
Durham E-Theses

Support for an integrated approach to program

understanding: an application of software

visualisation

Chan, Pui Shan

How to cite:

Chan, Pui Shan (1998) Support for an integrated approach to program understanding: an application of

software visualisation, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4666/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4666/
 http://etheses.dur.ac.uk/4666/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Support for an Integrated Approach

to Program Understanding: An

Application of Software Visualisation

Pui Shan Chan

Ph.D. Thesis

The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

Centre for Software Maintenance

Department of Computer Science

University of Durham

May 1998

Abstract

Program Comprehension is a key factor in providing effective software maintenance and enabling

successful evolution of software systems. The objective of this research is to provide a framework and

mechanism to facilitate the understanding of large software systems.

There exist a number of theories and models of Program Comprehension where each favours a

different approach to comprehension. It is evident that there is no real consensus on how maintainers

understand software systems. The disparities in the comprehension strategies are largely dependent on

the personal and circumstantial factors. Factors such as the level of technical competence of the

maintainers, the size and complexity of the piece of software, and the types and goals of the

maintenance activities can influence the process of comprehension.

This research proposes an alternative approach to Program Comprehension. It acknowledges that the

process of comprehension is opportunistic, and that the current comprehension theories are

inadequate in addressing this. There is a need for a more flexible approach towards comprehension,

and the Integrated Approach proposed in this thesis provides a way for the utilisation of the various

comprehension theories under a single environment. It recognises that any one of the comprehension

theories may become active during comprehension. Under the Integrated Approach, maintainers have

the option of selecting and executing the various comprehension strategies as they see fit.

The Integrated Approach to comprehension is based on a matrix of Program Relationships between

Program Elements of a programming language. In this thesis, these Program Relationships are

derived for the C programming language constructs.

This work also involves the investigation of the roles of both textual and graphical representations

during the comprehension process. Both representations are commonly used to alleviate the problem

of information overloading when maintainers trying to understand and maintain a software system.

The Integrated Approach is realised in a tool named PUI (/'rogram i/nderstanding /mplements)

which provides an environment enabling the utilisalioji of various comprehension theories.

Acknowledgements
The author would like to acknowledge the University of Durham for the award of a research

studentship. Special thanks are due to my supervisor Mr. Malcolm Munro for all his help and

guidance throughout the course of this research. Many thanks must also go to my colleagues at the

Centre lor Software Maintenance and especially to Miss Elizabeth Burd for her help in the writing of

this thesis. Finally, I would like to thank my parents and Eng Tiong for their continuous support and

encouragement especially during the past three years.

Copyright
The copyright of this thesis rests with the author. No quotation from this thesis should be published

without prior written consent. Information derived from this thesis should also be acknowledged.

Declaration
No part of the material provided has previously been submitted by the author for a higher degree in

the University of Durham or in any other University. All the work presented here is the sole work of

the author and no-one else.

Table of Contents

1 Introduction I

1.1 Software Engineering 1

1.1.1 The Software Crisis 1

1.1.2 The Software Process Mode 2

1.1.3 Definition 3

1.2 Software Maintenance 3

1.3 Program Comprehension 4

1.4 Research Problem 6

1.5 Criteria for Success 6

1.6 Thesis Overview 8

2 Theories and Practices of Program Comprehension 10

2.1 Introduction 10

2.2 Theories and Models of Program Comprehension 10

2.2.1 Syntactic/Semantic Knowledge 11

2.2.2 Systematic/As-needed Approach 12

2.2.3 Hypotheses Verification 12

2.2.4 Beacons 13

2.2.5 Program Plans 14

2.2.6 A Cognitive Model 15

2.2.7 Stimulus Structures and Mental Representations 15

2.2.8 An Integrated Metamodel 16

2.3 Current Techniques and Practices 17

2.3.1 The Concept Assignment Problem 17

2.3.2 Modulisation 17

2.3.3 Program Slicing 18

2.3.4 Source Code Presentation 19

I Natural Naming 20

II Comments 20

II I Pretty-printing 20

2.3.5 Visualisation 21

I Problems in Laying Out Graphs in Two-dimensions 22

II Strategies lor Improving Graphical Representations 22

A Graph Simplification 23

B Clustering 24

C Graph Slicing 24

D Presentation 24

I I I Program Visualisation 25

IV Definitions 27

V Survey of Program Visualisation Systems 28

A Sorting Out Sorting 29

B BALSA 29

C VIFOR 30

D Dependency Analysis Tool 31

E CARE 31

F Pascal Genie 33

G SHriMP Views 33

H The McCabe Tool Set 33

I Logiscope 34

J SNiFF+ 34

K Code Measurement Tool and Code Monitor 35

2.4 Summary 35

3 A Framework for Evaluation 39

3.1 Introduction 39

3.2 Research Methods 39

3.3 Cognitive Design Elements for Software Exploration Tools 40

3.3.1 Improve Program Comprehension 42

I Enhance Bottom-up Comprehension 42

I I Enhance Top-down Comprehension 43

III Integrate Bottom-up and Top-down Approaches 43

3.3.2 Reduce the Maintainer's Cognitive Overhead 44

I Facilitate Navigation 44

II Provide Orientation Cues 44

I I I Reduce Disorientation 45

3.4 Summary 45

4 An Integrated Approach to Program Understanding 47

4.1 Introduction : 47

4.2 Integrated Approach 47

4.3 Program Elements and Program Relationships 52

4.3.1 Glossary 53

I The Program Elements 53

I I The Program Relationships 54

4.3.2 The Table of Program Relationships 56

I Identifier 56

I I Constant 56

I I I Variable 56

IV Argument 57

V Expression 58

V I Primitive Type 58

VI I Complex Type 60

VlllSlatement 61

IX Block 62

X Function 63

X I File 64

4.3.3 The Attributes 64

I Scope 64

I I Storage Class 65

4.4 A Framework for the Integrated Approach 66

4.4.1 Context Sensitive Navigational Aids 67

4.4.2 Information Display 69

I Textual Display 69

A Search Engine 70

B Homogeneous Information 70 •

C Heterogeneous Information 72

I I Graphical Display 72

A Layout 74

B Colour 76

C Clustering 77

D Graph Slicing 77

4.5 Summary 79

Implementation 81

5.1 Introduction 81

5.2 The Prototype 81

5.3 Tool Support 84

5.4 A Brief Introduction to PUI 86

5.5 Summary 89

H I

Case Studies 90

6.1 Introduction 90

6.2 An Overview 90

6.2.1 A Generation of the Top-down and Bottom-up Approaches 90

I The Top-down Approach 90

I I The Bottom-up Approach 91

6.2.2 Structures of the Case Studies 91

6.3 Case Study One 92

6.3.1 Content of Programs 92

6.3.2 Scenario Description '• 92

6.3.3 Expected Changes : 92

I File s o r t l i n e . c 92

I I F i l e q s o r t . h 94

II I F i l e q s o r t . c 94

6.3.4 Using a Top-down Approach 95

I Detailed Description 95

I I Summary 106

6.3.5 Using a Bottom-up Approach 109

I Detailed Description 109

I I Summary '18

6.4 Case Study Two '20

6.4.1 Content of Programs 120

6.4.2 Scenario Description 120

6.4.3 Expected Results 120

I File Format One 121

II File Format Two 121

I I I File Format Three 122

IV File Format four 122

6.4.4 Using a Top-down Approach 122

I Detailed Description 122

I I Summary 134

6.4.5 Using a Bottom-up Approach 136

I Detailed Description 136

II Summary 143

6.5 Discussion '44

7 Evaluation 146

7.1 Introduction 146

7.2 Evaluation of the Integrated Approach 146

7.2.1 Theories of Program Comprehension Revisited 146

7.2.2 Integrated Approach Revisited 148

7.2.3 Cognitive Design Elements 149

I Enhance Bottom-up Comprehension 149

I I Enhance Top-down Comprehension 150

I I I Integrate Bottom-up and Top-down Approaches 151

7.3 Evaluation of the Implementation 151

7.3.1 Using the Web as the Undedying Structure 152

7.3.2 Cognitive Design Elements 152

I Facilitate Navigation 152

I I Provide Orientation Cues 153

I I I Reduce Disorientation 154

7.4 Requirements for Automation 154

7.4.1 Automation 155

7.4.2 Tool Support 157

7.4.3 Graph Layout • 157

7.5 Discussion 158

8 Conclusion 159

8.1 Introduction 159

8.2 Summary of Research 159

8.3 Evaluation of Research 161

8.3.1 Criteria for Success 161

8.3.2 Evaluation 162

8.4 Future Work 164

Appendix A 166

Appendix B '69

References 172

List of Figures

Figure 1-1 Program Comprehension in relation to other activities in the context of

Software Engineering 5

Figure 2-1 A Venn diagram showing the relationships among the terms 28

Figure 2-2 A screen showing the code view, input, status message and graphical

representations of a data structure 29

Figure 2-3 A screen shot of VIFOR 30

Figure 2-4 The transformation and slicing mechanism provided by CARE 32

Figure 2-5 A snapshot of Pascal Genie running a program 32

Figure 2-6 A screen showing the running of the McCabe tools 34

Figure 3-1 Cognitive design elements for software exploration 41

Figure 4-1 Two stages of the comprehension process 49

Figure 4-2 A set of navigational aids when the Program Element File is selected 67

Figure 4-3 A set of navigational aids when the Program Element Function is selected 68

Figure 4-4 A set of navigational aids when the Program Element Variable is selected 68

Figure 4-5 Screen shots showing the use of a hypertext link across a set of hypertext

documents 71

Figure 4-6 Screen shots showing the use of a hypertext link to cross-reference information 73

Figure 4-7 A call graph of the function main () in the file s o r t l i n e . c 74

Figure 4-8 A simplified control flow graph of the function main () in the file

s o r t l i n e . c 75

Figure 4-9 The function interface of the function q s o r t in the file s o r t l i n e . c 75

Figure 4-10 Nodes which are connected to 'readlines' are highlighted using colour 76

Figure 4-1 1 The use of clustering technique on the call graph of the function b u i l d _ c a l l 78

Figure 4-12 The portion of call graph containing the node 'build_sys_cair and its

connecting nodes 79

Figure 5-1 An overview of PUI together with the supporting tools 82

Figure 5-2 The PUI tool 83

Figure 5-3 Input to Graph Tool 84

Figure 5-4 A snapshot of Graph Tool depicting a graph using the input from Figure 5-3 84

Figure 5-5 The start-up screen of PUI 86

Figure 5-6 Screen showing the viewpoints 87

Figure 5-7 A typical screen of the PUI tool 87

Figure 6-1 Screen showing the overview of the system s o r t l i n e 95

V I

Figure 6-2 Screen showing information regarding the file s o r t l i n e . c 96

Figure 6-3 Screen showing the global data declarations in the file s o r t l i n e . c 97

Figure 6-4 Screen showing the list of functions defined in the file s o r t l i n e . c 99

Figure 6-5 Screen showing information regarding the function main () 99

Figure 6-6 Screen showing the control flow graph of the function main() 100

Figure 6-7 Screen showing the function interface of the function r e a d l i n e s 100

Figure 6-8 Screen showing the control flow graph of the function r e a d l i n e s 101

Figure 6-9 Screen showing information regarding the function qsort : 103

Figure 6-10 Screen showing information regarding the function swap 105

Figure 6-11 Screen showing the list of functions defined in each of the files in the system

s o r t l i n e 109

Figure 6-12 Screen showing information regarding the global variable l i n e p t r 111

Figure 6-13 Screen showing that the global variable l i n e p t r is used as an argument 111

Figure 6-14 Screen showing information regarding the funcfion g e t l i n e 112

Figure 6-15 Screen showing the list of functions which called the function g e t l i n e 113

Figure 6-16 Screen showing the list of functions which called the function a l l o c 114

Figure 6-17 Screen showing the list of functions which called the function qsort 117

Figure 6-18 The default screen when no parameter is supplied to the system convert 121

Figure 6-19 Screen showing the overview of the system convert 123

Figure 6-20 Screen showing the information regarding the function main () 123

Figure 6-21 Screen showing the #define statements in the file convert.c 124

Figure 6-22 Screen showing the local variable declarations in the function m a i n () 126

Figure 6-23 Screen showing information regarding the variable s t a _ i n _ f i l e 127

Figure 6-24 Screen showing that the variable s t a _ i n _ f i l e is used as an argument 127

Figure 6-25 Screen showing information regarding the function b u i l d _ s t a d a t a 128

Figure 6-26 Screen showing information regarding the use of argument in the function

b u i l d _ s t a d a t a 129

Figure 6-27 Screen showing the local variable declarations in the function

b u i l d _ s t a d a t a 131

Figure 6-28 Screen showing the list of functions defined in each of the files in the system

convert 136

Figure 6-29 Screen showing the local variable declarations in the function

b u i l d _ c a l d a t a 138

Figure 6-30 Screen showing information regarding the use of argument in the function

b u i l d _ c a l d a t a 139

List of Tables

Table 1 Program Relationships between Program Elements 55

Table 2 Scope of Program Elements 64

Table 3 Storage classes in C 65

Chapter One

Introduction

1.1 Software Engineering

1.1.1 The Software Crisis

The term Software Engineering was first introduced in the late 1960s to address the Software Crisis.

Thirty years on, the Software Crisis still has not been resolved [Pres92, Somm96, Vlie93].

Programming techniques have lagged behind the developments in software both in size and

complexity. Traditional techniques such as programming languages, tools and methods are primarily

developed to support programming-in-the-small. Transferring these techniques directly to the-

development of large programs therefore proved unfruitful.

The use of computers has now become an integral part of our lives. People are becoming more

dependent on channels of communication, more reliant on the vast traffic in the invisible data and

more connected to the computers that manage it. The following examples illustrate the scale of some

software development projects:

• the Dutch K L M airline reservation system contains two million line of (assembler),

code [Vlie93]

• the UNIX operating system comprises over 3 700 000 lines of source code (System

V release 4.0, including Xnews and the X11 window system) [Vlie93]

• the NASA Space Shuttle software counts 40 million lines of object code (this is 30

times as much as the software for the Saturn V projects from the 1960s) [Boeh81]

• the IBM OS360 operating system look 5000 man years of the development effort

[Broo75]

1.1.2 The Software Process Model

The evolution of the Software Process Model [Royc70] was one of the results after the identification of

the Software Crisis. The process model (the Waterfall model) reflected the view that software

development should be perceived as an engineering discipline. This was warmly welcomed by

software project management as it offered a means of making the development process more visible

and manageable.

There are a distinguishable number of phases in the Waterfall model, namely Requirement analysis,

Design, Implementation, Testing and Maintenance. Each phase can be divided into a number of

different activities [Somm96]:

• Requirements analysis and definition: The system's functionalifies, constraints and

goals are established by consultation with the system users. They are defined in a

manner which is understandable by both users and the development staff.

• System and software design: The system design process partifions the requirements

to either hardware or software systems, and it also establishes an overall system

architecture. Software design involves representing the software system functions so

that they may be transformed into one or more executable programs.

• Implementation and unit testing: During this stage, the software design is realised

as a set of programs. Unit testing involves verifying that each program meets its

specification.

• Integration and system testing: The individual programs are integrated and tested as

a complete system to ensure that the software requirements have been met. After

testing, the software system is delivered to the customer.

• Operation and maintenance: Maintenance involves correcting errors which were

not discovered in earlier stages of the life cycle, improving the implementation of

system units and enhancing the system's services as new requirements are

discovered.

This is a general model rather than a detailed process model. A number of different general models or

paradigms of software development can be derived from this such as the Prototyping model [Fair85]

and the Spiral model [Boeh86, Boeh88]. The Waterfall model puts the emphasis on the importance of

the careful analysis and planning before any major decision is committed, and thus avoid wasting the

extraneous effort to re-develop a system. Management generally found this model useful for planning

and reporting. However, for a given project these activities are not necessarily separated as strictly as

indicated above. Iterations and overlapping of activities may arise.

1.1.3 Definition

The definition of Software Engineering is given in [ANSI83]:

Software Eniiiiwerini^ is the systcniatk: approach to the development, operation,

maintenance, and retirement of software.

Software Engineering is concerned with systems developed by teams that collaborate over periods

spanning from months to years. It also encompasses both technical and non-technical (managerial)

issues. Sommerville [Somm96] points out that software is not just a collection of computer programs.

It includes the documentation necessary to install, use, develop and maintain these programs. For

large software systems, the effort required to write this documentation is sometimes as great as

developing the systems themselves.

1.2 Software Maintenance
Studies have shown that organisations spend on average over half of their resources on software

maintenance activities [Alkh92, Dekl92, Lien80, Lien81]. Indeed, it is impossible to build software

systems which do not require some kind of maintenance effort. Over the lifetime of a system, its

original requirements will be modified to reflect changing needs and enhancements requested by

users, the system's environment may change and errors, undiscovered during system validation, may

emerge [Schn87j.

Both the following definitions for Software Maintenance:

Modification of a software product after delivery to correct faults, to improve

performance or other attributes, or to adapt the project to a changed environment.

[ANSI83]

Software Maintenance is the set of activities (both technical and managerial) necessary

to ensure that software continues to meet organisational needs. [CSM]

sum up the importance of careful planning and well-organised management to Software Maintenance.

Maintenance activities can be broken down into four main categories [Lien78, Lien80]:

• Perfective maintenance involves improving the functions of the software by

responding to user defined changes.

• Corrective maintenance involves the correction of processing, performance or

implementation failures. It includes activities such as bug fixing and correction of

software errors.

• Adaptive maintenance involves modifying the software in order to keep up with

environmental changes. It may involve changes in hardware or data.

• Preventive maintenance involves updating software in order to forestall future

problems and to increase maintainability.

Whether it is for corrective, adaptive, perfective or preventive maintenance, the key to all of these

activities is Program Comprehension [Mayr95, Oman90a].

1.3 Program Comprehension
Understanding how a program or an application is constructed and its underlying intent is essential to

the task of enhancing and/or the maintaining of the program. Research has shown that maintainers

spend a considerable amount of time studying programs, especially when engaged in maintenance

activities. This figure can be as high as three-and-a-half times as long as they studied the

documentation [Litt86].

One way of acquiring information about a program is from the documentation. It is widely understood

that good documentation can aid the process of understanding programs. However, the problem for

most maintainers is they have to maintain unfamiliar code that has been modified and the

accompanying documentation is usually out of date, inadequate, inconsistent or sometimes non

existent. In the case where documentation does exist, maintainers may find it difficult to acquire

sufficient information from the document because it is not produced with their needs in mind. As a

last resort, they have to rely on the source code in order to gain an understanding of the programs.

Sometimes, the source code may be the only reliable documentation available to them.

Program Comprehension plays an important role in Softv/are Maintenance as well as other activities

in Software Engineering. It can be used as an aid to Reverse Engineering [Robs91], Testing and

Debugging [Weis82, Weis84, Weis86], Reuse [Slan841, Redocumentation [Basi82, Youn93], and

Learning, as shown in Figure 1-1. A good understanding of the source code is required before the

commencement of any of the activity mentioned above. For a maintainer, the primary desire is the

ability to decipher the source code accurately, quickly and efficiently.

Learning

Redocumentation

Maintenance

Program
Comprehension

Reuse

Reverse
Engineering

Testing +
Debuggmg

Figure 1 -1 Program Comprehension in relation to other activities in the context of Software
Engineering

There are a number of theories and models of Program Comprehension advocated by psychologists

who are interested in studying the behaviour of programmers. Most of the work has been carried out

by observational studies, where typically, programmers are given a task to complete within a time

limit. Some of the programmers were tested against their understanding, while others were

encouraged to think out loud so that their thoughts could be recorded. The results indicate that

comprehension is performed in either a top-down or a bottom-up manner. However, Chan [Chan97],

Letovsky [Leto86a] and von Mayrhauser and Vans [Mayr95] believe that the process of

comprehension is an opportunistic approach where maintainers utilise both the top-down and the

bottom-up approaches whenever additional infonnation is encountered.

There are a number of academic and commercial software maintenance tools available but most of

them are not powerful enough for use on a large scale as they offer limited analysing power. Most of

them are developed under the influence of a particular Program Comprehension theory which may not

be sufficient to cope with the diversity of the software maintenance activities. It is unlikely to find an

existing tool which has the capability to assist all activities which are encompassed by the various

cognition models for Program Comprehension.

1.4 Research Problem
The research program to be addressed in this thesis is to provide a frameworic that enables the

utilisation of various Program Comprehension theories and models in the same environment.

Programs are complex, abstract objects which include many components with many different

attributes that are interrelated in complicated ways. Maintainers may find it difficult to understand

and navigate through these complex interrelationships among different parts.

An important aid to the problems of Program Comprehension has been the use of static and dynamic

analysis tools which can provide useful and up to date information of a program. Through providing

different views such as call graphs, control flow graphs, data flow information, program slices and

cross references, a maintainer can utilise this information to gain a better understanding of a program.

This information is mostly presented in textual and two-dimensional form at present, which can lead

to problems of layout and display for large amounts of information generated by the analysis tools.

The intention of this research is to investigate what can be done when a maintainer is overloaded with

too much information to deal with. The roles of both ihe textual and graphical representations will

also be investigated.

Graphical representations are useful for exploring relationships. For modern large-scale problems,

which require maintainers to understand large collections of information, solutions must be found for

managing these complex interrelationships. This problem can be decomposed into three subproble lems:

• how to make a meaningful visualisation of a single object

• how to make a meaningful visualisation of a collection of objects

• how to allow the users to control the selection of the visualisation efficiently

The essence of the problem to be researched is that of providing a mechanism for maintainers to

achieve an understanding of a program by using the Program Comprehension theories which are

suitable to the task at hand.

1.5 Criteria for Success
A In order to facilitate the process of Program Comprehension, a maintainor needs to have access to

different kinds of information concerning a piece of source code. This can be in textual and/or

graphical forms. Hence:

• maintainers should have easy and quick access to information at different levels of

abstraction during various stages of comprehension

• support should be provided for maintainers with various degrees of experience and

abilities

• support should be provided for the different types of maintenance activities that they

may engage in

B There are a number of theories and models of Program Comprehension. Some researchers argue

that it is done in a top-down fashion, whereas others advocate that it should be conducted in a

bottom-up manner. There is no real consensus on how maintainers should perform

comprehension. Moreover, most maintainers may prefer to employ the use of a mixture of

strategies when the situation arises. Hence:

• any alternative approach to Program Comprehension proposed should address the

need for a more flexible approach

C The feasibility of the Integrated Approach proposed needs to be examined. Hence:

• it needs to be demonstrated that it is feasible to realise the Integrated Approach in a

physical form which can be executed with minimal difficulty

D The size of a software system should not be a hindrance to the process of Program

Comprehension. Much research effort has been devoted to the development of techniques which

support undersianding-in-the-small. Hence:

• the Integrated Approach should be equipped with the capability to support

understanding-in-the-large

In the context of this thesis, the term understanding-in-the-small is used to refer to the set of

activities that are associated with the understanding of small' programs which are relatively

simple. The term understanding-in-the-large refers to the understanding of larger programs

which contain more complex program relations.

E The usability and practicality of the Integrated Approach and of the implementafion needs to be

examined. Hence:

• both the Integrated Approach and the implementation should be measured against a

set of criteria, which should lead to an objective evaluation

1.6 Thesis Overview
The remainder of this thesis is organised as follows.

Chapter Two reviews two areas of Program Comprehension. In the first part of this chapter, the

theoretical background of the comprehension process and different Program Comprehension theories

and models will be discussed. This is followed by a review of the common techniques and practices

used by the maintainers during the comprehension process. It will concentrate on the use of

visualisation techniques. A number of strategies which can be used to improve the complexity of the

graphical representations will be presented, together with a survey of a number of Program

Visualisation systems.

Chapter Three describes a framework for the evaluation of the Integrated Approach outlined in

Chapter Four, the implementation outlined in Chapter Five and the Case Studies outlined in Chapter

Six. The first part of the chapter explores the use of research methods such as Surveys, Formal

Experiments and Case Studies. The second part of this chapter describes a set of objective criteria for

the evaluation. The set of criteria is divided into two branches. The first branch is intended to capture

various comprehension theories such as the top-down and bottom-up approaches. The other branch

addresses the cognitive issues of a maintainer while he browses and navigates the visualisation of the

program structures.

Chapter Four introduces an alternative approach to Program Comprehension. The Integrated

Approach addresses the need for a more flexible approach to comprehension, and it provides a

framework and mechanism to facilitate the understanding of large software systems. In particular, it

discusses the use of Program Relationships through carrying out a systemafic analysis of Program

Elements.

Chapter Five describes how the various Program Comprehension theories and models can be realised

by a simple browsing tool named PUI (Program f/nderstanding /mplement), which allows

maintainers to understand the relationships between Program Elements. The tool is based on a matrix

of Program Elements and Program Relationships which are designed to reflect the multi-dimensional

nature of programs.

Chapter Six demonstrates the principal use of the prototype by way of Case Studies. Demonstrations

of how both the top-down and the bottom-up approaches to Program Comprehension can be utilised

by using PUI is presented in this chapter. It shows how maintainers can use the prototype to recover

information as they browse through the various parts of a program representation.

Chapter Seven presents an evaluation of the work undertaken. It is-evaluated against the existing

Program Comprehension theories and models, the prototype implementation and the results of the

Case Studies. They are evaluated against a hierarchy of cognitive issues raised in Chapter Three. This

is followed by a discussion on the requirements for automation.

Chapter Eight presents a summary of this research and evaluates the success of the research against

the criteria defined in section 1.5. An indication on the directions for further work is also presented.

Chapter Two

Theories and Practices of Program
Comprehension

2.1 Introduction
This chapter reviews two areas of Program Comprehension. In the first part of this chapter, the

theoretical background of the comprehension process and different Program Comprehension theories

and models are discussed. This is followed by a review of the common techniques and practices used

by the maintainers during the comprehension process. It will concentrate on the use of visualisation

techniques. A number of strategies which can be used to improve the complexity of the graphical

representations will be presented, together with a survey of a number of Program Visualisation

systems.

2.2 Theories and Models of Program Comprehension
Program Comprehension plays a critical part in all aspects in Software Engineering, and especially in

software maintenance. Activities such as Reverse Engineering, Reuse, Tesfing and Software

enhancement will require a good understanding of the source code before any modificafion is to take

place. Research has shown that maintainers spend a considerable amount of time studying programs.

This figure can be as high as three-and-a-half times as long as they studied the documentation

[Litt86]. In the absence of a complete and consistent documentation, the source code may be the only

information the maintainers have. Hence, there is a strong desire for strategies and techniques which

can be utilised to facilitate the comprehension process. The following is a review of the literature on

the theories and models of Program Comprehension.

10

2.2.1 Syntactic/Semantic Knowledge

Shneiderman [ShneSO] conjectures that the information chunking process is used in understanding

programs. Programmers abstract the information in the programs into chunks which are then built

into an internal semantic structures representing the programs.

Further, he suggests that programs are not understood on a statement by statement basis unless a

statement represents a logical chunk. Shneiderman and Mayer [Shne79] identify three types of

knowledge used in Program Comprehension:

• Syntactic Knowledge is the language dependent detail used for carrying out actions

or defining objects. For example, the use of semi-colons to terminate or separate

statements or the use of iteration words (DO, FOR, LOOP or REPEAT) is language-

dependent and arbitrary. This knowledge must be frequently rehearsed to preserve

retention.

• Semantic Knowledge of Software Engineer is meaningfully acquired by reference

to previous knowledge by example or by analogy. There is a logical structure to

semantic knowledge that is independent of the specific syntax used to record it.

• Semantic Knowledge of task-related knowledge is the domain knowledge about

ihe real-world in which the program operates. • For example, it may be the

knowledge of accountancy practices or air traffic control procedures. Any

knowledge of business rules defined by the users of the program also fits into this

category.

Information regarding a program is categorised into different levels of representation ranging from

high to low. High level representation allows a top-down comprehension approach to be used and low

level representation favours the bottom-up approach. Shneiderman and Mayer believe that the

semantic knowledge is.acquired by experience and through active learning where new information is

consciously integrated with existing semantic structures. They found that the major difference'

between novice and expert programmers lies in the type of knowledge they possess. Experts tend to

concentrate on building a semantic representations of the programs, whereas novice programmers rely

more upon the retention of specific code.

I I

2.2.2 Systematic/As-needed Approach

Littman et al. identify the strategies that programmers were observed to use when studying small

programs [Litt86]. They believe that there are two basic approaches to Program Comprehension. They

are the systematic approach and the as-needed approach.

• Systematic approacli: When using this strategy, a maintainei^ examines the entire

program and works out the interactions among various components within the

program. This is completed before any attempt is made to modify the program. This

usually involves idenfifying the data flow and control flow between subroutines.

• As-needed approacli: In contrast to the systematic strategy, a maintainer

understands and studies only parts of ai program which need to be modified.

Program reading time is thus minimised. Once the m.aintainer has gained enough

information, the modification is commenced.

Litlman et al. suggest that the approach a programmer uses to study a program strongly influences the

knowledge acquired. This knowledge directly determines whether the programmer can perform a

successful modification. They also identify two types of knowledge: static and causal knowledge. To

perform a successful modification, a programmer must be able to detect the static and causal

interactions among the functional components. Together, they enable the programmer to create a

strong mental model. This process corresponds to the systematic approach to Program

Comprehension. They believe if only the static knowledge is gathered, it will eventually lead to a

weak mental model and the programmer may fail to perform a successful modification. This process

corresponds to the as-needed approach. The study shows that the systematic approach has been proven

superior to the as-needed approach on small programs. The authors argue that the use of systematic

approach may not be feasible on large programs. Programmers may be forced to use studying methods

similar to the as-needed strategy. It is therefore necessary to augment the as-needed strategy so that

additional information can be acquired.

2.2.3 Hypotheses Verification

Brooks [Broo83] believes that the theory of Program Comprehension is based on the reconstruction of

mappings between the problem and the programming doniain. In his model, comprehension is an

iterative process of hypotheses verification and modification. A maintainer begins with an initial

hypothesis about the behaviour of a function which is generated from documentation or from sources

such as a program name or a variable name. This initial hypothesis leads the maintainer to expect

certain structures and operations in the program. These expectations form a second level of more

specific hypothesis about the function. Brooks calls these expectations 'beacons'. An example which

12

he proposes is the swapping of values, which he believes is a beacon for a sorfing routine. Once the

relatively specific hypothesis is established, the maintainer then tries to verify the hypothesis from

information in the code by refining or rejecting it iteratively until the hypothesis matches the actual

code. This process is repeated until sufficient information is obtained. Brooks argues that when

maintainers try to verify hypotheses, it is not by line-to-line examination of source code but rather by a

series of increasingly specific hypotheses about the program functions. Knowledge of the problem

domain also plays a critical role in making hypotheses. The ability of making appropriate hypotheses

lies in the experience of a maintainer in a particular domain.

2.2.4 Beacons

Brooks introduces the concept of beacons [Broo83] and this concept is further explored by

Wiedenbeck [Wied86, Wied91]. In the study [Wied86], Wiedenbeck invesfigates whether beacons

exist as a focus for program understanding. Programmers were given a short fime to both memorise

and understand a program. The results support her hypothesis about beacons. She concludes that the

process of comprehension is not linear, and each statement in the source code does not play an equal

role. She believes that beacons can give high level overviews of programs. However, these overviews

are not sufficient for debugging or modification purposes which may require a deeper level of

understanding.

In another study [Wied9l], Wiedenbeck suggests that Program Comprehension is a gradual process of

assimilation through study. Beacons can be described as idiomatic or stereotypical elements in the

source code. She points out that most maintainers seem to have a tendency to refer to the source code

to develop an overview of a program. This orienting phase is important because it allows a mental

map of the program to be developed. The mental map includes the basic goals and operations which

can be later used to build a deeper understanding of the programs. The results of this study have

shown that:

• Programs with beacons were understood more accurately than those without.

Further, beacons can aid Program Comprehension even in unfamiliar programs.

• Beacons have the power to aid Program Comprehension when they appear in the

appropriate context; they also have the power to depress Program Comprehension

or even lead to 'false comprehension' (wrong hypothesis) when used

inappropriately.

Wiedenbeck concludes by stating that beacons do pla.y a large role in the initial high-level

comprehension of a program. They can help the programmers to gain overviews of programs with

minimal effort.

13

2.2.5 Program Plans

Much of the research effort has been devoted to Program Plans [Leto86b, Solo84, S0I086]. Soloway

and Ehrlich [Solo84] suggest that experts have and use two types of programming knowledge in the

process of comprehending programs:

• Programming Plans are program fragments that represent stereotypical action

sequences in programming such as a RUNNING TOTAL LOOP PLAN or an ITEM

SEARCH LOOP PLAN.

• Rules of Programming Discourse are rules that specify the conventions in

programming. For example, the name of a variable should usually agree with its

function. These rules set up expectations in the mind of the programmers about

what should be in the program. They are analogous to discourse rules in

conversation.

Soloway and Ehrlich argue that programs are composed from a number of programming plans that

have been adapted to fit the needs of specific problems. The composition of such plans are governed

by the rules of programming discourse. They believe that if the rules of discourse are violated, it can

make a program much more difficult to comprehend. For exam.ple, the use of a variable name MAX in

a function would lead the programmer to expect the variable to hold the maximum value of some

numbers, instead of expecting it to hold the minimum. I f the latter is true, then the programmer would

need to employ additional processing techniques in order to reach the correct conclusion. The authors

conclude that programming plans and the rules of programming discourse do play a powerful role in

Program Comprehension. Experts have strong expectations about what programs should look like,

and it would be a real hindrance to programmers when those expectafions are violated.

Letovsky and Soloway [Leto86b] suggest that the goal of program understanding is to recover the

intentions behind the source code. A maintainer may use the following to achieve this:

• Goal is used to denote the intention's

• Plan is used to denote the techniques for realising the intentions

In their model, program understanding is viewed as a process of recognising plans in the source code.

Program plans are conceptually distinct from algorithms and functions. The essential property of

program plans is that they can be composed in complex ways. For example, plans can be abutted,

interleaved, nested or merged. Algorithms are simply the compositions of program plans. The

recognition of plans may be complicated by delocalised plans, where statements within a plan are

14

scattered throughout the whole of a program. Letovsky and Soloway [Leto86b] argue that when a

maintainer tries to perform a modification within a short time, he often forms a local and partial

understanding of the program by focusing his attention on the parts of the code which would be

affected. When neither the program nor the documentation reveals that certain pieces of code are

interdependent and that they are some distance away, the formation of a purely local understanding

can lead to an inaccurate understanding of the program as a whole. Thisjn turn can result in incorrect

or inefficient comprehension. Letovsky and Soloway believe that the tendency of programmers to

make plausible but incorrect assumptions is considered as a fundamental problem for Software

Maintenance.

2.2.6 A Cognitive Model

Letovsky describes an empirical study of the cognitive process of Program Comprehension [Leto86a].

In the study, programmers were given a program to modify and were encouraged to think out loud so

that their thoughts could be recorded.

Based on the analysis on the empirical results, Letovsky develops a cognitive model of the subjects'

understanding processes. He views programmers as Knowledge Base Lfnderstander. A Knowledge

Based Program Understander consists of the following:

• A knowledge base. It encodes the expertise and background knowledge which a

programmer brings to the comprehension process.

• A mental model. It encodes the programmer's current understanding of the target

program. This model evolves in the course of the understanding process.

• An assimilation process. It interacts with the stimulus materials (target program

code and documentation) and the knowledge base to construct the mental model.

Base on the results of the empirical study, it is suggested that a mixture of top-down and bottom-up

strategies are employed in both the mental model and the assimilation process. Letovsky believes that

the human Understander is best viewed as an opportunistic processor capable of exploifing both

bottom-up and top-down cues as they become available.

2.2.7 Stimulus Structures and Mental Representations
Pennington [Penn87] believes that comprehension involves detecting or inferring different kinds of

relations between parts of a program. Based on the results from two studies, Pennington suggests that

comprehension leads to two different mental representations:

15

• A Program model. In this model, Pennington found that the mental representation

built is a procedural one (control-flow program abstraction) when a piece of source

code was shown to the programmers the first time. This representation is built from

bottom-up via the identification of beacons and programming plans.

• A Situation model. This model requires knowledge of the real world domains and

it tries to relate representations in the program model to the domain. The situation

model is complete once the program goal is reached.

Pennington uses text structure [Basi82, Broo83] and programming plan knowledge [Solo84] to

explain the program model development. It is created via chunking and cross-referencing. In the

situation model, the matching process takes information from the program model and builds

hypothesised higher order plans. These new plans are chunked to create additional higher order plans.

The program model can change even after the situation model construction has begun. Pennington

believes that programmers use the plans as input to the program model comprehension process. They

allow a cross-reference map to be built which is aimed to establish direct mappings from procedural

and statement-level representations to the functional and abstract program views. Higher order plans

may cause a programmer lo enhance the program model.

2.2.8 An Integrated Metamodel

von Mayrhauser and Vans [Mayr94, Mayr95] express the view that none of the existing theories and

models for Program Comprehension can account for all the diflerent behaviours of the programmers

when they try to understand unfamiliar source code. The Integrated Metamodel is formulated in order

to reflect the cognition needs for large software systems. It addresses some of the shortcomings of the

existing theories and models, and tries to piece together the relevant porfions of the strategies in a

single model.

The integrated code comprehension model has four major components:

• Top-down structures

• Situation model

• Program model

• The knowledge base

This model combines the top-down approach (top-down structures and the knowledge base) proposed

by Soloway and Ehrlich [Solo84] and the bottom-up approach (situation and program models)

proposed by Pennington [Penn87]. The knowledge base is needed in order to build the other three

components successfully. Each of the first three components are involved in the internal

16

representation of a program. The knowledge base furnishes the process with information related to the

comprehension task and will store any new and inferred knowledge. For large systems, a combination

of approaches to Program Comprehension becomes necessary. Based on the results of the paper

[Mayr94], both the authors believe that any ihiee of the approaches may become active at any time

during the comprehension process.

2.3 Current Techniques and Practices
The following sections discuss the common techniques and practices often used by the maintainers

during the comprehension process.

2.3.1 The Concept Assignment Problem

Biggerstaff et al. believe that concept assignment is closely linked to Program Comprehension

[Bigg93, Bigg94]. The authors explain that a person understands a program because he is able to

relate the structure of the program and its environment to the human oriented conceptual knowledge

about the world. The problem of discovering individual human oriented concepts and assigning them

to their implementation oriented counterparts for a given program is the concept assignment problem.

Through the use of Case Studies, Biggerstaff et al. [Bigg93] has found that there is no definite

solution to this problem. Automation of the process is difficult and it would require architectures that

process a range of information types varying from formal to informal. The study has also found that

understanding is derived from a process that relies strongly on plausible inference. They believe that

better understanding of programs relies on an a prior knowledge base that is rich with expectations

about the problem domain and the program architecture typical of that problem domain. Their views

echo with those suggested by Shneiderman and Mayer [Shne79] where the process of Program

Comprehension is built upon a knowledge base consisting syntactic, semanfic and domain knowledge.

2.3.2 Modularisation

Wirth introduces a technique for program development by stepwise refinement [Wirt?I] and Parnas

suggests the use of modularisation [Parn72]. Both of the approaches are aiming at improving the

understandability of the source code by hiding information at various levels of development. Other

techniques such as Jackson's Structure Programming, or .ISP [Jack85], and Object-Oriented Design,

or OOD [Booc9l], are aiming at developing programs which have a specific structure and design in

order to improve reliability and maintainability.

