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ABSTRACT 

The explosive growth of Internet-based architectures is allowing an efficient access 

to information resources over geographically dispersed areas. This fact is exerting 

a major influence on current manufacturing practices. Business activities involving 

customers, partners, employees and suppliers are being rapidly and efficiently 

integrated through networked information management environments. Therefore, 

efforts are required to take advantage of distributed infrastructures that can satisfy 

information integration and collaborative work strategies in corporate environments. 

In this research, Internet-based distributed solutions focused on the manufacturing 

industry are proposed. Three different systems have been developed for the tooling 

sector, specifically for the company Seco Tools UK Ltd (industrial collaborator). 

They are summarised as follows. 

SELTOOL is a Web-based open tool selection system involving the analysis of 

technical criteria to establish appropriate selection of inserts, toolholders and 

cutting data for turning, threading and grooving operations. It has been oriented to 

world-wide Seco customers. SELTOOL provides an interactive and crossed-way of 

searching for tooling parameters, rather than conventional representation schemes 

provided by catalogues. Mechanisms were developed to filter, convert and migrate 

data from different formats to the database (SQL-based) used by SELTOOL. 

TTS {Tool Trials System) is a Web-based system developed by the author and two 

other researchers to support Seco sales engineers and technical staff, who would 

perform tooling trials in geographically dispersed machining centres and benefit 

from sharing data and results generated by these tests. Through TTS tooling 

engineers (authorised users) can submit and retrieve highly specific technical 

tooling data for both milling and turning operations. Moreover, it is possible for 

tooling engineers to avoid the execution of new tool trials knowing the results of 

trials carried out in physically distant places, when another engineer had previously 

executed these trials. The system incorporates encrypted security features suitable 

for restricted use on the World Wide Web. 
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An urgent need exists for tools to make sense of raw data, extracting useful 

knowledge from increasingly large collections of data now being constructed and 

made available from networked information environments. This explosive growth in 

the availability of information is overwhelming the capabilities of traditional 

information management systems, to provide efficient ways of detecting anomalies 

and significant patterns in large sets of data. Inexorably, the tooling industry is 

generating valuable experimental data. It is a potential and unexplored sector 

regarding the application of knowledge capturing systems. Hence, to address this 

issue, a knowledge discovery system called DISKOVER was developed. 

DISKOVER is an integrated Java-application consisting of five data mining 

modules, able to be operated through the Internet. Kluster and Q-Fast are two of 

these modules, entirely developed by the author. Fuzzy-K has been developed by 

the author in collaboration with another research student in the group at Durham. 

The final two modules {R-Set and MQG) have been developed by another member 

of the Durham group. To develop Kluster, a complete clustering methodology was 

proposed. Kluster is a clustering application able to combine the analysis of 

quantitative as well as categorical data (conceptual clustering) to establish data 

classification processes. This module incorporates two original contributions. 

Specifically, consistent indicators to measure the quality of the final classification 

and application of optimisation methods to the final groups obtained. Kluster 

provides the possibility, to users, of introducing case-studies to generate cutting 

parameters for particular input requirements. Fuzzy-K is an application having the 

advantages of hierarchical clustering, while applying fuzzy membership functions to 

support the generation of similarity measures. The implementation of fuzzy 

membership functions helped to optimise the grouping of categorical data 

containing missing or imprecise values. As the tooling database is accessed 

through the Internet, which is a relatively slow access platform, it was decided to 

rely on faster information retrieval mechanisms. Q-fast \s an SQL-based exploratory 

data analysis (EDA) application, implemented for this purpose. 
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CHAPTER 1 

(INTRODUCTION 

This chapter introduces a general overview of the tooling sector within the 

manufacturing industry. However, the main contribution of this chapter is to 

provide a broad review of two important issues organisations are currently 

facing. 

Firstly, the definition of efficient distributed strategies for supporting information 

integration and collaborative work schemes, particularly in corporate 

environments where it is necessary to share information of mutual interest but 

where their different members and branches are geographically dispersed. The 

motivation for adopting Web-based approaches is outlined, where concepts 

such as Global Manufacturing, Agility and Virtual Manufacturing, are reviewed. 

Secondly, the existence of large amounts of raw data, occupying costly space 

and apparently idle, but potentially useful in terms of the hidden knowledge that 

can be discovered to support decision making processes. The idea of 

implementing knowledge discovery approaches exploiting the facilities provided 

by the Internet to access distributed information sources, is introduced. 

A summary of this chapter and a statement of the research objectives follow. 

Finally, an outline of the thesis structure will be presented. 

1.1 M A N U F A C T U R I N G AND T O O L I N G I N D U S T R Y 

According to Dagli (1994), Cost, Markets, Quality and Flexibility were the main 

issues addressed by the manufacturing industry in the last four decades. 

Competitive advantage in the 1960s was achieved by Cost minimisation and 

high product volume reducing set up time, to benefit from economies of scale. 

In the 1970s the ability to access Markets was more important, and 

manufacturing information system design became an important issue 



implemented by using mainframe computers. At that time, the concepts of 

master production planning and control, hierarchical approach to planning and 

scheduling, functional flow control and computer numerical control (CNC), were 

introduced. 

During the 1980s, it became more difficult to stay competitive in the market 

place because of exponential growth in communication systems around the 

world and the emergence of global markets. Quality was the key to competitive 

advantage during this time frame. The concepts of just-in-time (JIT), optimised 

production technology, statistical process control (SPC), total quality control 

(TQC), computer aided design (CAD), and computer aided manufacturing 

(CAM), became popular. 

The availability of personal computers speeded up the previously described 

process, reducing the need for working in mainframe-based scenarios and 

providing extensive computational power at various locations within the factory. 

The first steps towards efficient networked environments and paperless 

organisations were made. 

In the 1990s, manufacturing strategies were based on Flexibility as the key to 

competitive thrust. The manufacturing community, influenced by growing 

globalisation, was demanding more efficient methods to provide distributed 

business solutions. 

In the early 2000s, the concept of Cyber-Factory is becoming an important 

paradigm supported by accelerated improvement in communications 

technology, virtual work schemes and information integration, where the 

Internet is playing a significant role. 

1.1.1 General Manufacturing 

Wu (1992), defines manufacturing as the organised activity devoted to the 

transformation of raw materials into marketable goods. Manufacturing industry 

is often called a secondary industry, because this is a sector of a nation's 

economy that is concerned with the processing of raw materials supplied by the 

primary industry (agriculture, forestry, fishing, mining, and so on) into the end 

products. A manufacturing system usually employs a series of value-adding 

2 



manufacturing processes to convert the raw materials into more useful forms 

and eventually into finished products. 

A manufacturing system is, therefore, a typical input-output system which 

produces outputs (economics goods) through activities of transformation from 

inputs (raw materials, parts or factors of manufacturing). 

In a manufacturing company three main stages can be distinguished with 

regard to the fabrication of a product [(Hunt, 1989), (Rembold et al, 1993), 

(Parsaei, 1995)]: 

Design, where the bill of materials, quality control procedures, the dimensions 

and tolerances of the product will be described. Process Planning, where given 

the engineering design of an item which has to be manufactured, process 

planning is the act of generating an ordered sequence of the manufacturing 

operations necessary to produce that part within the available manufacturing 

facility. 

Finally, Production Planning & Control, where once the process plan is 

generated, the following steps are typical at this stage: 

• The operation sequencing starts to manufacture the product. 

• Monitoring activities are implemented to follow a job and all parts through 

the plant. 

• Keep track of the presence of employees and required skills. 

• Monitor the assignment of the manufacturing resources. 

• Observe the correct functions of the manufacturing equipment, control 

machine and defects. 

The development, prosperity, welfare and living standards of a nation depend to 

a great extent upon the success of its manufacturing industries; to any 

industrialised country manufacturing is important internally as well as externally. 

Significant internal factors are; continued employment, quality of life and the 

creation and preservation of skills. External factors are national defence and the 

nation's position and strength in world affairs. 

3 



1.1.2 Tooling Industry 

The manufacturing industry is highly dependent on the tooling, which is needed 

to machine the components used to make the range of products seen in today's 

society (Revere, 2000). 

Tooling operations requiring more attention are those relating to tool selection, 

tool life prediction, cutting data recommendation, machining operation selection 

and comparative analysis of cutting conditions. A brief overview of some of 

these parameters is presented as follows. 

1.1.2.1 Tool Selection 

One of the more important functions in Process Planning (PP) is the appropriate 

selection of tools for the machining processes. It is necessary to apply certain 

criteria of selection in order to identify from a considerable number of available 

options, the best tool to be used. An efficient tool selection method will 

contribute to minimise the manufacturing time cycle and, hence, it will have a 

strong influence in the reduction of costs. 

The method should be able to identify the tool requirements, once the design 

parameters of the workpiece, type of material, type of operation, type of cutting 

and other relevant information have been evaluated. Then, a match can be 

made between these specifications and existing tools. 

Simple workpieces can be machined using only one tool. However, certain 

parameters can influence the selection of more than one tool, according to the 

need to satisfy additional machining requirements. In this case the selection 

method must consider a multiple tool selection criterion. 

1.1.2.2 Cutting Data 

When a cutting tool is applied to a workpiece, a layer of metal is removed in the 

form of a chip. The type of chip produced during metal cutting depends on the 

material being machined and the cutting conditions used (Boothroyd and 

Knight, 1989). 
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The information generated when defining the cutting conditions is known as 

cutting data. The cutting data usually include information about Feed Rate, 

Cutting Speed and Depth of Cut. 

Procedures to select appropriate cutting data are needed in order to reduce the 

restrictions imposed by the cutting processes. Various constraints act upon the 

cutting process, the most critical being: the geometric tool suitability, tool life, 

cutting forces, machine power, tool or workpiece deflection, chip capacity of a 

cutter, chatter and surface finish (Carpenter, 1996). 

1.1.2.3 Tool Life Prediction 

The life of a determined tool can be reduced by its progressive wear as well as 

by premature failures. 

Signs of wear can be recognised on areas of the face and flanks of the cutting 

tools, while premature failures can be produced by factors such as dropping the 

tool, incorrect selection and use, shop-floor conditions, incorrect coolant 

conditions and damages to accessories such as carbide inserts (Boothroyd and 

Knight, 1989). 

Alamin (1996) designed an off-line tool life control and management system 

(TLC). The predictions were based on the optimisation of cutting data using 

three tool life criteria: user defined tool life, tool life for minimum production cost 

and tool life for maximum production rate. The functioning of TLC is based on 

tool life coefficients obtained from tool manufacturers' data in order to calculate 

the tool life value in a theoretical way. 

Having provided a summarised description of the main issues addressed by the 

tooling industry, to conclude this section a review of selected applications in this 

area will follow. 

Monostori and Viharos (1995) proposed a novel approach for generating 

multipurpose models of machining operations, combining machine learning and 

search techniques. These models are intended to be applicable at different 

engineering and management assignments. Simulated annealing search is 

used for finding the unknown parameters of the model in given situations. It is 
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expected that the developed block-oriented framework will be a valuable tool for 

modelling, monitoring and optimisation of manufacturing processes and process 

chains. 

A framework for machining operation planning systems was proposed by 

Kojima et al. (1999). A prototype system to advise the engineer of cutting 

conditions, including trouble shooting for side end milling was developed to 

demonstrate the concept. 

Zhou and Harrison (1997) described a fuzzy neural hybrid model to compensate 

process errors in CNC machining by touch trigger probe systems. The proposed 

system reveals that it is feasible to achieve an improved machining 

performance by implementing fuzzy membership functions and generating 

linguistic control rules. 

Wood et al. (1997) examined the application of Neural Networks (NN) in 

traditional machining processes. Also, they developed a NN-based multi-layer 

perceptron to produce a correlation between vibration measurements gathered 

during a machining operation and the condition of the tool tip. This investigation 

showed the potential of NN in condition monitoring applications. 

The above reviewed applications constitute good examples of Al-based 

implementations to provide solutions in the tooling industry. It was noted how 

disciplines such as Neural Networks and Fuzzy Sets play a predominant role in 

the development of current applications. 

1.2 A G I L E M A N U F A C T U R I N G 

In general all definitions of Agile Manufacturing converge on a common goal, 

the ability to quickly respond to demanding and dynamic scenarios. For 

example, Yuan era/. (1999) affirm that the agility of an enterprise is determined 

by its ability in respect of opportunity and innovation management. Noaker 

(1994), states that Agile Manufacturing is lean manufacturing specifically 

tailored to deliver rapid response to continually changing situations. 

The primary goal of the manufacturing enterprise of the future remains 

essentially on its agility or dynamic adaptability. It has to achieve rapid, flexible 
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and integrated development and manufacture of innovative products at a price 

the customer is prepared to pay. To thrive in the emerging market conditions it 

has to be capable of rapidly responding to market trends and operating as an 

efficient member of an extended and increasingly global supply network (Gindy, 

1999). 

Furthermore, Gindy proposed a responsive manufacturing model for the UK 

aerospace industry, which is shown in Figure 1.1. Adaptability and change 

proficiency can be identified as the most significant parameters in achieving 

manufacturing responsiveness. A description of the main factors characterising 

these parameters is presented. 

Manufacturing Responsiveness 

Adaptability Change Proficiency 

- Intelligent and flexibility 
of technology 

- Reconfigurability of 
manufacturing systems. 

— Flexibility of people. 

- Interdependency between 
people and technology. 

- Flexibility of software 
systems used. 

— Ability to predict/forecast trend. 

— Ability to implement new technology 
and new system concepts. 

- Emphasis on innovation and 
experimentation. 

— Ability to smooth and systematic 
change. 

— Easy assimilation of knowledge 
and experience. 

Figure 1.1 - A responsive manufacturing model. 

Park et al. (1993) proposed using the Internet, along with the standards, 

protocols and technologies developed and refined over the years by the 

academic community, to build what is called Agile Manufacturing Systems 

(Goldman and Nagel, 1993). The concept is built around the principle of client-

server computing. The servers encapsulate manufacturing resources and 

applications, and make them available as network services. 
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Tsinopoulos and McCarthy (1999), introduced a biological classification 

technique called "cladistics" to achieve manufacturing agility. The main idea 

behind this concept is that, regardless of the industrial sector, managers could 

use the proposed cladistic approach as an evolutionary technique for 

determining "where they have been and where they are now". 

Yuan et al. (1999) investigated the influence and importance of "Cellular 

Manufacturing" in agile manufacturing scenarios. They compared two kinds of 

manufacturing cells, namely Grouping Manufacturing Cell and Virtual 

Manufacturing Cell. A manufacturing cell was defined as any functional entity 

which holds certain kind of specific manufacturing capabilities and can 

accomplish all the manufacturing tasks related to a part or an entire product. 

As an advanced manufacturing paradigm for the next century, the strategic 

objective of Agile Manufacturing is to produce products of the highest quality, 

the lowest cost and satisfying the customer from multiple aspects within the 

given time frame by the effective integration of people, technology and 

organisation. It makes synthetic use of concepts such as Just-In-Time, 

Concurrent Engineering and Resources Optimisation, and it is thoroughly 

customer-oriented (Nagel etal., 1991). 

1.3 G L O B A L AND D I S T R I B U T E D M A N U F A C T U R I N G 

Currently, the work strategies of manufacturing organisations are being 

influenced by a growing world-wide standardisation of processes and the 

emergence of automated infrastructures around global information networks. 

Therefore, the different business activities involving customers, partners, 

employees and suppliers must be efficiently integrated in collaborative 

environments, regardless of the physical locations where these activities are 

carried out. 

In a manufacturing context, collaborative environment refers to a situation 

where a group of geographically alienated people work together on certain 

product development or manufacturing operations (Leung, 1995). 

It has become widely accepted that the future of manufacturing organisations 

will be information-oriented, knowledge driven and much of the daily operations 
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will be automated around a global information network that connects everyone 

together (Leung etal., 1995). 

The arrival of the Internet and its adoption as an international standard, has 

been a decisive factor to implement world-wide information exchange 

infrastructures, where the advantages of sharing valuable information and 

knowledge from remote locations are now considerably exploited. 

In a very competitive world and increasing global markets, manufacturing 

companies are taking advantage of networking activities in which resources, 

learning, experience and knowledge can be shared (Casavant and Singhal, 

1994). 

In a sharper perspective, Regli (1997) affirms that "Companies that can not 

handle the accelerated flow of information made possible by networks may be 

eclipsed by those that can". 

In recent years, interesting research initiatives focused under distributed 

philosophies and web-based architectures have been undertaken, and are 

presented as follows. 

In the area of industrial manufacturing engineering, Feldmann and Rottbauer 

(1999) proposed an electronically networked assembly framework for global 

manufacturing. 

In their project about integrating structured databases into the Web, Eichmann 

et al. (1998) developed an architecture called MORE (Multimedia Oriented 

Repository Environment). MORE was designed as a set of application 

programs, specifically a set of CGI executables, that operate in conjunction with 

a stock HTTP server to provide access to a relational database of meta-data. 

Following the same guidelines of the above research, Smith and Wright (1998) 

proposed to take advantage of WWW technologies to provide the first 

computer-aided design-to-manufacture web-site, through the development of a 

tool called "CyberCut". It provides users with a CAD front-end to a computer 

aided process planner already proven within an end-to-end CAD/CAPP/CAM 

system. 
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The way the architecture of CyberCut has been structured requires further 

explanation. The external client enters the design interface over the Web, while 

the planner and manufacturing system reside in the company web server. The 

client then proceeds to design the required component, using an interface 

developed for this particular task. The user introduces the design feature by 

feature, and is given different options on how to enter the data. Each design 

decision is communicated automatically to the planner. The process plan, cost, 

feasibility and estimated time to manufacture the emerging component are 

communicated back to the user automatically. 

When the design is successfully completed, the designer clicks on an order part 

button. The part is placed in a fabrication queue, and when previously ordered 

jobs are completed, manufacturing is initiated at the company, and the part is 

shipped to the designer through a mail carrier of his/her choice. 

Tian et al. (1997) reviewed the impact of the WWW technology on 

manufacturing based information technology (IT), and addressed the lack of a 

general information infrastructure for supporting interactions between co

operating partners in virtual manufacturing enterprises. The authors discuss a 

prototype based on integration of the Internet and local manufacturing networks, 

which is the backbone of the global agile manufacturing strategies that will be 

widely implemented in the very near future. 

To provide remote-manufacturing services, Kussel et al. (1999) examined the 

concept of "TeleService". This term was formulated in order to fulfil these 

criteria: 

• Geographical Distance. The service has to be provided over a spatial 

distance. This means that the service has to be provided by a technician who 

is spatially separated from the customer. 

• Use of information Technology (IT). The use of communication and IT is 

essential when carrying out a service. 

• Industrial Service. The services performed, had to be in the field of industrial 

services. Industrial services are, for instance, maintenance, diagnosis and 

repairs. 
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In the same way, for distributed solutions, and in the context of industrial design 

and manufacturing, Zhao et al. (1999) proposed an object-oriented 

manufacturing data model for a global enterprise, where the information 

components of the model will be distributed across a global network. 

Frequently, there are hardware differences, and heterogeneous design and 

computing environments existing in manufacturing companies. Pan et al. (1999) 

proposed an approach based on Java programming and Intranet/Internet 

technologies. The main aim of this proposal, is to provide a universal platform-

independent environment for effectively accessing different hardware, 

computing, design and manufacturing systems at various levels within a 

manufacturing organisation. 

1.4 V I R T U A L M A N U F A C T U R I N G 

The accelerated advances in Virtual Reality (VR) technology as well as the 

efforts to gain competitive advantage in current manufacturing scenarios, 

characterised by open markets, reductions in trade barriers and improvements 

in communications, have led to the emergence of Virtual Manufacturing (VM) 

environments. 

VR interaction techniques offer a significant step forward in man-machine 

communication, beyond graphical WIMP (Windows, Icons, Menus and Pointer) 

based interactive systems (Pimentel and Texeira, 1994). 

In VR systems, application data are represented as virtual geometrical objects 

that interact with each other and the user with semantically realistic behaviour. 

Furthermore, with VR, the application developer is able to construct a simulation 

environment in which the user is an essential participant rather than a passive 

observer, thereby providing the user with the illusion of "being there" (Sastry 

and Boyd, 1998). 

The implementation of highly immersive VR techniques in the manufacturing 

industry is still the subject of much research (Taylor, 1995). However, some 

concepts derived from VR technology have recently been applied to the 

industrial arena, supporting Virtual Manufacturing (VM) activities. 
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The concept of virtual environment fits well into current manufacturing activities, 

strongly supported by network computing (NC). NC supports "virtual offices", 

where any user can just plug into a NC port connected to the corporate network 

(whether onsite or through an Internet connection) and access his/her own 

workspace, documents, e-mail and other information resources. The NC 

approach allows scaling down a computing environment from large servers to 

personal digital assistants, a move that usually produces significant cost 

savings (Westphal and Blaxton, 1998). 

According to Hamel and Wainwright (1999), a virtual corporation is a temporary 

partnership of independent organisations and/or individual suppliers of specific 

goods and services, who are linked through modern telecommunication to 

exploit and profit from rapidly changing business opportunities. This corporation 

is called "virtual" because it is composed of partners of core competence and 

has neither a central office nor hierarchical or vertical integration. 

From the point of view of product development and according to Wahab and 

Bendiab (1997), "virtual organisations" is a strategic concept, which enables two 

or more organisations with complementary core competencies, to jointly 

develop new products irrespective of departmental or organisational boundaries 

and geographical location. 

Companies eventually form consortiums in response to certain market sectors. 

The consortiums only exist as long as the market is there, and break up quickly 

and form another when necessary. This is sometimes called virtual companies, 

a concept where companies are considered as being autonomous units of an 

enterprise that manufactures a certain product (Leung etat, 1995). 

In the area of product realisation processes, Giachetti (1999) states that the 

current market conditions have led enterprises to focus on their core businesses 

and increasingly co-operate with suppliers and customers. This is referred to as 

virtual enterprise. The inclusion of suppliers in the product realisation process 

calls for greater collaborative work than has previously been the case. Activities 

must now be performed across organisational boundaries throughout the 

product realisation process. Information technology (IT) is regarded as a means 
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for these geographically dispersed companies to collaborate on new product 

development, manufacture and delivery. 

More broadly, Noda (1998) discussed the new role of manufacturing industries 

in the Internet era. The author has defined the word "Internet Cyber-Factory" as 

the ability to access all resources of a production system through a networks-

based environment, and where the Internet technology plays a fundamental 

role. The goal of this project is to construct a tool called Cyber FA Kit to make 

access to the Internet Cyber-Factories as simple as possible. 

Then, a new industry could be described by the following elements: (i) Cyber 

Mall, (ii) Cyber Manufacturing and (iii) Cyber FA (Factory) Kit. Figure 1.2 shows 

an experimental system configuration including the key elements. 

MobileTerminal TV Conference 

Line Database 

Information 
Collection 

www 
Server 

Public Phone 
Network 

Networks 
Computers 

% / 
Machine Tools * 

with CNC-OSE 

Station m 
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Personal 
Computer 

• Web Browser 
• Spread Sheet 

Ethernet 

Human-Machine 
Interface Systems 

Station n 

Watching TVs 

Figure 1.2 - Sample of the Cyber Factory System Configuration (Noda, 1998). 

The above configuration shows the functionality of the proposed architecture to 

monitor for example, machine tools with CNC-OSE 1, from any WWW terminal. 

This application is useful in production line supervision tasks. 

1 The Open System Environment (OSE) Consortium in Japan, is one of the standardisation study group for the 
manufacturing industries, especially for an open controller architecture. 

13 



Some selected applications of VR in the area of manufacturing are described as 

follows. 

In the area of cable harness design, Ng et al. (1999), described a novel 

software tool to assist users to perform cable routing in a virtual environment. 

This application provides a potentially useful solution to a traditionally difficult, 

costly and tail-end part of the overall product design process. 

Carpenter et al., (1997) affirm that one particularly novel area of investigation is 

the use of VR for automated manual assembly planning. In this area, VR could 

provide an excellent environment for the unobtrusive observation of assembly 

experts at work. As the expert works, the system can record the movements of 

the user and all the components. Thus, after the expert has assembled the 

given components in the virtual scenario, an assembly plan can be 

automatically generated from the stored usage data. 
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Figure 1.3 - Proposed Architecture for an integrated CAPPA/R system 
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Working on models for extracting geometric features, Ma and Chu (1999) 

developed a set of algorithms for constructing a high-level CAD model found in 

a virtual environment. The constructed CAD model can be transferred into a 

tradit ional CAD system for further design, model verif ication and product 

reengineering. 

Based on a model of VM systems for an extended CIM enterprise, Plipovic et al. 

(1999) presented the concepts and architecture for a control-centred V M 

system, and a virtual environment for the modell ing of virtual programmable 

logic controllers and assembly cells, consisting of pick-and-place robots. 

Peng et al. (1999) proposed an integrated CAPP/VR system to improve current 

CAPP aplications. The architecture of this system is shown in Figure 1.3. 

It should be noted how it is possible to directly access various resources from a 

database, a knowledge base and the Internet, dur ing the process planning. The 

design process of CAPP can be simulated visually and can interact with the 

designer in real t ime. 

1.5 F R O M R A W DATA S T O R A G E T O A W E B - B A S E D 

K N O W L E D G E D I S C O V E R Y A P P R O A C H 

An urgent need exists for tools to help manage, extract information and discover 

knowledge from increasingly large collections of data, now being constructed 

and made available from data warehouses. 

Efforts to reveal meaningful patterns in large sets of raw data have led to the 

emergence of a relatively new research area, often called Knowledge Discovery 

in Databases (KDD). It has also been referred to as Knowledge Discovery, 

Knowledge Mining from Databases (KMD), Knowledge Extraction, Data 

Analysis or simply Data Mining. 

KDD technology has usually been applied on stand-alone data repositories, 

where the benefits of accessing multiple and distributed data sources are not 

fully exploited. The vast interconnection of remotely d ispersed computers, 

connected through a World Wide Web (WWW), opens a promising path to 
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implement KDD-oriented techniques for analysing geographical ly d ispersed 

databases. 

Carpenter (2000) affirms that efforts to implement knowledge engineer ing in 

manufactur ing are being supported mainly, by two factors: 

• Relentless pressure for faster innovations. 

• The increasing importance of the Internet, providing new communicat ional 

opportunit ies. 

Some authors have highlighted the significance of the above idea. For example, 

(Chen et al., 1996) state "As a young and promising field, data mining still faces 

many challenges and unsolved problems ... for example ... and data mining in 

Internet information systems are important issues for further study." 

Despite copious literature about conventional KDD applications, not many 

works were found in which KDD approaches are implemented using a Web -

based platform. However, some proposals and related ideas to address this 

issue have recently been suggested and they are discussed as fol lows. 

(Wong et al., 1998) developed a "Framework for a World Wide Web-based Data 

Mining system" that deals with stock-market data available on certain Web

sites. The system classifies these stocks as buy or sell using decision tree 

techniques. The user interaction is through a Web browser, which makes the 

Web-based nature of the data gathering and processing transparent to the user. 

A v iew of the architecture of this system is shown in Figure 1.4. The different 

steps are summarised below. 

• Step 1: User interface. Commercial ly available W e b browsers support the 

interaction. The Web server is used for communicat ion with the user, and also 

to interact with the W W W . CGI is a standard for communicat ion between W e b 

documents and CGI scripts. CGI scripting, or programming, is the act of 

creat ing a program that adheres to this standard of communicat ion. 
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Figure 1.4 - System architecture of the descr ibed system 

• Step 2: Data gathering. This activity is related to contact ing the various Web 

sites that contain the raw stock-market data. 

• Step 3: Storing the data. Databases are not usually designed for discovery 

purposes and they contain spurious information, which need to be c leaned out 

before the data can be used. After this step, the data will be in a structured 

format, ready to be processed later. 

• Step 4: Data preparation. This task converts the structured data into a 

format that is to be used by the machine learning (ML) algori thm. 

• Step 5: ML algorithm. Using the training data that is prepared in the previous 

step, the test data is classif ied. 

• Step 6: Classify test data. Finally, using the tree created in the previous 

step, the test data is classif ied. 

A different application named Vxlnsight that does not use a Web-based 

interaction but a client-server approach was developed by (Davidson et al., 

1998). Vxlnsight is a visualisation tool built to f ind interesting patterns and 

information underlying large quantit ies of textual data. 
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Figure 1.5 - Vxlnsight architecture 

Figure 1.5 shows the connect ions between the databases and the clients using 

visualisation facil it ies. In general, the analyst may connect to several databases 

and each database may have multiple clients. The client-server connect ions are 

based in particular sockets that allow cross-platform communicat ions. 

Finally, an algorithm for the mining of association rules in distr ibuted databases 

(DMA) has been developed (Cheung et al., 1996). Al though DMA was not built 

under a Web-based philosophy, its distributed features overcome the 

performance of sequential algorithms. 

The distributed database in the above model is a horizontally partit ioned 

database. The database scheme of all the partitions is the same, i.e., the 

records are transactions on the same set of items. 

1.5.1 KDD Technology in the Tooling Industry 

In spite of a considerable amount of tooling data that is cont inuously generated 

in the machining centres of manufactur ing companies, to the best of the 

author's knowledge, there are no formal KDD-oriented systems implemented in 

this f ield. 

The last decade has seen a considerable application of KDD technology in 

social , economic and scientific f ields. However, tool ing remains a largely 

unexplored sector. 
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Furthermore, the utilisation of the Internet by tooling corporate companies as an 

important resource to integrate information distributed across their 

geographical ly dispersed branches, and the use of this information for later 

KDD purposes, is not yet a fully exploited idea. 

1.6 S U M M A R Y 

This chapter has explored general issues in relation to manufactur ing and the 

tool ing industry. Tool selection, tool life prediction, cutting data 

recommendation, machining operation selection and comparative analysis of 

cutting conditions were identified as topics requiring special attention. 

The needs for information integration and more co-ordinated distr ibuted 

manufactur ing strategies in corporate environments, have been examined. It 

was shown how Agility, Global Manufacturing, Cyber Factories and Virtual 

Manufacturing, are important concepts significantly influencing the fast changes 

taking place in the current industrial manufacturing scenarios. 

The motivation of corporate companies for implementing col laborative and 

shared-information platforms, where Web-based strategies are playing a 

fundamental role to integrate distributed information sources, was ev idenced. 

This chapter has also shown how Knowledge Discovery in Databases (KDD) 

has become a potentially useful discipline to analyse data-rich scenarios, 

disclosing evidences that can contribute to provide a better understanding of the 

domain under study and support decision-making processes. Finally, It was 

found that the manufacturing tooling industry is a potentially unexplored sector 

requir ing the application of KDD technology. 

1.7 A I M S AND O B J E C T I V E S O F T H I S R E S E A R C H 

This research focuses on two main aims. First, the proposal and implementat ion 

of Web-based strategies to support information integration and collaborative 

work in corporate environments. Secondly, the development and 

implementat ion of KDD-oriented approaches, under an Internet-based platform, 

to identify meaningful patterns and useful relationships in raw data sets. 
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It is expected that these solutions can be implemented in the manufactur ing 

tool ing area, specifically, in the company Seco Tools (UK) Ltd, and later, be 

adopted by the remaining group of Seco companies located in other countries. 

To achieve the general aims descr ibed above, the fol lowing specif ic object ives 

are proposed: 

• To investigate the main issues in relation to the implementat ion of Web-

based strategies to support information integration in corporate 

environments. 

• To define a Web-based architecture to support remote information exchange 

in a manufacturing tooling company. 

• To create a well-structured database of tooling data, for support ing a later 

implementat ion of systems oriented to solve industrial tool ing problems. 

• To provide an effective Web-based framework to support tool ing engineers 

in the task of solving a particular tooling problem, whilst also avoiding the 

need for executing new tool trials. 

• To provide a Web-based framework where world-wide users will be able to 

access tool ing information, benefit ing from the implementat ion of an open-

access architecture. 

• To analyse the motivation, benefits and main issues to be addressed when 

KDD-or iented systems are implemented. 

• To propose a formal methodology to support the development of KDD-

oriented systems. 

• To analyse manufacturing tooling data, in order to discover potential ly useful 

h idden knowledge, under an Internet-based platform. 

1.8 T H E S I S S T R U C T U R E 

This thesis has been organised within nine chapters, which are outl ined as 

fol lows. 
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Chapter 1 has presented a review of the areas related to this research. Some 

examples in which Web-based strategies can be appl ied to support the 

implementat ion of distributed manufacturing solutions, were provided. Also, the 

motivation for implementing knowledge discovery approaches was ev idenced. 

Chapter 2 examines important issues to be considered when implement ing 

Web-based strategies in corporate work environments. An Architecture for 

Remote Information Exchange (ARIEX) is proposed. 

Chapter 3 provides details about TTS and SELTOOL, two Internet-based 

systems developed by the author and his col leagues, to take advantage of 

sharing tool ing information from geographically distant places. 

Chapter 4 concentrates on the definition of a well-structured architecture to 

support the development of KDD-based systems. Also, selected data mining 

techniques are discussed. 

Chapter 5 proposes a formal methodology to support the development of 

clustering applications. The whole methodology has been structured in three 

main stages. This chapter will provide details about the Pre-Processing stage. 

Chapter 6 then continues examining the remaining structure of the clustering 

methodology proposed in the previous chapter. This chapter goes on to explain 

the Processing as well as the Post-Processing stages. 

Chapter 7 looks in detail at the design and implementat ion of DISKOVER, an 

Internet-based and integrated KDD system, developed by the author and 

another col league. DISKOVER incorporates a clustering appl icat ion, a hybrid 

application combining cluster analysis and fuzzy sets, an SQL-based 

Exploratory Data Analysis (EDA) utility, a multiple query generator utility and a 

rough sets-based application. 

Chapter 8 presents the test structure applied to all the systems developed in 

this research, as well as a comparative analysis of the results obtained. 

Chapter 9 summarises this thesis, drawing overall conclusions and identifying 

opportunit ies for undertaking further research. 
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CHAPTER 2 

REMOTE INFORMATION EXCHANGE IN CORPORATE 
ENVIRONMENTS 

2.1 I N T R O D U C T I O N 

The tooling sector constitutes the industrial area where the appl icat ions in this 

research have been focused. Hence, in the previous chapter an investigation 

about the main technical issues, particularly in the arena of process planning, 

was carr ied out. Also, the need for more co-ordinated distributed manufactur ing 

strategies was evidenced, where related concepts such as Agility, Virtual 

Environments and Global Manufacturing were examined. Furthermore, the 

suitabil ity for implementing a knowledge discovery approach, taking benefit from 

distr ibuted data sources, was presented. Finally, a critical review of some 

proposed solutions within the literature was simultaneously provided. 

