
Durham E-Theses

Extraction of objects from legacy systems: an example

using cobol legacy systems

Salurso, Maria Anna

How to cite:

Salurso, Maria Anna (1998) Extraction of objects from legacy systems: an example using cobol legacy

systems, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4673/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4673/
 http://etheses.dur.ac.uk/4673/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

U N I V E R S I T Y O F D U R H A M

The copyriglit of tins tliesis rests
with tlie author No quotation
from it sliould be pubhshed
witliout tlie written consent of the
author and infomiation denved
from it should be acknowledged

D E P A R T M E N T OF COMPUTER SCIENCE

Master Thesis in Computer Science

Extraction of Objects

from Legacy Systems:

AN EXAMPLE USING

COBOL LEGACY SYSTEMS

S u p e r v i s o r C a n d i d a t e
M a l c o l m M u n r o M a r i a A n n a S a l u r s o

Academic Yeui 1997

This thesis is dedicated to my mother

Maria Antonietta and my father Ettore, for the patience

in the hard task of being parents of a student

II

ABSTRACT

In the last few years the interest in legacy information system has increased

because of the escalating resources spent on their maintenance On the other

hand, the importance of extracting knowledge f rom business rules is becoming a

crucial issue for modern business, sometime, because of inappropriate

documentation, this knowledge is essentially only stored in the code A way to

improve their use and maintainabili ty in the present environment is to migrate

them into a new hardware / software platform reusing as much of their experience

as possible during this process. This migration process promotes the population

of a repository of reusable software components for their reuse in the

development of a new system in that application domain or in the later

maintenance processes

The actual trend in the migration of a legacy information system, is to

exploit the potentialities of object oriented technology as a natural extension of

earlier structured programming techniques. This is done by decomposing the

program into several agent-like modules communicating via message passing, and

providing to this system some object oriented key features The key step is the

'^object isolation", i.e. the isolation of groups of routines and related data items

to candidates in order to implement an abstraction in the application domain.

The main idea of the object isolation method presented here is to extract

informat ion f rom the data flow, to cluster all the procedures on the base of their

data accesses. It w i l l examine "how" a procedure accesses the data in order to

distinguish several types of accesses and to permit a better understanding of the

funct ional i ty of the candidate objects. These candidate modules support the

population of a repository of reusable software components that might be used as

a basis of the process of evolution leading to a new object oriented system

reusing the extracted objects

III

ACKNOWLEDGEMENTS

/ M ' o u l d like to thank Malcolm Munro for his rigorous and friendly

supervision, and Professor Amelia Cimitile for encouraging me to come to

Durham

Thanks also for the facilities provided by Professor Keith Bennett and all

the members of the Centre for Software Maintenance My time in the University

of Durham has been both enjoyable and interesting Particularly, thanks to

Liz Burd for reading the draft of this thesis

Needless to write here the names of all my friends in Durham They all

know how much I appreciated their friendship and their support I wish just to

nominate those of them whom I had more coffees with thanks Sahab, Marco,

Riccardo, Isabelle, Raija, Edy and Nobuko I'll be missing all of you

My final thoughts are for a very special friend, Tommaso, who has been

patiently waiting for me in Italy during the last year

IV

COPYRIGHT STATEMENT

The copyright of this thesis rests wi th the author. No quotation from it

should be published without prior writ ten consent and information derived f rom

i t should be acknowledged.

CONTENTS

A B S T R A C T i i i

A C K N O W L E D G E M E N T iv

C O P Y R I G H T S T A T E M E N T v

C O N T E N T S v i

1. I N T R O D U C T I O N 1

1.1 CRITERIA FOR SUCCESS 6

1.2 PLAN OF THE THESIS 7

2 . A R E V I E W O F E X I S T I N G T E C H N I Q U E S 9

2.1 INTRODUCTION 9

R e v e r s e E n g i n e e r i n g 9

R e e n g i n e e r i n g 9

2.2 REVERSE ENGINEERING METHODS J2

2.2.1 RECAST 12

2.2.2 REDO , : : , 14

2.2.3 REORG 18

2.2.4 Alternative Approaches to Migrate Legacy Information Systems. ... 27

2.3 PROCESSES OF REUSE REENGINEERING 22

2.3.1 The Paradigm of Reuse Reengineering (TlE^j 23
C a n d i d a t u r e Phase 25

E l e c t i o n Phase 26

Q u a l i f i c a t i o n Phase 27

2.4 CLASSES OF CANDIDATURE CRITERIA TO DECOMPOSE LEGACY

INFORMATION SYSTEMS 29

F u n c t i o n a l Abs trac t ion 29

Data Abs trac t ion 3 1

C o n t r o l Abs trac t ion .33

VI

2.5 GRAPH THEORY APPROACHES 33

2.5.1 The Call Dependencies of Cimit i le and Visaggio 34

2.5.2 The Algori thms of L i u and Wilde 36

2.5.3 The Algor i thm of Dunn and Knight 38

2.5.4 The Algor i thm of Canfora et al 39

2. 6 SUMMARY 43

3 . P R O G R A M R E P R E S E N T A T I O N S 44

Data F l o w A n a l y s i s 44

C a l l G r a p h 45

3.2 A NEW CODE REPRESENTATION 45

3.2.1 Analysis of Data Access Type 46

3.2.2 The Temporal Graph 49

4. A N I M P R O V E D T E C H N I Q U E 54

4.1 OVERVIEW OF THE ALGORITHM 56

4.2 DETAILS 57

4.2.1 Drawing the Program Representations 58 •

T h e B ipar t i t e G r a p h 58

4.2.2 The Computation of the Vector AIC() 59

4.2.3 Data Duplication 60

4.2.4 Data Refining 68
E v a l u a t i o n o f the Data R e f i n i n g Phase 69

4.2.5 Termination of,the Algorithm •. 'TO

5. A C A S E S T U D Y ON A C O B O L S O U R C E C O D E 71

5.1 THE NEED OF A STANDARD: THE ANSI COBOL STANDARD 73

5.2 PRESENTATION OF THE CASE STUDY 75

5.3 ISOLATION OF PROCEDURES AND DATA 76

5.3.1 Isolation of Procedures 76

5.3.2 Data Analysis 75
U n u s e d A n a l y s i s 79

Data A c c e s s e s 79

5.3.3 The Bipartite Graph 82
Computat ion of Indexes I C () and A1C()84

5.4 D A T A R E F I N I N G PHASE..,'....: 84

Vll

5 4 1 Data Duplication 88

6. F U T U R E W O R K S 92

6 1 EXTENSION OF D A T A D U P L I C A T I O N PHASE 93

6 2 DATA NORMALISATION 94

7. C O N C L U S I O N S 95

7 1 EVALUATION OF THE CRITERIA FOR SUCCESS 95

7 11 Description and evaluation of existing methods 95

7 12 Formalization of a language-independent method 96

7 13 Application of the method to a case study 97

R E F E R E N C E S 99

viu

a

Since the early 80's, both in academic institutions and in a wide range of

working environments, the problem of the evolution of existing information

systems has become a bioad interest With time, these legacy information

systems, as Dietr ich calls them, have increasingly became an integral part of the

fabric o f many organisation, growing bigger and more complex than they were

or ig inal ly The costs of keeping them operational and acceptable consumed a

s ignif icant proportion - up to 70% - of the software system l i fe cycle budget

[A92] [B91A] [B81] [LS80]

In addition to these escalating costs, the recession m the early 90's led to

severe cuts in the budget for the development of new systems [A94] This is also

confirmed by Bernstein [B93A] , who estimates that of $100 b i l l ion dollars annual

expenditure of companies on software, at least 70% w i l l be spent on maintaining

their systems, while the other 30% w i l l be spent on new development

Consequently, companies are increasingly directing their efforts to get more from

the existing systems but also to ensure that these systems are much more

maintainable than it was o i ig inal ly demanded The existing information systems

are today's ''assets'' to be protected [P95] [B91c], and exploited by extiacting

knowledge and business rules [CO90] that, because of inappropriate

documentation, are sometimes only contained wi th in the code [CD95] In fact, it

is becoming increasingly well known that an existing system could be a

repository of ideas and could enable the identif ication of building blocks fo i

development of future systems [S871, as it contains management, operational and

f inancial infoimat ion about an oiganisation that has been acciued over many

Chapter 1 introduction

years.

To highl ight further the actual situation, a recent study [I B M] estimates

that, in average, the size of a legacy information system increases by

roughly 10% each year because of normal maintenance and upgrade. This leads

to a doubling in size about every seven years. Consequently, the di f f icul t ies of

comprehension o f the legacy code are increasing, making harder any attempt to

evolve the code. These considerations, wi th the lack of technique to solve the

legacy information systems problem and the escalating resources spent on their

management, lead to ''information system apoplexy'' [BS95], and to a common

convict ion that dealing wi th the problem can not be further postponed.

As the area concerning legacy information systems is relatively young, there

is no def in i t ion that exactly establishes when an information system is ''legacy".

Moreover, in most of these systems there undoubtedly exists a set of common

features: enormity (mil l ions of LOCs sometime written in a single, monolithic

block w i t h conventional or ad-hoc languages such as Assembler, COBOL, PL/1 ,

FORTRAN and even A P L) , old age, i n f l ex ib i l i t y , inconsistency or complete lack

of documentation, inappropriate management of data, presence of inaccurate

functions and inadequacy or lack of interaction between system components.

Not all legacy inforrriation systems corresponds to this stereotype;

sometimes, an information system can be legacy even i f it has been developed

recently arid wi th moderri techniques, but i t cannot be ea'sily adapted to . the '

continuous changing requirements of strategies and practices in a modern

business. This lead Brone and Stonebraker [BS95] to define a legacy information

system not in regard to the features above, but, quite informally , as "any

information system that significantly resists modification and evolution to meet

new and constantly changing business requirements'".

One of the greatest challenges facing software engineers is the management

and control o f these changes [BH85] . This is indicate in the time spent and in

the e f fo r t required to keep software systems operational after release.

The discipline concerned wi th changes related to an information system after

delivery is tradit ionally known as "software maintenance". There exist many

Chapter 1 introduction

different definit ions of software maintenance [O90] [ANSI83] [LS80], some of
which highl ight particulars activities carried out during maintenance processes.
Cornelius et al. [CMR88] insist on a general view which consider software
maintenance as ''any work that is undertaken after delivery of a software system''.
A n interesting point of view is the one of Layzell and Macaulay, defining a
maintenance processes as a "need-to-adapt" activity, which entails changing the
software when its operational environment or original requirements changes, or
as an act ivi ty to support the users of the system [LM90] . In the 1993, the IEEE
Software Maintenance Standard combined these different views, defining the
software maintenance as "modification of a software product after delivery, to
correct faults, to improve performance or other attributes, or to adapt the
product to a modified environment" [V93A] .

However, i t seems that maintenance s t i l l keeps its traditional meaning of

restoration in response to the gradual deterioration of parts due to an extended

use [GJM91] , which is simply corrective maintenance. In contrast, adaptive and

perfective chariges [S76] [LS80] performed on legacy information systems, does

not only involve correction of malfunctioning, but also entails adapting and

enhancing the system to meet the evolving need of the users [LS80] and their

organisations. Consequently, many authors have advanced alternative terms as

"software evolution" [A88] [GJM91] [L85] , "post-delivery evolution" [MD91 ,6]

and " s u p p o r t " [L M 9 0] that are considered more inclusive and encompass

most, i f not a l l , o f the activities undertaken on the existing systems to keep them

operational and acceptable to the users'. These alternative definitions also have a

more positive image than the term "maintenance".

The legacy information system problem has undoubtedly increased the

significance given to the maintenance processes. In the early days the interest in

the legacy information system problem concentrated on the study of tools,

technique and technologies supporting the maintenance process. By comparing

the small number of publications and active researches at that time wi th 4he

Chapter 1 introduction

situation today, i t is possible to say that software maintenance was receiving
much less attention than the development of new systems [M D 9 l 2 o] . In industry,
software maintenance was "categorised as dull, un-exiting detective work"
[H88] .

Today, the scenario is different , but the binomial "software maintenance" /

"legacy information systems problem" is even more strongly related. It has

broadly di f fused the belief that the existing software is the "accumulating of

years of experience and refinement and, however imperfect, it is a valuable

asset" [B91c]- This economic heritage has to be safeguarded by making its l i fe

longer wi th judicious processes of evolution, and to be exploited by reusing its

components in developing ex-novo of new information systems. In the meantime,

the f a l l in the real cost o f hardware and the progress in software capability

inspir ing to ever more ambitious development projects, are challenging the

qual i f ied and experienced development staff to improve productivity

s igni f icant ly , while maintaining and improving quality [MD9I4,] .

One method proposed for making a significant improvement in productivity

and quality is software reuse [CCR90]. By reusing product, processes and

personal knowledge to implement changes, productivity can be greatly increased

because o f the reduction in the time and effor t that would have been spent on

specification, design, implementation and testing the changes. The rel iabi l i ty

and robustness of the reusable software components is greater as. they have been

wel l tested and already shown to satisfy the desired requirements. Consequently,

they have fewer residual errors, and this makes software reuse attractive to

software engineers interested in improving the quality of the software product

[GT96] .

These considerations lead to a widespread interest in software reuse. In the

literature, there can be found many different definitions of software reuse [DH89]

[CH91] [K87] . There is the simplistic view which defines it in term of simply

T h e terms "software evolution" and. "post-delivery evolution" are s imi lar because both
h igh l ight the tendency of sof tware to evo lve , and they are used as synon.ym by many
authors .

Chapter 1 introduction

reuse of code, without taking into consideration the reuse of other forms of
software-related knowledge. A more comprehensive and maintenance-related
view is that of Biggerstaff and Perils, which defines software reuse as "the
re-application of a variety of kinds of knowledge about one system to another
similar system in order to reduce the effort of development or maintenance of
that other system" [BP89].

However, the complete replacement of a legacy information system

excluding the. reuse part of the system's components is not usually a viable

option, because the risks and the costs associated wi th complete system

replacement are very high [V80] [BS95]. Furthermore, a the decision about the

evolut ion o f a legacy information system should take into account not only the

economic constrains - in a survey carried out by Tamai and Torimitsu [TT92],

several o f the respondents who once considered replacement of their system

abandoned the idea because it was too expensive - but also the residual errors in

the new system. The creation of a new system does not guarantee that it w i l l

work better than the existing one; '

As an alternative, the existing system has to be "evolved to an higher state,

providing more sophisticated used-driven functionality, the capability of

deploying cutting edges technologies and of allowing the integration of other

systems in a cost-effective manner" [GT96] . A number of techniques, methods,

tools and management practices are used to meet these. goals.

At the current state of the art, the solution seems to be the migration of

legacy information systems. This involves analysis and improved understanding

of the system, fol lowed by a traditional forward engineering process using a

suitable alternative paradigm or hardware/software platform. In order to take

advantage of the modern technologies, the new platform should be object

oriented.

The migration towards object oriented technology also seems a promising

way to guarantee reusability [B M W 9 6 ^] [B M W 9 6 B] as well as adaptability either

in the creation of new information systems or in their modificat ion. A big

advantage of object oriented technology is the possibili ty to model and simulate ...

Chapter 1 introduction

real wor ld entities wi th their rich semantic content making the system easier to
understand and to maintain This simulation of productive processes - thiough
objects and operations - supports the unavoidable requirements of business
change The incremental integration of new functionali ty is easier because
application development becomes faster and cheaper Furthermore, object
oriented technology makes it easier to collect together existing components, and
to tai lor them individual ly due to inheritance, thus promoting reuse

In the literature there are many papers formally or informally showing the

product ivi ty of a combination of reengineering, object oriented paradigm and

software reuse Takang et al [GT96] refer to the "threesome marriage" between

these three elements

In book "Migrating to Object Technology", Graham [G94] says "object

technology is productive because of the potential to reuse existing components

via their specification class libraries, whether for code or specification, are

the repository of productivity Object technology assists productivity because

object oriented models are easier to debug due to their richei semantic context

It IS also more productive because of the semantic richness of its model and

because they are model rather then procedural, imperative description"

1 1 Criteria for Success

The work that w i l l be presented in this thesis can be classified into the

mainstream of the work targeted to isolate, f rom the existing code, softwaie

fragments implementing abstractions of entities wi th in the application domain

The criteria for success, to be judged in the f inal chapter, are as fol lows

• description and evaluation of the existing methods to isolate reusable

object-like modules,

o formalizat ion of a language-independent method for the identification of

object-like modules from existing code,

o application of the method to a case study, in order to check the f l ex ib i l i t y of

the method to be adapted to the peculiarity of a conventional language

Chapter 1 . introduction

1.2 Plan of the Thesis

This thesis focuses the effor t of migration as a form of reengineering

process f rom a procedural legacy information system to an object oriented

pla t form. Particularly, the aim is the extraction of procedures and related data

items having object oriented features, in order to populate a repository of

reusable modules extracted f rom the code. This "object identification" might be

the basis of a process of evolution leading to a new object oriented system

reusing the extracted objects.

The remainder of this thesis is structured as fo l low.

The second chapter focus on frames to reverse engineer and reengineer

legacy information systems in order to help any intervention aimed at the

evolution of code, also al lowing the extraction reusable modules f rom the source

code. Particularly, in section 2 . 2 , some reverse engineering techniques dealing

wi th COBOL legacy information systems are presented. In section 2.2.4, the

wrapping techniques are br ief ly introduced, with some related problematic.

Section 2.3 is specifically dedicated to approaches dealing the legacy information

system problem while populating a repository of "spare parts" to be reused in the

development of a new information system. In section 2.5 the approaches to

extract objects-like modules based on the graph theory are presented.

.In the th i rd chapter a program representation suitable to f i t our. "object

isolation" method is defined. I t is aimed to s impl i fy the process of

understanding the relationships of common data accesses between procedures

implementing entities o f the application domain. This new program

representation is a variant of an inter-procedural call graph, providing

informat ion about data f l o w . Since i t is sensitive about the temporal sequence of

the invoking statements and o f data accesses, i t w i l l be called "temporal graph".

In the fourth chapter an algorithm to ident ify candidate object-like modules

f rom existing code is presented. In section 4.2, all the details relative to the

iterative algorithm are presented. After having represented the code by a

bipartite graph (section 4.2.1), the algorithm performs three phases while the.

Chapter 1 introduction

bipartite graph is not in the form of isolated strongly connected subgraph. The

data duplicating and the data refining phases are presented in sections 4.2 3

and 4.2.4, respectively. The data clustering phase fol lows the guidelines of the

same phase of the algorithm of Canfora et al., presented in section 2.5.4. At each

iterative step information is extracted f rom the program representations

(section 4.2.1), which are updated in order to conform the changes made by the

algori thm.

The aim of the f i f t h chapter is to show how the method can be adapted to the

peculiarity of a given programming language such as COBOL, while respecting in

the meantime the main ideas of the technique. By way of a case study, a simple

COBOL program has being analysed, and the technique being used on i t . A l l the

necessary arrangements to adapt i t to the peculiarity of COBOL are underlined

throughout this section.

In the last two chapters, the future works and the conclusions of this work

are presented.

Rev iew of the Exis t ing Techn iques

2.1 Introduction

This chapter reviews existing reverse engineering and reengineering

techniques for legacy information systems.

Reverse Engineer ing

The classical def in i t ion of reverse engineering describes it as "the process

of analysing a subject system to identify the system's components and then-

interrelationships and create representations of the system in another form or at

a higher level of abstraction^' [CC90]. The reverse engineering is an important

part of any software maintenance process aimed to improve understanding of the

software system and its structure.

The reverse engineering process [S95], shown in figure 2 .1 , is usually part

of the software reengineering process.

Reeng ineer ing

The process of reengineering, also called renovation or reclamation, is often

associated wi th a business process^ reengineering [H90]. I t is ''is the

examination and alteration of a subject system to reconstitute it in a new form

C h a p t e r 2 a review of existing techniques

and the subsequent implementation of the new form'' [CC90] The process

usually, not only recover design information from existing software, but also

involves simple changes to transform the existing unstructured constructs into

structured ones which are mode understandable and more maintainable [MS87]

[M D 9 l 2 o] - In most cases, reengineering software re-implements the function of

the existing system. But at the same time the software developer also adds new

functions and/or improve overall performance [P94] .

/ A u t o m a t e d
- O l Ana lys is

S y s t e m to be
r e e n g i n e e r e d

- O f M a n u a l A -
V Anno ta t ions /

Sys tem

In format ion

Store

/ D o c u m e n t
V Genera t ion

Program
St ruc tured
D iag rams

Data Structure
D iag ram

- r > ^ Traceabi l i ty
Ma tena ls

Figure 2 1- The Reverse Engineering Process

The mainstream of research in the f ie ld of reengineering of legacy

information systems is enriched by the large number of studies that employ

modularisation, i.e. the replacement of a large monolithic program into a

funct ional ly equivalent collection of smaller modules By now it is common

opinion that modularisation is also important for downloading purposes [N S 9 5] ,

I . e . for the transition f rom monolithic, single-processor mainframe system to

distributed, multiprocessor client / server (C/S) environment An organised

download, taking care of semantic and functional content of modules, achieves an

ef f ic ient distr ibution of modules in both client and server machines

The term '''module'' is used by several authors to denote different

programming constructs. Original ly, the term was applied to routines, but after

the work of Parnas [?12pJ[the term has been used to denote a clustering construct

generally providing [089^]

T h e business-reengmeering processes are aimed to a global reana lys i s and redesign of the
bus iness process in order to reduce costs and improve qual i ty T h e y cannot be cons ide ied
e i ther maintenance processes or software evolut ion , s ince they do not change requirements

10

C h a p t e r 2 a review of existing techniques

o ''abstraction mechanism'' offer ing a perspective of that clustered entity at a
quite high level,

o "protection mechanism" as a control of the v i s ib i l i ty , helping to restrict the

affects of a change to a system.

I f the interest in modularisation of legacy information systems is in its

migrat ion as wel l as its downloading, the actual trend is to decompose the system

into independently compilable module units that are agent-like, communicating

via message passing, and providing information hiding. Specifically, i f the target

system should be f u l l y object oriented, other object oriented key features such as

polymorphism and inheritance are provided, often after a targeted business

reengineering process.

A n ef f ic ient modularisation might be achieved by exploiting the requested

object oriented features present in the earlier structured programming techniques

[GK95] [KN95] [896^] [CDDF97]. In fact, even though a program is written in a

•conventional programming language that does not directly support object oriented

programming constructs, i t can contain collections of routines (functions or

procedures), types and/or data items that can be isolated. In the target system,

the collect ion of types and/or data items can store the state of an object and the

collections of routines (functions or procedures) that get and/or update the state

can implement the object's methods [CCM94] [JL94].

Sometime, i f the programming language does not have the required object

oriented features, they are simply simulated by respecting some standards of

programming. An example is COBOL, in which all the data is global. Data can

be accessed - and altered - at any position wi th in the program, thus making it

hard to ensure information hiding. The ANSI COBOL Committee produced a

documents - afterwards enhanced by Yourdon [Y80] , Microfocus et al - to

propose a standard that an object oriented COBOL application should have

Among the other directives, the standard establish the guidelines of the structure

of the target system guaranteeing information hiding. In order to ensure

and s p e c i f i c a t i o n , then they do not modhfy the funct ional i t ies

11

C h a p t e r 2 a review of existing techniques

informat ion hiding to the system, the program should be divided up into classes
corresponding to the objects processed Each class is an abstract data type
encapsulating the attributes of, and the action on, the objects enclosed Each
object I S enclosed wi th in a compilable unit Each class communicates with an
external classes only through message passing by invoking it in a C A L L statement
w i t h a l is t o f parameters. The messages are declared in a separate import / export
area. Only the classes subordinate by right of inheritance can be invoked without
parameters, as they can access the data of the invoking class

2.2 Reverse Engineering Methods

There are in literature several methods to reverse engineer existing legacy

information systems They are mainly aimed at reducing the effort in migrating

them f rom one environment to another.

In the fo l lowing , three methods dealing wi th COBOL legacy information

systems are described The RECAST method is purely a reverse engineering

technique. In the REDO method the reverse engineering techniques are used to

transform COBOL programs into object oriented specifications in language " Z "

The REORG method is a reengineering method, but the modification of the

source code is only performed in the last of ten steps Thus the body of the

REORG method might be considered the set of reverse engineering activities

producing documentation and al lowing the subsequent modif icat ion of the code

2.2 1 RECAST

RECAST was developed as the principal product of a jo in t project sponsored

by Informat ion Engineering Dictorate of the D T I and the Science and Engineering

Research Counsel (SERC) under the Information Engineering Advanced

Technology programme

The RECAST (Reverse Engineering into CASe Technology) method is aimed

12

C h a p t e r 2 a review of existing techniques

at reverse engineering existing COBOL legacy information systems into SSADM"
[CCTA] logical system specification, in order to reduce the cost of and to
improve the maintenance process.