Most maintenance activities are a cognifive skill. It is therefore subjected to the limitation of the

human brain, i.e., only a limited amount of information can be studied at a time. Shneiderman

[ShneSO] conjectured that the information chunking process is used in understanding programs.

17

Maintainers abstract the information in the program into chunks which are then built into an internal

semantic structure representing the program. Complex problems are usually decomposed into sub-

problems until these 'chunks' are reduced to manageable sizes. This echoes with the views expressed

by both Wirth and Parnas.

JSP [Jack85] comprises three principles of structured program design. ..They are stepwise refinement,

the use of three structured control constructs, namely, sequence, iteration and selection, and finally,

data structure-based design. This design method is based upon a hierarchical view of the data

processed by a program. Jackson's contention is that program designs should be dictated by the

characteristics of the data being processed. It is these characteristics which later determine the

structures of the programs.

Booch suggests that when designing a software system of any complexity, it is essential to decompose

it into smaller and smaller parts so that each one may be refined independently [Booc91]. Booch

believes that the use of OOD not only helps to organise the inherent complexity of software systems,

but it also supports software reuse directly. Booch believes that Object-oriented systems are more

resilient to changes because their designs are based upon stable intermediate forms, and hence better

able to evolve over time. Under OOD, software systems are viewed as collections of objects, where

each object manages its own state information. An object may comprise the data structure and

operations which it inherits from a class plus any other attribute which uniquely defines the object.

Conceptually, an object communicates by exchanging messages with other objects.

2.3.3 Program SHcing

The concept of Program Slicing was first introduced by Weiser [Weis82]. Weiser's original version of

program slicing is classified as static slicing. Another type of program slicing was introduced in the

papers [Weis84, Weis86], which is known as dynamic slicing. Apart from these two types of program

slicing, techniques such as quasi-static slicing [Venk91], conditioned slicing [Luci96] and amorphous

slicing [Harm97], have also received a lot of attention. The following discussion will concentrate on

static and dynamic program slicing.

In his paper [Weis82], Weiser defines program slicing.as:

The process of stripping a program of statements without influence on a given variable

at a given statement.

Weiser believes that program slices are most useful for understanding a program when they are

considerably smaller than the original program. He believes that experienced programmers are

mentally slicing and decomposing the program while .debugging. Weiser introduces a formal

s

definition of slices and a mechanism to extract slices in programs in the paper [Weis84]. He believes

that slices have a very clear semantics based on the projections of behaviour from the program being

decomposed. Program slicing is a method of minimising the amount of code to be studied when

debugging or understanding programs [Weis86].

An application of data flow and control flow analysis can be used to extract the slices from the

program which contain only those statements relevant to the computation of a given output [Weis86].

This technique is known as Dynamic slicing. A dynamic program slice is an executable subset of the

original program that produces the same computation on a subset of selected variables and inputs. In

other words, it consists of all statements that actually affect the value of an instance of a variable for a

given input. This technique has been further developed and reported in their work [Arga90, Kore88,

Kore97]. Dynamic slicing differs from the static slicing [Weis82] in that it is endrely defined on the

basis of a computation. The main advantage of dynamic slicing is that data structures such as arrays

and pointers can be handled more precisely and the size of the slice can be significantly reduced,

leading to a finer localisation of the fault.

The as-needed approach proposed by Littman et al. [Litt86] can be facilitated by the technique of

program slicing. Under the as-needed approach, a maintainer understands and studies only parts of a

program which need to be modified. Once the maintainer has gained enough information, the

modification will commence. Weiser advocates that programmers do not have to waste time learning

about irrelevant details, they can concentrate on the program slices instead which he believes can

shorten the comprehension time [Weis84, Weis86]. However, the statements in a slice may be

scattered throughout the code of the larger program. Some crucial elements in a program may be left

out using this technique which may affect the correct behaviour of the program.

2.3.4 Source Code Presentation

The problem for most maintainers is they have to maintain unfamiliar source code that has been

modified and the accompanying documentation is usually out of date, inadequate, inconsistent or

sometimes non-existent. Improving ways of abstracting relevant information from the source code is

therefore much needed. This issue can be tackled in a number of ways:

• the use of natural naming

• the use of comments

• pretty-printing the source code

19

I Natural Naming

The development of high level languages such as Pascal and C was an important step towards

increasing source code readability and understandability. When a maintainer first encounters an

identifier, he would invariably try to infer a meaning from its name [Broo83]. The use of appropriate

naming for variables, functions and program files is thus essential to bridge the gap between the

programs and the semantics of the problem domain.

Laitinen [Lait95] believes that the objective of using natural names in source code is to increase

program understandability, which in turn facilitates software development and maintenance. Having

natural words in source code brings these documents terminologically closer to other types of

documents such as written English texts and graphical-textual models (software designs). Using

natural names in source code should therefore make the entire documentation simpler.

I f there are two.versions of a functionally equivalent program where each has a different visual

appearance, it is very likely that each may evoke a different mental model in an observer's mind. This

coincides with the results found in another study. Teasley has found that naming style is an important

factor in comprehension of programs written in high level procedural languages [Teas94]. The results

also show that experienced programmers are better at finding cues present in the textual material to

gain an understanding of the programs than the novice programmers.

II Comments

It is common consensus that the use of suitable comments can be an invaluable aid to the

comprehension process. The use of appropriate comments can be very powerful when used in

conjunction with suitable naming of identifiers used in source code. From the name of an identifier, a

maintainer form an assumption about the functionality of that identifier [Broo83]. The Maintainers

then search for extra cues from the source code in order to justify this assumption. Comments can be

valuable and effective in providing these extra cues,

III Pretty-printing

Pretty-printing, which was introduced by Ledgard [Ledg75], has gained much attention since the

1970s, It describes the use of indentation, spacing and layouts to make source code more presentable

and readable to the programmers. The principle behind pretty-printing is that the appearance of the

source code can affect the comprehension process,

Miara et al. |Miar83J have conducted a comprehension experiment and they report that the use of

indentation and block-structured source code can facilitate the comprehension process. They conclude

that if no indentation is used in a large program, it would be a real hindrance to the comprehension

process and the program would be difficult to follow. The idea of pretly-printing is further explored by

20

Baecker and Marcus [Baec90]. They developed a system, SEE, which can take the listings of a C

program and produce a book-like layout. Oman and Cook [Oman90b] have conducted several

empirical studies and they believe that the book paradigm is superior to traditional methods such as

natural naming and the use of comments. They argue that the book paradigm provides a method of

formatting which is consistent with the comprehension theories and models. By providing visual cues

and different ways to organise the source code, typographical formatting can reflect the underlying

structures of the source code and aid the comprehension process.

2.3.5 Visualisation

Purely textual source code is far from matching the maintainer's cognitive model of a program,

though it may be the case that a maintainer will use the relative locations of program constructs

within the source code as a basis for the cognitive model. Formatting or pretty-printing of the source

code- using techniques such as indentation and spacing can give the code some visible structures.

However this can only be viewed in small portions, the maintainer must still navigate the source code

to construct an overall model.

Al l the theories and models of Program Comprehension discussed in the section 2.2 agree that the

comprehension process involves an abstraction process and the construction of a cognitive model

during different stages of the comprehension process. The abstraction process works hand in hand

with the cognitive model. During the abstraction process, maintainers would look for various cues

from the source code and try to extract relevant information from them. A cognitive model is then

constructed which will later guide the maintainer to follow and understand the interrelationships

between the program constructs.

Different levels of abstraction can be displayed using graphical representations. They can take on a

number of forms and can represent various views of the programs. The most commonly used

graphical representation of a program is the call graph which shows the functions as nodes and the

function call relations as directed arcs depicting which functions are called and from where [Ryde79].

Other graphical representations used are the control flow graph, module dependencies, llle inclusion

hierarchies, hybrid call/control flow graphs, data flow and message passing. Each of these graphical

representations provides the maintainers with a different perspective on the software system though

none of them can give the full picture.

The use ol visualisation techniques to facilitate the comprehension process can be an important step

forward. The ultimate goal of Program Visualisation is to help maintainers to form clear and correct

mental images of a program's structure and functions. Graphical representations are useful in that

they are easy to understand and manipulate. These representations are a natural way to depict

relationships.

21

I Problems in Laying Out Graphs in Two-dimensions

I I is widely acknowledged that there are problems in laying out graphs [CarpSO, Gans88, Gans93,

Mess91, ReinSl. SugiSl, Tama88, Waik90, Wart77, Welh79]. The layout of graphs are governed by

both the aesthetic features and the semantic constraints of the drawings of graphs. Most of the

aesthetic features and constraints are incompatible in nature and trade-offs have to be made in order to

produce drawings that can convey the appropriate meanings. A considerable effort is required to select

criteria to suit the needs of a particular type of graph.

Batini et al. [BatiSS] have analysed and compared two hundred different diagrams in order to find out

how the layout of the diagrams can be affected by the different aesthetic features and how these

features can affect viewers to perceive the diagrams. The sources of these diagrams were selected from

scientific papers, technical publications and industrial project documentation. Batini et al. believe that

the difference between the human and automatic approaches in the layout problem lies in how the

conflicts between aesthetic features and semantic constraints are resolved. They found that automatic

tools usually adopt fixed weights (trade-offs) in solving the incompatibilities, while human designers

tend to choose different weights for each application, thus reaching better results. They believe that

the key to alleviate the layout problems is to:

• find out as many layout criteria as possible

• find out the ranges of the weights usually adopted by designers in solving the

conflicts between such criteria

Each of the aesthetic features and semantic constraints which governs the readability of the drawings

may be:

• local or global

• hierarchic or flat

A feature or constraint is local when it refers only to a part of the drawing, it would be global

otherwise. In the same vein, a feature or constraint is hierarchic when it concerns the relative

positions of a set of symbols, it would be flat otherwise.

II Strategies for Improving Grapliical Representations

Studies have shown that most aesthetic features are incompatible in nature [Supo83, DiBa94].

Conflicts have lo be resolved and trade-offs have to be made in order to produce drawings that can

convey the relevant information to the viewers. Moreover, Ihe problem of layout for large amounts of

information generated by the static analysis tools is still left unresolved. It is widely acknowledged

22

that humans cannot handle highly complex systems. The systems are repetiUvely broken down until

they are divided into parts which can be handled with ease. Techniques such as graph simplification

and graph reduction are frequently used to managing the highly complex graphs.

It is widely accepted that graphical representations can offer better insights into a program when

compared lo the textual representations. Call graphs, control flow graphs and data flow diagrams are

the most frequently used graphical representations. However, while graphical representations are an

improvement upon textual ones, they still have a tendency to provide maintainers with too much

information. For this reason, the Visualisation Research Group in Durham has carried out a number

of Case Studies to investigate the use of visualisation techniques [Burd96]. The Group has also

suggested a number of strategies which can be applied in order to improve the readability of call

graphs. The work concentrates mainly on the C programming language, but other languages such as

COBOL have also been investigated. The suggestions are:

• simplification involving the hiding of nodes

• clustering involving the grouping of nodes

• slicing involving the extraction of nodes

• presentation

Burd et al. [Burd96] maintain that the strategies identified are not intended to form a rigid method,

rather they provide a selection of strategies which the maintainers can select in order to produce the

best results for an application under maintenance.

A Graph Simplification

For a small and simple program, the global program behaviour can be examined and studied

thoroughly. However, as programs grow in size and complexity, the task may no longer be trivial.

Burd etal. [Burd96] have identified five graph simplification strategies:

lo number arcs

to isolate subgraphs

to hide third parly libraries

to hide ANSI C standard libraries

lo hide external function calls to the application's libraries

One major cause of clutter in call graphs is multiple calls of one function to another, which leads to

multiple directed arcs between the nodes. These arcs can be combined and replaced by a number

which denotes the number of function calls made. As a result, Ihc number of directed arcs is reduced

and no information is lost.

23

Another strategy is to isolate any unconnected graphs. The rest of the strategies involve the hiding of

certain library functions. Obviously, if the aim is to investigate the behaviour of the source code which

relates to those libraries such as memory management, then the hiding of the libraries may not be a

sensible approach.

The authors have observed that even after applying these strategies, one may still be left with a

complex relationship. The approach of information clustering may be more useful if the interactions

among the user defined functions are low and the interactions among the library routines are high.

B Clustering

Information clustering is the process whereby information is abstracted from the call graph and

represented as 'common nodes'. The information clustering principle can be used in a number of

ways:

• grouping of function calls to other source code files

• grouping of function calls to other libraries

• grouping nodes into groups where nodes have a high degree of fan-in or fan-out

Burd et al. have again observed that the grouping of some nodes may increase the complexity of the

call graph in some cases. Nevertheless, it is possible to analyse and identify nodes which may benefit

from clustering.

C Graph Slicing

Graph slicing is another way of reducing complexity. Contrary to the technique of graph

simplification, the attenfion is given to a small number of nodes and their connecting nodes. By

concealing the rest of the nodes present in a graphical representation, a small section of the

representation can be studied with more attention. The slicing principle can be used in a number of

ways:

• to investigate the characteristics of function calls

• to investigate the characteristics of library function calls

• to investigate the ripple effect alter a modification

D Presentation

Apart from the graph layout strategies, a number of other approaches to support the understanding

process have also been investigated by Burd el al.:

24

• the use of colour

• hierarchical views

One use of colour is to indicate clustering and information encapsulation. It can also be used to

indicate connectivity. Conversely, colour can be used for concealment. To prevent distraction by the

appearance of certain nodes, these nodes can be set to the same colour as the background. This in

ef fect is similar to the hiding principles described above, but leaving the nodes on the graph.

As the authors have pointed out, colour can also be used to identify a program's hierarchical

composition. In directed graphs, the nodes in each level are traditionally laid on one horizontal line,

and the levels are stacked vertically [Mess91]. The primary goal of the hierarchical layout is to try to

reveal the ancestral relationship among nodes clearly and unambiguously. In a perfect hierarchy, all

the nodes predecessors appear physically above, and all of the nodes successors appear physically

below it. However, rarely are such perfect hierarchies achieved, and thus using colour to represent

hierarchical levels is a more flexible approach.

I l l Program Visualisation

Programs are built by many functional components and they are often related in complicated ways. In

the paper [Fitt79], Fitter and Green try to identify some of the principles that the designer of a

graphical notation should be aware of and they also highlight some of the problems associated with

the present notations. They point out that the use of diagrams has often been proven successful and

many of the graphical conventions can be learnt very quickly. They can reveal the structures inherent

in the underlying data or process by which entities are manipulated and so graphical representations

make an excellent communication medium.

Fitter and Green propose that a good graphical notation should:

• present relevant information in a perceptual form

• restrict viewers to objects that can readily be understood

• reveal the underlying mechanisms and be responsive to manipulation

• allow easy and accurate revision

Both authors admit that il is impossible to lay down principles thai would ensure a good fit for a

graphical representation for a given set of aesthetic features and semantic constraints. All that can be

done is to eliminate the misfits.

Messinger ct al. |Mess911 point out that many people still find it is difficult to lay out graphs with

many vertices and edges. For example, a viewer may find a reduction from 20 edge crossings to 10

25

improving readability whereas a reduction from 2000 to 1990 edge crossings is not likely to have the

same effect. To produce a graphic layout from application-generated data such as a parse tree

generated by a compiler, is also considered laborious. Not surprisingly, a lot of effort has been focused

on reconciling aesthetics features and semantic constraints of graphical representations such as

minimising edge crossings and balancing distribution of graph elements. Messinger et al. argue that

present technologies still do not allow large graphs, one with thousands of vertices and edges, say, to

be displayed in their entirety, and so some sort of display/browser interface must be employed. It is

important to provide a mechanism which can offer overviews, multiple views and hierarchical

abstractions of graphs.

The goal of Program Visualisation is to help maintainers form clear and correct mental images of a

program's structure and functions. When combined with the abstraction power of human vision, the

interactive power of graphics environments will remain central to the efforts of harnessing compufing

power.

Visualisation is often widely understood as comprising only of, visual images. However, Price et al.

[Pric93] emphasise that the term Visualisation conveys more meaning than this restricted view. In

their opinion, visualisation is 'the power or the process of forming a mental picture or vision of

something not actually present to the sight'. They argue that programming is visual because it

involves programmers reading textual information (source code) instead of reading serially a stream

of ones and zeros in the way an interpreter or a compiler does.

The idea of using visual representations to aid Program Comprehension is not new. In the 1950s, flow

charts were first introduced to present diagrammatic forms of the source code. In the 1970s, pretty-

printers (the use of spacing, indentation and layout) were employed to facilitate Program

Comprehension. Today, window interface techniques are gaining popularity. These techniques which

allow direct manipulation of objects on screens, take the full advantage of large-screen graphics and

windowing-based computer systems.

The use of visualisation techniques is particularly suitable to be used in conjunction with the Design

and the Maintenance phase of the Software Maintenance process model. Visualisation is used in the

Maintenance phase in two significant ways: for code comprehension and for impact analysis. Price et

al. believe that traditional use of call graphs, control flow graphs and entity-relation diagrams also fits

comfortably well inside the area of Program Visualisation.

26

IV Definitions

There is yet to exist an agreement on the definition of the term Program Visualisation, a list of

definitions are presented below:

Program VisualLsation refers to the use of graphics to illustrate some aspects of the

program or its run-time execution. The original program is usually specified in a

conventional, textual manner. [Myei-90]

Program Visualisation, in the general sense, is the use of various techniques to enhance

the human understanding of computer programs. [Pric93]

Program Visualisation is a mapping, or transformation, of a program to a graphical

representation. [Roma93]

Price et al. believe that Program Visualisafion consists of several components. They are:

• Code Visualisation: It illustrates the actual program code by adding graphical

marks to it or by converting it to a graphical form, such as fiow charts.

• Data Visualisation: It shows graphical forms of the actual data of the program.

• Algorithm Visualisation: It uses graphics to show abstractly how the program

operates.

These components can also be incorporated in the static or dynamic analysis of programs.

Algorithm Visualisation is different from Data and Code Visualisation. It is the visualisaUon of a. high

level description of program code and the graphics may not correspond to a specific piece of code,

whereas implemented code is visualised in Code or Data Visualisation. Dynamic Visualisafion

systems can show the animation of the programs' behaviour when they are executing. Static

visualisation systems, on the other hand, are limited lo show the analysis of programs prior to

execution.

The term Visual Programming is often confused with Program Visualisation. Myers [Myer90] refers

Visual Programming to any system that allows the user to specify a program in a two- or three-

dimensional fashion whilst Price et al. [Pric93] prefer a more general definition. They consider that

Visual Programming is ihe use of visual techniques to specify a program.

27

A: Software Visualisation C I : Data Animation
15: Algorithm Visualisation C2: Static Code Visualisation
B l : Static Algorithm Visualisation C3: Static Data Visualisation
B2: Algorithm Animation C4: Visual Programming
C : Program Visualisation C5: Code Animation

Figure 2-1 A Venn diagram showing the relationships among the terms

Price et al. try to clarify the confusion by proposing the model as shown in Figure 2-1. They suggest

using the term Software Visualisafion to encompass all the activities. They define Software

Visualisation as the use of the crafts of typography, graphic design, animation and cinematography

together with modern human-computer interaction technology to facilitate the understanding of

software systems.

V Survey of Program Visualisation Systems

A number of taxonomies on Program Visualisation have been carried out over the years. Most of them

try to identify the characteristics of the visualisation systems and classify them into different

categories.

In her book [Shu88], Shu focuses on the increasing degree of sophistication exhibited by Program

Visualisation systems ranging from pretty-printing to complex algorithm animation. Myers [Myer90]

proposes lo classify the systems along two axes: whether Ihey illustrate the code, data or algorithm of

the prograin, and whether they are dynamic or static. Stasko and Patterson [Stas92] introduce scaled

dimensions in their four-category scheme covering Aspect, Abstraciness, Animation and Automation.

Price et al. lPric93] try to categorise the systems in a systematic way. They establish a taxonomy

hierarchy so that the taxonomy can be expanded and revised. The taxonomy comprises six basic

categories: Scope, Content, Form, Method, Interaction and Effectiveness. Roman and Cox [Roma93]

emphasise that their model of visualisation is based on formally well-understood areas. Their model is

a mapping thai leads to a classification of systems based on the Scope, Abstraction, Specification

method. Interface and Presentation of the systems.

28

The following is a survey of some Program Visualisation systems. This includes systems that are of

historic importance and systems that illustrate a diversity of approaches to Program Visualisation.

A Sorting Out Sorting

Sorting Out Sorting [BaecSI] is the first major software visualisation work (data visualisation) of the

1980s. It is a 30-minute video which uses animated computer graphics to explain how nine different

sorting algorithms manipulate their data.

Sorting Out Sorting begins by introducing the concept of sorting data and goes on to explain the nine

sorting algorithms, namely linear insertion, binary insertion, shell sort, bubble sort, shaker sort,

quicksort, straight selection, tree selection and heap sort. It shows a race of all nine algorithms

running in parallel on large data sets at the end.

B BALSA

BALSA, which stands for firown i/niversity Algorithm Simulator and /Inimator, is the first major

interactive software visualisation (both data and algorithm visualisation) system [Brow84, Brow85].

BALSA is written in the C programming language but the algorithms it animates are in Pascal.

Figure2-2 shows a screen from the system BALSA.

BALSA

nsertmg key o fee

'•naCOT in-.*rt (VM rMl . sir

Figure 2-2 A screen showing the code view, input, status message and graphical
representations of a data structure .

BALSA takes the advantage ol windowing techniques and large screen graphics to support multiple

simultaneous views of the running algorithms. It can display the multiple views of the same data

29

structure. It is the first system that can show algorithms racing with each other in the same display.

BALSA also provides a code view showing the pretty-printed listing of the current function.

C V I F O R

VIFOR, which stands for Visual /nteractive FORlran, is a software tool oriented towards the

maintenance of medium-to-large Fortran 77 programs [Rajl90, Rajl96]. The tool itself is implemented

in the C programming language.

Within VIFOR, programs can be displayed in a code and/or a graphical representations. It also

provides transformation in both directions, from code to graph and from graph to skeletons of code.

An abstraction facility is available for discarding unrelated information. Rajlich et al. [RajI90] believe

that VIFOR can be of use in both Maintenance and Re-engineering activities. Figure 2-3 shows a

screen shot of VIFOR.

BROWSEH - 1

BROWSER O Hod • o n
Oltecl D C M e d
• NU • hftr

• Hodul DiSPLW RannoN
• Hod D C I U
OUtcl DC i l l ed
O M>« • Rtf

FXUS
• Module
• Backlog
• nil

• Backlog

LAYOUT I IVIEWSl PROJECT EaTOR
iPnoJECTj lEDiTon I [LAYOUT I [yiiws

y c lei-e.io.r -i (UrmlnaU JO

r«»dtrfut ivmtnat*

Figure 2-3 A screen shot of VIFOR

In the graphical form, a prograin is represented by a graph consisting of icons and lines between these

icons. The two-column graph as shown in Figure 2-3 is an original layout that was specifically

developed for VIFOR. The left column consists of processes (main program, subroutines, and

functions), and the right column consists of commons (global data elements). Arrows on the left

represent the call relations among the processes (the call graph). The lines in between the two

columns represent the reference relations (the reference graph). This is an attempt to try to combine

the function call relationship and the data dependency in a single representation.

30

D Dependency Analysis Tool

The Dependency Analysis Tool is developed to capture and analyse the program dependencies from C

programs [Oman90a, Wild91].

Wilde and Huitt [Wild9l] maintain that the use of dependency graphs is an advantage because:

• users of the toolset can acquire the informafion they need without listing all the

dependencies surrounding their enquiries

• the dependency graph view is not bound by any language or environment

• indirect dependency can be found easily

• false dependency can be filtered out

The tool uses the concept of a dependency graph as a basic abstraction to simplify the understanding

of program relationships of which definitional, calling, funcfional and data flow dependencies are

analysed. Wilde and Huitt believe that this toolset can be either used directly or it can be used to

provide a base for constructing other maintenance aids.

E CARE

CARE, which stands for Computer-Aided /?£-engineering, is a software tool that attempts to facilitate

the comprehension of C programs [Lino93, Lino94]. The tool itself is implemented in the C

programming language.

This code visualisation tool uses windows and browsers to display the data flow and the hierarchy

control flow of the C programs. CARE maintains a repository of structural and functional

dependencies for programs. Visualisation of such dependencies is accomplished by using a

presentation model which combines the data fiow (called colonnade graphs) and the control flow (the

call graphs) information. A colonnade is an extension of the two-column display used by VIFOR and

it has been formally defined as a m-column graph. CARE also emphasises on the additional facilities

it provides: the partitioning (abstraction) techniques and the iransformation mechanism.

Within the environment, a user can obtain either the colonnade representation of the data flow or the

hierarchy representation of the control fiow from the source code of a program. The reverse operations

are also supported. In addition, colonnade graphs can be transformed into call graphs or vice versa.

Graphical or textual slices can also be created from these representations. A summary is shown in

Figure 2-4.

31

Colonnade
graph

Slice of
call graph

Source
code

A
Code slices

Call graph

Trnnsformations
Slice of

colonnade

Slicing direction

Figure 2-4 The transformation and slicing mechanism provided by CARE

Can stock
Driver

ctwrTrw

|ch<rTr<t

toftCMd

oPynamicDotaTester

Pr»c«(lwrc F r u C h a r T r c c (V4r obseleteTrec : CH^

Boolean; Function UscrlsBorcd r«htCh<k:

Proe*4urf Driver '
Th« m în guts of tht pro^rtm. Kcap asking for

mor« woras until the user wtnH to f top .)
[C'>{T •

\» cM'Snck]: Ch*rStKkTyp«,
cr,*r7re« : Ch*rTreeTyp«;

(P-

lntti<KxDl«n<tion
Rcpoal

kvti«hzcUtArSt4ck (charSt«ck).
iwlnlireChwTrM (charTree),
fromptforWord *
[>ctWord (chorStack)

trteElemcnt

rightOM [NT]

input and Output treeElem«nt

TKij pro^ronwill repcoteilly «<h
|ro«j fee •ords It will then
pt'^tie -r^ «ords «nd then print
ovt trte iftdividuol characters »f>
olpho&etu order. If the projpont

rwt eieite yoc, open up the
Coll Stock vtndo* ond took at the
picture* of the doto structures
usee \n tt*e progron

IcftChM

rightChad

BwldBinaryTrcc
Perimeters: cherStock. char Tree

Insert TrccChar
Pertmeters: char Tree. r>ewChjr
Variables

Pleose e^ter Q wfd. oleiondcr
The reversed «ord is: rednoielc

Step 11 Go I f M a r k) [One j I IUM-i) | um] | t ' . iuvp | | Off]

Trace O AH ® Statements Q None ^ Call Stack @ Warnings

Figure 2-5 A snapshot of Pascal Genie running a program

32

F Pascal Genie

Pascal Genie [Chan91] is a system designed to create graphical displays of program data structures. It

provides displays for the simple data types as well as the composite data types (records, arrays and

pointers). Figure 2-5 shows a snapshot of the Pascal Genie running a program. The source code

window on the left shows the currently executing line highlighted with several function bodies elided.

The large window in the background is the call stack showing all of the data on the stack. Some

variables are elided completely, some are shown by their name only, and the variable c h a r T r e e is

shown fully expanded with an automatically-generated binary tree showing the data. The program's

input and output appear in the window near the bottom right and the execution control panel appears

at the bottom.

G SHriMP Views

SHriMP, which stands for Simple //ierarchf'cal Wulti-Perspective, is a visualisafion technique

introduced by Storey and Miiller [Stor95]. In the paper, they describe a technique for visualising

software structures which are modelled as nested graphs, together with the use of fisheye views.

Nested graphs are used for visualising the structure and organisation of a program, whereas the

fisheye views emphasise detail of current interest within the context of the overall program structure.

The fisheye view algorithm works by selectively enlarging sets of nodes within an area of interest

while simultaneously shrinking the rest of the graph. The authors argue that when visualising a large

amount of information, it is important to be able to create different views of the information where

each one provides a different perspective. They believe that this can be achieved by SHriMP which

provides a mechanism to create views that can show multiple perspectives concurrently.

H The McCabe Tool Set

The McCabe Tools' include tools for software and design validation, code comprehension and tools

lor producing measurements and metrics for the software systems. The focal point of the McCabe

Toolset is the BattleMap Analysis Tool' (BAT) which provides a description of the analysis of the

structure of a program and the flow of control (control flow graphs) within its corresponding parts.

Figure 2-6 shows a screen shot from the McCabe Tools.

A BattleMap shows the calling relationships between all of its modules. Other toolsets which can be

invoked from BAT including tools which produce various complexity metrics, provide analysis of the

dynamic behaviour of code in a testing environment and tools for aiding the understanding of the

software's internal architectures.

' The McCabe Tools is a registered trademark of McCabe Associates.
• BatllcMap Analysis Tool is aj-egistered trademark of McCabe Associates.

33

»dult VfMflcttlC"^ fifcort for: consulting

• 5' i « " » l j " » n t to consjltinj. 6ut not (n coOt.
• J' ""5 S'"9 to d i i n t . bjt not 1n oingn.
- Cll l co«a froi consultino to dl«t1ooMnt. but not in OiKgr
• ftrutur l l n t t c n i t toittlon 3. "

Otinn: -cfilr • c l l » n t . n u f . Coot: -entr c l u n t j u f

Figure 2-6 A screen showing the running of the McCabe tools

I Logiscope

Logiscope'' is a code visualisation tool. It is a complete CASE tool which can be used from the

creation of the source code to the end of the life cycle of a system. It can perform static analysis and

limited dynamic analysis of prograins. Special provision is provided for the mappings from the call

graphs and the control flow graphs to the exact locafions of the definitions of modules and functions,

and to the declaration parts of data. Logiscope provides not only the usual analysis of programs but it

also provides suggestions on the structures of the modules and the component parts (functions). I f a

relative threshold of a particular metric has been crossed, Logiscope will suggest and display a list of

components which require restructuring, subdividing or rewriting.

J SNiFF+

SNiFF+'' is another CASE tool designed for the development of C and C-I-+ software systems. The

main objective is to create an environment which makes it possible to edit and browse through large

software systems textually and graphically. A running version of SNiFF+ consists of two operating

system processes: the information extractor and the programming environment. The information

extractor is used to extract information about definitions and declarations from the source code; the

programming environment consists of a number of tools that are organised around a kernel consisting

of a symbol table and a project manager. Among the many functions provided by the information

' Logiscope is released by Verilog.
SNiFF-t- is released by TakeFive Software.

.^4

extractor, there is a Class Browser and a Hierarchy Browser. The Class Browser can be used to browse

through locally defined and inherited elements of a class whereas the Hierarchy Browser displays the

inheritance hierarchy.

K Code Measurement Tool and Code Monitor

Code Measurement Tool'' or CMT is a tool which collects information from the beginning of a

software project and builds up a project portfolio for that particular software. Information such as the

output from different metrics, the lists of changes made through various releases of the software and

the development costs is stored in a knowledge base. The 'quality' of the different releases of a

software can then be compared using the outputs from different metrics. CMT can also extract the

information it requires from the knowledge base to produce some measures on the development and

maintenance costs using different models, such as the COCOMO model [BoehSI]. A more ambitious

goal of CMT is to 'train' CMT to 'learn' the history and information available in the knowledge base

using a neural network. This is based on the idea that if any recurring patterns or trends can be

detected, then predictions on the costs and quality of the software which is under development can be

made. Code Monitor is the front end of CMT. It has a window interface which allows a user to pick

up various aspects of information about the software at various levels of abstraction.

2.4 Summary
Most of the theories and models of Program Comprehension discussed in section 2.2 are inferred from

the results obtained from observational studies, where typically, programmers are given a task to

complete within a time limit. In some studies, the programmers were tested against their

understanding at the end of the task whereas in other cases, they were encouraged to think out loud so

that their thoughts could be recorded. Despite the diversities on the theories and models of Program

Comprehension, they all possess a set of similar concepts:

• Program Comprehension is an assimilation process. A better understanding of a

program can be built from a knowledge base which consists of a varieties of

knowledge.

• The process of Program Comprehension is complicated and the behavioural patterns

of the maintainers correspond to the type of maintenance activities they are engaged

in.

• For large software applications, there will be a need to modify/augment the

slrategies to suit particular needs.

Code Measurement Tool is developed by British Telecommunications.

35

• Maintainers should record their understanding of the programs for the benefit of

future maintainers/developers.

The advancing power of computers have made it possible to manipulate larger and larger amounts of

information but humans are cognitively ill-suited for understanding the resulting complexity. All

information is readily available but users are unable to efficiently access individual items or maintain

a global context of how the information fits together.

Although visualisation is often associated with the colourful representations of exotic scientific

phenomena that frequently appear on the covers of magazines, it is important to recognise that

visualisation can be usefully applied to the most prosaic data. The goal of visualisation is to represent

data in ways that make them perceptible, and thus able to engage the human sensory systems.

The central problem to be addressed is what can be done when there is just too much information to

deal with. With some collections of information the traditional node-link graphical structure can be

used, but for modern real-world problems, which require users to understand large collections of

information, solutions must be found for managing the large amounts of complex information. This

problem can be decomposed into three subproblems:

• how to make a meaningful visualisation of a single object

• how to make a meaningful visualisation of a collection of objects

• how to allow the users to control the selection of the visualisation efficiently

In the same vein, programs are complex and abstract objects which include many components with

many different attributes that are interrelated in complicated ways. Maintainers may find it difficult to

understand and navigate through these complex interrelationships among different parts.

One way lo tackle this problem is to decompose the program into smaller components so as to scale

down the complexity to a manageable limit. Ideally, these components should group related concepts

and functions together. These components can then be analysed in turn and a deeper understanding of

a program can be built upon successive examinations. The understanding is then gradually

assimilated in the mental model which resides in the mind of the maintainer.

It can be argued that a maintainer does not need to have a thorough understanding of the program

siructure before commencing a modification [Liu86, Shne79J. He only has lo concentrate on the areas

where modifications are to be made and other areas which will be affected by these modifications.

Nevertheless, even when the program has been decomposed into smaller components, the resulting

textual representation may not always reveal the interrelations straight away especially when the

36

important partitions and relations such as program architecture, are scattered in large amounts of

local information [Lelo86b].
t

Visualisation of programs can be an important step towards the right direction. The ultimate goal of

Program Visualisation is to help maintainers form clear and correct mental images of a program's

structure and functions. Graphical representations are useful in that they are easy to understand and to

manipulate. These representations can convey the abstract links and structures of the source code in a

relatively simple form. The information is presented in a form such that there is little room for

misleading interpretations which means the level of confusion and ambiguity caused by

communication can be minimised.

From the survey of Program Visualisation systems in section 2.3.5, it can be seen that the first major

effort in building software visualisation packages was concentrated on exposing the inner workings of

commonly used algorithms in the software systems. Packages such as Sorting out Sorting and BALSA

are of highly historical importance. Both of the packages made use of visual cues so that the essence

of the algorithms could be captured into visual forms.

After the success of Sorting out Sorting, the work of visualisation was expanded and extended to the

form of data visualisation. BALSA, Pascal Genie and SNiFF+ are among the ones which support the

visualisation of program data structures. Programmers have been using simple debuggers, and

sometimes debuggers with visual aid, to keep track of the various states of simple data structures.

Obviously these data visualisation packages suit the purpose of a debugger perfectly but they may be

perceived as far more sophisticated to be used as debuggers. Take SNiFF+ for example, it is a

complete CASE tool designed for the development of Object-oriented software systems.

The work of software visualisation also branched into code visualisation at around the same time.

Static analysis tools for different languages have been built and most of the output for these analysis

tools is displayed graphically. There are a number of program relations which can be extracted from a

program. The function calls and the control flow relationships are the most frequently used.

Most of the code visualisation tools only provide a simple view of the software system with the rest of

the program information presented as text. However, some researchers have begun to explore the

possibilities of combining and linking simple relations together in the same environment. Systems

such as VIFOR, CARE, the McCabe tool set and Logiscope are examples of software packages which

support multiple views of source code. However, they are not based on any complete analysis of the

relationships between the elements of programming languages. They represent some useful

relationships derived in an ad-hoc way but they do not show any of the attributes associated with the

program constructs and relationships.

37

Study has shown that maintainers often want more information than is currently available on the

display but they are not sure what exactly would be most helpful [Shne86]. The ability to provide

different viewpoints on a same object, whether its a file, a function or a variable, is important because

it can provide various levels of detail about the object at different stages. A visualisation system which

can integrate and support a variety of program relationships is therefore much desired.

Early work on building the software maintenance tools was based on the use of simple relations of

function calls and control flow, such as the work carried out by Foster [Fost87] and Fletton [Flet88].

As programs grow in size and complexity, the gap between the types of information required by the

maintainers and the amount of information which can be provided by the maintenance tools widens. It

is shown in Table 1 (Chapter Four) that function calls and control flow are not the only relationships

present in a program. By allowing the other program relationships to be brought into the scene,

maintainers will be able to get access to information in a wider spectrum and in a more consistent

way.

38

Chapter Three

A Framework for Evaluation

3.1 Introduction
This chapter describes a framework for the evaluation of the Integrated Approach outlined in Chapter

Four, the implementation outlined in Chapter Five and the Case Studies outlined in Chapter Six. The

first part of the chapter explores the use of research methods such as Surveys, Formal Experiments

and Case Studies. The second part of this chapter describes a set of objective criteria for the

evaluation. The set of criteria is divided into two branches. The first branch is intended to capture the

processes of the various comprehension theories such as the top-down, bottom-up and a mixture of

both approaches. The other branch addresses the cognitive issues of a maintainer while he browses

and navigates the visualisation of the program structures.

3.2 Research Methods
In order to evaluate a piece of research, a new technique or technology, the impact on the related

processes and the environment that it is intended for operating in must be thoroughly investigated

before it can be put into practice. There are three commonly used evaluation methods: Surveys,

Formal Experiments and Case Studies [Kitc95, Pfle94]. Surveys are usually conducted after the

application of particular techniques or technologies which span across a number of projects and

organisations, whereas the purpose of Formal Experiments and Case Studies is to assess the use of the

technique or technology before it is put into practice. Formal Experiments are based on scientific

investigations which aim to provide an understanding of the processes and to expose any underlying

assumption that the research, technique or technology is based on. Case Studies, on the other hand,

can provide powerful and informative insights but they are less rigorous than Formal Experiments.

The choice of selecting the appropriate evaluation method depends largely on the scale and the nature

of the research, technique or technology concerned. The technique of Surveys is often used when the

39

investigation is spanned across a large number of projects or organisations. Surveys attempt to observe

and systematically characterise the techniques or technologies used over a number of projects.

Formal Experiments are sometimes difficult to conduct when the degree of control is limited. In

addition, they require considerate effort in the planning, preparation and replication of experiments.

The sample and the design of experiments must be carefully chosen in order to minimise the effect of

confounding factors. The cost of setting up Formal Experiments are generally higher than that of Case

Studies [Pfle94]. An appropriate degree of replication of experiments is required in order to attain

reliable results.

Case Studies are different from Formal Experiments in several ways. They are easier to plan and

organise than Formal Experiments. This implies that they cannot achieve the scientific rigor of

Formal Experiments and are cheaper to set-up. Case Studies are often associated with a particular

situation or organisation. The results obtained are context dependent and thus are more difficult to

generalise. Nevertheless, they can provide sufficient information which can be used to assess the

suitability of the use of a technique or technology in a parficular situation or environment.