Here, the chal lenge is to propose a Web-based distributed f ramework to 

support the access and updating of geographically dispersed information. In the 

first sect ion, some important considerations in relation to implement ing 

distr ibuted work strategies are examined. An analysis of the significant role of 

the Internet in the current global scenarios follows. The next section explores 

the issues to be addressed when working on distributed platforms, particularly 

in relation to connectivity and database access. The final sect ion presents 

ARIEX, an Architecture for Remote Information Exchange, which constitutes 

the core of the framework proposed. 

2.2 R E Q U I R E D F U N C T I O N A L I T Y 

The potential of Web-based strategies to support information integration and 

col laborative work in the manufacturing industry has been outl ined in the 

previous chapter. However, some topics need particular attention and a more 

detai led analysis. In this section, these issues are addressed as fol lows. 
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i) Information Security. 

The proposal of Web-based strategies embraces an apparent paradox. Firstly, 

the primary concept of W W W naturally encourages information openness. In an 

ideal scenario, all users would access the information resources in a 

transparent way, regardless of their software, hardware or installed 

communicat ion platforms. On the other hand, it is not surprising that information 

security is a critical issue when industrial applications are considered. 

Hence, there is an imperative need for implementing efficient mechanisms to 

serve as a barrier between private and free-access information sources. 

Measures to keep the confidentiality of private information sources include the 

creation of security levels (hierarchical access), encrypted passwords and 

firewall programs, at lower levels. 

ii) Database Technology. 

Relational Database Management Systems (RDBMS) have been adopted in the 

last decade, as a standard database model for providing a relatively successful 

platform for industrial data storage. However, the current relational data 

management technology requires improvement in relation to two main aspects. 

First, suitable tools and techniques to extract, transform, replicate and update 

data f rom multiple and heterogeneous sources. Secondly, the efficient storage 

and retrieval of large objects, such as heavy images, animated objects and 

elements that can represent simulation of industrial processes (Bezos, 1994). 

For instance, the current SQL-based databases do not support an efficient 

management of queries in relation to mult imedia data. 

The object-oriented model appears to be the logical alternative to overcome the 

relational model limitations. Nevertheless, an object-oriented database model 

faces the fol lowing challenges: 

• Its development represents a complex task. 

• The object-oriented model lacks a standardised language like SQL for the 

international community using relational models. 
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• Also, as with current RDBMSs, an object-oriented database needs to 

address the problem of storing and retrieving mult imedia data entit ies. 

Hi) Ability to Manage Knowledge. 

There are two main factors motivating the application of knowledge engineering 

approaches to data-rich scenarios. First, as a consequence of the mult iple 

processes and operations that take place in the manufactur ing industry, large 

amounts of data are continuously generated and stored for later, varied 

purposes. Secondly, the decision-making processes are better supported 

through available knowledge than raw data. 

Hence, it is appropriate to rely on mechanisms that al low extract ing potentially 

useful knowledge from large data storage sources. Knowledge Discovery in 

Databases {KDD) has emerged as an important and fast-growing discipl ine for 

satisfying this important need (see Chapter 4). 

iv) Portable Solutions. 

Due to the distributed nature of Web-based solutions, it is desirable to rely on 

modular and easily portable systems, able to be installed across multiple and 

heterogeneous computer platforms. The code should be designed so that it is 

easy to modify, extend and transfer, to enable customisat ion for various clients, 

inter-organisational divisions and corporate branches. 

v) Standards. 

Geographical ly dispersed users accessing information through the W W W are 

often using different operating systems, communicat ion protocols and multiple 

data formats. Manufactur ing is one of the main areas where the convergence of 

these multiple resources is clearly evident, particularly, due to its extensive use 

of automation and technology. 

Therefore, there is an urgent need for creating standards that can support the 

dynamic and global information exchange processes, currently taking place in 

the manufactur ing industry. 
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vi) Computing Support. 

The software that is being currently used in networked environments, keeps 

relatively rigid structures so that simple tasks and manufactur ing processes can 

be difficult to describe or simulate. Comput ing animations and graphical 

representat ions will need improved software that can support the dynamic work 

schemes of manufactur ing environments. 

One important aspect is the weak support provided by the current browsers to 

database operat ions on the Internet. 

Specifically, the improvements would be focused on: 

• Data storage, retrieval and updating technology. 

• Emulat ion of f lows and industrial processes (animation). 

• Quick and safe transfer of applications among remote workstat ions and easy 

modif ication of these applications for interdisciplinary work groups. 

• More friendly and powerful interfaces support ing advanced 

Mult imedia/Hypermedia. 

• Multi-parallel processing. 

• Strong compatibil i ty between software, hardware and communicat ion tools. 

vii) Multimedia/Hypermedia as an Integration Tool. 

The concepts of Mult imedia and Hypermedia are often used interchangeably. In 

its most basic form, mult imedia can be defined as a computer process that can 

handle text, images, video, sound and animated graphics (Scott, 1990). 

Hypermedia originated from hypertext, defined as text in electronic form that 

takes advantage of the interactive capabilit ies (Conklin, 1987). 

Leung et al. (1995) have carried out an exhaustive analysis into the potential 

benefi ts of advanced mult imedia/hypermedia. They confirm that these concepts 

are quite useful in addressing the problems of information integration in the 

manufactur ing industry. One reason is because manufactur ing is a unique 

environment in the way that there exist a large number of software systems, 

user manuals, databases and standard documents. 
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The concept of hypermedia can provide a higher level of integration in two 

respects. First, to logically associate information residing in heterogeneous 

systems, to save t ime in hunting for precise information (Gertley and Magee, 

1991), and secondly, the advantages of exchanging dynamic information with 

these systems [(Isakowitz, 1993), (Bieber, 1993)]. 

2.3 T H E R O L E O F T H E I N T E R N E T 

Requests for information are increasing, forcing researchers to look for better 

comput ing facilities that can satisfy their requirements. The arrival of the 

Internet and its adoption as an international standard, has been a decisive 

factor in this development. Internet technologies allow open and user friendly 

communicat ion; the Internet is a world-wide network that helps people 

communicate more effectively. Communicat ion can take place irrespective of 

languages, cultures, distances and at a relatively low cost. 

It is becoming obvious that the Internet can be used as a computat ional 

platform, to integrate multidisciplinary work groups, taking decis ions and 

developing applications in different and distant places. However, these 

advantages are still not exploited to their full extent. 

Through the Internet, new tools for global collaboration and data shar ing in a 

global marketplace can be downloaded. Successful companies will get the right 

information and tools to the right person at the right t ime, regardless of where 

the person is located. In fact, through the Internet interactions that previously 

never took place, are now possible. 

The Internet supports clients with on-line information 24 hours a day. 

Compan ies working within a collaborative engineering environment on the 

Internet, can reach prospective clients around the world by descr ibing their 

organisat ion's capabil it ies and providing a way whereby investors can easily 

show their interest or place orders. The time zone dif ferences are not a problem 

because web sites would always be available for potential cl ients. Furthermore, 

companies can rapidly update their clients on the changes that are taking place 

in their spheres, introduce new products and services and announce price 
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changes and special offers quickly at relatively low cost. Also, winning orders at 

web sites can reduce sale costs. 

Recent t imes have seen a huge growth not only in the number of users found 

on the Wor ld Wide Web , but also the number of companies providing Internet 

services and establishing sites via the purchase of dedicated Web-servers, 

(Yang and Keiser, 1996), (Berners-Lee and Caill iau, 1990). 

The Internet has significantly enhanced the interaction between companies and 

their respective customers, suppliers and partners, acting as an important 

platform to deploy open and distributed manufacturing solutions (Park et al., 

1993). 

This exceptional growth (Baentsch et al, 1996) has opened excit ing 

opportunit ies to businesses by providing another way of reaching potential 

customers. Pant and Hsu (1996) affirm that the use of the Internet as a 

business tool may have the same effect on businesses as the rapid spread of 

personal computers during the 1980's. 

The popularity of Internet-based applications, the functionality of which is 

usual ly supported by database operations, is growing considerably, increasing 

the applicabil ity of Java-based development environments (Tian et al, 1997). 

The different applications are programmed using Java language and publ ished 

in a Web-Server, where they are accessed from remote locations. 

In the next sect ion, issues of connectivity and database access through the 

Internet are addressed. 

2 .4 D A T A B A S E A C C E S S AND C O N N E C T I V I T Y I S S U E S 

The development of distributed manufacturing solutions using the Internet, as 

was indicated in section 2.2, involves the successful resolution of technical 

issues as connectivity and database management. In this sect ion, these 

important topics are examined. 
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2.4.1 Connectivity and Application Programming Interfaces (APIs) 

Client-server comput ing has traditionally been undertaken using sockets. A 

Socket provides a two-way connection between programs running on different 

systems on the Internet. 

In addit ion to the previous option (sockets), Java has several Appl icat ion 

Programming Interfaces (APIs) such as RMI (Remote Method Invocation), 

CORBA (Common Object Request Broker Architecture) and JDBC (Java 

Database Connectivity), that provide better facilities for communicat ing with 

distr ibuted stand-alone applications and SQL compatible relational Databases. 

These APIs are examined as follows. 

a) Remote Method Invocation (RMI) 

RMI is an API that can be used to access the methods (or functions) of remote 

objects. Usually, three programs must be created in order to build appl icat ions 

using RMI: 

• An interface application that defines the operations/services that will be 

avai lable from the object. 

• A Java appl icat ion, running on the server computer, that registers one or 

more Java objects. 

• A Java appl icat ion, running on the client computer, that accesses the 

methods of the objects of the application running on the server. 

b) Common Object Request Broker Architecture (CORBA) 

CORBA has been created to define interfaces for interoperable software. When 

CORBA is used, communicat ion between two computers is carried out by 

implement ing an Object Request Broker (ORB). An object in a program running 

on a computer (the client) can use the ORB to access the public attr ibutes of 

another object in some other program, perhaps on a different computer (the 

server) that is also using the ORB. 

Cornel ius (1998) established a comparative analysis between RMI and CORBA, 

according to the kind of interfaces and programs that must be created. With 
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RMI, the programmer has to provide the interface in Java, whereas with 

C O R B A it has to be provided in an Interface Definition Language (IDL). IDL is 

the language used in CORBA to describe the interface associated with an 

object. Also, with RMI, both the client and the server have to be Java 

applications/applets running in some Java environment. However, with CORBA, 

the client and server programs may be in different programming languages. 

As it was described for RMI, at least three programs must be created to build 

appl icat ions using JavalDL: 

• An interface application that defines the operat ions/services that will be 

available from the object. 

• A Java application running on the server computer that al lows creat ing a 

Java object and the needed relationships, in order to link both objects. 

• A Java application running on the client computer that accesses the methods 

of the object of the application running on the server. 

c) Java Database Connectivity (JDBC) 

JDBC is a Java API for executing SQL statements. It consists of a set of 

c lasses and interfaces written in Java. JDBC provides a standard API for 

database developers and makes it possible to write database appl icat ions using 

a pure Java API . 

Using JDBC it is possible to write a program to access different relational 

databases without having to re-write a different program for each one of them. 

One can write a single program using the JDBC API , and the program will be 

able to send SQL statements to the appropriate database. 

JDBC extends what can be done in Java. For example, with Java and the JDBC 

API , it is possible to publish a web page containing an applet that uses 

information obtained from a remote database. Alternatively, an enterprise can 

use JDBC to connect all its employees (even if they are using a conglomerat ion 

of Windows, Macintosh, and Unix machines) to one or more internal databases 

via an Intranet (Hamilton etal., 1997). 
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JDBC makes it possible to do three things: 

• Establish a connection with a Database. 

• Send SQL statements. 

• Process the results. 

2.4.2 Connectivity, Database A c c e s s and Drivers 

In 1990 the SQL Access Group defined the Call Level Interface (CLI) as a 

standard for accessing databases. To implement CLI , one needs a connector 

(commonly named driver) that can translate a CLI call into the language used to 

access a particular database. For example, Open Database Connectivi ty 

(ODBC) is an API for Microsoft Windows that implements an extended version 

of CLI . 

One important characteristic of the Internet is that the information is distr ibuted 

in different world servers. There are different types of drivers to access 

databases using the Internet. Currently, there exist four driver categories 

(Hamilton et al., 1997) shown in Table 2 . 1 . 

Table 2.1 - Driver categories for database access using JDBC. 

Driver Category Pure Java Needs to load code 
ort user machine 

1.- JDBC-ODBC Bridge. No Yes 

2.- Native API as basis. No Yes 

3.- JDBC-Net. Yes No 

4.- Native protocol as basis. Yes No 

7. - JDBC-ODBC Bridge driver. This provides JDBC access via O D B C driver. 

The driver requires prior installation of client software on each user's computer. 

2. - Native-API partly-Java driver. This kind of driver converts JDBC calls into 

calls on the client API for a range of DBMSs. As the category 1, the driver also 

requires software installation on user's computer. 

3. - JDBC-Net pure Java driver. This driver translates JDBC calls into a DBMS-

independent net protocol, which is then translated to a DBMS protocol by a 
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server. The specific protocol used depends on the vendor. The driver does not 

need software installation on the user's machine. 

4. - Native-protocol pure Java driver. This kind of driver converts JDBC calls 

directly into the network protocol used by DBMSs. This allows a direct call from 

the client machine to the DBMS server and is an excellent solution for Intranet 

access. 

2.4.3 Common Gateway Interface versus Java-based Approach 

In relation to database access, Revere (2000) carried out a comparative study 

between traditional CGI (Common Gateway Interface) and Java-based 

architectures. 

CGI was mainly developed to provide a generic interface between an HTTP 

server and server applications being run by a Web user. Historically, CGI 

programs used to be the only option available to provide database access on 

the Web, hence, it became the adopted standard for establishing a link between 

HTTP servers and external applications (Duan, 1996). 

A typical database application on the Web consists of three main components. 

These are the Web browser, commonly referred to as a Web client, an HTTP 

server with a CGI program and a database server. 

The user generating a request initiates the whole process, being the information 

provided by the user normally contained within HTML forms. Once the request 

is initiated, the query will be sent to the HTTP server thereby invoking the CGI 

program, which is resident on that HTTP server. The CGI program converts the 

information contained within the HTML form to a specific database query and 

submits this query to the database for processing. Once the database server 

has processed the query the results will be returned to the CGI program, and 

finally passed to the Web client through the HTTP server. 

Although CGI applications are widespread and the concept of CGI is relatively 

simple, the overall architecture of CGI suffers from a number of drawbacks that 

can be especially significant in an era when Web traffic is showing no signs of 

decreasing. 
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The first problem is that the use of CGI on an HTTP server means the 

possibility of direct SQL submission to the database is removed. This is to say 

that communication between the Web client and the database server must 

always go through the HTTP server. In times of busy traffic it is possible to have 

a significant bottleneck in the overall process, as the HTTP server has to 

convert every user request to an SQL query via the CGI script and then, convert 

the data back to HTML format before transmitting it to the user. 

Furthermore, in his analysis of CGI programs, Duan (1996) identifies a second 

difficulty also created during times of busy traffic, but originating from a lack of 

efficiency in a CGI based database access script. Implementations of logon and 

logoff procedures take up system resources and in times of heavy traffic, the 

resources used could be significant. 

Now let us consider the architecture associated with the use of Java to provide 

remote database access to a Web client. Figure 2.1 shows the same three 

components that were discussed for CGI based transactions, but the way in 

which Java links these components is fundamentally different, as the HTTP 

server no longer acts as a stepping stone between the Web client and the 

Database server. 

HTTP Server 
Database 
Server I 

HTML document 
sent to Client 

Open socket from 
Applet to Database 

Web Client running 
a Java-Applet 

Figure 2.1 - Simple Java-based Architecture 

Once the Java applet has been initiated on the Web-client, it has the ability to 

make its own connection to the database server via the use of sockets 

(Cornelius, 1997). It is possible for a Java applet to communicate directly with 
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the database, thus eliminating the bottleneck that CGI imposes on the HTTP 

server. In addition, an applet has the ability to provide session-oriented 

communications with the database. This is to say that once an applet connects 

to a database, the connection can be kept open as long as the applet is alive 

and the user is in session. As a result, interactive queries and multiple database 

transactions can be supported (an advance on CGI), which closes a connection 

as soon as an individual query has been processed irrespective of whether 

another query is queuing to be sent by the same user. 

Not only does an applet have the ability to communicate directly with a 

database server, but it also has a full set of drawing functions made available 

through the AWT (Abstract Window Toolkit). Hence Java can handle 

sophisticated graphics and provide a comprehensive distributed computing 

arrangement integrated into an object-oriented environment. Having overcome 

problems encountered with CGI, Java offers impressive scope for industries 

wishing to deploy interactive Web applications. 

2.5 AN A P P R O A C H T O SUPPORT R E M O T E I N F O R M A T I O N 

E X C H A N G E IN C O R P O R A T E E N V I R O N M E N T S 

Computer network platforms constitute one of the most used information 

resources to support distributed business solutions, the Internet being presently, 

the most popular and available open platform. 

The concept of deploying distributed solutions does not necessarily apply in 

areas too remote or geographically alienated. However, where companies like 

large corporations are considered, with widespread branches and world-wide 

client-portfolio, it is eminently suitable to rely on a distributed infrastructure. 

Smith and Wright (1998), argue that two of the fundamental changes occurring 

in the Web is the increasing importance of i) Distributed Computing and ii) 

Client-Side Processing. 

i) Distributed Computing means that instead of having all of the computation 

tasks taking place on the user's desk, the user's computer sends data to one or 

more remote machines, which return information that is then displayed on the 
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local machine. With more of this remote processing, it is becoming possible to 

run software normally reserved for workstation level platforms, on relatively low-

end systems that have a good link to the Internet. 

ii) Client-Side or Browser-Side Processing represents an important contribution 

in distributed manufacturing environments, because it allows the server to give 

the client's browser some of the responsibility for processing data. However, 

Client-side processing is not common on the Web at present. 

Some important benefits can be obtained when processes are carried out using 

a distributed approach: 

• Efficient access to resources over a geographically dispersed area. 

• Cheaper information exchange processes. 

• Closer interaction between Clients and Companies. 

• Major support to assimilate the company growths. 

• Improved distribution of software and hardware resources. 

In the last decade, many papers have been written about the increasing impact 

of distributed solutions and global enterprise, focusing mainly on models (Zhao 

et al., 1999; Hamel and Wainwright, 1999) and organisational problems 

(Giachetti, 1999). Although these papers provide significant theoretical 

contributions, there is an urgent need to address technical issues to overcome 

the problems imposed by real applications. In addition, studies in matters of 

standardisation, collaborative work and efficient remote information exchange 

lack the required level of integration and industrial applicability to be considered 

significant advances, and the results often have been overestimated. 

Despite the limited number of current Web-based industrial applications, some 

work has provided important theoretical and practical contributions. Two good 

examples are the systems developed by Brown & Wright (1999) and Chang & 

Lu (1999). 

An architecture to support remote information exchange in corporate 

environments is proposed as follows. 
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2.5.1 ARIEX Architecture 

In order to provide an efficient infrastructure to manage information in 

distributed environments, an Architecture for Remote Information Exchange 

{ARIEX) is proposed (Velasquez and Velasquez (b), 2000) and shown in Figure 

2.2. It is evident how the definition of connectivity functions as well as database 

technology considerations, play a crucial role for performing manufacture 

support operations using the Internet. 

R E M O T E A C C E S S 

- Customers 

Web Client running 
a Java-Applet 

— Employees 

— Partners 

— Suppliers 

— Other Users 

S O F T W A R E AND C O N N E C T I V I T Y 
COMPONENTS 

N T E R N E 

S T O R A G E AND D E L I V E R Y S T R A T E G I E S 

W A R E H O U S E 

] — Historical Data 
I — Read Only 
] — Decision Support 

Purposes 

Distributed 
Databases 

Geometric Models 
(CAD) 

Monitoring & Diagnosis — 

Networked Assembly 

Knowledge Discovery 

Simulation 

Products 
Services Collaborative 

Work Teams 

Knowledge 

WORLD-WIDE C O R P O R A T E BRANCHES 

Figure 2.2 - ARIEX Architecture. 

The architecture relies on integration of corporate information, distributed on 

databases having the same internal structure but different data, along 

geographically dispersed branches. The convenience of sharing information of 

mutual interest to internal users (employees and partners) as well as external 
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agents (suppliers and customers) working in a platform-independent 

architecture and controlling data security aspects, constitutes its main 

advantage. 

ARIEX considers distributed access and centralised data management for those 

industries having a common platform or a low number of interconnected 

branches, providing a flexible work scheme. 

The last approach (centralised data management) would eliminate the problems 

associated with fragmented databases requiring regular updating whilst also 

allowing distributed access for effective remote updating processes. 

However, for Internet-based applications, a centralised approach imposes some 

problems and becomes a bottleneck, particularly in relation to the heavy traffic 

of transactions generated when a unique centralised information repository is 

accessed. For instance, when the communication with the central database 

cannot be established, the users are unable to take benefit of the data. 

The connectivity aspect is covered by the utilisation of 100% pure Java-drivers, 

hence, the problem of asking the users to download and configure the driver is 

eliminated. 

All users have the option to establish a link to the required sites and databases 

of interest, accessing the data from remote locations using conventional 

browsers in the case of Java-applets, or executing Java-applications, otherwise. 

Although the data and Web services can co-exist in the same server machine, 

the best results are reached when there are different servers working to deploy 

Web and database services separately. In this way, the data are stored in a 

database server and all the net services are the responsibility of an exclusive 

Web server, establishing a load balance between the data and Web access 

management. 

2.5.1.1 Functionality of ARIEX 

The architecture proposed here considers a corporation having branches in 

widely dispersed places. In this context, ARIEX focuses on three main 

functions, which are discussed as follows. 
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a) Information sharing on free-access platforms. 

This philosophy is ideal when companies wish to share information about 

products, services and operations with their customers or when employees of 

the same company in remote branch locations need to exchange information. It 

is an open solution, because there are no restrictions about the information that 

is going to be accessed. 

Remote users can interact with the system entering input requirements and 

obtaining answers to their queries. The users only need any available 

commercial browser to download Java-applets. Also, all Java classes would be 

stored in the local user machines, to speed up the download operations. 

The implementation of Internet-based strategies for delivering and exchanging 

information about product and services to widely distributed customers, will 

overcome the well known problems in relation to the use of conventional 

representation (paper-based) and distribution (regular mail) mechanisms. 

The financial implications are clearly favourable. For example, the savings in 

costs would be considerable, particularly when massive amounts of technical 

catalogues and information about products and services, have to be sent to 

remote customers. Further benefits include: instantaneous updates, better 

visualisation facilities (3-D and multimedia) and a higher participation of market. 

b) Collaborative work strategies. 

Other benefits arise when this infrastructure is utilised for allowing distributed 

collaborative work, especially in concurrent engineering environments where 

CAD/CAM activities are carried out. 

Geometric modelling, monitoring and diagnosis and networked assembly are 

some useful functions that would be implemented. In a product-manufacturing 

scenario, once the geometric model is designed, it will be sent to a geometric 

file translation server to perform file conversion. A collaborative module would 
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then provide all participants a virtual collaborative environment to view the 

converted VRML 2 created, and to perform communication via the Internet. 

Finally, after performing collaboration, the designer sends the new design part 

to a manufacturing module for process planning (Chang & Lu, 1999). 

In this kind of collaborative work environment, the emergence of Internet-

enabled CAD browsers is expected, to improve the current capabilities of 

conventional browsers, particularly in relation to efficient 3-dimensional object 

manipulation and representation. 

c) Knowledge Discovery. 

Furthermore, within the business goals of the company, ARIEX considers the 

implementation of knowledge capturing systems in an attempt to discover 

previously unseen relationships within the data, an expanding and relatively 

promising new area known as Knowledge Discovery in Databases (see chapter 

4). 

2.5.1.2 Managing Different Security Le vels 

In relation to corporations wishing to manage public (free-access) and private 

(restricted access) information simultaneously, Figure 2.3 shows an example of 

a complementary approach based on a tooling company model (Revere, 2000). 

It can be noted how is possible to combine strategies to allow the access of 

classified and public information sources. 

For explanation purposes, let us assume that a tool manufacturer company 

(company 'A') has a repository of tooling data spread over different storage 

sources. In this particular case, two different databases would be created with 

access being made possible by the development of interactive utilities that 

could be executed via World Wide Web browsers. 

2 VRML, Virtual Reality Modelling Language, is the industrial standard of non-proprietary file format for displaying 
scenes consisting of three-dimensional objects on the World Wide Web (Ames, Nadeau & Moreland, 1997). 
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Figure 2.3 - Complementary approach. Access of public and classified 
information sources. 

One of these databases would contain public information about the products 

and services offered by the company, and the other one, tooling technical trials 

to be accessed only by authorised tooling engineers of the company. Generic 

technical support in the form of tool and cutting data selection is another 

function that can be provided by an open-access area. Considering the 

incorporation of security features suitable for restricting the access on the World 

Wide Web, tooling engineers (authorised users) would take advantage of this 

infrastructure to submit and retrieve highly specific technical tooling information. 

Once users introduce their ID and encrypted passwords, a level of permission is 

retrieved. If the users are registered, they can access the information 

corresponding to these access levels. When the user is not registered, only non 

restricted modules should be activated (free-access). 

ARIEX has been successfully implemented on two Internet-based systems, 

which will be described in the next chapter. 
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2.6 S U M M A R Y 

This chapter has mainly concentrated on the investigation of the main issues in 

relation to the implementation of Web-based strategies to support information 

integration in corporate environments. 

In order to implement effective Web-based strategies to support distributed 

manufacturing solutions important considerations were addressed. Information 

security, database technology and ability to manage knowledge were identified 

as topics requiring special attention. 

It has been shown how the WWW has the potential to provide a global 

communication environment, where geographical distances, cultures, 

languages and time zones are no longer a significant factor for consideration in 

commercial operations. 

Furthermore, technical issues of connectivity and database access have been 

addressed, and, within these considerations, an Internet-based Architecture for 

Remote Information Exchange {ARIEX) has been proposed. 

ARIEX is a flexible architecture, considering distributed access and centralised 

data management for those industries having a common platform or a low 

number of interconnected branches. 

The developments in the area of Web-based distributed strategies have been 

and will continue to be fast-paced and exciting. Due to the Internet 

environments represent, in essence, heterogeneity, advanced capabilities as 

CAD-enabled browsers and a major implementation of parallel processing, are 

two important issues that will be strongly addressed by the next generation of 

Web-based tools. 

In the next chapter, it will be shown how ARIEX has been successfully 

implemented in two different systems, to provide distributed solutions to the 

manufacturing tooling industry. 
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DEPLOYING INTERNET-BASED SOLUTIONS 

3.1 I N T R O D U C T I O N 

In the previous chapter, Web-based strategies to support collaborative work in 

distributed environments were examined. In this chapter, two different Internet-

based systems, TTS3 and SELTOOL4, to provide solutions in the tooling area 

for the company Seco Tools (UK) Ltd (Seco, henceforward), are presented. 

TTS was developed in collaboration by two another colleagues. It will show how 

it is possible to use a shared-information platform to access a nation-wide 

source of tooling knowledge, whilst keeping a restricted access policy. On the 

other hand, SELTOOL will be primarily focused to provided distributed solutions 

in the area of tool selection, considering the implementation of a free-access 

architecture. 

This chapter presents the technical aspects and distributed functionality of both 

systems. 

A third Internet-based system named DISKOVER5, which implements an 

integrated set of knowledge discovery applications has also been developed in 

collaboration with another colleague. However, a full explanation of this last 

system is left to Chapter 7, after the theoretical foundations of the knowledge 

discovery area are discussed. 

3 Developed by the author and two other researchers in the group at Durham. 
4 Developed by the author. 
5 Developed by the author and another research student in the group at Durham. 
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3.2 S Y S T E M 1 : T O O L T R I A L S S Y S T E M (TTS) 

A system named Tool Trials System (TTS), which is capable of collating and 

disseminating information relating to tool trials amongst a variety of user groups, 

has been developed (Velasquez and Velasquez (d), 2000). TTS has provided a 

World Wide Web platform from which tooling engineers (authorised users) can 

submit and retrieve highly specific technical tooling data for both milling and 

turning operations. 

This work demonstrated not only the suitability of the Internet as a distributed 

computing resource, but more importantly, it was possible to look at the ways in 

which approved data could be analysed and then applied to cutting data 

selection within the Process Planning arena. TTS has been developed under a 

distributed philosophy and it can be downloaded by remote users in the form of 

Java-applets, through any computer with Internet connection and using 

conventional Java enabled browsers. 

Because of the dimensions and the corporate nature of TTS, three researchers 

were assigned to develop this project. The main contribution of the author was 

to provide an Internet-based framework to support the distributed nature of the 

proposed solutions. Two different tasks were carried out. Firstly, the selection of 

an appropriate strategy for sharing information in a distributed environment 

using the Internet and secondly, the definition and implementation of suitable 

methods to allow the access to authorised users only (restricted access policy). 

The two formerly mentioned tasks were analysed taking into consideration the 

access of geographically dispersed databases and the interest of Seco for 

relying in a tooling data repository, accessible from world-wide authorised 

users. These tasks are described as follows. 

3.2.1 Considerations for Developing TTS 

This section examines important factors considered when developing and 

implementing TTS. At the end of the section, a discussion on why certain 

methods and strategies were selected, is presented. 
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3.2.1.1 The Programming Language 

The utilisation of a robust programming language constitutes a key factor in the 

development of a distributed system. Because of its features, Java has become 

a well-known programming language in recent years, in support of the 

development of Internet-based solutions. The reason being that Java programs 

are compiled into a platform-independent format called Java byte code. This 

byte code is designated to be executed by a virtual machine called the Java 

VM. Therefore, any platform that has an implementation of the Java VM can 

interpret byte code and run Java programs. A Java VM is often called a Java 

Interpreter, since its main task is to interpret Java code. 

Because of its independent-platform quality, many Java development platforms 

have been created to aid in the programming of systems that have to run on 

distributed environments. 

3.2.1.2 Java-Applications versus Java-Applets 

Currently, there are two kinds of Java programs, called Applications and 

Applets, that can be created to develop systems able to run on Internet 

environment, allowing retrieval and submission of database operations. Figure 

3.1 shows the differences between both approaches running on Internet 

platforms. 

Java-applications are programs oriented to provide stand-alone solutions 

running in a local client-computer, as well as distributed solutions using a 

suitable API to establish communication and database access through the 

Internet. As shown in Figure 3.1-a, when the application is developed to run on 

an Internet environment, all the classes, images and Java files need to be 

stored in the client-computer. Further to this, the operating system used by 

every remote client-computer must be the same. 

In contrast to Java-applications, an Applet is a Java program that can be 

executed through a Web browser. When the applet runs within a Web page 

(embedded within an HTML file), it displays a form where a remote user can 

access and enter any desired information, subject to some security restrictions. 
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In order to deal with the security aspects that the Web imposes, Java-applets 

have been designed after considering the following key restrictions: 

• Applets cannot execute any other application on the user's system. 

• They cannot have access to any storage on the client-computers; for 

example, they can not 'peek' at their files or delete the contents of their hard 

disks. 

• Applets cannot make network connections to any machine other than the 

system containing the original Web page (the Web page that invoked the 

applet). 

i) Java-Application Al l classes, i 

and Java files Client-computer 
Operating System A 

8 LAN c Web-Server 
Operating System A 

• tern 
DB-Server 

b) Java-Applet Java program executed 
through a Web browser All classes, images 

and Java files 
Operating System A 

s 
Operating System B ys 

^ W e LAN Web-Server 

c Operating System 
DB 

DB-Server 

Figure 3.1 - Java-application and Java-applet functionality 

All the classes, images and Java files are stored in the Web-server and due to 

the independent-platform feature of applets, the operating system of remote 

client-computers, do not need to be the same. 
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In both cases (implementing applications or applets) the database can reside in 

the Web-server, but the ideal situation is when the database resides in a DB-

server, thus allowing the Web-server to take charge of the usually heavy 

information traffic in the WWW. 

3.2.1.3 Data Replication Approach versus Real-Time Access 

Two different approaches for accessing and updating data from physically 

remote locations are examined. 

a) Data Replication 

Data Replication (DR) consists in sharing data among physically remote 

databases, but having the same structure and using the same DBMS. Changes 

made to share data at any one database are replicated to the other databases 

when the user connects to a central database that is updated from the different 

locations each time the connection is established. 

Some benefits of applying DR (Sybase, 1997) are explained as follows. 

• Data availability at any time. One of the key benefits of a data replication 

system is that data is made available locally, rather than through potentially 

expensive, less reliable, and slow connections to a single central database. 

Data is accessible locally even in the absence of any connection to a central 

server, so that the program is not cut off from data in the event of a failure of a 

long-distance network connection. 

• Good performance. Replication improves response times for data requests 

because they are processed on a local server without accessing some wide 

area network. This makes the transfer rates faster. 

• Integrity of the data. One of the challenges of any replication system is to 

ensure that each database retains data integrity at all times. Transactions are 

replicated atomically: either a whole transaction is replicated, or none of it is 

replicated. 

• Consistency of the data. All changes are replicated to each site over time in a 

consistent manner, but because of the time lag, different sites may have 

different copies of data at any moment. 
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b) Real-time access 

Using a real-time access approach, remote users can download a Java-applet 

in order to access a central database through the Internet. In this case, the 

updating process is carried out directly into the database at the same time as 

the user is making these changes, because they occur on-line. 

The advantages of this approach are summarised as follows. 

• Platform-independent architecture. Users could access the database 

regardless of the differences between the operating system running in their 

local computers and the operating system where the database resides (Web 

server or DB-server), because of the use of Java-applets. 

• Higher data security. The data is centralised in a DB-server and not locally on 

the client-side. This means, monitoring operations can be implemented to 

register what kind of database operation is performed and which user was 

involved in this transaction. 

• Saving storage resources. Large databases can occupy costly space in the 

local client-computers. Implementing a real-time access approach, the database 

does not need to be stored locally. 

• On-line updating. All the changes carried out by remote users connected to 

the database are instantly updated. 

3.2.1.4 Defining a suitable configuration for TTS 

Before discussing the reasons for choosing some of the alternatives formerly 

presented, instead of others, let us first examine the framework where these 

alternatives were considered. 

