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Abstract 

In this thesis, we consider the massive field theories in 1 + 1 dimensions known as affine 

Toda quantum field theories. These have the special property that they possess an 

infinite number of conserved quantities, a feature which greatly simplifies their study, 

and makes extracting exact information about them a tractable problem. We consider 

these theories both in the full space (the bulk) and in the half space bounded by an 

impenetrable boundary at x = 0. In particular, we consider their fundamental objects: 

the scattering matrices in the bulk, and the reflection factors at the boundary, both of 

which can be found in a closed form. 

In Chapter 1, we provide a general introduction to the topic before going on, in 

Chapter 2, to consider the simplest ATFT—the sine-Gordon model—with a boundary. 

We begin by studying the classical l imit, finding quite a clear picture of the boundary 

structure we can expect in the quantum case, which is introduced in Chapter 3. We 

obtain the bound-state structure for all integrable boundary conditions, as well as the 

corresponding reflection factors. This structure turns out to be much richer than had 

hitherto been imagined. 

We then consider more general ATFTs in the bulk. The sine-Gordon model is based 

on a[^\ but there is an A T F T for any semi-simple Lie algebra. This underlying structure 

is known to show up in their S-matrices, but the path back to the parameters in the 

Lagrangian is still unclear. We investigate this, our main result being the discovery of 

a "generalised bootstrap" equation which explicitly encodes the Lie algebra into the 

S-matrix. This leads to a number of new S-matrix identities, as well as a generalisation 

of the idea that the conserved charges of the theory form an eigenvector of the Cartan 

matrix. 

Finally, our results are summarised in Chapter 5, and possible directions for further 

study are highlighted. 

VII 
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C H A P T E R 1 

Integrable Quantum Field 

Theory in Two Dimensions 

"I got really fascinated by these 1+1 models ... and how 

mysteriously they jump out at you and work and you don't know 

why. I am trying to understand all this better." 

—Richard Feynman 



1.1 Introduction 

1.1 Introduction 

'"The time has come,' the walrus said, 'to talk of many things. Of 

ships and shoes and sealing-wax, and cabbages and kings.'" 

—Lewis Carroll 

Why study a theory in two dimensions, when the real world has at least four? The dif

ficulty, at least at present, is that realistic four-dimensional field theories are incredibly 

complicated, even before the further dimensions proposed by superstring theories are 

considered. Perturbative solutions can be found, but exact, non-perturbative, results 

are few. In a number of cases, sufficiently accurate perturbative answers are enough, 

but many physical phenomena cannot be properly understood this way. Uncovering 

exact solutions to quantum field theories is considered by many to be one of the great 

remaining challenges to particle theorists. 

In view of this, it is perhaps logical to think of taking a step backwards, to consider 

a simpler model which still exhibits some of the same features. Understanding the 

issues involved a few at a t ime in this way presents a more manageable problem, like 

climbing a mountain in stages rather than hoping to stride straight to the top. A 

theory with two dimensions, one of space and one of t ime, is a useful starting point. 

The main focus of this thesis will be the scattering matrices (S-matrices) of these 

theories, which describe how the final state of the system is related to the initial state. 

In general this is a messy object to deal wi th, since there are potentially matrices for 

the evolution of any number of particles into any other number. However, the theories 

considered here are "simplified" in one further respect in that they are integrable 

theories. This has three main effects: 

• there is no net particle production, so the number of particles in the initial and 

final states must always be the same; 

• the outgoing particles must have the same masses and velocities as the incoming 

ones; 

• a general S-matrix, for the scattering of n particles, can always be factorised into 

a product of two-particle S-matrices. 



1.1 Introduction 

In essence, this means that, once the S-matrix for the scattering of two particles into 

two particles has been calculated, everything else follows, making a characterisation of 

the theory in terms of these matrices a more attractive and tractable proposition. 

The method for obtaining explicit expressions for these S-matrices is in fact sur

prisingly straightforward ( i f not necessarily simple to put into practice). It invokes 

four consistency requirements which, between them, provide strong constraints on the 

S-matrix. This method, first formulated in the 1960s, was initially developed to help 

explain the strong nuclear force (see e.g. [5, 6]). In the 1970s, it was discovered that 

these axioms could also be applied to some two dimensional quantum field theories, and 

proved in certain cases to be powerful enough to completely determine the S-matrix 

up to an overall factor. 

A theory is integrable if it has an infinite number of symmetries; the particular 

theories we will be studying, the affine Toda field theories (ATFTs) , acquire these 

through being based on an infinite-dimensional Lie algebra. We will study these both 

in the full 2-dimensional space, and in a half space (or half line) defined by introducing 

an impenetrable boundary at x = 0. As well as the usual S-matrices, this requires the 

introduction of boundary factors to describe particles scattering against the boundary. 

The particles can either simply reflect from this "wall" or bind to it, and we will be 

concerned with the bound state structure this introduces. 

The situation with a boundary is the less well-understood of the two, so we shall 

study only the simplest A T F T , the sine-Gordon model. Even for this case, only the 

ground and first few excited states have been explored. We present a complete de

scription of these matrices, for any wall which leaves the resultant theory integrable. 

Wi thout a boundary, the picture is much clearer, and S-matrices have been found 

for all real-coupling ATFTs. However, despite the manifest Lie algebraic structure of 

the theory, its path from the Lagrangian to the S-matrix is still not precisely known, 

and remains an open problem. We will, however, present a convenient way of encoding 

the Lie algebra into the matrix, wi th the aim of making the task a litt le easier. This 

process will also throw up a number of new relationships between elements of the 

S-matrix. 

Apart f rom their interest in connection with higher-dimensional theories, two-

dimensional integrable models have an increasing number of applications in their own 



1.2 Exact S-matrices 

right. They are, for example, useful in studying impurity problems in an interacting I D 

electron gas [7] or edge excitations in fractional quantum Hall states [8, 9]. (A recent 

review can be found in [10].) 

In the following sections all this will be put on a more formal basis, paving the way 

for the discussion of the ATFTs which will occupy our attention for the remainder of 

the thesis. 

1.2 Exact S-matrices 

"The three rules of the Librarians of Time and Space are: 1) Silence; 

2) Books must be returned no later than the date last shown; and 

3) Do not interfere with the nature of causality." 

—Terry Pratchett, Guards! Guards! 

Much of the discussion in this section is based on [11, 12, 13]. Before proceeding to 

specifics, a gentle introduction to two-dimensional field theory is perhaps appropriate. 

Let us begin by considering a general Euclidean field theory with one space and one 

t ime dimension ( x ^ , x ^ ) = (x, t) defined (in the Lagrangian approach) by the classical 

action 

/

+00 /•+0O 
dx dta((p.d^,tp). (1.1) 

•oo J—oo 

where (p{x. t) is some set of fundamental fields and the action density a{ip,d^ip) is a 

local function of these fields and the derivatives d^(p = dip/dx^ with = 1,2. For 

simplicity we shall also use light-cone coordinates, so that, in place of (p° ,p^) for the 

two-momentum, we will take (p, p) = (p° + p ,̂ p° — p^). 

We will be considering the particles only on mass-shell (i.e. real, rather than virtual, 

particles), which means that their two-momenta satisfy the mass-shell condition 

PaPa = ( P ^ ) ' - ( p ] ) ' = m 2 , ( a = l , 2 n). (1.2) 

The two momenta can be conveniently parametrised in terms of their rapidity 9: 

(p°,p^) = (m,e^^mae-^0• (1-3) 
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Suppose our theory contains n different types of particle Aa,a= 1,2 n. with 

masses mg. The asymptotic particle states are generated by the "particle creation 

operators" Aa{d): 

\A,,ie^)Aa,ie2) • • • AM) = Aa,(ei)A,,(e2) • • • A,M\O). (1.4) 

Looking into the far past, we shall call the state an in state if there are no further 

interactions ss t —oo. This means that the fastest particle must be on the left, and 

the slowest on the right, with all the others in order in-between, i.e. 6i > 62 > • • • > On-

Similarly, if there are no further interactions as t ^ 00, the state will be called an out 

state, and the rapidities must be in the reverse order. 

The S-matrix can now be introduced as a mapping between the /'n-state basis and 

the out-state basis. It is useful to consider the Ax{9)s as non-commuting symbols, 

giving them an existence outside the ket vectors, so that we can write the above state 

simply as Aa^(6i)Aa^{92) •. -Aa^ien). Considering an m-particle in-state, we have 

A,,iSi)AaA02)...AaM = 
00 

m=ie[<...<e'„ 

where a sum on bi.. .bn is implied, and the sum on the 6'j will, in general, turn out 

to involve a number of integrals. The rapidities will also be constrained by momentum 

conservation. 

For a general theory, we can proceed no further, and introducing the S-matrix 

would appear only to have complicated matters. However, for an integrable theory, 

the whole situation becomes dramatically simpler. The name derives from the classical 

formulation of such theories, which can be cast as partial differential equations; these 

were said to be integrable if it was possible to find an explicit solution. It was found that 

a solution was only possible if there were an infinite number of symmetries constraining 

the behaviour o f the equation, and preventing it f rom becoming chaotic. The same 

applies here: possessing so many symmetries constrains the S-matrix sufficiently to 

allow an exact solution to be found. 

Energy-momentum is always a conserved quantity, and its operator, P, is said to 

have (Lorentz) spin 1 as it transforms under a Lorentz boost La . 6 ^ 9' = 9 + a as 

p ^ p' = e " P . This means that a boost of 2/7r—a complete rotation—has no effect. 
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On a one-particle state, the action of P = (P, P) would be 

P\AM = m,e^\A,(e)). P\AM = m,e-'\A,(9)) • (1-6) 

In general, there can also be other conserved quantities, Qs , which transform in higher 

representations of the 1+1-dimensional Lorentz group as Qs - > Q j = e^^Qs and 

have spin s since they rotate s times under a boost of 2/7r. This t ime, the effect of 

Qs = (Qs,Q-s) on a one-particle state is 

Qs\AM) = qi'^e''\AM). Q-s\AM) = qi'^e-''\AM • (1-7) 

In an integrable theory, there are an infinite number of these conserved quantities 

(or "charges"). It might, at first, appear that such theories are quite improbable. In 

the theories to be considered later, these symmetries are due to an underlying group 

structure which happens to be infinite-dimensional. 

We will concentrate on local conserved charges, which are those whose operators 

are integrals of strictly local densities, meaning that their action on multi-particle states 

is additive: 

Qs\A,,{d,)... A M ) ) = (qife^'^ + ... + qi'J e''")\A,,ie,)... A ^ ) ) - (1-8) 

Just as, above, momentum conservation constrained the sum over the rapidities, 

so ail the other conserved quantities provide additional constraints, leaving an infinite 

number of equations to be solved, of the form 

qife^'^ + ... + qil^e^'" = q ( f e^^i + . . . + c/ge^^-". (1.9) 

Since these must all hold for all possible sets of /n-momenta, the only possible solution 

is the trivial one, i.e. n= m, and Oj = B], g f̂̂  - q^^^ for all /'. 

This establishes the fact that there can be no particle production in an integrable 

theory, and that the sets of incoming and outgoing momenta must be equal, thus 

reducing the workload involved in dealing with the S-matrix just to the n n cases. 

There is, however, one further property of integrable theories which makes them even 

easier to deal wi th : factorisation. This states that, for any n -)• n S-matrix, the 

trajectories of the particles involved can be shifted forwards or backwards in space so 

as to split the vertex into a product of \n{n - 1) two-particle vertices, as shown in 

figure 1.2. 
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The origin of this property can be seen in the fact that , while the momentum 

operator, for example, will act on a given state simply by shifting the position of all the 

particles by a fixed amount, higher-spin operators wil l , in general, change the positions 

by an amount depending on the initial momentum of the particle. This argument was 

first proposed by Shankar and Wit ten [14] and elaborated by Parke [15]. In rough form 

it goes as follows. 

The first step is to note that, since we are dealing with a local, causal field theory, 

the particles in any process are sufficiently well separated (at least most of the t ime) to 

be considered individually and it is reasonable to consider the effect of the conserved 

charges particle by particle. If we consider a single-particle state, with position approx

imately x i and spatial momentum approximately pi, the position space wavefunction 

will be 

/

+ 0 0 

^pe-^HP--Pi)'e'P(x-xi). (1.10) 
•00 

For simplicity, rather than considering a general spin-s operator, we will now try acting 

on this with P j , the spin s operator which acts as (P )^ , i.e. as s copies of the spatial 

part of the two-momentum operator. Applying e " ' " ^ ' to the above wavefunction gives 

dpe-'^P-P'^ e 'P^^-^i)e- ' "P' . (1.11) 
•CXJ 

Since most of the value of the integral is due to the region around p « p i , we can 

Taylor expand the extra factor in powers of (p - P i ) to find new values for the position 

and momentum. For a general momentum-dependent phase factor e~"^^P\ this leaves 

the momentum unchanged but shifts the position by xT = xx + (t)'{pi). Here, this gives 

a position shift of sap |~^ . For momentum itself, this is just a but, for higher spins, 

the shift must depend on the initial momentum. This, as Parke showed, is a general 

property of higher-spin operators. 

Applying a suitable operator, Qs, near an n -> n vertex thus separates the particles 

and splits up the vertex into \n{n - 1) 2 -> 2 vertices. However, since the operator 

is related to a conserved charge, the amplitude for both processes must be the same, 

giving us factorisability. In addition, applying Q_s rather than Qs causes a mirror-image 

split, leading to figure 1.2. 

This relies, of course, on the fact that, after splitting up the vertex, the particle 

trajectories must still cross somewhere, because we are restricted to only two dimen

sions. In higher numbers of dimensions, it is quite easy to imagine splitting up such 
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Figure 1.1: S-matrix 

a vertex so that the particles never meet at all, leading to a trivial S-matrix. In fact, 

Coleman and Mandula [16] proved the so-called Coleman-Mandula theorem, showing 

that , for any theory with more than one space dimension and a conserved charge with 

spin 2 or more, the S-matrix must be trivial. 

Al l this shows that an integrable theory in 1 + 1 dimensions is rather special, in that 

it has: 

• no particle production; 

• equality of the sets of initial and final momenta; 

• factorisability of the n -> n S-matrix into a product of 2 -> 2 S-matrices. 

W i th these results, it is clear that the 2 2 S-matrix is the fundamental object 

of the theory, and that , once it has been found, the full S-matrix is only a step away. 

The 2 2 process is just 

AaMAaM = S'al^^{9, - 92)At^{92)A,,{9,). (1.12) 

and is shown graphically in figure 1.1. (In this, and in all subsequent diagrams, t ime 

is taken to run up the page, and space f rom left to r ight.) Note that momentum 

conservation demands mai = and ma2 = m^^, so that a i ^ bi or 227^ b2 are only 

possible if there is a degenerate mass spectrum. 

The two-particle S-matrix has n'* elements, but these are not all independent, and 

are in fact strongly constrained. Firstly it is generally assumed that parity charge con-
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3l 32 

bz b2 b2 bi 

Figure 1.2: Yang-Baxter equation 

jugat ion and t ime reversal (P, C and T ) symmetries hold. These impose the conditions 

S^'{9) = Sjf{9) = S^(9) = 5f,{9). (1.13) 

In addition, they must satisfy four general axioms: the Yang-Baxter equation; a unitar-

ity condition; analyticity and crossing symmetry; and the bootstrap condition. These 

are powerful demands; using just the first three allows the S-matrix to be pinned down 

up to the so-called "CDD ambiguity": 

5 ^ ' ( 0 ) ^ S ; ' ( 0 ) 0 ( 0 ) , (1.14) 

where the "CDD factor" satisfies 

0 ( 0 ) = cD(/7r - e ) , O(0)<D(-0) = 1 , (1.15) 

but is otherwise arbitrary. This can often be further restricted by the bootstrap. 

1.2.1 Yang-Baxter (or "factorisation") equation 

The requirement of factorisability, and, in particular, the ability of operators associated 

to conserved charges to shift trajectories around, is only consistent if figure 1.2 is true. 

This gives rise to the condition 

5 f ; a 1 ( ^ ) 5 g a 1 ( e + ^ ' )Sc1§(e ' ) = S^l%{9')Sil',li9 + 9')S',l^^{9). (1.16) 

Formally, this is an associativity condition on the algebra of the Ai{e)s: moving from 

an in-state Aai{9i)Aa^(92) • • • Aa„{9n) to an out-state by a series of pair transpositions, 
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the result is independent of their order if and only if the Yang-Baxter equation holds. 

For three particles, there are only two ways of doing this (shown in figure 1.2). For 

the left-hand diagram, we find 

AaMA,,i92)A,,{e3) = [stitimc,ie2)Ac^{e,)]A,^ie3) 

= s',i%ie)Ac,ie2)[s',i^i(e + e')Ac,{e3)A,M] ( i . i ? ) 

= s',i%ie)s',i^i{e + e')[s^^^^ie')AM)A^{e2)]A,M, 

where we have set 9 = 62 — 9i and 9' = 63 — 92. Doing the same for the right-hand 

diagram yields a relation between the same /n- and out-states with a different product 

of S-matrices. Since these equations should be equivalent, the products of S-matrices 

can be equated, to give (1.16). Tha t no further conditions should arise in considering 

larger numbers of particles can be seen through the fact that the Yang-Baxter equation 

allows any trajectory to be moved past any given vertex (by considering just the local 

area around the vertex). Thus, with repeated applications, trajectories can be moved 

arbitrarily, showing that all possible factorisations are equivalent. 

Tha t the Yang-Baxter equation is an associativity condition can most easily be seen 

when we have a non-degenerate mass spectrum. In this case, we can define operators 

Ogt which transpose the symbols Ag and A^. and add a suitable S-matrix factor. The 

Yang-Baxter equation then becomes just 

Oi2(Oi3023) = 0 2 3 ( O i 3 0 i 2 ) , (1.18) 

which is indeed an associativity condition. The Yang-Baxter equation is the extension 

of this to a degenerate spectrum. 

1.2.2 Unitarity, analyticity and crossing symmetry 

The origin of these demands can best be seen by switching to Mandelstam variables, 

s = (Pi + P2) ' . f = ( P i - P 3 ) ' . t7 = ( p i - p 4 ) 2 (1.19) 

wi th s+t + u = YJI^IIVJ. Here, p i and P2 are the momenta of the incoming particles, 

wi th P3 and PA those of the outgoers. Only one of these is independent, so we shall 

make the standard choice and consider s. Making use of (1.3), this can be re-written 

as 

s = mf + m] + 2m,mj cosh(0i - 92). (1.20) 
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Physical values 

D C 
x x x x x x x x c : 

\ ^ / ; (mj-mj)^ im; + mj)^ B ^ 

Cut Cut 

Figure 1.3: The complex s-plane 

For a real, physical process, all rapidities are real, so s must be real and satisfy 

s > {m, + my)^. However, it is usual to assume that the S-matrix S(s) is an analytic 

funct ion^, and can so be continued into the complex plane to be single-valued, at least 

after suitable cuts have been made. As it turns out, this can be achieved with two 

cuts, as shown in figure 1.3. 

The cut plane is the physical sheet of the Riemann surface for S; continuing through 

one of the cuts leads to one of the other, unphysical, sheets. Making the cuts in this 

way, S is single-valued, meromorphic and real-analytic^. Note also that S(s) is real on 

the axis between the cuts, i.e. for (m, - m^)^ < s < (m, -I- mj)'^. 

Unitarity demands that S(s)S^(s) = 1 for physical values of s (just above the 

right-hand cut ) . This is a matrix equation, so there is an implicit sum over a complete 

set of asymptotic states living between S and S^. Generally, as s increases, states 

involving more and more particles become available, bringing the 2 n S-matrix into 

play, for n = 3 , 4 , . . . Here, however, there is no particle production, so this cannot 

happen and we are left with 

s5'(s+)[sr(s-^)]* = (5r5r (1.21) 

for all physical s+ , with * denoting the complex conjugate. Considering s+ as s + ie 

(e -> 0) to place it just above the cut, real analyticity allows this to be re-written as 

S ? ( s + ) S r ( s - ) = W , (1.22) 

with s~ = s — ie, just below the cut. (We have skipped many of the details in the 

interests of simplicity. For a more rigorous explanation, see [11] or [12].) 

The other important constraint comes from the fundamentally relativistic property 

of crossing. If the interaction is assumed to take place at t = 0, "crossing" one of 

Mt has been suggested [6] that this is connected to the causality of the theory. 
2 S takes complex-conjugate values at complex conjugate points. 
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(mi + mj) {mi - mj) 

Figure 1.4: Crossing 

the participating particles involves inverting its path in t ime, so that incoming particles 

become outgoing and vice versa. In general, if one of the incoming particles to an 

interaction is crossed to become outgoing while one of the outgoers is simultaneously 

crossed to become incoming, the amplitude for another physical process is obtained. 

In our case, this amounts to saying that we can look at figure 1.1 from the side, 

wi th the forward momentum taken as t rather than s. Normally, t = (pi - Ps)'^ but, 

here, P2 = Pz, so it can be writ ten as 

f - (P i - P2)^ = 2pI + 2pI - ( p i + P2)2 = 2m} + 2m] - s. (1.23) 

The amplitude for this process can be found by analytically continuing from the original 

amplitude to a region where t is physical, i.e. t is real and t > (/D/-f-m;)^. From (1.23), 

this corresponds to s < (m, - mj)'^. Physical amplitudes come from approaching this 

f rom above in t and hence from below in s; a suitable path for continuation is shown 

in figure 1.4. As a result, we have 

S* ' (s+) = S*^(2mf + 2mJ - s + ) . (1.24) 

This picture becomes substantially simpler if we shift back to the rapidity difference 

9 through the transformation 

, f s - m f - m j \ 
9 = cosh-^ — ~ ^ (1.25) 

\ 2m;my J 

= log (^s-mf- mj + ^J{s- (m,- + /n j )2 } {s - (m, - m;)2}^ , 

This maps the physical sheet to the "physical strip" 0 <\rr\ 9 < r . with the unphysical 

sheets being mapped onto the unphysical strips n7r < Im 0 < (n 4-1)9. Also, the two 

branch points go to 0 and /vr, wi th the cuts opening up as shown in figure 1.5. 

Analytically continuing to the entire plane, and re-writing in terms of 9, the demands 

of analyticity and crossing symmetry become 

S'sl^l(e)5',l^,(-9) = 6',15^, (1.26) 
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A /TT (Unphysical) 
D 
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^ c 
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C 

Figure 1.5: The 9 plane 

and 

5a '̂a1W = S g ; ( / 7 r - 0 ) (1.27) 

respectively. (Note that , for physical 9. [S(9)]* = Si-9).) These results can be 

combined into the "cross-unitarity equation" 

S'al^^iiir - 9)Sfi}{i'K + 9) = 5'a\6'^, . (1.28) 

This unitarity result can also be understood in terms of the algebra of the A sym

bols. Since we are assuming that the S-matrix is analytic, and so can be defined for 

all complex 9, it seems reasonable to demand that (1.12) still makes sense if we inter

change 9i and 02- The equation now relates instates to out-states, rather than the 

other way round. If the original equation is then applied to what is now an in-state on 

the rhs, we find 

Aa,{9i)Aa,{92) = E - 92)Sll'=^i92 - 9,)A,,i9^)Ac,i92), (1.29) 

which relates an out-state to a sum of other out-states. However, the out-states form 

an asymptotically complete basis (as do the /n-states) and so cannot be broken down, 

leading us to identify the states on each side of the equation and thus yielding (1.26). 

If the t ime and space dimensions could be treated on an equal footing (e.g. by 

working in Euclidean rather than Minkowski space) the crossing symmetry result would 

have become Sal^{9) = S'̂ IHTT - 9). making it clear that i t amounted to allowing 
3201 

figure 1.1 just to be rotated on the page. In Minkowski space, this is still true; rotating 

the diagram is jus t not as trivial an operation. 
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Figure 1.6: Bound state formation 

1.2.3 The Bootstrap Principle 

It is normally assumed that at least some of the simple poles on the physical strip indi

cate the presence of bound states, either in the forward (s) or crossed {t) channel, as 

shown in figure 1.6. Note that this is consistent with there being no particle production 

provided such poles do not appear for physical values of 9. In fact, poles corresponding 

to bound states only appear for purely imaginary 9, wi th resonance states possible at 

complex 9. Note also that simple poles do not need to correspond to bound states, a 

fact that will become important later and will be discussed in Section 1.2.4. 

There are various reasons why this is taken to be true, such as: 

• in quantum mechanics, if there is a pole in the S-matrix for scattering a particle 

of f a po ten t i a l then the wavefunction for the particle bound to the potential can 

be constructed; 

• tree-level Feynman diagrams. 

In many other ways, however, it has to be taken as an axiom, without a rigorous basis. 

The "fusing angle" for i j -> /c is denoted as U-'j (as shown in figure 1.6) and 

indicates that 5)^ ' will have a simple pole at iUjj for the forward (s-channel) process, 

and TT - iUjj for the crossed (t-channel) version. The intermediate particle, k, is on-

shell and so survives for a macroscopic length of t ime. The "bootstrap principle" (or 

•'Such poles are always simple, though this is not necessarily the case in field theory. 
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Figure 1.7: The mass triangle 

"nuclear democracy") then states that k should be expected to be one of the other 

asymptotic one-particle states of the model. 

This has proved to be immensely useful in discovering the full structure of models 

once at least the fundamental particles—those from which all other particles can be 

built up as bound states—are known. By looking at the interactions of all known 

particles, adding any new states that show up as bound states of the known ones, 

and repeating the process until everything can be accounted for, all the particles in 

the theory can be found. Tha t is not to say that the problem becomes trivial—the 

fundamental particles must still be discovered by other means—but it is simplified 

greatly. 

O f course, it is not enough just to discover the presence of new states; we need 

to know their properties as well, such as their mass and, in particular, their S-matrices 

wi th other particles. Indeed, it is only through poles in these S-matrices that further 

new bound states can appear. 

For the forward-channel process, as particle k is on-shell, s = ml, so we have 

ml^ mj + mj -\- 2m,mj cos U^j. (1.30) 

This is a well-known trigonometric formula, and implies that Ufj can be represented as 

the exterior angle of a triangle of sides m/,/r)j and m^, as shown in figure 1.7. This 

also shows that the three fusing angles satisfy 

t y j + a j , + t^i, = 27r. (1.31) 

as might be expected f rom looking at figure 1.6. 

in addition, extending the dictates of factorisation (i.e. having to allow trajectories 

to be moved past a vertex) to the case where a bound state is formed yields figure 1.8, 
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e-i-ull. 

Figure 1.8: Bootstrap equation 

— '3132 

Figure 1.9: Three-particle coupling 

and the corresponding "bootstrap equation" 

fa^s^S'^l^iO) = fc%S'i\%{9 + iJf^,^)S%%{9 - iu%), (1.32) 

where /"/^ is the "three-particle coupling", as shown in figure 1.9. A t the pole where 

a bound state is formed, the S-matrix can be considered as a pair of such couplings, 

giving 

(1.33) 

This is a great help t o the aspiring state-hunter, as treating all the relevant S-

matrix elements at the point where the new bound state is expected to be formed as a 

set of simultaneous equations for the fs allows them to be found and substituted into 

(1.32) to give the S-matrices involving the new state. 

