W Durham
University

AR

Durham E-Theses

Extraction of objects from legacy systems: an example
using cobol legacy systems

Salurso, Maria Anna

How to cite:

Salurso, Maria Anna (1998) Extraction of objects from legacy systems: an example using cobol legacy
systems, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk,/4673/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4673/
 http://etheses.dur.ac.uk/4673/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

UNIVERSITY OF DURHAM

The copyright of this thesis rests
with the author No quotation
from it should be published
without the written consent of the
author and nformation denved
from 1t should be acknowledged

DEPARTMENT OF COMPUTER SCIENCE

Master Thesis in Computer Science

Extraction of Objects

from Legacy Systems:

AN EXAMPLE USING

COBOL LEGACY SYSTEMS

Supervisor

Candidate
Malcolm Munro

Maria Anna Salurso

Academic Yeui 1997

This thesis is dedicated to my mother
Maria Antonietta and my father Ettore, for the patience

in the hard task of being parents of a student

i

ABSTRACT

In the last few years the interest in /egacy information system has increased
because of the escalating resources spent on their maintenance On the other
hand, the importance of extracting knowledge from business rules 1s becoming a
crucial issue for modern business. sometime, because of 1nappropriate
documentation, this knowledge 1s essentially only stored in the code A way to
improve their use and maintainability in the present environment is to migrate
them into a new hardware / software platform reusing as much of their experience
as possible during this process. This migration process promotes the population
of a repository of reusable software components for their reuse 1n the
development of a new system 1n that application domain or in the later

maintenance processes

The actual trend in the migration of a legacy information system, 1s to
exploit the potentialities of object oriented technology as a natural extension of
earlier structured programming techniques. This 1s done by decomposing the
program into several agent-like modules communicating via message passing, and
providing to this system some object oriented key features The key step 1s the
“object tsolation”, i.e. the isolation of groups of routines and related data items

to candidates 1n order to implement an abstraction in the application domain.

The main idea of the object i1solation method presented here 1s to extract
information from the data flow, to cluster all the procedures on the base of therr
data accesses. It will examine “how” a procedure accesses the data in order to
distinguish several types of accesses and to permit a better understanding of the
functionality of the candidate objects. These candidate modules support the
population of a repository of reusable software components that might be used as
a basis of the process of evolution leading to a new object oriented system

reusing the extracted objects

ACKNOWLEDGEMENTS

I would like to thank Malcolm Munro for his rigorous and friendly
supervision, and Professor Aniello Cimitile for encouraging me to come [0

Durham

Thanks also for the facilities provided by Professor Keith Bennett and all
the members of the Centre for Software Maintenance My time in the University
of Durham has been both enjoyable and interesting Particularly, thanks to

Liz Burd for reading the draft of this thesis

Needless to write here the names of all my friends in Durham They all
know how much I appreciated their friendship and their support [wish just (o
nominate those of them whom I had more coffees with thanks Sahab, Marco,

Riccardo, Isabelle, Raija, Edy and Nobuko [I'll be missing all of you

My final thoughts are for a very special friend, Tommaso, who has been

patiently waiting for me 1n Italy during the last year

A%

COPYRIGHT STATEMENT

The copyright of this thesis rests with the author. No quotation from it
should be published without prior written consent and information derived from

it should be acknowledged.

CONTENTS

ABSTRACT vevverrenreeranes Cererieenannn tetstneronensoreennannannannateaeteesasnnsnntetettreseaastttottrensane 1ii
ACKNOWLEDGEMENT «vvvteeteeresassseressosscsssosssssssssssssssssssssssssosssssssssassssossesssessanes iv
COPYRIGHT STATEMENT 4vveeteteesssusscecseesnsascsessssnssesesessssssssesasansesssansastssesssssssons \Y%
CONTENTS etereeeencecennsasesasssessasseasssssessssssssssssesssnsessssnasssnsssssssasseasossssssssssosssess vi
T INTRODUGCTION tttereeessesteesseseonssesesessssssesasassssssessssssssacsasasnnssssanrnnsssesesastsisasnes 1
J. 1 CRITERIA FOR SUCCESS ..o e e e 6
1.2 PLAN OF THE THESIS. i .. S 7
2. A REVIEW OF EXISTING TECHNIQUES......... erreererereeieiareieaaeaaes e, 9
2.0 INTRODUCTION .. e e e i e 9
Reverse Engileering oo e e e 9
REENEINEETIIE .ottt ittt ettt .9
2.2 REVERSE ENGINEERING METHODS i i i 12
2.2,] RECAS T ..o 12
2.22REDO.............. J PP et U i 14
2.2.3 REORG I 18
2.2.4 Alternative Approaches to Migrate Legacy Information Systems. ... 2/
2.3 PROCESSES OF REUSE REENGINEERING. s e 22
2.3.1 The Paradigm of Reuse Reengineering (REZ) . i 23
Candidature Phase. oot i e R 25
Election P asS e oo e e e e 26
Qualification Phase ..o 27

2.4 CLASSES OF CANDIDATURE CRITERIA TO DECOMPOSE LEGACY
INFORMATION SYSTEMS ..o e e e e e 29
FUunctional ADStIaCTIOM «urunn ettt et e ettt ettt et e ia e e eens .. .29
D ata A DS ACTIO M ottt et et e e 31
CONtrol ADSEIACTIO . . ittt ittt e et e e e 33

vi

2.5 GRAPH THEORY APPROACHES ...\ o e 33

2.5.1 The Call Dependencies of Cimitile and Visaggiooo... 34
2.5.2 The Algorithms of Liu and Wilde ... 36
2.5.3 The Algorithm of Dunn and Knight.................... .. 38
2.5.4 The Algorithm of Canforaetal...................................... 39
2.6 SUMMARY 43
. PROGRAM REPRESENTATIONS 1tiuuttiuiieatecareearianrosstisasorsstsessssscesesnssssssssassnnas 44
Data Flow AnalySis .ot e 44

Call Graph .o 45

3.2 A NEW CODE REPRESENTATION ... oottt 45
3.2.1 Analysis of Data Access Type ... e 46
3.2.2 The Temporal Graph............ 49

. AN IMPROVED TECHNIQUE .0uitiantieianieiieiinesrissintriesteiessnreterssisnsossnssssnsseaness 54
4.1 OVERVIEW OF THE ALGORITHM i i J6
4.2 DETAILS. ... e EE TP 57
4.2.1 Drawing the Program Representations.............................. U 38
The Bipartite Graph ..o 58

4.2.2 The Computation of the Vector AIC() ... 39
4.2.3 Data Duplication ... 60
4.2.4 Data RefINIng ... 68
Evaluation of the Data Refining Phase 69

4.2.5 Termination of the Algorithm SUTR SR ST ‘...:‘:....-.:.5'7.'0

. A CASE STUDY ON A COBOL SOURCE CODE eveeoueeererenueeiereesressessesensnenes 71
5.1 THE NEED OF A STANDARD: THE ANSI COBOL STANDARD................ 73
5.2 PRESENTATION OF THE CASE STUDY i 75
5.3 ISOLATION OF PROCEDURES AND DATA...... ... 0 i 76
5.3.1 Isolation of Procedureso i 76
5.3.2Data AnalysSis (.o 78
Unused ANalySis ..o 79

| B L W - oL L -k T 79

5.3.3 The Bipartite Graph........... 82
Computation of Indexes IC(Yand AIC() oov i P TP84

5.4 DATA REFINING PHASE ... S e i e 8

vii

5 4 1 Data Duplication
0. FUTURE WO RK S tittttnuuseeecessenssosnsssseesssasssassosesssssssssssssaesssnsssesssssssscsssssssssasns

6 1] EXTENSION OF DATA DUPLICATION PHASE

6 2 DATA NORMALISATION
. CONCLUSIONS ceetttseettorssscsesestsssssssesssosssasssssosessssssnnannsaesesssssssssssssssasarasasson

7 1 EVALUATION OF THE CRITERIA FOR SUCCESS
7 1 1 Description and evaluation of existing methods
7 1 2 Formalization of a language-independent method

7 1 3 Application of the method to a case study

REFERENCES +uuveusceecceesesssssssssessseassessssssessscestsessssssetesssessesssassssssassstsssssssssssnns

Vil

88
92

93
94

Chapter 1

Introduction

Since the early 80’s, both 1n academic institutions and 1n a wide range of
working environments, the problem of the evolution of existing information
systems has become a bioad interest With time, these legacy information
systems, as Dietrich calls them, have increasingly became an integral part of the
fabric of many organisation, growing bigger and more complex than they were
originally The costs of keeping them operational and acceptable consumed a
significant proportion - up to 70% - of the software system life cycle budget

[A92] [B91,] [B81] [LS80]

In addition to these escalating costs, the recession 1n the early 90°s led to
severe cuts 1n the budget for the development of new systems [A94] This 1s also
confirmed by Bernstein [B93,], who estimates that of $100 billion dollars annual
expenditure of companies on software, at least 70% will be spent on maintaining
their systems, while the other 30% will be spent on new development
Consequently, companies are increasingly directing their efforts to get more from
the existing systems but also to ensure that these systems are much more
maintainable than 1t was originally demanded The existing information systems
are today’s “assets” to be protected [P95] [B91.], and exploited by extiacting
knowledge and business rules [CO90] that, because of inappropriate
documentation, are sometimes only contained within the code [CD95] In fact, 1t
1s becoming 1increasingly well known that an existing system could be a
repository of ideas and could enable the identification of building blocks fo1
development of future systems [S87], as it contains management. operational and

financial information about an organisation that has been acciued over many

Chapter 1 . introduction

years.

To highlight further the actual situation, a recent study [IBM] estimates
that, in average, the size of a legacy information system increases by
roughly 10% each year because of normal maintenance and upgrade. This leads
to a doubling in size about every seven years. Consequently, the difficulties of
comprehension of the legacy code are increasing, making harder any attempt to
evolve the code. These considerations, with the lack of technique to solve the
legacy information systems problem and the escalating resources spent on their
management, lead to “information systerﬁ apoplexy” [BS95], and to a common

conviction that dealing with the problém can not be further postponed.

As the area concerning legacy information systems is relatively young, there
is no definition that exactly establishes when an information system is “legacy”.
Moreover, in most of these systems there undoubtedly exists a sét of common
features: enormity (millions of LOCs sometime written in a single, monolithic
- block with conventional or ad-hoc languages such as Assembler, COBOL, PL/1,
FORTRAN and even APL), old age, inflexibility, inconsistency or complete lélck
of documentation, inappropriate management of data, presence of inaccurate

functions and inadequacy or lack of interaction between system components.

Not all legacy information systems corresponds to this stereotype;
sometimes, an information system can be legacy even if it has been developed
"'reAcer'itAly- and ‘_wifh moderr techniques, but it cannot be éa'S'iI.y"adapt‘ed‘i‘to“:'tf.le
continuous changing requirements of strategies and practices in a modern
business. This lead Brone and Stonebraker [BS95] to define a legacy information
system not in regard to the features above, but, quite inforrlnally, as “any

information system that significantly resists modification and evolution to meet

new and constantly changing business requirements”.

One of the greatest challenges facing software engineers is the management
and control of these changes [BH85]. This is indicate in the time spent and in

the effort required to keep software systems operational after release.

The discipline concerned with'changes related to an information system after

- delivery is traditionally known -as “softwaré maintenance”. There ‘exist many’

Chapter 1 introduction

different definitions of software maintenance [090] [ANSI83] [LS80], some of
which highlight particulars activities carried out during maintenance processes.
Cornelius et al. [CMR88] insist on a general view which consider software
maintenance as “any work that is undertaken after delivery of a software system”.
An interesting point of view is the one of Layzell and Macaulay, defining a
maintenance processes as a “need-to-adapt” activity, which entails changing the
software when its operational environment or original requirements changes, or
as an activity to support the users of the system [LM90]. In the 1993, the IEEE
Software Maintenance Standard cor:nbined these different views, defining the
software maintenance as “modification of a software product after delivery, to
correct faults, to improve performance or other attributes, or to adapt the

product to a modified environment” [V93,].

However, it seems that maintenance still keeps its traditional meaning of
restoration in response to the gradual deterioration of parts due to an extended
use [GIMI1], wh1ch is 51mp1y corrective malntenance In contrast, adaptive and
'peffectlve chariges [S76] [LS80] performed on legacy znformatton systems does.
not only involve correction of malfunctioning, but also entails adapting and
enhancing the system to meet the evolving need of the users [LS80] and their
organisations. Consequently, many authors have advanced alternative terms as
“software evolution” [A88] [GIM91] [L85], “post-delivery evolution” [MD91,4]
and ¢ support” [FJN89] [LM90] that are con51dered more mcluswe and encompass
“most if not all of the activities undertaken on the existing systems to keep them |
operational and acceptable to the users'. These alternative definitions also have a

more positive image than the term “maintenance”.

The legacy information system problem has undoubtedly increased the
significance given to the maintenance processes. In the early 'days the interest in
the legacy information system problem concentrated on the study of tools,
technique and technologies supporting the maintenance process. By comparing

the small number of publications and active researches at that time with :the

Chapter 1 . introduction

situation today, it is possible to say that software maintenance was receiving
much less attention than the development of new systems [MD91,,]. In industry,

software maintenance was “categorised as dull, un-exiting detective work”

[HS8].

Today, the scenario is different, but the binomial “software maintenance” /
“legacy information systems problem” is even more strongly related. It has
broa‘dly diffused the belief that the existing software is the “accumulating of
years of experience and refinement and, however imperfect, it is a valuable
asset” [B91.]. This economic heritage has to be safeguarded by making its life
longer with judicious processes of evolution, and to be exploited by reusing its
components in developing ex-novo of new information systems. In the meantime,
the fall in the real cost of hardware and the progress in software capability
inspiring to ever more ambitious development projects, are challenging the
qualified and experienced development staff to improve productivity

significantly, while maintaining and improving quality [MD91,,].

 One method proposed 'for making a significant imprbve'ment in productivity
and quality is software reuse [CCR90]. By reusing product, processes and
personal knowledge to implement changes, productivity can be greatly increased
because of the reduction in the time and effort that would have been spent on
specification, deéign, implementation and testing the changes. The reliability
.. .and robustness of the reusable ,so_ft.w.are.,c'omp'.o_pe‘n'ts is gfeater as_the}-/ jhave been
well tested and alréady shown to satisfy the deéired requirements. Consequent:ly,
they have fewer residual errors, and this makes software reuse attractive to
software engineers interested in improving the quality of the software product

[GT96].

These considerations lead to a widespread interest in software reuse. In the
literature, there can be found many different definitions of software reuse [DH89]

[CH91] [K87]. There is the simplistic view which defines it in term of simply

' The terms “software evolution” and “post-delivery evolution” are similar because both
highlight the tendency of software to evolve, .and they are used..as synonym by.many ;-
" authors. ' o ‘ : S T

Chapter 1 introduction

reuse of code, without taking into consideration the reuse of other forms of
software-related knowledge. A more comprehensive and maintenance-related
view is that of Biggerstaff and Perlis, which defines software reuse as “the
re-application of a variety of kinds of knowledge about one system to another
similar system in order to reduce the effort of development or maintenance of

that other system” [BP89].

However, the complete replacement of a legacy information system
excluding the. reuse part of the system’s components is not usually a viable
option, because the risks and the costs associated with complete system
replacement are very high [V80] [BS95]. Furthermore, a the decision about the
evolution of a legacy information system should take into account not only the
economic constrains - in a survey carried out by Tamai and Torimitsu [TT92},
several of the respondents who once considered replacement of their system
abandoned the idea because it was too expensive - but also the residual errors in
the new system. The creation of a new system does not guarantee that it will
work better than the existin.g.oﬁé;‘; .' o

As ah alternative, the existing system has to be “evolved to an higher state,
providing more sophisticated used-driven functionality, the capability of
deploying cutting edges technologies and of allowing the integration of other
systems in a cost-effective manner” [GT96]. A number of techniques, methods,

‘tools and management practices are used to meet these.goals.

At the current s;cate of the art, the solution seems to be the migration of
legacy information systems. This involves analysis and improved understanding
of the system, followed by a traditional forward engineering process using a
suitable alternative paradigm or hardware/software platform. In order to take

advantage of the modern technologies, the new platform should be object

oriented.

The migration towards object oriented technology also seems a promising
way to guarantee reusability [BMW96,] [BMW96,] as well as adaptability either
in the creation of new information systems or in their modification. A big

.a_dva_ntég_e of_gbje.ct-orient:ed tep_hnoldgy is the possibility 't_o_'mo.de'l and simulate .

Chapter 1 introduction

real world entities with their rich semantic content making the system easier to
understand and to maintain This simulation of productive processes - thiough
objects and operations - supports the unavoidable requirements of business
change The 1ncremental integration of new functionality 1s easier because
application development becomes faster and cheaper Furthermore, object
oriented technology makes 1t easier to collect together existing components, and

to tailor them individually due to inheritance, thus promoting reuse

In the literature there are many papers formally or informally showing the
productivity of a combination of reengineering, object oriented paradigm and
software reuse Takang et al [GT96] refer to the “threesome marriage” between

these three elements

In book “Migrating to Object Technology”, Graham [G94] says “object
technology 1s productive because of the potential to reuse existing components
via their specification class libraries, whether for code or specification, are
the repository of productivity Object technology assists productivity because
object oriented models are easier to debug due fo their richer semantic context
It 15 also more productive because of the semantic richness of its model and

because they are model rather then procedural, imperative description”

11 Criteria for Success

The work that will be presented i1n this thesis can be classified into the
mainstream of the work targeted to 1solate, from the existing code, software
fragments implementing abstractions of entities within the application domain

The criteria for success, to be judged 1n the final chapter, are as follows

e description and evaluation of the existing methods to 1solate reusable

object-like modules,

o formalization of a language-independent method for the identification of

object-like modules from existing code,

o application of the method to a case study, in order to check the flexibility of

the method to be adapted to the peculiarity of a conventional language

Chapter 1 . . . introduction

1.2 Plan of the Thesis-

This thesis focuses the effort of migration as a form of reengineering
process from a procedural legacy information system to an object oriented
platform. Particularly, the aim is the extraction of procedures and related data
items having object oriented features, in order to populate a repository of
reusable modules extracted from the code. This “object identificaiion” might be
the basis of a process of evolution leading to a new object oriented system

reusing the extracted objects.
The remainder of this thesis is structured as follow.

The second chapter focus on frames to reverse engineer and reengineer
legacy information systems in order to help any intervention aimed at the
evolution of code, also allowing the extracti.on reusable modules from the source
code. Particularly, in section 2.2, some reverse engineering techniques dealing
with COBOL legacy information systems are presented. In section 2.2.4, the
.wr.apping techniques are briefly introduc-ed, with . some related pfobl"exﬁatic.
Section 2.3 is speéifically dedicated to approaches dealing the legacy information
system problem while populating a repository of “spare parts” to be reused in the
development of a new information system. In section 2.5 the approaches to

extract objects-like modules based on the graph theory are presented.

In the third. chapter""a.:pr_(_)gram' representation 'siuitable. to’ fit our. “objeet
isolation” method is defined. It is aimed to simplify the process of
understanding the relationships of common data accesses between procedures
implementing entities of the application domain. This new program
representation is a variant of an inter-procedural call graph, providing
information about data flow. Since it is sensitive about the temporal sequence of

the invoking statements and of data accesses, it will be called “temporal graph”™.

In the fourth chapter an algorithm to identify candidate object-like modules
~ from existing code is presented. In section 4.2, all the details relative to the
iterative algorithm are presented. After having represented the code by a

‘bipartite ‘graph (section 4.2.1), the algorithm per_fofms three phases while the: . .

Chapter 1 introduction

bipartite graph is not in the form of isolated strongly connected subgraph. The
data duplicating and the data refining phases are presented in sections 4.2 3
and 4.2.4, respectively. The data clustering phase follows the guidelines of the
same phase of the algorithm of Canfora et al., presented in section 2.5.4. At each
iterative step information is extracted from the program representations

(section 4.2.1), which are updated in order to conform the changes made by the
algorithm.

The aim of the fifth chapter is to show how the method can be adapted to the
peculiarity of a given programming language such as COBOL, while respecting 1n
the meantime the main ideas of the technique. By way of a case study, a simple
COBOL program has being analysed, and the technique being used on it. All the

necessary arrangements to adapt it to the peculiarity of COBOL are underlined

throughout this section.

In the last two chapters, the future works and the conclusions of this work

are presented.

Chapter 2

A Review of the Existing Techniques

2.1 Introduction

This chapter reviews existing reverse engineering and reengineering

techniques for legacy information systems.

Reverse Engineering

The classical definition of reverse engineering describes it as “the process
of analysing a subject system to identify the system’s components and their
interrelationships and create representations of the system in another form or at
a higher level of abstraction” [CC90]. The reverse engineering is an important
part of any software maintenance process aimed to improve understanding of the

software system and its structure.

The reverse engineering process [S95], shown in figure 2.1, i1s usually part

of the software reengineering process.

Reengineering

The process of reengineering, also called renovation or reclamation, is often
associated with a business process' reengineering [H90]. It is “us the

examination and alteration of a subject system to reconstitute it in a new form

Chapter 2 a review of existing techniques

and the subsequent implementation of the new form” [CC90] The process
usually, not only recover design information from existing software, but also
involves simple changes to transform the existing unstructured constructs into
structured ones which are mode understandable and more maintainable [MS87]
[MD91,,]. In most cases, reengineering software re-implements the function of
the existing system. But at the same time the software developer also adds new

functions and/or improve overall performance [P94].

Automated [Program
_ R Structured
—T=\ Analysis = i Diagrams
System
S, -
System to be Document Data Structure
reengineered Information ={ Generation >“ == " Diagram
Store
L —— [>(Manual \—1= L Traceability
Annotations Matenals

Figure 2 1 - The Reverse Engineering Process

The mainstream of research in the field of reengineering of legacy
information systems is enriched by the large number of studies that employ
modularisation, i.e. the replacement of a large monolithic program into a
functionally equivalent collection of smaller modules By now 1t is common
opinion that modularisation is also important for downloading purposes [NS95],
1.e. for the transition from monolithic, single-processor mainframe system to
distributed, multiprocessor client / server (C/S) environment An organised
download, taking care of semantic and functional content of modules, achieves an

efficient distribution of modules 1n both client and server machines

The term “module” 1s used by several authors to denote different
programming constructs. Originally, the term was applied to routines, but after

the work of Parnas [P72,] the term has been used to denote a clustering construct

generally providing [C89,]

' The business-reengineering processes are aimed to a global reanalysis and redesign of the
business process in order to reduce costs and improve quality They cannot be consideied
erther maintenance processes or software evolution, since they do not change requirements

10

Chapter 2 a review of existing techniques

.o “abstraction mechanism” offering a perspective of that clustered entity at a

quite high level,

o “protection mechanism” as a control of the visibility, helping to restrict the

affects of a change to a system.

