and the structure of the neural network. 

These are network unit-allocating or network prunning techniques and mclude the cascade 

correlation learning architecture (CASCOR) and weight decay or elimination algorithms. 

Other supervised learning algoritiims for multilayer perceptrons include the quickprop 

algorithm, the extended Kalman type of backpropagation learning, the conjugate-gradient 

metiiod, Newton's metiiod etc. [Haykin 1994, Hassoun 1995, Mehroti-a et al. 1997]. 

2.3.3 Radial basis function networks 

In some problems it is useful to combine unsupervised and supervised learning. The most 

common idea is to have one layer that learns in an unsupervised way, followed by one or 

more layers trained under supervision. The problem could be dealt within a purely 

supervised way. However, backpropagation is often extremely slow and it is often 

preferable to speed up learning considerably by training some layers in an unsupervised 

way. This works well in problems where similar input vectors produce similar outputs. 

Then it would be sensible first to categorise the inputs into clusters using competitive 

learning and use only the category information for supervised learning. 

The radial basis ftmction networks (RBF) are hybrid neural architectures, consisting of an 

input layer, a hidden layer of nonlinear nodes and an output layer of linear nodes. The 

output of a hidden unit is of the following form: 
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g iO = g{\\^-\^j\\),H-" (2-9) 

where n is the number of hidden units. Equation (2-9) is a radially symmetric scalar 

fimction with [ij at its center. The most common choice for the ^ - ^ J norm is the 

Euclidean distance. The input/output mapping performed by a radial basis fimction 

network is: 

(2-10) 

where is the i-th output node and W! is the weight of the synaptic cormection linking 

the y-th node of the hidden layer to the z-th output node and n is the number of hidden 

nodes. Possible choices of radial basis fimctions include multi-quadratic, inverse multi 

quadratic, Cauchy and spline fimctions. However, the most commonly employed radial 

basis fimction is the Gaussian kemel. The inpuVoutput mapping of the jth RBF hidden 

unit with Gaussian activation is: 

gj(^) = exp 
2(7 

(2-11) 

Each hidden unit has its own receptive field in the input space, a region centred on y.j 

with size proportional to aj. The output layer applies a linear transformation of the 

hidden output signal. There is a variety of training algorithms for RBF networks [Haykin 

1994]. The basic one employs a two-step learning strategy, or hybrid learning. It estimates 

kemel positions and kemel widths using an unsupervised clustering algorithm, followed 

by a supervised least mean square (LMS) algorithm to determine the synaptic weights 

between the hidden and the output layer. After initial training is performed, a supervised 

gradient-based algorithm can be used to refme the network parameters. This hybrid 

learning algorithm converges much faster than the backpropagation algorithm for 

multilayer perceptrons at the expense of increased number of necessary hidden units to 
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achieve the desired mapping. A particularly interesting case of RBF networks are those 
employing normalisation of the hidden units: 

• 

^ ^'\,rh...,n (2-10) 

The above class of neural networks have proved to be of some equivalence to certain 

neurofuzzy representations, as it will be discussed in chapter 4. In particular, it has been 

proven that RBF networks can be considered as a special case of a major class of 

neurofuzzy inference systems. The importance of this equivalence lies with the potential 

of employing the powerful algorithms, which are available for neural networks training, to 

adapt the parameters of neurofuzzy systems. The next chapter summarises general 

concepts of fuzzy logic systems, in order to provide the necessary background for 

introducing neurofuzzy approaches m chapter 4. 
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FUZZY SETS THEORY AND FUZZY SYSTEMS 

3.1 Introduction 

In most engineering problems both numerical and linguistic information has to be taken 

into account. Artificial neural networks are powerful computational intelligence tools, 

particularly suitable for numerical data processing. However, numerical quantities 

evidently suffer from lack of representation power. Fuzzy logic systems can 

simultaneously handle numerical data as well as linguistic information. Fuzzy sets theory 

was frrst introduced by Zadeh as a mathematical framework for handling vmcertainty and 

imprecision, inherently present in the way natural language describes objects [Zadeh 

1965]. The rationale for fiizzy sets theory is that precision and certainty in cornputation 

carry a cost and therefore allowance should be made for exploiting the tolerance for 

imprecision and uncertainty, wherever possible [Zadeh 1994]. In what is referred to as the 

principle of incompatibility, Zadeh argues that "... as the complexity of a system 

increases, our ability to make precise and yet significant statements about its behaviour 

diminishes until a threshold is reached beyond which precision and significance (or 

relevance) become almost mutually exclusive characteristics" [Zadeh 1973]. 

Three types of uncertainty can be distinguished, namely nonspecificity (imprecision), 

which deals with sizes (cardinalities) of sets of alternatives, fuzziness (or vagueness), 

which results from unsharp boundaries between fuzzy classes of objects and strife (or 

discord), which expresses conflicts between different sets of alternatives [Klir and Yuan 

1995]. Strife and nonspecificity are both related to ambiguity as per the choice of an 

object amongst different alternatives. It arises from the lack of specific distinctions 

characterising an object or by conflicts between existing distinctions. On the other hand, 

fuzziness arises from the lack of sharp distinctions between objects. Among the various 
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mathematical theories dealing with information uncertainty, classical set theory deals 
with nonspecificity, probability with strife, possibility and evidence theory with both 
nonspecificity and strife, while fiizziness is dealt with fuzzy sets theory or an extension of 
evidence theory, referred to as fuzziiied evidence theory [Klir and Yuan 1995]. 

Fuzzy sets theory and fuzzy logic had been a controversial issue and had received fierce 

criticism for a long time before becoming accepted by a significant proportion of the 

scientific and, indeed, of the mdustrial community. The main point of departure for 

questioning the scientific grounds behind fuzzy sets theory is that statistics may 

sufficiently describe uncertainty and that, in fact, non-statistical uncertainty does not exist. 

In one of the most assertive statements about the invalidity of fuzzy sets theory in 

handling uncertainty, Lindley states that"... probability is the only sensible description of 

uncertainty and is adequate for all problems involving uncertainty. All other methods are 

inadequate." [Lindley 1987]. However, the probability monopoly has been questioned by 

several scientists and recently a compilation of papers on the probability versus fiizziness 

dilemma appeared in a special issue of the IEEE Transactions on Fuzzy Systems (February 

1994 issue). The opposite extreme viewpoint has also been adopted by some authors, that 

in fact it is probability that is not a theoretical primitive of mathematics [Kosko 1992]. The 

Technometrics joxxmai (August 1995 issue) has also hosted a relevant debate. 

From an engineering perspective, all the above approaches for handling uncertainty offer 

valid problem solving frameworks as long as they remain applicable to real world 

problems [Mendel 1995]. The recent emergence of a significant number of commercial 

products with increased "Machine Intelligence Quotient (MIQ)" [Zadeh 1994] have 

constituted a breakthrough in the industrial acceptance of fuzzy engineering. Industrial 

applications of fuzzy logic are now so diverse that comprise areas such as [Yen et al. 1995, 

Hirota and Sugeno 1995, Marks 1994]: 

• consumer products (e.g., cameras, photocopiers, tv sets, washing machines, 

refrigerators, vacuum cleaners, air conditioners, cookers, microwave ovens, kerosene 

fan heaters, NiCd battery chargers, voice recognisers etc.) 
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• motion control, transport and power systems applications (e.g., power transmission 
control, automatic train operation control, helicopter control, autonomous vehicle 
motion planning, crane control, automotive engine and transmission confrol, spacecraft 
control, space camera tracking systems etc.) 

• industrial process control (refining, distillation, cement kiln incineration plants etc.) 

• robotics and manufacturing (e.g., electrical discharge machine, robot motion planning 

and control etc.) 

• dedicated fuzzy software (development of decision making tools) and hardware (fuzzy 

semiconductor devices, processors, controllers etc.) 

The thriving present number of fuzzy logic applications results in a growing tendency to 

extend the theoretical framework of fiizzy sets theory which already encompasses areas 

such as fuzzy arithmetic, fuzzy mathematical programming, fuzzy topology, fuzzy graph 

theory and fiizzy data analysis. It has been suggested that, in fact, any crisp theory can be 

"flizzified" by extending the definition of a set within that theory to the concept of a fuzzy 

set [Zadeh 1994]. 

The following sections briefly review the basic concepts and definitions of fuzzy sets and 

systems [Wang 1994, Jang et al. 1997, Mendel 1995, Lin and Lee 1996], which will 

facilitate the description of neuroftjzzy systems and the neurofuzzy tool life model 

developed in later chapters. 

3.2 Basic concepts of fuzzy logic systems 

A fuzzy set F defined on a universe of discourse U is characterised by a membership 

function which takes on values in the interval [0,1]. A fuzzy set is an extension of an 

ordinary subset whose membership value takes only two values, zero or unity. A 

membership function provides a measure of the degree of similarity of an element in 7̂ to 

the fuzzy subset. A fuzzy set may be represented as a set of ordered pairs of a generic 

elementx and its membership function: F = {(x,/i/,(x)) \ x eU}. Alternatively the frizzy 
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set F can be represented as F = 

J / x • 

X 
x€U\, F = \ ^ / x or 

The support of a fuzzy set F is the crisp set of all points x such that /u^ix) > 0. The 

kernel or core of a fuzzy set is the point(s) x eU at which jUp(x) achieves its maximum 

value. I f the support of a fuzzy set F is a single point in f /a t which / i ^ ( x ) = l , the set is 

called a fuzzy singleton. Linguistic variables are those whose values are not numbers but 

words or sentences in a natural or artificial language. Let u denote the name of a linguistic 

variable. Numerical values of a linguistic variable u are denoted x, where x eU. The 

concept of a linguistic variable is central in flizzy sets theory. Describing quantities with 

linguistic variables instead of precise numerical values is essentially a data compression 

method, often referred to as granulation [Zadeh 1994] more powerful than quantisation. 

The main difference between granulation and standard quantisation is that in the former 

case the values are overlapping fuzzy sets and not intervals with crisp boundaries. The 

transition from one linguistic variable to another is gradual and not abrupt as it is in the 

case of quantisation, providing continuity and increased robustness. 

A fuzzy logic system (Fig. 3.1) contains four main components; a fuzzy rule base, a 

fuzzifier, an inference engine and a defuzifier. It can be viewed as a mappmg from crisp 

inputs to crisp outputs, y=f(x), where x is the input vector and y the output. The frizzy 

rules may be provided by experts or can be derived from numerical data. The fuzzifier 

converts crisp numbers into fuzzy sets. This is necessary in order to activate frizzy rules, 

expressed in terms of linguistic variables and having flizzy sets associated with them. The 

inference engine maps fuzzy sets into fuzzy sets, by combining the flizzy rules. Finally, 

the defuzzifier maps output fuzzy sets into crisp outputs. 
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Figure 3.1: Block diagram of a fuzzy logic system 

3.2.1 Triangular norms and conorms 

Triangvilar norms (T-norms) and conorms (T-conorms) are employed for intersection and 

union operations respectively between fiazzy sets, instead of the classical union and 

intersection operations between crisp sets [Lin and Lee 1996, Jang et al. 1997]. A T-norm, 

denoted by * , is a two-place function from [0,1] x [0,1] to [0,1], which includes fuzzy 

intersection, algebraic product, bounded product and drastic product, defined as: 

x * y •• 

mm{x,y} fuzzy intersection 
X • y algebraic product 

max{0,x + >' - 1} bounded product 
(3-1) 

X i f y = 1 

y i f X = 1 

0 i f x,y < 1 

drastic product 

where x.yefO.lJ.A T-conorm, denoted by ©, is a two-place function from [0,1] x [0,1] to 

[0,1], which includes fuzzy union, algebraic sum, bounded sum and drastic sum, defmed 

as: 
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max{x,;^} fuzzy union 
X + y - xy algebraic sum 

min {1 ,x + y} bounded sum 
x®y = (3-2) 

X i f y = 0 

y i f X = 0 drastic sum 

1 i f x , y > l 

where x,ye[0,lj. 

3.2.2 Fuzzy relations 

Fuzzy relations represent a degree of presence or absence of association, interaction, or 

interconnectedness between the elements of two or more fuzzy sets [Klir and Yuan 1995, 

Lin and Lee 1996]. Let U, Vhe two universes of discourse. A fuzzy relation, R(U, V) isa. 

fuzzy set in the product space UxV, i.e. it is a fuzzy subset of UxVand is characterised by 

a membership function /^^(x.y) , where xeU.yeV, i.e. 

R(U, V) = {(X, y), (X. y) \(x.y)eUx V} (3-3) 

Since fuzzy relations are fuzzy sets, fuzzy set operations can be applied to them. Let 

R(U,V) and S(U, V) be two fiizzy relations in the same product space JJy. V. The intersection 

and union of R, S, which are compositions of the two relations are then defined as: 

MRns(x,y) = MR(x,y) * Msfx-y) (3-4) 

MRus(X'y) = MR(x.y)®Ms(x,y) (3-5) 

where * is any t-norm and ® any t-conorm. 

Fuz^ Relations and compositions on different product spaces:. Let R(U, V), S(V, W) be 

two fuzzy relations in the product spaces UxV and VxW respectively. The fuzzy 

composition of 72 and 5 denoted 7? o s can be expressed by: 
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MROS(X. Z) = sup[fiR(x,y) • ns(y, z)] (3-6) 

known as sup-star composition [Mendel 1995]. When U,V,W are discrete universes of 

discourse, then the supremum operation is the maximum. The most commonly used sup-

star compositions are the sup-min and sup-product. 

3.2.3 Fuzzy rule base 

A fuzzy rule base consists of a collection of IF THEN rules which are expressed as: 

R^'^: IF w, is F( and ... u^ is F^ THEN v is G' (3-7) 

where / = 1,2,..., M , Mis the number of fuzzy rules in the rule base, F,' and G' are fiizzy 

sets in i7,. c 9? and F c 9? (9? denotes the set of real numbers), 

n={u^,U2,...,UpY st/, xU^x-.-xUp, and v eV. u and v are linguistic variables. Their 

numerical values aie \sU and y eV respectively. Fuzzy rules can be extracted by 

numerical data either by letting the data establish the fuzzy sets that appear in the 

antecedents and consequents of the rules or prespecify fuzzy sets for the antecedents and 

consequents and then associate the data with these fuzzy sets. In the first approach the 

antecedent and consequent membership functions adapt to the locations of the data that are 

used to create the rules. In the second approach the fuzzy sets are established by 

determining domain intervals for all input and output variables. Then the degrees (i.e. the 

membership fimction values) of the elements of each numerical sample are determined. 

Each variable is assigned to the region with the maximum degree and consequently one 

rule can be derived from each input/output pair. The more data are available the more 

likely is to obtain conflicting rules. One way of resolving such conflicts is to assign a 

degree to each rule and accept only the rule with the maximum degree from a group of 

conflicting rules. 
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3.2.4 Fuzzy inference 

In the fuzzy inference engine fiizzy logic principles are used to combine fiizzy IF-THEN 

rules from the fiizzy rule base into a mapping from fiizzy input sets U^xU-^x...xUp to 

fiizzy output sets in V. In crisp logic a rule will be fired only i f the first premise is exactly 

the same as the antecedent of the rule, and the result of such rule-firing will be the actual 

consequent. In fiizzy logic, on the other hand, a rule is fired so long as there is a non-zero 

degree of similarity between the first premise and the antecedent and the result of such 

rule-firing will be a consequent that has a non-zero degree of similarity to the rule's 

consequent. Each rule is interpreted as a fuzzy implication. A fiizzy implication, denoted 

by ^ -> 5 , is a special kind of fiizzy relation in {U^ A)x(y ^ B) corresponding to an 

interpretation of the fiizzy IF-THEN rule based on intuitive criteria or generalisation of the 

classical logic, where A = F^ x...xFp and B=G'. The overall mapping is considered to be 

performed by means of a membership function p^^g(\,y), which measures the degree of 

truth of the implication between x and y. Generally speaking there are two basic 

interpretations of the fiizzy implication B, either A coupled with B, or A entails B. 

A coupled with B: R = A-^ B = Ax B = ju^{x)-^ ^g(y)/ (x,y) which results in 
UXV 

different fiizzy relations depending on the specific T-norm operation employed. 

A entails B: The basic relations of this interpretation of the fiizzy implication are [Jang et 

al. 1997]: 

• Material implication: R = A^ B = -AVJ B. 

Propositionalcalculus: R = A^ B = -A'<j(AnB). 

Extended propositional calculus: R = A B = (~Au -,5) u B. 

Generalised Modus Ponens: /dp^(x,y) = sup{c\fiJx)'kc<HB(y) and 0<c<l}. 

where -A stands for the complement of the fiizzy set A and is defined as 

fi_^{x) = \- ^^{x). Al l the above formulae reduce to the familiar identity 

R = A-^ B = -AKJ B when A and B are propositions in the sense of two-valued (crisp) 
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logic. According to the particular choices made for T-norms, fuzzy conjunction and fuzzy 

disjunction, a number of different possible interpretations of the fuzzy implication can be 

derived. The final fuzzy set B which is determined by all the rules of the rule base is 

obtained by combining the fuzzy sets resulting by each firing rule. The rules are usually 

connected using a T-conorm (i.e. the fuzzy union) and this seems to give very good results 

when minimum or product implication operators are used [Mendel 1995]. However, there 

does not appear to be a unique or compelling theoretical reason for combining rules using 

a T-conorm. 

Combining rules additively is an attractive approach [Kosko 1992, Kosko and Dickerson 

1995, Dickerson and Kosko 1996]. An additive combmer which can be interpreted as an 

adaptive filter whose inputs are the output fuzzy sets is shown in Figure 3.2. The weights 

w, can be thought as providing degrees of belief to each rule. I f information concerning 

rules reliability is not known ahead of time, then either all w; are set equal to unity or a 

training procedure is used to learn optimal values for the weights. 

Fuzzy Prefilter Adaptive Filter 

^JB(y) 

MAx-R( i ) (y) 

MA..R(2)(y) 

MA..R(M)(y) 

Figure 3.2: Kosko Additive Fuzzy Combiner 

Generally speaking, the process of fuzzy or approximate reasoning can be summarised as 

follows [Jang et al. 97]: 
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• Determine the degree of compatibility of known facts with respect to each 

antecedent membership function of fuzzy rules. 

• Calculate the degree to which the antecedent part of each rule is satisfied, i.e. the 

firing strength of each rule, by combining the degrees of compatibility with respect 

to each antecedent membership fimction in a rule, using fiizzy conjunction or 

disjunction operators. 

• Calculate the qualified consequent of each fiizzy rule, by applying the firing 

strength of each rule to the corresponding consequent membership function. 

• Aggregate all the qualified consequent membership functions to obtain an overall 

output membership function. 

Triangular MF Trapezoidal MF Gaussian MF 

0 10 20 
Generalised Bell MF 

0 10 20 
Sigmoid MF 

0 10 20 
Sigmoid-Product MF 

10 20 10 20 

Figure 3.3: Membership functions 

3.2.5 Fuzzification 

The flizzifier maps a crisp point x = [x,, . . . ,x„] eC/ into a fiizzy set ^ * in U. The most 

widely used fuzzifier is the singleton flizzifier, which is nothing more than a fuzzy 

singleton. Singleton fiizzification may not always be adequate, especially when data is 

corrupted by measurement noise. Nonsingleton fuzzification provides a means for 

handling such uncertainties [Mouzouris and Mendel 1997]. A nonsingleton fuzzifier is one 
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for which /i^,(x') = l and /J.^.{x) decreases from unity as x moves away from x'. 

Examples of membership fimctions are the triangular, trapezoidal, Gaussian, generalised 

bell, sigmoid and product of two sigmoids (Figure 3.3). The broader these functions are, 

the greater is the uncertainty about x'. 

3.2.6 Defuzzification 

Defiizzification produces a crisp output from the fuzzy set that is the output of the 

inference block in Figure 3.1. Many defiizzifiers have been proposed in the literature 

[Mendel 1995, Lin and Lee 1996]; however, there are no scientific bases for any of them. 

Consequently defiizzification is an art rather than a science. From an engineering 

perspective of fiizzy logic, one criterion for the choice of a defiizzifier is computational 

simplicity. The most commonly used defiizzifiers are [Mendel 1995]: 

1. Maximum Defuzzifier: The defiizzifier output is the value of y for which jUgiy) 

attains a maximum value. This choice often leads to peculiar results. 

2. Mean of Maxima Defuzzifier: This defiizzifier first determines the values of y for 

which ^B^y) is a maximum. It then computes the mean of these values as its 

output. It can also lead to unacceptable results. 

3. Centroid Defuzzifier: It is often referred to as weighted average defiizzifier. The 

defiizzifier determines the centre of gravity (centroid), yofB and uses this value as 

the output of the fiizzy logic system: 

y = yMBiy)dy / \^Biy)dy (3-8) 

where S denotes the support of jUgiy). When S is discretised y is given by: 

y = 
'=1 ;=1 

(3-9) 

The cenfroid defiizzifier, is often difficult to compute. It has been shown [Mendel 

1995] that for product inference and additive combining rules, y can be computed 

using cenfroid information about the individual M rules. 
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4. Height Defuzzification: The defuzzifier first evaluates the centre of gravity, y', of 

the fuzzy set B', which is associated with the activation of rule i?^'^ Then it 

evaluates ju^, {y) at y' and the output of the FLS is: 

M 

1=1 

M 

(3-10) 

It is very easy to use (3-10) because the centres of gravity of commonly used 

membership functions are known beforehand. Regardless of whether minimum or 

product inference is used, the centre of gravity of B' for: 

• A symmetric triangular consequent membership function is at the apex of the 

triangle. 

• A Gaussian consequent membership fimction is at the centre value of the 

Gaussian function. 

• A symmetric trapezoidal membership function is at the midpoint of its 

support. 

Although (3-10) is easy to use it also has its own drawback. Regardless of whether 

or not the consequent membership function is very narrow (broad), i.e. there is a 

strong belief (disbelief) in that rule, or is very broad, the height deflizzifier gives the 

same result. 

5. Modified Height Defuzzifier: The modified height defuzzifier first evaluates 

MB' y' computes the output of the FLS as: 

yn = 

M 

Yy'M,(y')iiS'f 
M 

1=] 

(3-11) 

where S' is a measure of the spread of the consequent for rule R'-'^. For triangular 

and trapezoidal membership fianctions, S' could be the support of the triangle or 

ti-apezoid, whereas for Gaussian membership -functions, S' could be its standard 

deviation. 
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It should be noted that deftxzzification is the final stage of a fiizzy inference system which 
yields a crisp output as a result of fiizzy reasoning. However, the output of such a system 
often is to be utilised for other complex decision making or optimisation activities. It is 
tiien desirable to obtain a degree of the quality of tiiis output, by means of quantifying tiie 
uncertainty about it. In probabilistic terms this problem is dealt witii by infroducing 
confidence intervals. Such a treatment can not be suitable for fiizzy systems outputs, since 
that would involve converting a problem that is inherently non-probabilistic to a 
probabilistic one. An altemative approach proposes the introduction of a ranking index for 
the outputs of a fuzzy system and a mathematical formulation for doing so has been 
suggested [Saade 1996]. Nonetheless, it is generally worth examining whether the fiizzy 
outputs of a fiizzy inference engine can be utilised within the fiizzy set theory framework, 
i.e. by introducing the fuzzy outputs directiy to a fiizzy logic based decision making or 
optimisation process. 

3.3 Designing a fuzzy logic system 

Designing a fiizzy logic system involves decisions upon the type of fuzzification 

(singleton or nonsmgleton), functional forms for membership functions (triangular, 

frapezoidal, piecewise linear, Gaussian etc.), parameters of membership fimctions (fixed 

ahead of time, tuned during a training procedure), composition (max-min, max-product), 

inference (minimum, product) and defiizzification (cenfroid, height, modified height etc.). 

An important consideration in designing a fiizzy systems is the partitioning of the input 

space in order to form the antecedents of the fiizzy rules. The most common methods of 

input space partitioning are the grid, tree and scatter partitioning [Jang et al. 1997]. 

Generally speaking, the overall process of building a fuzzy system, termed fuzzy 

modelling, can be pursued in two stages. The first stage is the identification of the surface 

structure, which includes the following tasks [Jang et al. 1997]: 

1. Select relevant mput and output variables. 

2. Chose a specific type of fiizzy inference system. 

3. Determine the number of linguistic terms associated with each input and output 

variables. 
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4. Design a collection of fuzzy if-then rules. 

The above can be accomplished by using background knowledge (common sense, simple 

physical laws e.t.c.) about the target system, information provided by human experts who 

are familiar with the target system, or simply by trial and error. After obtaining a rule base 

which is relatively descriptive of the target system behaviour, a detailed definition of the 

linguistic terms is needed. In other words, it is necessary to identify the deep structure 

which determines the membership function of each linguistic term. The deep structure 

identification involves the following steps: 

1. Chose an appropriate family of parametrised membership functions. 

2. Determine the membership fimction parameters by extracting knowledge from 

human experts. 

3. Refine the membership fimction parameters using regression and optimisation 

techniques. 

The first two tasks reqmre the availability of human experts, while the third one relies 

upon the availability of an appropriate input-output data sets. 

Among the different approaches to intelligent computation, fuzzy logic provides a strong 

framework for achieving robust and yet low cost solutions. The main principle of fuzzy set 

theory is to relax the requirements for certainty and rigor, recognising that there is no 

profovmd reason for pursing high cost solutions that would attempt to achieve precision, 

when this is either impractical or impossible. Thus flizzy logic appears to offer a model for 

reasoning which, being approximate rather than exact, is closer to the model of thinking of 

the human mind. Fuzzy logic can be further solidified by the introduction of learning 

capabilities, such as those of artificial neural networks. The next chapter presents a brief 

review of some methods for neuroflizzy systems integration and a detailed description of 

the specific modelling approach, which has been employed in the present work for the 

development of a neurofuzzy tool life model. 
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ADAPTIVE NEUROFUZZY SYSTEMS 

4.1 IVIotivation 

The design of a fiizzy inference system involves the selection of a number of fiizzy model 

parameters. When only human expert knowledge is taken into account, this selection is 

rather arbifrary. The key question is how to tune the parameters of a fiizzy logic system 

using available numerical sample data. Neural network models are computational 

structures well suited for such tasks. Therefore, considerable amount of research is now 

being carried out in order to incorporate neural network-like learning capabilities into 

fiizzy logic systems. As a result, a constantiy increasing number of integrated neurofiizzy 

models are reported in the literature, which aim to amalgamate the benefits of both 

computational approaches, namely the learning capabilities of neural networks and the 

representation power of fiizzy logic systems. From the neural network viewpoint this 

integration aims at providing more insight and transparency on the way that a neural 

structure represents knowledge. On the other hand, this enables fuzzy inference systems to 

exhibit real adaptivity via learning. The complementary rather than competitive nature of 

the two computational approaches enabled some equivalence between certain classes of 

neural networks and fuzzy logic systems to be established. The benefit of obtaining 

neurofiizzy representations is that the resulting models can incorporate both expert 

Imguistic knowledge, as well as sample data information, a task that can not be performed 

by utilising solely neural networks or fraditional artificial intelligence techniques. 

The main approaches in merging neural networks and fiizzy logic technologies can be 

categorised as [Lin and Lee 1996]: 

• Neural fuzzy (or neurofuzzy) systems, where neural networks are used as tools in 

fiizzy models. The overall functionality is of a pure fiizzy nature with all the distinct 
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elements of a fuzzy inference system, i.e. fuzzification, fuzzy rule base, fuzzy inference 
and defixzzification. The numerical processing is carried out via neural network-like 
computational structures. Neural-fuzzy systems aim at automating the process of 
designing a fuzzy inference system. Thus, neural network related learning techniques 
are also employed for the adaptation of the neurofuzzy system parameters, such as 
premise or consequent parameters of fuzzy rules. After learning, the acquired fiizzy 
rules are easily understood by the user. Therefore, neural-fuzzy systems can replace 
classical non-adaptive fuzzy systems in any application, whilst retaining the 
transparency of a pure fuzzy system. [Lin and Lee 1995, Lin 1996, Wang 1995, Jang 
1993, Lin and Lu 1996, Lin and Lu 1995, Sun 1994] 

• Fuzzy neural networks, i.e. neural networks with some "fuzzified elements". For 

instance a neuron can be replaced by a fuzzy neuron which provides a fiizzy output 

rather than a crisp signal as a response to input stimuli. Altematively, fuzzy rules can 

facilitate the convergence of a neural network training algorithm. Another example is 

the substitution of the summation or product operators by the minimum and maximum 

operators often employed in fuzzy systems. Yet, the structure of the model is still of 

neural network type. What differs from a pure neural network is the enhancement in 

user flexibility provided by the embodiment of fuzzy principles in the network, as well 

as the improvement in the robustness of the model's behaviour. In contrast with 

neurofiizzy models, the overall functionality of a fuzzy neural network is not that of a 

pure fuzzy inference system. Fuzzy neural networks are mostly employed in pattern 

recognition tasks. [Zhag et al. 1996, Lee et al. 1996, Pal and Mitra 1992, Mitra and Pal 

1995, Nie 1995, Dickerson and Kosko 1996, Carpenter and Grossberg 1994, Buckley 

andHayashi 1994] 

• Hybrid fuzzy-neural structures, where separate neural and fuzzy models are 

incorporated in order to carry out distinct tasks which complement each other in 

achieving a common goal. Such computational structures are quite often application-

oriented and therefore their applicability can be quite diverse [Arabshahi et al. 1996]. 

For the purposes of the present work, a neurofiizzy approach is adopted. This can offer 

both the transparency of a fuzzy system and the neural learning capability for the design of 

a data-driven tool life model. Therefore a neurofuzzy structure, namely that of the 
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Adaptive Network Based Fuzzy Inference System (ANFIS) [Jang 1993] is adopted for tool 
life prediction. The reasons for this choice are: 

• The ANFIS model is a typical case of a fiazzy inference system, comprising a 

fuzzification stage, a fiizzy rule base, a fiizzy inference engine and a defiizzifier. 

• ANFIS are adaptive models trainable by efficient neural-network learning 

algorithms [Jang 1993, Jang and Mizutani 1996]. 

• The universal approximation capabilities of ANFIS models have been established 

[Jang and Sun 1993]. 

• ANFIS models have already found several engineering applications ranging from 

nonlinear system identification, chaotic time series prediction, automobile miles per 

gallon (MPG) prediction, adaptive noise cancellation, printed character recognition 

etc [Jang etal. 1997]. 

• The ANFIS architecture is directly supported by the Fuzzy Logic Toolbox of 

MATLAB [Jang and Gulley 1995]. MATLAB is probably the most widely used 

platform for engineering numerical computation and visualisation. 

A brief discussion about some conceptual analogy and functional equivalence that exists 

between fiizzy systems and neural networks is given in the next section. Then a 

description of the ANFIS structure and functionality follows. The chapter concludes by 

reviewing some methods for constructing ANFIS models based on sample data. 

4.2 Conceptual and functional equivalence of neural and fuzzy systems 

At a high abstraction level, a fiizzy system processes known facts by applying a reasoning 

mechanism to utilise knowledge represented by fiizzy IF-THEN rules, acquired by some 

knowledge acquisition procedure. Neural networks process numerical information by 

performing a certain type of computation, determined by their prespecified structure. The 

computation is parametrised by a number of connection weights, or other parameters of 

the processing units, which are derived following a learning procedure. 
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A qualitative comparison can reveal a correspondence between [Nie et al. 1997]: 

• The structure of a neural network and knowledge representation in a fuzzy system. 

• The computation performed in a neural structure and the reasoning mechanism in a 

fuzzy inference system. 

• The neural network learning and the fuzzy rules acquisition procedure. 

A more detailed qualitative comparison of the characteristics of fuzzy and neural systems 

is shown in Table 4.1 [Nie at al. 1997]. 

Issue Fuzzy Systems Neural networks 

Representation 
(Structure) 

Cognitive level 
Qualitative 
Abstract 
Rule-based 
Universal approximator 
Localised 
Transparent 

Biological Level 
Quantitative 
Detailed 
Unit (neuron) -based 
Universal approximator 
Distributed/localised 
Black-box 

Reasoning 
(Computing) 

Logic 
Parallel 
Numerical 
Membership function 
Interpolation 

Algebraic 
Parallel 
Numerical 
Activation function 
Interpolation 

Acquisition 
(learning) 

Expert + programming 
Not goal-directed 
Without feedback 

Sample + training 
Goal-directed 
Feedback 

Table 4.1: Comparative characteristics of fuzTy systems and neural 

networks [Nie at al. 1997] 

For a complete description of a fuzzy logic system (FLS) it is necessary to establish a 

mathematical formula that maps a crisp input x into a crisp output y = / ( x ) . In order to 

write such a formula, specific choices have to be made for the FLS elements. For singleton 
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fuzzification, max-product composition, product inference and height or weighted average 
deflizzification, leaving the choice of membership functions open, the I/O relationship is: 

y - m = ±y',l>,{yi) (4-1) 

where L is the number of fuzzy rules, superscript / denotes the /-th fuzzy rule and <p,{\) 

are called fuzzy basis fiinctions (FBF) and are given by [Wang and Mendel 1992, Mendel 

1995]: 

(25,(x) = n/i^,(x,.) 
L n 

(4-2) 

where /u^, (x, ) is the membership function corresponding to the z-th input fuzzy set of the 

/-th fiizzy rule and n is the dimension of the input vector. Although the index / on the FBF 

seems to be associated with a rule number, each FBF is affected by all the rules because of 

the denominator in ^,(x); hence it is only partially correct to associate the y-th FBF to the 

y-th rule. However, when a fuzzy rule is added or removed, thereby increasing or 

decreasing M, then a FBF is added or removed from the FBF expansion. 

It is important to note that by interpreting a fuzzy logic system as fuzzy basis function 

expansion, places it among the more global perspective of function approximation. In 

particular, it has been proved that FBFs of the form (4-1) are universal approximators, i.e. 

they can approximate any continuous real function into a compact set to arbitrary degree of 

accuracy [Wang and Mendel 1992]. Other proofs of universal approximation theorems for 

different classes of fuzzy logic systems have also been reported in the literature, including 

those comprising additive fuzzy systems with singleton fuzzification, product inference 

and implication and weighted average defuzzification [Kosko and Dickerson 1995] and 

for some classes of ANFIS models [Jang et al. 1997]. 

The relationships between FBFs and other basis functions have also been examined 

[Wang and Mendel 1992, Kim and Mendel 1995, Hunt et al. 1996] and FBFs are shown to 

be more general than radial basis functions, generalised radial basis functions and hyper 

basis fimctions. The denominator in (4-1) which result fi-om height or weighted average 
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defuzzification, serve to normalise the numerators of the FBFs. The numerators are also 
radially symmetric, so FBFs can also be referred to as normalised radial basis functions. It 
should be noted that FBFs are not normalised by abstraction but rather by design of the 
overall Fuzzy Logic System. 

Neural networks with one hidden layer can also be expressed as a basis flinction expansion 

of the form of equation (4-1). In such a representation, ^/(x) stands for the activation 

function employed, / indicates the /-th hidden node out of a total of L hidden nodes and y 

could be replaced by the relevant connection weight. As a result of such comparisons, the 

fimctional equivalence between certain classes of fiizzy inference systems and neural 

networks have been established [Wang and Mendel 1992, Hunt et al. 1996, Jang and Sun 

1995]. This equivalence apply mainly to neural networks with local receptive fields, such 

those employing Gaussian or B-splines basis functions. Equivalent neurofuzzy models 

have therefore been derived with premise membership functions of the same type as the 

activation fiinctions of the neural units. The benefit of interpreting these networks as 

neurofuzzy structures is not related to enhanced modelling performance compared to that 

of the pure neural network, but to the fransparency that a fuzzy representation offers 

[Brown and Harris 1995]. This transparency allows for a much easier and more 

meaningful model initialisation procedure to be followed, thus reducing development time 

and effort. In addition, such neurofuzzy representations are easily evaluated and validated, 

as they can store structured knowledge in the form of fuzzy rules. 

Fuzzy basis functions can include both linguistic and numerical information. When rich 

sample data are available, model building can be data-driven. In the absence of an 

adequate sample data set, the modelling task can be greatiy facilitated by incorporating 

available expert knowledge. An inherent problem in designing fiizzy logic systems is that 

as the number of input variables and the number of overlapping regions defined in the 

universe of discourse of each one of the variables increases, the fiizzy rule base becomes 

very complex. In practice, however, one never needs the complete set of fiizzy rules, since 

there are large regions of the input space never seen in actual applications. Therefore, it is 

important to balance the need for high resolution in covering the input space with low 

complexity. Several different approaches for designing a fuzzy rule base from available 

input/output data have been suggested [Wang 1994, Jang et al. 1997, Lin and Lee 1994, 
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Nie 1995, Sun 1994, Abe and Lan 1995, Lin and Lee 1996, Lin 1996, Dickerson and 
Kosko 1996]. 

Next, the discussion is focused on the analysis of the ANFIS model, which is employed in 

the present work for tool life prediction. 

4.2 Adaptive Network-Based Fuzzy Inference Systems (AJVFIS) 

The general ANFIS architecture is shown in Fig. 4.1, where nodes belonging to the same 

layer have similar functionality. ANFIS modelling is equivalent with the so called 

Reduced Direct Fuzzy Reasoning method [Yager and Filev 1994a]. 

The input/output mapping of each node is explained below. The notation Oy denotes the 

output of the /-th node in the y-th layer. 

• Inputs: An input vector x = fxj,...,Xi,....x„f is appHed to the first ANFIS layer. 

• Layer 1: Each node Ay, /=!,..,«, _/=l,..,Z, where n is the dimension of the input 

vector and L is the number of the fuzzy rules, is an adaptive node which receives x, 

as input and provides Ma/^I) ^ output, i.e. the degree (membership value) to 

which the input satisfies the quantifier Ay. The membership function can be any 

parametrised membership function. The parameters of this fimction are referred to 

as premise parameters. 