Consideration of the scheme displayed in Figure 3.2 reveals the corporate and 

distributed nature of the solution suggested. Under this approach, Seco sales 

engineers using their respective laptops would access TTS through the Internet, 

regardless of their physical location. 

The benefits to the tooling manufacturer are, that the tooling engineers, working 

in a collaborative information environment, would be able to share a nation-wide 

database of knowledge, created from their previous work. 
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Moreover, it should be possible for tooling engineers to avoid the execution of 

new tool trials, when another engineer has previously carried out these trials. In 

this case the engineer would execute a query, entering his/her parameters of 

interest and the system would provide result sets, introduced in the past, 

matching the same input parameters specified. 

Seco Headquarters Seco Sales Engineers working 
in their respective countries access TTS TTS through the Internet using their Laptops. 

c 
Web-Server 

/ DB-Ser DB-Server 
Tooling DB 

Figure 3.2 - Distributed solution and its different components 

Following a decision on the adoption of a global architecture, it was necessary 

to decide upon the most suitable methods and options that would be 

implemented. 

Returning to the explanation in sub-section 3.2.1.2, it should be noted that 

applets can also be configured to run as stand-alone applications, within certain 

limitations, as the fact that they still need to be downloaded through HTML files. 

When using applets, the operating system of remote client-computers do not 

necessarily need to be the same, because the concept of independent 

computational platform associated with Java language is fully exploited. This 

advantage would support the information update processes from remote 
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locations, where heterogeneous computational platforms are utilised. It was 

therefore decided that applets would be implemented instead applications. 

After due consideration and discussion it was decided that Java Database 

Connectivity (JDBC) would be an Application Programming Interface (API) 

suitable for submitting SQL statements to a DB-server containing a central 

tooling database. JDBC was chosen because it allows rising above the socket-

level aspects of distributed computer solutions. Also, JDBC supports the 

utilisation of 100% pure Java drivers, which eliminates the problem of asking 

the users to download and configure the driver. 

In this research, the use of Data Replication (DR) technology was considered, 

mainly because remote users can access their databases locally and only when 

they need to send new information to the central database (and receive the 

latest updates), a Web connection needs to be established. 

However, due to the high level of confidentiality of the information generated by 

the tool trials, it was decided to keep a central database accessed remotely 

through Java-applets, adopting a real-time access approach instead of keeping 

a copy of the database stored in each client-computer, as required by a DR 

approach. 

To deal with the security aspects in relation to the access of the system, several 

procedures were implemented, including the creation of encrypted passwords 

and monitoring functions to register the database transactions. 

Whilst this concludes the reasons for implementing a real-time access approach 

supported by Java-applets, instead of DR techniques, this is not to say that 

there are not other disadvantages when using real-time updating operations. 

For example, when the Internet connection cannot be established, it is not 

possible for the users to access the database, which does not occur using DR, 

because in this case, the database is also stored locally. 

Another problem faced by users when downloading applets, is their relatively 

slow speed because they are downloaded through HTML files. This problem 

becomes critical during hours of heavy traffic on the Internet. 
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3.2.2 Functionality of TTS 

This section presents a summary of functional aspects of TTS. A detailed 

analysis of all its operational issues will overwhelm the scope of this chapter, 

so, for practical reasons only some selected input and output functions are 

examined. 

Based upon the easily expandable feature of TTS and the number of possible 

applications that would be developed using the tooling database, four levels of 

permission were defined, which will provide the users with the authorisation 

levels for using these applications. 

These four levels go from the less restrictive to the most confidential and were 

named as open user, medium user, high level user and super user. 

When TTS is accessed, an initial security screen becomes visible, as shown in 

Figure 3.3. Two fields, User ID and Password, must be entered to allow the 

system to check the authenticity of the user by searching for the corresponding 

record in the database. When the record is found, the verification of the level of 

authorisation of the user is carried out. Once this access level is recognised, the 

general functions of the system are shown. 

Figure 3.3 - Initial screen of TTS 
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In order to incorporate a new report of tool trails to the database, TTS provides 

a versatile input interface having the same appearance, as does the original 

paper-based form. Figure 3.4 shows this screen. 

Turn Page I - General Tttal DetmiS 

' Not Sp« 

raema. ' Es'e'iw 
Another 

ebstetBenneti Ento-Bna Mantle 
Another 2 Average 

0 Not Specified 
6 Difficult tool steels Holding of component 

Alec Finch 
B l i # s * W I 1 Objectives achieved 

Not Specified 

ling and Customer 

Existing Seco 

ist pst fnse»i 

Test result vs exislinn toolina 

sjctrvrtj) tos 

Figure 3.4 - Data entering screen for tool trials 

Once the engineer has performed an initial test according to the tooling 

parameters required, it is registered as an existing test. Next, the engineer 

performs alternative tests and obtains comparative results, which must also be 

registered in the system. 

When all the values are added to the forms, the user will finally submit the 

report to the database. 

Regarding output functionality, Figure 3.5 shows the screen displayed, where 

the reports and their respective confidence scores are presented. 

The user can either view a specific report or select the "Summary Report" 

option. The last alternative displays some statistical values calculated with the 

data obtained from the query. Cutting parameters constitute the variables 

considered for generating this report. 
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Figure 3.5 - A particular output screen provided by TTS 

3.3 S Y S T E M 2: SELTOOL 

SELTOOL is an Internet-based tool selection system for turning operations 

(Velasquez et al. (c), 2000). It is able to deliver numerical and graphical 

information about suitable selections of inserts and toolholders for specific 

machining operations, workpiece material group and cutting type, and 

recommend the respective cutting data. SELTOOL covers three types of 

operations, namely, Turning, Grooving and Threading, each of them for external 

and internal cuts. 

SELTOOL was implemented using a Java development environment. The 

information used to create the database was obtained from technical catalogues 

and proprietary tooling databases. Developed under an open and distributed 

philosophy, SELTOOL can be downloaded by remote users through any 

computer with Internet connection and using conventional Java enabled 

browsers. 

The benefits arising for using this system are based in its world-wide access 

capability, which means an updated and cheap information delivery to users. 

SELTOOL has been tested with encouraging results. 
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The following sections present the justification and functionality of SELTOOL 

and chapter 8 discusses the execution of a test phase. 

3.3.1 SELTOOL, Justification 

The main reasons for developing the system described hereby were: 

a) Solution for the tooling industry. Because of its extensive tool selection 

functionality and the numerical and graphical capabilities this system is useful 

for the tool machining industry. 

b) Evaluate the suitability for new implementations. The system was developed 

for Seco as a pilot project in order to test the feasibility of future Internet-based 

tool selection methods. 

c) Availability of up-to-date tooling data and knowledge: the technical tooling 

data and certain grouping criteria for the selection of specific tools is available 

from three sources: paper-based catalogues, PDF-based format (Compact 

Disc) and a database Access-based format. 

d) World-wide access: SELTOOL allows remote and distributed access, 

cheaper information exchange processes and direct interaction between users 

and company products. 

In the next section the appearance and functionality of SELTOOL will be 

presented. 

3.3.2 SELTOOL, Functionality 

The main functional features include: 

a) Tool selection for external and internal Turning, Grooving and Threading 

operations. 

b) The following range of insert information: 10 grades, 7 types of chipbreakers 

for external and internal Turning and common standard profiles for Threading. 

c) Toolholder information for suitable inserts and approach angles. 

d) 19 material groups. 

e) 3 cutting types: finishing, medium roughing and roughing. 

f) An easily expandable system, because of its modular structure. 
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g) The accessing and processing of distributed data (i.e., they are performed on 

the local computers from remote locations), while the storage of the information 

in the database is centralised. 

h) The interface with the user being made through URL address in the way of 

an HTML document, which invokes the applet containing the operational 

structure. The system has been downloaded successfully using current versions 

of proprietary browsers. 

i) An independent computational platform, because of using Java language and 

a 100% pure Java driver for database access. That means it is possible to 

download the system from any computer connected to the Internet, using Java-

enabled browsers. 
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Figure 3.6 - SELTOOL, Functional Architecture 

Figure 3.6 shows the functional architecture of SELTOOL, where remote users 

can access the system through the Internet and obtain the tooling information of 

their interest, according to given input specifications. The database of 

SELTOOL is a repository of information embracing data from technical 
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catalogues (paper and CD-based formats) and a proprietary company database 

(Access format). 

3.3.3 Logic Associated with the Tool Selection Process 

This section describes the procedure for matching Inserts with Toolholders 

considering turning operations, which provides an efficient criterion to select 

tools. 

SELTOOL requires at least 3 input parameters for internal and external turning 

operations: Type of Operation, Workpiece Material and Type of Cutting, as 

shown in Figure 3.7. 

3 hltp://eng9Q26/lam/luis/SelecColor/index.html - Microsoft Internet Explorer 
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Figure 3.7 - Input screen of SELTOOL 

The process used to match inserts and toolholders is summarised as follows. 

i) SELTOOL explores the database for those suitable inserts, matching the 

input parameters specified by the user. 

ii) For each insert found the program searches for the corresponding 

toolholders matching the insert selection, as shown in Figure 3.8. The insert and 

toolholder codes have been obtained from technical catalogues and, as can be 
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seen in Figure 3.8, three tooling parameters are used in the matching process, 

namely, Shape, Insert Side Clearance Angle and Cutting Edge Length. 
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Figure 3.8 • Matching Inserts with Toolholders 

iii) If the user knows the workpiece shape to be machined, optional 

parameters such as the Profile Out and In Angles can also be introduced. 

Figure 3.9 shows these angles and their relationship with the approach (k) and 

trailing angles (y) of the tool. 

Depending on the profile angles submitted the system searches for compatible 

toolholders with approach angle and trailing angle higher than the maximum 

workpiece angles given by the user. 

The "Profile-OUT angle is the profile angle generated by the cutting edge in the 

direction of the feed rate. Hence, this angle is compared with the approach 

angle (k) of the tool as shown in Figure 3.9(a) and 3.9(c). 
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Figure 3.9 - (a) Profile OUT and approach angles - External Turning, (b) Profile 
IN and trailing angles - External Turning, (c) Profile OUT and approach angles 

- Internal Turning and (d) Profile IN and trailing angles, Internal Turning. 

The "Profile-W angle is compared with the trailing angle of the tool during 

the generation of recesses. The user can input the maximum values of profile 

angle values and this acts as an additional constraint during the selection of 

toolholders. 

iv) In order to recommend cutting speed and generate ranges matching the 

corresponding feed rate values, it was necessary to apply a mathematical 

interpolation procedure. 

Table 3.1 shows the recommended cutting speed and feed rates given for 

specific insert grades and material groups. Let us suppose that once the system 

processes the input parameters, the feed rate interval associated to the suitable 

insert chosen is "0.05 - 0.25". As can be seen in Table 3.1, there is not a similar 

cutting speed range matching this specific feed rate interval. That means, the 

system must be able to interpolate the feed rate values "0.05 - 0.25" with those 

shown in Table 3.1, to find a new cutting speed range. 
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Table 3.1 - Cutting Speed data 

SECO material 
Group No. 

Recommended cutting speed, Vc m/min) 

SECO material 
Group No. 

TP 100 TP200 TP300 SECO material 
Group No. Feed Rate, f (mm/rev) 

0,2 0,4 0,6 

Feed Rate, f (mm/rev) 

0,2 0,4 0,6 

Feed Rate, f (mm/rev) 

0,2 0,4 0,6 

1 500 385 320 445 340 285 365 275 230 

2 425 325 270 380 290 240 305 235 195 

3 365 275 230 325 245 205 260 200 165 

SELTOOL provides the following information for inserts: first and second 

choices together with, shape, clearance angle, type, cutting edge length, 

thickness, radius, tolerance, grade, chipbreaker, cutting depth, cutting speed, 

feed rate and ordering number. In the case of toolholders, SELTOOL provides 

information about these parameters: hand of tool, tool length, locking system, 

weight, tool style, shank height, shank width and ordering number. Figure 3.10 

shows a typical output screen displaying this information. 

3 http://eng902G/lam/luis/SelecColor/index.htrnl - Microsoft Internet Explorer 

INSERTS 
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Ail i LeftH. i RlaKtl 

1.-1 PDJNR1G16H11 
2. ) PDJNR2020K11 
3. -J PDJNR2525M11 
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6. ) PDJNL2525M11 
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Type 

Q 

Cutting Edge r 
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(mm) 
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Cutting depth i 

Chipbreaker |M3 

Ordering No. |74037148 

range (mm) 
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Cutting Speed range (m/min) [243.0 - 160.0 

Locking • 
System feO JL 
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Figure 3.10 - Output screen of SELTOOL 
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As was shown, the graphical interface permits the user to submit the input 

parameters and obtain the results through an user-friendly interface. All the 

specifications of inserts, toolholders and cutting data are presented in one 

screen and additional options for second choice inserts are provided. These 

characteristics allow a better visualisation, and a faster and interactive way of 

searching suitable tools than conventional representation schemes provided by 

technical catalogues. 

3.3.4 Database Considerations 

Thirteen tables linked in a relational model constitute the database of 

SELTOOL. An SQL-based Database Management System (DBMS) was used 

for creating the database. 

Initially, the database was populated manually, which represented very time 

consuming work, without taking into consideration the difficulties of subsequent 

modifications and updating. In order to minimise human errors whilst the data is 

inserted, optimise the update times, provide a better maintenance of the 

database and take advantage of existing data in Access format, two programs 

were developed, the Database Populate (DPS) and the Database Migratory 

(DMS) Systems. 

Tooling Data 
(PDF Format) Text File Filtered Data 

Text Copy} Text Editor) 

(SQL format) 

SELTOOL 
database 

/ / / 
Database filling 

operations 

Java application 

Figure 3.11 - Data transformation process using DPS 
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a) Database Populate System (DPS) 

DPS was developed to carry out a data transformation process, which is 

illustrated in Figure 3.11. 

To create a temporal text file, the tooling data stored in a Compact Disc (PDF 

format) is used. This file contains the data required but also has additional data 

and special characters not needed. In this case, a filtering process must be 

performed to extract this unsuitable data. 

DPS reads the text file and after performing information filtering, the data is 

automatically written in the database. To support the read-and-write operations 

carried out by DPS, a Java program was developed. 

Figure 3.12 shows how flexible the Java program developed is, to fill the 

different tables used by SELTOOL, allowing a particular selection of options, 

depending on the type of data that the user wants to update. The bottom 

window is used to display information to the operator about the status of the 

program. 

rn 
• 

U P D A T I N G O F T U R N I N G I N F O R M A T I O N 

p" Fill tables of INSERTS and MATJNSERT for internal and external turning 

Fill tables of Toolbolders for Internal and External Tummy 

Fill tables of lnserts_TG and Mat_lnserts_TG for Threading and Grooving 

tables of T oolholdei _TG for Threading and Grooving 

ijj tabies pf M 

Execute 

> Communication OK 

> Filling tables... 

Figure 3.12 - Input screen of the read-and-write Java application 
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b) Database Migratory System (DMS) 

In the searching of useful data for SELTOOL, a barrier to using the available 

information was found. The information required was stored in DB2 and Access 

DBMS formats, as the rest of SECO databases, but the available DBMS for 

building the system was SQL Anywhere. To solve this situation DMS was 

developed. 

DMS converts data from an existing tooling database (Access format) to the 

SQL database (SQL-Anywhere format) used by SELTOOL. Figure 3.13 shows 

the data translation process carried out by DMS. 

The first phase involved the duplication of an empty database. This is achieved 

through a method that manages the files as byte arrays and generates from 

them, new identical archives. 

As the databases cannot be created through a program, an empty SQL-

Anywhere DB, to be taken as reference for future translations, was created. 

This SQL DB consists of two files: one is where the data is going to be stored 

(.DB file) and the second is a .LOG file which contains the lists of DB indexes. 

These two files are part of the application and must exist to perform the 

translation process. 

Duplication of a 
S Q L database 
from an existing, 

empty D B 

S Q L 

Tooling 

Database 

Establishment of 
the connections 

wi th both 
• databases 

Acquisi t ion and 
replication of 
DB & tables 

features. 

< — -
• Tables. 
• Column names. 
• Column types. 
• Colum features. 
• Tables relations 

(PK, F K ) . 

• Data. 
• Data format. 
• Equivalent S Q L 
format. 

/ con2 conl \ m 

Reading and 
storage o f data 
for each table. 

A C C E S S 

Tooling 

Database 

Figure 3.13 - Data translation process 
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The second stage is the connection with the databases. This application 

establishes the connection with both databases through the bridge Java 

Database Connectivity - Open Database Connectivity (JDBC-ODBC), and 

transforms the data from one DBMS to the other by using JDBC Applications 

Programming Interfaces (APIs). In this case, the bridge JDBC-ODBC is the 

convenient one because ODBC provides an extensive amount of drivers for a 

diversity of SQL compatible databases. 

When the connection is established, the structure of the original database and 

their respective tables is read to obtain its properties. 

The third phase is to procure the name of the tables, primary keys (PK), foreign 

keys (FK), relationship with others tables and the number of columns that the 

tables have. With this information the type and the size of the fields of each 

table must be obtained. Once this goal is achieved, it is necessary to create the 

features in the new database. 

The last phase consists of reading each record from the Access database, the 

search of equivalent features in SQL-Anywhere and the writing of records in the 

new table using SQL format. 

One of the problems found in the conversion process was the utilisation of SQL 

key words as names in tables and fields of the Access database, generating 

errors in the creation of the new SQL database. To solve this problem, a word 

parser function was developed that compares the names of tables and fields 

against a list of SQL key words. If a similar word is found, a new character is 

added to the name of the table (or field) to avoid errors in the creation of the 

new database structure. 

In order to minimise the downloading times to access SELTOOL through the 

Internet, the API Java classes utilised by the system can be locally stored on 

the client machine. The new path where these Java classes are stored must be 

addressed setting the option Classpath of the file Regedit in the folder Windows 

or Windows NT. 

The particular Java classes of the system, originated in the development 

environment, can, otherwise, remain stored in the server machine. 
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3.4 C O M P U T A T I O N A L SUPPORT 

This section describes the computer resources used for developing TTS as well 

as SELTOOL. 

TTS and SELTOOL were developed using PowerJ 2.0, which is a programming 

tool with graphical facilities and able to speed up the creation of Java projects. 

Although PowerJ manages Java versions 1.1 and 1.02, the version used to 

develop the system was 1.02, due to the problems that still remain in current 

browsers with version 1.1, when applets containing database operations must 

be downloaded. 

In order to establish the connection with the Internet, TTS and SELTOOL use 

jConnect, a 100% pure Java driver. 

Nowadays it is very popular among Java programmers to use the bridge ODBC-

JDBC to solve the connectivity barriers when databases have to be accessed 

through the Internet, because of the benefits of accessing Microsoft products, 

such as Access and SQL Server. However, TTS as well as SELTOOL do not 

use the ODBC-JDBC bridge since the DBMS used was Sybase SQL Anywhere, 

which supports the database operations through an Open Server Gateway 

included as part of the basic PowerJ tool package. 

For developing and testing the systems, an internal net provided the facilities to 

transfer files and programs efficiently between deploy and development 

environments. A computer configured as a Web-server (Windows NT) was used 

to store the HTML files, images and all the programs and Java classes needed 

to download and run the system from remote locations. 

3.5 S U M M A R Y 

The preliminary aim of this chapter was to analyse the suitability of deploying 

Internet-based systems, examining the multiple factors involved when working 

in a collaborative information environment, whilst also providing solutions 

oriented to satisfy restricted as well as free-access information approaches. 
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In order to meet the needs of these fundamentally different approaches, two 

internet-based systems were deployed. 

The first of them, TTS, was developed under a private philosophy, where Seco 

tooling engineers working in a shared information environment, would be able to 

access a nation-wide database of knowledge, created from their previous work. 

Moreover, it was possible for tooling engineers to avoid the execution of new 

tool trials and know the results of trials carried out in physically distant places, 

when another engineer had previously executed these trials. 

In order to keep high confidentiality levels, multiple security methods to access 

the system, were implemented. 

The second system, SELTOOL, was developed adopting a free-access 

philosophy, where world-wide Seco customers would remotely access tooling 

information in the field of tool selection. The information contained in the 

database of SELTOOL was obtained from tooling technical catalogues, 

available for Seco customers on paper-based and CD-based formats, so, it was 

not needed to implement restricted access procedures. 

In the next chapter, the theoretical foundations of the Knowledge Discovery in 

Databases (KDD) area are examined, preparing the way for a subsequent 

application of data mining methods, in order to reveal common patterns and 

interesting associations in a database containing tooling trials data. 
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CHAPTER 4 

KNOWLEDGE DBSCOVERY IN DATABASES (KDD) 

4.1 I N T R O D U C T I O N 

In previous chapters, Web-based strategies to support distributed 

manufacturing solutions, as well as two Internet-based systems, have been 

examined. A general discussion of Knowledge Discovery in Databases (KDD) 

follows. The aim is to analyse the multiple factors involved when KDD-based 

systems are implemented, presenting their motivation, benefits, architecture 

and important issues to be considered. 

4.2 D E F I N I T I O N 

We live in an information age. Information has become a very important 

commodity. Every second hundreds of thousands of new records of information 

are generated. This information needs to be summarised and synthesised in 

order to support effective decision-making. In short, there is an urgent need to 

make sense of large amounts of data (Cios era/., 1998). As a consequence, the 

expanding area of knowledge discovery in databases has emerged. 

Knowledge Discovery in Databases (KDD) is a process oriented to discover 

potentially useful knowledge, analysing vast amounts of raw data. This process 

usually involves the development of efficient data warehouses, application of 

data pre-processing techniques, data mining methods and mechanisms to 

improve the comprehensibility of the discovered knowledge. 

The main objective of KDD-based systems consists of making sense of data 

and using the discovered knowledge for decision-support purposes. KDD-based 

systems apply efficient data-organisation techniques and scientific methods to 

reveal deviations, dependencies, regularities and interesting patterns in raw 

data sets. 
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The diversity of data considered by KDD-based systems varies from text to 

sound and images, depending on the domain under study. Commonly studied 

areas are related to banking transactions, medical data, monitoring of industrial 

processes, production and marketing data, human social habits, analysis of 

data collected from astronomical observations and pattern recognition. 

The existing KDD-based commercial systems require adjustment according to 

the needs of client organisations; so, the current KDD-based commercial tools 

are highly context-dependent. 

4.3 R E A S O N S T O A P P L Y K N O W L E D G E D I S C O V E R Y IN 

D A T A B A S E S 

The main benefits obtained from using a KDD-based system are related to the 

discovery of new knowledge as a consequence of analysing raw data, and 

assisting the manager or planning staff in decision-making processes. Newly 

discovered evidence contributes to providing a better understanding of the 

domain and therefore, it may change established practices. A discussion of 

these and other benefits follows. 

• Direct influence on decision-making processes. Only the most significant and 

meaningful patterns are identified, which have been obtained taking into 

consideration the organisation's goals. 

• Better understanding of areas under study. One of the most important 

resources of an organisation is its information, which is primarily stored in the 

form of raw data. So, any process oriented to analyse this data will 

automatically contribute to increase the understanding of the domain under 

study. 

• Dealing with unsuitable data. Real-world databases usually contain noisy 

data. The concept of "noisy" can be interpreted as imprecise, contradictory, 

redundant or incomplete nature of the data. KDD technology can provide 

appropriate mechanisms to handle these unsuitable situations. 

• Help to establish new directions. KDD is a regular time-basis process, so, 

each additional evidence obtained in subsequent analyses might indicate 
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exploration along new, promising paths, which could provide new effective 

procedures. The results obtained due to application of knowledge discovery 

methods allow for example, the analysis of the feasibility of improving the 

performance of some processes or modify technical specifications to obtain 

higher quality of products. 

For example, in a test process, the evidence from unsuccessful tests can reveal 

the influence of a particular factor causing the problem. After proper analysis, it 

will be possible to identify if the corrections have to be made to the production 

process, the product itself or about equipment manipulation methods by 

humans. 

In a different context, when the sale expectations of a particular product are low, 

the results provided by applying KDD methods could shed light on the true 

origin of the problem, whether the causes are because of technical 

specifications, a poor distribution policy or due to wrong marketing practices. 

Hence, it is possible to isolate the factor causing the problem and carry out 

rectification actions. 

• Minimum preconceived assumptions. Unlike situations in which it is 

necessary to employ standard mathematical or statistical analyses to test 

predefined hypotheses, KDD-oriented systems prove their power in exploratory 

analysis scenarios in which there are not predetermined conceptions about 

what will constitute an "interesting" pattern (Westphal and Blaxton, 1998). 

• Automated processing. The analysis of huge amounts of raw data becomes 

extremely complex, tedious and inefficient when it is made manually. One of the 

significant benefits of a KDD-based system, is based on its capability to take 

advantage of computational power of current computers to carry out this 

analysis. An efficient KDD-based system must be able to deliver knowledge 

already interpreted as much as possible, although usually the participation of 

human analysts is expected to validate the final results and implement the 

respective decisions. 

• Searching for knowledge out of business hours. Though KDD-based systems 

can be applied during normal business hours, they can continue working during 
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hours and days considered non-operatives or when the members of the 

organisation are out of their regular business hours. 

4.4 C O N S I D E R A T I O N S T O I M P L E M E N T K D D - B A S E D 

S Y S T E M S 

Knowledge discovery systems face challenging problems from the real-world 

databases, which tend to be very large, noisy and dynamic (Hu, 1995). Also, 

KDD is not just a single task, on the contrary, it represents an integrated 

process usually requiring collaborative and multidisciplinary work teams. Hence, 

it is highly suitable to analyse the role, interrelation and availability of the 

multiple elements that participate in a KDD-based project, before deciding to 

carry out its development. 

The following considerations involving domains, protagonists and strategic 

aspects are examined: 

i) Domain Knowledge. It is very important to rely on useful knowledge 

sources about the domain under study. This knowledge allows the correct 

definition of the different functions that the system will be able to manage as 

well as provide ways to verify the truthfulness of the conclusions reached. Some 

reliable knowledge sources can be obtained from human domain experts, 

technical catalogues, similar knowledge-based systems, and nowadays, 

consulting related Web-based reference sites. 

ii) Data Sources Periodically Updated. Successful KDD-based systems are 

oriented to improve the quality of their answers, as the amount of new data is 

supplied and processed in subsequent analyses. So, it does not make much 

sense to apply knowledge discovery techniques on static data repositories. It is 

highly suitable to rely on processes that can generate "fresh" data to be 

periodically incorporated to the discovery knowledge mechanisms. 

Some sources of continuous or periodical data are obtained, for instance, from 

banking transactions, measurements taken as part of the monitoring of medical 

signals, industrial production processes, marketing, financial operations and any 
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other process of interest that can generate information capable of being 

registered on a regular time-basis. 

iii) Suitable Computing Support. A KDD process involves the application of 

automated methods to process large quantities of raw data, therefore, computer 

skills are needed to support all development stages. Some of the main 

computer tasks include: 

• An appropriate management of huge amounts of data, developing a suitable 

database structure and efficient mechanisms to facilitate the operations of 

accessing, retrieval and modification of these data sets. 

• Pre-processing functions to remove data inconsistencies, perform scaling 

processes and data conversions. 

• Development of data mining algorithms. 

• Implementation of mechanisms to improve the comprehensibility of the 

discovered knowledge and, 

• Creation of a robust and friendly user-interface. 

iv) Multidisciplinary and Complementary Work Teams. KDD is definitely a 

multidisciplinary approach. It heavily relies on a number of existing techniques 

and algorithms. In order to face challenging problems in relation to noisy, very 

large and dynamic real-world databases, KDD-based systems will be developed 

not only integrating a major number of techniques but also promoting the 

increase of more complete hybrid solutions. 

It will allow exploiting the benefits of applying complementary learning 

approaches, increasing the spectrum and quality of the findings. 

v) Security. Data security is another issue concerning to KDD technology. 

Many organisations are very sensitive on this matter, so, it is imperative that 

KDD implementations cannot compromise the confidentiality of private data. 

This situation becomes critical when facilities to access widely dispersed data, 

such as the WWW, are utilised. Therefore, authentication, authorisation and 

encryption procedures may be required. 

vi) Distributed Data. Mining information from different and widely dispersed 

sources of data poses new challenges to KDD technology. In this distributed 
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information scenario, local and wide-area computer networks connect many 

sources of data, providing easier access to remote locations. In the same 

manner, the remarkable growth of the WWW has effectively created a global-

market, overcoming the barriers of cultures and languages and where 

geographical distances are no longer a factor for consideration in commerce 

and sharing information (Wong et al., 1998). Hence, the use of computer 

networks facilities, particularly the Internet, should be highly considered. 

4.5 A R C H I T E C T U R E O F K N O W L E D G E D I S C O V E R Y IN 

D A T A B A S E S 

The previous section has sought to examine some issues and challenges to be 

addressed by KDD technology. In this section, a formal methodology to assist in 

the development of KDD-oriented systems is proposed. 

KDD is a process that usually involves four main complementary stages: i) 

building a Data Warehouse, ii) data Pre-processing techniques, iii) Data Mining 

algorithms and iv) Post-processing methods. 

Each main stage includes the definition and implementation of several 

operations grouped in sub-phases. The main stages are shown in Figure 4 .1 . 

1 

i* R E A D O N L Y 

1 DECISION-SUPPORT 
P U R P O S E S , 

PRE - PROCESSING POST - PROCESSING 
Data Cleaning Comprehensibility 
Data Selection of the discovered 

knowledge. Data Transformation t f 3 DATA MINING j B 
Development/ Jk 

Implementation of 
Algorithms. J ' 

Figure 4.1 - KDD General Architecture 
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A detailed explanation about each of the main stages follows. 

4.5.1 Building a Data Warehouse 

The initial phase of a KDD process consists of building a Data Warehouse 

(DW), which is a repository of integrated, historical and read-only data, focused 

on storing and accessing information useful for high-level decision support 

systems, rather than for low-level operational (production) purposes. 

The main reasons for building a DW are related to the interest of the analyst in 

efficiently managing the diversity of data stored (multiple patterns) and its 

magnitude (order of terabytes), which are two factors notably affecting the 

operations of access, retrieval, storage and maintenance of large databases. 

When such quantity and variety of information is stored, some of the following 

undesirable situations can occur: 

=> The database segmentation is not the best suitable, for subsequently 

applying discovering methods to find significant deviations or meaningful 

patterns. 

=> The access to the information is slow. 

=> Redundant or inconsistent data exist, occupying costly space in the 

database. 

Kimball et al. (1998) consider the following points as fundamental goals for DW: 

• Makes an organisation's information accessible. The contents of the DW 

must be understandable, navigable and its access characterised by fast 

performance. Understandable means correctly labelled and obvious. Navigable 

means recognition about any user-destination on the screen and getting there 

easily in one click. 

• Makes the organisation's information consistent. Information from one 

part of the organisation can be matched with information from another part of 

the organisation. If two measures of an organisation have the same name, then 

they must mean the same thing. Conversely, if two measures do not mean the 

same thing, then they are labelled differently. 
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• DW is an adaptive and resilient source of information. The DW is 

designed for continuous change. When new DW requirements are asked and 

new data is added to the DW, the existing data and the technologies are not 

changed or disrupted. The design of a DW must consider a distributed and 

incremental structure. 

• DW is a secure bastion that protects our information asset. The DW not 

only controls access to the data effectively, but gives its owners great visibility 

into the uses and abuses of that data, even after it has left the DW. 

• DW is the foundation for decision making. The DW has the data in it to 

support decision-making. Whilst more efficient is the organisation of the DW, 

higher will be its contribution to the successful application of subsequent 

knowledge discovery methods. 

DW operations require special attention when performed on distributed 

environments, because they usually must be implemented between remote and 

different computer platforms, which demands certain connectivity and database 

considerations, just as discussed in Chapter 2. 

4.5.2 Data Pre-processing 

The second phase of a KDD process can be divided in three sub-phases: 

Data Cleaning, in order to check possible redundancy and inconsistency in the 

data analysed. Redundancy exists when two records having the same values 

(or the same meaning according to the domain analysed) in all their attributes, 

the effect on the decision attributes (conclusion) is the same. That means one 

of the two records can be removed without affecting the potential of the data to 

provide useful knowledge. 

Inconsistency occurs due to contradictory relationships between two records, 

given by conflicts between condition and decision attribute values. 

The identification of inconsistent relationships in the data is not a trivial task, 

particularly when there are a considerable number of attributes to be analysed. 

For example, in a particular chemical process the presence of the same 

temperature for two records can result in apparent conflicting decisions (normal 
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and unstable), when these decision values should also have been influenced by 

the presence of further condition attributes (pressure and humidity). 

Also, the presence of records having apparent contradictory decisions can lead 

to discovering interesting deviations in the data and, therefore, their removal 

must be done taking the respective precautions. 

Data Selection, because of the considerable variety of data contained in a Data 

Warehouse, only some key attributes will be relevant, according to the goals 

and interests of the analyst. The data selection process is usually done as a 

joint task between the data mining methods developer and the owner of the 

data, because it allows selecting those variables closely related to the business 

goals. About the decision of which particular variables to select, as well as their 

appropriate number, there is, in general, no solid theoretical basis for supporting 

these solutions and the problem must therefore be approached empirically. 

Data Transformation, which includes the application of mechanisms oriented 

to convert all the variables to the same scale (standardisation) and 

complementary tasks, such as weighting of variables and discretisation 

operations. Each of these operations are explained below: 

(a) Data Standardisation: real applications contain a variety of types of data 

having completely different measurement units, so, all the variables need to be 

standardised to some common numerical properties. The main reason to apply 

standardisation is primarily to convert all the values of the variables, which 

usually are not expressed in the same units, to the same scale. The conversion 

process usually requires dividing all the values for each variable, by a suitable 

equalising factor (Anderberg, 1973). Different equalising factors are discussed 

as follows. 

=> Range of the variable: the range of a data set is the difference between its 

two most extreme values, so, dividing all values by their range, smooth the 

complete data set in relation to the maximum possible score found for each 

variable. 
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=> Mean of the variable: dividing all values of each variable by its mean, will 

produce a smoothing effect around the more frequent values present in the 

complete data set. 

=> Standard deviation of the variable: dividing all values of each variable by 

its standard deviation, will contribute to minimise the range of variation, not only 

among values belonging to the same variable, but also the variations produced 

by significant differences between the units of measurement for any two 

variables. 