If the interest in modularisation of legacy information systems is 1n 1ts
migration as well as its downloading, the actual trend is to decompose the system
into independently compilable module units that are agent-like, communicating
via message passing, and providing information hiding. Specifically, if the target
system should be fully object oriented, other object oriented key features such as
polymorphism and inheritance are provided, often after a targeted business

reengineering process.

An efficient modularisation might be achieved by exploiting the requested
object oriented features present in the earlier structured programming techniques
[GK95] [KN95] [S96,] [CDDF97]. In fact, even though a program is written in a
-conventional programming language that does not directly support object oriented
programming constructs, it can contain collections of routines (functions or
procedures), types and/or data items that can be isolated. In the target system,
the collection of types and/or data items can store the state of an object and the
collections of routines (functions or procedures) that get and/or update the state

can implement the object’s methods [CCM94] [JL94].

Sometime, if the programming language does not ha'v.e the required object
oriented features, they are simply simulated by respecting some standards of
programming. An example is COBOL, in which all the data is global. Data can
be accessed - and altered - at any position within the program, thus making it
hard to ensure information hiding. The ANSI COBOL Committee produced a
documents - afterwards enhanced by Yourdon [Y80], Microfocus et al - to
propose a standard that an object oriented COBOL application should have
Among the other directives, the standard establish the guidelines of the structure

of the target system guaranteeing information hiding. In order to ensure

and specification, then they do not modtfy the functionalities

11

Chaptcr 2 a review of existing rechmques

information hiding to the system, the program should be divided up into classes
corresponding to the objects processed Each class 1s an abstract data type
encapsulating the attributes of, and the action on, the objects enclosed Each
object 1s enclosed within a compilable unit FEach class communicates with an
external classes only through message passing by invoking 1t in a CALL statement
with a list of parameters. The messages are declared 1n a separate import / export
area. Only the classes subordinate by right of inheritance can be invoked without

parameters, as they can access the data of the invoking class

2.2 Reverse Engineering Methods

There are in literature several methods to reverse engineer existing legacy
information systems They are mainly aimed at reducing the effort in migrating

them from one environment to another.

In the following, three methods dealing with COBOL legacy information
systems are described The RECAST method 1s purely a reverse engineering
technique. In the REDO method the reverse engineering techniques are used to
transform COBOL programs into object oriented specifications 1n language “Z”
The REORG method is a reengineering method, but the modification of the
source code is only performed 1n the last of ten steps Thus the body of the
REORG method might be considered the set of reverse engineering activities

producing documentation and allowing the subsequent modification of the code

2.2 1 RECAST

RECAST was developed as the principal product of a joint project sponsored
by Information Engineering Dictorate of the DTI and the Science and Engineering

Research Counsel (SERC) under the Information Engineering Advanced

Technology programme

The RECAST (Reverse Engineering into CASe Technology) method 1s aimed

12

Chapter 2 a review of existing techniques

2

at reverse engineering existing COBOL legacy information systems into SSADM*
[CCTA] logical system specification, in order to reduce the cost of and to

improve the maintenance process.

Several representations of the system at different points of view are derived
through the use of a series of informal transformations. The recovered and
documented system design would then provide a path into some system
development methods (via the use of CASE tools) thus assisting the development
of a modified or replacement system. SSADM has become the de facto standard

of system analysis and design in the UK [EM93].
The structural model for RECAST can be divided into four stages.

1. Identification of business users’ view (BUV).
The outputs of this stage are the information about how the user perceive the
function performed by the system. It needs direct information from the users
in order to identify the business functions as well as events and enquires
processed by the system. To complete the business users’ view, the screens

and the menus are analysed on-line and documented in SSADM notation.

2. Identification of logical data model (LDM)
This stage defines the rules for analysing the data occurring in the files of the
system. In order to extract a physical data scheme, an increasing detailed
analysis is performed upon the files of the system. The files potentially
containing entities, the transitory files and the report files are fhen derived.
At this stage, a document called system network diagram is produced The
resulting physical data scheme is detailed with the analysis of the data
structure of the individual COBOL modules, COPY libraries and on data
dictionary system. If the system accesses a database IDMSX (ICL’s
proprietary database), the rules for dealing with schemes are defined This
allows the enhancement of the physical data model with the entities, their

attributes and the mutual relationships. This step also produces a catalogue

? SSADM (Structured System Analysis and Design Methods) [CCTA] is a system analysis and
design method basg:d on a set of complementary techniques of code representations It is
owned by the UK government agency Government Centre for Information Systems

13

Chapter 2 a review of existing techniques

of all the synonyms and homonyms at file, record, group and field level This
information is used to determine whether a part of the system affects the data
model or simply generates reports. A phase of relational data analysis can
be performed both to understand the meaning of repetitive groups and to
check if the logical data model and the user’s view are compatible. If the
system is to be re-implemented with a different data design, then the /ogical

data model should be abstracted.

3. Identification of the system processing (SP).
In this stage the functions - ”sets of system processing which the user wish to
schedule together to support their business activity” [CCTA] - with their
component event/enquiry are identified. The process network diagram
provides information about the relationships between files, modules and
parameters. Menu hierarchies are examined in order to isolate module
dependencies. The COBOL modules are examined to extract the
sub-programs called. This information is detailed the process network
diagram. At this stage, slicing techniques are used to abstract the processing
within the sub-system. This supports both the business activities and

restructures the functions into logical sub-system.

4. Identification of the menus and dialogues (MD).
In this stage, the element of on-line processing, if any, are treated Those
on-line processing are specific of the ICL TPMS (Transaction.Processing

Management System) transaction processor.

The RECAST procedural model generates a set of Intermediate Documents
(IDs) containing all the elements of system design. This documentation 1s 1n a

form that is that is appropriate for use in a CASE environment.

2.2.2 REDO

In this section, the European collaborative project ESPRIT II

“REDO” (no. 2487) is presented. It covers activities from several areas such as:

] reverse engineering: redocumentation and reengineering;

14

Chapter 2 a review of existing techniques

o validation: post-hoc verification and generation of correct code from

specification;
o maintenance: new languages and methods aimed to support.

It is aimed to transform a COBOL batch program without database accesses
or special communication interfaces into a formal object oriented specification
using the language “Z”. The formal specification notation Z is a specification
language based on mathematical set theory and logic. It has been developed at
the Programming Research Group (PRG) of Oxford University for use in the
specification of state-based programs, and has now matured into a valuable and
widely used by industry as part of the software (and hardware) development
process in both the UK and the US®. Z has proved itself to be especially useful as
a tool for formally verifying and demonstrating the correctness of safety critical

and/or secure systems.

The REDO process, outlined in figure 2.2, involves three transformation

levels, as explained below.

1. Stage 1: Translation from COBOL to UNIFORM.
In the first level, the COBOL program is represented in the intermediate
meta-language UNIFORM. In this phase, redundant constructs are
eliminated. This program representation can be used for reengineering and
_ reverse engir}eering purposes [CMWZ89]. It allows to produce technical
documents like data flow diagrams, entity/relationship diagrams and other
[BL91]. In this phase, the relation among data are analysed and translated
into logical invariants of the program. The semantic equivalence is
guaranteed by addiction of information such as the initial value of variables,

being whether generated or stored.

2. Stage 2: Higher Level Abstraction.
In the second level, the record types are defined as outlined objects, whereas

the record fields are the objects’ attribute. The DATA DIVISION is

15

Chapter 2 a review of existing techniques

partitioned 1nto object classes and the PROCEDURE DIVISION cut up into
slices based on data flow analysis The code 1s split by grouping together
the sequences of I/O operations on a particular file, and the intermediate
statements affecting the contents of that file At this stage, a process of

restructuring eliminates all the GOTOs and other unstructured code

constructs.

Stage 3: Simplification of Abstraction and Design.

In the third level, an object oriented specification from the intermediate
representation 1s generated The program slices are attached to the objects
they refer to, becoming methods 1n a class All statements which access the
records embedded 1n the class, and all statements which alter or set
attributes of that records are part of the generated method. In this final step,

the UNIFORM syntax is converted to a Z++ notation

3

From the “Z FORUM mailing hst” by Jonathan Bowen (PRG - Oxford) Contact
<zforum-rquest@prg oxford ac uk> with your name, address and e-mail address to join the

mailing list

16

Chapter 2 a review of existing techniques

COBOL - Program

i

Transformation !
Level 1 in Uniform '

i

Procedural - Oriented
Uniform
Wide Spectrum Language

i

Analysis and
Level 2 Reorganization ‘

y

Object - Oriented
Uniform
Wide Spectrum Language ,

i

Transformation i
Level 3 o7 ax

v

Object - Oriented
7 ++
Specification

Figure 2 2 - REDO reengineering process

At the end of the process, there is a class specification for each file and the
original procedurally structured statements are now distributed among the classes

where they are attached to the object of processing [L90]

This project involve, 1n the second stage, a well defined phase of object
identification By analysing the data flow, the variables that are logically
associated with the main data structures of the program are i1dentified The data
flow among files, indexed arrays and reports 1s analysed, as these data items are
considered as main variables, representing objects with their attributes After
having 1isolated the data structures and the attached wvariables, the global
functions that updates and modifies a data structure are candidate to be an

operation upon the considered class Then a more detailed analysis upon that

17

Chapter 2 a review of existing techniques

operation 1s performed 1n order to make clear the meaning of that class within the

application domain

Lano et al [HL91;] proved that the transformations on the program enable

to rewrite it 1nto a restructured form

2.2.3 REORG

The REORG approach [S92] has grown out of a reengineering experiment at
the Union Bank of Switzerland [S91] aimed to reduce the costs and the risks of
migrating a procedurally structured COBOL system into a object oriented
environment, conforming to the latest CODASYL draft It consists of 10 steps,

as outlined 1n figure 2.3.

1. The first step performs a static analysis of the source code 1n order to
produce many representations of the code in form of tables for data fields,
for code blocks, constants and predicates Other connectivity tables aie
created 1n order to represent data references, control flow path, program and

data interfaces

2 In the second step, a specification repository 1s populated with all the
program description tables. The COBOL data records are converted 1n data
trees and data dictionary entries. In this step, user and system interfaces are
analysed and transformed into message format. Tables representing
program/object and program/program relationships are created from
information derived from data base, file accesses and sub-program calls A

Jackson type tree 1s created from the control flow structure

3 The third step 1dentifies the object types from the data structure Seveial
types of objects are created: WORK objects from the local data structure,
FILE objects from the data record structure, VIEW objects from the database
views; INTERFACE objects from the map and record structure,
PARAMETERS objects from the linkage storage structure The output 1s an

object catalogue linking any type of object and 1ts attributes

4 The fourth step examines the accesses to the database files in oider to

18

Chapter 2 a review of existing techniques

10.

recognise the relationship between objects via access sequences The output
at this step is a relationship table between the objects based on their access

sequences.

In the fifth step the data item description is completed with information on
the data usage. The references to a variable are collected from the tables

produced in the previous steps and the data dictionary is updated with this

information.

In the sixth step, the procedural instructions are coupled with the data
elements they set or alter. If a statement accesses to several variables, then
the statement is duplicated in order to update the information relative to all

the data items.

In the seventh step, the data flow between objects is traced in order to
identify those objects from which any one object derived data either directly

or indirectly.

In the eighth step, the inheritance relationships are examined by marking all
the attributes in the form of fields in the super-ordinate object from which
values are inherited by a subordinate object. After this step, there are

pointers from all inherited data items to the subordinate classes which

require them.

The aim of the ninth step is the definition of the objects’ interfaces via the-

construction of import/export messages. A message is the list of all the
attributes required by an object from another object. The attributes to be
passed as parameters are placed in the message - export for the sending

message, receiving for the receiving object.

In the final step, the new code is written in object oriented COBOL from the

intermediate design language.

19

Chapter 2 a review of existing techniques

Procedural
COBOL

1| 2
Static Inverse Proceduraﬁ
Analysis Transformation Rep051tory/
Objects
3 Identification ObjeCtS

Access Path
4 Analysis —— Objects Accesses

5 Digglggfge Data References

Relocation
6 of Operations [Methods

7| B3 FloY L Object States

I

D Del
8 P mniyers *O"—— Inherited Attributes

e

Data Excange
o] Analysis Messages

I 10
\
@poggtory L___[Class f 00

[Generation

\ COBOL ,

Figure 2 3 - REORG reverse engineering process

The output of this method 1s a program structured in a hierarchy of classes,
one for each extracted object Each object using or passing data inherited from
the super-ordinate class declares these data 1n the PUBLIC-STORAGE
SECTION. Local data are declared in the PRIVATE-STORAGE SECTION The
PROCEDURE-DIVISION 1s partitioned into a series of methods There are
methods allowing to operate on encapsulated objects 1n order to perform
operation as CREATE, DELETE, SELECT, UPDATE, STORE etc There 1s also a

section of attributes altered or set by an event

Unfortunately, 1n a large system, 1t happens that the method has to be
performed several time - one for each program unit within the system This may
lead to the production of many variants of the same class, since the same data
object can appear in different programs, and the method creates the classes

encapsulating all the attributes and the operation of a particular object After the

20

Chapter 2 a review of existing techniques

application of the REORG method to each program unit a process of merging on
different variants of the same class must be performed by a software engineer

using application domain knowledge.

2.2.4 Alternative Approaches to Migrate Legacy Information

Systems

An alternative to moving an existing software system from the native
environment is to encapsulate it in a wrapper [W95]. A wrapper' 1s an
intermediate component, interacting with legacy components by message passing
It is no more than a new object oriented part of the system composed by one or
more large objects whose methods are the menu options of the old system, with

the difference that they respond to the received messages.

It is very well known that small grain objects are more reusable that the big
ones. Unfortunately, most legacy information systems usually deal with
irreducibly large-grain objects. In these cases, a special class of wrappers might
be used, the object request brokers (OBRs) are spémﬂcally aimed to deal with
such a kind of coarse grain reuse. Sneed [S96,] individuates different levels for
software encapsulation, analysing each of them in a practical approach. The
OMG’s CORBA (Common Object Request Broker Architecture) is a wrapping
technique allowing access to the legacy code left on a mainframe to provide
services to the clients on the peripheral. “CORBA is becoming a world wide
standard for accessing data and objects in a distributed computer network and

for exchanging messages between objects on different computers” [S964].

In these types of approaches, the software engineer has to deal with tricky
data management problems. Sometimes, it is necessary to duplicate data or to
share data between the legacy and the new part of the system. In order to avoid

inconsistency, Graham [G94] describes four possible strategies.

1. The tandem or handshake strategy keeps a double copy of the shared data,

* The term has being coniated by Wally Dietrich in the 1989 Many authors consider his
intervention [DGN89] in the Conference on Object Oriented Programming System,
Languages and Application as “an original source on the object wrappers”)

21

Chapter 2 a review of existing techniques

one in the old part of the system, and the other within the wrapper Of course
the effort i1n keeping their integrity requires frequent operation of updates and
retrieves among the shared data For this teason 1t 1s advisable only when the

amount of shared data 1s reasonably small

2 In the borrowing strategy, all the data remain 1n the old part of the system,
and the wrapper “borrows” (copies) part of them when 1t needs them In this
case some further messages from the wrapper have to handle the data updates

within the old part of the system

3 The take-over strategy simply copies the data into the wrapper, and each data
access 1nvolves messages to and from the wrapper, thus-increasing the

complexity enormously

4 The most promising way to deal with problems of inconsistency and of
efficiency 1s the translation strategy Of course, it requires a bigger effort 1n
translating the original design of the legacy information system to an object
ortented model The application of this method 1s favourite 1f the legacy
information system has been developed with a technique such as stepwise
refinements around a critical data structure, because all the these structures
and the programs using them will naturally migrate to the objects of the new

system

The data-centred translation 1s a refinement of the translation strategy It
uses an approach based on the accesses types, by reverse engineering the data
model, thus allowing the creation of a CRUD (Create, Read, Update, Delete)

matrix to organise the legacy information system around the data structure

2 3 Processes of Reuse Reengineering

For all the considerations above, 1n the last few years there has been an
increasing interest in the processes aimed to redefine the organisation of existing
systems (even 1f they are not legacy yet) in order to use powerful theories,
techniques and technologies both to design and implementing reusable software

components and to dispose repositories of “spare parts” elected from existing

22

Chapter 2 a review of existing techniques

software components The main issue is the creation of a culture of reuse,
considering the process of development of a new system as an activity of
retrieval the appropriate software components in apposite repositories This 1s

basically the idea expressed by the “Full-Reuse Model” of Basili [B90]

In spite the large number of paradigms prescribing or directly promoting
reuse, 1t is still difficult to find “catalogues of software components® that can be
reassembled in the development of new systems or in the adding of new
functionality to a maintained legacy information system. A ploneer approach in
this direction had been made by Ada [ADAS83], some software houses proposed
directly 1n the industrial production environment Ada software components
[B87,] Few years ago [P94] there was also a project to create catalogues of

software ntegrated circuits (software ICs) for object oriented languages

2.3.1 The Paradigm of Reuse Reengineering (RE?)

In a joint research project the “Dipartimento di Informatica e Sistemistica”
[CMV95] [CV95] of University of Naples and the “Centre for Software
Maintenance” of Umiversity of Durham [T94] [D95] defined a framework setting
up all the activities concerned with the comprehension and reengineering of a
legacy information system. The Reuse-Reengineering (RE?) paradigm [CCM94]
is mainly aimed to produce a set of reusable components from the existing source

code in order to populate a repository of modules to be reused.

The RE? paradi‘gm 1s articulated in five sequential phases, as displayed 1n
figure 2.4, each of which 1s fully i1dentified by the objects 1t produces It
1dentifies 1n the legacy information system a set of components each suitable to
implement an abstraction of an entity in the application domain The component
1s candidate to be transformed 1n a reusable software component After each
candidate has been transformed, so that its reuse is made easier, the repository 1s

organised such in a way that the retrieval of suitable software components in the

repository 1s made as easy as possible

23

Chapter 2 a review of existing techniques

._] ___l Candidature L N Election J ‘l

Qualification
=
= =
Search and) 7 [Crassitia =
earch an RaR assification H
Display - and Storage | ~ E “

Figure 2.4 - The Reuse Reengineering (RE?) Paradigm identifies in legacy source code a
set of software components each suitable to implement an abstraction of an entity in the
application domain. Each component is candidate to be transformed in a reusable module.
After that each candidate has been transformed such that its reuse is made possible, the
repository is organised such in a way that the retrieval of suitable software components in
the repository is made as easy as possible.

A REZ' pfoc‘ess can be outlined into five phases.

e The candidature phase receives as input the existing source code and
produces as output a set of software components candidate to implement the
abstraction of an entity of the application domain. This phase groups all
those activities to analyse the source code and all those able to identify the
software components representing an abstraction of an entity of the

application domain.

e The election phase involves the activities that refine the candidate module
. _producing the reusable modules. It de-couples, re-enginéc_rs and generalises -
the set of candidate objects received as input from the candidature phase.
Usually this phase produces a further selection, not all the candidate modules -
are elected as reusable modules because of the complexity and costs of the

'applied reengineering techniques.

e The qualification phase is aimed to “qualify” the modules in the repository
by adding all the information assisting their reuse. Usually, this phase
contains a documentation phase defining a template allowing to represent the

functional features of the module and how it might be reused.

e The classification and storage phase are a set of activities supporting the

retrieval of a suitable reusable module by classifying it depending on a

24

Chapter 2 a review of existing techniques

reference taxonomy In this phase the repository 1s organised and populated

with the selected modules

e The search and display phase groups together all the activities setting up a
front end user interface to interact with the repository system The aim 1s to
simplify the user’s work 1n navigate through the repository system with the

help of the visual languages, for example

The RE? project 1s mainly concerned with the first three phases in the
paradigm, and does not address the last two These later two phases are related
to the setting up of the environment to support the reuse of the modules rather

than to the extraction of these modules from old systems.

For each process of reverse engincering in the RE? paradigm there are
different activities aimed at different goals For example the ones related to the
definition of the global goals of the entire reengineering process, and the ones
defining the requirements of tools, methods and methodologies related with the
extraction of information from the source code and to the abstraction of this

information.

Particularly, the distinction of each process is due to the activities defining
the templates representing the information extracted through the analysis of the

modules, and the activities related to the representation of the abstraction of the

extracted information.

Candidature Phase

The activities in the first phase can be subdivided into three sub-phases, as

shown in figure 2.5.

Candidature

Candidature » Reverse Cniterion
Criterion Englneermg| > Application

Figure 2 5 - The distinction of the activities 1n the Candidature phase leads to subdivide it
in the sub-phases of “Candidature Criterion”, “Reverse Engineering” and “Criterion
Application™

25

Chapter 2 a review of existing techniques

In the first sub-phase, after having sketched the aim of the reengineering
process by defining a template of the abstraction features of the objects to be
searched in the existing code, the more suitable form of program representation
to support the research of the defined abstraction has to be differentiate. This
phase, also defines the algorithms acting on that program representation, able to
identify the software components realising these abstractions. Those algorithms,

called candidature criterion, give their name to the whole phase.

The reverse engineering sub-phase performs a reverse engineering process
in order to extract a set of software components from code and makes up an

instance of the model defined in the previous sub-phase.

The criterion application phase applies the candidature criterion to an
instance of the model, thus producing the set of software components that can be
candidate for reuse. Note that the proposed software components are not yet

reusable modules.

The candidature phase also includes some reengineering activities
manipulating the level of functional abstraction of the modules. Particularly,
interventions realising the decoupling of the components from the environment
are typical of this phase. Typical operations of this intervention are the removal
of any reference to global variables and, if there is sharing of code, the activation
and using of external software components and the mechanism of code protection
from undesired accesses. As these processes produce modules at an higher level

of abstraction, they can be classified as generalisation process.