• Layer 2: Every node at this layer is a fixed node, labelled PI whose output is the 

product (fiizzy intersection) of the incoming signals: 

Oj2=Wj=YlM,^^{x,)j=\,..L (4-3) 

Therefore, the /-th node of this layer represents the firing strength of the ;-th fuzzy 

rule. 
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Layer 1 
Layer 2 Layer 3 Layer 4 

f , ( w , . , x ) 

Layer 5 

fi(W,„,X) 

Figure 4.1: ANFIS architecture. 

• Layer 3: Every node in this layer is a fixed node, labelled N. The /-th node 

calculates the ratio of the z-th rule's firing stiength to the sum of all rules' firing 

strength, i.e. a normalised value for the firing strength of the /-th rule: 

(4-4) 

For convenience, outputs of this layer are called normalised firing strengths. 

Layer 4: Every node in this layer is an adaptive node with the following node 

function: 

(4-5) 

where the consequent function fj{x) is a crisp function of the input vector. This 

choice for consequent parts was earlier suggested by Sugeno [Takagi and Sugeno 

1985] and is usually referred to as Sugeno reasoning or Sugeno fuzzy model. A 

common choice for f(\) is a polynomial function. The order of the polynomial 

characterises the order of the Sugeno fuzzy model. For a first order Sugeno model 
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n 

f j ( x ) = ̂ ciy -Xi with XQ = 1 and j=l,..,Z,. The parameters involved in this layer 

(ay , /=0,l,..,n, y=l,...,Z, for a first-order Sugeno fuzzy model) are referred as 

consequent parameters. 

• Layer 5: The single node in this layer is a fixed node, labelled I , which calculates 

the overall output as the summation of all the incoming signals: 

In essence, equation (4-6) is the result of centroid defuzzification of the following 

output fuzzy set: 

Y = <-r7- + -H- + --- + / , (x) • Mx) • • / ,(x)J 

where the notation introduced in paragraph (3-2) is followed for the definition of a 

fiizzy set. It is worth noting that the output of each individual fuzzy rule of the 

ANFIS model is a fuzzy singleton. 

The functional equivalence between ANFIS models and RBFs has been shown in [Jang 

1993] for some restricted ANFIS class with Gaussian membership fiinctions having 

constant widths and later was extended to encompass ANFIS models with Gaussian 

functions of arbitrary widths and arbitrary Sugeno type consequent parts [Hunt et al. 

1996]. 

In order to build a complete neurofuzzy inference model, two distinct identification 

procedures have to be followed. The first one is the structure identification, which 

involves the determination of the number of fuzzy rules and the partition pattem. The 

second phase is the parameter identification, which is relevant to the selection and 

optimisation of the fiizzy inference system parameters. Within the general framework of 

system identification, structure identification applies a priori knowledge in order to 

determine a class of models within which the search for the most suitable model is to be 
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conducted. Therefore, stiiicture identification relies heavily on the experience and intuition 
of the designer. When the available a priori knowledge concerning the system to be 
modelled is very limited, structure identification becomes a very difficult problem, usually 
solved by following a trial and error procedure. The more knowledge is available about the 
target system, the easier it is to tackle the stiiicture identification problem. 

Parameter identification of ANFIS models can be performed by employing both back-

propagation-type gradient descent to update premise parameters, which determines the 

shape and positions of the membership functions and the least squares method to identify 

the consequent parameters. In the case of a first-order Sugeno-type ANFIS model, a 

hybrid learning rule has been suggested [Jang 1993]. Specifically the rule involves two 

stages; first, in the "forward pass", functional signals go forward till layer 4 and the 

consequent parameters are identified using a Least Squares Estimator (LSE). while during 

the backward pass the error signal is propagated backward and the premise parameters are 

updated by gradient descent. Generally speaking, the specification of the exact learning 

procedure depends on the problem to be solved and consequently on the prespecified 

structure of the identifier. Several methods for rule base structure identification have also 

been proposed in the literature [Sun 1994, Abe and Lan 1995, Lin 1996, Chiu 1994, Jang 

1994]. Before proceeding into a more detailed analysis of the ANFIS structure and 

parameter identification procedures, some general remarks on the approximation 

capabilities of neurofuzzy models as well as on their equivalence to certain classes of 

neural networks will be mentioned in the next section. 

4.4 ANFIS structure identification 

The determination of the initial ANFIS structure involves the selection ofi 

1. Relevant input variables. 

2. Initial ANFIS architecture, including: 

• Input space partitioning. 

• Number of membership functions for each input. 

• Number of fiizzy IF-THEN niles. 
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• Premise parts of fuzzy rules. 
• Consequent parts of fuzzy rules. 

3. Initial membership function parameters. 

When training adaptive fuzzy networks, there is no need to fmd the optimal partition at the 

structure identification stage, since the goal is to find a reasonably good mitial state for the 

network. Several different approaches to structure identification of ANFIS models can be 

found in the literature [Jang et al. 1997, Sun 1994]. They usually employ objective 

functions that represent either a density measure which accounts for the density of the 

distribution of the sample data points near the cluster centre, or a typicality measure, 

which is a measure of the quality of the potential cluster centre in terms of how tight is the 

adherence of the data points to the cluster centre. In linguistic terms, the density measure 

is closely related to the support of a fuzzy set, while the typicality measure is related to its 

core. 

Among the different approaches for fuzzy model structure identification, subtractive 

clustering [Chiu 1994] is a simple and efficient algorithm, which is supported by the 

Fuzzy Logic Toolbox of Matiab [Jang and GuUey 1995]. Subtractive clustering is a 

variation of the mountain clustering method [Yager and Filev 1994b]. Instead of 

considering certain grid points as potential cluster centre candidates, which results in an 

exponential growth in the required computation as the dimension of the problem increases, 

subtractive clustering treats each individual data point as a potential cluster centre. Thus, 

the computation is simply proportional to the number of data points and independent of 

the dimension of the problem. Once the number of the fuzzy rules and the premise 

parameters corresponding to the cluster centres have been identified, the initial consequent 

parameters can be derived by linear least squares estimation (LSE). The description of the 

algorithm follows: 

1. Let X = /'xj,X2,...,x„7 be a set of sample data in an M-dimensional space. It is 

assumed, wdthout loss of generality, that these points are normalised within a unit 

hypercube. 

2. A density measure, D,- is attributed to each one of the data points, defined as: 
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Dj =Eexp 
x^.-x, 

(4-7) 

where the radius r^ defines the neighbourhood of influence of the cluster centre. 

Data points that fall outside of this area only slightly contribute to the density 

measure. 

3. Select the data point with the highest Dj as the first cluster centre, x̂ .̂ 

4. I f is the density measure of the last chosen cluster centre x̂  , then the density 

measure for each sample data is updated according to: 

f 

£ > , = A - A , e x p 
X . - X . 

(4-8) 

where the radius r}j defines an inhibition area in which the presence of a new cluster 

centre is discouraged, r^ is usually larger than r^ to prevent closely spaced clusters. 

5. If the stopping criteria are not satisfied then go back to 3 else stop. 

The stopping criteria are: 

If £>i is the potential of the first cluster centre then: 

=> IF Dj > sDx accept Xj as a cluster centre and continue. 

=> ELSE IF Dj < f Di reject Xj and end the clustering process. 

ELSE 

> Let (injjn the shortest of the distances between Xj and the previously found 

cluster centres. 

• IF -h — > 1 THEN accept x, as a cluster centi-e and continue. 
fa A 

ELSE Reject X j , set the potential at Xj to 0 and CONTINUE. 
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CONTINUE: Select tiie data point with the next highest potential as tiie new Xj and re-
check. 

where ? is a threshold for the potential above which a data point is definitely accepted as 

a cluster centre, s defines a threshold below which a data point is definitely rejected as a 

cluster centre. When the potential falls within the grey area between these two values the 

data point is accepted as a cluster centre if it provides a good trade-off between having a 

relatively large potential and being sufficientiy far from the existing cluster centres. 

The described above algorithm is by no means optimal. Other efficient algorithms like the 

CART (classification and regression tree) algorithm for tree induction, fuzzy C-means 

clustering, fiizzy k-d tree partitioning, fuzzy binary boxtree rule structure identification 

and focus-set-based rule combination can also be employed for ANFIS structure 

identification [Jang 1997]. 

4.5 ANFIS parameter identification 

Once the ANFIS structure and initial parameters have been determined, the next step is to 

optimise these parameters based on available sample data. The set of ANFIS parameters 

can be decomposed into two distinct subsets, namely the subset of nonlinear premise 

parameters and the subset of linear consequent parameters. When the values of the 

premise parameters are fixed, the output is a linear combination of the consequent 

parameters. Thus, the linear parameters can be identified by employing a simple linear 

least-squares estimation (LSE) method, while a gradient descent method can be used for 

the identification of the nonlinear parameters. This hybrid learning is summarised in table 

4.2. [Jang 1997]: 
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Forward Pass Backward Pass 

Premise Parameters Fixed (jradient Descent 

Consequent 

Parameters 

LSE Fixed 

Signals Node Outputs Error Signals 

Table 4.2: Hybrid learning for ANFIS parameter identification. 

The consequent parameters derived are optimal under the assumption that premise 

parameters are fixed. The hybrid learning rule has the merit of reducing both the search 

space for the gradient descent learning as well as the time required for convergence. 

4.6 ANFIS modelling with the Fuzzy Logic Toolbox 

The Fuzzy Logic Toolbox offers two altemative methods for obtaining fiizzy rules directiy 

from numerical data. The first one is based on a grid partitioning of the input space. The 

main weakness of this approach is related to the "curse of dimensionality" problem, i.e. 

the fast growth in the number of fuzzy rules as the complexity of the problem increases. 

The second approach involves the subtractive clustering algorithm described in the 

previous section. Thus, ANFIS structures with Gaussian-shaped membership functions for 

the premise parts of the fuzzy rules and first order Sugeno type consequent parts can be 

derived directiy from numerical data. For each rule j^l,...,L, where L is the number of the 

fuzzy rules, the membership function corresponding to the /-th input is defined as: 

1 f i i f i 
21 <y„ (4-9) 

where c^, ay are the premise parameters corresponding to the mean value and the 

standard deviation of the Gaussian function. The vectors Cj = [c^j,C2j,...,c„i] ,j=l,...,L, 

are the cluster centres Dj identified by the subfractive clustering algorithm, whereas the 
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vectors cry = [cjy,cjjj,C7^ J are related to the parameters ra that appear in (4-7). The 

functional mapping performed by the particular ANFIS model is: 

21 Ci, 
L n 

2l o-i,-

I n 

zn^ 
7=1 /=1 

J=\ (=0 

(4-10) 

When the premise parameters are fixed the overall output is linear with respect to the 

consequent parameters. Therefore, once the initial premise parameters have been identified 

by the subtractive clustering algorithm, the consequent parameters can be derived using a 

simple Least Squares Estimation (LSE) algorithm. Let M be the number of available 

patterns. I f these pattems are fed into the equation (4-10), the following set of linear 

equations is obtained, expressed in matrix form: 

[A, A, 

^2 

= y (4-11) 

or simply A-q = y, where A is a M'K{n + \)L design matiix, q is a («-i-1)1x1 

parameter column vector and y is a M x 1 output column vector. The rest of the notation 

employed in (4-11) is: 

K=[\k • • • ^jk • • • ^Lk\ k = l,..,M 

u • • • 

where k stands for the k-ih pattem and 

. . a.. 
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If (A^A) is nonsingular the optimal estimation of q on the basis of the existing M patterns 

is: 

A 

q = ( A ^ A ) ' AV (4-12) 

It is worth noting that the above equation requires the inversion of an (« +1)1 x (n + \)L 

matrix. Evidently this involves relatively heavy computation for large numbers of fuzzy 

rules and high dimensional input spaces. However, instead of the LSE one could employ a 

Recursive Least Squares Estimation procedure. Following such an approach the 

consequent parameters can be identified with the following set of formulas: 

S(A: + 1) = q(A:) + P(^ + l)A,,,[y,,, - A,,, q(^)] (4-13) 

P(^ +1) = V{k) - P W A L A ^ P W ^ ̂  01 ^ _ 1 (4.14) 
1 + A,„P(^)A,?:, 

A 

with initial conditions q(0) = 0, and P(0) = , where I is the identity matiix and ;K is a 

large positive value. 

The next stage in the ANFIS modelling procedure is that of parameter identification. The 

initially identified premise and consequent parameters should be adjusted in order to 

achieve a more accurate I/O mapping. When a pattern k is presented into the input ANFIS 

layer the network provides at its output an estimate O15 ̂  for the desired output y^^ . The 

cost function to be minimised is: 

1 A/ . -I M M 

E=\i:[y.-0,s,) =\l.el=Y^E, (4-15) 

where e^ is the modelling error for the ^-th pattem and is the ^-th pattem component of 

the cost function. In order to minimise the above function by employing gradient descent, 

each one of the network premise parameters has to be modified towards the negative 

direction of the function's gradient over this parameter. This gradient can be expressed as 
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a function of the gradient of the cost function over the nodes whose output depend on the 
value of this parameter. For example, to update the parameters Cy :the relevant gradient is: 

^ = y ^ . ^ (4.16) 

dE 
where 5" is the set of nodes whose output depends on Cy, while — ^ can be expressed as: 

^jUk it ^„AMXk ^iUk 

where #(1) is the number of the /-th layer nodes and Ô ., ̂  is the output of theyth node of the 

/-th layer when the A;-th pattem is inserted into the network. Evidentiy, the gradient of the 

Ml pattem cost function component over the output of the last layer node is: 

=-[yk-0,,,) (4-18) 

From equations (4-15)-(4-18) the update rule for Cy is: 

^ ^ ^ = - ^ 7 ^ (4-19) 

where 7 is the learning rate: 

oE 
(4-20) 

In the above equation 7* is the step size [Jang 1993] of each gradient transition into tiie 

parameter space and H is the set of premise parameters. The above normalisation ensures 

that the effective step size, i.e. the learning rate is sensitive to the magnitude of the 

gradients over the total set of adjustable premise parameters. The step size can also be 

adjusted according to some heuristics similar to those usually employed in the back 
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propagation training of feed forward neural networks, in order to assist convergence. After 
the antecedent parts parameters are updated the linear consequent parameters are again 
modified according to the LSE method described earlier. 

4.7 Discussion 

This chapter has examined the motivation for implementing neurofuzzy modelling as well 

as methods for obtaining neurofuzzy inference systems from numerical data. Neural fuzzy 

representations are capable of simultaneously handling both linguistic and numerical 

information. They are also capable of employing neural network-like learning algorithms. 

Their imiversality as system approximators together with the above mentioned 

characteristics compose a strong framework, useful for a wide range of modelling 

problems. A specific case of neurofuzzy modelling approach, namely adaptive network-

based fiizzy inference system (A>JFIS) has been described in detail. This model exhibits 

all the basic characteristics of a frizzy inference system and is equipped with some 

powerful algorithms for structure and parameter identification. The ANFIS structure has 

been employed in the present work as a means for obtaining a simple and reliable tool life 

model for turning operations. The model development procedure is described in chapters 

6-7. Before that, the tool life modelling problem is discussed in the following chapter. 
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TOOL WEAR AND TOOL L I F E 

5.1 Introduction 

Tooling technology has long been recognised as an element of vital importance within the 

manufacturing industry. Critical tooling decisions such as those related to tool selection 

[Maropoulos and Hinduja 1990, Maropoulos and Hinduja 1991, Maropoulos 1992, 

Maropoulos 1995, Maropoulos and Gill 1995], tool life management [Maropoulos 1995, 

Alamin 1996, Maropoulos and Alamin 1996], optimal determination of cutting conditions, 

as well as the on-line machining process monitoring and control [Ulsoy and Koren 1993] 

are based on the existence of reliable detailed machining process models. Among the 

decisive factors of process planning and control activities, tool wear and tool life 

considerations hold a dominant role. In fact, most of the process optimisation decisions 

take place off-line and are related to the determination of optimal cutting parameters. 

These are only meaningful when based on accurate tool life modelling. This modelling 

should provide reliable prediction of tool life for all the combinations of workpiece 

materials, cutting conditions and cutting tools employed. On the other hand, on-line 

process optimisation, either in the form of real time tool replacement strategy 

determination, or of adaptive machining process control relies on timely available accurate 

tool wear identification information. 

Due to the unportance of obtaining robust and reliable cutting process models, much 

research effort has been devoted to the investigation of the complex interrelationships 

between the factors influencing the machining process. Despite the significant research 

that has been carried out, both off-line tool life prediction, as well as real time tool wear 

identification and prediction are still problems open to research. The main reason for that 

is that tool wear is influenced by a wide variety of factors and some of them are of 

53 



CHAPTER 5 Tool wear and tool life 

Stochastic nature and extremely difficult to model. Clearly, even though cutting processes 
are among the first material processing technologies, introduced during the early 
industrialisation years, its nature is so complex and exposed to so many disturbances that 
make accurate tool life prediction and in-process tool wear identification very formidable 
tasks. In addition, the inherent variability of workpiece materials, cutting tools and 
machine characteristics, even among those belonging to the same type, increases the 
uncertainty about the machining optimisation problem. 

5.2 Tool wear, tool life and machining optimisation 

A manufacturing enterprise should always pursue the minimisation of production costs in 

order to achieve competitiveness. The costs related to a manufacturing facility can be 

categorised as follows [Chryssolouris 1992]: 

• Equipment and facility costs: They encompass the costs of the equipment required 

for performing the manufacturing operation, as well as the costs of the facilities, 

buildings and infrastructure that hosts the equipment operation. 

• Material costs: They refer to the raw material costs and the auxiliary material costs 

such as those of lubricants and coolants. 

• Labour: The direct labour that is necessary for operating the facility. 

• Energy: The level of significance of energy costs considerations depends on the 

nature of the particular industry. 

• Maintenance and Training: The total facility maintenance costs including labour 

and spare parts,. as well as the cost of training the labour to new 

equipment/technology. 

• Overhead: The portion of the cost that is attributed to mfrastructure support but is 

not directly relevant to the facility operation. 

• Capital cost: The cost of the borrowed capital. 

The cost of a particular machining operation is roughly determined by the labour, 

overhead and machine cost rates, the operating time per workpiece, the tool changing time 
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and the costs related to the cutting tool itself . In the case of single point cutting tool 
operations, the production cost per workpiece (C^) for single pass operations can be 

expressed as [Agapiou 1992, Chryssolouris 1992, Tan and Creese 1995]: 

ftl n = C„[t„,+t,+^]+c/-^ (5.1) 

where C„ is the total machine, direct labour and overhead rate (£/min), is the effective 

cutting time (min), is the workpiece handling time (min), T is the total effective cutting 

time of the cutting edge before it is replaced (min), which equals to the tool life when no 

preventive tool replacement policy is employed, is the tool changing time (min) and C, 

is the tool cost per cutting edge (£), which is equal either to the cost of the disposable 

insert, or the cost of regrinding the cutting edge. In cases of multi-pass operations, the cost 

per workpiece is given by : 

^.+2;c+^cZ^ (5-2) 
;=1 /=1 y i=\ 

where m is the nimiber of passes, is the cutting time at the fth pass and T. is the total 

effective cutting tune of the cutting tool used at the ith pass (i.e. either the total cutting 

time of the disposable insert or the total cuttmg time before regrinding the tool cutting 

edge). Evidently, in both cases of single or multi-pass operations, the cost per workpiece is 

du-ectly related to the total effective cutting time of the cutting edge. This time is 

equivalent to the tool life, when no preventive tool replacement policy is applied. When 

such a policy is employed, the optimal value for T or Tj is determined on the basis of the 

expected tool life value, in order to make maximum use of the cutting capacity of the tool, 

while preventmg the occurrence of a high number of cutting process stoppages for tool 

replacements, by appropriate selection of the cutting conditions [Agapiou 1992, Tan and 

Creese 1995, Sheikh et al. 1980, lakovou et al. 1996, Billatos and Kendall 1990]. 

On the other hand, when either on-line tool replacement policy [Zhou et al. 1990, Wang et 

al. 1996] or m-process control [Altintas et al. 1996a, Altintas et al. 1996b, Ulsoy and 
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Koren 1989, Ulsoy et al. 1983, Lundholm et al. 1992] are to be employed, they can only 
be successfully implemented on the basis of accurate tool wear status identification 
information. In the former case an objective function for the optimal tool replacement 
sfrategy determination can be formulated, based on the estimated actual tool wear. The 
more accurate is the tool wear state information obtained, the more likely it is that the 
replacement policy will be close to optimal. The need for timely available reliable tool 
wear estimation is also evident in machining process control. In such cases, it is usually 
desirable to optimise the cutting process by means of adequately adjusting process 
parameters such as the feed rate, while securing at the same time the stable operation of 
the machine tool. The optimisation is based on information directly or indirectiy related to 
the actual tool wear. However, appropriate control action can only be implemented on the 
basis of reliable tool wear modelling. 

Clearly, a wide range of machining process optimisation problems depend on tool wear 

and tool life modelling. Before, addressing in more detail the tool wear/tool life modelling 

problem for single point cutting tools, some basic definitions and theoretical issues related 

to tool wear will be briefly mentioned in the following paragraphs. 

5.3 Tool wear: definitions and theory 

Any machining process, involving single-point or multi-point cutting tools, apart from 

producing the desired workpiece shape and surface finish, inevitably results in some 

change on the shape of the cutting tool itself This change varies wdth different 

combinations of cutting conditions, workpiece material and cutting tool. The shape of the 

cutting edge may be altered either as a result of plastic deformation or of wear. What 

distinguishes them is that a wear process always involves some material removal, whereas 

no such removal is observed m cases of plastic deformation. In both cases, when the 

cutting edge is so severely worn that the desired operation can not be successfully carried 

out anymore, the cutting edge is considered to have reached the end of its useful life and 

the total effective cutting time of the edge is referred to as tool life. A cutting tool may 

reach the end of its useful life either as a result of a gradual wear procedure or of a sudden 

- catastrophic - failure. 
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5.3.1 Mechanisms of wear 

Tool wear can be caused by several mechanisms. The exact way in which these 

mechanisms act independently or in synergy to attack the tool shape is still a subject of 

scientific research.[Mari and Gonseth 1995, El Wardany and Elbestawi 1997]. The main 

wear mechanisms according to Trent [Trent 1991] are plastic deformation under 

compressive stress or by shear at high temperatures, diffusion wear, attrition wear, 

abrasive wear, thermal fatigue and wear under sliding conditions. Other classifications can 

also be found in the literature, categorising tool wear into adhesive, abrasive, difilision 

wear and fatigue [Shaw 1984]. The following summary of wear mechanisms is mainly 

based on Trent's analysis [Trent 1991], where tool wear is examined from a metallurgy 

and materials engineering point of view, supported by extensive, up to date, experimental 

results. 

5.3.1.1 Plastic deformation 

The shape of the cutting tool can be altered due to high temperatures or high compressive 

stresses on the rake face. The temperature at the rake face of the tool can reach at very 

high levels which may result at the formation of a hollow on the tool rake surface in some 

distance from the cutting edge. This short of deformation may appear when cuttmg at high 

speeds with tool materials such as high speed steels. Carbide tools are more resistant to 

this type of deformation but they are still susceptible to plastic deformation under high 

compressive stresses at temperatures higher than 800°C [Mari and Gonseth 1993]. Plastic 

deformation is more common when cutting difficuh to machine materials at high speeds. 

The deformation usually starts close at the tool nose, so tools with very small nose radius 

are more susceptible to it. 

5.3.1.2 Diffusion wear 

Diffusion wear refers to the exchange of atoms that may take place at the workpiece/tool 

interface when cutting at high temperatures. In particular, tool metal or carbon atoms may 

be carried away with the workpiece material stream removed or workpiece material atoms 

can be diffused into or react wdth the tool material, altering its surface properties. 
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Diffusion wear is more significant when machining with carbide tools, whereas in high 
speed steel tools is usually masked by the more sizeable plastic deformation that takes 
place at high temperatures. It can lead to accelerated crater wear. 

5.3.1.3 Attrition wear 

At low cutting speeds the temperature does not rise high enough to bring about diffusion 

wear or plastic deformation. The work material flow over the cutting edge is more 

intermittent and whole parts of the removed material may adhere to the tool rake forming 

strong bonds with the tool material and leading to the formation of a built-up edge. The 

shape and size of the built-up edge constantiy changes during cutting and the 

tooL/workpiece interface may become discontinuous, which in turn may result in 

fragments of the tool surface being sheared away from the tool, carrying along with them 

tool material particles. However, in certain cases, such as when cutting cast iron, the 

presence of an adhered layer of workpiece material particles may provide protective action 

for the tool material. On the other hand, when machining steels, large grains of tool 

material can be removed from the tool surface and bring the cutting edge to a premature 

failure. Attrition wear is more frequent in carbide tools, whereas high speed tools can be 

tougher and less vulnerable to it. 

5.3.1.4 Abrasive wear 

Abrasive wear is caused by the presence of hard material particles along the 

tool/workpiece interface, which may be contained in the workpiece material or formed by 

chemical reaction (e.g. oxidation). It is widely considered as a major cause of wear, though 

its contribution to tool deformation under normal cutting conditions is sometimes 

questioned [Trent 1991]. However, it is generally agreed that wear by abrasion can play an 

important role under sliding conditions. 

5.3.1.5 Thermal fatigue 

This sort of wear appears mostiy in cases of discontinuous cutting, like in milling, where 

the tool material undergoes a series of thermal shocks. The successive expansion and 

confraction of the tool surface layer that is close to tiie cutting edge can cause small cracks 
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which may start from the rake face and gradually expand towards the cutting edge. When 
the number of cracks becomes significant, relatively large fragments of tool material can 
be detached from the tool surface. Thermal fatigue generally acts additively to other wear 
causes and reduces the tool resistance to fracture. 

5.3.1.6 Wear under sliding conditions 

This is the type of wear that occurs at those areas of the tool surface where sliding occurs, 

i.e. they are not continuously engaged at the cutting process. The wear mechanisms 

involved can be the same with those described so far, but they can be greatly accelerated 

by electrochemical interaction between the cutting tool, the workpiece material and the 

environment. The latter refers both to the cutting coolants and lubricants, which are used 

to assist cutting by reducing the temperature and the cutting forced developed, as well as 

to the presence of air. This elecfrochemical interaction can be very complex and is not yet 

fully understood [Trent 1991]. It can result to significant alteration of the tool sliding 

surface properties by allowing the formation of a weak layer at the face of the tool. This 

result in reduced shear strength and mcreased susceptibility to other mechanisms of wear. 

The above mentioned wear mechanisms are rarely independently activated. Plastic 

deformation and diffusion wear are generally thermally initiated, when cutting at high 

speeds, in contrast with attrition wear, which is not temperature dependent and holds a 

dominant role at low cutting speeds. Depending on the type of operation, sliding wear 

processes and fatigue wear can become significant wear causes, whereas abrasive wear is 

less important when cutting with high strength tool materials. 

5.3.2 Types of wear 

As a tool is used in cutting operations, its shape gradually changes due to wear. When the 

main cutting process states, such as cutting forces, power consumption and vibration reach 

higher levels, the cutting performance deteriorates. This may result in noticeable loss of 

dimensional accuracy and poorer surface finish of the machined part. The cutting process 

state increasingly deviates from the desired set point and the process stability may be put 
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into jeopardy. Tool wear develops at different faces of the cutting tool and is classified 

into several types, depending on its form (Fig. 5.1-5.2). 

5.3.2.1 Flank wear 

Flank wear occurs at the clearance or relief face of the cutting tool along the tool surface 

that is engaged on the cutting process. It may be formed as the result of diffusion, attrition 

and abrasive wear, as well as wear under sliding conditions. 

/ Tool shank A 

Rake tene —/- •> J> 

/ ^Cutting edge 

Nose radius ^ — F l a n k 

Figure 5-1: Cutting Tool Geometry 

5.3.2.2 Crater wear 

When cutting at high temperatures, diffusion wear can cause the formation of a depression 

or crater at the rake face of the cutting tool. This crater is deeper at the position that the 

highest temperatures appear at some distance from the cutting edge, whereas the tool may 

stay unworn at low temperature positions. Severe cratering results in weakened cutting 

edge and increased susceptibility to fracture. 

5.3.2.3 Plastic deformation 

Plastic deformation as a result of high compressive stresses or high temperatures can 

significantly alter the shape of the cutting edge. Cutting performance deteriorates as the 
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cutting edge geometry gradually changes and increasingly high forces and temperatures 

are developed. Significant plastic deformation of the cutting edge can reduce its resistance 

to fracture. 

Crater Wear. 

Nose Radius. 
Wear 

JvJotch 
Wear 

Flank Wear 

Figure 5-2: Principal types of wear 

5.3.2.4 Notch wear 

It is also known as groove wear. Notch wear usually appears at the end of the flank wear 

land, where the chip edge moves over the cutting tool. It is generally considered to result 

from chemical interaction at the workpiece/tool interface and is associated with the 

presence of oxygen at a position where seizure is discontinuous. The freshly machined 

surface is chemically very active especially under the presence of oxygen that penetrates 

the workpiece/tool interface up to a limited depth after which seizure is continuous. In the 

small intermediate area, where sliding occurs, it is likely that the surface of the tool 

presents some local anomalies either because it is contaminated by oxides or by work 

hardening from previous cuts. As the workpiece material flows over the cutting edge the 

cutting forces and temperatures developed may reach at high levels at the positions where 

such anomalies exist and whole fragments of the tool contaminated surface may be 

detached and carried away with the chip. Thus, deep grooves or notches may be formed on 

the tool surface which can eventually lead to tool failure. 
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5.3.2.5 BuUt-up edge 

When cuttmg at low or intermediate cutting speeds, work hardened workpiece material 

fragments may adhere on the rake face of the tool and towards the cutting edge, forming 

sfrong bonds with the tool material. This leads to the formation of a built-up layer on the 

rake face of the tool. When the size of this layer becomes significant is referred to as built-

up edge (BUE). The BUE acts as a natural extension to the cuttmg tool and as long as it is 

just a thin layer, it can play a protective role, preventing tool wear at the rake face. 

However, when it grows significantiy in size, its structure becomes increasingly unstable. 

The locally increased shear strength can cause micro-cracks which may flirther develop 

and cause fracture of the BUE. Since the adhered to the tool surface work material has 

formed strong bonds with the tool material, when detached from the rake face can shear 

away with it small fragments of tool material, altering the shape of the tool surface. This 

can lead to poorer surface finish of the machined surface, edge chipping and finally 

fracture of the cutting edge. 

5.3.2.6 Edge chipping 

Edge chipping is the break-off of small fragments from the cutting edge which may take 

place in interrupted cutting with brittle materials or when an unstable BUE is periodically 

cracked away. The result of edge chipping is poorer surface finish of the machined 

workpiece and increased susceptibility to cutting edge fracture. 

5.3.2.7 Edge cracking 

This is usually the result of thermal fatigue and it appears as a series of parallel or 

perpendicular to the cutting edge small cracks. Weakened cutting edge and increased risk 

of tool failure can be the consequence of edge cracking. 

5.3.2.8 Edge rounding 

Cutting edge roimding or nose wear occurs as a result of attrition or abrasion wear and 

reduces the cutting efficiency of the tool. When nose wear is excessive, the energy is not 

spent on actual cutting action but instead on tool plastic or elastic tool deformation. The 

62 



CHAPTER S Tool wear and tool life 

grinding of a double rake on a high hardness cutting tool prevents nose rounding by 
allowing the formation of a stable BUE. 

5.3.2.9 Tool breakage (Catastrophic failure) 

Catastrophic failure may occur as the result of accumulated tool wear of all the above 

types, or of the selection of inadequate cutting conditions. Brittle materials like ceramics 

or cemented carbides are more exposed to fracture hazards. 

5.4 Tool wear measurement 

Tool wear measurement methods are broadly classified into off-line and on-line ones. The 

former are only applicable after the cutting tool is disengaged from the cutting process, 

whereas the latter are designated to allow for in-process identification of tool wear state. 

Sometimes the distinction is between continuous and intermittent measurement methods 

[Byrne et al. 1995]. Continuous measurements are those on-lme measurement techniques 

that enable the capture of all the changes that the measured variable undergoes, including 

cases of sudden and unexpected disturbances, without any significant information loss. In 

contrast, intermittent measurements are methods that involve either interruptions of the 

machining process or specific measurement intervals, which inevitably results in some 

loss of information. By defmition, all the off-line methods are intermittent measurement 

methods, while the latter ones include also some on-line methods that are not capable of 

continuously monitoring the tool wear process. 

Tool wear measurements methods are also categorised as direct or indirect, depending on 

whether tool wear is directiy measured or estimated indirectiy by inference from other 

measured variables which are correlated with tool wear, such as cutting forces, acoustic 

emission, vibration etc [Park and Ulsoy 1993]. Since it is usually very complicated to 

implement on-line direct methods for tool wear measurements, the term direct 

measurement is often confoimded with off-line measurement. However, there should be a 

distinction between them, since an off-line method, can be employed for the indirect 

inference of the actual tool wear status, i.e. it can be an indirect measurement method, 
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without being an on-line one. For instance, tool wear status inference by observing the 
machined workpiece surface quality is an off-line indirect measurement method. 

Evidently, a reliable direct wear measurement sensor should be able to posses higher 

measurement accuracy in contrast with indirect methods, which rely on inferential 

estimation of the actual wear status on the basis of auxiliary variables sensorial feedback. 

The ideal tool wear sensor in terms of both accuracy and time response would be one that 

is simultaneously direct and on-line. However, the nature and complexity of the cutting 

process is such, that direct on-line sensors are rarely applicable in practice. A review of 

wear measurement techniques was carried out and can be found in Appendix A. 

5.5 Tool life modelling 

The complexity of tool wear processes and tool wear measurement methods is inevitably 

reflected into tool wear modelling and tool life prediction problems. Admittedly, there is a 

plethora of parameters influencing they way tool wear evolves during cutting. Tool wear 

modelling can be either predictive (off-line) or real-time (on-line) [Maropoulos and 

Alamin 1996]. Predictive tool wear modelling is relevant to off-line process optimisation 

activities, such as optimal selection of cutting conditions and preventive tool replacement 

strategy determination. On the otiier hand, on-line tool wear modelling applies to tasks 

such as machining process monitoring and control or to real-time tool replacement policy 

decision making, based on actual tool wear status. 

Depending on the viewpoint adopted, tool wear and tool Hfe modelling problems present 

various difficulties. The main difficulty m the case of off-line modelling is the high degree 

of uncertainty that surrounds the tool wear evolution for each individual cutting operation 

and results to significant tool life variability. When tool wear status information is 

available, more accurate on-line tool wear identification and real-time tool life prediction 

can be achieved without the need for the availability of analytical theoretical or empirical 

tool life models. However, real time tool wear status estimation usually suffers from the 

high complexity of the instrumentation and signal processing involved. Further difficulties 
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arise from the poor reliability of the on-line sensors and the lack of knowledge about the 
exact way the measured signals correlate with the actual tool wear. Because of the above 
reasons, little commercial interest has been shown to on-line process optimisation, based 
on real time tool-wear estimation [Maropoulos 1995]. Instead, machining process 
optimisation decisions are usually based on off-line tool life prediction. 

5.5.i Tool failure criteria 

According to ISO recommendations [ISO 3685, 1993, 2nd edition, "Tool life testing with 

single-point turning tools"], a turning tool is considered to have reached the end of its 

useful life when the following criteria are met: 

• High speed or ceramic tools 

1. Catastrophic failure. 

2. VB=0.3mm, if the flank wear is regvdarly worn. 

3. Vginax = 0.6 mm, for unevenly worn flank, scratched, chipped or badly grooved. 

• Sintered carbide tools 

1. VB=0.3mm. 

2. VBmax ^ 0.6mm if the flank is irregularly wom. 

3. K-i^O.06+0.3/ where s is tiie feed rate. 

Where Vg and Vg^jj^ ^̂ ê mean width and the maximum width of the flank wear 

respectively, is the crater wear and / is the feed rate. The following section briefly 

reviews current methods for off-line tool life modelling. 

5.5.2 Off-line tool life modelling 

Off-line tool life modelling is commonly based on cutting process theory, tool life 

empirical formulae and tool-life data provided by tool manufacturers and machining 

handbooks as well as laboratory experiments and shop floor cutting operations. A wide 
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range of mathematical modelling and data handling methods have been employed for tool-
life modelling. These methods provide with different frameworks for utilising the 
available knowledge about the performance of the cutting process. 

5.5.2.1 Taylor formula 

Most of the models employed for tool-life prediction are either extensions of or consistent 

with the well-known Taylor empirical formula which correlates tool life with cutting 

speed. Taylor's work [Taylor 1906] is considered as the first systematic treatment of the 

tool wear and tool life problem with a view to the machining economics optimisation 

problem. The basic formula is: 

v ' ^ r = C (5-3) 

where v is the cutting speed (m/min) and T is the tool life (min), while a and C are 

constants for a particular tool-workpiece combination. This formula was later extended to 

accommodate some more parameters influencing tool life: 

T = - T ^ (5-4) 
r 

where / denotes the feed rate (mm/rev), d the depth of cut and a,P,Y are constants 

depending on the tool/workpiece/type of cut combination. Empirical formulae of the 

above form have been very popular, since they provide with a simple means of correlating 

tool life with machining conditions. Even though tool life modelling have moved a lot 

further from Taylor's formulation, many of the suggestions in literature for tool life models 

appear to be - up to a certain degree - consistent with the above formulae. 