Some authors (Duda and Hart, 1973) question the utilisation of equalising 

factors, because the standardisation process is applied on each variable 

separately, which could ignore possible correlation between the variables. A 

further disadvantage is related to the discriminatory potential of some group of 

variables, which can be diluted for the sake of implementing the standardisation 

processes. 

=> Considering variables of mixed type: the three former standardisation 

methods can be directly applied when all the data is quantitative. When the data 

set contains quantitative variables, as well as categorical ones (describing 

qualitative attributes), it is highly suitable to rely on some mechanisms to 

convert all the values to common numerical scores. 

Gower (1971) suggested a similarity coefficient to be used in clustering 

analysis, which contributes to solve the situation of having mixed variable types. 

The treatment given to categorical data to calculate a similarity factor is the key 

element, in which Gower assigns the value one, when two variables have the 

same value and zero otherwise. 

In Chapter 6, an extended explanation about Gower's coefficient is presented 

and an improved version is implemented in a clustering context. 

(b) Weighting of Variables: to weight a variable consists in giving greater or 

lesser importance to this variable, than others considered in the analysis. The 

validity of this procedure has been questioned by some authors, who argue that 

the weights can only be based on intuitive judgements of what is important 

(Everitt,1993), and that these may simply reflect existing classifications of the 
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data when, on the contrary, data mining methods are applied to sets of data in 

the hope that previously unnoticed and potentially useful knowledge can 

emerge. 

If there are not clear and available evidences about the relevance of the 

different variables, the assignment of equal weighting would seem appropriate 

(Gordon, 1981). 

(c) Discretisation operations: are oriented to split the values of a continuous 

(integer-valued or real-valued) attribute into a small list of intervals. An example 

of discretisation in the tooling sector is shown in Figure 4.2, where twenty five 

continuous values of tool life were transformed into five discrete intervals (/,). 

Il h h u h 
1 - 5 6- 10 1 1 - 1 5 16-20 21 - 25 

10 11 15 16 20 21 25 

Tool Life attribute given in minutes 

Figure 4.2 - Discretisation example 

For instance, those tools presenting tool life values in the range 16 to 20 

minutes can be identified through a unique variable (l4), grouping all the 

possible individual values into this interval. 

When generating decision rules in a context of Rule Induction, specialising and 

generalisation operations to transform a candidate rule into another, can be 

applied. Examples of specialisation and generalisation operations in rule 

induction in the tooling area are shown in Figure 4.3. 

Figure 4.3-a) shows how adding a new condition (standard insert profile) to the 

antecedent of the original rule, the criterion to obtain the resulting conclusion 

(grade insert = "cp50") is now more restricted. In contrast, Figure 4.3-b) shows 

how changing a particular kind of steel material subgroup (very soft and low 

carbon steels) into a more generic group (steels), it is now possible to relax a 

74 



condition in the antecedent of the original rule, so, the conclusion can include 

now a higher interval of values. 

Original Rule: If (Operation = 'Ext. Threading") 
Then (Grade Insert = "CP50 or CP60") 

Specialised Rule: If (Operation = 'Ext. Threading" and Standard Insert Profile = "UN") 

Then (Grade Insert = "CP50") 

a) Specialising a rule by adding a conjunction to its antecedent 

Original Rule: If (Operation = 'Ext Threading" and 
Workpiece material = "very soft, low carbon steels") 

Then (Cutting speed = "160") 

Generalised Rule: If (Operation = 'Ext. Threading" and Workpiece material = "steel") 
Then (150 <= Cutting speed <= 180") 

b) Generalising a rule by relaxing a condition in its antecedent 

Figure 4.3 - Specialisation and generalisation examples 

The main reason for applying conversion mechanisms is to prepare the data for 

a later and easier application of data mining algorithms. Practical examples of 

data standardisation and weighting variables can be seen in Chapters 5 and 6 

respectively, and an exhaustive analysis about scale conversions and type of 

variables can be found in (Anderberg, chapter 3, 1973) and (Gordon, chapter 2, 

1981). 

4.5.3 Data Mining 

Data mining methods rely on the application of algorithms to automatically 

process large amounts of pre-processed data, in order to identify the most 

significant and meaningful patterns. Data mining methods demonstrate their 

usefulness especially in data-rich and knowledge-poor processing scenarios. 

Although data mining algorithms can be applied to small repositories of data, a 

better performance is reached if there is a whole warehouse of data for the 

mining algorithms to work on. When more data is available, the greatest are the 

chance and the opportunities to discover hidden knowledge. 
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Part of the strength of data mining applications is due to the fact that they use 

more than one type of algorithm. Data mining methods are highly 

complementary, they apply a combination of statistical analysis, machine 

learning techniques and mathematical support to search for interesting patterns 

in the data. 

There are two difficult problems faced by data mining algorithms, overfitting and 

definition of correct bias (Freitas & Lavington, 1998). Overfitting is a first 

problem associated with noisy data and spurious relationships. Noisy data can 

occur due to unintentional errors like typing wrong values when measures are 

collected and, spurious relationships is a term associated with a description of 

facts whose predictive power is apparent rather than true. Both of them, noisy 

data and spurious relationships have undesirable effects on the performance of 

data mining solutions, because they may lead the algorithms to induce a model 

that overestimates the data. 

Cios et al. (1998) consider overfitting as a problem of over-training when 

applying learning methods such as neural networks, machine learning and even 

statistics. It refers to the tendency of a learning method to favour weights in the 

case of neural networks, or the generated rules in case of inductive machine 

learning, to agree with the training data too closely, in order to correctly 

describe all of the training examples. This is done at the expense of 

generalisation to other data, on which the trained network or the generated 

rules are to be tested later. 

The second problem is associated with a correct definition of a bias, which can 

be defined as any basis for favouring one hypothesis over another, other than 

strict consistency with the data being analysed. A proper definition of good bias 

plays a significant role in data mining applications, because given a potentially 

high number of hypothesis or concept descriptions, the decision to choose the 

best of them among many other consistent ones, is crucial. 

Some of the most important data mining techniques are examined in Section 

4.6. 
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4.5.4 Post-processing 

This last phase involves a refinement of the information generated once a 

particular data mining algorithm is applied. 

Output 
Information 

• Decision Rules 

• Training input to a NN 

• Decision Trees 

• Input to an Expert System 

Visualisation 
Techniques 

Reports 

Figure 4.4 - Post-Processing application 

Figure 4.4 shows two different tasks to be carried out by post-processing 

methods. Firstly, the patterns generated may be put to a multitude of uses, such 

as serving as the training input to a neural network or being encoded as a rule 

into an expert system or decision tree model (Westphal and Blaxton, 1998). 

Secondly, a data interpretation analysis is usually required to improve the 

comprehensibility of the knowledge discovered. 

The more complex the data sources, the more likely that different perspectives 

of the data will be required in order to fully characterise patterns and trends of 

interest. Data visualisation techniques play an important role, providing 

multidimensional data views and different perspectives in order to show to the 

final users, clear and easy to understand results. 

4.6 D A T A MINING T E C H N I Q U E S 

Currently, the valuable contribution of knowledge discovery methods in making 

sense of large amounts of data has originated the rise of a huge variety of data 

mining tools. Next, seven of the most important data mining techniques 

implemented by these tools are examined, and Appendix C contains examples 

illustrating typical applications. A discussion and the reasons to apply some of 

these techniques to analyse tooling data, is finally presented. 
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4.6.1 Cluster Analysis 

Clustering constitutes a fundamental technique to be used in exploratory data 

analysis, which considers the grouping of similar objects to produce a 

classification. The criteria of similarity to classify these objects are established 

in accordance with the objectives and goals of the researcher about the domain 

being studied. 

Clustering methods represent a convenient method of partitioning huge 

amounts of data so that the resulting classification can reveal natural 

associations, logical structures and useful relationships. In the next chapter, an 

explanation about clustering methods, as well as their application in the analysis 

of tooling trials data is presented. Also, in Appendix A, hierarchical clustering 

methods are applied to solve a complete exercise involving two-dimensional 

data points. 

4.6.2 Neural Networks 

Neural Networks (NN) are systems constructed to make use of some of the 

organisational principles felt to be used by the human brain, especially those in 

relation to learning (Dagli, 1994). In the generic NN, also called connectionist 

model, there are three main components: the Neurones or processing 

elements, the network topology and the learning algorithm or strategy. Usually, 

there are three classical NN architectures commonly used: Perceptron, 

Backpropagation and Adaptive Resonance Theory. 

Once weighted interconnections among the neurones are established, each one 

of them performs a very simple computation, such as calculating a weighted 

sum of its input connections, and computes an output signal that is sent to other 

neurones. The training (mining) phase of a NN consists of adjusting the weights 

of the interconnections, in order to produce the desired output. The adjustment 

of interconnection weights is usually performed taking into consideration that if 

two neurones are active simultaneously, the weight of their interconnection 

must be increased. 

NN systems tend toward system robustness, resistance to noise, contradictions 

and incompleteness. However, the use of NN in KDD has two drawbacks. 

78 



Firstly, the distributed, low-level representation used by NN has the 

disadvantage of not being easily comprehensible to the user. That is, typically a 

NN returns the predicted class but it cannot provide a comprehensible 

explanation about why that class was chosen. In the context of KDD, it is 

sometimes desirable to convert the learned interconnection weights into a set of 

"If-Then" rules, to make the discovered knowledge comprehensible to the user. 

Unfortunately, this conversion is difficult, and often one of the prices to pay for 

this conversion is a reduction of the classification accuracy of the NN. In some 

application domains, such as finance, the accuracy of the discovered 

knowledge tends to be much more important than its comprehensibility. In these 

cases NN can be a promising approach to the mining of noisy, real-world 

databases. Secondly, training a NN can be a very time-consuming process. 

NN have also been applied successfully in the areas of pattern recognition, 

forecasting and risk analysis. 

4.6.3 Rough Sets 

To provide a systematic framework for analysing incomplete and imprecise 

information, Zdzislaw Pawlak (1982) introduced Rough Sets. The concept of 

Rough Sets is based on equivalence relations which partition a data set into 

equivalence classes, and consists of the approximation of a set by a pair of 

sets, called /owe/ -and upper approximations. 

The term "Reducf is another important concept widely used in the rough sets 

community. Redacts allow establishing attribute relationships, which is 

important to reduce information (redundant attributes) in a data set. Readers 

interested in knowing more details about Reducts can find good examples 

consulting Shao (1996), Pawlak (1996), Ziarko (1995) and Hu (1995). 

An important advantage of rough set theory is that it does not need any 

preliminary information about data, like probability in statistics and grade of 

membership or the value of possibility in fuzzy sets theory. 

In order to show how rough sets theory can be used to identify inconsistent 

relationships in a data set, an example is presented in Appendix B. 

79 



4.6.4 Genetic Algorithms 

In this paradigm, also called Evolutionary Computing, the KDD algorithm is an 

iterative procedure that maintains a population of "individuals" or 

"chromosomes", which are strings representing a candidate solution to a given 

problem. At each iteration (or generation) the individuals of the current 

population are evaluated by a fitness function, which measures the quality of 

the candidate solution represented by the individual. Then, genetic operators 

such as selection, crossover and mutation are applied to the individuals, 

modifying their corresponding strings and creating a new generation of 

individuals. 

The key idea is that the generic operators evolve individuals according to the 

principle of the survival of the fittest, based on Darwin's principle of natural 

selection. Hence, the populations of individuals tend to converge on highly fit 

individuals that represent good solutions to the target problem. 

In the context of KDD, individuals often represent candidate rules and the 

fitness function measures the quality of these rules. Genetic Algorithms carry 

out a global search in the solution space, in contrast with the local search used 

by most rule induction algorithms. It should be noted that one of the prices to 

pay for this global search is that Genetic Algorithms tend to be time consuming, 

in comparison with local search-based rule induction algorithms. 

The advantages of Genetic Algorithms for the design of complex decision

making models could be summarised as follows: 

• The algorithm itself does not deal with the actual input data but with binary 

representations. This allows virtually any kind of input data to be put into the 

control of the algorithms, as long as an encoding/decoding algorithm can be 

defined. 

• The Genetic Algorithm is a domain-independent algorithm, which can be 

applied to any kind of problem domain. There are therefore, no serious 

restrictions on the type of model, which can be put under Genetic Algorithms 

control. 
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• Genetic Algorithms can deal simultaneously with a large number of input 

data and can create a large number of output results, allowing the analysis of 

complex, multi-dimensional problem matrices. 

• The flexibility of Genetic Algorithms allows easy combination with other Al 

techniques to create hybrid models specifically suitable for a given task (like 

classifier systems or optimisation of neural network design). 

• Genetic Algorithms allow implementation of constraints in various ways. This 

is important as the training of some models must observe strict risk 

management and thresholds applications. 

• Genetic Algorithms are well-suited for parallel and distributed processing, as 

each population may consist of 100 or more individual models which can be 

evaluated simultaneously in parallel processes. 

4.6.5 Fuzzy Sets 

Decision-making involves perception, attitudes, subjection, conceptions and 

emotions and these nomenclatures can not be modelled or explained by 

randomness alone. Fuzzy logic is based on the mathematics of fuzzy sets 

introduced in the mid-sixties by Professor Lotfi Zadeh (1965) to model the 

features of uncertainty or vagueness that probability theory could not 

adequately handle. 

A fuzzy set A in the universal set U is defined by a membership function u^(x) 

which associates a real number in the interval [0,1] to each element x i n U. The 

fuzzy set is a class in which the transition from membership to non-membership 

is gradual rather than abrupt. A fuzzy set is characterised by its membership 

function U/*(x), which takes on values between and including 0 and 1. If u^(x) = 0 

then the element is not in A, if u/j(x) = 1 the element is in A, and if [1A(X) is, say, 

0.7 then the element is more in A that not in A. As u^(x) approaches the value 1, 

the more x belongs to A. 

Fuzzy logic and clustering techniques can be combined (Fuzzy-clustering) to 

produce a useful hybrid solution in which the grouping of particular objects can 

be supported by similarity relationships given by the implementation of 

membership functions. 
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Fuzzy-K, a hybrid tool developed combing fuzzy sets and clustering methods, is 

presented In Chapter 7. 

4.6.6 Discriminant Analysis 

Discriminant Analysis is a classification method that measures the importance 

of factors determining membership within a category. A typical example of 

applying the discriminant analysis technique consists of identifying common 

customer group behaviours. 

There are some basic assumptions when using discriminant analysis. First of 

all, the data cases should be members of two or more mutually exclusive 

groups. Data cases are the basic units of analysis, the elemental things being 

studied. These may be people, animals, countries, etc. 

Usually, the activities related to discriminant analysis can be divided into those 

used for interpreting the groups differences, and those employed to classify 

cases into groups. 

A researcher performs interpretation when studying the ways in which groups 

differ, that is, when he/she is able to 'discriminate' between the groups on the 

basis of some sets of characteristics, how well do they discriminate, and which 

particular characteristics can be identified as the most powerful discriminators. 

The other application is to derive one or more mathematical equations for the 

purpose of classification. These equations, called 'discriminant functions', 

combine the group characteristics in a way that will allow one to identify the 

group, which classification it most closely resembles. 

Another important assumption is that no discriminant variable may be a linear 

combination of other discriminant variables used in the study. A variable defined 

by a linear combination (perfect correlation) does not contain any new 

information beyond what is contained in the present combination of discriminant 

variables, so it is redundant. 

A final assumption is that each group is drawn from a population that has a 

multivariate normal distribution of the discriminant variables. Such a distribution 

exists, when each variable has a normal distribution about fixed values on all 
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the others. This permits the precise computation of tests of significance and 

probabilities of group membership. 

The above assumptions constitute the mathematical model on which the most 

common approaches of discriminant analysis are based (Klecka, 1980). 

4.6.7 Machine Learning 

Traditional multivariate data analysis methods such as conventional clustering, 

discriminant analysis, multivariate analysis of variance, regression and factor 

analysis are mainly oriented towards a numerical characterisation of a data set. 

On the other hand, machine learning methods are primarily oriented towards 

developing symbolic logic-style descriptions of data, which may characterise 

one or more sets of data qualitatively, differentiate between different classes, 

create a "conceptual" classification of data, select the most representative 

cases and qualitatively predict sequences. These techniques are particularly 

well suited for developing descriptions that involve categorical variables in data 

(Michalski, 1998). 

The primary reason for applying machine learning methods is to carry out 

conceptual data exploration (see chapter 5, section 5.3). This exploration is 

mainly supported by two kinds of algorithms. Firstly, algorithms oriented 

towards the construction of hierarchies (conceptual clustering and decision 

trees) and secondly, algorithms oriented towards the inductive derivation of 

general rules characterising the relationship between designated output and 

corresponding input attributes. 

4.6.8 Discussion 

Whilst it is relatively easy to find good examples of Al-based implementations in 

the tooling industry, a vast amount of raw data that is constantly generated in 

the machining centres of tooling companies, is not considered for discovery 

knowledge purposes. There is a significant lack of KDD implementations and 

tools applied to this sector, which could reveal the presence of potentially useful 

hidden knowledge. 
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In order to meet these needs it was decided that a formal KDD-based system 

would be developed. In this research, from the seven data mining methods 

formerly examined, clustering methods (based on numerical and conceptual 

procedures) and a hybrid solution combining fuzzy sets and cluster analysis, 

were implemented. Also, an SQL-query based solution was developed as a 

complementary tool to support fast exploratory data analysis. Chapter 7 

presents all of these methods operating in an integrated fashion. 

Cluster Analysis was chosen because of its widely recognised power as a data 

classification tool. In the context of this research, where trials data obtained 

from different tooling machining centres was considered, one of the main issues 

consisted of grouping these data sets according to logic classification criteria. 

Likewise, fuzzy sets were implemented in order to deal with imprecise, and 

sometimes, incomplete information in the tooling reports analysed. 

With regard to the rest of the data mining methods examined here, they also 

can, within some limits, be applied in the current context. For example the low-

level representation of neural networks, makes them harder to interpret the 

resultant model, with their layers of weights and transformations. In the case of 

genetic algorithms, they tend to be very time consuming, because they carry out 

global searches in the solution space. Machine learning methods are suitable 

for analysing data sets involving variables where qualitative attributes prevail, 

and in this research the greater part of the variables are quantitative. 

The implementation of the above mentioned methods, taking into consideration 

the referred limitations, could be considered in subsequent stages, after primary 

techniques had performed an initial classification of data. This idea seems 

appropriate due to the fact already discussed in section 4.5.3, i.e. that data 

mining algorithms are highly complementary and the conclusions obtained due 

to the application of a particular technique, can be strengthened, validated or 

even weakened by other methods. 

Finally, because in this particular research the data mining methods are 

implemented under an Internet environment, which is a platform characterised 

by a relatively slow access, special attention must be paid in relation to the 

computer processing times. 
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4.7 SUMMARY 

In this chapter, the fundamental aspects of KDD-based systems have been 

discussed. It has been shown that KDD is a fast growing technology that has 

emerged as an attempt to fulfil the interest of many companies to take 

advantage of their large repositories of raw data, stored as a consequence of 

their continuous business operations. The primary motivation to implement 

KDD-based systems, consists of making sense of data and using the 

discovered knowledge for decision-support purposes. 

The work in this chapter has concentrated on the definition of a well-structured 

architecture to support the development of KDD-based systems. Four main 

stages were identified in this architecture: Building a Data Warehouse, Pre

processing phase, application of Data Mining techniques and Post-Processing 

methods to improve the comprehensibility of the knowledge discovered. 

Finally, due to the application of data mining techniques constituting the key 

stage for discovering interesting patterns hidden in the data, seven of the most 

important data mining methods, currently used in the KDD domain, were 

discussed. 

In the next chapter, a complete methodology to apply Cluster Analysis is 

proposed. This methodology will be implemented to develop Kluster, a 

clustering tool oriented to discover useful patterns and relationships in a tooling 

database. 

85 



CHAPTER 5 

CLUSTER ANALYSIS METHODOLOGY. 

PRE-PROCESSING STAGE 

5.1 INTRODUCTION 

In the previous chapter, important considerations when implementing KDD-

based systems were discussed. Also, to support the development of KDD-

based systems a four-step architecture was proposed and some selected data 

mining methods were examined. In this chapter, the fundamental notions of 

cluster analysis, an important area in the wide spectrum of the KDD discipline, 

are presented. 

However, the main contribution of this Chapter, is the proposal of a formal 

methodology to support the development of clustering applications. This 

methodology has been structured according to three main stages, namely, Pre

processing, Processing and Post-processing. Each of these three stages 

includes in its turn several operations grouped in sub-phases, and their 

complete explanation will require a considerable analysis. It was therefore 

decided to split the presentation of the whole methodology into two Chapters, in 

order to provide manageable reading. The stage of Pre-processing will be 

presented here and the next Chapter will go on to examine the remaining two 

stages. 

The first function in the Pre-processing stage consists in choosing those 

variables considered relevant to the domain being studied. An entity analysis 

follows, in order to remove or incorporate new individuals. Next, a variable 

analysis considers the implementation of conversion mechanisms to support the 

calculation of numerical similarities between mixed variables. Finally, 

standardisation procedures are applied when significant differences exist in the 

magnitude of the variables under analysis. 
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5.2 C L U S T E R ANALYSIS 

Clustering techniques have been playing an important role in exploratory data 

analysis, partitioning huge amounts of data, in order to reveal natural 

associations, logical structures and useful relationships. Cluster analysis can 

thus be classified, as a data mining method in the wide spectrum of knowledge 

discovery process. 

Usually, clustering methods require the raw data matrix to be transformed into 

an n x n symmetric matrix of pairwise dissimilarities D, represented by dy 

values, where d,j denotes the dissimilarity (or distance) between the Ah and yth 

individuals. These dissimilarity measurements must satisfy the following 

minimum conditions: 

(i) dyZOyijeD; 

(ii) djj =dji,\/ij(= D; 

(iii) du =0 ;Vye D. 

According to condition (ii) the maximum number of distances found in a 

dissimilarity matrix is given by n(n-1)/2, where n is the number of individuals to 

be clustered. 

Gordon (1987), suggested that data recorded in the form of an asymmetric 

dissimilarity matrix, where the dissimilarity between the Ah and yth individuals is 

now denoted by a#, can be analysed by transforming them to dy =-^(tfy + 

The generation of a consistent dissimilarity matrix, able to introduce reliable 

numerical distances between all the individuals considered, constitutes one of 

the key pieces in the whole clustering analysis. When the indicator to measure 

the association between the /th and yth individual is based in similarity levels, 

instead of dissimilarities, some transformations are needed. In chapter 6 some 

examples of these transformations are shown. 

To represent the unions generated when a particular clustering algorithm is 

applied, a two-dimensional diagram known as dendrogram is used. Figure 5.1 

shows four different formats to represent dendrograms. 
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Figure 5.1 - Four different formats to represent dendrograms. 

The points in the dendrograms represent the distances at which the successive 

unions take place. For instance, point A indicates a first fusion between the 

individuals 1 and 2, and point D represents the maximum distance to which the 

data set has been reduced to a final cluster containing all the individuals. 

Cluster analysis has long been applied and there is a varied and vast literature 

on this matter. Xie and Beni (1991) combined fuzzy sets with clustering 

techniques (fuzzy-clustering) to solve problems in pattern recognition and image 

processing areas. They developed a validity function, applied to colour image 

segmentation, in a computer colour vision system for recognition of integrated 

circuit wafer defects, which are otherwise impossible to detect using grey-scale 

image processing. 
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In the field of supervised learning-algorithms, Djoko et al. (1997) implemented a 

method for guiding the discovery process using domain-specific knowledge. 

Results showed that incorporation of domain-specific knowledge improves the 

search for substructures that are useful to the domain and leads to greater 

compression of the data. This supervised learning-approach has been applied 

successfully in this research. 

Bajcsy and Ahuja (1998) presented a new approach to hierarchical clustering of 

point patterns. This approach is applied to a two-step texture analysis, where 

points represent centroid and average colour of the regions in image 

segmentation. The authors compared their proposed hierarchical location- and 

density-based clustering algorithms, against four other methods, namely, 

Simple, Complete, FORGY and CLUSTER (Jain and Dubes, 1988). In many 

cases the results showed a better performance of their two algorithms than the 

above mentioned methods, considering the kind of process being analysed 

(image segmentation). 

Deserving special mention is the research carried out by Michalski and Stepp 

(1983), which developed a method for automated construction of classifications 

called conceptual clustering, implemented in the program CLUSTER/2. This 

method of conjunctive conceptual clustering was analysed and compared to a 

number of clustering techniques used in numerical taxonomy. 

The major difference between the above method and numerical taxonomy 

methods is that it performs clustering not on the basis of some mathematical 

measure of object similarity, but on the basis of "concept membership". From 

the viewpoint of traditional clustering methods, conceptual can be interpreted as 

an approach that also uses a certain measure of object similarity, but of a quite 

different kind. This new kind of similarity measure takes into consideration not 

only the distance between objects but also their relationship to some 

predetermined concepts, called by the authors, conjunctive descriptions. 

The next section discusses the main differences between conventional and 

conceptual clustering approaches. 
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5.3 CONVENTIONAL VERSUS CONCEPTUAL C L U S T E R I N G 

Conventional clustering methods typically classify data on the basis of a 

similarity measure that is a function exclusive to the properties of the individuals 

being compared (attribute values), and not of any other parameters (Michalski 

etal., 1998): 

Similarity(X,Y) =/[(attributes(X). attributes(V)]; 

Where Xand Vare individuals being compared. 

In contrast, a conceptual clustering program classifies data on the basis of a 

conceptual cohesiveness, which is a function not only of properties of the 

individuals, but also of two other parameters: the description language L, which 

the system uses for describing the classes of individuals, and the environment, 

E, which is the set of neighbouring examples. 

Conceptual cohesiveness(X,Y) =/[(attributes(X), attributes(V), L, £]; 

Hence, two individuals may be similar, i.e., close according to some numerical 

distance (or similarity) measure, while having a low conceptual cohesiveness, 

or vice versa. An example of the first situation is shown in Figure 5.2. 

t 

X 

Figure 5.2 - Difference between conventional and conceptual clustering 

As can be seen in figure 5.2, the points X and Y are close to each other, 

therefore, they would be placed into the same cluster by any method based 

exclusively upon the numerical distances between these points. Nevertheless, 

these points have small cohesiveness, because they belong to geometrical 
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configurations representing different concepts. A conceptual clustering method, 

if provided with an appropriate description language, would cluster the points X 

and Vinto a rhombus and a triangle respectively, as would be expected from a 

human interpretation. 

In this particular research, in order to minimise incorrect data grouping 

processes, such as the situation illustrated in the previous example, the 

inclusion of important tooling concepts was considered to establish similarity 

between some attributes, before building the similarity matrix. 

The Information to support the analysis of the tooling concepts was obtained 

from industrial technical catalogues, as well as engineering material books, 

particularly in the case of Material and Grade parameters. Hence, in this 

research, knowledge about how close are two records in the database, based in 

conceptual analyses of their attributes, has been implemented. This procedure 

is explained in detail in section 5.5.3. 

The following section presents the clustering methodology developed in this 

research. 

5.4 CLUSTERING METHODOLOGY 

There is copious literature about data classification methods, however, few 

authors address the issue of exposing a formal methodology to carry out 

clustering analysis (Velasquez et al. (a), 2000). One reason for this lack of 

standard methodologies is probably because each classification problem 

requires a completely different analysis according to the domain under study 

and, due to the complexity and diversity of the topics involved. 

Nevertheless, some general guidelines have been proposed on this matter. For 

instance, a procedure to carry out a step-by-step cluster analysis based on 

seven factors was suggested by Milligan (1996). These steps are summarised 

below: 

Clustering Elements. A representative set of entities (individuals) to be 

clustered must be selected. 
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Clustering Variables. The variables to be used in the cluster analysis must be 

selected. 

Variable Standardisation. If required, a standardisation process for each 

variable must be implemented. 

Measure of Association. A similarity or dissimilarity measure must be 

selected. 

Clustering Method. Selection and application of the clustering method, in order 

to apply a suitable classification algorithm. 

Number of Clusters. Optimum determination of the number of clusters in the 

solution. 

Interpretation, Testing and Replication. To interpret the results within the 

context of the domain under study, testing to determine if there is significant 

cluster structure in the data and finally, replication analysis is used to determine 

whether the obtained cluster structure can be replicated in a second sample. 

The previous methodology summarises the significant steps in a cluster 

analysis, however, it does not consider some important factors such as learning 

modes, variable analysis, consistent indicators to measure the quality of the 

final classification and optimisation methods. An 11 -step methodology that 

includes the last four mentioned factors is shown in Figure 5.3. 

This section will examine the Pre-processing stage and the remaining stages 

will be presented in the next Chapter. 

5.5 PRE-PROCESSING STAGE 

The Pre-processing stage has been structured in four phases, oriented to 

prepare the data for a later generation of a consistent dissimilarity matrix and 

application of clustering algorithms. Variable Selection, Entities Analysis, 

Variable Analysis and Data Standardisation integrate this first Pre-processing 

stage. 
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5.5.1 Variable Selection 

A suitable variable selection constitutes a crucial first stage in a cluster analysis. 

Data warehouses contain large repositories of raw data, but usually only some 

variables are relevant to support those areas of interest to the researcher. 

These areas are closely related to the user goals. 

In this research, nine variables were selected to represent each record under 

analysis. These variables are shown in Table 5.1. 

Table 5.1 - Selected Variables 

Report # Test# 
Material 

Workpiece 
Material 
Group 

Nose 
Radius 

Grade Cutting 
Speed 

Feed 
Rate 

Depth 
of Cut 

1 1.1 Stainless Steel 8 0.4 TP200 220 0.25 0.20 

1 1.2 Stainless Steel 8 0.4 TP100 180 0.20 0.25 

1 1.3 Stainless Steel 8 0.8 TP200 200 0.40 0.30 

2 2.1 Cast Iron 11 0.8 CM 240 0.40 1.50 

• 

• • • 

• 

• 
• 

• 

n n.m Nodular Cast Iron 14 1.2 TX150 280 0.35 4.0 

Because each tooling report analysed can contain several tests, the first two 

columns in Table 5.1 correspond to control variables, needed to identify which 

and how many tests are associated with each report. 

The remaining seven variables constitute important tooling parameters. In this 

research a number of 410 reports were analysed for a total of 1248 tooling 

tests. 

5.5.2 Entities Analysis 

To select and remove appropriate individuals from raw data sets to be 

clustered, and decide the incorporation of new attributes to the existing 

individuals, is a task mainly dependent on the goals and interests of the domain 

under study. 
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Empty fields, null entries, absence of some meaningful parameters to the user 

and presence of irrelevant attributes are examples of data that can spoil 

subsequent analyses. In this particular research, all the records, empty or zero-

valued, corresponding to the variables Grade, Nose Radius, Cutting Speed, 

Depth of Cut and Feed Rate, were removed from the database. 

Table 5.2 - Workpiece materials classified into material groups 

Material 
GroupNo. 

Material 
Description 

Workpiece materials classified into material groups according 
to known standards 

Material 
GroupNo. 

Material 
Description 

AIS W-stoff D I BS A F N O R SS UN 

H I H 

Very soft, low-carbon 
steels. Low-carbon 
and purely ferritic mild 
steels. Ultimate tensile 
strength: up to 450 
N/mm2. 

1006 

1010 

1.0201 

1.1121 

1.1121 

St 36 

Ck 10 

St 37-1 

045 M10 

436040A 

Fd5 

Xc 10 

1160 

1265 

1300 

C10 

15 
High-alloy cast iron 
which is difficult to 
machine. 

A48-50B 
A48-60B 
A220-... 

0.6035 
0.6040 
0.8170 

GG 35 
GG-40 
GTS -

Grade350 
Grade400 

Fd 35D 
Ft 40D 
Mn700 

0135 
0140 
0864 

G35 

GMN 70 

Likewise, in order to complement the information about materials contained in 

the database, additional workpiece material groups as shown in Table 5.2, were 

incorporated into a new file. 

Table 5.2 shows an example of the structure of the different material groups, 

and a description of their constituent workpiece materials additionally included 

in the database. The values corresponding to the column BS (British Steel) will 

be used later in Chapter 6, as the basis to calculate the similarity between any 

two material groups according to important properties such as tensile strength, 

yield strength, izod impact strength and hardness. 

5.5.3 Variable Analysis 

In this section, an exhaustive analysis of the conversion mechanisms needed to 

support a later calculation of similarity/dissimilarity values has been conducted. 

Although this analysis is valid for any type of variable, it is particularly applicable 

when there are mixed variables, since the analysis becomes simpler when only 

quantitative variables are considered. 
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In this research a standardisation phase, fully explained in section 5.5.4, was 

the only consideration in relation to quantitative variables. With regard to 

categorical attributes, the variables Grade and Materials were considered. The 

procedure to carry out this analysis follows. 

ISO - G R A D E S 
I S O - P 

P01 P10 P20 P30 P40 P50 

I S O - M 

M10 M20 M30 M40 

I S O - K 

KOI KIO K20 K30 K40 

TP100 

TP200 

TP300 

TX150 

CP50 

Wear resistance Toughness Wear Toughness Wear Toughness 
resistance resistance 

Figure 5.4 - Graphical representation of insert grade applications. 

5.5.3.1 Analysis of Grades to obtain numerical similarity values 

Insert grades are represented as categorical values and, therefore, the 

calculation of similarity measures requires the application of certain conversion 

mechanisms, in order to transform them to quantitative values. This conversion 

is based in the analysis of the workpiece materials which each insert grade has 

the ability to machine. 

Figure 5.4 shows the overlapping areas in which a particular insert grade can 

be used alternatively to machine materials presenting different toughness and 

wear resistance properties. 

Specifications shown in Figure 5.4 have been taken from tooling technical 

catalogues and they were used as the basis to obtain a numerical 

representation of minimum and maximum values of twenty insert grade 

applications according to three main groups of toughness/hardness indicators 

(P,M,K). This numerical representation is shown in Table 5.3. 
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Table 5.3 - Numerical representation of insert grade applications 

P M K 
MIN MAX MIN MAX MIN MAX 

TP 10 10 25 0 0 10 25 
TP20 20 35 16 30 25 40 
TP30 25 40 20 35 0 0 
TP05 5 19 0 0 10 20 
TP 100 10 30 10 21 6 33 
TP15 15 30 11 30 15 30 
TP200 18 45 16 34 20 40 
TP25 20 35 16 33 17 38 

TP300 30 52 21 45 0 0 
TP35 30 45 26 45 0 0 
TP40 35 55 30 49 0 0 

TX150 10 30 0 0 10 40 
CP20 10 25 11 25 10 30 
CP25 18 33 19 34 17 36 
CP50 26 50 20 43 26 44 
CM 10 25 15 20 0 0 
CR 18 30 20 30 0 0 

S25M 26 45 26 35 0 0 
890 0 0 15 25 10 30 
HX 0 0 20 30 15 33 
883 0 0 20 31 20 36 

According to Figure 5.4 there are six possible cases that can be identified when 

determining the extent of the overlapping areas. These cases are shown in 

Figure 5.5. 