Before the election phase a concept assignment process [BMW94] is
performed in order to select the subset of modules matching with the entities of

the application domain.

Election Phase

The activities of the election phase can be organised into three sub-phases,

as shown in figure 2.6.

26

Chapter 2 a review of existing techniques

Election

/\

Template _[b[Decoupllng —;;a»‘ Clustering '

Definition

Figure 2 6 - The distinction of the activities 1nto the election phase leads to the
subdivision of the phase 1n the sub-phases “Template Definition”, "Decoupling”,
"Clustering ”

The template definition sub-phase draws a general template of a module 1n
order to reengineer the reuse candidate module Each candidate module should
match as much as possible with the template. It 1s based on key features such as
information hiding and all the other object oriented features of the used
programming language. In general, the template gives the resources visibility
that can be exported from the module, but should have a protection mechanism

against the access to the non-exportable resources

In the decoupling sub-phase, reverse engineering operations decouples the
software components from the external environment, 1.e., to split the connection
with the old system’s components that do not belong to the same reuse-candidate
module. Only at this stage, the clustering sub-phase organises the clustering of
the software components depending on the defined template , 1.e for producing

the reusable module.

The election phase also includes some generalisation processes aimed to
increase the generality of functionality implemented by the reuse-candidate
module by transforming the type of this functionality to a type that the user can

instance when the module 1s reused

At this stage, an analysis is performed concerning the effort and the costs of
the reengineering process aimed to decouple and to cluster the candidate sets
This analysis, with the concept assignment process executed in the candidature

phase, might be the basis of the validation of the candidature criterion [CFM93]

Qualification Phase

The activities into the qualification phase can be subdivided into the

27

Chapter 2 a review of existing techniques

subphases shown in figure 2.7.

Functional Testing and
Specnfcatlon_§> Reverse rSpecm%atxon
nglneermg Fixing |

Figure 2 7 - The distinction of the activities into the qualification phase leads to the
subdivision of the phase 1n the sub-phases “Specification Model”, "Functional Reverse
Engineering”, "Testing and Specification Fixing”

The specification model sub-phase defines a representation formalism to
represent the functionality of each module, and its possible use. The second
sub-phase realises a functional reverse engineering process to extract the
specification coherently with the formalism defined. The complexity of the
entire qualification phase mainly depends on the complexity of the reverse
engineering techniques needed to define the functional and interface specification
formalism. In the final subphase, a functional testing is performed, and the
specifications are fixed within the defined template. The documents produced in
the candidature phase and the documentation of the legacy information system, 1f
existing, can help in the qualification phase to reverse engineering the reusable

modules to produce their specification.

The RE? paradigm includes in it an unique model both of the production of
new systems.and the maintenance and the evolution of existing systems. Each
maintenance or evolution intervention is mainly the retrieval in the repository of
those components that (whether directly or with a small effort) can substitute the
components to be maintained or can add to the functionality required by
evolution. Developing a new system is reduced to retrieving software
components suitable to the requirements of the new system within the repository

and to their subsequent assembling.

28

Chapter 2 a review of existing techniques

24 Classes of Candidature Criterta to Decompose Legacy

Information Systems

A gieat amount of work has been carried out around the RE? paradigm
prominently as regards the candidature criterion within the candidature phase A
successful RE’ process has to look for abstractions implemented in the legacy
information system The abstiactions can be of different natures depending on
the focusing of the system on algorithms, or on data structure, o1 on contiol
stiucture [CCM94] Obviously, the candidature criterton must be tailored
according to the type of abstraction one 1s looking for as the type of abstraction
to be singled out deeply affects the reverse engineering process needed to
produce the model to apply the criterion and the definition of the candidatuie

criterion 1n itself

Functional Abstraction

The high-level languages present primitives (procedures or functions)
implementing functional abstraction, 1e procedure-like software components
focusing on the algorithms A notable example of search of functional
abstraction 1s that from Page-Jones [P80] It takes as input a program written in
a procedure oriented language and uses the information-cluster’> by determining
which routines require the use of common data and then refines the 1outines

around that data

The search for functional abstraction can be conducted on those components
at different abstraction levels It 1s clear that the operation of 1solating reusable
modules within code that was not designed for the reuse - often this discipline 1s
called “Software Scavenging” - presents difficulties concerning the quality of the
1solated objects Sometimes some operations manipulating the abstiaction level
of the software components implementing functional abstiactions help to achieve
higher quality candidate modules The operations are i1solation aggregation and

generalisation

29

Chapter 2 a review of existing techniques

The operation of isolation consists of the decomposition of a software
component implementing more than one abstraction into several module each
implementing only one abstraction, 1 e one algorithm performing only one
function, thus making possible to reuse 1t The search for functional abstraction
can lead to either vertical or horizontal 1solation An example of vertical
1solation 1s that of program slicing [W82] [W84], as each one of the 1solated
pieces of code is a set of statements that lie on the same dynamic path of the
components On the other hand, approaches such as the primes [FW86] [FK87]
search for functional abstraction horizontally, 1 e each one of the pieces of code

1solated 1s a block of the component’s text

The isolation by primes assumes that the program 1s structured In this case,
a reverse engineering process in the candidature phase should produce the nesting
tree [CD91,], 1 e. a tree showing the nesting relationships among the primes (the
sub-trees) A nesting tree can easily represent a structured procedure-like
component The isolation can be performed on the primes by searching the
primes each of which represent a function In order to recognise a function in a

nesting tree, an analysis on the data flow to and from the sub-tree 1s performed

The operation of aggregation groups and links the components
implementing different subpart of an abstraction at an higher level It guarantees
that the candidate modules are low-coupling and implement abstraction at the
highest level 1s possible, thus providing high functional cohesion [CY79] among
the modules candidate to be a reusable module An analysis on calls and the
inter-procedural data flow 1s required, thus showing the types of the relationships

among the components

In literature, most of the approaches develop a search of functional
abstraction by aggregating the components by representing the program as a
directed graph with the decision as nodes and the branches as edges Using this

representation then a large number of classical graph theory works can be used

5 Parnas[P72;] defined an information-cluster as a set of routines that have exclusive right of
access to a particular data item or set of data 1items

30

Chapter 2 a review of existing technigues

The first work focusing on control flow analysis was by Waters [W88], Muller et
al [M90] and Bush [B85] They split complex graphs into sub-giaphs by finding
the points of minimum 1nteiconnection Colbiook [C90] has proposed another
apptoach focusing on data flow analysis, and this has been enhanced by Lano et
al [BHLO93] and Kozaczynski [EKN91] Many works refer to the creation and
manipulation of a structure chart derived from a call graph [CDM90] [H77]
[CCD91] [CC92] The most elementary example 1s the search within a call graph
of notable sub-graph, as strongly connected sub-graph, trees, one-in/one-out
sub-graph Other reverse engineering processes transform a call giaph into a
tree, by collapsing some highly connected sub-giaph into a single node [BCD92]

In the section 2 5 several example of these approaches will be presented

The operation of generalisation 1s to make the software components at a
higher abstraction level, thus increasing their reusability A classical example of
generalisation 1s the parameterisation of some values 1n order to allow the user to
instance a module before reusing 1t An example of this low level
parameterisation 1s the parameterisation of the length of an array in a module
using 1t Higher level form of generalisation geneialises the type of information
that a function handles 1n order to have such a type of generalisation, the
procedure-like component implementing the generic function 1s recorded as a
skeleton The designer has to instance i1t to the required type in order to reuse

the component

Data Abstraction

The abstractions essentially referring to data structures and data types aie
classified as data abstraction The candidature criteria to search for these
abstractions can focus both on the data structures or types and on therr generic

versions, thus leading to four directions for developing candidature critetria

searching for data abstraction

e The Dara Structure Candidature searches those sets of data 1tems and
procedure-like components implementing a data structure Some authors call

it an object The data items belonging to types built into the language,

Chapter 2 a review of existing techniques

implement the internal state of the object that can only be accessed by calling

the procedure-like components.

e The Generic Data Structure Candidature searches those sets of data items
and procedure-like components implementing an object to be possibly
generalised. This 1s the case of a structured object whose access operation do
not depend on the type of the components and, thus it is possible to choose

the type of the components in a finite set of types.

e The Abstract Data Type Candidature searches in the software system a set of
software components (data items, user-defined data types, procedure-like
components, etc.) implementing an abstract data type®. Some authors call it a
class [C89]. An instance of the class is a set of parameters representing a
data on which the services of the abstract data types are allowed. An abstract
data type must allow a designer to declare several objects and access them by
calling the procedure-like components. Sneed [S94] claims that the
decomposition technique by abstract data types are the most difficult of all
remodularisation approaches and that “it i1s practically impossible without

tools”.

e The Abstract Data Structure Candidature searches in the software system for
a set of software components that implements an abstract data type that can

be possibly generalised.

For traditional languages the reverse engineering activities ‘In the
candidature phase produces reuse candidate modules implementing an object or a
class. A further process of generalisation can obtain a general object or an
abstract data type. The reverse engineering process to generalise a class from an
object extracted from existing code cannot be fully automated [CCM94], as the

knowledge of an domain expert software engineer is required to recognise the

® With abstract data types as defined by Dahl and Hoare [DH72], a programmer can consider
a type as the set of all the operation that are applicable to variable of that type Early work
on the use of abstract data type approach in designing modular program in forward
engineering was done by Parnas [P72,] ’

32

Chapter 2 a review of existing techniques

links’ between the entities in the application domain with the code components

A very interesting survey on existing type theories is given by Danforth and
Tomlinson [DT88]. The authors explore the way in which these theories are able

to represent the objects and their interaction.

Control Abstraction

The abstractions referring to politics are classified as control abstraction
[t meets the needs for co-ordinating concurrent processes and implementing the
techniques to manage shared resources The RE” project does not address control
abstraction because it deals with existing software written 1n traditional
languages that usually do not express concurrence explicitly, but manage it

through calls to the services of a system kernel [NS87].

A good overview on the control abstraction methods actually in use 1s due to

Poulin and Tracz [PT94].

2.5 Graph Theory Approaches

Usually, much of the effort in identifying objects in traditional languages
promote reuse by defining a candidature criterion whose reverse engineering
activities search for data abstraction within the legacy code. The derivation of a
module implementing an abstract data type usually works similarly 1f 1t 1s not
just the same technique that, after having extracted the objects applies a further

process of generalisation in order to obtain the abstract data type

Both of these techniques makes use of reverse engineering approaches based
on representing the program as a graph, thus gaining from a great amount of

knowledge regarding the existing classical theory on graph.

The aim of this section is not to provide an exhaustive overview on all the
existing methods proposed as candidature criteria for the reuse reengineering

method but only those approaches to extract objects from a legacy information

7 Some times those links are very weak, for cxample they can be only recognisible for the

Chapter 2 a teview of existing techniques

system that relate directly to the new technique presented later 1n this thesis All
the work presented propose candidatuie criteria searching to 1solate meaningful

modules by using different featuies of graphs

251 The Call Dependencies of Cimitile and Visaggio

The technique defined by Cimitile and Visaggio [CV95] transforms a Call
Directed Graph CDG 1nto a dominance tree [H77], and then analyses the
modified program representation 1n order to interpret the dominance relationships

of this graph as functional dependency relationships

The technique uses the program’s Call Directed Graph CDG=(N, E) 1In a
CDG, N=PP 1s the set of all the procedures and functions The main program 1s
denoted by s, and obviously {s}ePP The relation E 1s the Cartesian relation
PPx(PP-{s}), showing the presence of an activating statement within proceduies
A direct consequence of recursion between the procedures of the program 1s the
presence of strongly connected sub-graphs 1n the CDG In this case all the
sub-graphs containing at least one cycle involving all of i1ts nodes can be

collapsed 1nto a single node As a result, the CDG turns into a Call Durected

Acyclic Graph CDAG

According to Hetch [H77], a procedure p, 1n a CDAG dominates a procedure
p, 1f and only 1f each path from s to p, contains p, A procedure p, directly
dominates a procedure p, if and only 1f p, dominates p, and all the piocedure
dominating p, dominate p,, too A procedure p, strongly and directly
dominates a procedure p, if and only 1f and only 1f p, directly dominates p, and

P« 1s the only procedure calling p,

The reflexive and transitive closure of the dominance relation on the CDAG
1s the direct dominance relation, representing by a tree called the Direct
Dominance Tree DDT, whose root 1s the main procedure s The Strong and
Direct Dominance Tree SDDT 1s obtained from the DDT by marking all the edges

representing the strong and direct dominance relationship The set of sub-tiees

variable name or for casual comments within the code [B89]

34

Chapter 2 a review of existing techniques

of a SDDT can be divided in two subsets the subset MET of the sub-tiees
containing only marked edges and the subset UMET of the sub-tiees containing at
least an unmarked edge The Reduction of the Stiong Direct Dominance Tiee
RSDDT 1s a tree obtained from the SDDT by collapsing each sub-tiee in MET 1nto

a unique node

Four rules have been proposed to aggregate procedures into reuse-candidate
modules and to 1dentify the wuses and 1s compose of relationships [JGMI1]

between them

1 The set of procedures represented by a strongly connected sub-graph of a
CDG 1s a candidate to constitute a reusable module The piograms units
associated with the modules 1s extracted to constitute a candidate module for

reuse

2 By examining a SDDT, the set of procedures represented by the nodes of a
sub-tree teMET 1s a candidate to constitute a reusable module represented by

the root of ¢

3 The set of procedures tepresented by nodes of a sub-tiee teUMET within a
SDDT linked to the root of ¢+ by a marked edge 1s a candidate to constitute a
reusable module This module 1s related with a wuses relation to the modules
represented by the nodes in ¢ which are linked to the root by an unmarked

edge

4 Each of the marked edges of a RSDDT 1s a candidate to constitute an
1s_compose_of relationship between the modules 1epresented by the that the

edge links, while an unmarked edge represents an uses relationship

The dominance tree can be used as basis of a method to search for functional
abstractions 1n legacy information systems written 1n procedural languages and
designed using modularity and the functional decomposition In order to be
modular, a system must be segmented in a hierarchy of code segments
- corresponding to the elementary operation of the program - each with a single
entry and a single exit The modularity can be obtained by targeting

restructuring intervention by the software engineer Cimitile et al [CFM93]

35

Chapter 2 a review of existing techniques
p g q

confirmed the validity of the dominance criterion by experimenting 1t both 1n

Pascal and in COBOL [CDDF94] environment

25652 The Algorithms of Liu and Wilde

Liu and Wilde proposed two algorithms [LW90] [LOWY94] based on an
analysis of global data and data types The aim of the method 1s the retrieval of
candidate objects O=(F, D, T), where F 1s the set of all the program units, 7 and
D are the sets of the data types and data items, respectively Each of the sets can
be empty The algoiithm based on global data 1s dwindled into three steps as

listed below

Step I Definition, for each global variable x of the set P(x) of the routines

directly referring x

Step 2 Supposing that each P(x) 1s a node 1n a graph, a graph G=(V E) 1s then
constructed in which ¥ 1s the set containing the defined P(x) and an
edge between two nodes P(x,) and P(x,) denotes that the sets P(x;) and
P(x,) ate not disjoint, 1 e P(x,)NnP(x,)# Formally

V={P(x) | x 1s shared by at least two routines}

E={(P(x)), P(xy)) | P(x,)nP(x,)%D)}

Step 3 If strongly connected sub-graphs can be recognised in the graph as
defined above, then they are regarded as candidate objects Each of
them 1s composed of those units and relative global variables Formally,
by denoting a strongly connected component with C=(V_, E_), the objects

extracted from 1t can be represented as a tuple (F, 7, D), where

P 6

P(x)er,
=g
p= Tix
P(x)el,
In this case the role of the reverse engineering technique 1s to set up the

instance of the module to apply the candidature criterton by producing the set

P(x) and the above-defined graph This criterton has been applied with

Chapter 2 a review of existing techniques

significant results to conventional programming languages such as C, Ada,
COBOL and Fortran, showing that the production of both the set P(x) and the
graph can be totally automated. Unfortunately, “this method in many cases can
produce objects that are too big” [LW90] and there 1s the necessity of the
software engineer’s intervention in order to resolve conflicts and provide

knowledge about the application domain to improve the candidate objects

In order to obtain a candidate of a size more suitable to fit the aims of the
reuse reengineering techniques, slicing techniques can be used to search for the
set of slices SP(x) by using each global variable x to define the slicing criteria

for SP(x).

The second algorithm from Liu and Wilde [LW90] 1s aimed to candidate a
module implementing the abstraction of an abstract data types. This algorithm
deals with ordered relationships among the user-defined types The user-defined
type ¢, is assumed to be a sub-type of ,, denoted by r,«z,, 1f f, is used to define 1,

- in.this case 1, is a super-type of f,. Obviously, 1f #,«t,, and ¢,«t;, then 7«14

Once the set of the user-defined types has been ordered, the method exploits
the classical work on graph theory by representing the program as a bipartite
graph® as a couple G=(N, E), where the set of nodes N is partitioned in two
subsets, N, and N, denoting the procedure-like components and the user-defined
types, respectively, and the set of edges E contains edges from a procedure-like
component ¢ to a type ’t, thus allowing to represent the ré}ationships among
user-defined types by showing how types are used to declare formal parameters

of the procedure-like components.

This graph is then simplified by eliminating the edges (¢, ¢) for which an
user-defined type ¢, exists such that r«#, and (c, ¢,) is an edge in the graph Each
one of the connected sub-graphs, possibly recognised in the above graph, defines

a candidate to create a reusable module implementing a class.

Figure 2.8 shows an example of a bipartite graph

® They belong to the family of interconnection graph as defined by Calliss [C89,]

Chapter 2 a review of existing techniques

Figure 2 8 - An example of bipartite graph G=(N, E), where N=(N,UN,), with
N ={P, O, R, S, T} and N,={a, b, ¢} The set of edges E={(P, b), (P, c), (O, a), (Q, ¢,
(R, a), (S, b), (T, b)} contains undirected edges going fiom an element of one of the two
subsets of N toward an element of the other subset

253 The Algorithm of Dunn and Knight

The algorithm presented by Dunn and Knight [DK93] exploits expert
systems to 1solate the reusable modules The system 1s the interaction of three
functional elements, a C parser that generates the abstiact syntax tree from C
souice code, a Prolog interpreter 1dentifying the candidate components fo1 ieuse
and an 1nteractive interface allowing the communication within the system The
expert system uses a knowledge base containing knowledge about the application
domain and the design of the software that can be examined, knowledge about the

target domain, metric definition and reengineering knowledge

The heart of this system 1s the phase performed by the Prolog interpreter
By the analysis of the call-graph, 1t searches the reusable components among
those invoked more than once Other reusable modules are candidate among the

strongly connected components by analysing various kinds of coupling, when

e there 1s data coupling when the program components share formal

parameters, or, more generally, simple data ,
e there 1s common couphng when the program components share global data
e there 1s external coupling when the program components shaie external data,

e there 1s common coupling when the progiam components share data uscd for

control

38

Chapter 2 a review of existing techniques

The analysis of these forms of coupling between the program components
leads to the candidate for the reuse being those components not connected The
components loosely bound present high degree of reusability, as they do not
depend on other function or local data within the program A critical point 1s to
determinate how the restriction of the above coupling characteristic can be
relaxed such that the sets of program components with varying coupling degree

can be identified as a candidate for reuse.

Another method to isolate software components as a candidate for possible
reuse identifies those routines and function and the global data items that can be
grouped to form an abstract data type. To this aim the method uses a bipartite
graph, where the set of nodes N is partitioned in two subsets, N, and N,,
representing routines to global variables and the set of edges E contains edges

specifying the “uses” relations of the global data within the routines.

The algorithm performs a depth-first traverse of the graph looking for
strongly connected components; each component is regarded as a candidate
object.

An evaluation of the use of this expert system on 5 public-domain software
systems written in C language was done with satisfactory results. The evaluation

criteria involved:

o practicality (how useful a part would be in an application either in the same

applicatién domain or in other);

o reusability (how much effort is necessary to reengineer a part in order for it

to be reasonable to be candidate for the reuse);

o understandability (how difficult it is to comprehend what a reusable

candidate does).