The differences among the three research methods are important because the conclusions they yield at

the end may be different for each case [Kitc95]. The results obtained from each of these methods must

be evaluated against a set of objective measures in order to increase the creditability of the conclusions

derived.

The technique of Case Studies is chosen in this thesis to demonstrate the major ideas of this research.

The success of this research is measured against a set of objective criteria described in the following

section. They are used to evaluate against the Integrated Approach to Program Comprehension

outlined in Chapter Four, the implementation outlined in Chapter Five and the case studies outlined

in Chapter Six.

3.3 Cognitive Design Elements for Software Exploration

Tools
The Integrated Approach to comprehension will be evaluated against a hierarchy of cognitive design

elements proposed by Storey el al. |Slor97a]. The authors describe a hierarchy of cognitive issues

which can be used to guide the design of software exploration and comprehension tools. The design

elements are organised into two branches: Improve Program Comprehension and Reduce the

Maintainer's Cognitive Overhead. Figure 3-1 shows the hierarchy of cognitive design elements.

40

This hierarchy has two main branches. Under the branch Improve Program Comprehension, the

intention is to capture the essential processes of the various comprehension strategies. This includes

the cognitive design elements from El to El. Under the branch Reduce the maintainer's cognitive

overhead, it addresses the cognitive issues of a maintainer while he browses and navigates the

visualisation of the program structures. This includes the cognitive design elements from E8 to El 5.

Iiiiprove program
coni|irclicnsioii

O.yiiilive
Dfsign
Elements

Enliaiice bultoiiw
u[) C()in|)re]iension

Eiiliance lop-down
com prehension

lnte{;n)(e bottom-iip
and top-down
comprehension

F:icHit:ite
navigation

Reduce the niaintatncr's
cognitive overJiead
Reduce the niaintatncr's
cognitive overJiead

Provide
oritenalion cues

Reduce the niaintatncr's
cognitive overJiead

Provide
oritenalion cues

Reduce
disorientation

Indicate syntactic and
semantic relations between
software objects

Reduce the elTect of
dclocatised plans

Provide abstraction
mechanisms

Support goal-directed,
hypothesis-driven
coniprelieiision

Provide an adequate overview
of the system architecture at
various levels of abstraction

Support llie conslrcution
ofnmltiple mental models

Cross-reference mental
mental model

Provide directional
navigational

Support arbtlary ^
navigation

Provide navigation
between mental models

Indicate the maintainer's
current focus

Display the path that
led to the current focus

Indicate options for
reaching new nodes

Rethice additional effort
for user-interface adjustment

Provide effective
presentation styles

E I 4

E I 5

Figure 3-1 Cognitive design elements for software exploration

The hierarchy of the cognitive design issues is derived through an examination of the cognitive

models of Program Comprehension. The following sections describe each of the cognitive issues in

detail.

41

3.3.1 Improve Program Comprehension
It is argued that the comprehension model employed by a maintainer is dependent on a variety of

issues governed by the experience of the maintainer and the type of maintenance activity he is

engaged in [Mayr94, Mayr95]. It would be advantageous if a range of models are supported. The

following is a list of cognitive design elements which are extracted from various comprehension

models discussed in this paper [Stor97a].

I Enhance Bottom-up Comprehension

Storey et al. argue that a bottom-up comprehension involves reading program statements and

chunking them into higher level abstractions. This is repeated until an overall understanding of a

program is attained. This can be achieved by:

• identifying program units, such as variables, statements and functions, and the

relationships between them

• browsing code in delocalised plans

• by building abstractions from lower level units

The following sections discuss each of the activities in detail.

E l Indicate Syntactic and Semantic Relations between Software Objects

The authors suggest that the syntactic and semantic relationships are essential during a bottom-up

comprehension. The syntactic relation can be derived from the source code by systematically

identifying a set of program units. The semantic relation can be attained by an analysis of the

relationships between these program units.

E2 Reduce the Effect of Delocalised Plans

A delocalised plan is a result of the fragmentation of source code related to a particular algorithm or a

program plan. The authors argue that it can be cumbersome when reading fragments of code

belonging to a delocalised plan. This activity may involve frequent switching between files which can

lead to a feeling of disorientation. Techniques such as program slicing can be applied to identify the

fragments of code which belong to a delocalised plan.

E3 Provide Abstraction Mechanisms

The authors believe that the process of building hierarchical abstractions from the low level program

units and their relationships is the most difficult part during a bottom-up comprehension. A

mainlaincr should be equipped with ihc capability to create higher levels of abstraction by

systematically aggregating low level program units into higher level abstractions.

42

II Enhance Top-down Comprehension

The authors believe that a top-down comprehension requires application domain knowledge. A

maintainer formulates hypotheses and examines the source code in a depth-first manner in order to

verify their hypotheses. This can be achieved by:

• supporting the recording of hypotheses and linking them to relevant parts of the

program, as well as supporting the refinement of hypotheses

• providing overviews of the program so that the maintainer can explore its structure

in a top-down fashion

The following sections discuss each of the activities in detail.

E4 Support Goal-directed, Hypothesis-driven Comprehension

A maintainer should be equipped with the capability, to create, record and relate the hypotheses which

concern the properties of a program to relevant parts of a program. This information is valuable as it

can be used to facilitate future maintenance.

E5 Provide an Adequate Overview of the System Architecture at Various.Levels of Abstraction

Information regarding the software architecture should be provided at different levels of abstraction

during the top-down comprehension so that the maintainer can systematically explore the program

structures in a top-down fashion.

I l l Integrate Bottom-up and Top-down Approaches

The authors acknowledge that a maintainer will create and switch between various mental models

during the course of comprehension [Mayr94, Mayr95]. They believe that relationships such as

control fiow, data fiow and function abstractions are the keys to the creation of these mental models.

These relationships are often illustrated by using graphical representations. The integration of the

bottom-up and top-down approaches can be facilitated by supporting the construction and integration

of various mental models (graphical representations).

E6 Support the Construction of Multiple Mental Models

The authors believe that the mental models created by one maintainer are likely to be different to the

ones created by another maintainer. Support should be given for the construction of the mental models

which represent various aspects of a program. The authors suggest that various mental models of a

program may be represented by using both textual and graphical notations.

43

E7 Cross-reference Mental Model

The authors believe that a maintainer often switches from one mental to another during the course of

comprehension [Mayr94, Mayr95]. This happens when a maintainer tries to cross-reference different

mental models mentally. This activity can be facilitated by supporting the cross-referencing of the

representations between various parts of the mental models (graphical representations).

3.3.2 Reduce the Maintainer's Cognitive Overhead
Storey et al. believe that when comprehending large software systems, the cognitive overheads

imposed on a maintainer will increases rapidly. This problem can be alleviated by providing good

navigation facilities, meaningful orientation cues and effective information presentations.

I Facilitate Navigation

When exploring large software systems, it is important that a maintainer is equipped with the

facilities so that he can navigate through the vast amount of information with ease. The authors

suggest that the navigation facilities should include mechanisms for browsing source code, program

documentation, graphical views of program structures and documented mental models of the

programs.

E8 Provide Directional Navigation

Directional navigation are the mechanisms for aiding the reading of source code and program

documentation, the browsing of program relationships such as data flow and control flow and the

traversing of program structures in a top-down fashion.

E9 Support Arbitrary Navigation

Arbitrary navigation should be supported when a maintainer navigates to locations that are not

necessarily reachable by following direct links.

ElO Provide Navigation between Mental Models

The authors believe that to be able to navigate between the various mental models (graphical

representations) smoothly is the key to a successful comprehension. They argue that this is a non-

trivial problem as there may be one-to-many and many-to-one links from one model to another.

II Provide Orientation Cues

The authors suggest that orientation cues can be used to inform a mainlainer of his whereabouts when

exploring the program structures, how and why he is there and how to switch to a different focus

when required.

44

E l l Indicate the Maintainer's Current Focus

During comprehension, a maintainer may need to access information relating to the many different

program units. The maintainer may become 'lost' in that vast amount of information. The use of

judicious orientation cues can be used to reinforce the maintainer's sense of focus and orientation.

E12 Display the Path that Led to the Current Focus

Recording why a maintainer is interested in a particular program unit may be very important. The

reason for reading a piece of code may be the result of verifying a particular hypothesis or because the

code must be modified in some way. The maintainer should be equipped with the facility which can

display the sequence of actions and show how a particular decision is reached.

E13 Indicate Options for Reaching New Nodes

Support should be provided so that a maintainer is made aware of the facilities available for further

exploration.

I l l Reduce Disorientation

When exploring a large information space, the problem of disorientation is a major issue. The authors

suggest that disorientation can be alleviated by rernoving some of the. unnecessary cognitive

overheads resulting from poorly designed user interfaces, and by using specialised graphical views for

presenting large amounts of information.

E14 Reduce Additional Effort for User-interface Adjustment

Extra effort should be made for the design of the user interfaces in order to reduce the cognitive

overheads which can induced by switching between different mental models.

E15 Provide Effective Presentation Styles

For complex graphical representations, automatic layout algorithms are often used to display the

representations in a more readable manner. Extra effort should be put into the layout of graphical

representations and for the general presentation of information relating to various program units.

3.4 Summary
Although this hierarchy of cognitive design elements is orientated towards the design of software

exploration tools, it is fell that the hierarchy is also suitable for the evaluation of this research.

It is decided that the cognitive issues from the first branch of the hierarchy (El to E7) are particularly

applicable for the evaluation of the Integrated Approach and the rest of the cognitive issues from the

45

second branch (E8 to El5) are suitable for the evaluation of the prototype, PUI. The results of the

Case Studies will also be evaluated against the hierarchy. The first branch addresses the theoretical

issues of the comprehension theories which are closely related to the Integrated Approach, whereas

the cognitive issues addressed in the second are more inclined to the evaluation of the interactions

between the maintainer and the software exploration tool. An evaluation of the Integrated Approach,

the prototype and the Case Studies will be presented in Chapter Seven.

46

Chapter Four

An Integrated Approach to Program
Understanding

4.1 Introduction
This chapter introduces a framework and mechanism for the facilitation of the understanding of large

software systems. In particular, it addresses the need for a more flexible approach to Program

Comprehension and discusses the use of Program Relationships, rather thaft just those of function

calls and control flow through carrying out a systemadc analysis of Program Elements.

Maintainers are usually under pressure to accornplish maintenance tasks as quickly as possible. The

problem for most maintainers is that they have to maintain unfamiliar code that has been modified

and the accompanying documentation is usually out of date, inadequate, inconsistent or sometimes

non-existent. More often than not, the source code may be the only information maintainers have got.

The problem is how the maintainers find a systematic way to uncover this information.

4.2 Integrated Approach
The process of comprehension is a cognitive skill and therefore it is extremely difficult for machines

to mimic human beings. It is widely acknowledged that a total automation of the comprehension

process will not be feasible as human input and interpretation are vital to the process.

Studies have shown that experienced maintainers are better at using various comprehension strategies

in order to direct their attention to areas which may contain crucial information about a program. A

comparison can be drawn between master and novice chess players. Controlled psychological

experiments have shown that chess masters are far more accurate than non-chess players at

remembering chess board positions taken from real games, where the placement of pieces arose in

47

strategic play and represented meaningful tactical positions. These experiments have found that chess

masters remember positions based on certain patterns, alignments and structures. Experience and

knowledge accumulated over the years are the deciding factors in differentiating master chess players

from novice chess players [Stor97b].

The memorisation of the arrangement of chess pieces is comparatively simple for the master chess

players as there are plenty of visual cues. Maintainers, on the other hand, do not have as many visual

cues available. The structure of a software system is arguably less defined and more abstract.

Nevertheless, tools are available which can make the comprehension process a little simpler and

smoother. The goal of software maintenance tools is to help the maintainers to form clear and correct

mental images of the source code, and sometimes it is achieved with the help of software visualisation.

Visualisation can provide alternative perspectives to textual information. Graphical representations

are more compact than the textual representation and they resemble the mental models constructed by

the maintainers. It is essential that maintainers are supplied with a range of visual cues (information

with various degrees of details) in order to obtain better understanding of programs.

Each theory and model discussed in section 2.2 in Chapter 2 favours a different approach to Program

Comprehension. Pennington's [Penn87] theory is a bottom up approach whereas Brooks [Broo83] and

Liftman et al. [Litt86] believe that comprehension should be performed in a top down fashion.

Letovsky [Leto86a] and von Mayrhauser and Vans [Mayr94, Mayr95] argue that maintainers will use

a mixture of both strategies depending on the cue of the additional information. The message is clear:

there is no consensus on how maintainers understand programs and each of those theories can only

model certain aspects of the maintainers' behaviour during comprehension. Further, the

comprehension strategy used is also highly influenced both by the types and the goals of the

maintenance activities that a maintainer is engaged in. Most of the maintenance tools are not

powerful enough for use on a large scale as they only provide limited analysing power. What is

needed is a software maintenance tool that can provide an environment which encompasses the

essence of the different theories and models.

The Program Comprehension process can be roughly divided into two stages. Figure 4-1 shows a

pictorial represenlalion of this process. The first stage is information gathering. This is active when a

maintainer tries (o gra.sp an impression of the source code by glancing and wandering through the

source code. It usually happens during the early stage of the comprehension process, though this

activity can be repeated when the maintainer is in the latter stage of the process. The second stage is

more directly geared towards specific problem solving. In this stage, the maintainer may actively

reach out and look for cues and information regarding some program constructs such as a data type or

a function. Often, the mainlainer may need to explore new sections of code when he gets deeper and

deeper into the area that he is analysing.

48

Exploration of
information

Analysis of
information

First Stage

Second Stage

Figure 4-1 Two stages of the comprehension process

The two major aspects in the comprehension process are the exploration and the analysis of

information. It can partly explain why most of the comprehension theories and models are inadequate

in modelling the behavioural patterns of the rnaintainers. In order to capture both of the processes into

one environment, a software maintenance tool needs to be flexible enough so that the maintainers can

switch between the two processes when required. Moreover, the tool must [Provide a wide range of

informafion about the source code to assist the maintainers in the analysis stage. This informafion

should be managed and presented to the maintainers in a systematic and controllable way so that they

will not be overloaded with too much information.

It is extremely difficult to contemplate exactly what kind of information a maintainer may need during

the maintenance activities. The required information is largely dependent on the maintainer's

experience, the types and the objectives of the maintenance tasks, as well as the Program

Comprehension strategies used.

Maintenance activities can be broken down into four main categories [Lien78, LienSO]:

• Perfective maintenance involves implementing new functional or non-functional

system requirernents. These are generated by software customers as their

organisation or business changes. Activities include understanding the system,

diagnosing and defining requirements tor improvements, developing preliminary

and detailed perfective design, modifying program code, debugging and testing.

For the Perfective maintenance, a maintainer needs to explore the relationships

between the program code and the changes required as a restilt of the user requests

49

and/or business changes. For example, if the input data to a system is to be changed,

a maintainer may have to look at the data definitions and structures used by the

system, the variables that are associated with the data structures and the functions

that are dealing with the input, output and manipulation of the data structures.

• Corrective maintenance involves the correction of processing, performance or

implementation failures. It concerns bug fixing and correction of software errors.

Activities include understanding the system, generating/evaluating hypotheses

concerning problem, repairing code and testing.

For the Corrective maintenance, a maintainer needs to understand, explore and

assess the relationships between the program code and the software faults. He may

have to examine the data flow relationships between variables, control flow

relationships between statements and function call relationship between functions.

• Adaptive maintenance involves modifying the software in order to keep up with

environmental changes. It may involve changes in hardware or data. It does not

lead to changes in the system's functionality. Activities include understanding the
i

system, defining adaptation requirements, developing preliminary and detailed

adaptation design, modifying program code, debugging and testing.

For the Adaptive maintenance, a maintainer needs to understand the impact of the

program code regarding the environmental changes. In particular, special attenfion

is required for dealing with the system interface and functions which ufilise the

built-in libraries provided by the hardware or the operating system.

• Preventive maintenance involves updating software in order to forestall future

problems and to increase maintainability. Activities include understanding the

system, defining lists of changes for improvement, modifying program code/system

documentation, debugging and testing.

For the Preventive maintenance, a mainlainer needs to have knowledge about the

program structures the and system architecture. It concerns updating

documentation, adding comments and improving the modular structure of the

system.

Information is required at different levels of abstraction ranging from high to low depending on the

type of maintenance.

50

Another deciding factor influencing what kind of information is required for comprehension is the

level of technical competence ol' the maintainers themselves. Experiments have shown that there are

differences in how expert and novice programmers understand programs, and that both groups seek to

look for different cues in the source code. This can be attributed to the different types of knowledge

that a maintainer may possesses. The results of those experiments have shown that expert

programmers often tend to conceptualise different areas of the source code and then map them to the

application domain, whereas novice programmers tend to confine the comprehension process in the

programming domain knowledge.

An obvious solution to get round this problem would be to develop specific tools which are geared

towards the different types of software maintenance acfivities and for the different Program

Comprehension theories and models. This solution is only feasible when it is certain that the type of

the software maintenance activities is not to be changed regularly and that the comprehension process

is carried out by following a particular theory.

Another way of tackling this problem involves explicitly exposing the interrelationships between the

many program constructs within the source code. In theory, the source code itself should contain all

the information a maintainer may need in order to obtain some degree of knowledge. Instead of

anticipating and planning for the information that a maintainer may need, the attenfion is now

focused on exposing the program relationships between the program constructs. The emphasis of the

comprehension process is now on how the maintainers can make use of the information provided,

rather than leaving them to chase for the elusive information themselves. This is the basis idea of the

Integrated Approach.

The maintainers can make use of the information regarding the program constructs and relationships

in order to expand or to refine their line of investigation as they see fit. This approach is realised by

first identifying the program constructs and the interactions between them, and then setting up a

framework to assist with the analysis of these program constructs and relationships. Relevant

information about a particular program construct can be attained by examining related program

constructs and program relationships.

The Integrated Approach does not impose any restriction on how the process of comprehension should

be performed. On the contrary, it enables the utilisation of different comprehension theories and

models. It is flexible and it allows comprehension to be conducted according to preferences of the

mainiainers. As described before, the use of a particular comprehension strategy alone may be

insufficient. This approach allows the essence of the different strategies to be captured and performed

in a single environment. Maintainers can exploit the use of various strategies throughout the

comprehension process as they examine the program constructs and relationships.

4.3 Program Elements and Program Relationships
Program Elements are program constructs used in a program. The grammar of a programming

language governs the way these Program Elements are used. When assembled together, the Program

Elements make up programs. The programs are in turn used as building blocks for larger software

systems. This research is interested in the understanding of programs written in the C programming

language [ANSI84, Kern78, KernSS]. Typically, a C program may include Program Elements such as

identifiers, constants, variables, expressions, types, statements, functions and files. The inter

relationships which arise between these Program Elements are often simple and straightforward, but

they can become complicated depending on how these Program Elements are used.

Various problems may arise over time as programs grow in size and complexity. Maintainers may

find it difficult to understand and navigate through the complex interrelationships among the Program

Elements. Nevertheless, these complex interrelationships and interdependencies can be untangled

with ease if various Program Elements and Relationships are identified at an early stage. These

Program Relationships may be used as a handle to tackle the task of comprehension. Most of the

common problems found during comprehension are related to the confusion of different

interrelationships. For example, variables which have different scopes and meanings but have the

same name can sometimes cause havoc. By examining the Relationships between two Program

Elements carefully, a more accurate picture about these elements can be established and it may lead to

better understanding of the system as a whole.

A natural form of representing relationships is graphs. Examples such as call graphs and control flow

graphs are frequently used to illustrate higher levels of abstraction of programs. At present, most of

the effort has been concentrated in devising tools to support the analysis of mainly two Program

Relationships:

• the calling relations which is between functions and funcfions

• the control flow relations which is between statements and statements

Disentangling the different relationships in a program efficiently is essential to the process of program

understanding. The function calls and control flow relationships have gained a lot of attention because

they are simple and intuitive. Undoubtedly, the analysis of these relafionships can yield a substantial

amount of information about the source code itself For example, measurements such as the

complexity of a piece of code can be obtained from analysing these two relationships. Nevertheless,

52

modern programming languages are not just built from the utilisation of the function calls and control

How relationships. Other Program Elements and Relationships present in the source code should

arguably be of equal importance and they also hold important information about the source code.

These other Program Elements and relations may have been overlooked as they are perceived as less

informative. This information, however, holds the links which can bridge the gaps between the

'chunks' of knowledge acquired by just analysing the control flow graphs and the call graphs.

A far more informative overview of a program can be attained if various program relationships

between program constructs are supported and brought into play. Table I shows the relationships

which may be present in a C program. The table should be read from left to right, and from top to

bottom. For instance, the relation between an Argument and an Identifier is has an, and it should be

read as Argument has an Identifier. On the whole, the table possesses a high degree of s>Tnmetry

with a few exceptions. The following is an explanation of the terminology used and a discussion of all

the Program Relationships between pairs of Program Elements shown in Table I .

4.3.1 Glossary

I The Program Elements

The main Program Elements in the C language are as follows.

Identifier is a name associated with Constant, Variable, Argument, Function and File.

Constant is a storage unit where data is stored and will remain unchanged throughout the execution

of a program. It includes numeric constants, character constants, string constants and enumeration

constants.

Variable is a storage unit where data is stored. It can be changed by other Program Elements during

its lifetime.

Argument is the parameter (formal/actual) passed to a Function.

Expression is a symbolic representation of a mathematical or logical statement.

Primitive Type includes vo id , char, short , i n t , long, f l o a t , doiible, s igned,

uns igned, enum, p o i n t e r (*) and a r r a y ([]) .

Complex Type includes s t r u c t and union.

Statement is a coded instruction which the program can recognise and carry out.

Block includes a list of declarations followed by Statements.

Function is a sequence of Statements that are grouped together to perform certain tasks.

File includes a collection of declarations and/or definitions.

53

II The Program Relationships

The main Piogi am Relationships in the C language are as follows. The relations rererred to here are

those given in Table I with appropriate tense changes. The relations can also be both active and

passive.

To Associate a Program Element with another indicates that they are connected in some way.

To Call a Program Element indicates that the How of control is passed from another Program Element

onto that Program Element.

To Coerce a Program Element to another involves explicit/implicit type conversion.

To Contain a Program Element indicates that the element is part of the definition of another.

To Declare a Program Element indicates that it is introduced to the program for the first time in

accordance with the rule of scope.

To Define a Program Element indicates that it has been assigned a value or a full definition.

To Depend on a Program Element indicates that the value one Program Element is directly linked to

affected by that element.

To Follow a Program Element indicates the presence of ordering.

To Have a Program Element indicates that one Program Element must possess another to complete a

definition.

To Have I/O interface with a Program Element indicates that one Program Element communicates

with another by way of exchanging information.

To Have the same interface as indicates that one Program Element possesses the same parameter

declaration as another.

To Have the same name as indicates that the names of two Program Elements are identical.

To Have the same type as indicates that the types of two Program Elements are identical.

To Have the same value as indicates that the values held by two Program Elements are identical.

To Import a Program Element by a file indicates that its declaration (and/or the definition) is copied

and incorporated into that file.

To Return a Program Element indicates that a value and it's associated type is assigned to a memory

location upon the completion of the instructions.

To Use a Program Element indicates that it is involved in the definition of another Program Element.

The type of a Program Elemenl is compatible with another indicates that the types are

interchangeable.

54

.1^

E o o I

Table 1 Program Relationships between Program Elements

55

4.3.2 The Table of Program Relationships
I Identifier

An Identifier is used to give a Program Element a name.

An Identifier has the same name as ([another] Identifier)

An Idendfier is associated with {Constant, Variable, Argument, Primifive Type, Complex Type)

An Identifier is used in (Expression, Statement, Block, Function, File)

An Identifier is declared in (Statement, Function, File)

II Constant

A Constant is a storage unit where data is stored and will remain unchanged throughout the

execution of a program.

A Constant has an [may have an] (Identifier)

A Constant has the same type as (Constant, Variable)

A Constant has the same value as {[another] Constant)

A Constant is used as (Argument)

A Constant is used in {Expression, Statement, Block, Function, File) "

A Constant w awoc«2;e<i w/r/i (Primitive Type, Complex Type)

A Constant is declared in (Statement, Block, Functions, File)

By definition, a constant can be a numeric constant (Primitive Type i n t / f loat) , character constant

(Primitive Type char) , string constant (Primitive Type a r r a y of char) and enumeration

constant (Primitive Type i n t) .

I l l Variable

A Variable is a storage unit where data is stored. The data which it holds can be changed during its

lifetime.

A Variable has an/a (Identifier, Primitive Type, Complex Type)

A Variable has the same type as {Constant, fanotherj Variable)

A Variable is dependent on (Constant, Variable)

A Variable is declared as (Argument)

A Variable (,v used as (Argument)

A Variable ;,v used in (Expression, Statement, Block, Function, File)

A Variable (,v declared in (Statement, Block, Function, File)

A Variable is defined in (Statement, Block, Function, File)

56

Example: i n t x , y , z ;
X = y + 2 * z ;

It can be deduced from the above example that Variable x :

has an Identifier

has a Primitive Type i n t ;
has the same type as the Constant 2

has the same type as Variables y and z

is dependent on the Constant 2, Variables y and z

is declared in ihz Staitmtnt LnX:. x , y , z ;

is used in the Statement i n t x , y , z;

is used in the Expression x = y + 2 * z

is defined in the Statement x = y + 2 * z ;

is used in the Statement x = y + 2 * z ;

IV Argument

An Argument is the parameter passed to a Function. The Argument can be eather formal at the point

of declaration or actual at the point of function call.

An Argument has an/a (Identifier, Primitive Type, Complex Type)

An Argument is a/an (Constant, Variable, Expression)

An Argument has the same type as [[another] Argument)

An Argument is declared in (Statement, Function, File)

An Argument is defined in (Statement, Function, File)

An Argument is used in (Block, Function, File)

Example: p r i n t f (" p i = S s f \ n " , 22/7);

It can be deduced from the above example that the Argument 22/7:

• is an Expression

• has a Primitive Type f l o a t

• /.VH.ye<:/;/(the Statement p r i n t f (" p i = %t\n", 22/7);

• (.V used in the Function p r i n t f

Expressions can be used as actual arguments as illustrated in the above example.

57

V Expression

An Expression is a symbolic representation of a mathematical or logical statement.

An Expression uses (Identifier, Constant, Variable, [another] Expression}

An Expression is used as (Argument)

An Expression is used in ([another] Expression, Statement, Block, Function, File}

An Expression has a (Primitive Type, Complex Type}

As every variable and constant is associated with a Type whether it is Primitive or Complex, an

expression which comprises constants, variables and operators should also have a Type.

Example: i n t x, y;

....(X = y * 3)

....(X = y / 3)

It can be deduced from the above example that:

the Expression y * 3 uses a Constant 3

the Expression y * 3 uses a Variable y

the Expression y * 3 has a PrimiUve Type i n t

the Expression y * 3 M twe^/in the Expression (x = y * 3)

the Expression (x = y * 3) has a Primitive Type i n t

the Expression y / 3 uses a Constant 3

the Expression y / 3 uses a Variable y

the Expressiony / 3 « wiec?iw the Expression (x = y / 3)

the Expression y / 3 has a Primitive Type f l o a t

the Expression (x = y / 3) Aai a Primitive Type i n t

An Expression which has different Primitive Types for each operand will automatically converted

the lower precision Primitive Type into a higher precision Primitive Type.

VI Primitive Type

A Primitive Type is a pre-defined type built into the programming language. It cannot be broken up

further into smaller units.

A Primitive Type is associated with (Identifier, Constant, Variable, Argument, Expression,

Statement}

A Primitive Type is used in (Expression, Complex Type, Statement, Block, Function, File)

58

A Primitive Type f.v declared in (Statement, Block, Function, File)

A Primitive Type is coerced to {[another] Primitive Type)

A Primitive Type is compatible with ([another] Primitive Type)

Examples: c h a r *najne;
c h a r[50] a d d r e s s ;
i n t age;

It can be deduced from the above examples that:

the Primitive Type p o i n t e r to c h a r is associated with the Identifier name

the Primitive Type p o i n t e r t o c h a r is associated with the Variable name

the Primitive Type p o i n t e r to c h a r is declared in the Statement c h a r *name;

the Primitive Type v o i d is associated with the Statement c h a r *name;

the Primitive Type a r r a y of c h a r « aj-sociafe^/wa/2 the Identifier address

the Primitive Type a r r a y of c h a r is associated with the Variable address

the Primitive Type a r r a y . of c h a r is declared in the Statement c h a r[50]
a d d r e s s ;

the Primitive Type v o i d is associated with the Statement c h a r [50] addres s ;

the Primitive Type p o i n t e r t o c h a r is compatible with the Primitive Type a r r a y

of c h a r

the Primitive Type i n t is associated with the Identifier age

the Primitive Type i n t is associated with the Variable age

the Primitive Type i n t is declared in the Statement i n t age;

the Primitive Type v o i d is associated with the Statement i n t age;

In addition, in the case where the operator = is involved and the types on both sides are different, the

type of the right operand is coerced to the type of the left operand which is the type of the result.

Example: i n t x , y ;

....(X = y / 3)

It can be deduced from the above example that:

• the Primitive Type i n t is associated with the Variable y

• the Primitive Type i n t is associated with the Constant 3

• the Primitive Type i n t of the Variable y is coerced to the Primitive Type

f l o a t before the arithmetic operation

59

• the Primitive Type i n t of the Constant 3 is coerced to the Primitive Type

f l o a t before the arithmetic operation

• the Primitive Type f l o a t is associated with the Expression y / 3

• the Primitive Type f l o a t of the Expression y / 3 is coerced to the Primitive

Type i n t after the arithmetic operation

• the Primitive Type i n t is associated with the Expression (x = y / 3)

VII Complex Type

A Complex Type is a type built from Primitive Type.

A Complex Type is associated with (Identifier, Constant, Variable, Argument)

A Complex Type uses {Primitive Type)

A Complex Type is compatible with {[another] Complex Type)

A Complex Type is declared in (Statement, Block, Function, File)

A Complex Type is used in (Statement, Block, Functions, File)

By definition, s t r u c t and un ion are both a Complex Type. Structures and unions may consist of

different Primitive Types. For example, the details of an employee may incUide a name and his age.

It is possible to represent this information separately using two different data structures: a name can

be represented using an array of characters and the age can be represented as an integer. However, it

may become inconvenient if the details of rnore than one employee are to be stored. The use of the

Complex Type s t r u c t would be a more sensible choice. The following example shows a data

structure which can be used to represent the above information.

Example: s t r u c t employees {
c h a r name[29];
i n t age;

) employee;

It can be deduced from the above example that:

the Complex Type employees is associated with the Identifier employees

the Complex Type employees is associated with the Variable employee

the Complex Type employees uses the Primitive Type p o i n t e r to c h a r

the Complex Type employees uses the Primitive Type i n t

the Complex Type employees is declared in the above Statement

60

The Relationship between Complex Type and Constant is associated with but it is less commonly

used. Nevertheless, it is possible to declare a Complex Type Constant in the same way as the

Primitive Type Constant.

Example: s t r u c t employees {
char name[29];
i n t age ;

} ;

const s t r u c t employees Chan = {"Pui-Shan Chan", 25);

The above construct is a constant declaration. It can be deduced from the above example that:

the Complex Type employees is associated with the Identifier employees

the Complex Type employees Mses the Primitive Type p o i n t e r to char

the Complex Type employees uses the Primitive Type i n t

the Complex Type employees is declared in the first Statement

the Complex Type employees is associated with the Constant Chan

the Complex Type employees is used in the second Statement

In theory, the values stored in the fields name and age will not be changed during the lifetime of the

Constant Chan.

VIII Statement

A Statement is a coded instruction which the program can recognise and carry out. In this thesis.

Statement also includes the C pre-processor statements #def ine and #include on the assumption

of simple use of the #def ine statements to define values.

A Statement uses (Identifier, Constant, Variable, Expression, Primitive Type, Complex Type)

A Statement declares (Constant, Variable, Argument, Primitive Type, Complex Type, Function)

A Statement c/e/irtes (Variable, Function)

A Statement has a [Primitive Type)

A Statement/biiovvs {[another] Statement)

A Statement is followed by {[another] Statement)

A Statement is used in (Block, Function, File)

Example: main () {
i n t X, y , z; [1]

X = y = 2; [2]
z = 3 * (X / y) ; [3]
p r i n t f (" z = %A\n", z) ; [4]

}

It can be deduced from the above example that:

Statement [1] uses the Identifiers x,
y and z

Statement [1] declares the

Variables x, y and z
Statement [1] declares the Primitive

Type i n t

Statement [1] has a Primitive Type

v o i d

Statement [1] is followed by

Statement [2]

Statement [1] is used in the

Function main ()

Statement [2] uses the Identifiers x
and y

Statement [2] uses the Constant 2

Statement [2] defines the Variables

X and y

Statement [2] uses the Variables x

and y

Statement [2] uses the Expression y
= 2

Statement [2] uses the Expression x
= y = 2

Statement [2] has a Primitive Type

v o i d

Statement [2] uses the Primitive

Type i n t

Statement [2] follows Statement [1]

Statement [2] is followed by

Statement [3]

Statement [2] is used in the Function

main ()

Statement [3] uses the Identifiers x, y
and z

Statement [3] uses the Constant 3

Statement [3] defines the Variable z

Statement [3] uses the Variables x, y
and z

Statement [3] uses the Expression (x
/ y)

Statement [3] uses the Expression 3 *

(X / y)

Statement [3] uses the Primitive

Types i n t and f l o a t

Statement [3] has a Primitive Type

v o i d

Statement [3] follows Statement [2]

Statement [3] is followed by Statement

[4]

Statement [3] is used in the Function

main ()

Statement [4] uses the Identifier z

Statement [4] uses the Variable z

Statement [4] has a Primitive Type

v o i d

Statement [4] follows Statement [3]

Statement [4] is used in the Function

main ()

Statements [1], [2], [3] and [4] defines

the Function main ()

IX Block

A Block includes a list of declarations followed by Statements.

A Block uses (Identifier, Constant, Variable, Argument, Expression, Primitive Type, CompI

Type)
ex

62

A Block contains (Statement)

A Block,/oi/oH's ([another] Block)

A Block is followed by ([another] Block)

A Block is used in (Function, File)

A Block contains both declarations and Statements. These declarations are nested within an

enclosing Function.

Example: main () {
const two = 2 ;
i n t X;

s c a n f (" % d " , &X) ;
i f X <= 0 then {

p r i n t f ("X = 5 s d\n", X) ;
}
e l s e {

i n t z = 5;
p r i n t f f " X = %d\n", two * z) ;

}
}

Here, the Variable z is declared in and is defined in the inner Block in the e l s e part of the i f
Statement, which is used in the Function main () . #.

X Function

Function is a sequence of Statements that are grouped together to perform certain tasks.

A Function has an (Identifier)

A Function uses (Identifier, Constant, Variable, Argument, Expression, Primitive Type,

Complex Type}

A Function returns (Primitive Type, Complex Type)

A Function contains (Statement, Block)

A Function calls {Function)

A Function is called /?v(Function)

A Function has the same interface as {[another] Function)

A Function is declared in {File)

A Function is defined in (File)

A Function is used in (File)

The most noticeable Program Relationships in this group is the calls and the is called by

relationships. These are commonly used in the static analysis of programs.

63

XI File

File includes a collection of declarations and/or definitions.

A File has an [Identifier}

A File uses (Identifier, Constant, Variable, Argument, Expression, Primitive Type, Complex

Type, Function)

A File imports (File)

A File contains (Statement, Block, Function)

A File is imported by {[another] File)

A File has I/O interface with [[another] File)

4.3.3 The Attributes

Apart from the Program Relationships which can be deduced between the pairs of Program Elements,

attributes which are affiliated to the Program Elements and the Relationships can provide the extra

information that a maintainor may need. These attributes are generally associated with the scope and

the states of the Program Elements, and also measurements, which are usually in the form of software

metrics.

I Scope

The Scope of an identifier is the region of the program over which occurrences of each can be

matched with the defining declaration. In C, nested function declaration is not allowed. Any Program

Element declared inside a function is only visible within that function by default. Program Elements

which are declared in this fashion are of a local nature. Once the function is exited, these Program

Elements cease to exist (with the exception of static variables which will be discussed in the next

section). It is however, possible to declare a Program Eleiment of a global nature. It means this

Program Element has a scope that encompasses the entire file and thus can be used for

communication between functions. It can be done by declaring the Program Elements outside the

function definitions. Table 2 shows the attributes affiliated with each of the Program Elements from

Table 1.

Scope Scope

Identifier local, global Complex Type local, global

Constant local, global Statement local

Variable local, global Block local

Argument formal, actual Function global

Expression local File global

Primitive Type local, global

Table 2 Scope of Program Elements

64

II Storage Class

Besides a type, variables in the C programming language can be designated to have a particular

storage class. It is used to determine how the compiler allocates memory to that variable. There are

four storage classes, namely auto, extern, s t a t i c and r e g i s t e r .

Global variables in C are classified as static variables, meaning that they come to existence when the

program is executed and it continues to exist until the program terminates. A static global variable

cannot be accessed by functions in other files other than the one in which it is declared. Local

variables are by default classified as auto variables. This is due to the fact that memory is allocated

automatically to these variables when a function is executed and then deallocated when the function

terminates. It is possible to declare local variables as s t a t i c , however. I f a static local variable is

assigned a value the first time when a function is called, it will retain its value on subsequent calls of

the function.

The r e g i s t e r storage class can be specified only for local variables. Such a declarafion will

instructs the compiler to store the value of a local variable in a register. The r e g i s t e r storage class

can also be applied to a formal argument in a function. Since arguments are passed to functions

through memory, the supplied argument value is loaded into a register when tfie function is executed.

The e x t e r n storage class does not create a variable, but it only informs the compiler of its existence.

When a global extern declaration is made outside a function, it indicates that the variable referred to

is declared in another file. In order words, global extern declaration enables global variables to be

shared among several files.

A function can be declared as s t a t i c . Such as function can be called by other functions within the

same program file, but not by functions in other files. A function can also be declared as exteim. It

works the same way as an e x t e r n variable. The above discussion is summarised in Table 3.

Storage Class

Variable auto, static, register, extern

Function static, extern

Table 3 Storage classes in C

65

4.4 A Framework for the Integrated Approach
As discussed before, more informative overviews of the programs can be attained i f various Program

Relationships between Program Elements are supported and brought into play. Most of the software

maintenance tools discussed in section 2.3.5 in Chapter Two offer some degree of visualisation. For

example, the relationships function calls and control fiovv are frequently illustrated in various

graphical forms in those tools. However, the use of the graphical representations in some cases may be

unhelpful due to their scale and complexity. The attention of the users is often drawn back to the

source code as there is inadequate support for extracting information from these graphical

representations. Most of the users may prefer to construct a mental model of their own whilst others

may prefer to trace the relationships by drawing lines to link different areas of the source code.

The Program Elements and Relafionships are the key to the Integrated Approach. The Program

Elements are linked together governed by the grammar of a programming language. When combined

together, they form various relationships. The Program Relationships between pairs of Program

Elements represent various levels of abstraction of the source code. A higher level Program Relation

can be refined to a lower level one during comprehension and a lower level Program Relation can be

abstracted into a higher level one. For example, the relation imports between the Program Elements

File and File is of a higher level of abstraction than the relafion follows between the Program

Elements Statement and Statement. It is argued that comprehension can be achieved by refining,

expanding and analysing the Program Relationships between pairs of Program Elements.