Revere (2000) used a similar procedure named Parameter Relaxation 

Technique to calculate confidence scores in order to assess the validity of one 

insert grade when compared to another. 

These confidence scores were implemented in the Tool Trials System (TTS) 

described in Chapter 3, to show the way in which database records are scored 

based upon the number of parameters which exactly match those specified by 

the user. 
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a) Cases I and 2 Vmin Gl 1 Vmax 

Vmin Gl 2 Vmax 

b) Cases 3 and 4 Vmin Gl 2 

Vmin Gl 2 Vmax 

Vmax Vmin JGI2 Vmax 

c) Case 5 

d) Case 6 Vmin 

Vmin Gl 2 Vmax 

G I 2 Vmax 

Figure 5.5 - Possible overlapping cases of insert grade applications. 

The six cases shown in Figure 5.5 have been used as a reference to generate 

the respective numerical similarity values, calculated through the following 

rules: 

Figure 5.5. a), cases 1 and 2, 

If ((GI1 .Vmax < GI2.Vmin) OR (GI1 .Vmin > GI2.Vmax)) Then 

Hjk = °; 

Figure 5.5.b), cases 3 and 4, 

If ((GI1 .Vmax > GI2.Vmin) AND (GI1 .Vmax < GI2.Vmax)) Then 

(( Gil V max- GI2.V min "\ (Gil V max- GI2V min Yl 
+ 

Hjk 
GI2.V max-GI2.V min G / i y m a x - G / i y m i n LL-

If ((GM.Vmin > GI2.Vmax) AND (GI2.Vmin < GM.Vmin)) Then 

(( GI2.V max- Gil V min ^ (GI2.V max- Gil V min N A 

sm = - I X Gl'2.V max- GI2.V min + Gil.Vmax-Gil.V min 
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Figure 5.5.c), case 5, 

If ((GI1 .Vmin <= GI2.Vmin) AND (GI1 .Vmax >= GI2.Vmax)) Then 

f (GI2.V max-G/2 .V min Y\ 
1 + 

GIl.V max-Gil.V min 
sijk = 

Figure 5.5.d), case 6, 

If ((Gl 1 .Vmin >= GI2.Vmin) AND (GI2.Vmax >= Gl 1 .Vmax)) Then 

f, f GIl.V m a x - G / l . V min Yl 1 + 
GI2.V max -G/2 .Vmin 

sijk =• 

Where, 

sijk =The similarity component between the individuals / and / corresponding to 

the variable k (grade in this case) under analysis. 

GI1,GI2= Grades of individuals 1 and 2 respectively. 

Vmax,Vmin = maximum and minimum values of grade applications for a 

particular individual respectively, taken from Table 5.3. 

In this context, an individual is represented for a complete database record 

constituted by nine variables as shown in Table 5.1. A procedure to obtain the 

total similarity between two individuals including the partial similarity component 

calculated in this section is explained in Chapter 6. 

5.5.3.2 Analysis of Materials to obtain numerical similarity values 

The analysis of materials was carried out using the information of material 

groups already existent in technical tooling catalogues, as shown in Table 5.2. 

Therefore, to attach any workpiece material to a material group, an integer 

number between one (1) and fifteen (15) was utilised. When considering any 

two material groups, in order to obtain the similarity component, a further 

procedure was implemented. 
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Table 5.4 - Workpiece material groups. 

Super Groups 
Material 

(IroupNo. Specification 

G l = Steel 

1 Very soft, low-carbon steels. 

G l = Steel Hiiiiî B̂H G l = Steel 

7 Difficult high-strength steels. 

G2 = Stainless Steel 

8 Easy -cutting austenitic stainless steels. 

G2 = Stainless Steel G2 = Stainless Steel 

10 Austenitic and duplex stainless steels difficult to machine. 

G3 = Cast Iron 

11 Cast iron with medium hardness. 

G3 = Cast Iron • • G3 = Cast Iron 

15 High-alloy cast iron difficult to machine. 

Table 5.4 shows all material groups (1 to 15) and three main super groups (G1, 

G2, G3) obtained through technical tooling catalogues. In this section, 

comparing two material groups belonging to the same super group will be 

considered, all the remaining cases will be explained in Chapter 6. The analysis 

consists in assigning a similarity value to two material groups, on the basis of 

how close they are into a super group to which they belong. 

To calculate the similarity component when comparing two material groups 

belonging to the same super group, a regression analysis based on four 

important mechanical properties was carried out. These properties are Tensile 

Strength, Yield Strength, Izod Impact Strength and Hardness, which are shown 

in Table 5.5. 

Values in Table 5.5 were firstly obtained by Revere (2000), who applied a 

similar regression analysis to support a materials matching process when 

comparing materials specified by final users against those existing in a tool 

trials database. He called this procedure "Data Relaxation Technique". 

The justification presented by Revere with respect to the fundamental rule 

governing the allocation of material groups is that materials within any particular 

group will exhibit similar properties, in terms of their machining characteristics. 

Were it that those materials within any single group did display correlation in 
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terms of their mechanical properties, then it would be possible to look at the 

relationships between material groups. 

Table 5.5 - Mechanical Properties for Steel Material Groups. 

Tensile 
Strength (MPa) 

Yield Strength 
(MPa) 

Izod Impact 
Strength (J) 

Hardness (HB) 

Material Group 1 Very soft, low-carbon steels. Low-carbon and purely ferritic 
Mean Values 452 280 23 142 

Standard Deviation 29.8 4.76 0.67 13.78 

Material Group 2 Free-cutting steels, excluding stainless steels. 
Mean Values 519 325 22 162 

Standard Deviation 38.4 26.7 2.85 12.3 

Material Group 3 Structural steels and carbon steels. Plain carbon steels with 
Mean Values 631 349 30 183 

Standard Deviation 37.2 30.1 2.84 13.2 

Material Group 4 High-carbon and ordinary low-alloy steels. Medium-hard 
Mean Values 646 403 31 209 

Standard Deviation 49.7 38.2 4.28 18.9 

Material Group 5 Normal tool steels. Harder hardening and tern pering steels. 
Mean Values 732 428 30 237 

Standard Deviation 62.1 39.0 3.88 22.9 

Material Group 6 Difficult tool steels. High-alloy steels with high hardness. 
Mean Values 898 496 35 242 

Standard Deviation 81.8 47.0 3.51 21.5 

Material Group 7 Difficult high-strength steels with high hardness. 
Mean Values 928 545 38 272 

Standard Deviation 82.2 53.7 3.26 25.1 

Based upon Revere's work and information presented by other researchers 

(Choudhury and Baradie, 1996) it was decided that a number of widely used 

mechanical properties would form the basis of a material machinability 

assessment, so, the four properties shown in Table 5.5 were chosen. 

For each material super group shown in Table 5.4 {G1..G3) three different 

similarity equations were generated: 

Belonging to G1 -» sijk = -0.0226* 2 -8E-\6x + 0.8832; Equation (5.1) 



Belonging to G2 sijk = -0.0364* 2 + 2E -16x + 0.8886; Equation (5.2) 

Belonging to G3 -> sijk = -0.0833* 2 +9E- I6x + 0.8762; Equation (5.3) 

Where, 

Syk = Similarity between two individuals / and j corresponding to the kXh 
variable (material group in this case). 

* = The result of subtracting the material group of individual / from material 
group of individual /. 

To obtain the regression coefficients of Equations 5.1, 5.2 and 5.3, a modified 

version of the procedure followed by Revere (2000) was implemented. An 

explanation is presented below. 

i) Some basic statistics such as the mean and the standard deviation were 

obtained for each material group, according to each of the mechanical 

properties. This information was found by consulting some engineering material 

books such as Carvill (1993), Bolton (1989) and British Steel (1989). The values 

for material groups 1 to 7 (super group G1) are shown in Table 5.5. To obtain 

the statistics for super groups G2 and G3 the same method has been applied. 

ii) It was necessary to carry out a normalisation procedure because of the 

substantial differences existing between the absolute magnitudes of some 

parameters such as Tensile Strength and Izod Impact Strength, as shown in 

Table 5.5. The Tensile Strength values were set as the reference basis and the 

normalisation procedure was carried out on the other parameters relative to this 

property. The equation used to obtain the normalised values is given by: 

( 7 ^ 

V =v n=\ 
7 

Equation (5.4) 

[n=\ ) 

Where, 

Vn = The normalised value. 
V0 = The original average value of the parameter is being normalised. 
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Rn - The average value of the parameter taken as reference (Tensile Strength 
in this case). 

Pn = The average value of the parameter is being normalised. 
n = Material group considered. 

The normalised mechanical property values are shown in Table 5.6. 

An example of the application of equation 5.4, using information displayed in 

Table 5.5 to obtain the first normalised score (477) of the parameter Yield 

Strength shown in Table 5.6, is given below. 

V =V r n y o 

f 7 ^ 

n=l 
7 

= 280 
X452 + ... + 9 2 8 > 

X 280+ ... + 545^ 
= 280 

4806 

2826 j 
= 477; 

Table 5.6 - Normalised Mechanical Property Values For Steel Material Groups. 

Material Tensile Normalised Normalised Notmalised 
1 452 477 532 471 
2 519 553 514 539 
3 631 593 679 609 
4 646 685 719 693 
5 732 728 689 788 
6 898 843 798 803 
7 928 927 875 902 

iii) For each material group the sum of the normalised material property values 

was taken. Table 5.7 shows these new results. 

Table 5.7 - Total scores of normalised mechanical properties 

Material Group 
Number 

Sum of Material 
Pioperties 

1 1932 
2 2125 
3 2512 
4 2743 
5 2937 
6 3342 
7 3632 
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The values obtained above will form the basis to make the similarity analysis 

between the different material groups. 

iv) Based on the scores in Table 5.7 a new normalisation process is carried out 

assuming that the similarity between two records having the same material 

group must have a score of unity. Table 5.8 shows these new values. 

The indexes in Table 5.8 constitute identifiers of each material group to 

associate the values of the other groups relative to the particular material group 

being analysed. For example, the column "Index 1" represents how far is each 

material group from material group 1 in terms of percentage value. Table 5.8 

represents a symmetric matrix where the distance is the same between material 

groups /'and / than between / and /', so, the upper-right values are redundant. 

Table 5.8 - Individual Normalisation of Material Groups (Percentage). 

Material 

Group Normalised values of material properties relative 
to each material group 

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 

1 100 
2 110 100 
3 130 118 100 
4 142 129 109 100 
5 152 138 117 107 100 
6 173 157 133 122 114 100 
7 188 171 145 132 124 109 100 

v) Based on the relative distance values shown in Table 5.8, relative similarity 

values between the different material groups were generated. These values are 

shown in Table 5.9, where the first column shows the resulting values from 

subtracting any two material groups. 

The middle row values of one hundred (100) in Table 5.9 indicates a perfect 

similarity when comparing two records having the same material group, while 

the value equal to zero (0) in the same row indicates the result of subtracting 

these two material groups. 
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Table 5.9 - Linearisation of the Machinability Index Scores For Regression 
Analysis. 

Index set as a Divot element for each material group 

Reference 
values 

between 
Material 
Groups 

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 

-6 H H H H 12 
-5 27 29 
-4 48 43 55 
-3 58 62 67 68 
-2 70 71 83 78 76 
-1 90 82 91 93 86 91 
0 100 100 100 100 100 100 100 
1 90 82 91 93 86 91 
2 70 71 83 78 76 
3 58 C2 G7 68 
4 48 43 55 
5 27 29 
6 12 

Example, when material groups 1 and 7 are being compared, the resulting 

values correspond to the last row in Table 5.9 (numbers 6 and 12). The number 

six (6) is obtained simply by subtracting both material groups under comparison 

(7-1), when the material group 1 is assumed as the pivot element in the 

subtraction process, relative to the other material groups, otherwise the 

resulting remainder will be -6. The similarity value of twelve (12) is obtained 

considering the information shown in Table 5.8, column "Index 1" where 

material group 7 is eighty eight percent away from material group 1, so, it 

implies a similarity of 12% (100-88). The remaining values in Table 5.9 were 

obtained applying the same criteria. 

vi) A second order regression analysis was carried out to estimate the equation 

of the line formed by the values shown in Table 5.9. Figure 5.6 shows the 

results obtained for material groups 7 to 7 (super group G1). The values for the 

vertical axis were obtained calculating the average of those scores in each row 

from Table 5.9. 
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Application of Second Order Regression Analysis to Steel 
Material Groups 

y = -0.0226X2 - 8E-16x + 0.8832 

•o 

— : - r - i 1 .2 -• • • • • • I 
- |1.0!< 

-— : - r - i 1 .2 -• • • • • • I 
- |1.0!< 

HliS^BiiiiiS 

. . . i 1 -O'.O i • i—~ ̂
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Material Group Reference 

Figure 5.6 - Regression Analysis for Steel material groups 

The six-step procedure already explained was equally applied to obtain the 

regression curves for the remainder material groups, the results being displayed 

in Figures 5.7 and 5.8. 

Application of Second Order Regression Analysis to 
Stainless Steel Material Groups 

y = -0.0364x2 + 2E-16x + 0.8886 

• 1.0:<> 

.1H 
0.6! 

0) 
r 0.44 L 

t 

1 1 , , 
- 3 - 2 - 1 0 1 2 3 

Material Group Reference 

Figure 5.7 - Regression Analysis for Stainless Steel material groups 

Once the x value is calculated by subtracting the material groups of any two 

records under analysis, this value can be used to obtain the similarity 

component between both material groups applying the equations 5.1 to 5.3. 

106 



Application of Second Order Regression Analysis to Cast 
Iron Material Groups 

y = -0.0833X2 + 9E-16x + 0.8762 

|12; 

0) 0 8; 

0 6: 
01 

0 2i 

1 0 

Material Group Reference 

Figure 5.8 - Regression Analysis for Cast Iron material groups 

A procedure to obtain the total similarity between two individuals, including the 

material similarity component calculated in this section is explained in Chapter 

6, and regression analysis concepts are examined in Appendix D, 

5.5.4 Data Standardisation 

Standardisation constitutes a procedure applied when significant differences 

exist in the magnitude of the variables under analysis, or, when their variances 

differ to any great extent. These variables are usually described using different 

units such as mm/rev, mm and m/min to mention only a few. 

In this particular research, a standardisation process was implemented due to 

substantial differences in the values of some variables, as shown in Table 5.10. 

The new standardised values were obtained using the following expression: 

z i k = ^ ; Where, 

zik = Ah standardised value of the Wh variable. 

xik = Ah original value of the Wh variable. 

Sk = Standard deviation for all values of the /rth variable. 
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Table 5.10 - Sample of the total data set considered 

Nils? Radius Cutting Sjieril [•i cd Halt- Depth »t ( ut 
i mm I (m/min'i inini/i'L'i i (mm) 

0.4 180 0.15 0.5 

0.8 240 0.65 4.0 

The expression to represent a suitable standardisation measure is not unique, 

and there are some other approaches to variable standardisation. Milligan 

(1996) defined six additional standardisation measures, which are shown in 

Table 5.11. 

Although Table 5.11 shows six different standardisation measures, proper 

criteria to their formal selection was not found in the literature consulted, 

particularly when generalisations based on studies in alternative data structures 

have not been yet established. 

Table 5.11 - Additional standardisation measures 

x-x 'if •": ." 
1 S 

X 
z-i = —t; 

Max\x) ;.i . 
* t 

X 

Max(x)-Min(x) 

,„ •-• * *•* '* 

x — Min(x) X 
7 e — ' 

' i't«'r - •• 
..' " " V * T » 

*" • <(,' . A 
1 i" 

•'. ! u . '
 r:i , 

~.:,f;-., 1 . . - - j C ' 
r,, = Range (.v), .V:' 

~ 4 Max(x)-Min(x) 

' i't«'r - •• 
..' " " V * T » 

*" • <(,' . A 
1 i" 

•'. ! u . '
 r:i , 

' 1 . . -

^.v;j'.' •••••••• • ^ - ' t i 

' 1 . . -

^.v;j'.' •••••••• • ^ - ' t i 

S = Standard deviation of variable x. 

Range(x) = Range of variable x. 

So, each analysis must be conducted taking into consideration the particular 

distribution existing in the data sets under study. 

5.6 SUMMARY 

In this chapter important concepts in the field of cluster analysis have been 

presented. It has been shown how cluster analysis can be classified as an 

important data mining technique in the wide spectrum of Knowledge Discovery 

process. 
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In addition, a formal methodology to support the development of clustering 

applications has been proposed. Kluster, a clustering tool developed in this 

research to analyse tooling trials data, has been successfully implemented 

using this methodology. 

This Chapter has examined the fundamental functions included as part of the 

Pre-processing stage. 

With these Pre-processing functions, the benefits of their application are clear, 

that is, they provide selection, cleaning and conversion mechanisms in order to 

prepare the data for a later generation of a robust dissimilarity matrix and the 

application of clustering algorithms. 

Previous work on cluster analysis has primarily focused the problem of grouping 

data on the determination of a similarity measure, that is a function exclusively 

to the numerical values of the attributes being compared. It is unlikely that this 

analysis can be applied efficiently in domains where a significant amount of 

qualitative attributes are considered. 

In this chapter, in order to minimise the lack of conceptual considerations when 

applying conventional clustering methods, conversion mechanisms to establish 

similarity relationships between some categorical attributes, were implemented. 

The aim of the next chapter is to examine the Processing and Post-processing 

stages of the clustering methodology. 
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CHAPTER 6 

CLUSTER ANALYSIS METHODOLOGY. PROCESSING 

AND POST-PROCESSING STAGES 

6.1 INTRODUCTION 

In the previous chapter, the first main stage of a formal clustering methodology 

has been presented. Here, the idea of examining the remaining structure of this 

methodology is extended. This chapter will go on to complete the analysis, 

describing the Processing as well as the Post-processing stages. 

Four functions constitute the Processing stage. A first function evaluates the 

role of external knowledge to support the process of calculating similarity 

values. Secondly, a consistent dissimilarity matrix is obtained. Next, clustering 

algorithms provide an initial classification of the data. In order to establish 

comparative analyses, four different clustering algorithms were implemented. 

Finally, an analysis about the determination of suitable stopping rules, one of 

the hardest phases in the whole clustering methodology, is carried out. 

In relation to the Post-processing stage, three functions are examined. The 

definition of mechanisms to measure the quality of a final classification 

constitutes a first function. An optimisation phase follows, in order to determine 

which cluster provides the most closely matching data, according to user's 

requirements. The last phase involves the analysis of the results, according to 

the domain being studied. 

6.2 PROCESSING STAGE 

The main aim in the Processing stage is to obtain an initial classification of the 

data, mainly through the application of clustering algorithms. However, 

additional issues must be considered and they are examined as follows. 
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6.2.1 Learning Modes 

Learning modes in the context of clustering analysis, are those criteria whose 

incorporation in some key stages of the whole classification process can affect 

the final results. These learning strategies are mainly concerned with the level 

of participation of external agents to guide the discovering process. 

Although clustering analysis is primarily supported by unsupervised learning 

techniques, where natural associations and interesting unpredictable patterns 

should be revealed without the participation of external agents to guide the 

discovering process, there is an alternative worthwhile case to discuss. 

Unsupervised Mode. In this mode the level of participation of final users is 

scarce or nil. Unsupervised learning algorithms concentrate their action on 

finding patterns without the incorporation of external knowledge (labelled data). 

In case users provide any input information, this information is not taken into 

consideration to calculate similarity or distance values, and in general, to guide 

the clustering process. Examples of systems applying this strategy are those 

based on algorithms to analyse DNA structures or astronomical data, where 

final users are more interested in obtaining novel results about the 

unpredictable structure of the data sets than in incorporating prefixed conditions 

that should spoil the knowledge discovery process. 

Supervised Mode. This mode allows involving the end users in the analysis, in 

order to make the knowledge discovery process more interactive and highly 

collaborative. This is the strategy commonly adopted for systems where the 

participation of end users is crucial and the obtained results are closely 

influenced by their inputs. For instance, determining the importance of some 

variables in respect of others, establishing certain input conditions or 

acceptance levels and defining threshold values to control the clustering 

process. All systems managing customer transactions, sales and market 

research, buying patterns, banking risks, production data and medical 

diagnosis, are good examples of systems applying supervision learning modes. 

In a clustering process there are three additional stages which can be affected 

by external knowledge, a) when applying a particular clustering method, b) 
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when implementing a stop criterion and c) when final users are interested in 

post-processing tasks to optimise a first classification. 

Jain and Dubes (1988) provide a summary of strategies for cluster validation, 

closely related to the learning modes implemented; "External criteria measure 

performance by matching a clustering structure to a priori information ... Internal 

criteria assess the fit between the structure and the data, using only the data 

themselves ... Relative criteria decide which of two structures is better in some 

sense, such as being more stable or appropriate for the data". 

In the field of unsupervised learning, Shen and Leng (1996) presented an 

interesting approach to combine a "Metapattern" (also known as metaquery) 

generator with an existing human-directed discovery loop in order to build an 

integrated data mining system that can automatically provide useful feedback 

and interaction for human users. The most significant contribution of their work, 

is the notion of mettapaterns and its role in automatically exploiting the 

interdependencies between induction, deduction and human guidance. The 

automated discovery loop also provides an algorithm that can learn relational 

patterns directly from databases without requiring humans to pre-label the data 

as positive or negative examples for some given target concepts. 

In this research, unsupervised and supervised modes were considered. In 

unsupervised learning mode the clustering process is carried out taking a group 

of variables considered relevant to the domain under study, without the 

assignation of conditions, weights or other external contributions (labelled data). 

In supervised learning, acceptance levels introduced by the user guide the final 

process of calculating a similarity matrix. These acceptance levels are 

expressed in terms of percentage values for the variables Grade, Material 

Group and Nose Radius. Likewise, the users have the option to decide about 

the inclusion of three tooling parameters named Feed Rate, Cutting Speed and 

Depth of Cut. 

In the next section, a complete explanation about the obtaining of a final matrix 

representing the mathematical distance between all individuals in the database 

is presented. 
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6.2.2 Generation of Similarity/Dissimilarity Matrix 

This section presents two dominant elements in cluster analysis, Similarity and 

Dissimilarity (distance) between the individuals of a data set to be clustered. 

6.2.2.1 Similarity 

Similarity is a key factor in any classification study. It indicates the main purpose 

of grouping individuals based in analysing their most distinguishing 

characteristics. 

The notion of similarity makes sense as the researcher can identify the 

dominant role of some variables that can contribute to determine a closeness 

degree between any two individuals in a data set. Therefore, similarity is a 

context-dependent measurement in which attributes incorporating some level of 

differentiation must be clearly defined. 

In classification analysis, the term is usually utilised to represent the 

similarity between two individuals / and j to be clustered, according to the 

analysis of the Mh variable. So, in a similarity measurement S,j, it is necessary 

to consider the partial contribution of all the variables under analysis. 

A maximum similarity value S,j = 1 indicates the strongest closeness degree 

between two individuals and a minimum value S,j= 0 indicates a total lack of 

similarity. 

Once the raw data is standardised, the next step is to obtain the similarity 

matrix. Here, this similarity matrix was generated in order to calculate the 

similarity measures for variables of mixed type, just as we have in our tooling 

database and taking into consideration the assignments of relative weights to 

certain variables of interest in the analysis. The similarity values will constitute 

the basis to obtain the distance matrix described later in this section. 

In order to calculate the similarity measures an improved version of the Gower's 

coefficient was implemented. The similarity coefficient suggested by Gower 

(1966) is given by: 
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p 
LWijkSijk 
=1 

P 
Equation (6.1) 

X % 
k=l 

Where Wijk is a binary weigh taking values 1 or 0, depending if the comparison is 

considered valid for the fa variable. Sijk is the similarity between the kh and > 

individuals as measured by the fa variable and its expression is given by 

'Xlk - Xjkl 
S l ) k = 1 R k 

•; where x i k and X j k are the two individuals' values for variable k, 

and / ? k is the range of variable k. 

The following example illustrates the use of Gower's coefficient (Everitt,1993). 

Table 6.1 - Medical data sample 

Weight 
(pounds) 

Anxiety 
Level 

Depression 
present? 

Hallucination 
present? 

Ago 

Patient 1 120 Mild No No Young 

Patient 2 150 Moderate Yes No Middle 

Patient 3 110 Severe Yes Yes Old 

Patient 4 145 Mild No Yes Old 

Patient 5 120 Mild No Yes Young 

Table 6.1 shows the data for five psychiatric ill patients. In this case it is 

supposed that the investigator has excluded negative matches on depression 

and hallucinations variables. The similarity between patients 1 and 2 is then 

calculated using the Gower's coefficient given by Equation 6 .1: 

8 1 2 = 

! _ 3 0 
40 

+ 1x0 + 1x0 + 0x1 + 1x0 

1 + 1 + 1 + 0 + 1 
= 0.0625; 

The similarity factor Sijk is appropriate for quantitative variables, but for 

categorical variables Gower assigns the value one when the two individuals 

have the same value {Hallucination), and zero otherwise {Anxiety level, 

Depression and Age group), which gives the same treatment to several pair 
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qualitative categories (Mild-Moderate and Mild-Severe). This criterion 

aggregates a certain degree of ambiguity to the measurement. 

In this research an improved version was implemented, where categorical 

variables such as Grade and Material Group were numerically transformed and, 

therefore, it was possible to apply the coefficient as suggested for quantitative 

variables. 

The calculation of the similarity between any two individuals is based on the 

sum of six (6) partial similarity components, corresponding to the six variables 

considered key in the analysis. For quantitative variables such as Nose Radius, 

Cutting Speed, Depth of Cut and Feed, the Gower's coefficient has been 

applied without alterations. The factor Weight {W^) in Equation 6.1 takes 

values 1 or 0, depending if the variable is considered in the analysis for the toh 

variable. 

In the case of the variable Grade, when both grades under comparison have the 

same value, their similarity is one (1). If one of them does not appear in Table 

5.3, their similarity is equal to zero (0). If both of them can be found, the 

conversion is based on the analysis of the workpiece material which each insert 

grade has the ability to machine, calculating the overlapping areas as explained 

in the previous Chapter. 

In the case of the variable Material Group, when two groups belong to the same 

super group {2 and 5, for example), a regression analysis taking into 

consideration some important mechanical properties of the constituent materials 

for each material group, was conducted, as explained in the previous Chapter. If 

both groups belong to different super groups (2 and 9, for example) their 

similarity is equal to zero (0). 

If one of the material groups is found in the database with a value equal to zero 

(0), a comparison using the field "material' is established. If both materials have 

the same value, the similarity is equal to one (1) and zero (0) otherwise. 

Once a similarity analysis for all pairs of individuals in the database was carried 

out, a similarity matrix was generated. 
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6.2.2.2 Dissimilarity 

Dissimilarity (distance) is the opposite concept to similarity. The lower the 

similarity between two individuals, the higher the level of their distance. 

Dissimilarity or distance measures (tfy) can be transformed into similarity 

measures (<5,y) or vice versa. Two main transformations have proved to be 

useful (Gordon, 1981): 

i) Sjj = c - dij, where c is a constant usually equal to one. 

ii) <5,y= 1/(1 +</</). 

Also, for binary data Gower (1966) suggested that the expression 

dij = ^2 (1 - 8 j j ) could be used to perform a good transformation. 

When a data set contains only quantitative variables, the Euclidean distance 

has been widely used, which belongs to the family of Minkowski's distances 

given by: ||x — y|| = 1 x, -yt \p , so, if the index p = 2, we obtain the Euclidean 

In this particular research, once the similarity matrix was obtained, the distance 

matrix necessary to apply a later clustering method was generated applying the 

expression given in ii): d ; y = [(1/<5/y) - 1]. 

Where 0 < <5,y < 1 and, d// = distance between the individuals /'and j. 

6.2.3 Clustering Method 

In relation to clustering methods, there are two dominant approaches based on 

Hierarchical and Objective Function-Based techniques. Hierarchical methods 

are best known and they have had a wider applicability. In this research only 

hierarchical methods will be considered, the reader interested in knowing more 

details about Objective Function-Based Optimisation techniques can find many 

applications consulting Bezdek (1981) and Cios et al. (1998). 

n 

distance given by: llx — Ĵ ll = JY,U, - y, I2 

=i 
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Six different hierarchical methods are summarised as follows: 

i) Single linkage method: It is also known as the nearest neighbour algorithm 

(Everitt, 1993). If C1 and C2 are two clusters under analysis, the similarity 

between them is calculated based on the minimal distance between the closest 

pair of patterns belonging to C1 and C2. If C1 and C2have been merged in a 

new cluster labelled N, the similarity SNT between N and a third cluster T is 

given by: 

SNT= Min (SCI-T, SC2-T)-

ii) Complete linkage method: This case is opposite to the Single linkage 

method in the sense that the basis for calculating the similarity SNT between 

clusters N (obtained by merging C1 and C2) and T, relies on the maximum 

distance between their patterns. 

SNr= Max (SCI-T, SC2-T)-

Hi) Average linkage method: Here the similarity SNT between clusters N and T 

is calculated based upon the average of the distances between their patterns 

(Ciosetal . , 1998), 

card(N)card(T) xzj^T 

iv) Centroid-based method: In this case the similarity SNT between clusters N 

(obtained by merging C1 and C2) and T is calculated based upon the mean 

values of the variables of C1 and C2 versus the values of the variables of T. 

v) Median-based method: This case is similar to the former centroid-based 

method but using the median instead the mean. The use of the median 

eliminates the disadvantage of the main-based methods when joining groups of 

very different sizes, where the centroid of a newly generated group will be close 

to that of the larger group and the influence of the smaller group can be diluted 

significantly. 

vi) Ward's method: Ward (1963) proposed a clustering procedure using the 

sum of squared errors to calculate the loss associated during each grouping 

process, joining those pairs of clusters whose fusion resulted in a minimum 
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increase of information loss. An interesting equation that applies this concept to 

calculate the dissimilarity dr<ci,c2) between clusters N (obtained by merging C1 

and C2) and a new cluster T, was later presented by Anderson (1966). This 

equation is given by the expression: 

n T + n a nT + n c 2 A nT 
dT{C\,C2) = dTC\ + ; "TC2 ; ; "C1C2* 

nT + n c l + nC2 nT + n c i + nC2 nT + «C1 + nC2 

Where, 

dij = distance between individuals / and /. 

n, = cardinality of cluster /'. 

A masterly summary of the former six clustering methods in terms of their 

parameter values has been made by Anderson (1987), which is shown in Table 

6.2. 

Table 6.2 - Clustering methods and their parameters 

Clustering Method «i P 

Single linkage 1 
2 

0 
l 

~2 

Complete linkage 1 
2 

0 
1 
2 

Average linkage 
VV/ + W y 

0 0 

Centroid-based 
W / 

- W / W y 

0 Centroid-based 
(w,- + W j ) 

0 

Median-based 1 
2 

1 
4 

0 

Ward's method 
w i + wk 

w+ w+ 
0 

The parameters shown in Table 6.2 are useful to calculate the dissimilarity 

between a cluster obtained by merging C, and Cj (G u Cj) and a new cluster Ck, 

applying an equation proposed by Lance and Williams (1966) given by: 

d(Cj uCj,Ck) = ccid(Ci, Q ) + ctjd(Cj, Ck) + j3d(Q X j ) + A U Q , Ck) - d(Cj, Ck) 

In this research, Simple, Complete, Average and Ward's clustering methods 

were implemented. For the sake of complementing the theoretical basis, a step-
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by-step development of a full clustering exercise applying these four methods, 

is presented in Appendix A. 

6.2.4 Stop Criteria 

One of the main bottlenecks in cluster analysis is the stop criterion (known also 

as cluster validation). It is necessary to define mechanisms to know when an 

optimum number of clusters have been got. The problem of deciding on the 

appropriate number of clusters for the data usually implies the definition of 

threshold values, measurements of association between elements of the same 

cluster (intracluster closeness) and establishment of independence criteria 

between clusters (intercluster separation). 

A H 
W 

A 

c 

B 

H 

Figure 6.1 - Visual recognition of a particular classification. 

Visualisation techniques are currently gaining popularity in identifying evidence 

that shows obvious or easy grouping decisions. Figure 6.1 displays a particular 

dendrogram presenting a long distance (d) before joining two groups, A and B, 

and a natural association between the elements within each group, which could 

be taken as a good indicator to leave groups A and B separated. 

In this research, two different stop criteria were implemented, i) Mojena's 

stopping rule and, ii) Threshold defined by users. 

i) Mojena's stopping rule. This procedure, proposed by Mojena (1977), is 

based upon the relative sizes of the different distance fusions. The idea is to 

stop the fusion process and therefore, select the number of groups already 

found, when the following condition is satisfied: 

Zi+1 > Z + kSz\ Where, 
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Z 0 , Z,,..., Zn-i are the fusion levels corresponding to stages with n, n-1, ...1 

clusters. 

Z = The mean of the Z values. 

Sz= The standard deviation of the Z values. 

k = constant. 

Values of k in the range 1.0 to 5.0 were used. The best performance was 

obtained for 4.0 < k < 4.5. For values of 1.0 < k < 4.0, too many groups were 

generated and, for 4.5 < k < 5.0, the number of groups was too small to provide 

reliable conclusions. 

The reader may note the fact that the good results fixing k in the range 4.0 to 

4.5, are from this particular study. Mojena suggests that values of k in the range 

2.75 to 3.50 give the best results. However, Milligan and Cooper (1985) got 

good results for values of k = 1.25. 

ii) Threshold defined by users. Here, the user specifies the number of 

clusters. After initial investigation, an interval between 15 and 50 clusters was 

considered suitable for selection. 

While the threshold is closest to 50, the classification is more restrictive, 

because the elements inside groups present a stronger similarity between them, 

which favours performing more accurate analyses. In contrast, fixing the 

number of clusters close to 15, it is possible to group more elements per cluster, 

which allows the establishment of more flexible criteria to match the parameters 

specified by users with those present in the data set. 