2.5.4 The Algorithm of Canfora et al

The algorithm presented by Canfora et al [CCM96] improves on the
previous ones of Liu and Wilde [LW90] and Dunn and Knight [DK93], and

enables the identification of objects within a legacy information system with less

Chapter 2 a review of existing techniques

human intervention

As 1n the previous methods, the method proposed by Canfora et al
represents the program as a bipartite graph where the two sets of nodes N, and N,
represent procedures and global data, respectively, and each edge represents the
reference of a data items within a procedure For each node neN, the sets

PreSet(n) and PostSet(n) are defined as
PreSet(n) = {y | yeN A (y,n)eE},

PostSet(n) = {y | yeN A (n,y)eE}

Informally, the set PreSet(n,), where n, 1s a node in N, (1 e a data items),
represents the set of all the procedure (nodes », in the set N,) referencing n,. the
set PostSet(n,), where n, 1s a node 1n N, (1 e a procedure), represents the set of
all the data items (nodes n, 1n the set N,) referenced by n, Note that, coherently,

for each n,eN, the set PreSet(n,)=%, and for each n,eN, the set PostSet(n,)=J

The bipartite graph representing the relationships between data and
procedures within the program establishes when a sub-graph has a strong degree
of connectivity, thus representing the routines and data they access hikely having
the behaviour of an object 1n the application domain. Within this method, an
iterative algorithm based on some indexes measuring the variation of internal
connectivity’ of the graph resulting in the use of P to generate a new cluster is
presented. At each step of the iterative algorithm, the procedure P associated
with an index “sufficiently high” 1s used to cluster P, all data 1t accesses, and all

the procedures accessing a subset of that data

Unfortunately, there usually exist procedures referencing data items of
different objects, thus creating a link between the corresponding sub-graphs The
connections originated by this undesired links are of two types coincidental and
spurious'®. The coincidental connections are defined as the result of routines

implementing more than one functionality, each of them logically belonging to

® The “internal connectivity” of a subgraph 1s expressed by the ratio between the numbe: of
intetnal edges 1nto the subgraph and the number of edges wjth only one veirtex n the
subgraph

40

Chapter 2 a review of existing techniques

different objects A procedure generating coincidental connections can be split
on the basis of the groups of related data they refer to The spurious connections
are created by procedures accessing the supporting data structure of more than

one object 1n order to implement system specific operations

Both the coincidental and the spurious connections make difficult the
1dentification of strongly connected sub-graphs and thus the 1solation of diffeient
objects The algorithm of Canfora et al [CCM96] partially overcomes the
problem of 1dentifying the undesired links by computing some indexes IC(P) and
AIC(P), for each procedure P, in each 1terative step The IC(P) index defines the
internal connectivity of the sub-graph generated by clustering together all the
data 1items P accesses and all the procedures only accessing a part of these data

1tems

Z# {P, 'P, € PreSet(A) A PostSet(P) < PostSet(P)}

IC P — A ePostSet(P)
(F) Z#{Preset(A)}

A ePostSet(P)

The 1ndex AIC(P) measures the variation of internal connectivity of the

bipartite graph resulting in the use of P to generate a new cluster

#{P[Postset(,) = {4}
AIC(P) =1C(P) - Aepgs:et(l’) #{Preset(4)}

The routines having an index AIC(P) sufficiently high are used to generate
cluster around P"

If the value of the index relative to P 1s lower than a value chosen as a
threshold value, then P 1s considered to introduce a coincidental o1 spurious
connection, and 1t 1s sliced or deleted, according to the objective of the

reengineering process

The algorithm of Canfora et al [CCM96] 1t 1s given 1n figure 2 9 below

' As defined by Cimitile et al 1n [CDDF97]

41

Chapter 2 a review of extsting techniques

WHILE THE GRAPH IS NOT IN THE FORM OF A SET OF ISOLATED SUB-GRAPHS DO
FOR EACH NODE P ePROC DO
COMPUTE INDEXES IC(P) AND AIC(P)
END FOR
COMPUTE THE STEP VALUL STV, AND THE SETS MERGE AND SLICE
MERGE={P | AIC(P) > STV }
SLICE={P [0 < AIC(P) <STV }
INTERACTS WITH HUMAN EXPERIS TO DLLETE FUNCTIONS FROM THE GRAPH
AND/OR TO MOVE FUNCTION FROM THE MERGE 70 SLICE AND VICE-VLRS 1
FOR EACH FUNCTION PeMERGE DO
CLUSTER THE SUB-GRAPH IDENTIFIED BY P INTO A SINGLE NODE AND UPDATE THE GRAPH
END FOR
END WHILE

Figure 2 9 - Algorithm presented 1n [CCM96]

The algorithm terminates when the graph 1s transformed into a set of
strongly connected sub-graphs Each sub-graph 1s composed of some data
representing the attributes of an object, and thus 1ts state, and some procedures

representing the methods of that object

The treatment of the spurious connections depends on the objective of the
reengineering process If the aim 1s the migration of the legacy system. then no
procedures can be deleted in order to not modify the functionality of the
information system When the aim 1s populating a repository of reusable
components, the routines accessing the supporting data structuie of moie than
one object are simply deleted, as their slicing produces methods of low quality'
The redevelopment of the information system, or the development fiom scratch of
a new 1nformation system in that application domain 1s thus supporfed by the
reuse of the software components extracted from the repository, and by the
extraction of knowledge about the real world entities 1n that application domain
The extraction of knowledge supports the phase of designing of the new

information system

" Canfora et al also suggest the use of a statistical filtering function to calculate a step value
up to which the variation in the internal connectivity can be considered noise and the
related routines have to be supposed to introduce noise connections

* Morteover, the evaluation on when slicing or deleting a proceduic also depends on the
system knowledge This step of human intetvention can by suppoited by an analysis of
code and documentation

42

Chapter 2 a review of existing techniques

2.6 Summary

Even if academic institutions and work environment agree that software
maintenance improves both productivity and quality in the development of new
software projects and in maintenance of existing system, at the current state of
the art there is still an inhibiting difficulty in acquisition of the reusable
components. This is the main cause that prevent a spread diffusion of reuse

concept in the working environment [CCM94], [B87,].

In particular, 1t is well known that the examination of legacy code can
support the population of a repository of reusable software components in a
cheaper way and in a shorter time [AF92] [DK93] [P91] than to develop them
ex-novo. As for as the building up of this repository, the Software Productivity
Consortium [SPC93] defines the concepts of domain engineering as a process to
develop a repository of reusable components for a given application domain, and
application engineering, as a process for the automatic assembling of the

reusable modules on the basis of the customer requirements®.

This chapter has focused on well known methods to reverse engineer legacy
information systems in order to help any intervention aimed to an evolution of the
code, also allowing the extraction reusable modules from the source code. Note
that the repository should be populated not only of modules as a fragment of code
abstracting entities - or a method of complex entities -in the application domain,
but of software components in general, including architecture components,
documentation, fragments of legacy code and any domain-related information that

can be reused in the developing of a new system in that application domain

" These two conceps are definet similarly in megaprogramming [CWW]

Chapter 3

Program Representations

The program representation plays a key role in the candidature phase of a
reuse reengineering process. An accurate survey of the program representation

forms can be found in De Lucia [D95].

In this chapter, a program representation suitable to fit our “object

isolation” method is defined. Some preliminary definitions are provided

Informally, code analysis is a generic term used to denote many
y y g y
programmers activities “where the primary emphasis is on examining a piece of
program code” [C89,]. In literature several forms of code analysis activities are
defined, each of them focusing on different program representations, mainly

depending on the aim driving the analysis process.

Data Flow Analysis

The control flow graph is a program representation used to perform a code
analysis both intra-procedural and inter-procedural in order to explore the usage
of the entities within the code. It is based on the concept of a flow graph
[ASU86] [H77] which is a directed graph G=(s, N, E) where N is the set of nodes,

E is the set of edges and s is a special node such that for each node » in N there

exists a path from s to n.

Particularly, a control flow graph is a flow graph whose nodes 1n N

44

Chapter 3 program representations

represent single-entry/single-exit regions of executable code' The node s
represents the main procedure The edges in E represent data flow between code

regions

The control flow graph helps to perform data flow analysis 1t can be used
to detect any anomalous variable usage [FO76,], [FO76,], [HHW76], [H86].
[HR88], [HR89] resulting by some previously undiscovered program errors Data
flow analysis 1s also fundamental for program slicing [W79] [W82] [W85] In
fact, after having decomposed the program into slices, the analysis of data flow
and control flow graphs [LR91] allows the determination of the dependencies

between different variables, and the removal of redundant statements from

program slices

Call Graph

In order to understand a program, it 1s important to view 1t from different
levels of abstraction. While the control flow graph depicts the program’s
structure at the statements level (as necessary for the program slicing), the call
graph provides meaningful information at an higher level The call graph is
based on a flow graph, too Particularly, in the call graph, the set E represents
the call dependencies between procedures Some forms of call graph use a
labelled flow graph (generalised program graph [C89,]): in this case, each edge

labels records information about the actual parameters 1n the calling statements

3.2 A New Code Representation

In this section, a new code representation 1s defined 1n order to simplify the
process of understanding the relationships generated by a common data accesses

between procedures implementing entities of the application domain

This new program representation 1s a variant of an inter-procedural call

graph [LPR91], providing information about data flow Since it 1s sensitive

' Depending on the aim of the data flow analysis, the region might represent a single
statement ot a large fragment of code

45

Chapter 3 program representalions

about the temporal sequence of the invoking statements and of data accesses, it

will be called “temporal graph” (TG).
The code representation involves three kinds of static analysis on the code-
e an analysis of the temporal sequence of the data accesses;

o an analysis of the relationships between the procedures (1n the following with
this name we denote the code fragments among them the candidate methods

will be elected) rise by invoking statements and their invoking relationships;

o the data accesses performed by a procedure into different fragments of code,

some information about the control flow.

The temporal graph 1is constructed by data analysis, presented in
section 3.2.1, in which the statements within the code are examined in order to
check the information about the data access by analysing how every single
procedure accesses data. In the section 3.2.2 the definitions concerning the

temporal graph are given.

3.2.1 Analysis of Data Access Type

Different actions can be performed on a data items [FO76,], [FO76,]. Our
aim is to distinguish through the analysis of the statements within the code,
whether a procedure accesses data to consult their value (reading access), and/or
to permanently modifying them (writing access). To determine how a procedure
accesses a data item, the statements referring the data item within the procedure

must be examined.

01 PROGRAM Example (Output),

02

03 VAR 1ntl, int2. INTEGER,
04

05 BEGIN

06 intl := 10

07 int2 = 1intl + 20

08 intl = 1nt2 - aintl

09 WriteLn (i1nt2- 5)
10 END. (*Example?*)

Figure 3 1 - Example of a simple Pascal [JK85] program Note that the statements 06 and
07 induct a data dependence of 1nt2 on intl as well as the statements 07 and 08 induct
a dependence of intl on itself

46

Chapter 3 program representations

Even though the statement <VAR 1intl, int2- INTEGER;> on line 03
references both data 1items i1ntl and 1nt2, 1t does not affect the data access
analysis, as 1t does not directly reference the two data items Statements such as
the declaration of a variable in FORTRAN, do not correspond to any operation on
the value stored in a data, they are a peculiarity of the programming language
However, in same cases, 1f the program 1s well designed, to each statement
indirectly referencing data 1items corresponds, within the procedure, an access to

the referenced data 1tems

The statement on line 07 reads 1nt1 without modifying 1t, as 1ts value 1s
only needed to evaluate the expression <intl + 20> Then, the statement
uses 1nt1l The result of this expression 1s assigned to int2, afterwards the
value of 1nt2 1s changed by the execution of the statement on line 07

Analogously, the statement on line 08 changes the value of 1int1l

Different situations can be distinguished in the data accesses of these two
statements Statements such as that on line 07 write the value of a data item
(1nt2 1n the example) from scratch, then they create int2 On the contiaty,
statements as that on line 08 write a new value 1n the data items (1ntl in the
example) depending on 1ts previous value In this case the statement

manipulates 1ntl Note that a statement can perform actions on more than one

data 1tem

In summary, the type of data accesses of a statement are

e data using,
e data creation,
e data manipulation

It 1s important to note that the analysis of data accesses also depends on the
structure of accessed data For our purposes, in the following, the data will be
divided 1nto two categories records and varitables The distinction between
variables and records depends on how statements refer to the data A data with
an elementary structure (involving only one level) 1s bounded to be a vartable A

data with a complex structure involving several levels can be considered either a

47

Chapter 3 program representations

record o1 a variable It 1s a variable if (and only if) no single statement diuectly
refers to any of 1ts elementary fields In other words 1f all the statements 1n all
the program components referring to the data aie interested in the entne data,

then the data 1s a variable

The distinction between variables and records 1s important 1n the analysis of
statements accessing the data in writing, in order to determine whether the access
1s elther a creation or a manipulation In the case of writing access to a records,
for example, if the statement refers the entire structure then the access 1s by
creating If the statement refers only to some elementary of the elementary
sub-fields, then the data operation 1s a manipulation, because the final content of

data partially depends on the previous value stored in the data structure

010900 01 NAME-CUSTOMER

011000 03 NAME
011100 07 QUALIFICATION PIC X(03)
011200 07 FIRST_NAME PIC X(15)
011300 07 SURNAME PIC X(15)
011400 03 BIRTH-DATE

011100 07 MM PIC 9(02)
011200 07 DD PIC 9(02)
011300 07 YY PIC 9(02)
011500 03 ADDRESS

011600 07 STREET PIC X(15)
011700 07 LOCALITY

011800 11 CODE PIC X(7)
011900 11 CITY PIC X(15)
012000 07 COUNTRY PIC X(15)

Figure 3 2 - Example of COBOL source program defining a record in the DATA DIVISION
If all procedures only access 1t by referring to NAME-CUSTOMLR, than 1t can be considered
a variable

Figure 3 2 show the definition of a COBOL record NAME-CUSTOMER
defined within the DATA-DIVISION Supposing that this record 1s part of a
database of an archive If a statement replaces the value only of the group of
elementary fields ADDRESS, the access cannot be considered a creation of all the
data item NAME-CUSTOMER as the value of the whole data partially depends on
the previous value of the execution of the statement, as depicting a data
manipulation In fact, within an application domain using this record, an upgrade
of this data item 1s due to the creation of a sub-field, and does not represent the

creation of the whole data, but 1ts manipulation

48

Chapter 3 program representalions

3.2.2 The Temporal Graph

The aim of this language-independent program representation is to simplify
the comprehension process of the relationships between two procedures created

by a common access to a data item.

The program representation is based on the control flow graph G = (s, N, E)
The set of nodes N is partitioned into three subsets of nodes: PN, RN and IN for
“procedure nodes”, “region nodes” and “information nodes™, respectively In
the following, the procedure nodes are represented by an oval, the region nodes

as rhomboid and the information nodes as a square with rounded corners.

A procedure node (in PN) represents a single-entry / single-exit region of
executable code (for example, a section in COBOL). The special node s
represents the program’s entry. Note that, by definition of control flow graph,
each procedure node has at least an invoking edge. Each procedure node has a
unique entry point, and each edge is connected to the entry point of the procedure

it invokes. The invoking edge towards s has a different shape.

From the definition of control flow graph, for each procedure P, in PNc/,
it is assumed there exists at least one path from s to P,. Differently from the
control flow graph, for each node P, and P, in PN, there is an “invoking edge” e
in £ between P, and P, for each statement in P, invoking P,. Figure 3.3 shows

part of a temporal graph where procedure P, invokes P, more that once.

Figure 3 3 - Between P, and P, there are two invoking edges The sequence of the
invoking statements i1s the sequence of the edges anticlockwise

49

Chapter 3 program representalions

An information node (1n IN) with an nvoking edge from P, summarises
information about the accesses of P, on global data in a portion of code of
procedure P, Each statement involving a data item A 1n that portion of code 1s
examined 1n order to set the corresponding access as “C(A)”, “M(A)” or “U(A)”
(creation, manipulation or use, respectively) Note that from each procedure

node there can be several links to information nodes, but not consecutively

The technique of walking the temporal graph involves visiting each node
before 1ts sons, following all the edges, starting from the left of the entry edge
(the starting edge for s) and continuing to the right If the visited node is a
region node, then only one of the two set of edges starting from 1t 1s followed
Each traverse of the graph represents a different sequence of actions A “path”
between two nodes P and Q within the temporal graph 1s a walk following the

rules above starting from P and ending in Q

Between two consecutive links to procedures and/or region nodes only one
information node can be placed Due to the Iimitations of static analysis 1t 1s

possible to have an access performed under a condition statement For example,

in the statement®
IF <condition> THEN <“write A”> ELSE <“read A”>

the access to data A 1s considered as a manipulation, and the corresponding action

1s set as “M(A)”

When a procedure executes an invoking statement inside an IF statement
then from the procedure node, there i1s an edge to a region node in RN Fiom
each region node one or two sets of edges can start, each set associated with a
“T” (true) or “F” (false) value Each set can contain edges to proceduie,

information and/or region nodes The region nodes are labelled with “*” 1f the

invoking statement 1s 1terated (1 e 1f the corresponding statement 1s 1n a loop,

1 We will omit the terms “procedure”, “information” and “region” when this does not lead to
confusion

' The “write A” and “read A” 1s for statement accessing A by writing (creating or
manipulating) 1t or by reading (using) 1t, respectively

50

Chapter 3 program representalions

such as a WHILE, a REPEAT...UNTIL, etc) depending on the value of var 1.
Note that, if the loop depends on a variable, as in the situation shown in
figure 3.4 in which the loop depends on the value of var 1, the operation on the
variable is in the information node linked to the entry of the region node

representing the loop. The operation is repeated in each iteration of the loop

CALL PJ‘

(J -
Po

FALSE

TN
\
0
o
7
~—
-
—~
T
X
S

TRU
<7 ‘———-/— . ~N ’
P U(var_1) P
! — Py)

(< w

Figure 3 4 - Program representation in case of a loop statement litke a WHILE The "*" In

figure 3 4 11 represents the fact that P, can be repeated more than once, depending on the

value of var 1 The first operation is reading the value of var_1, then only 1f its value

satisfies a condition, procedure P, 1s performed At each iteration of the loop, the value of
var 1 1sread

(/
‘,

As far as concerns the information about the data accesses, if a fragment of
code relative to an information node contains only statements performing “data
use” or “data manipulation” statements relative to a data A, then it “uses” or
“manipulates” A, respectively, and the corresponding access to A is set to U(A),
or M(A). The “data manipulation” is also performed if there are two different

statements within that information node, the first of which reads A and the

second one writes a new value in A.

The “data creation” accesses of an information node 1, is more difficult to
determine. If a statement like <A:=6> 1s the first statement referring A, then I,
“creates” A, whatever statement referring to A follows it within I,. If the first
statement referring A is <A:=B+6>, (i.e if A is set as a function of another
datum B) then it must be checked if B depends on A in the previous information

nodes in any path between s and I,, in order to avoid the possibility of indirect

51

Chapter 3 program repiresentalions

data dependence of A on itself This 1s done by following in the temporal graph
each walk going back from I, to the starting node s [f there 1s a dependence of A
on 1tself, then the statement peiforms a “data manipulation”, and then the

information node manipulates A as well

Figure 3 5 shows the case of an indirect dependence of A on 1itself The

information node P, accesses A by manipulating 1t

A=C+1}_ Pz

Figure 3 5 - Figure 3 5 shows the case of an indirect dependence of A on itself In this
case the statement <B =A+6> induces a dependence of B on A in the procedure P, 1¢e
B=f(a) In the procedure P, the statement <C =B/2> induces a dependence of C on B and
then on A 1 e C=f(B)=f(A) At least 1n the procedure P, the statement <A =C+]>
tnduces a dependence of A on itself due to the fact that C=f(A) thus depicting a data
manipulation on A

In the literature there exists a number of techniques treating the
restructuring processes performed in order to make procedural code modular and
well structured, thus facilitating the decomposition process of the code 1nto a set
of module candidates to implement a method of an object This restructuring
process will achieve the aim of having a hierarchy of code segments, each with a
single entry and a single exit and with GOTO statements within a segment of
code, but not outside of 1t In the following, 1t will be supposed that the code 1s
modular and well structured, and that there exist some GOTOs within the code,
but they are just address the control to the end of the procedure thus generating

the return of the control to the invoking procedure

With these suppositions, the nodes here introduced to represent the remporal

52

Chapter 3 program representations

graph, are sufficient to represent all the statements of the code, because it 1s well

known that all control constructs can be represented as a combination of the

IF THEN . ELSE constructs 1n a code without GOTOs

- -
-
oy

S

Po
(Main >
.Procedure
AQ—
I *\\

/
v

P1)
—""\ Main Body

‘ C(type-of-transaction)
|

~\\~ \
C(name-customer) C(name-customer) P \
Claccount-identifier Deposn C(account-identifier) } Credtt
N— o
"/ ~——
S\
p; i X C{money) ST —
v —) P
/ — < AN <
/ AL
// .
£ -7 i U(check
. /Pd\ P7 -
< Very \ Ps > Prmt > < Venfy > <
’ ‘
Account-ID/ fad Mone/y COUpon . Founds Ny MO”eY
\\/ - \\\ \T,
| U(transachion-type)

U(name-customer) U(account-identifier) U(name-customer) | | U(account-identifier)) U(account-identifier) |
U(account-identifier) U(money) U(account-identifier) | ' U(money) U(money)

U(database) M(database) U(money) U(database) M(database) 1

C(check) U(database) ' - Clcheck) '

\\ /

Figure 3 6 - The figure above shows the partial temporal graph representing some
procedures 1n a typical Bank Account Management System The data database represents a
file whose records contain information about the customer name (name-cust), the account

number (account-ID), the money present into the account (cash), and a list of all the
operations performed recently (list-operation), used for example to fill a coupon with the
bank statement

The program representation described above can be used at several level of

abstraction Figure 3 6 shows a temporal graph relative to a simple bank account

management at an high level of abstraction Many detail are hidden, 1n order to

make easy the process of comprehension of the data and control flow together

By using the technique of walking described above, the representation 1n

figure 3.6 1s very easy to read and to understand

wn
(OS]

Chapter 4

An Improved Technique

Since usually legacy information systems have been written with an ad-hoc
approach, there are undeniable problems in recognising which data structures and
routines have to be grouped into a module candidate to implement the abstraction
of an entity of the application domain The different examples described in the
section 2.2 demonstrate the difficulties in implementing an automatic tool able to
extract meaningful objects from existing legacy code without considerable
application domain knowledge, to recognise the implemented abstractions
possibly associated with candidate modules, to purge them from all the
components altering these abstractions, and finally, to match them to entities

within the application domain.

In this section, a method to i1dentify candidate object-like modules from
existing code 1s presented It benefits from the mainstream of similar 1esearches
described in the sections 2 5.2, 2.5 3 and 2.54 Similarly, 1t uses a bipartite
graph (figure 2.8) to represent the relationships between procedures and
commonly accessed data and to perform an easier 1solation of notable sub-graphs,

each of them candidates to implement an entity of the application domain

Even though this method can be merely considered only an improvement of
the technique defined by Canfora et al (paragraph 2 5 4). the improvement it
inducts upon the previous algorithm cannot be considered trivial This
improvement 1s aimed to discriminate noisy connections linking candidate
modules 1mpiement1ng different entities 1n the application domain The new

algorithm adds to the clustering phase two more phases the data duplicating and

54

Chapter 4 an improved technique

data refining phases

Basically, these phases focus both on the accuracy level of data stiuctures
and on the analysis of the relationships between two procedures accessing a
common data 1item This 1s to achieve a better comprehension of the state of each
potential object by treating the system of data items implementing the object’s
state, also stored into these data structures This should also achieve a more
accurate object-like module and to improve the understanding process of the
relationships between different potential modules due to the interaction of then

methods

Furthermore, by joining the data flow analysis to the analysis of the
relationships between procedures accessing the same data, this helps to establish
whether the common access of several procedures to a data item denotes that they
are methods of the same object This analysis leads to candidate modules
abstracting lower level entities within the application domain, thus simplifying
the process of understanding them and of matching them to domain entities
However, this analysis requires the application of domain knowledge to the

1terative step, but this application 1s helped by the context
Informally, the technique will refine the previous algorithm 1n three aspects

e With a more detailed analysis on “how” a procedure accesses a data The
technique distinguishes not only between reading and writing accesses, but
also checking 1f the procedure uses the value set by another procedure, thus
creating a sort of dependence between the two procedures This improves the
understanding process needed to establish when two procedures accessing a
data are a method of the object whose state 1s stored 1n the common accessed

data

e With a moie detailed data analysis, possibly also including the refinement of
structured data 1n a equivalent set of less structured ones Smaller giain
objects are easier to handle This enriches the domain knowledge and reduces

the effort of the subsequent concept assignment phase

o With a lighter bipartite graph produced by including the links 1epresenting

55

Chapter 4 an tmproved technique

either a procedure accessing a data item by modifying 1t (thus, to ensure
information hiding, the procedure is a method of that object whose state 1s
stored in the data) or a procedure using a data value without modifying 1t,
when the invoking procedure can not send that data item as a parameter in the

invoking statement.