The process of Program Comprehension can be facilitated by setting up a framework. Program

Elements and Relationships discussed above are the basic ingredients in this framework. The other

components in the framework include:

• context sensitive navigational aids

• information displays which include both textual and graphical information

The context sensitive navigational aids are the focal point in this framework. They provide a

mechanism for easy access to the Program Elements and Relations shown in Table 1.

A natural way of representing relationships is in the form of graphs. The Program Relationships

.shown in Table I can be easily illustrated graphically with the respective pair of Program Elements.

When the utilisation of graphical representations alone is insufficient, textual display can also be used

to provide extra information.

66

4 .4 .1 Context Sensitive Navigational Aids

Programs are built from Program Elements which are held together via a network of Program

Relationships. It is this connectivity which enables the realisation of the Integrated Approach. When

one Program Element is under scrutiny during the comprehension process, it will inevitably pave the

way to other related Program Elements and subsequently reveals the underlying Relationships

between them. For example, when studying the Relationship File imports Files, a maintainer will be

presented with other Relationships such as File contains Functions. I f he chooses to explore this

relation further, he will be presented with more Relationships such as Function returns

Primitive/Complex Type, and Function Mses Variable. Information regarding a Program Element is

gathered by observing the interactions between the related Elements and analysing the Relationships.

Under the Integrated Approach, the path of information gathering is not fixed and the maintainer is

free to explore any of the Program Elements and Relationships that he chooses. It is flexible and it

allows comprehension to be conducted according to preferences of the maintainer. The context

sensitive navigational aids are designed to provide a mechanism to retrieve the relevant Elements and

Relationships to the maintainer. Information can be attained by executing and switching between

various comprehension theories and models. The following figures show a set of navigational aids

when the appropriate Program Elements are selected.

Figure 4-2 shows a list of Program Relationships which inay be of interest to the maintainer when he

is inspecting the Program Element File. The Program Relationships represented by the navigational

aids are:

• File contains Function; Function is declared in/is defined in File [more on functions]

• File Mses Constant; Constant is declared in File [more on constants]

• File uses Variable; Variable is declared in File [global variables]

• File uses Type (Primitive/Complex); Type is declared in File [more on types]

• File contains #def i n e Statement [more on #define]

• File contains ttinclude Statement [more on #include]

• File imports/is imported bylhas I/O inteiface with File [more on system]

Pile P^'"^°" mote on global mote on more on more on more on
Menu tunciions constants variables tyj^es udefina =»includa system

Figure 4-2 A set of navigational aids when the Program Element File is selected

67

Figure 4-3 shows a list of Program Relationships which may be of interest to the maintainer when he

is inspecting the Program Element Function. The Program Relationships represented by the

navigational aids are:

Function calls Function [call graph]

Function is called by Function [called by...]

Statement [in the Function] follows Statement [in the Function] [control flow graph]

Function uses Constant; Constant is declared in Function [constants]

Function ttses Variable; Variable is declared in Function [local variables]

Function uses Type (Primitive/Complex); Type is declared in Function... [types]

Function uses Argument; Function returns Primitive Type [parameters]

Function is declared in/is defined in lis used in File [related files]

Function ea" . called conftolflow „„^ . . local ^ . , .
Menu by... m h '^'"'^'^nfs types [.ararrietafi tdatalfiles

Figure 4-3 A set of navigational aids when the Program Element Function is selected

Figure 4-4 shows a list of Program Relationships which may be of interest to the maintainer when he

is inspecting the Program Element Variable. The Program RelaUonships represented by the

navigational aids are:

• Variable is declared in Function [declared in...]

• Variable is used as Argument [as parameters...]

• Variable has a Type (Primitive/Complex) [variable type]

Variable daelataj 32 vatiable
Menu in... faf^metas... ^gjie

Figure 4-4 A set of navigadonal aids when the Program Element Variable is selected

Information regarding a Program Element can be gathered by observing the interactions between the

related elements and analysing the Program Relationships. To limit the scope of the exploration and

to isolate the investigation to just one component at a time may hinder the comprehension process.

68

Maintainers may have difficulties in combining pieces of disjointed information, especially when the

number of components concerned increases. In an ideal situation, the process is continued without

interruptions until sufficient information about the program is attained. Hence, Program

Comprehension is both an assimilation and an opportunistic process. This non-deterministic nature is

the justification why the incorporation of an element of fiexibility in a software maintenance tool is

important. Maintainers should be equipped with the ability to expand and refine the Program

Relationships so that they can explore the different aspects of a program when required.

The context sensitive navigational aids are designed with this purpose in mind. They provide a

mechanism for easy access to the Program Elements and Relationships discussed in Table 1. When a

Program Element or a Relationship is encountered, a maintainer will be presented with its details. His

attention will also be drawn to the other Program Elements and Relationships that are related to the

Program Element or Relationship first encountered. The navigational aids resemble the context

sensitive menu systems used in most modern day applications. For example, in a word processor, the

menu changes when the cursor is placed upon an array of cells (tables) so that the extra features can

be used to operate on these cells. The context sensitive navigational aids are in place to ensure that the

process of comprehension can be continued without interruption. They are designed to provide a

mechanism to retrieve the relevant Elements and Relationships. By explicitly exposing these

relationships, maintainers can have access to a wider range of information'with various degrees of

granularity.

4.4.2 Information Display

In order to understand a piece of source code, a maintainer needs to acquire different levels of

nformation at various stages. Both the textual and graphical representations have distinct advantages

n depicting relationships at different levels. Textual representations are important because they

ecord exactly how different Elements are related to each other whereas the graphical representations

are a higher order abstraction of the Relationships described by the textual representations. In general,

the textual representations offer a lower level of insight into the programs and they provide the facts

about the programs. The graphical representations, on the other hand, offer a higher level overview.

In addition, they have the added advantage of being easily rearranged and manipulated. Higher orders

ol' abstraction can be obtained by reducing the complexity of the graphical representations. When

engaged in maintenance activities, maintainers may require an overview at one stage and get right

down to the statement level the next. The key to a useful software maintenance tool is to strike a

balance between the utilisation of visualisation and the traditional text-based static analysis tools.

I Textual Display

Text windows are used for the display of source code and inl'ormation regarding the Program

Elements and Program Relationships in this framework. Experiments have shown that most

69

maintainers are often drawn back to the source code in order to infer or to verify their queries even

when they have been presented with other alternative representations. More often than not, it requires

manually tracing a Program Element, or a Program Relationship, in pages and pages of program

listing. The following describes techniques which can be used to enhance the usefulness of textual

representations.

A Search Engine

With the advance of CASE tools, a database of the Program Elements used in a program can be built

with ease. Information for each Program Element is recorded and can be made available in the form

of a searchable database. The criteria for a search machine may include the following:

• case sensitive search

• pattern matching search

• search patterns which form part of an identifier

• indicating a percentage of occurrences at file level, function level and statement level

The set of criteria helps to locate related information quickly and effectively.

B Homogeneous Information

Apart from helping to link different Program Elements together, the database has another application.

Since it holds the locations and scope of all the Program Elements within a program, it can be used to

locate a Program Element efficiently. These components can be linked together by way of hypertext

links. In a hypertext system, all text documents are indexed and held together by hyperlinks.

Figure 4-5 shows how the hypertext links can be extended across a number of documents. The figure

shows two screen shots with two different listings. The fnst one is the file convert.c and the

second one is the file use -h. Both program files are part of a system named convert.

In the first diagram, it shows a function inain() in file convert.c together with the local variable

declarations. The data type UseData contains a hypertext link to its full definition in a File named

use.h. A click on UseData will invoke the hypertext system to show its full definition in the file

use.h as shown in the second diagram.

The hypertext links allow information to be accessed instantly, thus helping to save time and to cut

down the possibility of human error.

70

i ^' ^' -V -* ^ . | j
• J • h C Bookmarks' A L o c a t m j i v t p / / w v ^ d i a & i i t / ^ ^ ^ S ^ S ^ ^ ^ S / i ^ ^ ^ ^

Ln (argc, argvl
inc argc;
chac -acBvI] ;

TJseD«t« 'usedata - NULL;
CalPaCfi ' ca lda ta - MOLL;
Pciiraca •prhdaca - NOLL;
Stal'ata "scadata - HULL;
char • t l l e t y p e - NULL, • 3 t « _ l n _ £ i l e - NULL, -use_in_Cile - NULL,

• ca l . _ ln_ I i l e - NULL, • p r h _ i n _ f i l e - NULL, •idenc data - NULL,
•filename - HULL;

pcincr r\nConvetZcc is. Bc i t ten by David Meach, 1 9 9 5 . V E R S I C W) ;

/ • get passed parauececs */
fo r [count - 1: count < argc; count++) (

t f (3Ctc»p (" - f l t a" , ftr(rv[countl 1 - - 0) (
I f (count * 1 !- argc) (

count++;
s t a _ t n _ £ l l e - a r f lv tcount l ;

I
else display_i i is t rucclons (acgvCO]);

I
else I f (strcmp ("-use", « rov(counc) | " 01 (

I f (count + 1 ' - atgc) {
count++;
U3e_ln_l l le - argv{count] :

else display Ins tcuc t i i

)
(ac(jv[0]) :

else i£ (stccmp (" -ca l " , atgvtcount]) - - 0]
i f (count + 1 !- argc) {

c a l _ i n _ £ i l e - «rov[count]

R<)l**d -̂ HoRM . •-.So«U! Gutlc - Punt

tfdeflne

Bdciine HAX USE LINE 131

typedef set sedaco UseDaca;

s t r u c t usedaca (
char *neuiie;
char ' syirbol ;
i n t l i n e ;
inc group;
char type;
char code;
char ' f i l e ;
char -f i lename:
OaeData 'nextdaca, »bacJcd«ca;

UseData 'malloc_u3edata [J ;

usedata (char char "syBibol, i n t l i m group, char cype, char code, char " f i l e , char ' f i l e ;

vo id clear usedoca (UseData 'da ta) ;

UseData - b u i l d usedata (char " i n f i l e) ;

#endi£

Figure 4-5 Screen shots showing the use of a hypertext link across a set of hypertext
documents

7!

C Heterogeneous Information

A program listing can also be annotated so that the Program Elements are linked to different areas of

the graphical representations and vice versa. This is a natural extension of the hypertext links. The

type of information which are held together via hypertext links need not be homogenous. Indeed, the

essence of hypertext links are the ability to link heterogeneous information together.

Figure 4-6 shows how the hypertext links can be used to cross-reference information in various

representations. In the first diagram, it shows a call graph for the function ma inO in the file

s o r t l i n e . c . A click on the node 'readlines' in the call graph will invoke the browser to show the

definition of the function in a program listing as shown in the bottom diagram.

Both the textual and graphical representations can be made to contribute to the comprehension

process so that information can be attained in a more effective and cohesive manner.

I I Graphical Display

A natural way of representing relationships is in the form of graphs. The Program Relationships

discussed in Table I can be illustrated graphically with the respective pair of Program Elements. The

most frequently illustrated relationships are function calls and control flow. It is evident that there are

still a number of relations which can be illustrated graphically as shown in Table 1. For example, the

relationships such as file inclusion and type dependencies can be depicted graphically to give an

overview of a program.

Visualisation is often associated with the problem of graph layout. It is widely recognised that the

problem of finding a graph drawing algorithm which satisfies a set of criteria is NP-hard [Supo83,

DiBa84] as the criteria are incompatible in nature. Nonetheless, algorithms can still be found for use

in different situations but the problem may still persist as it is governed by physical constraints such '

as the size and resolution of a screen. For example, a graph cannot often be displayed in its entirety

and has to be squeezed into a window with vertical and horizontal scroll bars as visual aids. Only a

small portion of the entire graph can be studied at a time which makes it difficult to visualise the

whole structure. On the other hand, to display a graph in its entirety may not help to yield much

information about the underlying structure as it may be loo complex to handle. What is needed is a

systematic way of decomposing the graphical representations so that they become less complex and

more manageable. A number of strategies which can be applied to these graphical representations are

suggested in section 2.3.5 in Chapter Two. The.se include the use of layout, colour, graph simplication

and grapph slicing techniques.

72

CaD graph for mair

strew prlntf i

MS*:

i n t ceadllnesCllnepci:, traxlinesi
chat • l l n e p t r (1 ;
Inc neucllnea;

inc ien , nLlocs;
chat -p, llne[IllXLEN) ;

mines • 0;
while (d e n - ge t l ine (l i n e , RAXLEN)] > 0)

(
i f (n l ines >- M x l i n e a)

r e tu rn - I ;
• i f ((p - a l l o c d e n)) NULLJ

re turn - 1 ;
l l n e t l e n - l j - '\0-:
3tccpy(p, l i n e f
l t n e p t t (n l i n e s + t] - p;
)

r e tu rn n l ines ;

w r i t e l i n e s (l inepcr , nl ines)
char " l i n e p t r l l ;
i n t n l ines ;
I
uhUe (n l ines - - > 0)

p r l n c f (" 4 3 \ n " , • l i n e p t r + +) ;

Kit r . i in^s ;
I t Un i ingg - EeadUiigg I l i n -p t : - . h a X L I N E S i) > • 0)

ivtine/toittne.c/btrah

Figure 4-6 Screen shots showing the use of a hypertext link to cross-reference information

73

A Layout

Most of the graphical representations used in software maintenance tools are depicted in hierarchical

fashion. It is rooted in the culture of Computer Science practice. In the C programming language,

there is always only one starting point, i.e. the function main() , where all the rest of the program

follows. Figure 4-7 shows the call graph of the function niain() in a file named s o r t l i n e . c . A

complete listing can be found in Appendix A.

Apart from analysing the Relationship calls to extract information, the Relafionship folhwcan also be

a useful source of information. In most cases, the graphical representations of the control flow

relationship often involve a larger number of nodes and arcs than that of the function call graphical

representations, and hence the denser the graphical representations, the less readable these

representations will be. Figure 4-8 shows a graphical representation for the control flow relationship.

It shows the control flow graph for the function main() in the file s o r t l i n e . c . This

representation is a simplified version, which shows Program Elements such as the different types of

statement and the identifiers of the functions. Statements which are included in the graphical notation .

are: f o r Statement, i f e l s e Statement, w h i l e Statement and s w i t c h break Statement. The

arcs are labelled with the letters u, t and f , which represent the conditions needed in order to pass

the control from one Program Element to the another. The letter u stands for Unconditional, the letter

t stands for True and f for False. In addition, the positions of the function names in figure 4-8

indicate the sequence of function calls.

F U e Graph ftrc Connands

A/
uritelinesj jreadlines

jprintf} Isetllnej

jgetchar|

scrcpy

End Perfon* Uyout.

Figure 4-7 A call graph of the function main () in file s o r t l i n e . c

74

Iniain
J

jreadknes

.1

T

J
pr in t f

Figure 4-8 A simplified control flow graph of the function main () in the file
s o r t l i n e . c

Apart from the graphical representations for the Relationships calls and follow, there is another

Relationship which can be illustrated graphically. This is shown in Figure 4-9.

char *v[] Int left int right
(lineptr) (0) (nlines - 1)

(V) (left) (last -1)
(V) (last + 1) (right)

return

Figure 4-9 The function interface of the function g s o r t in the file s o r t l i n e . c

75

The above figure is a graphical representation for function interface. The representation attempts to

depict the following Relationships between the Program Elements:

• Function and Argument

• Function and the Type that is returned by it

• Argument and Type

• Argument and Variable

• Variable and Type

The rectangular boxes in the first row show the Type and names of the formal Arguments declared in

a Function. The names in brackets represents the names of Variables which are the actual

Arguments when the Function is called, the oval shape shows the names of the Function and the

rectangular box in the third row shows the Type that is returned by that Function.

B Colour

As mentioned in section 2.3.5 in Chapter Two, colour can also be used to idenfify a program's

hierarchical composifion. The primary goal of the hierarchical layout is to try to reveal the ancestral

relationship among nodes clearly and unambiguously. Perfect hierarchies rarely exist in programs

because of features such as recursion. It may be difficult to locate the connecting nodes from a node

under investigation and colour can be conveniently used to illustrate this connecfivity. Figure 4-10

shows how colour can be used to locate all the connecfing nodes from the node 'readlines'. The use of

colour can also be used to highlight library function calls, external function calls and nodes with a

high number of fan-in and fan-out.

X giaph-lool

File Graph fire Cotuwnds

[qsortTl juritel inesi ireiKllines

strcwpj j p r i n t f j Igetlinel

±,
jgetcharl

M Perfor. Laiiout.

Figure 4-10 Nodes which are connected to 'readlines' are highlighted using colour

76

C Graph Simplification

Information clustering is the process whereby information is abstracted by removing nodes from the

graphical representations. The information clustering principle can be used in a number of ways:

• to number arcs

• to isolate subgraphs

• to hide third party libraries

• to hide ANSI C standard libraries

• to hide external function calls to the application's libraries

Figures 4-11 illustrate how graph simplification can be applied to reduce the overall complexity of the

graphical representations. The top diagram shows a graph call of a function named b u i l d _ c a l l .
The bottom diagram shows the same graph call with the library funcfions removed. For the purpose of

comparison, the relative positions of the remaining nodes in the bottom diagram are unchanged.

D Graph Slicing

Graph slicing is another way of reducing complexity. Contrary to the technique of graph

siinplification, the attention is given to a small number of nodes and their connecting nodes. By

concealing the rest of the nodes present in the graphical representation, a small section of the

representation can be studied with more care. The slicing principle can be used in a number of ways:

• to invesfigate the characteristics of function calls

• to investigate the characteristics of library function calls

• to investigate the ripple effort after a modification

Figure 4-12 illustrate how graph slicing can be applied to extract a small portion of nodes from the

graphical representations. It shows the portion of call graph after applying the graph slicing technique

on the node 'build_sys_cair. The node 'build_sys_cair is selected from the top diagram in Figure 4-

I I .

This technique can be applied to any arbitrary nodes that are of interest to the maintainers. In

addition, the depth of the sliced graphical representations can be controlled by an attribute which

determines when the algorithm should terminate.

77

build.call

btilld_flle_c<nj jbuUdLsw».c*ll.COBai \ ^

clear.ddt*

i««iioc.ii»u| iMiioi.i»i-iii1

,,^>:^+t^^n/
:"ii»c| ; « f i » l !»-ii.IiiT»-l

File flrc CcMUnds

!««lloc.<l«u| Imllocrti-lmi

End Perfor* Layout.

Figure 4-11 The use of clustering technique on the call graph of the function b u i l d _ c a l l

78

build_definedi
X

SCJrch_fUenaiiW!{

new.dataj f t t rciyj

(Milocdati] iwiioci t r lnsl

&0 Perfor. U()«il.

Figure 4-12 The portion of call graph containing the node 'build_sys_cair and its
connecting nodes

4.5 Summary
From the overview of existing Program Comprehension theories discussed in Chapter Two, it is

evident that there is no real consensus on how maintainers understand systems. Often, maintainers

may employ various theories and use cues in either the source code or the system documentation as

guidance. It is argued that when maintainers are engaged in the maintenance tasks, they may exploit

the use of both the top down and the bottom up approaches when certain information comes to light

[Chan97, Leto86a, Mayr94, Mayr95]. However, the use of existing software maintenance tools alone

may not be sufficient to facilitate the comprehension process. Early work on building these

maintenance tools was based on the use of simple relations of function calls and control flow, such as

the work carried out by Foster [Fost87] and Fletton [Flet88]. It is unlikely that a single tool will be

found which has the capability to assist all activities which are encompassed by the various cognition

models. The development of a new Program Comprehension tool should take this into account and

provide the flexibility that the maintainers may need so they will not be hindered by the limitations of

the tools.

79

As programs grow in size and complexity, the gap between the types of information required by the

maintainers and the amount of information which can be provided by the maintenance tools widens. It

is shown in Table 1 that the Relationships calls and follows are not the only relationships present in a

program. These two Program Relationships receive a lot of attention because of their significance in

the way programming languages are used. A program consists of Program Elements which are

interlinked via a network of Relationships. By allowing the other ProgrjuTi Relationships to be brought

into the scene, maintainers will be able to get access to information in a wider spectrum and in a more

consistent way.

The Integrated Approach proposed in this chapter is based on a matrix of Program Relationships

between pairs of Program Elements. The Approach acknowledges that the process of comprehension

is opportunistic. Information about the programs can be gathered by expanding, refining and

analysing the Program Relationships. It is a flexible and it allows various comprehension theories and

models to be performed in a single environment. The Program Elements and Relationships are

supported by a set of context sensitive navigafional aids whereby information is presented using both

the textual and graphical representations.

80

C h a p t e r F i v e

I m p l e m e n t a t i o n

5.1 Introduction
Static analysis tools are useful for extracting information from programs. Maintainers are more likely

to be overloaded with information extracted from these analysis tools as programs grow in size. This

chapter describes how the various Program Comprehension theories and models can be realised by a

simple browsing tool PUI (Program C/nderstanding Implement), which allows maintainers to

understand the Relationships between Program Elements. The tool is based on a matrix of Program

Elements and Program Relationships discussed in Chapter Four which are designed to reflect the

multi-dimensional nature of programs.

5.2 The Prototype
The main objective of the prototype, Program i/nderstanding /mplement (PUI), is to facilitate the

process of comprehension and it is based on a matrix of Relationships between pairs of Program

Elements discussed in Chapter Four. The PUI tool offers support to the top-down, bottom-up and a

mixture of both approaches by having a number of implements that probe the relationships between

the elements.

Figure 5-1 shows an overview of the composition of PUI which is enclosed in the inner rectangle.

CCG [Kinl95], which stands for Combined C Graph, is a static analysis tool and Graph Tool

[Bodh95] is a graphical display tool. Both were developed in the Department of Computer Science in

Durham. Perl is a programming language available in the UNIX, Windows95 and Windows NT

operating systems. CGI, which stands for Common Gateway Interface, can take advantage of any

resource available to the server computer to generate output and it can also accept input from the user.

The main advantage of using CGI scripts is the ability to provide dynamic data and create dynamic

hypertext documents. HTML, which stands for HyperText Mark-up Language, is a standard set of

instructions which can be recognised by most of the existing hypertext browsing tools.

The input to CCG is the C programs. They may be either ANSI [ANSI84] or Kernighan and Ritchie

[Kern78, KernSS] C. The output of CCG is in a textual format. It is a CCG fact base which is a

representation of C programs. ,,.

C programs

Perl scripts

C G I scripts Graph Tool

H T M L

Hypertext Browser

Figure 5-1 An overview of PUI together with the supporting tools

Peri is a language available in the UNIX, Windows95 and Windows NT operating systems. It has a

rich reservoir of functions for handling textual information. The output from CCG is fed into the Perl

scripts where information about the Program Elements and Program Relationships are extracted.

Program Relationships which can be represented visually are then translated into a format which is

82

recognised by a graphical display tool named Graph Tool. The rest of the textual information relating

to the Program Elements and Program Relations is fed into the CGI scripts.

The CGI scripts represent the implements of the PUI tool. Depending on the selections of Program

Elements and Program Relationships, the CGI scripts deliver different types of information relating to

them as shown in Table 1. Information, whether it is in textual form jar in a graphical form, will be

translated into HTML which can be observed using hypertext browsing tools such as Netscape

Communicator' and Internet Explorer^.

Figure 5-2 shows a typical screen of the PUI tool. The hypertext browser used in this research is

Netscape Communicator.

- - -

— =̂ 1 —— 4.-wnte.c: File dependencies / * rZLEHUDE: wr i t e . c • /

iViDcludtt - « l t « . h -

iCinclude <8tdlo.h>

tfinclude "use.b"
iVinclude "gea.b-

Data • t i u l l d _ f l l e _ w r l t e (tisedata)
OseData *usedat«;

(
UseData *x.mmpjiiM%i

Data •data base - ITOLL, •d«ta_hcad - HULL, • t c ^ ^ d a t ;

ceBpuse - usedaca;
¥ h l l e (temp use NULL) (i

i f 7 ((t tonp U3e->type — ' V) it (te«p_u»«-:
((tcap u»«->type - - 'D ') (< (teipp vm»->i

it Tdat«_baae " HULL) (j
I f ((tein>_u»e->type — 'D ')

data_baae - ne«_(tat«>
else {

data base • new aatmV
I

System: convert
File: write, c
Selected: [Slet]

inmtmmt Mustiafe Mia: rnoioan ni«ra*i

Figure 5-2 The PUI tool

All of the Program Elements within the PUI tool are cross-referenced which ensures the maintainers

have easy and quick access to the information required.

Netscape Communicator is a registered trademark of Netscape Communications Corporation.
^ Internet Explorer is a registered trademark of Microsoft Corporation.

83

5.3 Tool Support
The format of the CCG fact base is not compatible with the input format for Graph Tool and thus

relevant information must be extracted from the fact base and converted into a suitable format. Figure

5-3 shows a valid input for Graph Tool. It is a file dependency graph for a file named w r i t e . c . A

small portion of the source code in the file w r i t e . c is shown in Figure 5-2.

(o b j e c t) 1 0 0 0 0 (w r i t e c (_ •) (_) o b j e c t
{ o b j e c t) 2 0 0 0 0 (w r i t e h (_) (_) o b j e c t
(l i n k) 1 2 0 0 0 0 0 0 (1) (d i r e c t e d 1 (L i n e S o l i d) l i n k
(o b j e c t) 3 0 0 0 0 (gen.h) _) (_) o b j e c t
(l i n k) 1 3 0 0 0 0 0 0 (1) d i r e c t e d i (L i n e S o l i d) l i n k
(o b j e c t) 4 0 0 0 0 (use.h) _) (_) o b j e c t
(l i n k) 1 i 0 0 0 0 0 0 (1) d i r e c t e d (L i n e S o l i d) l i n k
(o b j e c t) 5 0 0 0 0 (s t d i o . h) (_) (_) o b j e c t
(l i n k) 1 5 0 0 0 0 0 0 (1) d i r e c t e d (L i n e S o l i d) l i n k

Figure 5-3 Input to Graph Tool

When used as an input to Graph Tool, the file in Figure 5-3 will produce a graph as shown in Figure

5-4.

.X̂ 'giaph-lool •

File Graph ftrc Commands

urite.c

jw'ite.h fgen.hl luse.h\ jstdio.h[

End Perform Laaout.

Figure 5-4 A snapshot of Graph Tool depicting a graph using the input from Figure 5-3

84

The numbers on the arcs represent the number of times a Program Relationship is used. The rectangle

box on the bottom of the right hand side is a context map. The map is a miniature of the entire graph

and it indicates the portion of the graph which is shown in the main window. The graphical

representations shown in Figure 5-2 and Figure 5-4 are identical.

There are three main functions of the Perl scripts:

1 to extract the information relating to the relational aspects of the Program Elements

2 to translate this information into a forniat recognised by Graph Tool

3 to prepare the rest of the CCG fact base so that it is ready to be fed into the CGI scripts

Strategies on how to improve the layout of the graphical representations discussed in section 4.4.2 in

Chapter Four are realised in the second function.

The main objectives of the CGI scripts are:

1 to provide a mechanism to probe the relationships between the Program Elements

2 to produce a set of hypertext documents using HTML

The first objective of the CGI scripts is to provide a mechanism to probe and to retrieve information

relating to the Program Elements and relationships in a context sensitive manner. This is done in the

Form of the context sensitive navigational aids. Some of the context sensitive navigational aids are

shown in the bottom half of the Figure 5-2. A full discussion of these navigational aids is presented in

section 4.4.1 in Chapter Four. A demonstration of the use of these aids will be presented in Chapter

Six.

As discussed earlier, the Program Elements are held together by different Program Relationships. It is

difficult to try to find out the characteristics of a Program Element without stumbling on the related

Program Elements and Relationships. Maintainers should be provided with some degree of support so

that they are able to select and explore the many different Program Elements and Relationships when

required. For example, the CGI scripts can help to find out the name of the file which contains a data

type's declaration when first encountered or they can be used to find out a list of functions which use

that data type. These CGI scripts are similar to the queries made in a relational database. When given

the names of a pair of Program Elements, these scripts try to retrieve information relating from the

matrix shown in Table 1.

85

5.4 A Brief Introduction to PUI
A natural way of linking heterogeneous information together is to place the information into a

hypertext environment. Various information extracted from static analysis tools can be put together

using hypertext links. These may include textual and graphical representations, software metrics and

system documentation.

Figure 5-5 shows the start-up screen of the PUI tool. The tool indicates that there are three systems

currently available for analysis. A system can be selected by clicking on its name.

After selecting a system, PUI will proceed to a screen similar to Figure 5-6. The user is then asked to

select one of the following before entering into the main user area.

• Overview of the system

• User defined functions

• User defined types

The above selections represent different levels of abstraction. They are intended to be used as a guide

to direct the user's attention to different areas of the source code initially.

f i l l
Support for Program Understanding

System to analyse:

• SMtlinc

Last updated: 22nd April, 1997.
Pui-Shau Chan. C«ntr«/or Sojtwirt MainUnanct, Umv^raty of Durham.

Figure 5-5 The start-up screen of PUI

86

System selected: lines

To nnd out more about the system, select one of the toUmilnf viewpoints;

Overview o f the system

User defined types i

User defined functions ;l

Last upJaltd: 22x1 AprH 1997.
Pu-Stim Chait C4MnJi>r Sq/ttmrt Umaaiumc; Vi&nmly tif Durham.

Figure 5-6 Screen showing the viewpoints

Figure 5-7 shows a typical screen of the rest of the PUT tool.

(MM ;-i,i;,f,.- q-Mjiti- furiflii.n-. ijsoil • Nft

1 4̂
Rt»uao HMi^ SB«d(G'jKlfl

Function interface: qsort

V I J J - temp
char 'vQ int left Inl right
(l inipt i) (0) (f»l inei- l)

(V) (lefl) (last-1)
(v) (iasr»i) (rtght)

q i o r t is called from:

• sortKoe c, main:-qsortOmeptr.O, nlines-1);
• qsort c; titoTT- qsoitCv. left , l a r t -1) .

• q » o r t c ; q (c r t : - q « . r t C v , l a s t + l . r i ^ t) ;

q « o t t (v , l « e t , r l B ")
c h a r " v C J ;
i n t l e f t , r i g h t ; (

U c 1 , l u c ;
I f C e f t > - E i g h t)

t t c u t n ;
a « a p (v , l e C t , (l e f t + c t g h c) / 2] ;
i a s t - : e i t ;
f o r (i - l e f c + l ; i < - r i g h t : i + +)

I f (s t c c w p < v [t] , v (l e f t]) < 0)
swap (V , - f + l a s t , 1) ;

s ¥ o p (v , l e f t , l a s t] ;
q a o c t [V , I t f t , l a s t - l) j
q 8 o r t (v , l a s t + 1 , r i g h t) ;

I

Syitem.' lort l ine

File: q f o r t c

Selected: [q i o r t]

I M M M
iSuiei t l M l k IMtaCR I M t S M I M K M

•»« i M x <*Mla4a <«sm at
H...

e«iikaJi«w

Figure 5-7 A typical screen of the PUI tool

87

From Figure 5-7, it is shown that the screen is divided into four frames. Starting clockwise from the

top left hand corner, they are named:

• Information display

• Listing

• Control panel ..•.4.

• Status report

The frame 'Information display' resides in the top left hand corner. It shows information about the

Program Elements and Relationships. This may includes a mixture of graphical and textual

representations. The frame next to it is 'Listing'. It shows the source code listing of a program. The

frame at the bottom left hand corner is 'Status report'. It records the Program Elements selected in the

previous screen. The widest frame next to 'Status report' is 'Control panel'. It denotes the

navigational aids designed to help the users to navigate through the hypertext documents. These aids

will change according to the selected Program Elements and are based on the Relationships between

Program Elements shown in Table I .

Most of the graphical and textual representations shown in the frame 'Information display' contain

hypertext links to other parts of the tool. The program shown in the frame 'Listing' is annotated with

special HTML tags. A change of context in 'Information display' will cause the browser in 'Listing'

to point to a different area in the program listing. Each of the key words inside the control panel

represents an implement which retrieves information related to the Program Elements and the

Program Relationships.

Al l of the screens in the PUI tool have a title. The title of the screen shown in Figure 5-7 reads:

P U I : sortline: qsort.c: functions: qsort - Netscape

It shows the path which leads to the current focus. P U I is the name of the prototype, s o r t l i n e is

the name of the system selected, g s o r t . c is the name of the file selected, functions is the last

Program Element selected, q s o r t is the name of a function found in the file qsort.c, and finally,

Netscape is the name of the hypertext browser.

tives.

5.5 Summary
The PUI tool presents the maintainers with a wide range of information and alternative perspecti

This is achieved by providing a mechanism to retrieve information that range from a large and crude

representation to give an overview of the structure of a system, to a more fine and delicate

representation. The Program Elements and Relationships are interlinked and carefully managed in the

tool so information can be retrieved in a controlled and gradual manner."

The Program Relationships shown in Table 1 can be easily illustrated graphically with the respective

pair of Program Elements. It is widely acknowledged that graphical representations can help

maintainers to attain a better insight into the program structures. Textual information such as source

code and system documentation also plays a key role in helping maintainers to form mental models of

the software. Both the graphical and textual representations complement each other as the graphical

representations are best suited for communicating abstract ideas and the textual representation for

recording and presenting the facts behind the abstract ideas.

89

Chapter Six

Case Studies

6.1 Introduction
The Integrated Approach described in Chapter Four is realised in a prototype named PUI (Program

£/nderstanding /mplement) described in Chapter Five. This chapter demonstrates the principal use of

the prototype by way of Case Studies. The Case Studies are based on two systems named s o r t l i n e
and convert. Demonstrations of how both the top-down and the bottom-up approaches to Program

Comprehension can be utilised by using PUI will be presented in the following sections. The PUI tool

is a simple browsing tool which allows maintainers to recover information as they browse through the

various hypertext documents.

6.2 An Overview

6.2.1 A Generalisation of the Top-down and the Bottom-up

Approaches

The following sections describe two general structures for the top-down and the bottom-up

comprehension approaches.

I The Top-down Approach

In order to achieve a top-down comprehension, a maintainer needs have knowledge of the domain

which is modelled by a software system and the environment which the system interacts with.

Information such as the system architecture, file inclusion, function calls and data dependencies play

an important part in the top-down comprehension.

Starting from the top level, a maintainer examines the system architecture to obtain an overview of

the system that he is investigating.

90

The maintainer then examines the file inclusion relationship and identifies a set of files which may

require further investigation.

The maintainer examines the function definifions within those files and idenfifies a set of functions,

statements, data structures and/or variables which require investigation-^.

The maintainer formulates a set of hypotheses which are based on the type of maintenance activities

he is engaged in. The source code is examined in a depth-first manner. This involves tracing function

calls made within the set of functions, use of data structures and variables and the flow of control

between statements and statements. This process is repeated until all the hypotheses are verified.

11 The Bottom-up Approach

In order to achieve a bottom-up comprehension, a maintainer needs to have syntactic and semantic

knowledge of the programming language that a software system is written in.

Starting from the source code level, a maintainer browses, locates and identifies a set of variables,

data structures, statements, and/or functions which require investigation.

Related statements are then grouped together based on the maintainer's expectations. This helps the

identification of design decisions behind the source code. They are generally in the form of program

plans and beacons.

Information at the lower level is repeatedly abstracted into a higher level until the maintainer obtains

sufficient information to build a mental model of the source code.

6.2.2 Structures of the Case Studies

The structures of Case Study One and Case Study Two are organised as follows. The Case Studies

include two systems named s o r t l i n e and convert which are written for different purposes. They

are also different in size and complexity. Each Case Study will begin with a description of the

contents of the programs concerned. This will be followed by a description of a scenario and a list of

expected changes/results. Demonstrations of the use of the top-down and bottom-up approaches to

Program Comprehension will be presented together will a summary for each approach at the end.

6.3 Case Study One

6.3.1 Content of Programs
The system s o r t l i n e contains three program files:

• s o r t l i n e . c
• q s o r t . c
• q s o r t . h

The source code for the system s o r t l i n e is taken from the book The C Programming Language

[KergSB] from pages 108 to 110. It has been modified so that the original source code spans across

three different program files named above. A complete listing can be found in Appendix A. The

purpose of s o r t l i n e is to read in a number of lines of text (maximum of ten lines), and to sort and

print them out in alphabetical order.

6.3.2 Scenario Description

The purpose of this scenario is to modify the input to the system s o r t l i n e so that it accepts only

integer inputs. In addition, the modification should not change the order of the output, i.e., the

numbers should be printed out in ascending order as intended in the original system.

The system s o r t l i n e accepts character inputs at present. The source code contains a function

named a l l o c , which emulates the C library funcfion malloc. Al l the memory management and

allocation in s o r t l i n e is done via this function.

Demonstrafions of how the top-down and the bottom-up approaches to Program Comprehension can

be utilised using PUI will be presented in the following sections.

6.3.3 Expected Changes

The modification will involve changes in data structures and any t'uncfion definition which uses the

data types. A complete understanding of how the input data is stored and processed is essential before

the commencement of any modification. The following shows the list of changes which are necessary

for the modification.

I File s o r t l i n e . c

The following statements which deal with dynamic memory allocation will be deleted:

ttdefine MAXLEN 30 /* length of input l i n e * / [SI]
#define ALLOCSIZE 100 /* a v a i l a b l e space * / [S2]
s t a t i c char a l l o c b u f [ALLOCSIZE] ; [S3]

92

s t a t i c char * a l l o c p = a l l o c b u f ; :..[S4]

The function a l l o c will be removed [S5]

The global data structure will change lo:

i n t l i n e p t r [MAXLINES] ; [S6]

The parameter declaration of the function g e t l i n e will change to:

i n t g e t l i n e (s) [S7]

i n t * s ;

The definition of the function g e t l i n e will change to;

i n t g e t l i n e (s) [S8]

i n t * s;
{

i n t c;
c = s c a n f (" % d " , s) ;
r e t u r n c;

}

The parameter declaration of the function r e a d l i n e s will change to:

i n t r e a d l i n e s (l i n e p t r , maxlines) [S9]

i n t l i n e p t r [] ;
i n t maxlines;

The definition of the function r e a d l i n e s will change to:
i n t r e a d l i n e s (l i n e p t r , maxlines) [SIO]
i n t l i n e p t r [] ;
i n t maxlines;
{

i n t n l i n e s , l i n e ;
n l i n e s = 0;
whil e (g e t l i n e (& l i n e) > 0)
{

i f (n l i n e s >= maxlines)
r e t u r n -1;

l i n e p t r [n l i n e s + +] = l i n e ;
}
r e t u r n n l i n e s ;

}

The parameter declaration of the function w r i t e l i n e s will change to:

w r i t e l i n e s (l i n e p t r , n l i n e s) [Sll]
i n t l i n e p t r [] ;
i n t n l i n e s ;

93

The definition of the funcfion w r i t e l i n e s will change to:

w r i t e l i n e s (l i n e p t r , n l i n e s)
i n t l i n e p t r [] ;
i n t n l i n e s ;
{

w h i l e (n l i n e s - - > 0)
p r i n t f ("Ssd\n", *lineptr++) ;

}

II File qsort . h

The parameter declaration of the function swap will change to:

.[S12]

swap(v, i , j)
i n t v [] ;
i n t I , j ;

.[S13]

The parameter declaration of the function q s o r t will change to:

q s o r t (v, l e f t , r i g h t) [S14]
i n t V [] ;

i n t l e f t , r i g h t ;

III File qsort . c
The definition of the function swap will change to:

swap(v, i , j) [S15]
i n t v [] ;
i n t I , j ;
{

i n t temp;
temp = v [i] ;
v [i] = v [j] ;
v [j] = temp;

}

The definition of the function q s o r t will change to:

q s o r t (V, l e f t , r i g h t) [S16]
i n t V [] ;
i n t l e f t , r i g h t ;
{

i n t i , l a s t ;
i f (l e f t >= r i g h t)

r e t u r n ;
swap(v, l e f t , (l e f t + r i g h t) / 2) ;
l a s t = l e f t ;
f o r (i = l e f t + l ; i <= r i g h t ; i++)

i f (v [i] < v [l e f t])
swap (V, ++last, i) ;

swap(v, l e f t , l a s t) ;
q s o r t (V , l e f t , l a s t - 1) ;
q s o r t (v , l a s t + 1 , r i g h t) ;

}

94

6.3.4 Using a Top-down Approach

I Detailed Description

The following shows a demonstration on how PUI can help to carry out the modification by following

a top-down approach.