Another useful relation comes from equating the action of one of the conserved 

charges, Os on the state before fus ing— \A i {9 i )A j {92 ) )—and after—\A-j^{93)). The 

action is given by (1.8) and leads to the "conserved charge bootstrap" 

Q^̂ ) = Q;^)e'^^*' + qfe-'^'xi. (1.34) 
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It is interesting to note, as was pointed out in [17], that if we take the logarithmic 

derivative of the S-matrix, 

^ai>(0) = - / ^ l n S , , ( 0 ) , (1.35) 

expanded according to 

oo 

k=l 
and insert i t into the logarithmic derivative of the bootstrap equation, we recover 

<̂S = '^Se--- + ¥'S^'''-. (1-37) 

showing that the rows and columns of (p^^'> provide solutions for the conserved charge 

bootstrap (1.34). 

1.2.4 The Coleman-Thun mechanism 

If all poles were simple, and inevitably corresponded to the creation of a bound state, 

as in quantum mechanics, the story would now be complete. However, this is not the 

case; not only do some theories give rise to double, triple, or higher order poles, but 

not all simple poles have a natural interpretation in terms of bound states. 

The solution to this problem was discovered by Coleman and Thun in 1978 [18], 

in terms of anomalous threshold singularities. For a given Feynman diagram, if the 

external momenta are such that one or more of the internal propagators are simulta

neously on-shell (i.e. can be considered as real, rather than virtual, particles) then it 

turns out that the loop integrals give rise to a singularity in the amplitude. The bound 

states considered above are simple examples of this, with one propagator (the bound 

state particle) on-shell. 

In three or more dimensions, all the singularities which do not correspond to bound 

states show up as branch points, but in 1-l-l-dimensions, they can appear as poles. The 

practical upshot of this is that such poles should be considered as being due not to the 

tree-level diagrams we have been looking at so far, but to more complicated diagrams 

which are nonetheless composed entirely of on-shell particles, such as the one shown 

in figure 1.10. This diagram, if it was possible, would be expected to produce a double 

pole in the appropriate S-matrix element. 
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Figure 1.10: Example on-shell process 

A useful "rule of thumb" is that the order of pole a diagram gives is equal to the 

number of "degrees of f reedom", e.g. the number of internal lengths in the diagram 

which can be independently adjusted without destroying it. For example, in the bound 

state diagram, the only internal length was the bound state line, but this could be 

made as long or short as desired wi thout problems. Similarly in figure 1.10, the upper 

or lower triangles can be scaled independently. 

The origin of this rule lies in the fact that, when the Feynman integral of a diagram 

with P internal propagators and L loops is calculated, it turns out to give a pole of 

order p = P — 2/.. (Further details can be found in [6].) We now need to apply 

Euler's well-known formula vertices - edges -I- faces = 1 for any closed diagram, i.e. 

V - P + L = 1 , t o get p = 21 / - P - 2. Each of the V vertices is of three-point 

type"*, and each propagator is attached to two vertices, except for the four external 

ones (which are not counted in P ) , so P = Thus, p^L-\-l = \ V ^ ^ . 

The easiest way to proceed from here is to consider this purely as a problem of 

topology, and start wi th the diagram without external legs (i.e. with 4 2-point vertices 

and V - 4 3-point ones), then successively remove 2-point vertices and their attached 

propagators. Since the position of these vertices is dictated by the other vertices 

present, this cannot change the number of degrees of freedom. Once this procedure 

has been exhausted, we can continue by removing the 1-point vertices (together with 

their attached propagator), at the cost of one degree of freedom per vertex. Proceeding 

in this way, we eventually end up with a diagram containing only 3- or 0-point vertices. 

*By counting the number of faces as the number of loops, we have implicitly taken the points 

where two particles collide but do not bind not to count as vertices. This is different to the usual 

interpretation of Euler's formula, but not inconsistent with it. By taking the diagram to exist in three 

dimensions, a topological transformation can be applied to remove the "extra" vertices and faces. 
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A closed network of 3-point vertices can have had no propagators or vertices removed 
f rom it during the above process, and so, if present, must have existed as a disconnected 
set in the original diagram. Since this is not possible, and since such a network would, 
in any case, not permit momentum to be conserved at each vertex, we must in fact 
have only 0-point vertices, i.e. isolated points. We still have an arbitrary choice of 
origin to make, and so will choose to locate it at one of the vertices. Each of the 
remaining points can then be moved freely and independently, giving the diagram two 
degrees of freedom per vertex. 

Removing a 2-point vertices and b 1-point ones leaves V - a - b vertices and 

P—2a—b = 0 propagators. Allowing for the b degrees of freedom which were lost along 

the way, this implies that the original diagram had 2{V-a-b-l)-\-b = 2V-2a-b+2 

degrees of freedom. Using the fact that there can be no propagators left, this is just 

2V- P-2 = p. For later reference, note that this argument depends only on the fact 

that no initial vertex is of any more than 3-point type, and not on the fact that all 

vertices are of this type, as the first results do. This means that , although calculating 

the order of a diagram just by halving the number of vertices is probably the easiest 

approach in the bulk, using the number of degrees of freedom is a more generally 

applicable method. (Note, also, that it makes no reference to the integrability or 

otherwise o f the theory.) 

Through this method, a pole of any order can be explained in terms of a sufficiently 

exotic on-shell (or Landau) diagram. The one remaining problem is that the only such 

diagram which could ever explain a simple pole is the formation of a bound state. If 

we are to argue that this does not always happen, we have to find a process to take 

its place. 

Perhaps the most obvious way that the order of the diagram could be reduced 

would be if it so happened that one of the "internal" S-matrix elements had a zero 

jus t at the right rapidity. However, even if this does not happen, the order can still be 

lower than expected. 

The explanation for this is that there is not necessarily just one diagram which 

can be drawn to f i t a given pair of incoming particles. For example, in figure 1.10, 

the theory might allow a different set of particles to be used for the internal lines, 

e.g. substituting anti-particle for particle on each line in the upper or lower triangle, 

wi thout disturbing the diagram. It is even possible that an entirely different diagram 
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could be drawn to f i t the same external lines. In such a case, all possible diagrams must 

be added together with appropriate relative weights. If a cancellation occurs between 

the different diagrams, then the overall order o f the pole produced is lower than what 

would be expected for any of the diagrams individually. For our example, if this sum 

came to zero, then they would collectively contribute a simple, rather than a double, 

pole. 

1.3 Boundary Geld theory 

The theories we have been considering so far have lived on the "full line" stretching to 

infinity in both directions. Many interesting new features arise if we insert a "wall" at 

X = 0 to restrict the world to the "half line" between zero and negative infinity Far 

away f rom the wall, particles behave in exactly the same way as before but, when the 

approach the wall, two things can happen. Either they will reflect off it, or they will 

bind to it, forming a boundary bound state. The introduction o f a wall is thus not just 

a simple matter of geometry, and a boundary analogue of the S-matrix, termed the 

"reflection factor" must also be introduced. 

This idea was first introduced by Cherednik [19], though it took 10 years or so for 

the topic to be put on a footing comparable with the bulk theory. This was achieved 

by Ghoshal and Zamolodchikov [13], as well as Fring and Koberle [20] and Sasaki [21]. 

A good review of the topic can be found in [22]. 

In algebraic terms, Ghoshal and Zamolodchikov imagined the ground state of such 

a theory—|0)B—as being formally created from the ground state of the bulk theory 

by a "boundary creating operator" 6 , creating an infinitely heavy and impenetrable 

particle B sitt ing at x 0. Thus 

|0>s = e|0). (1.38) 

While this is a purely formal object, it makes analogy with the bulk theory straight

forward. Far f rom the wall, everything is exactly the same as for the corresponding 

bulk theory, allowing the same set of asymptotic particle states, so an instate of the 

boundary theory is just 

Aa,{9i)A,,(92). ..AS,{9N)\0)B = A ^ ^ M •.. As,i9,,)B\Q), (1.39) 
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Figure 1.11: Boundary reflection factor 

with 9i> 92> ••• > 9n> 0. 

By analogy with the bulk S-matrix, they then introduced a reflection factor to 

interpolate between the in- and ouf-states through the relations 

A,i9)B = R',{e)A,i-e)B. (1.40) 

illustrated in figure 1.11. 

Following the previous discussion, we will consider the boundary version of inte-

grable theories. This means that the introduction of a suitable "wall" will involve 

modifying the action by adding a boundary potential term which will restrict the par

ticles to the half-line, but also leave the theory integrable, allowing us to still have 

the useful features of factorisability and lack of particle production. Importantly, this 

means that only the 1 ^ 1 reflection factor will need to be considered. 

Assuming such a wall can be built, the logical next step is to search for boundary 

analogues of the four conditions placed on the S-matrix above. Of the three symmetries 

enjoyed by the S-matr ix—P, C and T—only time-reversal symmetry inevitably remains, 

demanding Rl{9) = Ra{9). The presence of charge conjugation symmetry is generally 

permitted by some choices of boundary condition, but is not inevitable, as we shall 

see later. Finally, parity symmetry must inevitably be broken by the introduction of a 

wall of any type. The four S-matrix conditions, however, all have analogues for the 

boundary, and are sufhcient t o specify the reflection factor up to a boundary CDD 

ambiguity which satisfies the same constraints as for the bulk. 
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Figure 1.12: Boundary Yang-Baxter equation 

1.3.1 Boundary Yang-Baxter equation 

The demands of factorisation again require that trajectories should be able to be moved 

past boundary vertices, i.e. the points where particles interact with the boundary. This 

is shown in figure 1.12, or algebraically as 

s',l%iei - d2)Rii{ex)s%',i{e, + B2)R%{e2). ( i . 4 i ) 

1.3.2 Boundary unitarity condition 

This is again a straightforward generalisation of the bulk requirement, and results in 

the condition 

Rmf^'ci-e) = 51 (1.42) 

Algebraically, this results from the demand that the reflection factor should also be 

analytic, and so (1.40) should make sense for negative 6. The argument then proceeds 

in the same way as for the S-matrix. 

1.5.5 Boundary crossing symmetry condition 

This t ime, trying to find a boundary analogue is somewhat more tricky, and in fact it 

turns out to be easier to find a "boundary cross-unitarity" condition 

K"'ie) = S%{2e)K^'^{-d), (1.43) 
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P 

= gaa 

Figure 1.13: Boundary bound state 

where 

In terms of the reflection factor, this can also be writ ten as 

Rti9) = S%{29)R'^{iir-9). 

(1.44) 

(1.45) 

1.3.4 Boundary bootstrap 

Wi th the introduction of the boundary, there are now two types of bound state to 

consider: bulk "bound state" particles, and "boundary bound states". The second 

type arise due to an incoming particle binding to the boundary, changing its state, as 

shown in figure 1.13. For a particle a changing the boundary from state a to state P. 

we can define a boundary fusing angle u^a. with a corresponding pole in the reflection 

factor at iu^g. 

This also leads to the introduction of a set of boundary couplings g'^. Again, the 

reflection factor at a boundary fusing angle can be considered as a pair of boundary 

couplings, giving 

Alternatively, if the particle c can be formed as the bound state of two equal-mass 

particles in the bulk theory, we would expect the process shown in figure 1.14, giving 

(1.47) 
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Figure 1.14: Process involving a bulk and a boundary coupling 

All this allows us to play a similar game to before to determine the boundary 

spectrum. Assuming that all boundary states other than the lowest (vacuum) state 

can be formed by the binding of a bulk particle to the boundary, and that we can 

somehow construct reflection factors for the vacuum boundary state for all the bulk 

particles, we can search their pole structures for evidence of further boundary states. 

Constructing a new set of reflection factors for these states, searching again, and 

repeating until all the poles in all the reflection factors can be accounted for without 

introducing further boundary states, we can hopefully obtain the entire spectrum. As 

before, this relies on introducing no more states than are necessary to complete the 

process, which might, in theory, mean some are missed. However, that has so far never 

been found to happen in practice. 

For the bulk bound states, factorisation demands that we be able to move the 

boundary interaction past the bound state formation vertex as shown in figure 1.15, 

leading to 

f,''Rt{d) = fc''''Rtl(e + iu',,)s'^;,^i2e + iu',, - iul,)Rt,{e - ml,). ( i . 48 ) 

A similar demand for the boundary bound states leads to figure 1.16, and the 

corresponding requirement 

g r f ^ m = 9p'sfeie + iii,)RU^)5fcie - iu$,). ( i . 49 ) 
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Figure 1.15: Boundary-bulk bootstrap 
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Figure 1.16: Boundary-boundary bootstrap 

1.3.5 The boundary Coleman-Thun mechanism 

Though the discussion is essentially analogous to that of the bulk, the Coleman-Thun 

mechanism becomes increasingly complicated with a boundary present [61]. This is 

because, as well as the processes which were possible in the bulk, a new set become 

possible involving the boundary reflection factors. It is even possible to formulate 

on-shell processes which involve cancellations between bulk S-matrix elements and 

boundary reflection factors. One important result which does, however, remain true 

is that the naive order of an on-shell diagram is equal to the number of degrees of 

freedom. This (or alternatively using p = 2V - P-2) is perhaps the most useful way 

of proceeding, now that there will be a mixture of 3-point bulk vertices and 2-point 

boundary ones present. 

There are two types of process: ones which involve the boundary vertices ("bound

ary dependent") and those where the only interaction between the particles and the 
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Figure 1.17: Some common boundary independent Coleman-Thun processes 

Figure 1.18: Some common boundary dependent Coleman-Thun processes 

boundary is t o reflect f rom it ("boundary independent"). Reflection factors, in gen

eral, have a factor which is independent of any boundary parameters present, but which 

nonetheless contains simple poles. Wi thout the Coleman-Thun mechanism, such poles 

would have no explanation, since any pole which was due to the formation of a bound 

state with the boundary would be expected to depend on the properties of the boundary. 

Figure 1.17 shows two possible boundary independent processes. In many models 

where two equal-mass particles can form a bound state at relative rapidity a , it would 

be expected that the reflection factor would have a pole at ^{TT - a), explained by 

the left-hand diagram. The right-hand diagram shows a more involved process, which 

relies on having a suitable bulk vertex. The important point to note here is that, to 

make the triangle close, the angle of incidence on the boundary cannot depend on any 

of the boundary parameters. This means that none of the boundary-dependent poles 

come into play, and so there is always just a simple reflection from the boundary. 
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Some common boundary dependent processes are shown in figure 1.18. If an 
incoming particle with rapidity 6 forms a boundary bound state, then there will always 
be a pole in the reflection factor at 5 for the same particle on the new state, explicable 
by the left-hand diagram. The boundary initially emits the particle that helped to 
create it, being reduced to the original state in the process. The incoming particle 
then re-creates the new state. The other two diagrams simply rely on there being 
suitable boundary and bulk vertices to make them close. They are naively second 
order, but could be reduced to first order if the boundary reflection factor had a zero 
at the appropriate rapidity. 

The r ightmost diagram is the most interesting, since it can be reduced to first order 

either by a zero of the reflection factor, a zero of the S-matrix element or (depending 

on the theory) cancellation between diagrams for different arrangements of the internal 

loop. It is this last, in particular, which shows how delicate the relationships between 

the S-matrix and the reflection factors need to be to effect the result. 

Another point to make about boundary poles is that they can go from describing 

a bound state to being due to a Coleman-Thun process by a tuning of the boundary 

parameters. Of ten, at the point where this happens, a process like figure 1.19 becomes 

possible. This is a modified version of the right-hand diagram in figure 1.17, where the 

boundary parameter has been adjusted to make the particle reflect from the boundary 

at a pole. As the parameters are tuned on through this point, the diagram then 

collapses into a CT process such as the middle diagram of figure 1.18. While there is 

no general proof, it appears to be true for the sine-Gordon model at least that such a 

collision of boundary-independent and boundary-dependent processes must happen for 

a pole to cease to be due to a bound state. 
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Figure 1.19: Coleman-Thun process possible only 
at special boundary parameter values. 

1.4 Summary 

This chapter has provided a brief overview of the world of 1-l-l-dimensional integrable 

quantum field theory, and some of its most interesting features. The restrictions 

imposed by integrability make the axiomatic approach immensely powerful, allowing 

exact S-matrices to be found; this is the only arena where such results are possible at 

present, underlining its importance in uncovering non-perturbative results and pointing 

the way for tackling more realistic field theories. 



C H A P T E R 2 

Classical sine-Gordon Theory 

"All these have never yet been seen— 

But scientists who ought to know, 

Assure us that they must be so... 

Oh! let us never, never doubt 

What nobody is sure about!" 

—Hilaire Belloc 

29 
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2.1 Introduction 

"First, establish a firm base." 

— S u n T z u 

In the next chapter, we will study the effect o f introducing a boundary into the sine-

Gordon theory (which, as noted in the introduction, is the simplest A T F T ) . Before 

plunging ahead with the full quantum theory, however, it is worthwhile to take a look 

at the classical l imit. This exhibits essentially the same features as the quantum theory, 

but in a form that makes it much easier to gain a direct understanding of what is going 

on. 

To take a step even further back, the first section discusses the classical theory 

wi thout a boundary, attempting to motivate the idea that it possesses an infinite 

number of conserved charges, and so is integrable, wi th all the simplifying features that 

entails. While not being a proof, it will offer a means of calculating as many conserved 

quantities as desired. It will also help to show how "special" the sine-Gordon theory 

really is: it is one of only two possible integrable field theories with a single scalar field. 

Since it is not at all obvious that the introduction of a boundary should preserve 

many of these conserved quantities (let alone the infinite number required to maintain 

integrability) the restrictions integrability imposes on the possible boundary conditions 

will then be examined, and the most general integrable boundary condition found. 

To complete this chapter, and present a physical picture to take into the next, 

the first few classical boundary bound states will be constructed by the method of 

images. The idea—which is perhaps familiar from its use in electromagnetism—is that 

a given process on the half-line can be described by the theory on the full line with a 

set of "image" particles placed behind the boundary. This can indeed be done, for any 

integrable boundary condition. Lastly—and with the benefit of hindsight—we will use 

this to make some predictions for the full quantum theory, smoothing the path ahead. 
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2.2 The bulk theory 

The classical action for the theory on the whole line is 

/

oo roo ^ 2 

dx dt ^^(d^ipf - J(cosiP<p) - 1), (2.1) 

where mo sets the mass scale and P is the coupling constant. The particular form 

of the potential term gives the theory its integrable properties, so let us, for the 

moment, consider a more general theory with a potential —W((p) so that we can 

investigate how special it really is. The following argument was first made by Ghoshal 

and Zamolodchikov [13]; the form given here is taken from [23]. 

To simplify the notat ion, i t helps to use light-cone co-ordinates, defined through 

d± = ^{dt±dx)- The equation of m o t i o n — d A = 0—then becomes d+d-ip = -V'{(p). 

To construct conserved densities, imagine that there exist two quantities, T and 

0 , such that d-T = 9 + 0 . Rewriting this using x and t, we find 

a , ( 7 - 0 ) = d,iT + Q). (2.2) 

d_ 

dt 
j dx{T-@) - [T + 0 ] ! ° , , = O, (2.3) 

showing tha t / dx{T - 0 ) is conserved. The search now is for suitable quantities 

7"; here, we will focus on polynomials in d^tp, d\ip and go order-by-order in the 

tota l number of -I—derivatives. This number will be denoted as s - I - 1 , with T j and © s 

standing for Ts and 0 s with s + 1 +-derivatives-'-. The conserved charge will then be 

annotated as 

Qs = jTs+i-es-idx. (2.4) 

where s can now be seen to stand for the spin of the charge. 

Three other points are worth noting: 

• tota l d+ derivatives can be dropped; 

• a polynomial in which no term has its highest derivative factor occurring linearly 

can never be a to ta l d+ derivative; 

• for each T j + i , there is a corresponding T _ s - i . obtained by interchanging 9+ and 

9_ throughout. 

^Focusing simply on polynomial functions, these will turn out to be unique. 
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Looking first at s = 1, we f ind: 

T2 = {d+ipf 

d-T2 = 2{d+ip)d+d-(p 

= ~2{d+ip)V{ip) (2.5) 

= d+[-2V{ip)], 

showing that (d+ip)'^ and -2V{(p) provide a suitable pair for any potential V. This, 

in fact, is not surprising, since Qi + Q _ i is just energy, and O i - Q _ i is momentum, 

two quantities that are always conserved. 

There is no solution for s = 2, and the first nontrivial result appears at s = 3, 

where 

T,= (f)\d+ipr + idl^f (2.6) 

provides a solution for any real or imaginary P, but only if V" — P^V'. This has the 

solutions 

P = 0 : V = A + B(ip-<po)\ (2.7) 

pjLQ : V = A-\-Be^'^-\-Ce-^'^, (2.8) 

for any constants A, B and C. If jS = 0, this corresponds to either the massive or 

massless free field theory, depending on whether or not 6 is non-zero. For /3 0, we 

get the (massless) Liouville model if 6 or C is zero. Otherwise, it is the sinh-Gordon 

model if jS is real, or sine-Gordon if it is imaginary. 

If we were to proceed with this, we would find only one more model with any 

conserved charges above s = 1, namely the Bullough-Dodd model, which appears at 

s = 5. However, the sine-Gordon model would turn out to have conserved charges 

at all odd s, which is the crucial point^. (In fact, since Parke's argument shows that 

any model wi th a conserved charge above s = 1 must have the properties needed to 

follow through the exact S-matrix approach, we already have all we need.) This, of 

course, still does not answer the question as to why this should be true. A better 

understanding can be gained once the sine-Gordon model is thought of as an ATFT, 

with an underlying Lie algebra structure. It is this structure that endows it with the 

symmetry that the charges flow from. 

^In practice, the existence of an infinite number of conserved charges was proved via the inverse 

scattering method [24]. 
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2.3 The theory on the half-line 

To introduce a boundary into the model, we must impose a boundary condition on the 

field, implemented through the addition of a boundary term to the action, i.e. 

roo 

^ = A u i k - / dtBiipB). 
J-oo 

(2.9) 

where ^ e ( f ) = ^ ( 0 , f ) . and so depends only on the value of the field at the boundary. 

The term Abuik is 

/

oo roo 
dx dtlid^^f-Wicp). (2.10) 

oo J—oo 

and we are assuming that the bulk potential has been chosen so as to make the bulk 

theory integrable. 

The equation of motion is the same as before (though restricted to apply only to 

the half-line) but the new term introduces the boundary condition 

dM.=o = -B'iiPB)- (2.11) 

Clearly, not all the conservation laws from the bulk model can still apply now that 

we have introduced a boundary (momentum, for example) but it still turns out to be 

possible to keep a (possibly infinite) subset. Working by analogy with the argument 

for the bulk, the problem arises because (2.3) is modified to 

9Qs 9 
dt dt 

f (Ts+i - 0 s - i ) 
J —oo 

= [Ts+i + 0 s - l ] - o o = ("̂ s+l + e s - l ) | x=0 . 

(2.12) 

The only way this can be saved is to demand that the rhs is a total t-derivative, allowing 

it to be incorporated into the Ihs to give a new quantity which is conserved. (For the 

quantities found so far, the Ts are t-derivatives, whereas the 0 s are not.) 

In general, 

~{Qs±Q-s) = ^ | ( 7 s + i - 0 s - i ± T _ s - i T 0 - 5 + i ) c / x (2.13) 

= I dt[Ts+i - © s - i ± 7 - -S -1 T e-s+i]dx (2.14) 

= ( T s + i T 7 _ s - i T © - s + i - © s - i ) l x = o . (2.15) 

This explains why momentum—Qi — C?_i—is not conserved (the final line reading 
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(7"2 + T-2 — 20o) |x=o)- For energy, on the other hand, we find 

^ ( Q l + O - l ) = ( T 2 - T _ 2 ) | x = 0 

= -dt(pB'iipB)U=o (2.16) 

= ^[-e(<pe)], 

by making use of the boundary condition. This gives us 

_9 

at 
r dxi^idt^f + i (ax 'P) ' + ^V(<p))dx + B{ipB) 

J-oo 

= 0 , (2.17) 

showing that energy is indeed still conserved on the half-line. The next natural step 

is to ask whether a B can be found that allows modified versions of all charges of 

the form Qs + Q-s to still be conserved. From above, this is true if (Ts+i + 9 s - i -

T_s_ i - 0_s+ i ) | x=o is a total t-derivative. 

Imposing this restriction on the s = 3 charge of the bulk theory, we find &'" = 

j B', whose most general solution is 

BiifiB) = M cos^itpB - (po), (2.18) 

for some constants M and tpo- The similarity of this solution to the requirement on V in 

the bulk theory makes it reasonable to imagine that , just as the bulk potential allowed 

conserved charges for all higher odd s, this form for 8 should too. This was finally 

proved for the classical theory through the inverse scattering method [25], where it was 

found that this is the most general integrable solution for 6 , It was also found that all 

the charges discussed here—"even parity" charges from the bulk theory modified by a 

boundary term—survived with this boundary condition. 

2.4 Particle content 

Having established that both the bulk and boundary theories are integrable, the next 

step is to find out what the theories actually describe. Due to the periodic nature of 

the potential, the sine-Gordon model is unusual in having an infinite number of vacua, 

at ^ for any n e Z . The "particles" of the theory therefore turn out not to be the 

usual localised humps in the field, but rather a configuration that interpolates between 

two neighbouring vacua, as shown in figure 2 .1 . 
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- 1 5 -10 - 5 10 15 

Figure 2.1: Single soliton solution 

This configuration has two useful properties. First, it is a "sol i ton", which means 

that it preserves its shape over t ime without dissipation or decay. Secondly, because 

it interpolates between vacua, it cannot be destroyed as that would alter the value of 

the field as x -> ±oo ; for this reason, the theory is often called "topological". The 

"topological charge" of a state is defined as the difference (in units of ^ ) between 

the value of the field at - o o and +oo and must be conserved. A single soliton state 

has charge 1, while an anti-soliton state (interpolating between the vacuum at - o o 

and the next lower one) has charge - 1 . 

If two (anti-)solitons collide, they are simply transmitted through the collision, 

wi thout changing shape, and so can truly be considered as particles (which, the theory 

being integrable, cannot be created or destroyed). If their rapidities are allowed to 

be complex, however, rather than purely real, the situation changes. If a soliton and 

an anti-soliton are given conjugate rapidities, a "bound state" appears. Due to the 

periodic up-and-down motion of the field, these particles are known as "breathers" and 

are categorised by the imaginary component of their rapidity, which determines their 

period and mass. 