6.3 P O S T - P R O C E S S I N G S T A G E 

The main aims in the Post-Processing stage are firstly, to evaluate the quality of 

the classification previously obtained by applying clustering algorithms; 

secondly, implement procedures to recognise optimum clusters and finally, 

interpret and test the final results. These three phases are examined as follows. 

6.3.1 Performance Evaluation 

To measure the final results obtained through the application of particular 

clustering methods is not an easy task, specially when there is not a widely 

120 



accepted standard definition of the term "Quality" of the cluster, when the 

participation of users is key to assess the utility and interpretability of these final 

results, and further, when the clustering methods always produce a 

classification, even if this constitutes an inappropriate representation of the 

data. 

Everitt (1993) identifies the following three distinct types of comparisons: 

• The solutions to be compared arise from the use of different clustering 

methods on the same data set (this is the case to be analysed later in this 

section). 

• The solutions have been obtained from the same clustering method applied 

to different similarity or distances matrices arising from the raw data. 

• The different solutions have been obtained applying the same clustering 

method to the same proximity matrix derived from data sets taken from different 

sources. 

Some attempts have been made in the past to measure the quality of the 

clusters, assigning a certain numerical value to quantify in a certain manner the 

quality of the obtained final results, which in its turn, allow the comparison of the 

efficiency of different clustering methods implemented. Also, some parameters 

have been identified as fundamental to measure the term Quality of a cluster, 

which offer mathematical support to compare the solutions obtained through the 

application of different clustering methods. As already mentioned, the 

contribution of the users to validate the final results is relevant, and it constitutes 

an essential complement to the numerical analysis. 

Some authors (e.g. Williams, 1965) have considered the assessment of 

classification processes through the generation of hypotheses, which have to be 

tested on the basis of utilising new data, but this approach requires a high level 

of knowledge about the domain under study. 

A formal procedure for comparing classifications has been suggested by Rand 

(1971), which expression may be written as: 
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1 1 n 
Qk + 

R 
n 

Equation (6.2) 

Where: 

Tk =XX m y ~ n > 
i=li=l 

pk = 5 > t Qk = H m j _ / ? ; 

l'=l 

The term n is the total number of individuals to be clustered. The quantity m$ is 

the number of individuals in common between the Ah cluster of the first solution, 

and the yth cluster of the second. The terms m,. and m.y are appropriate marginal 

totals of the matrix of values. For a given number of clusters, k, the index Rk 

can be interpreted as the probability that two individuals are treated alike in both 

solutions. Rk lies in the interval (0,1) and takes its upper limit when there is 

complete agreement between the two classifications. 

In this research, a different procedure to measure the quality of a final 

classification was implemented. This method is based on the calculation of two 

important parameters called Intracluster Cohesion Index (ICI) and Intercluster 

Separation Level {ISL). The Intracluster Cohesion Index can be used to 

measure the cohesion within clusters, that is to say, it is an indicator of how 

closely grouped are the individuals that are part of the same cluster. On the 

other hand, the Intercluster Separation Level is a measure of how distant are 

the individuals of one cluster in respect of the individuals of a different cluster 

found for the same data set. 

The quality of a final classification based on numerical analyses, denoted Qc, 

applying a particular clustering method C, can be expressed in terms of ICI and 

ISL parameters, where the criteria to choose the best value of Qc are based on 

high intracluster cohesion and high intercluster separation levels. 

The following part of this section explains the method developed in this 

investigation to calculate the parameters ICI and ISL as well as the quality of 
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each classification obtained through the application of the four clustering 

methods implemented. 

6.3.1.1 Intracluster Cohesion Index (ICI) 

The method implemented to calculate the Intracluster Cohesion Index (ICI) is 

based on a relative distance criterion given by the expression: 

Equation (6.3) 

Where: 

s-l s 
Equation (6.4) 

i=l j=i+\ 

n-l n 
Equation (6.5) 

/=1 ;'={+! 

Being: 

D = The sum of all distances in a particular cluster. 

DT= The sum of all distances in a whole data set for the n individuals. 

djj= distance between the individuals / and / 

n = total number of individuals to be clustered. 

s = number of individuals in a particular cluster. 

k = number of clusters in the final classification. 

The parameter ICI lies in the interval (0,1), where a result closest to zero 

indicates a better cohesion within the cluster. To illustrate the application of this 

method let us suppose we have an initial data set of seven individuals and let 

us also suppose that two clusters, CI and C2, were obtained in a final 

classification, applying a clustering method A 

The relative distances and the resulting classification are shown in Figure 6.2. 

Applying Equation (6.4) Xhe following results are obtained: 

D1=dl3+ d l 5 +dl6+d35+ d36 + d56 = 2.10; 
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D2=d24 +d2j +d47 =1.42; 

And applying Equation (6.5), DT\s given by: 

D 7 " = X X^y =10.27; 

Then, applying Equation (6.3) the Intracluster Cohesion Index is obtained: 

2.10 + 1.42 / C / = = 0.34; 
10.27 

Relative Distances 

2 3 4 

1 

2 0.42 

3 0.50 0.77 

4 0.72 0.80 0.92 

5 0.40 0.35 0.30 0.25 

6 0.20 0.78 0.40 0.55 

v 7 

0.15 0.32 0.44 0.30 

Original Data Set 

1 2 3 4 5 6 7 

1 3 5 2 4 7 

Figure 6.2 - Dissimilarity matrix and basic test data set 

The value of the parameter ICI obtained according to the previous procedure 

can be used as a reference to compare different clustering methods applied to 

the same data set, in terms of internal cluster cohesion. That method whose ICI 

results closest to zero, will be the best in terms of intracluster cohesion. In 
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section 6.3.1.3 a method to calculate the quality of a final classification, which 

include the parameter ICI, is proposed. 

The main advantages of applying this method are: 

• The analysis considers the simultaneous effect of all the variables that 

describe the characteristics of each individual. 

• It is computationally easy to implement. 

• It is possible to compare the internal cohesion between two different 

clusters. Clusters highly cohesive are hoped to contain individuals sharing 

similar properties or common patterns, which constitutes encouraging results to 

the researcher. 

The presence of mixed variables (as categorical and quantitative) do not 

incorporate an additional complexity in the calculations, because all the 

distances have been previously obtained taking into consideration the 

conversion mechanisms explained in Chapter 5. 

However, some disadvantages have been identified: 

• The processing time to calculate the factor DTincreases considerably, as the 

number of individuals to be clustered is increased in a high proportion. For 

example, when the number of individuals n = 500, there are 124.750 distances 

to be added (n(n-1)/2), but when n = 10.000, the number of distances is equal 

to 49.995.000. 

• It is necessary to keep a register of the relative distances of all individuals to 

be clustered. 

6.3.1.2 Intercluster Separation Level (ISL) 

The method implemented to calculate the Intercluster Separation Level {ISL) 

takes into consideration the minimum and maximum distances between all the 

clusters in the final classification. Its expression is given by: 
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k-l k . k-l k . 

I S L = ^ j = i + ; r ; 
k{k-l) 

Equation (6.6) 

Where: 

atj = Smallest distance between clusters /'and/. 

Pij = Biggest distance between clusters / ' and / 

k = Number of clusters in the final classification. 

Relative Distances 

9 ^ 
8 

2 0.42 

0.77 

4 0.72 0.80 1.92 

5 0.40 0.35 0.30 

6 0.20 0.78 0.40 0.55 0.30 

7 0.15 0.44 0.30 0.75 0.65 

8 0.70 0.10 0.72 0.35 0.82 0.73 

0.20 0.34 0.75 0.68 0.73 0.53 0.60 

0.55 0.68 1.05 0.80 

C2 
10 CI 0.32 a. hi 12 

h2 = 2.80 
a. 12 

0.25 a 3 23 
ft 3 Hz ft3=1.98 

8 0.30 a 23 

13 ^23=1.88 

Figure 6.3 - Dissimilarity matrix and considered distances. 

To illustrate the application of this method let us suppose we have an initial data 

set of ten individuals, and let us also suppose that three clusters, C1, C2 and 

C3, were obtained in a final classification applying a clustering method A. 

The relative distances and the resulting classification are shown in Figure 6.3. 
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Applying Equation (6.6) the Intercluster Separation Level is given by, 

ISL = (0.32 + 2.80)+ (0.25 +1.98)+ (0.30 +1.88) 
3(3-1) 

= 1.26; 

In the next section, a method to calculate the quality of a final classification, 

which include the parameters /C/and ISL, is proposed. 

6.3.1.3 Quality of Final Classification (Qc) 

Once the parameters ICI and ISL have been calculated, as shown in the two 

previous sections, the quality of a final classification QC, given the application of 

a /cth clustering method, can be obtained through this expression: 

Where ICIC and ISLC are the Intracluster Cohesion Index and the Interclustering 

Separation Level respectively, corresponding to the cth clustering method 

implemented; mc is the ICI lowest value chosen between all the clustering 

methods implemented. Finally, Mc is the ISL highest value chosen between all 

the clustering methods implemented. 

The numerical constant 2 has been included in order to obtain a value of Qc 

lying in the interval (0,1). That clustering method whose value of Qc is closest to 

1, will be the best in terms of the intracluster proximity and intercluster 

separation distance criteria. 

To illustrate the procedure utilised to calculate Qc, let us assume that three 

different clustering methods have been applied to the same data set, and the 

parameters /C/and ISL have been calculated according to the equations (6.3) 

and (6.6) respectively. Figure 6.4 shows the quality of each final classification 

and the selection of the best clustering method, on the basis of hypothetical ICI 
and ISL values found. 

mc | ISLt 

Qc=~ 
ICIC Mc 

Equation (6.7) 
2 
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Clustering . ICIA = 0.45 

Method A ISLA = 4.00 — • QA = 
"0.20 4.00" 
.0.45 4.30. 

^ 2 = 0 . 6 8 7 

Clustering ^ /C/ 8 = 0.30 

MethodH ISLB=4.30 — • QB = 
"0.20 4.30" 
_0.30 4.30. 

jl=0.833 

Clustering ICIC = 0.20 

Method C < \ ISLC = 4.00 — • QQ = 
"0.20 4.00" 
_0.20 4.30. 

^ 2 = 0 . 9 6 5 

Figure 6.4 - Measuring the quality of the final clusters 

The best classification corresponds to the application of the clustering method 

C, with a quality Qc= 0.965. 

A further equation to calculate the quality Qc was considered. It is given by the 

expression: 

ICI 
Qc =1 . However, the results in some test cases did not reflect a 
^ c ISL 

substantial differentiation when comparing two methods having marked 

performance differences. 

6.3.2 Optimisation Phase 

In order to determine which cluster provides the most closely matching data, 

according to the user's requirements, an optimisation procedure would be 

carried out. Figure 6.5 shows how after a final data classification is obtained, 

according to the quality criterion proposed in the previous section, an 

optimisation phase would be applied to produce better clustering results. 

To carry out this optimisation phase, three different procedures were 

implemented, and are described as follows. 

(a) Similarity Index. Given a number of n clusters, a similarity index 

determines how closely certain parameters specified by the user match the 

same parameters in the clusters under consideration. The highest value of this 
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index identifies the best cluster, in terms of its closest matching with the 

specifications introduced by the user. 

Application of 
Clustering Methods 

1. Simple 
2. Complete 
3. Average 
4. Ward's 

Classifications obtained 
per clustering 

method applied 

1. Simple 

2. Complete 

3. Average 

4. Ward's 

{ I 

{ I 
{ I 

' Application of 
Quality criterion 
to select the best 

final classification 

3. Average 

J? Optimisation 
Phase 

Best cluster according to 
user's requirements 

Figure 6.5 - Optimisation phase after application of performance evaluation 

The idea is to calculate a similarity index per cluster, based on comparisons 

between each variable introduced by the user and the same variable in the 

cluster under consideration. This procedure is applied to all elements belonging 

to each cluster. The expression to calculate the similarity index (SI) per each 

cluster is given by: 

k ( 

; Where, 

k= number of elements in a cluster. 

t = number of variables considered, 1 = Material group, 2 = Grade, 3 = Nose 

radius. 

z = cluster under analysis, z = 1, .... n. 

sim(Valjj Uj)/t= similarity between the variable / corresponding to the element 

/' of the cluster under consideration, and the variable j introduced by the 

user. 
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(b) Partial Match Index. In this case the criterion to select the best cluster, is 

based on an approximation factor (AF) given by: 

A/r Where, 
PMZ 

FM = number of full matches found considering all the variables introduced by 

the user. 

PM = number of partial matches found, including those cases where at least 

one of the variables introduced by the user, matches the same variable in 

the cluster under analysis. 

z = cluster under analysis, z = 1 n. 

This method allows more flexibility to find result sets, when no exact matches 

are found between the information provided by users and the information 

contained in the clusters. 

(c) Full Match Index. In this case the criterion to select the best cluster is 

similar to the above case, but now the approximation factor {AF) only considers 

full matches between the variables selected by the user and the same variables 

in the cluster under analysis. 

AFZ =FMZ; 

This frequency-based criterion is more restrictive than the two previous 

methods, and would be used when the user is interested in precise information 

searches. 

6.3.3 Analysis of Results and Tests 

This last phase involves the interpretation of the results according to the domain 

of the applied problem. The usefulness of any clustering method is incomplete if 

the final data classification can not be appropriately interpreted. Moreover, a set 

of tests should be carried out to determine the scope and the validity of the 

obtained results. 

In order to facilitate the interpretation of clustering results, many researchers 

implement graphical representations, such as dendrograms and decision trees 

structures. Currently, because of the advantages of high power computer 
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graphics, data visualisation techniques seem to be very effective presentation 

and analysis tools. 

Visualisation tools take advantage of human perception as a method for 

analysis and data interpretation. What numbers can not show to users, suitable 

pictures often can. For instance, a linear trend in data might not be evident from 

a table of data. However, a scatterplot which shows a series of points lined up 

on a straight line, provides clearer insight into data relations. 

In this research, graphical methods were used to support the interpretation of 

the clustering results. These methods, as well as a complete testing structure, 

are presented in chapter 8. 

6.4 S U M M A R Y 

A formal clustering methodology was introduced in the previous Chapter, and a 

first Pre-processing stage was examined. In this Chapter, the remaining two 

main stages of the whole methodology, based on Processing and Post

processing functions, have been explored. Based upon this methodology, not 

only has a formal cluster analysis been presented, but its implementation has 

supported the development of Kluster, a clustering-based data mining tool that 

will be described in the next chapter. 

The Processing stage presented here incorporates two important contributions, 

namely, unsupervised and supervised learning modes and the generation of a 

dissimilarity matrix from the analysis of qualitative variables. Also, two original 

contributions have been incorporated in the Post-processing stage. Specifically, 

consistent indicators to measure the quality of the final classification and 

application of optimisation methods to the final data groups obtained. 

Four different hierarchical clustering methods were applied, Simple, Complete, 

Average and Ward's linkages. In this context, the Average linkage was the 

optimum method in terms of a Quality (Qc) parameter obtained according to the 

calculation of two important factors, the Intracluster Cohesion Index (ICI) and 

Intercluster Separation Level (ISL). 
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In the next chapter, DISKOVER, an integrated KDD-based system developed 

under a distributed philosophy and which incorporates clustering, fuzzy-

clustering and SQL-based techniques, is examined. 
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CHAPTER 7 

KNOWLEDGE DISCOVERY APPLICATIONS 

7.1 INTRODUCTION 

In the previous two chapters the fundamental issues of Cluster Analysis have 

been examined. It has been shown how clustering constitutes one of the most 

important techniques currently applied for knowledge discovery purposes. 

Furthermore, a formal clustering methodology was proposed, showing 

significant improvements over traditional procedures, which do not explicitly 

consider, for example, quality measurements and optimisation methods applied 

to the final data classification obtained. 

Here, DISKOVER, a KDD-oriented system developed by the author and 

another colleague for analysing tooling data will be described. This system 

integrates clustering, fuzzy-clustering, rough sets programs and SQL-based 

exploratory data analysis methods, under a unified Internet-based architecture 

and graphical interface. 

7.2 MOTIVATION FOR APPLYING KDD T E C H N O L O G Y TO 

T H E TOOLING INDUSTRY 

Tooling data is continuously generated using the machining centres of 

manufacturing companies. To improve operational methods, explore new 

machining procedures and establish tool selection criteria, different tests are 

regularly conducted. This information is usually registered manually and later 

stored in tooling databases. 

The manual analysis of this information presents several problems: 

i) The reports are analysed in an isolated way, without establishing useful 

relationships among them. 
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ii) As the amount of data increases, it is difficult to manually discover common 

patterns, deviations or significant regularities useful to the analyst. 

iii) It is not easy to know if another tooling engineer has previously carried out 

tool trials. Hence, the execution of some trials could be redundant. 

iv) It is not easy to obtain information from a set of previously performed tests, 

when the user is interested only in a few relevant parameters. 

In order to address the above situations, a system called DISKOVER has been 

developed by the author and another colleague. 

7.3 DISKOVER, AN INTEGRATED KDD-ORIENTED S Y S T E M 

From the discussion in chapter 4, it should be clear that there is no universally 

best KDD-oriented system across all application domains. An approach to 

increasing the robustness of KDD-oriented applications is to use an integrated 

architecture, applying different kinds of algorithms and/or hybrid algorithms to a 

given data set, to maximise the efficacy of the discovery process. Examples of 

these hybrid architectures can be found in (Brachman and Anand, 1994). 

Therefore, current developments in the area of KDD technology must be able to 

provide flexible schemes, at the initial stage of the problem, allowing the 

incorporation of complementary and multidisciplinary solutions. 

DISKOVER is a context-oriented KDD-based system that has been developed 

considering the implementation of multiple data mining techniques. In contrast 

to the two Internet-based systems described in chapter 3, which were built 

using Java-applets, DISKOVER is also an Internet-based system, but built 

using a Java-application. 

One of the main advantages of using Java-applications is that they do not need 

to be embedded in HTML files, and, consequently, downloaded through 

conventional browsers, which is a distinguishing characteristic of Java-applets. 

DISKOVER integrates five main modules: 
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• Kluster6, a clustering application. 

• Q-Fasf, an SQL-based Exploratory Data Analysis (EDA) application. 

• Fuzzy-K7, an application combining fuzzy sets with clustering analysis. 

• MQG8, a multiple query generator application. 

« R-Set8, a rough sets-based application. 

The first three modules are described as follows. A summary of the last two 

modules is given at the end of this section. 

As indicated of the five modules two have been developed entirely by the 

author. Of the remaining three one was developed jointly by the author and 

another research student in the group at Durham. The further two modules are 

the sole work of the other PhD. student. 

7.3.1 KLUSTER, a Clustering Application 

Kluster is an application developed according to the clustering methodology 

explained in chapters 5 and 6. This section presents its functionality and in the 

next chapter results are discussed. Figure 7.1 displays a first input screen. 

After due consideration it was decided to allow users to introduce information 

about four tooling parameters: Material, Material Group, Grade and Nose 

Radius. The analysis of cutting condition parameters and relationships between 

grades and material workpiece was considered as of major concern, mainly due 

to their impact on tool selection criteria. 

After submitting the input parameters, the user is required to fill five options, in 

order to define the conditions under which the system will be run. These options 

are shown in Figure 7.2 and explained as follows. 

6 Author's contribution 
7 Joint contribution 
8 Colleague's contribution 
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Figure 7.1 - Input screen for Kluster. 
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Figure 7.2 - Setting the run environment of Kluster. 
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7.3.1.1 Application 

This option focuses on the analysis and grouping of cutting data variables, 

specifically, cutting speed, feed rate and depth of cut values, while identifying 

the values of alternative parameters considered during the execution of the 

tooling trials, such as material workpiece, insert grade and nose radius. 

Tool life constitutes an alternative option proposed to support tool life prediction 

and cutting data optimisation. Its development is left as a future implementation. 

The decision to include this module will depend on the companies' specific 

considerations and the incorporation of new data, as tool life coefficients. 

7.3.1.2 Stopping Method 

Two options are considered. The Mojena's stopping rule, based upon the 

relative sizes of the different distance fusions, and an empirical and flexible 

approach based on a numerical threshold defined by users. 

In relation to Mojena's criterion, the best performance was found for values of 

constant k in the range 4.0 to 4.5, as explained in chapter 6. By default, the 

system fixes 30 clusters as the stopping rule. This value has been established 

after conducting experiments for several threshold values, which are discussed 

in the next chapter. 

7.3.1.3 Learning Modes 

This option allows the participation of users to guide the classification process. 

In the case of unsupervised mode, the system runs without assigning prefixed 

weights to tooling parameters. When supervised mode is activated, the user is 

allowed to introduce the relative importance of certain tooling parameters, which 

affect the calculation of similarity values, and hence, the final classification 

obtained. 

7.3.1.4 Cluster Method 

Kluster \s based in the application of four hierarchical clustering methods known 

as Simple, Complete, Average and Ward's. The system is able to run applying 

any of these methods separately. Also, the system provides the option 
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Optimised, which allows running the four clustering methods and selecting the 

optimum method in relation to a quality criterion based on a performance 

evaluation analysis already explained in chapter 6. 

A comparative analysis of the performance of the four clustering methods is 

carried out in the next chapter. 

7.3.1.5 Approximation Method 

After a particular clustering method is applied, a finite number of clusters are 

generated. An optimisation phase follows, to choose the best cluster 

considering the importance (weight) given by users to certain tooling 

parameters. The system provides three different methods to carry out this 

analysis, namely, similarity index, partial match index and full match index. An 

explanation of these methods is given in chapter 6 (optimisation phase). 

By default this option is disabled and only when the user selects a supervised 

learning mode, the option is enabled. Figure 7.3 illustrates a typical output once 

the partial match index optimisation option is selected. 

In all cases, the cluster method applied, as well as the stopping rule and 

performance evaluation parameters are shown. 

7.3.2 A Fuzzy-Clustering Application 

Most of the techniques found in the literature in fuzzy-clustering are based on 

objective function-based methods (Huang & Ng, 1999) and (El-Sonbaty & 

Ismail, 1998). However, attempts to exploit the advantages of hierarchical 

clustering while maintaining fuzzy clustering rules, have recently been 

undertaken (Geva, 1999). 

The /c-means [(Ball and Hall, 1967), (MacQueen, 1967)] as well as c-means 

(Bezdek, 1973) algorithms are well known for their efficiency in clustering large 

data sets. Fuzzy versions of the /c-means algorithm (fuzzy /c-means) have been 

reported in (Ruspini, 1969) and later in (Bezdek, 1980). Likewise, Fuzzy 

versions of the c-means algorithm (fuzzy c-means) have been reported in 

(Gustafson and Kessel, 1979) and (Bezdek, 1981). 
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Figure 7.3 - Typical output screen after running the optimisation phase. 

In this work, a fuzzy-clustering application named Fuzzy-K was developed. It 

has the advantages of hierarchical clustering, while applying fuzzy membership 

functions to support the generation of similarity measures. In this particular 

context, the implementation of fuzzy membership functions helps to optimise 

the grouping of categorical data containing missing or imprecise values. 

The main approaches to deal with missing values fall into the following 

categories (Liu et ai, 1997): 

a) Data having missing values are deleted from the data set, or, if missing 

values occur in some attributes very often, these attributes are deleted from the 

entire data set. 

b) Missing values are imputed iteratively during the execution of the fuzzy 

clustering algorithm. 

c) To choose a method in the data analysis process that tolerates missing 

values. 
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Currently the most common way to deal with missing values in fuzzy cluster 

analysis is data pre-processing. Data with missing values is deleted, 

corresponding attributes are removed, or these missing values are imputed, 

before or during the execution of a fuzzy clustering algorithm. The consequence 

is that we have to choose between two unsatisfactory solutions. If a data set 

contains a high percentage of missing values, it is not possible to impute these 

missing values with a high reliability. If data with missing values are removed 

from the data sets, the classification we obtain becomes less reliable the higher 

the percentage of data having missing values (Timm and Kruse, 1998). 

Another simple and quick method of dealing with missing data is completing the 

missing values using the arithmetic mean of the existing field values (Howard 

and Rayward-Smith, 1999). This approach is favoured when the data analysed 

have been taken over a long period of time (meteorological data, for example). 

In this case, the values obtained using the arithmetic mean are expected to be 

relatively reliable. A clear disadvantage of this method is its difficulty in dealing 

with categorical data. 

To overcome the problem of missing data, this work focuses on the third 

category (c)) already indicated. In this context, Material and Grade were two 

attributes identified as requiring particular attention in relation to missing or 

invalid values. Other attributes presenting imprecise values were identified, 

such as Machine Condition (having values such as good, average and poor) 

and Reasons for Ending Test (having values as insufficient power), but these 

parameters were considered of low relevance to be included in the analysis. 

The selection of a suitable membership function has a critical impact on the 

whole process of assigning elements to groups or categories. Klir and Folger 

(1988) affirm that the usefulness of a fuzzy set for modelling a conceptual class 

or a linguistic label depends on the appropriateness of its membership function. 

Therefore, the practical determination of an accurate and justifiable function for 

any particular situation is of major concern. The methods proposed for 

accomplishing this have been largely empirical and usually involve the design of 

experiments on a test population to measure subjective perceptions of 

membership degrees for some particular conceptual class. 

140 



Although they can take similar values, fuzzy membership grades are not 

probabilities. For example, the summation of probabilities on a finite universal 

set must be equal to 1, whilst this is not necessarily true for membership 

grades. 

Figure 7.4.a shows a membership function for the fuzzy set of real numbers 

close to zero. It is possible to generalise this function in a family of functions 

representing the set of real numbers close to any given number a as follows 

(Klirand Folger, 1988): 

1 

iM*) = T 
l + l O U - a ) 2 

IxAx) = T \ 
A l + lOx 2 

b) uA(x) 
1.00 

0.75 

0.25 

• 
2.5 

H / \ \/ 
Small i V 

Medium V Large 

• JO \ , A — \ 1 1— — • 
0 1 2 3 4 5 6 7 8 9 10 x 

w m n z 

Figure 7.4 - Examples of Gaussian and Trapezoidal membership functions. 

Another choice for a fuzzy membership function is a linear trapezoidal function 

(Welstead, 1994). Figure 7.4.b displays some examples for the fuzzy sets 

Small, Medium and Large. The membership function for the fuzzy set Medium is 

given by: 

Real numbers close to zero 

> 

'j - > 

—* OJ 
4 .00 4 . 0 0 2 .00 0 .00 2 .00 

real numbers 
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r o If X < w 

x-w If x € [w, m] 
m — w 

VAW=< 1 If x e [m, n] 

z-x If x € [n, z] 

V 0 If x > z 

The membership functions for fuzzy sets Small and Large can be derived as 

particular cases of the former expression. 

In Figure 7.4.b the point 2.5 is a member of SmallXo degree 0.75 and a member 

of Medium to degree 0.25. Likewise, the point 5 is a member of Medium to 

degree 1 and a member of Large to degree 0. 

Fuzzy sets concepts have already been introduced in chapter 4, therefore, the 

rest of this section will focus mainly on their applicability in this context, rather 

than on additional theoretical considerations. 

Instead of the procedures adopted by Kluster and explained in the previous 

chapter, two aspects have been optimised in this research by implementing 

fuzzy membership functions to calculate new similarity values: 

• With the previous method, the calculation of the similarity between two 

materials representing the same group (2 versus 2, for example) was smaller 

than one (1), and not exactly one, as would be expected from this comparison. 

The equation implemented to calculate the partial similarity between two 

materials belonging to the super group 1 is shown below. 

S j j k =-0.0226x 2 - 8 E - 1 6 * + 0.8832; If these materials have the same value, the 

value of the variable x in the above equation is equal to zero (0) and therefore, 

the partial similarity for the parameter "material group" will be equal to 0.8832, 

and not one (1), as expected in this case. 

With the incorporation of fuzzy membership functions, it will always be assigned 

a membership degree equal to one (1), if two elements have the same values. 
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• The partial similarity component obtained for two materials having the 

same numerical difference interval, was the same. For example, when 

comparing material groups 1 and 4, 3 and 6, or 4 and 7, their interval difference 

is the same (3). Hence, this value is assigned to the variable x in the similarity 

equation, producing a partial similarity component equally, for all of the three 

cases mentioned. 

In contrast, applying fuzzy membership functions, the partial similarity 

components for the three above instances were obtained considering a direct 

influence of the mechanical properties belonging to the material groups 

analysed and, hence, they do not necessarily converge to the same value. 

The procedure of obtaining new partial similarity components for the variable 

Material Group, applying fuzzy membership functions, follows. 

7.3.2.1 Analysis of Materials to obtain numerical similarity values 

The procedure to calculate new similarity values is described as follows. 

i) Based upon the information of four mechanical properties for steel 

material groups, shown in Table 5.5, Chapter 5, a similarity analysis considering 

the degree material groups are related to each other, was undertaken. Table 

7.1 shows the mean values corresponding to these properties. 

Table 7.1 - Mechanical properties for Steel Material Group. 

Tensile 
Strength (MPa) 

Yield Strength 
(MPa) 

Izod Impact 
Strength (J) 

Hardness (HB) 

Material-Group 1 452 280 23 142 
Material Group 2 519 325 22 162 
Material Group 3 631 349 30 183 
Material Group 4 646 403 31 209 
Material Group 5 732 428 30 237 
Material Group 6 898 496 35 242 
Material Group 7 928 545 38 272 

ii) For each material group, a fuzzy set was defined. A Membership function 

was then formulated to determine the membership grades of each fuzzy set. 

The membership function (discrete values) is given by the expression: 
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fXA = Membership function by which a fuzzy set A is defined. 

A= {MG1, MG2, ...MG7}, MG = Material Group. 

TSj,TSi = Tensile Strength values corresponding to the jth and /th materials 

under comparison. 

YSj,YSi = Yield Strength values corresponding to the yth and Ah materials 

under comparison. 
IISj, IISi = Izod Impact Strength values corresponding to the yth and /th 

materials under comparison. 

Hj,Hi= Hardness values corresponding to the yth and /th materials under 

comparison. 

iii) Based on the membership grades found for each fuzzy set, a similarity 

matrix for comparing material groups was obtained. The fuzzy sets and their 

membership grades are shown as follows. 

MG 1 = [ 1.00, 0.90, 0.73, 0.58, 0.49, 0.31, 0.13 ]; 

MG 2 = [ 0.90, 1.00, 0.84, 0.71, 0.63, 0.47, 0.31 ]; 

MG 3 = [ 0.73, 0.84, 1.00, 0.88, 0.81, 0.67, 0.53 ]; 

MG 4 = [ 0.58, 0.71, 0.88, 1.00, 0.94, 0.81, 0.69 ]; 

MG 5 = [ 0.49, 0.63, 0.81, 0.94, 1.00, 0.87, 0.76 ]; 

MG 6 = [ 0.31, 0.47, 0.67, 0.81, 0.87, 1.00, 0.90 ]; 

MG 7 = [ 0.13, 0.31, 0.53, 0.69, 0.76, 0.90, 1.00 ]; 

For example, the value 0.73 corresponding to the fuzzy set MG 1, indicates that 

this set (material group 1) has a membership grade of 0.73 with regard to 

material group 3. A graphical representation of the seven fuzzy sets is shown in 

Figure 7.5. 
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Figure 7.5 - Membership grades for Material Groups 

It should be noted how two material groups (1 and 7, for example) within the 

same super group (Steel) have notable differences as indicated by their 

membership degree (0.13). Likewise, the reason why two material groups under 

comparison have a higher similarity since these materials belong to closer 

groups, is because the membership function was defined considering their 

mechanical properties. 

7.3.2.2 Analysis of Grades to obtain numerical similarity values 

The procedure to calculate similarity values described in chapter 5 was based 

on the analysis of the workpiece materials, which each insert grade has the 

ability to machine, according to three main groups of, toughness/hardness 

indicators (P, M, K). In this case similarity between two grades could take 

different values depending on the particular material groups considered. 

Here, the definition of new similarity values is also dependent on the 

toughness/hardness indicators, but, a unique similarity relationship for all the 

twenty one grades analysed was established. Table 7.2 shows the fuzzy sets 

defined for TX150 and TP grades family. 

The values in Table 7.2 were obtained applying the same rules given in chapter 

5 and derived from the analysis of all possible overlapping cases shown in 

Figure 5.5. In this case, the calculation of similarity values is obtained by 
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calculating the average of the resulting similarity partial values derived for the 

three material properties identified as P, /Wand K(Table 5.3). 

Table 7.2 - Similarity generated for TX150 and TP grades family. 

TP10 TP20 TP30 TP05 TP100 TP15 TP200 TP25 TP300 TP35 TP40 TX150 

TP10 1.00 0.33 0.00 0.73 0.83 0.67 0.33 0.40 0.00 0.00 0.00 0.81 

TP20 0.33 1.00 0.68 0.00 0.47 0.62 0.85 0.88 0.39 0.29 0.00 0.67 

TP30 0.00 0.68 1.00 0.00 0.19 0.46 0.82 0.74 0.66 0.60 0.29 0.29 

TP05 0.73 0.00 0.00 1.00 0.62 0.35 0.05 0.22 0.00 0.00 0.00 0.61 

TP100 0.83 0.47 0.19 0.62 1.00 0.79 0.48 0.54 0.00 0.00 0.00 0.90 

TP15 0.67 0.62 0.46 0.35 0.79 1.00 0.65 0.73 0.42 0.21 0.00 0.81 

TP200 0.33 0.85 0.82 0.05 0.48 0.65 1.00 0.88 0.63 0.61 0.33 0.68 

TP25 0.40 0.88 0.74 0.22 0.54 0.73 0.88 1.00 0.44 0.36 0.17 0.72 

TP300 0.00 0.39 0.66 0.00 0.00 0.42 0.63 0.44 1.00 0.87 0.76 0.00 

TP35 0.00 0.29 0.60 0.00 0.00 0.21 0.61 0.36 0.87 1.00 0.69 0.00 

TP40 0.00 0.00 0.29 0.00 0.00 0.00 0.33 0.17 0.76 0.69 1.00 0.00 

TX150 0.81 0.67 0.29 0.61 0.90 0.81 0.68 0.72 0.00 0.00 0.00 1.00 

For example, the procedure to obtain the value of 0.65, corresponding to the 

similarity between grades TP200 and TP15 is presented as follows. 

i) The first step is the identification of the overlapping areas between both 

grades under comparison. Figure 7.6 illustrates this situation. 