On starting up the PUI tool, a user will be greeted by a screen as shown in Figure 5-5. Select the

system s o r t l i n e by clicking on its name.

The PUI tool will bring the user to the screen similar to Figure 5-6. Select "Overview of the System"

to reveal the system architecture, together with a list of files which make up the system. The screen is

shown in Figure 6-1.

1
lortlinc.c. file dependencie*

This system consists of the following files:

inainO if defined In lortUne.c

sortSoec
qioitc
qsorth

tut
LaslupdaUd:22mlAprH 1997.

Figure 6-1 Screen showing the overview of the system s o r t l i n e

This helps to give the user an initial impression of the system as a whole. The number of files which

constitute a system denotes a simple complexity measure. The graphical representation in the frame

'Information display' on the left illustrates the file inclusion relationship.

95

The fitle of this screen is:

P U I : Viewpoints: overviews - Netscape

It reflects the selection of "Overview of the system".

The PUI tool has determined that funcfion main() is defined in the tile s o r t l i n e . c . A click on

"sortline.c" in the frame 'Listing' in Figure 6-1 brings the user to the screen shown in Figure 6-2.

. P U T snplline sorUinec hle» - Neltcape
£Ji' i:w J fifr--. j:orfrfwnjc«to<

! € ^ •
/ ' m o d i f i e d v e r s i o n o f l i n e s . c (K c R pgs l O B - 1 1 0) V sortline.c: He dependencies

j K l n c l u d e < s t d i o . h >
j K l n c l u d e o t r i n g . h>
((i n c l u d e " q s o t t . h

^ d e f i n e HAXLINE3 10 / ' m x i V i l n e s t o be s o r t e d V
A d e l i n e H m C N 30 / • l e n o t h o f I n p u t l i n e • /
d e f l n e ALLOCSIZE 100 / • a v a i l a b l e apace V

stdio.hi s t r lng .h

S t a t i c c u a r a l i o c b u f [U L O C S I Z E]
s t a t i c c h a r " a l l o c p - a l l o c b u l ;

I f (a l i o c b u f + JLLLOCSIZE - s i i o c p > - n l

a l l o c p + - n
r e t u r n a l i o c p - n j

e l s e
r e t u r n 0

System sortline

File; sortline.c

Selected [Qes]

fj"* S . « "^VL S'*^?'
UflUB h i w N w csnEtaNts sQfiaHas *Miio ^ k c M o

Figure 6-2 Screen showing information regarding the file s o r t l i n e . c

The title of this screen has changed to:

P U I : sortline: sortline.c: files - Netscape

It reflects the path which leads to the current hypertext document. The system selected is s o r t l i n e ,

the file selected is s o r t l i n e . c, and the Program Element selected is File.

The scroll bar in the frame 'Listing' allows the user to browse through the source code and examine

the structure of s o r t l i n e . c. Note that the bottom half of the screen in Figure 6-2 has changed. The

frame 'Status report' now shows the informafion on the selections so far: the system selected is

s o r t l i n e , the file selected is s o r t l i n e . c , and the Program Element selected is File. The frame

96

'Control panel' has also changed. It shows a list of implements that are available for the Program

Element File.

Return to Figure 6-1 by selecting the Back button in Netscape's own menu system in the second row.

Select "qsort.h" to reveal more information about this file. Return to Figure 6-1 by selecting the Back

button. Select "qsort.c" to reveal more information about this file. Rejourn to Figure 6-1 by selecting

the Back button. It is revealed that the files qsort.h and qsort.c contain the function

declarations and definitions of swap and qsort respectively. It is deduced that the data structure

related to the system input is declared in the file sortline.c.

Proceed to Figure 6-2 by selecting "sortline.c" in the frame 'Listing' shown in Figure 6-1. Retrieve

the global variable declarations by selecting the implement "global variables" in the frame 'Control

panel'. The screen is shown in Figure 6-3.

Global variables:

sutic char allocbuf[ALLOCSIZE];
static char *allocp = allocbu£
char *iineptr[MAXLINESI.

/ • M o d i l i e d v e c B l o n o f l i n e s . C (K C It PQS 106-110)

m i n c l u d c < s t d i o . h >
f inciudtf < s t r t n 0 . h >
flDClude " q s o t t . b "

i V d e t i n e RJLXLINES 10 / • m x i V i l n c * t o be s o r c e d • /
U d e t l n e HIXLEM 30 / • l e n g t h o f i n p u t l i n e * /
l U d e f i n e ALLOCSIIE 100 / • a v f t l l a b l c s p K c • /

s t a t i c c h a r a l l o c b u f t A L L O C S I Z Z] ;
s t f t t t c c h a r ' a l l o c p - a l l o c b u t ;

c h a r • l i n e p t c { H J U C L I H E S] ;

c h a r ' a l l o c (n)
i n c D;

12 (B l l o c b u f + JILLCCSIZE - a l l o c p > - n]

• l l o c p + - n ;
r e t u r n a l l o c p - a ;

e l s e
r e t u r n 0 ;

I n t o e t l i n e (s , l l n)

System: soitme
File lortline. c
Selected: [wanables]

r v i

It. riVV SSL "nfi'

Figure 6-3 Screen showing the global data declarations in the file sortline.c

An examination of the global variable declarations in the frame 'Information display' leads to the

deduction that:

char *lineptr[MAXLINES];

97

is the data structure that stores the input to the system s o r t l m e .

This data structure has to be changed in order to comply with the modification. It is changed to:

i n t lineptr[MAXLINES];

in the file s o r t l i n e . c . Instead of declaring an array of pointerAo strings, the declarafion is

changed to an array of integers. The change [S6] is complete.

Select the implement "more on function" in the frame 'Control panel' in Figure 6-3. It retrieves a list

of functions which are defined in the file s o r t l i n e . c. This is shown in Figure 6-4.

Note that the title of the screen has changed again. It reflects the change in the selection of the

Program Element. Select "main" in the frame 'Information display' in Figure 6-4 to retrieve more

information on the function. The result is shown in Figure 6-5. It shows the call graph of the function

m a i n () . The frame 'Listing' has positioned itself to reveal the definition of the function. The frame

'Control panel' in Figure 6-5 now reveals more implements.

The control flow graph of the function main() can be retrieved by selecting the implement "control

flow graph" in the frame 'Control panel' in Figure 6-5. The screen is shown in Figure 6-6.

From the control flow graph, the sequence of function calls in the function main() is revealed. The

first function call made within the function mainO is r e a d l i n e s . The next funcdon call is

dependent on the state of the system s o r t l i n e . The confinued sequence can be either q s o r t and

w r i t e l i n e s , or p r i n t f . Each of these functions may have some impact on the global variable

l i n e p t r and will be examined in turn.

A closer examinafion of these function definitions reveals that these functions communicate by

passing the variable l i n e p t r as an actual argument. The parameter declarations of each of these

functions must be modified accordingly as a result.

Select "readlines" in the graphical representation in Figure 6-6 to retrieve more information on the

function. Select the implement "parameters" in the 'Control panel'. The screen is shown in Figure 6-

7.

98

P U I M.iriir..- imilino.c: luncl iont • Nel tcape

Fimcdons defined In soittine.c

• alloc

• getlinc

• rcadlinej

• writelir.es

• main

System: sortlme

File: sortlme. c

Selected: [fimctions]

/ • m o d i f i e d v e r s i o n o f l i n e s . c (K c R pgs 106 -110)

f l a c l u d e < s t d l o . h >
m i n c l u d e < s t r l n o . h >
((I n c l u d e " q s o r t . h "

(d e f i n e HAXLINES 10 / • M X i V l l n e s t o be s o r t m l • /
f d a f l a e HAXLEN 30 / • l e n d i h o f I n p u t l i n e • /
d d e t l a e J L L L O C S I Z E 100 / • a v a i l a b l e v p a e e V

s t a t i c c h a r a l l o c b u f (A L L O C S I Z E] ;
s t a t i c c h a r ' a l l o c p • a l l o c b u C :

c h a r • l l n e p t r [H A X L I I I E S l ;

Cha t • a l l o c (n)
I n t n ;

I f (a l i o c b u f + ALLOCSIZE - a l l o e p > - n)

a l l o c p + - n;
r e t u r n a l l o c p - n ;

e l s e
r e t u r n 0 :

I n t g e t i l n e la, lim)

pHa tmrne an f.lab3l raw* IS

Figure 6-4 Screen showing the list of functions defined in the file sortlino.c

CaU graph for main

Jtrc*pi p r i n t f

System: sortline

File. sortHne.c

Selected: [main]

» c l t e l l n e 9 (l l n e p c r , n l l a e s)
c h a r • l l n e p t r [} ;
I n t n l l n e s ;
1

w h i l e (n l i n e s — > 0)
p r i n t f (" t s \ n " , • l l n e p t t + + l :

I n t n l i n e s :

i t ((n l i n e s - r e a d l l n e s d i n e p t r , H A I L WES) J > • 0)
(

q « o r t (l i n e p t r , 0 , n l l n e s - 1) ;
w r l t e l i n e s d l n e p t r . n l i n e s } ;
r e t u r n 0 ;

p r i n t f (" e r r o r j i n p u t t o o b i g t o s o r t X n ") ;
r e t u r n t ;

M X . . i M ^

1

Figure 6-5 Screen showing information regarding the function main ()

99

Coiurol flow graph for roatn

prlntf

w r i t e l l n « s (l l n e p t r , n X l n e a)
c h a r m n e p t r n ;
i n t n X l n e s ;
(

rtile (n l l n e s — > 0)
p r i n t f (- * 9 \ n - , • l l n e p t c + +) ;

i n t m i n e s ;

i f ((Q l i n e s • r e a d l i n e s d l n e p t r , U X L I N E S)) > - 0)

q s o c t (l i n e p t r , 0 , n l i n e s - 1) ;
v r i t e l l n e s (l i n e p t r , n l l n e s) ;
r e t u r n 0 ;

p r i n t t (" e r r o r : i n p u t t o o totg t o s o r t X a -) ;
r e t u r n i i

Syitem sortline

File: sortline, c

Selected: [man]

rui

h..li.i« . . M M E ^ U t a t»«

Mo. e"»h

Figure 6-6 Screen showing the control flow graph of the function main ()

H** - SoOKmarki

Function interface: readlincs

char I neplfQ Int maxltnet
.;:i-?Dlf) I I (MAXLINES)

readlmes is called from:

• softlinB':; mam:. readlincsOinepir. MAXLINES);

I n c r e a d l l n e s d l n e p c r , n a x l i n e s)
c h * E ' l i n e p t c l] ;
i n t m a x l i n e s ;
(

i n t l e n , m i n e s ;
c h a r t p , a n e [H A X L D J] :

n l i n e s - 0 ;

v h l l e l U e n - g e t l i n e [l i n e , HAXLEN)) > 0)
(
i f [n l i o e s > • n a x l i n e s)

r e c u r n - 1 ;
i f ((p - a l l o c d e n)) — HULL)

r e t u r n - 1 ;
l i n e [l « n - l] - • \ 0 ' ;
• t r c p y l p , l i n e) ;
i i n e p t r [n l i n e s + +] • p ;
)

r e t u r n n l i o c s ;

• r l t e l i n e s l l i n e p t c , n l l & e s)
c h a r • l i n e p t r t] ;
I n t n l i n a s ;

w h i l e (n i i n e s — > O)
p r i n t f (" < a \ n * , • l i n e p t

.1

System: lortline

File: sortline. c

Selected: [readlmes]
Menu •M«> ^Mi,it trm.

ral
i j . . .

Figure 6-7 Screen showing the function interface of the function readlines

100

The parameter declaration of l i n e p t r in the function r e a d l i n e s is changed to:

i n t l i n e p t r [] ;

in the file s o r t l i n e . c to reflect the change in the global data structure. The change [S9]

complete.
I S

Select the implement "control flow graph" in the 'Control panel' in Figure 6-7. It reveals that the

sequence of function calls made in the function r e a d l i n e s is g e t l i n e , a l l o c and strcpy. The

screen is shown in Figure 6-8. These functions will be examined in turn.

t«Uno:iortlne.c:tM(ftr«!i

Control flow graph for readhncs

return

relurn - I

System: sortline
File: lortline c
Selected [readlbei]

i n t t ;eadiinea(lineptc, naxllnes)
char • l l n e p c c [] :
inc naxlloes;
(

m t i«n, n l lD««j
char ' p , llne[KAXLEN];

nllnea - 0;
Bhlle [(i en • g e t l i n c (l i n e , lUXLCN)) > 0)

(
I f (mines >- M x l l n e s)

re turn - 1 ;
1£ ((P - a l l o c (l e n)) — NULL)

recurn - 1 ;
l l n e [l e n - l) - • \ 0 ' ;
« t c c p y (p , l l n e) ;
l lneptc[nl lnea++] - p:

re tu rn nl ines;

w t i t e l l n e s f l l n e p t r , nl ines]
char • l l n e p t r t] ;
I n t n l ines ;
(
• h l l e tnllBea— > 0)

pc ine t ("%»\n - , • l inepcr++) ;

tall tillol cmHIIhv Iteal

i

Figure 6-8 Screen showing the control flow graph of the function r e a d l Ines

Select "getline" to retrieve more information on the function in the graphical representation in Figure

6-8. It reveals that a library function call to getchar () is made. It is determined that the input to

s o r t l i n e is stored in the argument s in the function g e t l i n e . The argument l i m is used for

array bound check. To reflect the change in the global data structure, the type of the argument s is

changed to:

i n t * s ;

101

in the file s o r t l i n e . c . The argument l i i t i is now redundant and is eliminated as a result. The

change [S7] is complete.

The function definition of the function g e t l i n e is changed to:

i n t g e t l i n e (s)
i n t * s ;
{

i n t i ;
i = scanf ("?4d", s) ;
r e t u r n i ;

}

in the file s o r t l i n e . c. The change [S8] is complete.

The next function to be examined is a l l o c . As explained in section 6.3.2, a l l o c is a function

which emulates the C library function malloc. The system s o r t l i n e now accepts integer inputs

and therefore no dynamic memory allocation is required. The function a l l o c can be removed. The

change [S5] is complete.

Variables which are accessed by the function a l l o c are limited to the argument n, the identifier

ALLOCSIZE, and the global variables a l l o c b u f and a l l o c p . An examination of the identifier

and the global variables reveals they are not used by any other function. Thus, the argument n, the

identifier ALLOCSIZE, and the variables a l l o c b u f and a l l o c p can be removed from the file

s o r t l i n e . c. The changes [S3], [S4] and [S2] are complete.

The next function to be examined is strcpy. The function call to strcpy, which deals with string

manipulations, in the function r e a d l i n e s can be eliminated to reflect the change in the global data

structure.

A l l the functions that are referred to in the function r e a d l i n e s have been dealt with. The reference

to the identifier MAXLEN in the function r e a d l i n e s is eliminated to reflect the change in the

definition of the function g e t l i n e . A closer exarninafion reveals that the identifier MAXLEN is

accessed only by the function r e a d l i n e s . Thus, the following statement:

#define MAXLEN 3 0 /* length of input l i n e */

is removed from the file s o r t l i n e . c . The change [SI] is complete.

The function definition of r e a d l i n e s is changed to: -

i n t r e a d l i n e s (l i n e p t r , maxlines)
i n t l i n e p t r [] ;

102

i n t maxlines;
{

i n t n l i n e s , l i n e ;

n l i n e s = 0;
w h i l e { g e t l i n e (& l i n e) > 0)

{
i f (n l i n e s >= maxlines)

r e t u r n -1;
l i n e p t r [n l i n e s + +] = l i n e ;

}
r e t u r n n l i n e s ;

in the file s o r t l i n e . c. The change [SIO] is complete. The function q s o r t is to be examined next.

Select the implement "more on functions" in Figure 6-8 to retrieve a list of ftinctions which are
defined in the file s o r t l i n e . c . The screen is shown in Figure 6-4. Select "main" in the frame
'Information display' to retrieve the screen shown in Figure 6-5. Select the implement "control flow
graph" to retrieve the screen shown in Figure 6-6. Select "qsort" in the graphical representation in the
frame 'Information display' to retrieve more information on the function. The screen is shown in
Figure 6-9.

time qsott c lunction

CaU graph for qsort

c|sorc(v, l e £ t , r i gh t)
char 'vIJ ;
I n t l e f t , r i g h t ;
(

inc i , l a s t ;
it(i9tt > - right)

re turn ;
3wop(v, l e l t , l l e £ t + r l g h t) / 2) ;
loac - l e f t ;
tor (i - l e t t - H ; i <- r i g h t ;

I f (s t r c w p (v U] , v t i e f c j) < O)
swap (V , -t-flast, 1) ;

swapjv, i e f t , l as t) J
qsocclv, i B f c , l a a t - l) ;
ctaocziv, i M t + j , r i g h t) ;

)

System: sortline
File: qsort.c
SeJecled. [qsorX]

fUl

hi.ili«« n>ib>fe

raM
k , - eiiriKlaulK

Figure 6-9 Screen showing information regarding the function q s o r t

103

The title of this screen is:

P U I : sortline: qsort.c: functions: qsort - Netscape

It shows the path which leads to the current hypertext document. The system selected is s o r t l i n e ,
the file selected is gsort.c, and the Program Element selected is Function, and the name of the

function selected is qsort.

The function declaration and definition of the function q s o r t are found in the files qsort.h and

q s o r t . c respectively. Within the PUT tool, comprehension is not bounded by the physical locations

of the various Program Elements. The title of the hypertext document and the frame 'Status report'

are used to remind the user of the locations of the Program Elements last selected.

From the name of the function, it is conjectured that q s o r t performs some kind of sorting algorithm

on a data structure. After inspecting the definition, it is determined that qsort is used to perform a

quicksort algorithm on a data structure which at present is an array of pointers to strings.

The type of the formal argument v in the function q s o r t is found and changed to:

i n t V [] ;

in the file q s o r t .h to reflect the change in the global data structure. The change [SI4] is complete.

Select the implement "control flow graph" in Figure 6-9. It reveals that the sequence of function calls

made in the function qsort. The sequence is swap, strcmp and recursive calls to q s o r t itself

The function swap is to be examined next.

Select "swap" in the graphical representation to retrieve more information on the function. The result

is shown in Figure 6-10.

The PUI tool has determined that no function call is made in the function swap. The function qsort
passes its formal argument v to the function swap as its actual argument. The parameter definition of

V in the function swap is found and changed to:

i n t V [] ;

in the file q s o r t .h to reflect the change in the global data structure. The change [SI3] is complete.

104

The local variable temp in the function swap is defined to hold an array of characters. It is found

and changed to:

i n t temp;

in the file q s o r t . c to reflect the change in the global data structure. The change [S15] is complete.

m

No function call foiuid iii swap
swapiv, I , J)
char ;
l o t 1 , 3 ;
{
char ' t cap ;

- v l l j j
v [i j - v t j] ;
vli) - temp;

)

q s o r t (V , l e f t , r i g h t)
chat - v l] ;
l o t l e f t , r i g h t ;
(

i n t 1, l a s t ;
I f d a f t >- eight)

r e tu rn ;
svapfv, l e f t , { l e f t + r l g h t) / 2) :
las t - l e f t ;
f o r (1 - l e f t + l ; 1 < - e igh t ; 1++)

i f (s c r c » p (v (l j , v t l e f t)) < 0]
swap (V , +-flaat, i) ;

siiap(v, l e f t , l a s t) ;
qsorctv, l e f t , l a s t - 1) ;
q s o r t (V , l a s t - M , r i g h t) ;

System sortfaw
File: qsorl.c
Selecled [iwap]

rut

Hi)
M n .

Mont
tan n i l n l l t v eeHclantc

Figure 6-10 Screen showing information regarding the function swap

The library function strcmp is next to be examined. It is called within the function qsort. Select
"qsort" in the frame 'Listing' in Figure 6-10 to reveal more information on the function. The call to
strcmp is removed. The i f statement in the function q s o r t is changed from:

m

i f (s t r c m p (v [i] , v [l e f t]) < 0)
swap (V , ++last, i) ;

the file q s o r t .c. The change [S16] is complete.

to i f (v [i] < v [l e f t])
swap(v, ++last, i) ;

From the control flow graph of the function main(), it reveals that one of the sequence of function

calls is r e a d l i n e s , q s o r t and then w r i t e l i n e s . The fiinctions r e a d l i n e s and q s o r t have
been dealt with. The function w r i t e l i n e s is to be examined next.

105

Select the implement "called by..." in Figure 6-10 to reveal a list of functions which called the

function qsort. It reveals that this function is called by the functions mainO and qsort. Select

"main" to reveal more information on the function. The screen is shown in Figure 6-5. Select

"writelines" in the graphical representation to reveal more information on the function.

The type of the formal argument l i n e p t r in the function writeling^s is changed to:

i n t l i n e p t r [] ; .

in the file s o r t l i n e . c to reflect the change in the global data structure. The change [S l l] is

complete.

The function call to p r i n t f is changed to:

p r i n t f (" % d \ n " , * l i n e p t r + +) ;

in the file s o r t l i n e . c to reflect the change in the global data structure. The change [SI2] is

complete.

From the control flow graph of the function niain(), it reveals that the other sequence of function

calls in main() is r e a d l i n e s and p r i n t f . The last function to be examined is the function

p r i n t f . An examination of the function call reveals that no further change is needed.

The modification is complete. The input to the system s o r t l i n e has been changed from a

character-based input to an integer-based input. The output of the system s o r t l i n e produces a set

of numbers which are printed in ascending order. The revised program tiles can be found in Appendix

II Summary

The following is a summary of a list of tasks performed during the top-down comprehension.

Locate the source files for the system s o r t l i n e . Examine the architecture of the system

s o r t l i n e .

Examine the relationship file inclusion to get a feel of the complexity of the system.

Locate the file which has the definition of the function main () . The file is s o r t l i n e . c.

106

Examine the global variable and type declarations in the file s o r t l i n e . c . The global variable and

type declarations are changed [S6]

The functions r e a d l i n e s , qsort, w r i t e l i n e s and p r i n t f are called within the function

mainC).

The parameter declaration of the function r e a d l i n e s is found and changed in the file

s o r t l i n e . c [S9]

The functions g e t l i n e , a l l o c and s t r c p y are called within the'function r e a d l i n e s .

The paraincler declaration of the function g e t l i n e is found and changed in the file s o r t l i n e . c.

[S7]

The definition of the function g e t l i n e is changed in the file s o r t l i n e . c [S8]

The function a l l o c in the file s o r t l i n e . c is removed after the change in the global data

structure [S5]

The following statements are removed from the file s o r t l i n e . c as the variables are only used in

the function a l l o c .

s t a t i c char a l l o c b u f [ALLOCSIZE] ; [S3]
s t a t i c char * a l l o c p = a l l o c b u f ; [S4]
#define ALLOCSIZE 100 /* a v a i l a b l e space * / [S2]

A statement is removed from the file s o r t l i n e . c as the identifier MAXLEN is only used in the

function r e a d l i n e s [SI]

The function call to s t r c p y in the function r e a d l i n e s is removed. The definition of the function

r e a d l i n e s is changed in the file s o r t l i n e . c [SIO]

The parameter declaration of the function q s o r t is found and changed in the file q s o r t . h [S14]

The function qsort, swap and strcmp are called within the function qsort.

The parameter declarafion of the function swap is found and changed in the file qsort .h [SI 3]

The definition of the function swap is changed in the file q s o r t . c [SI 5]

107

The function call to strcmp in the function q s o r t is removed. The definition of the function

q s o r t is changed in the file q s o r t . c [S16]

The parameter declaration of the function w r i t e l i n e s is found and changed in the file

s o r t l i n e . c [S l l]

The definition of the function w r i t e l i n e s is changed in the file s o r t l i n e . c [SI2]

The final function call made in the function main() is to the function p r i n t f . No change is needed

for this.

The modification is complete.

108

6.3.5 Using a Bottom-up Approach
I Detailed Description

The following shows a demonstration on how PUI can help to carry out the modification by following

a bottom-up approach.

On starting up the PUI tool, a user will be greeted by a screen as shown in Figure 6-1. Select the

system s o r t l i n e by selecting its name.

The PUI tool will bring the user the screen similar to Figure 6-2. Select "User defined functions" to

reveal the list of funcUons defined in each of the program files. The screen is shown in Figure 6-11.

User deflned functions

Fiinctioiis defined hi sortiiitcc

• a]]oc

• gctlinc
• read]incs
• wntclir.es
• man

Fluictioiis dcfliied In qsort,c

swap

qsoil

f i l l
Lasliipdal«i.-22iid^iH 1997.
^^S:^.9.^Sl!!!^:tL?^°"'*°^"^'- Vimmtjio/Durham.

Figure 6-11 Screen showing the list of functions defined in each of the files in the system
s o r t l i n e

This helps to give the user an iniual impression of the system at the funcUon level. It is revealed that

the file s o r t l i n e . c has five funcfion definifions including the function mainO, and the file

q s o r t . c has two function definitions.

Select "sortline.c" in Figure 6-11 to retrieve more informafion on the file. This brings the user to the

screen shown in Figure 6-2. The files q s o r t . h and q s o r t . c can also be accessed in Figure 6-2.

109

An examination of the files s o r t l i n e . c , q s o r t . h and q s o r t . c reveals that the data structure

which holds the input to the system is declared in the file s o r t l i n e . c .

Select "sortline.c" in Figure 6-11 to retrieve more informafion on the file. Select the implement

"global variables" in the frame 'Control panel' to retrieve the globaUjfariable declarations in the file

s o r t l i n e . c . The screen is shown in Figure 6-3. An examination of the variable declarations leads

to the deduction that:

char *lineptr[MAXLINES];

is the data structure that stores the input to the system s o r t l i n e .

This data structure has to be changed in order to comply with the modification. It is changed to:

i n t lineptr[MAXLINES];

in the file s o r t l i n e . c . Instead of declaring an array of pointers to strings, the declaration is

changed to an array of integers. The change [S6] is complete.

Select "lineptr" in the frame 'Information display' shown in Figure 6-3 to retrieve more informafion

on the variable. The screen is shown in Figure 6-12.

Select the implement "as parameters..." in the frame 'Control panel' in Figure 6-12. The result is

shown in Figure 6-13. It reveals the type of the variable l i n e p t r , and it shows that it is used as an

actual argument in the functions r e a d l i n e s , q s o r t and w r i t e l i n e s .

The type of the argument l i n e p t r in the funcdons r e a d l i n e s and v j r i t e l i n e s is found and

changed to:

i n t l i n e p t r [] ;

in the file s o r t l i n e . c . The changes [S9] and [S l l] are complete.

110

t//he»himAytrtMct3pc/ftwiMbto

Global variable: Uncptr

Type: char **

Vanable a used in:

• mam
• readlincs
• qsort
• wntetncs

System: iortiine
File: sortibe.c
Selected: [lineptr]

/ ' wad l f i cd version of l ines .c (X c R pgs 108

Hinclude <stdio.b>
iVinclude <stclDg.b>
Hinclud* "qsort .b"

ide f tne (UXLINtS 10 / • mmx Mltnea to be sorted
iVdeflne MAXLCN 30 / * I c j i f f h of Input l i ne • /
f d e f l n e ALLOCSIZE 100 / • avai lable space • /

s t a t i c char alloc^uf[jU.LOCSIZE};
s t a t i c char "allocp - al locbuXj

char ' l i nep t t tMULINES) ;

chac • • i l o c (n)
I n t D;

I f (al locbuf + UbOCSIZE - a l iocp >- o)
(
a l locp +• n;
re turn a l locp - a;

else
re turn 0;

I n t ge t l lnc (s, lU i)

Pla

MOM in...

Figure 6-12 Screen showing information regarding the global variable l i n o p t r

• I ' lJ I •^orKinir M.,l!,n,i c h«,-i:U Net

Parameten llncptr

Type: char **

Nature Formal

Parameter is declared in:

• readlinss
• \whtclines

Nature: Actual

Parameter is used in:

readlinei
qsort
wntelines

VaHable

/ • iBodlfied version of l ines . c (K 4 R pgs 100-110) V

fflncluda <stdlo.h>
#lnclude <str ln0.h>
Ulnclude -gsor t .h"

(def ine HAZLDfCS 10 / * Max f l l n c s t o be sorted V
Udeflne HiZLEH 30 / • length of Input l i ne • /
iVdeflne XLLOCSIZE 100 / • avai lable space • /

s t a t i c char a l locbuf [JLLLOCSIZE];
s t a t i c char ' a l l ocp • a l locbuf ;

char •ItneptrtRAXLIKES];

Char •a l loc(n)
i n t n ;

i f (al locbuf • ALLOCSIIE - a l locp >- n)

a l l r c p +- n;
re turn alloep - n ;

i n t ge t l ine (s, lim)

System: jortlinc
File: sortline.c
Selected [lioeptr]

^vanMiiic...

Figure 6-13 Screen showing that the global variable l i n e p t r is used as an argument

111

The type of the argument in the function q s o r t is found and changed to:

i n t v [] ;

in the file q s o r t . h in order to reflect the change in the global data structure. The change [S14] is
complete.

•ji*.

The next step is to examine the way the input to the program is handled.

From the search engine, a list of funcfions which has made flinction calls to library funcfions dealing

with characters and strings are found. They are functions g e t l i n e , r e a d l i n e s and qsort.

Return to Figure 6-11 by selecting the implement "File menu" in the frame 'Control panel' in Figure

6-13. Select "getline" in Figure 6-11 to retrieve more information on the ftinction. The result is shown
in Figure 6-14.

^ ^ ^ ^ ^ ^ ^
• functioM' oellinc - Neljcape

Can gr^h for getJme

System: sortline
File: sorttne.c
Selected [getline]

r u i

I n t ge t l l ae (s.
cltar » [) ;
i n t l i » ;

(
i n t c / l ;
1 - 0;

v h i l e (— l l M > 0 cc (c-9eccbarO) EOT cc c
- c;

I f (c 'Sn')
8I1++J - c;

s [i j - '\0'}
cetucn I j

i n t readl lnesdiBsptE, M x i i n e s)
char • l l n e p t c [] ;
inc tnaxllnes;
(

I n t l en , n l ines ;
elwr 'P. I tBctXiXLOQ;

nl ines " 0;
v b l l e ((l * n - 0 e c i l t i c (l l n e , HAZLCH]) > 0)

i f (nl inca > - MXi ines)
retuxB -It

U M f a M WKlahte W « W M

« M mkefllaw e«MtaiitE

Figure 6-14 Screen showing information regarding the function g e t l i n e

From the call graph of the function g e t l i n e , it is confirmed that a library function call to

getchar {) is made. It is determined that the input to the system s o r t l i n e is stored in the

112

argument s. The argument l i m is used for array bound check. To reflect the change in the global

data structure, the type of argument s is changed to:

i n t * s ;

in the file s o r t l i n e . c . The system s o r t l i n e now accepts integer inputs and the argument l i m
is eliminated as a result. The change [S7] is complete.

The function definition of g e t l i n e is changed to:

i n t g e t l i n e (s)
i n t * s ;
{

i n t i ;
i = scanf("5sd", s) ;
r e t u r n i ;

>

in the file s o r t l i n e . c . The change [S8] is complete.

Select the implement "called by..." in the frame 'Control panel' in Figure 6-14 to retrieve a list of

functions which called the function g e t l i n e . The screen is shown in Figure 6-15.

(li?lline - N'̂ lscrtpir

B*ck - RriMd Hgme 5e«ct> Gudo P.

fiookmaiks Locatwr hiip:/yheirfWeflrt)in/ac»3peAiw^ iorllrM.c:getkne

getUnc Is called b3r:

• rca<flinss->Cmsortiiiic.c)
i n t oe t l ine (s, l i a)
char s [] ;
I n t llBu

1 - 0;

• h i l e (— ! ! • > 0 «« (e-getcharO) EW cc c
»I1++1 • c;

I f tc — '\n')
9H++] - c;

9(1] - 'XO' ;
re turn 1;

I

i n t r c a d l l n c s d l n c p t r , Hxlines)
char ' l l n e p t r t] ;
i n t maxlines;
1

i n t len, n l ines ;
char ' p , llne[HAZL£H];

nl ines - O;
while ((i c n - g e t l l n e d i n e , HAXLENU > 0)

{
i f m i l n c s >- Mxli&es)

re turn -it

3 I
Syit«m: sorlline
File: sorttine.c
Selected ((ellmel

t u t

a . hMfeirt HDct^ktr foliubkn

e i M e a u M l i v e«Ml»KtE

Ijeten

Figure 6-15 Screen showing the list of functions which called the function g e t l xne

113

It is revealed that g e t l i n e is called by the ftmcfion r e a d l i n e s . The fiincfion r e a d l i n e s is next

to be examined.

Select "readlines" in the frame 'Information display' in Figure 6-15 to retrieve more information on

the function. It is revealed that function calls to the funcfions getl^^ne, a l l o c and s t r c p y are

made.

The call to the function g e t l i n e is altered in the funcfion r e a d l i n e s in order to reflect the

change in its definition. The funcfion a l l o c is to be examined next.

As mentioned in section 6.3.2, a l l o c is a funcfion which emulates the system funcfion malice by

providing its own memory management and allocation. The system sortline now accepts integer

inputs and so the function a l l o c is redundant. Select the implement "called by..." in the frame

'Control panel' in Figure 6-15 to retrieve a list of funcfions which called the funcfion a l l o c . The

screen is shown in Figure 6-16. It is revealed that the funcfion a l l o c is only called by the funcfion

r e a d l i n e s . The function a l l o c is removed from the file s o r t l i n e . c . The change [S5] is

complete.

» PU I : toMnK loilline c runclicnt" alloc • Neticape

alloc Is called by:

• readiines (in sorthie c)
char •alloc tn)

i f [allocbuf + JtLLOCSIZE - alloop >- n)

allocp +- n;
return allocp -

else
return 0:

inc getline Is. lua)
char s [] ;
mt l in ;

(
int c , i ;
1 - 0;

while (—liB > 0 «((c-getchard) !- EOT tt c 'Vn ')
s(l++] - c;

i f (c — ' \n ')
9[i++] - c;

s t l] - ' \ 0 ' ;

)

System* sortline
File: jonline.c
Selected, [alloc]

r i / i

h,mU„ e.ml».fc ,SoM«:

nan
jrafh lOKRUl

• M M

Figure 6-16 Screen showing the list of funcfions which called the funcfion a l l o c

114

Variables which are accessed in the function a l l o c are limited to the argument n, the identifier

ALLOCSIZE and the global variables a l l o c b u f and a l l o c p . An examinafion of the idenfifier and

variables reveals that they are not used by any other function. Thus, the argument n and the following

statements:

s t a t i c char allocbuf[ALLOCSIZE];
s t a t i c char * a l l o c p = a l l o c b u f ;

are be removed from the file s o r t l i n e . c . The changes [S3] and [S4] are complete.

The variable a l l o c b u f refers to an identifier ALLOCSIZE, which is only accessed by allocbuf.
The following statement:

#define ALLOCSIZE 100 /* a v a i l a b l e space */

is removed from the file s o r t l i n e . c. The change [S2] is complete.

Select "readlines" in the frame 'Information Listing' in Figure 6-16 to reveal more information on the

function. Select the implement "control flow graph" to retrieve the screen shown in Figure 6-8. It

reveals that a call to the library function s t r c p y is made in the funcfion r e a d l i n e s . The type of

the local variable l i n e in the function r e a d l i n e s is changed from:

char line[MAXLEN]; to i n t l i n e ;

in the file s o r t l i n e . c to reflect the change in the global data structure.

The identifier MAXLEN is not used by any other function and the following statement is removed:

#define MAXLEN 30 /* length of input l i n e */

in the file s o r t l i n e . c . The change [SI] is complete.

The definition of r e a d l i n e s is now changed to;

i n t r e a d l i n e s (l i n e p t r , maxlines)
i n t l i n e p t r [] ;
i n t maxlines;
{

i n t n l i n e s , l i n e ;

n l i n e s = 0;
w h i l e (g e t l i n e (& l i n e) > 0)

{
i f (n l i n e s >= maxlines)

r e t u r n -1;

115

l i n e p t r [nlines++] = l i r i e ;
}

r e t u r n n l i n e s ;
}

in the file s o r t l i n e . c . The change [SIO] is complete.

From the search engine, a list of functions which has made function calls to library funcfions dealing

with characters and strings are found. They are functions g e t l i n e , r e a d l i n e s and qsort. The

liinclion q s o r t is to be examined next.

Select "qsort" in the I'ramc 'Listing' shown in Figure 6-8 to reveal more information on the function.

The result is shown in Figure 6-9.

An examination of the call graph of the funcfion qsort reveals that function calls to the functions

swap, strcitip and recursive calls to q s o r t itself are made. The function swap will be examined

next.

The function q s o r t passes its formal argument v to the function swap as its actual argument. The

argument definition of v in the funcfion swap is found and changed to:

i n t V [] ;

in the file q s o r t .h. The change [S13] is complete.

The local variable temp in the function swap is defined to hold an array of characters. It is changed

to:

i n t temp;

in the file q s o r t .h to reflect the change in the global data structure. The change [S15] is complete.

The library function call to the function strcmp in the function q s o r t is removed. The i f
statement in the function q s o r t is changed to:

i f (v [i] < v [l e f t])

in the file qsort.c. The change [SI6] is complete.

Select the implement "call by..." shown in Figure 6-9 to retrieve a list of function which called the

funcfion qsort. The result is shown in Figure 6-17. It reveals that q s o r t is called by the funcfion

main() and is recursively called by itself.

!16

qsort is called by:

• mam -> (jn sorUinc.c)

• qjort -> (in qsort c) x 2

c h a r • v t) ;
i n t
(
c h a r ' c e i q } ;
t e n * - v (l l ;
v t H - v [J] ;
v [3] - t e n p ;

q « o t c (v , l u t t , r t g h t)
c h a r " v t l ;
i n t l e f t , r i g h t ;
(

i n c I . last:
I f (l e f t > - r i g h t)

r e t u r n ;
s « a p (v , l e f t , (l e £ t - f r l a b t) / 2) ;
l a a t - l e f t ;
f o r (l " l « f t + l ; 1 < - r i g h t ;

I f (9 t r c a i » (v [l] , v [l < f t]) < 0)
smmp (V , '*-«>lMC, 1) ;

s w a p f v , l e f t , l a s t) ;
q a o r t t v , l e f t , l a » t - l) ;
q a o r c t v , l a « c + l , r i g h t } ;

)

System: tortliae

File: qsortc

Selected: [qsort]

r i / i

a . h m t b i i c nmaiiE Ailloi

Mab. P * l i k , . . .
n n H l l t v

Figure 6-17 Screen showing the list of functions which called the function qsort

Select "main" in the frame 'Information display' in Figure 6-17 to retrieve the information on the

function. The screen is shown in Figure 6-5. From the call graph of the function mainO, it is

revealed that it has made direct function calls to the functions qsort, readlines, writelines
and printf. Ail the functions except the functions writelines and p r i n t f have been

examined. The function writelines is to be examined next.