5.5.2.2 Models based on cutting theory 

Cutting process theory may provide the means for obtaining either direct analytical models 

for tool life prediction or - most commonly - for switching over between different tool life 

models, by providing a physically meaningful way of determining the applicability range 
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of the models. However, it is often difficult to assert the validity of the theoretical tool life 
models for a wide range of combination of tools, workpiece and cutting conditions, since 
tool wear evolves at different tool faces and it is rarely the case that this is due to a single 
wear mechanism. It has been suggested that the mechanical behaviour of tungsten carbide 
tools can be classified into three main domains, depending on the cutting temperatures 
developed [Mari and Gonseth, 1993]. In particular, WC-Co is brittle below 500°C, tough 
between 500°C and 800°C and susceptible to plastic deformation above 800°C. Based on 
this remark and the assumption that there is a direct relationship between the mechanical 
energy related to the deterioration of the cutting tool geometry and the tool wear, the 
following formula has been suggested for tool life when cutting at temperatures higher 
than 800°C, which is usually the case with carbide tools [Mari and Gonseth, 1993]: 

where (J) represents the critical energy required to obtain a given level of flank wear, k 

is the Boltzmann constant, Q the activation energy (eV/atom), 6 the cutting temperature, 

while a, p axQ constants related to the friction force and the stress respectively. This 

above formulation assumes that the level of the critical energy for a certain amount of 

deformation is constant. The above equation was then modified in order to model also the 

effect of oxidation at lower temperatures: 

where the notation is similar with equation (5-5) apart from the fact that two distinct 

thermally activated mechanisms are now defined, acting at different temperature levels 

and characterised by different activation energies. The models of equations (5-5, 5-6) were 

found [Mari and Gonseth, 1993] to give a good description of the wear process when 

plastic deformation or oxidation (wear under sliding conditions) are the main forms of 

wear. However, they are highly parametrised and their applicability in a practical 

environment is restricted by the need to conduct extensive experimentation and statistical 

data processing in order to defme appropriate values for the parameters involved. 
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The fact that certain wear mechanisms are thermally activated has led to the development 
of a tool life model w^hich directly relates tool life with cutting temperatures and is less 
parametrised than equations (5-5) and (5-6): 

T^AT;^ (5-7) 

where Tp is the tool flank temperatures and A, B constants [Arsecularatne et al. 1996]. 

The above model can give good description of the wear phenomena at cutting 

temperatures higher than 800°C. It relies on analytical prediction of cutting temperatures 

[Arsecularatne et al., 1995] and it can be applied to both orthogonal and oblique cutting. 

The validity of the model depends on the level of accuracy of cutting temperatures 

prediction, as well as the determination of well-defmed cutting operations range, wherein 

A and B can be considered as constants to be calculated by appropriate experimentation 

and statistical data processing. 

The flank wear of carbide tools, cutting carbon steels, can also be analytically predicted 

using cutting forces and temperature, which are also predicted analytically [Usui et al. 

1984]. The overall calculation is based on the derivation of a wear characteristic equation 

which correlates cutting temperature and normal stress on the flank wear land with the 

wear rate. Stress and temperature calculations are based on an energy method for 

predicting chip formation and cutting forces from orthogonal cutting data. The overall 

calculation procedure is rather complex and, on the basis of some rather crude 

assumptions, flank wear at time t can be calculated via the foUowdng equation [Matsumura 

etal. 1993]: 

where (mm) is the flank wear length, Vg^ (mm) is the initial flank wear, y (rad) the 

relief angle, v (m/min) the cutting speed, 6j the temperature of the flank wear land and 

the normal stress on the flank wear land. The wear-characteristic constants C, X are 

determined via cutting tests. The main assumptions are that there is no appreciable initial 
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wear, and a series of physical parameters, such as the strain rate on the chip siuface and 
the specific wear rate over the wear land, are approximately constant. However, these and 
some other assumptions that have been made for the derivation of the above equation, 
only hold for a limited range of cutting conditions and refer to steady state wear rates. 

5.5.2.3 Empirical tool life modelling 

Analytical tool life models based on metal cutting theory result from the attempt to explain 

on a physical basis the mechanisms of tool wear. In most cases, complex formulations for 

tool life as a fimction of many variables are derived which are not easily applicable to 

machining optunisation practice. Furthermore, these models are rather incomplete, since 

they are obtained as a result of many assumptions and therefore their validity holds under 

restricted cutting conditions. In practical operating conditions, however, the machining 

process can not be easily controlled to ensure that all these preconditions are met. A 

different viewpoint adopted by many researchers and machining practitioners is based on 

endorsing some simple empirical models for tool life. These models are usually 

parametrised, so that there is a need to define the free parameters for a range of inputs, i.e. 

cutting conditions and tool/workpiece combmations. The most popular empirical models 

are the Taylor tool life formula of equation (5-3) and some variations of it, such as 

equation (5-4). A model that incorporates flank wear and nose wear into a single 

formulation for average tool wear versus time is [Billatos et al. 1986]: 

W{t) = a„+a/-'+a/^-' (5-9) 

where W{t) is the accumulated average tool wear at the time instant t, while the 

coefficients a, and correspond to nose wear and flank wear respectively and are to be 

estimated, together with a^, based on available cutting data for a range of cutting 

conditions and tool/workpiece combinations. Another model that relates the total amount 

of tool wear with cutting time has also been proposed. The model considers the cutting 

conditions as well as the total amount of flank wear as independent variables [Nagasaka 

andHasimoto 1982]: 
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t = ov"' /"^ exp[- expli))^^] (5-10) 

where / is the cutting time that results in flank wear of length , v the cutting speed,/the 

feed rate and a, b, n, nj, «2 constants to be estimated. Tool life can be derived from 

equations (5-9), (5-10) for any given level of accumulated wear. Alternatively, tool life 

can be modelled according to: 

r = ; ^ , a = a(h^,v) m = m(h^,v) (5-11) 

where V is the cutting speed, is called Woxen chip thickness and includes in one 

parameter the feed rate, nose radius, depth of cut and the cutting edge angle [Carlsson and 

Strand 1992]. The resemblance of the above equation to Taylor's formula (5-4) is obvious. 

The free parameters (i.e. the constants) of the empirical tool life models described so far, 

are determined on the basis of available cutting data. In particular, initial estimates for 

these parameters are obtained based on machining data derived from machining 

handbooks or tool manufacturers. Once observed real-life cutting data become available, 

they are combined with the initial cutting data to obtain posterior (updated) tool life 

parameters, that best fit to the model adopted using appropriate regression methods, such 

as least squares estimation [Ermer 1970], or Imear multiple regression [Yeo et al. 1989]. 

The main drawback of such methods, when employed to solve the machining economics 

problem, is that they treat the empirical formulae in a deterministic manner, without taking 

into account the inherent uncertainty about the evolution of the cutting process. There 

have been suggested several different approaches for tackling this uncertainty, but the 

most prevailing one considers tool life as a stochastic variable having a mean value 

properly represented by the empirical deterministic tool life equation adopted. 
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5.5.2.4 Probabilistic tool life modelling 

Accepting that tool life is a random variable, brings another problem mto consideration. 

That is the determination of tool life variability and tool life distribution. The benefit of 

taking into account tool life scatter becomes more significant as tool life variability 

increases. It has been argued that distributed tool life is responsible for increased 

machining costs to as high as 50% in some cases [lakovou et al. 1996]. Tool life scatter 

originates from the large number of parameters influencing the wear process. 

In a manufacturing environment the resources employed for production come from 

various sources and their quality and performance are subject to variation. For instance, 

the tools, fixtures and machine tools used may differ in stability and rigidity, resulting in 

significant deviation in machining performance. Tool life tests are often conducted under 

restricted conditions with minimum tool life variability. However, the statistical properties 

obtained from such tests reflect only the particular characteristics of the 

machine/tool/workpiece combination of the experiment. In practice, the machining data 

generated at any two different machining laboratories do not agree. This is even more true 

for shop floor conditions, where it is often difficult to control the cutting process, ensuring 

consistency of the cutting performance. 

The experimental work on tool life testing carried out so far provides with enough 

evidence of tool life scatter. The size of tool life variation sfrongly depends on the nature 

of the experiments. For instance, it has been suggested that, for the same combination of 

tool/workpiece/type of cut, a standard deviation as high of 20% [Ramalingam 1982] or 

even 30% [Wager and Barash 1971] of the mean tool life value should be anticipated. 

Other studies have resulted in lower variation coefficient values - between 7% and 9% -for 

tool life distribution of ceramic tools [El Wardany and Elbestawi 1997]. Even for log-

transformed tool life values, extensive experimentation has indicated that a 23% 

coefficient of variation should be considered for tool life distribution [Levi and Rossetto 

1978]. 

A common simplification in machining practice is to reach optimisation decisions based 

on the determination of the fu-st two of the tool life moments, i.e. the mean value by tiie 
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empirical formula adopted and the variance by tool life testing experimentation. However, 
a more rigorous treatment for optimising the cutting conditions within the machining 
economics problem would require the determination of the shape of the tool life 
probability distribution fimction itself This requirement has led many researchers to 
investigate whether tool life follows a characteristic distribution. As a result of significant 
experimental work many different fimctions have been suggested for probabilistic tool life 
modelling, including, normal [Wager and Barash 1971, Koulamas 1991, Zhou et al. 1990], 
log-normal [Levi and Rossetto 1978, Rossetto and Levi 1978], exponential [Ramalingam 
and Watson 1977], extreme value [Pandit 1978], Gamma [Ramalingam 1977, lakovou et 
al. 1996], Rayleigh [Pandit 1978], Weibull [Billatos and Kendall 1990, Ramalingam and 
Watson 1977], Bimbaum-Saunders, [Billatos et al. 1986], Frechet distribution [Carlsson et 
al. 1992] , etc. Other more complex probability distribution fimctions have also been 
suggested which can approximate a range of functions, depending on the particular choice 
of some parameters. The determination of these parameters and consequently of the shape 
of the tool life probability distribution function should be based on available cutting data 
[Pandit 1978]. The more flexible such a ftinction is in terms of its capability to represent 
observed tool life data, the more difficult usually becomes the task of determining the 
fimction parameters. Thus, a simple case of normally or log-normally distributed tool-life 
is usually considered. 

5.5.2.5 Reliability and tool life modelling 

It is often the case that the probabilistic approach to tool life modelling described above 

relies merely on empirical assumptions and has little physical basis. Indeed, there can 

hardly be found any theoretical justification for tool life being normally or log-normally 

distributed. A probabilistic approach that proceeds one step further is the one that does not 

look simply at tool life as a random variable, but, m doing so, considers tool wear as a 

stochastic process, where the tool is exposed to a series of hazards. Some of the hazards 

are of sufficient magnitude to cause irreversible damage to the tool. This approach is 

adopted when the tool life problem is treated from a reliability point of view [Liu and 

Makis 1996]. 
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Reliability considerations are particularly beneficial in tool replacement policy decision 
making, where safe and cost efficient machining operation is pursued. The important 
considerations in this approach are related to the determination of the potential hazard 
fimctions, i.e. the conditional probability of failure within the time interval from to 

+ dt when it is known that there was no failure before . This is not a trivial task, 
since one should identify the nature of the failure mechanisms and attribute to them certain 
hazard functions to adequately describe the risks that the cutting tool is exposed to. Failure 
models are required to consider single injury or multiple injury failure cases. These 
models should account for both combined hazards acting independentiy or in concert, 
where provision should be made for time dependent hazards [Ramalingam and Watson 
1977, Ramalingam 1977]. 

One approach is to define the hazard functions by taking into accoimt the tool and 

workpiece material properties and the operating environment on the basis of metal cutting 

theory and in particular of sfress considerations. [Ramalingam et al. 1978]. Alternatively, 

hazard functions can intuitively be defined to describe the different causes of failure, such 

as poor quality control during tool manufacturing, non-homogeneity of workpiece 

condition, chemical wear that may cause tool chipping and failure due to excessive flank 

or crater wear [El Wardany and Elbestawi 1997]. Attributing distinct hazard functions to 

each one of the main failure causes may provide with more detailed tool wear modelling 

than the previously described simple probabilistic models. Furthermore, such reliability 

models appear to have sfronger physical basis at tiie expense of increased complexity. 

Indeed, tiie computation needed in order to determine the whole set of parameters for each 

one of the hazard functions defined, is high and in some cases very complex. 

5.5.2.6 Random processes and chaotic models of tool wear 

In stochastic tool life modelling there is usually no clear way in which the cutting 

parameters are presented in the model. It is often observed that tool wear progress patterns 

may vary even under rather similar conditions. On the other hand, it is very difficult to 

associate tool life with the cutting conditions in a deterministic formulation using physical 

laws. The reason behind this difficulty is the inherent complexity and uncertainty of the 
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cutting process. It has been argued that part of this complexity is due to the chaotic 
behaviour of the process in some circumstances. In particular, cutting process may show 
signs of irregular chatter, especially at high feed rates. The occurrence of chaotic 
oscillations during cutting has been theoretically derived by examining a two-dimensional 
dynamic model based on the geometry of orthogonal cutting. [Lin and Weng 1991]. The 
potential chaotic behaviour of the cutting process had been earlier suggested by Grabec 
[Grabec 1986]. Experimental results have also been found to verify that feed rate is a 
critical parameter that may lead the cutting process into chaotic behaviour [Khraisheh et 
al. 1995]. 

To overcome these difficulties a different stochastic model, i.e. a diffusion-threshold tool 

wear model has been developed with applicability to the tool replacement policy problem 

for drilling [Conrad and McClamroch 1987]. Accumulated tool wear is modelled by a 

diffusion process (Wiener process or Brownian motion), with a piecevwse constant drift 

and piecewise linear variance. Diffusion processes are an important class of Markov 

processes with important applications in physics, population dynamics, genetics etc. 

[Gardner 1986]. The main benefit of this modelling approach is that it takes mto account 

the potential chaotic nature of the cutting process, since Brovmian motion is often a good 

first approximation for systems that exhibit chaotic or noisy behaviour. An equivalence 

between this model and Taylor's tool life formula has also been derived. Two classes of 

tool replacement policy have been postulated, based on an optimal control formulation. 

These classes are age replacement policies (i.e. based on machined parts count) and one 

step ahead replacement policies based on wear status information. Yet, it is questionable 

whether the wear process can indeed be modelled by such a Markov process. For instance, 

material properties may depend on past properties and not only on current conditions. 

However, any deviation from the Markov assumption would make the problem 

mathematically hardly tractable. In addition, the wear process often present some "jump" 

phenomena (e.g. catastrophic failure) that are not consistent with the continuity 

assumption of a diffusion process. 
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5.5.2.7 Computational intelligence and tool life modelling 

Following the recent emergence of computational intelligence techniques, there have been 

a few reported attempts at neural network based tool life modelling. In particular, a feed 

forward neural network model has been proposed for tool life modellmg based on a data 

set of 60 input/output patterns [Narayanan 1995]. The input patterns consist of cutting 

conditions combinations, i.e. cutting speed, feed rate and deptii of cut while the output 

pattern is the observed tool life when turning Niti-alloy 135 with a carbide tool. An average 

predictive accuracy of 6.2% is reported. A similar four-layered feed forward network has 

also been developed for turning grey cast iron (grey G-14) with a mixed-oxide ceramic 

cutting tool (type K090) [Ezugwu et al. 1995]. The network consists of one input layer 

with two input nodes, two hidden layers with 16 nodes per layer and a four nodes output 

layer. The input nodes are fed with the cutting speed and feed rate values, while the output 

nodes provide with a prediction for the tool life as well as the failure mode, i.e. excessive 

flank wear, catasfrophic failure, poor surface finish. The best results obtained were 58.3% 

correct tool life prediction (within the 20% of the actual tool life) and 87.5% correct 

failure mode prediction. Even though these models are indicative of the mapping 

capabilities of multi-layer perception type neural networks for tool life modelling, they are 

very specialised and provide predictions for restricted cutting conditions and for a specific 

combination of tool/workpiece material. 

A fuzzy model of tool life has also been developed on the basis of the development of a 

machining reference database from representative finish turning experiments [Fang and 

Jawahir 1994]. In particular the cutting data for turning work material AISI 4140 (high 

carbon steel) with an ISO P40 flat-faced tool has been used in order to develop fuzzy set 

mathematical models which quantitatively describe the machining performance. The fuzzy 

tool life model derived takes into account 8 inputs, e.g. cutting speed, feed rate, depth of 

cut, normal rake angle, inclination angle, tool cutting edge angle, nose radius and the 

workpiece hardness. The fuzzy model average predictive performance was 6.39% for 

major flank wear, 7.80% for crater wear and 7.72% for minor flank wear. However, the 

determination of the membership function parameters was based on rather intuitive criteria 

and there was no provision for optimisation on the basis of the available cutting data. 
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In the next two chapters a neural-fuzzy systems approach to tool life prediction is 
presented. This method is non-parametric in the statistical sense, i.e. it does not rely on 
any statistical assumption about the underlying tool life distribution. Neither does it 
depend on the validity of any tool life empirical formula, or theoretical knowledge of the 
wear process, since it can be completely data driven. Yet, it is capable of incorporating 
existing a priori knowledge about the cutting process and is easily implementable, thereby 
providing an atfractive alternative tool life modelling approach. 
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NEUROFUZZY TOOL L I F E IMODELLING 

Structure Identification 

6.1 Introduction 

Tool life modelling is an essential part of detailed process modelling for a range of process 

planning activities. The determination of optimal tool replacement policies, as well as the 

optimisation of the cutting conditions are based on the availability of reliable models 

which can provide accurate tool life prediction for all the combinations of tool, workpiece 

and type of cut. Yet, it is very difficult to achieve reasonable accuracy in predicting tool 

life, without increasing significantly the complexity of the model and therefore of the 

computation involved. Furthermore, increased precision is usually achieved at the expense 

of the range of the applicability of the model. Thus, the validity of the model is often 

restricted within a small, predefined region of cutting conditions and workpiece/tool 

combinations. 

It is rather non practical, to specify very high off-line tool life modelling accuracy 

requirements, since off-line modelling can not always foresee for wear phenomena 

occurring during the real-time operation. For example, the precise moment when a built-

up-edge is detached from the tool rake face can not be predicted beforehand. In fact, even 

when in-process tool condition monitoring is employed, still such a task is not trivial. I f 

considerable amount of the tool surface material is removed together wdth the built up 

edge, the tool behaviour in terms of wear resistance may dramatically change, as a result 

of significant weakening of the cuttmg edge. From that moment onwards, tool wear will 

progress in a different way and this can not be explicitiy considered in the case of off-line 
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tool life modelling. Generally speaking, tool wear alters the original tool geometiy, 
resulting in different and often unexpected cutting performance. Therefore, effective tool 
life prediction should be pursued both off-line and on-lme, thus taking into account not 
only the conditions under unworn tools but also those developing during the actual cutting 
process [Fang 1994]. Consequentiy, any effort to establish a very accurate off-line tool life 
model can hardly prove to be cost efficient. Instead, tool life modelling should seek to 
exploit the tolerance for imprecision and uncertainty, in order to balance simplicity with 
precision. Dealing with this sort of dilemma is at the very heart of the theory of fuzzy sets 
[Zadeh 1994]. 

Tool wear progress depends heavily on the particular machine/tool/workpiece 

combination. The cutting data derived from any two different laboratories or from 

different shop floors do not usually match in practice. Unless the knowledge that is 

uniquely relevant to the particular shop floor or laboratory considered can be captured and 

incorporated into a flexible tool life model, reliable tool life modelling would be very 

difficult to achieve. Thus, a tool life model suitable for practical application has to be built 

on the basis of available cutting data. Learning by examples rather than by instruction, is a 

tj^ical characteristic of artificial neural networks. In view of these requirements for 

learning by examples, as well as for uncertainty and unprecision handling, this work 

examines the potential of employing neural-fuzzy methods for tool life modelling. The 

main objectives of the proposed tool life modelling are: 

• To study the main requirements for the specification of a neurofuzzy tool life 

model. 

• To derive a tool life model of reduced complexity. 

• To provide a single generic model for a wide variety of combinations of cutting 

conditions, type of cut, cutting tool and working material. 

• To build a model that is essentially data driven, i.e. to come up with a complete 

formulation for a tool life model, based on available cutting data. 
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• To accommodate a priori empirical knowledge about the turning process and in 
particular, results of tool life modelling using linear multiple regression analysis, 
recently carried out at Durham University [Alamin 1996]. 

• To obtain a flexible tool Ufe model, which can be easily adjusted on the basis of 

future tool life data. 

The main justification for the adopted neurofuzzy modelling approach is that fuzzy 

modelling can achieve reduced model complexity and provide a realistic and transparent 

tool life model, thus facilitating machining optimisation. In addition the requirement for a 

data-driven tool life model, capable of utilising available cutting data suggests that neural 

network - like learning capabilities should be incorporated into the model. 

The rest of this thesis deals with the specification and development of a neural-fuzzy tool 

life model for turning operations. The development of the tool life model is carried out 

following two distinct identification phases, i.e. the structure identification and parameter 

optimisation. Structure identification involves the determination of the mitial fuzzy 

inference system, including the determination of the inputs partition pattem, the size of the 

fuzzy rules base, as well as the selection of initial values for the system parameters. 

Parameter optimisation deals with the adaptation of the initial fuzzy system parameters, 

based on available cutting data. The neurofuzzy model has been developed using the 

Fuzzy Logic Toolbox of MATLAB (The Mathworks Inc.). In particular, the Adaptive, 

Network-based, Fuzzy Inference System (ANFIS) model [Jang 1993] is employed herein 

for tool life modelling. Apart from the earlier mentioned merits of neurofuzzy models, the 

choice of the ANFIS structure, is further justified by the following reasons: 

1. The ability of specific classes of ANFIS models to behave as universal function 

approximators has been established [Jang 1993]. Therefore, it is possible to fmd an 

appropriate ANFIS model for tool life, provided that the quality of the available data 

is high. Within the context of system identification, sample data is considered to be 

of high quality when exhibits the following characteristics : 

• The available data is not too contaminated by noise or other unmodelled 

phenomena. 
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• The data set is complete (persistenfly exiting) in the sense that it contains 
sufficient information for all the range of values of the input variables. 

Evidentiy, a completely data-driven model can not be of high quality i f not 

based on rich data. The data availability issue will be further discussed in the 

next section. 

2. ANFIS models have already found numerous engmeering applications and have 

been tested on nonlinear system identification, chaotic time series prediction, 

adaptive noise cancellation, printed character recognition, automobile fuel 

consumption prediction etc [Jang, et al. 1997]. The nature of the fuel consumption 

prediction problem carries some similarity with the tool life prediction problem. In 

both cases a nonlinear model has to be built on the basis of available input - output 

pairs, where a mixture of continuous and multi-valued input variables is present. 

3. Efficient algorithms for ANFIS model stinctiire [Chiu 1994, Chiu 1996, Jang 

1994] and parameter identification [Jang 1993, Jang and Mizutani 1996] based on 

available data have been developed. 

4. The ANFIS architecture is directiy supported by tiie MATLAB Fuzzy Logic 

Toolbox [Jang and Gulley 1995]. MATLAB is probably tiie most established 

software platform for technical computing. 

The rest of this chapter deals with the structure identification problem for neurofuzzy tool 

life modelling. Issues such as inputs selection, data availability, input space partitioning as 

well as fuzzy rule base initial structure identification are addressed in the following 

sections. Some initialisation results are also presented followed by discussion. 

6. 2 Tool life model structure identification design issues 

The model structure identification involves the selection of relevant input and output 

variables, the determination of tiie stincture of tiie fuzzy inference system, including tiie 

fuzzy rule base construction and the choice of initial premise and consequent parts of the 

fuzzy rules. Evidentiy, tool life is identified as the single output of the neurofuzzy model. 
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The input variables choice depends on the parameters influencmg tool wear and the data 
availability. These issues are examined next. 

6,2.1 Parameters influencing tool wear 

Tool wear has been a subject for research for the last century or so. However, there has not 

been yet established a solid and unified theoretical framework that fully explains and 

accurately predicts the precise way in which tools wear [Mari and Gonseth 1995, Wardany 

and Elbestawi 1997, Arsecularatne et al. 1996, Trent 1991]. Nevertheless, tool life is 

known to be determined by a variety of factors related to cutting conditions, tool and 

workpiece material properties and tool/workpiece/machine tool combinations. 

6.2.1.1 Cutting conditions 

The relationship between cutting conditions, i.e. cutting speed, feed rate and depth of cut 

and tool life has long been investigated. The more aggressive the cutting conditions are the 

shorter is the expected tool life. Among cutting conditions parameters, cutting speed is 

generally considered as the predominant factor causing tool wear. High cutting speeds can 

bring about increased vibration, which in turn may affect the machine tool operation by 

creating defects on some of its components, such as bearings. Increase in feed rate also 

results in higher wear rates, but to a lesser extent than higher cutting velocity. Tool life is 

less sensitive to increase in depth of cut. However, the allowable increase in depth of cut is 

limited by a number of factors, such as the machine tool capability, the amount of metal to 

be removed, tooling capability, surface finish and occasionally by the shape of the 

workpiece [Alamin 1996]. 

6.2.1.2 Tool material properties 

Tool wear progress depends heavily on the material chemical composition. In particular, 

important tool properties are physical and chemical stability at high temperatures and 

resistance to wear (toughness) and fracttire (hardness). 
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6.2.1.3 Cutting tool geometry 

A number of geometiical features related to the cutting tool give rise to different wear 

progress patterns. The main geometrical considerations related to tool wear are the tool 

rake angle, clearance or reUef angle, entering or approach angle, inclination angle, nose 

radius, cutting edge angle and type of chipbreaker . An increase in the rake angle of the 

tool improves cutting efficiency but results in reduced tool life. Excessive increase in the 

tool rake angle weakens the cutting edge and entails higher hazards for tool fracture. A 

negative rake angle can be used to give greater stiength to the cutting edge in occasions 

whenever this is needed to reduce tool failure risks. The tool wear rate is also reduced with 

even a small increase in the clearance angle. This, however, applies only to small angle 

values, since it is not possible to further increase the clearance angle without posing 

serious threat to the cutting edge strength. A slight increase in nose radius is generally 

beneficial for tool life, reducing the wear mainly to the minor but also to the major flank 

[Fang and Jawahir 1994]. On the other hand, the nose radius cannot be excessively 

increased without affecting the chip breakability and cutting efficiency. The choice of 

inclination angle mainly affects the magnitude of the cutting forces developed, whereas 

the significance of the cutting edge angle is more related to the surface finish achieved, the 

cutting forces developed and the chip breaking than directiy to tool life. 

6.2.1.4 Workpiece material properties 

These are generally described by the qualitative term workpiece machinability. Of 

particular importance for tool life considerations are the material hardness, specific heat, 

tensile stiength, as well as the fmished surface of the workpiece. 

6.2.1.5 Tool/workpiece/machine tool interface properties 

There is a plethora of different factors influencing tool wear which are related to each 

individual cutting tool, workpiece and machine tool combination. These include the 

relative hardness of tool and workpiece materials, the chemical compatibility between tool 

and workpiece materials, tiie presence of abrasive particles such as scale layers on the 

surface of the workpiece, tiie condition (e.g. rigidity) of the machine tool, tiie condition of 

the cutting tool in terms of existing wear and the presence of lubricants and coolants. 
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6.2.2 Inputs selection for data-driven tool life modelling 

One fundamental requirement for the tool life model is that it should be data driven. In 

practice, every cutting operation on the shop floor yields a set of approved cutting data 

which hold valuable information about the cutting performance for the particular 

combination of machine, tool and workpiece. It is crucial that this knowledge is exploited 

and not discarded, since it may help improving future operations. The significance of such 

approved feedback information has been recognised and provision for its utilisation is a 

key feature in various prototype systems recentiy developed at Durham University, 

including Computer Aided Process Planning systems for Turning [Maropoulos 1992, 

Maropoulos and Gill 1995], Tool Life Prediction and Management system for Turning 

[Alamin 1996, Maropoulos and Alamin 1996] and Machinability Assessment and Tool 

Selection for Milling [Carpenter 1996]. 

It should be noted that for a data driven model the input selection problem depends 

heavily on data availability. The main difficulty is related to the quality of the data, in 

terms of the richness of the provided information. I f the available set of cutting data is 

only partially exciting, then the resulting model may be overtrained is some regions, while 

it may provide with inaccurate modelling in the areas where the relevant learning 

information was insufficient. Therefore, there is a need to examine all potential sources of 

training data to decide upon the learning strategy to follow. 

6.2.2.1 Data availability 

The main sources of cutting data are machining data handbooks [Metcut Research 

Associates 1980], tool manufacturer's handbooks, laboratory experiments, shop floor data 

and simulated data from existing models. 

Real Life Data: Real life data can be obtained from the shop floor or by utilising a 

laboratory machme tool as a test rig of cutting experiments for producing machining 

data. Obtaining a sufficient training cutting data set from laboratory tests or shop 

floor operations is hardly achievable. It would require extensive experimentation to 

span the whole range of operations which would be both costly and time consuming. 
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Machining Handbooks and Tool Catalogues: The tabled data provided by 
machining handbooks and tool manufacturers include feed rate and cutting speed 
values for different combinations of workpiece material group and insert grade. The 
values given correspond to a certain tool life period, usually 10, 15, 20 or 30 min. 
Tool manufacturers suggest that for different values of intended tool life the cutting 
speed should be calculated by multiplying the given cutting speed values by 
empirical factors. Other correction factors may also be provided for tools with 
various nose radii. The main difficulty in employing data from machining 
handbooks or cutting tool manufacturers for building an ANFIS model is that this is 
only indicative data, which does not provide rich information to achieve a dense 
mapping between the input and output space. A further shortcoming when 
employing these type of data as training exemplars is that they often represent rather 
conservative scenarios, in order to minimise the risk to the cutting operation. 
Therefore, their accuracy in practice is limited. Further data may be derived by 
extrapolation from available data. However, a linear extrapolation is often 
inadequate and there is a need for a more realistic procedure for obtaining extra 
cutting process exemplars. 

Simulated Data: Since it is hardly feasible to obtain sufficiently rich real life data, 

the potential of creating some "artificial" ones, from already existing tool life models 

has been considered. It would have been unwise to discard already existing tool life 

models, when it is possible to build on them, in order to achieve enhanced tool life 

prediction. Improved tool life data can be acquired i f machining handbooks or tool 

manufacturers data is fit into existing tool life models, such as Taylor empirical 

formulae. Such a formula is the extended Taylor's tool life equation, earlier 

mentioned in chapter 5 and repeated here for convenience: 

T- ^ 
1 1 1 

In the above equation T is the tool life (min), v the cutting speed (m/min), / the 

feed rate (mm/rev), d the depth of cut and a,fS,y are constants relevant to the 
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tool/workpiece/type of cut combination. Such models offer a rather rough 
approximation of the actual machining performance. Modelling accuracy can be 
improved i f the free parameters are estimated on the basis of available approved 
cutting data. Such a tool life model is already available in Durham University, where 
a prototype system for tool life prediction and management within the context of an 
integrated tool selection system has been developed [Alamin 1996, Maropoulos and 
Alamin 1996]. Adopting a knowledge based system approach, the system offers 
local approximations of tool Ufe as a function of cutting speed and feed rate for each 
different combination of material group, type of cut (finishing, medium roughing 
and roughing) and insert grade [Alamin 1996]. Every such combination will be 
referred to hereafter as a "tool life group". For each tool life group, cutting data 
provided by tool manufacturers [Seco Tools AB 1993] are utilised to calculate the 
parameters of the following empirical formula: 

T=-r-T (6-1) 

where T stands for tool life (min), v for cutting speed (m/min) and / for feed rate 

(mm/rev), while C, a, y?, are free parameters calculated by linear multiple regression. 

This is a simplification of the extended Taylor formula. The depth of cut is not 

explicitly present, but is indirectly taken into account in the constant C. Thus, a set 

of parameters was calculated for each one tool Ufe group. Each set of parameters 

correspond to a different tool life group, with approximately 300 such groups been 

defined [Alamin 1996]. 

The present work utilises the result of the above tool life model in order to derive 

enhanced cutting data training patterns. The main advantage of this approach is that a rich 

data set can be derived. In addition, both the data provided by tool manufacturers or 

machining data handbooks, as well as Taylor's tool life empirical formula in the form of 

equation (6-1) are taken into account. The drawback of utilising such a cutting data set is 

related to the validity of equation (6-1) itself, regarding the degree of precision to which 

the estimated parameters C, a, and P are valid for each tool life group. However, it has 
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already been shown that such a model is capable of providing with tool life predictions of 

reasonable accuracy in most cases [Alamin 1996]. It should be noted that utilising 

artificially created data from an already existing tool life model is equivalent with 

incorporating a priori knowledge for building the neurofiizzy model. Yet, it is not a 

prerequisite for building such an ANFIS model. Due to its universal approximation 

properties [Jang 1993] the neurofiizzy model has the capacity of being at least as good a 

model as the already existing one. An additional significant merit of ANFIS models is 

their adaptation flexibility on the basis of available fraining data. Indeed ANFIS models 

can be easily frained by employing the hybrid learning algorithm discussed in chapter 4, as 

well as other methods such as the backpropagation [Jang 1997] or the fast "Levenberg-

Marquardt" algorithm [Jang and Mizutani, 1996]. Thus, any initial modelling mismatch 

can be overcome by fraining the neurofuzzy tool life model with available real life data. 

6.2.2.2 Neurofuzzy model inputs 

On the basis of the current data availability, five main parameters were identified as inputs 

to the ANFIS model: 

• Material class: This is a categorical variable. Two broad categories of materials 

are considered herein, namely mild and alloy steels and stainless steels. Materials 

are classified according to the following table [Seco Tools AB 1993]: 

Major 
Material 
Class 

Material 
Class 

Specification 

Mild and 
alloy steels 

1 Very soft, low carbon steels 
Mild and 

alloy steels 
2 Free-cutting steels Mild and 

alloy steels 3 Structural steels, ordinary carbon steels 
Mild and 

alloy steels 
4 High carbon steels, ordinary low alloy steels 

Mild and 
alloy steels 

5 Normal tool steels 

Mild and 
alloy steels 

6 Difficult tool steels 

Mild and 
alloy steels 

7 Difficult high-strength steels 
Stainless 

Steels 
8 Free-cutting, austenitic stainless steels Stainless 

Steels 9 Moderately difficult austenitic stainless steels 
Stainless 

Steels 

10 Austenitic and duplex stainless steels difficult to 
machine 

Table 6.1 Material groups 
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Eight material classes were included, namely very soft steels, free cutting steels, 
structural steels, high carbon steels, normal tool steels, free cutting stainless steels, 
moderately and difficult to machine stainless steels, i.e. groups 1 to 5 and 8 to 10. 
An analytical table of individual material tj^es that fall within the eight material 
groups examined is provided in Appendix B. Material class can be considered as 
ordinal variable within each major material class. It has been quantified on a 1-10 
scale, according to table 6.1. 

• Insert grade: Three types of carbide grades are employed, namely TP 10, TP20 

and TP35 [Seco Tools AB 1993] corresponding to ISO PIO, P20 and P35 

application ranges. Insert grade is a categorical variable but it is also linguistically 

meaningful, since a lower grade corresponds to a more wear resistant insert with 

lower toughness, whereas a higher grade is tougher but usually exhibits shorter 

useful cutting life. It has been quantified according to ISO ratings. 

• Type of Cut: This is a linguistic variable with universe of discourse the linguistic 

values "finishing", "medium roughing" and "roughing". Type of cut is also a 

categorical variable. It is straightforward to assume that insert grade is also an 

ordinal variable. In section 6.2.1 the type of cut is not mentioned among the 

parameters influencing tool life. This is because the type of cut for each tool life 

group is essentially a linguistic description of the type of operation based on expert 

knowledge and taking into account the cutting conditions and the required surface 

fmish. The surface finish in turn is determined by the feed rate and the nose radius 

for single point cutting tools. Considering the current data availbility, the type of cut 

has been quantified between 1 and 3, with the value 1 attributed to finishing, 2 to 

medium roughing and 3 to roughing. 

This is a rather crude quantification for the type of cut, since it is conceivable that, 

for example, finishing cuts can be further distinguished between extra finishing, 

finishing and semi-finishing. Between two finishing cuts with the same cutting 

speed and feed rate, one which is performed with a depth of cut of 1.0 ram seems 

more appropriate to be attributed a higher membership value to the fuzzy set 

"fmishing" than a deeper cut of 2.0 mm. The opposite could be said for their 

memberships to the fuzzy set "medium roughing". For example, one mtuitive choice 

87 



Chapter 6 Tool life model structure identification 

is to attribute to the first cut the membership values 1.0 and 0.1 to the fiizzy sets 

"finishing" and "medium roughing" respectively. The second cut could be described 

by the membership values 0.9 and 0.3 respectively. Such a distinction between types 

of cut is not supported by the existing tool life model [Alamin 1996] and therefore 

by the available cutting data. This data do not present any difference in the expected 

tool life between cuts of the same type but different depth of cut, i.e. the influence of 

depth of cut to the tool life for every tool life group is considered negligible. This 

should not be considered as a major problem, since tool life is generally much less 

sensitive to variations of depth of cut than changes in cutting speed or feed rate. A 

potential fiiture improvement to the model developed here could look at how to 

incorporate the depth of cut into a more flexible fiizzification for the linguistic 

variable type of cut. 