Several representations of the system at different points of view are derived

through the use of a series of informal transformations. The recovered and

documented system design would then provide a path into some system

development methods (via the use of CASE tools) thus assisting the development

o f a modif ied or replacement system. SSADM has become the de facto standard

o f system analysis and design in the UK [EM93] .

The structural model for RECAST can be divided into four stages.

1. Ident i f ica t ion of business users' view (BUV) .

The outputs of this stage are the information about how the user perceive the

funct ion performed by the system. It needs direct information from the users

in order to ident i fy the business functions as well as events and enquires

processed by the system. To complete the business users' view, the screens

and the menus are analysed on-line and documented in SSADM notation.

2. Ident i f icat ion of logical data model (L D M)

This stage defines the rules for analysing the data occurring in the files of the

system. In order to extract a physical data scheme, an increasing detailed

analysis is performed upon the fi les of the system. The files potentially

containing entities, the transitory fi les and the report files are then derived.

At this stage, a document called system network diagram is produced The

resulting physical data scheme is detailed with the analysis of the data

structure of the individual COBOL modules, COPY libraries and on data

dictionary system. I f the system accesses a database IDMSX (ICL's

proprietary database), the rules for dealing wi th schemes are defined This

allows the enhancement of the physical data model with the entities, their

attributes and the mutual relationships. This step also produces a catalogue

^ S S A D M (Structured System A n a l y s i s and Des ign Methods) [C C T A] is a system analys i s and
des ign method based on a set of complementary techniques of code representat ions It is
owned by the U K government agency G o v e r n m e n t Centre for Informat ion Systems

13

C h a p t e r 2 a review of existing techniques

of al l the synonyms and homonyms at f i l e , record, group and f ie ld level This
information is used to determine whether a part of the system affects the data
model or simply generates reports. A phase of relational data analysis can
be performed both to understand the meaning of repetitive groups and to
check i f the logical data model and the user's view are compatible. I f the
system is to be re-implemented wi th a different data design, then the logical
data model should be abstracted.

3. Ident i f icat ion of the system processing (SP).

In this stage the functions - "sets of system processing which the user wish to

schedule together to support their business activity" [CCTA] - wi th their

component event/enquiry are identif ied. The process network diagram

provides information about the relationships between fi les, modules and

parameters. Menu hierarchies are examined in order to isolate module

dependencies. The COBOL modules are examined to extract the

sub-programs called. This information is detailed the process network

diagram. At this stage, slicing techniques are used to abstract the processing

wi th in the sub-system. This supports both the business activities and

restructures the functions into logical sub-system.

4. Ident i f icat ion of the menus and dialogues (MD) .

In this stage, the element of on-line processing, i f any, are treated Those

on-line processing are specific of the ICL TPMS (Transaction. Processing

Management System) transaction processor.

The RECAST procedural model generates a set of Intermediate Documents

(IDs) containing all the elements of system design. This documentation is in a

form that is that is appropriate for use in a CASE environment.

2.2 .2 REDO

In this section, the European collaborative project ESPRIT I I

"REDO" (no. 2487) is presented. It covers activities f rom several areas such as:

9 reverse engineering: redocumentation and reengineering;

14

C h a p t e r 2 a review of existing techniques

® validation: post-hoc ver i f icat ion and generation of correct code from
specification;

o maintenance: new languages and methods aimed to support.

I t is aimed to transform a COBOL batch program without database accesses

or special communication interfaces into a formal object oriented specification

using the language " Z " . The formal specification notation Z is a specification

language based on mathematical set theory and logic. It has been developed at

the Programming Research Group (PRO) of Oxford University for use in the

specification of state-based programs, and has now matured into a valuable and

widely used by industry as part of the software (and hardware) development

process in both the U K and the US^ Z has proved itself to be especially useful as

a tool for formal ly ve r i fy ing and demonstrating the correctness of safety crit ical

and/or secure systems.

The REDO process, outlined in figure 2.2, involves three transformation

levels, as explained below.

1. Stage 1: Translation from C O B O L to U N I F O R M .

In the f i rs t level, the COBOL program is represented in the intermediate

meta-language UNIFORM. In this phase, redundant constructs are

eliminated. This program representation can be used for reengineering and

reverse engineering purposes [CMW89] . I t allows to produce technical

documents like data f l o w diagrams, entity/relationship diagrams and other

[B L 9 1] . In this phase, the relation among data are analysed and translated

into logical invariants o f the program. The semantic equivalence is

guaranteed by addiction of information such as the in i t ia l value of variables,

being whether generated or stored.

2. Stage 2: Higher Level Abstraction.

In the second level, the record types are defined as outlined objects, whereas

the record fields are the objects' attribute. The D A T A D I V I S I O N is

15

C h a p t e r 2 a review of existing techniques

partitioned into object classes and the PROCEDURE D I V I S I O N cut up into
slices based on data f l o w analysis The code is split by grouping together
the sequences of I/O operations on a particular f i l e , and the intermediate
statements affecting the contents of that f i l e At this stage, a process of
restructuring eliminates all the GOTOs and other unstructured code
constructs.

3 Stage 3: Simplification of Abstraction and Design.

In the thi rd level, an object oriented specification f rom the intermediate

representation is generated The program slices are attached to the objects

they refer to, becoming methods in a class A l l statements which access the

records embedded in the class, and all statements which alter or set

attributes of that records are part of the generated method. In this f inal step,

the U N I F O R M syntax is converted to a Z++ notation

3 F r o m the " Z F O R U M m a i l i n g list" by Jonathan Bowen (P R O - O x f o r d) Contact
< z f o r u m - r q u e s t @ p r g oxford ac uk> with your name, address and e-mai l address to jo in the
m a i l i n g l ist

16

C h a p t e r 2 a leview of existing techniques

COBOL - Program

Level 1

Level 2

Level 3

T r a n s f o r m a t i o n
i n U n i f o r m

P r o c e d u r a l - O r i e n t e d
U n i f o r m

Wide Spectrum Language

A n a l y s i s and
R e o r g a n i z a t i o n

i
O b j e c t - O r i e n t e d

U n i f o r m
Wide Spectrum Language

T r a n s f o r m a t i o n
m Z ++

O b j e c t - O r i e n t e d
Z ++

S p e c i f i c a t i o n

Figure 2 2 - REDO reengineenng process

At the end of the process, there is a class specification for each f i l e and the

original procedurally structured statements are now distributed among the classes

where they are attached to the object of processing [L90]

This project involve, in the second stage, a well defined phase of object

ident i f ica t ion By analysing the data f low, the variables that are logically

associated wi th the main data structures of the program are identified The data

f l o w among f i les , indexed arrays and reports is analysed, as these data items are

considered as main variables, representing objects wi th their attributes After

having isolated the data structures and the attached variables, the global

functions that updates and modifies a data structure are candidate to be an

operation upon the considered class Then a more detailed analysis upon that

17

C h a p t e r 2 a review of existing techniques

operation is performed in order to make clear the meaning of that class wi thin the
application domain

Lano et al [H L 9 1 B] proved that the transformations on the program enable

to rewrite i t into a restructured form

2 .2 .3 REORG

The REORG approach [S92] has grown out of a reengineering experiment at

the Union Bank of Switzerland [S91] aimed to reduce the costs and the risks of

migrat ing a procedurally structured COBOL system into a object oriented

environment, conforming to the latest CODASYL draft It consists of 10 steps,

as outl ined m figure 2.3.

1. The f i r s t step performs a static analysis of the source code in order to

produce many representations of the code in form of tables for data fields,

for code blocks, constants and predicates Other connectivity tables aie

created in order to represent data references, control f l ow path, program and

data interfaces

2 In the second step, a specification repository is populated wi th all the

program description tables. The COBOL data records are converted in data

trees and data dictionary entries. In this step, user and system interfaces are

analysed and transformed into message format. Tables representing

program/object and program/program relationships are created from

informat ion derived f rom data base, f i l e accesses and sub-program calls A

Jackson type tree is created f rom the control f low structure

3 The third step identifies the object types from the data structure Seveial

types of objects are created: WORK objects f rom the local data structure,

F ILE objects f rom the data record structure, VIEW objects f rom the database

views; INTERFACE objects f rom the map and record structure,

PARAMETERS objects f rom the linkage storage structure The output is an

object catalogue l inking any type of object and its attributes

4 The fourth step examines the accesses to the database files in older to

18

C h a p t e r 2 a review of existing techniques

recognise the relationship between objects via access sequences The output
at this step is a relationship table between the objects based on their access
sequences.

5. In the f i f t h step the data item description is completed wi th information on

the data usage. The references to a variable are collected f rom the tables

produced in the previous steps and the data dictionary is updated with this

informat ion.

6. In the sixth step, the procedural instructions are coupled with the data

elements they set or alter. I f a statement accesses to several variables, then

the statement is duplicated in order to update the information relative to all

the data items.

7. In the seventh step, the data f low between objects is traced in order to

iden t i fy those objects f rom which any one object derived data either directly

or indirect ly.

8. In the eighth step, the inheritance relationships are examined by marking all

the attributes in the form of fields in the super-ordinate object f rom which

values are inherited by a subordinate object. Af te r this step, there are

pointers f rom all inherited data items to the subordinate classes which

require them.

9. The aim of the ninth step is the def in i t ion of the objects' interfaces via the •

construction of import/export messages. A message is the list of all the

attributes required by an object f rom another object. The attributes to be

passed as parameters are placed in the message - export for the sending

message, receiving for the receiving object.

10. In the f ina l step, the new code is writ ten in object oriented COBOL from the

intermediate design language.

19

C h a p t e r 2 a review of existing techniques

Procedural
COBOL

1 2

s t a t i c I n v e r s e 1
A n a l y s i s

1 T r a n s r o r m a t i o n |

P r o c e d u r a l
R e p o s i t o r y

O b j e c t s
I d e n t i f i c a t i o n

A c c e s s P a t h
A n a l y s i s

D a t a Usage
A n a l y s i s

R e l o c a t i o n
o f O p e r a t i o n s

D a t a F l o w
A n a l y s i s

D a t a D e l e g a t i o n l _
A n a l y s i s i "

D a t a E x c a n g e
A n a l y s i s

Objects

• Objects Accesses

• Data References

• Methods

• Object States

• I n h e r i t e d A t t r i b u t e s

Messages
10

00 /_
Repository

C l a s s
G e n e r a t i o n

00 ^
COBOL

Figure 2 3 - REORG reverse engineering process

The output of this method is a program structured in a hierarchy of classes,

one for each extracted object Each object using or passing data inherited from

the super-ordinate class declares these data in the P U B L I C - S T O R A G E

S E C T I O N . Local data are declared in the P R I V A T E - S T O R A G E S E C T I O N The

P R O C E D U R E - D I V I S I O N is partitioned into a series of methods There are

methods al lowing to operate on encapsulated objects in order to perform

operation as C R E A T E , D E L E T E , S E L E C T , U P D A T E , S T O R E etc There is also a

section of attributes altered or set by an event

Unfortunately, in a large system, it happens that the method has to be

performed several time - one for each program unit wi th in the system This may

lead to the production of many variants of the same class, since the same data

object can appear in different programs, and the method creates the classes

encapsulating all the attributes and the operation of a particular object Af te i the

20

C h a p t e r 2 a review of existing techniques

application of the REORG method to each program unit a process of merging on
different variants of the same class must be performed by a software engineer
using application domain knowledge.

2.2.4 Alternative Approaches to Migrate L e g a c y I n f o r m a t i o n

S y s t e m s

A n alternative to moving an existing software system from the native

environment is to encapsulate it in a wrapper [W95]. A wrapper"* is an

intermediate component, interacting wi th legacy components by message passing

It is no more than a new object oriented part of the system composed by one or

more large objects whose methods are the menu options of the old system, with

the difference that they respond to the received messages.

I t is very wel l known that small grain objects are more reusable that the big

ones. Unfortunately, most legacy information systems usually deal with

irreducibly large-grain objects. In these cases, a special class of wrappers might

be used, the object request brokers (OBRs) are specifically aimed to deal with

such a k ind of coarse grain reuse. Sneed [S96A] individuates different levels for

software encapsulation, analysing each of them in a practical approach. The

OMG's CORBA (Common Object Request Broker Architecture) is a wrapping

technique allowing access to the legacy code lef t on a mainframe to provide

services to the clients on the peripheral. ''CORBA is •becoming a-world wide

standard for accessing data and objects in a distributed computer network and

for exchanging messages between objects on different computers" [S96B].

In these types of approaches, the software engineer has to deal wi th tricky

data management problems. Sometimes, it is necessary to duplicate data or to

share data between the legacy and the new part of the system. In order to avoid

inconsistency, Graham [G94] describes four possible strategies.

1. The tandem or handshake strategy keeps a double copy of the shared data,

T h e term has being coniated by W a l l y D i e t r i c h in the 1989 Many authors consider his
in tervent ion [D G N 8 9] in the Conference on Object Oriented Programming System.
Languages and Application as " a « original source on the object wrappers'"

21

C h a p t e r 2 a review of existing techniques

one in the old part of the system, and the other wi th in the wrapper Of course
the e f for t in keeping their integrity requires frequent operation of updates and
retrieves among the shared data For this leason it is advisable only when the
amount of shared data is reasonably small

2 In the borrowing strategy, all the data remain m the old part of the system,

and the wrapper "borrows" (copies) part of them when it needs them In this

case some further messages f rom the wrapper have to handle the data updates

w i t h i n the old part of the system

3 The take-over strategy simply copies the data into the wrapper, and each data

access involves messages to and f rom the wrapper, thus - increasing the

complexity enormously

4 The most promising way to deal wi th problems of inconsistency and of

eff ic iency is the translation strategy Of course, it requires a bigger effor t in

translating the original design of the legacy infoimation system to an object

oriented model The application of this method is favourite i f the legacy

information system has been developed wi th a technique such as stepwise

refinements around a cr i t ical data structure, because all the these structures

and the programs using them w i l l naturally migrate to the objects of the new

system

The data-centred translation is a refinement of the translation strategy It

uses an approach based on the accesses types, by reverse engineering the data

model, thus al lowing the creation of a CRUD (Create, Read, Update, Delete)

matrix to organise the legacy information system around the data structure

2 3 Processes of Reuse Reengineering

For all the considerations above, in the last few years there has been an

increasing interest in the processes aimed to redefine the organisation of existing

systems (even i f they are not legacy yet) in order to use powerful theories,

techniques and technologies both to design and implementing reusable software

components and to dispose repositories of "spare parts" elected from existing

22

C h a p t e r 2 a review of existing techniques

software components The main issue is the creation of a culture of reuse,
considering the process of development of a new system as an activity of
retrieval the appropriate software components m apposite repositories This is
basically the idea expressed by the "Full-Reuse Model" of Basili [B90]

In spite the large number of paradigms prescribing or directly promoting

reuse, i t is s t i l l d i f f i c u l t to f i nd "catalogues of software components" that can be

reassembled in the development of new systems or in the adding of new

funct ional i ty to a maintained legacy information system. A pioneer approach in

this direction had been made by Ada [A D A 8 3] , some software houses proposed

directly in the industrial production environment Ada software components

[B 8 7 B] Few years ago [P94] there was also a project to create catalogues of

software integrated circuits (software ICs) for object oriented languages

2.3.1 T h e P a r a d i g m o f R e u s e R e e n g i n e e r i n g (R E ^ j

In a jo in t research project the "Dipartimento di Informatica e Sistemistica"

[CMV95] [CV95] of University of Naples and the "Centre for Software

Maintenance" of University of Durham [T94] [D95] defined a framework setting

up all the activities concerned wi th the comprehension and reengmeenng of a

legacy information system. The Reuse-Reengineering (RE^) paradigm [CCM94]

is mainly aimed to produce a set of reusable components f rom the existing source

code in order to populate a repository of modules to be reused.

The RE^ paradigm is articulated m f ive sequential phases, as displayed in

figure 2.4, each of which is f u l l y identif ied by the objects it produces It

identifies in the legacy information system a set of components each suitable to

implement an abstraction of an entity in the application domain The component

I S candidate to be transformed in a reusable software component After each

candidate has been transformed, so that its reuse is made easier, the repository is

organised such in a way that the retrieval of suitable software components m the

repository is made as easy as possible

23

C h a p t e r 2 a review of existing techniques

r-
Candidature Eieclion

Search and
Display

Classification
and Storage

Qualificaiion

Figure 2.4 - The Reuse Reengineering (RE^) Paradigm identifies in legacy source code a
set of software components each suitable to implement an abstraction of an entity in the

application domain. Each component is candidate to be transformed in a reusable module.
After that each candidate has been transformed such that its reuse is made possible, the

repository is organised such in a way that the retrieval of suitable software components in
the repository is made as easy as possible.

A RE^ process can be outlined into f ive phases.

The candidature phase receives as input the existing source code and

produces as output a set of software components candidate to implement the

abstraction of ah entity of the application domain. This phase groups all

those activities to analyse the source code and all those able to ident i fy the

software components representing an abstraction of an entity of the

application domain.

The election phase involves the activities that refine the candidate module

producing the reusable modules. It de-couples, re-engineers and generalises

the set o f candidate objects received as input f rom the candidature phase.

Usually this phase produces a further selection, not all the candidate modules

are elected as reusable modules because of the complexity and costs of the

applied reengineering techniques.

The qualification phase is aimed to "qua l i fy" the modules in the repository

by adding all the information assisting their reuse. Usually, this phase

contains a documentation phase defining a template al lowing to represent the

funct ional features of the module and how it might be reused.

The classification and storage phase are a set of activities supporting the

retrieval of a suitable reusable module by classifying it depending on a

24

Chapter 2 a review of existing techniques

reference taxonomy In this phase the repository is organised and populated

wi th the selected modules

e The search and display phase groups together all the activities setting up a

f ront end user interface to interact wi th the repository system The aim is to

s impl i fy the user's work in navigate through the repository system with the

help of the visual languages, for example

The RE" project is mainly concerned wi th the f i rs t three phases in the

paradigm, and does not address the last two These later two phases are related

to the setting up of the environment to support the reuse of the modules rather

than to the extraction of these modules f rom old systems.

For each process of reverse engineering in the RE^ paradigm there are

dif ferent activities aimed at different goals For example the ones related to the

def in i t ion of the global goals of the entire reengmeering process, and the ones

defining the requirements of tools, methods and methodologies related wi th the

extraction of information f rom the source code and to the abstraction of this

informat ion.

Particularly, the distinction of each process is due to the activities defining

the templates representing the information extracted through the analysis of the

modules, and the activities related to the representation of the abstraction of the

extracted information.

Cand ida tu re Phase

The activities in the f i rs t phase can be subdivided into three sub-phases, as

shown in f igure 2.5.

Candidature

Reverse Criterion
I t - Engineering Application

Candidature
Criterion

Figure 2 5- The distinction of the activities m the Candidature phase leads to subdivide it
in the sub-phases of "Candidature C r i t e r i o n ", "Reverse E n g i n e e r i n g " and "Cri ter ion

A p p l i c a t i o n "

25

Chapter 2 a review of existing techniques

In the f i rs t sub-phase, after having sketched the aim of the reengineering
process by defining a template of the abstraction features of the objects to be
searched in the existing code, the more suitable form of program representation
to support the research of the defined abstraction has to be differentiate. This
phase, also defines the algorithms acting on that program representation, able to
iden t i fy the software components realising these abstractions. Those algorithms,
called candidature criterion, give their name to the whole phase.

The reverse engineering sub-phase performs a reverse engineering process

in order to extract a set of software components f rom code and makes up an

instance of the model defined in the previous sub-phase.

The criterion application phase applies the candidature criterion to an

instance o f the model, thus producing the set of software components that can be

candidate for reuse. Note that the proposed software components are not yet

reusable modules.

The candidature phase also includes some reengineering activities

manipulating the level of functional abstraction of the modules. Particularly,

interventions realising the decoupling of the components f rom the environment

are typical of this phase. Typical operations of this intervention are the removal

o f any reference to global variables and, i f there is sharing of code, the activation

and using of external software components and the mechanism of code protection

f rom undesir'ed accesses. As these processes produce rriodules at an higher level

o f abstraction, they can be classified as generalisation process.

Before the election phase a concept assignment process [BMW94] is

performed in order to select the subset of modules matching with the entities of

the application domain.

Elect ion Phase

The activities of the election phase can be organised into three sub-phases,

as shown in figure 2.6.

26

Chapter 2 a review of existing techniques

E ection

Template
Definition Decoupling Clustering

Figure 2 6- The distinction of the activities into the election phase leads to the
subdivision of the phase in the sub-phases "Template D e f i n i t i o n " , "Decoupl ing" ,

"Clus ter ing "

The template definition sub-phase draws a general template of a module in

order to reengineer the reuse candidate module Each candidate module should

match as much as possible wi th the template. It is based on key features such as

informat ion hiding and all the other object oriented features of the used

programming language. In general, the template gives the resources v is ib i l i ty

that can be exported f rom the module, but should have a protection mechanism

against the access to the non-exportable resources

In the decoupling sub-phase, reverse engineering operations decouples the

software components f rom the external environment, i.e., to split the connection

wi th the old system's components that do not belong to the same reuse-candidate

module. Only at this stage, the clustering sub-phase organises the clustering of

the software components depending on the defined template , i.e for producing

the reusable module.

The election phase also includes some generalisation processes aimed to

increase the generality of funct ional i ty implemented by the reuse-candidate

module by transforming the type of this functionali ty to a type that the user can

instance when the module is reused

At this stage, an analysis is performed concerning the effor t and the costs of

the reengineering process aimed to decouple and to cluster the candidate sets

This analysis, wi th the concept assignment process executed in the candidature

phase, might be the basis of the validation of the candidature criterion [CFM93]

Qual i f i ca t ion Phase

The activities into the qualif icat ion phase can be subdivided into the

27

Chapter 2 a review of existing techniques

subphases shown in figure 2.7.

Qualification

Specification
Model

Functional
Reverse

Engineenng

Testing and
Specification

Fixing

Figure 2 7 - The distinction of the activities into the qualification phase leads to the
subdivision of the phase in the sub-phases "Spec i f i ca t ion Model ", "Funct iona l Reverse

E n g i n e e r i n g " , "Test ing and S p e c i f i c a t i o n F i x i n g "

The specification model sub-phase defines a representation formalism to

represent the funct ional i ty of each module, and its possible use. The second

sub-phase realises a functional reverse engineering process to extract the

specification coherently wi th the formalism defined. The complexity of the

entire qual i f ica t ion phase mainly depends on the complexity of the reverse

engineering techniques needed to define the functional and interface specification

formal ism. In the f ina l subphase, a functional testing is performed, and the

specifications are f ixed wi th in the defined template. The documents produced in

the candidature phase and the documentation of the legacy information system, i f

existing, can help in the qualif icat ion phase to reverse engineering the reusable

modules to produce their specification.

The RE^ paradigm includes in it an unique model both of the production of

new systems, and the maintenance and the evolution of existing systems. Each

maintenance or evolution intervention is mainly the retrieval in the repository of

those components that (whether directly or wi th a small ef for t) can substitute the

components to be maintained or can add to the funct ional i ty required by

evolut ion. Developing a new system is reduced to retrieving software

components suitable to the requirements of the new system within the repository

and to their subsequent assembling.