The soliton and anti-soliton both have the same mass, which we shall call nris, while 

the mass of the breather formed by a soli ton-anti-soli ton pair at a relative rapidity of 

6 - iu is m = 2ms cos ( f ) . Tha t completes the particle spectrum of the bulk theory 
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as, i f two breathers are persuaded to bind together, they simply form a third breather. 

2.5 Construction of boundary bound sta tes 

Rather than try to analyse the boundary theory in a similar way to the bulk, it is easier 

to use the method of images. The idea is to find a particular configuration of the bulk 

theory where the value of the field at (p(0, t) happens to obey one of the integrable 

boundary conditions. The left-hand half line then provides a solution to the boundary 

theory. 

The vacuum state of the boundary theory simply requires that (/?(0, f ) = ipo for 

all t ime, whatever the value of M. so a suitably-placed stationary soliton is all that is 

required. By analogy wi th electromagnetism, we might then imagine that the boundary 

state consisting of n particles with rapidities 9i,92 9n corresponds to the bulk state 

wi th an "image" set of particles behind the boundary (with opposite rapidities) and, 

again, a stationary soliton near the boundary. 

This problem was first tackled by Saleur, Skorik and Warner [26], who found the 

3-soliton solution. The choice as to whether each particle was a soliton or anti-soliton 

and their relative initial positions selected which boundary condition was obeyed. In 

addition, in the Neumann limit the position of the stationary particle became infinite, 

reducing the result to a two-soliton solution. 

The natural generalisation of this is to consider a 2n -{- 1-soliton solution (which 

reduces to a 2n-soliton solution in the Neumann l imi t ) . This is easier than it might 

appear as, in the l imit where the particles are well separated (i.e. t ->• ±oo ) , the state 

o f the field at the boundary is determined only by the central stationary soliton and 

the two moving solitons that are closest, allowing the 3-soliton solution to be re-used. 

In addit ion, as SSW found in the 3-soliton case, the absolute positions of each pair 

of moving solitons are irrelevant in the solution of the boundary condition; it is only the 

phase delay that is important. Using this fact, any pair of solitons in the 2n-l- 1-soliton 

solution can be moved off to infinity (provided their phase delay is preserved), reducing 

it to a 2 A 7 - 1 - s o l i t o n solution. Using these two facts, it is perhaps beginning to become 

clear that the general solution can be built out of the 3-soliton solution with a little 

cunning. 
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2.5.1 Notation 

For the classical problem, it is convenient to re-scale the field and coupling constant 

to re-express the bulk sine-Gordon equation as 

(ptt-<l>xx = - s \ n { ( P ) . (2.19) 

where Ptp = (j). On the half line, the most general boundary condition then becomes 

dx<P\x=o = M 5 \ n ^ i ( t > - ( } ) o ) \ , = o - (2.20) 

The classical multi-soliton solution for the whole line has been known for some 

t ime, and is generally expressed in terms of Hirota's r-functions [27] as 

0 ( x , f ) = 4arg(T) = 4 a r c t a n f | ^ ^ ) , (2,21) 

where the r- funct ion for an A/-soliton solution is 

A/ 
T ( X , f ) = ^ eT(S j= i w ) exp 

™ f / 1 \ / 1 \ ] 

(2.22) 
\ K: -I- K: I I 

l<i<j<N 

The parameters kj are related to the soliton rapidities by kj = e^', so the solitons' 

velocities are given by 

/ /f2 — 1 \ 

- iU) • 
The a, represent the initial positions of the solitons (but see below) while the e,- are 

- l - l ( - l ) for solitons (anti-solitons). 

For the sake of simplicity, we shall number the particles in decreasing order of 

rapidity, so that particle 1 has the highest rapidity, particle 2 has the next highest, and 

so on. This ensures the logarithm in the r- funct ion is always real. Other orderings give 

the same result—as they clearly must—but it is less transparent that the r-function 

is real. 

2.5.2 The position problem 

Before going any further, a problem immediately arises with the interpretation of the 

3/ as the positions of the solitons. If this was truly the case, for example, a 3-soliton 
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solution as t ^ ±00 would reduce to a single-soliton solution with the same value of 

the position parameter. This, however, is not true. The one-soliton solution is just 

T i ( x , t ) = 1 + /'eiexp - x + 

leading to 

0 j ( x , t ) = 4arctan ^eiexp ) 

(2.24) 

(2.25) 

Taking the 3-soliton solution, note that , as t 00, the soliton with positive rapidity 

will contribute a highly negative exponential whenever it appears in the sum, whereas 

the one with negative rapidity will contribute a correspondingly positive exponential. 

From this, it is clear that the two dominant terms will therefore be the ones where 

/Lii = 0 and Us = 1. Thus, as t -> 00, 

r3 (x , t) 63 exp 

i — 62exp 

leading to 

03(x, t ) « 4arctan -62 exp 
2 V 1 + ^3 

(2.26) 

(2.27) 

If we now remember that tan ( x ± f ) = - t a n ( x ) - ^ this implies that 4arc tanx = y 

can be re-written as 4 a r c t a n - \ = y ± 2IT. Thus, we find 

' 1 - / C 3 ' 
(^3(x, t ) ± 27r « 4 arctan ( ei exp - ^ + f + ' ' "Vl - f /C3 

(2.28) 

The 27r on the Ihs, which is equal to the spacing of the vacua, just represents the fact 

that the Hirota solution imposes 0 = 0 at -00, while the natural assumption here is 

that (p = ±2TT. SO that the leftmost soliton reduces the field to zero heading in towards 

the central particle. Thus, we do indeed have a single-soliton solution, but with 

a, = a2 + 4 l n ( ^ — j (2.29) 

Repeating this exercise with t -> -00 instead gives the same result, but with 

replaced by ^ . Since we would like the stationary soliton to solve the same boundary 

condition in both cases (as this condition stays unchanged for all t ime) , it is clear that 

we are forced to take = ^, as SSW did. 

The reason for this is easy to see once it is realised that, to shift the solution in 

t ime, all that is needed is to shift each position parameter by veloci tyxt ime, irrespective 
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of any collisions which may have happened in the interim. The effects of collisions are 

thus built into the solution, and the parameters are only indirectly related to particle 

positions at any given t ime. In what follows, however, it will be easier to work in terms 

of "actual" parameters, and transform back to Hirota's parameters at the end. 

A more general analysis shows that the 2N + 1-soliton solution with N pairs of 

solitons with opposite rapidities examined at t -> - c o reduces to 2A/ + 1 single-soliton 

solutions as expected, but wi th each soliton position modified by a term involving all 

rapidities higher than its own. This means that the "position" parameters a,- only have 

a genuine interpretation as a position for the particle with the highest rapidity. As 

t -> -l-oo, the opposite situation arises, wi th the position parameters modified by all 

lower rapidities. To be precise, let us take x +00 and t -00 with | w v,-, to 

keep ourselves in the neighbourhood of particle /'. This means that / > N (we are 

considering the particles with negative rapidities). Then, by the same reasoning as 

before, the two dominant terms will be those with ixj = l.j < i and = OJ > i. 

This gives, for / — 1 even. 

/ - I 
r2N+i(x.t) ~ (-1)'^ HejBxp 

1 + iei exp 

+ 2 Y : " 
i < / ' < j < / - i 

1 i f , 1 

k;, + kj 

x + 

k j - k 

ki + kj + 2 I n ' — 
i < y < ' - i 

(2.30) 

leading to 

<t>2N+i{x. t) ftj 4 arctan ( e,-

+ 2 Y . 
!<;•</-1 

Thus, compared with the appropriate single soliton solution. 

kj - k , 

ki + kj 
(2.31) 

a, = a, + 4 Y I n f l - ' ^ ' 
1<;</-1 ki + kj 

(2.32) 

Note that , this t ime, 0 ^ 0 as x 00 is the natural situation, in agreement with 

the Hirota formula. For 2N + 1 - i odd, we need to use the same trick as for the 
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three-soliton case, but finish up with the same formula. Finally, for /' < A/ we need to 
take X - > —oo but the result remains true. Taking the other l imit (as t ->• -t-oo), the 
analogous result is 

i+l<J<2N+l V'f' + ' O / 

Note also that the only way to ensure the boundary condition stays constant in time 

is to impose k, = l/k2N+2-i-

From this, we can calculate the phase delay between any pair of particles with 

equal and opposite rapidities—/ and 2N + 2 - i—in terms of their "actual" position 

parameters as t - ) • - o o as 

kj - k , 
' " I I 

assuming / < N. 

a; + a2A/+2-/- = 3'; + a2A/+2-,- - 4 X ] In ( ki + kj 
(2.34) 

2.5.3 Solving the boundary condition 

As a warm up to the general solution, it is useful to consider the simplest possible 

solution, with only one stationary soliton. This corresponds to the ground state of 

the boundary model. In this case, all boundary conditions reduce to the demand that 

^|x=o = ^ 0 . for some constant Oo depending on the boundary conditions. (In the 

Dirichlet case, becomes simply 4>Q ) Putting this into (2.25), we find 

0 i ( O , t ) = 4 a r c t a n ( e i e ^ ) =cDo, (2.35) 

implying 

a i = 2 ln ( ^ e i t a n - ^ j . (2.36) 

Taking advantage of the fact that the 3-soliton solution must tend to this near 

the origin as t -> - o o , we can immediately write down the position parameter of the 

stationary soliton in the 3-soliton solution as 

a2 = 2 In f tan ^-f] - ( ' ^ \ = 2 In f tan ^ f V V (2.37) 

Noting that , in terms of the rapidity variable, ( ^ ^ ) ^ = tanh ( | ) ^ , this agrees with 

the formula for a^^ given by SSW in their appendix. They derive this specifically for 

^Their 33 is twice the 33 which appears in the Hirota formula, accounting for their loss of the factor 

of 2 in front of the logarithm. Also, they consider the left half-line rather then the right. 
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the case of Dirichlet boundary conditions, but it can now be seen to have the same 

form for all boundary conditions. 

2.5.4 The general solution 

By extension of the above argument, the position parameter of the stationary soliton 

in the 2N + 1-soliton solution is 

!< ;<« ^ - " ^ y 

As has already been mentioned, the general 2N + 1-soliton solution reduces to the 

3-soliton solution (involving the 3 slowest solitons) as t ->• - o o , so the phase delay for 

the slowest pair should be given by the SSW formula, which (with our conventions) is 

a w + i = 2 l n ew+itan— [ [ tanh 

a = 2 ln ^ - e i e 3 t a n h ( ^ 
-2 

tanh(e)" 
t anh^ (e -F / T? ) t a n h ^ ( g - / 7 7 ) 

tanh^(0 + C) tanhi (0-C) 

(2.39) 

where r? and C are the solutions of the simultaneous equations 

Mcos(^0o) = 2 cosh C cos 7? 

Msin(50o) = 2sinhCsin77. (2.40) 

The ambiguity in the sign of (2.39) is simply a vagary of the solution method (due 

to the fact that the bulk vacua are 27r-periodic, whereas the boundary vacua are only 

47r-periodic; working in terms of the bulk makes the stable and unstable possibilities 

appear together). We shall concentrate on the negative sign, which corresponds to 

the stable boundary value. 

By virtue o f (2.34), this can be re-written using the "actual" position parameters 

instead, as 
I ±1 

2 ln i - e i e 3 
t a n h ^ ( 0 + /??) tanh^(0- /T7) (2.41) 
tanh^ie + 0 tanh^(e-0 

Turning now to the faster particles, we need to use the fact that , for the slowest 

particles, only the phase delay is important. This means that we can take their actual 

positions off to ±oo without affecting the validity of the solution, and essentially reduce 

the problem to the 2N - 1-soliton case. Now, the next slowest particles have gained 

the mantle of being the slowest, and so must have a phase delay of the same form. 
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(Note that , in doing this, we have made the slowest particles collide with all the faster 

ones in turn on their way to infinity, changing their positions. The symmetry of the 

situation, however, ensures that the phase delays between the pairs of particles stay 

intact.) 

Repeating this for all the particles shows that, for each pair, all that is relevant is the 

phase delay, and this always has the SSW form. In terms of the position parameters, 

we then have 

a' = 2 In { -e/e2A/+2-/_[l tanh 
tanh ^ ( g - h / T ? ) tanh ^ ( 0 - / 7 7 ) 

tanh i ( 0 + C) tanh i ( 0 - C ) 

± 1 ' 

(2.42) 

where a' = a-, + a2N+2-i-

This completes the solution, but for one point: through this argument we have 

shown that if the 2N + 1-soliton solution exists then it must have the given form, but 

we have not shown that it actually exists. For that, we would need to substitute the 

results back into the Hirota formula to check—a cumbersome task, and one for which 

we lack the energy. In the meantime, we content ourselves with the observation that 

it seems a reasonable assumption, and bears up to all the numerical checks we have 

carried out. 

2.6 Boundary bound states 

2.6.1 Boundary breathers 

The natural progression from this is to consider extending the rapidities to complex 

values. While this can be used give a solution where breathers rather than solitons 

interact wi th the boundary, it can also be used to construct "boundary breathers" or 

boundary bound states. These solutions arise when the pair of particles which are given 

complex conjugate rapidities consist of one in front of the boundary and one behind. 

Due to the requirement that their rapidities must also be equal and opposite, this 

implies that they must be given purely imaginary rapidities. Curiously, in the Dirichlet 

case (as SSW noted) the pair of particles must also consist of two solitons or two 

anti-solitons, not a particle and its anti-particle as in the bulk. 
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Simply by continuing all rapidities to imaginary values, we can generate a sequence 

of bound states through solutions with successively greater numbers of solitons. The 

one subtlety is that both members of each pair have to be given the same initial position 

parameter for the solution to still obey the boundary condition. This is a consequence 

of the way the solution was found: the r- funct ion was split into real and imaginary 

parts, assuming all rapidities were real. Making some rapidities imaginary disturbs this 

in general, but putting both members of each pair at the same position allows the split 

used to remain valid. Since all other solutions to the problem with real rapidities can 

be related to this by a t ime translation, it is reasonable to assume that the same is true 

for the imaginary case. The only difference is that, with imaginary rapidities, there is 

no movement in real space. 

As with the bulk breathers, the period of a boundary breather is given through the 

imaginary part of the rapidity. For the 3-soliton solution, wi th the moving pair given a 

rapidity of 0 = iu, the period is 27r/sin(t7). Now, however, for the breathers coming 

f rom higher solutions, each pair has its own period. If there exists a common period, 

whose length is an integer multiple of the periods of all the pairs, then the motion is 

still periodic, but, in general, it will now be aperiodic. 

To demonstrate the form of the boundary breathers, we have chosen periodic 

solutions by giving each pair an integer period. These are shown in Figures 2.2, 2.3, 

and 2.4 for the 3, 5, and 7 soliton solutions respectively. 

2.6.2 Another bound state 

The breathers mentioned above are not the only bound states in the classical theory. 

The phase delay (2.41) becomes infinite at 5 = C. which must be due to the formation 

of a stable bound state. In the bulk theory, this could not happen (all bound states must 

be formed at imaginary rapidities), so it is further evidence of the changes wrought by 

the introduction of a boundary. 

Considering the 3-soliton solution, we can imagine the particle with negative rapidity 

as being taken off to infinity at this point, leaving just a two-particle process. The 

remaining moving particle sweeps past the boundary, shifting the stationary soliton on 

the way past; this only appears as a bound state when we restrict ourselves to the half 

line. Then, the incoming particle reaches the boundary and disappears, leaving the 
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Figure 2.2: 3-soliton solution, period 10 

Figure 2.3: 5-soliton solution, periods 10 and 12 
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Figure 2.4: 7-soliton solution, periods 10, 12, and 14 

boundary state changed. 

The final state can be found by considering the l imit of the 3-particle r-function 

where the position parameters of both moving particles are taken to infinity. The result 

of this is that becomes <P'Q, given by 

4 / V 4 
(2.43) 

2.7 Predictions 

The first prediction to take across to the discussion of the quantum theory is that there 

should be a hierarchy o f excited states. For example, the states formed by binding a 

soliton to the boundary should be analogous to the 3-soliton solution found above. 

After that , further solitons should create the quantum versions of 5,7 soliton 

solutions. Furthermore, the introduction of a breather should allow the formation of a 

state which could otherwise have been formed by two successive solitonic particles. 

A final, and slightly more subtle point, is that the "actual" position parameter used 

for a given pair of particles (with imaginary rapidity) is monotonically decreasing for 

u < 77, as shown in figure 2.5. This means that, in a given solution, the soliton pair 

wi th the least rapidity will be positioned farthest f rom the boundary. If we imagine 

that such a solution, translated into the quantum regime, is built up with the soliton 



2.7 Predictions 46 

Figure 2.5: Plot of a* versus u for TJ = 1.0 

finally positioned nearest the boundary interacting first, this means that particles must 

interact in decreasing order of rapidity. 



C H A P T E R 3 

Quantum Boundary 
sine-Gordon Theory 

"The most exciting phrase to hear in science, the one that heralds 

new discoveries, is not 'Eureka!' but 'That's funny ... 

—Isaac Asimov 

47 
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3.1 Introduction 

"Mathematicians are a species of Frenchman: if you say something 

to them they translate it into their own language and presto! it is 

something entirely different." 

—Goethe 

As we saw in the previous chapter, introducing a boundary into the classical theory 

brings wi th i t a number of new phenomena, and in particular a new set of boundary 

bound states. In this chapter, we will investigate these further in the full quantum 

sine-Gordon model. 

A major complicating factor in this work is the fact that even simple poles in the 

boundary reflection factors should not necessarily be interpreted as being due to the 

formation of bound states, since many have an interpretation through the Coleman-

Thun mechanism. Indeed, this model provides a good arena for demonstrating the 

range of possible explanations this mechanism can throw up, in some cases involving 

bulk and boundary matrices working together to induce a cancellation in the naive order 

of a diagram. 

The two main tasks, therefore, are to find suitable interpretations where required, 

but also to find a method of proving that the remaining poles are indeed associated 

with bound states. Two elementary lemmas—which simply serve to impose momentum 

conservation on boundary processes—will turn out to give us all the ammunition we 

need for this, and should also be readily applicable to other models. 

The groundwork for the study of the boundary sine-Gordon model was laid by 

Ghoshal and Zamolodchikov [13], before being taken further by Ghoshal [28] and Skorik 

and Saleur [29]. They provided the basic ground-state reflection factors, and investi

gated the first few excited states; we will take this forward to provide (hopefully) a full 

and rigorous solution to the problem. 

After reviewing these results in the first section, we will go on to a detailed investi

gation of the Dirichlet boundary condition (where the value of the field at the boundary 

is fixed for all t ime) . This displays most of the features of the general solution, and 

will allow us to extend the results straightforwardly to all other integrable boundary 

conditions. 
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3.2 Review of previous results 
3.2.1 The theory in the bulk 

As we discussed in the previous chapter, the classical sine-Gordon model (2.1) is in-

tegrable. This can be shown to be true at the quantum level as well [30] and so the 

exact quantum S-matrix can be found through the axiomatic program. The essential 

difference between the classical and quantum theories is that the breather particles, 

which could be formed classically by a soliton-anti-soliton pair at any imaginary rapid

ity, now become quantised. These states can now only be formed at relative rapidities 

o f / (7 r - /77r / 2A) , n = l.2 < A, where 

(3.1) 

and so will be labelled as B^. Their mass is therefore = 2msSin (n7r/2A). 

If we denote the soliton S-matrix as S^^iO) for rapidity d, with a, b, c, d taking 

the value -I- (—) if the particle is a soliton (anti-sol i ton), the non-zero scattering 

amplitudes [11] are S | | ( 0 ) = SZZ{0) = 3(6) (soliton-soliton or anti-soliton-anti-

soliton scattering), S^Z{9) = SzXi^) = b{d) (soliton-anti-soliton transmission), and 

St^{d) = 5:^1(9) = c{e) (soliton-anti-soliton reflection). Explicitly, 

a(0) = . sin[A(7r - ty)]p(ty), 

b{e) = s in(Au)p(u) , (3.2) 

c(e) = sin(A7r)p(u), 

where u = -id and 

1 °° r ( ( 2 / - 2 ) A - ^ ) r ( l + 2 / A - ^ ) ^ _ 
r ( ( 2 / - i ) A - ^ ) r ( i + ( 2 / - i ) A - ^ ) ' ' 

(3.3) 

As pointed out in [31], this factor can also be writ ten in terms of Barnes' diperiodic 

sine function 52(x\oJi,iiJ2) [32, 33]. This is a meromorphic function parametrised by 

the pair of 'quasiperiods' (0/1,^2) , with poles and zeroes at the following points: 

poles : X = niUi + n2(jJ2 (n i ,n2 = l ,2 ) 

zeroes : x = miUi + m2U2 ( m i , m2 = 0 , - 1 , - 2 . . . ) (3.4) 
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In terms of this function, 

1 52(7r-u f ,27r)S2(u f,27r) 
^^"^ - sin(A(ty - T f ) ) 52 (TP + t7 If, 27r) S2 ( - ( v |f, 27r) ' ^ ^ 

The amplitudes b(9) and c{6) have simple poles at 0 = ' ( T T - X ) ' 

n = 1,2 < A, which can be attributed to the creation of Bn in the forward 

channel. There are also poles at 5 = ^ in a(^) and b{d) corresponding to the same 

process in the cross channel. Since all poles that we will be discussing, both in the bulk 

and at the boundary, occur at purely imaginary rapidities, f rom now on we will use the 

variable u = —id and always work in terms of purely imaginary rapidities. 

3.2.2 The theory with a boundary 

Returning again to the previous chapter, the bulk theory be restricted to the half-line 

X G (-00, 0] while still preserving integrability by adding a "boundary action" term [13] 

00 
dt Mcos 

- 0 0 

(3.6) 

where M and ipo are free parameters, and ^e(0 = ^(X' t)\x=o-

This does not conserve topological charge in general, so four solitonic boundary 

reflection factors need to be introduced, as well as a set of breather reflection factors. 

The solitonic factors which we quote here were given in [13], while breather factors 

can be found in [28]. 

Solitonic ground state factors 

The reflection factors for the sine-Gordon solitons off the boundary ground state will 

be denoted by P±(u) (a soliton or anti-soliton, incident on the boundary, is reflected 

back unchanged) and Q±{u) (a soliton is reflected back as an anti-soliton, or vice 

versa). These are given by 

P+{u) = cosii + \u)R{u) 

P'iu) = cosi^-Xu)R{u) (3.7) 

Q ± ( i 7 ) = | s in (2Au) /? (u ) , 

where 

R{u) = Roiu)Ri(u). (3.8) 
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The first f a c t o r — R o { u ) — i s boundary-independent, and can be writ ten as 

r (1 + A(4/c - A ) - ^ ^ ) r (4A/C - '-^) 
Roiu) = n 

k=l 
r (A(4/c - 3) - ^ ) r (1 + A(4/c - 1 ) - i M ) ^ ' \ 

(3.9) 

The boundary-dependent term is Ri{u), given by 

/?i(ty) = ^ a ( r ? , t7)a(/i9, u), (3.10) 

where^ 

and 

_ n ( x . | - a ) n ( - x , f - u ) n ( x . - f + ^ ) n ( - x , - f + 1.) 
n ( x . f ) n ( x , - f ) n ( - x . f ) n ( - x , - | ) • 

The parameters £,77,i9, and k are real and arbitrary apart f rom being constrained 

by 

cos(77) cosh(i9) = - - ^ c o s ^ 
^ (3.13) 

cos2(77) + cosh2(i?) = 1 + ^ , 

The relationship of these parameters—which arise in the course of finding the most 

general solution to the four requirements given in Chapter 1—to the ones which appear 

in the action was, for a long t ime, unknown. The problem has only recently been solved 

by AI. Zamolodchikov; further details can be found in Appendix A.2. These formal 

parameters, however, are easier to work with in practice than the physical (po and M, 

and so we shall continue to use them. 

The theory is invariant under (po -> <Po + and also under the simultaneous 

transformations cpo - ) • — a n d soliton -> anti—soliton. Introducing the boundary 

breaks the degeneracy of the bulk vacua, and selects the lower line in figure 3.1 as 

the lowest-energy state, wi th the upper line as the first excited state. Continuing ipo 

through ^ thus simply interchanges the roles of these two states, and selects the upper 

one as the ground state. 

In light o f this, we are free to choose (po to be in the interval 0 < (po < ^. Note 

also that the topological charge of the ground state is no longer zero, as in the bulk 

'Note that there is a small error in Ghoshal and Zamolodchikov's formula (5.23) for a. This 

corrected version was supplied to Patrick Dorey and the author by Subir Ghoshal. 
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27r 

0 

model, but 

0 (" 

Figure 3.1: Vacuum structure 

(3.14) 

with the charge of the first excited state being 1 — We will f ind—at least for 

the Dirichlet case—that all the boundary states have one of these charges so, for 

convenience, we shall designate them simply as 0 and 1 respectively. 

Breather ground state reflection factors 

For the breather sector, Ghoshal [28] obtained the relevant reflection f a c t o r s — R " Q ) { U ) 

for breather n and boundary ground state |0)— f rom the solitonic reflection factors 

using the general boundary bootstrap equation [20, 13] 

where = 7r - ^ , and the Rl^^^^iu) are the solitonic reflection factors, such that 

is the factor for a soliton to be reflected back as an anti-soliton and so on. 

The f j ] , are the bulk vertices for the creation of breather n f rom (anti-)solitons a and 

b. These obey f^_ = ( - 1 ) " ^ ' + . The bootstrap is illustrated in figure 3.2. 

3.3 The boundary Coleman-Thun mechanism 

To discover the boundary spectrum, the most natural approach is to look for simple 

poles in the reflection factors, which might be expected to be related to the formation 

of boundary bound states. As we have already mentioned in section 1.2.4, however. 
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•• u 

Figure 3.2: Breather bootstrap 

a complicating factor is the fact that not all simple poles correspond to bound states, 

some having an interpretation as anomalous threshold singularities. 

This problem becomes especially serious once a boundary is involved, due to the 

increased complexity of the on-shell diagrams which become possible. This makes it 

hard to be sure that any given pole really does correspond to a new boundary bound 

state. In the bulk, a simple geometrical argument shows that poles in the S-matrix 

elements of the lightest particle can never be explained by a Coleman-Thun mechanism, 

and so must always be due to bound states [17]. We wish to find analogous criteria for 

the boundary situation. To this end, the following two lemmas turn out to be useful. 

Suppose the incoming particle is o f type a, and that its reflection factor has a simple 

pole at e = iu. 

Lemma 1 Let Ug = min^ c (TT - U^,^). If u < Ug, then the the pole at iu cannot be 

explained by a Coleman-Thun mechanism, and so must correspond to the binding of 

particle a to the boundary, either before or after crossing the outgoing particle. 

Proof: All processes must take the form shown in figure 3.3 or the crossed version 

shown in figure 3.4. Conservation of momentum demands that all rescattering must 

take place within the hatched region, which is drawn from the furthest point from the 

boundary where either the incoming or outgoing particle undergoes any interaction. If 

neither particle decays, we simply have a diagram of the form of figure 3.8 or figure 3.9. 