Pinishing 
Minimum 
Maximum 0.35 

Medium Koughing 
TIE-

0.5 

Koughmg 

1 

Table 6.2: Feed rate extreme values for various types of cut (mm/rev) 

MATERIAL C U S S TYPE 
OF CUT 

INSERT 
GRADE 

TAYLOR PARAMETERS CUTTING SPEED 
BOUNDARY VALUES 

MATERIAL C U S S TYPE 
OF CUT 

INSERT 
GRADE 

1/a 1/p C MAX 
(m/min) 

MIN 
(m/min) 

Very soft steel Finishing TRIO 
4.562 1 0.292 

1.49E+13 490 455 
Very soft steel M Roughing TP10 

3.55 1 0 
3.27E+10 430 380 

Very soft steel Roughing TP10 3.566 0 2.50E+10 390 345 
Free cutting steel Finishing TP10 4,584 0.298 7.84E+12 415 385 
Free cutting steel M Roughing TRIO 3.446 0 9.89E+09 365 320 
Free cutting steel Roughing TP10 3.478 0 8.36E+09 330 290 
Structural steel Finishing TP10 4.594 0.29 4.10E+12 370 310 
Structural steel M Roughing TP10 3.603 0 1.36E+10 

320 1 255 Structural steel Roughing TP10 3.42 0 3.43E+09 280 245 
High carbon steel Finishing TP10 4.581 0.355 1.41E+12 310 260 
High carbon steel M Roughing TP10 3.531 0 4.57E+09 270 210 
High carbon steel Roughing TP10 3.665 0 6.49E+09 245 190 
Normal tool steel Finishing TP10 4.626 0.344 856E+11 265 215 
Normal tool steel M Roughing TP10 3.552 0 2.79E+09 225 175 
Normal tool steel Roughing TP10 3.371 

0 1 7.75E+08 
210 160 

Table 6.3 Pattern generation: Cutting speed boundary values and Taylor 
equation parameters for each tool life group [Alamin 1996] 
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MATERIAL CLASS TYPE 
OF CUT 

INSERT 
GRADE 

TAYLOR PARAMETERS CUniNS SPEED 
BOUNDARY VALUES 

MATERIAL CLASS TYPE 
OF CUT 

INSERT 
GRADE 

1/a 1/p C MAX 
(m/min) 

MIN 
(m/min) 

Free cutting stainless Finishing TP20 4.237 0.016 2.61 E+10 170 120 
Free cutting stainless M Roughing TP20 3.642 0 8.24E+08 150 100 
Free cutting stainless Roughing TP20 3.456 0 2.61 E+08 135 95 
Free cutting steel Finishing TP20 4.612 0.292 4.22E+12 365 300 
Free cutting steel M Roughing TP20 4.531 2.596 1.31E+11 305 175 
Free cutting steel Roughing TP20 4.309 2.503 2.61E+10 280 160 
High carbon steel Finishing TP20 4.626 0.344 8.56E+11 260 220 
High carbon steel M Roughing TP20 4.424 2.623 1.53E+10 215 120 
High carbon steel Roughing TP20 4.504 2.616 1.45E+10 195 110 
Normal tool steel Finishing TP20 4.6 0.281 4.82E+11 230 190 
Normal tool steel M Roughing TP20 4.469 2.475 1.29E+10 190 130 
Normal tool steel Roughing TP20 4.559 2.511 1.33E+10 175 120 
Structural steel Finishing TP20 4.581 0.343 1.69E+12 315 265 
Structural steel M Roughing TP20 4.481 2.654 4.99E+10 265 150 
Structural steel Roughing TP20 4.529 2.663. 4.04E+10 240 135 
Very soft steel Finishing TP20 4.584 0.302 6.91E+12 415 355 
Very soft steel M Roughing TP20 4.456 2.628 1.67E+11 355 200 
Very soft steel Roughing TP20 4.45 2.646 1.00E+11 320 180 
Difficult castings stainless Finishing TP35 2.548 0.06 2.21 E+06 120 65 
Difficult castings stainless M Roughing TP35 4.307 0 2.18E+09 100 55 
Free cutting stainless Finishing TP35 4.131 0.015 4.47E+10 210 165 
Free cutting stainless M Roughing TP35 1.348 0.081 2.19E+04 175 1 120 
Free cutting stainless Roughing TP35 1.394 0.082 2.40E+04 

160 1 110 Free cutting steel Finishing TP35 4.601 0.327 2.63E+12 390 335 
Free cutting steel M Roughing TP35 4.495 2.666 7.29E+10 

285 j 160 Free cutting steel Roughing TP35 4.525 2.629 5.45E+10 
255 1 145 High carbon steel Finishing TP35 4.602 0.373 4.79E+11 
245 1 200 High carbon steel M Roughing TP35 4.495 2.76 1.33E+10 
200 1 110 High carbon steel Roughing TP35 4.365 2.164 5.28E+09 
180 1 100 Moderately difficult stainless Finishing TP35 4.122 0.021 7.06E+09 
145 1 100 Moderately difficult stainless M Roughing TP35 3.9 0 1.29E+09 130 i 90 

Moderately difficult stainless Roughing TP35 3.81 0 5.81 E+08 
120 1 70 Structural steel Finishing TP35 4.607 0.318 1.06E+12 285 225 

Structural steel M Roughing TP35 4.578 2.694 4.04E+10 230 130 
Structural steel Roughing TP35 4.453 2.463 1.75E+10 205 120 
Very soft steel Finishing TP35 4.565 0.325 4.40E+12 390 335 
Very soft steel M Roughing TP35 4.434 2.666 1.04E+11 330 185 
Very soft steel Roughing TP35 4.52 2.654 1.07E+11 300 170 
Normal tool steel Finishing TP35 4.599 0.302 3.30E+11 220 170 
Normal tool steel M Roughing TP35 

4.365 1 2.614 
5.28E+09 180 100 

Normal tool steel Roughing TP35 
4.482 1 2.6 

6.18E+09 165 95 

Table 6.3 (cont.) Pattern generation: Cutting speed boundary values and 
Taylor equation parameters for each tool life group [Alamin 

1996]. 
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• Feed rate: It is a continuous variable defined in three different regions, one for 

each type of cut (Table 6.2). A significant overlap exists between finishing and 

medium roughing (0.25-0.35 mm/rev), as well as between medium roughing and 

roughing (0.4-0.5 mm/rev). This is because the type of cut is not uniquely defined 

by the feed rate but depends also on the rest of the cutting conditions. 

• Cutting speed: It is also a continuous variable which is defmed in different 

regions for each combination of material class, insert grade and type of cut. Cutting 

speed ranges for each tool life group are shown in Table 6.3 [Alamin 1996]. 

Material Class Type of Cut Insert Grade 
(ISO P) 

Feed Rate 
(mm/rev) 

Cutting Speed 
(m/min) Tool Life (min) 

5 3 35 0.535221 115,442 17,90747 
3 3 10 0.646825 269,4412 16,73467 
3 3 10 0.531361 254,0913 20,45215 
3 1 35 0.06833 225.2801 36,18398 
3 3 20 0.888796 239.8782 0,919819 
1 2 35 0.347307 231.3477 57,058 
4 2 35 0.358284 187,4931 13,75321 
3 1 35 0.26761 265,1172 11,07116 
1 2 10 0.493003 405,5766 18,03204 
1 1 35 0.098026 375,3271 16,55063 
3 1 10 0,340598 365,3371 9,449632 
2 2 35 0.281089 199,0097 99,65873 
2 1 10 0,173109 398,7314 15,8367 
2 1 35 0,249718 387,8353 5,083784 
4 1 10 0,3076 278,1124 13,60646 
3 3 20 0,902525 209,9425 1,614949 
2 2 20 0,495023 267,6423 8,155333 
1 2 10 0,334173 409,8448 17,37419 
3 1 20 0,234204 300,3192 12.41601 
9 3 35 0.445486 87,24297 23,43579 

Table 6.4 Pattern generation: An Example of Training Patterns 

A total of fifty six tool life groups are considered, which correspond to a wide range of 

cutting process inputs. Approximately 255 training examples per group has been created to 

represent the cutting process performance in terms of expected tool life for each one of the 

tool life groups, totalling up to 14,262 patterns. This pattern set will be referred to 

hereafter as training pattern set. The pattems have been randomly generated for each tool 

life group, so that the set of feed rate and cutting speed values follows a two-variate 

uniform distribution with extreme values those of Table 6.2 and 6.3. The tool life value for 

each set of inputs is calculated according to equation (6-1), where a, (3 and C take the 
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values shown in Table 6.3. Examples of some training patterns are shown in Table 6.4, 

while a partial list of the pattern set can be found in Appendix C. Each pattem consists of 

an input-output pair of the following type; 

{Material Class, Type of Cut, Insert Grade (ISO P), feed rate (mm/rev), cutting speed 

m/min), tool life (min)}. 

The large size of the patterns set ensures that the neurofuzzy model will receive sufficient 

information to achieve the desired predictive accuracy. 

6.3 Determination of ANFIS architecture 

Once a decision has been taken about input selection, the next step is the identification of 

a suitable ANFIS architecture. This includes the determination of the input space 

partitioning, the number of the fuzzy rules, the premise and consequent parts of the flizzy 

rules as well as the initial premise and consequent parameters. The diagram of the ANFIS 

model selected, consisting of five inputs and one output is shown in Fig. 6.1. 
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Figure 6.1: ANFIS Model for Tool Life 
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The Fuzzy Logic toolbox 

(vl.O) of Matiab [Jang and 

Gulley 1995] provides with 

algorithms for the 

identification Sugeno-type 

fiizzy inference systems (see 

chapter 4, [Takagi and Sugeno 

1985]) with the following 

restrictions: 

• First order Sugeno-

type systems 

• Weighted average 

defiizzification 

Medium Roughing Very Soft Steel 
Insert Grade: P20, Feed Rate=0.3mm/rev 

150 4-

c 120 

200 230 260 290 320 
Cutting Speed (m/min) 

350 

Figure 6.2: Expected tool life against cutting speedfor 
medium roughing cuts of very soft steel 

with constant feed rate [Alamin 1996]. 

• Rules weighting equal to unity. 

The Sugeno type fiizzy inference system is an additive model of weighted local fiinction 

approximations. A first order Sugeno fiizzy model is therefore a weighted sum of locally 

linear approximators. It should be noted that the weighting factors are not constants but are 

determined by the level of fiolfihnent of the fiizzy rules premise parts. The transition 

between the operating regimes of the fiizzy rules is gradual rather than abrupt, due to the 

overlap between the antecedent membership fiinctions. This is why Sugeno fuzzy models 

achieve a smooth input-output mapping, when sufficient rule overlap exists. 

To illustrate the point, a simple case of medium roughing cut of very soft steel with an 

ISO P20 insert, at a feed rate of 0.3nim/rev is considered. The expected tool life is 

calculated according to equation (6.1) and Table 6.3 [Alamin 1996] and is shown in Figure 

6.2 against cutting speed. A simple Sugeno fiizzy model is constructed, comprising the 

foUowdng three rules: 

1. IF Cutting Speed (v) is low then Tool Life T = -2.28 • v + 647.4 (min) 

2. IF Cutting Speed (v) is medium then Tool Life T = -0.885 • v + 298 (min) 
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3. IF Cutting Speed (v) is high then Tool Life T = -0.394 • v +153.9 (min) 

where the consequent parts are local linear approximations of the tool life function, 

obtained by simple linear regression. When the cutting speed is attributed crisp 

membership to the linguistic terms "low", "medium" and "high", as shown in Figure 6.3a, 

the input-output mapping is non-smooth (Figure 6.3b). In contrast, when cutting speed is 

fuzzified according to Figure 6.3c, a smooth input-output mapping is obtained (Figure 

6.3d). 

(a) prenise ̂ Fs fcr crisp mles (b) overall 1/0 iiBpping for crisp nJes 

1 
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.e-0.6 

Oi 
220 240 260 280 300 320 340 

Cutting Stjeed (rtyntin) 

(c) preitise W« for fuzzy rules 

s-o.e 

240 260 280 300 320 340 
Cutting Ŝ }eed (mfriin) 

(d) overall I/O rTBpping for fuzzy r\ies 
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Cutting Speed (mMn) 
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Figure 6.3. Contrast between modelling with crisp and fuzzy rules: (a)crisp 
partition of the cutting speed range, (b) input-output for crisp 
rules, (c) fuzzy partition of the cutting speed range, (d) input-

output mapping with fuzzy rules 

The example given is only indicative of the significance of employing overlapping fuzzy 

rules. The advantage of employing such rules has been exploited in the present work, 

which deals with the far more complex problem of obtained a single tool life model for a 

wide range of material classes, types of cut, insert grades, feed rate and cutting speed. To 
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obtain such a model in the five-dimensional input space considered herein, a method for 
generating a reduced set of fiizzy rules based on the available cutting data is necessary. A 
grid partitioning of the input space suffers fi-om the exponential growth in the number of 
fiizzy rules produced. Indeed, the number of fiizzy rules produced by grid partitioning of 

an «-dimensional input space into m regions per mput is m". A grid partitioned 5-

dimensional input space, such the one involved in the present tool life modelling problem, 

would require 243, 1024, 3125 or 7776 fiizzy rules for 3, 4, 5 or 6 membership fiinctions 

defined per input. The subtractive clustering algorithm [Chiu 1994, Chiu 1996] has been 

employed to overcome this problem. As mentioned in chapter 4, this algorithm is by no 

means an optimal one. However it is a very simple and computationally efficient 

algoritiim and is directiy supported by the Fuzzy Logic Toolbox of Matiab. A good initial 

ANFIS model depends on the input space partitioning. The subtractive algorithm is only a 

means that provides an ANFIS structure with a good initial input space partitioning and a 

reduced set of fiizzy rules. Therefore, emphasis will be given to those particular 

characteristics that an ANFIS model should possess in order to stand a good chance of 

being adequate for initial state. 

The premise membership fimctions are selected to be of Gaussian shape. This choice 

ensures smoother boundaries for the activation of the fiizzy rules rather than triangular or 

trapezoidal membership fiinctions. Yet, Gaussian is a simple type of membership fiinction, 

involving only two parameters for its definition. The subtractive algorithm can yield 

different results, depending on the particular choices made for the parameters relevant to 

the calculation of the density measure of each potential cluster (equations 4.9, 4.10), as 

well as on the stopping criteria mentioned in section 4.4. The algorithm parameters 

determine the number of the derived fiizzy rules, as well as the shape of the initial 

membership fimctions. For Gaussian membership fimctions the shape is determined by the 

centre and the spread of the Gaussian kernel. These parameters will be ultimately 

determined by the parameter optimisation algorithm employed. This can be the hybrid 

algoritiim described in Chapter 4 [Jang 1993], tiie fast Levenberg-Marquardt algorithm 

[Jang 1996] or indeed any gradient-based nonlinear optimisation algorithm. 

Alternatively, the fiizzy membership fimctions parameters can be optimised by 
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probabilistic search methods, involving techniques such as evolutionary strategies or 
genetic algorithms [Cordon and Herrera 1995]. The drawback of gradient-based 
techniques is that they are often long and tedious procedures prone to become stack in 
local minima. Evolutionary strategies and genetic algorithms are well suited to fmd global 
optima, often at the expense of long search times. Evidently, the closest the fiizzy system 
parameters are to the optimal values, the easier the parameter optimisation task becomes. 
Therefore, it is important that a good initial state for the fuzzy system is found. For the 
above reasons, the subtractive clustering parameters have to be attributed appropriate 
values to ensure that the resulting fiizzy inference system posses the capacity of achieving 
a highly accurate mapping with a minimum number of fuzzy rules. Fortunately these 
choices are rather intuitive, as it is straightforward to decrease the number of the fiizzy 
rules obtained by setting, for example, higher values for the inhibition area around a 
cluster centre or by increasing the threshold value above which a potential cluster centre 
becomes definitely accepted as the core position of a new fiizzy rule. I f background 
knowledge is available about the modelling task, it can simplify the determination of the 
initial membership flinction parameters. For example, the support of the initially derived 
membership functions can easily be determined by setting appropriate values to the cluster 
neighbourhood of influence parameters of equation 4.9. Yet, some initialisation trials are 
still necessary, in order to decide upon the model complexity required to achieve the 
desired mapping accuracy. 

Once the premise parameters are identified, the consequent ones are calculated by the least 

squares method described in chapter 4. Thus, a completely defined initial ANFIS structure 

is derived. 

6.4 Initialisation results 

Several initialisation runs have been examined which resulted in a variety of ANFIS 

models comprising different number of flizzy rules, ranging from 38 to 73. All the results 

obtained confirm that it is beneficial to employ overlapping fuzzy rules, as it was also 

demonstrated in the simple tool life modelling case examined earlier in this section. Three 

of these initialisation results are now presented as indicative examples. 
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All the input-output data pairs employed in the fiizzy model initialisation by the 

subtractive clustering algorithm are normalised within the region 0 to 1. Thus, equal 

significance of all inputs, regardless of specific scaling is ensured. The accuracy of the 

initial ANFIS model is cross-checked over two different pattem sets. The first is the one 

employed for the initialisation procedure and is a subset of the earlier mentioned in 

paragraph 6.2.2.2 complete training pattem set consisting of 3,000 pattems. This set will 

be referred to hereafter as the initialisation pattem set or simply mitialisation set. The 

second is a separate set of 4978 pattems, used only for checking the mapping accuracy 

achieved. This set v^dll be referred to as the checking pattem set or simply checking set. A 

partial but indicative list of this set is shown in Appendix D for the case of cutting very 

soft steel with an ISO PIO insert. The complete checking set contains cutting data such as 

those shown in Appendix D, but for the whole range of workpiece materials and insert 

grades. The tool life values in this set are calculated in exactiy the same way as in the case 

of the training set. Thus, the checking set corresponds to a series of tests spanning a very 

wide range of inputs combinations that provides with a good indication of the modelling 

performance. The subtractive clustering algorithm parameters for the three different 

initialisation cases are selected according to Table 6.5. 

Subtractive Clustering 
Parameters 

Comments Parameter values for each 
initialisation run 

Subtractive Clustering 
Parameters 

Comments 

Run 1 Run 2 Runs 
Neighbourhood radii: 
specifies the range of 
influence of each cluster 
centre as a fraction of the data 
space in each data dimension 
(i,e, for each input and output) 

Material Class 0,1 0,1 0,26 Neighbourhood radii: 
specifies the range of 
influence of each cluster 
centre as a fraction of the data 
space in each data dimension 
(i,e, for each input and output) 

Type of Cut 0,2 0,2 0,69 

Neighbourhood radii: 
specifies the range of 
influence of each cluster 
centre as a fraction of the data 
space in each data dimension 
(i,e, for each input and output) 

Insert Grade 0,2 0,2 0,55 

Neighbourhood radii: 
specifies the range of 
influence of each cluster 
centre as a fraction of the data 
space in each data dimension 
(i,e, for each input and output) 

Feed Rate 0,45 0,45 0,45 

Neighbourhood radii: 
specifies the range of 
influence of each cluster 
centre as a fraction of the data 
space in each data dimension 
(i,e, for each input and output) 

Cutting Speed 0,2 0,2 0.2 

Neighbourhood radii: 
specifies the range of 
influence of each cluster 
centre as a fraction of the data 
space in each data dimension 
(i,e, for each input and output) Tool Life 0,2 0,2 0,2 
Inhibition area Multiplied by the neighbourhood radius, 

determines the neighborhood of a cluster 
center within which the existence of other 
cluster centers is discouraged. 

1,85 1.35 1,1 

Upper threshold for cluster 
potential 

The potential, as a fraction of the potential 
of the first cluster centre, above which 
another data point is accepted as a cluster 
center 

0.55 0.45 0,4 

Lower threshold for cluster 
potential 

The potential, as a fraction of the potential 
of the first cluster centre, below which a 
data point can not be accepted as a cluster 
center 

0.2 0,15 0.125 

Table 6.5: ANFIS Initialisation: Subtractive clustering parameters 
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The first initialisation run differs from the second only in the inhibition area and threshold 

parameters. In the third initialisation run large values for the neighbourhood area 

parameters for the material class, type of cut and insert grade input dimensions are 

selected. Therefore, the support of the obtained membership functions for these inputs is 

much wider than in the case of the first two initialisation procedures. The impact of this 

difference on the achieved mapping performance of each individual initial ANFIS model 

is examined now in detail. 

Table 6.6 shows initialisation results for three different initialisation procedures. The first 

initialisation results in an ANFIS model with 56 fuzzy rules and exhibits a root mean 

squared error (RMSE) of 5.51 and 5.8 for the initialisation and checking sets respectively. 

This is a rather poor initialisation but the situation improves with the second initialisation, 

which achieves a RMSE of 2.76 and 3.12 for the same sets with a 68 fuzzy rules base. 

ANFIS 
Initialisation 

Run 

Number 
of Fuzzy 

Rules 

RMSE Error Comments ANFIS 
Initialisation 

Run 

Number 
of Fuzzy 

Rules 
Initialisation 

Set 
Checking 

Set 

Comments 

I 56 5.51 5.80 The subtractive algorithm parameters 
are such that the resulting 
membership functions for material 
class, type of cut and insert grade 
correspond to crisp rules. 

2 68 2.76 3.12 

The subtractive algorithm parameters 
are such that the resulting 
membership functions for material 
class, type of cut and insert grade 
correspond to crisp rules. 

3 51 1.96 1.92 A wider neighbourhood of influence 
is selected for each potential cluster 
centre in the case of material class, 
type of cut and insert grade resulting 
to a significant overlap of fiizzy rules. 

Table 6.6: ANFIS Initialisation: Model size and initial RMSE 

It seems that the addition of some extra fuzzy rules increased the initial mapping accuracy 

of the ANFIS model. However the third example appears to be rather odd since it achieves 

better accuracy with fewer fuzzy rules. 

The explanation for the improved performance of the third model lies in the different deep 

structure of the model. In particular, the derived premise parameters of the third model for 
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the material class, type of cut and insert grade inputs define membership fiinctions with 

much wider support than those of the first two models. It has been mentioned in chapters 

4, 5 that the real merit of fiizzy and neurofiizzy systems is that they provide with 

meaningfijl representations of knowledge. Indeed, by examining the membership 

fiinctions of the ANFIS models, some conclusions are drawn about the mapping 

performance of the initial models in the following sections. 
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Figure 6.4. Material classes membership functions which equivalent to 
crisp set boundaries 

6.4.1 Membership functions corresponding to crisp rules. 

The membership fiinctions derived from the initialisation runs 1, 2 (Table 6.5, 6.6) are 

examined first. The input space partition for the variable MaterialjOlass is shown is 

Figure 6.4. 
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Material classes are quantified according to Table 6.1. A clear distinction between the 

different classes exists. Thus, a workpiece material either belongs to a specific class with 

membership function 1 or not at all, i.e. it belongs to it with membership function 0. In 

other words there are crisp boundaries separating material classes. This is consistent with 

conventional logic and in particular with the law of excluded middle. The implication of 

these sharp boundaries between the material classes is that the output of the ANFIS model 

is always triggered by those and only fuzzy rules that correspond to the relevant material 

class. The activation level of the rest of the fuzzy rules is zero. 
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Figure 6.5. Type of cut membership functions which equivalent to crisp set 
boundaries 

The same comment applies to the rest two of the categorical variables, i.e. the type of cut 

and the insert grade. Figures 6.5-6.6 depict the relevant membership fiinctions. Again 

there are sharp boundaries separating the input variables into crisp sets. For example, a 

type of cut is either finishing or not. It makes no difference whether it is finishing with a 

feed rate as high as 0.3mm/rev which brings it close to medium roughing. Fuzzy rules 
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model output. The same kind of rule activation should be expected in the case of the insert 

grade. 
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to crisp set boundaries 

The second ANFIS initialisation run (Tables 6.5, 6.6) differs from the first only on the 

number of the fuzzy rules and not on the membership function parameters. Appropriate 

selection of the initialisation algorithm parameters (Table 6.5) modifies the acceptance 

criteria for the fuzzy rules. In particular, a significantly lower inhibition area value of 1.35 

was defined in this case, allowing for more data points to develop a high potential to 

become accepted as cluster centres. Also the rejection and acceptance criteria have been 

slightly modified, but they are not directly comparable to those defined in the first 

initialisation run, as the data now develop higher potential values, due to the shrinking of 

the inhibition areas. Thus the total number of obtained fuzzy rules increases to 68. The 

RMSE error is reduced in both the initialisation and checking sets (Table 6.6) but still it is 

relatively high. 
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6.4.2 Membership functions corresponding to soft rules. 

In contrast to the first two initialisation runs, the third one results in the determination of 

such premise parameters that allow for a "soft" definition of the boundaries between the 

material classes. These membership flmctions are shown in Figures 6.7, 6.8 and 6.8 for 

the case of material class, type of cut and insert grade respectively. 
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Figure 6.7. Material classes membership functions which equivalent to soft 
set boundaries 

The degree to which each workpiece material belongs to a certain material class, i.e. the 

material class membership values are graphically shown in Figure 6.7 and mathematically 

expressed by the following equation: 
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1 0.49 0.05 0.00 0.00 0.00 0.00 0.00 
0.49 1 0.49 0.06 0.00 0.00 0.00 0.00 
0.06 0.49 1 0.49 0.06 0.00 0.00 0.00 
0.00 0.06 0.49 1 0.49 0.00 0.00 0.00 
0.00 0.00 0.06 0.49 1 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 1 0.49 0.06 
0.00 0.00 0.00 0.00 0.00 0.49 1 0.49 
0.00 0.00 0.0,0 0.00 0.00 0.00 0.49 1 

(6-2) 

where X j , denotes workpiece material corresponding to the z-th class, z,7=1,2,3,4,5,8,9,10 

and A is the material class membership values matrix. For instance a workpiece material 

identified as fi-ee cutting steel (material group 2) has the following membership values to 

the fiizzy set of material classes: 

/ ^ [0.49 1 0.49 0.05 0.00 0.00 0.00 0.00^ 
(6-3) 

where the fuzzy set notation introduced in section 3.2 is employed, i.e. the numerators 

denote membership values and the denominators correspond to material classes quantified 

according to Table 6.1. Accordingly, the type of cut membership values for the third 

ANFIS initialisation are graphically illustrated in Figure 6.8 and in matrix format by the 

following equation: 

X; G X , . 

1.00 0.15 0.00 
0.15 1 0.15 
0.00 0.15 1 

(6-4) 

where Xj stands for finishing, medium roughing or roughing for i= 1,2,3 respectively. 

According to the above equation, the membership values of a finishing cut, e.g. type of 

cut 1 (secfion 6.2.2.2), to the set of types of cut is: 
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, X f 1.00 0.15 0.00 
^ ^' \finishing medium_roughing roughing 

(6-5) 
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Figure 6.8. Type of cut membership fiinctions which equivalent to soft set 
boundaries 

Finally, the graphical representation of the insert grade input space partitioning obtained 

by the thirs ANFIS initialisation run is shown in Figure 6.9. The insert grade toughness 

membership values matrix is: 

X: ex, 

1.00 0.27 0.00 
0.27 1 0.05 
0.00 0.05 1 

(6-6) 

where X; corresponds to PIO, P20 or P35 for /=1,2,3 respectively. For instance, an ISO P20 

insert has the following membership values to the set of ISO P grades: 
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M ^ / ' 2 o j - | p i O + P20 + P35 
(6-7) 

Clearly, the initial premise parameters of the third initialisation are such that the derived 

ANFIS model better exploits the benefits of fiizziness and achieves improved fuzzy 

inference. The representation capabilities of the ANFIS network are enhanced, since the 

desired mapping is achieved through multiple firing not only of the fuzzy rules whose 

premise parts are well matched by the input vector, but also of those that appear to be of 

some relevance to the input values, without fully matching the premise conditions. 
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Figure 6.9. Insert grade toughness membership functions which equivalent 
to soft set boundaries 

It could be argued that even the first two initialisation procedures might well have the 

potential to result in an accurate model, provided that an appropriate algorithm for 

modifying the premise parameters is available. However, in multidimensional modelling 

problems the error surface usually exhibits several local minima. Since the premise 
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parameters are identified by a gradient search method as described in chapter 4, the 
possibility of the learning algorithm becoming stack in local minima is higher for initial 
states that are far from the global minimum. The learning task is fiirther complicated by 
the fact that the available training data set attributes a few discrete values to input 
parameters such as material class, type of cut and insert grade. For example, there are no 
materials being quantified in the material class scale between the integer values of Table 
6.1. Similarly, in the type of cut dimension, there are no training data that would lie within 
the integer values 1, 2 and 3. The same comment applies to insert grade, where only three 
grades are present in the training data set. Due to the scarcity of pattems along the 
material class, type of cut and insert grade scales, the model building problem becomes 
ill-conditioned. A modelling problem is said to be well-conditioned or well posed i f a 
corresponding output exists within the predefined output range for each input vector, 
solution uniqueness is guaranteed and the actual input-output mapping is continuous, 
otherwise it is ill-conditioned or ill-posed [Haykin 1994]. 

Because of the ill-conditioning, large shallow slope areas are present in the error 

hypersurface, posing problems to the gradient learning algorithm convergence. Unless the 

initial state is close enough to the desired error surface minimum, the possibility of 

convergence to a local minimum is high. However, it should be emphasised that the 

model transparency achieved with neurofiizzy modelling allowed the determination of a 

good initial model state. Fuzzy models are particularly well suited for making a 

meaningfiil good initial choice of parameters by taking advantage of available empirical 

knowledge over the particular modelling problem, as well as of the interpretability of the 

model fiazzy rules activation. This is a significant advantage of neuroflizzy modelling in 

comparison to other modelling approaches such as multilayer perceptron-type neural 

networks, polynomial approximations etc. 

6.4.3 Feed rate and cutting speed membership functions 

Tool life is more sensitive to cutting speed variation than to changes in the feed rate. In 

addition, the range over which the input variables are defined for each tool life group is 

generally a smaller portion of the whole range of the allowable values for the cutting 

speed rather than for the feed rate. Therefore the support of the defined membership 
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functions should be smaller for the case of the cutting speed. Therefore, according to 

Table 6.5, a high neighbourhood area value of 0.45 has been selected for feed rate and a 

smaller one (0.2) for cutting speed. This results in a relatively more dense partitioning of 

the cutting speed input space. On the other hand, the feed rate input space is less finely 

granulated, in order to reduce the size of the rule base. The shape of the feed rate and 

cutting speed membership functions is the same for all three initialisation procedures and 

is illustrated in Figures 6.10 and 6.11. 
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Figure 6.10. Feed rate membership functions 

It is worth noting the contrast between the sparsely defined membership flinctions for the 

input parameters material class, type of cut and insert grade and the much more dense 

partitioning of the feed rate and cutting speed input spaces. In fact, according to the 

definition of ANFIS models in section 4.2 [Jang 1993], for each one input variable there 

are defined as many membership functions as many are the fuzzy rules. This is clearly 

shown in Figures 6.10 and 6.11, but it is not apparent in Figures 6.4-6.9. The reason for 
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that is that the subtractive clustering algorithm attributes cluster centres only at data point 

positions. Since there are no data between the values 1,2,3,4,5,8,9,10 for material class, 

the antecedent membership fiinctions relevant to the same material class are identical. The 

same applies to the other two categorical variables, i.e. type of cut and insert grade. Thus, 

ANFIS models may present some structural redundancy in the form of multiply defined 

identical membership functions. 
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Figure 6.11. Cutting speed membership functions 

Once appropriate parameters have been defined for the subtractive algorithm, a new 

initialisation run was performed over the complete training set of 14262 pattems, in order 

to reduce the possibility of an initial state fairly biased towards a small set of pattems. 

This resulted in an initial ANFIS model with 52 fuzzy rules and Gaussian membership 

functions of similar shape to the third initialisation case. This initial structure provides a 

good compromise between modelling accuracy and modelcomplexity. The fuzzy rule base 
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is of reasonable size, considering the applicability range of the model. For example, a 
neural network-based tool life model has been reported for restricted inputs range with just 
two parameters taken into account, i.e. the feed rate and the cutting conditions, which 
resulted in a neiiral structure with no less than 16 hidden nodes [Ezugwu et al. 1995]. The 
initial root mean square error of mapping was 2.4221 and 2.2994 for the complete training 
and the checking pattern set respectively. 

6.5 Conclusion 

This chapter has examined the structure identification issue for tool life modelling. An 

initial ANFIS tool life model of reduced complexity has been derived by employing 

subtractive clustering and linear least squares to identify the nvunber of fuzzy rules as well 

as the initial premise and consequent parts of the fuzzy inference system. The model is 

quite generic since it is relevant to a wide combination of workpiece materials, insert 

grades and cutting conditions. The model so far is completely data driven since all its 

parameters are obtained based on tool life cutting data. A priori knowledge, namely results 

of previous work on empirical tool life modelling previously carried out at Durham 

University [Alamin 1996, Maropoulos and Alamin 1996] has been used to create a 

persistentiy exciting machining data set. 

It is important to realise that the membership functions presented so far are only the initial 

ones and their parameters will be modified after ti-aining in order to improve the achieved 

mapping. However, because learning will be initiated from a relatively "good" startmg 

point, the deviation of the final premise parameters values from their initial positions 

should be rather small. Thus, fast convergence is expected. This is an advantage of the 

ANFIS model trained by the particular hybrid learning algorithm, mentioned in chapter 4, 

which is not shared by other computational intelligence modelling architectures such as 

midti-layer perceptrons trained by a gradient based algorithm, where a much slower 

convergence to the final state is anticipated. The model learning process is examined in the 

next chapter, where some indicative results followed by discussion are also included. 
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C h a p t e r 7 

TOOL L I F E MODEL PARAMETER OPTIMISATION 

Learning, results and discussion 

7.1 Introduction 

In the previous chapter the structure identification problem for neurofuzzy tool life 

modelling has been examined. An initial ANFIS model has been derived which serves as a 

good starting point for initiating the optimisation of the antecedent and consequent 

parameters. The subtractive clustering algorithm was employed for fuzzy rule base 

structure identification and antecedent parameters initialisation. The initial consequent 

parameters were calculated by simple linear least squares estimation. The fuzzy rule 

structure is intended to remain unchanged during adaptation, while both the premise and 

consequent parameters can be optimised by employing neural network - like learning 

algorithms. 

The initialisation procedure did not rely on the availability of an expert for the design of 

the fuzzy rule base, as the overall process has been data-driven. The selection of the 

subtractive clustering algorithm parameters may seem to carry some arbitrariness. 

However, these choices are not meant to be optimal. They are simply based on human 

intuition about the cutting process, thus facilitating the derivation of a good initial A>JFIS 

model. In principle, the subtractive algorithm parameters may have been chosen in a 

different way, so that the obtained initial premise membership functions support is more or 

less wide and the core positioning far away fi-om the optimal one. Then, an efficient 

learning algorithm would have been required to optimise these parameters without 

becoming stack in local minima. Gradient based methods may not be appropriate i f the 

109 



Chapter 7 Tool life model parameter optimisation 

error hypersurface is highly complex or i f the parameter optimisation problem is i l l -
conditioned. In the latter case large shallow slope areas may be present on the error 
hypersiuface, posing problems to the optimisation algorithm convergence. Then, other 
global optimisation methods have to be employed. Global optimisation can be pursued via 
probabilistic reasoning, i.e. genetic algorithms and evolutionary sti-ategies. However, these 
methods usually involve long searches through the parameters space. It is often preferable 
to employ a fast optimisation algorithm, such as the hybrid learning algorithm described in 
chapter four, provided that a good initial model selection is feasible. The ease of obtaining 
a good initial model, which can later be optimised by following a neural network-like 
learning procedure, is a significant merit of neurofuzzy systems. This advantage has been 
exploited in the present work by employing a two stage strategy for the identification of a 
neurofuzzy model for tool life, i.e. first the determination of a good initial ANFIS model 
and second the optimisation of this model parameters based on training data. 

This chapter deals with the parameter optimisation of the tool life model, based on the 

hybrid learning algorithm described in chapter four. The learning procedure requires a low 

number of training epochs, since it is initiated fi-om a good starting point. The derived 

model is a good compromise between model size and mapping accuracy for a wide range 

of combinations of material class, type of cut, insert grade and cutting conditions. A series 

of indicative results are presented which verify the predictive performance of the model. 

An important point demonstrated in this chapter is that neurofuzzy modelling is not 

simply another black-box identification method. The input-output functional mappmg is 

shown to be achieved in a meaningful way. Indeed, it is quite straightforward to interpret 

how the fuzzy rules are activated by a set of inputs and therefore to draw some 

conclusions about the overall modelling achieved. 

The representation power, the simultaneous handling of both numerical and linguistic 

information and the convenience they present to neural network learning strategies are 

some of the atti-active characteristics of neurofuzzy systems. The neurofiizzy tool life 

model presented in this thesis does not in fact depend on any arbitrary assumption, 

regarding the shape of the input-output relationship between cutting process inputs and 

tool life, such as in cases of tool life modellmg based on empirical formulae or cutting 
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process theory. To demonstrate this point, after the training procedure based on the 
training data set derived from the regression model [Alamin 1996] has been completed, an 
hypothetical case of significant model mismatch is considered. The ANFIS model is 
shown to capture with remarkable ease and satisfactory accuracy the new input-output 
mapping, requiring a very low number of training iterations. In addition, no statistical 
assumptions are required in order to derive the tool life model. The system is essentially 
data driven, but it is the nature of fuzzy inference systems to be capable of mcorporating 
human linguistic knowledge, when the data availability does not allow the development of 
completely data-driven solutions. 

7.2 ANFIS tool life model learning 

The initial state for ANFIS learning was the 52 fuzzy rules model derived during the 

structure identification stage. ANFIS parameter optimisation has been carried out by the 

hybrid learning algorithm described in chapter 4. 

7.2.1 Pattern sets 

The ANFIS training was based on the same training pattern set with the initialisation. This 

set consists of 14262 input-output pairs, generated utilising the results of tool life 

modelling work based on multiple regression, recently carried out at Durham University 

[Alamin 1996], as explained in the previous chapter. The set was randomly split into two 

subsets of 7131 patterns, which were both used as a training and checking set in turn. The 

two subsets of the training pattern set are referred to as training set 1 and training set 2. 

They both cover the same input/output space. However, they contain different patterns to 

allow for cross-validation during the learning procedure. 

The learning state has also been cross-checked by employing a third pattern set, consisting 

of 4978 cutting data pattems, which is the same with the checking set used during the 

initialisation phase described in the previous chapter. This set has never been employed as 

a basis either for initialisation or for learning. It has been used only for validation 

purposes. Enrolling separate training and checking sets is a basic form of regularisation, 
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which constraints the search space to avoid solutions of high variance, i.e. overfit. 
Regularisation theory has been inttoduced in 1963 by Tikhonov as a method of solving i l l -
posed problems [Haykin 1994]. Within the context of function approximation, the basic 
idea of regularisation is to stabilise the solution by imposing smoothness consttaints in the 
input-output mapping and thereby transforming an ill-posed problem into a well posed one 
[Girosi et al. 1995]. Early stopping of the training procedure based on cross-validation has 
shown to be equivalent to implicit regularisation [Sjoberg et al. 1995]. Cross-validation 
results to a more biased solution towards smooth models. In practice, simultaneous 
minimisation of both bias and variance in system identification is not feasible, since it 
would require infinitely large learning sets. Therefore bias is a price usually paid for 
reducing model variance [Haykin 1994]. This ensures the model's ability to generalise and 
not only to perform a pattern matching task. 

7.2.2 Computing platform 

The computing platform used for the learning procedure was the Fuzzy Logic Toolbox 

(vl.O) of Matlab (v4.2cl) on a Pentium PC 166MHz with 32MB RAM. The toolbox 

offers a very efficient means of rapid prototyping fuzzy logic systems and is equipped 

with a comprehensive graphical user mterface environment to facilitate design and 

evaluation. The hybrid learning algorithm described in chapter 4 has been employed for 

ANFIS tool life model training. Even though ANFIS training required a small number of 

iterations, the computation performance of the platform was found to be very slow for 

large sizes of networks and training sets. 