28

Chapter 2 a review of existing techniques

2 4 Classes of Candidature Criteria to Decompose Legacy
Information Systems

A gieat amount of work has been carried out around the RE" paiadigm

prominently as regards the candidature criterion wi th in the candidatuie phase A

successful RE" process has to look for abstractions implemented in the legacy

information system The abstractions can be of different natures depending on

the focusing of the system on algorithms, oi on data structure, oi on contiol

structure [CCM94] Obviously, the candidature criterion must be tailoied

according to the type of abstraction one is looking for as the type of abstraction

to be singled out deeply affects the reverse engineering process needed to

produce the model to apply the criterion and the def in i t ion of the candidatuie

cri terion in i tself

Funct iona l Abs t rac t ion

The high-level languages present primitives (procedures or functions)

implementing functional abstraction, i e procedure-like software components

focusing on the algorithms A notable example of search of functional

abstraction is that f rom Page-Jones [P80] It takes as input a program written in

a procedure oriented language and uses the information-cluster^ by determining

which routines require the use of common data and then refines the loutines

around that data

The search for functional abstraction can be conducted on those components

at d i f ferent abstraction levels It is clear that the operation of isolating reusable

modules w i th in code that was not designed for the reuse - often this discipline is

called ''Software Scavenging" - presents d i f f icul t ies concerning the quality of the

isolated objects Sometimes some operations manipulating the abstiaction level

of the software components implementing functional abstiactions help to achieve

higher quality candidate modules The operations are isolation aggregation and

generalisation

29

Chapter 2 a leview of existing techniques

The operation of isolation consists of the decomposition of a software
component implementing more than one abstraction into several module each
implementing only one abstraction, i e one algorithm performing only one
func t ion , thus making possible to reuse it The search for functional abstraction
can lead to either vertical or horizontal isolation An example of vertical
isolation IS that of program slicing [W82] [W84], as each one of the isolated
pieces o f code is a set of statements that lie on the same dynamic path of the
components On the other hand, approaches such as the primes [FW86] [FK87]
search for functional abstraction horizontally, i e each one of the pieces of code
isolated is a block of the component's text

The isolation by primes assumes that the program is structured In this case,

a reverse engineering process in the candidature phase should produce the nesting

tree [C D 9 1 A] , i e. a tree showing the nesting relationships among the primes (the

sub-trees) A nesting tree can easily represent a structured procedure-like

component The isolation can be performed on the primes by searching the

primes each of which represent a function In order to recognise a function in a

nesting tree, an analysis on the data f l ow to and f rom the sub-tree is performed

The operation of aggregation groups and links the components

implementing different subpart of an abstraction at an higher level It guarantees

that the candidate modules are low-coupling and implement abstraction at the

highest level is possible, thus providing high functional cohesion [CY79] among

the modules candidate to be a reusable module An analysis on calls and the

inter-procedural data f l o w is required, thus showing the types of the relationships

among the components

In literature, most of the approaches develop a search of functional

abstraction by aggregating the components by representing the program as a

directed graph wi th the decision as nodes and the branches as edges Using this

representation then a large number of classical graph theory works can be used

'' Pai nas [P72 | 3] def ined an mfoi malion-cluster as a set of routines tiiat have exc lus ive light of
acces s to a par t i cu lar data item or set of data items

30

Chapter 2 a review of existing techniques

The f i r s t work focusing on control f l o w analysis was by Waters [W88], Mullei et
al [M90] and Bush [B85] They split complex graphs into sub-giaphs by f inding
the points of minimum inteiconnection Colbiook [C90] has proposed another
appioach focusing on data f l o w analysis, and this has been enhanced by Lano et
al [BHL93] and Kozaczynski [EKN91] Many works refer to the cieation and
manipulation of a structure chart derived f rom a call graph [CDM90] [H77]
[CCD91] [CC92] The most elementary example is the search wi th in a call graph
of notable sub-graph, as strongly connected sub-graph, trees, one-in/one-out
sub-giaph Other reverse engineering processes transform a call giaph into a
tree, by collapsing some highly connected sub-giaph into a single node [BCD92]
In the section 2 5 several example of these approaches w i l l be presented

The operation of generalisation is to make the software components at a

higher abstraction level, thus increasing their reusability A classical example of

generalisation is the parameterisation of some values in order to allov/ the usei to

instance a module before reusing it An example of this low level

parameterisation is the parameterisation of the length of an array m a module

using I t Higher level form of generalisation geneialises the type of information

that a funct ion handles in order to have such a type of generalis'ation, the

procedure-like component implementing the generic funct ion is recorded as a

skeleton The designer has to instance it to the required type in order to reuse

the component

Data Abs t rac t ion

The abstractions essentially referring to data structures and data types aie

classified as data abstraction The candidature criteria to search for these

abstractions can focus both on the data structures or types and on their generic

versions, thus leading to four directions for developing candidature cnteiia

searching for data abstraction

e The Data Structure Candidature searches those sets of data items and

procedure-like components implementing a data structure Some authors call

I t an object The data items belonging to types buil t into the language,

31

Chapter 2 a review of existing techniques

implement the internal state of the object that can only be accessed by calling
the procedure-like components.

© The Generic Data Structure Candidature searches those sets of data items

and procedure-like components implementing an object to be possibly

generalised. This is the case of a structured object whose access operation do

not depend on the type of the components and, thus it is possible to choose

the type of the components in a f in i te set of types.

© The Abstract Data Type Candidature searches in the software system a set of

software components (data items, user-defined data types, procedure-like

components, etc.) implementing an abstract data type^ Some authors call it a

class [C89]. An instance of the class is a set of parameters representing a

data on which the services of the abstract data types are allowed. An abstract

data type must allow a designer to declare several objects and access them by

call ing the procedure-like components. Sneed [S94] claims that the

decomposition technique by abstract data types are the most d i f f i c u l t of all

remodularisation approaches and that is practically impossible without

tools''.

* The Abstract Data Structure Candidature searches in the software system for

a set of software components that implements an abstract data type that can

be possibly generalised.

For traditional languages the reverse engineering activities in the

candidature phase produces reuse candidate modules implementing an object or a

class. A further process of generalisation can obtain a general object or an

abstract data type. The reverse engineering process to generalise a class from an

object extracted f rom existing code cannot be f u l l y automated [CCM94], as the

knowledge of an domain expert software engineer is required to recognise the

'' With abstract data types as def ined by Dahl and Hoare [D H 7 2] , a programmer can consider
a type as the set of ai l the operation that are appl icable to var iab le of that type E a r l y work
on the use of abstract data type approach in des igning modular program in forward
eng ineer ing was done by Parnas [?12f^]

32

Chapter 2 a review of existing techniques

links^ between the entities in the application domain with the code components

A very interesting survey on existing type theories is given by Danforth and

Tomlinson [DT88] . The authors explore the way in which these theories are able

to represent the objects and their interaction.

Contro l Abs t rac t ion

The abstractions referring to politics are classified as control abstraction

I t meets the needs for co-ordinating concurrent processes and implementing the

techniques to manage shared resources The RE" project does not address control

abstraction because it deals with existing software written in traditional

languages that usually do not express concurrence expl ic i t ly , but manage it

through calls to the services of a system kernel [NS87].

A good overview on the control abstraction methods actually in use is due to

Poulin and Tracz [PT94].

2.5 Graph Theory Approaches

Usually, much of the effor t in ident i fying objects in traditional languages

promote reuse by defining a candidature criterion whose reverse engineering

activities search for data abstraction wi th in the legacy code. The derivation of a

module implementing an abstract data type usually works similarly i f it is not

just the same technique that, after having extracted the objects applies a further

process of generalisation in order to obtain the abstract data type

Both of these techniques makes use of reverse engineering approaches based

on representing the program as a graph, thus gaining f rom a great amount of

knowledge regarding the existing classical theory on graph.

The aim of this section is not to provide an exhaustive overview on all the

existing methods proposed as candidature criteria for the reuse reengineering

method but only those approaches to extract objects f rom a legacy information

' Some t imes those l inks are very weak, for example they can be only recognis ible for the

33

Chapter 2 a teview of existing techniques

system that relate directly to the new technique presented later in this thesis A l l
the work presented propose candidatuie criteria searching to isolate meaningful
modules by using different featuies of giaphs

2 5 1 T h e C a l l D e p e n d e n c i e s o f C i m i t i l e a n d V i s a g g i o

The technique defined by Cimit i le and Visaggio [CV95] transforms a Call

Directed Graph CDG into a dominance tree [H77], and then analyses the

modif ied program representation in order to interpret the dominance relationships

of this graph as functional dependency relationships

The technique uses the program's Call Directed Graph CDG~{N, E) In a

CDG, N=PP IS the set of all the procedures and functions The main program is

denoted by s, and obviously {s}&PP The relation E is the Cartesian relation

PPx{PP-{s)), showing the presence of an activating statement wi thin proceduies

A direct consequence of recursion between the procedures of the program is the

presence of strongly connected sub-graphs in the CDG In this case all the

sub-graphs containing at least one cycle involving all of its nodes can be

collapsed into a single node As a result, the CDG turns into a Call Duected

Acyclic Graph CDAG

According to Hetch [H77] , a procedure p^ in a CDAG dominates a procedure

p^ i f and only i f each path f rom s to p^ contains p^ A procedure p^ directly

dominates a procedure p^ i f and only i f p,. dominates p^ and all the piocedure

dominating p^ dominate p^, too A procedure p^ strongly and diiectly

dominates a procedure p^ i f and only i f and only i f p^ directly dominates p^ and

p^ IS the only procedure calling Py

The reflexive and transitive closure of the dominance relation on the CDAG

IS the direct dominance relation, representing by a tree called the Direct

Dominance Tree DDT, whose root is the main procedure s The Sliong and

Direct Dominance Tree SDDT is obtained from the DDT by maiking all the edges

representing the strong and direct dominance relationship The set of sub-tiees

v a r i a b l e name or for casua l comments within the code [B 8 9]

34

Chapter 2 a leview of eMsling techniques

of a SDDT can be divided in two subsets the subset MET of the sub-tiees
containing only marked edges and the subset UMET of the sub-tiees containing at
least an unmarked edge The Reduction of the Stiong Direct Dominance Ti ee
RSDDT IS a tree obtained f rom the SDDT by collapsing each sub-tiee in MET into
a unique node

Four rules have been proposed to aggregate procedures into reuse-candidate

modules and to ident i fy the uses and is_compose_of relationships [JGM91]

between them

1 The set of procedures represented by a strongly connected sub-graph of a

CDG IS a candidate to constitute a reusable module The piograms units

associated wi th the modules is extracted to constitute a candidate module for

reuse

2 By examining a SDDT, the set of procedures represented by the nodes of a

sub-tree teMET is a candidate to constitute a reusable module represented by

the root of t

3 The set of procedures represented by nodes of a sub-tiee leUMET within a

SDDT l inked to the root of by a marked edge is a candidate to constitute a

reusable module This module is related wi th a uses relation to the modules

represented by the nodes in t which are linked to the root by an unmarked

edge

4 Each of the marked edges of a RSDDT is a candidate to constitute an

IS_compose_of relationship between the modules lepresented by the that the

edge l inks, while an unmarked edge represents an uses relationship

The dominance tree can be used as basis of a method to search for functional

abstractions in legacy information systems writ ten in procedural languages and

designed using modularity and the functional decomposition In order to be

modular, a system must be segmented in a hierarchy of code segments

- corresponding to the elementary operation of the program - each with a single

entry and a single exit The modularity can be obtained by targeting

restructuring intervention by the software engineer Cimit i le et al [CFM93]

35

Chapter 2 a review of existing techniques

confirmed the val idi ty of the dominance criterion by experimenting it both in
Pascal and in COBOL [CDDF94] environment

2 5 2 T h e A l g o r i t h m s of L iu a n d W i l d e

L i u and Wilde proposed two algorithms [LW90] [LOWY94] based on an

analysis of global data and data types The aim of the method is the retrieval of

candidate objects 0=(F, D, T), where F is the set of all the progiam units, T and

D are the sets of the data types and data items, respectively Each of the sets can

be empty The algorithm based on global data is dwindled into three steps as

listed below

Step 1 Def in i t ion , for each global variable x of the set P{x) of the routines

directly referring x

Step 2 Supposing that each P{x) is a node in a graph, a graph G={V E) is then

constructed in which V is the set containing the defined P{x) and an

edge between two nodes /"(x,) and Pixj) denotes that the sets -P(x,) and

Pixj) aie not disjoint , i e P{x^)r\P{x2)^0 Foimally

V={P{x) X IS shared by at least two routines}

£ = { (P (x ,) , P(x,)) I / ' (x ,) n P (x ,) ^ 0 }

Step 3 I f strongly connected sub-graphs can be recognised in the graph as

defined above, then they are regarded as candidate objects Each of

them IS composed of those units and relative global variables Formally,

by denoting a strongly connected component wi th C={V^, £ J , the objects

extracted f rom it can be represented as a tuple (F, T, D), where

T= 0

D^ W
/ ' (v) e | /

In this case the role of the reverse engineering technique is to set up the

instance of the module to apply the candidature cri tei ion by producing the set

P(x) and the above-defined graph This criterion has been applied with

36

Chapter 2 a review of existing techniques

significant results to conventional programming languages such as C, Ada,
COBOL and Fortran, showing that the production of both the set P{x) and the
graph can be totally automated. Unfortunately, ''this method in many cases can
produce objects that are too big'' [LW90] and there is the necessity of the
software engineer's intervention in order to resolve conflicts and provide
knowledge about the application domain to improve the candidate objects

In order to obtain a candidate of a size more suitable to f i t the aims of the

reuse reengineering techniques, slicing techniques can be used to search for the

set o f slices SP(x) by using each global variable x to define the slicing criteria

for SP(x).

The second algorithm f rom L i u and Wilde [LW90] is aimed to candidate a

module implementing the abstraction o f an abstract data types. This algorithm

deals wi th ordered relationships among the user-defined types The user-defined

type is assumed to be a sub-type of tj, denoted by t^v-tj, i f is used to define /,

- in.this case / , is a super-type o f Obviously, i f / i«/ '2 , and t2«tj, then t^<(t^

Once the set of the user-defined types has been ordered, the method exploits

the classical work on graph theory by representing the program as a bipartite

graph^ as a couple G=(N, E), where the set o f nodes N is partitioned in two

subsets, N , and N2 denoting the procedure-like components and the user-defined

types, respectively, and the set of edges E contains edges from a procedure-like

component c to a type t, thus allowing to represent the relationships among

user-defined types by showing how types are used to declare formal parameters

of the procedure-like components.

This graph is then s impl i f ied by eliminating the edges (c, /) for which an

user-defined type r, exists such that t«t^ and (c, f ,) is an edge in the graph Each

one of the connected sub-graphs, possibly recognised m the above graph, defines

a candidate to create a reusable module implementing a class.

Figure 2.8 shows an example of a bipartite graph

T h e y belong to the fami ly of interconnect ion graph as def ined by C a l l i s s [C 8 9 , J

Chapter 2 a teview of existing techniques

Figure 2 8 - An example of bipartite graph G = (N, E), wheie A'=fA', cvA'J, with
N,={P, Q, R, S, T} and N^ = {a, b, c} The set of edges E = {(P, b), (P. c), (O, a), (Q, c),

(R, a), (S, b), (T, b)} contains undirected edges going fi om an element of one of the two
subsets of N toward an element of the othei subset

2 5 3 T h e A l g o r i t h m of D u n n a n d K n i g h t

The algorithm presented by Dunn and Knight [DK93] exploits expert

systems to isolate the reusable modules The system is the interaction of three

funct ional elements, a C parser that generates the abstiact syntax tree from C

souice code, a Prolog interpreter ident i fying the candidate components fo i leuse

and an interactive interface al lowing the communication wi th in the system The

expert system uses a knowledge base containing knowledge about the application

domain and the design of the software that can be examined, knowledge about the

target domain, metric def in i t ion and reengineering knowledge

The heart of this system is the phase performed by the Prolog interpreter

By the analysis of the call-graph, it searches the reusable components among

those invoked more than once Other reusable modules are candidate among the

strongly connected components by analysing various kinds of coupling, when

• there is data coupling when the program components share formal

parameters, or, more generally, simple data ,

® there is common coupling when the piogram components share global data

9 there is external coupling when the program components shaie external data,

» there is common coupling when the progiam components share data used for

control

38

Chapter 2 a review of existing techniques

The analysis of these forms of coupling between the program components
leads to the candidate for the reuse being those components not connected The
components loosely bound present high degree of reusability, as they do not
depend on other funct ion or local data wi thin the program A crit ical point is to
determinate how the restriction of the above coupling characteristic can be
relaxed such that the sets of program components with varying coupling degree
can be ident i f ied as a candidate for reuse.

Another method to isolate software components as a candidate for possible

reuse identifies those routines and function and the global data items that can be

grouped to form an abstract data type. To this aim the method uses a bipartite

graph, where the set of nodes N is partitioned in two subsets, N , and N j ,

representing routines to global variables and the set of edges E contains edges

specifying the "uses" relations of the global data wi thin the routines.

The algorithm performs a depth-first traverse of the graph looking for

strongly connected components; each component is regarded as a candidate

object.

A n evaluation of the use of this expert system on 5 public-domain software

systems wri t ten in C language was done wi th satisfactory results. The evaluation

criteria involved:

o practicality (how useful a part would be in an application either in the same

application domain or in other);

o reusability (how much effor t is necessary to reengineer a part in order for it

to be reasonable to be candidate for the reuse);

o understandability (how d i f f i c u l t it is to comprehend what a reusable

candidate does).

2.5.4 T h e A l g o r i t h m of C a n f o r a et al

The algorithm presented by Canfora et al [CCM96] improves on the

previous ones of L i u and Wilde [LW90] and Dunn and Knight [DK93] , and

enables the ident i f icat ion of objects wi thin a legacy information system with less

Chapt er 2 a leview of existing techniques

human intervention

As in the previous methods, the method proposed by Canfora et al

represents the program as a bipartite graph where the two sets of nodes N, and N ,

represent procedures and global data, respectively, and each edge represents the

reference of a data items wi th in a procedure For each node neN, the sets

PreSet(n) and PostSet(n) are defined as

PreSet(n) = {y | y e N A (y , n) e E } ,

PostSet(n) = {y | y e N A (n ,y)eE}

In fo rmal ly , the set PreSet(«2), where /?, a node in (i e a data items),

represents the set of all the procedure (nodes in the set N,) referencing the

set P o s t S e t (« |) , where «, is a node in N , (i e a procedure), represents the set of

all the data items (nodes nj in the set N ,) referenced by Note that, coherently,

for each n , e N , the set PreSet(n,)=0, and for each n2eN2 the set PostSet(n2)=0

The bipartite graph representing the relationships between data and

procedures w i th in the program establishes when a sub-graph has a strong degree

of connectivity, thus representing the routines and data they access l ikely having

the behaviour of an object in the application domain. Within this method, an

iterative algorithm based on some indexes measuring the variation of internal

connect ivi ty ' o f the graph resulting in the use of P to generate a new cluster is

presented. At each step of the iterative algorithm, the procedure P associated

wi th an index "suf f ic ien t ly high" is used to cluster P, all data it accesses, and all

the procedures accessing a subset of that data

Unfortunately, there usually exist procedures referencing data items of

different objects, thus creating a l ink between the corresponding sub-graphs The

connections originated by this undesired links are of two types coincidental and

spurious'". The coincidental connections are defined as the result of routines

implementing more than one funct ional i ty , each of them logically belonging to

' T h e "internal connec t iv i ty" of a subgraph is expressed by the ratio between the numbei of
internal edges into the subgiaph and the nunibei of edges wjth only one vcitex in the
subg iaph

40

C h a p t e r 2 a leview of existing lecluuques

different objects A procedure generating coincidental connections can be split
on the basis of the groups of related data they refer to The spuiious connections
are created by procedures accessing the supporting data structure of more than
one object in order to implement system specific operations

Both the coincidental and the spurious connections make d i f f i c u l t the

ident i f ica t ion of strongly connected sub-graphs and thus the isolation of diffeient

objects The algorithm of Canfora et al [CCM96] partially overcomes the

problem o f ident i fy ing the undesired links by computing some indexes IC(P) and

AIC(P) , for each procedure P, in each iterative step The IC(P) index defines the

internal connectivity of the sub-graph generated by clustering together all the

data Items P accesses and all the procedures only accessing a part of these data

Items

{P, |P, e PreSet(A) a PostSet(P,) c PostSet(P)
IQr p\ ^ AePQSlSet(P)

J^#{Preset(^)'
A€PostSet{P)

The index AIC(/ ') measures the variation of internal connectivity of the

bipartite graph resulting m the use of P to generate a new cluster

_ #(P, PostSet(P,) = {yi})
A i c (P) = i c (P) - y - ^ ^ ^ ' /

AePostset(P) #{Preset(^)}

The routines having an index AIC(/ ') suff ic ient ly high are used to generate

cluster around P"

I f the value of the index relative to P is lower than a value chosen as a

threshold value, then P is considered to introduce a coincidental oi spuiious

connection, and it is sliced or deleted, according to the objective of the

reengineering process

The algorithm of Canfora et al [CCM96] it is given in figure 2 9 below

As d e f i n e d by C i m i t i l e et al in [C D D F 9 7]

41

C h a p t e r 2 a leview of existing techniques

WHILE THE GRAPH IS NOT IN THC FORM OF A SET OF ISOLATED SUB-GRAPHS DO

FOR EACH NODE P ePROC DO

COMPUTE INDEXES 1C(P) AND AIC(P)

END FOR
COMPUTE THE STEP VALUE STV, AND THE SETS MERGE AND SLICE

MERGE = (P I AIC(P) > STV }
SL[CE = {P I 0 < AIC(P) <STV }

INTERACTS WITH HUMAN EXPERIS TO DELETE FUhCTIONS FROM THE GRAPH

AND/OR TO MOVE FUNCTION FROM THE MERGE TO SLICE AND VICE-VERS 1

FOR EACH FUNCTION P eMERGE DO
CLUSTER THE SUB-GRAPH IDENTIFIED BY P INTO A SINGLE NODE AND UPDATE THE GRAPH
END FOR

END WHILE

Figiite 2 9- Algorithm presented in [CCM96]

The algorithm terminates when the graph is transformed into a set of

strongly connected sub-graphs Each sub-graph is composed of some data

representing the attributes of an object, and thus its state, and some procedures

representing the methods of that object

The treatment of the spurious connections depends on the objective of the

reengineering process I f the aim is the migration of the legacy system, then no

procedures can be deleted in order to not modify the functionali ty of the

informat ion system When the aim is populating a repositoiy of reusable

components, the routines accessing the supporting data structuie of moie than

one object are simply deleted, as their slicing produces methods of low quality'-

The redevelopment of the information system, or the development f i o m scratch of

a new information system in that application domain is thus supported by the

reuse of the software components extracted f rom the repository, and by the

extraction of knowledge about the real world entities in that application domain

The extraction of knowledge supports the phase of designing of the new

informat ion system

" C a n f o r a et al a lso suggest the use o f a s t a t i s t i c a l f i l t e r i n g f u n c t i o n to c a l c u l a t e a step va lue
up to w h i c h the v a r i a t i o n in the i n t e r n a l c o n n e c t i v i t y can be cons ide r ed noise and the
r e l a t e d r o u t i n e s have to be supposed to i n t r o d u c e noise c o n n e c t i o n s

M o i e o v e r , the e v a l u a t i o n on w h e n s l i c i n g oi d e l e t i n g a p i o c e d u i c also depends on the
s y s t e m k n o w l e d g e T h i s step o f h u m a n i n t e i v e n t i o n can by s u p p o i t e d by an ana lys i s o f
code and d o c u m e n t a t i o n

42

C h a p t e r 2 a leview of CMSIing lechniques

2.6 Summary

Even i f academic institutions and work environment agree that software

maintenance improves both productivity and quality in the development of new

software projects and in maintenance of existing system, at the current state of

the art there is s t i l l an inhibi t ing d i f f i c u l t y in acquisition of the reusable

components. This is the main cause that prevent a spread d i f fus ion of reuse

concept in the working environment [CCM94] , [BSV^]-

In particular, it is well known that the examination of legacy code can

support the population of a repository of reusable software components in a

cheaper way and in a shorter time [AF92] [DK93] [P91] than to develop them

ex-novo. As for as the building up of this repository, the Software Productivity

Consortium [SPC93] defines the concepts of domain engineering as a process to

develop a repository of reusable components for a given application domain, and

application engineering, as a process for the automatic assembling of the

reusable modules on the basis of the customer requirements'^

This chapter has focused on well known methods to reverse engineer legacy

information systems in order to help any intervention aimed to an evolution of the

code, also allowing the extraction reusable modules f rom the source code. Note

that the repository should be populated not only of modules as a fragment of code

abstracting entities - or a method of complex entities -in the application domain,

but of software components in general, including architecture components,

documentation, fragments of legacy code and any domain-related information that

can be reused in the developing of a new system in that application domain

These t w o conceps are d e f i n e t s i m i l a r l y in megaprogramming [C W W]

hap

Program Representat ions

The program representation plays a key role in the candidature phase of a

reuse reengineering process. An accurate survey of the program representation

forms can be found in De Lucia [D95] .

In this chapter, a program representation suitable to f i t our '''object

isolation'' method is defined. Some preliminary definitions are provided

Informal ly , code analysis is a generic term used to denote many

programmers activities ''where the primary emphasis is on examining a piece of

program code" [089^] . In literature several forms of code analysis activities are

defined, each of them focusing on different program representations, mainly

depending on the aim dr iving the analysis process.

Data Flow Analys is

The control flow graph is a program representation used to perform a code

analysis both intra-procedural and inter-procedural in order to explore the usage

of the entities wi th in the code. I t is based on the concept of a / /ow graph

[ASU86] [H77] which is a directed graph G={s, N, E) where N is the set of nodes,

E is the set of edges and ^ is a special node such that for each node n in there

exists a path f rom s to n.