Select "writelines" in the graphical representation in Figure 6-5 to reveal more information on the

function. The function writelines made one function call to printf. This function call is

changed to:

p r i n t f ("?sd\n", *lineptr++);

in the file s o r t l i n e . c in order to reflect the change in the global data structure. The change [S12]

is complete.

The function p r i n t f which is called by the function main() prints an error message. It has no

impact on the global data structure and is left unchanged.

117

The modification is complete. The input to the system s o r t l i n e has been changed from a

character-based input to an integer-based input. The output of the system s o r t l i n e produces a set

of numbers which are printed in ascending order. The revised program files can be found in Appendix

B.

II Summary * i

The following is a summary of a list of tasks performed during the bottom-up comprehension.

Examine the architecture of the system s o r t l i n e .

Examine file inclusion to get a feel of the complexity of the system.

Locate the file which has the definition of the function main () . The file is s o r t l i n e . c.

Examine the global variable and type declarations in the file s o r t l i n e . c . The global variable and

type declaration are changed [S6]

The global variable is used in the functions r e a d l i n e s , w r i t e l i n e s and qsort.

The parameter declaration of the function r e a d l i n e s is found and changed in the file

s o r t l i n e . c '. [S9]

The parameter declaration of the function w r i t e l i n e s is found and changed in the file

s o r t l i n e . c [SI 1]

The parameter declaration of the function qsort is found and changed in the file q s o r t . h [S14]

The functions g e t l i n e , r e a d l i n e s and qsort have made funcfioh calls to the library functions

which deal with characters and strings.

The parameter declaration of the function g e t l i n e is found and changed in the file s o r t l i n e . c .

[S7]

The definidon of the function g e t l i n e is changed in the file s o r t l i n e . c [S8]

The functions a l l o c and s t r c p y are called within the function r e a d l i n e s .

118

The functions a l l o c is removed from the file s o r t l i n e . c as it is no longer required after the

change in the global data structure [S5]

The following statements are removed from the file s o r t l i n e . c as the variables are only used in

the function a l l o c .

s t a t i c char a l l o c b u f [ALLOCSIZE] ; 1^. [S3]
s t a t i c char * a l l o c p = a l l o c b u f ; [S4]
#define ALLOCSIZE 100 /* a v a i l a b l e space * / [S2]

A statement is removed from the file s o r t l i n e . c as the identifier MAXLEN is only used in the

funcUon r e a d l i n e s [SI]

The function s t r c p y deals only with strings and therefore the function is removed. The definition of

the function r e a d l i n e s is changed in the file s o r t l i n e . c [SIO]

The functions qsort, swap and strcmp are called within the funcfion qsort.

The parameter declaration of the function swap is found and changed in the file q s o r t . h [SI 3]

The definition of the function swap is changed in the file q s o r t . c [S15]

The function strcmp deals only with strings and therefore the funcfion call is removed. The

definifion of the funcfion q s o r t is changed in the file q s o r t . c [SI 6]

The definition of the function w r i t e l i n e s is changed in the file s o r t l i n e , c [SI 2]

The final function call made in the function mainO is the function p r i n t f . No change is needed

for this function.

The modification is complete.

119

6.4 Case Study Two

6.4.1 Content of Programs
The system convert contains twenty five program files:

convert.c

c a l . c , c a l . h

c a l l . c, c a l l .h

ds . c, ds .h

gen.c, gen.h

mod. c, mod.h

param.c,param.h

prh.c, prh.h

read.c, read.h

send.c, send.h

s t a . c , s t a . h

use.c, use.h

w r i t e . c , w r i t e . h

The source code is developed by an in-house team from the System Application Integration Unit in

the Network Integration Centre, British Telecommunicadons. The system convert is part of an

existing software maintenance tool used within the department.

The purpose of this system is to convert data obtained from an analysis tool into a suitable format for

the input to a front-end user interface. This is a stand-alone system with specific input and output

formats.

6.4.2 Scenario Description

The purpose of this scenario is to find out the names and the format of the input data files to the

system convert.

6.4.3 Expected Results

By way of executing the system, it is found that four different data files are required as input to the

system convert. Figure 6-18 shows a default screen when no parameter is supplied to the system.

120

Converter v l . O f . W r i t t e n by David Heath, 1995.

Unusable number of parameters.
The option '-filename' must be given.
Usage : convert [options]

The [options] a r e :
- s t a < f i l e >
-use < f i l e >
- c a l < f i l e >
-prh < f i l e >
- i d e n t <system name>
-type <C or COBOL>
-filename <filename>

The < f i l e s > a r e Xray output f i l e s t o use to convert the Xray
output data to I n f o f l o w input f i l e s .

Figure 6-18 The default screen when no parameter is supplied to the system convert

The parameters-sta <f i l e > , - u s e <f i l e > , - c a l <f i l e > and-prh < f i l e > indicate that

system convert takes the respective files as its raw input. The keywords Xray and Infoflow are

also noted.

As this is a pure comprehension exercise, no modification is required. The following shows the

and the formats for each of the input files.
names

I File Format One

A default filename will be xray. STA.
. [CI]

Each line will have the following fomiat:

a t h i r t y - c h a r a c t e r s t r i n g .
a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g
a t w o - d i g i t i n t e g e r
a t w o - d i g i t i n t e g e r
a n i n e - c h a r a c t e r s t r i n g

•[C2]

II File Format Two

A default filename will be x r a y .USE.
•[C3]

Each line will have the following format:

a t h i r t y - c h a r a c t e r s t r i n g ,
a t h i r t y - c h a r a c t e r s t r i n g .[C4]

121

a s i x - d i g i t i n t e g e r
a f i v e - d i g i t i n t e g e r
a s i n g l e c h a r a c t e r
a s i n g l e c h a r a c t e r
a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g

III File Format Three

A default filename will be xray .CAL.
.[C5]

Each line will have the following format:

a t h i r t y - c h a r a c t e r s t r i n g .
a t h i r t y - c h a r a c t e r s t r i n g
a s i n g l e c h a r a c t e r
a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g
a s i x - d i g i t i n t e g e r
a t h r e e - d i g i t i n t e g e r
a t h i r t y - c h a r a c t e r s t r i n g
a f i v e - d i g i t i n t e g e r

• [C6]

IV File Format Four

A default filename will be xray.PRH. .[C7]

Each line will have the following format:

a t h i r t y - c h a r a c t e r s t r i n g .
a s i x - d i g i t i n t e g e r
a t h i r t y - c h a r a c t e r s t r i n g
a s i n g l e c h a r a c t e r
a t h i r t y - c h a r a c t e r s t r i n g

.[C8]

6.4.4 Using a Top-down Approach

I Detailed Description

The following shows a demonstration on how PUI can help to carry out the comprehension by

following a down-top approach.

On starting up the PUI tool, a user will be greeted by a screen as shown in Figure 6-1. Select the

system convert by selecting its name.

122

E m x

convert.c. File dependencies This system consists of the following files:

mainO is d«flned in convertc

• cofivertc
• calc
• caLh
• csn.c
• caQ.h
• ds.c
• ds.h
• geac
• genh

• mode
• mod.h
• piemLC
• param.h
• prfi.c
' prfi-h
• fead.c
• readh
• send-C

• scndh
• sta.c
• FU.h

f i l l
Last updated.- 22»d April, 1997.

^ i - g ' W Chan. Centre for Sojtvxirt Mauiunaact, Umveraly of Durham.

Figure 6-19 Screen showing the overview of the system convert

convert,c: File dependencies I n t m a i n (a r g c , a t g v)
i n t a r g c
cha r " a r g v l l ;

Useltaca *use(la ta - N O I L ;
C a l D a t a » c a l d a t B - ITOLL:
P r h D a t d » p c h d a t a - Htn .L ;
S t a D a t a * s t a d a t B - WSll.:
chac ' f i l e t T p e • NULL, • 8 t a _ l n _ f i l e - KOLL, -u)

• c a l _ i n _ f l l e - MOLL, ' p r h l n _ f l l e - HULL,
• f i l e n a m e - NULL;

p r l n c f ("XnConvec te i r i V c l t t a n b y D a v i d H e a t h , 19!

/ • g e t p a s s a d p a r a m e t e r s • /
f o r (c o u n t - 1 ; c o u n t < a c g c ; c o u n t + +) (

I f (scrcanp (" - s t a " , a r a v (c o u n t]) 0) (
I f (c o u n t + 1 ^- a r g c) {

c o u n t + + ;
» t a _ l n _ f i l e - a r g v [e o i u e] ;

)
e l s e d i a p l a y i M t t u c t t o n s (a r g v [0)] f ;

5
0) i e l s e i f (s t r c M p (" - u s * * , a r g v [c o u n e j)

i f (c o u n t + 1 ! - a r g c) (
c o u n t - M - j

System convert
File: convert, c
Selected: [ffles]

pns on
• M m X M l i f e l i n n

Figure 6-20 Screen showing the informadon regarding funcfion main ()

123

The PUI tool will bring the user to the screen similar to Figure 6-2. Select "Overview of the System"

to reveal the system architecture, together with a list of files which make up the system. The screen is

shown in Figure 6-19.

The first task of this comprehension is to find out the filenames of the input data files. The system has

determined that the funcfion main () is defined in the file convert . j j .

Select "convert.c" in the frame 'Lisfing' in Figure 6-19 to retrieve more informadon on the file. The

result is shown in Figure 6-20.

Select the implement "more on #define" in the frame 'Control panel' in Figure 6-20 to inspect the

#def i n e statements. The result is shown in Figure 6-21.

! • P U I : conveil: conveil c- deline - Nelscflpe

c o n v t r t . c h a s t i l e f o U o w d i l F # <) » r u i e s t a t e m e i v t s i n t m a i n i a c o c a c o v)
I n c a r g c
c h a r " a r o v f j ; • #d5fine VERSION V l Of

• #dc6ntSTA_INFILE-jtray,STA-
• «d5£neUSE_INriLEV«yUSE-
• *defineCAl._INnLE-iiray.CAL-
• #(le£i>t PRH_IOTILE •xray.PRH-
• #dtfine C A I i Fu.OOTFILE TUNC.CALL.DA-T
• ikie&it C A I X _ K OUTFILE • n L E . C A I X . D A ' T
• *de6ne DS_Fu_OUTFILE T U N C D S . D A r
• #defce DS_Fi OOTFttE 'FILE DS D A T
• #defintIDEN Fu.OOTTILE T U N C I D E N T D A r
• #<Je5nt IDEN_FLOOTTn£ T I L E _ I D E N T , D A r
• #de6ne MOD Fu_ODTFILE T U N C . M O D . D A r
• #deSne MOD_F. OOTHLE T l L E . M O D D A r
• #defintPARAM_Fu_0OTnLE-FT3NC P A R A M D A F
• #de6ne PAItAM.E OOTriLE T I L E . P A R A M . D A r
• #defincREAD_Fu_ODTFILETUNC_READ.DAr
• #de6iie READ Fi_OUTFILE T I L E _ R E A D . D A r
• #de£nc SEND Fu OUTFILE T O N C SEND D A P
• #defae SEND_Fi O U T F M TILE^SEND D A P
. idefint WRITE_Fu OUTFILE "FUNC WIUTE.DAr
. *dt6ne WRITE Fi OUTFILE T I L E W T T E D A r
• #de6ne IDENT.Fi O U T F M T H E I D E N T D A r
• #dt6iie IDENT_Fu_OUTFILE "FUNC I D E N T D A r

System: convert
File: convert c
Selected: (deSnel

i.i.vaDnr.a . u s e d a c a • NULL;
C a l D a t a " c a l d a t a - NULL;
P r h D a t a > p r h d a t a - NULL;
s r aUacB " a t a d a t a - NULL;
c h a r . f i l e t y p e •• NULL, • s t a _ l n _ * t l e - NULL, "us

• c « l _ i n _ f i i e - NOLL, " p r h ^ l n t i l e • HULL,
• f i l e n a m e - NULL;

i n c c o u n t ;

p r i n t e r C X n C o n v e r t e r %«. (r r l t c e n b y D a v i d Beach , 19j

/ • g e t pa s sed p a r a m e c e r s • /
l o c (c o u n t " I ; counc < a r g c ; 1C++) I

It (s c r c n v C - s c a " . a r 9 v [c o u n c]) " 0) { ;
I f (c o u n t + 1 f - a r g c) (

counc+.t-;
a t a _ l n _ f l l e - a r f f v t c o u n c] ;

) ~ ;
e l s e d l 8 p l a y _ i n s c r u c c l o n s (a r g v [0]) ; '

1 ;
e l s e i f (s t c c m p (" - u s e " , a r g v f c o u B t]) " 0) ;

I f (c o u n t + 1 ! - a r g c) (

nnmiii, j ^ M

Figure 6-21 Screen showing the #def in e statements in the file convert. c

The identifiers used in the #def in e statements are mostly self-explanatory. There are predominately

two groups of names which contain the phase INFILE and the phase OUTFTLE. The ones containing

the phase INHLE are:

#define STA_INFILE "xray.STA"
#define USE_INFILE "xray.USE"
#define CAL_INFILE "xray.CAL"

124

#define PRH_INFILE "xray.PRH"

These names correspond to the list of parameters supplied to the system as shown in Figure 6-18. It is

conjectured that these identifiers hold the default input filenames to the system.

An examination of the source code reveals that these identifiers are used in the function main().
Select the Back button in Netscape's own menu system in the second row to return to Figure 6-20.

Select the implement "local variables" in the frame 'Control panel' in Figure 6-20 to reveal the local

variables declarations in the funcfion main(). The screen is shown in Figure 6-22. It is conjectured

that the variables s t a _ i n _ f i l e , u s e _ i n _ f i l e , c a l _ i n _ f i l e and p r h _ i n _ f i l e are used to

hold the input filenames supplied in the command line.

The variable declarations in the function mainO show that each of the local variables mentioned

above is initialised to hold the value NULL.

The following statements show how information is extracted from the prompt supplied in the

command line.

i f (strcmp {"-sta", argv[count]) == 0) {
i f (count + 1 != argc) {

count++;
s t a _ i n _ f i l e = argv[count];

}
el s e display_instructions (argv[0]);

}
e l s e i f (strcmp ("-use", argv[count]) ==0) {

i f (count + 1 != argc) {
count++;
u s e _ i n _ f i l e = argv[count];

)
else display_instructions {argv[0]);

}
e l s e i f (strcmp ("-cal", argv[count]) == 0) {

i f (count + 1 != argc) {
count++;
c a l _ i n _ f i l e = argv[count];

}
el s e display_instructions (argv[0]);
}

el s e i f (strcmp ("-prh", argv[count]) == 0) {
i f (count + 1 != argc) {

count++;
p r h _ i n _ f i l e = argv[count];

}
e l s e display_instructions (argv[0]);

)

I f no filename has been supplied, each of the local variables is then assigned a default value as shown

in the following statements:

i f (s t a _ i n _ f i l e == NULL) s t a _ i n _ f i l e = STA_INFILE;
i f (u s e _ i n _ f i l e == NULL) u s e _ i n _ f i l e = USE_INFILE;

125

i f { c a l _ i n _ f i l e == NULL) c a l _ i n _ f i l e = CAL_INFILE;
i f (p r h _ i n _ f i l e == NULL) p r h _ i n _ f i l e = PRH_INFILE;

The default filenames for the four different files can be inferred from the #def ine statements above.

The default filenames for the input files are: xray.STA, xray.USE, xray.CAL, xray.PRH. The

results [CI] , [C3], [C5] and [C7] are confirmed.

Variables declared In main;

• UscData * uscdata = NULL;

• CaData*caidaU = NULL;

• PrhData * prhdaia = NULL;

• StaData * stadau = NULL;

• char " filctypc = NULL;

• char • Eta_in_ti]c = NULL;

• char * usc_m_ae = NULL;

• char * caljnjle = NULL.

• char • prh_in_filt = NULL.

• char • ident_<iata = NULL.

• char " ficrtam: = NULL.

• int count.

m t m a i n (a c g c , azgv)
int nigc;
c h a r ' a r o v l l ;

(

UaeDaCA - u s a d a c a - NULL:
C a l D a t a • e a l d a t a - KULL:
PchData • p r h d a C B - NOLL;
ScaData ' s c e d a t a - NOLL:

c h a r " f i i e t y p e - NULL, » s t a l n _ _ f H e - N U I L , • u s t _ . „
• • = » l _ i n _ « l l e • MULL, • p r h _ i i i t i l e - HULL, • I d e t t
• f l l e n a a e - NOLL;

I n t c o u n t ;

p c l n t f (• ' \ n C o n v e r t e i : %s

/ • o a t pa s sed p a r a a e t c r s • /
f o r (count - i ; counc < a c g c ; c o u n t + +) (

W r i t t e n b y D a v i d Heacb , 1 9 H ^

. t
it (s t r c w p (" - s e a " , a r g r v f c o u n t)) 0) { m

I f (c o u n t + 1 ! - a r g c) (i l
c o u a t + + ;
s t a _ l n _ f l l e - a r g v l c o u n t j ; ^

e l s e d i s p l a y _ l n a t c u c t l o n 3 l « (p r [O J) ; ^ !

e l s e I f (s t r c w p (- - u s e " , a r c f v [c o u n t J J 0]
I f (c o u n t + 1 ?- a c g c) (

System: convert
File convert.c
Selected, [mam)

ruois OH elaiial
eifctMa

Figure 6-22 Screen showing the local variable declarafions in the function main ()

The next task of the comprehension is to investigate the format of these data files. Each of the

variables s t a _ i n _ f i l e , u s e _ i n _ f i l e , c a l _ i n _ f i l e and p r h _ i n _ f l i e are to be examined

in turn and the variable s t a _ i n _ f i l e is the first one to be examined.

Select "sta_in_file" in the frame 'Information display' in Figure 6-22 to retrieve more information on

the variable. The result is shown in Figure 6-23.

126

i n t m a i n (a c g c , u r g v)
i n t a c g c ;
c h a r • a c a v r i

Variable: sta in file

Typz. char *

Variable is declared la

Variable is used in the function(s):

Systent convert

File: convert c

Selected [main]

f V t

OssData • u s a d a t a - KOLL;
C a l D a t a • e a l d a t a • HULL:
PchDaca • p r b d a c a - -MLL;
ScaOata « s c a d a t a - HULL;
c h a r - t l l t t y p e - KOLL, - B t a . t n ^ f l l e • MOLL, - u j

• c a l _ _ l n _ t l i » • NULL, *pth i n f l l i - HULL,
' t U e n a K - KOU; ~ '

i n t c o u n t ;

p t i n c f (" V n C o n v B c t t c ha. B r i t t e n b y B a v l d B c a t b , 19;

/ • g a t p a r a a d p a r a M t a r a • /
f o r (c o u n t - 1 ; c o u n t < a r g c ; eount-M^) (

i t (seccmp (" - a t n " , a c g v t e o u n t)) 0) (
it (c o u n t + X t - a r g e) {

e o u D t + + ;
• t « _ l n _ t l l e • a c o v f c o u a t] ; •

e x » c d l s p l a y . l w t r u c t l o n a (a r g v i O]) ;

• I M I t (n r c i v (- - « » « - , • c f f v c e e n c] } — O)
i t < c o o n t * I 1* migei (

Figure 6-23 Screen showing information regarding the variable s t a _ i n _ f i l e

Parvn«ten sta_In_nie

Type: char "

Nature Actual

Parameter u used in:

• buitd_CMdat3i

i n t n a m f a c g c , a r g v)
i n t B c g c ;
c h a r * a r g v (] ;

(
UaaData • u s a d a t a - HULL;
C a l D a t a ' c a l d a t a " NOLL;
P r h D a t a ' p r b d a t a - NULL;
S t a D a t a ' s t a d a t a - NOLL;

c h a r ' f l l e c y p e - HULL, • a t a _ l n _ m e • NULL, • «
• c « l _ l n _ t l l e - NULL, * p r h ~ l n t i l e - NOLL,
* t i l « n a a t t - NULL;

i n t c o u n t ;

p c i n t t (* \ t) C o n v e r t e e t > . V c l t t a n b y D a v i d B e a t b , 19!

/ • g a t p a s s a d p a r a n a t t r s * /
t o r (c o u n t • 1 ; c o u n t < a r g e i e o u n t + +] (

I t (s c r c m a (- - s t a - , a c g v [c o u B C) t » 0] (
i f (c o u n t + I < • a r g e) (

c o u n t 4 ^ ;
s t a _ l L _ f l i e - a r g v (c o u B t J ;

e l s e d l s p l a r _ i a s t c u c c i o n s (a r g v C O]) ; ;

01 e l s e I t (s t c c a p (" - u s e - , a c g v f c o u n t])
i t • » ! - a c g c) (

System: convert

FJe: convertc

Selected [main}
a .

Figure 6-24 Screen showing that the variable sta_in_f i l e is used as an argument

127

The PUT tool has determined that the variable s t a _ i n _ f i l e is of the type char *, and it is

declared and used only in the function mainO.

Select the implement "as parameters..." in the frame 'Control panel' in Figure 6-23 to retrieve a list of

functions which use this variable as the actual argument. The screen is shown in Figure 6-24.

It is revealed that s t a _ i n _ f i l e is used as an actual argument in a function named

build_staaata. Select "build_stadata" in the frame 'Information display' in Figure 6-24 to

retrieve more information on the function. The screen is shown in Figure 6-25.

Call graph for bui ld_sUdata

build tradala - Netscape

^
^ j t v l f o w l / M i

i p r m t f l

S t a D a t a n i u l l d ^ s t a d a t a (i n t i l e)
c h a r ' T n t i l e ;

(
riLE - f p ;
S t a D a t * • d a t a _ b a s « - MULL, " d a t a head - NULL, - t c a v i
i n t c o u n t , a n d , f i n , l e v e X , t y p e "
c h a r l e t t e r , record[RA2_STA_LIHC +NULLJ, • r e c o r d s , ;

I p - t o p e n (i n t i l e , - r -) ;
i t (M f p l) <

• r i t e _ e r r o r (- e r r o r o p e n i n g t l X e i n b u i l d s t ^
r e t u r n (HULL); ~ :

f i n - 0 ;
w h i l e (t i n — 0) (

c o u n t - 0 ;
e n d - 0 ;
w t a i l e (e n d ~ 0) (

t s c a n t (f p , - * c - . C l a t t e r) ;
i t ((c o u n t > - 0) «« (c o u n t < - HAX_!

r e c o r d (c o u n t l • l a t c a r ;
»
e l s e I f (c o u n t HAI_ 3TJI_LINI) {

c e c o r d (c o u a t] - NULL;
r e c o r d s - r e c o r d ;

System: convert
File: SU.C
Selected (b u i l d _ ! U d a n)

M i l . 1„, hiuaue eeacami If"

Figure 6-25 Screen showing informafion regarding the function build_stadata

From the call graph of the funcfion build_stadata, it is determined that library functions which

deal with file input and output are called within this funcfion. These library functions include fopen,
fscanf and fclose. An examinafion of the variable declarations in the function

build_stadata has found the following statement:

F I L E *fp;

This confirms that build_stadata indeed performs some operations on file input and output.

128

Select the implement "parameter" in the frame 'Control panel' in Figure 6-25 to retrieve more

information on the use of arguments in fanction b u i l d _ s t a d a t a . The screen is shown in Figure 6-

26.

HHHH
Function interface: build stadata

;^uild_stadata_J

return

build_sUdata is caDed from:

• conveit c:- maui; build_stadata (sta_m_filc);

S t a P a t A ' b u i l d s t a d a t a (I n f l l e)
c h a r ' I n f l l e ;

F I L E 'fp;
S t o D a t a • d a t a _ b a a e • NOLL, •daca_head - NOLL, ' t e a i p j
I n t c o u n t , e n d , f i n , l a v a i , t y p e ;
c h a r l e t t e r , r e c o r d [I U X _ S T J L _ L I N I N O L L] , * r c e o r d s ,

fp - f o p e n (I n f l l e , " r ") ;
i f (! (f p)) {

w r l t e _ e r r o r (" e r r o r o p e n i n g f i l e I n b u i l d a t i
r e t u r n (N O L L) ;

)

£la - 0 ;
v h l l e (f i n — 0) 1

c o u n t • 0 ;
end - 0 ;
• h l l e (end 0) {

f s c a n f (f p , - * c " , s l e t t e r) ;
I f ((c o u n t > - 0) < ((c o u n t < • H A X _ S T ^

r e c o r d C c o u n t] " l e t t e r :

e l s e i f (c o u n t — RJlX_STJl_LIire) (* |
r e c o r d [c o u n t] - HULL; ^
r e c o r d s - r e c o r d ;

System: convert

File: sta.c

Selecled [buJd.sudatal

M9IUI 8'*l>

Figure 6-26 Screen showing informafion regarding the use of argument in the function
b u i l d s t a d a t a

The variable s t a _ i n _ f i l e which holds the default filename xray.STA is used as the actual

argument in place of the formal argument i n f i l e in the function b u i l d _ s t a d a t a . The following

statement shows that the file being opened is the default file, unless another filename is supplied in

the command line.

fp = fopen (i n f i l e , " r ") ;

After opening a text file, the function b u i l d _ s t a d a t a is instructed to read in the text ft'om the file

on a character by character basis until it reaches the end of a line. The line of text is then stored in an

array. The following statements record these instrucfions.

w h i l e (end ==0) {
fs c a n f (fp, "%c", & l e t t e r) ;
i f ((count >= 0) && (count <

record[count] = l e t t e r ;
}
e l s e i f (count == MAX_STA_LINE) {

record[count] = NULL;

MAX_STA_LINE - 1)) {

129

records = record;
}

i f (l e t t e r == •\n') {
end = 1 ;
i f (count < MAX_STA_LINE) f i n = 1;

}
e l s e i f (f e o f (f p)) {

end = 1;
f i n = 1;

}

count++;

After finishing reading the text, a scries of function calls to the function s t r i p _ s t r i n g are made:

sysname = s t r i p _ s t r i n g (records, 0, 29);
filename = s t r i p _ s t r i n g (records, 30, 59);
name = s t r i p _ s t r i n g (records, 60, 89);
l e v e l = a t o i (s t r i p _ s t r i n g (records, 90, 9 1)) ;
type = a t o i (s t r i p _ s t r i n g (records, 91, 9 2)) ;
t o t a l = s t r i p _ s t r i n g (records, 92, 100);

The above instructions are repeated until the function b u i l d _ s t a d a t a reaches the end of the file.

Select "strip_string" in the frame 'Listing' in Figure 6-26 to retrieve more information on the

function. An examination of the function definition of s t r i p _ s t r i n g reveals that this function

dynamically allocates memory space for arrays. The following shows the signature of the function

s t r i p _ s t r i n g .

char * s t r i p _ s t r i n g (s t r i n g , s t a r t , end)
char * s t r i n g ;
i n t s t a r t ;
i n t end;

It is deduced that the numeric parameters used in the function calls to s t r i p _ s t r i n g in the

function b u i l d _ s t a d a t a are the positions of characters within an array. The purpose of

s t r i p _ s t r i n g is to extract characters within these positions and to create and copy those

characters into another array.

Return to Figure 6-26 by selecting the Back button in the second row of the menu system. Select the

implement "local variables" in the frame 'Control panel' in Figure 6-26 to reveal more information on

the local variables in the function b u i l d _ s t a d a t a . The screen is shown in Figure 6-27. The types

of the variables sysname, filename, name, l e v e l , type and t o t a l are noted.

130

Variables declared In bitild^stadata:

• F I L E ' f p .

• StaData " data_basc,

• StaDaU* data ..head.

• StaData • tcmp_data,

• int counl ;

• int end;

• mtfin;

• inl level;

• int type;

• char letter.

• char'record;

• char "records.

• char * sysname;

• char * filename;

• char •name;

• char ' total.

9 c « 0 a - . a • b u i l d _ 9 t a d a t a (i n t i l e)
c h a r • i n t l i e ;

F I L E • f p ; i 3 t . i . . t « •<i«t._B«ie - iroi.L, •a.t._ii. .d - mu., -tew^.^^
I n t c o u n t , • n d , tia, i c v a t , t ; p « :
chac l . t t . r , c*cocd[RAX_3TJL_LINE I f U L L] , • c s c o r d a , ^

£ p - l o p e n (I n C l l e , " r ") ; v^-
I f I ! d p i I { »

w r l t e _ e r c A a . (- e r r o r o p e n i n g f i l e I n b u l l d _ a c ^
r e t u r n [^^J l .L) ; ~ $ ^

)

f i n - 0 ;
v b t l t (f i n 0) (

c o u n t - 0 ;
• n d - n ;
w h i l e (e n d - • 0) (

I s c e n f (i p , " * c " , (l e t t e r) : ^
I t ((c o u n t > • 0) « (c o u n t < - HJU[_5Ti;

c e c o c d [c o u n t] - l e t t e r ;
)
e l s e it (c o u n t " H l X _ S T l _ L I i r e) (

r e c o r d [c o u n t] - H O U . ; > ^
r e c o r d s " r e c o r d : ^

Syrtem: convert

Fde: Ma c

Selected: [build sttdaU)

M M . <<"»•««

Figure 6-27 Screen showing the local variable declarations in the function
b u i l d _ s t a d a t a

The function b u i l d _ s t a d a t a has also made direct function calls to the user defined functions

new_stadata and w r i t e _ e r r o r . An examination of the function definitions reveals that they do

not interfere the input file in any way.

The comprehension process has concluded that the input file format for one of the data files is as

follows:

a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g
a t w o - d i g i t i n t e g e r
a t w o - d i g i t i n t e g e r
a n i n e - c h a r a c t e r s t r i n g

This file will have the default name xray. STA. Each line of the file has six fields, and the strings

and integers must be of the exact length specified. Spaces must be used to fill the gaps whenever a

string or an integer is shorter than that specified. The result [C2] is confirmed.

It has been deduced that the variables s t a _ i n _ f i l e , u s e _ i n _ f i l e , c a l _ i n _ f i l e and

p r h _ i n _ f i l e are used to hold the input filenames supplied in the command line. The variable

u s e _ i n _ f i l e is to be examined next.

131

The comprehension is repeated as in the case of the variable s t a _ i n _ f i l e .

The system has determined that the variable u s e _ i n _ f i l e is of the type char *. It is declared

and used in the function main(), and is used'as an actual argument in the function

build_usedata. ..,4.

From the call graph of build_usedata, it is determined that library functions which deal with file

input and output are called within this function. These include the functions fopen, fgets,
f s c a n f and f c l o s e . An examinafion of the variable declarafions in the funcfion

b u i l d _ u s e d a t a has found the following statement:

F I L E *fp;

This confirms that this function indeed performs some operafions on file input and output.

The variable u s e _ i n _ f i l e , which holds the default filename xray.USE, is used as the actual

argument in place of the formal parameter i n f i l e in the function build_usedata.

The structure of the function b u i l d _ u s e d a t a is very similar to the function b u i l d _ s t a d a t a .
After opening a text file, the function b u i l d _ u s e d a t a is instructed to read in the text on a line by

line basis, then to store the characters in an array. After finishing reading in the text, a series of

funcfion calls to the funcfion s t r i p _ s t r i n g are made:

name = s t r i p _ s t r i n g (records, 0, 29);
symbol = s t r i p _ s t r i n g (records, 30, 59);
l i n e = a t o i (s t r i p _ s t r i n g (records, 60, 6 5)) ;
group = a t o i (s t r i p _ s t r i n g (records, 65, 6 9)) ;
type = r e c o r d [6 9] ;
code = r e c o r d [7 0] ;
f i l e = s t r i p _ s t r i n g (records, 71, 100);
filename = s t r i p _ s t r i n g (records, 101, 130);

The above instructions are repeated until the funcfion b u i l d _ u s e d a t a reaches the end of the file.

The types of the variables name, symbol, l i n e , group, type, code, f i l e and filename are

noted.

The function b u i l d _ u s e d a t a has also made direct function calls to the user defined functions

new_usedata, removecr and w r i t e _ e r r o r . An examination of the function definitions reveals

that they do not interfere the input file in any way.

132

The comprehension process has concluded that the foiTnat for one of the input files is as follows:

a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g
a s i x - d i g i t i n t e g e r
a f i v e - d i g i t i n t e g e r
a s i n g l e c h a r a c t e r
a s i n g l e c h a r a c t e r
a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g

This file will have the default name xray.USE. Each line of the file has eight fields, and the strings

and integers must be of the exact length specified. Spaces must be used to fi l l the gaps whenever a

string or an integer is shorter than that specified. The result [C4] is confirmed.

Following similar steps outlined above, it is deduced that the format for the file with a default

filename xray. CAL is as follows:

a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g
a s i n g l e c h a r a c t e r
a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g
a s i x - d i g i t i n t e g e r
a t h r e e - d i g i t i n t e g e r
a t h i r t y - c h a r a c t e r s t r i n g
a f i v e - d i g i t i n t e g e r

Each line of the file has nine fields, and that the strings and integers must be of the exact length

specified. Spaces must be used to f i l l the gaps whenever a string or an integer is shorter than that

specified. The result [C6] is confirmed.

The format for the last input file with a default filename xray.PRH is as follows:

a t h i r t y - c h a r a c t e r s t r i n g
a s i x - d i g i t i n t e g e r
a t h i r t y - c h a r a c t e r s t r i n g
a s i n g l e c h a r a c t e r
a t h i r t y - c h a r a c t e r s t r i n g

Each line of the file has five fields, and the strings and integers must be of the exact length specified.

Spaces must be used to fill the gaps whenever a string or an integer is shorter than that specified. The

result [C8] is confirmed.

The investigation is complete. The formats for the four different files have been recovered and the

names for each of the input file have been idenfified.

133

II Summary

The following is a summary of a list of tasks performed during the top-down comprehension.

Locate the source files for the system convert. Examine the architecture of the system convert.

Examine file inclusion to get a feel of the complexity of the system.

Locate the file which has the definition of the function main () . The file is convert. c.

Examine the #def in e statements [CI , C3, C5, C7]

Examine the use of the variables s t a _ i n _ f i l e , u s e _ i n _ f i l e , c a l _ i n _ f i l e and

p r h _ i n _ f i l e . Each variable is examined in turn.

The variable s t a _ i n _ f i l e is used as an actual argument in the function b u i l d _ s t a d a t a . The

function declaration is found in the file s t a . h and the function definition is found in the file s t a . c.

A function call to function s t r i p _ s t r i n g which is responsible for extracting characters from a

source file is found in the function b u i l d _ s t a d a t a . The positions and the length of the characters

are noted [C2]

The variable u s e _ i n _ f i l e is used as an actual argument in the function build_usedata. The

function declaration is found in the file use.h and the function definition is found in the file use. c.

A function call to function s t r i p _ s t r i n g which is responsible for extracting characters from a

source file is found in the function build_usedata. The positions and the length of the characters

are noted [C4]

The variable c a l _ i n _ f i l e is used as an actual argument in the function b u i l d _ c a l d a t a . The

function declaration is found in the file c a l .h and the function definition is found in the file c a l . c.

A function call to function s t r i p _ s t r i n g which is responsible for extracting characters from a

source file is found in the function b u i l d _ c a l d a t a . The positions and the length of the characters

are noted [C6]

The variable p r h _ i n _ f i l e is used as an actual argument in the function build_prhdata. The

function declaration is found in the file prh.h and the function definition is found in the file prh.c.

134

A function call to function s t r i p _ s t r i n g which is responsible for extracting characters from a

source file is found in the function build_prhdata. The positions and the length of the characters

are noted [C8]

The invesfigation is complete.

135

6.4.5 Using a Bottom-up Approach

I Detailed Description

The following shows a demonstration on how PUI can help to carry out the comprehension by

following a bottom-up approach.

On starting up the PUI tool, a user will be greeted by a screen as shown in Figure 6-L Select the

system convert by selecting its name.

The PUI tool will take the user to the screen similar to Figure 6-2. Select "User defined functions" to

reveal the list of functions defined in each of the program files. The screen is shown in Figure 6-28.

User defined functions: J

Fiuictions dcfliied lii cttuvtrt.c

• biald^call
• build_ds
• build_mod
• buildj>aram
• build.read
• bui]d„scnd
• binJd^wntP
• biuJd̂ ident
• display _instructicins
• main

Functions defined bi cal.c

• malloc^caJdata
• new__caldata
• clear_caidat8
• bi3ild_ca]data

Last updated: 22nd April, 1997.
Pih-Shan ChoH. Cgfumjor Sojiware l^ntenanct, Vmvsr^ oj Durham.

Figure 6-28 Screen showing the list of functions defined in each of the files in the system
convert

This helps to give the user an initial impression of the system at the function level. It is revealed that

the function main () is defined in the file convert. c. The names of the rest of other user defined

functions are mostly self-explanatory.

From the result of a search, it is found that the library functions fopen and f c l o s e are called by the

functions b u i l d _ c a l d a t a , build_prhdata, b u i l d _ s t a d a t a and b u i l d _ u s e d a t a
respectively. The function b u i l d _ c a l d a t a is the first to be examined.

136

Select "build_caldata" in the screen shown in Figure 6-28. An examination of the local variables

declared in this function has found the following variable declaration:

F I L E *fp;

This confirms that this funcfion indeed performs some operations on fflfe input and output.

After opening a text file, the function b u i l d _ c a l d a t a is instructed to read the text in a character

by character basis until the end of a line, and to store the characters in an array. The following

statements record these instructions.

w h i l e (end ==0) {
f s c a n f (fp, "%c", & l e t t e r) ;

i f ((count >= 0) && (count <= MAX_CAL_LINE - 1)) {
record[count] = l e t t e r ;

}
e l s e i f (count == MAX_CAL_LINE) {

record[count] = NULL;
records = record;

>

e l s e i f (count > MAX_CAL_LINE) {
whil e (l e t t e r != ' \ n ') f s c a n f (fp, «%c", & l e t t e r) ;

}

i f (l e t t e r == '\n') {
end = 1;
i f (count < MAX_CAL_LINE) f i n = 1;
e l s e r ecords[count] = NULL;

}
e l s e i f (f e o f (f p)) {

end = 1;
f i n = 1;

}

count++;

After finishing reading the text, a series of function calls to the function s t r i p _ s t r i n g are made:

name = s t r i p _ s t r i n g (records, 0, 29);
s e c t i o n = s t r i p _ s t r i n g (records, 30, 59);
type = r e c o r d s [6 0] ;
f i l e = s t r i p _ s t r i n g (records, 61, 90);
sect_naine = s t r i p _ s t r i n g (r e c o r d s , 91, 120);
l i n e = a t o i (s t r i p _ s t r i n g (records, 121, 126)) ;
argument = a t o i (s t r i p _ s t r i n g (records, 126, 1 2 8)) ;
v a r i a b l e = s t r i p _ s t r i n g (records, 128, 157);
group = a t o i (s t r i p _ s t r i n g (records, 158, 162)) ;

The above instructions are repeated until the function b u i l d _ c a l d a t a reaches the end of the file.