7.2.3 Learning progress and pattern outliers 

The learning progress is illustrated in Figures 7.1-7.2. The figure 7.1 shows the root mean 

square error (RMSE) reduction throughout ttaining, while figure 7.2 depicts the mean 

absolute error as a percentage of the tool life value of the regression model. An epoch is 

completed when the whole pattern set is fed into the network for updating the ANFIS 

parameters. The ttaining is carried out in small batches of epochs. After each ttaining 

batch is completed, the ttaining set is then employed as checking set for the next batch and 
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vice versa. The selection of appropriate learning rate for equation (4-20) is of crucial 

importance. The need for a low learning rate is common in batch mode learning cases, i.e. 

when the network parameters are updated after the whole set of pattems have been 

presented to the network as it is the case with the present algorithm. A high learning rate 

in batch-mode training often causes instability [Qin et al. 1992]. Therefore a low initial 

learning rate of 0.005 was selected, which was further reduced as training proceeded to 

assist convergence. 

2.5 1 

Learning Progress 

RMSE 

training set 1 

training set 2 

checking set 

0 10 20 30 40 50 60 70 80 90 

epochs 

Figure 7.1: Root mean square error reduction during training 

The RMSE appears to be lower in the case of the checking set. This is due to the fact that 

the independent checking set is not a randomly generated set but a well constructed series 

of tests, spanning a large area of the mput space, where the model should be required to 

show its best performance. Therefore the existence of statistical outiiers which exhibit 

large squared errors is less likely in the checking set than in the randomly generated 

training set. 

The presence of statistical outiiers in multivariate data is not a trivial problem. Generally 

speaking, in high dimension spaces a very small fi-action of outliers can significantiy 
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degrade modelling accuracy [Rocke and Woodruff 1996]. In system identification tasks, 
outiiers are related to very high squared error values. Estimation algorithms can be trapped 
in attempting to fit the outiiers, instead of fittmg the rest of the data. In fact, large squared 
error values are not always associated with the presence of statistical outiiers and therefore 
appropriate choice of the error measure is needed in order to avoid confounding 
statistically well-behaved data with outiiers. A distance measure that can be robust with 
respect to the presence of outiiers is the Mahalanobis distance [Nadler and Smith 1993] 
between points in «-dunensional space: 

4 ( x , y ) = ( x - y ) ^ a ( x - y ) (7-1) 

where x, y are points in the n-dimensional space and is a positive definite symmetric 

nXn matrix. Obviously, equation (7-1) reduces to the simple Euclidean distance when £2 is 

tiie unity matiix. The pair of the distance measure and tiie matrix that defines it is often 

referred to as a metric. The determination of a good metric that is immune to the presence 

of statistical outiiers has shown to be very difficuh in high dimensional spaces [Rocke and 

Woodruff 1996]. When matrix Q is constant over the space, the metric is said to be global, 

otherwise local metiics are defined. For tiie purposes of the present work, a few training 

pattems which exhibit very high squared errors after initial training, will be treated as 

outiiers and wil l be removed from the training set, to allow for further reduction in the cost 

function over the rest of the pattems. 

The learning process progresses rapidly during the fixst 35 epochs (Figures 7.1-7.2). The 

mean absolute error over the checking set does not follow the same trend and exhibits a 

peak just after the twentieth iteration. After the first 35 epochs the error reduction is been 

retarded without any significant improvement in the cost function. This however is not an 

indication that the network mapping capacity has been exhausted. Careful examination of 

the training set reveals that the reason for the learning process becoming stuck at this stage 

is the presence of very few pattems, with exceptionally high sqtxared error values. In 

particular, the size of this error is of one or two orders of magnitude higher than the 

squared error of the vast majority of the pattems. 

114 



Chapter 7 Tool life model parameter optimisation 

Mean absolute error reduction 
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Figure 7.2: Mean relative absolute error reduction during training. 

These few pattems, or outliers, correspond to boundary values of the feed rate (Table 6.2) 

and cutting speed (Table 6.3) ranges and are shown in Table 7.1. This should not come as 

a surprise, considering the source of the ttaining cutting data, i.e. local models of tool life 

derived by multiple regression [Alamin 1996]. The functional mapping of these models is 

non-smooth at the boundaries separating the tool life groups. In addition, most of the 

pattems identified as outliers correspond to feed rate values that lie within the overlapping 

regions defined for finishing and medium roughing (0.25 - 0.35 mm/rev), as well as for 

medium roughing and roughing (0.4 - 0.5 mm/rev). 

The definition of overlapping regions of feed rate for different types of cut is not wrong in 

principle. For instance, a cut with a feed rate of 0.26 mm/rev may be considered both as a 

finishing or medium roughing cut, depending on the depth of cut. However, this 

distinction is not supported by the cutting data derived from the regression model [Alamin 

1996] and therefore the input-output relationship is poorly defined for some small regions 

of the input space. These regions appear to exhibit the highest squared errors. Even though 

their absolute error as a percentage of the regression model tool life value is not of a 

different order of magnitude than the average absolute error of the whole ttaining set, the 
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outliers dominate the training process by having very large corresponding "deltas" during 

the error backwards propagation procedure of the hybrid learning algorithm. As mentioned 

in chapter 2, these deltas are defined for each node as a fimction of the derivative of the 

activation of the node. Since the target mapping (i.e. the regression model) is non-smooth 

in the tool life groups boundaries, these deltas can acquire very high values. It is important 

to note that this behaviour is related to the particular source of cutting data and is less 

likely to be observed on approved real life data. 

Material 
Class 

Type of 
Cut 

Insert 
Grade 
(ISO P) 

Feed Rate 
(mm/rev) 

Cutting 
Speed 

(m/min) 

Tool Life 
(min) 

ANFIS 
Output 
(min) 

Squared 
Error 

5 3 35 0.4190 i 97.27 72.96 59.75 1103.04 
1 2 20 0.2622 228.99 172.11 139.56 1059.14 
1 2 20 0.2934 212.25 179.68 152.78 723.20 
5 3 35 0.4521 96.79 61.20 36.85 592.95 
1 2 20 0.2871 219.89 162.60 1 139.09 552.82 
5 2 35 0.3250 100.95 178.12 j 154.70 548.37 
1 2 20 0.2851 223.47 154.05 1 132.78 452.52 
1 2 20 0.2804 226.73 150.90 1 129.77 446.52 
5 2 35 0.3273 101.52 170.61 150.19 416.76 
3 3 35 0.4063 121.68 83.57 63.51 402.62 
5 3 35 0.4640 97.78 54.64 35.24 376.46 
3 3 35 0.4367 120.67 72.61 55.52 292.14 
1 2 20 0.2588 245.97 129.49 112.66 283.40 
1 2 20 0.2585 246.45 128.82 112.18 276.79 

5 1 2 35 0.3165 104.35 165.18 149.02 261.01 

3 1 2 20 0.2660 170.42 167.80 151.64 260.96 
5 3 35 0.4278 105.13 48.77 34.01 217.97 
5 3 35 0.4319 105.37 47.08 33.48 184.81 
5 3 35 0.4176 107.85 46.32 33.23 171.34 
3 3 35 0.4406 123.18 64.81 51.87 167.44 
2 3 35 0.4162 146.27 87.02 74.58 154.86 
5 2 35 0.3461 102.25 142.89 130.73 1 147.91 
3 2 35 1 0.2650 150.17 156.95 144.96 j 143.95 
3 2 35 0.4771 229.52 4.62 1 16.17 1 133.39 
3 2 35 0.3070 136.24 164.87 1 154.20 j 113.71 
9 3 35 0.8563 70.49 52.80 42.48 106.63 
5 2 20 0.2535 131.69 130.17 119.91 105.38 
9 3 35 0.7889 70.65 1 52.34 42.08 105.37 
3 2 35 0.4234 229.06 6.43 16.50 101.43 
1 2 35 0.4851 186.92 60.26 69.30 81.69 
5 3 35 0.5526 95.81 38.01 29.15 78.40 
3 2 35 0.4130 227.68 7.07 15.91 78.32 
3 2 35 0.3884 229.48 8.04 16.88 78.18 
9 3 35 0.6583 70.62 52.43 43.61 77.83 
3 2 35 0.4497 225.65 5.85 14.60 76.49 
3 2 i 35 0.4515 225.40 5.82 14.47 74.82 
3 2 1 35 0.4824 223.31 5.08 13.50 70.84 
3 2 1 35 0.4487 224.04 6.09 13.84 60.15 

Table 7.1: Training set outliers 
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After the 67th iteration, 38 out of the 14262 patterns were identified as outliers (Table 7.1) 
and were excluded firom the training pattern set. This choice was not meant to target at 
completely eliminating the outliers fi-om the training set but rather than to show that 
ANFIS modelling accuracy can be enhanced if such outliers are removed. A significant 
reduction in the error over both the resulting training data set (training set 2) as well as the 
checking set was then noticed, while the squared error over the initial training set was 
slightly increased. Despite this increase, even the mean absolute error over the first 
training set has been reduced. 

Since the training goal is the reduction of the squared error, the training procedure, before 

the exclusion of the outiiers from the learning pattem set was in fact attempting to reduce 

mainly the error of the outiiers which were dominating the overall process. When the 

learning process is allowed to proceed without been slowed down by these outiiers, the 

mean absolute error is significantiy reduced. This is because the patterns contributing to 

the mean absolute error are mainly those corresponding to small tool life values, where 

even a relatively small absolute error value may produce a large relative error. Yet, the 

training set still includes many patterns corresponding to boundary input/output values 

exhibiting rather high squared error values. Eventually, higher accuracy at the core of the 

input space could be achieved if the boundary accuracy requu-ements are slightiy relaxed. 

A more sophisticated way of achieving that would be to introduce a robust error 

suppressor fimction [Kosko 1992]. In particular, the squared error criterion could be 

replaced by a robust error suppressor fimction of the form: 

a-e 

where e corresponds to the non-suppressed and e' to the suppressed error and a, b are 

parameters that can be adequately defined to determine the range of mfluence and the 

magnitude of tiie error suppression. Such a fimction has been found beneficial in 

suppressing extremely high squared error values relevant to the presence of outiiers in 

large random pattem sets for backpropagation training of feed forward neural networks 

with sigmoid activations [Emmanouilides and Petrou 1997]. Employing such an error 

suppressor formula in the case of ANFIS training would involve deviation from the 
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linearity for the consequent parameters. Therefore, appropriate modification of the hybrid 
training algorithm would be required. For instance, the consequent parameters could also 
be identified by gradient descent. However, this would inevitably result in a slower 
training procedure. 

Training results are presented later on this chapter. These results correspond to the 

network state after 87 epochs. The curves slope in Figs 7.1-7.2 indicate that fiirther 

improvement in the network performance should be expected after the exclusion of the 

outiiers from the pattem set. However, the fraining procedure imder the present 

hardware/software configuration is quite slow, since the whole training process lasted 

approximately 96 hours of uninterrupted operation. One ftirther step that could speed up 

training time would be an upgrade either in hardware or software. The software 

improvements that could be anticipated include a newer version of the computational 

platform (at the time that this thesis is written, version 2.0 of the Fuzzy Logic Toolbox is 

due to be announced and version 5.1 of Matiab has already become available), or 

obtaining a fast executable version of the ANFIS training algorithm by coding it directiy 

into C -H- or by using the C compiler which is an optional additional tool for Matiab. For 

the purposes of the present work it is important to note that even the current learning state 

of the obtained tool life model reveals the representation power of the neurofiizzy 

architecture employed. The ANFIS tool life model developed is shown to have the 

capacity of capturing the complex input/output relationship for a wide range of inputs 

combinations. A series of representative results are presented in the next section, which 

demonstrate the predictive performance of the model. 

It should be mentioned that several training tests have been carried out with different 

initial states. These included a variety of ANFIS networks with a fiizzy rule base size 

ranging from 38 to 73 fiizzy rules and witii various Gaussian membership fimction shapes, 

apart from those described in the previous chapter. The results presented here are a good 

compromise between the network size and modelling accuracy. Due to the bias/variance 

trade-off [Sjoberg et al. 1995], additional model complexity can enhance modelling 

accuracy at the expense of high modelling variance, i.e. overfit. On tiie otiier hand, ANFIS 

, models of smaller fiizzy rule base size lack the modelling capacity to achieve a mapping of 

sufficient accuracy. 
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7.3 Results and discussion 

Before considering the results obtained, the way the ANFIS model is activated by a set of 

inputs in order to provide a predicted value for tool life is first examined. This will give a 

good indication of how the model interprets the inputs, whilst providing an illustration of 

the meaningfiil way in which the overall mapping is achieved. 

The ANFIS tool life model derived is a fiizzy inference system with the following 

characteristics: 

• Singleton fiizzification with Gaussian membership functions. 

• Algebraic product inference. 

• Consequent parts corresponding to the first order Sugeno-type fuzzy model 

[Takagi and Sugeno 1985] defmed in section 4.2 (equation 4-5), i.e. consequent 

fimctions are linear combinations of the inputs. 

• Weighted average (centroid) defiozzification. 

The rule base of the derived ANFIS tool life model consists of fiizzy rules of the following 

form: 

IF (Material Class is MF,,.) and (Type of Cut is MF^,) and (Insert Grade is MFj, ) and 

(Feed Rate is MF^,.) and (Cutting Speed is MF^.) 

THEN (Tool Life is /{Material Class, Type of Cut, Insert Grade, Feed Rate, Cutting 

Speed}) 

where 

• MFjj denotes the Gaussian membership fionction associated with the /-th fuzzy 

rule and the_/-th mput, j=l,2,3,4,5 for the input variable material class, type of cut, 

insert grade, feed rate and cutting speed respectively. 

• The input variables material class, type of cut, insert grade, feed rate and cutting 

speed are quantified as described in section 6.2.2.2. 

• The consequent function/{•} is a linear function of the inputs. 
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0.9 1 

Figure 7.3: Feed rate membership functions after training 

As explained in the previous chapter, each training data point attains specific discrete 

values in the input dimensions of material class, type of cut and insert grade. Because of 

the lack of cutting data patterns acquiring values between these discrete points, the 

gradient search through the parameter space can not move the initial membership 

functions far from their initial positions. The final shapes of the membership fimctions for 

these input variables remain practically unchanged after training and are similar to those 

shown in Figures 6.7-6.9. The final membership fimctions for the feed rate and cutting 

speed are depicted in Figures 7.3-7.4. 

Figure 7.4: Cutting speed membership functions after training 
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7.3.1 The rule firing mechanism 

Depending on the positioning of the core of the premise membership fiinctions, each 

fuzzy rule can be regarded as relevant to a particular tool life group. Accordingly, the 

correspondence between fuzzy rules and tool life groups is summarised in Table 7.2, 

where the way that the fuzzy rules are activated for a given combination of inputs is 

illustrated. The grey shaded areas correspond to defmed tool life groups. For each one of 

these groups tool life data were included into the training and checking sets. 

Material 
C l a s s 

F i n i s h i n g Medium R o u g h i n g Rough ing 
Material 

C l a s s P10 P20 P35 RIO P20 P35 P10 P20 P35 
1 15 33 7 16 52 40 25 39 42 
2 8 3 6 20 30,47 35 27 19,51 
3 29 31 36 13 48 
4 9 1 4 2 22,41 43 10 14 
5 24 38 11,49 21 37 44,50 
8 26 18 17 28 32 23 
9 5 45 

10 12,34 1 46 

Table 7.2: Correspondence between tool life groups and fuzzy rules; the numbers 
indicate fuzzy rules relevant to a specific combination of material class, type of 
cut and insert grade. The grey shaded areas correspond to defined tool life 
groups. 

The fifty two fuzzy rules derived have premise membership fimctions whose core 

correspond to certain tool life groups. A fuzzy rule number appearing at a specific cell, 

implies that the core of the antecedent membership functions of this rule corresponds to 

this particular combination of material class, type of cut and insert grade, indicated by the 

position of the cell. For instance, finishing free cutting steel (material class 2) with PIO 

grade, invokes the 8th fiizzy rule to fire. The firing strength depends also on whether the 

feed rate and cutting speed values correspond to the core of this rule premise membership 

functions. It is worth noting that several tool life groups lack a clear representation within 

the fuzzy rule base. However, these input space regions are computationally supported by 

the fuzzy rules which are relevant to adjacent inputs combinations. On the other hand, 

some tool life groups are represented by more than one fuzzy rules. 
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Figures 7.5-7.6 illustrate the fiizzy rules firing mechanism and the output provided by the 

ANFIS tool life model for the following set of inputs: 

• Material class: Free cutting steel (class 2). 

• Type of cut: Fmishing. 

• Insert grade: PI0. 

• Feed rate: 0.15 mm/rev. 

• Cutting speed: 415 m/min. 

The cutting speed value has actually been defined as the upper boundary value for this 

type of operation (Table 6.3). The expected tool life according to the regression model is 

13.76 min, while the ANFIS model yields 13.6 min which corresponds to a 1.16% relative 

modelling error. This set of inputs triggers 7 out of the fiizzy rules with varying firing 

strengths, shown in Table 7.3. 

Fuzzy Rule Firing Strength Strength Order 

3 0.0179 5 

6 0.0047 6 

8 0.8739 1 

9 0.0001 7 

15 0.1269 2 
16 0.0268 4 

33 0.1088 3 

Table 7.3: Fuzzy rules firing strength for finishing free cutting steel with an 
ISO P10 insert 

In figure 7.5, a screen damp of the rule viewer window of the Fuzzy Logic Toolbox 

illusfrates the complete set of fiizzy rules. A more detailed insight in the rule firing 

mechanism is provided by figure 7.6, where only the most relevant fiizzy rules are 

depicted, sorted according to firing sfrength order. This figure demonstrates an important 

point, related to tiie representation power of neurofiizzy systems. That is tiie ease of 

interpreting how the model actually achieves tiie input-output mapping. 
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II 

Figure 7.5: Fuzzy rules firing for finishing free cutting steel with an ISO 
PIO insert 
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For instance, all five premise membership functions of the 8th fuzzy rule (1st in Figure 
7.6) are almost fiilly matched. In contrast, in the case of the 15th fuzzy rule (2nd in Figure 
7.6) the type of cut, insert grade and feed rate membership functions are almost fully 
matched, whereas both the material class and cutting speed membership functions are only 
partially matched. In the example considered, the degree of compatibility of the inputs to 
the premise parts of the rest of the fuzzy rules is even smaller and is practically zero for 
any other rule not listed in Table 7.3. 

It is evident from the above that, even though a single model is derived for the whole 

range of mputs, it is still straightforward to recognise which exactiy rules are activated for 

any combination of inputs. Therefore, neurofuzzy models provide with a transparent 

input-output mapping. This feature is not shared by other black-box modelling tools, such 

as the popular feed forward neural networks with sigmoid activations, or by polynomial 

approximators. Because of their transparency, neurofuzzy inference systems are often 

called grey-box models. When a neurofuzzy model performs poorly in some region, 

modelling accuracy can be improved by simply adding an extra fuzzy rule to cover this 

region, or by splitting an existing rule into two [Kosko 1997]. The best place to place a 

new fuzzy rule is where it most reduces the approximation error between the fuzzy system 

output and the approximand function. 

A different example is illustrated in Figures 7.7-7.8. The inputs to the ANFIS model are: 

• Material class: Difficult to machine stainless steel (class 10). 

• Type of cut: Medium roughing. 

• Insert grade: P35. 

• Feed rate: 0.4 mm/rev. 

• Cutting speed: 90 m/min. 

The regression model suggests a tool life of 8.33 min, while the ANFIS network predicts 

7.52 min. Again, figure 7.7 illusti-ates the complete set of fuzzy rules, wheareas in figure 

7.7 the most relevant fuzzy rules are shown, sorted according to firing strength order. The 

fuzzy rules firing strengths are shown in Table 7.4. 
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AMMJJ 

Figure 7.6: Firing of most relevant fuzzy rules for finishing free cutting steel with 
an ISO PIO insert (rules sorted according to firing strength). 
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Fuzzy Rule Firing Strength Strength Order 

5 0.4449 2 

12 0.024 4 

17 0.0019 6 

18 0.0001 8 

23 0.0014 7 

26 0.0001 9 

28 0.0124 5 

34 0.0784 3 

46 0.7354 1 

Table 7.4: Fuzzy rules firing strength for medium roughing difficult to 
machine stainless steel with an ISO P35 insert 

Here the input parameters material class and insert grade are such that the ANFIS mapping 

receives computational support from a few exfra fuzzy rules which correspond to 

membership fimctions relatively close to those of the fuzzy rules which fire at full 

strength.. In particular, rule 46 is shown to be activated at almost full strength, as all its 

premise parts are nearly fully matched. Computational support is provided mainly by the 

5* rule, whose all premise parts apart from the material class are ahnost fully matched. In 

other words, the 5̂ ^ fuzzy rule, which corresponds to medium roughing moderately 

difficult to machine stainless steel (material class 9) is shown to be partially activated. 

This is well justified rule fuing, since tiie material classes 9, 10 are adjacent. Cutting 

performance on moderately difficult to machine stainless steels should present similarities 

with the performance on difficult to machine stainless steels. In addition, the cutting speed 

value of 90mm/rev belongs also to the cuttmg speed range defined for medium roughing 

moderately difficult stainless steels. To a much lesser extent, rules 12, 17, 28 and 34 also 

fire. The rest of the fuzzy rules firing strength is practically zero. Having examined both of 

the above examples, it becomes clear that the whole firing mechanism is activated in a 

quite sfraightforward and meaningful way. In a neurofuzzy inference system that has been 

adequately ti-ained to perform an input-output mapping, the overall modelling task is 

accomplished in a natural way, i.e. in the form of fuzzy IF-THEN rules, which is easily 

interpreted by a human. 
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Figure 7.7: Fuzzy rules firing for medium roughing difficult to machine 
stainless steel with an ISO P35 insert 
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Figure 7.8: Firing of most relevant fuzzy rules for medium roughing difficult to machine 
stainless steel with an ISO P35 insert (rules sorted according to firing strength) 
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It is worth noting that a neurofuzzy model, such as the one described m this thesis, 
requires the existence of a well-constructed training data set in order to come up with a 
completely data driven model. This ensures that there is sufficient information to support 
the creation of at least one fiizzy rule having its premise parts activated at every valid 
combination of inputs. Thus, the possibility of havmg a range of inputs that fail to activate 
any of the fuzzy rules can be eliminated. Less dependence on data availability can be 
achieved by intuitive definition of the fuzzy rules, based on available expert knowledge. 
For instance, it is rather straightforward to add an extra fiizzy rule to be activated at a 
predefined range of inputs. This should be done when it is felt that the available data is not 
rich enough to span the particular region, but some rough guess can be made about the 
expected outcome, based on existing expert knowledge. In many occasions, and in 
particular in machining practice, an expert can often provide with a vague guess about the 
anticipated tool life, usually in linguistic terms such as short, medium, long etc. Such an 
uituitive guess should suffice to initially define additional fuzzy rules. The parameters of 
this rule can later be optimised on the basis of even scarce available machining data. 

7.3.2 Indicative results 

Having examined the rule firing mechanism, some indicative results are now presented, 

covering a wide range of inputs combinations. Figures 7.9-7.15 illustrate the ANFIS 

model tool life predictions versus cutting speed variations, compared to those of the 

regression model employed for the derivation of the fraining tool life data [Alamin 1996]. 

It should be emphasised once again that the modelling accuracy is tested on cutting data 

never employed either for ANFIS initialisation or for training. Therefore, the good 

mappuig performance achieved indicates that tiie ANFIS tool life model can generalise the 

knowledge contained in the fraining patterns and not only perform a pattem matching task. 

First the ANFIS tool life predictions for cutting free cutting steel with a TP 10 insert are 

shown in Figure 7.9. Results are presented for all types of cut. In all cases the ANFIS 

mapping performance is highly accurate, exhibiting root mean squared error (RMSE) 

values well below unity and mean relative absolute error between 0.8% and 2.6%. 
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Figure 7.9a: RMSE^O.51, 
mean abs.err=2.59% 

Figure 7.9b: RMSE=0.17, 
mean abs. err.=0.81% 
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7.9: ANFIS tool life predictions for turning free cutting steel with an ISO 
PIO insert 
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Figure 7.10. Again, the ANFIS performance is very good in all cases of type of cut, i.e. 

finishing, medium roughing and roughing. The root mean square error is well below 1.0 

and the mean relative absolute error ranges between 1-3%. 
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Figure 7.10a: RMSE^O.64, 
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Figure 7.10b: RMSE=0.50, 
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Figure 7.10: ANFIS tool life predictions for turning high carbon steel with 
an ISO PIO insert. 

131 



Chapter 7 Tool life model parameter optimisation 

Finishing normal tool steel 
Insert grade: P20, Feed rate: O.lmm/rev 

30 

25 i 

g 15 

10 

Regression 

-ANFIS 
model 

190 200 210 220 

Cutting speed (m/min) 

230 

Finishing normal tool steel 
Insert grade: P20, Feed rale: 0.2mnn/rev 

25 

20 

§ 10 

Regression 

. ANFIS 
model 

190 200 210 220 

Cutting speed (m/min) 

230 
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Figure 7.11c: RMSE^0.21, 
mean abs.err=1.05% 

Figure 7.1 Id: RMSE=0.88, 
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Figure 7.11: ANFIS tool life predictions for turning normal tool steel with 
an ISO P20 insert 

Similar results are also obtained for finishing and medium roughing of normal tool steels 

with an ISO P20 insert (Tigure 7.11). However, a large mean value of relative absolute 

error is noticed for roughing normal tool steel with the same insert grade. It is worth 

noting that this does not correspond to an equally high root mean square error value. This 

is a case of a high relative absolute error appearing in a region of small tool life values. 

132 



Chapter 7 Tool life model parameter optimisation 

Equally good mapping is achieved in the case of finishing and medium roughing free 

cutting stainless steel with a ISO P20 insert (Figure 7.12). The root mean squared error is 

less than 0.5, while the mean absolute relative error is below 2.3%. Again, the accuracy is 

poorer for the roughing case, which presents a RMSE value of 1.12. The corresponding 

mean absolute relative error is 4.88%. 
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Figure 7.12c: RMSE=0.40, 
mean abs.err=1.88% 

Figure 7.12d:RMSE=1.12, 
mean abs.err=4.88% 

Figure 7.12: ANFIS tool life predictions for turning free cutting stainless 
steel with an ISO P20 insert 
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Figure 7.13b: RMSE=0.36. 
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Figure 7.13: ANFIS tool life predictions for turning moderately difficult 
stainless steel with an ISO P35 insert 
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The same remarks apply when examining the results obtained for turning moderately 

difficult stainless steel (Figure 7.13), as well as in the case of turning difficult to machine 

stainless steel (Figure 7.14) with an ISO P35 insert. In the latter case, only finish and 

medium roughing turning operations are defined. The mappmg performance deteriorates 

for cuttuig speed values close to the upper defined boundary value for the medium 

roughing case in Figure 7.14. 
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Figure 7.14a: RMSE -0.72, 
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Figure 7.14b: RMSE =1.69, 
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Figure 7.14: ANFIS tool life predictions for turning difficult to machine 
stainless steel with an ISO P35 insert 

Some examples of poor modelling performance are shown in Figure 7.15. In particular 

figures 7.15a-b illustrate cases of high root mean square error values appearing at cases of 

long tool life, while the performance in terms of the mean value of he relative absolute 

error is not equally poor. The opposite case is demonstrated by Figures 7.15c-d, where the 

RMSE values are now rather small. However, because the tool life is now short, the result 

is a mean relative absolute error higher than 10%. 
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Figure 7.15d: RMSE=0.60, 
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Figure 7.15: ANFIS tool life predictions for a range of inputs which 
correspond to either very long or very short tool life values 

The results presented reveal that the ANFIS model obtained after 87 iterations of training, 

have captured the complex fiinctional relationship between the five inputs and the output, 

i.e. it can predict the tool life given the material class, type of cut, inset grade, feed rate and 

cutting speed. 
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The graphs in figures 7.9-7.15 illustrate the predictive performance of the developed tool 
life model over a series of well constructed tests, none of them being employed either for 
ANFIS initialisation or as a training example during the learning phase. In most cases the 
model provided predictions of sufficient accuracy. The overall mapping appears to be 
smooth, with no abrupt prediction error variations throughout the series of tests. In other 
worrds, a model of low variance has been derived, i.e. no overfit has been observed. 
Therefore, it can be said that the ANFIS tool life model obtained offers a good 
compromise between modelling accuracy and model complexity. The least accurate results 
are obtained at or close to the boundary values of the inputs or outputs. 

So far the ANFIS model has been shown capable of capturing the functional relationship 

between the five input variables and the tool life. The ftmctional mapping learned is 

actually that of a series of local models, based on multiple regression performed over the 

Taylor equation (6-1). [Alamin 1996] The question is how such a model would perform 

against cutting data that do not necessarily conform to that equation. Such a case is 

examined in the next section. 

7.3.3 Testing ANFIS tool life model adaptation capacity 

The regression model employed for the derivation of the cutting data was shown to offer 

good tool life predictions in many cases [Alamin 1996]. However there is no guarantee 

that a fimctional relationship such that of Taylor equation in the form of equation (6-1) 

would be adequate for all cases of machining with single point cutting tools. Many other 

tool life equations have been suggested in the literature, as discussed in chapter 5. The 

neuroflizzy tool life model presented in this work is not restricted to follow the mapping 

produced by the regression model. It is flexible enough to capture tool life relationships 

which deviate fi:om the model employed for obtaining the training data. To demonstrate 

this, an hypothetical case of cutting performance following a different input-output 

mapping than that of equation (6-1) is now considered. In particular, it is assumed that the 

expected tool life can be modelled by the following equation: 

137 



Chapter 7 Tool life model parameter optimisation 

T = 
C 

I i 
D + V f ^ 

(7-3) 

This is a modification of the Taylor equation (6-1) which admits an additive term, D, in 

the denominator. This term is assumed to receive different values for each tool life group. 

This equation is consistent with Taylor formula for Z>=0, but can lead to significant 

variation in the tool life response curve for non-zero values of D. The presence of an 

additive term in the denominator of a tool life equation has been suggested in the 

literature, for modelling the tool life of tungsten carbide tools at high cutting temperatures 

(higher than 800°C) [Mari and Gonseth 1993]. However, equation (7-3) is not introduced 

here to accurately model tool life and therefore there is no intention to give a physical 

interpretation of the model mismatch introduced. It is simply a plausible relationship 

between tool life and cutting conditions, upon which the ANFIS model adaptation ability 

will be tested. 

It is now assumed that the actual machining performance observed on a shop floor 

machine tool is consistent with equation (7-3). The question is whether the ANFIS tool 

life model developed so far can actually be used for tool life prediction, based on cutting 

data obtained from this revised tool life model. 

MATERIAL CLASS TYPE 
OF CUT 

INSERT 
GRADE 

NEW MODEL PARAMETERS CUTTING SPEED 
BOUNDARY VALUES 

MATERIAL CLASS TYPE 
OF CUT 

INSERT 
GRADE 

1/a j 1/p 
C D MAX 1 MiN 

(m/min) | (m/min) 

Very soft steel Finishing TP10 4.562 0.292 1.49E+13 2.07E+11 490 455 
Very soft steel M Roughing TRIG 3.55 0 3.27E+10 4.97E+08 430 380 
Very soft steel Roughing TP10 3.566 0 2.50E+10 4.20E+08 390 345 
Free cutting steel Finishing TP10 4.584 0.298 7.84E+12 1.37E+11 415 385 
Free cutting steel M Roughing TP10 3.446 0 9.89E+09 1.95E+08 365 320 
Free cutting steel Roughing TP10 3.478 0 8.36E+09 8.87E+07 330 290 
Structural steel Finishing TP10 4.594 0.29 4.10E+12 6.58E+10 370 310 
Structural steel M Roughing TP10 3.603 0 1.36E+10 1.46E+08 320 255 
Structural steel Roughing TP10 3.42 0 3.43E+09 4.39E+07 280 245 
High carbon steel Finishing TP10 4.581 0.355 1.41E+12 2.23E+10 310 260 
High carbon steel M Roughing TP10 3.531 0 4.57E+09 8.80E+07 270 210 
High carbon steel Roughing TP10 3.665 0 6.49E+09 1.06E+08 245 190 
Nomnal tool steel Finishing TP10 4.626 0.344 8.56E+11 1.08E+10 265 1 215 
Normal tool steel M Roughing TP10 3.552 0 2.79E+09 5.16E+07 225 1 175 
Normal tool steel Roughing TP10 3.371 1 0 7.75E+08 1.07E+07 210 1 160 

Table 7.5 Pattern generation for revised tool life model: Cutting speed boundary values 
and revised tool life equation parameters for each tool life group 
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MATERIAL CLASS TYPE 
O F CUT 

INSERT 
GRADE 

NEW MODEL PARAMETERS CUniNG SPEED 
BOUNDARY VALUES 

MATERIAL CLASS TYPE 
O F CUT 

INSERT 
GRADE 

1/a 1/p C D MAX 
(m/min) 

MIN 
(m/min) 

Free cutting stainless Finishing TP20 4.237 0.016 2.61 E+10 3.95E+08 170 120 
Free cutting stainless M Roughing TP20 3.642 0 8.24E+08 1.17E+07 150 100 
Free cutting stainless Roughing TP20 3.456 0 2.61 E+08 3.34E+06 135 95 
Free cutting steel Finishing TP20 4.612 0.292 4.22E+12 4.56E+10 365 300 
Free cutting steel M Roughing TP20 4.531 2.596 1.31E+11 2.47E+09 305 175 
Free cutting steel Roughing TP20 4.309 2.503 2.61 E+10 5.17E+08 280 160 
High carbon steel Finishing TP20 4.626 0.344 8.56E+11 1.39E+10 260 220 
High carbon steel M Roughing TP20 4.424 2.623 1.53E+10 3.05E+08 215 120 
High carbon steel Roughing TP20 4.504 2.616 1.45E+10 1.85E+08 195 110 
Nonnal tool steel Finishing TP20 4.6 0.281 4.82E+11 6,32E+09 230 190 
Nonrial tool steel M Roughing TP20 4.469 2.475 1.29E+10 2.03E+08 190 130 
Nomial tool steel Roughing TP20 4.559 2.511 1.33E+10 1.74E+08 175 120 
Structural steel Finishing TP20 4.581 0.343 1.69E+12 2.61 E+10 315 265 
Structural steel M Roughing TP20 4.481 2.654 4.99E+10 9.76E+08 265 150 
Structural steel Roughing TP20 4.529 2.663 4.04E+10 4.80E+08 240 135 
Very soft steel Finishing TP20 4.584 0.302 6.91 E+12 1.00E+11 415 355 
Very soft steel M Roughing TP20 4.456 2.628 1.67E+11 3,26E+09 355 1 200 
Very soft steel Roughing TP20 4.45 2.646 1.00E+11 1.96E+09 320 i 180 
Difficult castings stainless Finishing TP35 2.548 0.06 2.21 E+06 3,46E+04 120 1 65 
Difficult castings stainless M Roughing TP35 4.307 0 2.18E+09 2,28E+07 100 1 55 
Free cutting stainless Finishing TP35 4.131 0.015 4.47E+10 7.25E+08 210 165 
Free cutting stainless M Roughing TP35 1.348 0.081 2.19E+04 4,11E+02 175 120 
Free cutting stainless Roughing TP35 1.394 0.082 2,40E+04 3,85E+02 160 110 
Free cutting steel Finishing TP35 4.601 0.327 2.63E+12 4.25E+10 390 335 

Free cutting steel i M Roughing TP35 4.495 2.666 7.29E+10 7.40E+08 285 160 
Free cutting steel Roughing TP35 4.525 2.629 5.45E+10 1.05E+09 255 145 
High carbon steel Finishing TP35 4.602 0,373 4.79E+11 5,14E+09 245 200 
High carbon steel M Roughing TP35 4.495 2.76 1.33E+10 1.44 E+08 200 110 
High carbon steel Roughing 4.365 i . l 6 4 5,i:6E+6i 6.7SE+67 1^6 100 
Moderately difficult stainless Finishing TP35 4.122 0.021 7.06E+09 7.25E+07 145 100 
Moderately difficult stainless M Roughing TP35 3.9 0 1.29E+09 1,65E+07 130 90 
Moderately difficult stainless Roughing TP35 3.81 0 5.81 E+08 7,35E+06 120 70 
Structural steel Finishing TP35 4.607 0.318 1.06E+12 2.10E+10 285 225 
Structural steel M Roughing TP35 4.578 2,694 4.04E+10 4.85E+08 230 130 
Structural steel Roughing TP35 4.453 2.463 1,75E+10 3,50E+08 205 120 
Very soft steel Finishing TP35 4.565 0.325 4.40E+12 7.91 E+10 390 335 
Very soft steel M Roughing TP35 4.434 2.666 1.04E+11 1.63E+09 330 185 
Very soft steel Roughing TP35 4.52 2,654 1.07E+11 2,04E+09 300 170 
Normal tool steel Finishing TP35 4.599 0.302 3.30E+11 5.80E+09 220 170 
Normal tool steel M Roughing TP35 4.365 2.614 5,28E+09 9.24E+07 180 100 
Nomial tool steel Roughing TP35 4.482 2.6 6.18E+09 1.20E+08 165 95 

Table 7.5 (cont.) Pattern generation for revised tool life model: Cutting speed boundary 
values and revised tool life equation parameters for each tool life group 

A procedure for creating cutting data out of the new model is followed, similar to the one 

used in chapter 6 for obtaining the checking data set. Parameter D is randomly chosen in 

the region of l%-2% of tiie value of C. The rest of the parameters are assumed to be the 
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same with those of the original regression model. Table 7.5 shows the values of D for each 
tool life group. For convenience, the rest of the parameters for each tool life group are also 
listed. 