Particularly, a control flow graph is a flow graph whose nodes in A'̂

44

C h a p t e r 3 program representations

represent single-entry/single-exit regions of executable code' The node s
represents the main procedure The edges m E represent data f l ow between code
regions

The control flow graph helps to perform data flow analysis It can be used

to detect any anomalous variable usage [F 0 7 6 J , [F076B] , [HHW76] , [H86],

[HR88] , [HR89] resulting by some previously undiscovered program errors Data

flow analysis is also fundamental for program slicing [W79] [W82] [W85] In

fact, after having decomposed the program into slices, the analysis of data flow

and control flow graphs [LR91] allows the determination of the dependencies

between different variables, and the removal of redundant statements from

program slices

Call Graph

In order to understand a program, it is important to view it f rom different

levels of abstraction. While the control flow graph depicts the program's

structure at the statements level (as necessary for the program slicing), the call

graph provides meaningful information at an higher level The call graph is

based on a flow graph, too Particularly, in the call graph, the set E represents

the call dependencies between procedures Some forms of call graph use a

labelled flow graph {generalised program graph [C89A]) : in this case, each edge

labels records information about the actual parameters i n the calling statements

3.2 A New Code Representation

In this section, a new code representation is defined in order to s impl i fy the

process of understanding the relationships generated by a common data accesses

between procedures implementing entities of the application domain

This new program representation is a variant of an inter-procedural call

graph [LPR91], providing information about data f l ow Since it is sensitive

D e p e n d i n g on the a i m o f the data f l o w a n a l y s i s , the r e g i o n m i g h t represent a s i ng l e
s t a t e m e n t o i a l a rge f r a g m e n t o f code

45

C h a p t e r 3 program representations

about the temporal sequence of the invoking statements and of data accesses, it
w i l l be called ''temporal graph" (TG).

The code representation involves three kinds of static analysis on the code-

si an analysis of the temporal sequence of the data accesses;

o an analysis of the relationships between the procedures (in the fo l lowing with

this name we denote the code fragments among them the candidate methods

w i l l be elected) rise by invoking statements and their invoking relationships;

o the data accesses performed by a procedure into different fragments of code,

some information about the control f low.

The temporal graph is constructed by data analysis, presented in

section 3.2.1, in which the statements wi th in the code are examined in order to

check the information about the data access by analysing how every single

procedure accesses data. In the section 3.2.2 the definitions concerning the

temporal graph are given.

3.2.1 A n a l y s i s o f D a t a A c c e s s T y p e

Different actions can be performed on a data items [F 0 7 6 A] , [F 0 7 6 B] . Our

aim is to distinguish through the analysis of the statements wi th in the code,

whether a procedure accesses data to consult their value {reading access), and/or

to permanently modi fy ing them {writing access). To detefmine how a procedure

accesses a data item, the statements referring the data item within the procedure

must be examined.

0 1 PROGRA!^ E x a m p l e (O u t p u t) ,
02
03 VAR m t l , i n t 2 . I NTEGER,
04
05 B E G I N
06 i n t l := 10
07 i n t 2 := i n t l + 20
08 i n t l : = i n t 2 - m t l
09 W r i t e L n (i n t 2 - 5)
10 END. (* E x a m p l e *)

Figure 3 1- Example of a simple Pascal [JK85] program Note that the statements 06 and
07 induct a data dependence o / i n t 2 on m t l as well as the statements 07 and OS induct

a dependence of i n t l on itself

4 6

C h a p t e r 3 piogiain representations

Even though the statement <VAR m t l , i n t 2 - INTEGER; > on line 03
lefeiences both data items m t l and i n t 2 , it does not affect the data access
analysis, as it does not directly reference the two data items Statements such as
the declaration of a variable in FORTRAN, do not correspond to any operation on
the value stored in a data, they are a peculiarity of the programming language
However, in same cases, i f the piogram is well designed, to each statement
indirectly referencing data items corresponds, wi th in the procedure, an access to
the referenced data items

The statement on line 07 reads m t l without modify ing i t , as its value is

only needed to evaluate the expression < i n t l + 2 0> Then, the statement

uses m t l The result o f this expression is assigned to i n t 2 , afterwards the

value of i n t 2 is changed by the execution of the statement on line 07

Analogously, the statement on line 08 changes the value of m t l

Dif ferent situations can be distinguished in the data accesses of these two

statements Statements such as that on line 07 write the value of a data item

(i n t 2 m the example) f rom scratch, then they create i n t 2 On the conttaiy,

statements as that on line 08 write a new value in the data items (m t l in the

example) depending on its previous value In this case the statement

manipulates i n t l Note that a statement can perform actions on more than one

data Item

In summary, the type of data accesses of a statement are

® data using,

® data creation,

® data manipulation

It IS important to note that the analysis of data accesses also depends on the

structure of accessed data For our purposes, in the fo l lowing , the data v,'ill be

divided into two categories records and variables The distinction between

variables and records depends on how statements refer to the data A data with

an elementary structure (involving only one level) is bounded to be a variable A

data wi th a complex structure involving several levels can be considered eilhei a

47

C h a p t e r 3 progiain i epresentations

record oi a variable It is a variable i f (and only i f) no single statement diiectly
refers to any of its elementary fields In other words i f all the statements in all
the program components referring to the data aie interested in the entiie data,
then the data is a variable

The distinction between variables and records is important in the analysis of

statements accessing the data in wr i t ing , in order to deteimme whether the access

IS either a creation or a manipulation In the case of wri t ing access to a records,

for example, i f the statement refers the entire structure then the access is by

creating I f the statement refers only to some elementary of the elementary

sub-fields, then the data operation is a manipulation, because the f inal content of

data part ial ly depends on the previous value stored in the data structure

010900 01 N A M E - C U S T O M E R
011000 03 N A M E
01 1100 07 Q U A L I F I C A T I O N IMC X(03)
011200 07 F I R S T _ N A M E P I C X (i 5)
0! 1300 07 S U R N A M E PIC X(15)
011400 03 B I R T H - D A T E
01 1100 07 MM P I C 9(02)
01 1200 07 DD P I C 9(02)
01 1300 07 Y Y PIC 9(02)
011500 03 A D D R E S S
011600 07 S T R E E T PIC X(15)
011700 07 L O C A L I T Y
011800 11 C O D E PIC X (7)
011900 1 1 C I T Y P i C X(15)
012000 07 C O U N T R Y P I C X (i 5)

Figure 3 2 - Example of COBOL source program defining a record in the D A T A D I V I S I O N

/ / all procedures only access it by refeiring to N A M E - C U S T O M E R , than it can be considei ed

a variable

Figure 3 2 show the def in i t ion of a COBOL record NAME-CUSTOMER

defined wi th in the D A T A - D I V I S I ON Supposing that this record is pait of a

database of an archive I f a statement replaces the value only of the group of

elementary fields ADDRESS, the access cannot be considered a creation of all the

data Item NAME-CUSTOMER as the value of the whole data partially depends on

the previous value of the execution of the statement, as depicting a data

manipulation In fact, wi th in an application domain using this record, an upgiade

of this data item is due to the creation of a sub-field, and does not represent the

creation of the whole data, but its manipulation

48

C h a p t e r 3 program representations

3.2.2 T h e T e m p o r a l G r a p h

The aim of this language-independent program representation is to s impl i fy

the comprehension process of the relationships between two procedures created

by a common access to a data item.

The program representation is based on the control flow graph G = (s, N, E)

The set of nodes N is partitioned into three subsets of nodes: P N , RN and IN for

''procedure nodes", ''region nodes" and "information nodes"^, respectively In

the f o l l o w i n g , the procedure nodes are represented by an oval, the region nodes

as rhomboid and the information nodes as a square with rounded corners.

A procedure node (in P N) represents a single-entry/single-exit region of

executable code (for example, a section in COBOL). The special node s

represents the program's entry. Note that, by defini t ion of control flow graph,

each procedure node has at least an invoking edge. Each procedure node has a

unique entry point, and each edge is connected to the entry point of the procedure

it invokes. The invoking edge towards .s' has a different shape.

From the def in i t ion of control flow graph, for each procedure P,, in PNcyV,

it is assumed there exists at least one path f rom s to P,,. Dif ferent ly f rom the

control flow graph, for each node P,, and P̂ in P N , there is an "invoking edge" e

in E between P,, and P̂ for each statement in P,, invoking P,,. Figure 3.3 shows

part o f a temporal graph where procedure P,, invokes P„, more that once.

Ph

Pk
P v

P w

Figure 3 3- Between Pf, and P„, there are two i n v o k i n g edges The sequence of the
invoking statements is the sequence of the edges anticlockwise

49

C h a p t e r 3 program i epi esentations

An information node (in IN) wi th an invoking edge f rom r I, summarises
information about the accesses of P,, on global data in a portion of code of
procedure P,, Each statement involving a data item A in that portion of code is
examined in order to set the corresponding access as "C(A)", "M(A)" or "U(A)"
{creation, manipulation or use, respectively) Note that f rom each pi ocediu e
node there can be several links to information nodes, but not consecutively

The technique of walking the temporal graph involves visi t ing each node

before its sons, f o l l owing all the edges, starting from the lef t of the entry edge

(the starting edge for s) and continuing to the right I f the visited node is a

region node, then only one of the two set of edges starting f rom it is fol lowed

Each traverse of the graph represents a different sequence of actions A "path"

between two nodes P and Q wi th in the temporal graph is a walk fo l lowing the

rules above starting f rom P and ending m Q

Between two consecutive links to procedures and/or region nodes only one

information node can be placed Due to the limitations of static analysis it is

possible to have an access performed under a condition statement For example,

in the statement''

I F < c o n d i t i o n > THEN < " w r i t e A"> ELSE <"reac i A">

the access to data A is considered as a manipulation, and the corresponding action

IS set as "M (A) "

When a procedure executes an invoking statement inside an I F statement

then f rom the procedure node, there is an edge to a region node in RN Fiom

each region node one or two sets of edges can start, each set associated with a

" T " (true) or "F" (false) value Each set can contain edges to ptoceduie,

information and/or region nodes The region nodes are labelled with i f the

invoking statement is iterated (i e i f the corresponding statement is in a loop.

^ W e w i l l o m i t the t e r m s " p r o c e d u r e " , " i n f o r m a t i o n " and " r e g i o n " when th i s does not lead to
c o n f u s i o n

^ T h e " w r i t e A " and " r e a d A " is f o r s t a tement access ing A by w r i t i n g (c r e a t i n g or
m a n i p u l a t i n g) i t or by r e a d i n g (u s i n g) i t , r e s p e c t i v e l y

50

Chapter 3 program representations

such as a WHILE, a REPEAT... U N T I L , etc) depending on the value of v a r _ l .

Note that, i f the loop depends on a variable, as in the situation shown in

f igure 3.4 in which the loop depends on the value of v a r _ l , the operation on the

variable is in the information node linked to the entry of the region node

representing the loop. The operation is repeated in each iteration of the loop

T R U E

C A L L

CALL

Po

P j \ (P k

U(var_1)

' P h

Figure 3 4- Program representation in case of a loop statement like a WHILE The "*" in
figure 3 4 11 represents the fact that P^^ can be repeated more than once, depending on the
value of var_l The first operation is reading the value of var_l, then only if its value

satisfies a condition, procedure /"^ " performed At each iteration of the loop, the value of
va r_ 1 IS read

As far as concerns the information about the data accesses, i f a fragment of

code relative to an information node contains only statements performing "data

use" or "data manipulation" statements relative to a data A, then it "uses" or

"manipulates" A, respectively, and the corresponding access to A is set to U(A),

or M(A). The "data manipulation" is also performed i f there are two different

statements wi th in that information node, the f i rs t of which reads A and the

second one writes a new value in A.

The "data creation" accesses of an information node I , , is more d i f f i c u l t to

determine. I f a statement like < A : = 6 > is the f i rs t statement referring A, then I, ,

"creates" A, whatever statement referring to A fol lows it wi thin I , , . I f the first

statement referring A is < A : = B + 6 > , (i.e i f A is set as a function of another

datum B) then it must be checked i f B depends on A in the previous information

nodes in any path between s and I , , , in order to avoid the possibility of indirect

51

Chapter 3 progiam i epi esentations

data dependence of A on i tself This is done by fo l lowing in the tempoial gi aph

each walk going back f rom I , , to the starting node s- I f there is a dependence of A

on itself, then the statement peiforms a "data manipulation", and then the

information node manipulates A as well

Figure 3 5 shows the case of an indirect dependence of A on itself The

information node P̂ accesses A by manipulating it

L
Po

B =A+6

C =B/2 Ph

C+l

Figure 3 5- Figure 3 5 shows the case of an indirect dependence of A on itself In this
case the statement <B =A+6> induces a dependence of B on A in the ptoceduie ; e

B=f(A) In the procedure statement <C =B/2> induces a dependence of C on B and
then on A i e C=f(B)=f(A) At least in the procedui e P^ the statement <A =C+l>

induces a dependence of A on itself due to the fact that C=f(A) thus depicting a data
manipulation on A

In the literature there exists a number of techniques treating the

restructuring processes performed in order to make procedural code modular and

wel l structured, thus faci l i ta t ing the decomposition process of the code into a set

of module candidates to implement a method of an object This restructuring

process w i l l achieve the aim of having a hierarchy of code segments, each with a

single entry and a single exit and wi th GOTO statements wi thin a segment of

code, but not outside of it In the fo l lowing , it w i l l be supposed that the code is

modular and wel l structured, and that there exist some GOTOs within the code,

but they are just address the control to the end of the procedure thus generating

the return of the control to the invoking procedure

With these suppositions, the nodes here introduced to represent the tempoial

52

C h a p t e r 3 piogram repiesentalions

graph, are suff icient to represent all the statements of the code, because it is well

known that all control constructs can be represented as a combination of the

I F THEN . ELSE constructs in a code without GOTOs

Po
Mam

Procedure/

C(type-of-transaction)

C(name-customer)
C{account-identifier

' P4
Venfy

Account-ID''

Pi
Mam Body

Deposit

UCcheck)
C(money)

' C(name-customer) ^
C(account-identifier)

P3
Credit

U(check)
C{money)

P6
Pnnt

Coupon

P7

Venfy
Founds

U(check)

f
\Sub Money

U(name-customer)]
U(account-identifier)

U(database)
C(check)

U(account-identifier)
U(money)

M(database)

U(transaction-type)
U(name-customer)

U(account-identifier)
U(money)

U(database)

U(account-,dent,fier)\ u(account-,dent,fier)
U(money)

U(database)
C(check)

! I U(money)
M{database)

Figure 3 6 - The figure above shows the partial t e m p o r a l g r a p h representing some

procedures in a typical Bank Account Management System The data database repi esents a

f i l e whose records contain information about the customer name f 'name-cust^, the account

number (account-ID), the money present into the account (cash), and a list of all the

operations performed recently (' l i s t - o p e r a t i o n / used f o r example to f i l l a coupon with the

bank statement

The program representation described above can be used at several level of

abstraction Figure 3 6 shows a temporal graph relative to a simple bank account

management at an high level of abstraction Many detail are hidden, in order to

make easy the process of comprehension of the data and control f low together

By using the technique of walking described above, the representation in

f igure 3.6 is very easy to read and to understand

53

hapter 4

An Improved Technique

Since usually legacy information systems have been written wi th an ad-hoc

approach, there are undeniable problems in recognising which data structures and

routines have to be grouped into a module candidate to implement the abstraction

of an entity of the application domain The different examples described in the

section 2.2 demonstrate the d i f f icu l t ies in implementing an automatic tool able to

extract meaningful objects f rom existing legacy code without considei able

application domain knowledge, to recognise the implemented abstractions

possibly associated wi th candidate modules, to purge them from all the

components altering these abstractions, and f ina l ly , to match them to entities

w i th in the application domain.

In this section, a method to ident ify candidate object-like modules from

existing code is presented It benefits f rom the mainstream of similar lesearches

described in the sections 2 5.2, 2.5 3 and 2.5 4 Similar ly, it uses a bipaitite

graph (f igure 2.8) to represent the relationships between procedures and

commonly accessed data and to perform an easier isolation of notable sub-graphs,

each o f them candidates to implement an entity of the application domain

Even though this method can be merely considered only an improvement of

the technique defined by Canfora et a! (paragraph 2 5 4). the improvement it

inducts upon the previous algorithm cannot be considered t r ivia l This

improvement is aimed to discriminate noisy connections l inking candidate

modules implementing different entities in the application domain The new

algorithm adds to the clustering phase two more phases the data duplicating and

54

Chapter 4 an improved technique

data refining phases

Basically, these phases focus both on the accuracy level of data stiuctures

and on the analysis of the relationships between two procedures accessing a

common data item This is to achieve a better comprehension of the state of each

potential object by treating the system of data items implementing the object's

state, also stored into these data structures This should also achieve a more

accurate object-like module and to improve the understanding process of the

relationships between different potential modules due to the interaction of then

methods

Furthermore, by jo in ing the data f l ow analysis to the analysis of the

relationships between procedures accessing the same data, this helps to establish

whether the common access of several procedures to a data item denotes that they

are methods of the same object This analysis leads to candidate modules

abstracting lower level entities wi th in the application domain, thus s impl i fy ing

the process of understanding them and of matching them to domain entities

However, this analysis requires the application of domain knowledge to the

Iterative step, but this application is helped by the context

Informal ly , the technique w i l l refine the previous algorithm in three aspects

9 Wi th a more detailed analysis on "how" a procedure accesses a data The

technique distinguishes not only between reading and wri t ing accesses, but

also checking i f the procedure uses the value set by another procedure, thus

creating a sort of dependence between the two procedures This improves the

understanding process needed to establish when two procedures accessing a

data are a method of the object whose state is stored m the common accessed

data

® With a moie detailed data analysis, possibly also including the refinement of

structured data in a equivalent set of less structured ones Smallei giain

objects are easier to handle This enriches the domain knowledge and reduces

the ef for t o f the subsequent concept assignment phase

• With a lighter bipartite graph produced by including the links lepresenting

55

C h a p t e r 4 an improved technique

either a procedure accessing a data item by modify ing it (thus, to ensure
informat ion hiding, the procedure is a method of that object whose state is
stored in the data) or a procedure using a data value without modifying it ,
when the invoking procedure can not send that data item as a parameter in the
invoking statement.

A l l these issues are aimed to reduce the number of links that have more

l ikel ihood being noisy, thus improving the comprehension of the legacy code and

al lowing an easier isolation of candidate objects.

4.1 Overview of the Algorithm

Similar ly to the algorithm of Canfora et al. , the aim of the new algorithm is

to isolate strongly connected sub-graphs wi th in the bipartite graph representing

the interrelationships between data structures (potentially implementing the state

of candidate objects) and procedures (potentially implementing methods acting

o-n the objects' state). On the other hand, the two added phases, with the

dif ferent way to draw the bipartite graph, lead to a modif ied algorithm.

The outlines of the algorithm are sketched in figure 4 .1 . Note that the three

phases are represented: data clustering, data duplication and data refining.

Their sequence is not made up by the algorithm, as i t depends on the features of

the system it is dealing wi th The algorithm receives in input the whole system

and the three phases are performed while the bipartite graph does not assumes the

fo rm o f a set of disjoint sub-graph, each of them is candidate to implement an

object into the application domain.

Af t e r each phase, the program representations have to be redrawn, as any of

the phases change the structure of the legacy code. A l l the phases are fu l ly

detailed below.

56

Chapter 4 an improved technique

, —
Data

(Refinement,
^ Phase

Compute N
Refinement)
^ --Ijidexe.s--^

.-'Draw the
(Temporary
^ ._Graph

, Draw the
(B i p a r t i t e)

Graph

.'Compute"^
(D e r i v a t i o n)\

. T a b l e s ,

• D a t a ^
D u p l i c a t i o n)

Phase

/

Compute ^
Ve c t o r ;
AIC 0 ̂ -^

C l u s t e r i n g ^
K Phase y

Figure 4.1 - The outlines of the improved algorithm. The three phases represented in
figure modify the bipartite graph until it is decomposed in a set of disjoint sub-graphs

4.2 Details

The process starts by isolating data structures and procedures f rom wiiich to

select those that w i l l be composing an object-like module (data structure and

procedures acting on these) candidate to implement an abstraction of an entity of

the application domain. The decomposition process of the code into a set of

routines candidates to implement the object methods takes advantage of the

modularity of the code (see par. 3.2.2). In the fo l lowing , these isolated routines

w i l l be called "procedures". Each data items defined wi th in the software system

forms a node of the subset relative to data. Note that the data items are chosen at

the highest level of abstraction, i.e. structured data with subordinate elementary

57

Chapter 4 an improved technique

data items is a single node. Af te r that these components are made available, the
program is represented at different abstraction levels through the temporal graph
and the bipartite graph.

4.2.1 Drawing the Program Representations

The temporal graph is drawn wi th the process that has been already

described in the paragraph 3.2. Note that the temporal graph strictly depends on

the granularity level of data item, and on whether the data item is a record or a

variable, as i t affects the type of data access. As the data granularity might vary

at each iterative step of the algorithm, a constant upgrade of the temporal graph

is consequential.

T h e B i p a r t i t e G r a p h

As far as concerns the bipartite graph, procedures and data items are

represented as two disjoint sets of nodes. Af ter having drawn the two sets of

nodes, a static analysis concerning the access type of the procedure to the data is

needed to draw the set of edges. This information can be taken from the

temporal graph by examining all the information nodes relative to that

procedure.

The representation of the bipartite graph is different f rom that used by the

previous algorithm, as the new bipartite graph takes into account whether the

access is a wr i t ing or a reading access. Mainly , the edges representing wri t ing

accesses between a procedure and data are always drawn, because by wri t ing a

data item, a procedure changes the state of an object Then, in order to ensure

information hiding, that procedure must be linked to that data item storing part of

the object's state, as it might be an object method.

The edges representing reading accesses are drawn with some exceptions i f

a procedure P accesses by reading a data item A , and all the procedures invoking

P access A by wr i t ing to i t , then it is l ikely that A does not belong to P's state,

but is used as parameter to P.

In summary, the modif ied bipartite graph contains all the links between a

58

Chapter 4 improved technique

procedure P̂ , and a data A such that:

1. P,, accesses A in wr i t ing (some information node of P̂ accesses A by creating

it or by manipulating i t) ;

2. P;̂ accesses A through reading but in the set of procedures invoking it there is

at least one wi th a reading accesses (some information node of P,, accesses A

by using i t) .

Note that i f there is a l ink into the bipartite graph between procedure P̂ and

data item A , then P,. accesses A . The opposite is not true: in fact, i f a procedure

Pi, accesses A , there can be no l ink between P,, and A in the bipartite graph.

Note also that the starting bipartite graph can be easily obtained by purging

f rom the one in Canfora et al. all the edges representing a reading access of a

procedure P to a data A , i f and only i f all the procedures invoking P access data A

in wr i t i ng .

As for the temporal graph, the bipartite graph also starkly depends on the

granularity level of data item,' and on whether the data item is a record or a

variable, as i t affects the type of data access. In this case too, a constant upgrade

of the temporal graph is consequence of the varying of the data granularity

throughout the execution of the algorithm.

4 .2 .2 The Computation of the Vector AIC() .

A t each iterative step, the modified algorithm examine the bipartite graph in

order to compute, for each procedure P, a vector of indexes AIC(P):

2#{Pi|Pi €PreSet(A)APostSet(P,)cPostSet(/')) r p^,.,.^..p ^ r ,
Aic(P) = y 1 ' ^ ''"'"^

Y^#{Vv^stX{A)] ,,p£^„(P) #{Preset(^)}
AePostSe((P)

The aim of the computation of the vector AIC() is to help decide which is

the procedure more worthy to cluster around. Here and in the fo l lowing , "to

cluster around procedure / " ' means to cluster the sub-graph containing P, all the

data items it accesses and all the procedures accessing a subset of these data

items.