Otherwise, momentum conservation requires that neither product of the particle which 

decays on the boundary of the hatched region has a trajectory which takes it outside 

that region. Fixing the notation by figure 3.6 (with angles Ug^ and U^^ defined corre

spondingly), this reduces to demanding vr - Ugiy < u < Ug^. If we introduce Ug then 
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Figure 3.3: General process, with Figure 3.4: General process, with 
incoming particles uncrossed incoming particles crossed 

we must have Ug < u < -K - Ug (i.e. just u > Ua. 3S u < f ) . Thus, if u < Ug, then 

the only possible explanations for the pole are figure 3.8 and figure 3.9. 

Lemma 2 If the boundary is in its ground state, then lemma 1 can be strengthened, 

requiring that the incoming particle bind to the boundary if u is outside the range 

Ug < u < J -Ug. In addition, / / m i n ^ c Uf,^ > f , the incoming particle must always 

bind to the boundary 

Proof: Wi th the boundary in its ground state, all rescattering must take place in 

the area shown in figure 3.5. Reasoning as before but demanding that both product 

particles be emitted into this more restricted region, we find TT - L/f^ < u < C/gc - f , 

or Ua < ty < f - Ug. In addition, both particles b, c must be emitted into an angle of 

f , so U^^ < f for at least one pair of particles b, c. If either of these conditions are 

violated, then the incoming particle must bind to the boundary. 

These two results, between them, will allow the spectrum of the boundary sine-

Gordon model to be fixed completely, provided it is assumed that no pole corresponds 

to the creation of a boundary state if it has an alternative (Coleman-Thun) explanation. 

For the problem under discussion, writ ing the rapidity bounds Ug as for the 

soliton (anti-soliton) and as Un for the Bn, we have 

71" "maxTT 

u 

= 2 2A 
— TT (3.16) 

m̂ax 2A • 



3.3 The boundary Coleman-Thun mechanism 55 

Figure 3.5: General process when 
boundary is in ground state 

Figure 3.6: Decay process 

where Sn™^ the highest-numbered breather present in the model. To derive these 

results, note that a soliton (anti-soliton) can only decay into an anti-soliton (soliton) 

and a breather (wi th vertex = f + 5x)- ^ breather can either decay into a sol i ton-

anti-soliton pair {U1_ = x - ^ ) or a pair of breathers (Un^ = ^ r - ^ with n = m+ I 

or m = A7 + /, or = ^ ^ ^ ^ with l=n + m). 

These restrictions can also be combined to produce a stronger version of lemma 

1 when the incoming particle is a soliton. \f U+ < u < f . decay within the hatched 

region is only possible into the topmost breather and an anti-soliton. One or other of 

these particles will be heading away f rom the centre o f the diagram. If the process in 

uncrossed, as in figure 3.3, the breather will be created heading towards the centre of 

the diagram, the anti-soliton away (we are being somewhat cavalier with the direction 

of t ime; this should be considered as a purely geometric argument). The anti-soliton 

must itself obey our lemmas; if in any further decay before it reaches the boundary 

one of the decay products is heading away from the boundary, then there would be no 

way to close the diagram while conserving momentum at every vertex. For a crossed 

process (figure 3.4) the breather is the outermost particle, and is again restricted in 

its decay by our lemmas for the same reason. 

The anti-soliton created by the uncrossed process heads for the boundary with a 

rapidity less than U- and so, by lemma 1, may not decay. By the same token, the 

breather of the crossed process cannot decay either so, if the initial soliton is not to 

form a bound state, the only possible alternative processes are figure A.2 and figure A.3. 

If these are found not to occur (for example, if the necessary boundary vertices are not 
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present) then the pole must correspond to a bound state for any u < j. 

3.4 The Dirichlet case 

3.4.1 The soliton sector 

The Dirichlet case is exceptional in that topological charge is conserved and so Q± = 0. 

The remaining factors can be rewritten as 

r ( i + 2 / A ± i + ^ ) r ( A + ( 2 / - 2 ) A T i + ^ ) ^ 

_ r ( ^ + ( 2 / - i ) A + f + ^ ) r ( ^ + ( 2 / - i ) A - f + ^ ) 

{u^-u)], (3.17) 

where RQ{U) is as before and ^ = 77 = Taking ipo to lie in 0 < (po < | . ^ is in 

the range 

0 < « < ^ ^ . (3.18) 

These factors can again be writ ten in terms of Barnes' multiperiodic functions, as 

PHU) - Ro{u)^. { ) f . (3.19) 
5 2 ( ^ T f + 7 r - u f , 2 7 r ) S 2 T f + u | f , 27r) 

P\u) = Ro{u)Y[ 
1=1 

with 

R ,,A - 5 2 ( f - H ^ . 2 7 r ) S 2 ( j ^ + H j ^ . 2 7 r ) 

5.4.2 The breather sector 

In the Dirichlet case, wi th topological charge conserved, the bootstrap equation reduces 

to 

^ " . ^ w + y ) ^^fS^'K) - y ) - W^^y (3.21) 

Ghoshal found that, for the boundary ground state, the breather reflection factors 

were 

R^,)iu) = RI;'HU)R["\U), (3.22) 
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Figure 3.7: 
^-independent pole 

Figure 3.8: 
Bound state 

Figure 3.9: 
Crossed process 

where 

and 

\ 2 X ^ 2 ) 1=1 l 2 X + 2 j 

R["\U) = n 
' = ¥ + 5 + 2^) 

This makes use of the notation 

(x) = 
s i n h ( f + ^ ) 

s i n h ( f - ^ ) 

which will also be helpful later. 

3.5 Initial pole analysis 

3.5.1 Solitonic ground state factors 

(3.23) 

(3.24) 

(3.25) 

The Ro{u) factor is insensitive to the boundary parameters, and so all its poles should 

be explicable in terms of the bulk. The only poles are at u = - 1 ^ , where N = 1.2,3 

with no zeroes. These can be explained by the creation of a breather which is incident 

perpendicularly on the boundary, as shown in figure 3.7. Here, as in all subsequent 

diagrams, the t ime axis points up the page, and the x axis points to the right. Solitons 

and anti-solitons are drawn as solid lines, while breathers are drawn as dotted lines. 

Turning now to ^-dependent poles and zeroes, we find zeroes at 

£ ( 2 n + l ) 7 r 
(3.26) 
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\x) \x) 

\y) 

Figure 3.10: Boundary bound-state bootstrap 

where n = 0 , 1 , 2 for P + , and at the same rapidities but with ^ -> for P" 

There are also poles in P+ only at u = i/n. with 

(2n+l)7r 
2A (3.27) 

A soliton can only decay into an anti-soliton and a breather, with a rapidity difference 

between the two of f + ^ for breather b. Thus, by lemma 2, all these poles must 

correspond to bound states, as shown in figure 3.8. For reasons which will become clear 

in a moment, we shall depart f rom the convention of [29] and, rather than labelling 

the state corresponding to pole as/3n. will label it according to topological charge 

and n as | 1 ; n). 

3.5.2 Solitonic excited state reflection factors 

Using the boundary bootstrap equations given in [13]—which come from considering 

figure 3.10—solitonic reflection factors can be calculated for this first set of bound 

states. In our case, these equations read 

(3.28) 
c.d 

where a, b, c, and d take the values + or - and a^x is the (imaginary) rapidity of the 

pole at which particle a binds to boundary state |x) to give state |y) . The mass of 

state | y )—my—is given by 

my = + /Dj cos (3.29) 
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x-y 

-y 

Figure 3.11: States can be created either by breathers or solitons 

The next most obvious way this could happen is via the soliton and anti-soliton 

forming a breather, either before or after the anti-soliton has reflected from the bound

ary. The poles required to allow the first process (of the form 7r + | - ^^^^^^) are not 

present, whereas those necessary for the second (of the form w ^ ) are. Our candidate 

process therefore becomes figure 3.11, where the soliton and anti-soliton bind to form 

a breather, which then creates the state in one step. It is quite difficult to imagine any 

further alternatives, so let us—for the moment—take the existence of such a process 

as a necessary condition for a pole to be responsible for the formation of a boundary 

state. 

The consequence of this is that the w/v poles are selected as the only possible 

candidates, and it appears that new bound states can only be formed by anti-solitons. 

Such states hence have charge 0 (agreeing with the idea that they can also be formed 

f rom the ground state by the action of a breather). In addition, it is also clear that only 

those w/v such that iv/y < i/n can be considered, as, otherwise, the breather version 

of the process would see the breather created heading away f rom the boundary, rather 

than towards it. 

Designating such a new state as |0; n, N) and bootstrapping on it leads to 

P\0:n.N)(^) = Piln)(^)3{u - WN)aiu + WN) (3.35) 

P\t.n.N)(^) = P^.,n)(u)biu~WN)b{u+WN) + P^l^^(u)c(u-WN)c{u-hWN). 

Substituting in (3.31) and taking advantage of the fact that = T^ (so a(iy±iv/v) = 
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a(u± i//v)), this becomes 

P\o:n.N^^) = al{u)P+{u)a{u-ujj)a{u + i7^) (3.36) 

P\t.n.N}(^) = 3l(Pio)(^)biu - 17^)b{u + + ^ J ( t y ) c ( i y - V^)c{u + V^)), 

which (apart f rom an extra factor of a^(u)) is just the first bootstrap (3.30) under the 

transformation ^ ->• 7r(A + 1) — £ and with solitons and anti-solitons interchanged on 

the Ihs. Thus, the pole structure follows naturally f rom the above. This can also be 

wri t ten as 

P|J;n,A/)(") = P^^{u)al{u)a],{u). (3.37) 

Repeating the factorisation argument shows that now we should focus on poles 

such that fn ' < i^w- These are present now in the solitonic factor, though (due to 

the extra factor of al{u)) only for n' > n. However, since any such state obeys 

yn> > fn' in any case, this restriction is not relevant. The resultant state must 

now have charge 0. 

A pattern is emerging, and it is not hard to see how the process would continue. 

Starting f rom the ground state, and taking the broadest guess (given our assumptions) 

for the spectrum, states can be formed by alternating solitons and anti-solitons, the 

solitons having rapidity Um and the anti-solitons having rapidity (for some sets n 

and A/). An schematic pole structure is shown in figure 3.12, in terms of which the 

criterion for a state to be in the spectrum should be that we begin with one of the Un 

and then, as we move along the index list, move down the diagram, switching from 

side to side as we go. If we finish on a i^m (indicating that the most recent particle 

to bind was a soliton) the state has charge 1 while, if we finish on a Wm (meaning an 

anti-soliton) the state has charge 0. 

Annotat ing such a state by its topological charge, c, and the sets n and A/ as 

|c; n i , A/i, /72, A/2 ) (noting > w^^ > i^n2 > > • • • ) , the solitonic reflection 

factors should be 

^ J . . M , . . . ) ( ' ^ ) = ^ ( c ) ( ^ ) < ( ^ ) ^ ^ . ( ^ ) - - - ' (3.38) 

with P^{u) = P|J)(u) and P^{u) = P|J)(u). From now on, however, it will be more 

convenient to consider a single index list, and denote a^^i'^) as am(u), giving 

PUn. . . ) ( ^ ) - Pfc) ( - )a i . ( '^ )a° . (^)a i3( '^ ) • • • (3.39) 
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W2—t 

W3—* 

W4—( 
t—Ui 
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We—< 

7r(2n+l) 
2X 

f 7r(2m-l) 

0 ^ 

Figure 3.12: Location of poles. (Note that, in this case, W2 can never participate in 
bound state formation as it is above UQ.) 

where k is odd if c is 1 and k is even if c is 0. We will call this a level k boundary 

bound state. If we choose the ground state mass to be mjSin^ ( ^ ) ' '^^^^ °^ 

this state is 

mni.n2.... = mssm' 

= /Ds Sin 

^ ^ i r\Ari i P\/Pn 

2X 

— ^ mscos 

J even 

/ odd 

+ E 
/ odd 

^ , (2/7, - l ) 7 r 
A 2A 

J even 

m^COS I - -
^ (2A7, + l ) x 

2A 

(3.40) 

(3.41) 

(3.42) 

This choice is convenient in that , as £ passes -K/P, the masses of the ground and first 

excited states interchange, in line with the idea that the states themselves swap at 

this point. An important point to note is that , in deriving all this, we have simply been 

considering the soliton sector. However, we will see that allowing breather processes 

as well does not give rise to any further states, merely additional ways to jump between 

states. The Dirichlet boundary condition is also special in that either the soliton or 

the anti-soliton can couple to a given boundary, but not both, as might be generically 

expected. 

Although we have built up the states by applying the solitons and anti-solitons in 

this alternating fashion, precisely how this happens in a given situation will of course 

depend on the impact parameters of the incoming particles. In figure 3.11 we already 

gave an example of the complicated way in which a process may be rearranged as these 

impact parameters vary, and the particular choices that we have adopted are mainly 

motivated by a desire to assemble the full spectrum in the simplest possible way. 
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Figure 3.13: Breather triangle 
process 

Figure 3.14: Breather double 
triangle process 

3.5.3 Breather ground state reflection factors 

We now return to the pole analysis, and examine the breather ground state reflection 

factors (3.22). Again, the factor /?g is boundary-independent, and so all its poles 

should have an explanation in terms of the bulk. There are (physical strip) poles at | , 

ik' ^"'^ double poles at f with / = 1,2 n - l . There are no zeroes. 

The pole at f is simply due to the breather coupling perpendicularly to the boundary, 

while the poles at ^ are explained by figure 3.13. Next, the pole at f - comes 

f rom a breather version of figure 3.7, 620 being formed. Finally, the double poles at 

f - 1̂  are due to figure 3.14. 

Moving on to the boundary-dependent part, there are poles at 

' ^ = A - 2 ^ 2 A ' 
(3.43) 

and zeroes at 

" = - | + 2 = ^ 2 A 

" ^ A + 2 = ' 2 A ' 
(3.44) 

where, for a breather n, I = n — 1, n - 3 / > 0. 

The set of poles can be re-written by noting that, for breather m. there is a simple 

pole of the form ^(i^n - W/y) for ail n. A/ > 0 and n. A/ e Z such that m = n+ N. 

This ties in wi th the discussion in the previous section, since these are the rapidities 

predicted for the single-step process which is equivalent to a soliton binding at an angle 

of Un followed by an anti-soliton at w^. 
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5.5.4 Breather excited state reflection factors 

Following the discussion of the solitonic excited state reflection factors, we can intro

duce corresponding breather reflection factors: 

RU.n. n,)iu) = Rip)a],'\u)a%\u)al^{u)... a^^u), (3.45) 

where R^{u) = R"Q^{U) and /?J(u) = R'{Q^{U). We have also defined 

(3.46) 

or 

a;i^'"(^) = n 
x= l 

( i I l-2x-n \ l \ ( i l + 2 x ± n , l \ 
2\ + 2 ) \ \ T , - 2\ +1) 

f A- l - 2 x - n _ X\ f j _ _ l+2x+n _ l \ 
\ \ - K ' ^ 2X 2J \\-K 2\ 2J 

V 
J_ _^ l -2x+n 

2X 
1^ l+2x-fi 

2X 

l -2x+n 
2X 

+ 1) f l - - l+2x-n , l \ 
+ 2J \\-K 2\ ^ 2 ) 

with a°:" '(u) = a^i'-^iu) 

For R'^^{u), there are poles at 

u 

Li — 

2 ~ A ^ A 2A 
TT e (/ + 2)7r 
2 A 2A 

and zeroes at 

^ TT ( / - 2 ) 7 r 
A 2 ^ 2A 

(3.47) 

(3.48) 

(3.49) 

For the other factors, a^^'^iu) has physical strip poles/zeroes at 

- X + 2 + 2X 

u = 2\ 

" - A 2 + 2X 

poles: p = 2 / 7 - m + 2 x ± l 

zeroes: p = - m - | - 2 x ± l 

poles : p = m -2x ±1 

zeroes : p = -2n + m-2x±l 

poles: p = - 2 n - | - m - 2 x ± 1 

zeroes : p = m - 2x ± 1 

(3.50) 
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Figure 3.15: Location of poles in the example 

while a° ' ' " (u) has them at 

" — 2 ^ 2\ 
poles : 

zeroes : 

P = -2N-m + 2x±l 

" — \ ^ 2 ^ 2\ poles : P = -m + 2x±l 

zeroes : P ^ -2N-m+2x±l 

II - L - E A. 22L 
" ~ X 2 ^ 2X poles : P = 2N + m-2x±l 

zeroes : P = m - 2x ± 1 

1, — L A. E A. BE 
^ - \ + 2 ^ 2\ 

poles : P = m - 2x ± 1 

zeroes : P = 2N + m-2x±l 

These poles will be further discussed in section 3.7 below. 
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(3.51) 

To get an idea of the full picture, and which processes are responsible for the remaining 

poles, we will now look at one particular example in more detail. If we select ^ = 1.67r 

and A = 2.5, then we have the first two breathers in the spectrum, with the solitonic 

poles taking the form Un = l ^ i ^ ^ and = l ^ i ^ ^ ^ . Thus, for this case, only 

the poles at i^o.^i and wi are on the physical strip, and so figure 3.12 is simplified 

to figure 3.15. This is the simplest case which requires a broader spectrum than that 

postulated in [29]. First, let us turn to the soliton sector. 
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3.6.1 Boundary ground state—soliton sector 

As argued above, the soliton can bind to the boundary at all rapidities i^n which are 

in the physical strip, here just comprising UQ and ui. This introduces the states | 1 ; 0 ) 

and | 1 ; 1 ) . 

3.6.2 Boundary ground state—breather sector 

The only breather poles are at | - f -I- ^^^^^^ for breather m. In addition, breather 

62 has a zero at - f + f + — 

A 2 2X 

2X-

By lemma 1, the pole for 8 1 must correspond to a new bound state, the rapidity 

being less than ^ . From figure 3 . 1 1 , it is clear that 61 creates the state which was 

labelled \6o.i) in [29 ] , and which we have called |0; 0 , 1 ) . 

The pole for the second breather can be explained by figure A .5 , with the state 

| 1 ; 0 ) being formed. The anti-soliton is reflected from the boundary at a rapidity of 

I — 7r-|-1^—a zero of the |1 ; 0 ) reflection factor—reducing the diagram to first order 

through the boundary Coleman-Thun mechanism, 

3.6.3 First level excited states—soliton sector 

From before, P||.Q^ just has a simple pole at UQ, which can be explained by the crossed 

process in figure 3 . 9 , reducing the boundary to the ground state. For P^~\^.iy the pole 

at 1̂1 can be explained this way while, for the double pole at UQ, figure A.4 is required, 

the first breather being formed while the boundary is reduced to the vacuum state. 

For P\i.„'^(u), we have the additional job of explaining simple poles at iv/v, for all 

N such that this pole is in the physical strip. Here, this is only wi. For | 1 ; 0 ) , this 

is appropriate for the formation of |0; 0 , 1 ) which, f rom the previous section, must be 

present. For |1 ; 1 ) , however, figure A .3 is invoked, the second breather being created, 

and the boundary reduced to the vacuum state. The breather is incident on the 

boundary at an angle of ^(wi-ui) = T T - | - ^ which, looking at the above breather 

reflection factors, is a zero, ensuring the diagram is of the correct order. 
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3.6.4 First level excited states—breather sector 

The pole structure of R^.Q^ can be found from Rl^y and is 

pole at + ? 

62 : poles at 

X 
i I 37r TT 

X ^ 2X ' 2 X + 2X 

(3.52) 

By lemma 1, the second pole for B2 must correspond to a new bound state; by the 

previous arguments, this is | 1 ; 0 ,1 ,1 ) . This state is not in the spectrum given in [29], 

but lemma 1 shows that there is no way to avoid its introduction. Considerations such 

as this will open the door to a much wider spectrum in the general case. 

The S i pole is suitable for the creation of |1 ;1 ) . The first pole for 82 can be 

explained by figure A.7, with the boundary being reduced to the ground state by 

emission of a soliton. 

For ^ i ^ - i ) . the above poles are supplemented by additional poles from bj^ ^iu) to 

give the poles shown in table 3 .1 . 

_ i 
X 

+ -^ 2 2X 
i _ 
X 

- -h 2 ^ 
pir 
2X ! + - -1-2 ^ 

PTT 
2X 

2 0 — 

B2 32 1 - 5 

Table 3.1: Breather pole structure for |1; 1). Entries are the values of p for which 
there is a pole in the location given in the column heading. The power of the entry 
gives the order of the pole, so e.g. 3^ indicates a double pole when p = 3. There are 
no physical strip zeroes for either breather. 

The pole at | + f - ff can be explained by figure A.8, with the boundary being 

reduced to the ground state by emission of a soliton. The pole at ^ - f for S i can 

be allocated to the creation of | 1 ; 0 ,1 ,1 ) , while the pole at | - f - I- ^ for S2 is due 

to figure A.9, where the boundary emits S i , being reduced to |1 ;0) . The pole at 

-1 - I- I - I - 1̂  for 61 is responsible for this reduction to |1 ;0) , while the double pole 

for 62 comes f rom an all-breather version of figure A.6, the boundary being reduced 

in the same way. 
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3.6.5 Second level excited states—soliton sector 

For /^Q.g j^^(u), the only poles are simple, at UQ and wi. The pole at wi can be explained 

by figure 3.9 while, for UQ, we need figure A.2, The second breather is emitted by the 

boundary, reducing it to the ground state, while a soliton is incident on the boundary at 

a rapidity wi. For the ground state, this is neither a pole nor a zero, but the diagram 

contains a solitonic loop which can either be drawn to leave a soliton or an anti-soliton 

incident on the boundary. Adding the contributions of these two diagrams gives an 

additional zero. 

For ^^(t;), we have additional poles at all u. i.e. a simple pole at ui, with I/Q 

becoming a double pole. By lemma 1, ui must correspond to the creation of a new 

bound state, namely | 1 ; 0 , 1 , 1 ) , while, for UQ, figure A.3 should be considered. Again, 

the second breather is created, the boundary is reduced to the ground state, and the 

breather is incident on the boundary at a rapidity of ^{UQ - wi) = ^ /A - 7r /2—a zero 

of the reflection factor. 

3.6.6 Second level excited states—breather sector 

For 10; 0 ,1 ) , we have the pole structure given in table 3.2. 

_ i 
X 

I 37r , fiTT 

+ 2 ^ 2X 
_ i -1- -^ 2 ^ 2\ 

L 
\ 2 ^ 2X 

S i - 2 2 0,2 

B2 - 3 3 12 

Table 3.2: Breather pole structure for | 0 ; 0 , 1 ) . 

The poles at + T" + fx ^""^ ^° figure A.8, while the poles in the second 

column are due to figure A.9. For all these, the boundary is reduced to |1;0) . The 

pole at f - f + ^'^2\'' for 6 ^ ( m = 2) is due to figure A. 12, while for m = 1 it is due 

to a breather version o f figure 3.9. The pole at | - f -F § f for S i is due to figure A.7. 

3.6.7 Third level excited states—soliton sector 

The only third level excited state is 11; 0 ,1 ,1 ) . For P||.o,i,i). there are simple poles at 

wi, uo and i/i. Again, the pole at wi comes from the crossed process figure 3.9. For 
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i/ i, figure 3.9 suffices while, for fo, figure A.4 is required, the boundary being reduced 

to |0; 0,1) while the first breather is incident on the boundary at f - | + f , another 

zero. 

3.6.8 Third level excited states—breather sector 

Here, the only possible boundary state is | 1 ; 0,1,1) and we find the poles given in table 

3.3. 

_ i 
A 

, 37r , fiTT 
2 ^ 2X 

_ i 
X 

, TT , fiTT 
^ 2 ^ 2X 

i 
X 2 ^ 2X A 2 ^ 2A 

Bi - 2 22,4 0,2 — 

62 - 3 1,33 12 - 5 

Table 3.3: Breather pole structure for | 1 ; 0,1,1). 

Comparing this with the structure given above for it can easily be seen 

that, whenever the two both have a pole at the same rapidity, essentially the same 

explanation can be used. For the remaining poles, - f + T" + f x explained by 

figure A.9, the boundary being reduced to |1;0), while that at - | + f + ^ for B2 is 

due to figure 3.9, reducing the boundary to |1;0), and that at | - f + §f for S i is 

due to an all-breather version of figure A.7, again reducing the boundary to | 1 ; 0). 

3.6.9 Summary 

The above has shown that, by introducing only the states which are required by lemmas 

1 and 2, the complete pole structure can be explained. Below, we shall find that this is 

a general feature. In addition, the spectrum of states is broader than that introduced 

in [29] (containing, in addition to their states, | 1 ; 0,1,1)). It should be noted that 

the mass of this extra state corresponds to mi. i of [29], the mass of a boundary 

Bethe ansatz ( l , l )-str ing whose apparent absence from the bootstrap spectrum was 

described in that paper as "confusing". This does at least show that the Bethe ansatz 

results of [29] are not incompatible with the bootstrap. However, in more general cases 

it turns out that the bootstrap predicts yet further states, beyond those identified in 

the boundary Bethe ansatz calculations of [29], so a full reconciliation of the Bethe 

ansatz and bootstrap approaches remains an open problem. 
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3.7 The general case 

From the above, we might imagine that the boundary state |c; n i , 02, ns rim) exists 

ifFc is 0 or 1 and ni. ^2, 03 , . . . are chosen such that 7r/2 > i^m > > i^m > • • • > 0. 

This turns out to be correct, and will be proved in two stages. Firstly, we need to show 

that all these states must be present, before going on to show that, given this, all 

other poles can be explained without invoking further boundary states. 

3.7.1 The minimal spectrum 

The argument proceeds as follows: starting with the knowledge that the vacuum state 

10) and all appropriate states | l ; n i ) are in the spectrum, we use breather poles to 

construct all the other postulated states. 

These poles are of the form ^{w^ - Un) for breather n + N incident on a charge 0 

state (or ^{i^n - WN) for a charge 1 state). If U n - W N < f , lemma 1 shows that they 

must correspond either to the formation of a new state, or the crossed process. From 

figure 3.11, this corresponds either to adding indices n and N if they are absent or—if 

they are already present—removing them. (Note that any other option would give rise 

to a state with a mass outside the scheme given by (3.40), and therefore outside our 

postulated spectrum.) The condition Un - WN < j \s always satisfied if i^n > î w and 

i^n and WA/ are as close together as possible, i.e. if |0; n. N) exists, but |0; n.N - 1) 

does not. 

The only subtlety in this argument arises when considering the topmost breather. 

\f n + N = rimax, lemma 1 on its own is not strong enough to require the presence of 

the state we need, and we must invoke the stronger version introduced at the end of 

of section 3.3. This makes use the idea that there must be a corresponding two-stage 

solitonic route to the same state, i.e. a soliton with rapidity i^n followed by an anti-

soliton with rapidity w/y. Considering these two processes instead, the stronger lemma 

shows that both form bound states, as L>n and must be the lowest poles of their 

type—and so have rapidity less than f—for n + N to equal n^ax- This shows that the 

state exists, and hence that the breather pole is due to its formation. 