An examinafion of the function definition of s t r i p _ s t r i n g reveals that this .funcfion dynamically

137

allocates memory space for arrays with variable lengths. The following shows the signature of the

function s t r i p _ s t r i n g .

char * s t r i p _ s t r i n g (s t r i n g , s t a r t , end)
char * s t r i n g ;
i n t s t a r t ;
i n t end;

It is deduced that the numeric arguments used in the function calls to s t r i p _ s t r i n g in the

function b u i l d _ c a l d a t a are the posifions of characters within an array. The purpose of

s t r i p _ s t r i n g is to extract characters within these posifions and to create and copy those

characters into another array.

Select the implement "local variables" in the frame 'Control panel' to reveal the local variables

declared in the function b u i l d _ c a l d a t a . The screen is shown in Figure 6-29.

c h a r • l i U i l .

Variables declared In biilld caldata:

• CalData • cal<iata_bass:
• CalData * cal!lila_htad.
• CalData * tcnip_cajdata:
• i n t f o u n r .

• int end.
• int en,
• in t l ins .

• int argument;
• int group;
' intrct^md;
• char letter;
• char • records.
• char * name;
• char • section.
• chartype;
• char'Be;
• char * scctjiame;
• char * variable,
• char "record;

F I L E - f p ;

C a l D a t a * c a l d a t a _ b a a e - m i L L , ' c a l d a t a head - KOLL, y
i n t c o u n t , end, t i n , l i n e , a r g i M B t , g r o u p , r c t_ lBdj | < i
chac l a t t e r , ' r e c o r d s ,

c h a r - a e c t i o n , t y p e , • f i l e , ' a e c t ^ n a M , ' v a r l B J a i e ;
chac r e c o r d (M l . X _ C J l L _ L I N C + l l J

I p - f o p e n (i n i l l e , " c ") ;
It (! (I P)) (%

w c i t e _ e c t o t (" e r r o r I n o p e n i n g f i l e '«<s ' in K\\
r e t u r n (NOLL) ;

" h i l e (l i n " 0) I

c o u n t " 0 ; ^
e n d - 0 ; >
H h l l e (end — 0] (i

tacmnt (f p , "%c", f l e e t e r) ; J
I f ((c o u n t > - 0) t s (CQuat < - EAXjCK

c e c o c d [c o u n t] - i e t t « r ; ~

e l s e i f (couac " aiI_CJLL_LII«) I
c e e o r d f c o u B t] - H D L L

System: convert
File. cal.c
Selected. [build_caldata]

FgneNoii caKol raHlKDfaw

• M M <(>il«4a i j O m

Figure 6-29 Screen showing the local variable declarafions in the function
b u i l d _ c a l d a t a

The types of the variables name, section, type, f i l e , sect_name, l i n e , argument,
v a r i a b l e and group are noted.

138

The function b u i l d _ c a l d a t a has also direct made function calls to the user defined functions

new_caldata and w r i t e _ e r r o r . An examination of the function definifions reveals that they do

not interfere the input file in any way.

The comprehension process has concluded that the input file format is as follows:

a
a
a
a
a
a
a
a
a

t h i r t y - c h a r a c t e r s t r i n g
t h i r t y - c h a r a c t e r s t r i n g
s i n g l e c h a r a c t e r
t h i r t y - c h a r a c t e r s t r i n g
t h i r t y - c h a r a c t e r s t r i n g
s i x - d i g i t i n t e g e r
t h r e e - d i g i t i n t e g e r
t h i r t y - c h a r a c t e r s t r i n g
f i v e - d i g i t i n t e g e r

The result [C6] is confirmed. The next task is to find out the name of this input file.

Function interface: build_caldata

char 'Infile

Duild caidats

Cal Data

build_ca]data 15 called from

• convert,o main; budd_caldata fcal_in_fi!e)

C a l D a t a » b u H d _ c a l (l a t « (l » i l l e)
chac ' I n f i l e ; (
F I L E ' f p ;
C a l D f t t a • c « l (l a t a _ b « a e - NVLL, • c « l d « C B _ h e a d - VVLl.
int c o u n c , e n d , t i n , l l n * , arguawBC, g r o u p , r « t _ l i i d : <
chac l e t t « r , " r s c o r d * , • ! » • « ;
chac ' a e c t i o n , t y p e , ' f i l e , • s e c t _ n a » « , ' v a c i a b l e ;
c h a r i : ecocd[HJLX_CJ lL_LINC+l l ;

f p - f o p e n (i n t l i e , " r ") ;
I f i U f P)) { »=•

w r i t e _ e r r o t (" e c r o r i n o p e n i n g f i l e ' * a ' I n t^i

w h i l e (f i n - - 0) (

c o u n t - 0 ;
e n d - 0 ;
w h i l e (e n d 0) (

f s c a n f (f p , "%c- , { l e t t e r) .
I f ((c o u n t > • 0) i t (count < - MAX

r e c o r d [c o u n t] - l e t t e r ;
)
e l s e I f (c o u n t — IUX_CJa,_LIire) (

E e c o E d [c o u n t J ~ - NULL;

System: convert
Flic: CiU-C
Selected: [buad^caldata]

coticraritr

Figure 6-30 Screen showing information regarding the use of argument in the function
b u i l d _ c a l d a t a

The following statement from the funcfion b u i l d _ c a l d a t a suggests that the name of the file being

opened is held in the variable i n f i l e .

fp = fopen (i n f i l e , " r ") ;

139

The variable i n f i l e is a formal parameter belonging to the function b u i l d _ c a l d a t a . Select the

implement "parameter" in the frame 'Control panel' to reveal more information. This is shown in

Figure 6-30.

It is revealed that the type of the argument i n f i l e is char *. The ,̂actual argument supplied to the

funcuon b u i l d _ c a l d a t a is the variable c a l _ i n _ f i l e , and the funcfion b u i l d _ c a l d a t a is

called by the funcfion main().

From Figure 6-18, it is deduced that the system convert uses - s t a <f i l e > , -use <file>, -

c a l <f i l e > and -prh <f i l e > as arguments, and each <f i l e > holds the name of an input file.

Select "main" in the frame 'Information display' in Figure 6-30 to retrieve more informafion on the

funcfion. From the function definition of main() , the following statements are observed:

i f (s t a _ i n _ f i l e == NULL) s t a _ i n _ f i l e = STA_INFILE
i f (u s e _ i n _ f i l e == NULL) u s e _ i n _ f i l e = USE_INFILE
i f (c a l _ i n _ f i l e == NULL) c a l _ i n _ f i l e = CAL_INFILE
i f (p r h _ i n _ f i l e == NULL) p r h _ : i n _ f i l e = PRH_INFILE

The identifiers STA_INFILE, USE_INFILE, CAL_INFILE and PRH_INFILE are defined in the

#def i n e statements at the beginning of the file convert. c.

Select the implement "more on #define" to retrieve a list of ttdefine statements in the file

convert.c. The screen is shown in Figure 6-21. The idenfifiers used in the ttdefine statements

are mostly self-explanatory. There are predominately two groups of names which contain the phase

INFILE and the phase OUTFILE. The ones containing the phase INFILE are:

ttdefine STA_INFILE "xray.STA"
ttdefine USE_INFILE "xray.USE"
ttdefine CAL_INFILE "xray.CAL"
ttdefine PRH_INFILE "xray.PRH"

The variable c a l _ i n _ f i l e , which holds the default filename xray.CAL can be overwritten when

a filename is supplied in the command line.

It is thus concluded that one of the input files will have the default name xray. CAL and the format

outlined above. Each line of the file has nine fields, and the strings and integers must be of the exact

length specified. Spaces must be used to fill the gaps whenever a string or an integer is shorter than

that specified. The result [C5] is confirmed.

140

From the result of a search on the library functions, it is found that the library functions fopen and

f c l o s e are called in the user defined functions b u i l d _ c a l d a t a , build_prhdata,
b u i l d _ s t a d a t a and b u i l d _ u s e d a t a respectively. The function b u i l d _ p r h d a t a is the next

to be examined.

The comprehension is repeated as in the case of the function build_e;aldata.

Select the implement "File menu" in Figure 6-21 to proceed to the screen as shown, in Figure 6-28.

Select "build_prhdata" in the frame 'Information display' to retrieve more information on the

function. An examination of the local variables declared in this function has found the following

statement:

F I L E *fp;

This confirms that this function indeed performs some operations on file input and output.

After opening a text file, the function b u i l d _ p r h d a t a is instructed to read in a string of characters

and then to store them in an array. The length of the string is dependent on the identifier

MAX_USE_LINE, which holds the value 131. This idenfifier is declared in the file use.h. The

following statement record these instructions.

f g e t s (record, MAX_USE_LINE + 1, fp)

After finishing reading in the text, a series of function calls to the function s t r i p _ s t r i n g are

made:

c a l l e r = s t r i p _ s t r i n g (ch, 0, 29);
l i n e = a t o i (s t r i p _ s t r i n g (ch, 30, 3 5)) ;
c a l l e d = s t r i p _ s t r i n g (ch, 35, 64);
type = c h [6 5] ;

f i l e = s t r i p _ s t r i n g (ch, 66, 95);

The types of the variables c a l l e r , l i n e , c a l l e d , type and f i l e are noted.

The above instructions are repeated until the function b u i l d _ p r h d a t a reaches the end of the file.

The function b u i l d _ p r h d a t a has also made direct function calls to the user defined functions

new_prhdata and w r i t e _ e r r o r . An examination of these function definitions reveals that they

do not interfere the input file in any way.

The comprehension process has concluded that the input file format is as follows:

a t h i r t y - c h a r a c t e r s t r i n g
a s i x - d i g i t i n t e g e r

141

a t h i r t y - c h a r a c t e r s t r i n g
a s i n g l e c h a r a c t e r
a t h i r t y - c h a r a c t e r s t r i n g

The result [C8] is confirmed. The next task is to find out the name of this input file.

The structure of the function b u i l d _ p r h d a t a is very similar to the structure of b u i l d _ c a l d a t a .
An examination of the actual argument of the funcfion b u i l d _ p r h d a t a has led to the variable

p r h _ i n _ f i l e . This variable is declared in the funcfion main () .

Further analysis has shown that the variable prh_.in_f i l e holds a default value xray.PRH. This

will be the default filename for the above file input format. The default filename can be overwritten if

a filename is supplied in the command line. Each line of this file has five fields, and the strings and

integers must be of the exact length specified. Spaces m.ust be provided to fill the gaps whenever a

string or an integer is shorter than that specified. The result [C7] is confirmed.

From the result of the search, it was found that the library funcfions fopen and f c l o s e are called

by the functions b u i l d _ c a l d a t a , build_prhdata, b u i l d _ s t a d a t a , build_usedata.
The remaining functions to be examined are the funcfions b u i l d _ s t a d a t a and

build_usedata.

Following similar steps outlined above, it is deduced that the format for the file with a default

filename xray. STA is as follows:

a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g
a t w o - d i g i t i n t e g e r
a t w o - d i g i t i n t e g e r
a t h i r t y - c h a r a c t e r s t r i n g

The default filename can be overwritten i f a filename is supplied in the command line. Each line of

this file has six fields, and the strings and integers must be of the exact length specified. Spaces must

be provided to fill the gaps whenever a string or an integer is shorter than that specified. The results

[C2] and [C1] are confirmed.

The format for the last input file with a default filename xray.USE is as follows:

a t h i r t y - c h a r a c t e r s t r i n g
a t h i r t y - c h a r a c t e r s t r i n g
a s i x - d i g i t i n t e g e r
a f i v e - d i g i t i n t e g e r
a s i n g l e c h a r a c t e r
a s i n g l e c h a r a c t e r
a t h i r t y - c h a r a c t e r s t r i n g

142

a t h i r t y - c h a r a c t e r s t r i n g

The default filename can be overwritten if a filename is supplied in the command line. Each line of

this file has eight fields, and the strings and integers must be of the exact length specified. Spaces

must be provided to fill the gaps whenever a string or an integer is shorter than that specified. The

results [C4] and [C3] are confirmed.

The comprehension is complete. The formats for the four different files have been recovered and the

names for each of the input file have been identified.

I I Summary

The following is a summary of a list of tasks performed during the bottom-up comprehension.

Locate the source files for the system convert. Examine the architecture of the system convert.
Examine file inclusion to get a feel of the complexity of the system.

The functions b u i l d _ c a l d a t a , build_prhdata, b u i l d _ s t a d a t a and b u i l d _ u s e d a t a

have made function calls to library functions which deals with file input and output. Each of the

functions is examined in turn.

The variable c a l _ i n _ f i l e is used as an actual argument in the function b u i l d _ c a l d a t a . The

function declaration is found in the file c a l .h and the function definition is found in the file c a l . c .

A function call to function s t r i p _ s t r i n g which is responsible for extracting characters from a

source file is found in the function b u i l d _ c a l d a t a . The positions and the length of the characters

are noted : [C6]

The variable c a l _ i n _ f i l e is dependent on C A L _ I N F I I i E which holds the value xray . C A L . This

s the default filename for the format found in [C6] [C5]

The variable p r h _ i n _ f i l e is used as an actual argument in the function build_prhdata. The

function declaration is found in the file prh.h and the function definition is found in the file prh. c.

A function call to function s t r i p _ s t r i n g which is responsible for extracting characters from a

.source file is found in the function build_prhdata. The positions and the length of the characters

are noted [C8]

143

The variable p r h _ i n _ f i l e is dependent on PRH_INFILE which holds the value xray.PRH. This

is the default filename for the fonnat found in [C8] [C7]

The variable s t a _ i n _ f i l e is used as an actual argument in the function b u i l d _ s t a d a t a . The

funcfion declarafion is found in the file s t a . h and the funcdon definifion is found in the file s t a . c.

A function call to function s t r i p _ s t r i n g which is responsible for extracting characters from a

source file is found in the function b u i l d _ s t a d a t a . The positions and the length of the characters

are noted : ..[C2]

The variable s t a _ i n _ f i l e is dependent on STA_INFILE which holds the value xray. STA. This

is the default filename for the format found in [C2] [CI]

The variable u s e _ i n _ f i l e is used as an actual argument in the funcfion build_usedata. The

funcfion declaration is found in the file use. h and the function definition is found in the file use. c.

A function call to function s t r i p _ s t r i n g which is responsible for extracting characters from a

source file is found in the function build_usedata. The positions and the length of the characters

are noted • [C4]

The variable u s e _ i n _ f i l e is dependent on USE_INFILE which holds the value xray.USE. This

is the default filename for the format found in [C4] [C3]

The investigation is complete.

6.5 Discussion
This chapter describes the feasibility of the Integrated Approach by way of Case Studies. The process

of comprehension has been conducted in both a top-down and a bottom-up fashion. The sections 6.3.3

and 6.4.3 contain two lists of tasks (goals) which have to be completed for each of the Case Studies.

The order of these tasks are determined by sequentially browsing through the source code.

The use of both of the approaches has been proven successful in completing the modifications and

investigation using the PUI tool.

144

In Case Study One, the sequence of the tasks completed under the top-down approach is: [S6, S9, S7,

S8, S5, S3, S4, S2, SI , SIO, S14, S13, S15, S16, S l l , S12]. The sequence of tasks completed under

the bottom-up approach is: [S6, S9, SI 1, S14, S7, S8, S5, S3, S4, S2, SI , SIO, S13, S15, S16, S12].

In Cast Study Two, the sequence of the tasks completed under the top-down approach is: [CI , C3, C5,

C7, C2, C4, C6, C8]. The sequence of tasks completed under the bottoip-up approach is: [C6, C5, C8,

C7,C2,C1,C4,C3].

The use of the prototype PUI has demonstrated that the Integrated Approach is flexible enough to

support comprehension in either direction. More importantly, it has also demonstrated that the user

can engage in the top-down and/or the bottom-up approaches at any stage during the comprehension

process.

145

Chapter Seven

Evaluation

7.1 Introduction
This chapter presents an evaluafion of the work undertaken. It is evaluated against the exisfing

Program Comprehension theories and models, the prototype implementation and the results of the

Case Studies. They are evaluated against a hierarchy of cognifive issues raised in Chapter Three. This

is followed by a discussion on the requirements for automafion.

7.2 Evaluation of the Integrated Approach

7.2,1 Theories of Program Comprehension Revisited

Each theory and model discussed in section 2.2 in Chcipter Two favours a different approach to

Program Comprehension, Pennington's theory is a bottom-up approach [Penn87] whereas Brooks's

approach is performed in a top-down fashion [Broo83]. On the other hand, von Mayrhauser and Vans

[Mayr94, Mayr95] and Letovsky [Leto86a] reason that maintainers use a mixture of both strategies

depending on the cue of the additional informafion. Others such as Soloway and Ehrlich [Solo84,

S0I086], Shneiderman and Mayer [Shne79] and Littman et al. [Litt86] advocate that Program

Comprehension is based on a knowledge base and it is a process of assimilafion. The message is clear:

there is no consensus on how maintainers understand programs and each of those theories can only

model certain aspects of the maintainers' behaviour during comprehension. The comprehension

strategies used by a maintainer are also highly dependent on both the types and the objecfives of the

maintenance activity he is engaged in.

Software engineering acfivifies are a cognifive skill and it is subjected to the limitafion of human

brains, i.e., we are only able to study/memorise a limited amount of information at a time. A common

approach to tackle this problem would be to decompose a large program systematically into 'chunks'

146

or the respective smaller counterparts. Shneiderman [Shne80] conjectures that the information

chunking process is used in understanding programs. His views are echoed by Burnstein and

Roberson, who believe that comprehension of a program begins by first processing the individual

statements and grouping them together into cohesive units called chunks which are components of a

mental model [Burn97].

Littman et al. propose two strategies which can be used in Program Comprehension: the systematic

strategy and the as-needed strategy [Litt86]. Both strategies arise primarily from different goals. The

former is used when the intention is to understand global program behaviour; the latter is used to

minimise the comprehension effort. For a large system which involves several hundred thousands of

lines of code, the as-needed strategy seems to be the only solution. However, as Littman et al. have

pointed out, employing the as-needed strategy alone rfiay not be sufficient. It only allows a weak

mental model to be constructed and it may lead the maintainer to an inaccurate comprehension

because he may not be aware of the interconnectiorss between particular software components. It is

therefore necessary to augment the as-needed strategy so that addifional information can be acquired.

Letovsky [Leto86a] argues that the comprehension process is a mixture of top-down and bottom-up

strategies. Maintainers may switch and exploit the two strategies when certain information becomes

available. Once the basic goals and functionalities have been recognised, the immediate

representations of the source code are later used asbasis for a more detailed study. A mental model

is then constructed to store these abstractions (goals and operations). Shneiderman [ShneSO] suggests

that programmers do not store 'raw information' (the syntactic knowledge) in a mental model but

rather, they will abstract the information and store it into an internal semanfic structure. This

knowledge can later be translated into different representations.

Soloway and Ehrlich [Solo84] believe that program plans play an important role in the

comprehension process. They detected that experts have strong expectations about what programs

should look like and these expectations would lead them to look for certain operations and structures

in the program. However, this process may be complicated by delocalised plans [Leto86b], where

statements within a plan are scattered throughout the whole of a program. Letovsky and Soloway

[Leto86b] believe that delocalised plans are more liable to misinterpretation and it is a fundamental

problem because maintainers have a tendency to make plausible but incorrect assumptions based on

local information.

Program plans are related to another branch of research: beacons. Brooks [Broo83] first introduced

the notion of beacons. Beacons are important in Brooks's theory because they form the mappings

between the hypotheses of the maintainers and the actual program text. They represent key features

which a maintainer may look for when he encounters information like the name of a program or the

147

name of a variable. Wiedenbeck [Wied86, Wied91] has extended Brooks's theory on beacons. She

refers to program plans as stereotyped program fragments. They represent features of a program

which strongly points to a function's funcfionality and such are the features that maintainers are

generally looking for.

Pennington [Penn87] argues that the comprehension process is predoj^iinantly performed in a bottom-

up process. When programmers are asked to study a piece of source code for the first time, it is

strongly suggested that the procedural (control flovv) relation dominates the programmers' mental

representation of the source code. The results suggest the importance of the text structure knowledge

in the comprehension process.

von Mayrhauser and Vans [Mayr94, Mayr95] express a similar view to Letovsky [Leto86a]. They

advocate that the comprehension process is performed using a mixture of top-down and bottom-up

approaches. The four major components in this metamodel are: the top-down model, situation model,

program model and a knowledge base. The authors argue that maintainers seldom perform

comprehension in a single direction, i.e. in either a pure top-down or bottom-up fashion. Any one of

the four submodels may become acfive at any time during the comprehension process. The choice of

the use of these submodels is largely dependent on the cues available to and the preferences of the

maintainers.

From the overview of these Program Comprehension theories, it is evident that there is no real

consensus on how maintainers understand software systems. Each theory and models discussed above

favours a different approach to Program Comprehension. These theories attempt to model certain

aspects of the maintainers' behaviour during comprehension. Chan [Chan97] and von Mayrhauser

and Vans [Mayr94, Mayr95] believe that the disparities in the comprehension strategies used are

largely dependent on the personal and circumstantial factors. Factors such as the level of technical

competence of the maintainers, the size and complexity of the piece of software, and the types and

goals of the maintenance acfivities can influence the process of comprehension.

Al l of these strategies embody a common characteristic: they seek to model a continuous and non

linear process within a set of parameters whereby knowledge is assimilated incrementally. Some have

expressed the concern that the sole use of any of the theories and models may be insufficient on a

larger scale. They may have to be augmented with other techniques when required.

7.2.2 Integrated Approach Revisited

More often than not, maintainers employ various strategies and use cues from either the source code

or the system documentation as guidance. It is argued that when maintainers are engaged in the

maintenance tasks, they are likely to exploit the use,of both the top-down and the bottom-up

148

approaches when new information is encountered [Chan97, Leto86a, Mayr94, Mayr95]. An approach

which is flexible enough to support the use of different comprehension strategies, as well as having

the capability to cope with the different behavioural patterns of the maintainers, will be more

applicable.

The Integrated Approach involves explicitly exposing the interrelationships between the many

Program Elements within the source code. It is extremely difficult to contemplate exactly what kind of

information a maintainer may need during the maintenance tasks. Instead of anticipating, planning

and providing the information that a maintainer may need, the attention is now focused on exposing

the Program Relationships between pairs of Program Elements. This approach is realised by first

identifying the interactions between the Program Elements and then setting up a framework to assist

the analysis of those Elements and Relationships involved.

The Integrated Approach does not impose any restrictions on how the process of comprehension

should be performed. On the contrary, a maintainer is free to explore the Program Elements and

Relationships that he chooses and hence enables the utilisation of different comprehension strategies

and models. As discussed in section 7.2.1, the use of a particular comprehension strategy alone may

be insufficient. This approach allows the essence of the different strategies to be captured and

performed in a single environment. Maintainers can exploit the use of various strategies throughout

the comprehension process as they examine the Program Elements and relationships. Under the

Integrated Approach, maintainers are encouraged to make use of the information available, rather

than being put in a position to ponder on how to chase for the elusive piece of information. They can

make use of the Program Elements and Relationships in order to expand or to refine their line of

investigation as they see fit. Relevant information about a particular Program Element is attained by

examining other related Elements and Relationships.

7.2.3 Cognitive Design Elements

The Integrated Approach to comprehension and results from the Case Studies are evaluated against a

hierarchy of cognitive design elements proposed by Storey et al. [Stor97a]. The framework is

discussed in Chapter Three. The following are the issues raised under the secfion Improve Program

Comprehension. This includes the cognitive design elements from El to E7.

I Enhance Bottom-up Comprehension

E l Indicate syntactic and semantic relations between software objects

Storey et al. suggest that the syntactic and semantic relationships are essential during a bottom-up

comprehension. The syntactical relationships between the program units are governed by the grammar

of a programming language. The analysis of the semantic relationships between the program units

would require data-flow or functional knowledge of a program.

149

The Program Elements described in Ciiapter Four represent the basic units that are present in a

program. Under the Integrated Approach, relationships such as control flow, function calls and data

dependencies have been identified so that maintainers can have easy access to the semantic

relationships. The table of Program Relationships is .'•jhown in Table 1 in section 4.3 in Chapter Four.

E2 Reduce the effect of delocalised plans

Program plans are program fragments which represent stereotypical action sequences in a program.

The recognition of plans may be complicated by delocalised plans, where statements within a plan are

scattered throughout the whole of a program. The technique of program slicing is often employed to

retrieve the program plans [Weis82, Weis84, Weis86].

The Integrated Approach does not support program slicing directly, and hence no program slice will

be produced. Relationships such as the declaration and the use of variables have been identified which

in turns offers limited program slicing power. The analysis of variable dependencies can be achieved

by examining these relationships. For example, Figure 6-12 shows the declaration of the variable

l i n e p t r and where it is used within a program and Figure 6-13 shows how the same variable is

used as an argument.

E3 Provide abstraction mechanisms

The Program Relationships between pairs of Program Elements represent various levels of abstraction

of the source code. For example, the relation imports between the Program Elements File and File is

of a higher level of abstraction than the relation follows between the Program Elements Statement

and Statement. Under the Integrated Approach, a lower level Program Relationship can be abstracted

into a higher level one progressively by selecting the appropriate Program Relationships. For example.

Figure 5-6 shows a screen offering a selection of three different levels of abstraction.

II Enhance Top-down Comprehension

E4 Support goal-directed, hypothesis-driven comprehension

Under the top-down approach, comprehension is conducted by systematically establishing a mapping

between the source code and the corresponding application domain. A maintainer begins with an

initial hypothesis about the functionality of a program which is generated from documentation or from

sources such as filenames.

Under the Integrated Approach, maintainers can verify their hypothesis by investigating the

interaction between the Program Elements and examining the Program Relationships using the

context sensitive navigational aids. For example, the. .ecognition of the default input filenames to the

150

system convert is driven by the hypothesis that the names of identifiers and variables declared in

the programs reflect their purposes,

The Integrated Approach, however, does not support the documentation of these hypothesis and the

linking of them to specific parts of the source code.

E5 Provide an adequate overview of the system architecture at various levels of abstraction

In order to understand a piece of source code, a maintainer needs to acquire different levels of

inforination about the source code at various stages. The Program Relationships shown in Table 1,

which can be found in section 4.3 in Chapter Four , encompass various levels of abstraction. These

Program Relationships can be organised systematically in the order of abstraction levels. Maintainers

are empowered with the capability to access information at different levels of abstraction during

comprehension under the Integrated Approach.

I l l Integrate Bottom-up and Top-down Approaches

E6 Support the construction of multiple mental models

Both the textual and graphical representations play an equally important role during comprehension.

Under the Integrated Approach, information r.garding the Program Elements and Program

Relationships are shown in both textual and graphical forms. The Program Relationships are

illustrated using graphical representations wherever possible. Al l of them are augmented with textual

information extracted by the static analysis tool. For example. Figure 6-1 shows a graphical

representations of the relationship imports between the Program Elements File and File in the frame

'Information display'. This information is reinforced in the frame 'Listing'.

E7 Cross-reference mental model

The Integrated Approach comprises several components: the Program Elements, the Program

Relationships, graphical and textual displays. These components are held together by the context

sensitive navigational aids, which link the corresponding graphical and textual representations for

each of the Program Elements and Program Relationships. A discussion on the navigational aids can

be found in section 4.4.1 in Chapter Four.

7.3 Evaluation of the Implementation
The Integrated Approach is realised in a prototype named PUT. In essence, it is a framework where

graphical and textual representations are brought together using the technique of cross-referencing,

and driven by the Relationships between Program Elements. The main objective of the

151

implementation is to demonstrate that pure top-down and bottom-up comprehension, and

combinations of both approaches can be supported and utilised in a single environment.

7.3.1 Using the Web as the Underlying Structure

Other components which are present in PUI include a static analyser, a database containing facts

about a program, a textual display tool and a graphical display tooL '̂These components are brought

together under a uniform user interface using World Wide Web technologies. Most of the web

browsers have the capability to display many different types of information including textual,

graphical, audio and visual information. In this case, the web browsers provide an ideal vehicle for the

realisation of the Integrated Approach. All of the information can now be captured in the same

environment which means that the notations, layout and representations are consistent throughout.

The idea of utilising the technologies of the World Wide Web is supported by Tilley and Smith

[Thiir95, Till97]. They believe that.the web is ai convenient infrastructure for Re-engineering. They

argue that it is logical to exploit a technology which is widely available, at low cost and can be

employed with little effort.

Web browsers such as Netscape Communicator and Internet Explorer are widely used and they

provide simple and easy to use graphical user interfaces. In addition, the browsers have the added

advantage of having a cross-platform interface which means that PUI can be used in a number of

platforms such as PC, Macintosh and UNIX workstations.

7.3.2 Cognitive Design Elements

The implementation and results from the Case Studies are evaluated against a hierarchy of cognitive

design elements proposed by Storey et al. [Stor97a]. The framework is discussed in Chapter Three.

The following is a list ol' issues raised under the section Reduce the mainlainer's cognitive overheads.

This includes the cognitive design elements from E8 to El5.

I Facilitate Navigation

E8 Provide directional navigation

In the prototype, textual and graphical representations are placed in a windowing interface equipped

with vertical and horizontal scroll bars. These representations are transformed into hypertext

documents which contain 'anchors' or hyperlinks. They are always shown as highlighted text or

coloured graphic designs. These hyperlinks act as the glue which holds the many hypertext documents

together. For example. Figure 6-19 shows an overview of the system convert. Both the coloured

nodes in the graphical representation in the frame 'Information display' on the left, and the list of

152

filenames in the frame 'Listing' on the right contain the hyperlinks to their corresponding

counterparts.

E9 Support arbitrary navigation

The Integrated Approach encourages the users to explore the programs by repeating the process of

selecting and examining the Program Elements and Program Relatjpnships. The context sensitive

navigational aids provide the mechanism which helps the users to achieve this goal. It is flexible and

it allows comprehension to be conducted in a way preferred by the maintainers. Users can switch

instantly from one model of comprehension and engage in another by using the navigational aids. A

discussion on the navigational aids can be found in section 4.4,1 in Chapter Four.

ElO Provide navigation between mental models

Under the Integrated Approach, the mental models of the maintainers are represented by a mixture of

textual and graphical displays. The graphical representations are annotated so that nodes in a graph

are linked to the corresponding piece of textual information such as the source code and output from a

static analysis tool. The source code is also annotated so that multiple instances of Program Elements

which are scattered throughout the software system can be located quickly and effectively.

II Provide Orientation Cues

E l l Indicate the maintainer's current focus

Disorientation is a common symptom as far as using the World Wide Web is concerned. The

prototype has a special provision in the form of Status Report, which serves the purpose of informing

the users of their current focus. It shows the name of the system that a user is analysing and the names

of the Program Elements currently selected.

For example, the frame 'Status report' shown in Figure 6-2 reads:

System: s o r t l i n e
F i l e : s o r t l i n e . c
S e l e c t e d : [f i l e s]

It shows that the system selected is named sortline, and the Program Element selected is the file

s o r t l i n e . c . The frame 'Status report' changes according to the choice of the selected Program

Elements. The frame 'Status report' shown in Figure 6-3 has changed to the following when another

Program Element Variable is selected:

System: s o r t l i n e
F i l e : s o r t l i n e . c
S e l e c t e d : [v a r i a b l e s]

153

E12 Display the path that led to the current focus

Special provision is also provided for displaying the path which leads to the current focus of the

maintainers. The path is displayed as the title of a hypertext document. The order of the sequence of

selections is recorded by the web browser which can be displayed at any time. In the hypertext browser

Netscape, this is achieved by selecting Go in the first row of tjie browser's menu system.

.>u.
E13 Indicate options for reaching new nodes

Programs are built from Progfam Elements which are held together via a network of Program

Relationships. It is this connectivity which the context sensitive navigational aids are based upon.

These aids have two purposes: to retrieve the relevant information relating to the selected Program

Elements and Relationships, and to provide the options for reaching other types of information by

presenting the user with a list of related Elements and Relationships. A discussion on the navigational

aids can be found in section 4.4.1 in Chapter Four.

I l l Reduce Disorientation

E14 Reduce additional effort for user-interface adjustment

Special consideration has been made during the design of the interface of the prototype to ensure

cognitive overheads are kept to a minimum. The notations, layout and formats of the graphical

representations and the navigational aids are consistent throughout the prototype. The hyperlinks are

always shown as highlighted text or coloured graphic designs.

E15 Provide effective presentation styles

The presentation and the relative positioning of the textual and graphical windows are consistent

throughout the prototype. This reduces the possibility of unpleasant surprises when retrieving

hypertext documents. Most of the hypertext documents within the prototype have a fixed format where

applicable, i.e., they are all divided into four different frames: Information display. Listing, Status

report and Control panel. A typical screen of the prototype is shown in Figure 5-7.

7.4 Requirements for Automation
The prototype described in Chapter Five is a realisation of the Integrated Approach outlined in

Chapter Four. The main objective of the Integrated Approach is to facilitate the process of

comprehension and it is based on a matrix of relations between pairs of Program Elements shown in

Table 1. The prototype consists of five parts:

• CCG, a stafic analysis tool

• Graph Tool, a graphical display application

154

• Perl scripts

• CGI scripts

• a set of hypertext (HTML) documents

Essentially, the output from CCG is fed into the Perl scripts where information about the Program

Elements and Program Relationships are extracted. Program Relation-ships which can be represented

visually are then translated into a format which is recognised by Graph Tool. The rest of the textual

information is fed into the CGI scripts. The CGI scripts represent the implements of the prototype

which deliver context sensitive information depending on the selections of the Program Elements and

Program Relations. The output, whether it is textual or graphical, is translated into HTML which can

be viewed using a web browser.

The objective of the following discussion is to examine the state of the prototype and to investigate the

effectiveness of the implementation in terms of the success of automation, the integration of tools

support, and proposed solutions to the problem of graph layout.

7.4.1 Automation
The main objectives of the Perl scripts are:

• to extract the information relating to the relational aspects of the Program Elements

• fo translate this information into a format recognised by Graph Tool

• to prepare the rest of the CCG fact base so that it is ready to be fed into the CGI scripts

The first objective is to extract information from the static analysis tool. The information is then held

in a database which is created and maintained by the Perl scripts. The Perl scripts support the

extraction of the following Program Elements and Program Relationships:

Constant has an Identifier

Constant is used as Argument

Constant has Primitive/Complex

Type

Constant is declared in Function

Constant is used in Function

Constant is declared in File.

Constant is used in File

Variable has an Identifier

Variable is used as Argument

Variable has Primitive/Complex

Type

Variable is declared in Function

Variable is used in Function

Variable is declared in File

Variable is used in File

Argument has an Identifier

Argument is defined as Variable

Argument a Primitive/Complex

Type

155

Argument is used in Function

Primitive/Complex Type is

associated with Identifier

Primitive/Complex Type is

associated with Constant

Primitive/Complex Type is

associated with Variable

Primitive/Complex Type (.v

associated with Argument

Primitive/Complex Type is declared

in Statement

Primitive/Complex Type is declared

in Function

Primitive/Complex Type is declared

in File

Statement declares Constant

Statement declares Variable

Statement declares Function

Statement declares Primitive/

Complex Type

Statement defines Function

Statement/oZ/ow^ Statement

Statement is followed by Statement

Function has an Identifier

Function uses Variable

Function uses Argument

Function returns Type

Function contains Statement

Function calls Function

Function 15 called by Function

Function is used in File

File has an Identifier

File contains Function

File uses Constants

File uses Variables

File uses Argument

File uses Primitive/Complex Type

File contains Statement

File imports File

These Program Relationships are chosen because they represent a small cross-section of the level of

abstraction generally found in a C program. They are used to demonstrate the principle of the

Integrated Approach in the different scenarios in the Case Studies described in Chapter Six.

The second objective of the Perl scripts is to translate the relational informafion into a format suitable

for a graphical display tool. Relationships such as file dependencies, function calls, control flow and

function interface are illustrated graphically. All of the graphical representations are laid out

automatically with the exception of the function interface, which is drawn semi-automatically. One of

the file inputs for a graphical display tool is shown in Figure 5-3 in Chapter Five.

The third objective of the Perl scripts is to prepare the rest of the CCG fact base so that it is ready to

be input into the CGI scripts. Informafion which is related to the Program Relationships listed above

have been filtered out from the CCG fact base, and then redirected into various text files.

The main objectives of the CGI scripts are:

• to provide a mechanism to probe the relationships between the Program Elements

156

• to produce a set of hypertext documents using HTML

The first objective of the CGI scripts is to provide a mechanism to probe and to retrieve information

relating to the Program Elements and relationships in a context sensitive manner. This is done in the

form of the context sensitive navigational aids discussed in section 4.4.1 in Chapter Four.

J'n.

The second objective of the CGI scripts is to produce a set of hypertext documents by reading

information from a set of text files which have been previously processed by the Perl scripts. This

process is still largely semi-automatic with a large proportion of the hypertext documents- being

created manually.

7.4.2 Tool Support

Two of the components of PUI are CCG, a static analysis tool, and Graph Tool, a graphical display

tool. Both are complete and stand-alone applications which can be used in their own right. CCG has a

command-line interface and is largely run in the background. Graph Tool, on the other hand, has a

graphical user intei-face and it forms an integral part of the prototype. At present, most of the

graphical representations shown in the prototype are screen shots taken from Graph Tool. It means

that the graphical representations in the prototype are static in nature and direct manipulation to these

representations are prohibited. Similar graphical representations from other graphical display

applications have been tested and used in the prototype. It is found that the simplicity and flexibility of

the input format of Graph Tool would give an advantage over the others. A logical extension of Graph

Tool which can be fully integrated into a web browser is yet to be developed.

Another iiTiportant feature in the prototype is the textual information. It is displayed using a text

window with vertical and horizontal scroll bars as visual aids. These text windows, however, do not

support any textual manipulation. Text is displayed 'as is' and cannot be altered unless it is done via

the CGI scripts. The prototype itself does not support any other text processing tool.

7.4.3 Graph Layout

It is recognised that the problem of finding any drawing algorithm which satisfies the aesthetic

features and semantic constraints of a graph i;; NP-hard [Supo83, DiBa94]. The objective of this

research focuses on providing support which can help to alleviate the problem by implementing a

number of techniques suggested in section 2.3.5 in Chapter Two. Support has been provided for graph

simplification and graph slicing. Colour has also been used for highlighting nodes in the graphical

representations.

157

7.5 Discussion

The Integrated Approach embraces the idea that the process of comprehension is opportunistic and it

provides a means for the fusion of the various comprehension strategies. The way maintainers conduct

this process is influenced by the objectives of the maintenance activities they are engaged in and

governed by their personal preferences. The Integrated Approach acknowledges that any one of the

strategies may become active at any time and hence the need for a more flexible approach towards

comprehension. Under this approach, maintainers have the opfion of selecting and executing the

various strategies as they see fit. Pure top-down and pure bottom-up comprehension can also be

achieved as demonstrated in the different scenarios in the case studies in Chapter Six.

The concept of information management is not new. It is about setting a proper framework to organise

and retrieve relevant information. The PUI too! allows the maintainers to find out the information

they require speedily, therefore reducing the time spent in studying the source code. Most of the

output from existing software analysis tools is quite simple. In some cases, a large amount of

information has either been filtered out, or simply lost due to successive transformations. The PUI tool

enables maintainers to acquire better overviews of the programs since informafion is introduced

gradually. The amount of information available to the maintainers will be limited to manageable

chunks at any stage so they can easily integrate the information together without feeling confused.