59

Chapter 4 improved lechnique

In fact, into the modif ied system, the vector of indexes AIC(P) establishes,
by comparison among its elements, which is the procedure wi th the highest
difference between the internal connectivity of the sub-graph generated and the
internal connectivity of the sub-graphs merged, thus allowing the evaluation of
how the clustering around P changes the internal connectivity of the bipaitite
graph

At each step o f the iterative algorithm, the routines having an index AIC(P)

"suf f ic ien t ly high" are used to generate cluster around P

During the execution of the modified algorithm, the data duplication and

data ref in ing phases can be performed at each iterative step in order to inciease

the value of some of the indexes wi th in the vector AIC() , such that there is

always a procedure o f the bipartite graph that can be clustered m order to obtain

a candidate module This process combines application domain knowledge to the

analysis of the data structures, and takes into account the meaning of the data

wi th in the application domain

Note that the order of the phases is rather irrelevant and they mainly depend

on the peculiarity of the legacy information system

4 2 3 D a t a D u p l i c a t i o n

The aim of ''data duplication" phase is to break down some ' logical l inks'

between groups of procedures due to a common access of global data items In

fact, not all cases a common data access are intentional such that the procedures

are sharing the value of this data item for their computations, thus involving that

they both are methods of the same object, whose state is partially stored in the

commonly accessed data item Sometimes, that data item can be considered

" loca l" to a group of procedure

When a data item is local to different procedures (for example a vaiiable /

usually used as counter in any loop) a t i i v i a l reengineering intervention to be

performed before the modularisation is to " s p l i t ' / by renaming it with different

names m any procedure accessing it

60

Chapter 4 an improved technique

The problem o f managing local data has been faced by Markosian et al
[B B K M N 9 4] wi thm a process of reengineering of a COBOL legacy information
system They have introduced the concepts of input and output paramelei s in
order to define when a data item A is local to a procedure An input parameter
relative to a P E R F O R M statement is a data item A that is set wi thin a procedure P,,
before the statement P E R F O R M P,̂ and i t is used in P,̂ before A is set again
Analogously, a output parameter is the data item A is set wi th in a performed
procedure P,̂ then it is used before being set fo l lowing some perform of that
paragraph Af te r having defined the input and output parameters, Maikosian et
al define to be "local to that procedure" all the data referenced by the procedure
that are neither input nor output parameters

For our purpose, only global data w i l l be considered However, the

def in i t ion of "local data" w i l l be extended to groups of procedures Analogous to

the reengineering process performed to the localise the data to a procedure, the

main idea of the data duplication phase is to isolate groups of procedures in

which a data can be considered local, and then split this data item into many

items by renaming i t wi th a different name wi th in each group

Precisely, we w i l l deal wi th groups of code fragments, represented by

information nodes In fact, as i t w i l l be f u l l y detailed in the fo l lowing examples,

after having isolated the groups relatively to a data item A , it is possible that a

procedure belongs to more than one group, whereas, the implicated information

nodes s tr ictly belong to a single group (see figure 4 4 and table 4 2)

Consequently, the output of the analysis of the data duplication phase w i l l be a

set of groups of information nodes In each of these groups the data item w i l l

assume a different name, thus obtaining a "data duplication"

However, the notation dealing wi th groups of procedures is s t i l l preferred to

the one dealing wi th groups of "fragments of codes" (the information nodes),

because it simplifies the process of drawing the bipartite graph, on which the

algorithm w i l l be applied It w i l l be c lar i f ied, in case of procedure belonging to

several groups at the same time, which of the information nodes belongs to each

group In this way we also hope to keep coherent with the aim of "duplicating

61

Chapter 4 an improved lechnique

the data items that are local to groups of procedures".

In formal ly , a data item can be considered as "local to a group of procedures"

respecting the two conditions:

1. in each path wi th in the group, the f i rs t information node referring A creates

i t ;

2. in each path getting out f rom the group, the f i rs t information node referring A

creates i t .

Figure 4 2 - A lypical temporal graph with the specification of a group of procedures in
which a data can be considered local

I t is clear that the central issue is the def ini t ion of such a group of

procedures. Note that a group is relative to a single data item, and the groups

vary depending on the data. Since throughout the execution of the algorithm the

data items and their accesses might change, the groups-have to be computed each

time the temporal graph has been changed (i e at each iterative step).

Consequently, the data duplication phase has to be performed each time on a

different temporal graph.

A l l those groups are characterised by having a procedure creating the data

and, the value of the data in the other procedures of the group depend on by the

computation of the procedures of the same group already executed and accessing

the data.

For any data A , a group of procedures in which a data item A is local has the

fo l lowing features:

o there is one and only one procedure owning an information node creating A

62

'^'^'''P^^'' ^ an improved technique

(the information node and the procedure node w i l l be called Ig and PQ in the

f o l l o w i n g examples);

o in each procedures P,. of the group, the value of A only depends on IQ and on

other procedures of the group which are in the path f rom IQ to P^.

For an information node IQ creating a data item A , the fo l lowing definitions

w i l l be used in order to ident i fy the procedures ?̂ in which the value of A depend

on Ifl.

In formal ly , the def ini t ion 4.1 defines when the value of a f ixed data item A

in a procedure derives the execution of a portion of code of another procedure

Def in i t ion 4.1 - Let G=(s, N, E) be a temporal graph. Let loe lN be an

information node creating data item A ; let P o e P N be a procedure node such that

(F Q , IQ)^E (IQ of P Q) . Let I|j, be an information node of P^ using or manipulating

data A . Then I ^ , o f P,, derives A f rom 1̂ i f there is a path between s and l^.,

(excluded) containing IQ. 0

For sake of s implici ty , in the fo l lowing the notation IQ of PQ w i l l be used to

denote that there exists IgeiN and P g e P N such that (P,,, Io)ei?-

Note that, f rom the def ini t ion of temporal graph, there might be many paths

f rom to Ik, due to the presence of region nodes. In def ini t ion 4 .1 , the condition

that I ; , , is excluded f rom the considered path, means that any information node

creating A does not derive A f rom any other information node.

A procedure can derive a data item f rom many information nodes at the same

time. In the example of figure 4.3, both I , . , and l^^ of P ,̂ derive data item A from

I j , o f P j , f rom lo, of PQ and f rom I , , , of P,,. only derives A f rom I j , and I , , , of P, , .

63

Chapter 4 an improved technique

(s)
[PO)

(P:)

I 3 I
C (A)

102

M(A)

Ik2
M(A)

.(Ph),

I h l Ih2
C (A) U(A)

Figure 4 3

Def in i t i on 4.2 - Let G={s, N, E) be a temporal graph. Let I ^ , be an

information node of P̂ deriving data A f rom IQ of PQ I f every information node

in any path f rom IQ (excluded) to 1̂ , (included) does not contain information

nodes creating A , then l^^ of P,, directly derives data A by Ig. Procedure P,,

directly derives A f rom IQ. 0

Note that, by def in i t ion 4.2, any information node 1^ of P;. directly derives A

by Ig i f in any traversal of the temporal graph between IQ to I , , (inclusive), the

node IQ is the only one creating A , i.e. in any traversal of the temporal graph

between s and 1̂ (inclusive) passing f rom IQ , the node Ig is the last (in temporary

order) one creating A .

Also in this case, a procedure can directly derive a data item f rom many

information nodes at the same time. In the example of figure 4.3, both Ig, and I ,^ ,

have a directly derive A f rom Ig, and I , , , .

I f an information node I , , directly derives A f rom an unique node Ig, then the

derivation is also exclusive.

Def in i t ion 4.3 - Let G={s, N, E) be a temporal graph. Let I , , , be an

information node o f P̂ directly deriving data A by Ig of P,,. Then I , . , of P,̂

exclusively derives A by Ig of Pg i f there not exists any other information node 1,,

64

Chapter 4 an improved lechnique

of P,, which Ij_, directly derives A f rom. 0

The word ''exclusive" referred to the derivation is due to the fact that P^

derives A only (exclusively) by I , , of PQ . This ensures that the value of A in P^

depends on the execution of IQ.

Note that, by def in i t ion 4.3, in figure 4.3, there are only two examples of

exclusive derivation: I|,2 and I , , , exclusively derive A f rom I , , , and I Q , , respectively.

In summary, the derivation relationships between the information nodes in

f igure 4.3, are represented in the table 4.1 below.

In format ion
node

der ivat ion direct
der ivat ion

exc lus ive
derivat ion

lo, - - -

0̂2 -

I I . - - -

1.2 -

l u lo, lo,

1.2 -

I h , - - -

Ih2

Table 4 1

These definitions define a dependence having many similarities with the

data dependence of Ottenstein et al. [FOW84] [0 0 8 4] .

In order to proceed to the data duplication phase, all of the groups of

procedures relative to data must be ident if ied. For a data A , a group of

procedures is composed by the procedure PQ with an information node IQ

creating A , and all the procedures P ^ exclusively deriving A f rom IQ . The

procedures composing the group can be identif ied through the definitions above

The value of a data A in any procedures Pi_ (with k > 0) within a group

relative to that data item, depends on IQ and on all procedures in the path from PQ

to P .̂ manipulating A (i.e. all procedures that have modified A)

Through a static analysis of the code such groups of procedures are

65

Chapter 4 an improved technique

ident i f ied , and a_data duplication phase "splits" the data into many items, one for

each gioup This process is earned out for each data

In the example shown in figure 4 4, pioceduies the information node of P,

and the one o f P3 (f igure 4 4a), directly derive A from Ig, On the other hand, the

information node o f P, directly derives A from Ig, With the further assumption

that there are no other procedures invoking the procedures of figure 4 4a, the

derivation is also exclusive

101 ^

C(A) (

Figure 4 4- The procedure PQ has many information nodes ci eating A in this situation,
the procedure will contain the different items m which the data is spitted, i e the seveial

portions of source code corresponding to the information nodes /g, of PQ contain different

variables deriving by the splitting of A

In summary, the derivation relationships between the information nodes in

figure 4 4, are represented in the table 4 2 below

Two groups are derived f rom this example from a simple observation of

table 4 2, it is easy to split up data A into two items A , and A , relatively to the

groups o f procedures (Pg, P , , P3} and {Pg, P4, P5} Note that procedures and P^

have not been added into any groups because they do not reference A , thus the

fact to be belonging to a group does not affect their code

66

Chapter 4 an improved technique

Informat ion
node

der ivat ion direct
der ivat ion

exc lus ive
derivat ion

0̂1 - - -

0̂2 - - -

1̂ lo, loi lo,

3̂ loi lo, lo,

5̂ 0̂15 Io2 l02 l02

Table 4 2 - In the table, the information nodes 1̂ ,. are related to
the procedure

In this example, procedure Pg contains more than one information node

creating A, then Pg belongs to more than one group In this case, Pg w i l l contain

references to all the items in which A w i l l be split. Figure 4 4b shows the data A

duplicated in two items A, and A2. The portion of code relative to Ig, and Ig, vvill

contain reference to A, and A j respectively As procedure Pg belongs to both the

groups, the groups should be writ ten as G A J = { I O , of Pg, P , , P3} and Gf^={lQj of Pg,

P 5 } , thus showing that the information nodes of Pg w i l l have references to

different target data items.

As already br ief ly introduced in the presentation of the data duplication

phase, earlier in this paragraph, this might just be considered a notation problem

However, i t could be easily overcame by composing the groups on the basis of

information nodes, then obtaining the two groups { I g , , I , , I3} and { I g , , I 5 } , instead

of having the not disjoint groups of procedures {Pg, P , , P J and {Pg, P5}

However, it is s t i l l preferred the notation dealing with groups of proceduies

instead wi th groups of "fragments of codes" in order to keep the notation

coherent wi th its aim to draw the bipartite graph on which the algorithm w i l l be

applied. In fact, the notation dealing wi th groups of procedures allows a more

immediate process of drawing the bipartite graph, than the notation dealing with

groups of fragments of codes

Af te r having established the groups of procedure relatively to a data item A ,

the code relative to each information node is upgraded by changing the data

Item's name and all the related statements (data item's declaration, comments,

documentation, etc)

67

Chapter 4 ^ an impi oved technique

Afte r this phase, the links starting f rom these procedures toward the

commonly accessed data form a group of proceduies whose computation depends

on a common data item In this case, all the pioceduies of that gioup can be

consideied as methods of the same object whose state is also stored in the

common accessed data

4 2 4 D a t a R e f i n i n g

The "data refining" phase refines the granularity le \e l of some of data items

having a large number of accesses, according to then meaning into the

application domain and to the benefits brought to the execution of the algorithm

This phase allows, at each step of the algorithm, the subdivision of a data

accessed by many procedures into different data items With the support of the

knowledge of an human expert, the data is analysed to check i f all the

informat ion belongs to the same object of the application domain, and i f the

procedures share the same information about the same object I f these conditions

do not hold, then the data can be refined into a set of data items, each of them

containing the information needed for a smaller number of procedures

Due to the change of the data structure, both the data representations have to

be updated This re-analysis must take care of new data accesses In fact, a

procedure that before the ref ining was accessing the data that has been refined,

might access only part of the target "sub-data" Furthermore, the kind of access

can change, since a record can produce some vaiiables as result of the

refinements

For example, the record N A M E - C L I S T O M E R m figure 3 2 might be refined in

the data items corresponding to level 03 of the data structure defini t ion

According to the def in i t ion of record and variable in paragraph 5 3 2, i f all

procedures access only the new data items N A M E , B I R T H - D A T E and A D D R E S S

(without accessing directly their elementaiy f ields) , then they all aie variables

In case a statement sets N A M E by creating i t , then the statement manipulates the

record N A M E - C U S T O M E R , before the refinement, on the other hand, aftei the

refinement the statement creates the variable N A M E This must be taken into

68

Chapter 4 an improved technique

account in establishing the data access of that procedure before and after the

refinement phase.

E v a l u a t i o n o f t h e D a t a R e f i n i n g P h a s e

In order to evaluate the benefits brought to the execution of the algorithm,

some indexes can be defined to help the human expert decide which data are more

worthy o f re f in ing . The human intervention should help also in this process

Figure 4 5 - In figure Figure 4 5a the vector of values of AIC for the procedures P, , P2 and
P-s is (0 75, 0 25, 0). By refining the data (figure Figure 4 5b) in the set of items A^x,

A22 and A^-i, the vector is (0 80, 0 30, 0) After the refining of data A^ (figure Figure 4 5c)
in the set of items A„,, A^2 /^"d A^^^, the vector is (0 75, 0 60, I 00)

The decision criteria for the data refinement phase depend on the index

AlC (Pk) before the refinement of A computed for any procedure P;. referring A ,

and the index A'IC (P,;)) after the data refinement. Other aspects affecting the

decision criteria are the peculiarity of the particular legacy information system

and the reasons dr iving the reengineering process, thus the decision can be taken

wi th regards to this aspect.

From figure Figure 4.5, i t can be observed that the duplication of A^ causes

the isolation of a strongly connected sub-graph. In this case, the data more

worthy of refinement is the data item A which maximises the value

max (A ' I C (P ,)) - AIC(P,) . Of course, the refining of A. w i l l be preferred to
P|,GPreSet(A) v . /^ v

that of A2 i f it assumes a meaning in the application domain.

69

Chapter 4 Q „ impi oved technique

4 2 5 Termination of the Algorithm

The algorithm terminates when the giaph is t iansfoimed into a set of

strongly connected sub-graphs Each sub-giaph is composed of some data

representing the attributes of an object, and thus its state, and some proceduies

representing the methods of that object

The proof that the algorithm w i l l f in ish in a f in i te number of steps fol lows

the same reasons of the algorithm in [CCM96] , because the phases added change

the value o f the indexes f ixed by the previous algorithm only by increasing them

Otherwise, none of those phases can be peiformed and the algorithm w i l l cany on

in the standard way defined by Canfora et al , that is guaranteed to f in ish in a

f in i t e number of steps

70

Case Study on a COBOL Source Code

The COBOL (Common Business Oriented Language) programming language

was developed in 1959 by a committee composed of government users and

computer manufacturers. Since then, various COBOL committees have met to

ensure that the evolution of the language through time fol lowed an orderly

fashion, thus making COBOL the most frequently used computer language

directed at data processing objectives, extensively used in administrative

applications processing o f a large amount of input and output data

Yourdon' said "One of the oldest, and arguably the most successful and

popular of all programming languages, COBOL has been declared dead so many

times that I've lost track counting ... but COBOL lives on".

Table 5.1 shows the results of a recent research conducted by Caper-Jones

[C92] regarding the state of the art of software maintenance It shows COBOL as

the "dominant arena" for software maintenance In this review, it is possible to

gain an insight into the proportion of effort required in the industrial f ield

regarding the maintenance of COBOL legacy information systems against other

conventional programming languages

In the recent literature a number of papers have specifically described

dif ferent approaches al l successfully employing reengineering techniques dealing

wi th COBOL legacy information systems Sneed's work is important in this area,

because it successfully employees reengineering techniques [S92] to migrate

E x t r a c t from <http / / w w w yourdon c o m / a p / 9 6 0 9 I N T R O H T M L >

71

Chapter 5 a case study on a COBOL source code

existing COBOL applications, and to extract object oriented specification [S91]

and object oriented design documentation [NS95] f rom existing COBOL

applications running on mainframe.

Language of the software bemg maintained estimated number portion of the total

C O B O L 461 ,500 45%

Other procedura l languages * 100,000 10%

C 95 ,000 9%

Database L a n g u a g e s 86,250 8%

Program Generators 76,000 7%

A s s e m b l e r , a l l hardware 60 ,000 6%

F o r t r a n 40 ,250 4%

O b j e c t Or ien ted Languages 29 ,750 3%

B a s i c 22 ,750 2%

A d a 22 ,500 2%

S p e c i a l Purpose A p p l i c a t i o n s 17,500 2%

P L / 1 7,000 1%

P a s c a l 4 ,750 0%

L I S P 2,500 0%

A P L 1,500 0%

T o t a l f u l l time equivalent 1,027,250 100%

Table 5 1 - Number of the full-time maintainers programmers in the USA in
199 f by languages read [C92] Note that portion column does not add to 100%

because of the rounding
* Not elsewhere classified

The aim o f this chapter is not to give an exhaustive explanation about the

method above, using a real example, but to show how to adapt the method to the

peculiarity of a given programming language such as COBOL, while respecting in

the meantime the main ideas of the technique. By way of a case study, a simple

COBOL program has being analysed, and the technique being used on it A l l the

necessary arrangements to adapt it to the peculiarity of COBOL are underlined

throughout this section

As already seen in the sections from 2 2 1 to 2 2 3, it s t i l l appear impossible

to implement f u l l y automatic techniques to reverse engineer a typical COBOL

program the semantics, the meaning of the specifications are irreversibly lost in

72

Chapter 5 a case study on a COBOL source code

the process o f c o n v e r t i n g the spec i f i ca t ions to design and then to code

Comprehens ion ac t i v i t i e s are required both at the program and at the

a rch i t ec tu ra l l e v e l . I n pa r t i cu la r , an in teg ra t ion o f t o p - d o w n and bot tom-up

unders tanding strategies [V M V 9 4] , [V M V 9 5] can successfu l ly i d e n t i f y sof tware

components and map them onto m e a n i n g f u l objects The f i n a l step o f each

me thod o f ob jec t i d e n t i f i c a t i o n is a concept assignment process pe r fo rmed by a

human inspector i n order to va l ida te the candidate objects .

5.1 The Need of a Standard- the ANSI COBOL Standard

Due to i n t e rna t iona l trade agreements, the g loba l marketplace is becoming a

r e a l i t y . I n this s i t ua t ion , bo th the p r iva te and pub l i c sectors, have understood

that "standards, if adopted throughout the world, create a large market instead

of many fragmented markets"^. The companies i n every indust ry and o f every

size are r e a l i s i n g that a business keeps its compe t i t i ve edge in the face o f

na t i ona l and g loba l marke t changes on ly by using a strategic s tandardisat ion

I n the c o m p u t i n g f i e l d , the need to create standards has been recognised as

i m p o r t a n t f r o m the b e g i n n i n g . This is p a r t i c u l a r l y true f o r C O B O L , a language

s p e c i f i c a l l y designed f o r commerc i a l app l ica t ions , usual ly operat ing on a large

v o l u m e o f data. I t was created i n 1959 by the C O D A S Y L Committee^ in a

mee t ing convened by Depar tment o f Defense (D O D) , p a r t i c u l a r l y d i ssa t i s f ied by

the l ack o f standards.

Due to the a v a i l a b i l i t y f o r many p l a t fo rms (f r o m desktop In t e l machines to

huge I B M ESA m a i n f r a m e systems) and to f l e x i b i l i t y (l eav ing a C O B O L program

to be c o m p i l e d and to run on a var ie ty o f d i f f e r e n t machines w i t h very f ew

changes to the o r i g i n a l code) , there were so many var ia t ions among C O B O L

compi l e r s p roduced by d i f f e r e n t computer manufacturers that i t was decided that

the A m e r i c a n N a t i o n a l Standards Ins t i tu te (A N S I) w o u l d oversee C O B O L

2 G a r y T o o k e r , manager of Motoro la Inc and V i c e C h a i r m a n and C E O

3 C O D A S Y L I S an abbrev ia t ion for the C o n f e r e n c e on Data Systems Languages The
C O D A S Y L committee inc luded representat ives from academia , users groups and computer
manu facturers

73

Chapter 5 a case study on a COBOL source code

Standards, to pe rmi t to C O B O L to su rv ive .

I n 1985, i n the at tempt to create a series o f in te rna t iona l qua l i ty standard for

the C O B O L LISs reengineer ing processes, the A N S I produced a document' ' in

w h i c h are l i s t ed a l l the features that a good C O B O L objec t or iented C O B O L

a p p l i c a t i o n should have.

The source system must be decomposed in several modules , each o f them

c o n t a i n i n g a s ingle ob jec t in te rac t ing w i t h the other ones by message passing.

Each ob jec t correspond to a class, i .e. , to an abstract data type encapsulat ing the

state o f the ob jec t t r ough its a t t r ibutes , and to a set o f actions (or methods)

m o d i f y i n g this state. To insure i n f o r m a t i o n h id ings , the classes should have both

p r iva te and p u b l i c storage: the pub l i c one is accessed only by subordinate

classes, whereas p r iva te one is protected by any access.

Messages de f ine eve ry th ing an objec t can do, i .e. , i ts in ter face . The classes

can i n v o k e d i r e c t l y methods o f an external class, i .e . , not subordinate by

inher i t ance r i g h t . I n order to do this a method o f a class is defin-ed as an entry

p o i n t w i t h a d e f i n i t i o n o f the parameters i t receives. For the features o f C O B O L

every m e t h o d has access to data o f the i n v o k i n g class. Thus classes subordinate

by inher i t ance r igh t s can be i n v o k e d by a message w i t h o u t parameters; on the

con t r a ry , the methods o f an external class can be i n v o k e d on ly by messages

declared i n a separate i m p o r t / e x p o r t area and passed as parameters i n a C A L L

statement. Every t ime- tha t a rhethod is i n v o k e d , the con t ro l can be returned back-

to the ca l le r or to another class. To insure i n f o r m a t i o n h i d i n g , the classes should

have bo th p r iva te and pub l i c methods. The last ones are accessible only to the

class i n w h i c h they are encapsulated.

The classes shou ld have m u l t i p l e inher i tance , i .e. , they have to be able to

i n h e r i t data a t t r ibutes f r o m more than one superordinate class. The same applies

to methods w h i c h are inhe r i t ed f r o m superordinate class. The inher i t ed data must

be declared r e f e r r i n g to the class f r o m w h i c h they are inher i t ed . The same

appl ies to methods w h i c h are inher i ted f r o m superordinate classes.

74

Chapter 5 a case study on a COBOL souice code

I n order to ensure that each module do not exceed a certain size and

c o m p l e x i t y , some l i m i t a t i o n s are f i x e d the number o f at t r ibutes o f a class is

l i m i t e d to 100 and the number o f methods per class is l i m i t e d to 10 The numbei

o f s tatement i n a method must be less than 20 statements A message should be

res t r ic ted to f i v e parameters This l i m i t a t i o n provides to the system a h igh

degree o f m o d u l a r i t y

5 2 Presentation of the Case Study

The technique has been used on a C O B O L program o f 1500 L O C , large

enough to g ive in te res t ing demons t ra t ion o f the app l i ca t ion o f the a l g o i i t h m

presented above The p rog ram consists o f a batch program w i t h 5 f l o w s def ined

i n the I N P U T - O U T P U T S E C T I O N and i n the F I L E S E C T I O N

DEFAULT GAME

V I D E O - B O N D

0
VBTYPEIN

G A M E - M A S T E R
9

P I A Y - M A S T E R

flow

e x t e r n a l
database

C D

BATCHl

main
proceduie

e x t e r n a l f i l e
i n c l u d e d v i a a
COPY statement

invoked
procedure

P P I O O A - R E P O R T A B E N D

S T A T I O N - R A N K I N G

GAHEHS GAIIEIISIO PLAYirSIO STR.WKIO PPIOOAOU

Figui e 5 1

The w h o l e s t ructure o f the C O B O L program B A T C H l is ou t l i ned in

f i g u r e 5 1 The arrows are the l inks between the program and the external f i l e s

represents the inpu t and/or ou tput r e l a t i on The 5 external f i l e s and the 3 f i l e s

i n c l u d e d i n the p rogram by a C O P Y statement are represented by d i f f e i e n t

4 Stored with the number F I P S - P U B - 2 1-2 and worked out by Y o u r d o n , M i c r o f o c u s and other
in [Y 9 0]

75

Chapter 5 a case study on a COBOL source code

nota t ions .