Since the arguments for the two sectors are analogous, let us focus on the charge 

0 sector here. The challenge is to create any state |0;x)—for some set of indices 
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X = (/?!, n2 n2k)—from the ground state using just these poles. As a first step, 

consider creating |0; ni, n2). If i^m and Wn^ are as close together as possible, we simply 

make use of the pole at ^ ( ^ ^ 2 ~ ^m)- Otherwise, introduce the set mi, m2 mt 

such that i^m > i^mi > ^̂ 7̂12 > > • • • > '^mt > 1^02. with each successive rapidity 

as close to the previous one as possible. Now, we can successively create |0;x, ni, mi), 

then (0;x, ni, mi, m2, mj) and so on, up to |0;x, ni, mi, m2, mt, ^2). 

By now invoking the crossed process, a suitable breather can be used to removed 

the indices mi,m2, followed by m3,m4 and so on, until all the m indices have been 

removed to leave |0;x, ni, ^2). 

Repeating this procedure allows |0; ni , 02, ns, ^4) to be created, and hence |0;x). 

Note that this allows any state in our allowed spectrum to be created, but no others, 

as the condition > > • • • is imposed by the existence of the necessary breather 

poles. Charge 1 states can be created analogously by starting from a suitable state 

One remaining point is to check that all the necessary breather poles do indeed 

exist. However, starting from (3.45), they occur in the /^('c)(y) factor, and it is 

straightforward to check that they are never modified by the other a factors. 

3.7.2 Reflection factors for the minimal spectrum 

The boundary state can be changed by the solitonic processes given in table 3.4. 

Initial state Particle Rapidity Final state 

|0; n i , . . . , n2k) Soliton | l ; n i n2k.ri) 

| 1 ; ni n2k-i) Anti - soliton WN |0;ni n2k-i,N) 

Table 3.4: Solitonic processes which change the boundary state. 

The breather sector is more complex, as indices can be added or removed from any 

point in the list, and not just at the end, as for solitons. In addition, processes exist 

which simply adjust the value of one of the indices, rather than increasing the number 

of indices. For breather m, these are given in table 3.5. This should be read as implying 

that any index can have its value raised, and that a pair of indices can be inserted at 

any point in the list, including before the first index and after the last (providing the 
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Initial state Rapidity Final state 

1 0 / l ; . . . n 2 x , ' 7 2 x + i - . - ) 

| 0 / l ; . . . n 2 x - i . n 2 x - - ) 

| 0 / l ; . . . n 2 x . . . > 

| 0 / l ; . . . n 2 x - i . . . > 

^{L^n - WN).n+ N = m 

^(iv/v - i^n). n + N = m 

\{W-n2x-l - I^n2x-i+m) 

| 0 / l ; . . . n 2 x , n , A/, n2x+ i • • ) 

| 0 / l ; . . . n 2 x - i , A / , n , n 2 x . . . ) 

| 0 / l ; . . . / 7 2 x + m . . . ) 

| 0 / l ; . . . n 2 x - i + m . . . ) 

Table 3.5: Breather processes which change the boundary state. 

resultant state is allowed). Both these tables have been derived on the basis that, 

whenever assuming that a pole corresponds to a bound state leads to a state with the 

same mass and topological charge as one in our minimal spectrum, the assumption is 

taken to be correct. As with our earlier assumption (that, if a pole has another possible 

explanation, it is not taken as forming a bound state), this is intuitively reasonable but 

not necessarily rigorous. It does, however, lead to consistent results, and there is no 

conflict between the two assumptions: we have been unable to find any alternative 

explanation for any of the poles listed above. 

It is vital for what follows that, for all the above processes, there is very little 

dependence on the existing boundary state. For the solitons, the topological charge 

of the state and the value of the last index in the list are all that matter. Any two 

states which have the same topological charge and last index can undergo processes 

at the same rapidities to add an index. Similarly, for the breathers, provided either the 

relevant two indices can be added at some point in the list to create an allowed state, 

or that the index to be adjusted is present in the list, the other characteristics of the 

state are irrelevant. 

3.7.3 Solitonic pole structure 

This turns out to be relatively straightforward. All poles are either of the form or iv/y. 

Looking at a charge 0 state with 2k indices, and labelling this as x = (n i , n2 n2k). 

we find the results shown in table 3.6 for P^.^){u). These poles come from the a factors 

so, for P+, there is an additional pole at all u. 

For the charge 1 states, the picture is very similar, and, considering P+ first, we 

find the pattern given in table 3.7 for a state with 2k - I indices. For P~ there are 

additional poles at all w. (For the charge 0 case, there are poles at Wx for x < 0, but 
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Pole Order Pole 

Wi. .. Wn^-i 2k 1/1... i/^i-i 

2k-1 

Wn2+1 • • • 2k-2 ^^m+i • • • ^m-i 

2k-3 

Wn2k-2 + 'i- • • • '^"2(r-l 2 

^n2, 1 

Table 3.6: Pole structure for P^.^)(u). An entry of. for example, wi 
indicates that there is a pole of order 2k at wi.W2,W3 Wn2-i-

• Wn2~l 

none of these are in the physical strip.) 

Pole Order Pole 

- 1 l/O.U-l.... 

- 2k Ui . . .l/ni-l 

- 2k-1 

Wi. .. Wn2-1 2k-2 i^m+i • • • t^ns-l 

Wn2 2k-3 

Wn2i,-^+l • • • '^n2*-2-l 2 î n2k_3+l • • • '^n2i,-i-l 

Wn2k-2 1 ^ri2k--i 

Table 3.7: Pole structure for Pf\.^(u). 

An important point to note is that, comparing | 0 ; / i i , n2 n2k-i,ri2k) (a gen

eral level 2k state) with the level 2 state \0; n2k-i, ri2k), we find no additional poles, 

though the order of some poles has increased. In the example above, all level 2 states 

were explained by diagrams where the boundary was reduced either to the vacuum by 

emission of a breather, or to a first level excited state by emission of an anti-soliton. 

The same processes turn out to be present for any level 2k state to be reduced to a 

level 2k - I or 2k -2 state. Thus, we might imagine explaining the poles in the level 

2k reflection factor via similar processes to the ones which explained them in the level 

2 factor. At times, however—as we shall see—parts of these processes will need to be 

replaced by more complex subdiagrams to allow for the fact that the boundary is in a 
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higher excited state, explaining the differences in the orders of the poles. Considering 

the level 2 processes so far introduced as "building blocks", this can be considered as 

an iterative process; level 4 states can be explained by replacing parts of level 2 pro

cesses with building blocks, while level 6 states can be explained by similarly replacing 

parts of level 4 processes with building blocks, and so on. A generic process of the 

type we will examine can therefore be viewed as a cascade of building blocks, each 

appearing as a subdiagram of the one before it. 

A similar argument applies to level 2k + 1 states and level 3 states, drawing the 

same diagrams with all rapidities transformed via ^ -> 7 r ( A + l ) - ^ . We will concentrate 

on the charge 0 sector below, and consider a generic level 2k state. 

For poles of the form Up, consider figure A.13. The boundary decays to the state 

jO; ni. n2 "2^-2) by emission of breather n2k + "2^-1 at a rapidity of \{i^n2k-i ~ 

i/Vnĵ ). This then decays into breather n2k-i - n heading towards the boundary at a 

rapidity of \{w-n2),_^ — Un) and breather n2k + n heading away from the boundary at a 

rapidity of î n — — ̂ "̂ 2x"̂ )̂ • "^'^'^ decays to give the outgoing particle and one 

heading towards the boundary at a rapidity of Wn^,,- For n < n2k-i. it is straightforward 

to check that all these rapidities are within suitable bounds. 

This diagram is naively third order. However, breather n2k-i - n, which is drawn 

as simply reflecting off the boundary, in fact has a pole, meaning that the diagram 

should be treated as schematic and the appropriate diagram from the next section 

inserted instead. In addition, as noted in the discussion of the example, the soliton loop 

contributes a zero for an incoming anti-soliton through the Coleman-Thun mechanism. 

When this is taken into account, we obtain the correct result. 

For U2k-i, the slightly simpler figure A.2 suffices. The remaining u poles are only 

present in the soliton reflection factor, and can be explained by figure A.3, with the 

boundary decaying by emitting an anti-soliton at Wn2^. which then interacts with the 

incoming soliton to give breather n + n2k. heading towards the boundary at a rapidity of 

^{un — Wn2k)- Looking ahead again, the interaction of this breather with the boundary 

contributes the required zero. For Un < Wn^i,. this diagram fails, the breather being 

created heading away from the boundary; this is the point when the pole is to be 

considered as creating the bound state \l;ni n2k.n). 

For the poles, the story is very similar, this time being based on figure A.4 
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(requiring a suitable pole/zero for S/y-n^^ on state |l;/7i n2k-i) at f - f + 

7r(/v+̂ >T2>r-i)) for A/ < n2k and figure 3.9 for n2k- As noted above, all charge 1 state poles 

can be explained by the same mechanisms, with the rapidities transformed according 

t o £ ^ 7 r ( A + l ) - e 

3.7.4 Breather pole structure 

This is considerably more complicated. However, with a bit of work it turns out that, 

for breather n on the state |0; ni, n2 n2k), the pole structure is as given in table 

3.8. 

Pole 

i - + 
2 ^ 

7r(n+2x-l) 
2X 

i , T T j _ 7r(n+2x+l) 
- ^ -h o -t- 2X 

i ,n j_ 7r(n+2x-l) 
t + o + 2X 

-t + — + 2X 

Range 

n2q < X < n2q+2 

n2q' < n-\- X < n2q'+2 

X < 0, n2q-l < |x| < n2q+i 

n2q' < A7 - |x| < n2q'+2 

"2(7-1 < -X" < n2q+l 

n2q'-i < n + X < n2q'+i 

X < 0, n2q < \x\ < n2q+2. 

n2q'-i < n - |x| < n2q'+i 

X < -n, n2q < \x\ < n2q+2 

"2(7' <\x\ - n < n2q'+2 
. £ _ ^ ii(n+2x+l} 

A 2 ^ 2\ 

with poles -o- zeroes 

A + 2 + 2A 

with poles <^ zeroes 

Pole/zero order 

2iq'-q)+y 

2{q'-q)+y + i 

2iq'-q)+y 

2{q'-q)-i + y 

2(g' - q) 

Table 3.8: Breather pole structure for a generic charge 0 state. The variable x 
takes integer and half-integer values within the allowed ranges. An entry in the third 
column represents a pole of that order if it is positive, and a zero of appropriate order 
if it is negative. (Thus an entry of +1 is a first-order pole, and an entry of -1 is a 
first-order zero.) Also, for convenience, y is 1 if x (or \x\) attains the lower limit, -1 if 
n + x (or n — \x\) attains the lower limit, and zero otherwise, while i is 1 ifx is integer, 
and 0 otherwise. 

In explaining all this, we can begin with the diagrams found previously. For the first 

line, consider an all-breather version of figure A.5, where the breather decay is chosen 
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to produce breather n - l - x - n2<,' on the left, which then binds to the boundary to raise 
index n2q' to n-l-x. In some cases, this is not possible, the appropriate state not being in 
the spectrum, but, then, we can consider an all-breather version of figure A.10, where 
the boundary decays so as to remove the indices n2q' and n2q'-^.i, with the same initial 
breather decay, and the additional breather reflecting from the boundary contributes a 
zero. This diagram becomes possible just as the other fails. In either case, the other 
breather from the initial decay (which is drawn as simply reflecting from the boundary), 
is breather y = n2q' - x at rapidity | - f + ^^^'^2X~^^ • '''^'^ '̂ ^s a pole of order 2 less 
than the initial breather. If this order is less than or equal to zero, the diagram stands 
as drawn while, otherwise, the simple reflection from the boundary should be replaced 
by a repeat of this argument, iterating until the result is less than or equal to zero. For 
the next line, precisely the same argument can be used. 

The next three lines can be explained by a similar argument, based on either in

creasing the value of index n2q'-i or removing indices n2q'-i and n2q'. 

For I -I- f -I- ^^"^x^~"^\ we invoke a similar process. This time, however, the outer 

legs have rapidity i^-(n+x) (where - ( n - l - x ) is actually a positive number if the initial 

pole is to be in the physical strip), and so we need to substitute in the explanation of 

soliton poles of this form from before, leading, in simple cases, to figure A.9. 

Finally, for ^ - f + llind^±^, we begin with figure A.8. This time, the reflection 

factor for the central soliton always provides a zero, while the outer soliton has rapidity 

Wn-i-x- If n + X = n2k. the diagram is as drawn while, otherwise, we need to replace 

the two outer anti-soliton legs with the explanation of the appropriate pole in the 

anti-soliton factor. The first iteration of this is shown in figure A.10. 

3.8 Number of states 

In this section, we examine how the size and content of the boundary spectrum changes 

with variation in ^ and A. Since any state can be formed by a suitable sequence of 

solitons and anti-solitons, we will focus on the solitonic sector. 

The relevant poles, Un and Wp, both have the same spacing— j—but, interestingly, 

the range of n for which Un is in the physical strip is independent of A, while that for the 

i/v-type poles is not. For i^^, 0 < n < | - 5 while, for iVn-, A - f - 5 < n' < | - f + §. 
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Designating the lowest-rapidity w-type pole as Un,, there are /?* + 1 i/-type poles, and 

either n̂ . or /?* -|- 1 relevant w-type poles, depending on whether the lowest-rapidity 

pole is i^-type or w-type. (Note that any w-type pole with a rapidity greater than I/Q 

can never be relevant in forming a bound state.) 

Recall now that the criterion for a state |c; ni,/72, "3 ) to be in the spectrum 

is that i/ni > Wn2 > i^n3 > — Corresponding to moving down figure 3.12, alternating 

from side to side. Since movement must be strictly downward, there are two cases to 

consider: when the w and u poles occur at the same rapidities, and when they do not. 

The first case is the simplest to deal with, as enumerating the states in the spectrum 

becomes equivalent to calculating the number of ways of making an ordered selection 

of an arbitrary number of objects from a set of n* - I -1 . However, to simplify the rest 

of the argument, we shall formulate it as a recursion relation. 

We shall consider the situation where = (realised when ^ = ^^^^til) Clearly, 

all other cases are similar, with the even indices uniformly increased by |: - but 

with the overall spectrum size unchanged. 

Consider first a subset of the spectrum, with all indices less than, say, m, leaving 

m poles to play with in each sector. Denote the number of charge 0 and 1 states in 

this part of the spectrum as Co(m) and c i (m) respectively. Now consider extending 

this to m + 1 poles; all the states previously present are still there, together with new 

states involving the extra index. For each sector, a new state can be formed by taking 

an existing state in the opposite sector and adding the new index, m (provided the 

vacuum state is included in the list of charge 0 states to allow for the possibility of 

forming | 1 ; m)). 

Overall, then, Ci(m + 1) = Ci(m) + Co(m) = co(m + 1). Solving this gives 

Co/i(n* + l ) = 2''*ci(0)-l-2"'Co(0). Without allowing any poles, the spectrum consists 

of only the ground state, so Co(0) = 1 and Ci(0) = 0. Thus Co/i(n* + 1) = 2"*, as 

expected from the combinatoric approach. 

Moving to the case where the w and L> poles do not coincide, the argument changes 

a little. Consider the case where w^ lies between and i^x+i. noting that, as before, 

all other cases simply involve a uniform adjustment of the even indices. Again, we can 

look at the subset with all indices less than m, and compare it with that with all indices 

^This is an integer when the two sets of poles occur at the same rapidities. 
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N=4 Goincidence N=2 \ Nil \ 

w-type enters 

Figure 3.16: Boundary bound state spectrum size. The number of states present 
increases as y-type and w-type poles enter the physical strip, but changes also occur as 
the two sets of poles pass through coincidence: moving in the direction of increasing 
A, the topmost relevant w-type pole passes and ceases to be relevant, reducing the 
spectrum. (Notation x , y implies F(x) charge 0 states and F(y) charge 1 states.) 

less than m+ 1. The difference now is that we can potentially add two extra indices 

to an existing state, one from each sector, since their rapidities no longer coincide. 

A new charge 1 state can only be formed by the addition of the index m to an 

existing state, but a charge 0 state can either be formed by adding m to an existing 

charge 1 state, or m, m to an existing charge 0 state. Thus, ci{m+l) = co(m)-|-Ci(m), 

but Co(m + 1) = 2co(m) -I- c i (m). To solve these, it is useful to think of writing out 

the list Co(0), C i ( l ) , Co( l) , Ci(2), Co (2) , . . . and note that the relation for co(m + 1) 

can be rewritten as Cb(m-l-1) = Ci(m-t- 1) + co(m). These relations then demand 

that each element of the list is the sum of the previous two. Since co(0) = C i ( l ) = 1, 

this is just a Fibonacci sequence, and we can take advantage of the standard formula 

for the n**̂  term of a Fibonacci sequence, F(n): 

V5 
(3.53) 

where (p is the so-called "golden ratio" <p = From this, Co(m) = F(2m-f 1) and 

ci(m) = F{2m). 



3.9 Other boundary conditions 79 

One small complication is that, once m = n», Wn, is not necessarily in the physical 

strip. This means that, while the total number of charge 1 states must be Ci(n* -1-1), 

the number of charge 0 states will either be Co(/7* -I-1) or Co(n*) depending on whether 

or not Wn, is present. It is perhaps easiest to note that, with n'̂  -t-1 relevant w-type 

poles, the number of charge 0 states is Co(nl + 1). 

A plot of the spectrum size against A and is shown in figure 3.16. Three sets 

of curves are shown: the points where given i/ and w poles enter the physical strip, 

and the points where the two sets of poles coincide. As drawn, a given u pole will be 

in the spectrum above the appropriate line, and a given w pole will be present to the 

right of its line. Note, however, that, while u poles will never subsequently leave the 

spectrum, w poles will; crossing a coincidence line to the right, the relevant w pole 

with the highest rapidity passes L^O and ceases to be relevant, reducing the number of 

relevant iv-type poles by 1. The number of states in each sector has been quoted in 

terms of Fibonacci numbers, so that "x,y" implies a charge 0 sector of size Fx and a 

charge 1 sector of size Fy. On the equality line, of course, each sector has size 2"*+^ 

Finally, note that the top of the diagram represents C = i.e. the coinci

dence case considered above, and the region just below this represents the other case 

considered. Moving diagonally down and to the right from there, the even indices 

receive successively greater uniform additions but the spectrum size merely oscillates, 

as the i/-type and tv-type poles take turns at having the lowest rapidity. 

3.9 Other boundary conditions 

Surprisingly, the extension of the Dirichlet results to encompass more general boundary 

conditions does not require much more work. A hint as to why can be gained from the 

fact that the general ground state reflection factors can be rewritten in terms of those 

for Dirichlet multiplied by terms which introduce no new poles at purely imaginary 

rapidities. (They do, however, introduce poles at complex rapidities, but these have an 

interpretation as resonances rather than bound states and will be discussed separately.) 

Despite the fact that the reflection factors appear to depend on four parameters— 

^,k,r] and i9—it is clear that essentially only two are independent, the other two being 

^Since $ lies between 0 and it is more convenient to work with which lies between 0 

and f . 
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determined by (3.13). If we note that (3.13) also implies 

sin(77) sin(i?) = - ^ - j ! - sin ̂ , (3.54) 

with a either 0 or 1, we can re-write cos(^ -I- Xu) as 

cos(^-l-Aty) = cos(Ocos(Au)-sin(Osin(Au) (3.55) 

= -k [COS{T]) cosh(i?) cos(Au) - ( -1 )^ sin(77) sinh(i?) sin(Au)] 

= [e'^ cos iv + ( - l ) ' A u ) + e-'^ cos(r; - ( - l ) ' A u ) ; . 

Denoting the reflection factors for the Dirichlet boundary condition on the vacuum 

boundary state as P^Q^{U:0< (3 7) can be re-written as 

PHU) = Roiu)^,[e^i-^r^P^^,^iu.rj) + e^i-^r^P,,,,] ^^^^^ 

QHU) = - / ^ o ( u ) 2 t i ' % c o s a K|o)(".^) + ^D|0)(".^)] • 

Since the transformations i? a a-f- 1, and 77 ->• -17 are all equivalent to 

soliton -)• anti - soliton, we shall set a = 0 and i9 > 0 for simplicity. The Dirichlet 

case corresponds to 1? ̂  00, in which case 77 -> ^ and we recover the expected factors. 

In this form, it is clear that we will be able to re-use much of what we have already 

found about the Dirichlet pole structure in the general case. The one important 

difference is the factor of c7(/i9, u). This only has poles at complex u, however, and 

so will not contribute to the bound state structure. We can thus ignore this factor for 

the present. 

All the reflection factors have the same pole structure at purely imaginary rapidities 

as PQ|O^ , though based on 7? rather than Arguing as before, these must be responsible 

for the formation of a first set of excited states. We will continue to use the notation 

t/n to label these poles, on the understanding that it is more generally defined as 

Un = ~ -
77 ir{2n+l) 

" A 2A 
(3.57) 

Unlike the Dirichlet case, however, where these poles appeared only in one reflection 

factor, they now appear in all four. While time-reversal symmetry argues that the poles 

in 0 + and Q " must form the same state, we must now deal with the possibility that 

those in P" and P + potentially form different states, degenerate in mass. This cannot 

be so, however, since e.g. a soliton, incident on the boundary, cannot yet "know" 

whether it will ultimately be reflected back as a soliton or an anti-soliton, meaning 



(3.58) 
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that the states formed by Q"*" and P+ must be the same. A similar argument holds 

for anti-solitons, and so for 0 " and P " . Since the states formed by O"*" and Q~ must 

be the same, all four states must, in fact, be the same state. This also means, for the 

solitonic sector at least, that all states must be non-degenerate. 

This degree of similarity with the Dirichlet case makes it a reasonable guess that 

the entire structure should also be similar, with reflection factors given by 

= f^oiu)l^[e^i-^y^Pi^^^iu,v) + e^(-^r^P,^^^ 

Qf^^iu) = -^o(^)2:agri) H.)(^'V) + PS\.)(^.V) , 

where 7)0 = 7) and 771 = 7r(A + 1) -7). The breather factors, in turn, should be given 

by 

R\:]{U) = R["\u)R[tu)i'n~ , (3.59) 

where PID|^)('^) is the boundary-dependent part of the Dirichlet factor (i.e. without 

the R''Q\U) term). 

One difficulty that might be raised with this idea is that, since topological charge is 

not in general conserved, the two charge sectors might not translate into the general 

case. As we shall see in a moment, the above reflection factors are correct as long as 

the bound state poles at each level match the Dirichlet results. The argument given 

before for deciding whether or not a pole is due to a bound state works just as well 

here, indicating that this is indeed the case, so the conclusion must be that there are 

still two sectors. In one sector solitons bind with rapidities Un and in the other they 

bind at Wn. as is necessary for continuity with the Dirichlet limit. The only difference 

is that the sector label now does not correspond to topological charge; in fact, it does 

not appear to correspond to anything other than the number of labels the state carries. 

For this reason we shall now call them "odd" and "even", rather than charge 1 or 0. 

The other difference is that, at all stages, the poles appear in all four factors, allowing 

either a soliton or an anti-soliton to form a bound state. 

The formula (3.58) is most easily proven by induction. Since we already know it 

is true for the ground state, all that remains is to show that it is consistent with the 

bootstrap. 

In its full glory, the boundary bootstrap equation reads 
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Given that we are taking all boundary states to be non-degenerate, and assuming that 
all states can be created by either a soliton or an anti-soliton, we are free to take the 
incident particle to be whatever we please. For convenience, then, we shall set a = b, 
leading to 

(Making the other choice—a ^ b—can be shown to produce an equivalent set of 

bootstrap equations, reinforcing the idea that all reflection factors produce the same 

boundary state.) 

The boundary couplings can be found from 

n 5 > ~ 2 - ^ — ^ ' P \ 5 ) ~ 2 - ^ ' ^\5)-2-ri^- (3.b2j 

This means that, using our assumed form for the reflection factors, 

45= -̂(-l)"̂ "̂'̂ '̂ (3-63) 

for pole t̂ n or Wn as applicable. 

Overall, then, the bootstrap reads 

/^J^(a) = a{u - a ? ) [p^,^{u)a{u + a ? ) + ( - l )"eT(-^)^^0± (iy)c(iy + a j ) ' , 

Q%^{u) - a{u-all)b{u + all)Q%{u). 

Applying this to a state of our assumed form does indeed give (after some cum

bersome algebra) the requisite result. The other point which remains is to show that, 

at each step, the spectrum is the same as before. However, looking at the breather 

factors given above, it is clear that their pole structure at imaginary rapidities is always 

the same as for Dirichlet. The argument to determine the states which are required 

in the model depends exclusively on breather poles, and so must go through precisely 

unchanged. The only danger is that the remaining enumeration of the explanations for 

the other poles might run into problems. 

The solitonic factors have poles whenever either of the Dirichlet factors do, the 

order being the higher of the two. Similarly, there are zeroes whenever both Dirichlet 

factors have zeroes, the order being the lower of the two. This turns out to mean that 

the explanations used before still apply, with the difference that the extra boundary 



3.9 Other boundary conditions 83 

vertices allow solitons and anti-solitons to be interchanged within the diagrams in ways 

not possible in the Dirichlet case. 

This allows a diagram which previously explained a soliton pole to be re-used to 

explain an anti-soliton pole at the same rapidity. In addition, the difference in the order 

of a pole between the soliton and anti-soliton factors was due to loops which allowed a 

cancellation between diagrams for one but not the other (as in e.g. figure A.2). Altering 

the factors from their Dirichlet values destroys this delicate cancellation, raising the 

order to the higher of the pair. With this borne in mind, the discussion is completely 

analogous to that given previously, and so we shall not repeat it here. 

Finally, it is also worth noting that the general factors can still be written in the 

form 

with Po'iu) = P^iu) and P^iu) = P^-^iu). An analogous expression holds for the 

Os. 