The constant term, D, introduces a sigtiificant distortion in the original tool life model of 

equation (6-1). Yet, it does not affect the physical relationship that exists between the 

cutting conditions and the expected tool life for each tool life group. Therefore it is 

expected that the structured knowledge contained in cutting data derived from the revised 

model should be similar to that of the original regression model. I f such is the case, there 

is a strong case for an ANFIS tool life model, which has captured the structured knoledge 

about the cutting process, to be easily optimised to adapt in the new situation. That would 

be very beneficial, since that structured knowledge relevant to any shop floor machine tool 

should remain roughly unchanged. What is expected to vary significantly is the actual 

machining performance. Indeed, an expert machinist is able to make rough guesses about 

the expected outcome of a machining operation, using linguistic descriptions in terms such 

as short, medium or long tool life. These guesses are based on information describing the 

type of cut, material class, insert grade or cutting conditions. However, these guesses are 

not sufficient to base planning decisions upon them. A neurofiizzy model that has captured 

the relevant structured knowledge in the form of IF-THEN rules and can still be easily 

tuned to optimise its predictions, based on available cutting data would be a particularly 

attractive modelling tool. 

A cutting data set similar to the checking data set employed in chapter 6 and earlier in this 

chapter has been created consisting of the same 4978 pattems. What is different now is the 

output of each pattem, i.e. the expected tool life. The original model would yield a mean 

absolute prediction error relative to the actual tool life of the revised model as high as 

31.62% with a root mean squared error value of 13.48. The large error gives an indication 

of the size of the distortion introduced in the tool life model. It should be noted that this 

model mismatch is not caused by a simple linear scaling of the expected tool life, but the 

effect of the parameter D is non-linear with respect to the change in the expected tool life. 

The ANFIS model has been tested on the new data set and has shown a mean absolute 

prediction error of 33.41%, which corresponds to a root mean squared error value of 
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13.15. Obviously, this is unacceptable performance and it is desirable to re-train the 
ANFIS model based on available cuttmg data. 

The new cutting data set has been randonly shuffled and split into two subsets, containing 

2489 pattems. When one of these subsets was employed as training set the other one was 

used for cross-validation in a way similar to that described in section 7.3. The whole re­

training required just 15 training epochs. An mitial learning rate of 0.001 was selected, 

which was gradually reduced to 0.0003. The final root mean squared error value of the 

prediction error was reduced fi-om 13.15 to 0.4652, corresponding to a mean absolute 

relative error of 2.85%. Thus the ANFIS model has been succesfially re-trained to capture 

the new input-output mapping with remarkable ease and sufficient accuracy. It is worth 

noting that the final RMSE value of the predicion error is much lower than the RMSE 

error in the case of the modelling based on the original regression model. The reasons for 

this result are: 

• The training based on the initial model was based on a random pattem set. The 

presence of statistical outiiers in that set inhibits the convergence of the learning 

algorithm to a solution that fits mainly the good data, instead of fitting tiie outiiers 

as well. On the other hand, the training of the revised model was based on cutting 

data fi-om a series of well constructed cutting tests, randomly reshuffled. Therefore, 

the risk of the learning procedure being slowed down by some outiiers was lower in 

that case. 

• The introduction of the parameter Z) in the revised model results in shorter tool life 

values. Thus, the RMSE is expected to be lower. However, the mean absolute 

relative error, which is now calculated against lower tool life values is not 

decreased accordingly. 

Figures 7.16-7.17 demosti-ate some results for tiae updated ANFIS tool life modelling. An 

illustrative example for each major material class is given, i.e, both for mild and alloy, as 

well for stainless steels. In tiiese figures tiie new model input-output mapping is conti-asted 

with the original regression model to give an indication of the size of the model mismatch 

introduced. 
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Figure 7.16: ANFIS tool life predictions for turning high carbon steel with 
an ISO PIO insert 
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Figure 7.16 illustrates a case of machining high carbon steel with an ISO PIO insert. 
Examples are given for each type of cut. The root mean squared error is below 0.25 in all 
cases, while the mean absolute relative error is kept below 2%. Similarly, in figure 7.17 
cases of cutting free cutting stainless steel are considered. Both the RMSE value, as well 
as the mean absolute relative error are exh-emely low in all cases apart fi-om the roughing 
example, where they are still is below 0.5 and 2.5% respectively. 

Thus, the ANFIS tool life model has shown remarkable flexibility in capturing input-

output relationships significantiy different from the one it was initially constructed for. 

This is an important result, since it indicates that it is appropriate to construct an initial 

neurofuzzy model based on a-priori knowledge about the cutting process and then re-train 

it to adjust on available cutting data. Any existing model, either based on cutting theory, or 

on multiple regression upon empirical tool life formulae or other equation can be 

employed for the creation of training data for obtaining an initial fairly accurate 

neurofiizzy model. The latter is in principle capable of performing as good a mapping as 

the initial theoretical or regression model. In addition it can extract structured knowledge 

about the cutting process in the form of IF-THEN rules. These rules can easily be 

interpreted by a human expert and conclusions may be drawn about the way in which the 

neurofiizzy model achieves a particular input-output mapping. Finally, the neurofiizzy 

model can be re-trained on the basis of available real life data. 

Al l the above features compose a strong modellmg framework, particularly usefiil for 

detailed process modelling. Thus, process planning and optimisation tasks, such as the 

optunisation of cutting conditions or the determination of optimal tool replacement 

policies can be greatiy facilitated. 
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C h a p t e r 8 

CONCLUSIONS AND RECOMMENDATIONS FOR 

FURTHER WORK 

8.1 Discussion 

A neurofiizzy tool life model for turning operations has been developed, which can 

facilitate machining optimisation. The computational platform on which the present 

research work was carried out was a 166MHz Pentium computer with 32MB of RAM, 

equipped with the Fuzzy Logic Toolbox (v 1.0) of the MATLAB (v. 4.2c 1) software 

package for numerical computation and visualisation (The Mathworks Inc.). The adaptive, 

network-based, fiizzy inference system (ANFIS) architecture has been selected to perform 

the desired input-output mapping. The finally derived model predicts tool life for a wide 

range of inputs, i.e. combinations of workpiece material, type of cut, insert grade, feed rate 

and cutting speed. 

A literature review has been carried out on topics such as tool wear and tool life, neural 

networks, fiizzy sets theory and neural fiizzy systems integration. Existing tool life models 

are usually either over simplistic or very complicated for machining optimisation practice. 

Deterministic empirical or theoretical tool life models fail to handle the uncertainty which 

is inherent to the tool wear process. The prevailing method for handling uncertainty in tool 

life prediction is a probabilistic one, either in the form of stochastic interpretation of the 

available tool life formulae or, less commonly, reliability-based modelling. However, tool 

wear variability can not be easily explained by simple probabilistic models, while the most 

flexible ones are too complex to be of practical use. 

Fuzzy sets theory offers an attractive altemative as a means for handling uncertainty. This 
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work has explored the potential of employing fiizzy inference methods for tool life 

prediction. It has been concluded that the developed model should be data-driven, in order 

to be applicable to machining optimisation practice. However, implementations of pure 

fiazzy systems rely heavily on the designer's own intuition and expertise, without a 

straightforward way of incorporating knowledge contained in numerical data, i.e. cutting 

process data. Neural networks are recognised as computational structures well suited to 

perform learning by examples. Yet, they suffer from lack of power in representing 

structured knowledge in a way that is relatively easily interpretable by humans. Therefore, 

the research focused on the development of a neurofiizzy model for tool life. Such a model 

combines both the merits of neural networks and fiizzy logic systems, i.e. the learning 

capability and the representation power respectively. The main characteristics of the 

developed model are: 

• It is a typical case of a fuzzy mference system, since all the elements comprising 

such a system are present, i.e. fiiz/ifier, fuzzy rule base, inference engine and 

defuzzifier. 

• It is completely data-driven, i.e. both the structure and the parameter identification 

are successfully carried out solely on the basis of available tool life data. This is 

achieved by employing a neural network-like tiaining algorithm after an 

initialisation stage which yields a fairly accurate ANFIS model from the pattems set. 

Thus, structured knowledge about the cutting process performance is extracted from 

numerical data. 

• The obtained neurofuzzy tool life model is of generic nature. It exhibits adequate 

predictive performance for a wide range of combinations of workpiece material 

class, type of cut, msert grade, feed rate and cutting speed. 

• The complexity of the model is rather low, considering that the overall mapping is 

achieved by just a 52 fiizzy rules model. 

• Available a priori knowledge about the cutting process is employed for the 

creation of the fraining exemplars, by accommodating results of tool life modelling 

research recentiy carried out at Durham University [Alamin 1996]. 
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• The model is non-parametric in the statistical sense, i.e. it does not rely on any 
statistical assumption about the underlying probability distribution function of tool 
wear. 

• It is a flexible model, as it is easily adjustable on the basis of new tool life data. 

Evidentiy, i f the initial tool life data are of poor quality there will be more need for 

adaptation with real life data. 

• Even though the training examples are derived by utiHsing existing tool life 

modelling, the universality of ANFIS models as fiinction approximators ensures that 

any fianctional deviation from the initial model may be captured by employing 

further additional training or by adding extra fiizzy rules. Therefore the developed 

model does not rely on any empirical formula or analytical tool life equation. 

• The meaningfiil way in which tool life prediction is achieved facilitates the 

interpretation of the results. Therefore, it is easy to add extra fiizzy rules at a region 

where it is desired to improve the mapping performance or where no information 

was included in the initial training cutting data set. 

During the development of the model, some important conclusions were drawn at both the 

mitialisation and the parameter identification phase. In the structure identification phase 

the data availability problem was discussed and tool life training examples were 

extrapolated from an existing tool life model. Input space partitioning was a major concem 

during that stage. It was found that the representation power of the neurofiizzy inference 

system was better exploited i f ordinal categorical variables such as material class, type of 

cut and insert grade are "softly" defined. Therefore, soft boundaries for the input space 

partitioning were defined, which allow for a mapping from a specific input pattem to a 

tool life value to be achieved by receiving computational support from inputs 

combinations that have a degree of similarity to the pattem under consideration. The 

definition of these soft boundaries between classes of inputs produced improved mapping 

performance with a reduced set of fiizzy rules. 

The learning phase required a low number of epochs. However, under the computational 

platform employed the whole learning procedure was very time consuming. Nonetheless, 
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once the learning has been completed, the response time required for the recall phase is 
negligible. Significantly faster training times could be achieved by improving the 
computational or hardware platform employed. It is anticipated that "coding" the overall 
learning process into a programming language, such as C-H- will drastically reduce the 
CPU time required. Time performance can also be improved by software or hardware 
upgrades. Ultimately, fu2zy logic systems can be implemented on to hardware, by taking 
advantage of the growing number of dedicated fuzzy hardware and fuzzy logic processors 
that are now becoming commercially available. 

A second shortcoming observed was the relatively poor predictive performance of the 

model at inputs combinations close to the defined boundary values. The reasons for this is 

related to the source of the cutting data set used for training. The training data has been 

randomly obtained by a series of locally-valid models derived by multiple regression 

[Alamin 1996]. Random pattern generation can ensure rich training data, but can also 

create statistical outliers. In addition, the mapping produced by the training data is non 

smooth in the boundaries between tool life groups. This poses problems to the hybrid 

algorithm employed for the optimisation of the premise parameters of the model. In 

particular, the algorithm estimates the gradient of the error hypersurface at each network 

node with respect to each one antecedent parameter. Because of the non-smoothness of the 

function defined by the training data, the estimate of the gradient attains large values in the 

boundaries between different classes, i.e. tool life groups. Thus, parameter updating is 

misguided, as it tries to optimise parameters based on training samples which are adjacent 

in the input space but produce very different gradients, as they belong to different classes. 

The learning algorithm tries to reduce the large squared errors appearing in few pattems 

lying close at the boundaries between tool life groups and gets trapped in a local 

minimum. 

It was found appropriate to exclude a very small number of pattems outliers fi-om the 

training data set These outliers were found to dominate the learning procedure by 

mtroducing very large error values into the error-based training algorithm. Releasing the 

training process fi-om the burden of achieving accurate mapping for those pattems has 

allowed the neurofuzzy model predictive performance to improve. Altematively these 

148 



Chapter 8 Conclusions and recommendations for further work 

outliers may be allowed to influence the training process, thus contributing to the 
boundary spaces mapping, by introducing a robust error suppressor cost function, instead 
of the simple quadratic criterion employed. However, this would call for a different 
learning algorithm than the simple least squares estimation for the consequent parts linear 
parameters. The predictive performance of the finally derived model was checked over a 
series of well constructed tests, spanning a wide range of inputs combinations, i.e. cutting 
speed and feed rate variations for all defined combinations of workpiece material class, 
type of cut and insert grade. The finally achieved root mean squared error was 1.19 and 
1.35 for the training and checking set respectively. 

It is important to note that cutting data derived from the shop floor or laboratory 

experiments are less likely to define non smooth mappings at the boundaries between tool 

life groups. Therefore, training based on such data is less likely to be trapped on local 

minima, as a smoother error hypersurface should be expected. However, sufficiently rich 

information can hardly be obtained from such data, as this would be both costly and time 

consuming. This prohibits model-building solely based on real-life data. Yet, such data 

can easily be employed for tuning an aheady existing neurofuzzy tool life model. Thus, 

this thesis advocates the use of simulated cutting data for deriving an initial neurofuzzy 

tool life model, which is flexible enough to be easily refined at a later stage, based on 

approved, shop floor data. The flexibility of the developed neurofuzzy tool life model has 

been demonstrated by re-training the model based on a new set of cutting data. This set 

has been created by infroducing significant model mismatch into the series of local models 

employed for obtaining the initial cutting data. The ANFIS model was shown to capture 

with remarkable ease and sufficient accuracy the new mapping. 

8.2 Future directions 

Finally, this thesis concludes with some remarks on the applicability of the developed 

neurofuzzy tool life model. Tool life prediction is designated to facilitate machining 

optimisation activities, such as optimal determination of cutting conditions and tool 

replacement strategy decision making. The training examples provided to the ANFIS 

network correspond to mean values of expected tool life. Therefore the neurofuzzy model 
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has learned to perform a mapping from a set of inputs to the expected tool life value. 
However, the mean value of expected tool life does not suffice to describe the uncertainty 
about tool life. From a probabilistic point of view, it would be beneficial to estimate 
confidence intervals for these values. This work has adopted a non-probabilistic approach 
to uncertainty handling, i.e. that of fuzzy sets theory. What would be relevant in a fuzzy 
systems approach is uncertainty representation via fuzzy sets. 

The output of the ANFIS model developed is essentially a crisp value, which resiUts from 

the weighted average defuzzification of the results of each one fuzzy rules firing. The 

output of the fuzzy rules are in fact fuzzy singletons. In order to take full advantage of the 

representation and reasoning power of fuzzy systems, the fuzzy tool life model should be 

put into the more general framework of fiizzy optimisation of machining processes. Such a 

fuzzy optimisation problem should receive as input the non-defuzzified output of the fuzzy 

tool life model. This value is in essence a fuzzy set and being such contains information 

about its imcertainty. For instance, a tool life output fuzzy set with wide support 

corresponds to a highly uncertain outcome, while an output tool life fuzzy set with narrow 

support carries increased certainty about the tool life value. A fuzzy model that would 

better exploit the strengths of fuzzy sets theory woxild be one which considers non-

singleton fiizzification and defuzzification, which are in principle more appropriate for 

information processing of highly uncertain or corrupted by noise data. Indeed non-

singleton fuzzy systems ensure smoother transition between decision boundaries and are 

more robust in dealing with ill-defmed parameters. 

There have been very few attempts so far reported in the literature which treat machining 

optimisation problems by a fuzzy sets theory approach. These are related cutting 

parameters selection [Balazinski and Bellerose 1994] tool selection and cutting conditions 

determination [Chen et al. 1995] and machining process selection [Huang et al. 1996]. 

However, in all these examples the determination of the premise and consequent parts 

parameters is rather arbitrary and is not optimised on the basis of available machining 

process data. Therefore, the present work should be considered only as a first step towards 

a systematic treatment of machining process optimisation problems from the viewpoint of 

fuzzy sets theory. Other steps to be taken should consider extending the current model for 
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a wider range of operations, as well as obtaining neurofuzzy models for other critical 
output parameters in machining operations, such as surface roughness, dimensional and 
tolerance accuracy, machining costs etc. Such models could eventually be incorporated 
into a flexible formulation for the tool selection and cutting conditions optimisation 
problems, as well as for a new approach to fuzzy logic based tool replacement policy 
decision making. 
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APPENDIX A: T O O L W E A R M E A S U R E M E N T 

A.l Off-line tool wear measurement 

Off-line measurements take place after the actual cutting processes has been terminated 

and can be direct or indirect. A number of different approaches can be adopted for off-line 

determination of tool wear. These include optical methods, contact gauges, electrical 

methods, radioactive techniques and loss of material measurements [Sadat A.B. 1994]. A 

brief description of these approaches follows. 

A.1.1 Optical Methods 

The simplest and most easily implemented case is by human inspection using a 

toohnaker's microscope, fitted with a micrometric measuring scale [Alamin 1996, 

Maropoulos and Alamin 1996, Ezugwu et al. 1995, Fang 1994]. Tool wear is quantified 

by observing the distance between the cutting edge and the bottom of the worn surface. 

Human intervention in tool wear measurement can be avoided i f a computer vision 

technique is employed to quantify the state of tool wear. The computational methods used 

should be capable of performing human-like reasoning in order to determine the state of 

tool wear, a task that is not trivial. The general principle of these methods is that light 

reflected by the illuminated tool wear zone and received by appropriate sensing equipment 

is processed in order to give an indication of the actual wear status. The tool image is 

usually coded into a binary thresholded image where the wom surface appears white, 

while the unwom as black backgroimd [Jeon and Kim 1988]. Another example of off-line 

optical tool wear measurement is by laser light projection through a diffraction grating on 

the rake face of the tool where narrow shadow stripes are formed. The deflection of the 

stripes corresponds to the crater wear. A 3-D image of crater wear is then obtained by 

processing the deflection of each one of the stripes. However, this method adds hardware 

complexity, as it requires accurate control of the lighting conditions. In a recent paper, tool 

surface topography is obtained by employing projected fringes techniques [Leopold 1996]. 
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A 16-bit grey scale 512X512 pixel digitised tool surface image is derived by using a 
charged coupled device (CCD) camera which captures the tool surface image magnified 
by special lens. The overall image processing is completed within a few seconds and 
different surface maps are derived, including 3D-maps of the cutting insert, without any 
need for removing the insert fi-om the tool holder mounted on the machine tool 

Apart fi-om direct wear-land measurements, optical methods can also be employed for 

indirect measurements. In particular, surface roughness measurement can give an 

indication of the wear status of the cutting tool. For instance, a laser beam can be 

employed to illuminate the workpiece surface. The surface roughness of the machined 

workpiece is then established by the scattering pattern from the surface, which is scanned 

across a linear array of lead selenide detectors [Janson et al. 1984]. 

A. 1.2 Contact Gauges 

These can be employed to check either the tool geometry or workpiece dimensions. In the 

first case the meastirement is direct, whereas in the second tool wear is estimated 

indirectly. The sensitivity of these probes to deflections can be of the order of one 

micrometer. Contact gauges can be cormected either electrically or with non-contact 

interface, like inductive ttansmission. They have become increasingly popular and many 

machine-tool manufacturers are now building them into their products as standard 

equipment [Sadat 1994]. 

A.1.3 Electrical methods 

The principle of these indirect measurement techniques lies with the change of the 

resistance of the tool- workpiece mterface, as the shape and size of the contact area change 

because of the wear progress. One example of this short of techniques is the bondmg of a 

thin fikn of metal or graphite on the clearance surface of the tool [Uehera 1973]. As tool 

wear progresses, the size of the contacting surface changes, so as the electrical resistance. 

The change of the resistance of the film can be used as a measure of the size of tool wear. 
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A. 1.4 Radioactive techniques 

I f a small quantity of radioactive material is implanted on the tool flank face, the loss of 

radioactivity which can be sensed with a Geiger-MuUer tube, can indicate the condition of 

the tool. As long as tool wear is within acceptable limits, radioactive transmission from the 

insert can be detected by the sensor. When radioactivity seizes, the tool is considered to be 

wom out and ought to be replaced [Arsovski 1983]. The main drawbacks of these methods 

are related to its relative slow response, as well as to safety hazards, due to exposure to 

radioactivity. 

A. 1.5 Measurement of loss of tool material 

As the wear process progresses during cutting, tool particles are carried away by the chip. 

One alternative method to tool wear measurement is by analysing the chip to obtain a 

measure of tool material loss. The chips can be collected and soaked into acid. The 

remains could then be examined for concentration m tungsten (for tungsten carbide tools), 

which may give a good indication of the wear size. However this is a lengthy laboratory 

based procedure, unsuitable for short time response. 

A.l On-line tool wear state identification 

The main drawbacks of off-line tool wear measurements are [Sadat 1994]: 

• The need to disengage the tool from the workpiece in order to carry out the 

measurement. 

• They are usually time consuming. 

• They can not be carried out under the severe and hostile conditions of the cutting 

process. 

• The tool occasionally needs cleaning to reduce uncertainty or noise in 

measurements. 
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Thus, it is often required that tool wear is measured on-line (in-process). Due to the 

complexity and severity of the cutting process, on-line tool wear monitoring sensors are 

required to fulf i l l certain requirements [Byrne et al. 1995]: 

• The measurement should take place as close to the cutting process as possible. 

• The static and dynamic stiffiiess of the machine tool should remain unaltered. 

• There should be no additional restrictions on cutting conditions or working space. 

• The sensors used should be resistant to dirt and chips and immune to 

electromagnetic or mechanical interference. 

• Sensor functionality should be independent of the particular tool or workpiece 

employed. 

• The sensor must posses appropriate mefrological characteristics. 

Application, 
Sensor 

iVIachine Force/ 
Diagnostics Torque 

Chatter Work S ize 
Surface P r o c e s s / Tool Wear 
Finish Chip Form Rate 

Tool 
Condition/ 
Fracture 

Acoustic Emmision " 
Force 
Eddy Current 
E lec . Res is tance 
Power 

Motor Current 
Vibration/Accelaration 
Ultrasonic "• 
Temperature 
Vision/Optical 
Profilometer 
Proximity/Touch 
Spindle S p e e d / T a c h 
Acoustic *** 

Note: • High frequency - passive 
•• Active 

* " Low frequency Low High 

R e s e a r c h Activity Level 

Fig. A.I Summary of research activity in on-line cutting process monitoring 
[Byrne et al. 1995] 

Because of the additional requirements that on-line sensors must fulfi l l compared to the 

off-line ones, real time tool wear measurement is difficult to be achieved without 

increased complexity and costs. This is even more true for on-line direct measurement 

methods, which usually rely on the availability of appropriate vision technology and are 

still considered to be rather complex for practical use. However, progress in computer 

vision is rapid and the appearance of new, vision-based tool wear measurement examples 
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vision is rapid and the appearance of new, vision-based tool wear measurement examples 
is becoming increasingly frequent. A more popular altemative is to measure tool-wear 
indirectly on the basis of other process-states measurements, like cutting forces, acoustic 
emission etc., which are correlated with tool wear. The main advantages of this approach 
is its simplicity and lower cost. On the other hand, determining the tool wear status from 
such measurements is usually not a trivial task, as the interrelationship between the 
measured parameters and tool wear is not fully known and the sensorial information is 
often corrupted by noise. Among the auxiliary variables that can be measured for indirect 
tool wear state identification, acoustic emission (AE) of the cutting region, cutting forces 
and vibration measurements are the most commonly employed. A summary of the 
research activity for on-line tool wear identification is depicted in Fig. 5.1 [Byrne et al. 
1995]. A brief description of the main on-line tool wear measuring methods follows. 

A.2.1 Optical methods 

The principle of these techniques is the same with off-line optical methods both in the case 

that wear-land is directly measured or when it is indirectly estimated by inference from 

other measurements (e.g. surface roughness, workpiece dimensions etc.). However, the 

high operational requirements for on-line fiinctionality, tend to complicate the overall tool 

wear estimation problem. Thus, most of the on-line optical wear measurement techniques 

developed so far are more laboratory based than industrially relevant methods. However, 

the increasing availability of computational processing power at affordable prices is 

promising more on the development of highly intelligent vision based on-line tool wear 

measurement methods. A representative example of the current state in vision - based 

direct wear measurement can be found in [Park and Ulsoy 1993], where a computer vision 

system is reported to provide very accurate on-line flank wear estimation. This estimation 

is then employed by an on-line adaptive observer to calibrate the wear estimation provided 

by a cutting-forces based tool wear monitoring system. The integrated flank wear 

monitoring system has been experimentally tested and was found to provide excellent 

estimations even when crater wear was not negligible, as long as flank wear was the 

predominant type of wear. An on-line tool geometry measurement system for milling has 

also been developed, based on a laser displacement meter [Ryabov et al. 1996]. The 
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system involves a preprocessing stage for removing the noise from the signals detected as 
well as a hybrid signal processing technique for tool failure detection. The overall system 
exhibits good tool wear estimation performance for flank wear greater than 40//m. 
Optical methods for indirect tool wear estimation via surface roughness measurement has 
also been reported [Byrne et al. 1995], but they should rather be considered of laboratory 
nature at present. The main problems that on-line optical methods for tool wear 
measurement have to overcome in order to become of practical use in an industrial 
environment are related to noise introduced by chips and dirts, the complexity of both the 
filtering and the signal processing stage involved and the increased costs due to the 
additional equipment required. This is probably the reason for the very slow acceptance 
that on-line optical sensors have found in industry. 

A.2.2 Forces-based wear measurement 

The cutting tool and the tool holder have to withstand three main reactionary cutting forces 

during single point cutting operations, namely the tagential, axial and radial forces. The 

tangential component is the predominant force component and is generated by the 

rotational movement of the workpiece. The axial force is relatively smaller and is the 

result of the feed movement of the tool along the workpiece. The smallest force 

component is the radial one which depends on the approach angle. There is an affluence of 

sensors for force-based measurements. Six different methods of obtaining tool wear state 

by carrying out force related measurements can be distinguished. A brief discussion on 

them follows [Byrne et al. 1995]. 

Direct measurement dynamometers. They can provide with very accurate measurements 

of cutting forces. They usually come as four 3D-component force transducers, mounted 

under high preload between two plates and fitted under the tool for turning operations [Ko 

and Cho 1992], and under the workpiece or in the tool holder [Ko et al. 1995, Chen et al. 

1996, Chen 1996] for multi pomt cutting. Due to the piezoelectric nature of the 

measurements, static forces over long time period can not be captured. In addition, they 

remain unprotected from overload and therefore are more suitable for research purposes 

than for practical industrial application. Their high cost is a fiirther disadvantage. 
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Plates and rings. In order to achieve over-load protection, the piezoelectric force 
measuring elements can be embedded into thin plates, so that they undergo only a fraction 
of the total force. Another alternative is to fit strain gauges into such plates. However, in 
the latter case the rigidity of the plate is much lower. These measuring systems can easily 
be mounted on lathes between the turret housing and the cross slide or the turret disc. They 
can also be rettofitted in machining centers behind the spindle flange. However, in most of 
the attempts to fit them on machining centers they suffer from being exposed to 
disturbances like thermal expansion of the spindle, spindle oil temperature change, 
thermal displacement of the headstock etc. 

Pins, extension sensors. These can indirectly measure the cutting force by detecting the 

extension of force bearing machine elements. Though fitting is easy, deciding the exact 

fitting positions is not straightforward. They are applicable mainly to tool failure 

identification, due to their low sensitivity. 

Displacement measuring. Measurement of the displacement or bending of the tool may 

provide with valuable information about the wear status of the insert. This can be achieved 

by mounting non-contact displacement sensors on the tool or the spindle nose. The main 

drawback of these measurement techniques is that their accuracy can be questionable 

under the presence of chips, dirt and the coolant or lubricant used. When mstalled on tool 

turrets they can be employed for collision identification, but otherwise the information 

they provide is too much corrupted by noise to be of any practical use for tool wear 

identification purposes. 

Bearings. Spindle rolling-contact bearings with strain gauges fitted on them can provide 

with force measurements indirectly related to the wear process. They usually require low-

pass filtering to eliminate interference from the ball contact frequency. This inevitably 

resuhs in filtering out high spectral components of the process signal together with the 

noise. Alternatively, force-measuring bushings which sfrain gauges mounted on the 

internal surface of their hollow body, can be fitted between the housing and the normal 
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contact bearing. The main disadvantage of these bushings are that they reduce the rigidity 
of the spindle. 

Force and torque at tool holders and spindles. The forces developing on the tool holder 

[Park and Ulsoy 1992] of a single point cutting tool or the torque developing on the 

spindle during cutting with multi point cutting tools are directiy related with the cutting 

forces and therefore with tool wear. However, the costs involved can be high due to the 

need to fit sensors to each one tool holder. On the other hand, retaining the same torque 

measurement accuracy for the whole operating range of the machine tool involved, 

requires the development of a very complex sensorial system. In addition the measured 

signal has to be transmitted from the sensor on a non-contact basis. For single point 

cutting operations the are already available in the market tool holders with integrated force 

sensors on them. 

A.2.3 Acoustic emission analysis 

The cutting process produces high frequency elastic stress waves, known as acoustic 

emission (AE), which propagate through the machine structure. The source of these waves 

is sporadic energy release due to friction on the rake or flank face, plastic deformation in 

the shear zone, crack formation, cutting edge fracture, chip breakage, material phase 

transformation etc. [Hope et al. 1996, Blum and Inasaki 1990, Iwata and Moriwaki 1977]. 

Within the last few year several different AE sensors have been commercially available. 

These overcome most of the problems that older sensors had. They exhibit improved 

performance even under high temperatures and large coolant volumes, as well as 

resistance to abrasive wear from the chips. The AE transducers used are of piezoelectric 

nature and they are usually attached on the machine tool surface. The exact placement of 

the transducer is of critical importance when employing AE sensors, because of the 

attenuation that the transmitted through the tool structure signal undergoes. A number of 

different signal transmission methods have been proposed, including the use of a coolant 

stream for transmitting the waves [Byme et al. 1995], inductive non-contact signal 

transmission to a receiver which can be fitted on the machine tool, transmission via fluids 

other than coolants, spring steel acoustic waveguides, fiber optics interferometry [Carolan 

et al. 1996] and thin film technology. 
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The signatures of AE signals can be classified into continuous or burst type [Sadat 199.4]. 
Depending on the type of the AE signal captured, the signal processing methods used for 
obtaining tool wear related information include time series, root mean square (RMS) 
voltage, and count (or count rate) analysis. AE methods have found numerous applications 
for on-line tool wear state identification, but they are generally more successful in tool 
breakage detection [Grabec and Kuljanic 1994, Malakooti et al. 1995, Carolan et al. 1996, 
Liu and Domfeld 1996]. Their applicability to multi-point tool wear identification is 
restricted by the complexity of the composite signal generated by the different cutting 
edges, thus making very difficult to identify uneven wear on a single insert [Wilcox et al. 
1997]. 

A.2.4 Vibrations 

The dynamic interaction between the tool, the workpiece and the machine tool during the 

cutting process cause vibrations on the machine structure. The main sources of these 

vibrations are sequential changes occurring at the shear zone of the workpiece material 

due to compression and sliding, as well as fiiction variations at the tooVworkpiece 

interface [Hope et al. 1996]. These vibrations can be monitored with relative ease by 

mounting accelerometers on or near the tool holder. In case of multi point cutting tools the 

sensor can be fitted on the working table. The signals obtained, are correlated with tool 

wear and appropriate signal processing can exttact tool wear state information from them 

[Weller et al. 1969], [Pandit and Kashou 1982]. A critical point when employing vibration 

measurements for indirect tool wear state identifications is the fransmission path of the 

vibration signal from the tool/workpiece/machine tool interface towards the sensor and the 

impact it might have on the quality of the signal received. Vibration signal processing 

usually involves a feature selection phase followed by some sort of pattern recognition 

technique for the determination of the process state. 
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A.2.5 Motor current and effective power 

Measurement of motor current or effective power of feed drives or spindles can be an 

effective and yet cheap altemative for cutting process monitoring [Altintas 

1992] .However, the feed power can not always give a clear indication of the wear state, 

since it is not solely consumed by the cutting process. The current or power signals from 

feed motors, can often be confounded with signals originated from the friction 

components in the guideways which may be of quite significant magnitude. These signals 

may vary with different lubrication states or traversing rates [Byme et al. 1995]. 

Furthermore, due to the integrating nature of motor power measurements, timely detection 

of short time tool wear state degradation events can not be easily achieved before any 

consequent damage has afready occurred. 

A.2.6 Cutting Temperatures 

Many of the tool wear mechanisms are thermally activated. Therefore, the cutting 

temperatures developed during the cutting process could give a good indication of the tool 

wear state as well as the wear rate, since increased wear give rise to higher temperature 

due to friction and energy conversion. There has been a lot of research over many years on 

developing cutting temperature sensors. As a result of that there has been a plethora of 

different temperature sensing methods [Groover and Kane 1971, Groover et al. 1977, 

Levy et al. 1976]. The main limitations when attempting to determine tool wear state by 

cutting temperature measurements are [Sadat 1994]. 

• The need for calibrating temperature with regards to tool wear state. 

• There should be a way of knovwng in advance the relationship between tool wear 

and cutting temperatures under varying cutting conditions. 

• Tool chipping and fracture can not be detected as they are not thermally activated 

wear types. 

• Low reliability due to slow measurement response time. 

• No applicability for intermittent cutting processes. 
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Thus far, all the methods developed for wear state recognition via cutting temperature 
measurements are still of pure laboratory nature and almost unfeasible for intermittent 
cutting processes like milling and drilling [Byrne et al. 1995]. 

A.2.7 Tool-Workpiece distance variations 

As tool wear progresses the distance between the machined surface and a fixed point on 

the cutting tool varies. This distance, can be sensed by proximity sensors, and provide 

with an indication of the tool wear status. An example of workpiece-tool distance 

measurement for cutting process state identification can be found in [El Gomayel and 

Bregger 1986], where an electromagnetic probe is employed to measure the workpiece 

diameter change as tool wear progresses. The variations in the gap between the sensor and 

the machined surface induces a voltage output indirectly related to the wear status of the 

tool. The advantage of these methods is that they do not require any contact with the 

workpiece material while the main drawbacks are [Alamin 1996]: 

• Strict operating limits due to sensitivity of the probes to high temperatures 

• Possible interference by chips. 

• Reduced accuracy in cased of deflections or misalignments on the machine tool or 

tool holder or when vibrations occur. 

• Increased probability of false measurements because of insert or toolholder 

thermal expansion. 

• Time lag between the exact time of cut and the time when the workpiece diameter 

is measured. 

A.2.8 Surface roughness measurement 

The surface quality of the machined workpiece is influenced by the tool wear state and 

progress. Therefore, surface roughness measurements should give an indication of tool 

wear. On-line surface roughness measurements can be obtained using contacting or non-

contacting sensors [Janson 1984]. The applicability of these methods is limited because of 
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the time lag between the cutting and measuring time and the possibility of false 
measurements i f the workpiece surface has not been cleaned. 

A.2.9 Sound 

Low frequency spectra of sound produced from the cutting process can also be analysed to 

give an indication of the wear state [Sadat and Raman 1987]. The main difficulty in this 

approach arises due to noise produced by causes other than the machining process, which 

often overlaps with the spectrum of the measuring signal. Sound monitoring-based tool 

wear estimation is also still at laboratory research stage, without any practical industrial 

applications so far. 