D u r i n g the data desc r ip t ion phase, the C O B O L permi ts to keep copies o f

data d e s c r i p t i o n i n p rogram l ibrar ies i n the computer system, enabl ing the

d e s c r i p t i o n to be copied in to the programs by using the C O B O L statement C O P Y

Some o f the ex te rna l f i l e s were de f ined ex te rna l ly , and then inc luded w i t h i n the

p r o g r a m by us ing a C O P Y .

5.3 Isolation of Procedures and Data

I n order to decompose the m o n o l i t h i c p rogram in to a system o f in te rac t ing

o b j e c t - l i k e modules , the f i r s t step is the i d e n t i f i c a t i o n o f a co l l e c t i on o f data

s t ructures i m p l e m e n t i n g the state o f the objects , and a set o f modules candidate

to i m p l e m e n t the i r methods. These two sets w i l l be represented by the two

d i s j o i n t sets o f nodes o f the b ipa r t i t e graph. The g ranu la r i ty l eve l o f bo th o f

them depends on several fac tors , such as the features o f the par t icu lar legacy

information system and the env i ronment i n w h i c h i t ac tua l ly runs, and the reasons

d r i v i n g the reengineer ing process.

5 . 3 . 7 I s o l a t i o n o f P r o c e d u r e s

I n the l i t e ra tu re there exists a number o f techniques f o r t rea t ing the

r e s t r u c t u r i n g processes pe r fo rmed i n order to make a C O B O L legacy system

m o d u l a r and w e l l s t ructured, thus f a c i l i t a t i n g the decompos i t ion process o f the

code i n to a set o f modules (a set o f paragraphs, o f sections or isolated

statements) candidates to implement a method o f an objec t . This res t ruc tur ing

process w i l l achieve the a im o f hav ing a h ierarchy o f code segments, each w i t h a

s ingle en t ry and a s ingle ex i t and w i t h G O T O statements w i t h i n a segment o f

code, but not outs ide o f i t .

The m o d u l a r i t y o f the code a l lows to isolate procedures (sections) through a

s imple stat ic analysis o f the code I n our example , the 75 paragraphs shown in

table 5 2 have been isola ted. I t is possible to note that a l l the paragraph names

start w i t h an a lphanumer ic code o f 4 d ig i t s

76

Chapter 5 a case study on a COBOL souice code

OOOO-MAINLINE C210 - EDIT-TBLE-DATA C28 0-UPDATE-PLAY-DTLS
AlOO-HOUSEKEEPING C210-EDIT-TBLE-DATA-EXIT C280-UPDATE-PLAY-DTL6
AlOO-HOUSEKEEPING-EXIT C22 0-EDIT-TABLE2-DATA C28 0-UPDATE-PLAYFILE-EXIT
AlOO-FILE-STARTS C220-EDIT-TABLE2-DATA-EXIT D24 0-NO-STRANK-MATCH
AlOO - F I L E - S T A R T S - E X I T C23 0 - EDIT-TABLES-DATA D24 0-NO-STRANK-MATCH-EXIT
A20 0-MAIN-PROCESS C23 0-EDIT-TABLES-DATA-EXIT D250-PROCESS-PLAY-RECS
A200-BYPASS-UPDATES C240-READ-STRANK D250-PROCESS-PLAY-RECS-EXIT
A20 0-MAIN-PROCESS-EXIT C24 0-READ-STRANK-EXIT D280-REWR-PLAYFILE
A3 00-TERMINATION-RTN C2 5 0-READ-PLAYFILE D280-REWR-PLAYFILE-EXIT
A300-TERMINATION-RTN-EXIT C25 0-READ-PLAY-HDR E2 5 0-NO-PLAYMSIO-MATCH
BIOO-OPEN-FILES C250-READ-PLAY-DTLl E2 5 0-NO-PLAYMSIO-MATCH-EXIT
Bl O O - O P E N - F I L E S - E X I T C250-READ-PLAY-DTL3 FlOO-CHECK-VSAM-STATUS
B200-READ-VIDEO-BONDS C250-READ-PLAY-DTL4 FlOO-CHECK-VSAM-STATUS-EXIT
B2 0 0-READ-VIDEO-BONDS-EXIT C2SO-READ-PLAY-DTL5 UlOO- PRINT
B210-EDIT-DATA C25 0-READ-PLAY-DTL6 UIOO-PRINT-EXIT
B210-EDIT-DATA-EXIT C250-READ-PLAYFILE-EXIT UllO-PAGE-HEADER
B22 0-UPDATE-FILES C260-UPDATE-GAME-MASTER UllO-PAGE-HEADER-EXIT
B22 0 - U P D A T E - F I L E S - E X I T C2SO-UPDATE-GAME-MASTER-EXIT U22 0-READ-GAME-MASTER
B230-PRINT-PLANS-REPORT C270

B23 0-PRINT-PLANS-REPORT-EXIT C2 70-

B 3 0 0 - C L O S E - F I L E S C280-

B 3 0 0 - C L O S E - F I L E S - E X I T C280-

C200-NO-PLANS-MATCH C280-

C200-PRINT-NOT-FOUND C280-

C200-NO-PLANS-MATCH-EXIT C280-

UPDATE-STRANK

UPDATE-STRANK-EXIT

UPDATE-PLAYFILE

UPDATE-PLAY-HDR

UPDATE-PLAY-DTLl

UPDATE-PLAY-DTL3

UPDATE-PLAY-DTL4

Table 5 2

U220-READ-GAME-MASTER-EXIT

U300-SEARCH-TABLES-LOC

U3 00-SEARCH-TABLE3-APP-EXIT

U400-READ-TABLE

U4 00-READ-TABLE-EXIT

Z999-PGM-ABEND

Z999-PGM-ABEND-EXIT

A s imple analysis has shown that a l l the paragraphs s ta r t ing w i t h the same

a lphanumer ic code were part o f the same procedure, thus a l l o w i n g to extract 31

procedures cons i s t ing o f 2 or more paragraphs each Thei r names have been

changed w i t h a code o f 4 d i g i t depending on the previous name Only procedures

AlOO-HOUSEKEEPING and AlOO-FILE-STARTS, both s tar t ing w i t h AlOO,

make necessary to change the name in to A l O H and A l O F , respect ively The 31

new procedures are l i s t ed in the table 5 3 be low The last paragraph o f each

procedure contains on ly the statement E X I T

77

Chapter 5 a case study on a COBOL souice code

0 0 0 0 C 2 0 0 D280
A l O F C 2 1 0 E 2 5 0
A l O H C 2 2 0 F l O O
A 2 0 0 * C 2 3 0 UlOO
A 3 0 0 C 2 4 0 U l l O
B l O O C 2 5 0 U220
B 2 0 0 C 2 6 0 U300
B 2 1 0 C 2 7 0 U400

* B 2 2 0 C 2 8 0 Z 9 9 9
B 2 3 0 D240
B 3 0 0 D250

Table 5 3- The 31 pi ocedui es listed have been
exti acted ftom table 5 2 This task has been

simplified by a simple examination of the
paragi aphs ' name

The t w o procedures B220 and C230 have been exc luded f r o m the f o l l o w i n g

analys is , as they do not access any data For sake o f s i m p l i c i t y , i n order to

increase the size o f the source code as less as poss ible , the procedures i n v o k i n g

them have been chosen to p e r f o r m the f u n c t i o n a l i t y o f B2 2 0 and C2 3 0, as they

are less than the procedures i n v o k e d by the exc luded ones This i n f o r m a t i o n has

been ex t rac ted f r o m the PERFORM GRAPH o f f i g u i e 5 2 be low

AOOO

A100H A200 A300

(B200] j U220 j ^ B2t0 j ^ B230 1 B220 A100F

3100 U220 B300 Z999 C200
J j C240 j I C250 j j C260 [C270 j

C210 C220 C230 C2S0

J D280 j U300 U400 D240 D250

| F I O O j U l O O

A B E N D

Figiii e 5 2

5 3 2 D a t a A n a l y s i s

The data i so l a t i on process s t rongly depends on the pecu l i a r i t y o f the

78

C h a p t e r 5 a ca^e study on a COBOL source code

p r o g r a m m i n g language. As C O B O L is a business-oriented language, i t is

designed to process a large amount o f data. The structure o f the language is

h i g h l y s t ruc tured to accompl i sh the business data processing; consequently the

data s t ructure is h i g h l y organised i n a h ie ra rch ica l s t ructure. Th rough a static

analysis , the data have been considered at the broadest l eve l : COBOL records

(data composed o f one or more group items and/or elementary items); COBOL

variables (data w i t h e lementary s t ruc ture) , as de f ined i n the DATA D I V I S I O N .

I n the data l i s t there also has been added a table index that the C O B O L does

not de f ine i n the DATA D I V I S I O N .

Unused Ana lys is

The ''unused analysis'" examines a l l the members inc luded i n the program

but not used by i t . T h r o u g h th is analysis , the unused data i tems have been

i so la ted and exc luded f r o m the data l i s t .

The unused analysis has also shown that the DATA D I V I S I O N references

the ex terna l f i l e GAME that is never used d u r i n g the execut ion o f the p rogram.

Data Accesses

A f t e r h a v i n g i so la ted procedures and data i tems, the code has been analysed

i n order to examine the type o f data access to each procedure. This process w i l l

also allo.w d r a w i n g the b ipa r t i t e graph. I n . summary, the three types o f data

accesses are reca l led be low:

® data using (i n the procedure there are one or more statements execut ing

read ing accesses);

® data creation (i n the procedure the f i r s t statement accessing the data is a

w r i t i n g access);

® data manipulation (i n the procedure there is at least a statement w i t h a

reading access f o l l o w e d by at least a statement w i t h a w r i t i n g access).

As the data access also depends on the category o f accessed data (records,

f o r example , i n a statement w i t h writing accesses, i t should be checked to see i f

79

Chapter 5 a case study on a COBOL source code

the Statement refers the ent ire s tructure o f the record or on ly some elementary

sub- f i e lds In the f i r s t case, the operat ion is a data creation Otherwise , the

ope ra t ion is a manipulation, because the f i n a l content o f data p a r t i a l l y depends

on the p rev ious va lue .

For our purposes, then, the C O B O L data have being subdiv ided in two

categories - var iables and records - depending on how the procedures refer to

them. A data i t e m , s t ructured i n a h ierarchy o f e lementary f i e l d s , can be

considered as a record on ly i f there is at least a procedure d i r ec t ly r e fe r r ing to

one o f I t s e lementary f i e l d s A l l the other data items are variables

006600 01 PMR
006700 03 PMR-1
006800 07 PMR-1-1
006900 11 PMR-1-1-1
007000 11 PMR-1-1-2
007100 07 PMR-1-2
007200 03 PMR-2

PIC X(26)
PIC X(04)
P I C X(09)
PIC X(105)

00710066
00730067
00740068
00750069
00760070
00770071
00780072

Figure 5 3 - Example of COBOL source program defining a data item in the D A T A D I V I S I O N

As the procedures €250 accesses PMR by referring to the elementary f i l e d PMR - l , then it

can be considered a lecord

A n i m p o r t a n t p e c u l i a r i t y o f the C O B O L p r o g r a m m i n g language is that i t is

poss ib le to access external f i l e s on ly th rough the record area associated w i t h i t

i n the ENVIRONMENT D I V I S I O N o f the F I L E SECTION. The relat ions about

the record area and the cor responding external f i l e s are presented in the

f i g u r e 5 4 A l l the statements accessing the external f i l e s also access the

co r respond ing record area, that is de f ined in the WORKING-STORAGE

SECTION

F L O W N A M E E X T E R N A L F I L E N A M E R E C O R D A R E A N A M E

V I D E O - B O N D S V B T Y P E I N (C O B O L e x t e r n a l f i l e) \ I D E O - B O N D - R E C O R D

G A M E - M A S T E R G A M E M S I O (C O B O L e x t e r n a l f i l e) G ^ M E - M A S T E R - R E C O R D

P L A Y - M A S T E R P L A Y M S I O (C O B O L e x t e r n a l f i l e) P L A Y - M A S T E R - R E C O R D

S T A T I O N - R A N K I N G S T R A N K I O (C O B O L e x t e r n a l f i l e) R \ N K l - S T A T - R A N K - R E C O R D

R n N ' K 2 - S T A T - R A N K - R E C 0 R D

P P 1 O O A - R E I ' O R r P P 1 O O A O U (C O B O L e x t e r n a l t i l e) P P 1 O O A - L I N C

Figure 5 4

Thi s p e c u l i a r i t y a f fec t s the data accesses o f those statements accessing the

ex terna l f i l e s The statement <READ d a t a - f i l e - n a m e > obtains, in the

80

'̂̂ ^P^ '̂" ^ a case study on a COBOL source code

cor responding record area, the copy o f one or more records f r o m the f i l e

d a t a - f i l e - n a m e . As the content o f the f i l e is unchanged, the access to the

f i l e is a using access. The access to the record area is a creating access, because

the statement accesses the who le record. Statements such as < (R E) W R [T E

r e c o r d - n a m e > have the e f f ec t o f a copy o f the content o f r e c o r d - n a m e in

the f i l e as a new record (or o v e r w r i t i n g the previous record) . The content o f

ex terna l f i l e w i l l be changed a f te r execut ion o f the (R E) W R I T E statement, and the

content o f that r e c o r d - n a m e is unde f ined af ter the successful execut ion o f the

(R E) W R I T E statement; thus the opera t ion induces a manipulation access in the

ex terna l f i l e and in the cor responding record area. The statement < D E L E T E

d a t a - f i l e - n a m e > deletes one record f r o m the data f i l e d a t a - f i l e - n a m e ,

w i t h o u t accessing the cor responding record area. This statement thus produces a

manipulation access o n l y i n the database. I t is t r i v i a l that the statements

descr ibed be low accesses the who le record .

I n many C O B O L legacy systems, on ly the statements accessing the external

f i l e s also access the record area. I n this case (un fo r tuna t e ly i t is not possible to

generalise i t) , i t is possible to ignore the access to the record area i n these

statements. Consequent ly , the record area can be removed f r o m the data l i s t .

A n o t h e r impor t an t p e c u l i a r i t y is that concern ing statements as <START

d a t a - f i l e - n a m e > , <OPEN d a t a - f i l e - n a m e > and <CLOSE

d a t a - f . i l e - n a m e > . Ne i the r the f i l e nor the corresponding re-cord area is

a f f ec t ed by the execut ion o f these statements, thus they should be considered as

anomalous . I n our example , as usual , a l l the OPEN and CLOSE statements are

i n c l u d e d i n spare procedures. These procedures generat ing co inc iden ta l

connect ions can be treated i n a p r e l i m i n a r y phase.

I n our example , as the procedure B300 contains on ly CLOSE statements, i t

is exc luded f r o m the b ipa r t i t e graph shown i n f i g u r e 5.6. The procedure BlOO

does not contains on ly OPEN statements, but also a single statement man ipu la t ing

a data i t e m , but due to the great number o f co inc iden ta l connect ions, it is

exc luded f r o m the b ipa r t i t e graph as w e l l .

81

C h a p t e r 5 a case study on a COBOL source code

5.3.3 T h e B i p a r t i t e G r a p h

The p e r f o r m graph o f the system is shown in f i g u r e 5 5 In i t , as in the

f o l l o w i n g objects i s o l a t i o n process, the procedures not accessing any data, as

B2 2 0 and C2 3 0 , have being ignored . The l inks s tar t ing f r o m these procedures

have be ing subs t i tu ted by l i n k s f r o m the i n v o k i n g procedures A2 0 0 and B210,

r e spec t ive ly . The procedures BlOO and B300 have being ignored as w e l l ,

because they con ta in the statements OPEN and CLOSE, r espec t ive ly .

0000

A t O H A200

[B 2 0 0 j I B210 j f B230 j
A 1 OF

U220 Z999 C200 C 2 1 0 C220

U 3 0 0 y U400 • 2 4 0

a d d e d I m K s

FIDO U 1 00

A B E N D

A 3 0 0

I' C240 1 ^ C250 j p C 250 1 ^ | C270 "]

j Qo 2 8 0

Figure 5 5

The b ipa r t i t e graph is represented i n f i g u r e 5.6. The dashed edges represent

those using accesses to be removed .

82

C h a p t e r 5 a case study on a COBOL source code

A1 OH

PMR

A 1 OF

R I S
A200

A 3 0 0 I

B21 0

B230

W S T C200

C210 W SW

C 2 2

C 2 5 0

HD4 C 2 6 0

D240

D250

W S H
D280

W SV
E250

APP NDX FIDO

U 1 00 V B T Y P E

U220

U400

Z999

Figiu e 5 6

83

Chapter 5 a case study on a COBOL souice code

Computa t ion of Indexes IC() and AIC()

F r o m the b ipa r t i t e graph, the indexes I C () and A I C () can be computed In

our example , the values o f these func t i ons at the f i r s t stage are

Procedure Name I C {) A I C ()

0 0 0 0 0 0 9 0 9 0 9 1 0 0 0 0 0 0 0 0
A l O H 0 1 6 6 6 6 6 7 0 0 7 5 7 5 7 6
A l O F 0 1 3 7 9 3 1 0 0 0 4 7 0 2 1 9
A 2 0 0 0 1 6 1 2 9 0 3 - 0 0 4 0 7 2 9 9
A 3 0 0 0 3 8 6 3 6 3 6 0 1 8 4 3 4 3 4
B2 00 0 3 2 7 2 7 2 7 0 0 1 4 1 4 1 4
B2 10 0 1 5 1 5 1 5 2 0 0 6 0 6 0 6 1
B 2 3 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
C 2 0 0 0 2 8 0 7 0 1 8 0 0 7 8 6 8 1 6
C2 1 0 0 2 9 6 2 9 6 3 0 0 9 4 2 7 6 1
C 2 2 0 0 3 0 7 6 9 2 3 0 1 0 5 6 7 2 1
C 2 4 0 0 3 0 0 0 0 0 0 0 1 8 8 8 8 8 9

C 2 5 0 0 2 0 5 1 2 8 2 0 114 2 191
C2 60 0 3 9 2 1 5 6 9 0 1 9 0 1 3 6 7
02 7 0 0 2 2 9 1 6 6 7 0 0 2 7 1 4 6 5
C 2 8 0 0 2 2 8 5 7 1 4 0 0 2 6 5 5 1 2
D2 4 0 0 2 1 6 2 1 6 2 0 0 1 4 1 9 6 0
D250 0 2 9 4 1 1 7 6 0 1 8 3 0 0 6 5
D280 0 1 8 9 1 8 9 2 0 0 9 8 2 8 0 1
E 2 5 0 0 0 9 0 9 0 9 1 0 0 0 0 0 0 0 0
F l O O 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
U l O O 0 1 7 8 5 7 1 4 0 0 8 7 6 6 2 3
U l l O 0 4 4 1 1 7 6 5 0 3 5 0 2 6 7 4
U 2 2 0 0 2 7 5 0 0 0 0 0 0 7 2 9 7 9 8
U 3 0 0 0 3 5 8 4 9 0 6 0 1 5 6 4 7 0 4
U 4 0 0 0 2 7 2 7 2 7 3 0 2 7 2 7 2 7 3
Z 9 9 9 0 1 6 1 2 9 0 3 - 0 0 4 0 7 2 9 9

Table 5 4

B y e x a m i n i n g these indexes i t rather d i f f i c u l t to establ ish the procedure to

be c lus tered , because there are many procedures whose indexes are s imi l a r in

size

5 4 Data Refining Phase

F r o m the b ipa r t i t e graph o f f i g u r e 5 6, i t is possible to note the great number

o f edges l ead ing to data i tems such as WSW, D T I and WSV A data r e f i n i n g phase

can help the human expert to r e f ine the g ranu la r i ty level o f that datum that has a

large number o f accesses W i t h the support o f the knowledge o f an human

expert , the da tum is analysed to check i f a l l the i n f o r m a t i o n belongs to the same

objec t o f the a p p l i c a t i o n domain , and i f the piocedures shaie the same

84

Chapter 5 a case study on a COBOL source code

i n f o r m a t i o n about the same objec t . I f these condi t ions do not ho ld , then the

da tum can be r e f i n e d in to several more m e a n i n g f u l data i tems, each o f them

c o n t a i n i n g the i n f o r m a t i o n needed f o r a smal ler number o f procedures.

The e f fec t s o f the re f inements o f WSW, D T I and WSV by increasing each

s t ruc tured elementary s u b - f i e l d to a upper l eve l , on the indexes I C () and A I C ()

are shown i n the table 5.5 The decisions on w h i c h data i t em is more w o r t h y o f

r e f i n e m e n t should also be supported by the knowledge o f the app l i ca t ion domain .

To in t roduce such a domain knowledge is not the a im o f this presentat ion. Then

some r e f i n i n g c r i t e r i a based on the benef i t s caused on the f o l l o w i n g app l i ca t ion

o f the a l g o r i t h m w i l l be examined . I n general , the decis ion c r i t e r ia f o r the

r e f i n i n g phase w i l l depend on the vectors o f indexes A I C () before and af ter the

r e f i n e m e n t o f a data i t em.