3.9.1 Resonance states 

We now return to the extra factor of CT(/I?, ty). This provides extra complex poles, 

found from the imaginary poles we have been discussing by replacing 77 with Thus, 

the most notable poles (and the ones we shall concentrate on) are at u = ^ 

A feature of these poles is that they never fall into the physical strip. Those which 

fall into the unphysical strip immediately below the physical one (as the poles just 

given do) however, do have an explanation as resonance states [6]. In bulk QFT, a 

resonance state is an unstable bound state, and a similar idea applies here. From the 

Breit-Wigner formula [34], we can find the mass M and decay width f of the state 

using the usual formulae with M M -f- For the bulk, this becomes 

M - l - - - = mi-t-m2 + 2mim2COSh(cr - / 0 ) , (3.65) 
V 2 y 

for the binding of particles with masses mi and m2. In our case, we find 

M - l - y = m s C O s h ( a - / e ) , (3.66) 



3.10 Summary 84 

or 

M = m cosh a cos © (3.67) 

r = - 2 m s s i n h a s i n 9 . (3.68) 

The lifetime of such a particle is r oc f; to compare this with the discussion in the 

previous chapter, this can be converted into a phase delay by multiplying it by the real 

velocity v = tanha to get a oc -2ms cosher sin 0 ) " ^ For the poles f - this 

then becomes 

/ 1? TT(2n + l)\''^ 
a a 2ms cosh - s i n — - (3.69) 

V A 2A y 

In the classical limit )3 -> 0, taking ms = ^ , these become simply 

r . 

a a (2n + l ) - ^ (3.71) 

This means that, in this limit, the resonance states become stable, though the phase 

delay remains finite. The poles collapse onto the real axis, though at an infinite distance 

from the origin. In the classical calculations of the previous chapter, however, due to 

the re-scaling of the field, the poles collapse at a finite distance from the origin with 

an infinite phase delay, as we have already found. 

3.10 Summary 

"No doubt aardvarks think that their offspring are beautiful too." 

—John Ellis 

We have found that the spectrum of boundary bound states of the boundary sine-

Gordon model can be characterised in terms of two "sectors". With Dirichlet boundary 

conditions, these have topological charges ^ and 1 - ^ (which we labelled as "0" 

and " 1 " respectively). Otherwise, if topological charge is not conserved, the sectors 

remain, but lose this interpretation. It is still useful to label them as "0" and " 1 " , but 

this is best thought of as "even" and "odd", since they require even and odd numbers 

of solitonic particles for their creation. 

A boundary state can be described in an index notation as |c;A7i,n2 n^) for 

sector c, with c = 0 for A- even and c = 1 for /f odd. For the Dirichlet case, such a 
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state can be created by a succession of alternating solitons and anti-solitons, beginning 

with a soliton. With other boundary conditions, this requirement is eased, and any 

selection of solitonic particles becomes possible. To create a state in the odd sector, 

the necessary rapidities are of the form. 

l^n = ^ -
77 7r(2n + l ) 

2A 

while for the even sector they are 

VVm = TT - - -
7? 7 r ( 2 m - l ) 

(3.72) 

(3.73) 
A 2A 

These are interchanged by the transform 77 - > 7r(A + 1) — 7?. Any such state can be 

formed, provided the rapidities involved are monotonically decreasing, i.e. > > 

i/nj > . . . , and its mass is given by 

m ni.n2,.. m. 

= ZDs sin 

sin2 f l _ J \ + ^ ,03(^^ ) +Y,nis cos(vv,p (3.74) 
^ ^ / odd j even 

2A mc cos -
/ odd 

V (2n,- + l )7r 
(3.75) 

^ /r? , {2nj - l)7r 

J even 

This spectrum is considerably larger than that suggested in [29], though ail the states 

introduced are required to satisfy our lemmas. It is worth pointing out that a second 

part of the analysis of [29] involved an examination of the (boundary) Bethe ansatz for 

a lattice regularisation of the model. Some of the masses which emerged in the course 

of that study—those of the (n, A/)-strings—were outwith the spectrum proposed in 

[29], but are now included as the masses of the states | 1 ; 0, n, N). It remains to be 

seen, however, whether the other masses in our spectrum can be recovered in the 

Bethe ansatz approach. 

The number of states present in the spectrum clearly depends on the boundary 

parameters, as illustrated in figure 3.16. It is convenient to express this in terms of 

Fibonacci numbers, F{x). If there are n u-type poles, and m relevant iv-type poles, 

there are, in general, F(2n) charge 1 states and F{2m + 1) charge 0 states. Explicitly, 

these are given by 

iT r \ » , i i r - n i l 
(3.76) n = + 1 and m- 2 7r 2 TT 

where the square brackets denote the integer part of the number. This changes when 

the two sets of poles coincide, in which case there are 2"~^ states in each sector. 
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Finally, we note that the general method used to derive the spectrum, via the simple 

geometrical argument leading to the two lemmas given in Section 3.3, can be applied 

equally well to any two-dimensional model. Using this to deduce the existence of as 

many states as possible led—in our case—to the full spectrum. In other cases, we 

may not be so fortunate, but using it as a starting point should make the derivation of 

the full spectrum a finite (though possibly lengthy) task. 



C H A P T E R 4 

Affine Toda Theory 

"It was here that the thaum, hitherto believed to he the smallest 

possible particle of magic, was successfully demonstrated to be made 

up of'resorts' (Lit.: 'Thing-ies') or reality fragments. Currently 

research indicates that each reson is itself made up of a combination 

of at least five 'flavours', known as 'up', 'down', 'sideways', 'sex 

appeal' and 'peppermint'." 

—Terry Pratchett, Lords and Ladies 

87 



4.2 The Lagrangian 88 

4.1 Introduction 

"Once upon a time and a very good time it was." 

—James Joyce 

The sine-Gordon model, which has occupied us for the previous two chapters, is a 

member of the larger family of affine Toda field theories (ATFTs), and it is to these that 

we will now turn our attention. These theories are, in general, not as well understood 

as the sine-Gordon model, even in the bulk. 

ATFTs are also integrable, and rely on a Lie algebra structure built into their 

Lagrangian to provide the necessary conserved charges. A tantalising problem with 

them—and one which will provide the basis for this work—is that the underlying struc

ture shows up again in their S-matrices, among other places, though it is not at all 

clear how it arises. The difficulty is that the exact S-matrix program, while it pro

vides a good method for obtaining a result, is totally disconnected from the original 

Lagrangian. For the boundary sine-Gordon model, this caused problems in relating the 

parameters in the reflection factors back to the parameters in the Lagrangian, while 

here it hides the path of the Lie algebraic parameters into the S-matrix. 

Obtaining a better understanding of this is still an unsolved problem, but we will 

find a neat method of constructing S-matrix elements through rules based on the Lie 

algebra, generating a number of new identities in the process. 

Before we plunge into the full quantum theory a preliminary discussion of the 

classical version will serve to introduce much of the structure, as it did for the sine-

Gordon model. In addition, building an exact quantum S-matrix cannot begin without 

making some initial assumptions; looking at the classical theory will help us make a 

more educated guess. Classical theories are also more intuitively comprehensible, so 

the more that can be gleaned from them and transferred across to the full quantum 

case, the more tractable it becomes. 

We shall only attempt a relatively brief introduction to the topic here, sufficient for 

our needs. For a more detailed review and further references see e.g. [35]. 
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4.2 The Lagrangian 

Affine Toda field theory (ATFT) is a massive integrable l+l-dimensional theory with 

a number—which we shall call r—of scalar fields (p^, and with a Lagrangian of the 

form 

C = \d>'<Pad^4>a - ^ E exp(/5a, • 4>). (4.1) 

where m determines the mass scale (though it does not equate to the mass of any 

individual particle) and /3 is a dimensionless coupling constant. 

The aj can, in principle, take any values, but it turns out [36] that the resulting 

theory is only integrable if, for j = 1 . . . r, they can be considered as the simple roots 

of a rank-r semi-simple Lie algebra g. 

This is because leaving ao out of the sum gives a conformal theory, known as 

conformal Toda theory or just Toda theory. The possession of conformal (or scale) 

invariance naturally gives such theories an infinite number of symmetries, and hence 

any conformal field theory must be integrable. However, because this means that the 

theory cannot depend on any fixed length scale, all the particles in it must be massless 

(as, otherwise, the inverse of the mass would provide such a scale), including the extra 

root to form the "affine" theory can be considered as a perturbation which breaks the 

conformal invariance—and so provides its particles with mass—while still retaining an 

infinite number of symmetries. (Taking ao to be the affine root is purely a conventional 

choice of labelling.) Interest in these theories was initially stimulated by this connection 

to perturbed conformal field theories [40], and the fact that, through the breaking of 

the conformal symmetry, the particles acquired mass. 

An important feature of such algebras is that they can be conveniently classified 

[37] in terms of a Cartan matrix—C—defined by 

Q = ^ ^ . (4.2) 
{oci. ai) 

where (a, , a^) denotes an inner-product on the roots a,- and aj. This matrix encodes 

the relationships between the simple roots, and is particularly simple in that it is com

posed entirely of integer entries. The content of the matrix is often described by a 

Dynkin [38] diagram, where each simple root is drawn as a "spot" and the spots cor

responding to roots ai and aj are connected by n tines if Cjj = n. In the case where 

Cjj 7̂  Cjj, an arrow is drawn on the lines pointing from the long root to the short root. 
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In Cartan's classification, there are two infinite sets of untwisted "simply-laced" 

algebras (where all roots are of the same length) known as af̂ ^ and c/r̂ \̂ with three 

exceptional cases, e^\ e\^^ and e^\ There are also "nonsimply-laced" algebras (where 

one root has a different length to the others) divided into two infinite sets, b^^^ and c[^\ 

and two exceptional cases, g^'' and ^4^^^ A listing of their Cartan matrices, together 

with their Dynkin diagrams, can be found in Appendix B.5. A good introduction to the 

topic can be found in [39]. 

While it appears on an equal footing with the other simple roots, and it can be 

drawn as an extra spot on the Dynkin diagram to describe its inner products with 

the other simple roots, ao is not itself simple, in that it can be described as a linear 

combination of the other simple roots: 
r 

The rij—usually called marks or Kac labels—are integers, chosen to make ^ n,a, = 0. 

(The value of ag is prescribed by demanding that this be true with no = 1.) Two other 

useful pieces of notation are the Coxeter and dual Coxeter numbers, h and Z)̂  defined 

by 
r r 

h=l + ^ n , and h"^ = l + ^ n ) . (4,4) 
/=1 /•=! 

where the co-marks, nV, are related to the marks through = njaf/2. The Coxeter 

and dual Coxeter numbers will arise frequently in the context of the periodicity of poles 

of the S-matrix or the number of distinct conserved charges. 

Finally the so-called "incidence matrix" G deserves a mention. This is just the 

negative of the Cartan matrix with all the diagonal terms set to zero, meaning that it 

simply encodes the relationships between the roots. 

Without wishing to delve too far into the development of the theory (further details 

can be found in [17]), it contains r massive particles, which can be associated with 

spots on the Dynkin diagram of g. Their masses and couplings can be easily extracted 

from a perturbative expansion (in small/3) of the the potential term of the Lagrangian 

(4.1): 

^ J=0 ^ J=0 7=0 

+ ̂ E " ^ ^ / « M ^ W + ... (4.5) 
j=o 
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This allows us to read off a (mass)^ matrix 

{My>= = m''j^n,a^al (4-6) 

and a set of three-point couplings 

as well as infinitely many higher couplings, at successively higher orders in (3. 

If a basis of fields is chosen so as to make the bare propagator diagonal, (M^) 

becomes diagonal also, allowing the classical masses to be read off as eigenvalues. 

Finding such a basis, and especially computing the three-point couplings in it, is too 

long a task to be attempted here, but it can be done, and closed-form answers obtained 

[17]. These results, together with other relevant Lie algebraic data, can be found in 

Appendix B.5. 

4.3 The Quantum Theory 

To find the S-matrix of the quantum theory through the bootstrap approach, we need 

to begin with a suitable guess at one or more of its elements. If, after working through 

the bootstrap, the result is consistent—each three-point coupling must introduce poles 

in all three relevant S-matrix elements—then the guess could be said to be good. 

Otherwise, corrections need to be made until a consistent result is achieved. 

From the earlier classical results, we might guess that the same couplings transfer 

across to the quantum case, and so predict a minimal pole structure for the S-matrix. 

One potential problem with this approach is that the classical case is the )3 0 limit 

of the quantum theory so, as P moves away from zero, the mass ratios, and hence the 

pole positions, would be expected to change due to renormalisation. As luck would 

have it, moving away from this limit in simply-laced cases does not change the position 

of the poles we have considered so far (one-loop calculations showing that the masses 

renormalise in such a way as to leave their ratios unchanged). In an intuitive sense, the 

bootstrap equations determine the algebraic structure so precisely that any continuous 

change in the parameters (such as the coupling angles) disturbs the way the pieces fit 

together and destroys the solution. Thus the classical mass ratios remain even in the 
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full quantum theory For simplicity we will go through this case in more detail, and 

just quote the results for the nonsimply-laced cases. 

4.3.1 Simply-laced cases 

The next logical step is to construct a putative S-matrix element with a suitable pole 

structure. A good "building block" for this is provided by 

(X) = i 4 i ^ . (4.8) 

As mentioned in Chapter 1, this automatically enforces unitarity. It also has only one 

pole (at d = ^ ) and one zero (at 9 = - ^ ) , making it easy to form a suitable product. 

(In the nonsimply-laced cases, the poles are no longer always multiples of ^ , so a 

different block is needed.) Crossing symmetry is enforced by demanding a suitable pole 

structure, and—ATFTs being elastic scattering theories—we need not worry about the 

Yang-Baxter relation, leaving just the bootstrap to be satisfied. Building e.g. Sn in 

this way and working through the bootstrap, we do indeed find that it is consistent. 

While this turns out to encode the bound state poles correctly there is no mention 

of the coupling constant, so it is unlikely to be the complete story. Trying to intro

duce a dependence on the coupling constant leads to the idea that the full S-matrix 

elements are the elements found so far (usually termed "minimal" since they are also 

the complete S-matrix elements of certain perturbed conformal field theories known 

as minimal models) multiplied by a suitable factor. This factor is firstly determined by 

the fact that the resultant S-matrix must still respect unitarity and crossing symmetry, 

making it natural to also build it out of the (x) blocks. In addition, all the necessary 

bound state poles are already encoded in the minimal S-matrix, so the extra factor 

should not introduce any more physical strip poles, at least for P small, though it must 

still respect the bootstrap. 

Finally—and this is the reason why an extra factor is not just an aesthetic invention— 

at /3 = 0, (4.7) shows that all the classical three-point couplings disappear, so the extra 

factor should provide zeros to cancel all the physical-strip poles in the minimal elements, 

tending to them as /3 0. This means we might be tempted to build the full S-matrix 

out of blocks of the form (x ) / (x ± S), where B is a coupling-constant dependent 

constant. One final complication, however, is that the sign of the residue at a pole 

determines whether it corresponds to a forward or cross-channel process. This can be 
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found to be correct for the minimal elements, and must be kept so, determining the 

sign above. 

Following this through motivates the introduction of an extended block 

W ( ^ _ i + e ) (x + i - e ) ' ^^-^^ 

from which the S-matrices of all the simply-laced ATFTs can be built. The S-matrix 

elements are usually written in the form 

h 
Sa6(/5) = n W " ^ ' ^ ^ ^ (4.10) 

x=l 

where the non-negative integers mab{x) denote the multiplicity of the block. 

An interesting property of this block is that { x } s = {X}2-B. heralding a duality. 

Ensuring no extra physical poles for real P means that 0 < B{P) < 2, and we have 

constructed B to vanish at P = 0, so we might imagine that B ^ 2 as P ^ ex. This 

would set up a strong-weak coupling duality, the theory becoming free in either limit. 

Determining the precise form of B{P) turns out to be difficult, but it is conjectured to 

be [41, 17, 42, 44] 

implementing the duality as 

B(J^=2-B(P). (4.12) 

4.3.2 Nonsimply-laced cases 

For these, the S-matrix can be written in a product form [45] as 

5 a . ( e ) = n n ^ ^ ' ^ > " " ^ ' ' ' ' ^ ' (4.13) 
x=l y=l 

where the { x , y } are of the form 

( x - l , y - l ) ( x - H , y - H ) 
^""•y^- ( x - l , y + l ) ( x + l , y - l ) ' 

(4.14) 

with 

2/7 2rV/7V 
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and 

sinh (5 {6 - /7 rx) ) 

The mab(x,y)s are again non-negative integers, serving to encode the Lie algebraic 

structure of the model. This time, B(P) is conjectured [45] to be given by 

A difference now, however, is that, while there is still a strong-weak coupling duality 

present, it relates the strong coupling regime of one theory to the weak coupling regime 

of a different theory. For example 

Bcm{ir]='^-B,i2)iP). (4.18) 

For this reason, the algebras and d^^^ are termed a "dual pair". The simply-laced 

algebras (and a^J) are self dual, and all the other algebras fall naturally into the dual 

pairs (5(^\ a g _ i ) , d £ \ ) , {gi'\ ), and ifi'\e^^^). The S-matrices for 

each member of a dual pair are the same except for the interchange of h and h'^. In 

light of this, we will concentrate on the untwisted algebras from now on, and drop the 

superscripts. 

4.4 Lie algebra structure 

S-matrices were first found through this approach for the simply-laced cases [41, 17, 

42, 44], and later for nonsimply-laced cases [46, 47]. (The results are summarised 

in Appendix B.5.) This was all accomplished on a case-by-case basis, and, although 

there were many hints of the underlying Lie algebra in the results, it was not clear how 

that had been transferred across from the Lagrangian. This is frustrating as, apart 

from the general demands of unitarity, analyticity and crossing symmetry, the ATFT 

S-matrix is principally shaped by the Lie algebra. 

These results were put on a uniform Lie algebraic basis for the simply-laced cases 

by Dorey [48]. He considered the Weyl reflection Wj corresponding to the simple root 

a,, defined by 

2 
w,(x) = X - -^(a,- , x )a / . (4.19) 

ar 
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From this, he set w = wiW2 . . . Wr to be a Coxeter element, with (w) the subgroup of 

the Weyl group generated by w, and defined roots <̂,- by 

(pi = WrWr-i . . . i/v,+i(a,). (4.20) 

The other crucial ingredient was a two-colouring of the spots on the Dynkin diagram, 

where each spot was labelled as either "black" or "white" such that no two adjacent 

spots had the same colour. Then, the integers /r)ab(x) turned out to be just 

mab(2p + 1 + uab) = (Aa, w-P(Pi,), (4.21) 

where Aa is the fundamental weight corresponding to root a, and Uat, = (c(a)-c(/?))/2, 

with c(a) = ± 1 encoding the colour of the roots. In addition, if we define f , as the 

orbit of (pa under {w), then C'-''^ ^ 0 iff there exists a(,) G f,-, a^) G Vj, and a^^^^ G Vi^ 

such that a(;) -I- a(j) + a(fc) = 0. 

These results were initially found by observation. However, Freeman [60] showed 

how to diagonalise the mass matrix in a Lie algebraic way, allowing them to be re-

derived more rigorously. 

Similar results were later found for the nonsimply-laced algebras by Oota [49] 

through a deformation of the Coxeter element. Oota also produced an integral formula 

for the S-matrix, explicitly built from the Cartan matrix, which we shall discuss below. 

This formula was later reproduced by Fring, Korff and Schultz [3], while a similar result 

was conjectured by Frenkel and Reshetikhin [50] in the course of a general study of 

W-algebras. 

The starting point for our discussion will be the processes shown in figure 4.1. When 

two identical initial particles have a relative rapidity of 26h + tadn, these comprise all 

the possible diagrams which can result. The interesting point about them, however, is 

that it turns out that the particles present in the middle of each diagram are always 

those adjacent to the initial particle on the Dynkin diagram. All such particles are 

present, but no others. 

For the simply-laced cases, only the first three diagrams are relevant, applying to the 

cases where the initial particle has one, two and three adjacent particles respectively. 

Note that all the intermediate particles are parallel and have zero rapidity in the centre 

of mass reference frame. 

For the nonsimply-laced cases, the situation is complicated slightly when the adja-
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cent particles are associated with roots which are longer than that of the initial particle. 

The fourth and fifth diagrams describe this for the case where there is only one adja

cent particle, and the Cartan matrix entry is 2 or 3 respectively For more than one 

adjacent particle, the relevant vertical line must be replaced with this more complex 

pattern, as shown in the last diagram. 

The precise makeup of these diagrams is as follows. The first diagram speaks for 

itself, while, in the next (for two adjacent particles), the unspecified particle is always 

the lightest in the theory. The case with three adjacent particles only occurs for dn 

and £ 6 - 8 . for which the particles are given in table 4.1. 

The next two only occur for Cn and g2. with the particles as shown. The last 

diagram occurs in bn and f^, with the particles given in table 4.2. 

Theory a b c d e f 

dn n - 2 n-3 n-1 1 n n 

66 4 3 2 1 6 5 

e? 7 5 3 2 1 6 

es 8 6 4 2 1 7 

Table 4.1: Diagrams for the cases with three adjacent particles 

Theory a b c d e 

bn n - 1 n - 2 1 n n - 1 

U 3 1 1 3 4 

Table 4.2: Diagrams for nonsimply-laced cases with two adjacent particles 

These results come from a case-by-case analysis; it should be possible to derive 

them from the Lie algebraic rule given above, but, for the moment, we have not 

attempted to do this. However, if we take them as axiomatic of how to encode the 

Lie algebra into the S-matrix, there are many consequences. 

4.5 The consequences 

The first important consequence of this result is that, as with the bootstrap relations, 

another particle can be introduced, on a trajectory which either crosses the two incom-



4.5 The consequences 97 

Figure 4.1: Processes which impose Lie algebra structure on the S-matrix 
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Figure 4.2: The generalised bootstrap 

ing particles before they interact, or afterwards. This is shown in figure 4.2. Due to 

factorisation, the amplitudes for these two processes should be the same, giving rise 

to what might be called the "generalized bootstrap" 

Sijie + eh + ti9H)5iji6 -dh- tiOn) -

^-2i.e(mj - Q 5.^(g + (2n - 1 - G„ )0H) • (4.22) 

1=1 n=l 

For conciseness, we have defined 6h = ''^i'^'^) and 0H = ^'^'^ integer 

being the maximum number of edges connecting any two vertices of the Dynkin 

diagram^. The integers t,- are defined by t/ = ^"'f'^, where the squared length of 

the short roots is normalised to 2^. 

This formula was first discovered for simply-laced cases by Ravanini, Tateo and 

Valleriani [51], and was independently derived for the nonsimply-laced algebras in un

published work by the author and P. Dorey [52] (see also [2]) and by Fring, Korff and 

Schultz [3]. 

A subtlety is the exponential factor on the rhs, involving the step function, 0 , 

defined by 

0 ( x ) = lim 
€^0 

1 1 ^ X 
- - I — arctan -
2 TT e 

= < 

0 if X < 0, 

1 if x = 0. (4.23) 

1 if X > 0. 

Due to the periodicity of the exponential, this term has no effect unless 9 = 0. and 

accounts for the fact that, at this point, the additional particle cannot really be said 

to cross either the incoming particles or the intermediate particles. In applications 

'This is 1 for the a, d and e series, 2 for /i and 3 for g2. 
^Thus ti = 1 for short roots and t, = r^ for long roots. 
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such as the thermodynamic Bethe ansatz, it is important that the formula nonetheless 

continue to make sense at 6 = 0, so the extra term is introduced to keep the equation 

correct. A more detailed discussion and derivation can be found in Appendix B. 

Another form of this result was used by Oota [49] in his derivation of an integral 

formula for the S-matrix. In Appendix B. l , we show that it can be re-stated as 

ml(x + l)q-'^ + m%{x - l)q'^ - J] < ( x ) [ G c a ] c • (4-24) 
c 

where 

< M = E'̂ '̂'(̂ '̂ )̂ '' (4.25) 

and the standard notation [n]q = {q" - q~")/{q — q"^) has been used. 

This restatement as a recursion relation makes it clear that, with the input of 

m^^(O) and m^^(l), all other mab(x,y) follow. 

These two inputs turn out to be 

n7''(0) = 0 m%l) = q'^[t,],5^b. (4.26) 

The first of these, m''(0) - 0, is trivial for simply-laced cases (as {0 }=1) . Otherwise, 

it amounts to requiring that poles which are on the physical strip at one value of 

the coupling stay there for all values, which is necessary on physical grounds. (The 

existence of the three-point couplings is not dependent on the coupling, and hence 

processes which are possible at one value of the coupling must be possible for all 

values.) If { 0 , y } was present in the S-matrix, for example, it would lead to a pole 

at e = (y - l)dH - 0/, = '^2%v^^ - For sufficiently small 6, this becomes 

negative. 

The other condition, m' ' ( l ) = q^^[ta\q5ab, implies that the part of the S-matrix 

coming from these blocks is just 

(4 27) 

The only pole is thus at 2dh + 2 ta0H. which is precisely that required for our special 

processes. Thus, this is just the statement that these processes should exist when the 

two incoming particles are identical, but not otherwise. 

In sum, postulating the existence of these special processes, together with basic 

physical requirements, serve to completely fix the minimal S-matrix. These processes. 
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in other words, seem to completely encode all the Lie algebraic information contained 

in the S-matrix. 

The significance of (4.22) can further be seen if we take its logarithmic derivative, 

and use the fact [17] that we can identify the resulting elements with conserved charges. 

This gives 

r r /2 g g j . > 

1=1 ^ 

q's • (4.28) 

The ith component of the conserved charge with spin s is denoted by q'^. The forward-

backward shifts on the rhs of (4.22) have been absorbed into the deformation of G, 

where we have defined q{t) (and q{t), to be used later) as 

/(2-B)t\ / Bt \ 
Qit) = exp [ ^ ^ j ^ j and q(t) = exp i^^^j • (4.29) 

In simply-laced cases, since [n]q = n for n = 0,1 (as all entries of the incidence 

matrix are in these cases), and we have all = I and h = r'^h^. this reduces to the 

eigenvector equation 

^ G , v q [ = 2 c o s ( ^ ) c / ; , (4.30) 
1=1 

a well-known but curious result [53]. For nonsimply-laced cases, however, note that 

the ti in the cos term prevents this from being a proper eigenvalue equation. 

4.5.1 An integral formula 

As well as the product form for the S-matrix elements introduced above, Oota also 

found an integral form, which explicitly builds in the dependence on the Cartan matrix. 

The proof of this exploits (4,24). Since, in consequence, it relies on little other than 

the Lie algebraic structure in the particle couplings, it is perhaps not surprising that 

Frenkel and Reshetikhin [50] also conjectured a very similar result in their more general 

study of W-algebras. 

Further details can be found in Appendix (B), but, for reference, the formula is 

Sab(0) = (-l)^^^exp 4 / —e"'^{sin/ce,-sin/c0H-Ma6(q(7r/c),q(7r/c)) 
\ J-oo « 

^^f}), (4,31) 
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The matrix M introduces the dependence on the Cartan matrix and is defined by 

Mij(q.q) = {[K],^)-'[tjk, (4.32) 

where K is the "deformed Cartan matr ix" , given by 

[Kij]c-q = (qq" + q-'q-'')dij - [Gij]^ • (4.33) 

In the l imit q -> 1 and q 1, this recovers the standard Cartan matrix. In some 

sense this can be understood as a quantum deformation, since taking the classical 

l imit ( S -> 0) enforces Q -> 1. In the simply-laced cases, at least, this reduces the 

deformed Cartan matrix just to the ordinary Cartan matrix with an additional factor 

proportional to the identity matrix. We should also note that our "eigenvector" result 

can be neatly restated using this, as as 

r 

Y^[KiiUi^smi^s)q's = o. (4.34) 
/= i 

To understand what M represents, think that , for the simply-laced cases (where 

all the f, are 1), it is just the inverse deformed Cartan matrix. The consequences of 

the extra factor, which modifies it from this, will be seen later. 