All these issues are aimed to reduce the number of links that have more
likelihood being noisy, thus improving the comprehension of the legacy code and

allowing an easier isolation of candidate objects.

4.1 Overview of the Algorithm

Similarly to the algorithm of Canfora et al., the aim of the new algorithm 1s
to isolate strongly connected sub-graphs within the bipartite graph representing
the interrelationships between data structures (potentially implementing the state
of candidate objects) and procedures (potentially implementing methods acting
on the objects’ state). On the other hand, the two added phases, with the

different way to draw the bipartite graph, lead to a modified algorithm.

The outlines of the algorithm are sketched in figure 4.1. Note that the three
phases are represented: data clustering, data duplication and data refining.
Their sequence is not made up by the algorithm, as it depends on the features of
the system it is dealing with The algorithm receives 1n input the whole system
and the th.ree phases are performed while the bipartite graph does not assumes the
form of a set of disjoint sub-graph, each of them 1s candidate to implement an

object into the application domain.

After each phase, the program representations have to be redrawn, as any of
the phases change the structure of the legacy code. All the phases are fully

detailed below.

56

Chapter 4 an tmproved technique

e PR . . B . o
g " Data ™ .~ Compute™
/ (Refine@ S (De%égitlon)
~~Phase < “Draw the =2hoEe -
Temporary
\\ - Graph .. / l
V4 !
Q;%?m ute;> \ 4
efinement / T
~lndexes- ﬂ Dupllcatloﬁ
Phase ‘
\ Y
— N - 4
.~ Draw the ", ,/
(Bipartite)
. Graph __- P
\
Compute
Vector
_AIC() y
\Clusterlng)
/
\\ / b
. \ 4

T
Figure 4.1 - The outlines of the improved algorithm. The three phases represented 1n
Jigure modify the bipartite graph until 1t 1s decomposed in a set of disjoint sub-graphs

4.2 Details

The process starts by isolating data structures and procedures from which to
select those that will be composing an object-like module (data structure and
procedures acting on these) candidate to implement an abstraction of an entity of
the application domain. The decomposition process of the code into a set of
routines candidates to implement the object methods takes advantage of the
modularity of the code (see par. 3.2.2). In the following, these isolated routines
will be called “procedures”. Each data items defined within the software system
forms a node of the subset relative to data. Note that the data items are chosen at

the highest level of abstraction, i.e. structured data with subordinate elementary

57

Chapter 4 an improved technique

data items is a single node. After that these components are made available, the
program is represented at different abstraction levels through the temporal graph

and the bipartite graph.

4.2.1 Drawing the Program Representations

The temporal graph is drawn with the process that has been already
described in the paragraph 3.2. Note that the temporal graph strictly depends on
the granularity level of data item, and on whether the data item is a record or a
variable, as it affects the type of data access. As the data granularity might vary
at each iterative step of the algorithm, a constant upgrade of the temporal graph

is consequential.

The Bipartite Graph

As far as concerns the bipartite graph, procedures and data items are
represented as two disjoint sets of nodes. After having drawn the two sets of
nodes, a static analysis concerning the access type of the procedure to the data i1s
needed to draw the set of edges. This information can be taken from the
temporal graph by examining all the nformation nodes relative to that

procedure.

The representation of the bipartite graph is different from that used by the
previous algorithm, as the new bipartite graph takes into account whether the
access is a writing or a reading access. Mainly, the edges representing writing
accesses between a procedure and data are always drawn, because by writing a
data item, a procedure changes the state of an object Then, in order to ensure
information hiding, that procedure must be linked to that data item storing part of

the object’s state, as it might be an object method.

The edges representing reading accesses are drawn with some exceptions 1f
a procedure P accesses by reading a data item A, and all the procedures invoking

P access A by writing to it, then it is likely that A does not belong to P’s state,

but is used as parameter to P.

In summary, the modified bipartite graph contains all the links between a

58

Chapter 4 an improved technigue

procedure P, and a data A such that:

1. P, accesses A in writing (some information node of P, accesses A by creating

it or by manipulating it);

2. P, accesses A through reading but in the set of procedures invoking it there is
at least one with a reading accesses (some information node of P_ accesses A
by using it).

Note that if there is a link into the bipartite graph between procedure P, and

data item A, then P, accesses A. The opposite is not true: in fact, if a procedure

P, accesses A, there can be no link between P, and A in the bipartite graph.

Note also that the starting bipartite graph can be easily obtained by purging
from the one in Canfora et al. all the edges representing a reading access of a
procedure P to a data A, if and only if all the procedures invoking P access data A
In writing.

As for the temporal graph, the bipartite graph also starkly depends on the
granularity level of data item, and on whether the data item is a record or a -
variable, as it affects the type of data access. In this case too, a constant upgrade
of the temporal graph is consequence of the varying of the data granularity

throughout the execution of the algorithm.

4.2.2 The Computation of the Vector 41C().

At each iterative step, the modified algorithm examine the bipartite graph in

order to compute, for each procedure P, a vector of indexes AIC(P):

#{P.|P, € PreSet(A) A PostSet(P,) < PostSet() _
AIC(P) = Aepéexax{) l } _ Z #{PJPOStSet(R) = {A}}

> #{Preset(4)} revame@y H{Preset(4))

A €PostSet(P)

The aim of the computation of the vector AIC() is to help decide which is
the procedure more worthy to cluster around. Here and in the following, “to
“cluster around procedure P” means to cluster the sub-graph containing P, all the

data items it accesses and all the procedures accessing a subset of these data

items.

59

Chapter 4 an improved technique

In fact, into the modified system, the vector of indexes AIC(P) establishes,
by comparison among 1ts elements, which 1s the procedure with the highest
difference between the internal connectivity of the sub-graph generated and the
internal connectivity of the sub-graphs merged, thus allowing the evaluation of
how the clustering around P changes the internal connectivity of the bipaitite
graph

At each step of the iterative algorithm, the routines having an index AIC(P)

“sufficiently high” are used to generate cluster around P

During the execution of the modified algorithm, the data duplication and
data refining phases can be performed at each iterative step 1n order to inciease
the value of some of the indexes within the vector AIC(), such that there 1s
always a procedure of the bipartite graph that can be clustered in order to obtain
a candidate module This process combines application domain knowledge to the
analysis of the data structures, and takes into account the meaning of the data

within the application domain

Note that the order of the phases 1s rather irrelevant and they mainly depend

on the peculiarity of the legacy information system

4 2 3 Data Duplication

The aim of “data duplication” phase 1s to break down some ‘logical links’
between groups of procedures due to a common access of global data items In
fact, not all cases a common data access are intentional such that the procedures
are sharing the value of this data item for their computations, thus involving that
they both are methods of the same object, whose state is partially stored in the
commonly accessed data item Sometimes, that data item can be considered

“local” to a group of procedure

When a data 1item 1s local to different procedures (for example a varniable :
usually used as counter in any loop) a trivial reengineering intervention to be
performed before the modularisation 1s to “split’ 7 by renaming 1t with different

names 1n any procedure accessing it

60

Chapter 4 an tmproved technique

The problem of managing local data has been faced by Markosian et al
[BBKMN94] within a process of reengineering of a COBOL legacy information
system They have introduced the concepts of input and output parameters 1n
order to define when a data 1item A 1s local to a procedure An input parameter
relative to a PERFORM statement 1s a data 1item A that 1s set within a procedure P,
before the statement PERFORM P, and 1t ts used in P, before A 1s set again
Analogously, a output parameter is the data item A 1s set within a performed
procedure P, then 1t 1s used before being set following some perform of that
paragraph After having defined the inpur and output parameters, Maikosian et
al define to be “local to that procedure” all the data referenced by the procedure

that are neither input nor output parameters

For our purpose, only global data will be considered However, the
definition of “local data” will be extended to groups of procedures Analogous to
the reengineering process performed to the localise the data to a procedure, the
main i1dea of the data duplication phase 1s to 1solate groups of procedures in
which a data can be considered local, and then split this data item 1nto many

1items by renaming it with a different name within each group

Precisely, we will deal with groups of code fragments, represented by
information nodes In fact, as it will be fully detailed 1n the following examples,
after having isolated the groups relatively to a data item A, it 1s possible that a
procedure belongs to more than one group, whereas, the implicated information
nodes strictly belong to a single group (see figure 44 and table 4 2)
Consequently, the output of the analysis of the data duplication phase will be a
set of groups of information nodes In each of these groups the data item will

assume a different name, thus obtaining a “data duplication”

However, the notation dealing with groups of procedures 1s still preferred to
the one dealing with groups of “fragments of codes” (the information nodes),
because 1t simplifies the process of drawing the bipartite graph, on which the
algorithm will be applied It will be clarified, in case of procedure belonging to
several groups at the same time, which of the information nodes belongs to each

group In this way we also hope to keep coherent with the aim of “duplicating

61

Chapter 4 an improved technique

the data items that are local to groups of procedures”.

3

Informally, a data item can be considered as “local to a group of procedures’

respecting the two conditions:

1. in each path within the group, the first information node referring A creates
it;

2. in each path getting out from the group, the first information node referring A

creates it.

Figure 4 2 - A typical temporal graph with the specification of a group of procedures in
which a data can be considered local

It is clear that the central issue is the definition of such a group of
procedures. Note that a group is relative to a single data item, and the groups
vary depending on the data. Since throughout the execution of the algorithm the
data items and their accesses might change, the groups-have to be computed each
time the temporal graph has been changed (ie at each iterative step).
Consequently, the data duplication phase has to be performed each time on a

different temporal graph.

All those groups are characterised by having a procedure creating the data
and, the value of the data in the other procedures of the group depend on by the
computation of the procedures of the same group already executed and accessing

the data.

For any data A, a group of procedures in which a data item A is local has the

following features:

o there 1s one and only one procedure owning an information node creating A

62

Chapter 4 an improved technique

(the information node and the procedure node will be called I, and P, in the

following examples);

o in each procedures P, of the group, the value of A only depends on I, and on

other procedures of the group which are in the path from I, to P,.

For an information node 1, creating a data i1tem A, the following definitions

will be used in order to identify the procedures P, in which the value of A depend

on I,.

Informally, the definition 4.1 defines when the value of a fixed data item A

in a procedure derives the execution of a portion of code of another procedure

Definition 4.1 - Let G=(s, N, E) be a temporal graph. Let I,eIN be an
information node creating data item A; let P,e PN be a procedure node such that
(Po, I))eE (I, of Py). Let I, be an information node of P, using or manipulating

data A. Then I, of P, derives A from I, if there is a path between s and I,

(excluded) containing I,. 4}

For sake of simplicity, in the following the notation I, of P, will be used to

denote that there exists IyeIN and Pye PN such that (P,, I,)€E.

Note that, from the definition of temporal graph, there might be many paths
from s to I, due to the presence of region nodes. In definition 4.1, the condition
that I, is excluded from the considered path, means that any information node

creating A does not derive A from any other information node.

A procedure can derive a data item from many information nodes at the same
time. In the example of figure 4.3, both I,, and I, of P, derive data item A from

I, of P, from I;, of Py and from I,, of P,. I, only derives A from I, and I, of P,.

63

Chapter 4 an improved technique

~ 0 N
(pn o)
// — ™~
In1 Ih2
C(Ah) U(a)
Figure 4 3

Definition 4.2 - Let G=(s, N, E) be a temporal graph. LetI,, be an
information node of P, deriving data A from I, of P, If every information node
in any path from [, (excluded) to I, (included) does not contain information

nodes creating A, then I,, of P, directly derives data A by I,. Procedure P,

directly derives A from I. 4}

Note that, by definition 4.2, any information node 1, of P, directly derives A
by I, if in any traversal of the temporal graph between I, to I, (inclusive), the
node I, is the only one creating A, i.e. in any traversal of the temporal graph
between s and I, (inclﬁsive) passing from I,, the node I, is the last (in temporary

order) one creating A.

Also in this case, a procedure can directly derive a data item from many
information nodes at the same time. In the example of figure 4.3, both I,, and I,

have a directly derive A from I, and [,,.

If an information node 1, directly derives A from an unique node I, then the
derivation is also exclusive.

Definition 4.3 - Let G=(s, N, E) be a temporal graph. Letl,, be an
information node of P, directly deriving data A by I, of P,. Then I, of P,

exclusively derives A by [, of P, if there not exists any other information node 1,

64

Chapter 4 an improved technique

of P, which I,, directly derives A from. 1

The word “exclusive” referred to the derivation is due to the fact that P,
derives A only (exclusively) by I, of P,. This ensures that the value of A 1n P,

depends on the execution of I,.

Note that, by definition 4.3, in figure 4.3, there are only two examples of

exclusive derivation: 1, and 1, exclusively derive A from I, and I,,, respectively.

In summary, the derivation relationships between the information nodes 1n

figure 4.3, are represented in the table 4.1 below.

Information derivation direct exclusive
node derivation derivation
Lo, - : -
Loz L, Ly oy s Ioy }
L, - - -
I_]Z I)I’ Ihl I_j]’ Ihl -
L, L, L Loy Lo, o,
Lz L Lups Lo, Lis Loy -
L, - ‘ ;
L Lis L, Loy I, L,

Table 4 |

These definitions define a dependence having many similarities with the

data dependence of Ottenstein et al. [FOW84] [0084].

In order to proceed to the data duplication phase, all of the groups of
procedures relative to data must be identified. For a data A, a group of
procedures is composed by the procedure P, with an information node 1,
creating A, and all the procedures P, exclusively deriving A fromI,. The

procedures composing the group can be identified through the definitions above

The value of a data A in any procedures P, (with k > 0) within a group
relative to that data item, depends on I, and on all procedures in the path from P,

to P, manipulating A (i.e. all procedures that have modified A)

Through a static analysis of the code such groups of procedures are

65

Chapter 4 an itmproved technique

1dentified, and a data duplication phase “splits” the data into many i1tems, one for

each gioup This process 1s carried out for each data

In the example shown in figure 4 4, proceduies the information node of P,
and the one of P, (figure 4 4a), directly derive A from I,;, On the other hand, the
information node of Ps directly derives A from I,, With the further assumption
that there are no other procedures invoking the procedures of figure 4 4a, the

derivation 1s also exclusive

[J“ 3)
C(A) - CC(Aa) T Po
e —r ?5—4\) Y)?FZ\)

M(A) D) MA1) ——(Pt lo2
C % [T C(A2) (/qu)
P T = i

/L (U(A) l

Figure 4 4 - The procedure Py has many information nodes creating A in this situation,
the procedure will contain the different items in which the data 1s spitted, 1 e the several
portions of source code corresponding to the information nodes /o, of Py contain different

variables deriving by the splirting of A

h U(A)]

/

In summary, the derivation relationships between the information nodes in

figure 4 4, are represented 1n the table 4 2 below

Two groups are derived from this example from a simple observation of
table 4 2, 1t 1s easy to split up data A into two items A, and A, relatively to the
groups of procedures {P,, P,, P} and {P,, P,, P;} Note that procedures P, and P,
have not been added into any groups because they do not reference A, thus the

fact to be belonging to a group does not affect their code

66

Chapter 4 an improved technique

Information derivation direct exclusive
node derivation derivation

I0| - - -

Lo, - - -

I, Los Ly, Iy,

I Lo Iy, Ly,

I Lois Ty Lo, Ly,

Table 4 2 - In the table, the information nodes 1,, are related to
the procedure P,

In this example, procedure P, contains more than one :nformation node
creating A, then P, belongs to more than one group In this case, P, will contain
references to all the 1tems in which A will be split. Figure 4 4b shows the data A
duplicated 1n two 1tems A, and A,. The portion of code relative to I,, and I, will
contain reference to A, and A, respectively As procedure P, belongs to both the
groups, the groups should be written as GA]‘—‘{IO, of Py, P,, P,} and GA2={102 of Py,
P}, thus showing that the information nodes of P, will have references to

different target data items.

As already briefly introduced 1n the presentation of the data duplication
phase, earlier 1n this paragraph, this might just be considered a notation problem
However, it could be easily overcame by composing the groups on the basis of
information nodes, then obtaining the two groups {I,,, I,, I} and {I,,, I}, instead
of having the not disjoint groups of procedures {P,, P,, P,} and {P,, P;}
However, 1t 1s still preferred the notation dealing with groups of proceduies
instead with groups of “fragments of codes” 1n order to keep the notation
coherent with 1ts aim to draw the bipartite graph on which the algorithm will be
applied. In fact, the notation dealing with groups of procedures allows a more
immediate process of drawing the bipartite graph, than the notation dealing with

groups of fragments of codes

After having established the groups of procedure relatively to a data item A,
the code relative to each information node 1s upgraded by changing the data
item’s name and all the related statements (data item’s declaration, comments,

documentation, etc)

67

Chapter 4 an tmproved technique

After this phase, the links starting from these procedures toward the
commonly accessed data form a group of proceduies whose computation depends
on a common data item In this case, all the pioceduies of that gioup can be
considered as methods of the same object whose state 1s also stored in the

common accessed data

4 2 4 Data Refining

The “data refining” phase refines the granularity level of some of data ttems
having a large number of accesses, according to their meaning into the
application domain and to the benefits brought to the execution of the algorithm
This phase allows, at each step of the algorithm, the subdivision of a data
accessed by many procedures into different data items With the support of the
knowledge of an human expert, the data 1s analysed to check 1f all the
information belongs to the same object of the application domain, and 1if the
procedures share the same information about the same object If these conditions
do not hold, then the data can be refined into a set of data i1tems, each of them

containing the information needed for a smaller number of procedures

Due to the change of the data structure, both the data representations have to
be updated This re-analysis must take care of new data accesses In fact, a
procedure that before the refining was accessing the data that has been refined,
might access only part of the target “sub-data” Furthermore, the kind of access
can change, since a record can produce some vainables as result of the

refinements

For example, the record NAME-CUSTOMER 1n figure 3 2 might be refined in
the data items corresponding to level 03 of the data structure definition
According to the definition of record and variable in paragraph 53 2, 1if all
procedures access only the new data items NAME, BIRTH-DATE and ADDRESS
(without accessing directly their elementaty fields), then they all aie variables
In case a statement sets NAME by creating 1t, then the statement manipulates the
record NAME-CUSTOMER, before the refinement, on the other hand, after the

refinement the statement creates the variable NAME This must be taken 1nto

68

Chapter 4 an tmproved technigue

account in establishing the data access of that procedure before and after the

refinement phase.

Evaluation of the Data Refining Phase

In order to evaluate the benefits brought to the execution of the algorithm,
some indexes can be defined to help the human expert decide which data are more

worthy of refining. The human intervention should help also in this process

P]\\\/ @
e

Figure 4 5 - In figure Figure 4 5a the vector of values of AIC for the procedures P,, P, and
Pyus (075,025, 0). By refining the data A, (figure Figure 4 5b) 1n the set of items A,,,
A,y and Ay, the vector i1s (0 80, 0 30, 0) After the refining of data A, (figure Figure 4 5c)
in the set of items A,,, Ay, and A,;, the vector 1s (0 75, 0 60, 1 00)

The decision criteria for the data refinement phase depend on the index
AIC(P,) before the refinement of A computed for any procedure P, referring A,
and the index A'IC(P,)) after the data refinement. Other aspects affecting the
decision criteria are the peculiarity of the particular legacy information system
and the reasons driving the reengineering process, thus the decision can be taken
with regards to this aspect.

From figure Figure 4.5, it can be observed that the duplication of A, causes
the isolation of a strongly connected sub-graph. In this case, the data more
worthy of refinement is the data item A which maximises the value

max (A'IC(P))—-AIC(P). Of course, the refining of A, will be preferred to
P, ePreSet(A)

that of A, if it assumes a meaning in the application domain.

69

Chapter 4 an improved technigue

425 Termination of the Algorithm

The algorithm terminates when the giaph 1s tiansformed into a set of
strongly connected sub-graphs Each sub-giaph 1s composed of some data
representing the attributes of an object, and thus its state, and some procedures

representing the methods of that object

The proof that the algorithm will finish 1n a finite number of steps follows
the same reasons of the algorithm in [CCM96], because the phases added change
the value of the indexes fixed by the previous algorithm only by increasing them
Otherwise, none of those phases can be peiformed and the algorithm will carly on
1n the standard way defined by Canfora et al , that 1s guaranteed to finish in a

finite number of steps

70

Chapter 5

30L Source Code

A Case Study on a COF

The COBOL (Common Business Oriented Language) programming language
was developed in 1959 by a committee composed of government users and
computer manufacturers. Since then, various COBOL committees have met to
ensure that the evolution of the language through time followed an orderly
fashion, thus making COBOL the most frequently used computer language
directed at data processing objectives, extensively used 1n administrative

applications processing of a large amount of input and output data

Yourdon' said “One of the oldest, and arguably the most successful and
popular of all programming languages, COBOL has been declared dead so many

times that I've lost track counting ... but COBOL Ilives on”.

Table 5.1 shows the results of a recent research conducted by Caper-Jones
[C92] regarding the state of the art of software maintenance It shows COBOL as
the “dominant arena” for software maintenance In this review, it 1s possible to
gain an insight into the proportion of effort required in the industrial field
regarding the maintenance of COBOL legacy information systems against other

conventional programming languages

In the recent literature a number of papers have specifically described
different approaches all successfully employing reengineering techniques dealing
with COBOL legacy information systems Sneed’s work 1s important 1n this area,

because it successfully employees reengineering techniques [S92] to migrate

' Extract from <http //www yourdon com/ap/9609INTRO HTML>

71

Chapter 5

a case study on a COBOL source code

existing COBOL applications, and to extract object oriented specification [S91]

and object oriented design documentation [NS95] from existing COBOL

applications running on mainframe.