Procedure

Name

I C O I I A I C O I C (> A I C () I C () A I C () Procedure

Name with WSW refined with D T I refined with WSV refined

0 0 0 0
A l O H

0 . 2 5 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 . 0 9 0 9 0 9 1 0 . 0 0 0 0 0 0 0 0 . 0 9 0 9 0 9 1 0 . 0 0 0 0 0 0 0 0 0 0 0
A l O H 0 . 8 3 3 3 3 3 3 . 0 . 8 . 3 3 3 3 3 3 0 . 1 6 6 6 6 6 7 . 0 . 0 7 5 7 5 7 6 0 . 1 6 6 6 6 6 7 0 . 0 7 5 7 5 7 6
A l O F 0 . 3 0 7 6 9 2 3 0 . 0 5 7 6 9 2 3 0 . 1 3 7 9 3 1 0 0-. 04 7 0 2 1 9 0 . 1 3 7 9 3 1 0 • 0 . 0 4 7 0 2 1 9
A 2 0 0 0 . 3 0 0 0 0 0 0 - 0 . 0 6 1 1 1 1 1 0 . 2 2 5 0 0 0 0 0 . 1 3 4 0 9 0 9 0 . 1 6 1 2 9 0 3 - 0 . 0 4 0 7 2 9 9
A 3 0 0 0 . 3 5 7 1 4 2 9 0 . 2 4 6 0 3 1 8 0 . 4 3 3 9 6 2 3 0 . 3 4 3 0 5 3 2 0 . 3 8 6 3 6 3 6 0 . 1 8 4 3 4 3 4
B 2 0 0 0 . 2 5 7 1 4 2 9 0 . 0 3 4 9 2 0 7 0 . 3 7 5 0 0 0 0 0 . 1 7 2 9 7 9 8 0 . 3 0 9 0 9 0 9 0 . 1 0 7 0 7 0 7
B 2 1 0 0 . 2 3 0 7 6 9 2 0 . 2 3 0 7 6 9 2 0 . 1 5 1 5 1 5 2 0 . 0 6 0 6 0 6 1 0 . 1 5 1 5 1 5 2 0 . 0 6 0 6 0 6 1
B 2 3 0 0 . 1 1 1 1 1 1 1 0 . 0 0 0 0 0 0 0 0 . 1 6 6 6 6 6 7 0 . 1 6 6 6 6 6 7 0 . 1 1 1 1 1 1 1 0 . 0 0 0 0 0 0 0
C 2 0 0 0 . 2 7 9 0 6 9 8 0 . 1 6 7 9 5 8 7 0 . 2 2 5 8 0 6 5 0 . 1 3 4 8 9 7 4 0 . 2 8 0 7 0 1 8 0 . 0 7 8 6 8 1 6
C 2 1 0 0 . 2 0 5 8 8 2 4 0 . 0 9 4 7 7 1 3 0 . 2 4 0 7 4 0 7 0 . 1 4 9 8 3 1 6 0 . 2 9 6 2 9 6 3 0 . 0 9 4 2 7 6 1
C 2 2 0 0 . 2 5 0 0 0 0 0 0 . 1 3 8 8 8 8 9 0 . 2 3 0 7 6 9 2 0 . 1 3 9 8 6 0 1 0 . 3 0 7 6 9 2 3 0 . 1 0 5 6 7 2 1
C2 4 0 0 . 3 0 0 0 0 0 0 0 . 1 8 8 8 8 8 9 0 . 3 0 0 0 0 0 0 0 . 1 8 8 8 8 8 9 0 . 2 5 0 0 0 0 0 0 . 2 5 0 0 0 0 0

• C 2 5 0 .0 . 3 3-3 3 3 3 3 0 . 0 0 - 0 0 0 0 0 0 . 2 0 5 1 2 8 2 Q . 11 4 2 1 9 1 < 0.. 2 0512-82 • - 0 . 1 1 4 2 1 9 1 '
• C 2 6 0 •0 .22 -58065 0 . 1 1 4 6 9 5 4 0 . 3 9 2 1 5 6 9 0 . 1 9 0 1 3 6 7 0 . 372 54 90 0 . 2 8 1 6 3 9 9

C 2 7 0 0 . 2 5 0 0 0 0 0 0 . 1 3 8 8 8 8 9 0 . 2 2 9 1 6 6 7 0 . 027 14 65 0 . 2 0 8 3 3 3 3 0 . 1 1 7 4 2 4 2
C2 8 0 0 . 4 1 6 6 6 6 7 - 0 . 0 2 7 7 7 7 7 0 . 2 2 8 5 7 1 4 0 . 0 2 6 5 5 1 2 0 . 2 0 0 0 0 0 0 0 . 1 0 9 0 9 0 9
D2 4 0 0 . 2 1 7 3 9 1 3 0 . 1 0 6 2 8 0 2 0 . 1 3 5 1 3 5 1 0 . 0 4 4 2 2 6 0 0 . 2 1 6 2 1 6 2 0 . 0 1 4 1 9 6 0
D250 0 . 2 9 4 1 1 7 6 0 . 1 8 3 0 0 6 5 0 . 2 9 4 1 1 7 6 0 . 1 8 3 0 0 6 5 0 . 2 3 5 2 9 4 1 0 . 2 3 5 2 9 4 1
D280 0 . 2 9 4 1 1 7 6 0 . 2 9 4 1 1 7 6 0 . 1 8 9 1 8 9 2 0 . 0 9 8 2 8 0 1 0 . 1 8 9 1 8 9 2 0 . 0 9 8 2 8 0 1
E 2 5 0 0 . 3 3 3 3 3 3 3 0 . 0 0 0 0 0 0 0 0 . 0 9 0 9 0 9 1 0 . 0 0 0 0 0 0 0 0 . 0 9 0 9 0 9 1 0 . 0 0 0 0 0 0 0
F l O O 0 . 1 1 1 1 1 1 1 0 . 0 0 0 0 0 0 0 0 . 1 1 1 1 1 1 1 0 . 0 0 0 0 0 0 0 0 . 2 0 0 0 0 0 0 0 . 2 0 0 0 0 0 0
U l O O 0 . 4 0 0 0 0 0 0 0 . 4 0 0 0 0 0 0 0 . 1 7 8 5 7 1 4 0 . 0 8 7 6 6 2 3 0 . 1 7 8 5 7 1 4 0 . 0 8 7 6 6 2 3
U l l O - 0 . 5 6 2 5 0 0 0 0 . 5 6 2 5 0 0 0 0 . 4 4 1 1 7 6 5 0 . 3 5 0 2 6 7 4 0 . 4 4 1 1 7 6 5 0 . 3 5 0 2 67 4
U 2 2 0 0 . 2 7 2 7 2 7 3 - 0 . 0 8 8 3 8 3 8 0 . 2 7 5 0 0 0 0 0 . 0 7 2 9 7 9 8 0 . 2 5 0 0 0 0 0 0 . 1 5 9 0 9 0 9
U 3 0 0 0 . 2 4 2 4 2 4 2 0 . 1 3 1 3 1 3 1 0 . 3 0 1 8 8 6 8 0 . 2 1 0 9 7 7 7 0 . 3 5 8 4 9 0 6 0 . 1 5 6 4 7 0 4
U400 0 . 3 3 3 3 3 3 3 0 . 3 3 3 3 3 3 3 0 . 272 72 7 3 0 . 2 7 2 7 2 7 3 0 . 2 7 2 7 2 7 3 0 . 2 7 2 7 2 7 3
Z 9 9 9 0 . 3 3 3 3 3 3 3 0 . 2 2 2 2 2 2 2 0 . 1 6 1 2 9 0 3 - 0 . 0 4 0 7 2 9 9 0 . 1 2 9 0 3 2 3 0 . 038 1232

Table 5.5

F r o m the b ipa r t i t e graph shown in f i g u r e 5.6 i t is possible to note that the

system w i t h WSW r e f i n e d is more balanced than .it was before the ref inement . .

85

Chapter 5 a case study on a COBOL source code

I n our case, by r e f i n i n g WSW, we obta in the IC() vector shown in the 2'"*
c o l u m n o f table 5 5 and A I C () vector shown in the 3"* c o l u m n o f table 5 5 The
vectors o f indexes I C () and A I C () w i t h the re f inement o f the data i t em D T I aie
shown i n the 4"' and i n the 5"' c o l u m n o f table 5 5, respec t ive ly F i n a l l y , in
the 6"' and i n the 7"' c o l u m n , the vectors o f indexes re la t ive to the re f inement o f
D T I are shown N o t e that a f te r the re f inement o f WSW, the index A I C(AIOH) is
passed f r o m + 0 . 0 7 3 0 4 3 5 to +0 8 3 3 3 3 3 3 , then i so l a t i ng A l O H f o r the
c lu s t e r ing

A f t e r r e f i n i n g and c lus te r ing , the system must be reanalysed and the

b ipa r t i t e graph red rawn The m o d i f i e d b ipar t i t e graph is shown i n f i g u r e 5 7

86

Chapter 5 a case study on a COBOL source code

Figure 5. 7

87

Chapter 5 a case study on a COBOL source code

N o t e that the r e f i nemen t o f a record (a data whose elementary f i e ld s are

accessed d i r e c t l y by the statements i n the code), can turn i t in to a var iable Then

the statements r e f e r r i n g i t have to be rev iewed in order to decide the access type

5 4 1 D a t a D u p l i c a t i o n

The a im o f th is phase is to break o f f the " ' logical l i n k s " that the common

access to a g l o b a l data creates between the procedures accessing them I n many

cases, c o m m o n accessed data can be treated as " ' local" re la t ive to d i f f e r e n t groups

o f procedures When the same data is loca l to d i f f e r e n t s ingle procedures (f o r

example the var iab le / usua l ly used as counter i n the loops) a t r i v i a l i n t e rven t ion

is to " s p l i t " I t by renaming w i t h a d i f f e r e n t name in any procedure accessing i t

The m a i n idea o f the data d u p l i c a t i o n phase is to isolate groups o f procedures i n

w h i c h a data can be considered as loca l and then dupl ica te this data i tem into

many i tems by renaming i t A l l those groups are characterised by having a

procedure c rea t ing the data and, the value o f the data i n the other procedures o f

the group depends by the computa t ion o f the procedures o f the same group

already executed and accessing the data More f o r m a l l } , f o r any data A , the aim

is to i d e n t i f y groups o f procedures w i t h the f o l l o w i n g features

o there is one and on ly one procedure l i n k i n g an information node creat ing A

(the information node and the procedure node w i l l be cal led Ig and PQ in the

f o l l o w i n g examples) ;

<5 i n each procedures P,, o f the group, the value o f A o n l y depends on IQ and on

other procedures o f the group w h i c h are i n the path f r o m IQ to P^,

o i f t w o procedures and P,̂ be long to the same group, then a l l the procedures

in the path o f the temporal graph between P,, and P,̂ be long to that group

I n f o r m a l l y , the technique def ines when the value o f a f i x e d data i tem A in a

procedure der ives f r o m the execut ion o f a p o r t i o n o f code o f another procedure

Besides, i t is d e f i n e d when a procedure P^ directly derives data A by IQ i f in any

t raversa l o f the temporal graph between Ig and the f i r s t information node l , ^ , o f P,̂

(i n c l u s i v e) , the node Ig is the on ly one creat ing A These d e f i n i t i o n s , have many

88

Chapter 5 a case study on a COBOL source code

similarit ies wi th the data dependence of Ottenstein et al. [FOW84] [0 0 8 3] , and

w i l l be used in order to ident ify the procedures P^. in which the value of A depend

on lo-

In order to proceed to the data duplication phase, all of the groups of

procedures relative to data must be ident if ied. For a data item A , a group of

procedures is composed by the procedure PQ creating it and all the procedures P,̂

directly and exclusively deriving A f rom IQ identif ied through the definitions

above, and all the procedures not accessing A in each path leading f rom Ig to any

procedure P,, o f the group.

The aim of this paper is just to explain how the augmented technique can be

"adapted" to a programming language as COBOL. As there are no special

arrangements for this phase regarding the peculiarity of COBOL, the attention

w i l l be concentrated on the drawing of the " t e m p o r a l p e r f o r m g r a p h "

(TPG), combining the features of control f l o w graph and of the P E R F O R M

G R A P H .

A simple example on the creation of the TPG relative to the main procedure

of our example is given in figure 5.8.///. The corresponding code and control

f l o w graph are shown in figure 5.8./ and 5.8.//, respectively. Due to the U N T I L

statement, the procedure A2 0 0 can be performed zero or more times. Note that

the analysis for drawing the TPG is s t i l l a static analysis.

The TPG is buil t through a data analysis in which every statement of the

code is examined in order to check how every procedure accesses the data and the

sequence of the P E R F O R M statements affecting the data.

In order to obtain a representation which is easy to handle, instead of

drawing an unique TPG representing all the data, several TPGs can be drawn,

each of them relative to an unique data item. Since the data duplication phase

examines the data f l ow and the temporal sequence of the PERFORM statements

only relatively to a data item per time.

A simple example of TPG relative to a small portion of code is represented

in f igure 5 9. In i t , all the references of the procedures to the data are shown

89

Chapter 5 a case study on a COBOL source code

054300
054 4 00
054500
054 600
054700
054800
054 900
055000
055100
055200
055300
0554 00
055500

0000

PERFORM

PERFORM

PERFORM

AlOH
A l OH-

THRU
EXIT ,

A200 THRU
A200-EXIT

UNTIL GMS ,

A300
A300-

THRU
EXIT .

STOP RUN.

AIOH
THRU

flIOH-EXIT
E R F O R

TRUE

020,01
THRU

ftiOO-EXlT
E R F O R

E R F O R

0591054 3
054 4
0592054 5
0593054 6
0547
05950548
0596054 9
05970550
05980551
05990552
06000553
06010554
06020555

THRU
flSOO.-EJtlTl

AOOO

A10H A300

C A200 U(GMS)

Figure 5.8 - The program representation in case of a UNTIL statement. These statements
are typical of the COBOL programming style. The. "*" in figure S.S.iii represents the fact

that A200 can be repeated more than one time.

AOOO

T A300 U{WSW.06)
C I D T I I A200

C(WSW.201 !

U(WSW.20)
'ciwsw.orA A 1 0 H
M W S W . 0 8 B200

C(GMS-.02)] U(WSW.21)
C (W S W . 0 3) C (T T l . O I) B210
M(WSW.04)

j [U{0T1.03)]
C f p p n C (W S W . 1 9) B220 U220 I. C (G M S . 0 2) C(HD1.02) W(PPIODAU)
U (T T l)

B 2 3 0 C D T I

C (W S W . 1 9) C200

1^1
C (W S W . 3 1)

B100 U220 B300 Z999 C210 C220 C230
C250 I C260

J I

C240 C270

. U(WSM.Oi) \
/ U(WSM.02) \

U (W $ M . n)
U(WSW. t2)
U(WSM.13)
C (T T I . O l)

U { W S W . 1 l)
U(WSW.12)
U(WSW.13)
U(W5W.14)
U(WSW.15)
U[WSW.16)
U<WSW.17)
u (w s w . i a)
C(TT1.02)

C(PP1)
W(PPIOOAU)

U{TT1)
I C (D T 1) /

Figure 5.9 - The TPG shown in figure 5.9 is not relative to the initial stage of the
technique. It is possible to note the references to the refined data. For sake of clearness,
the procedure B2 2 0 and C 2 3 0 are still represented in the TPG. Remember that they were

excluded from the bipartite graph, as they do not access any data.

A common situation met during the duplication phases of this system is

shown in figure 5.10a. Procedure PQ contains more than one information node

90

Chapter 5 a case study on a COBOL source code

creating data item A , then it belongs to more than one group. In this case, the

procedure w i l l contain references to all the items m which A w i l l be duplicated

For example, in figure 5.10a the data item A w i l l be duplicated into two items A,

and A 2 , as shown in figure 5.10b, because of the ident if icat ion of two different

groups relative to A . The portion of code relative to IQI and IQJ w i l l contain

references to A, and A j respectively. The procedure P,, w i l l belong to the two

groups.

Y Po

M(A) (P i

I01
G(Ai)

M(Ai) P1

P2 ^

I02

C(A2)

C P4

P3 U(A1)
U(A2)

Figure 5 10 - The procedure Pg has many in format ion nodes creating A In this case, the
procedures and directly derive A from /q, and / j , , , respectively Procedure P^ derives

A from /oi, but this derivation is not direct With the further assumption that there are no
other procedures invoking the procedures in figure 5 10a, the derivation is also exclusive

In this situation, the procedure will contain the different items in which the data is
duplicated, i.e. the several portions of source code corresponding to the information nodes

/(), of Pg contain different variables derived by the duplication of A

Through a static analysis of the code such groups of procedures are

ident i f ied , and a data duplication phase "splits" the data into many items, one for

each group. This process is carried out for each data item.

A f t e r this phase, the links starting f rom these procedures toward the

commonly accessed data form a group of procedures whose computation depends

on a common data item. In this case, all the procedures of that group can be

considered as methods of the same object whose state is also stored in the

common accessed data.

91

Chapter

Future Works

The data analysis sketched here is also aimed at supporting the extraction of

knowledge f rom the legacy software at a high abstraction level, thus reducing the

e f for t o f domain engineering. In order to support further the candidature phase

o f higher level modules, an accurate examination of the available documentation

and the application of syntactic knowledge of the programming language to the

source legacy code can enrich the knowledge about the legacy information system

wi th in that application domain.

The process produces a repository of reusable modules wi th object like

features directly relevant to the application domain. Each module should be

documented wi th specific information that can further support the process of

designing an object oriented system in that application domain.

A parallel top-down process of forward engineering could be defined in

order to support further the bottom-up reengineering process described here. I f

the aim of this reengineering process is to reverse engineer the software system,

it can be combined wi th a forward engineering process aimed to significantly

increase both the understanding o f the legacy code and the application domain

knowledge, both of which are needed to extract object oriented features from the

existing code.

A top-down forward engineering approach targeted to build f rom scratch

reusable modules to be reused in the development of a new software system

w i t h i n the application domain needs a greater amount of time than a combined

approach in order to obtain the f i rs t reusable module. This is due to the longer

92

Chapter 6 future works

time needed for the domain experts to produce an object oriented design for that

application domain. However, in case of a not very complex, or of a well known

application domain, the top-down approach alone might be preferred.

A combined approach may identify software components in less time

because i t gains of the use of knowledge extracted f rom the legacy information

system combined wi th the knowledge of the experts of that application domain.

6.1 Extension of Data Duplication Phase

In order to ident i fy high quality objects-like modules, the addition of a

forward engineering process can help to group together procedures that cannot be

grouped solely on the basis of the data f l o w analysis. For instance, figure 6.1

shows the case o f two procedures creating the same data. Let us suppose that

both of them call a common procedure using that data (as for example in the case

of a common subroutine), the data duplication phase cannot group them into a

single group because of the presence of two information nodes creating the same

data.

Po

Ph

C(A)

Pk
C(A)

U(A) .(Pz

Figure 6.1 - Two procedures creating the same data but logically related. Further
knowledge from the application domain can help to group more meaningful candidate

modules, thus reducing the e f f o r t of the concept ass ignment phase.

Further knowledge f rom the application domain s impl i fy ing the

93

Chapter 6 future works

understanding of the data meaning can enrich the algorithm here presented, thus
al lowing the grouping of more meaningful candidate modules. This reduce the
ef for t o f the subsequent concept assignment phase.

6 .2 Data Normalisation

A further phase can be formalised in order to break down the undesired links

between two procedures accessing the same data. In the case shown in figure 6.2,

both the procedures P̂ , and PQ access the data item A. In order to remove the link

between P,, and A f rom the bipartite graph, it is possible to pass A as parameter in

al l the invoking statements of the procedures between P,. and Pg. ' This approach

gives a l l the intermediate procedures access to A , but in the bipartite graph there

are no links between them and the data item A . This solution has as negative

aspect in that it increases list o f parameters and, for the feature of the COBOL,

the increase of the L I N K A G E S E C T I O N o f all the intermediate procedures.

C(A)
Po

P i

U(A)
Pk

Figure 6 2

I f i t is supported by the knowledge extracted f rom the application domain,

this approach can help to isolate more meaningful groups of procedures on the

basis of the common accesses to the same data A , thus allowing the isolation of

modules wi th object oriented features.

94

hapter 7

Conclus ions

Object technology is undoubtedly the most promising way of delivering

systems based on reusable modules that can be adapted and changed without

having to re-examine all the existing code minutely [G94] Migrating towards an

object oriented pla t form is the best solution to protect the investments aimed to

keep an operational information system The target system is easier to

understand and to modi fy and the behaviour of the agents simulating the

real-world entity is easier to modify making the information system much more

adaptable to the rapid nature of the commercial change, and simpler to migrate

than i t was before.

7.1 Evaluation of tiie Criteria for Success

The goals proposed at the beginning of the work have been developed

through the outl ining of the research and further defined at the stage of defining

the method By fo l l owing the sequence of the stages in which the work aimed to

formalise the method here presented, it is possible to evaluate the criteria for

success proposed in the f i rs t chapter of this thesis

The temporary sequence o f these stages is basically respected through the

schema o f this thesis.

7 11 Description and evaluation of existing methods

The overview presented in the second chapter of this thesis has been

95

Chapter 7 conclusions

important because it depicts the state of the art about the reverse engineering and

reengineering techniques targeted at intervention producing evolution of the

code. A global overview of these language-independent techniques and their

applications to case studies has been important in the process of a better

understanding of all the problems related to the evolution of the legacy

information systems, as well as in the process of formalisation of the definit ion

of the technique here presented. Through that presentation, great attention has

been given to those aspects directly suggesting some details in the formalisation

o f our method. Particularly, Sneed's work and the reverse engineering

techniques, presented in section 2.2, directly dealing wi th COBOL source code

have been important in the later stage of this work, as it was clear f rom some

estimates about the large amount of COBOL legacy information systems the IT

people are dealing wi th . I t suggested checking the method to extract reusable

modules f rom COBOL source code.

Section 2.3 has presented approaches dealing with the legacy information

system problem while populating a repository of "spare parts" to be reused in the

development of a new information system. By reading these works, the

importance of the extraction of reusable components became clearer. In fact, as

the funct ional i ty of "small" object-like modules is easy to understand and to

handle, the isolation of object-like modules wi th an easier data structure enlarges

the l ikel ihood of reusing them rather than developing them from scratch as well

as in each evolution process of the existing legacy information systems wi thin the

application domain. This has allowed us to promote reuse within a def ini t ion of

a method targeted to help a process of evolution of existing legacy information

systems.

7 1.2 Formalisation of a language-independent method

The approaches to extract objects-like modules based on the graph theory

presented in section 2.5 have shown that graph theory may help to define an

ef f ic ient program representation by adding more information about the kind of

data access.

96

Chapter 7 conclusions

In fact, the main idea of the object isolation method presented here is to
extract information f rom the data flow, to cluster all the piocedures on the base
of their data accesses In order to distinguish several types of accesses and to
permit a better understanding of the functionali ty of the candidate objects, graph
theory allows the use of a program representation s impl i fy ing the process of
understanding "how" a procedure accesses the data

Particularly, great importance has been given to the data structures in each

iterative step of the algorithm presented here This importance came from the

conviction that i t would be useful to the maintenance programmer to understand

the data and the funct ion relationship and objects the original developer had in

mind. Clustering and reengineering operations on the components belonging to a

candidate object are necessary to transform them into an actual reusable object

Furthermore, successful maintenance requires a precise knowledge of the data

items i n the system, the way these items are created and modified and their

relationships

7 1.3 Application of the method to a case study

The aim of the application of the technique to a real example is not to give

an exhaustive explanation about the method above, using a real example, but to

show how to adapt the method to the peculiarity of a given programming

language such as COBOL, while respecting in the meantime the main ideas of the

technique. By way of a case study, a simple COBOL program has being

analysed, and the technique being used on i t A l l the necessary arrangements to

adapt I t to the peculiarity of COBOL are underlined.

Unfortunately, an information system that is modern today, w i l l be legacy

tomorrow It is impossible to conceive information systems that do not turn

legacy ". we can use the best methods and the most modern tools in order lo

reduce their resistance to the necessary changes, and we can build them in a

97

Chapter 7 conclusions

modular way such that make easier each change but we can not foretell the
future requirements of a business or the progress in the technology these two
things can challenge us as we can not foretell, thus making gt eater the future
resistance of our legacy information system to the changing" [BS95]

98

REFERENCES

[A88] L . J. A R T H U S , ''Software Evolution- the Software Maintenance

Challenge'\ John Wiley and Sons, New York, 1988.

[A92] G . A L K H A T I B , ''The Maintenance Problem of Application Software

An Empirical Analysis", Journal of Software Maintenance Research

and Practices, 4(2), pp. 83-104, 1992.

[A94] R. S. A R N O L D , "Software Reengineering- A Quick History'-',

Communication of the A C M , 37(5), pp. 13-14, 1994.

[A D A 8 3] -, "Reference Manual for the ADA Programming Language", US

Department of Defence, M I L STD1815A, 1983.

[AF92] R. S. A R N O L D , W . B . F R A K E S , "Software Reuse and Reengineering",

CASE Trends, 4(2), pp. 44-48, 1992.

[ANSI83] -, "IEEE Standard Glossary of Software Engineering Terminology",

A N S I / IEEE, Technical Report 729, 1983.

[AP82] R. S. A R N O L D , D . A. Parker, "The Dimensions of Healthy

Maintenance", Proc. of the 6"' International Conference on Software

Engineering, pp. 10-27, 1982.

[AP95] J. D . A H R E N S , N . S. P R Y W E S , "Transition to a Legacy- and

Reuse-Based Software Life Cycle", Computer, 28(10), pp. 27-36,

1995.

[ASU86] A. V. A H O , R . S E T H I , J. D. U L L M A N N , "Compiler. Principles,

Techniques and Tools", Reading, M A : Addison Wesley, 1986

[B81] B . W . B O E H M , "Software Engineering Economics", Prentice Hail ,

Inc., New Jersey, 1981.

99

references

[B85] E. B U S H , ""Automatic Restructuring of COBOL", Conference on

Software Maintenance, IEEE Comp. Soc. Press, 1985.

[B87A] F . P. B O E H M , "-Improving Software Productivity", IEEE Computer, 4,

pp. 43-57, 1987.

[B 8 7 3] G. B O O C H , '"Software Components with ADA", Benjamin Cummings,

Menlo Park, CA, 1987.

[B87c] F. P. B R O O K S , "NO Silver Bullets - Essence and Accidents of

Software Engineering", IEEE Computer, 20(4), pp. 10-20, 1987.

[B89] T. J. B i G G E R S T A F F , "Design Recovery for Maintenance and Reuse",

IEEE Computer, 22(7), pp. 36-49, 1989.

[B90] V . R. B A S I L I , "Viewing Maintenance as Reuse-Oriented Software

Development", IEEE Computer, 23(1), pp. 19-25, 1990.

[B91c] K. B E N N E T T , "The Software Maintenance of Large Software Systems-

Management, Methods and Tools", Elsevier Science Publisher,

London, 1991.

[B91A] B . I . B L U M , "The Software Process for Medical Application", T.

Timmers and B. I . Blum editors. Software Engineering in Medical

Informatic, pp. 3-25, Elsevier Science Publisher B.V. , 1991.

•[B91B] P. B R O W N , "Integrated Hypertext and Program Understanding

Tools", I B M System Journal, 30(3), pp. 363-392, 1991.

[B93A] L . B E R N S T E I N , "Tidbits", A C M SIGSOFT - Software Engineering

Notes, IEEE Comp. Soc. Press, 18(3), pp. A-55, 1993.

[B93B] J. B O W E N , "From Programs to Object Code and back again using

Logic Programming: Compilation and Decompilation", Journal of

Software Maintenance: Research and Practice, 5(4), pp. 205-234,

1993.

[BBKMN94] R. B R A N D , S. B U R S O N , T . K I T Z M I L L E R , L . M A R K O S I A N , P. N E W C O M B ,

"Using an Enabling Technology to Reengineer Legacy Systems",

Communication of the A C M , 37(5), pp. 58-70, 1994.