The formula given by Frenkel and Reshetikhin [50] is similar to (4.31), but without 

the factor of ( -1 ) ^ " * exp ( / f ^ ^^'''^^ab)- For real 6, this is 1 except when 0 = 0, 

in which case it becomes -1 for a = b. Including the factor or not thus amounts to 

selecting the value of Saa(O); with the factor, Sa/,(0) = 1, but without it Sa6(0) = 

( -1) ' '^ ' ' . This second is the value taken by the product form S-matrix, and so will be 

the version we adopt here. 

W i th a l i t t le more work, this can be put into an slightly simpler form. If we first 

define a new matrix 0 as 

(^a6 = - ' ^ l o g S a b ( 0 ) , (4.35) 

we find 

/

oo 
dke"^ {4s in ke, • sin kOn • M,,{q{-nk),q{'Kk)) • (4.36) 

-00 
Defining its Fourier transform 4> as 

$ab(k) = ^ r mame-"' (4.37) 
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then leads to 

$ab{k) = -27r(c7(7r/c) - qiTrkr')iqiTrk)-q{Trk)-')MMTrk).q{'Kk)) + 2Tr6ab-

(4.38) 

(Note that using Frenkel and Reshetikhin's form would have removed the final 5ab 

term.) 

4.5.2 A formula for the conserved charges 

An interesting consequence of the integral formalism—and our reason for introducing 

it here—is that it can be used to find a formula for the conserved charges of the theory, 

by taking the logarithmic derivative of (4.31) and again identifying it with the conserved 

charges. Doing this, and noting that the resulting integral can be re-expressed as a 

contour integral over the upper half-plane, the problem is reduced to finding the poles 

of the expression. The only poles are in the matrix M, so, before we can continue, 

we must find a formula for this. The easiest route to the information we need is to 

compute 4>ab{l<) for the product form and compare with the above. 

The first step—calculating (pab—is straightforward, and yields 

(̂ >ab = - ^ I ] 5 ] m a 6 ( x , y ) 
^ x = l y = l 

{ t a n h ( i ( 0 + s ( x , y ) ) ) } - ^ 

s(x,y)eSi 

- { t a n h ( i ( 0 + s ' ( x , y ) ) ) } - ^ 

s'(x,y)eS2 

(4.39) 

where 

51 = { ( x - l ) e , - F ( y - l ) 0 „ , ( x + l ) 0 , + (y + l ) 0 „ , ( l - x ) 0 , - ( y + l ) & H , 

(1 - x)e, - (y + 1)0H. - ( x + 1)BH + (1 - y )0H} , (4.40) 

52 = { ( l - x ) 0 , + ( l - y ) e „ , - ( x + l ) 0 h - ( y - M ) 0 H , ( x - l ) 0 h + (y + l )0H. 

(x - 1)9, + (y + l)dH, (x + l)d, + (y - 1 )0^ } • (4.41) 

The Fourier transform of these terms is given in Appendix B.4 as 

'0 . . _ : . _ , / c f 2 a W ) C O S h ( 7 r / f ) 

/. 
00 ' 

tanh 
00 V 
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where care must be taken to choose n such that there are no poles between the real 

axis and the line 2a + inir. Working this through finally gives 

kbik) = 2-K5ab - 27r J ] mab{x.y){q{-nk) - qipiky^m-nk) - qiirk)-') x 
x = l y = l 

1 _ q2bq2r-h-

and hence 

(4.43) 

U(C7, Q) = E E ^ a . ( x . y ) 7 _ ; 4 J . v . (4.44) 
x = l y = l 

This shows that the only poles present are at A- = im, m being any integer, so the 

result is that we can re-express the integral in the form of a Fourier expansion, and 

thus read off a relation between tp^J'^ and M as 

V^̂ -* = 2 sin TTS • sinh sdh • sinh SOH • M(q ( / 7 rs ) , q ( /7 rs ) ) . (4.45) 

Of course, to find an expression in c/fc/s • we need to include a scaling factor. Noting 

that 52 /= ! QsiQsi — ^3b< where s,- is the /th component of a rank-r algebra, we could 

useqlq^ = cpi^^/EUMf-

Combining this with the expression for M, we get 

fs) . , . . , . ^ ' i ^ , s- fsTr\{2-B)x B y ] \ 
(fli^ :^2sinh s6h-sinh SOH-2^2^ mai,ix,y)5\n\^Y [—-f, " ^ ^ v ^ J ^ • 

x = l y = l 

(4.46) 

From this, it is straightforward to see that the matrix (p^^^ is non-zero for generic B by 

simple case-by-case analysis. (This is different from this minimal case where, as noted 

by Klassen and Melzer [53], we can get a zero matrix for s = ^ in simply-laced cases, 

even if that exponent is present.) Had there been cases where (p^^^ was zero for some 

s, then taking the logarithmic derivative of an S-matrix identity would sometimes have 

resulted in a trivial conserved charge identity. As it is, however, we can always derive 

a non-trivial conserved charge identity from an S-matrix identity and vice versa. 
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4.5.3 Multi-linear Identities 

"Life must be understood backwards; but. .. it must be lived 

forwards." 

—Soren Kierkegatird 

The R T V result and its generalisation allow us t o perform a simple trick and gen

erate a large number of S-matrix identities. Interchanging / and j in (4.22) does not 

change the Ihs if t, = tj - the two roots are the same length - due to the symmetry of 

the S-matrix, so we can equate the rhs before and after interchanging to get 

r Gil r Gji, 

n n ^Ji^^ + (2n - 1 - Gii)eH) = n n ^ " ' ( ^ + ^ ^ n ' - l - GJ,)9H). (4.47) 
/ = l n = l / ' = l n ' = l 

(Note that the presence or absence of an exponential factor does not affect this, as 

ti = tj ensures Gy = Gj,.) If / and j are such that the corresponding rows of the 

incidence matrix consist of entries no greater than 1, this reduces to 

r 

n ^ ' - ' W ' ^ ' ^ I I V ( ^ ) ^ " ' . (4-48) 
1=1 

and we can obtain identities for products of S-matrix elements, all evaluated at the 

same rapidity. The existence of such identities was first discovered by Khastgir [4], 

though wi thout such a systematic method for describing them. In addition, we also 

have identities in which not all rapidities are equal. 

To generalise the connection between S-matrix product identities and conserved 

charge sum rules to this case, we can take logarithmic derivatives to find that if 

n S,,{e + if,\)= n 5a'6'(e+//a'6'). (4.49) 
a.beVJ} a'.b'eV'J'} 

for some sets { i j } and { / ' , / } then 

Y : ^-"-'qtq's= E ^-"'^''^t^s- (4.50) 
a.b^{tj} a'.b'eV'J'} 

Applying this to (4.47) gives 

r r 

Y,^Gii]q(i^s)q'sq's = 5^[Gj7']^(/7rs)t7s'Qs. (4-51) 
1=1 l'=l 

where it should be noted that the sums over n and n' in (4.47) have been absorbed by 

the introduction of the [Gab\q(TTs) notation. 
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To give a simple example of this result, in the br^^ algebra we have, for 1 < / < r - l 

5 ( . - i ) ( , - i ) ( e ) S ( , _ i ) ( , + i ) ( 0 ) = s,(,_2)(0)s,>(0 + eH)Sir(e - BH). (4.52) 

and 

q^-'q'f' + q's-'ql"-' = qWs'^ + 2 ? ^ " ^'s<' (4.53) 

with (through the duality transformation 6 -> 2 - 6) corresponding identities for 

It is Still an open question as to whether we have found all such identities, or merely 

a subset, but there is good reason to believe that these represent all that can be found. 

From the multi-linear identities (4.47) come all possible identities involving shifts only 

depending on 9H while bringing the full machinery of the generalised bootstrap into 

play ultimately allows the proof or disproof of any identity. 

in the first situation, case-by-case analysis shows that the first row of all the S-

matrices consists o f linearly independent elements, as each has at least one pole which 

is not found in any of the others. If our identities provide a way to re-write all the other 

S-matrix elements in terms of this set, it can be used as a basis. Any other identity 

can then be proved or disproved by expanding it in the basis, and comparing terms. 

In general, this idea works very well. The only difficulty arises for dn due to the 

pair of degenerate particles. For n odd, the elements Sn{n-\){B) and Saa(0) (for 

a = n~l,n) cannot be separated, and the best that can be done is to say 

n-2 

Saa{e)S,^n-l){0)= [I S,p{e) . (4.54) 
p = l step 2 

For n even, this separates into 

n-x 

p=3 step 4 
n-4+x 

Saa(e) = N (^-5^) 
p=l step 4 

(where x = 1 for n divisible by 4, and x = 3 otherwise), but this cannot be done for 

n odd. However, in this case, e.g. 5n{n-\){B) becomes linearly independent of the 

first-row elements, and so can be added to the basis, allowing the argument to still be 

used. 
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For the more general situation, the generalised bootstrap (in common with the 

usual bootstrap) allows the entire S-matrix to be built from an initial knowledge of one 

element, usually S n . This means that any other element can be writ ten in terms of 5u 

(with various forward-backward shifts) by repeated use of the bootstrap. Inserting this 

into any identity to be proved then reduces it to a product of elements S n with a variety 

of rapidities. If these are linearly independent of each other (as seems reasonable) then 

simply comparing terms would be sufficient to prove or disprove the identity 

Neither of these arguments is as rigorous as we would like, but they do hold out 

the reasonable possibility that the claim might be true. This would reinforce the idea 

that all the structure in the S-matrix is due to the underlying Lie algebra. 

4.6 Summary 

"... an ill-favoured thing, sir, but mine own ..." 

—William Shakespeare 

The aim of this chapter was to find a concise way of encoding the Lie algebraic 

information into the S-matrix of all ATFTs. This was achieved by looking at the 

processes responsible for poles at 2$, + 2tj9H whenever the incoming particles were 

identical. These could be explained by figure 4 . 1 , where, crucially, the intermediate 

particles consisted o f those adjacent to the initial particles on the Dynkin diagram on 

the algebra. 

Sending in a third particle either before or after the interaction, and using the 

principle of factorisation to equate the results led to the "generalised bootstrap" 

5ij{Q + 0/, + t,QH)Sij{e -Qh- t , e „ ) = 

g-2,,rG(e)6, - Q j | 5 .̂̂ (g + (2n - 1 - G „ )0h) • (4.57) 

/=1 n=l 

This, together with demanding the existence of these processes (and their associated 

poles) completely fixes the minimal S-matrix. The remaining question, however, is how 

the processes arise from the initial Lagrangian formulation. 

Taking the logarithmic derivative of (4.57) then leads to an equation for the con-
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served charges of the theory, namely 

r / o _ D O f . M 
(4.58) 

A , \ / 2 - B Bti \ 
22[Gii]mns)q's = 2C0S ^Trs + 2 ^ ) 
1=1 

which reduces to a simple eigenvector equation in simply-laced cases. These charges 

can also be wri t ten as 

C/IQS OC 2 sinh s6h • sinh S O H - ' ^ J ^ I Y 
—1 .—1 \ x = l y = l 

( 2 - e ) x ^ B y 
rv/,v 

(4.59) 

Since the S-matrix is symmetric, the Ihs of (4.57) is unchanged by interchanging / 

and j , whereas the rhs is not, leading to the identities 

r Gil r Gji, 

n n ^ji^^+(2n - 1 - g , / ) 0 h ) = n n ^ " ' ( ^+ ( 2^ ' ' - 1 - g./O^h) . (4.60) 
1=1 n=X l'=l n'=l 

which probably describe all identities with shifts only involving ^ h . Just as the generalised 

bootstrap contains enough information to prove or disprove all possible identities. 
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Conclusions 

'"Good morning,' said Deep Thought at last. 

'Er... Good morning, O Deep Thought,' said Loonquawl nervously, 
'do you have ... er, that is ...' 

'An answer for you?' interrupted Deep Thought majestically. Yes. I 
have.' 

'To Everything? To the great Question of Life, the Universe and 

Everything?' 

Yes.' 

'Though I don't think,'added Deep Thought, 'that you're going to like 
it.' 

'Doesn't matter!' said Phouchg. We must know it! Now!' 

'Alright,' said the computer and settled into silence again. The two 
men fidgeted. The tension was unbearable. 

You're really not going to like it,' observed Deep Thought. 

'Tell us!' 

'Alright,' said Deep Thought. 'The Answer to the Great Question ...' 

Yes...!' 

'Of Life, the Universe and Everythingsaid Deep Thought. 

Yes...!' 

'Is ...' said Deep Thought, and paused. 

Yes...!!!...?' 

'Forty-two,' said Deep Thought, with infinite majesty and calm." 

—Douglas Adams, The Hitch Hiker's Guide to the Galaxy 
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5.1 Introduction 

The aim of this study was to investigate the fundamental objects of ATFTs: the 

S-matrices of the theory in the bulk, and the reflection factors of the theory with a 

boundary. 

For the bulk theory, the form of the S-matrices and the particle structure were 

already well-known; the intriguing question was how the Lie algebraic structure built 

into the Lagrangian manifested itself in the S-matrix. For the boundary theory, on the 

other hand, even for the simplest possible ATFT—sine-Gordon—the reflection factors 

for all except the ground and lowest excited states of the theory were unknown, as was 

the boundary bound state structure. 

The focus for both pieces of work could therefore be said to be their bootstrap 

structure: tying i t in to the underlying Lie algebraic structure in the bulk; and finding 

a rigorous way to identify the bound states hidden in the boundary reflection factors. 

5.2 Bulk ATFTs 

This work was based on the observation that, for any ATFT , two identical particles 

(say /•) colliding at a relative rapidity of 26h + 2f/9H results in the production of all 

the particles which are adjacent to it on the Dynkin diagram, and only those. Taking 

these processes as a starting point, a "generalised bootstrap" was constructed, which 

explicitly related the structure of the S-matrix elements to the Cartan matrix. By using 

these equations, together with the requirement that no more couplings than necessary 

be introduced, it was found that the complete minimal S-matrix could be derived. 

The weak link is that these processes have been introduced as axiomatic, rather 

than via a derivation from Dorey's Lie algebraic coupling rule. An important open 

problem is whether our simple tree-level argument will stand up to a perturbative 

verification to higher loops in the Feynman diagrams. We can, however, gain some 

measure of confidence f rom the fact that there is substantial evidence for the validity 

of the S-matrix formulae, which are successfully reproduced. 

Wi th this in place, i t should then be possible to tie in all the other results which 

have been found by observation on a more rigorous basis. 
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5.3 Boundary sine-Gordon 

The task here was more basic: a determination of the bound-state structure and 

reflection factors for all integrable boundary conditions. This was achieved, principally 

wi th the help of two rather general lemmas which showed that poles at sufficiently small 

rapidities could not correspond to anything other than a bound state without violating 

momentum conservation. By taking the spectrum to consist of just the states which 

were required to satisfy the lemmas, we could then show that all the other poles had 

an explanation through the Coleman-Thun mechanism. 

Since the lemmas are quite general, they apply to all theories with a boundary, 

integrable or not. An interesting open question is whether, as here, they are strong 

enough to completely determine the spectrum, or merely provide a starting point. 

The natural way to continue the work would be to generalise it to other ATFTs. It 

has been found [17] that , at the so-called "reflectionless points" (which occur at integer 

A) the full S-matrices for sine-Gordon become the minimal matrices for the theory. 

The soliton and anti-soliton correspond to the two mass-degenerate particles, while the 

breathers correspond to all the others. This might make the extension of the results 

found here to relatively straightforward. However, results for have already been 

found [59], and indicate that the coupling plays a bigger role in the boundary spectrum 

than in the bulk. Thus, while all the coupling information is contained in the minimal 

S-matrix for the bulk, the story is probably not so simple with a boundary. However, it 

might still provide a good starting point. If this could be achieved, only the exceptional 

cases would remain to complete the ADE series. 

A t this point, the position for the boundary theories would be analogous to that 

for the bulk, in that the next logical step would be to put everything on a manifestly 

Lie algebraic foot ing. While a unified discussion of all boundary ATFTs is perhaps still 

some way off, it should nonetheless be an attainable goal. The theories could then be 

said to be under complete control, at least from this point of view. 
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Boundary sine-Gordon Details 

"This is a one line proof..if we start sufficiently far to the left." 

—peter@cbmvax.cbm.commo(ioracom 
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A.l Infinite products of gamma functions 

A.1 I n f i n i t e products of gamma functions 

The products which arise in the course of this work are of the form 

'r{kl + a-xu)rikl-hb-xu) 

112 

p{u)=n 
1=1 

- l { u ^ - u ) 
y{kl + c-xu)V{kl + d-xu)"" (^-^^ 

Rather than examine this product directly, we take logs and use the standard formula 

In r ( z ) = z ln(z) _ z - ^ ln(z) + ln(v/2) + ^ + O^z'^) (A.2) 

Assuming that the sum over / and the expansion in z can be exchanged, potential 

divergences arise f rom terms of the form ^ with a 7̂  0 and n < 2. To begin 

wi th , we will consider the terms arising from the block of four terms explicitly shown. 

Firstly, there is a contribution ofj^'i^i 3 + b-c — d from the z terms, which can be 

set t o zero by demanding a+ b = c + d. For the l / 1 2 z terms, the overall contribution 

f rom the four terms is 

00 b-d 
(A.3) 

^ 1 2 [ { k l - \ - a - xu){kl -{-c - x u ) ( k l + b - xu){kl + d-xu) 

which can be seen, for a-h b = c + d, to he of the form 1 / / ^ and hence convergent. 

A similar argument applies to the ln(z) terms, showing they also provide a con

vergent contribution. This breaks down when considering the z l n ( z ) terms, however, 

and their contribution formally reduces to 

f;(£l__i^,o,n). 
/=1 

(A.4) 

which is divergent unless a = c or 6 = c, both of which are trivial cases. However, 

repeating this argument on the other block (with u -u) can be seen to yield the 

same result, allowing the two divergent terms to cancel, and leaving a product which 

is convergent overall. 

For comparison wi th other results, i t is useful to write P(u) in other ways. Firstly 

it can be wri t ten in terms of Barnes' diperiodic sine functions using the expansion as 

given in [31]: 

'{uj, +UJ2- 2x ) (7 + log(27r) + 2 log ( ^ ) ) ' 

2wi 

"p ^ u i + u J 2 - x + n t J 2 \ 

S2(x|a'i,W2) = exp 

(A) " 
n nui\' 

U2 ) 
(A.5) 
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where 7 denotes the Euler constant. For blocks of the form we are interested in, this 

simplifies to 

S2(Xi|Wi,a;2)S2(X2|Wi,W2) 
S2(X3|Wi,W2)S2(x4|Wi,W2) 

n 
n=l 

' u i 2wi 
nU2 I ij^i— 
oji 2wi 2ui J 

+ U)l—U2 
2ui 

n(j2 I U1—UI2 
2wi J ) 

/(>4 ^ - x ^ ) 
(A.6) 

(where x ^ = X m - w i - a ' 2 ) provided X1 - I -X2 = X3 + X4. Comparing with ( A . l ) we have 

^ 52(0^1(1 - a + xt7)|ayi, (x;i/c)52(a/i(l - b + xu)\oJi.uJik) 

S2{ui{l-c + xu)\uJi.uik)S2Ml-d + xu)\ui.uik)' ^'^ 

where wi is arbitrary. In section 3.2.2 we took cji = for simplicity. The identity 

1 S2(0Jl +CJ2- x |Wi , W2) = 
S2(x|Wi,W2) 

(A.8) 

was also used. 

These products can also be written in an integral form, through 

e-(C-i)x _ 1 
log C - 1 + , R e C > 0 . (A.9) 

1 - e - ^ 

Since, for the expressions we consider, not all the f- funct ions have arguments with 

positive real part, it is not possible to give a general formula for P solely in these 

terms. Instead, we give expressions for the reflection factors. To simplify matters, 

define 

l\u) = 

iHu) = 

2A r+°° , f2\ux 
dxcosh 

- 1 / 

1 / 

7r 

+°° ^ , f2\ux 
dxcosh 

TT 

, /2Aux 
dxcosh 

7r 

2 sinh X cosh Ax 

sinh - 2n* - 2) X 

sinh X 
(A.IO) 

2A /•+°° ^ /2Aiyx 
dxcosh 

2 cosh X sinh ( \ + l + 2n-'^^x 

2 sinh X cosh Ax 

2 cosh X sinh ( ^ - | - 2 / 7 - A - l ) x 

2 sinh X cosh Ax 

(where ll{u) and /^ (u ) are related to each other through ^ 7r(A + 1) - 0 - The 

constant is the number of i/-type poles in the physical strip, which we recall can be 

writ ten as 

i _1 
vr 2 

( A . l l ) 
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The reflection factors can then be writ ten as 

= iHu) + cl\u) + ln,(^) + E (A.12) 
/ odd j even 

= l \ u ) - (1 - C)IHU) + E ' » + E 'nj(^) • 
/• odd j even 

for topological charge c and x = (ni, n2 n2k+c)- These factors were given in [29] 

for the first two levels of excited states (the extent of the spectrum they found); the 

above is simply a generalisation of this to the whole spectrum. 

A.2 Relation of M and (po to ry and 

For the action defined as 

/

O roo 2 
dx dt -7-{d^,(pf + 2ncos(2p(p) 

•oo J-oo 

/
oo 

dtcosPi(p(0,t)-(po). (A.13) 
•oo 

Zamolodchikov [54] has claimed that 

cosh2(/52(i? ± = ^ s|n(^^2)g±2//3(Po ^ (A,i4) 

where this should be read as two equations, one with the positive signs, and one 

with the negative. To match our conventions, we need to re-scale this according to 

(p ->- V2TT(P, (po - ) • V2TT(PO and P -> P/2V2TT. Then we need to identify ^ = I^QIW^ 

and )Lie = M/2. This means that Zamolodchikov's formula becomes 

c o = h ^ ( g ( . ± , „ ) ) = i ( ^ ) % i n f a a « « . . (A.15, 
V87r J 2 \mo J \ 8 J 

This result agrees with earlier results for special cases [57]. To get a better idea 

how the two sets of parameters are related, it is useful to deconstruct (A.14) into 

equations for M, ipo, 77 and i? individually, giving each in terms of the other set of 

parameters. For the first two, we get 

1 r cosh (g ( ^ + / T , ) ) • 
= — I n ± J— (-

'/5 [ cosh (g (̂  -/77)) 

2ml (S + '̂ )) (g {-& - iv)) 
— 7 :̂̂ ^ . ( A . I D ) 

P' s i n ( f ) 
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where the choices o f sign must match, and are determined by requiring M to be real. 

(If we take 77 and 1? real, this means we must take the positive sign.) For 77 and i9, the 

task is made much easier by introducing the change of variables given by 

cos ( & ) cosh ( © ) = - * , c o s & 

c o s ^ ( & ) + c o s h ' ( ^ ) = H- / , J . 

where, in the l imit -> STT, ^ and kp -> k~^. In terms of these, we find 

cosHp = ^(l±cos{P<po)) (A. 18) 

^ \moJ V 8 / 

where the choice o f sign is as above. The parameters rj and •& are then determined by 

fB'^'&\ fB'^'n\ ^ I 
cosh . cos [ j ^ j =kl± yjk^ - 2A-2 cos 2^/3 + 1 , (A.20) 

where, in principle, either rj or •& can correspond to either choice of sign, and the sign 

here is unconnected to the earlier choice. 

For sine-Gordon theory, 0 is taken to be a strictly real parameter. The boundary 

parameters, M and ipo. must also be real to keep the boundary potential real^. The 

important point to note is that this means that the rhs of (A.20) is purely real, forcing 

77 and i9 to either be real or purely imaginary. In addition, the choice with the negative 

sign has modulus less than or equal to 1. This means that there is always a choice 

of Tj and i9 where both are real. The symmetry between 77 and /1? makes the choice 

where both are purely imaginary equivalent. The remaining two choices—where one is 

real, the other imaginary—make the Ihs's of (A.14) real, while the rhs's are complex 

conjugates of each other, and so are untenable. Thus, we can take TJ and i9 real 

wi thout loss of generality. 

In the Dirichlet l imit, i.e. M 00, we have /cj -> ±00 also, reducing (A.20) to 

cos \ATr J 
pH 
47r ' 

This gives •& -> ±00 and 

P^V 

cosh ^ = 2kl-cos2ip. (A.21) 

47r 
= mr±pipQ, (A.22) 

'Allowing them to be complex ( M = Mr + /M,- and tpo = ipor + 'Vo/) leads to the demand 

Mr sinh ^ = M c o s h ^ = 0 if the potential is to be kept real. The only solution to this is 

Mi = tpoi - 0. 
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for any n e Z . All of these choices for 77 correspond to the same physical reflection 

factors, so we can take 77 = recovering the result conjectured in [13]. 

A.2.1 Comparison with other results 

The sine-Gordon theory can be considered as the continuation to imaginary coupling 

of the sinh-Gordon model. For this model, an independent proposal for the relation 

between the parameters in the lagrangian and the reflection factors was made by 

Corrigan [55] and was futher studied in [56]. The field equation used there was 

a ^ 0 - a > - l - ^ ^ ^ s i n h ( v ^ / 3 0 ) - 0 , (A.23) 

with boundary condition 

a.0|o = ^ ( e o e - ^ * ( ° ' ^ ) - 6 , e ^ * ( ° ' ^ ) ) , (A.24) 

where the boundary parameters are eo and e i . The parameters in the reflection factors 

were then found to be 

— = (ao + a i ) ( l - e / 2 ) and — = (ao - a i ) ( l - 6 / 2 ) , (A.25) 
TT TT 

where B was related to the coupling constant by 6 = 2p^/{ATT + P'^), and ao, a i was 

given by 

eo = cos7rao ei = cos7ra i . (A.26) 

Their conventions differ f rom ours in the bulk by the transformations (p -> 0/2, 

P V2P, and m mo/y/2P- Applying these to the boundary condition gives 

ax0lo = mo/P'^^ (eoe- i * (° '^ ) - 6 ie f *(° '^)) . (A.27) 

To finally turn this into a suitable form for comparison, we need the trigonometric 

identity 

ae'' - I- c e " " = Vac cosh{b + d) if cosh d = 
Zy/ ac 

(A.28) 

After a little algebra, and continuing P to ip. their results then become 

c o s ( ^ ) = eoei - < / l - - ef + e^e? (A.29) 

c o s h ( ^ ) = 6oei + ^ l - e l - e l + e^ej , (A.30) 
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for the boundary condition 

where the value of a is 

To match this boundary condition to ours, we need to identify 

where 

2 _ 
Kn — 
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cosh a - 1 ^ . (A.32) 

(A.33) 
' ' ' ' = \ - 2 ^ ) = 4 sin (^2 /8) — • 

More algebra then shows that this gives 

c o s ^ ^ ^ = K} - yjn'^p - 2^1 cos 2ii3 + 4 ^ 2 + 1 (A.34) 

c o s h ^ ^ j - K} + yjK^ - 2KI cos 2ip + 4^2 + i , (A.35) 

(A.36) 
"'^ 4 s i n ( / 3 2 / 8 ) • 

This is very similar to (A.20), but it is not quite the same. This does not necessarily 

mean that either is wrong; the differences could simply be down to e.g. implicit choices 

of renormalisation scheme in the derivation of the respective formulae. The resolution 

of this question is still open. 
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A.3 On-shell diagrams 

In this appendix we collect together some of the on-shell diagrams used in the main 

body of the thesis. All boundaries are initially in the state \ni,n2 n2k). where k can 

be any integer, and we have suppressed the topological charge index (which is zero). 