Language of the software being maintained estimated number | portion of the total
COBOL 461,500 45%
Other procedural languages * 100,000 10%
C 95,000 9%
Database Languages 86,250 8%
Program Generators 76,000 7%
Assembler, all hardware 60,000 6%
Fortran 40,250 4%
Object Oriented Languages 29,750 3%
Basic 22,750 2%
Ada 22,500 2%
Special Purpose Applications 17,500 2%
PL/1 7,000 1%
Pascal 4,750 0%
LISP 2,500 0%
APL 1,500 0%
Total full time equivalent 1,027,250 100%

Table 5 1 - Number of the full-time maintainers programmers in the USA in
1991, by languages read {C92] Note that portion column does not add to 100%
because of the rounding

* Not elsewhere classified

The aim of this chapter 1s not to give an exhaustive explanation about the

method above, using a real example, but to show how to adapt the method to the

peculiarity of a given programming language such as COBOL, while respecting in

the meantime the main 1deas of the technique. By way of a case study, a simple

COBOL program has being analysed, and the technique being used on 1t

All the

necessary arrangements to adapt 1t to the peculiarity of COBOL are underlined

throughout this section

As already seen 1n the sections from 2 2 1 to 2 2 3, 1t still appear impossible

to implement fully automatic techniques to reverse engineer a typical COBOL

program the semantics, the meaning of the specifications are irreversibly lost in

Chapter 5 a case study on a COBOL source code

the process of converting the specifications to design and then to code
Comprehension activities are required both at the program and at the
architectural level. In particular, an integration of top-down and bottom-up
understanding strategies [VMV94], [VMV95] can successfully identify software
components and map them onto meaningful objects The final step of each
method of object identification is a concept assignment process performed by a

human inspector in order to validate the candidate objects.

5.1 The Need of a Standard- the ANS| COBOL Standard

Due to international trade agreements, the global marketplace 1s becoming a
reality. In this situation, both the private and public sectors, have understood
that “standards, 1f adopted throughout the world, create a large market instead
of many fragmented markets”. The companies 1n every industry and of every
size are realising that a business keeps 1ts competitive edge 1n the face of

national and global market changes only by using a strategic standardisation

In the computing field, the need to create standards has been recognised as
important from the beginning. This 1s particularly true for COBOL, a language
specifically designed for commercial applications, usually operating on a large
volume of data. It was created 1n 1959 by the CODASYL Committee® 1n a
meeting convened by Department of Defense (DOD), particularly dissatisfied by

the lack of standards.

Due to the availability for many platforms (from desktop Intel machines to
huge IBM ESA mainframe systems) and to flexibility (leaving a COBOL program
to be compiled and to run on a variety of different machines with very few
changes to the original code), there were so many variations among COBOL
compilers produced by different computer manufacturers that 1t was decided that

the American National Standards Institute (ANSI) would oversee COBOL

2 Gary Tooker, manager of Motorola Inc and Vice Chairman and CEQ

3 CODASYL 1s an abbreviation for the Conference on Data Systems Languages The
CODASYL committee included representatives from academia, users groups and computer
manufacturers

73

Chapter 5 a case study on a COBOL source code

standards, to permit to COBOL to survive.

In 1985, in the attempt to create a series of international quality standard for
the COBOL LISs reengineering processes, the ANSI produced a document® in
which are listed all the features that a good COBOL object oriented COBOL

application should have.

The source system must be decomposed in several modules, each of them
containing a single object interacting with the other ones by message passing.
Each object correspond to a class, i.e., to an abstract data type encapsulating the
state of the object trough its attributes, and to a set of actions (or methods)
modifying this state. To insure info-rmation hidings, the classes should have both
private and public storage: the public one is accessed only by subordinate

classes, whereas private one is protected by any access.

Messages define everything an object can do, i.e., its interface. The classes
can invoke directly methods of an external class, i.e., not subordinate by
inheritance right. In order to do this a method of a class is defined as an entry
point with a definition of the parameters it receives. For the features of COBOL
every method has access to data of the invoking class. Thus classes subordinate
by inheritance rights can be invoked by a message without parameters; on the
contrary, the methods of an external class can be invoked only by messages
declared in a separate import/export area and passed as parameters in a CALL
statement. Every time. that a~metﬁod is invoked, the control can be returned back -
to the caller or to another class. To insure information hiding, the classes should
have both private and public methods. The last ones are accessible only to the

class in which they are encapsulated.

The classes should have multiple inheritance, i.e., they have to be able to
inherit data attributes from more than one superordinate class. The same applies
to methods which are inherited from superordinate class. The inherited data must
be declared referring to the class from which they are inherited. The same

applies to methods which are inherited from superordinate classes.

74

Chapter 5 a case study on a COBOL source code

In order to ensure that each module do not exceed a certain size and
complexity, some limitations are fixed the number of attributes of a class 1s
limited to 100 and the number of methods per class 1s limited to 10 The numbe:
of statement 1n a method must be less than 20 statements A message should be
restricted to five parameters This limitation provides to the system a high

degree of modularity

5 2 Presentation of the Case Study

The technique has been used on a COBOL program of 1500 LOC, large
enough to give interesting demonstration of the application of the algorithm
presented above The program consists of a batch program with 5 flows defined

in the INPUT-OUTPUT SECTION and in the FILE SECTION

= = |

DEFAULT GAIE flow main

procedure
BATCHl

external
database

invoked
procedure

VIDEO-BOND GAME-MASTER PLAY-HAS PP100A-REPORT ABEKD

external file
% / \ EA:L‘ STATION-RANKING

included vis s
COPY statement
VBTYPEIN GAHEHS GANENSIO PLAYNSIO STRANKIO FP100A0CU
Figure 5 1

The whole structure of the COBOL program BATCH1 1s outlined 1n
figure 5 1 The arrows are the links between the program and the external files
represents the input and/or output relation The 5 external files and the 3 files

included 1n the program by a COPY statement are represented by different

4 Stored with the number FIPS-PUB-21-2 and worked out by Yourdon, Microfocus and other
in [Y90]

75

Chapter 5 a case study on a COBOL source code

notations.

During the data description phase, the COBOL permits to keep copies of
data description in program libraries in the computer system, enabling the
description to be \copied into the programs by using the COBOL statement COPY
Some of the external files were defined externally, and then included within the

program by using a COPY.

5.3 [Isolation of Procedures and Data

In order to decompose the monolithic program into a system of interacting
object-like modules, the first step is the identification of a collection of data
structures implementing the state of the objects, and a set of modules candidate
to implement their methods. These two sets will be represented by the two
disjoint sets of nodes of the bipartite graph. The granularity level of both of
them depends on several factors, such as the features of the particular legacy
information system and the environment in which it actually runs, and the reasons

driving the reengineering process.

5.3.1 lIsolation of Procedures

In the literature there exists a number of techniques for treating the
restruct}rring processes performed in order to make a COB‘OL legacy system
modular and well structured, thus facilitating the decomposition process of the
code into a set of modules (a set of paragraphs, of sections or isolated
statements) candidates to implement a method of an object. This restructuring
process will achieve the aim of having a hierarchy of code segments, each with a
single entry and a single exit and with GOTO statements within a segment of

code, but not outside of it.

The modularity of the code allows to isolate procedures (sections) through a
simple static analysis of the code In our example, the 75 paragraphs shown in
table 5 2 have been isolated. It is possible to note that all the paragraph names

start with an alphanumeric code of 4 digits

76

Chapter 5

a case study on a COBOL souice code

0000-MAINLINE

C210-EDIT-TBLE-DATA

C280-UPDATE-PLAY-DTLS

Al00-HOUSEKEEPING

C210-EDIT-TBLE-DATA-EXIT

C280-UPDATE-PLAY-DTLS6

Al100-HOUSEKEEPING-EXIT

C220-EDIT-TABLE2-DATA

C280-UPDATE-PLAYFILE-EXIT

Al00-FILE-STARTS

C220-EDIT-TABLE2-DATA-EXIT

D240-NO-STRANK-MATCH

AlQQ-FILE-STARTS-EXIT

C230-EDIT-TABLE3-DATA

D240-NO-STRANK-MATCH-EXIT

A200-MAIN-PROCESS

C230-EDIT-TABLE3-DATA-EXIT

D250-PROCESS-PLAY-RECS

A200-BYPASS-UPDATES

C240-READ-STRANK

D250-PROCESS-PLAY-RECS-EXIT

A200-MAIN-PROCESS-EXIT

C240-READ-STRANK-EXIT

D280-REWR-PLAYFILE

A300-TERMINATION-RTN

C250-READ-PLAYFILE

D280-REWR-PLAYFILE-EXIT

A300-TERMINATION-RTN-EXIT

C250-READ-PLAY-HDR

E250-NO-PLAYMSIO-MATCH

B100-OPEN-FILES

C250-READ-PLAY-DTL1

E250-NO-PLAYMSIO-MATCH-EXIT

B100-OPEN-FILES-EXIT

C250-READ~PLAY-DTL3

F100-CHECK-VSAM-STATUS

B200-READ-VIDEO-BONDS

C250-READ-PLAY-DTL4

F100-CHECK-VSAM-STATUS-EXIT

B200-READ-VIDEO-BONDS-EXIT

C250~-READ-PLAY-DTLS

U100-PRINT

B210-EDIT-DATA

C250-READ-PLAY-DTL6

ULl00-PRINT-EXIT

B210-EDIT-DATA-EXIT

C250-READ-PLAYFILE-EXIT

Ul10-PAGE-HEADER

B220-UPDATE-FILES

C260-UPDATE-GAME-MASTER

Ul110-PAGE-HEADER-EXIT

B220-UPDATE-FILES-EXIT

C260-UPDATE-GAME-MASTER-EXIT

U220-READ-GAME-MASTER

B230~-PRINT-PLANS-REPORT

B230-PRINT-PLANS-REPORT-EXIT

B300-CLOSE-FILES
B300-CLOSE-FILES-EXIT
C200-NO-PLANS-MATCH
C200-PRINT-NOT-FOUND

C200-NO-PLANS-MATCH-EXIT

C270-UPDATE-STRANK
C270-UPDATE-STRANK-EXIT
C280-UPDATE-PLAYFILE
C280-UPDATE-PLAY-HDR
C280-UPDATE-PLAY-DTL1
C280-UPDATE-PLAY-DTL3

C280-UPDATE-PLAY-DTL4

Table 5 2

U220-READ-GAME-MASTER-EXIT
U300-SEARCH-TABLE3-LOC
U300-SEARCH-TABLE3-APP-EXIT
U400-READ-TABLE
U400-READ-TABLE-EXIT
Z2999-PGM-ABEND

Z999-PGM-ABEND-EXIT

A simple analysis has shown that all the paragraphs starting with the same

alphanumeric code were part of the same procedure, thus allowing to extract 31

procedures consisting of 2 or more paragraphs each Their names have been

changed with a code of 4 digit depending on the previous name Only procedures

Al100-HOUSEKEEPING and A100-FILE-STARTS, both starting with 2100,
make necessary to change the name into A10H and A10F, respectively The 31

new procedures are listed in the table 53 below The last paragraph of each

procedure contains only the statement EXIT

77

Chapter 5 a case study on a COBOL source code

0000 C200 D280
AlOQOF C210 E250
A10H C220 F100
A200 * C230 U100
A300 C240 U110
B10O €250 U220
B200 C260 U300
B210 c270 U400
* B220 €280 Z999
B230 D240

B300 D250

Table 5 3 - The 31 procedures listed have been
extracted from table 5 2 This task has been
simplified by a simple examination of the
paragiaphs’' name

The two procedures B220 and C230 have been excluded from the following
analysis, as they do not access any data For sake of simplicity, 1in order to
increase the size of the source code as less as possible, the procedures invoking
them have been chosen to perform the functionality of B220 and C230, as they

are less than the procedures invoked by the excluded ones This information has

been extracted from the PERFORM GRAPH of figuie 5 2 below

B100 uzg@) [2\999
AN
AN

Figure 5 2

5 3 2 Data Analysis

The data 1solation process strongly depends on the peculiarity of the

78

Chapter 5 a case study on a COBOL source code

programming language. As COBOL 1is a business-oriented language, it is
designed to process a large amount of data. The structure of the language is
highly structured to accomplish the business data processing; consequently the
data structure is highly organised in a hierarchical structure. Through a static
analysis, the data have been considered at the broadest level: COBOL records
(data composed of one or more group items and/or elementary items); COBOL

variables (data with elementary structure), as defined in the DATA DIVISION.

In the data list there also has been added a table index that the COBOL does

not define in the DATA DIVISTON.

Unused Analysis

The “unused analysis” examines all the members included in the program
but not used by it. Through this analysis, the unused data items have been

1solated and excluded from the data list.

The unused analysis has also shown that the DATA DIVISION references

the external file GAME that is never used during the execution of the program.

Data Accesses

After having isolated procedures and data items, the code has been analysed
in order to examine the type of data access to each procedure. This process will
also allow drawing the bipartite graph. In summary, the three ‘types of -data

accesses are recalled below:

® data using (in the procedure there are one or more statements executing

reading accesses);

e data creation (in the procedure the first statement accessing the data is a

writing access);

e data manipulation (in the procedure there is at least a statement with a

reading access followed by at least a statement with a writing access).

As the data access also depends on the category of accessed data (records,

for example, in a statement with writing accesses, it should be checked to.see if

79

Chapter 5 a case study on a COBOL source code

the statement refers the entire structure of the record or only some elementary
sub-fields In the first case, the operation 1s a data creation Otherwise, the

operation 1s a manipulation, because the final content of data partially depends

on the previous value.

For our purposes, then, the COBOL data have being subdivided in two
categories - variables and records - depending on how the procedures refer to
them. A data item, structured in a hierarchy of elementary fields, can be
considered as a record only 1f there is at least a procedure directly referring to

one of its elementary fields All the other data items are variables

006600 01 PMR 00710066
006700 03 PMR-1 00730067
006800 07 PMR-1-1 00740068
0063900 11 PMR-1-1-1 PIC X(26) 00750069
007000 11 PMR-1-1-2 PIC X(04) 00760070
007100 07 PMR-1-2 PIC X(09) 00770071
007200 03 PMR-2 PIC X(105) 00780072

Figure 5 3 - Example of COBOL source program defining a data item in the pATA pivISION
As the procedures C250 accesses PMR by referring to the elementary filed PMR-1, then 11
can be considered a record

An 1mportant peculiarity of the COBOL programming language is that it 1s
possible to access external files only through the record area associated with 1t
in the ENVIRONMENT DIVISION of the FILE SECTION. The relations about
the record area and the corresponding external files are presented in the
figure 5 4 All the statements accessing the external files also access the

corresponding record area, that 1s defined in the WORKING-STORAGE

SECTION

FLOW NAME EXTERNAL FILE NAME RECORD AREA NAME
VIDEO-BONDS VBTYPEIN (COBOL external file) VIDEO-BOND-RECORD
GAME-MASTER GAMEMSIO (COBOL external file) GAME-MASTER-RECORD
PLAY-MASTER PLAYMSIO (COBOL external file) PLAY-MASTER-RECORD
STATION-RANKING STRANKIO (COBOL external file) RANKI-STAT-RANK-RECORD

R-NK2-STAT-RANK-RECORD

PPI00OA-REPORT rpl100AOU (COBOL external tite) PPIOO0A-LINE

Figure 5 4

This peculiarity affects the data accesses of those statements accessing the

external files The statement <READ data-file-name> obtains, 1n the

80

Chapter 3 a case study on a COBOL source code

corresponding record area, the copy of one or more records from the file
data-file-name. As the content of the file 1s unchanged, the access to the
file is a using access. The access to the record area is a creating access, because
the statement accesses the whole record. Statements such as <(RE)WRITE
record-name> have the effect of a copy of the content of record-name in
the file as a new record (or overwriting the previous record). The content of
external file will be changed after execution of the (RE)WRITE statement, and the
content of that record-name is undefined after the successful execution of the
(RE)WRITE statement; thus the operation induces a manipulation access in the
external file and in the corresponding record area. The statement <DELETE
data-file-name> deletes one record from the data file data-file-name,
without accessing the corresponding record area. This statement thus produces a
manipulation access only in the database. It is trivial that the statements

described below accesses the whole record.

In many COBOL legacy systems, only the statements accessing the external
files also access the record area. In this case (unfortunately it is not possible to
generalise it), it is possible to ignore the access to the record area in these

statements. Consequently, the record area can be removed from the data list.

Another important peculiarity is that concerning statements as <START
data-file-name>, <OPEN data-file-name> and <CLOSE
data-fiile-name>. Neither the file nor the corresponding record area 1s
affected by the execution of these statements, thus they should be considered as
anomalous. In our example, as usual, all the OPEN and CLOSE statements are
included in spare procedures. These procedures generating coincidental

connections can be treated in a preliminary phase.

In our example, as the procedure B300 contains only CLOSE statements, 1t
is excluded from the bipartite graph shown in figure 5.6. The procedure B100
does not contains only OPEN statements, but also a single statement manipulating
a data item, but due to the great number of coincidental connections, it is

excluded from the bipartite graph as well.

81

Chapter 5 a case study on a COBOL source code

5.3.3 The Bipartite Graph

The perform graph of the system is shown in figure 55 In 1t, as 1n the
following objects 1solation process, the procedures not accessing any data, as
B220 and C230, have being ignored. The links starting from these procedures
have being substituted by links from the invoking procedures A200 and B210,
respectively. The procedures B100 and B300 have being ignored as well,

because they contain the statements OPEN and CLOSE, respectively.

Al00

-~ c -

/l ‘Cé70 ~ c280
/«//// - /

T

Figure 5 5

The bipartite graph is represented in figure 5.6. The dashed edges represent

those using accesses to be removed.

82

Chapter 5 a case study on a COBOL source code

- /,/", 3
SN ///// /// DAY
~ g 77 7z =
I YTy

TSSO 7

/

INCL 7T T

~ N SIS C Z 7 -
R N Nl S
o & >>/\><//// =T

> 7, -

Z S g RC
= S S A

<
~arp Nox
[\

[VBTYPEIN

-1 GAMEMSIO
b

\

\
\
N

\!
~3, PP100AOU

\ \ll STRANKIO

Figure 5 6 -

Chapter 5 a case study on a COBOL source code

Computation of Indexes IC() and AIC()

From the bipartite graph, the indexes IC() and AIC() can be computed In

our example, the values of these functions at the first stage are

Procedure Name IC{() AIC ()
0000 0 0909091 0 2000000
A10H 0 1666667 0 0757576
AlOF 0 1379310 0 0470219
A200 0 1612903 -0 0407299
A300 0 3863636 0 1843434
B200 0 3272727 0 0141414
B210 0 1515152 0 0606061
B230 0 1111111 0 0000000
€200 0 2807018 0 0786816
c210 0 2962963 0 0942761
c220 0 3076923 0 1056721
240 0 3000000 0 1888889
c250 0 2051282 0 1142191
€260 0 3921569 0 :901367
c270 0 2291667 0 2271465
c280 0 2285714 0 2265512
D240 0 2162162 0 0141960
D250 0 2941176 0 1830065
D280 0 1891892 0 0982801
E250 0 0909091 0 0000000
F100 0 1111111 0 0000000
Ui00 0 1785714 0 0876623
U110 0 4411765 0 3502674
U220 0 2750000 0 0729798
U300 0 3584906 0 1564704
U400 0 2727273 0 2727273
2999 0 1612903 -0 0407299

Table 5 4

By examining these 1indexes 1t rather difficult to establish the procedure to
be clustered, because there are many procedures whose indexes are similar in

S1ze

5 4 Data Refining Phase

From the bipartite graph of figure 5 6, 1t 1s possible to note the great number
of edges leading to data items such as WSW, DT1 and WSV A data refining phase
can help the human expert to refine the granularity level of that datum that has a
large number of accesses With the support of the knowledge of an human
expert, the datum 1s analysed to check if all the information belongs to the same

object of the application domain, and if the piocedures shaie the samec

84

Chapter 5 a case study on a COBOL source code

information about the same object. If these conditions do not hold, then the
datum can be refined into several more meaningful data items, each of them

containing the information needed for a smaller number of procedures.

The effects of the refinements of WSW, DT1 and WSV by increasing each
structured elementary sub-field to a upper level, on the indexes IC() and AIC()
are shown in the table 5.5 The decisions on which data item is more worthy of
refinement should also be supported by the knowledge of the application domain.
To introduce such a domain knowledge is not the aim of this presentation. Then
some refining criteria based on the benefits caused on the following application
of the algorithm will be examined. In general, the decision criteria for the
refining phase will depend on the vectors of indexes AIC() before and after the

refinement of a data item.