158

Chapter Eight

Conclusion

8.1 Introduction
This chapter presents a summary of this research and evaluates the success of the research against the

criteria defined in secfion 1.5 in Chapter One. An indication on the direcfions for further work on this

research is also presented.

8.2 Summary of Research
Program Comprehension plays a critical part in all aspects in Software Engineering, especially in

software maintenance. Activities such as Reverse Engineering and Reuse require the same amount of

skill and attention as Testing and Software enhancement. A good understanding of the source code is

required before the commencement of any of these activities. For a maintainer, the primary desire is

the ability to decipher the source code accurately, quickly and efficienUy. Studies have shown that

maintainers spend a considerable amount of time studying programs, especially when engaged in

maintenance activities. This figure can be as high as three-and-a-half times as long as they studied the

documentation [Litt86].

Maintainers are often under pressure to accomplish the maintenance activities within a fixed time

frame and the sheer complexity of the programs makes the tasks seem formidable. In the absence of a

complete and consistent documentation, the source code may be the only informafion available to the

maintainers. As a result, there is a strong desire for strategies and techniques which can be utilised to

facilitate the comprehension process. The problem is how the maintainers find a systematic way to

uncover this information.

There are a number of theories and models of Program Comprehension advocated by psychologists

who are interested in studying the behaviour of programmers. Most of the work has been carried out

159

by observational studies, where typically, programmers are given a task to complete within a time

limit. They were tested against their understanding, while the others were encouraged to think out

loud so that their thoughts could be recorded. Some of the results show that the approach to Prograni

Comprehension is performed in a top-down fashion whereas others suggest a bottom-up approach.

However, the authors Chan [Chan97], Letovsky [Leto86a] and von Mayrhauser [Mayr94, Mayr95]

suggest that an opportunistic approach which combines both th^. top-down and the bottom-up

approaches would be a more robust model.

This research proposes an alternative approach to Program Comprehension. It acknowledges that the

process of comprehension is opportunistic, and' that the current comprehension theories are

inadequate in addressing this. There is a need for a more flexible approach towards comprehension,

and the Integrated Approach proposed provides a w.-, / for the utilisation of the various comprehension

theories under a single environment. It recognises that any one of the comprehension theories may

become active during comprehension and maintainers have the option of selecting and executing the

comprehension strategies as they prefer.

The Integrated Approach to Program Comprehension aims to provide a solution to the problem of

information overloading. Information is systematically categorised into different levels of abstraction

under the Integrated Approach. Relevant inforination about a particular Program Element can be

uncovered by analysing the Program Relationships and other related Elements, This approach does

not impose any restrictions on how the comprehension should be performed, instead it enables the

utilisation of different comprehension strategies and models. It is flexible and it allows comprehension

to be conducted according to preferences of the maiatainers. It is argued that the use of any one of the

theories and models discussed in Chapter Two alone may be insufficient. This approach allows the

essence of the different theories captured and performed in a single environment, and thus facilitating

the comprehension process in a more effective manner.

Static analysis tools are useful in extracting information from programs. Maintainers are more likely

10 be overloaded with information extracted from these analysis tools as programs grow in size. It is

widely acknowledged that graphical representations can help maintainers to gain a much better

insight into the program structures. These graphical representations are frequently used as aids to

comprehend programs. Most of the software maintenance tools discussed in Chapter Two offer some

degree of visualisation which is based on the sirriple relationships of function calls and control flow.

However, these graphical representations may not be very helpful due to their scale and complexity.

The attention of the users are often drawn back to the source code as there is inadequate support for

extracting information from the complex graphical representations.

160

This research addresses more relationships than just those of function calls and control flow through

carrying out a systematic analysis of Program Elements and their Relationships. Study has shown that

maintainers often want more information than is currently available on the display but they are not

sure what exactly would be most helpful. The ability to provide alternative prospective on a same

element, whether its a file, a function or a variable, is important because it can provide information

with different granularity.

This research describes how the various strategies can be realised by a simple browsing tool, PUI

(Program f/nderstanding /mplement), which allows maintainers to understand the Relafionships

between Program Elements. The prototype is based on a matrix of Program Relationships designed to

reflect the multi-dimensional nature of programs. This work is centred on the C programming

language. The programs may be either ANSI [ANSI84] or Kernighan and Ritchie [Kern78, Kern88]

C.

8.3 Evaluation of Research
The research is evaluated against a list of criteria defined in section 1.5 in Chapter One.

8.3.1 Criteria for Success

A In order to facilitate the process of Program Comprehension, a maintainer needs to have access to

different kinds of informafion concerning a p^^ce of source code. This can be in textual and/or

graphical forms. Hence:

• maintainers should have easy and quick access to information at different levels of

abstraction during various stages of comprehension

• support should be provided for maintainer.-; with various degrees of experience and

abilities

• support should be provided for the different types of maintenance activities that they

may engage in

B There are a number of theories and models of Program Comprehension. Some researchers argue

that it is done in a top-down fashion, whereas others advocate that it should be conducted in a

bottom-up manner. There is no real consensus on how maintainers should perform

comprehension. Moreover, most maintainers may prefer to employ the use of a mixture of

strategies when the situation arises. Hence:

161

• any alternative approach to Program Comprehension proposed should address the

need for a more flexible approach

C The feasibility of the Integrated Approach proposed needs to be examined. Hence:

• it needs to be demonstrated that it is feasible to realise the Integrated Approach in a

physical form which can be executed with minimal difficulty

D The size of a software system should not be a hindrance to the process of Program

Comprehension. Much research effort has been devoted to the development of techniques which

support understanding-in-the-small. Hence:

• the Integrated Approach should be equipped with the capability to support

• understanding-in-the-large

In the context of this thesis, the term understanding-in-the-small is used to refer to the set of

activities that are associated with the understanding of small programs which are relafively

simple. The term understanding-in-the-large refers to, the understanding of larger programs

which contain more complex program relations.

E The usability and practicality of the Integrated /Approach and of the implementation needs to be

examined. Hence:

• both the Integrated Approach and the implementafion should be measured against a

set of criteria, which should lead to an objective evaluation

8.3.2 Evaluation

A The Integrated Approach to Program Comprehension is based on a matrix of Program

Relationships between Program Elements shown in Table 1. These Program Relationships are

derived for the C programming language constructs. Each of these Program Relationships

represents a different level of abstracfion of the programs ranging from high to low. They are .

organised systematically and maintainers are provided with support which gives them easy and

quick access to the information that they require. This is achieved by way of the context sensitive

navigational aids which are discussed in secfion 4.4.1 in Chapter Four.

Studies have shown that expert and novice programmers perceive programs differently, which

lead to the conclusion that both parties use different strategies during Program Comprehension.

Expert programmers tend to look for cues which are at a higher level of abstraction whereas the

162

novice programmers tend to adhere to the source code and extract information from that

representation. Under the Integrated Approach, the Program Reladonships represent different

levels of abstraction of the source code, support should be provided for maintainers with various

degrees of experience and abilities.

It is extremely difficult to contemplate exactly what kind of infoj-mation a maintainer may need

during the maintenance tasks. The required information is largely dependent on the maintainer's

experience, the Program Comprehension strategies used, as well as the types of the maintenance

activities they are engaged in. Under the Integrated Approach, information related to the source

code is systematically broken down into various Program Relationship which represent different

levels of abstraction. Maintainers can examine information relevant to their tasks by selecting and

analysing the appropriate Program Relationships.

B An alternative approach to Program Comprehension is proposed in section 4.4 in Chapter Four.

The Integrated Approach acknowledges that thr process of comprehension is opportunistic, arid

that the current comprehension theories are inadequate in addressing this. The Integrated

Approach recognises that during comprehension, any one of the theories may become active and

it provides a way for the utilisation of the various comprehension theories. Under this approach,

maintainers are free to select and execute the various comprehension theories as they see fit.

C The Integrated Approach is realised in a simpie'browsing tool named PUI, together with the help

of supporting tools such as CCG, a software analysis tool. Graph Tool, a graphical display

application and Netscape, a hypertext browser. It Has demonstrated that the idea of analysing

Program Elements and Program Relations as an alternative approach to Program Comprehension

is feasible. The algorithms used to process the output obtained from CCG are efficient. Little

training is required in order to run the PUI tool.

D Two software systems have been used as Case Studies. The size of one of the systems named

convert is much larger than the other one named s o r t l i n e . The system convert contains

twenty five program files with more than three thousand and five hundred lines of code. Although

it is only a medium-sized software system, it is argued that the Integrated Approach can

accommodate systems .which are significantly larger.

The Integrated Approach organises and presents information in a systematic way. Al l the

Program Elements within the PUT tool are cross-referenced and thus the process of

comprehension is not bounded by the physical locations of the various Program Elements. With

the help of context sensitive navigational aids, relevant information regarding a Program Element

is only a mouse-click away. In addition, the size of the program files which the PUI tool can deal

163

with is dependent on the analysis tool, CCG. At present, CCG is able to model programs of any

size [Kinl95].

E A framework of evaluation for the Integrated Approach, the implementation and the results of the

Case Studies is presented in Chapter Three and reported in Chapter Seven. A detailed analysis on

the usability and practicality of the prototype is also presented in sgcfion 7.4 in Chapter Seven.

8.4 Future Work

A l l the theories and models of Program Comprehension discussed in section 2.2 in Chapter Two share

the same theme: they attempt to idenfify unique features from the comprehension process, and place

them in a model which serves to define the process in some way. The theories and models are valuable

as they have established a basic framework where research effort can be focused. They categorise the

comprehension process into top-down and bottom-up approaches. Research is needed to invesfigate

and establish a general process model for each of the two approaches so that they can be compared

and illustrated how the Integrated Approach fit in. . . •

The Program Elements and Relationships are the key to the Integrated Approach. The Elements and

Relationships are based on the C programming constructs which means they are strictly on a lexical

and syntactic level. Semantic relationships can be introduced in order to enrich the Integrated

Approach as both the semantic and syntactic relationships play an equally important role in the

process of comprehension [Shne79].

The Integrated Approach is orientated towards the.C programming language. Work can be done to

extend this approach to other higher level programn:ing languages such as Pascal, C-I-+ and Java.

The PUI tool is a simple browsing tool which takes advantage of the web document design

technologies. One of the shortcomings of PUI is that direct modificafions cannot be made in real fime.

The maintainers may encounter situations where they would like to record their understanding during

the comprehension process or to modify the source code when errors are found. A text editor and a

compiler may incorporate into PUI so that the maintainers are equipped with the ability to edit text

files and recompile the source code when required. Where appropriate, an area can be set aside for the

maintainer to record information about a Program Element or a Program Relation. This information

can be stored and then retrieved accordingly when the program component is encountered.

The implements (written in CGI scripts) are in the form of context sensifive navigational aids. They

are essential in the process of recovering information about programs. Nevertheless, the attributes

scope and storage classes, which are affiliated both to the Program Elements and the relations

164

discussed in section 4,3.3 can provide tlie extra information that the maintainers may need. Carefully

selected attributes can be incorporated into the Integrated Approach. Simple measurements of the

source code, Program Elements and Program Relationships, which are usually in the form of software

metrics, can also be included to provide a base for comparison between pieces of source code.

The present graphical representation used in PUI is limited to that of two-dimensions. Three-

dimensional visualisation techniques can be used to enhance the power of visualisation [Greg94,

Riba94, Walk93, Youn96, Youn97]. This may include the use of animation and Virtual Reality.

165

Appendix A
The following is a listing of the system s o r t l i n e used in Case Study One before the modifications.

It consists of three files.

File: s o r t l i n e . c
/* mod i f i e d v e r s i o n of l i n e s . c (K & R pgs 108-110) */

i n c l u d e <stdio.h>
i n c l u d e <string.h>
ttinclude " q s o r t . h "

d e f i n e MAXLINES 10 /* max # l i n e s t c be s o r t e d */
#de£ine MAXLEN 30 /* l e n g t h of input l i n e */
#de£ine ALLOCSIZE 100 /* a v a i l a b l e space */

s t a t i c c h a r a l l o c b u f [A L L O C S I Z E] ;
s t a t i c c h a r * a l l o c p = a l l o c b u f ; '

c h a r * l i n e p t r [M A X L I N E S] ;

c h a r * a l l o c (n)
i n t n;
{

i f (a l l o c b u f + ALLOCSIZE - a l l o c p >= n)
{

a l l o c p += n;
r e t u r n a l l o c p - n;

}
e l s e

r e t u r n 0;
}

i n t g e t l i n e (s , l i m)
c h a r s [] ;
i n t l i m ;
{

i n t c , i ;
i = 0;

w h i l e (--lim > 0 && (c = g e t c h a r ()) != EOF && c != '\n')
s [i + +] = c;

i f (c == '\n')
s[i++3 = c;

S [i] = '\0';
r e t u r n i ;

}

i n t r e a d l i n e s (l i n e p t r , m a x l i n e s)
c h a r * l i n e p t r [] ;
i n t m a x l i n e s ;
{

i n t l e n , n l i n e s ;
c h a r *p, line[MAXLEN];

166

n l i n e s = 0;
w h i l e ((l e n = g e t l i n e (l i n e , MAXLEN)) > 0)
{

i f (n l i n e s >= maxlines)
r e t u r n -1;

i f ((p = a l l o c (l e n)) == NULL)
r e t u r n -1;

l i n e [l e n - l] '\0';
s t r c p y (p , l i n e) ;
l i n e p t r [n l i n e s + +] = p;

}
r e t u r n n l i n e s ;

}

w r i t e l i n e s { l i n e p t r , n l i n e s)
c h a r * l i n e p t r [] ;
i n t n l i n e s ;
{

w h i l e (n l i n e s - - > 0)
p r i n t f ("S-osXn", * l i n e p t r + +) ;

}

main()
{
i n t n l i n e s ;

i f ((n l i n e s = r e a d l i n e s (l i n e p t r , MiiXLINES)) >= 0)
{

q s o r t (l i n e p t r , 0 , n l i n e s - 1) ;
w r i t e l i n e s (l i n e p t r , n l i n e s) ;
r e t u r n 0;

}
e l s e
{

p r i n t f (" e r r o r : input too b i g to s o r t \ n ") ;
r e t u r n 1;

}

167

File: qsort . c
/* f i l e n a m e : q s o r t . c */

swap(v, i , j)
c h a r * v [] ;
i n t i , j ;
{

c h a r *temp;

temp = v [i] ;
v [i] = v [j] ;
v [j] = temp;

)

q s o r t (v , l e f t , r i g h t)
c h a r * v [] ;
i n t l e f t , r i g h t ;
{

i n t i , l a s t ;

i f (l e f t >= r i g h t)
r e t u r n ;

swap(v, l e f t , (l e f t + r i g h t) / 2) ;
l a s t = l e f t ;

f o r (i = l e f t + l ; i <= r i g h t ; i++)
i f (s t r c m p (v [i] , v [l e f t]) < 0)

swap (V , + + l a s t , i) ;

swap(v, l e f t , l a s t) ;
q s o r t (v , l e f t , l a s t - 1) ;
q s o r t (v , l a s t + 1 , r i g h t) ;

File: qsort .h
/* f i l e n a m e : q s o r t . h */

i f n d e f q s o r t _ h e a d e r
d e f i n e q s o r t _ h e a d e r

v o i d swap(char * v [] , i n t i , i n t j) ;

v o i d q s o r t (c h a r * v [] , i n t l e f t , i n t r i g h t) ;

e n d i f

168

Appendix B
The following is a listing of the system s o r t l i n e used in Case Study One after the modifications. It

consists of three files.

File: s o r t l i n e . c
/* m o d i f i e d v e r s i o n of l i n e s . c (K & R pgs 108-110) */
/* mo d i f i e d t o ac c e p t i n t e g e r as input */

i n c l u d e <stdio.h>
i n c l u d e <string.h>

d e f i n e MAXLINES 10 /* max # l i n e s t o be s o r t e d */

i n t l i n e p t r [M A X L I N E S] ;

i n t g e t l i n e (s)
i n t * s ;
{

i n t c;

c = scanfC'Ssd", s) ;
r e t u r n c;

}

i n t r e a d l i n e s (l i n e p t r , m a x l i n e s)
i n t l i n e p t r [] ;
i n t m a x l i n e s ;
{

i n t n l i n e s , l i n e ;

n l i n e s = 0;
w h i l e (g e t l i n e (& l i n e) > 0)
{

i f (n l i n e s >= m a x l i n e s)
r e t u r n -1;

l i n e p t r [n l i n e s + +] = l i n e ;
}
r e t u r n n l i n e s ;

}

w r i t e l i n e s (l i n e p t r , n l i n e s)
i n t l i n e p t r [] ;
i n t n l i n e s ;
{

w h i l e (n l i n e s - - > 0)
p r i n t f (" % d \ n " , * l i n e p t r + +) ;

}

main()
{

i n t n l i n e s ;

i f ((n l i n e s = r e a d l i n e s (l i n e p t r , MAXLINES)) >= 0)
{

g s o r t (l i n e p t r , 0 , n l i n e s - 1) ;

169

w r i t e l i n e s (l i n e p t r , n l i n e s) ;
r e t u r n 0;

}
e l s e
{

p r i n t f (" e r r o r : i n p u t too b i g to s o r t \ n ") ;
r e t u r n 1;

}
)

170

File: qsort . c
/* f i l e n a m e : q s o r t . c */

swap(v, i , j)
i n t v [] ;
i n t i , j ;
{

i n t temp;

temp = V [i] ;
v [i] = v [j] ;
v [j] = temp;

}

q s o r t (v , l e f t , r i g h t)
i n t v [] ;
i n t l e f t , r i g h t ;
{
i n t i , l a s t ;

i f (l e f t >= r i g h t)
r e t u r n ;

swap(v, l e f t , (l e f t + r i g h t) / 2) ;
l a s t = l e f t ;

f o r (i = l e f t + l ; i <= r i g h t ; i++)
i f (v [i] < v [l e f t])

swap (V , ++last, i) ;

swap(v, l e f t , l a s t) ;
q s o r t (v , l e f t , l a s t - 1) ;
q s o r t (v , l a s t + 1 , r i g h t) ;

}

File: qsort .h

/* f i l e n a m e : q s o r t . h */

i f n d e f q s o r t _ h e a d e r
d e f i n e q s o r t _ h e a d e r

v o i d s w a p (i n t v [] , i n t i , i n t j) ;

v o i d q s o r t (i n t v [] , i n t l e f t , i n t r i g h t) ;

e n d i f

171

References

[Aikh92] Alkhatib, G. The Maintenance Problem of Application Software: An Empirical

Analysis. Journal of Software Maintenance; Research and Practice. June 1992. Vol. 4,

No. 2, pages 83-104.

[ANSI83] A N S I / I E E E . Software Engineering Standards. Wiley-Interscience. 1983.

[ANSI84] ANSI / IEEE. Software Engineering Standards. Wiley-Interscience. 1984.

[Arga90] Argawal, H., and Horgan, J.R. Dynamic Program Slicing. Proceedings ACM

SIGNPLAN '90 Conference on Programming Language Design and Implementation.

1990. ACM Press. Pages 246-256.

[BaecS 1] Baecker, R.M. Sorting Out Sorting. Narrated colour videotape, 30 minutes, presented at

ACM SIGGRAPH '81 and exceipted in ACM SIGGRAPH Video Review. No. 7, 1983.

[Baec90] Baecker, R.M. and Marcus, A. Human Factors and Typography for More Readable

Programs. Addison-Wesley, Reading, Massachusetts. 1990.

[Basi82] Basili, V .R., and Mills, H.D. Understanding and Documenting Programs. IEEE

Transactions on Software Engineering. March 1982. Vol. SE-8, No. 3, pages 270-283.

[Bati85] Batini, C , Furlani, L . , and Nardelli, E . What is a good diagram? A pragmatic

approach. Proceedings of the 4th International Conference on Entity Relationship

Approach. Chicago, IL. 1985.

[Bigg93] Biggerstaff, T .J . , Mitbander, B.G., and Webster, D. The Concept Assignment

Problem in Program Understanding. Proceedings of The Working Conference on

Reverse Engineering. May 21-23, 1993. Baltimore, Maryland. IEEE Computer Society

Press. Pages 27-43.

[Bigg94] Biggerstaff, T .J . , Mitbander, B .C. , and Webster, D.E. Program Understanding and

the Concept Assignment Problem. Communications of the ACM. May 1994. Vol. 37,

No. 5, pages 72-83.

172

[Bodh95] Bodhuin, T. An Interaction Paradigm for Impact Analysis. PhD. Thesis. Department of

Computer Science, University of Durham. 1995..

[BoehSl] Boehm, B.W. Software Engineering Economics. Prentice-Hall. 1981.

Ai,.

[Boeh86] Boehm, B.W, A spiral model of software development and enhancement. ACM

SIGSOFT Software Engineering Notes. April 1986. Vol. 11, No. 4, pages 22-42.

rBoeh88] Boehni, B.W. A Spiral model of software development and enhancement. IEEE

Computer. May 1988. Vol. 21, No. 5, pages 61-72.

[Booc91] Booch, G. Object-oriented Design with Applications. Benjamin/Cummings. 1991

[Broo75] Brooks, F.P. The Mythical Man-month. Addison-Wesley. 1975.

[Broo83] Brooks, R. Towards a Theory of the Comprehension of Computer Programs.

International Journal of Man-Machine Studies. 1983. Vol. 18, No. 6, pages 543-554.

[Brow84] Brown, M.H., and Sedgewick, R. A System for Algorithm Animation. Proceedings of

ACM SIGGRAPH ' 84. ACM Press. New York. Pages 177-186.

[Brow85] Brown, iVI.H., and Sedgewick, R. Techniques for Algorithm Animation. IEEE

Software. 1985. Vol. 2, No. 1, pages 28-39.

[Burd96] Burd, E .L. , Chan, P.S., Duncan, I.M.M., Munro, M., and Young, P. Improving

Visual Representation of Code. Computer Science Technical Report 10/96. Department

of Computer Science, University of Durham. 1996.

[Burn97] Burnstein, I . , and Robserson, K. Automated Chunking to Support Program

Comprehension. Proceedings of the IEEE 5th International Workshop on Program

Comprehension. May 28-30, 1997. Dearborn, Michigan. IEEE Computer Society Press.

Pages 40-49.

[CarpBO] Carpano, M-J. Automatic Display of Hierarchized Graphs for Computer-Aided

Decision Analysis. IEEE Transactions on Systems, Man, and Cybernetics. November

1980. Vol. SMC-10, No. 11, pages 705-715.

173

[Chan97] Chan, P.S., and Munro, M. PUI: A Tool to Support Program Understanding.

Proceedings of the IEEE 5th International Workshop on Program Comprehension. May

28-30, 1997. Dearborn, Michigan. IEEE Computer Society Press. Pages 192-198.

[Chan91] Chandhok, R., Garlan, D., Meter, G., Miller, P., and Pane, J . Pascal Genie.

Available from Chariot Software Group, San Diego, California. 1991.

[CSM] Centre for Software Maintenance. University of Durham.

[Dekl92] Dekleva, S.M. Software Maintenance: 1990 Status. Journal of Software Maintenance:

Research and Practice. December 1992. Vol. 4, No. 4, pages 233-247.

[DiBa94] Di Battista, G., Eades, P., Tammassia, R., and Tollis, I. G. Algorithms for Drawing

Graphs: an Annotated Bibliography. June 1994. This document can be obtained via

anonymous ftp from vvilma.cs.brown.edu.

[Fair85] Fairley, R. Software Engineering Concepts. McGraw-Hill, New York. 1985.

[Fitt79] Fitter, M., and Green, T .R.G. When do diagrams make good computer languages?

International Journal of Man-Machine Studies. 1979. Vol. 11, pages 235-361.

[Flet88] Fletton, N.T., and Munro, M. Redocumenti.ng Software Systems using Hypertext

Technology. IEEE International Conference on Software Maintenance, Phoenix,

Arizona. 1988. Pages 54 - 59.

[Fost87] Foster, J.R., and Munro, M. A Documentation Method Based on Cross-Referencing.

IEEE International Conference on Software Maintenance, Austin, Texas. 1987. Pages

181-185.

[Gans88] Gansner, E.R. , North, S.C., and Vo K.P. DAG - A program that Draws Directed

Graphs. Software Practice and Experience. November 1988. Vol. 18, No. 11, pages

1047-1062.

[Gans93] Gansner, E.R. , Koutsofios, E . , North, S.C., and Vo K.P. A Technique for Drawing

Directed Graph. IEEE Transactions dn Software Engineering. March 1993. Vol. 19, No.

3, pages 214-230.

174

fGreg94] Gregson, R.D. Virtual Reality and Program Comprehension: Application Using

Spreadsheet Visualisation. MSc. Thesis. Department of Computer Science, University of

Durham. 1994.

[Harm97] Harman, M . , and Danicic, S. Amorphous Program Slicing. Proceedings of the IEEE

5th International Workshop on Program ComprehensioQ. May 28-30, 1997. Dearborn,

Michigan. IEEE Computer Society Press. Pages 70-79.

|Jack85] Jackson, M.A. Principles of Program Design. Academic Press. 1985.

[Kern78] Kernighan, B.W., and Ritchie, D .M. The C Programming Language. McGraw-Hall.

First Edition. 1978.

[Kern88] Kernighan, B.W., and Ritchie, D .M. The C Programming Language. Prentice-Hall,

Englewood Cliffs, New Jersey. Second Edition. 1988.

[Kin 195] Kinloch, D. A combined Representation for the Maintenance of C Programs. PhD.

Thesis. Department of Computer Science, University of Durham. 1995.

[Kitc95] Kitchenham, B., Pickard, L . , and F.iceger, S.L. Case Studies for Method and Tool

Evaluation. IEEE Software. July 1995. Vol. 12, No. 4, pages 52-62.

[Kore88] Korel, B., and Laski, J . Dynamic Program Slicing. Information Processing Letters.

October 1988. Vol. 29, No. 3, page^ 155-163.

[Kore97] Korel, B., and Rilling, J . Dynamic Program Slicing in Understanding of Program

Execution. Proceedings of the IEEE 5th International Workshop on Program

Comprehension. May 28-30, 1997. Dearborn, Michigan. IEEE Computer Society Press.

Pages 80-89.

[Lait95] Laitinen, K. Natural naming in software development and maintenance. PhD. Thesis.

University of Oulu. 1995.

[Ledg75] Ledgard, H.F. Programming Proverbs. Hayden, Rochell Park. New Jersey. 1975.

[Leto86a] Letovsky, S. Cognitive Processes in Program Comprehension. Empirical Studies of

Programmers. Albex, Norwood NJ. 1986. Pages 58-79.

175

[Leto86b] Letovsky, S., and Soloway, E . Delocalized Plans and Program Comprehension. IEEE

Software. May 1986. Vol. 19, No. 3, pages 41-48,

[Lien78] Lientz, B., Swanson, E .B. , and Tompkins, G .E . Characteristics of Application

Software Maintenance. Communications of the ACM. June 1978. Vol. 21, No. 6, pages

466-471.

[LienSO] Lientz, B., and Swanson, E .B . Software Maintenance Management. Addison-Wesley.

1980.

[LienSl] Lientz, B. Swanson, B .E . Problems in application software maintenance.

Communications of the ACM. November 1981. Vol. 24, No. 11, pages 763-769.

[Lino93] Linos, P.K., Aubet, P., Dumas. L . , Helleboid, Y . , Lejeune, P. and Tulula, P.

Facilitating the Comprehension of C Programs: An Experimental Study. Proceedings of

the IEEE 3rd International Workshop on Program Comprehension. November 14-15,

1993. Washington, D.C. IEEE Computer Society Press. Pages 55-63.

[Lino94] Linos, P.K., Aubet, P., Dumas, L . , Helleboid, Y . , Lejeune, P. and Tulula, P.

Visualizing Program Dependencies: An Experimental Study. Software Practice and

Experience. April 1994. Vol. 24, No. 4, pages 387-403.

[Litt86] Littman, D.C., Pinto, J . , Letovsky, S., and Soloway, E . Mental Models and Software

Maintenance. Empirical Studies of Programmers. Albex, Norwood NJ. 1986. Pages 80-

[Luci96] De Lucia, A., Fasolino, A. R., and Munro, M. Understanding Function Behaviors

through Program Slicing. Proceedings of the IEEE 4th International Workshop on

Program Comprehension. March 29-31, 1996. Berlin, Germany. IEEE Computer Society

Press. Pages 9-18.

[Mayr94] von Mayrhauser, A., and Vans, A. M. Dynamic Code Cognitive Behaviors For Large

Scale Code. Proceedings of the IEEE 3rd International Workshop on Program

Comprehension. Washington, D.C. November 14-15, 1994. IEEE Computer Society

Press. Pages 74-81.

176

[Mayr95] von Mayrhauser, A., and Vans, A. M. Program Comprehension During Softw,

Maintenance and Evolution. IEEE Computer. August 1995. Vol. 28, No. 8, pages 44
<are

55.

[Mess91] Messinger, E.B., Rowe, L.A., and Henry, R.R. A Divide-and-Conquer Algorithm for

the Automatic Layout of Large Directed Graphs. IEEE,,Jransactions on Systems, Man

and Cybernetics. January/February 1991. Vol. SMC-21, No. I , pages 1-11.

[Miar83] Miara, R.J . , Musselnian, J .A., Navano, J .A. and Shneiderman, B. Program

Indentation and Comprehensibility. Communications of the ACM. November 1983. Vol.

26, No. I I , pages 861-867.

[Myer90] Myers, B.A. Taxonomies of Visual Programming and Program Visualisation. Journal of

Visual Languages and Computing. March 1990. Vol. 1, No. 1, pages 97-123.

[Oman90a] Oman, P. Maintenance Tools. IEEE Software. May 1990. Vol. 23, No. 3, pages 59-65.

[Oman90b] Oman, P.W. and Cook, C.R. The Book Paradigm for Improved Maintenance. IEEE

Software. January, 1990. Vol. 7, No. 1, pages 39-45.

[Parn72] Parnas,, D.L. On the criteria to be used in decomposing systems into modules.

Communications of the ACM. December 1972. Vol. 15, No. 12, pages 1053-1058.

[Penn87] Pennington, N . Stimulus Structures and Mental Representations in Expert Com

prehension of Computer Programs. Cognitive Psychology. July 1987. Vol. 19, No. 3,

pages 295-341.

[Plle94] Pfleeger, S.L. Design and Analysis in Software Engineering. Part I: The Language of

Case Studies and Formal Experiments. Software Engineering Notes. October 1994. Vol.

19, No. 4, pages 16-20.

[Pres92] Pressman, R.S. Software Engineering: A Practitioner's Approach. Third Edition.

McGraw-Hill. 1992.

are [Pric93] Price, B.A., Baecher, R.M., and Small, I . S . A Principled Taxonomy of Softwi

Visualizaiton. Journal of Visual Languages and Computing. September 1993. Vol. 4, No

3, pages 211-266.

177

[Rajl90] Rajlich, V., Damaskinos, N., Linos, P., Khorshid, W. VIFOR: A Tool for Software

Maintenance. Software Practice and Experience. January 1990. Vol. 20, No. 1, pages 66-

77.

[Rajl96] Rajlich, V., and Adnapally, S.R. VIFOR 2: A Tool For Browsing and Documentation.

Proceedings of the IEEE International Conference on Software Maintenance, Monterey,

California. November 4-8, 1996. IEEE Computer Society Press. Pages 296 - 300.

[ReinSI] Reingold, E .M. , and Tilford, J.S. Tidier drawings of trees. IEEE Transactions on

Software Engineering. March 1981. Vol. SE-7, No. 3, pages 223-228.

[Riba94] Ribarsky, W., Bolter, J . , Op den Bosch, A., and can Teylingen, R. Visualization and

Analysis Using Virtual Reality. IEEE Computer Graphics and Applications. January

1994. Vol. 14, No. 1, pages 10-12.

[Robs91] Robson, D.J., Bennett, K.H. , Cornelius, B.J. , and Munro, M. Approaches to Program

Comprehension. Journal of Systems and Software. February 1991. Vol. 14, No. 2, pages

79-84.

[Roma93] Roman G - C , and Cox, K . C . A Taxonomy of Program Visualization Systems. IEEE

Computer. December 1993. Vol. 26, No. 12, pages 11-24.

[Royc70] Royce, W.W. Managing the development of large software systems: concepts and

techniques. Proceedings IEEE WESCON. 1970. Pages 1-9.

[Ryde79] Ryder, B.G. Constructing the Call Graph of a Program. IEEE Transactions • on

Software Engineering. March 1979. Vol. SE-5, No. 3, pages 216-225.

[Schn87] Schneidewind, N.F. The State of Software Maintenance. IEEE Transactions on

Software Engineering. March 1987. Vol. SE-13, No. 3, pages 303-310.

[Shne79] Shneiderman, B., and Mayer, R. Syntactic/Semantic Interactions in Programmer

Behavior: A Model and Experimental Results. International Journal of Computer and

Information Sciences. 1979. Vol. 8, No. 3, pages 219-238.

[Shne80] Shneiderman, B. Software Psychology. Cambridge MA: Winthrop Publishers Inc. 1980.

178

[Shne86] Shneiderman, B., Shafer, P., Simon, R., and Weldon, L . Display Strategies for

Program Browsing: Concepts and Experiment. IEEE Software. May 1986. Vol. 19, No.

3, pages 7-15.

[Shu88] Shu, N.C. Visual Programming. Van Nostrand Reinhold, New York. 1988.

[Solo84] Soloway, E . , and Ehrlich, K. Empirical Studies of Programming Knowledge. IEEE

Transactions on Software Engineering. September 1984. Vol. SE-10, No. 5, pages 595-

609.

[S0I086] Soloway, E . Learning to Program = Learning to Construct Mechanism and

Explanations. Communication of the ACM. September 1986. Vol. 29, No. 9, pages 850-

858.

[Somm96] Sommervilie, L Software Engineering. Fifth Edition. Addison-Wesley. 1996.

[Stan84] Standish, T.A. An Essay on Software Reuse. IEEE Transactions on Software

Engineering. September 1984. Vol. SE-10, No. 5, pages 494-497.

[Stas92] Stasko, J.T., and Patterson, C. Understanding and characterizing software

visualization systems. Proceedings of the IEEE 1992 Workshop on Visual Languages.

Seattle, Washington. 1992. IEEE Computer Society Press. Pages 3-10.

[Stor95] Storey, M-A.D., and Miiller, H.A. Manipulating and Documenting Software Structures

Using SHriMP Views. Proceedings of the IEEE 1995 International Conference on

Software Maintenance. October 17-20, 1995. Opio (Nice), France. IEEE Computer

Society Press. Pages 275-284.

[Stor97a] Storey, M-A.D., Rracchia, F.D., and Miiller, H.A. Cognitive Design Elements to

Support the Construction of a Mental Model during Software Visualisation. Proceedings

of the IEEE 5th International Workshop on Program Comprehension. May 28-30, 1997.

Dearborn, Michigan. IEEE Computer Society Press. Pages 17-28.

[Stor97b] Stork, D.G. The End of an Era, The Beginning of Another? HAL, Deep Blue and

Kasparov. 1997. This document can be obtained from this URL

http://www.chess.ibm.com

179

[SugiSl] Sugiyama, K., Tagawa, S., and Toda, M . Methods for Visual Understanding of

Hierarchical System Structures. IEEE Transactions on Systems, Man and Cybernetics.

February 1981. Vol. SMC-11, No. 2, pages 109-125.

[Supo83] Supowit, K . J . , and Reingold, E.M. The complexity' of drawing trees nicely. Acta

Informationca. 1983. Vol. 18, No. 4, pages 377-392.

[Tama88] Tamassia, R., Di Battista, G., and Batini, C. Automatic graph drawing and readability

of diagrams. IEEE Transactions on Systems, Man and Cybernetics. February 1988. Vol.

SMC-18, No. 2, pages 61-79.

[Teas94] Teasley, B .E. The effects of naming style and expertise on program comprehension.

International Journal of Human-Computer Studies. 1994. Vol. 40, pages 757-770.

[Thur95] Thiiring, M . , Hannemann, J . , and Haake, J . M . Hypermedia and Cognition:

Designing for Comprehension. Communications of the ACM. August 1995. Vol. 38, No.

8, pages 57-66.

[Till97] Tilley, S.R., and Smith, D.B. On Using the Web as Infrastructure for Reengineering.

Proceedings of the IEEE 5th International Workshop on Program Comprehension. May

28-30, 1997. Dearborn, Michigan. IEEE Computer Society Press. Pages 170-173.

[Venk91] Venkatesh, G.A. The semantic approach to program slicing. ACM SIGNPLAN

Notices. June 1996. Vol. 26, No. 6, pages 107-119.

[Vlie93] van Vliet, J .C. Software Engineering: principles and practice. Wiley. 1993.

[Walk90] Walker, J.Q. A Node-positioning Algorithm for General Trees. Software Practice and

Experience. July 1990. Vol. 20, No. 7, pages 685-705.

[Walk93] Walker, G.R., Rea, P.A. Whalley, S., Hinds, M . , and Kings, N .J. Visualisation of

teleconununications network data. British Telecom Technology Journal. October 1993.

Vol. 11, No. 4, pages 54-63.

[.Warf77] Warfield, J .N. Crossing Theory and Hierarchy Mapping. IEEE Transactions on

Systems, Man, and Cybernetics. July 1977. Vol. SMC-7, No. 7, pages 505-523.

180

[Weis82] Weiser, M. Programmers use Slices when Debugging. Communications of the ACM.

July 1982. Vol. 25, No. 7, pages 446-452.

[Weis84] Weiser, M. Program Slicing. IEEE Transactions on Software Engineering. July 1984.

Vol. SE-IO, No. 4, pages 352-357.

[Weis86] Weiser, M., and Lyle, J . Experiments on Slicing-Based Debugging Aids. Empirical

Studies of Programmers. Albex, Norwood NJ. 1986. Pages 187-197.

[Weth79] Wetherell, C , and Shannon, A. Tidy Drawings of Trees. IEEE Transactions on

Software Engineering. September 1979. Vol. SE-5, No. 5, pagesS 14-520.

[Wied86] Wiedenbeck, S. Processes in Computer Program Comprehension. Empirical Studies of

Programmers. Albex, Norwood NJ. 1986. Pages 48-57.

[Wied91] Wiedenbeck, S. The Initial Stage of Program Comprehension. International Journal of

Man-Machine Studies. October 1991. Vol. 35, No. 4, pages 517-540.

[Wild91] Wilde, N. , and Huitt, R. A Reusable Toolset for Software Dependency Analysis.

Journal of Systems and Software. February 1991. Vol. 14, No. 2, pages 97-102.

[Wirt71] Wirth, N. Program development by Stepwise Refinement. Communications of the ACM.

April 1971. Vol. 14, No. 4, pages 221-227.

[Youn96] Young, P. Tliree Dimensional Information Visualisation. Technical Report 12/96.

Centre for Software Maintenance, University of Durham. March 1996.

[Youn97] Young, P., and Munro, M. A New View of Call Graphs for Visualising Code Structure.

Technical Report 03/97. Centre for Software Maintenance, University of Durham. April

1997.

[Youn93] Younger, E . J . , and Bennett, K .H . Model-Based Tools to Record Program

Understanding. Proceedings of the IEEE 2nd International Workshop on Program

Comprehension. July 8-9, 1993. Capri, Italy. IEEE Computer Society Press. Pages 87-

95.

181