Analogous processes for charge 1 states can be found by applying the transformation 

^ -> 7r(A + 1) — £ to all rapidities shown. 

In addition, where the boundary is shown decaying through emission of a breather, 

only the process where this removes the last two indices is given. Similar processes 

always exist to remove any other adjacent pair of indices, or to simply modify an index; 

see section 3.7.2 for the appropriate breather boundary vertices. 

""21,-1-"^"ik 

n g 

n2k-2) 

7r — 

\ni n2k-2> 

w, n2k 

Figure A . l : Incoming soliton, breather Figure A.2: As A . l with incoming 
boundary decay soliton crossed 

n •• 
TT — 

\ni.... . n2k-i) 

w, n2k 

\ni n2k-i) 

" 2 * 

Figure A.3: Incoming soliton, soliton Figure A.4: As A.3 with incoming 
boundary decay soliton crossed 
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•K — 

\ni n2k. m) 

7r + 
• n.-

1̂ 1 n2k-l) 

rhk 

Figure A.5: Incoming breather, soliton Figure A.6: As A.5 with outgoing 
bound state soliton crossed 

I^n-W2n2k 

I " ! n2k-i) 

7r — 

w, r<2k 

h i ri2k-i) 

Figure A.7: incoming breather, soliton Figure A.8: As A.7 with incoming 
boundary decay breather crossed 

u = 
W0-l^2n2i,-i+n 

I — n2k + n2k-i 

n2k 

ni n2k-2) 

''"2k-l-'^"2k 

TT 

' n ~r _ DJL 
^ 2X 

u = 
2Tr+l/2n2)f_i+n~'^0 

-^r^k-i + " 

1̂ 1 A72k-2) 

n2k 

^"2k-\-'^"2k 

Figure A.9: As A.5, outer legs replaced Figure A.IO: As A.8, outer legs 
by A . i replaced by A.2 
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_ 2-K+1^2n2k-l-m U - 2 

3 = 2%— 
I = n2k + n2k-i 
Wn2k 

\ni n2k-2) 

+ ^n2k-i+n 

<'"2k-i-'^"2k 

u = 
I^2l-^n2k+n 

2 

\ni n2k~i) 
-Wn^k+n-l 

n2k 

Figure A . l l : As A.6, outer legs 
replaced by A.2 

Figure A.12: As A.5, outer legs 
replaced by A.3 

U = l^n-n2k 

^"2k~'^"2k-l+" 
2 

\ni n2k~2) 
Wn2k 

t^n2k-i-^n2k 
2 

Figure A.13: As A.2, outer legs replaced by all-breather version 
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Miscellaneous Proofs 

"The trouble with facts is that there are so many of them." 

—Samuel McChord Crothers 
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"Basic research is what I am doing when I don't know what I am 

doing." 

—Wemher von Braun 

In this appendix, we present various proofs which are subsidiary to the main text, 

but serve either to fill out the bare bones of it, or provide cross-checks on the results 

presented. 

B.l Oota's starting point 

Oota, in deriving his integral formula for the S-matrix, began by defining 

yez 

as well as the matrices 

{Dq)ab = Q''5ab, (T,)a6 = [ ta] ,5at . {iq)ab = [Gat]q • (B.2) 

He then stated (after a case-by-case analysis) that the matrices m''(x) satisfied 

m''(0) = 0, m''{l) = DqTq. (B.3) 

as well as the recursion relation 

0 , - ' < ( x + 1) + D,m%{x - 1) = l,m\x). (B.4) 

As we shall see, the recursion relation follows from the generalised bootstrap (4.22). 

Examining first the recursion relation, note that it can be re-written as 

< ( x + l)q-'' + m%{x - l)q'^ = Y^[Gac\,m%{x). (B.5) 
c 

Turning now to (4.22), we can use the product-form notation to re-write the rhs as 

{x,y}'"*<^(^'^),Gac = 1 

( { x , y - l } { x , y + l}) '" '>^(^'J ') ,Gac-2 (B.6) 

^ ({x, y - 2 } {x , y } { x , y + 2})'"^c(x,y) ^ 3 

This comes about because the forward-backward shift on the rhs has the effect of 

shifting y forward and backward by 1 or 2, though it should be noted that this is not 

r t e = n nn 
c.Gac^Ox=l y=l 
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quite as straightforward as it seems and, for example, a forward shift on its own does 

not have the effect of producing any neat shift in y. To put this another way. 

c,6ca7^0x=ly=l 

Looking at the Ihs of (4.22) and writing it the same way, we find 

x=l y=l 

Comparing block multiplicities, this reduces to 

(B.7) 

(B.8) 

E 

(B.9) 

mabix - 1, y - ta) + mabix + 1. y + ta) = 

J2{ mbc(x,y-l) + mbc{x,y+l).Gca = 2 
c 

_ mbc(x~ y - 2) + mbc{x. y) + m/,c(x, y + 2), Gca = 3 

Multiplying through by , this can be rearranged to 

iriabix - l . y - ta)q^~^'q^' + mab(x + l , y + ta)q^'^*'q-^' = 

mbc{x,y)qy,Gca = 1 

mbcix. y - m-'q + mbc{x.y+ l)qy+'q-\ Gca = 2 (B.IO) 

mbcix.y- 2)g^-2q2 + mbc{x.y)qy + mbc(x.y + 2)qy+^q-\Gca = 3 

Summing both sides over all integer y, we can then re-write this in terms of the matrices 

m''(x) as 

< 

ml^{x),Gcb= 1 

mlix){q + q-'),Gcb = 2 

ml{x)iq^ + l + q-^).Gcb = 3 

( B . l l ) 

which, noting that [n]q = q"'^ + q"'^ + ••• + Q - ( " - ' \ is just (B.5). 
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B.2 The generalised bootstrap atO = 0 

The generalised bootstrap is naively 

Sab(e + 0/, + taeH)Sab{e -Oh- taOn) = 

n n Sw(0 + (2/7 - 1 - Ga / )M • (B.12) 
1=1 n=l 

A subtlety arises when we consider the case S = 0, since we can either consider the 

Ihs as 

lim lim Sabie + H)S,b(e - H) (B.13) 

or as 

lim \\m Sab(e + H)Sab(0 - H). (B.14) 

For 0 7̂  0, this distinction makes no difference, since we are not near a pole of S, 

but at 0 = 0 we are potentially considering a pole, and hence way the limit is taken 

is important. By leaving 9 arbitrary and fixing H from the beginning, we have been 

implicitly using the first form, but is perhaps more sensible to consider H as a shift 

from 5(6)—as would be the case in the Bethe ansatz approach—in which case the 

second form would be more appropriate. 

To see the difference between these two forms, we can consider one basic block of 

S, (x) for some x. Shifted forward and back by H, this becomes 

s\nh ̂ (6 + H + iTTx) smh^(9 - H + i-nx) (Bib) 

sir nh i (0 + H - / 7 r x ) sinh ^(0 - W - / T T X ) 

For the sake of argument, we shall take H positive. It is clear that as long as H ^ iirx, 

all the arguments of the sinh functions are non-zero (noting that we need not worry 

about periodicity as x < 1) and thus the result is the same in either limit. However, 

at /-/ -> /Trx, a discrepancy arises as, if we take this limit first, we find 

sinhi(g + 2H) sinhi(g) 

s\r\h^{e-2H) ' sinh^(0) 

which reduces to -1 if we take the 9 limit as well. Taking the limits in the other order, 

however, we get 

sinh ^(W +/TTx) sinh ^(-/-/-I-/Trx) (B 17) 
s'mh^(H - ITTX) sinh | ( - A 7 - /T rx ) 



B.3 Check that generalised bootstrap follows from integral formula 125 

which reduces to 1 even before taking the H limit. 

For 6 = 0, then, if we want to take the 0 ->• 0 limit first, we must modify (B.12) 

by a factor of - 1 for every "problem" S-matrix block, i.e. for every block of the form 

{x,y) = ( l , t a ) in Sab. Going to the larger block, { x , y } , this turns out to mean a 

factor for every block { 2 , ta ± 1} . 

The easiest way to go from here is to appeal to (B .5 ) , with x = 1, which gives 

q-'^m''j2) = q'»[tbUGbaU (B .18) 

or 

m%i2) = q^^+^Hc?'^-' + Q''-' + ••• + Q'-"')[Gba],- (B.19) 

We are now looking for terms in q'^"^^ in this expansion. If Gba = 1. then the lowest 

term is q'^^'^^, meaning we need one minus sign. If Gba = 2, we introduce a factor 

of (q + q~^), leaving us with terms like q''^ and q''^'^^, but none of the right form. 

If Gba = 3, it is simplest to note that we must therefore be looking at G2, and that 

= 3, rb = 1. showing /T7^i,(2) = q^ + 2q^ + Sq"^ + 2^2 + 1, with us searching for 

powers of q^ or q°. Thus, Gab = 3 leaves us needing to introduce a net minus sign as 

well. 

To summarise, we need to introduce a minus sign to one side of (B.12) for Gab 

odd^ in the case 6 = 0; the term used in (4.22) is perhaps as good a way as any, and 

turns out to be useful in further calculations. 

B,3 Check that generalised bootstrap follows from 

integral formula 

The most straightforward method (and the one we shall use) is to propose an identity 

of the form 
r Gil 

Sijie + e, + tieH)Sijie--1,0„) = e>'J]HSji{e + {2n-i-G,-,)0H), (B.20) 
/=1 n=l 

and aim to find y by substituting in the integral formula for the S-matrix. 

Since equation (4.22) applies to the case where the 9 limit is taken first, we need 

a prescription for taking the other limit. It turned out to be simplest to replace 9h and 

'Note that Gab is necessarily odd if Cba is, though the two need not be equal. 
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9H in (B.20) by 9h + ie and 9H + ie, and take the limit e 0 last. Substituting in 

(4.31) and simplifying, we find 

/=i ~°° 

{Kii],'(nkW(-k)Mij{qi-Kk).qiT^I<))) (B.21) 

where q'(t) = q{t)e^ and q'(t) = q{t)e^. Looking back to (4.44), we can see 

that when the integrand in (B.21) is expanded out, all the terms are of the form 

t{x, 9) = dk^^ike^xiki ^ ^ Pggl̂  which is divergent if x is positive. It is, however, 

implicit in Oota's formulation that any terms which are naively divergent must be 

analytically continued. For x negative, t(x, 6) is just a standard Fourier transform 

which has the result 2 /arc tan-^ , Thus the analytic continuation x - x to x 

positive should just introduce a minus sign, so each divergent term of this type with 

X positive should be replaced by the same term with x - x and an additional minus 

sign. 

\f 6 = 0, each term f(x, 0) becomes 0, unless x = 0. If there is no t(0,9) term, 

the rhs must therefore reduce to 1. \f 9 ^ 0, the limit ordering does not matter, so 

we can take the e limit first and reduce J2'i^i[Kii]qqMij(q('Kk).q('nk)) to 5/j[tj]q(.,rfc)-

Each t{x,9) is then matched by a t(-x,9), so the rhs again reduces to 1. The only 

way the rhs can come to anything other than 1 overall for any 6 is if there are terms 

like t{0,9) present. 

For this to happen, we require [Kii]q,qi = (Q', ^'-independent part)+(terms in 

q'.q'). From the definition (4.33), and the fact that [n]q can be expanded out 

as q"'^ + q"~^ + ... + q~^"~^^ for n integer, this reduces to requiring Gn odd, in 

which case the c/', q'-independent part is - 1 . We also need Mijiq{'Kk),q{'Kk)) = 

q{'Kk)q('Kk)'^j+{terms in higher powers of q,q) for the same /. Expanding out (4.44), 

the lowest power of q^q'' present is q'^q^, for the smallest x and y such that m/j(x, y) ^ 

0. The second condition can thus only be satisfied if the product-form S-matrix S/j(0) 

contains a block { 1 , t,}, and (B.3) shows that this occurs iff / = j. This should be 

compared with the discussion of equation (B.12), where the discrepancy between the 

two possible limit prescriptions was caused by a pole from this block; we are essentially 

approaching the same pole here. 

Overall, then, we find that there is one block of the form t(0,9) if Gjj is odd, but 
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none otherwise. In this case, we find y = 0 for 6,y even and 

= exp - / ~e'^^ . Gij odd. (B.22) 

This is just the X -> 0 case of the previous Fourier transform, so we find y = -2iTr©(9) 

for Gij odd or y = 0 otherwise. This is equivalent to y = -2iirQ(9)Gij, showing that 

we have indeed found a generalisation of the RTV formula. 

To complete this section, we must discuss the exceptional case 32^. Being self-

dual, the S-matrix for this theory cannot be found from the above. Following Oota, 

however, we note that the necessary prescription is to replace each reference to r^/?^ by 

h^ = h = 2n+l. take all tg = 1, and replace the incidence matrix by the "generalised 

incidence matrix" [53], which is obtained from the incidence matrix of â ^̂  by replacing 

the last zero on the the diagonal by a one. Doing this, we obtain the correct integral 

S-matrix, and hence a generalised RTV identity, for this case. 

BA Fourier transforms 

Here we attempt to find 

(̂,)=rf2iif±4)e"V. ( B . 3 , 
J-oo Vsinh ( I + a) J 

To do this, we need to use the Convolution Theorem, which states that, if F(a) 

and G{a) are the Fourier transforms of f{x) and g(x) respectively, then 

— F ( a ) G ( a ) e - ' " ^ d a = / f{u)g{x - u)du. (B.24) 
27r y_oo 7-00 

This, together with the standard results 

sinh(/)x) b[cosU[^)+cos{^)] 
f{x) = 5ix) -> F(a) = l (B.26) 

allow us, setting a = IT and £» = 27r in B.25 to find 

/• r°° f s\nh(%)\ , /"°° cosh(7rt;) 
47ry_«, \̂ cosh(|)y 7_^sinh(27ru) ' 

Returning now to B.24, if we make the change of variables 9' = 9 + 2a + in-n, where 

n is an odd integer, we find it becomes 

.oo / s i n h f | ) \ 
^(/f) = e"'(2a+2'"7r) / \1J ^Ikff ̂ Q, (g 28) 

y-oo \ cosh ( I ) / 
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where we have implicitly moved the contour of integration from the real axis to a line 

2a + / / ITT above it. We can do this provided there are no poles of the function between 

the real axis and this line, and, when we make use of this result, we will pick the 

arbitrary constant n to make sure this happens. If we were to take n such that there 

were m simple poles in this region, we would incur a correction term of i2-Km, being a 

contour integral of the function with the contour going along the real axis to infinity 

up to 2a + inir, back along this line to minus infinity and then back down to the real 

axis and back to the start. 

We are now in a position to connect the above together, and f ind, finally 

^ sinh(27r/c) 
(B.29) 

(being careful over the sign, due to the discrepancy in the sign of the exponential 

between B.27 and B.28). 

B.5 Dynkin diagrams 

Where there are roots of different lengths, the filled in spots refer to short roots. 

r(l) 

o o — a - - • - — C r ^ ^ 
1 2 3 n-1 n 

O 
1 3 

2 

n - 1 n 

Nonsimply-
laced 
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1 

o -
1 

4̂^ a 

4̂^ o 

2 3 n-1/2 n/1 

2 

2 0 

O 
3 4 

3 0 

O 
5 

O 
6 

O 
7 

4 0 

- o 
n-3 n-2 

- o — O 
5 1 

O 
6 

O 
7 

o 
4 

o 
5 

n - 1 

- o 
1 

o 
3 

- o 
1 

Simply-
laced 

B.6 Cartan matrices for simple Lie algebras 

Here, we give explicitly the Cartan matrices for all the untwisted simple Lie algebras, 

with the root ordering and normalisation we have used. 

/ 2 - 1 0 

- 1 2 - 1 

0 - 1 2 

2 - 1 0 

- 1 2 - 1 

0 - 1 2 
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( 2 -I Q 

- 1 2 - 1 

0 - 1 2 

2 - 1 0 

- 1 2 - 1 

0 - 2 2 y 

130 

/ 2 - 1 0 

- 1 2 - 1 

0 - 1 2 

2 - 1 0 

- 1 2 - 2 

0 - 1 2 

(1) 

/ 2 - 1 0 

- 1 2 - 1 

0 - 1 2 

2 - 1 0 0 

- 1 2 - 1 - 1 

0 - 1 2 0 

0 - 1 0 2 j 
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2 0 0 0 - 1 0 

0 2 0 - 1 0 0 

0 0 2 - 1 0 - 1 

0 - 1 - 1 2 - 1 0 

- 1 0 0 - 1 2 0 

0 0 - 1 0 0 2 

2 

0 

0 

- 1 

0 

0 

0 

0 

2 

0 

0 

- 1 

0 

0 

0 

0 

2 

0 

0 

- 1 

0 

0 

2 

0 

0 

0 

2 

0 - 1 0 

- 1 0 - 1 

0 

0 

0 

- 1 

0 

2 

- 1 

0 

0 

- 1 

0 

- 1 

- 1 

2 

2 0 - 1 

0 2 0 

- 1 0 2 

0 0 0 

0 0 - 1 

0 - 1 0 

0 0 0 

0 0 0 

0 

0 

0 

2 

0 

0 

0 

0 - 1 

0 

0 

- 1 

0 

2 

0 

0 

- 1 

0 

0 

0 

2 

0 

- 1 

0 

0 

0 

0 

- 1 

0 

2 

0 \ 

0 

0 

- 1 

0 

- 1 

- 1 

2 / 
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r ( l ) 
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/ 2 0 - 1 0 \ 
0 2 0 - 1 

- 1 0 2 - 2 

V 0 - 1 - 1 2 / 

B.7 S-matrices 

For the self-dual cases, the S-matrices were originally found in [41, 42, 17]. The non-

self-dual cases took a little longer but were finally obtained in [46, 47, 45], We adopt 

the general notation of [45] and write the S-matrix as 

Sab{e) = \{\{{x,yr^^^>^'y\ (B.30) 
x = l y = l 

where the {x, y } are of the form 

( x - l , y - l ) ( x + l , y + J . ) 
{ x , y } = ( x - l , y + l ) (x + l , y - l ) 

with 

and 

, ( 2 - e ) x , By 
(x , y ) = ( - ^ y ^ + ^ ) . 

_ sinh {\ {9 + /TTx)) 

(B.31) 

(B.32) 

smh{\{9 - iirx)) ' 

For convenience, this notation can be extended to include 

a[x, y]b =a {x, y}b X crossing = a {x, y } ^ x {/? - x, r^/?^ - y]b 

with the subscript being omitted if it is equal to one and 

{ x , y } 2 = { x , y - l } { x , y + l } 

(x ,y )3 = { x , y - 2 } { x , y } { x . y + 2} 

2 { x ' . y } 2 = { x " - i . y } 2 { ^ + i . y } 2 

= {x - 1, y - l } { x - 1, y + l } { x + 1, y - l } { x + 1, y -I-1} 

(B.33) 
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Whenever an entry appears to the power n below, this means that mab(x,y) should 

be taken to be n rather than 1 for that entry. 

a^'^ / j = n + 1 and = n + 1 

a + b - l 

p=\a-b\+l step 2 

6^') /) = 2n and r^ / j^ = 4 / 7 - 2 

a + 6 - l 

S a b W = n [P.2p]2, a , /J<n 
p = | a - 6 | + l step 2 

a + b - 1 

Sa.(e) = n [P.2p], a < n 
p = | a - 6 | + l step 2 

n - l 

Snnie) = n { " - P . 2 n - l - 2 p } 
p = l - n step 2 

a + 6 - l 

Sab= n [''•p] 
p = | a - 6 | + l step 2 

d^') /7 = 2 (n - l )and / ' ^ /7^ = 2 ( n - l ) 

a + b - l 

Sab(e) = n [p,p], a , b < n - l 
p=|a-bH- l step 2 

n-2+b 

5 a 6 W = n {P'P}' b<n-l,a = n-lorn 
p=n-2 step 2 

2n-4+x 

Sa6(^) = JJ {p. P} . a=b = nora=b = n - l 
p = l step 4 

2n-4-x 
5nin-l)(e) = n '̂'•'̂ ^ 

p=3 step 4 

(In the above, x = 1 for n even and x = - 1 for n odd.) 
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ej ' ) h=12 and r^/ i^ = 12 

(In this and the subsequent sections, x listed on its own should be taken to mean {x} . ) 

a b Block a b Block a b Block 

1 1 1,7 2 3 [3], [5] 3 6 2,6,8 

1 2 [4] 2 4 [2],[4].62 4 4 [l].[3p,[5]3 

1 3 4,6,10 2 5 [3], [5] 4 5 [2],[4]^62 

1 4 [3], [5] 2 6 [4] 4 6 [3], [5] 

1 5 2,6.8 3 3 1,[3],5,72 5 5 1,[3],5,72 

1 6 5.11 3 4 [2],[4p,62 5 6 4,6,10 

2 2 [1].[5] 3 5 [3], 52.7,11 6 6 1,7 

.(1) /) = 18 and r^ / j^ 18 

mabix.y) = 1 for (^.y) = (P' P) where 

a b Block a b Block a b Block 

1 1 [1].9 2 5 [2], [6], [8] 4 6 [2],[4],[6],[8]2 

1 2 [6] 2 6 [4], [6], [8] 4 7 [3],[5p,[7p,92 

1 3 [5], 9 2 7 [3], [5], [7], 92 5 5 [l].[3],[5],[7p,92 

1 4 [2], [8] 3 3 [1].[5],[7],9 5 6 [3],[5F,[7p.92 

1 5 [5], [7] 3 4 [4], [6], [8] 5 7 [2],[4F,[6p,[8p 

1 6 [3], [7], 9 3 5 [3], [5], [7], 92 6 6 [l ] , [3],[5p,[7p,93 

1 7 [4], [6], [8] 3 6 [3],[5].[7]2,9 6 7 [2],[4p,[6]3.[8p 

2 2 [1].[7] 3 7 [2],[4],[6F,[8p 7 7 [ l ] , [3p,[5p , [7r ,9^ 

2 3 [4], [8] 4 4 [1].[3],[7],92 

2 4 [5], [7] 4 5 [4],[6F,[8] 

= 30 and = 30 

mab(x.y) = 1 for (x .y ) = (p, p) where 
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a b Block a b Block 

1 1 [1],[11] 3 6 [5],[7]2,[9],[11],[13]M52 

1 2 [7], [13] 3 7 [3],[5],[7],[9]2,[11]2,[13]M52 

1 3 [2], [10], [12] 3 8 [4],[6]2,[8]2,[10]2,[12]2,[14]3 

1 4 [6], [10], [14] 4 4 [1],[5],[7],[9],[11]2,[13],152 

1 5 [3], [9], [11], [13] 4 5 [4],[6],[8]2,[10],[12]2,[14]2 

1 6 [6], [8], [12], [14] 4 6 [3],[5],[7],[9]2,[11]2,[13]M52 

1 7 [4], [8], [10], [12], [14] 4 7 [3],[5],[7]2,[9]2,[11]2,[13]^[15]2 

1 8 [5], [7], [9], [11], [13], 152 4 8 [2],[4],[6]^[8]^[lo]^[l2]^[l4 ]3 

2 2 [1], [7], [11], [13] 5 5 [1],[3] , [5],[7],[9 ]2 , [11]^[13 ]M52 

2 3 [6], [8], [12], [14] 5 6 [4],[6]2,[8]^[10]2,[12]2,[14]3 

2 4 [4], [8], [10], [12], [14] 5 7 [2],[4],[6]2,[8]2,[10]3,[12]3,[14]3 

2 5 [5], [7], [9], [11], [13], 152 5 8 [3],[5]^[7]^[9]^[ll]^[l3]^[l5]^ 

2 6 [2],[6],[8],[10],[12]2,[14] 6 6 [l].[3],[5],[7]^[9]^[ll]^[l3 ] M 5 2 

2 7 [4],[6],[8],[10]2,[12],[14]2 6 7 [3],[5 ] 2,[7]^[9]^[ll]^[l3]^l5^ 

2 8 [3],[5],[7],[9]2,[11]2,[13]M52 6 8 [2],[4]2,[6]2,[8]^[10]^[12]^[14]^ 

3 3 [1],[3],[9],[11]2,[13] 7 7 [l],[3],[5 ] 2,[7]^[9]^[ll]^[l3]M5^ 

3 4 [5], [7], [9], [11], [13], 152 7 8 [2],[4]^[6]^[8]^[lo]^[l2]^[l4 ] 5 

3 5 [2],[4],[8],[10]^[12]2,[14] 8 8 [ l ] , [ 3 ] ^ [ 5 ] ^ [ 7 ] ^ [ 9 ] ^ [ l l ] ^ [ l 3 ] M 5 6 

f,(^) /7=12and/-^/)^ = 18 

a b Block a b Block 

1 1 [1,1], [5, 7] 2 3 [3,5]2,[5,7]2 

1 2 [4, 6]2 2 4 [2,4]2,[4, 6]2,[6,8]2 

1 3 [2, 2], [4, 6],{6,9}2 3 3 [1,1],[3,4]2,[5,8]2,[5,7] 

1 4 [3,4]2[5,8]2 3 4 [2,3]2,[4,5]2,[4,7]2,[6,9]2 

2 2 [1,2]2,[5,8]2 4 4 [l,2]2,[3,4]2,(2[4,6]2),[5,8]i 

/7 = 6 and r^ / j ^ = 12 

a b Block 

1 1 [1,1],{3,6}2 

1 2 [2,4]3 

2 2 [1,3]3,[3,5]3 
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Epilogue 

"The Road goes ever on and on, 

Down from the door where it began. 

Now far ahead the Road has gone, 

And I must follow, if I can, 

Pursuing it with eager feet. 

Until it joins some larger way 

Where many paths and errands meet. 

And whither then? I cannot say." 

—J.R.R. Tolkien,The Hobbit 
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