Procedure IC() AIC () IC{() AIC () IC() AIC ()}
Name with WSW refined with DT1 refined . with WSV refined
0000 0.2500000 0.0000000 0.0909091 0.0000000 0.0909091 0.0000000
A10H 0.8333333 | 0.8333333 0.1666667. 0.0757576 0.1666667 0.0757576
ALOF 0.3076923 0.0576923 0.1379310 0.0470219 0.1379310° 0.0470219
A200 0.3000000 -0.0611111 0.2250000 0.1340909 0.1612903 ~0.0407299
A300 0.3571429 0.2460318 0.4339623 0.3430532 0.3863636 0.1843434
B200O 0.2571429 0.0349207 0.3750000 0.1729798 0.3090909 0.1070707
B210 0.2307692 0.2307692 0.1515152 0.0606061 0.1515152 0.0606061
B230 0.1111111 0.0000000 0.1666667 0.1666667 0.1111111 0.0000000
c200 0.2790698 0.1679587 0.2258065 0.1348974 0.2807018 0.0786816
c210 0.2058824 0.0947713 0.2407407 0.149831¢6 0.2962963 0.0942761
c220 0.2500000 0.1388889 0.2307692 0.1398601 0.3076923 0.1056721
c240 0.3000000 0.1888889 0.3000000 0.1888889 0.2500000 0.2500000
Cc250 0.3333333 0.0000000 0.2051282 Q.1142191 « 0.2051282 - 0,1142191'
c260 0.2258065 0.1146954 0.3921569 0.1901367 0.3725490 0.2816399
c270 0.2500000 0.1388889 0.2291667 0.0271465 0.2083333 0.1174242
c280 0.4166667 -0.0277777 0.2285714 0.0265512 0.2000000 0.1090909
D240 0.2173913 0.1062802 0.1351351 0.0442260 0.2162162 0.0141960
D250 0.2941176 0.1830065 0.2941176 0.1830065 0.2352941 0.2352941
D280 0.2941176 0.2941176 0.1891892 0.0982801 0.1891892 0.0982801
E250 0.3333333 0.0000000 0.090909%1 0.0000000 0.0909091 0.0000000
F100 0.1111111 0.0000000 0.1111111 0.0000000 0.2000000 0.2000000
U100 0.4000000 0.4000000 0.17857114 0.0876623 0.1785714 0.0876623
Ul1lo0 0.5625000 0.5625000 0.4411765 0.3502674 0.4411765 0.3502674
U220 0.2727273 -0.0883838 0.2750000 0.0729798 0.2500000 0.15909009
U300 0.2424242 0.1313131 0.3018868 0.2109777 0.3584906 0.1564704
U400 0.3333333 0.3333333 0.2727273 0.2727273 0.2727273 0.2727273
2999 0.3333333 0.2222222 0.1612903 -0.0407299 0.1290323 0.0381232

Table 5.5

From the blpartlte graph shown in figure 5.6 it is possible to note that the

system w1th WSW refmed is more balanced than it was before the refinement.,

85

Chapter 3 a case study on a COBOL source code

In our case, by refining WSW, we obtain the IC() vector shown in the 2"
column of table 5 5 and AIC() vector shown in the 3™ column of table S5 The
vectors of indexes IC() and AIC() with the refinement of the data item DT1 aie
shown 1n the 4" and in the 5" column of table 5 5, respectively Finally, n
the 6™ and 1n the 7" column, the vectors of indexes relative to the refinement of
DT1 are shown Note that after the refinement of WSW, the index AIC(A10H) 1s
passed from +0.0730435 to +0 8333333, then 1isolating A10H for the

clustering

After refining and clustering, the system must be reanalysed and the

bipartite graph redrawn The modified bipartite graph 1s shown in figure 5 7

86

Chapter 5 a case study on a COBOL source code

\ — . A

\lwsw.zqv

Figure 5.7

87

Chapter 5 a case study on a COBOL source code

Note that the refinement of a record (a data whose elementary fields are
accessed directly by the statements in the code), can turn it into a variable Then

the statements referring 1t have to be reviewed 1n order to decide the access type

54 1 Data Duplication

The aim of this phase 1s to break off the “logical links” that the common
access to a global data creates between the procedures accessing them In many
cases, common accessed data can be treated as “local” relative to different groups
of procedures When the same data 1s local to different single procedures (for
example the variable 1 usually used as counter 1n the loops) a trivial intervention
i1s to “split” 1t by renaming with a different name in any procedure accessing it
The main 1dea of the data duplication phase is to i1solate groups of procedures in
which a data can be considered as local and then duplicate this data item into
many items by renaming it All those groups are characterised by having a
procedure creating the data and, the value of the data in the other procedures of
the group depends by the computation of the procedures of the same group
already executed and accessing the data More formally, for any data A, the aim

is to 1dentify groups of procedures with the following features

o there is one and only one procedure linking an information node creating A
(the information node and the procedure node will be called I, and P, in the

following examples);

o 1n each procedures P, of the group, the value of A only depends on I, and on

other procedures of the group which are in the path from I, to P,,

o if two procedures P, and P, belong to the same group, then all the procedures

in the path of the temporal graph between P, and P, belong to that group

Informally, the technique defines when the value of a fixed data item A in a
procedure derives from the execution of a portion of code of another procedure
Besides, it 1s defined when a procedure P, directly derives data A by I, 1f in any
traversal of the temporal graph between I, and the first information node 1,, of P,

(inclusive), the node I, 1s the only one creating 2 These definitions, have many

88

Chapter 5 a case study on a COBOL source code

similarities with the data dependence of Ottenstein et al. [FOW84] [O083], and
will be used in order to identify the procedures P, in which the value of A depend

on I,.

In order to proceed to the data duplication phase, all of the groups of
procedures relative to data must be identified. For a data item A, a group of
procedures is composed by the procedure P, creating it and all the procedures P,
directly and exclusively deriving A from I, identified through the definitions
above, and all the procedures not accessing A in each path leading from I, to any

procedure P, of the group.

The aim of this paper is just to explain how the augmented technique can be
“adapted” to a programming language as COBOL. As there are no special
arrangements for this phase regarding the peculiarity of COBOL, the attention
will be concentrated on the drawing of the “temporal perform graph”
(TPG), combining the features of control flow graph and of the PERFORM

GRAPH.

A simple example on the creation of the TPG relative to the main procedure
of our example is given in figure 5.8.iii. The corresponding code and control
flow graph are shown in figure 5.8.i and 5.8.ii, respectively. Due to the UNTIL
statement, the procedure A200 can be performed zero or more times. Note that

the analysis for drawing the TPG is still a static analysis.

The TPG is built through a data analysis in which every statement of the
code is examined in order to check how every procedure accesses the data and the

sequence of the PERFORM statements affecting the data.

In order to obtain a representation which is easy to handle, instead of
drawing an unique TPG representing all the data, several TPGs can be drawn,
each of them relative to an unique data item. Since the data duplication phase

examines the data flow and the temporal sequence of the PERFORM statements

only relatively to a data item per time.

A simple example of TPG relative to a small portion of code is represented

in figure 5 9. In it, all the references of the procedures to the data are shown

89

Chapter 5 ~a case study on a COBOL source code

054300 0000O0. 05910543
054400 0544

054500 PERFORM A10H THRU 05920545
054600 A1OH~EXIT. . ‘ 05930546
054700 0547

054800 PERFORM A200 THRU 05850548
054900 A200-EXIT 05960549
055000 : UNTIL GMS. 05970550
055100 ' 05980551
055200 PERFORM A300 THRU . 05990552
055300 A300-EXIT. 06000553
055400 . 06010554
055500 STOP RUN. 06020555

[uGMs)] (\'" A200 >

A <

Figure 5.8 - The program representation in case of a UNTIL siatement. These statements
are typical of 'the COBOL programming style. The “*” in figure 5.8.iii represents the fact
that A200 can be repeated more than one time.

’

o —
) U(WSW.19 b
. ‘ ()} JUWSW.08) | & 300)
o — cety | e)
-~ e fcwsw.20)) . \ N
S — C(WSW 2‘) U(WSM 01)
COWSW.0T) UWSW. 20)] . - / U(WSM.02) \
el = L ey
. e u(wsw 21) — .
C(WSW.03) I /\ R < TN U(WSM.13)

C(PP1}

' "B210
M{WSW.04) N PR U on 03 c WSW.19 c(Ti.on
C(HD1.02) | C(GMS.02)]/') <\>- e ~ 8220 (! \€ U220 !) W(PP10DAU} UWSW.11)
\\ urTh UWSW.12)
8230 c(T1) UWSW.13)
< U(WSW.14)
c200

UWSW.15)
//—/ UWSW.16)
B\ N .. U(WSW.17)
C(wsw.:n)J T o N AN U(WSW.18)
/’ 7T C(771.02)

\ N . c(PP1)
LA Se s W(PP1GDAL)

/\ N . uITY)

.~ c(bT1)
. . ‘ 5 _EoT

[3100] (uzzo] [BGOO](ZSQS] [0210] [czzo ['czso] (cz4oJ [c250 | | c260] [cz7o]
. . y L i i

Figure 5.9 - The TPG shown in figure 5.9 is not relative to the initial stage of the
technique. It is possible to note the references to the refined data. For sake of clearness,
the procedure B220 and C230 are still represented in the TPG. Remember that they were

excluded from the bipartite graph, as they do not access any data.

A common situation met during the duplication phases of this system is

shown in figure 5.10a. Procedure P, contains more than one information node

90

Chapter 5 a case study on a COBOL source code

creating data item A, then it belongs to more than one group. In this case, the
procedure will contain references to all the items in which A will be duplicated
For example, in figure 5.10a the data item A will be duplicated into two items A,
and A,, as shown in figure 5.10b, because of the identification of two different
groups relative to A. The portion of code relative to I,, and I,, will contain
references to A, and A, respectively. The procedure P, will belong to the two

groups.

J——/, { o1 /,E
C(A C(A1) JOLCD S
1 / Pa) S W
b [M(A1) P lo2 Va
(psy L - I Ctha) | (s
(P2) o
" UA)] - U(A2)
! . Ps - U(A1) L
L

Figure 5 10 - The procedure P, has many information nodes creating A In this case, the
procedures P, and P directly derive A from Iy, and Iy,, respectively Procedure P, derives
A from Iy, but this derivation is not direct With the further assumption that there are no
other procedures invoking the procedures 1n figure 5 10a, the derivation 1s also exclusive
In this situation, the procedure will contain the different items 1n which the data 1s
duplicated, 1.e. the several portions of source code corresponding to the information nodes
1y, of P, contain different variables derived by the duplication of A

Through a statlc analysis of the code such groups of procedmes are
identified, and a data dupllcatlon phase “splits” the data into many items, one for

each group. This process is carried out for each data item.

After this phase, the links starting from these procedures toward the
commonly accessed data form a group of procedures whose computation depends
on a common data item. In this case, all the procedures of that group can be

considered as methods of the same object whose state is also stored in the

common accessed data.

91

Chapter 6

Future Works

The data analysis sketched here is also aimed at supporting the extraction of
knowledge from the legacy software at a high abstraction level, thus reducing the
effort of domain engineering. In orderAto support further the candidature phase
of higher level modules, an accurate examination of the available documentation
and the application of syntactic knowledge of the programming language to the
source legacy code can enrich the knowledge about the legacy information system

within that application domain.

The process produces a repository of reusable modules with object like
features directly relevant to the application domain. Each module should be
documented with specific information that can further support the process of -

designing an object oriented system in that application domain.

A parallel top-down pfocess of forward engineering could be defined in
order to support further the bottom-up reengineering process described here. If
the aim of this reengineering process is to reverse engineer the software system,
it can be combined with a forward engineering process aimed to significantly
increase both the understanding of the legacy code and the application domain

knowledge, both of which are needed to extract object oriented features from the
existing code.

A top-down forward engineering approach targeted to build from scratch
reusable modules to be reused in the development of a new software system
within the application domain needs a greater amount of time than a combined

approach in order to obtain the first reusable module. This is due to the longer

92

Chapter 6 Suture works

time needed for the domain experts to produce an object oriented design for that
application domain. However, in case of a not very complex, or of a well known

application domain, the top-down approach alone might be preferred.

A combined approach may identify software components in less time
because it gains of the use of knowledge extracted from the legacy information

system combined with the knowledge of the experts of that application domain.

6.1 Extension of Data Duplication Phase

In order to identify high quality objects-like modules, the addition of a
forward engineering process can help to group together procedureé that cannot be
grouped solely on the basis of the data flow analysis. For instance, figure 6.1
shows the case of two procedures creating the same data. Let us suppose that
both of them call a common procedure using that data (as for example in the case
of a common subroutine), the data duplication phase cannot group them into a
single group because of the presence of two information nodes crAeating the same -

data.

—

/

a

Po \

Figure 6.1 - Two procedures creating the same data but logically related. Further
knowledge from the application domain can help to group more meaningful candidate
modules, thus reducing the effort of the concept assignment phase.

Further knowledge from the application domain simplifying the

93

Chapter 6 Juture works

understanding of the data meaning can enrich the algorithm here presented, thus
allowing the grouping of more meaningful candidate modules. This reduce the

effort of the subsequent concept assignment phase.

6.2 Data Normalisation

A further phase can be formalised in order to break down the undesired links
between two procedures accessing the same data. In the case shown in figure 6.2,
both the procedures P, and P, access the data item A. In order to remove the link
between P, and A from the bipartite graph, it is possible to pass A as parameter in
all the invoking statements of the procedures between P, and P,. This approach
gives all the intermediate procedures access to A, but in the bipartite graph there
are no links between them and the data item A. This solution has as negative
aspect in that it increases list of parameters and, for the feature of the COBOL,

the increase of the LINKAGE SECTION of all the intermediate procedures.

ce o)
_. //
e
/ .
< P4
. \\-‘/ T \>\\

Figure 6 2

If it is supported by the knowledge extracted from the application domain,
this approach can help to isolate more meaningful groups of procedures on the

basis of the common accesses to the same data A, thus allowing the isolation of

modules with object oriented features.

94

Chapter 7

Conclusions

Object technology 1s undoubtedly the most promising way of delivering
systems based on reusable modules that can be adapted and changed without
having to re-examine all the existing code minutely [G94] Migrating towards an
object oriented platform 1s the best solution to protect the investments aimed to
keep an operational information system The target system 1s easier to
understand and to modify and the behaviour of the agents simulating the
real-world entity is easier to modify making the information system much more
adaptable to the rapid nature of the commercial change, and simpler to migrate

than 1t was before.

7.1 Evaluation of the Criteria for Success

The goals proposed at the beginning of the work have been developed
through the outlining of the research and further defined at the stage of defining
the method By following the sequence of the stages in which the work aimed to
formalise the method here presented, 1t 1s possible to evaluate the criteria for

success proposed in the first chapter of this thesis

The temporary sequence of these stages is basically respected through the

schema of this thess.

7 11 Description and evaluation of existing methods

The overview presented in the second chapter of this thesis has been

95

Chapter 7 conclusions

important because it depicts the state of the art about the reverse engineering and
reengineering techniques targeted at intervention producing evolution of the
code. A global overview of these language-independent techniques and their
applications to case studies has been important in the process of a better
understanding of all the problems related to the evolution of the legacy
information systems, as well as in the process of formalisation of the definition
of the technique here presented. Through that presentation, great attention has
been given to those aspects directly suggesting some details in the formalisation
of our method. Particularly, Sneed’s work and the reverse engineering
techniques, presented in section 2.2, directly dealing with COBOL source code
have been important in the later stage of this work, as it was clear from some
estimates about the large amount of COBOL legacy information systems the IT
people are dealing with. It suggested checking the method to extract reusable

modules from COBOL source code.

Section 2.3 has presented approaches dealing with the legacy information
system problem while populating a repository of “spare parts” to be reused in the
development of a new information system. By reading these works, the
importance of the extraction of reusable components became clearer. In fact, as
the functionality of “small” object-like modules is easy to understand and to
handle, the isolation of object-like modules with an easier data structure enlarges
the likelihood of reusing them rather than develaping them from scratch as well
as in each evolution process of the existing legacy information systems within the
application domain. This has allowed us to promote reuse within a definition of
a method targeted to help a process of evolution of existing legacy information

systems.

7 1.2 Formalisation of a language-independent method

The approaches to extract objects-like modules based on the graph theory
presented in section 2.5 have shown that graph theory may help to define an
efficient program representation by adding more information about the kind of

data access.

96

Chapter 7 conclusions

In fact, the main i1dea of the object isolation method presented here 1s to
extract information from the data flow, to cluster all the piocedures on the base
of their data accesses In order to distinguish several types of accesses and to
permit a better understanding of the functionality of the candidate objects, graph
theory allows the use of a program representation simplifying the process of

understanding “how” a procedure accesses the data

Particularly, great importance has been given to the data structures in each
1terative step of the algorithm presented here This importance came from the
conviction that it would be useful to the maintenance programmer to understand
the data and the function relationship and objects the original developer had in
mind. Clustering and reengineering operations on the components belonging to a
candidate object are necessary to transform them into an actual reusable object
Furthermore, successful maintenance requires a precise knowledge of the data
items in the system, the way these items are created and modified and their

relationships

7 1.3 Application of the method to a case study

The aim of the application of the technique to a real example 15 not to give
an exhaustive explanation about the method above, using a real example, but to
show how to adapt the method to the peculiarity of a given programming
language such as COBOL, while respecting in the meantime the main 1deas of the
technique. By way of a case study, a simple COBOL program has being
analysed, and the technique being used on it All the necessary arrangements to

adapt 1t to the peculiarity of COBOL are underlined.

Unfortunately, an information system that 1s modern today, will be legacy
tomorrow It 1s impossible to conceive information systems that do not turn
legacy “. we can use the best methods and the most modern tools 1n order to

reduce their resistance to the necessary changes, and we can build them in a

97

Chapter 7

conclusions

modular way such that make easier each change but we can not foretell the

Juture requirements of a business or the progress in the technology these two
things can challenge us as we can not foretell, thus making greater the future

resistance of our legacy information system to the changing” [BS95]

98

[A88]

[A92]

[A94]

[ADAS3]

[AF92]

[ANSI83]

[AP82]

[AP95]

[ASUS6]

[B81]

REFERENCES

L. J. ARTHUS, “Software Evolution' the Software Maintenance

Challenge”, John Wiley and Sons, New York, 1988.

G. ALKHATIB, “The Maintenance Problem of Application Software
An Empirical Analysis”, Journal of Software Maintenance Research

and Practices, 4(2), pp. 83-104, 1992.

R. S. ARNOLD, “Software Reengineering: A Quick History”,
Communication of the ACM, 37(5), pp. 13-14, 1994.

, “Reference Manual for the ADA Programming Language”, US
Department of Defence, MIL STDI1815A, 1983.

R. S. ARNOLD, W. B. FRAKES, “Software Reuse and Reengineering”, -

CASE Trends, 4(2), pp. 44-48, 1992.

-, “IEEE Standard Glossary of Software Engineering Terminology”,
ANSI / IEEE, Technical Report 729, 1983.

R. S. ARrRNoLD, D. A. Parker, “The Dimensions of Healthy
Maintenance”, Proc. of the 6" International Conference on Software
Engineering, pp. 10-27, 1982.

J. D. AHRENS, N. S. PRYWES, “Transition to a Legacy- and
Reuse-Based Software Life Cycle”, Computer, 28(10), pp. 27-36,
1995.

A. V. AHo, R. SETHI, J. D. ULLMANN, “Compiler. Principles,

Techniques and Tools”, Reading, MA: Addison Wesley, 1986

B. W. BOEHM, “Software Engineering Economics”, Prentice Hall,

Inc., New Jersey, 1981.

99

references

[B85]
[B874]
[B87,]
[B87]
[B89]
[B90]

[B9Ic]

[BI1,]

{B91,]
[B93,]

[B93;]

[BBKMNO94]

E. BUSH, “Automatic Restructuring of COBOL”, Conference on

Software Maintenance, IEEE Comp. Soc. Press, 1985.

F. P. BOEHM, “Improving Software Productivity”, IEEE Computer, 4,
pp. 43-57, 1987.

G. BoocH, “Software Components with ADA”, Benjamin Cummings,
Menlo Park, CA, 1987.

F. P. BROOKS, “No Silver Bullets - Essence and Accidents of

Software Engineering”, IEEE Computer, 20(4), pp. 10-20, 1987.

T. J. BIGGERSTAFF, “Design Recovery for Maintenance and Reuse”,
IEEE Computer, 22(7), pp. 36-49, 1989.

V. R. BASILI, “Viewing Maintenance as Reuse-Oriented Software

Development”, IEEE Computer, 23(1), pp. 19-25, 1990.

K. BENNETT, “The Software Maintenance of Large Software Systems-
Management, Methods and Tools”, Elsevier Science Publisher,

London, 1991.

B. 1. BLuM, “The Software Process for Medical Application™, T.
Timmers and B. I. Blum editors, Software Engineering in Medical

Informatic, pp. 3-25, Elsevier Science Publisher B.V., 1991.

P. BROWN, “Integrated Hypertext and Program Understanding
Toovls”, IBM Systém Journal, 30(3), pp. 363-392, 1991.

L. BERNSTEIN, “Tidbits”, ACM SIGSOFT - Software Engineering
Notes, IEEE Comp. Soc. Press, 18(3), pp. A-55, 1993.

J. BOWEN, “From Programs to Object Code and back again using
Logic Programming: Compilation and Decompilation”, Journal of
Software Maintenance: Research and Practice, 5(4), pp. 205-234,

1993.

R. BRAND, S. BURSON, T. KiTZMILLER, L. MARKOSIAN, P. NEWCOMB,
“Using an Enabling Technology to Reengineer Legacy Systems”,
Communication of the ACM, 37(5), pp. 58-70, 1994.

100

references

[BBL93,]

[BBL93,]

[BCD92]

[BHS5]

[BHL93]

[BLO1]

[BM97]

[BMW94]

[BMW96,]

J. BOWEN, P. BREUER, K. LaNO, “Formal Specifications in Software
Maintenance: From code to Z++ and back again”, Information and

Software Technology, 35(11/12), pp. 679-690, 1993.

J BoweN, P. BREUER, K. Lawno, “A Compendium of Formal
Techniques for Software Maintenance”, IEEE/BCS Software
Engineering Journal, 8(5), pp. 253-262, 1993.

P. BENEDUSI, A. CIMITILE, U DE CARLINI, “Reverse Engineering
Process, Design Recovery and Structure Charts”, Journal of System

and Software, 19, pp. 225-245, 1992.

W. E. BEREGI, G. F. FOFFNAGLE, “Automating the Software
Development Process”, IBM System Journal, 24(2), pp. 102-120,
1985.

P. T. BREUER, H. HAUGHTON, K. LANO, “Reverse FEngineering
COBOL via formal methods”, Journal of Software Maintenance.

Research and Practice, 5(1), pp. 13-35, 1993.

P. T. BREUER, K. LANO, “Creating Specification from Code - Reverse

Engineering Techniques”, in Journal of Software Maintenance, 3(3),

pp. 145-162, 1991.

E. BuURD, M. MUNRO, “Enriching Program Comprehension for
Software Reuse”, International Workshop on Program

Comprehension, IEEE Comp. Soc. Press, pp. 130-138, 1997.

T. J. BIGGERSTAFF, B. G. MITBANDER, D. WEBSTER, “Program
Understanding and the Concept Assignment Problem”,
Communication of the ACM, 37(5), pp. 72-83, 1994.

E. BURD, M. MuNRO, C. WEZEMAN, “dnalysing Large COBOL
Programs. the Extraction of Reusable Modules”, International
Conference on Software Maintenance, IEEE Comp. Soc. Press,

pp. 238-243, 1996.

101 "»

- £ =
N »@/
s

references

[BMW96,] E BURD, M MUNRO, C WEZEMAN. “Extracting Reusable Modules

[BP89]

[BS95]

[C89.]