100

references

[B B L 9 3 A] J. B O W E N , P. B R E U E R , K . L A N O , "Formal Specifications in Software
Maintenance: From code to Z++ and back again", Information and
Software Technology, 35(1 1/12), pp. 679-690, 1993.

[B B L 9 3 B] J B o w E N , P. B R E U E R , K . L A N O , "A Compendium of Formal

Techniques for Software Maintenance", lEEE/BCS Software

Engineering Journal, 8(5), pp. 253-262, 1993.

[BCD92] P. B E N E D U S I , A. C I M I T I L E , U D E C A R L I N I , "Reverse Engineering

Process, Design Recovery and Structure Charts", Journal of System

and Software, 19, pp. 225-245, 1992.

[BH85] W. E. B E R E G I , G . F . F O F F N A G L E , "Automating the Software

Development Process", I B M System Journal, 24(2), pp. 102-120,

1985.

[BHL93] P. T. B R E U E R , H . H A U G H T O N , K . L A N O , "Reverse Engineering

COBOL via formal methods". Journal of Software Maintenance.

Research and Practice, 5(1), pp. 13-35, 1993.

[BL91] P. T. B R E U E R , K . L A N O , "Creating Specification from Code - Reverse

Engineering Techniques", in Journal of Software Maintenance, 3(3),

pp. 145-162, 1991.

[BM97] E. B U R D , M . M U N R O , "Enriching Program Comprehension for

Software Reuse.", International Workshop on Program

Comprehension, IEEE Comp. Soc. Press, pp. 130-138, 1997.

[BMW94] T. J. B l G G E R S T A F F , B. G . M i T B A N D E R , D. W E B S T E R , "Program

Understanding and the Concept Assignment Problem",

Communication of the A C M , 37(5), pp. 72-83, 1994.

[B M W 9 6 A] E . B U R D , M . M U N R O , C . W E Z E M A N , "Analysing Large COBOL

Programs, the Extraction of Reusable Modules", International

Conference on Software Maintenance, IEEE Comp. Soc. Press,

pp. 238-243, 1996.

101

I efei ences

[B M W 9 6 B] E B U R D , M M U N R O , C W E Z E M A N . "Exti acting Reusable Modules
from Legacy Code Considering the Issues of Module Or anularity",
Working Conference on Reverse Engineering, IEEE Comp Soc
Press, pp 189-196, 1996

[BP89] T J B i G G E R S T A F F , A J P E R L I S , "Software Reusability Concepts

and Models", A C M Press, Addison-Wesley, New York, 1989

[BS95] M L B R O D I E , M S T O N E B R A K E R , "Migrating Legacy System",

Morgan Kaufmann Publishers, 1995

[C89A] F W C A L L I S S , "Inter-Module Code Analysis for Softwaie

Maintenance", Ph D Thesis, University of Durham, School of

Engineering and Applied Sciences, Computer Science, 1989

[C89B] T A Co^m, "Program Understanding Challenge foi the 90's", IBM

System Journal, 28(2), pp 294-306, 1989

[C92] T C A P E R S - J O N E S , "Geriatric Care for Ageing Softwme", Knowledge

Based 1, Software Productivity Research Inc , Burl ington, 1992

[CC90] E J C H I K O F S K Y , J H C R O S S Jr , "Reverse Engineei ing and Design

Recovery a Taxonomy", IEEE Software, 7(1), pp 13-17, 1990

[CC92] G C A N F O R A , A C I M I T I L E , "Reverse Engineering and Intermodular

Data Flow A Theoretical Approach", Journal of Software

Maintenance Research and Practice, 4(1), pp 37-59,1992

[CCD91] G C A N F O R A , A C I M I T I L E , U D E C A R L I N I , "A Logic Based Approach

to Reverse Engineering Tools Production", Proceedings of

Conference on Software Maintenance, IEEE Comp Soc Press,

pp 83-91, 1991

[CCM94] G C A N F O R A , A C I M I T I L E , M M U N R O , "RE- Reverse Engineering

and Reuse Re-engineering", Journal o f Software Maintenance, 6(5),

pp 53-72, 1994

102

/ eferences

[CCM96] G C A N F O R A , A C I M I T I L E , M M U N R O , "An Algorithm for Identifying
Object in Code", Software Practice and Experience, 26(1), pp 25-48,
1996

[C C T A] -, "SSADM Version 4 Manuals", NCC-Blackwel l , Manchester, 1990

[CCR90] T N C O M M E R Jr , J R C O M E R , D 1 V^OX^IKY.,"Developing Reusable

Software for Military System - Why it is needed and why it isn't

working", A C M SIGSOFT Software Engineers Notes, 15(3),

pp 33-38, 1990

[CCV95] G C A N F O R A , A C I M I T I L E , G V I S A G G I O , "Assessing Modular isation

and Code Scavenging Techniques", Journal of Software Maintenance,

IEEE Comp Soc Press, 26(1), pp 25-48, 1996

[C D 9 1 A] A C I M I T I L E , U D E C A R L I N I , "Reverse Engineering-Algorithms for

Program Graph Production" Software Piactice and Expeuence,

21(5), pp 519-537, 1991

[C D 9 1 B] A C I M I T I L E , U D E C A R L I N I , "Reverse Engineering Algorithms for

Programs Graph Production", Software - Practice and Experience,

21(5), pp 519-537, 1991

[CD95] A C I M I T I L E , U D E C A R L I N I , "Metodologie, Tecmche e Strumenti di

Reverse Engineering", Franco Angeli editore 1995

[CDDF94] G C A N F O R A , A D E L U C I A , G A D I L U C C A , A R F A S O L I N O ,

"Recovering the Architectural Design for Software Compr ehension",

Proceedings of the 3"' International Workshop on Program

Comprehension, IEEE Comp Soc Press, pp 30-38, 1994

[CDDF97] A C I M I T I L E , A D E L U C I A , G A D I L U C C A , A R F A S O L I N O ,

"Identifying Objects in Legacy Systerrrs", International Workshop on

Program Comprehension, IEEE Comp Soc Press, pp 138-147, 1997

103

/ efei ences

[CDM90] A . C I M I T I L E , G . A . Dl L U C C A , P. M A R E S C A , "Maintenance and
Intermodular Dependencies in Pascal Environment", Proceedings of
the International Conference on Software Maintenance, IEEE Comp.
Soc. Press, pp. 166-173, 1990.

[CFM93] A . C I M I T I L E , A . R. F A S O L I N O , P M A R E S C A . "Reuse-Reengineenng

and Validation via Concept Assignment", Proceedings of the

International Conference on Software Maintenance, Montreal,

Quebec, Canada, IEEE Comp. Soc. Press, pp. 216-225, 1993.

[CH91] R. O. C H E S T E R , J. W. H O O P E R , "Software Reuse- Guidelines and

Methods", Plenum Press, New York, 1991.

[CMR88] B . J. C O R N E L I U S , M . M U N R O , D . J. R O B S O N , "An Approach to

Software Maintenance Education", Software Engineering Journal,

4(4), pp. 233-240, 1988.

[CMW89] F. C A L L I S , M . M U N R O , M . W A R D , "The Maintainer's Assistant",

Proceedings of the International Conference on Software

Maintenance, 1989.

[CO90] E. J. C H I K O F S K Y , W . M . O S B O R N E , "Fitting Pieces to the

Maintenance Puzzle", IEEE Software, 7(1), pp. 11-12, 1990

[CV95] A . C I M I T I L E , G . V I S A G G I O , "Software Salvaging and the Call

Dominance Tree", The Journal of Systems and Software, 2(1),

pp. 25-48, 1995.

[CWW92] S. C E R I , G . W E I D E R H O L D , P. W E G N E R , "Toward Megaprogrammmg",

Comm ACM, 35(1 1), pp. 89-99, 1992.

[CY79] L . L . C O N S T A N T I N E , E. Y O U R D O N , "Structured Design Fundamentals

of a Discipline of Computer Program and System Design", Prentice

Hal l , Englewood C l i f f s , New York, 1979.

[D95] A . D E L U C I A , "Identifying Reusable Functions in Code Using

Specification Driven Technique", M . Sc. Thesis, University of

Durham, 1995.

104

references

[DGN89] W DIETRICH, F. GRACER, L . N A C K M A N , '-'-Saving a Legacy with
Objects", in OOPSLA'90 ACM Conference on Object oriented
Programming System, Languages and Application (Meyrowitz N . ,
editor), reading, M A : Addison Wesley, pp. 77-88, 1989.

[DK93] M . F. D U N N , J. C. KNIGHT, ''Automating the Detection of Reusable

Parts in Existing Software", Conference on Software Maintenance,

Baltimore, Maryland, IEEE Comp. Soc Press, pp. 38 1-390, 1993.

[DH72] O. -J. D A H L , C. A. R. HOARE, ''Hierarchical Program Structures",

Structured Programming, Academic Press Inc., London, 1972.

[DH89] L . D u s i N K , P. H A L L , "Introduction to Re-use", Proceedings of the

Software Re-use Workshop, pp. 1-19, 1989.

[DT88] S. DANFORTH, C. TOMLINSON, "Type Theories and Object-Oriented

Programming", A C M Computing Survey, 20(1), pp. 29-72, 1988

[E76] J. L . ELSHOFF, "An Analysis on Some Commercial PL/1 Programs",

IEEE Transaction on Software Engineering, SE-2(2), pp. 113-120,

1976.

[EKN91] A. ENGBERTS, W . KOZACZYNSKI, J. Q. N I N G , "Concept

Recognition-Base Program Transformation", Conference on Software

Maintenance, pp. 73-92, 1991.

[EM93] ' H . M . EDWARDS, M . MUNRO, "RECAST. Reverse Engineering from

COBOL to SSADM Specification", Proceedings 15"' International

Conference on Software Engineering, IEEE Comp. Soc. Press,

pp. 499-508, 1993.

[FJM89] J. R. FOSTER, A. E. P. JOLLY, M . T . NORRIS, "An Overview of

Software Maintenance", Bri t ish Telecomm Technical Journal, 7(4),

pp. 37-46, 1989.

[FK87] N . E. FENTON, A. A. KAPOSI, "Metrics and Software Structures",

Information and Software Technology, 29(6), pp. 301-320, 1987

105

refei ences

[FW86] N . E. FENTON, W . WITTHY, ''Axiomatic Approach to Software
Metrication through Program Decomposition", The Computer
Journal, 29(4), pp. 330-339, 1986.

[F076A] L . D . FOSDICK, L . J. OSTERWEIL, ''Data Flow Analysis in Software

Reliability", Computer Survey, 8(3), pp. 305-330, 1976.

[F076B] L . D . FOSDICK, L . J OSTERWEIL, "DAVE - A Validation Error

Detection and Documentation System for FORTRAN Programs'',

Software: Practice and Experience, 6, pp. 473-486, 1976.

[FOW84] J. FERRANTE, K . J. OTTENSTEIN, J. D . WARREN, "The Program

Dependence Graph and its Use in Optimisation", A C M Trans.

Programming Languages and Systems, 9(3), pp. 3 19-349, 1987.

[G94] I . M . GRAHAM, "'Migrating to Object Technology", Addison Wesley.

1994.

[GJM91] C. GHEZZI, M . JAZAYERI, D . M A N D R I O L I , "Fundamentals of Software

Engineering", Prentice-Hall International, Inc. New Jersey, 1991

[GK95] H. G A L L , R. K L O S C H , "Finding Objects in Procedural Programs an

Alternative Approach", Working Conference on Reverse Engineering,

IEEE Comp. Soc. Press, pp. 208-216, 1995.

[GN81j R. L . GLASS, R. A. NOISEUX, "Software Maintenance Guidebook",

Prentice Hal l , 1981. •

[GP90] B . GRABOWSKI, N . PENNINGTON, "Psychology of Programming",

Academic Press, London, 1990.

[GT96] P. A. GRUBB, A. A. T A K A N G , "Software Maintenance Concepts and

Practice", International Thomson Computer Press, 1996.

[H77] M . S. HECHT, "Flow Analysis of Computer Programs", Elsevier,

North Holland, 1977.

[H86] W. E. HOWDEN, "A Functional Approach to Program Testing and

Analysis", IEEE Transaction on Software Engineering, SE-12(10),

pp. 997-1005, 1886.

106

I efei ences

[H88] D A . H i G G I N S , "Data Structured Maintenance the Warnier/Orr

Approach", Dorset House Publishing Co Inc, New York, 1988

[H90] M HAMMER, "Reengineenng Work Don't Automate, Oblitei ale",

Harvard Business Review, 1990.

[HHW76] D HEDLEY, M A HENNEL, M R WOODWARD, "On Ptogiam

Analysis", Information Processing Letters, 5, pp 136-140, 1976

[H L 9 1 A] H HAUGHTON, K LANO, "A Specification-Based Approach to

Maintenance", Journal of Software Maintenance Reseaich and

Practice, 3(1), pp. 193-213, 1991

[H L 9 1 B] H . HAUGHTON, K . L A N O , "Extracting Design and Functionality from

Code", REDO Project Document 2487-TN-PRG-1085, Oxford

University, 1991

[HM84] E HOROWITZ, J B MUNSON, "An Expansive view of Reusable

Software", IEEE Transaction on Software Engineering, SE-10(5),

pp. 477-487, 1984

[HR88] J. HARTMANN, D J ROBSON, "Approaches to Regression Testing",

Proceeding of the Conference on Software Maintenance, Computer

Society Press, pp. 368-372, 1988,

[HR89] J. HARTMANN, D J ROBSON, "Revalidation During the Software

Maintenance Phase", Tech Rep , School of Engineering and Applied

Science, University of Durham, 1989.

Computer Science Technical Report TR 1/89.

[I B M 9 4] E Buss, R. DE M O R I , W M GENTLEMAN, J HENSHAW, H JOHNSON,

K KONTOGIANNIS, E MERLO, H A MULLER, J MYLOPULOS. S

PAUL, A PRAKASH, M STANLEY, S R T I L L E Y , J TROSTER, K

WONG, "Investigating Reverse Engineering Technologies for the CAS

Program Understanding Project", I B M System Journal, 33(3),

pp 477-500, 1994.

107

references

[JK85] K. JENSEN, N . WIRTH, "PASCAL User Manual and Report",
Springer-Verlag, New York, 3"* Edit ion, 1985
Revised By A. B. MiKEL and J. F. MINER.

[JL94] P. E. L i V A D A S , T. JOHNSON, "A New Approach to find Objects in

Programs", Journal of Software Maintenance- Research and Practice,

6(5), pp. 249-260, 1994.

[K87] K. C. K A N G , "A Reuse-Based Software Development Methodology",

Proceeding of the Workshop in Software Reuse, 1987.

[KN95] G. K O T I K , P. NEWCOMB, "Reengineenng procedural into Object

Oriented Systems", Working Conference on Reverse Engineering,

IEEE Comp. Soc. Press, pp. 237-249, 1995.

[L85] M . M . L E H M A N , "Program Evolution", Academic Press, London,

1985.

[L90] K. L A N O , " Z + + , an Object Oriented Extension to Z", Proceedings of

the Z User Meeting, Oxford, 1990

[L93] S. L A U C H L A N , "Case Study Reveals Future Shocks", Computing,

1993.

[LM90] P. J. L A Y Z E L L , L . M A C A U L A Y , "An Investigation into Software

Maintenance: Perception and Practices", Conference on Software

Maintenance, IEEE Comp. Soc. Press, pp. 130-140, 1990.

[L O W Y 9 4] S. L iU, R. M . OGANDO, N . WILDE, S. S. Y A U "An Object Finder for

Program Structure Understanding in Software Maintenance", Journal

of Software Maintenance: Research and Practice, 6(5), pp. 261-283,

1994.

[LPR94] W. A. L A N D I , H . D . PANDI, B . G. RYDER, "Interprocedural Def-Use

Association For C System with Single Level Pointers", IEEE

Transaction on Software Engineering, SE-20(5), pp. 385-403, 1994

108

references

[LR91] W. A. L A N D I , B . G . RYDER; "Pointer-Induced aliasing- a Problem
Classification", in Proceedings of the I8th Annual ACM Symposium
on Principles oj Programming Languages, Orlando, Florida, U S A ,
A C M Press, pp. 93-103, 1991.

[LS80] B. P. L l E N T Z , E. B. SWANSON, "Software Maintenance Management",

Addison Wesley Publishing Company, Reading, Massachusetts, 1980.

[LST78] B. P. L i E N T Z , E. B. SWANSON, G. E. TOMPKINS, "Characteristic of

Application Software Maintenance", Communication of the A C M ,

21(6), pp. 466-471, 1978.

[LW90] S. L i u , N . W I L D E , "Identifying Objects in a Conventional Procedural

Language. An Example of Data Design Recovery", International

Conference on Software Maintenance, IEEE Comp. Soc. Press,

pp. 266-271, 1990.

[MD91|6] D. A. STROKES, "Requirements Analysis", J. McDermid editor,

Software Engineer's Reference Book, Chapter 16, pp 16/1-16/21,

Butterworth-Heinemann Ltd , Oxford, 1991.

[MD9I20] K . H . BENNET, B . CORNELIUS, M . MUNRO, D . ROBSON, "Software

Maintenance", J. McDermid editor. Software Engineer's Reference

Book, Chapter 20, pp. 20/1-20/18, Butterworth-Heinemann Ltd,

Oxford , 1991.

[MD9I4,] P. H A L L , C. BOLDYREFF, "Software Reuse", J. McDermid editor,

Software Engineer's Reference Book, Chapter 41, pp. 41/1-41/12,

Butterworth-Heinemann Ltd , Oxford, 1991.

[MS87] J. C. M I L L E R , B . M . STRAUSS I I I , "Implication of Automatic

Restructuring of COBOL", A C M SIGPLAN Notices, 22(6),

pp. 76-82, 1987.

[MU90] H. A. MULLER, J. S. U H L , "Composing Subsystem Structures Using

Partite Graphs", Conference on Software Maintenance, 1990

109

refei ences

[NS87] K . W. NIELSEN, K . SHUMATE, "Designing Large Real Time System
with ADA", Communication of the A C M , 30(8), pp. 695-715, 1987.

[NS95] H . M . SNEED, E. N Y A R Y , "Extracting Object-Oriented Specijication

from Procedurally Oriented Programs", Working Conference on

Reverse Engineering, IEEE Comp. Soc. Press, pp. 217-226, 1995.

[087] W. OSBORNE, "Building and Sustaining Software Maintainability",

Proc. Of Conference on Software Maintenance, pp. 13-23, 1987.

[O90] W. OSBORNE, "Software Maintenance and Computers", IEEE

Computer Society Press, pp. 2-14, 1990.

[0 0 8 4] K . J. OTTENSTEIN, L . M . OTTENSTEIN, "The Program Dependence

Graph in a Soft-ware Development Environment", A C M Sigplan

Notices, 19(5), pp. 177-184, 1984.

[P72A] D . L . PARNAS, "On the Criteria to be Used in Decomposing Systems

into Modules", Communication o f the A C M , 15(12), pp. 1053-1058,

1972.

[P72B] D . L . PARNAS, "Information Distribution Aspects of Design

Methodology", Proceedings of the IFIP Congress-1971, pp. 339-344,

1972.

[P80] M . PAGE-JONES, "The Practical Guide to Structured Systems

Design", Yourdon Press, New York, 1980.

[P82] G. PARIKH, "Technique of Program and System Maintenance",

Winthrop Publishers, 1982.

[P86] G. PARIKH, "Making the Immortal Language Work", International

Computer Program Business Software Review, 7(2), 1986.

[P91] R. PRIETO-DIAZ, "Making Software Reuse Work. An Implementation

Model", A C M SIGSOFT Software Engineering Notes, 16(3), 1991

[P94] R. S. PRESSMAN, "Software Engineering: a Practicioner's

Approach", McGraw H i l l , 1994.

[P95] D . PEARCE, "It's a Wrap", Consultant's Conspectus, 1995.

110

refei ences

[PT94] J POULIN, W TRACZ "WISR '93 6"' Annual Workshop on Software
Reuse Summary and Working Group Reports", A C M SIGSOFT
Software Engineering Notes, 19(1), pp 55-71, 1994

[S76] E B SWANSON, "The Dimensions of Maintenance", Proc of the 2'"'

International Confeience on Software Engineering, IEEE Comp Soc

Press, pp 492-497, 1976

[S87] N F SCHNEIDEWIND, "The State of Software Maintenance", IEEE

Transaction on Software Engineering, SE-13(3), pp 303-310, 1987

[S91] H M SNEED, "Bank Application Reengineenng and Conversion at

the Union Bank of Switzerland", Conference on Software

Maintenance, IEEE Comp Soc Press, pp 60-70, 1991

[S92] H M SNEED, "Migration of Piocedurally Oriented COBOL

Programs in an Object-Oriented Architecture", Conference on

Software Maintenance, IEEE Comp Soc Press, pp 105-1 16,1992

[S94] H M SNEED, "Downsizing Large Application Programs", Journal of

Software Maintenance Research and Practice, 6(5), pp 105-116,

1994

[S95] I SOMMERVILLE, "Software Engineering", 3''' Edit ion, International

Computer Science Series, Addison-Wesley, Workingham, 1995

[S96A] H M SNEED, "Encapsulating Legacy Software for Use in

Client/Server Systems", Working Conference on Reverse

Engineering, IEEE Comp Soc Press, pp 104-1 19,1996

[S96B] H M SNEED, "Object-Oriented COBOL Recycling", Woiking

Conference on Reverse Engineering, IEEE Comp Soc Piess,

pp. 169-178, 1996

[SPC93] SPC Services C o r p , "Reuse-Driven Softwai e Piocess Guidebook",

SPC-92019-CMC, Version 02 00 03, November 1993

[T88] W TRACZ "Software Reuse Myths", A C M SIGSOFT Softwaie

Engineering Notes, 13(1), pp 17-21, 1988

111

references

[T94]

[TT92]

[V80]

[V 9 3 J

[V93B]

[V94]

[W79]

[W82]

[W84]

[W88]

[W95]

[Y75]

M E. TORTORELLA, "Identification of Abstract Data Types in Code",

M Sc Thesis, University o f Durham, 1994

T T A M A I , Y TORIMUTSU, "Software Lifetime and its Evolution

Process over Generations", Proceeding of the 8"' Conference of

Software Maintenance, pp 63-69, 1992

E V V A N HORN, "Software Engineering", Academic Press, New

York, 1980.

D V A N EDELSTEIN, "Report on the IEEE STD I2I9-I993 - Standard

for Software Maintenance", A C M SIGSOFT, Software Engineering

Notes, IEEE Comp. Soc. Press, 18(4), pp. 94-95, 1993.

H V A N V L I E T , "Software Engineering Principles and Practice",

John Wiley , Chichester, 1993

A. V O N MAYRHAUSER, "Maintenance and Evolution of Software

Products", Advance in Computers, 38(1), pp 1-49, 1994

M . WEISER, "Program Slices Formal, Psychological, and Practical

Investigation of an Automatic Program Abstraction Method", Ph D

Thesis, University o f Michigan, 1979

M WEISER, "Programmers use Slices when Debugging",

Communication of the A C M , 25(7), pp 446-452, 1982

M . WEISER, "Program Slicing", IEEE Transaction on Software

Engineering, SE-10(4), pp. 352-357, 1984

C WATERS, "Program Translation via Abstraction and

Reimplementation", Transaction on Software Engineering, IEEE

Comp Soc Press, 14(8), 1988

P WINSBERY, "Legacy Code - Don't Reengineer it, Wrap it".

Datamation, pp. 36-41, M a y 1995

E YOURDON, "Techniques of Program Structure and Design",

Prentice-Hall Inc., 1975.

12

references

[Y90] E Y O U R D O N , "Object Oriented COBOL", American Programmer,

3(2), 1990

[Z93,o] J B O W E N , P BREUER, "Decompilation", Henk van Zuylen (ed) , The

REDO Compendium: Reverse Engineering for Software Maintenance,

Chapter 10, John Wiley & Sons, pp 13 1-138, 1 993

[Z93,5] J B O W E N , P BREUER, K . L A N O , "Understanding Programs though

Formal Methods", Henk van Zuylen (ed) , The REDO Compendium

Reverse Engineering for Software Maintenance, Chapter 15, John

Wiley & Sons, pp 195-223, 1993

[Z93,6] P BREUER, H . H A U G H T O N K LANO, "Reverse Engineering COBOL

via Formal Methods", Henk van Zuylen (ed) , The REDO

Compendium Reverse Engineering for Software Maintenance,

Chapter 16, John Wiley & Sons, pp 225-248, 1993

13 _ , j