The simultaneous use of multiple sensors (sensor fusion) can compensate for the 

weaknesses of each individual sensor with respect to accurate, on-line tool wear state 

identification. Sensor fusion technology, integrated with intelligence capabilities has 

already found numerous applications m several areas [Dasarathy 1997]. This technology 

offers vast area for improvement of current on-line tool wear measurement and process 

monitoring systems. [Rangwala and Domfeld 1990, Leem et al. 1995, Hope et al. 1996, 

Chryssolouris et al. 1992]. 
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uroup AISI Werkstott UIN US AFNOR 

1 

Very Soft 
Steel 

1006 1.U201 St 36 - hdb 1160 
1 

Very Soft 
Steel 

1010 1.1121 Ck 10 045 M 10 XC10 1265 1 

Very Soft 
Steel 

- 1.1121 St 37-1 4360 40 A 1300 
1 

Very Soft 
Steel 

A27 65-35 1.0443 GS^5 A1 E 23-45 M 1305 

1 

Very Soft 
Steel - 1.0416 GS-38 - 230-400 M 1306 

1 

Very Soft 
Steel 

A570-36 1.0038 RSt 37-2 4360 40 C E 24-2 NE 1311 

1 

Very Soft 
Steel 

A573-81 65 1.0116 St 37-3 4360 40 B E24-U 1312 

1 

Very Soft 
Steel 

A515 65 1.0345 H 1 1 501 161 A 37 CP 1330 

1 

Very Soft 
Steel 

1015 1.0401 C 15 080 M 15 CC 12 1350 

1 

Very Soft 
Steel 

1022 1.1133 GS-20Mn 5 120 M 19 20 M 5 1410 

1 

Very Soft 
Steel 

A36 - St 44-2 4360 43 A NhA 35-501 E 28 1411 

1 

Very Soft 
Steel 

A573-81 1.0144 St 44-3 4360 43 C b28-3 1412 

1 

Very Soft 
Steel 

- - StE 320-3Z 1 501 160 - 1421 

1 

Very Soft 
Steel 

- 1.0425 H II - A 42 CP 1432 

1 

Very Soft 
Steel 

1025 1.1158 Ck 25 050 A 20 XC25 1450 

Group A I S I WerKstott UIN BS AI-NOR SS 

2 

Free Cutting 
Steel 

1213 1.0715 y bMn 28 230 M 07 S2b0 1912 
2 

Free Cutting 
Steel 

(12L13) 1.0718 9SMnPb28 - S 250 Pb 1914 2 

Free Cutting 
Steel 

- 1.0723 15S20 2iOA15 S300 1922 
2 

Free Cutting 
Steel 

(12L14) 1.0737 9 SMnPb 36 - S 300 Pb 1926 

2 

Free Cutting 
Steel (12L13) 1.0718 9 SMnPb 28 - - 1940 

2 

Free Cutting 
Steel 

1140 1.0726 35S20 212 M 36 35MF4 1957 

2 

Free Cutting 
Steel 

1151 1.072/' 45S20 212 M 44 45 MF 4 1973 

(iroup A I S I WerkstoH UIN tiH AI-NUK SS 

3 
1016 1.1141 Ck1b 080 M 15 XC18 1370 

3 A27 70-36 1.0551 GS-52 A2 280-480 M 1505 3 
1035 1.0501 C35 060 A 35 AF 55 C 35 1550 

Structural 
Steel 

1035 1.1181 Ck 35 080 A 32 XC 38 1572 Structural 
Steel A148 80-40 1.0553 GS-60 A3 320-560 M 1606 

Structural 
Steel 

TD43 1.0503 C45 080 M 46 AF 65 C 45 1650 

Structural 
Steel 

1055 1.0535 C55 070 M 55 - 1655 
1042 1.1191 Ck 45 080 A 47 XC45 1660 
A537 1 1.0473 19 Mn6 1 501 224 A 52 CP 2101 
A662 C 1.0436 ASt 45 1 501 224 A 48 FP 2103 
A738 1.0577 ASt 52 1 501 224 A52FP 2107 

1.057 St 52-3 4360 50 B E36-3 2132 
A572-60 17 MnV6 4360 55 E NFA 35-501 E 36 2142 
A572-60 1.89 StE 380 4360 55 E 2145 
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A P P E N D I X B (CONT): M A T E R I A L C L A S S E S 

Group ||AISI Werkstott UIN BS AhNOR SS 

4 

High Carbon 
Steel 

1042 1.1191 Ck45 080 M 45 - 1572 
4 

High Carbon 
Steel 

1064 1.1221 Ck 60 060 A 62 XC 65 1678 4 

High Carbon 
Steel 

1070 1.1231 Ck 67 070 A 72 XC 68 1770 
4 

High Carbon 
Steel 

1080 1.1248 Ck 75 060 A 78 XC 75 1774 

4 

High Carbon 
Steel 1095 1.1274 Ck 101 060 A 96 XC 100 1870 

4 

High Carbon 
Steel 

9254 1.0'904 55 Si? 250 A 53 55 S 7 2090 

4 

High Carbon 
Steel 

1335 1.1167 36 Mn5 150 M 36 40 M 5 2120 

4 

High Carbon 
Steel 

5120 1.0841 St 52-3 150 M 19 20 MC5 2172 

4 

High Carbon 
Steel 

A387 12-2 1.7337 16CrMo4 4 1 501 620 15 CD 4.5 2216 

4 

High Carbon 
Steel 

A182 F-22 1.738 lOCrMoSIO 1 501 622 12 CD 9.10 2218 

4 

High Carbon 
Steel 

4130 1.7218 25 CrMo 4 CDS 110 25 CD 4 2225 

4 

High Carbon 
Steel 

6150 1.8159 50 CrV 4 735 A 50 50 CV4 2230 

4 

High Carbon 
Steel 

4135 1.233 35 CrMo 4 708 A 37 34 CD 4 2234 

4 

High Carbon 
Steel 

- 1,8515 31 CrMo 12 722 M 24 30 CD 12 2240 

4 

High Carbon 
Steel 

4142 1.2332 47 CrMo 4 708 M 40 42 CD 4 2244 

4 

High Carbon 
Steel 

4140 1.7225 42 CrMo 4 708 M 40 42 CD 4 2244 

4 

High Carbon 
Steel 

5140 1.7045 42 Cr 41 530 A 40 42 C 4 TS 2245 

4 

High Carbon 
Steel 

5155 1.7176 55 Cr 31 527 A 60 55 C 3 2253 

4 

High Carbon 
Steel 

52100 1.3505 100 Cr6 534 A 99 100 C 6 2258 

4 

High Carbon 
Steel 

8620 1.6523 21 NiCrMo 2 805 H 20 20 NCD 2 2506 

4 

High Carbon 
Steel 

5115 1.7131 16 MnCrS 527 M 17 16MC5 2511 

4 

High Carbon 
Steel 

A204A 1.5415 15 Mo 3 1 501 240 15 D 3 2912 

4 

High Carbon 
Steel 

A355A 1.8509 42 CrAIMo 7 905 M 39 40 CAD 6.12 2940 

4 

High Carbon 
Steel 

403 1.4 X6 Cr 13 403 S 17 Z 8 C 13 2301 

4 

High Carbon 
Steel 

(41 OS) 1.4001 X7 Cr 14 (403 S 17) / :8C13 2301 

4 

High Carbon 
Steel 

410 (1.4006) G-X10Cr13 410 S 21 Z10C13M 2302 

4 

High Carbon 
Steel 

405 1.4724 X6 CrA113 405 S 17 2 8CA12 -

4 

High Carbon 
Steel 

^ 0 1.4016 X6 Cr17 430 S 17 Z 8 C 1 7 2320 

4 

High Carbon 
Steel 

434 1.4113 X6 CrMo 17 434 S 17 - 2325 

4 

High Carbon 
Steel 

416 1.4005 X12CrS 13 416 S 21 Z11CF 13 2380 

4 

High Carbon 
Steel 

430F 1.4104 X12CrMoS 17 420 S 37 Z13CF17 2383 

4 

High Carbon 
Steel 

409 1.4512 X5 CrTi 12 409 S 19 Z6CT 12 -

4 

High Carbon 
Steel 

43011 1.451 X6 CrTi 17 - Z4C1 17 -

uroup Aisi Werkstott UIN BS AFNOR SS • 

5 
W 1 1.1545 ClUfaWI BW1A Y 10b 1880 

5 1.2108 90 CrSi 5 2092 

Normal 
Tool 
Steel 

0 1 1.251 100 MnCrW4 B01 8 Mo 8 2140 
Normal 

Tool 
Steel 

- - 31 NiCrMo 13 4 830 M 31 2534 Normal 
Tool 
Steel 

4340 1.6582 34 CrNiMo 6 817 M 40 35 NCD 6 2541 
Normal 

Tool 
Steel 1.6746 32 NiCrMo 14 5 830 M 31 35 NCD 14 

Normal 
Tool 
Steel 

S 1 1.2542 45 WCrV 7 BS1 55 WC 20 2710 
420 1.4021 X20Cr13 420 S 37 Z20C 13 2303 
[420) 1.4028 X30Cr13 420 S 45 -!!30C 13 •2304 
420) 1.4031 K40 Cr13 Z40C14 2304 

1.4923 <22 CrMoV 12 1 -
i 431 1.4057 ; <20CrNi17 2 ^ }31 S 29 : M5CN16-02 ; ?321 
i MOB 1.4112 ; <90 CrMoV 18 -
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A P P E N D I X B (CONT): M A T E R I A L C L A S S E S 

( 9 roup AISI werKstotr DIN US APNOR SS 

8 

Free Cutting 
Stainless 

Steel 

304 1.4301 Xb CrNi1810 304 S 10 Z 5 CN 18-09 2333 
8 

Free Cutting 
Stainless 

Steel 

304H 1.4948 X6 CrNi 18 11 304 S 51 Z 5 C N 18-09 2333 8 

Free Cutting 
Stainless 

Steel 

303 1.4305 XIOCrNiS 18 9 303 S 31 Z8.CNF 18-09 2346 
8 

Free Cutting 
Stainless 

Steel 

304L 1.4306 X2 CrNi 1810 304 S 11 Z3CN 19-11 2352 

8 

Free Cutting 
Stainless 

Steel 
305 1.4312 X8 CrNi 18 12 305 S 19 - -

8 

Free Cutting 
Stainless 

Steel 302 - X12CrNi 18 9 302 S 31 Z10CN 18-09 2330 

8 

Free Cutting 
Stainless 

Steel 
301 1.431 X12CrNi 17 7 301 S 21 Z 11 CN 17-08 2331 

8 

Free Cutting 
Stainless 

Steel 

CF-8 1.4308 X6 CrNi 18 9 304 C 15 Z6CN 18-10 M 2333 

(iroup Aisr Werkstott UIN BS At-NOR SS 

9 

Moderately 
Difficult 

Stainless 
Steel 

321 1.4541 X6 CrNiri1810 321 S 31 Z 6 C N I 18-10 2337 
9 

Moderately 
Difficult 

Stainless 
Steel 

347 1.455 X6 CrNiNb 18 1 347 S 31 Z6CNNb18-10 2338 9 

Moderately 
Difficult 

Stainless 
Steel 

316 1.4436 X5 CrNIMo 17 1 316 S 33 Z 6 CND 19-12-03 2343 
9 

Moderately 
Difficult 

Stainless 
Steel 

316TI 1.4571 X8 CrNiMoTi17 320 S 31 - -

9 

Moderately 
Difficult 

Stainless 
Steel 

316 1.4401 X5 CrNiMo171 316 S 31 Z 7 CND 17-11-02 2347 

9 

Moderately 
Difficult 

Stainless 
Steel 

316L 1.4404 X2 CrNiMo 17 1 316 S 11 Z3CND 17-12-02 2348 

9 

Moderately 
Difficult 

Stainless 
Steel 316Ti 1:4571 X6 CrNiMoTi17 320 S 31 Z 6 CNDT 17-12-0 2350 

9 

Moderately 
Difficult 

Stainless 
Steel 

316L 1.4435 X2 CrNiMo 18 1 316 S 13 Z 3 CND 18-14-03 2353 

9 

Moderately 
Difficult 

Stainless 
Steel 

317 (1.4449) X5 CrNiMo 17 1 317 S 16 - -
3108 1.4845 X12CrNi 25 20 310 S 16 Z 12 CN 25-20 2361 
317L 1.4438 X2 CrNiMo 181 317 S 12 Z2CND 19-15-04 2367 
- 1.4418 X4 CrNiMo 16 5 - Z6CND 16-04-01 2387 
304LN 1.4311 X2 CrNiN 1810 304 S 61 Z2CN 18-10 AZ 2371 
309S 1.4833 X6 CrNi 22 13 309 S 13 Z15CN 24-13 -
CF-SIVI 1.4408 X6 CrNiMo 18 1 304 C 15 - 2343 

( 3 roup AISI Werkstott UIN US AhNUR SS 

10 

stainless 
Steel 

Difficult to 
Machine 

S44400 1.4521 XI CrMoli 18 2 - - 2326 
10 

stainless 
Steel 

Difficult to 
Machine 

202 1.4371 X3 CrMnNIN 18 284 S 16 Z8CMN 18-08-05 -10 

stainless 
Steel 

Difficult to 
Machine 

S30815 1.4893 X8 CrNINbH - - 2368 
10 

stainless 
Steel 

Difficult to 
Machine 

CA6-NM 1.4313 (G-)X4 CrNi 13 (425 C 11) Z 4 CND 13-04 M 2385 

10 

stainless 
Steel 

Difficult to 
Machine 

660 1.498 X5NiCrTi 25 15 - Z8NCTV25-15B 2570 

10 

stainless 
Steel 

Difficult to 
Machine 

(S31726) 1.4439 X2 CrNiMoN 17 - Z3CND 18-14-06 -

10 

stainless 
Steel 

Difficult to 
Machine 330 1.4864 X12 NiCrSi 16 NA17 Z12NCS 35-16 -

10 

stainless 
Steel 

Difficult to 
Machine 

309 - X15CrNi 2313 309 S 24 Z15CNS 20-12 -

10 

stainless 
Steel 

Difficult to 
Machine 

310 1.4841 X15CrNiSI 25 2 314 S 31 Z15CNS 25-20 -

10 

stainless 
Steel 

Difficult to 
Machine 

(329) (1.446) X4 CrNiMo 27 5' - Z 5 CND 27-05 AZ 2324 

10 

stainless 
Steel 

Difficult to 
Machine 

S32304 1.4362 X2 CrNiN 23 4 - Z 2 CN 23-04 AZ 2327 

10 

stainless 
Steel 

Difficult to 
Machine 

S30415 1.4891 X5 CrNiNb 18 1 - - 2372 

10 

stainless 
Steel 

Difficult to 
Machine 

316LN 1.4406 X2 CrNiMoN 17 316 S 61 Z2 CND 17-12 AZ 2375 

10 

stainless 
Steel 

Difficult to 
Machine 

316LN 1.4429 X2 CrNiMoN 17 316 S 63 Z2 CND 17-13 AZ 2375 

10 

stainless 
Steel 

Difficult to 
Machine 

831500 1.4417 X2 CrNoMoSi 18 - - 2376 

10 

stainless 
Steel 

Difficult to 
Machine 

S31803 1.4462 X2 CrNiMoN 22 318 S 13 Z3 CND 22-05 AZ 2377 

10 

stainless 
Steel 

Difficult to 
Machine 

CN-7M 1.4539 (G-)X1 NiCrMoC - Z1 NCDU 25-02 M 2564 

10 

stainless 
Steel 

Difficult to 
Machine 

NO8904 1.4539 X2 NiCrMoCu 2 904 S 13 Z1 NCDU 25-20 2562 

10 

stainless 
Steel 

Difficult to 
Machine 

831254 1.4547 XI CrNiMoN 20 - - 2378 

10 

stainless 
Steel 

Difficult to 
Machine 

831753 - X2 CrNiMoN 18 - - -

10 

stainless 
Steel 

Difficult to 
Machine 

- - X2 CrNiMoN 25 - - -

10 

stainless 
Steel 

Difficult to 
Machine 

S32750 1.441 X3 CrNiMoN 25 - - 2328 

10 

stainless 
Steel 

Difficult to 
Machine 

- - X5 NiCrN 35 25 - - -

10 

stainless 
Steel 

Difficult to 
Machine 

SI7400 1.4542 X5 CrNiCuNb 17 - - -
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APPENDIX C: PARTIAL LIST OF TRAINING PATTERNS 

Material 
Class 

Type ol 
Cut 

Insert 
Grade 
(ISO P) 

Feed Rate 
(mm/rev) 

Cutting 
Speed 

(m/min) 

Tool Life 
(min) 

Material 
Class 

Type o 
Cut 

^ Insert 
Grade 
(ISO P) 

Feed Rate 
(mm/rev) 

Cutting 
Speed 

(m/min) 

Tool Life 
(min) 

b i 3b U.b3b2 nb.44 i / .au/ 2 1 3b U.U92V Jjy.Ub 13.U/1 
3 3 10 0.6468 269.44 16.735 5 1 10 0.1899 231.06 17.611 
3 3 10 0.5314 254.09 20.452 2 3 20 0.4839 242.06 8.594 
3 1 35 0.0683 225.28 36.184 2 1 10 0.0644 411.53 18.401 
3 3 20 0.8888 239.88 0.920 4 2 10 0.2898 210.38 28.574 
1 2 35 0.3473 231.35 57.058 3 3 35 0.5461 182.79 6.587 
4 2 35 0.3583 187.49 13.753 9 2 35 0.2713 107.37 15.454 
3 1 35 0.2676 265.12 11.071 5 3 20 0.9502 158.86 1.394 
1 2 10 0.4930 405.58 18.032 5 1 35 0.1933 185.96 19.809 
1 1 35 0.0980 375.33 16.551 10 1 35 0.3175 106.12 16.322 
3 1 10 0.3406 365.34 9.450 2 2 20 0.2692 236.95 68.880 
2 2 35 0.2811 199.01 99.659 9 1 35 0.3205 106.51 31.799 
2 1 10 0.1731 398.73 15.837 5 1 35 0.1231 200.12 16.19/ 
2 1 35 0.2497 387.84 5.084 8 1 20 0.2931 150.41 15.865 
4 1 10 0.3076 278.11 13.606 5 3 10 0.8358 202.09 13.097 
3 3 20 0.9025 209.94 1.615 5 3 35 0.9723 117.30 3.531 
2 2 20 0,4950 267.64 8.155 5 1 35 0.1907 207.76 11.945 
1 2 10 0.3342 409.84 17.374 2 3 35 0.8965 240.23 1.226 
3 1 20 0.2342 300.32 12.416 4 3 20 0.7241 179.04 2.402 
9 3 35 0.4455 87.24 23.436 1 1 10 0.3051 471.60 13.375 
4 1 35 0.2846 237.23 8.991 3 3 10 0.8820 278.11 15.016 
1 3 35 0.5146 177.19 42.925 5 3 20 0.9197 140.06 2.687 
1 1 10 0.0995 467.02 19.397 2 3 10 0.5111 322.37 • 15.786 
4 2 10 0.3217 218.74 24.986 1 1 35 ' 0.1276 347.03 21.730 
8 3 35 0.4691 142.55 25.387 10 2 35 0.2817 70.97 23.187 
8 2 20 0.3709 116.39 24.661 1 1 35 0.0532 379.46 19.197 
5 3 10 0.5435 189.89 16.156 9 3 35 0.4031 116.67 7.743 
1 2 20 0.4684 246.19 27.140 5 2 20 ' "0.3839 184.94 10.216 
8 3 20 0.7642 110.70 22.494 2 2 35 0.3826 241.31 18.421 
4 1 35 0.2461 221.61 12.986 2 1 20 0.0786 348.78 16.674 
1 2 35 0.4564 258.65 16.794 2 1 35 0.2923 342.74 8.527 

2 10 0.3665 201.25 18.308 4 3 20 0.6411 135.33 11.275 
8 2 3b 0.3756 158.51 25.619 2 1 35 0.3290 336.33 8.949 
10 1 35. 0.3303 83.89 29.640 8 3 20 0.6125 129.39 13.120 
4 2 10 0.3181 212.43 27.710 2 3 35 " 0.7562 193.64 5.089 
2 3 20 0.6624 194.06 10.149 8 2 35 " "0.3589 132.57 32.725 
5 1 10 0.2405 221.15 19.888 5 3 35 0.5342 106.20 26.158 
2 2 35 0.4091 279.29 7.988 4 3 10 0.6246 202.62 22.803 
1 1 20 0.0587 405.47 18.053 3 2 10 0.2585 282.65 20.043 
5 3 35 0.5379 150.57 4.028 5 1 20 0.2268 • 208.36 15.773 
5 1 20 0.0595 196.92 29.790 4 3 35 0.7011 134.25 " 5.861 
5 1 20 0.0507 219.04 19.089 4 3 10 0.5113 231.54 13.986 
9 3 35 0.4840 82.69 28.743 10 2 35 0.3303 80.21 13.685 
4 2 35 0.4797 162.71 11.623 4 2 20 0.4240 163.61 23.301 
1 3 10 0.9938 389.88 14.423 4 2 10 0.3771 252.37 15.081 
2 3 10 0.6637 313.70 17.356 3 2 10 0.4863 255.98 28.644 
1 3 20 0.9661 300.25 1.037 5 3 35 0.8386 114.53 5.772 
5 2 35 0.4231 177.01 7.700 5 1 10 0.1691 245.08 13.957 
4 1 35 0.3114 226.18 10.828 2 3 10 0.4707 320.25 15.152 
8 1 35 0.1320 190.25 17.700 5 1 10 0.3072 254.40 9.555 
5 1 20 0.2127 207.92 16.218 4 1 10 • 0.1032 285.42 l/.BOb 
1 2 35 0.3504 264.51 30.774 5 1 10 0.3148 217.39 19.629 
5 3 35 0.8908 155.97 1.236 4 3 10 0.8833 222.60 16.155 
4 3 10 0.6571 217.20 17.677 4 1 10 • 0.3203 301.67 9.241 
9 2 35 0.4968 116.33 11.314 2 3 35 0".7080 252.44 1.822 
3 2 20 0.3225 243.28 20.431 4 1 35 0.3153 •" 243.01 7.746 
3 2 35 0.4662 162.41 23.935 5 3 35 0.8286 164.51 1.175 
1 2 35 0.3899 266.89 22.242 4 2 35 0.3470 193.94 12.902 
4 3 35 0.8160 152.08 2.448 2 3 20 0.9563 217.80 2.462 
4 3 10 0.4756 191.38 28.109 4 2 35 "0.3140 165.90 34.316 
8 3 20 0.7062 116.56 18.823 9 3 35 "0.9716 86.77 23.927 
4 2 20 0.4930 168.60 13.737 9 2 35 "0.2997 118.68 10.465 
10 2 35 0.3101 71.44 22.534 3 3 20 0.8//7 234.41 1.056 
8 1 20 0.3222 155.52 13.749 4 2 35 "0.2921 199.11 18.452 
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APPENDIXC Training patterns 

APPENDIX C (CONT): PARTIAL LIST OF TRAINING 

PATTERNS 

Material 
C lass 

Type 0 
Cut 

Insert 
Grade 
(ISO P) 

Feed Rate 
(mm/rev) 

Cutting 
Speed 

(m/min) 

Tool Life 
(min) 

Material 
Class 

Type oi 
Cut 

Insert 
Grade 
(ISO P) 

Feed Rate 
(mm/rev) 

Cutting 
Speed 

(m/min) 

Tool Life 
(min) 

b 2 1U U.4U4U 184./2 < ! 4 . B ^ U 4 2 l U U.28b2 
4 3 35 0.6711 149.92 3.979 3 2 10 0.2754 315.41 13.502 
3 3 10 0.4397 253.62 20.581 5 3 20 0.7478 142.49 4.175 
1 1 10 0.0978 475.54 17.936 5 2 20 0.4475 151.65 15973 
3 2 20 0.4752 200.00 17.567 8 2 35 0.3228 164.61 24.555 
3 2 35 0.4622 196.61 10.211 3 1 20 0.2213 295.65 13.602 
1 2 10 0.3215 412.74 16.946 10 2 35 0.2508 84.35 11.020 
3 3 35 0.9576 194.10 1.265 10 1 35 0.1808 69.88 48.954 
9 3 35 0.5311 108.98 10.040 8 1 35 0.2118 196.59 • 15.348 
5 2 35 0.3037 130.73 68.787 4 3 10 0.9319 234.32 13.387 
10 1 35 0.2234 109.15 15.514 8 2 35 0.4400 136.12 31.066 
4 1 35 0.1776 235.93 10.996 3 3 35 0.5781 123.34 33.001 
3 2 20 0.4166 188.30 32.527 1 2 35 0.4513 298.99 9.101 
5 3 35 0.4856 154.25 6.292 1 1 10 0.1997 461.76 15664 
S 3 20 0.9204 108.05 24.459 3 3 20 0.8748 175.13 3.989 
3 2 20 0.3576 240.63 16.308 1 1 20 0.2661 365.93 18.304 
4 1 35 0.2256 217.33 14.673 8 3 20 0.8771 95.77 37.113 
3 2 10 0.4834 300.94 15.991 8 1 35 0.3123 170.53 27.454 
3 1 10 0.2105 316.53 20.995 1 3 20 0.5155 241.85 14.314 
3 2 20 0.3558 207.02 32.437 2 2 20 0.4609 293.80 6.434 
2 3 35 0.8627 254.04 1.054 2 3 10 0.5024 304.80 19.183 
2 2 20 0.3863 198.83 59.674 1 3 20 0.6191 316.57 2.661 
3 2 35 0.2688 168.69 88.654 8 1 20 0.0875 151.77 15.566 
S 3 35 0.5579 150.39 23.229 2 2 10 0.2583 349.50 17.004 
2 1 20 0.0773 321.20 24.497 4 1 10 0.1986 278.85 15.699 
2 3 10 0.7814 327.80 14.895 1 3 35 0.5094 226.48 14.534 
4 3 35 0.5948 120.76 13.281 2 1 20 0.1971 336.13 15.119 
3 2 35 0.4492 160.17 28.190 2 3 20 0.7631 204.76 5.651 
1 2 10 0.4840 412.69 16.952 3 2 35 0.4939 207.52 ""6.671 
2 2 35 0.3368 236.56 28.302 1 3 10 0.4763 370.44 17.309 
9 1 35 0.1789 122.00 18.391 1 1 20 0.1377 382.91 18.137 
1 2 20 0.3602 234.44 6 ('.296 5 3 10 0.6/35 203.27 12.843 
8 2 20 0.2844 111.41 28.919 9 3 35 0.9368 92.04 19.114 
4 2 35 0.4337 150.22 21.991 2 1 35 0.2011 381.23 5.905 
2 3 20 0.7997 210.43 4.467 8 2 20 0.4923 119.45 22.439 
5 3 35 0.4928 125.70 15.153 1 3 35 0.4076 208.08 38.544 
4 2 10 0.3300 263.73 12.910 3 2 35 0.3412 142.01 102.607 
4 3 10 0.7211 195.66 25.920 5 2 35 0.4123 157.91 13.558 
2 1 20 0.2729 352.04 11.108 10 2 35 0.4952 61.65 42.480 
1 2 20 0.2871 219.89 162.598 1 2 35 0.4111 190.48 86.144 
2 1 10 0.0948 400.86 18.493 1 2 35 0.3549 "310.53 14.587 
b 1 35 0.1688 201.37 14.309 1 1 35 0.0596 346.15 28.152 
5 2 20 0.4357 161.75 13.589 4 3 10 0.8972 229.69 14.403 
2 3 35 0.52/7 181.41 17.599 5 1 20 0.2215 197.15 20.478 
2 3 20 0.9734 222.56 2.146 9 1 35 0.1775 109.77 28.438 
2 2 35 0.3727 251.20 16.488 5 3 35 0.7442 145.43 2.700 
1 2 10 0.4471 407.51 17.731 5 2 35 0.3328 178.50 13.907 
6 1 20 0.3281 226.59 9.666 5 2 20 0.3404 174.44 17.869 
1 2 35 0.3762 213.01 66.481 9 1 35 0.3193 112.86 25.052 
5 3 10 0.5378 188.42 16.583 3 2 10 0.4872 254.81 25.352 
4 2 10 0.3900 210.92 28.416 2 1 20 0.2928 309.64 19.666 
1 3 10 0.5789 382.48 15.443 4 3 10 0.9017 223.27 15.978 
4 3 35 0.5763 100.05 32.327 3 3 10 0.9410 271.94 16.214 
8 2 20 0.3029 100.00 42.861 3 1 35 0.1066 265.48 14.490 
4 2 20 0.4546 147.35 30.825 5 3 10 0.5830 168.44 24.200 
1 1 20 0.0747 372.77 24.675 4 3 10 0.7545 215.25 18.269 
2 3 10 0.6465 299.89 20.297 8 2 35 0.4568 173.74 22.288 
9 1 35 0.2568 129.90 14.092 3 2 20 0.4903 162.47 41.026 
2 2 35 0.3670 180.28 76.306 2 2 10 0.4890 335.74 19.529 
3 1 20 0.3352 309.82 9.519 8 2 35 0.4078 170.74 23.029 
3 3 20 0.4494 160.50 34.903 8 2 20 0.4827 146.89 "10.564 
4 3 35 0.6628 132.52 7.003 8 3 20 " "0;6426 127.04 13.975 
5 2 10 0.4754 179.10 27.701 8 3 20 0.8279 122.36 15.911 
9 2 35 0.4933 105.92 16.304 1 2 20 0.3287 297.90 29.442 
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APPENDIX D: PARTIAL LIST OF VALIDATION 

PATTERNS 

Material 
C lass 

Type o 
Cut 

^ Insert 
Grade 
(ISO P) 

Feed Rate 
(mm/rev) 

Cutting 
Speed 

(m/min) 

Tool Life 
(min) 

' ' lU U.U/bU 4bb./b 23.314 
1 1 10 0.0750 458.50 22.911 
1 1 10 0.0750 460.25 22.516 
1 1 10 0,0750 462.00 22.129 
1 1 10 0.0750 463.75 21.751 
1 1 10 0.0750 465.50 21.381 
1 1 10 0.0750 457.25 21.018 
1 1 10 0.0750 469.00 20.662 
1 1 10 0.0750 470.75 20.314 
1 1 10 0.0750 472.50 19.973 
1 1 10 0.0750 474.25 19.639 
1 1 10 0.0750 476.00 19.312 
1 1 10 0.0750 477.75 18.991 
1 1 10 0.0750 479.50 18.677 
1 1 10 " 0.0750 481.25 18.369 
1 1 10 0.0750 483.00 18.068 
1 1 10 0.0750 484.75 17.772 
1 1 10 0.0750 486.50 17.482 
1 1 10 0.0750 488.25 17,198 
1 1 10 0.1000 466.75 21,435 
1 1 10 0.1000 458.50 21,065 
1 1 10 0.1000 460.25 20.702 
1 1 10 0.1000 462.00 20.346 
1 1 10 0.1000 463.75 19.999 
1 1 10 0.1000 465.50 19.658 
1 1 10 0.1000 467.25 19.324 
1 1 10 0,1000 469.00 18.997 

1 10 0.1000 470.75 18,677 
1 1 10 0.1000 472.50 18.364 
1 1 10 0.1000 474.25 18.057 
1 1 10 0.1000 476.00 17.756 
1 1 10 0.1000 477.75 17.461 
1 1 10 0.1000 479.50 17.172 
1 1 10 0.1000 481.25 16,889 
1 1 10 0.1000 483.00 16,612 
1 1 10 0.1000 484.75 16,340 
1 1 10 0.1000 486.50 16,074 
1 •> 10 0.1000 488.25 15.812 
1 1 10 0.1500 456.75 19,042 

1 10 0.1500 458.50 18.713 
1 1 10 0.1500 460.25 18.390 
1 1 10 0.1500 462.00 18.075 
1 1 10 0.1500 463.75 17.766 
1 1 10 0.1500 465.50 17.463 
1 1 10 0.1500 467.25 17.167 
1 1 10 0.1500 469.00 16.876 
1 1 10 0.1500 4/0.75 16.592 

10 0.1500 472.50 15.313 
1 1 10 0.1500 474.25 16.041 
1 1 10 0.1500 476.00 15.773 
1 1 10 0.1500 477,75 15,512 
1 1 10 0.1500 479.50 15,255 
1 1 10 0.1500 481,25 15,003 
1 1 10 0.1500 483,00 14,757 
1 1 10 0.1500 484.75 14,516 
1 1 10 0.1500 486.50 14,279 
1 1 10 0.1500 488.25 14,047 
1 1 10 0.2000 456.75 17,508 

10 0.2000 458.50 17,205 

Material 
Class 

Type 0 
Cut 

^ Insert 
Grade 
(ISO P) 

Feed Rate 
(mm/rev) 

Cutting 
Speed 

(m/min) 

Tool Life 
(min) 

1U u,^uuu ib.yub 
1 1 10 0,2000 462.00 16.618 
1 1 10 0,2000 463.75 16.334 
1 1 10 0,2000 465.50 16.056 
1 1 10 "0,2000 467.25 15,783 
1 1 10 0,2000 469.00 15,517 
1 1 10 0,2000 470.75 15.255 
1 1 10 0,2000 472.50 14.999 
1 1 10 0,2000 474.25 14.748 
1 1 10 0,2000 476.00 14.602 
1 1 10 " 0,2000 477.75 14.262 
1 1 10 0.2000 "479,50 14.025 
1 1 10 0.2000 481,25 • "13.795 
1 1 10 0.2000 483.00 13.568 
1 1 10 0.2000 484.75 13.346 
1 1 10 0.2000 486.50 13.128 
1 1 10 "" "0,2000 488.25 12.915 
1 1 10 0,2500 456.75 16.403 
1 1 10 0,2500 458,50 16120 
1 1 10 0,2500 460.25 15.842 
1 1 10 0,2500 462.00 15.570 
1 1 10 0,2500 463.75 15,304 
1 1 10 0.2500 465.50 15,043 
1 1 10 0,2500 467.25 14,788 
1 1 10 0.2500 469.00 14,538 
1 1 10 0.2500 470.75 14,293 
1 1 10 0.2500 472.50 14,053 
1 1 10 0.2500 474.25 13,818 
1 1 10 • 0.2500 475.00 13,588 
1 1 10 0.2500 477.75 13,362 
1 1 10 0.2500 479.50 13,141 
1 1 10 0.2500 481.25 12,924 
1 1 10 0.2500 483.00 12,712 

1 10 0.2500 484.75 12,504 
1 1 10 0.2500 486.50 12,300 
1 1 10 0.2500 488.25 12.100 
1 1 10 0.3000 456.75 15.553 
1 1 10 0.3000 458.50 15.284 
1 1 10 0.3000 460.25 15.021 
1 1 10 0.3000 462.00 14.763 
1 1 10 0,3000 463.75 14.510 
1 1 10 0,3000 465.50 14.263 
1 1 10 0,3000 467.25 14.021 
1 1 10 0,3000 469.00 13.784 
1 1 10 0.3000 470.75 13.552 
1 1 10 0.3000 472,50 13.324 
1 1 10 0.3000 474.25 13.102 
1 1 10 • 0.3000 476.00 12.883 
1 1 10 0.3000 477.75 12.669 
1 1 10 0.3000 479.50 •12.460 
1 1 10 • 0.3000 481.25 12.254 
1 1 10 0.3000 483.00 12.053 
1 1 10 " 0.3000 484.75 11,856 
1 1 10 0.3000 486.50 11,663 
1 1 10 "o;30oo 488.25 11.473 
1 2 10 0,3000 382.50 22.200 
1 2 10 0.3000 385.00 21.693 
1 2 10 " "0.3000 387.50 21.200 

2 10 0.3000 390.00 • 20.722 
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APPENDIXD Validation patterns 

APPENDIX D (CONT): PARTIAL LIST OF VALIDATION 

PATTERNS 

Material 
C lass 

Typeo 
Cut 

P Insert 
Grade 
(ISO P) 

Feed Rate 
(mm/rev) 

Cutting 
Speed 

(m/min) 

Tool Life 
(min) 

2 1U U.3UU0 • 3a2.bU 20.25/ 
1 2 10 0.3000 395.00 19.805 
1 2 10 0.3000 397.50 19.367 
1 2 10 0.3000 400.00 18.940 
1 2 10 0.3000 402.50 18.526 
1 2 10 0.3000 405.00 18.123 
1 2 10 0.3000 407.50 17.732 
1 2 10 0.3000 410.00 17.351 
1 2 10 0.3000 412.50 15980 
1 2 10 0.3000 415.00 16.620 
1 2 10 0.3000 41/.50 16.269 
1 2 10 0.3000 420.00 15.928 
1 2 10 0.3000 422.50 15.596 
1 2 10 0.3000 425.00 15.273 
1 2 10 0.3000 427.50 14.958 
1 2 10 0.3500 382.50 22.200 
1 2 10 0.3500 385.00 21.693 
1 2 10 0.3500 387.50 21.200 
1 2 10 0.3500 390.00 20.722 
1 2 10 0.3500 392.50 20.257 
1 2 10 0.3500 395.00 19.805 
1 2 10 0.3500 397.50 19.367 
•> 2 10 0.3500 400.00 18.940 
1 2 10 0.3500 402.50 18.526 
1 2 10 0.3500 406.00 18.123 
1 2 10 0.3500 " 407.50 17.732 
1 2 10 " 0.3500 410.00 17.351 

2 10 0.3500 412.50 15980 
•> 2 10 0.3500 415.00 16.620 
1 2 10 0.3500 417.50 16.269 
1 2 10 0.3500 420.00 15.928 

2 10 0.3500 422.50 15.596 
1 2 10 0.3500 425.00 1b.273 

2 10 0.3500 427.50 14.958 
1 2 10 0.4000 382.50 22.200 
1 2 10 0.4000 385.00 21.693 
1 2 10 0.4000 387.50 21.200 
1 2 10 0.4000 390.00 20.722 
1 2 10 0.4000 392.50 20.257 
1 2 10 0.4000 395.00 19.805 
1 2 10 0.4000 39/.50 19.367 
1 2 10 0.4000 400.00 18.940 
1 2 10 0.4000 402.50 18.526 
1 2 10 0.4000 405.00 18.123 
•> 2 10 0.4000 407.50 17.732 
1 2 10 0.4000 410.00 17.351 

2 10 0.4000 412.50 16.980 
2 10 0.4000 415.00 16.620 

1 2 10 0.4000 417.50 16.269 
1 2 10 0.4000 420.00 15.928 
1 2 10 0.4000 422.50 15.596 
1 2 10 0.4000 425.00 16.273 
1 2 10 0.4000 427.50 14.958 
1 2 10 0.4500 382.50 22.200 
1 2 10 0.4500 385.00 21.693 
1 2 10 0.4500 387.50 21.200 
1 2 10 0.4500 " 390.00 20.722 
1 2 10 0.4500 392.50 20.257 

2 10 0.4500 395.00 19.805 

Material 
Class 

Type 0 
Cut 

P Insert 
Grade 
(ISO P) 

Feed Rate 
(mm/rev) 

Cutting 
Speed 

(m/min) 

Tool Life 
(min) 

2 1U U.4bUU jy/.bu 
1 2 10 0.4500 400.00 18.940 
1 2 10 0.4500 402.50 18.525 
1 2 10 0.4500 405.00 18.123 
1 2 10 0.4500 407.50 17732 
1 2 10 0.4500 410.00 17.351 
•> 2 10 0.4500 412.50 15980 
1 2 10 0.4500 415.00 16.620 
1 2 10 0.4500 417.50 15.259 

2 10 0.4500 420.00 15.928 
1 2 10 0.4500 422.50 15.596 
1 2 10 0.4500 425.00 16.273 
1 2 10 0.4500 427.50 14.958 
1 3 10 0.5000 347.25 21.795 
1 3 10 0.5000 349.50 21.300 

3 10 0.5000 351.75 20.818 
3 10 0.5000 • 354.00 20.350 
3 10 0.5000 366.25 19.896 

1 3 10 0.5000 358.50 19.454 
1 3 10 0.5000 350.75 19.025 

3 10 0.5000 363.00 18.607 
1 3 10 0.6000 365.25 18.202 
1 3 10 0.5000 367.50 17808 
1 3 10 0.5000 • 369.75 17.424 
1 3 10 0.5000 372.00 17.051 

3 10 0.5000 374.25 15689 
1 3 10 0.5000 376.50 15336 

3 10 0.5000 378.75 15.992 
•1 3 10 0.5000 381.00 16.668 
•1 3 10 0.5000 383.25 15.333 
1 3 10 0.5000 385.50 15.015 
1 3 10 0.5000 387.75 14.707 
1 3 10 0.6000 34/.26 21.796 
1 3 10 0.6000 349.50 21.300 
1 3 10 0.6000 " 351.75 20.818 

3 10 0.6000 354.00 20.350 
3 10 0.6000 355.25 19.896 
3 10 0.5000 358.50 19.454 

•1 3 10 0.5000 360.75 19.025 
1 3 10 0.6000 363.00 18.607 
1 3 10 0.6000 365.25 18.202 
1 3 10 0.6000 367.50 • 17.808 
1 3 10 " 0.5000 " 369.75 17.424 
1 3 10 0.6000 372.00 17.051 
1 3 10 0.5000 374.25 16.689 
•> 3 10 0.6000 376.50 15336 
•1 3 10 0.6000 378.75 15.992 
1 3 10 0.6000 381.00 16.658 
1 3 10 0.6000 383.25 15.333 
1 3 10 0.6000 385.50 15.016 
1 3 10 0.6000 387.75 14.707 
1 3 10 0.7000 347,25 21.796 
1 3 10 0.7000 349.50 21.300 
1 3 10 0.7000 351.75 20.818 
•1 3 10 0.7000 354.00 20.350 
1 3 10 0.7000 356.25 19.896 
1 3 10 " 0.7000 358.50 19.454 
1 3 10 0.7000 360.75 19.025 

3 10 0.7000 363.00 18.507 
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APPENDIXD Validation patterns 

APPENDIX D (CONT): PARTIAL LIST OF VALIDATION 

PATTERNS 

Material 
C l a s s 

Type of 
Cut 

Insert 
Grade 

(ISO P) 

Feed Rate 
(mm/rev) 

Cutting 
Speed 

(m/mIn) 

Tool Life 
(min) 

l U u. /uuu 3bb,2b 
1 3 10 0.7000 367,50 17.808 
1 3 10 0.7000 369,75 17.424 
1 3 10 0.7000 372,00 17.051 
1 3 10 0.7000 374,25 16.689 
1 3 10 0.7000 376,50 16,336 
1 3 10 0.7000 378,75 15,992 
1 3 10 0.7000 381,00 15,658 
1 3 10 0.7000 383,25 15,333 
1 3 10 0.7000 385.50 15,016 
1 3 10 0.7000 387.75 14,707 
1 3 10 0.8000 • 347.25 21.796 
1 3 10 0,8000 349.50 21.300 
1 3 10 0,8000 351,75 20.818 
1 3 10 0.8000 354,00 20.350 
1 3 10 0.8000 356.25 19.896 
1 3 10 0.8000 358,50 19.454 
1 3 10 0.8000 350.75 19.025 
1 3 10 0.8000 363.00 18.607 
1 3 10 0.8000 365.25 18.202 
1 3 10 0.8000 367.50 17.808 
1 3 10 0.8000 369.75 17.424 
1 3 10 0.8000 372.00 17.051 
1 3 10 0.8000 374.25 16.689 
1 3 10 0.8000 376,50 16.336 
1 3 10 0.8000 378,75 15.992 
1 3 10 0.8000 381,00 15.658 
1 3 10 0.8000 383,25 • • 15.333 
1 3 10 0.8000 385,50 15.016 

3 10 0,8000 387,75 14.707 
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APPENDIX E : ANFIS TOOL L I F E MODEL 

Fuzzy Logic Toolbox FIS File 

This Appendix contains a list of the trained ANFIS Tool Life Model, as stored in ASCII 

format, readable by the Fuzzy Logic Toolbox of Matlab. This file ('thn.fis') contains all the 

information necessary to fiilly define the developed ANFIS model. 