Grades (GI) 
Toughness/Hardness Indicators 

Grades (GI) 
P M K 

1 8 ^ ^ ^ ^ 4 5 1 ( ^ ^ ^ ^ 4 20 40 
G i l =TP200 

_ |_ l 
L 

1 
j 1 1 

^ ^ ^ ^ ^ ^ 
1 1 
1 

GI2 = TP15 
15 30 11 30 15 30 

Figure 7.6 - Overlapping areas between grades TP200 and TP15. 

ii) The selection of the appropriate similarity equation, for each of the three 

overlapping areas shown in Figure 7.6, follows. It is clearly evident how the 

three overlapping areas correspond to the case 3, as explained in chapter 5. 
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Therefore, the expression used to calculate the similarity for each indicator (P, 

M, K) is given by: 

f ( GI2.V max- GIl.V min W G I 2 . V max- GI1.V min ^ 
+ 

sijk =• 
GI2.V mux-GIl.V min GIl.V max-G/LV min 

Similarity for P indicator: 

f f 3 0 - 1 8 ^ f 3 0 - 1 8 ^ + 
sijk =• 

30-15 45-18 11-= 0.6222; 

Similarity for M indicator: 

/Y30-16 
30-11 

sijk =• 

30-16 
34-16 11-= 0.7572; 

Similarity for K indicator: 

/Y30-20 > | r 3 0 - 2 0 A A 

sijk = 1 
30-15 40-20 

LL- 0.5833; 

Hi) Finally, the average of the above three partial results will provide the 

similarity between the grades under comparison: 

0.6222 + 0.7572 + 0.5833 
= = 0 - 6 5 

sijk =The similarity component between the individuals / and j corresponding to 

the variable k (grade in this case) under analysis. 

GI1.GI2 = Grades of individuals 1 and 2 respectively. 

Vmax, Vmin = maximum and minimum values of grade applications for a 

particular individual respectively, taken from Table 5.3. 
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Another interesting case shown in Table 7.2, is given between grades TP300 

and TX150 (similarity = 0), which can be rapidly corroborated observing how 

there are not overlapping areas between them, as indicated in Figure 5.4. 

7.3.3 Q-FAST, an Exploratory Data Analysis (EDA) Application 

Taking into consideration that DISKOVER is going to operate under an Internet 

environment, which is a platform characterised by a relatively slow access 

(especially when database operations are considered), Q-Fast, an Exploratory 

Data Analysis (EDA) application has been developed. 

Q-Fast is an SQL-based application allowing a fast and exhaustive exploration 

of the tooling database for turning and milling operations. Four input options 

were considered, as shown in Figure 7.7. These options are explained as 

follows. 

; Exploratory Data Analisys 

y q\ 531 
cioss 

Exploratory Data Analysis — 
To apply Pre-Oehned Search methods to explore 
Database, according to query-based requests 

speortc iyp 

Mateiias 

Information Retrieval — 

lummy 

(•External 

<~ Facing 
: C Inletnal 

Operation 
(i Turning 

Figure 7.7 - Input screen for Specific Type of Operation (Turning). 

7.3.3.1 Specific Type of Operation 

This option provides details about five parameters, as displayed in Figure 7.8. In 

the case of milling operations, this module offers the following options: Face 
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Milling, Slot End, Copy Milling, Square Shoulder, Disc Milling, Chamfering and 

Profiling. 

i Exploratoiy Data Analisys 

File View Run Help 

r ExplofatufyData Analysis 
To apply Pre-Defined f» Turnmc 

tsuinu 

[Xl2MM5 J l1»3-06-17 | Increase in tool He 

A.122 1993-10-14 Increase too! Itfe Albon Engineering 

A.122 1993-10-14 Increase tool life Albon Engineering 4 

A.123 1994-01-25 Increase in tool life and productivity Albon Engineering 4 

A.125(1) 1934-11-01 Max production with economic tool life ABB Vetco 6lay 0 

A.125[1]-2 1994-11-01 Max production with economic tool life ABB Vetco Gray 0 

A.125(1)-3 1994-11-01 Max production with economic tool life ABB Vetco Gray 0 

A.125(1)4 1994-11-01 Max. production with economic tool life ABB Vetco Gray o 
A.125(2) 1994-11 01 Maximum production with economic tool life ABB Vetco Gray 0 

8.202/1 1994-04-12 To increase Tool Life British Airways 0 

Matches Found 1 ̂ feffî  " 
Full 

Report I 

Figure 7.8 - Typical output for Specific Type of Operation (Turning) 

Also, as shown in the bottom-right corner of Figure 7.8, Q-Fast provides access 

to the entire parameters of a particular report, through the option "Full Report". 

7.3.3.2 Test Objectives 

This option implements a search engine by key words, allowing the user to 

retrieve information about tooling parameters, according to the objectives of the 

tooling trials. Figure 7.9 shows a typical input screen where the interest of the 

user is centred on information about Cost Savings. Figure 7.10 displays the 

results of this request. 

This application carries out a flexible syntactic analysis, allowing the submission 

of non pre-labelled data, incomplete phrases, unrestricted blank spaces, 

combined small and capital letters, etc. 
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Figure 7.9 - Input screen for Test Objectives option (Turning). 
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Figure 7.10 - output screen for Test Objectives (Turning). 

The output screen shown in Figure 7.10 is able to provide information about 

eight parameters, namely, Test Objectives, Report #, Test Date, Company, % 
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Tool Life Improvement, % Tool Cost Savings, % Productivity Improvement and 

% Cost Reduction. 

7.3.3.3 Materials 

Due to the importance of the variable Materials, it was decided to include a third 

option allowing a fast exploration of the tooling database in relation to this 

parameter. Fifteen material groups were considered and seven output 

parameters are provided, namely, Report #, Test Date, Material Name, Seco 

Group #, Component and Part Number. 

7.3.3.4 Benefits 

Finally, the option Benefits provides information about improvements when 

executing trials using Seco tools versus those coming from different suppliers. 

The information is based on four aspects, namely, Tool Life, Tool Cost Savings, 

Productivity Improvements and Cost Reduction per Component. 

7.3.4 MQG, a Multiple Query Generator Application 

MQG is an SQL-based application developed 9 to provide cross-information 

retrieval in relation to turning and milling operations. The user is able to fix input 

conditions chosen among 30 tooling parameters, weigh the importance of these 

parameters and select output variables of his/her interest among 32 possible 

tooling attributes. 

7.3.5 R-Set, a Rough Sets-based Application 

R-Set is a rough sets-based application developed 9 to identify data 

inconsistency and provide ways to analyse the influence of tooling parameters 

(condition variables), on pre-fixed output attributes (decision variables). 

7.4 S U M M A R Y 

In this chapter, the motivation for applying KDD technology to the tooling 

industry was analysed. Data increase, isolated analyses and lack of strategies 

9 Developed by another reseaich student in the group at Durham. 
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to carry out automated search of patterns were identified as factors of main 

concern. 

The development of DISKOVER, a system that integrates multiple data mining 

techniques, demonstrated the significant potential of combining complementary 

applications to implement knowledge discovery solutions. Kluster, Fuzzy-K and 

Q-Fast constitute applications based in clustering, fuzzy-clustering and SQL 

methods, which were implemented to analyse tooling data. 

Six tooling parameters were considered as relevant during the pattern search 

processes, namely, Workpiece Material, Insert Grade, Nose Radius, Cutting 

Speed, Feed Rate and Depth of Cut. 

As DISKOVER accesses the tooling database through the Internet, which is a 

relatively slow access platform, exploratory data applications were 

implemented, to satisfy faster information retrieval operations. 

In the next chapter, a discussion of results and structured tests in relation to all 

the systems developed in this research, are presented. 
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CHAPTER 8 

TESTING THE SYSTEMS AND ANALYSIS OF RESULTS 

8.1 INTRODUCTION 

The previous chapter examined the functionality of Kluster, Q-fast and Fuzzy-K, 

three data mining applications, which are part of an integrated knowledge 

discovery system, called DISKOVER. This chapter presents a structured set of 

tests, applied on TTS, SELTOOL and DISKOVER, the three Internet-based 

systems developed during this research by the author and his colleagues. 

In the case of SELTOOL, a complete performance evaluation including a case-

study and an analysis of the completeness of the database was conducted. 

Connectivity and remote downloading considerations are the topics to be tested 

for TTS. 

In relation to DISKOVER, Kluster and Fuzzy-K are the two modules to be 

considered. The criteria to choose the appropriate kind of tests are based on 

the establishment of meaningful relationships between relevant-context 

variables, and on functionality aspects of the modules. These relationships 

involve the analysis of cutting parameters specified by users, under certain 

input conditions, such as Material Workpiece, Grade and Nose Radius. 

Functionality features include the stopping rule of the algorithms and a 

performance comparison of the clustering methods implemented. 

8.1 REASONS TO DESIGN AND APPLY A SET OF TESTS 

After finishing the development phase, it is important to apply functional tests to 

any computational system. These tests will demonstrate that any weaknesses, 

which occurred in the design phase can be detected, leading to respective 

modifications, to correct unsuitable situations before delivering the system to its 

final operational environment. 

153 



Some important aspects to be considered in a test phase include: 

• The robustness of the user-interface, particularly when the system has to 

support moderate or intense user interactions. 

• The reliability of the answers given by the system. This analysis involves 

verifying the answers provided by the system against different knowledge 

sources, such as experts in the respective domain, technical catalogues and 

successful, similar systems. 

• The completeness of the database to satisfy user information requirements. 

• The operational spectrum of the system. This involves the introduction of 

different input combinations to check specified output values. 

• The connectivity and remote access efficiency, particularly when networked 

or distributed solutions are implemented. 

The next three sections present all the tests conducted and results obtained. 

8.2 TESTS A N D RESULTS FOR SELTOOL 

As explained in chapter 3, SELTOOL is an Internet-based system developed 

adopting a free-access philosophy, where world-wide Seco customers would 

remotely access tooling information in the field of tool selection. In order to 

evaluate its functionality and identify the completeness of the database to 

satisfy user-requests, a testing phase was conducted. 

8.2.1 A Case-Study 

The first stage of the test phase was the creation of case-studies to validate the 

results provided by the system against existing information in catalogues. To 

demonstrate the functionality of SELTOOL, one of these cases will be 

discussed. 

Let us assume that the material of the workpiece to be machined is a "Difficult 

tool steel', the type of operation is "External Turning" and the type of cutting 

"medium roughing". It is also known that the shape of the workpiece is profiling 

with a "maximum profiling OUT angle = 75°" and a "maximum profile IN angle = 

28°". The initial step is to introduce these input values to the system. 
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3 http://eng9026/lain/luis/SelecColoi;'index.hlml - Microsoft Internet Explorer 

TURNING 
OPERATIONS 

Operation Workpiece Material 

{Turning External 

Workpiece shape 

HJ | Difficult tool steels 

Type of Cutting 

O Unknown <? Profiling C Longitudinal C 1 Facing 

f i t 

Maximum Profile Angles of the Workpiece 

O U T 

Profile angle 90 
<?. Angle |75 
O Unknown 

90 

r r 

IN 
Profile angle 

B P 
4 S «_ **> 

50 
<• Angle 
0 Unknown 

Figure 8.1 - Input values for a selected case-study. 

Figure 8.1 shows the input values and the corresponding results are displayed 

in Figure 8.2. The system creates two lists of suitable inserts, the "first choice" 

and the "second choice" inserts respectively. "First choice" inserts correspond to 

the usually recommended solution by the tool manufacturer, whilst the "second 

choice" list includes several other alternative inserts. Four "first choice" Inserts 

were obtained. The specification of the insert code and suitable cutting data 

range for these inserts are shown in the top-right part of the output screen. 

When any insert is selected from the Inserts list (Figure 8.2, top-left) the suitable 

toolholders list for the specified insert is shown (Figure 8.2, Bottom-left). For the 

first insert chosen, there are six possible toolholders with different types of hand 

(left and right) and sizes in the Shank Height and Width fields. If only left hand 

toolholders are needed, the option "Left H." can be activated and just left hand 

toolholders will be displyed in the list. In the same way, the second choice 

Inserts list is shown when the "second choice" option is activated. The second 

choice inserts are those that can be considered as alternative options but 

without providing the best performance as the first choice inserts. The second 

option is very important when first choice results cannot be obtained. In the 

case-study presented, five inserts were found as second choice. 
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3 htlp://eng9026/lam/luis/SelecColor/index.html - Microsoft Internet Explorer B B S 
I N S E R T S 

^StjcDoict; [2nd choice I 
DNM6110404 

2. ) DNMG110408 
3. ) DNMG150B04 
4. ) DNMG150608 

Shape 

Clearance Angle 

Cutting Edge r 
Length (nun)I 

Radius 
(mm) Bi- J (mm) 

Grade (TO100_ CJupbieaker |M3 

Thickness. 
04 

Tolerance |M Ordering No. [74037148 

Type 
(mm/rev) * — - — 

Cutting Speed range (m/min) pEq~WoJ 

TOOLHOLDERS 
i Right h. Locking . . Hand , 

System IS22LJ of Tool M L 
PDJNR161BH11 

2. ) PDJNR2020K11 
3 -J PDJNR2525M11 
4. ) PDJNL161GH11 
5. J PDJNL2020K11 
G -J PDJNL2525M11 

Shank • , S I U U I H 1 . looijuengin 
Height (mm) liL. J Width (mm) IM_J (mm) 

Ordering No. |0QQg3809 Weigth (Kg) 

Shank Tool Length 

I 
B A C K 

Figure 8.2 - Output Screen for a selected case-study. 

The graphical interface allows a better visualisation and an interactive and 

crossed-way of searching suitable tools, than conventional representation 

schemes provided by catalogues. 

8.2.2 Completeness of the Database 

The second stage of the test phase was the execution of experiments with 

different input parameters to find out the levels of completeness of the 

database. 

Table 8.1 - Inserts Found for External Turning Operations. 

Material Groups 
Externa 

Frist Choice 
Finis. Medium Rough 

Turning 
Second Choice 

Finis. Medium Rough 

Steel < 90 fg/mm2 35 18 10 44 25 41 

Steel > 90 fg/mm2 26 14 10 30 18 25 

Easy-cut. & moder. austenitic steels 31 15 12 66 42 24 

Austenitic and duplex stainless steels 26 24 0 31 15 16 

Cast iron 26 14 10 43 18 25 

Aluminium & other non-ferrous alloys 22 0 0 9 0 0 
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Table 8.2 - Inserts Found for Internal Turning Operations. 

Material Groups 
Internal 

Frist Choice 
Finis. Medium Rough 

Turning 
Second Choice 

Finis. Medium Rough 

Steel < 90 fg/mm2 26 11 04 32 17 14 

Steel > 90 fg/mm2 17 08 04 20 11 08 

Easy-cut. & moder. austenitic steels 22 09 04 45 25 08 

Austenitic and duplex stainless steels 17 14 0 22 09 06 

Cast iron 17 08 04 30 11 08 

Aluminium & other non-ferrous alloys 13 0 0 9 0 0 

Because external and internal turning operations are quite common, the 

experiment focused on searching for all possible solutions considering these 

two operations. The workpiece material groups were evaluated using finishing, 

medium and rough type of cutting, and both lists of inserts, first and second 

choices, were taken into consideration in the analysis. Table 8.1 and Table 8.2 

show the results for the combination of these input parameters. 

Figure 8.3 and Figure 8.4 display a graphical representation of these results. 

From considerations of these results, it can be seen that the system is able to 

provide suitable first and second choice inserts for all specified material groups. 

External Turning 

% 30 

Firisring Medum Rouc/i 
First Choice 

Finishing Medum Rouc/i 
Second Choice 

I Steel < fg/mm2 

| Steel >fg/mm2 

• Easy-cut. & moder 
austenitic steels 

• Austenitic and duplex 
stainless steels 

• Cast iron 

|Auminium & other 
non-ferrous alloys. 

Figure 8.3 - First and Second Choice Inserts for External Turning. 
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Internal Turning 
: 45 

/ 40 

. . :<•• •: 

35 
/ 30 

O 25-/ 
u. 
2 20 ^ 

v> 15 

10 

5 ' 

0 

• Steel < fg/mm2 

1 Steel >fg/mm2 

• Easy-cut. & moder 
austenitic steels 

• Ajstenitic and duplex 
stainless steels 

• Cast Iron 

H^uminium & other 
non-ferrous alloys. RrisHng Medun 

First Choice 
Roudi Rrisring Medun 

Second Choice 
Roudi 

Figure 8.4 - First and Second Choice Inserts for Internal Turning. 

However, for some types of material and types of cut there are no suitable 

inserts. For example, in the case of medium and rough types of cutting, the 

search for inserts for aluminium and non-ferrous alloys, results in no inserts. 

Similarly, the system is not able to provide suitable first choice inserts for cast 

iron and rough types of cutting, but when the second choice option is used, the 

system suggests a list of alternative inserts. 

The values observed in Figure 8.4, for Internal Operations, indicate the same 

trend observed in Figure 8.3, but the number of inserts found for each type of 

cutting is smaller than those found for external operations. 

To verify the effectiveness of using the profile angles features to obtain more 

accurate results in the search for tools, a particular test was carried out. This 

test allows the comparison of unconstrained results, which do not have to 

satisfy particular profile shapes, with constrained results that meet the profile 

shape requirements in terms of profile angles. 

For ten cases, inserts were selected, initially assuming that the geometry of the 

profile was unknown, as shown in Table 8.3. Once the number of inserts for 

each case was obtained, the next step involved changing the value of the profile 

angles to find new sets of tools. 
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Table 8.3 - Number of inserts found. 

No Workp iece Shape 
unknown 

Prof. O U T 
40° 

Prof. 
O U T 90° 

Prof. IN 
18° 

Prof. IN 
23° 

1 3 5 31 2 5 15 1 3 

2 2 4 2 4 2 2 1 2 9 

3 2 6 2 2 1 7 9 7 

4 4 4 4 2 0 

5 8 8 8 4 2 

6 3 1 2 7 2 6 15 1 3 

7 1 0 1 0 8 4 2 

8 15 15 1 3 7 4 

9 2 2 2 2 21 1 2 11 

1 0 11 11 11 5 3 

The data from Table 8.3 is represented graphically in Figure 8.5. 

Profile Angles Compar ison 
4 0 ..............——-— 

• 

2£ 
XT. 

o i 8 1 0 1 
C a s e s 

hitia Va ues +• -Profi le OUT angle=90 Profile N 
angle=23 * -Pro f i le IN angle = 18 *— Profile OUT angle = 40 

Figure 8.5 - Inserts found using Profile Angles. 

It can be seen that the number of inserts found diminishes when the profile 

angles values are increased. A particular rapid reduction in the number of 

proper tools can be found by imposing a "profile-IN" constraint, which limits the 

selection of a large number of tools due to trailing angle unsuitability. For 

example, cases 1 , 2 , 3 , 6 and 9 show a considerable reduction in the number of 

inserts found. 

It is important to underline that in this last test only one profile angle (OUT or IN) 

was used at the time. When both angles are used at the same time, the number 
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of matches found is even less, making easier the final selection by the user. 

Details of "Profile-OUT" and "Profile-IN" angles are given in chapter 3. 

8.3 T E S T S AND R E S U L T S F O R TTS 

TTS is an Internet-based system developed under a private philosophy, where 

tooling engineers working in a shared information environment, would be able to 

access a nation-wide database of knowledge, created from their previous work. 

Moreover, it is possible for tooling engineers to avoid the execution of new tool 

trials knowing the results of trials already carried out in physically distant places, 

when another engineer has previously executed these trials. 

The participation of the author in the development of this system was centred 

on connectivity, information security and some operational aspects. This section 

presents a set of tests in relation to connectivity and how sensible the system is 

to change the number of matching results found, when particular input 

parameters are introduced. 

8.3.1 Connectivity and Downloading Aspects 

Although Java-code embedded in HTML files can be easily downloaded by 

Java-enabled browsers, remote access of databases is not a trivial task. One 

reason is the inability of some Web browsers to deal with recent versions of 

Java language and the drivers that manage the connection to the databases. 

Furthermore, TTS is an Internet-based system containing Java classes, images, 

compressed files, HTML and other support files. Therefore, a set of tests was 

conducted to check the transparency in the connectivity, and the efficiency 

regarding the downloading of database and system files. 

In relation to connectivity, access to the database was tested using the 

JConnect (100% pure Java) driver for Java 1.02. Two widely commercial Web 

browsers were used, Internet Explorer 5.0 and Netscape Communicator 4.5. In 

both cases the access was successful. However, for a new version of TTS, 

compiled using Java 1.1, both browsers were unable to support remote 

database operations. Table 8.4 shows results of downloading the system from 

different locations and using compression and local file-storage procedures. 
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Table 8.4 - Connectivity and Downloading Tests (TTS). 

User Location with 
Internet connection 

DB and System 
Location 

Normal 
Down
loading 

(1) 

Downloading 
Using 

J A R Files 

(2) 

Downloading 
Storing 

Java Classes 
in Client 
Computer 

Local Stand-Alone User 
Durham City 

DB and Web-Server 
Durham University OK 

Successful 
and 

A bit Faster 
than (1) 

Successful 
and 

Faster than 
(2) 

Local Area Network 
Durham University 

DB and Web-Server 
Durham University OK 

Successful 
and 

A bit Faster 
than (1) 

Successful 
and 

Faster than 
(2) 

Stand-Alone 
Seco - Birmingham 

DB and Web-Server 
Durham University 

DB and Web-Server 
Seco - Birmingham 

OK 

OK 

Successful 
and 

A bit Faster 
than (1) 

Successful 
and 

Faster than 
(2) 

University LAN 
Manchester (UMIST) 

DB and Web-Server 
Durham University OK 

Successful 
and 

A bit Faster 
than (1) 

Successful 
and 

Faster than 
(2) 

From Table 8.4 it can be noted that regardless of the user location, the 

operations of downloading the database and TTS files were successful. The 

same test was conducted using JAR files and storing the Java classes locally in 

the user's machine. 

JAR stands for Java ARchive. A JAR file is a single file containing a collection of 

Java class files. In this way, JAR files are similar to ZIP files and other file 

formats used to package a collection of files in a single file. JAR files compress 

the data they contain, so they are faster to download to a user system. One 

advantage of storing class files in a JAR file is that the user's system can 

download all the necessary files with a single file transfer request, rather than 

individual file transfer requests for each file that the Java-applet needs. One big 

file transfer or downloading, typically takes less time in total (in theory) than 

many little ones. 

The access of the system was tested using JAR files. This reduced the 

downloading times, but not substantially. In order to access TTS through the 

Internet and minimise the downloading time, an additional test was conducted. 

The API Java classes utilised by the system were locally stored on the client 

machine, while the database was stored remotely in a Web-server. This 

produced access and downloading operations faster than the implementation of 

JAR files. One clear disadvantage of this procedure is the necessary installation 
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of the files and the setting tasks in the local operating system of each client 

machine, particularly due to the distributed nature of the proposed solution. 

However, these disadvantages can be minimised if the distributed users share 

an efficient networked environment. 

8.3.2 Confidence Scores Values 

The implementation of Confidence Scores (CS) by TTS allows a more flexible 

criterion to relax the number of matching results that the system is able to find. 

It was decided that in addition to searching for perfectly matching reports, it 

would be made possible for users to assign CS values to relax the number of 

final matches found. 

Once the user has generated the search criteria and instigated the search, the 

first step is to retrieve all the report numbers of those trials, which match at least 

one of the search criterion. The number of reports returned can then be used to 

display the size of the result set to the user. If the number of reports generated 

by the search is small, it is possible for the user to modify the query manually 

and perform a further search. Alternatively, the user can decide either to view 

the few reports which have been identified, or opt for parameter relaxation 

techniques to be applied, the details of which without the scope of this chapter. 

Effectiveness of Confidence Scores 
3 5 0 

a 3 0 0 
=3 
o 2 5 0 
to 
<D 

JS 
2 0 0 

o 
150 

s 
1 0 0 

5 0 

0 

X-K X X X x X x •< X X X X X X X X X X X X x * X X X X X X X X 

C S = 20% 

- ^ - c s = 30% 

- Q - C S = 50% 

* C S = 80% 

Figure 8.6 - Effectiveness of Confidence Scores (CS) 

The confidence score for any single tool trial can assume any value between 

0% and 100%. A confidence score of 100% indicates a tool trial report where all 

the parameters specified by the user have been matched exactly. Conversely, a 
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confidence score of 0 % indicates that none of the parameters match either 

exactly or partially. 

Figure 8.6 shows how flexible is the system to find close matches when low 

values of CS are introduced, and the opposite situation where the system 

applies a strict filtering criterion, limiting the output to few matches. The data 

used for this test can be seen in Appendix E. 

Plotting the average values 

300.0 
Matches 200.0 
Found 100.0 

• c s = 20% 
• CS = 30% 
• c s = 50% 

• c s = 80% 

Average Values 

Figure 8.7 - Average values for Confidence Scores. 

Figure 8.7 shows the average values, indicating an output of 313 reports (all 

reports initially contained in the database for Turning) with a CS of 20% and 

values of almost zero reports, to a CS of 80%. This reflects the capabilities of 

the system to "fluctuate" in a wide functional band, fitting its number of 

successful matches, according to the confidence levels specified by the users. 

Finally, it is important to establish a comparison between the nature of the data 

used in the tests and the nature of the data contained in the database. The test 

data is taken from catalogues in their 1998 edition, and the data used to 

populate the database is taken from industrial trials performed between 1992 

and 1998. Therefore, it is possible that the obtained results can be slightly 

slanted, and so, useful data for establishing full matches could not be 

considered. 
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8.4 T E S T S AND R E S U L T S F O R DISKOVER 

DISKOVER is a context-oriented KDD-based system that has been developed 

considering the implementation of multiple data mining techniques. It has been 

oriented to analyse tooling data collected from multiple machining centres. In 

contrast to the two Internet-based systems previously mentioned, which were 

built using Java-applets, DISKOVER is also an Internet-based system, but built 

using a Java-application. This eliminates the use of Web browsers to access 

the system. This section will concentrate in a set of tests applied on Kluster and 

Fuzzy-K, two important modules of DISKOVER. 

Kluster and Fuzzy-K are able to provide numerical quality indexes to compare 

the performance of the four clustering methods implemented. The final quality 

index is based on intracluster and intercluster measures as was described in 

chapter 6. Both systems calculate these quality parameters for each clustering 

method and show only the results matching the method having the best 

performance. Table 8.5 shows these performance indexes for Kluster. 

As can be seen in Table 8.5 all the quality values of the final classification are 

higher than 0.5 and the Average Linkage resulted in the best clustering method. 

In general, the average method produced the best classification according to 

the quality criterion adopted. 

Table 8.5 - Performance of Clustering Methods (Kluster). 

Clustering 
Method 

Intracluster 
(ICI) 

Intercluster 
(ISL) 

Quality 
Cf i f ) -

S i m p l e 0 .0487 3 9 . 1 8 2 0 0 .5777 

C o m p l e t e 0 .1464 4 9 . 6 0 8 9 0 5608 

A v e r a g e 0 .0178 3 2 . 2 3 5 0 0 . 8 2 4 9 

W a r d ' s 0 . 1392 4 7 . 7 5 7 3 0 . 5 4 5 2 . 

These results were corroborated considering different input parameters but 

keeping the same run options. However, a change in the stopping rule options 
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(Mojena's method versus # of clusters = 30) produced different results, as 

shown in Table 8.6. 

Now, the best performance was obtained applying the Simple method. The 

changes in the new quality indexes look logical considering the influence of the 

Mojena's constant {k) on the number of clusters obtained in the final 

classification process. As was stated in chapter 6, the best performance was 

obtained for 4.0 < k < 4.5. Values of k in this range produced a number of 

clusters in the range 8 to 15, which influenced the calculation of new quality 

indexes, hence, the resulting new values, as shown in Table 8.6. 

Table 8.6 - Quality indexes changing the stopping rule option 

Clustering 
Method 

Intracluster 
(ICI) 

Intercluster 
(ISL) 

' Quality -:; 

S i m p l e 0 . 0 2 3 0 3 6 . 2 0 7 4 0 . 9 3 8 3 

C o m p l e t e 0 . 1 2 7 6 4 1 . 3 1 0 4 0 . 5 9 0 2 

A v e r a g e 0 . 0 2 8 7 3 5 . 8 1 0 0 0 . 8 3 4 2 

W a r d ' s 0 . 1392 4 7 . 7 5 7 3 0 . 5 6 4 2 . 

The quality indexes shown in Table 8.5 and Table 8.6 were obtained setting 

Material Group =1 and Grade = TP100 as the basic input parameters. Kluster 

obtains the closest set of elements (clusters) considering these input values, 

providing an optimal solution. This initial solution can be used to obtain 

information about cutting parameters, according to particular input 

specifications. 

For example, Figure 8.8 displays the results obtained through the 

implementation of a second order regression analysis. In this case the user 

selected Material Group = 2 and Grade = TP10 as complementary input 

information. 

It can be noted from the graphs (left side), how it was possible to determine the 

value of the Feed Rate (0.1382), regarding Nose Radius specifications (0.8 

mm), considering the information contained in the clusters previously grouped. 
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The same case is shown (right side) for the cutting parameter Depth of Cut 

(1.3152). The user has the option to obtain a third cutting parameter known as 

Cutting Speed. The Nose Radius is an important parameter introduced by users 

depending the type of cutting (finishing, medium or rough) of the workpiece to 

be machined. 

mem*! and Grade* Summary Llustejs Result Summary 

poielion 

low ti&bsn steels 
All the grades 

0.82 3.0 

Nose Radius NR Depth of Cut DoC Nose Radius NR Feed Rate (FR) 

Depth of Cut (DoC) vs. Nose Radius (NR 

rend Curve 
>d Rate (FR) vs. Nose Radius (NR) 

d C u r v e 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2 
Nose Radius (NR) 

Radius (HRl 

t*Z732 

DoCii,: 
119'NR + Fl = 4 

o.eooo D.8000 

Figure 8.8 - Obtaining cutting parameters from specific input requirements. 

The option of selecting cutting parameters can also be activated applying fuzzy-

clustering analysis {Fuzzy-K), as can be seen in Figure 8.9. The distinguishing 

difference observed in the graphs shown in Figure 8.9 (applying Fuzzy-K) and 

that shown in Figure 8.8 (applying Kluster), is that Fuzzy-K performs a more 

consistent classification process. It groups the clusters considering only Nose 

Radius values of 0.8 and 1.2, rather than Kluster that also includes clusters 

having Nose Radius = 1.6. To select the new Material Group (MG) and Grade 

input values the system provides similarity values, showing the closer 

parameters in relation to the input initially chosen by the user. For example, the 

closest MGs in relation to MG = 1 (initially chosen), were MG = 2 and MG = 3, 

with a similarity of 0.89 and 0.82 respectively. Likewise, the closest Grade in 

relation to TP100 (initially chosen) was TP10, with a similarity of 0.875. 

166 



Figure 8.9 - Cutting parameters from specific input requirements running Fuzzy-
K. 
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Figure 8.10 - Stratification of Grades and Materials regarding the best cluster 
found (running Kluster). 
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These similarity values can also be displayed selecting the option "Material and 

Grades Summary", as shown in Figure 8.10. Here, the stratification 

corresponding to the closest set of elements in relation to Grades and Materials 

parameters is illustrated. Grade = TP100 and Material Group = 1, have a 

similarity equal to unity, because they were the input values introduced by the 

user. 

Clu * tei s R esuit S um maiy 

I Graphs 
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Grades Stratification tuny Membership with Grade TOOD 

[PI 00 

th MatGroim 1 Materials stratification 

• Mai 3.0 
•.Mat. 4.0 
• Mat. 20 
• OTHERS 

Figure 8.11 - Stratification of Grades and Materials regarding the best cluster 
found (running Fuzzy-K). 

The results in Figure 8.10 indicate that parameters having higher similarity 

values (Material Groups 1, 2, 3 and 4) exhibit the higher appearance 

percentages in the stratification results (18, 7, 40 and 26%) respectively. This 

trend was also observed for Grades. Therefore, the clustering process was able 

to group those elements presenting the closer similarity levels, according to a 

total of seven tooling variables considered. A similar classification trend was 

obtained applying fuzzy-clustering methods, as shown in Figure 8.11. However, 

the results observed in Figure 8.11 (running Fuzzy-K) show again a more 

consistent classification than those shown in Figure 8.10 (running Kluster). In 

the case of implementing fuzzy-clustering methods, a smaller number of Grades 

and Materials were generated in the final classification. 
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Figure 8.12 - Distribution of the three closest clusters according to Grades and 
Materials specifications (running Kluster). 
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Figure 8.13 - Distribution of the three closest clusters according to Grades and 
Materials specifications (running Fuzzy-K). 
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Figure 8.12 displays a graphical representation of the three best clusters 

obtained, in relation to Grades and Materials parameters. 

The influence (weight) of the variable Material Group in the classification 

process can be noted from Figure 8.12. The clustering algorithm takes into 

consideration the mechanical properties of the materials to obtain similarity 

values, as was analysed in chapter 5. 

The incorporation of fuzzy membership functions (running Fuzzy-K instead 

Kluster) to support the generation of similarity measures, contributed to reduce 

still more the solution space, as shown in Figure 8.13. It can be noted how the 

materials and grades included in this classification are now closer to those input 

parameters specified as relevant by the user. These parameters were Grade = 

TP100 and Material Group = 1 (Steels). Stainless Steels and Cast Iron groups 

were not considered, providing a closer classification according to the user's 

input. 

8.5 S U M M A R Y 

In this chapter, a structured set of tests was applied to the three main systems 

developed in this research by the author and his colleagues. SELTOOL, a free-

access tool selection system for turning operations, provides an interactive and 

crossed-way of searching for tooling parameters, rather than conventional 

representation schemes provided by catalogues. 

To test the functionality of SELTOOL, a case-study was conducted. SELTOOL 

was able to recommend a suitable selection of inserts and toolholders for a 

specific operation, workpiece material group and cutting type, and show their 

code explanation, together with the respective cutting data. The system was 

also able to recommend a second choice, providing in this way, alternate 

solutions. SELTOOL found only a few matches for some types of materials 

such as austenitic & duplex stainless steels and aluminium & other non-ferrous 

alloys. This fact is only reflecting the need to increase, even more, the current 

size of the tooling database. The inclusion of new records will improve the 

capabilities of the system to satisfy a wider range of input requests. If the 

workpiece shape is known, the specification of profile angles provides a 
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substantial reduction in the number of suggested inserts, which would help 

users to make a better final decision. 

In the case of TTS it was for example, possible to look at the ways in which 

tooling data collected from distributed machining centres could be analysed for 

cutting data selection purposes. TTS has a database with a number of trial 

reports far less than would be expected for a system operating fully in an 

industrial environment. The inclusion of new reports will increase the potential of 

the system to satisfy full user requirements. TTS only provides information in 

relation to cutting parameters when the complete report is downloaded. 