[C894]

[C92]

[CC90]

[CC92]

[CCDY91]

[CCM94]

Jrom Legacy Code Considering the Issues of Module Granularity”,
Working Conference on Reverse Engineering, IEEE Comp Soc

Press, pp 189-196, 1996

T J BIGGERSTAFF, A] PERLIS, “Software Reusability Concepts

and Models”, ACM Press, Addison-Wesley, New York, 1989

M L BRODIE, M STONEBRAKER, “Migrating Legacy System”,

Morgan Kaufmann Publishers, 1995

F W CaLLIsS, “Inter-Module Code Analysis for Software
Maintenance”, Ph D Thesis, University of Durham, School of

Engineering and Applied Sciences, Computer Science. 1989

T A CorBI, “Program Understanding Challenge for the 90’s”, IBM
System Journal, 28(2), pp 294-306, 1989

T CAPERS-JONES, “Geriatric Care for Ageing Softwaie”, Knowledge

Based 1, Software Productivity Research Inc , Burlington, 1992

E J CHikoOFsKY,] H CRroSS Jr, “Reverse Engineering and Design

Recovery a Taxonomy”, IEEE Software, 7(1), pp 13-17, 1990

G CANFORA, A CIMITILE, “Reverse Engineering and Intermodular
Data Flow A Theoretical Approach”, Journal of Software

Maintenance Research and Practice, 4(1), pp 37-59, 1992

G CANFORA, A CIMITILE, U DE CARLINI, “4 Logic Based Approach
to Reverse Engineering Tools Production”, Proceedings of
Conference on Software Maintenance, IEEE Comp Soc Press,

pp 83-91, 1991

G CANFORA, A CIMITILE, M MUNRO, “RE*> Reverse Engineering

and Reuse Re-engineering”, Journal of Software Maintenance, 6(5),

pp 53-72, 1994

102

references

[CCM96]

[CCTA]

[CCR90]

[CCV95]

[CDI91,]

[CD91,]

[CD95]

[CDDF94]

[CDDF97]

G CANFORA, A CIMITILE, M MUNRO, “dn Algorithm for Identifying
Object in Code”, Software Practice and Experience, 26(1), pp 25-48,
1996

-, “SSADM Version 4 Manuals”, NCC-Blackwell, Manchester, 1990

T N CoMMER Jr,J R COMER, D T RoDJAK, “Developing Reusable
Software for Military System - Why it 1s needed and why 1t isn't
working”, ACM SIGSOFT Software Engineers Notes, 15(3),
pp 33-38, 1990

G CANFORA, A CIMITILE, G VISAGGIO, “Assessing Modularisation
and Code Scavenging Techniques”, Journal of Software Maintenance,

IEEE Comp Soc Press, 26(1), pp 25-48, 1996

A CIMITILE, U DE CARLINI, “Reveise Engineering-Algorithms for
Program Graph Production” Software Piactice and Experience,

21(5), pp 519-537, 1991

A CIMITILE, U DE CARLINI, “Reverse Engineering Algorithms for

Programs Graph Production”, Software - Practice and Experience,

21(5), pp 519-537, 1991

A CIMITILE, U DE CARLINI, “Metodologie, Tecniche e Strument: di

Reverse Engineering”, Franco Angeli editore 1995

G CaNFORA, A DE Lucia, G A Di Lucca, A R FASOLINO,
“Recovering the Architectural Design for Software Compiehension”,
Proceedings of the 3™ International Workshop on Program

Comprehension, IEEE Comp Soc Press, pp 30-38, 1994

A CiMITILE, A DE Lucia, G A D1 Lucca, A R FasoLINO,
“Identifying Objects 1n Legacy Systems”, International Workshop on

Program Comprehension, IEEE Comp Soc Press, pp 138-147, 1997

references

[CDM90]

[CFM93]

[CHO1]

[CMRS88]

[CMW89]

[CO90]

[CV95]

[CWW92]

[CY79]

[D95]

A. CiMITILE, G. A. D1 Lucca, P. MARESCA, “Maintenance and
Intermodular Dependencies in Pascal Environment”, Proceedings of
the International Conference on Software Maintenance, IEEE Comp.

Soc. Press, pp. 166-173, 1990.

A. CIMITILE, A. R. FASOLINO, P MARESCA. “Reuse-Reengineering
and Validation via Concept Assignment”, Proceedings of the
International Conference on Software Maintenance, Montreal,

Quebec, Canada, IEEE Comp. Soc. Press, pp. 216-225, 1993.

R. O. CHESTER, J. W. HOOPER, “Software Reuse - Guidelines and

Methods”, Plenum Press, New York, 1991.

B. J. CORNELIUS, M. MuUNRO, D. J. ROBSON, “An Approach to
Software Maintenance Education”, Software Engineering Journal,

4(4), pp. 233-240, 1988.

F. CALLiS, M. MUNRO, M. WARD, “The Maintainer’s Assistant”,

Proceedings of the International Conference on Software

Maintenance, 1989.

E. J. CHIKOFSKY, W. M. OSBORNE, “Fitting Pieces (o the

Maintenance Puzzle”, IEEE Software, 7(1), pp. 11-12, 1990

A. CIMITILE, G. VISAGGIO, “Software Salvaging and the Call
Dominance Tree”, The Journal of Systems and Software, 2(1),

pp. 25-48, 1995,

S. CERI, G. WEIDERHOLD, P. WEGNER, “Toward Megaprogramming”,

Comm ACM, 35(11), pp. 89-99, 1992.

L. L. CONSTANTINE, E. YOURDON, “Structured Design Fundamentals
of a Discipline of Computer Program and System Design”, Prentice

Hall, Englewood Cliffs, New York, 1979.

A. DE LuclA, “Ildentifying Reusable Functions in Code Using
Specification Driven Technique”, M. Sc. Thesis, University of

Durham, 1995.

104

references

[DGN89]

[DK93]

[DH72]

[DHS9]

[DT88]

[E76]

[EKNO91]

[EM93]

[FIM89]

[FK87]

W DIETRICH, F. GRACER, L. NACKMAN, “Saving a Legacy with
Objects”, 1n OOPSLA’90 ACM Conference on Object oriented
Programming System, Languages and Application (Meyrowitz N.,
editor), reading, MA: Addison Wesley, pp. 77-88, 1989.

M. F. DunN, J. C. KNIGHT, “Automating the Detection of Reusable
Parts in Existing Software”, Conference on Software Maintenance,

Baltimore, Maryland, IEEE Comp. Soc Press, pp. 381-390, 1993.

O. -J. DaHL, C. A. R. HOARE, “Hierarchical Program Structures”,

Structured Programming, Academic Press Inc., London, 1972.

L. DUSINK, P. HALL, “Introduction to Re-use”, Proceedings of the

Software Re-use Workshop, pp. 1-19, 1989.

S. DANFORTH, C. TOMLINSON, “Type Theories and Object-Oriented

Programming”, ACM Computing Survey, 20(1), pp. 29-72, 1988

J. L. ELSHOFF, “dn Analysis on Some Commercial PL/I Programs”,
IEEE Transaction on Software Engineering, SE-2(2), pp. 113-120,
1976.

A. ENGBERTS, W. Kozaczynski, J. Q. NiING, “Concept
Recognition-Base Program Transformation”, Conference on Software

Maintenance, pp. 73-92, 1991.

H. M. EDWARDS, M. MUNRO, “RECAST. Reverse Engineering from
COBOL to SSADM Specification”, Proceedings 15" International
Conference on Software Engineering, IEEE Comp. Soc. Press,

pp. 499-508, 1993.

J. R. FosTER, A. E. P. JoLLYy, M. T. NORRIS, “dn Overview of
Software Maintenance”, British Telecomm Technical Journal, 7(4),

pp. 37-46, 1989,

N. E. FENTON, A. A. KArosl, “Metrics and Software Structures”,

Information and Software Technology, 29(6), pp. 301-320, 1987

105

references

[FW86]

[FO76,]

[FO76,]

[FOW84]

[G94]
[GIMO91]

[GK95]

[GNS81]
[GP90]
[GT96]
[H77]

[H86]

N. E. FENTON, W. WITTHY, “Axiomatic Approach to Software
Metrication through Program Decomposition”, The Computer

Journal, 29(4), pp. 330-339, 1986.

L. D. Fospick, L. J. OSTERWEIL, “Data Flow Analysis in Software

Reliability”, Computer Survey, 8(3), pp. 305-330, 1976.

L. D. Fospick, L. J OSTERWEIL, “DAVE - A Validation Error
Detection and Documentation System for FORTRAN Programs”,
Software: Practice and Experience, 6, pp. 473-486, 1976.

J. FERRANTE, K. J. OTTENSTEIN, J. D. WARREN, “The Program
Dependence Graph and its Use in Optimisation”, ACM Trans.
Programming Languages and Systems, 9(3), pp. 319-349, 1987.

[. M. GRAHAM, “Migrating to Object Technology”, Addison Wesley.
1994.

C. GHEZZ1, M. JAZAYERI, D. MANDRIOLI, “Fundamentals of Software

Engineering”, Prentice-Hall International, Inc. New Jersey, 1991

H. GALL, R. KLOSCH, “Finding Objects in Procedural Programs an
Alternative Approach”, Working Conference on Reverse Engineering,

IEEE Comp. Soc. Press, pp. 208-216, 1995.

R. L. Grass, R. A. NOISEUX, “Software Maintenance Guidebook”,

Prentice Hall, 1981.-

B. GRABOWSKI, N. PENNINGTON, “Psychology of Programming”,

Academic Press, London, 1990.

P. A. GRUBB, A. A. TAKANG, “Software Maintenance Concepts and

Practice”, International Thomson Computer Press, 1996.

M. S. HEcHT, “Flow Analysis of Computer Programs”, Elsevier,

North Holland, 1977.

W. E. HOWDEN, “4 Functional Approach to Program Testing and
Analysis”, IEEE Transaction on Software Engineering, SE-12(10),
pp. 997-1005, 1886.

106

references

[H88]

[H90]

[HHW76]

[HL91,]

[HL91,]

[HMS84]

[HR88]

[HR89]

[IBM94]

D A. HIGGINS, “Data Structured Maintenance the Warnier/Qrr

Approach”, Dorset House Publishing Co Inc, New York, 1988

M HAMMER, “Reengineering Work Don’t Automate, Obliterate”,

Harvard Business Review, 1990.

D HEDLEY, M A HENNEL, M R WOODWARD, “On Program

Analysis”, Information Processing Letters, 5, pp 136-140, 1976

H HauGHTON, K LANO, “4 Specification-Based Approach to
Maintenance”, Journal of Software Maintenance Reseaich and

Practice, 3(1), pp. 193-213, 1991

H. HAUGHTON, K. LANO, “Extracting Design and Functionality from
Code”, REDO Project Document 2487-TN-PRG-1085, Oxford

University, 1991

E HorowiTz,] B MUNSON, “An Expansive view of Reusable
Software”, IEEE Transaction on Software Engineering, SE-10(5),
pp. 477-487, 1984

J. HARTMANN, D J ROBSON, “Adpproaches to Regression Tesling”,
Proceeding of the Conference on Software Maintenance, Computer

Soctety Press, pp. 368-372, 1988,

J. HARTMANN, D J ROBSON, “Revalidation During the Software
Maintenance Phase”, Tech Rep , School of Engineering and Applied
Science, University of Durham, 1989.

Computer Science Technical Report TR 1/89.

E Buss, R. DE Morl, W M GENTLEMAN, J] HENSHAW, H JOHNSON,
K KONTOGIANNIS, E MERLO, H A MULLER, J] MYLOPULOS. S
PAauL, A PRAKASH, M STANLEY, S R TiLLEY, J TROSTER, K
WONG, “Investigating Reverse Engineering Technologies for the CAS
Program Understanding Project”, IBM System Journal, 33(3),
pp 477-500, 1994.

107

references

[JK85]

[JL94]

[K87]

[KN95]

[L85]

[L90]

[L93]

[LM90]

[LOWY94]

[LPR94]

K. JENSEN, N. WIRTH, “PASCAL User Manual and Report”,
Springer-Verlag, New York, 3™ Edition, 1985
Revised By A. B. MIKEL and J. F. MINER.

P. E. LivaDpas, T. JOHNSON, “4 New Approach to find Objects in
Programs”, Journal of Software Maintenance- Research and Practice,

6(5), pp. 249-260, 1994.

K. C. KANG, “4 Reuse-Based Software Development Methodology”,
Proceeding of the Workshop in Software Reuse, 1987.

G. KoTiK, P. NEWCOMB, “Reengineering procedural into Object
Oriented Systems”, Working Conference on Reverse Engineering,

IEEE Comp. Soc. Press, pp. 237-249, 1995.

M. M. LEHMAN, “Program Evolution”, Academic Press, London,

1985.

K. LANoO, “Z++, an Object Oriented Extension to Z”, Proceedings of

the Z User Meeting, Oxford, 1990

S. LAUCHLAN, “Case Study Reveals Future Shocks”, Computing,

1993.

P. J. LAYZELL, L. MACAULAY, “dn Investigation into Software
Maintenance: Perception and Practices”, Conference on Software

Maintenance, IEEE Comp. Soc. Press, pp. 130-140, 1990.

S. Liu, R. M. OGANDO, N. WILDE, S. S. YAU “4n Object Finder for
Program Structure Understanding in Software Maintenance”, Journal
of Software Maintenance: Research and Practice, 6(5), pp. 261-283,
1994.

W. A. Lanpi, H. D. PANDI, B. G. RYDER, “Interprocedural Def-Use
Association For C System with Single Level Pointers”, IEEE

Transaction on Software Engineering, SE-20(5), pp. 385-403, 1994

108

references

[LR91]

[LS80]

[LST78]

[LW90]

[MD91,(]

[MD91,,]

IMD91,,]

[MS87]

[MU90]

W. A. LANDI, B. G. RYDER; “Pointer-Induced aliasing- a Problem
Classification”, in Proceedings of the 18th Annual ACM Symposium
on Principles of Programming Languages, Orlando, Florida, U S A ,
ACM Press, pp. 93-103, 1991,

B. P. LIENTZ, E. B. SWANSON, “Software Maintenance Management”,

Addison Wesley Publishing Company, Reading, Massachusetts, 1980.

B. P. LiENTZ, E. B. SWANSON, G. E. TOMPKINS, “Characteristic of
Application Software Maintenance”, Communication of the ACM,

21(6), pp. 466-471, 1978

S. Liu, N. WILDE, “Identifying Objects in a Conventional Procedural
Language. An Example of Data Design Recovery”, International
Conference on Software Maintenance, [EEE Comp. Soc. Press,

pp. 266-271, 1990.

D. A. STROKES, “Requirements Analysis”, J. McDermid editor,
Software Engineer’s Reference Book, Chapter 186, pp 16/1-16/21,

Butterworth-Heinemann Ltd, Oxford, 1991.

K. H. BENNET, B. CORNELIUS, M. MUNRO, D. RoBSON, “Software
Maintenance”, J. McDermid editor, Software Engineer’s Reference

Book, Chapter 20, pp.20/1-20/18, Butterworth-Heinemann Ltd,
Oxford, 1991.

P. HaLL, C. BOLDYREFF, “Software Reuse”, J. McDermid editor,
Software Engineer’s Reference Book, Chapter 41, pp. 41/1-41/12,
Butterworth-Heinemann Ltd, Oxford, 1991.

J. C. MILLER, B. M. Strauss III, “Implication of Automatic
Restructuring of COBOL”, ACM SIGPLAN Notices, 22(6),
pp. 76-82, 1987.

H. A. MULLER, J. S. UHL, “Composing Subsystem Structures Using

Partite Graphs”, Conference on Software Maintenance, 1990

109

references

[NS87]

[NS95]

[087]

[O90]

[0084]

[P72,]

[P725]

[P80]

[P82]

[P86]

[P91]

[P94]

[P95]

K. W. NIELSEN, K. SHUMATE, “Designing Large Real Time System
with ADA”, Communication of the ACM, 30(8), pp. 695-715, 1987.

H. M. SNEED, E. NYARY, “Extracting Object-Oriented Specification
from Procedurally Oriented Programs®, Working Conference on

Reverse Engineering, IEEE Comp. Soc. Press, pp. 217-226, 1995.

W. OSBORNE, “Building and Sustaining Software Maintainability”,

Proc. Of Conference on Software Maintenance, pp. 13-23, 1987.

W. OSBORNE, “Software Maintenance and Computers”, 1EEE

Computer Society Press, pp. 2-14, 1990.

K. J. OTTENSTEIN, L. M. OTTENSTEIN, “The Program Dependence
Graph in a Software Development Environment”, ACM Sigplan
Notices, 19(5), pp. 177-184, 1984.

D. L. PARNAS, “On the Criteria to be Used in Decomposing Systems
into Modules”, Communication of the ACM, 15(12), pp. 1053-1058,
1972.

D. L. PARNAS, “Information Distribution Aspects of Design
Methodology”, Proceedings of the IFIP Congress-1971, pp. 339-344,
1972.

M. PAGE-JONES, “The Practical Guide to Structured Systems

Design”, Yourdon Press, New York, 1980.

G. PARIKH, “Technique of Program and System Maintenance”,

Winthrop Publishers, 1982.

G. PARIKH, “Making the Immortal Language Work”, International

Computer Program Business Software Review, 7(2), 1986.

R. PRIETO-DIAZ, “Making Software Reuse Work. An Implementation

Model”, ACM SIGSOFT Software Engineering Notes, 16(3), 1991

R.S. PRESSMAN, “Software Engineering: a Practicioner's

Approach”, McGraw Hill, 1994,

D. PEARCE, “It’s a Wrap”, Consultant’s Conspectus, 1995,

110

refeiences

[PT94]

[S76]

[S87]

[S91]

[S92]

[S94]

[S95]

[S96,]

[S96;]

[SPC93]

[T88]

J POULIN, W TRrRACz “WISR ‘93 6" Annual Workshop on Software
Reuse Summary and Working Group Reports”, ACM SIGSOFT
Software Engineering Notes, 19(1), pp 55-71, 1994

E B SWANSON, “The Dimensions of Maintenance”, Proc of the 2"
International Confeience on Software Engineering, IEEE Comp Soc

Press, pp 492-497, 1976

N F SCHNEIDEWIND, “The State of Software Maintenance”, 1EEE

Transaction on Software Engineering, SE-13(3), pp 303-310, 1987

H M SNEED, “Bank Application Reengineering and Conversion at
the Union Bank of Switzerland”, Conference on Software

Maintenance, IEEE Comp Soc Press, pp 60-70, 1991

H M SNEED, “M:gration of Piocedurally Oriented COBOL
Programs 1n an Object-Oriented Archifecture”, Conference on

Software Maintenance, [EEE Comp Soc Press, pp 105-116, 1992

H M SNEED, “Downsizing Large Application Programs”, Jouinal of
Software Maintenance Reseaich and Practice, 6(5), pp 105-116,
1994

I SOMMERVILLE, “Software Engineering”, 3" Edition, International

Computer Science Series, Addison-Wesley, Workingham, 1995

H M SNEED, “Encapsulating Legacy Software for Use 1n
Client/Server Systems”, Working Conference on Reverse

Engineering, IEEE Comp Soc Press, pp 104-119, 1996

H M SNEED, “Object-Oriented COBOL Recycling”, Woiking
Conference on Reverse Engincering, IEEE Comp Soc Piess,

pp. 169-178, 1996

SPC Services Corp, “Reuse-Driven Software Process Guidebook”,

SPC-92019-CMC, Version 02 00 03, November 1993

W Tracz “Software Reuse Myths”, ACM SIGSOFT Softwaie
Engineering Notes, 13(1), pp 17-21, 1988

111

references

[T94]

[TT92]

[V80]

[V93,]

[VI93,]

[V94]

[W79]

[W82]

[W84]

[W88]

[W95]

[Y75]

M E. TORTORELLA, “Identification of Abstract Data Types in Code”,
M Sc Thesis, University of Durham, 1994

T TamAl, Y TORIMUTSU, “Software Lifetime and 1ts Evolution
Process over Generations”, Proceeding of the 8" Conference of

Software Maintenance, pp 63-69, 1992

E V. VaN HORN, “Software Engineering”, Academic Press, New
York, 1980.

D VAN EDELSTEIN, “Report on the IEEE STD 1219-1993 - Standard
for Software Maintenance”, ACM SIGSOFT, Software Engineering
Notes, IEEE Comp. Soc. Press, 18(4), pp. 94-95, 1993,

H VAN VLIET, “Software Engineering Principles and Practice”,
John Wiley, Chichester, 1993

A. VON MAYRHAUSER, “Maintenance and Evolution of Software

Products”, Advance in Computers, 38(1), pp 1-49, 1994

M. WEISER, “Program Slices Formal, Psychological, and Practical
Investigation of an Automatic Program Abstraction Method”, Ph D

Thests, University of Michigan, 1979

M WEISER, “Programmers use Slices when Debugging”,
Communication of the ACM, 25(7), pp 446-452, 1982

M. WEISER, “Program Slicing”, 1EEE Transaction on Software
Engineering, SE-10(4), pp. 352-357, 1984

C WATERS, “Program Translation via Abstraction and
Reimplementation”, Transaction on Software Engineering, [EEE

Comp Soc Press, 14(8), 1988

P WINSBERY, “Legacy Code - Don’t Reengineer 1t, Wrap 11”7,

Datamation, pp. 36-41, May 1995

E YOURDON, “Techniques of Program Structure and Design”,

Prentice-Hall Inc., 1975.

112

references

[Y90]

[293,]

[293:5]

(293]

E YOURDON, “Object Oriented COBOL”, American Programmer,
3(2), 1990

J BOWEN, P BREUER, “Decompilation”, Henk van Zuylen (ed), The
REDO Compendium: Reverse Engineering for Software Maintenance,

Chapter 10, John Wiley & Sons, pp 131-138, 1993

J BOWEN, P BREUER, K. LANO, “Understanding Programs through
Formal Methods”, Henk van Zuylen (ed), The REDO Compendium
Reverse Engineering for Software Maintenance, Chapter 15, John

Wiley & Sons, pp 195-223, 1993

P BREUER, H. HAUGHTON K LANO, “Reverse Engineering COBOL
via Formal Methods”, Henk van Zuylen (ed), The REDO
Compendium Reverse Engineering for Software Maintenance

Chapter 16, John Wiley & Sons, pp 225-248, 1993

113

o .
A SN
tj‘;\l- LN,
RN