[System] 
Name='ANFIS Tool Life Model' 
Type='sugeno' 
Numlnputs=5 
NumOutputs=l 
NumRules=52 
AndMethod-prod' 
OrMethod-probor' 
ImpMethod-min' 
AggMethod='max' 
DefuzzMethod-wtaver' 

[Input 1] 
Name-Material Class' 
Range=[0.95 10.05] 
NmnMFs=52 
MFl='ijalmfl':'gaussmf ,[0.839611290765144 3.9882325470629] 
MF2='inlmf2':'gaussmf ,[0.837572288903139 4.00203023702909] 
MF3='inlmD':'gaussmf,[0.835709435728068 1.99893368956057] 
MF4='inlmf4':'gaussmf,[0.833178904065055 4.00926623652907] 
MF5='inlmf5':'gaussmf,[0.843029711717404 9.00647439701348] 
MF6='inlmf6':'gaussmf ,[0.836982693887178 2.00080393885859] 
MF7='inlmf7':'gaussmf,[0.832716049903644 0.996947114430338] 
MF8='inlmf8':'gaussmf ,[0.837002230588852 1.9994803747844] 
MF9='in 1 mf9':'gaussmf ,[0.83 8759036297879 4.00208019086678] 
MFl 0='in lmflO':'gaussmf,[0.82297257012132 4.01367509894336] 
MFl l='inlmfl I'r'gaussmf ,[0.828920858224994 5.00464933064628] 
MF12='inlmfl2':'gaussmf ,[0.838370862304256 9.001206642183] 
MF13='inlmn3':'gaussmf,[0.836379677470144 3.00037497229304] 
MF14='inImfl4':'gaussmf,[0.846712833622288 4.00225287707321] 
MF15='inlmfl5':'gaussmf,[0.836487782218365 0.99998798574326] 
MF16='inImfl6':'gaussmf,[0.836567237722962 1.00005574852378] 
MF17='inlmfl7':'gaussmf,[0.837534597105762 8.00039929612833] 
MFl8='inlmn8':'gaussmf,[0.836418687625158 8.0000546320052] 
MFl 9='in lmn9':'gaussmf,[0.862418629551945 2.03980187424775] 
MF20='in lmGO':'gaussmf,[0.852136180012853 1.98874188678648] 
MF2 l='inlmf21 ':'gaussmf ,[0.837775065142432 4.99867473331848] 
MF22='inlmf22':'gaussmf ,[0.839369873169264 4.08148660856996] 
MF23='inlmf23':'gaussmf ,[0.836434661012348 7.99900420203887] 
MF24='inlmf24':'gaussmf,[0.835134034718811 5.0006467318425] 
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MF25='mlmf25':'gaussmf ,[0.836430481546806 0.999936966056145] 
MF26='inlmf26':'gaussmf,[0.836912003789954 8.00006394188163] 
MF27='mlmf27':'gaussmf ,[0.829552792080852 2.00856015138132] 
MF28='mlmf28':'gaussmf ,[0.835501259909587 8.00034861928828] 
MF29='iiilmf29':'gaussmf,[0.834477837176952 3.00103650725865] 
MF30='inlmB0':'gaussmf ,[0.825625061972228 1.99711532945172] 
MF31='inlmf3r;'gaussmf,[0.836549260624672 3.0011205370978] 
MF32='inlmf32':'gaussmf,[0.836048086414035 8.00225358401078] 
MF33='in lmD3':'gaussmf,[0.839447493905707 1.00210483469015] 
MF34='mlmf34':'gaussmf ,[0.836483646795377 10.0000497145509] 
MF35='mlmG5':'gaussmf,[0.837167870982392 1.99985867361935] 
MF36='mlmD6':'gaussmf ,[0.84432262004326 2.9980757679618] 
MF37='inlmD7':'gaussmf ,[0.837746006160487 4.99895021352469] 
MF38='mlmD8':'gaussmf ,[0.840254293245963 4.99576497941034] 
MF39='mlmf39':'gaussmf,[0.836930258091213 1.00034299053164] 
MF40='mlmf40':'gaussmf ,[0.835846497111754 0.999489928859456] 
MF41='inlmf41':'gaussmf ,[0.836474022873929 3.89982046087518] 
MF42='inlmf42':'gaussmf,[0.839822997665874 1.00315451204941] 
MF43='inlmf43':'gaussmf,[0.837227700444017 3.99928524999468] 
MF44='inlmf44':'gaussmf ,[0.83513367478156 5.00171326404428] 
MF45='inlmf45':'gaussmf ,[0.837121015181546 8.99957455950808] 
MF46='mlmf46':'gaussmf ,[0.840964436647407 9.99627482502456] 
MF47='m lmf47':'gaussmf,[0.846077949657182 1.9420520068242] 
MF48='mlmf48':'gaussmf ,[0.832285032905224 2.99560696784648] 
MF49='inlmf49':'gaussmf ,[0.842163120198199 4.99406764989049] 
MF50='mlmf50':'gaussmf ,[0.840653698566677 4.9986532968315] 
MF51 ='in 1 mfS 1 Vgaussmf, [0.819075515613615 1.99675875350226] 
MF52='inlmf52':'gaussmf ,[0.844111523848874 1.00900257663559] 

[Input2] 
Name='Type_of_Cut' 
Range=[0.95 3.05] 
NumMFs=52 
MFl='in2mfl':'gaussmf,[0.511062734207259 0.999385537008225] 
MF2='in2mf2':'gaussmf ,[0.515180797901788 2.00018380311025] 
MF3='in2mD':'gaussmf ,[0.513396475418636 1.00054727547884] 
MF4='in2mf4':'gaussmf,[0.520331913526307 1.00411347782657] 
MF5='in2mf5':'gaussmf,[0.515406869940631 1.98874390053113] 
MF6='in2inf6':'gaussmf ,[0.510846089302102 1.99946234080718] 
MF7='m2mf7';'gaussmf ,[0.510501184698391 0.999081036137462] 
MF8='in2mf8':'gaussmf ,[0.512208344427701 0.999954702061251 ] 
MF9='in2mf9':'gaussmf ,[0.511974673815564 0.999840686622766] 
MF10='in2mflO':'gaussmf,[0.51972911614928 2.99612399689049] 
MF11 ='in2mfl IVgaussmf ,[0.512349481327761 1.98174732563016] 
MF12='m2mn2':'gaussmf,[0.511890570303671 0.999820104480592] 
MF 13='m2mfl 3':'gaussmf ,[0.512488291615271 2.99990053024313] 
MF14='in2mfl4':'gaussmf ,[0.517061227643768 2.99762092597335] 
MF 15='m2mfl 5':'gaussmf ,[0.512225414685384 0.999962270705073] 
MF16='in2mfl6':'gaussmf,[0.512548480324114 1.99996649420262] 
MF 17='in2mfl 7':'gaussmf ,[0.512768144207152 2.00178519476636] 
MFI8='in2mn8':'gaussmf ,[0.512403172239085 1.00004504473938] 
MF19='m2mfl9':'gaussmf,[0.530390640392823 2.99079738227083] 
MF20='m2mf20Vgaussmf ,[0.519266093888731 1.99343289588172] 
MF21 ='in2mf2 IVgaussmf ,[0.513447403494712 2.9994086168333] 
MF22='in2mf22':'gaussmf,[0.539506585778905 2.00484511327932] 
MF23='in2mf23':'gaussmf ,[0.51256758732871 2.99986271086749] 
MF24='in2mf24':'gaussmf ,[0.512817355204691 1.00023 857768061 ] 
MF25='in2mf25':'gaussmf ,[0.512512333435495 2.99989027275031] 
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MF26='in2mf26':'gaussmf,[0.512078765802663 0.999918605617935] 
MF27='in2mf27':'gaussmf ,[0.51547682197272 2.99835745141612] 
MF28='in2mf28':'gaussmf ,[0.52006684349732 2.00589104644721 ] 
MF29='in2mf29':'gaussmf ,[0.51363592229251 1.00067332426842] 
MF30='in2mC0':'gaussmf ,[0.509131557228933 1.97470076325093] 
MF3 l='in2mD l':'gaussmf ,[0.511125766831476 2.00858219830436] 
MF32='in2mG2':'gaussmf ,[0.512414287160344 2.99994104296685] 
MF33='in2mG3':'gaussmf,[0.512012906402969 0.99985104766992] 
MF34='in2mD4':'gaussmf ,[0.514790558417956 1.00136017284172] 
MF35='iii2mD5':'gaussmf ,[0.512425154929821 2.99993291665285] 
MF36='in2mf36':'gaussmf ,[0.50508700855058 2.00725700339787] 
MF37='in2mf37':'gaussmf,[0.516092882538878 2.99804658034113] 
MF38='in2mC 8':'gaussmf ,[0.517862146339825 1.0028031006943] 
MF39='in2mG9':'gaussmf ,[0.515966056262286 2.99811297231711] 
MF40='in2mf40':'gaussmf ,[0.512998042270215 2.00078301293325] 
MF4 I='in2mf41 ':'gaussmf,[0.526812320509704 2.02033219431462] 
MF42='in2mf42':'gaussmf,[0.514510849259739 2.9988688798823] 
MF43='in2mf43':'gaussmf ,[0.512591008837982 2.99985045503329] 
MF44='in2mf44':'gaussmf ,[0.520331025494307 2.99584442101858] 
MF45='in2mf45':'gaussmf,[0.512513253384293 2.99988945328562] 
MF46='in2mf46':'gaussmf,[0.517777004180118 2.01300786064757] 
MF47='in2mf47':'gaussmf ,[0.520966975491127 2.01179796744863] 
MF48='in2mf48':'gaussmf,[0.524424587172543 2.99423775373891] 
MF49='in2mf49':'gaussmf ,[0.506593886302192 2.01306544045647] 
MF50='in2mf50':'gaussmf ,[0.507716045912694 3.00234815052854] 
MF51='in2mf51':'gaussmf,[0.499937336953209 3.00623809898729] 
MF52='in2mf52':'gaussmf ,[0.516970621663829 2.00555310986635] 

[Input3] 
Name-Insert_Grade' 
Range=[8 40] 
NumMFs=52 
MFl='in3mfl':'gaussmf,[6.22276691237997 19.9995911868863] 
MF2='in3mf2':'gaussmf,[6.22271157382575 10.0001025828954] 
MF3='in3mf3':'gaussmf,[6.22342756708962 20.0004810793601] 
MF4='in3mf4':'gaussmf ,[6.22294074469671 34.9998218253147] 
MF5='in3mf5':'gaussmf,[6.22280090734426 34.9998916325118] 
MF6='in3mf6':'gaussmf,[6.2227043337384 10.000103899686] 
MF7='in3mf7':'gaussmf ,[6.22254260364002 34.9999990019608] 
MF8='in3mf8':'gaussmf,[6.22267347168728 10.0000124543609] 
MF9='in3mf9':'gaussmf,[6.22263037373686 10.0000487977609] 
MF 10='in3mfl 0':'gaussmf ,[6.22194713089794 19.9998852305689] 
MFl l='in3mfl I':'gaussmf ,[6.22407683959132 20.0004298952831] 
MF 12='in3mn2':'gaussmf ,[6.22257269617821 34.9999863014616] 
MF13='in3mfl3':'gaussmf,[6.22252968267118 9.99999251986609] 
MF14='in3mfl4':'gaussmf,[6.22190334956314 35.0002758237789] 
MFl 5='in3mfl 5':'gaussmf ,[6.22254129586046 10.0000016265755] 
MF 16='in3mn 6':'gaussmf ,[6.22256994240017 10.0000184607757] 
MF 17='in3mfl 7':'gaussmf ,[6.22267085377901 20.0000652251005] 
MF18='in3mn8':'gaussmf,[6.2225945398181 34.9999772511262] 
MF 19='in3mfl9':'gaussmf ,[6.22272292599302 34.9999240328679] 
MF20='in3mf20':'gaussmf,[6.22568068845977 20.0000221341723] 
MF21 ='in3mf21 ':'gaussmf ,[6.22262292142423 10.0000440674904] 
MF22='in3mf22':'gaussmf,[6.22284765385583 34.9998700314875] 
MF23='in3mf23':'gaussmf ,[6.22256585863306 34.9999891495609] 
MF24='in3mf24':'gaussmf ,[6.22279751370181 10.0001532765778] 
MF25='in3mf25':'gaussmf,[6.22260520360412 10.000040730539] 
MF26='in3mf26':'gaussmf ,[6.22253756082414 20.0000009087481 ] 
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MF27='in3mG7':'gaussmf,[6.22328596234804 20.0010094840771] 
MF28='in3mf28':'gaussmf,[6.22268436017267 34.9999399844671] 
MF29='in3mf29':'gaussmf,[6.22253280386264 35.0000019947386] 
MF30='m3mG0':'gaussmf ,[6.22320197977444 34.9997195839694] 
MF31='in3mf31Vgaussmf,[6.22296765536401 10.0002736140346] 
MF32='in3mf32':'gaussmf ,[6.22293495278116 20.0001491534989] 
MF33='in3mf33':'gaussmf,[6.22190927216584 19.999752405026] 
MF34='m3mf34':'gaussmf ,[6.22255400481233 34.9999940551913] 
MF35='m3mG5':'gaussmf ,[6.22263677714949 10.000060372964] 
MF36='in3mf36Vgaussmf ,[6.22048285053625 19.9995135784656] 
MF37='m3mf37':'gaussmf,[6.22230650829589 19.9999466614774] 
MF38='in3mf38':'gaussmf,[6.22260636896263 34.9999729194369] 
MF39='in3mG9':'gaussmf ,[6.22236078799917 20.0000693238615] 
MF40='m3mf40':'gaussmf,[6.22283785400182 34.9998780022978] 
MF41 ='m3mf41 Vgaussmf ,[6.22569157668148 34.9986992182077] 
MF42='m3mf42':'gaussmf ,[6.22249100139074 35.0000201150965] 
MF43='in3mf43Vgaussmf,[6.2224599176863 9.9999537845772] 
MF44='m3mf44':'gaussmf,[6.22248113042806 35.0000258379165] 
MF45='in3mf45':'gaussmf,[6.22257104189758 34.9999869872477] 
MF46='m3mf46':'gaussmf ,[6.22255212877488 34.9999948334196] 
MF47='m3mf47Vgaussmf,[6.22330307045788 34.9996854687522] 
MF48='in3mf48':'gaussmf,[6.22377712432812 20.0000284770248] 
MF49='m3mf49':'gaussmf ,[6.22117622789735 20.00002864501] 
MF50='in3mf50':'gaussmf ,[6.2221223 6189346 35.000172146639] 
MF51 ='in3mf5 l':'gaussmf ,[6.22338306610185 34.9996500834767] 
MF52='in3mf52':'gaussmf,[6.22128535185088 20.00067389788] 

[Input4] 
Name-Feed_Rate' 
Range=[0.04 1.1] 
NumMFs=52 
MFl ='m4mfl 'r'gaussmf ,[0.18248257394129 0.216278489810257] 
MF2='m4mf2':'gaussmf ,[0.167489786813141 0.383371910305347] 
MF3='in4mG':'gaussmf ,[0.172902561528851 0.195183491032074] 
MF4='in4mf4':'gaussmf,[0.151462953015122 0.224893788073255] 
MF5='m4mf5':'gaussmf ,[0.167918786799699 0.412224670287816] 
MF6='in4mf6':'gaussmf,[0.160558801108976 0.376828134456824] 
MF7='in4mf7':'gaussmf ,[0.144433544400388 0.204607341176076] 
MF8='in4mf8':'gaussmf,[0.192096060657611 0.205771370649799] 
MF9='m4mf9':'gaussmf ,[0.186865829677612 0.159248912601984] 
MF10='m4mflO':'gaussmf ,[0.164053834374213 0.695628522226047] 
MF 11 ='in4mfl 1 'r'gaussmf ,[0.141515482635469 0.421051036923264] 
MF12='in4mn2':'gaussmf,[0.174320109283156 0.193125188000766] 
MF 13='in4mfl 3':'gaussmf ,[0.188995445177814 0.712460979380842] 
MF14='in4mn4':'gaussmf,[0.160186467870622 0.648566436756726] 
MFl5='m4mfl5':'gaussmf ,[0.167604302836305 0.201415014106634] 
MF 16='in4mfl 6':'gaussmf,[0.168979432290299 0.3 86654677257424] 
MF 17='in4mfl7':'gaussmf,[0.171571505476658 0.394074820156871 ] 
MF 18='in4mfl 8':'gaussmf ,[0.170625210453505 0.204435949891655] 
MF 19='in4mfl 9':'gaussmf ,[0.174383255282825 0.630979560663197] 
MF20='in4mf20':'gaussmf ,[0.194971505485469 0.388546934541834] 
MF21 ='in4mf21 Vgaussmf ,[0.166368076995881 0.691932251006768] 
MF22='m4mf22':'gaussmf ,[0.167482328209409 0.412409688403867] 
MF23='in4mf23Vgaussmf,[0.207940361965482 0.706138046867884] 
MF24='in4mf24':'gaussmf,[0.133502174440215 0.230463760424683] 
MF25='in4mf25':'gaussnif,[0.1713642300732 0.733115385590328] 
MF26='in4mf26':'gaussmf ,[0.174870761653858 0.207557670331888] 
MF27='in4mG7:'gaussnif,[0.169220002533738 0.786826823029781] 
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MF28='in4mf28':'gaussmf,[0.175990707538798 0.378089249541077] 
MF29='in4mG9':'gaussmf ,[0.161918187919031 0.191448675865143] 
MF30='in4mD0':'gaussmf ,[0.125941496746071 0.410596268791723] 
MF31='in4mGl':'gaussmf,[0.137273018631559 0.435210507710151] 
MF32='in4mG2':'gaussmf ,[0.151557098681649 0.753276761425567] 
MF33='in4mG3':'gaussmf ,[0.156717184607301 0.189376477041522] 
MF34='in4mf34':'gaussmf ,[0.174428030266592 0.209302021784826] 
MF35='in4mf35':'gaussmf ,[0.174475960258023 0.849828540935297] 
MF36='in4mf36':'gaussmf,[0.122297375883703 0.404744759523212] 
MF37='in4mG7':'gaussmf,[0.182945811559519 0.933465171119527] 
MF38='in4mG8':'gaussmf ,[0.157539633046581 0.128868061442596] 
MF39='in4mG9':'gaussmf,[0.178510626595105 0.613725905844523] 
MF40='in4mf40':'gaussmf ,[0.13279408163193 0.426148456794489] 
MF41='in4mf4r:'gaussmf ,[0.178722710592248 0.262550737962477] 
MF42='in4mf42':'gaussmf,[0.180754542715465 0.811140435317355] 
MF43='in4mf43':'gaussmf ,[0.17149071722576 0.975327677067175] 
MF44='in4mf44':'gaussmf ,[0.199639888624238 0.976107029307731] 
MF45='in4mf45':'gaussmf ,[0.16765991907747 0.932990489846102] 
MF46='in4mf46':'gaussmf ,[0.204194282212528 0.395593629034963] 
MF47='in4mf47':'gaussmf,[0.225100187611417 0.259118173694144] 
MF48='in4mf48':'gaussmf,[0.124028197350606 0.476934576844436] 
MF49='in4mf49':'gaussmf,[0.134773357700969 0.33818977172222] 
MF50='in4mf50':'gaussmf,[0.153800756853645 0.525839628035747] 
MF51='in4mf51':'gaussmf,[0.150265512885776 0.554084357996792] 
MF52='in4mf52':'gaussmf ,[0.164797083021869 0.284092870885892] 

[Input5] 
Name='Cutting_Speed' 
Range=[40 520] 
NumMFs=52 
MFl='in5mfl':'gaussmf,[33.9414673457142 240.630570209739] 
MF2='in5mf2':'gaussmf,[33.9410770732004 235.471635616967] 
MF3='in5mG':'gaussmf ,[33.9411333987625 336.125459103468] 
MF4='in5mf4':'gaussmf ,[33.9410367789749 217.184156458841 ] 
MF5='in5mf5':'gaussmf,[33.9409707708885 106.109351185253] 
MF6='in5mf6':'gaussmf,[33.9411830434862 339.731560019425] 
MF7='in5mf7':'gaussmf ,[33.9411174188614 364.246068244851] 
MF8='in5mf8':'gaussmf,[33.9411748407732 400.38739206804] 
MF9='in5mf9':'gaussmf,[33.9412176596807 290.22702329304] 
MF10='in5mfl0':'gaussmf,[33.940477241437 162.303868911741] 
MFl l='in5mfl l':'gaussmf ,[33.940725399114 170.946589458728] 
MF12='in5mfl2':'gaussmf ,[33.9410832247674 120.578675942381] 
MF13='in5mfl3':'gaussmf,[33.9411624162066 262.862756400319] 
MF14='in5mn4':'gaussmf,[33.9413434536205 142.311541305217] 
MF15='in5mn5':'gaussmf ,[33.9411335086759 469.790795604997] 
MFl 6='in5mfl 6':'gaussmf ,[33.941141531722 407.753392111814] 
MF17='in5mfl7':'gaussmf ,[33.941184977714 124.448972170391] 
MF 18='in5mfl 8':'gaussmf ,[33.9411075210509185.781093829151] 
MF 19='in5mfl 9':'gaussmf ,[33.9408707136047 201.341576734995] 
MF20='in5mf20':'gaussmf ,[33.9407629952126 260.872692746364] 
MF21='in5mf2r:'gaussmf,[33.9410158288538 192.004255967325] 
MF22='in5mf22':'gaussmf ,[33.9417782160342 163.447770279843] 
MF23='in5mf23':'gaussmf ,[33.9411348310852 130.961751663974] 
MF24='in5mf24':'gaussmf,[33.941143371772 230.325921724434] 
MF25='in5mf25':'gaussmf,[33.9411304208692 358.678892951018] 
MF26='in5mf26':'gaussmf,[33.9410930266271 145.935716222382] 
MF27='in5mf27':'gaussmf ,[33.9412767044599 219.986857842435] 
MF28='in5mf28':'gaussmf,[33.9410419895243 149.078348989409] 
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MF29='in5mf29':'gaussmf ,[33.9413211248142 266.117086898485] 
MF30='in5mf30':'gaussmf ,[33.9420738792568 234.742158521128] 
MF31='in5mDl':'gaussmf,[33.9412683677878 288.623704011083] 
MF32='in5mD2':'gaussmf ,[33.9406350139076 115.801854643292] 
MF33='in5mf33':'gaussmf ,[33.9411839093658 394.137880545956] 
MF34='in5mf34':'gaussmf,[33.9412248703387 77.5911827071631] 
MF35='in5mB5':'gaussmf,[33.9411374179857 310.855481522926] 
MF36='in5mG6':'gaussmf ,[33.9411374662644 192.581216827054] 
MF37='in5mGT:'gaussmf ,[33.9411074217564 145.546586850157] 
MF38='in5mG8':'gaussmf ,[33.941001799549 172.780218956045] 
MF39='in5mB9':'gaussmf,[33.9408578356968 274.057711402709] 
MF40='in5mf40':'gaussmf ,[33.9413244672225 302.498305842805] 
MF41='in5mf41':'gaussmf,[33.9425158706037 135.64414999267] 
MF42='in5mf42':'gaussmf,[33.9411380562025 263.115035290529] 
MF43='in5mf43':'gaussmf,[33.9411190144497 221.550416028376] 
MF44='in5mf44':'gaussmf ,[33.9412931125757 115.483170497421] 
MF45='in5mf45':'gaussmf ,[33.9412397301029 99.8729901369938] 
MF46='in5mf46':'gaussmf ,[33.9412844483991 63.4146814662695] 
MF47='in5mf47':'gaussmf ,[33.94262586253 88 199.091070705498] 
MF48='in5mf48':'gaussmf ,[33.9411429772135 213.697321846744] 
MF49='in5mf49':'gaussmf ,[33.9412537194432 144.302772368579] 
MF50='in5mf50':'gaussmf ,[33.9412182864445 110.366733678738] 
MF51 ='in5mf51 ':'gaussmf ,[33.9417637915234 156.816950701404] 
MF52='in5mf52':'gaussmf,[33.9420632057302 250.665760760231] 

[Outputl] 
Name='Tool_Life' 
Range=[0 190] 
NumMFs=52 
MFl='outlmfl':'linear',[-26.8120108024098 125.16572144532 -7.57016905544154 34.2510909773725 -
1,47590244567306 537.142539683259] 
MF2='outlmf2':'linear',[4.04465315444996 -16.7832683565706 -7.22935195497158 -23.6353305126749 -
0.0506044334264723 124.535938972592] 
MF3='outlmG':'linear',[-23.6729788767767 120.652737044123 -2.11087575986417 -15.5974611787023 -
0.198729538751353 59.0369445683674] 
MF4='outlmf4':'linear',[8.66931837802606 -33.8464403557105 63.300800055714 -18.4151335845702 -
0.165851310439887 -2164.38377815168] 
MF5='outlmf5':'linear',[262.78436682395 -20.1281618941483 -98,7490789325033 38.677238996226 -
2.19333912547129 1327.59143772795] 
MF6='outlmf6':'linear',[-8.69909279179083 -6.78279922863471 -9.20042398472361 18.3685450958438 -
0.160897202086156 186.104060954335] 
MF7='outlmf7':'linear',[-5.10343419033659 68.9244409616706 23.6418286303561 -17.4226544369578 -
0.361088812970463 -747.19102990968] 
MF8='outlmf8':'linear',[-21.4490465874135 -7.70277045508048 2.86647682794408 -35.0923791871701 -
0.125918053864476 113.769240547206] 
MF9='outlmf9':'linear',[-15.4263384221805 -23.5656145615906 6.61931252360515 -27.8650622584641 -
0.274667565285152 120.609201574486] 
MF10='outlmfl0':'linear',[-8.65477182825537 -83.4219794736606 -15.1515532457058 
34.1580565836815 0.570803155720422 434.364689204007] 
MFll='outlmflr:'linear',[-99.5402516538056 10.804894264111 1.12227078249131 -801.843052247284-
4.12470092510899 1867.63806591598] 
MF12='outlmfl2':'linear',[83.6702891611288 -62.9606768552895 -39.6791079431751 
16.3940989187737 -1.00340556284613 810.629232267875] 
MF13='outlmfl3':'linear',[-12.9134453403524 -60.1677545819183 0.975810366138617 
18.3471961982028 -0.543208042460076 366.98502806552] 
MF14='outlmn4':'linear',[-7.47911891397561 -422.672026370927 -58.2478331084786 
37.0635018328274 0.389496740013001 3268.70239362714] 
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MF15='outlmfl5':'linear',[-35.4818009490012 -16.9096287453786 7.11764929510455 
27.1032317019642 -0.24846783352523 121.435351198154] 
MF16='outlmn6':'linear",[-15.3342074906291 -5.46226845919954 -0.266647015183064 
15.979075947134 -0.152850572949915 116.131195067535] 
MF17='outlmflT:'lmear',[-819.086348470396 -15.567833692516 378.396594434101 -32.7572184192135 
-0.99004777687935 -889.027517616015] 
MF18='outlmfl8':'linear',[21.7333753408074 -44.0128390055473 -31.672004063626 -9.44397726924365 
0.427158009790074 885.40963748996] 
MF19='outlmfl9Vlinear',[-1.53956599673775 -936.028539645717 -4.07032282997525 
215.489477831747 -0.904322764874932 3341.6027769596] 
MF20='outlmf20':'Iinear',[-293.924912088145 -25.384459154085 -9.95235730705808 -767.642144672278 
-3.33737173095925 2322.76230971171] 
MF21='outlmf2r:'linear',[12.6512398574582 -40.0224236902664 0.988495035148972 
6.03725426523481 -0.128006514883073 82.0937465005728] 
MF22='outlmf22':'Iinear',[-41.3340883290551 12.5290584343355 94.3743504106806 -762.991633937348 
-3.34992380034564 -1978.72031528269] 
MF23='outlmf23':'linear',[-15.3866115618014 -131.884765384897 -1.05735719485334 
38.0178065021685 -0.421345233687942 630.002895494348] 
MF24='outlmf24':"linear',[43.1489884037966 -61.0076646786268 2.62263607002801 -37.1076620159349 
-0.227441531063712-117.097391747942] 
MF25='outlmf25':'lmear',[-13.00964460289 -64.761446973835 -2.23918814578104 -2.54661492387196 -
0.14704502780113 302.976012077807] 
MF26='outlmf26':'linear',[-257.057473869682 -86.8446203274923 122.634417098877 
5.41211225418007 -0.857892163369921 -187.952755953653] 
MF27='outlmf27':'lmear',[-8.76312495092025 871.477664462993 9.08150820134106 10.4156482305944 
-0.0746426916741322 -2773.3565407175] 
MF28='outlmf28':'linear',[65.3590782724991 13.6411393014052 -73.836905271053 -99.3113820079359 
1.93418789218101 1663.51090188252] 
MF29='outlinC9':'linear',[-4.06772438268184 138.133579057949 7.79290738681373 -12.6614122259695 
-0.39943948958523 -271.948215128915] 
MF30='outlniO0':'linear',[48.8629879598401 6.49402393292996 88.5476454398389 -98.7571175946389 
-2.2628248864202-2522.25286836778] 
MF31='outlmBl':'linear',[-22.8724818534618 3.77704090654783 29.5480075802479 10.3363641661177 
-0.226760019196169-143.335818263801] 
MF32='outlmD2':'linear',[-273.702586634334 -24.302748310876 -20.0095753128157 -5.70229072815814 
-0.647033138185793 2760.28900673718] 
MF33='outlmD3':'linear',[-26,9397914456427 5.95488886002379 10.9801075441316 -27.368752893706 -
0.657874214872661 80.27493 83280767] 
MF34='outlmG4':'linear',[-92.9051875135942 447.495172270418 -0.488858873501532 
22.8939374306904 -2.02909641828448 689.175784353187] 
MF35='outlmf35':'linear',[-15.7537778556052 158.240003548708 -2.89750928009152 
10.1188855368327 -0.228184105132747 -314.360203822617] 
MF36='outlmG6':'lmear',[2.84994082323956 51.5432595773066 -5.85478789305346 -540.549233799723 
-2.11872892344839 574.072880543233] 
MF37='outlmG7:'linear',[-6.818648536745 1178.19364958851 -2.62309203307647 -17.8145055798583 
0.0769529192343427 -3443.65197006092] 
MF38='outlmG8':'lmear',[-25.2875737538594 92.2556696551507 -1.70382264467395 
72.3520465989903 -0.584820703713338 231.355505549271] 
MF39='outlmG9':'linear',[-1.38228650863343 137.808845439774 -1.83581792072464 
9.74689712150592 -0.00238117475964385 -367.489578265649] 
MF40='outlnif40':'lmear',[15.1355710990018 0.258260700376292 -15.4845180316565 
53.2014908688465 -0.315739308674758 655.834255473653] 
MF41='outlmf4r:'linear',[-122.579114494703 -83.4372213983649 -186.720100925098 
2172.08341055986 -9.05587528894754 8940.23462882704] 
MF42='outlmf42':'linear',[2.51432585185038 -210.932178972627 1.86132759523841 -22.5988158016821 
-0.0515116014027216 601.759431009381] 
MF43='outlmf43':'linear',[-l 1.6913194260693 222.383664605488 -4.20027724466384 18.3079830780634 
-0.30064520059 -513.414499652057] 

191 



APPENDIXE ANFIS tool life model 

MF44='outlmf44':'linear',[-2.37176931110114 1551.65056266005 -8.62824498234049 
27.5935091967997 -0.0384548060718405 -4303.68625191179] 
MF45='outlmf45':'linear',[-15.5948769018872 31.0261489326754 -0.332050326073988 
35.9913994968415 -0.915137509626556 201.473990326665] 
MF46='outlmf46':'linear',[-78.9795018826674 45.567124678327 -8.68065887193724 194.91053766844 
5.55046089737823 1210.13048105229] 
MF47='outlmf47':'linear',[-108.145968585341 -69.7695995888284 -85.3783185369149 
1738.83779901314 -3.94022560203012 4661.76220040143] 
MF48='outlmf48':'linear',[3.01676796830677 -780.845693960939 -1.48472735271557 
71.4508279132255 -0.0919266891561015 2434.59474944979] 
MF49='outlmf49':'linear',[127.808100458108 13.4044640574799 -3.23515424371852 -1128.3188402232 • 
6.07483159509322 359.530784888466] 
MF50='outlmf50':'linear',[-37.9457855324815 -136.559717096254 4.33041983983749 
48.9368285911301 -0.369554441860075 552.149811244502] 
MF51='outlmf51':'linear',[-25.5202389579938 -32.2267352048578 -8.59189399903089 
237.191063289705 -2.24295715915809 941.045586633377] 
MF52='outlmf52':'linear',[-400.016661713625 62.029698231843 37.2668908547018 -1122.78442680183 • 
2.6519111334468 347.800434157336] 

1 : 1 

[Rules] • 
I 1 1 1 1,1(1) 
2222 2,2(1) 
33 3 3 3,3 (1) 
44444,4(1) 
5 55 5 5,5 (1) 
6666 6,6(1) 
77 7 7 7,7(1) 
888 8 8,8(1) 
99 9 9 9,9(1) 
10 10 10 1010,10(1) 
I I 11 11 11 11, 11 (1) 
12 12 12 12 12, 12(1) 
13 13 13 13 13, 13(1) 
14 14 14 14 14, 14(1) 
15 15 15 15 15, 15(1) 
16 16 16 16 16, 16(1) 
17 17 17 17 17, 17(1) 
18 18 18 18 18, 18(1) 
19 19 19 19 19, 19(1) 
20 20 20 20 20,20(1) 
2121212121,21(1) 
22 22 22 22 22,22 (1) 
23 23 23 23 23,23 (1) 
24 24 24 24 24,24 (1) 
25 25 25 25 25,25 (1) 
26 26 26 26 26,26(1) 
27 27 27 27 27,27(1) 
28 28 28 28 28,28(1) 
29 29 29 29 29,29(1) 
30 30 30 30 30,30(1) 
3131313131,31(1) 
32 32 32 32 32, 32(1) 
33 33 33 33 33,33 (1) 
34 34 34 34 34, 34 (1) 
35 35 35 35 35,35 (1) 
36 36 36 36 36,36(1) 
37 37 37 37 37,37(1) 
38 38 38 38 38,38(1) 
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39 39 39 39 39,39(1 
40 40 40 40 40, 40(1 
41 41 41 41 41,41 (1 
42 42 42 42 42, 42 (1 
43 43 43 43 43, 43 (1 
44 44 44 44 44,44 ( i 
45 45 45 45 45, 45 (1 
46 46 46 46 46, 46(1 
47 47 47 47 47,47 (1 
48 48 48 48 48, 48(1 
49 49 49 49 49, 49(1 
50 50 50 50 50, 50(1 
51 51 51 51 51,51 (1 
52 52 52 52 52, 52 (1 
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