Sometimes, however, reports satisfying particular input requirements cannot be 

found. For this reason, it has been given to the user the possibility running the 

classification modules of DISKOVER, to introduce case-studies generating 

cutting parameters for particular input requirements. 

The testing of DISKOVER evidenced the usefulness of the data mining 

methods employed to deal with situations when no perfectly matching results 

were found. The implementation of these methods seems appropriate taking 

into consideration that the reports contained in the database are insufficient 

and, in some cases, they present imprecise information. In relation to 

connectivity, the tests resulted successfully for a version of the system 

developed using Java 1.02. However, for a new version of TTS, compiled using 

Java 1.1, the browsers were unable to support remote database access and 

updating operations. Tests were conducted implementing file compression 

facilities (JAR files) and the storage of the Java classes locally in the user's 

machine. The implementation of JAR files produced better, but not significantly 

faster downloading times. In the case of storing the Java classes in client 

machines, the access performance and the downloading operations improved 

substantially. Finally, functional tests were conducted, reflecting the capabilities 

of TTS to "fluctuate" in a wide functional band, fitting its number of successful 

matches, according to confidence levels specified by the users. 

All graphs generated during the development of the entire set of tests were 

programmed and plotted using a Java programming environment, without using 

external calls to applications providing graphical support capabilities (Excel, for 
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example). In the next chapter, overall conclusions are drawn and opportunities 

for undertaking further research are identified. 
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CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS FOR 

FURTHER WORK 

9.1 R E S E A R C H N O V E L T Y 

The implementation of Internet-based knowledge discovery (KDD) approaches 

on the tooling industry and the proposal of a Web-based and multi-functional 

distributed architecture for information integration in corporate environments, 

constitute the main novel ideas produced by this investigation. 

Much has been written about the increasing impact of Web-based distributed 

solutions and global enterprise, focusing mainly on models and organisational 

problems. Some works have surpassed expectations, but too narrowly. 

Although they have provided significant theoretical contributions, they still lack 

the required level of integration, multi-functionality and industrial applicability to 

be considered significant applications. Therefore, there is an imperative need to 

propose distributed and multi-strategic solutions to corporate environments, 

which can address the technical issues needed to overcome the problems 

imposed by real applications, running on industrial environments. 

Furthermore, in this research the motivation for applying KDD technology to the 

tooling industry was analysed. It was found that in spite of the tooling industry 

around the world constantly generating a considerable amount of data, as a 

consequence of their daily machining operations, the implementation of formal 

KDD-oriented systems has not been encountered in this area during the 

development of this research. The last decade has seen a considerable 

application of KDD technology in social, economical and scientific fields. 

However, the tooling industry remains an unexplored sector of potential. 

As a result of the consolidation of these ideas, other significant contributions 

were achieved, which are broadly examined in the next section. 
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9.2 C O N C L U S I O N S 

In this research, significant attention has been paid to the definition of Web-

based distributed strategies for supporting information integration and 

collaborative work schemes, in the context of corporate environments. The 

effect the Web has on businesses employing these distributed strategies, has 

been discussed. It was shown how Agility, Global Manufacturing, Cyber 

Factories and Virtual Manufacturing are important concepts impacting on 

operational practices in the current manufacturing scenarios. Technical issues 

regarding Internet-based connectivity and database access were addressed. 

Within these considerations, an Architecture for Remote Information Exchange 

{ARIEX) was proposed. ARIEX relies on integration of corporate information, 

distributed on databases having the same internal structure but different data, 

along geographically dispersed branches. The convenience of sharing 

information of mutual interest to internal users (employees and partners) as well 

as external agents (suppliers and customers) working in a platform-independent 

environment and considering data security aspects, constitutes its main 

advantage. In the context of corporations having branches in widely dispersed 

locations, ARIEX focuses on three main applications. These applications 

include information sharing on free-access platforms, collaborative work 

strategies and knowledge capturing systems. Information security, database 

technology and ability to manage knowledge were identified as topics requiring 

special attention. 

TTS10 and SELTOOL11, two different Internet-based systems to provide 

distributed solutions in the tooling area for the company Seco Tools Ltd (UK), 

were developed. TTS demonstrated how it is possible to use a shared-

information platform to access a nation-wide source of tooling knowledge, whilst 

keeping a restricted access policy. TTS has provided a WWW platform from 

which tooling engineers (authorised users) can submit and retrieve highly 

specific technical tooling data, for both milling and turning operations. Moreover, 

it was possible for tooling engineers to avoid the execution of new tool trials, 

Developed by the author in collaboration with two other researchers in the group at Durham. 
1 1 Developed by the author. 
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because of access to the results of trials carried out in physically distant places, 

where another engineer had previously executed similar trials. 

Because of the dimensions and the corporate nature of 7TS, three researchers 

were assigned to develop this project. The main contribution of the author was 

to provide an Internet-based framework to support the distributed nature of the 

proposed solutions. Two different tasks were carried out. Firstly, the selection of 

an appropriate strategy for sharing information in a distributed environment 

using the Internet and secondly, the definition and implementation of suitable 

methods to allow the access to authorised users only (restricted access policy). 

These two tasks were analysed taking into consideration the access of 

geographically dispersed databases and the interest of Seco for relying on a 

tooling data repository, initially accessible by nation-wide (and subsequently 

world-wide) authorised users. Data Replication (DR) and real-time access 

approaches were examined. In this research, the use of DR technology was 

considered, mainly because remote users access their databases locally and 

only when they need to send new information to the central database (and 

receive the latest updates), does a Web connection need to be established. 

However, due to the high level of confidentiality of the information generated by 

the tool trials, it was decided to keep a central database accessed remotely 

through Java-applets, adopting a real-time access approach instead of keeping 

a copy of the database stored in each client-computer, as required by a DR 

approach. To deal with the security aspects in relation to the access of TTS, 

several procedures were implemented, which included the creation of encrypted 

passwords and monitoring functions to register the database transactions. 

On the other hand, SELTOOL was primarily focused to provide distributed 

solutions in the area of tool selection, but considering the implementation of a 

free-access architecture. The development of this system involved the analysis 

of technical criteria to establish an appropriate selection of inserts, toolholders 

and cutting data for turning, threading and grooving operations. The information 

used to create the database was obtained from technical catalogues and 

proprietary tooling databases. Initially, the database was populated manually, 

which represented very time consuming work, without taking into consideration 

the difficulties of subsequent modifications and updating. In order to minimise 
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human errors whilst the data is inserted, optimise the update times, provide a 

better maintenance of the database and take advantage of existing data in MS-

Access format, two programs were developed. The Database Populate (DPS) 

and the Database Migratory {DMS) Systems. DPS reads a text file previously 

created from tooling data stored in a CD (PDF format), and after performing 

information filtering, the data is automatically written into the database (SQL 

format). In the search for useful data for SELTOOL, another barrier to using the 

available information was found. The information required was stored in DB2 

(IBM) and Access (Microsoft) DBMS formats, as the rest of SECO databases, 

but the available DBMS for building the system was SQL Anywhere (Sybase). 

To solve this situation DMS was developed. DMS converts data from an 

existing tooling database (Access format) to the SQL database (SQL-Anywhere 

format) used by SELTOOL 

TTS and SELTOOL were developed using the Java programming language, 

which provides cross-platform portability. PowerJ 2.0, which is a programming 

tool with graphical facilities and able to speed up the creation of Java projects 

was used. At the time this research was conducted, commercially available 

browsers were able to download Java-applets managing databases, using only 

the Java 1.02 version. It is important to upgrade the compatibility of browsers 

with later editions of Java in order to access database applications efficiently. 

To establish connection with the Internet, TTS and SELTOOL use jConnect, a 

100% pure Java driver, which eliminates the problem of asking the users to 

download and configure the driver. The DBMS used was Sybase SQL 

Anywhere, which supports the database operations through an Open Server 

Gateway included as part of the basic PowerJ tool package. For developing and 

testing the systems, an internal net provided the facilities to transfer files and 

programs efficiently between development environments. A computer 

configured as a Web-server (Windows NT) and DB-server was used to store the 

HTML files, images, database and all the programs and Java classes needed to 

download and run the system from remote locations. 

Nowadays, information sources are increasing in size, complexity and number, 

and current information retrieval techniques are insufficient for very large 

networked information sources. Hence, organisations are increasingly realising 
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the importance of using knowledge and information residing in their networks for 

competitive advantage. This scenario has motivated the interest of many 

researchers to develop automated systems able to apply efficient data-

organisation techniques and scientific methods to reveal deviations, 

dependencies, regularities and interesting patterns in these data sets. In this 

research, the motivation, benefits and technical considerations for undertaking 

KDD tasks were discussed. Further, a well-structured KDD architecture was 

examined. 

It was decided following discussions with Seco-UK, to develop a knowledge 

discovery application for the tooling sector. Therefore, DISKOVER, an KDD-

oriented system for analysing tooling data was developed by the author and 

another research student in the group at Durham. This system integrates five 

modules including clustering, fuzzy-clustering, rough sets programs and SQL-

based exploratory data analysis methods, under a unified Internet-based 

architecture and graphical interface. A functional summary of these modules 

follows. 

Kluster12 is a clustering application based on the 11-steps Cluster Analysis 

methodology proposed in chapter 5. In order to minimise the lack of conceptual 

considerations when applying conventional clustering methods, conversion 

mechanisms to establish similarity relationships between some categorical 

attributes, were implemented. Also, two original contributions have been 

incorporated in the Post-processing stage. Specifically, consistent indicators to 

measure the quality of the final classification and application of optimisation 

methods to the final data groups obtained. The analysis of cutting condition 

parameters and relationships between grades and material workpiece was 

considered as of major concern, mainly due to their impact on tool selection 

criteria. 

Q-fast12 is an SQL-based application allowing a fast and exhaustive exploration 

of the tooling database for turning and milling operations. Specific Type of 

Operations, Test Objectives, Materials and Benefits, were the four main options 

considered. 
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Fuzzy-K13 is an application having the advantages of hierarchical clustering, 

while applying fuzzy membership functions to support the generation of 

similarity measures. The implementation of fuzzy membership functions helped 

to optimise the grouping of categorical data containing missing or imprecise 

values. 

MQG14 is an SQL-based Multiple Query Generator application developed to 

provide cross-information retrieval in relation to turning and milling operations. 

The user is able to fix input conditions chosen among 30 tooling parameters, 

weigh the importance of these parameters and select output variables of his/her 

interest among 32 possible tooling attributes. R-Set14 is a rough sets-based 

application developed to identify data inconsistency and provide ways to 

analyse the influence of tooling parameters (condition variables), on pre-fixed 

output attributes (decision variables). 

In relation to the deployment of the systems developed in this research, TTS 

has been successfully and initially installed on six laptops (Seco-Birmingham, 

UK) and now the system is being fully operated from the machining centres 

where the tooling trials are conducted. Subsequent installations would involve 

users in other UK-based branches and other international offices (like Sweden 

headquarters), provided that the format of tooling reports can be properly 

standardised and organisational details appropriately arranged. 

In the case of SELTOOL, due to its Web-based orientation and free-access 

philosophy, it has been, since its development, available to Seco customers and 

world-wide users. SELTOOL provides an interactive and more efficient way of 

searching for tooling parameters (crossed-searches concentrated in only one 

screen, for example), than conventional representation schemes provided by 

catalogues. 

DISKOVER has been fully tested in the development environment. Its final 

presentation and delivery to the industrial environment (Seco-UK) will, it is 

anticipated, be carried out shortly. The development of this system 

1 2 Developed by the author. 
1 3 Developed jointly by the author and another research student in the group at Durham. 

178 



demonstrated the significant potential of the described multi-strategy 

methodology (different and complementary data mining techniques) in solving 

problems of knowledge discovery. In contrast to the two Internet-based systems 

previously mentioned, which were built using Java-applets, DISKOVER is also 

an Internet-based system, but built using a Java-application. Java-applications 

do not need to be embedded in HTML files and downloaded using Web-

browsers, which is a distinguishing characteristic of Java-applets. This 

constitutes an important operational advantage, considering the computational 

time and memory resources demanded by data mining algorithms, and the 

execution of database operations through the Internet, which is a relatively slow 

access platform. To satisfy faster information retrieval operations, SQL-based 

exploratory data applications were additionally implemented. 

In the author's opinion, Web-based manufacturing and information integration 

technologies would favour current manufacturing practices if: 

• There was a standardised vision of what distributed manufacturing is and an 

international consensus on the underlying concepts for the benefit of the whole 

business community. 

• There was a unified interface based on the previous consensus, able to 

provide standard data exchange formats, CAD-enabled browsers, remote 

collaborative work and a vendor-independent information technology 

environment. 

• There was a networked environment to support knowledge sharing activities 

in which people, enabling technologies and organisational elements, can be 

closely integrated. 

These are some of the challenges to be faced, in the future, by the 

manufacturing community. Although the Internet is an early example of the 

information networks of the future and is increasingly being commercially 

exploited, it is not automatically an obvious panacea for business success. A 

company being incorrectly managed and erroneously oriented through 

conventional operational methods, will continue being a badly managed 

1 4 Developed by a research student in the group at Durham. 
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company, even while operating under ever evolving Internet-based policies. 

These considerations indicate the need for serious decision making prior to 

adopting Internet-based strategies. There are some specific and some strategic 

company activities, more suitable than others for support by Internet-based 

operations. 

The results of this investigation have implications for both research on 

information integration technologies and practices in companies. From a 

research perspective, the implications are for the development of systems 

supporting dynamic networked environments. From the enterprise practices 

point of view, current manufacturing tasks are being oriented towards agile 

responsiveness scenarios within a distributed environment, offering high 

flexibility during complex product design activities. This research proposes 

Web-based collaborative work strategies and knowledge capturing systems, 

implemented across company borders. There are clear benefits to be obtained 

when processes are carried out using an Internet-based distributed approach: 

• Efficient access to resources over a geographically dispersed area. 

• Cheaper information exchange processes. 

• Closer interaction between Clients and Companies. 

• Major support to assimilate the company growth. 

• Improved distribution of software and hardware resources. 

As Internet-oriented 3-D technologies become more commonplace in 

organisations, new potentialities are certain to arise. In particular, information 

representation and information sharing. Virtual social interaction will also 

increase rapidly. All these improvements will impact on the way in which remote 

work groups are collaboratively joining efforts to design, manufacture and 

deliver new products. It is the author's expectation that this thesis will arouse 

more attention from the manufacturing community, in relation to a better use of 

Internet-based technologies, in order to deal with a growing world-wide 

standardisation of processes and the emergence of automated infrastructures 

around global information networks. 
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9.3 RECOMMENDATIONS FOR FURTHER WORK 

Because this research has been closely linked to the tooling industry, 

considerations for further work in this sector are given, as well as for the 

academic environment. 

9.3.1 Recommendations for Further Academic Research 

As the WWW continues to expand and become more prevalent in the life of the 

average consumer, a logical consequence is the diversification of the type of 

services available on the Web and a continued increase in the number of these 

services. The WWW has already become far more than a distribution of digital 

resumes and static home pages. It has shifted from the original concept of 

serving formatted text and simple graphics, to providing a wide range of 

applications. Examples of important industrial applications include, monitoring 

and diagnosis, networked assembly, knowledge discovery and simulation of 

production processes. The implementation of these applications using Web-

based approaches, constitutes potential areas of investigation that still remain 

issues for research and development. 

The participation of remote collaborative work teams, for integrating geometric 

modelling, product design and product manufacturing stages (concurrent 

engineering) is a matter of intensive research. There are few hard results 

available for such systems, however, and further investigation is required, 

taking care to demonstrate the benefits that a distributed architecture, based in 

the WWW, could bring to the problems which traditional techniques do not. 

To date, virtual reality (VR) techniques have been mainly focused towards 

applications in relation to sensing and manipulating objects in virtual 

environments, with important implementations in the field of simulation. 

However, significant investment and effort are being dedicated to improve VR 

technology and, in the near future, using VR methods, it should be possible to 

explore databases exploiting the benefits of manipulating records of data 

supported by virtual immersive environments. Another important issue is the 

ability of certain systems to support multiple representations of the same data 

sets. The more complex the data sources, the more likely that different 
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perspectives on the data will be required in order to fully characterise patterns 

and trends of interest. 

Hence, fully immersive virtual reality techniques operating in distributed and 

shared scenarios and the development of faster CAD-enabled browsers 

managing multidimensional views of the model, are promising and still open 

fields where to conduct further research. Future Web-based tools will be 

developed taking into consideration the presentation of findings from different 

perspectives and multidimensional schemes, in order to provide more 

transparent and clear frames where end users can easily interpret the results. 

During the process of applying KDD methods, it should be noted that the more 

data is available, the higher the potential to discover hidden knowledge. 

Therefore, improving access to complementary and widely dispersed 

information sources will contribute to provide a dominant position from which 

KDD tools would be applied. The amount of remotely dispersed computers, 

interconnected through a World Wide Web (WWW), opens a promising path to 

implement KDD-oriented techniques for analysing geographically dispersed 

databases. However, in WWW technology the bandwidth is often a bottleneck, 

and the flow of information accessed through the Internet is not as efficient as 

expected. Likewise, Cache-Web is the simplest cost-effective way to achieve a 

high-speed memory hierarchy. This provides research potentialities in the fields 

of parallel processing, bandwidth and Cache-Web. 

Obviously, all the approaches already discussed demonstrate their usefulness 

in distributed scenarios, rather than stand-alone work philosophies. An 

important factor allowing a better access to geographically alienated information 

sources, are the expanding powerful features of the Internet. Such features 

include the emergence of "Mobile Internet", oriented to access the Web through 

devices without physical connection capabilities (satellite-based networks). 

Although this technology is not entirely new, it remains a potential area for 

further investigation. 

The notion of Multi-Agent Systems (MAS) is another important concept that is 

gaining increasing application in different areas of management and control. 

They have been proposed as a new tool to integrate distributed objects. MAS 
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allow integrated enterprise environments at the level of information access, 

monitoring, automation, co-operative work and system integration. Multi-agent 

technology provides an implementing framework for co-ordinating behaviour 

among a collection of autonomous agents. Although the term agent is used 

frequently, its universal meaning, definition and structure still remain vague, 

especially when used in different contexts. Ming et al. (1998) suggested that an 

agent is an entity that can perform some tasks and achieve a predetermined 

goal autonomously. According to this definition, human experts, intelligent CAD 

systems and intelligent machining cells are all agents of an intelligent 

manufacturing system. The study of Multi-agent systems is an area suitable for 

further investigation and may lead to better management of distributed 

manufacturing activities. 

9.3.2 Recommendations for the Tooling Industry 

The proposals suggested are particularly oriented to the company Seco Tools 

Ltd (UK). It constitutes the primary target where the applications in this research 

were focused. 

In chapter 3, two Web-based systems to support tooling operations from 

different perspectives were considered. A natural extension of these works 

would be the incorporation of additional capabilities to the existing systems (or 

develop new ones) including functions such as Technical Assistance, Marketing 

and Customer Servicing Order and Collaborative Distributed Design and 

Manufacturing, all of them implemented under Web-based architectures. 

In this research, it was needed to develop Java-based conversion programs to 

translate data stored in varied formats (PDF and Access) to an SQL-based 

DBMS. Other databases are built using DB2 (IBM proprietary). To overcome 

this and another technical difficulties when implementing the ideas of including 

new functions (previous paragraph), it would be beneficial if Seco could rely on 

a unified DBMS. This will allow a major flexibility, wider range of services made 

available to the customers and all the benefits that a standardised database 

platform could provide. 

The set of tests conducted in chapter 8 reflected an insufficient amount of data 

in the current tooling databases. Important materials, such as aluminium and 
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lighter materials known as super alloys were not found. It is important to update 

the current database population with these materials, given their increasing role 

in manufacturing sectors such as aerospace, construction and automotive 

industries. 

TTS, SELTOOL and DISKOVER were developed under Windows operating 

system. Nevertheless, the backbone of the communicational structure of Seco 

is supported by a tool known as Lotus Notes. Basic operations include E-mail, 

Usenet Newsgroups, purchase order transactions and a variety of support 

systems. It would be interesting to evaluate the technical feasibility of managing 

TTS, SELTOOL and DISKOVER directly from the Lotus Notes environment, to 

increase the transparency and easier accessibility of these systems. 

A final and more important recommendation is oriented towards a wider 

application of knowledge discovery technology in other sectors of the company. 

Until now, DISKOVER has demonstrated its usefulness in classifying 

experimental tooling data, particularly oriented in relation to cutting data 

recommendations. However, KDD technology has proved to be a remarkable 

tool for analysing Financial, Marketing, Forecasting, Sales and Production data. 

KDD technology could be implemented by the company, in order to make sense 

of the data found in the above mentioned areas, and using the discovered 

knowledge for decision-support purposes. 
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APPENDIX A 

Hierarchical Clustering Methods - A Numerical Application 

In order to illustrate the procedure followed by hierarchical clustering methods 

to carry out data grouping processes, a basic numerical exercise applying 

Single, Complete and Average Linkage methods will be presented. 

The Euclidean distance function will be assumed and the following two-

dimensional data points are considered: 

T = [1.0 0.9], S = [-2.0 2.1], U = [-0.5 1.9], V = [1.2 0.7], W = [-1.8 1.5]; 

Before solving the problem, it is convenient to define a threshold value (/J) that 

will be used as a stopping rule. When the distance between the two closest 

clusters is greater than this thresholdvalue, the data clustering process ends. 

a) Single Linkage Method. 

The initial plotting of all data points is shown in Figure A.1. 
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Figure A.1 - Initial data representation, 

i) N = 5 clusters; p = 1.55; n = 2; 

The Euclidean distance is defined by: 

\X I I Xi - Yi I* 

185 



Applying the former distance function, 

T - S\\= TJ\ [(1 .0 ) - ( - 2 . 0 ) ] I 2 + I [ ( 0 . 9 ) - ( 2 .1 ) ] I 2 = 

= yj(3.0)2 + ( 1 . 2 ) 2 = 3 .23 ; 

\T - U || = 1.80 ; ||r - W || = 2 .86 ; ||V - W || = 3 .10 ; 

|t/ - W || = 1.74 ; \\U - V || = 2 .08 ; ||S - W \\ = 0 .63 ; 

5 - V || = 3 .49 ; \\S - U \\ = 1.51 ; \\T - V \\ = 0 28 ; 

A matricial representation of these distances is given below: 

T S U V W 

T -
S 3.23 -

U 1.80 1.51 -

V 0.28 3.49 2.08 -

w 2.86 0.63 1.74 3.10 

As clusters T and V are the closest, and the distance between them is lower 

than fi, they are merged into a new cluster named TV. 

ii) The new four clusters are: 

TV = {[1.0 0.9] [1.2 0.7]}, S = [-2.0 2.1], U = [-0.5 1.9], W = [-1.8 1.5]; 

The resulting merge is shown in Figure A.2. 
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Figure A.2 - First data grouping. 
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Applying the Euclidean distance function on the new clusters, 

||5 - U || = 1 .51 ; \\U - W || = 1.74 ; ||S - W || = 0.63 ; 

• I I 5 " TV ||: 

||S - T || = 3 .23 ; ||S - V \\ = 3 .49 , \\S - TV || = 3 .23 ; 

\\U -T\\ = \ .80 ; \\U - V || = 2 .08 ; ||t/ - TV \\ = 1.80 ; 

. \\W - TV || : 

||W - 7 || = 2 .86 ; ||W - V \\ = 3 .10 ; ||W - TV \\ = 2 .86 ; 

A matricial representation is given below: 

TV S U W 

TV -

S 3.23 -

u 1.80 1.51 -

w 2.86 0.63 1.74 

As clusters S and W are the closest, and the distance between them is lower 

than fi, they are merged into a new cluster named SW. 

iii) The new three clusters are: 

TV = {[1.0 0.9] [1.2 0.7]}, SW = {[-2.0 2.1] [-1.8 1.5]}; U = [-0.5 1.9], 

The resulting merge is shown in Figure A.3. 

• Data Points 

3 
0) 

TV 

1.0 1.0 

X axis 

Figure A.3 - Second data grouping 
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Applying the Euclidean distance function on the new clusters, 

\U - TV ||: 

U - T II = 1.80 ; \\U - V II = 2 . 0 8 ; _ • \\U - TV || = 1 .80 ; 

\U - SW 

\\U - S | |= 1.51 ; \\U - W 11 = 1.74 ; \U - SW || = 1.51 ; 

TV - SW 

T - S\= 3 .23 ; \V - W\\= 3.10; T-W = 2 . 8 6 ; 

\\V - 5 1 | = 3 .49; ||7V - 5W || = 2.86 ; 

A matricial representation is given below: 

TV SW U 
TV -
SW 2.86 -

u 1.80 1.51 -

As clusters SW and U are the closest, and the distance between them is lower 

than j8, they are merged into a new cluster named SWU. 

iv) The new three clusters are: 

TV = {[1.0 0.9] [1.2 0.7]}, SWU = {[-2.0 2.1] [-1.8 1.5] [-0.5 1.9]}; 

The resulting merge is shown in Figure A.4. 

• Data Points 

.2 
3.0 I 

X 

n V.* J / 2 0 
< 

>- T 1 . 0 X i 

I 
-3 .0 -2.0 -1.0 0.0 To 2.10 

X axis 

Figure A.4 - Third data grouping. 
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Applying the Euclidean distance function on the new clusters, 

\TV - SWU II • 

T - U\\ = 1.80; \T - W = 2 .86 ; \T - S \ = 3.23; 

\V -U\\ = 2 .08; ||V - W || = 3.10; ||V - S|| = 3 .49 ; 

TV - SWU || = 1 .80 ; 

As the distance between clusters SWU and 71/(1.80) is greater than p (1.50), 

their merge is not suitable and the clustering process ends with these two final 

clusters. 

b) Complete linkage method: 

N = 5 clusters; p = 3.0; n = 2; 

i) The first step is identical to the procedure applied to the single linkage 

method. The clusters Tand Vare the closest, and the distance between them is 

lower than p, so, they are merged into a new cluster named TV: 

TV = {[1.0 0.9] [1.2 0.7]}, S = [-2.0 2.1], U = [-0.5 1.9], W = [-1.8 1.5]; 

ii) Applying the Euclidean distance function on the new clusters, the generated 

dissimilarity matrices are shown in Figure A.5. 

TV 

S 

u 

w 

TV s 

3.49 

2.08 1.51 

3.10 0.63 

U W 

1.74 

TV 
SW 

u 

TV SW U 

3.49 

2.08 1.74 

TV SWU 

Figure A.5 - Successive iterations. 
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As the distance between clusters SWU and TV (3.49) is greater than p (3.0), 

their merge is not recommendable and the clustering process ends with the 

same two final clusters, as found in the single method. 

c) Average linkage method: 

N = 5 clusters; p = 2.25; n = 2; 

i) The first step is identical to the procedure applied to the single linkage 

method. The clusters 7 and l^are the closest, and the distance between them is 

lower than p, so, they are merged into a new cluster named TV: 

TV = {[1.0 0.9] [1.2 0.7]}, S = [-2.0 2.1], U = [-0.5 1.9], W = [-1.8 1.5] 

ii) Applying the Euclidean distance function on the new clusters, 

S - U II = 1 .51 ; \\U - W II = 1.74 ; \\S - W \\ = 0.63, 

S - TV 

S - V || = 3 .49 ; \\S - T \\ = 3 .23 ; \\S - TV \\ = 3 .36 ; 

The former value (3.36) was obtained applying the equation: 

\\S - TV || = l- * Y | |X - Y ||; 
11 11 Card (S)Card (TV ) X S ^ T V " 

| | 5 - 7 V \\= 3 - 2 3 + 3 - 4 9 = 3 . 3 6 ; II II ( l ) * ( 2 ) 

The remaining values shown below were obtained in the same way. 

- \\U - TV 

\U - T || = 1.80 ; \\U - V || = 2.08 ; \\U - TV || = 1 .94 ; 

W - TV 

\W - V || = 3.10 ; \\W - T || = 2.86 ; \\W - TV \\= 2.98 ; 

As clusters S and W are again the closest, and the distance between them is 

lower than p, they are merged into a new cluster named SW. 
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iii) The new three clusters are: 

TV = {[1.0 0.9] [1.2 0.7]}, SW = {[-2.0 2.1] [-1.8 1.5]}; U = [-0.5 1.9] 

Applying the Euclidean distance function on the new clusters, the generated 

dissimilarity matrices are shown in Figure A.6. 

TV 

s 

u 

w 

TV S 

3.36 

1.94 1.51 

2.98 0.63 

U w 

1.74 

TV 
SW 

U 

TV SW 

3.17 

1.94 1.63 

U 

TV SWU 

Figure A.6 - Successive iterations. 

As the distance between clusters SWU and TV (2.76) is greater than p (2.55), 

their merge is not suitable and the clustering process ends with the same two 

final clusters, as found in the single and complete method. 
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APPENDIX B 

Applying Rough Sets to Detect Data Inconsistency 

In order to show how rough sets can be used to identify inconsistent 

relationships in a data set, an example is presented as follows. 

The results of a series of measurements are summarised in Table B.1. 

Table B.1 - Process condition and parameters. 

Measure
ment 

Pressure (P) C 0 2 Level (CO) State 

1 Normal Optimum Stable 

2 Normal Acceptable Stable 

3 High Optimum Stable 

4 High Alarming Unstable 

5 High Acceptable Unstable 

6 Normal Alarming Stable 

7 High Optimum Stable 

8 Normal Optimum Stable 

9 Normal Acceptable Unstable 

10 Normal Alarming Unstable 

It is assumed that the condition of a chemical process is monitored. Preliminary 

observations show that the condition of the process is related to the Pressure 

(P) and C02 Level (CO). Two states, namely Stable and Unstable, are used to 

describe the condition of the process. 

Due to the qualitative description of the variables, they have been transformed 

into real values, as can be seen in Table B.2. The following conversion scheme 

was applied: 

Normal = 0; High = 1 ; Optimum = 0; Acceptable = 1; Alarming = 2; 

192 



Stable = 0; Unstable = 1 ; 

From Table B.2, two possible concepts can be defined: 

Concept 1: Ci = {x i , x 2 , X3, xe, x 7 ) xs} -> Class = 0 (Process status = Stable); 

Concept 2: C2= {X4, x 5 , xg, x i 0 } -> Class = 1 (Process status = Unstable); 

Table B.2 - Process condition after transformation. 

Measurement Pressure (P) C0 2Level (CO) State 

1 0 0 0 
2 0 1 0 

3 1 0 0 
4 1 2 1 
5 1 1 1 

6 0 2 0 

7 1 0 0 

8 0 0 0 
9 0 1 1 

10 0 2 1 

According to the set of attributes A = {P, CO}, the following indiscernible 

relationships can be identified: 

X1 = {xi, xs}; X 2 = {x 2, xg}; X 3 = {x 3, x 7}; X 4 = {X4}; X 5 = {X5}; X 6 = {xe, x i 0 } ; 

The above sets are commonly called elementary sets or equivalent classes. 

Using the notations previously described, the approximation can be obtained as 

follows. 

Analysing Concept 1: 

Lower Approximation -> AC1 = {xi, X3, x 7, xs}; 

Upper Approximation -> Ad = {xi, X2, X3, xe, x 7, xs, xg, X10}; 

Boundary region -> BNA(Ci) = Ad - AC1 = {x 2, xe, Xg, xio}; 

Analysing Concept 2: 

Lower Approximation -> AC?= {x 4, x 5}; 
Upper Approximation AC2= {x 2 ) x 4, X5, xe, xg, xio}; 
Boundary region -> BNA{C2) = AC2 - AC2 = {x 2, xe, Xg, xio}; 
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Clearly, the boundary (doubtful) region for both concepts (C? and C2) indicates 

that the results of measurements 2 and 9 contradict one another, as well as 

measurements 6 and 10. These cases have been highlighted in Table B.2. 

This example has shown how using rough sets theory, some data 

inconsistencies have been identified. 
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APPENDIX C 

Selected Data Mining Applications 

This Appendix presents some selected applications where data mining 

techniques have been applied. 

C. 1 Regression Analysis 

Alamin (1996) implemented an interesting application of multiple regression 

techniques in the area of tooling, developing a Tool Life Prediction (TLP) 

module. A database of cutting conditions and tool life data for a wide range of 

carbide tools and different workpiece materials was analysed. He applied 

multiple regression to calculate the theoretical tool life coefficients 

( I n C , — , — ) , of the extended form of Taylor's equation: 
a p 

C 

T -- ^ ; Where T is the tool life, v i s the cutting velocity (m/min) and s 

is the feed rate (mm/rev). 

The essential information required for TLP is in relation to the cutting 

conditions (cutting velocity, feed rate and depth of cut), tool code, insert 

grade, type of cutting fluid, machine tool and the material class and sub-class. 

TLP predictions are based on the optimisation of cutting data using three tool 

life criteria namely, user defined tool life, tool life for minimum production cost 

or tool life for maximum production rate. 

Sales forecasting is a different and more common application of regression 

techniques. The analysis is supported by historical data where only some 

significant variables are selected to predict the sales for a particular future 

period of time, given their influence on actual sales. Figure C.1 shows an 

example of sales forecasting for the next three months, based on analysis of 

historical data of previous months. 
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Forecasting can help an organisation to plan appropriate strategies for long-

term growth. 

Multiple Regression Analysis 

Forecast of Sales for next 3 Months 
</> 175,000 

ly
 S

al
 

150,000 

ly
 S

al
 

125,000 
JO. 100,000 
C 
o 

w 75,000 
50,000 

75 * J o 25,000 
w 

1- 0 

Real Values —•— Predicted Values 

Discovering ^ Adopting new 
new patterns ™ Production Strategies 

Figure C.1 - Multiple Regression applied to Sales prediction. 

Carrying out a comparative analysis of projected versus real sales can result 

in discovering not only long-term linear trends, but also short-term cyclical 

fluctuations (question mark in Figure C.1), which once identified their causes, 

they can be analysed to obtain better sales predictions and adopt therefore, 

more real production strategies. 

C.2 Neural Networks (NN) 

A successful application of NN, the publication of which has been authorised 

by Prof. Raymond Burke, is described below. 

An insurance company has identified in its database, one million customers 

without additional insurance. Assume the company prepared a direct mail 

shot offering a special promotion on additional insurance coverage, to send to 
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all one million customers and subsequently receive ten thousand responders 

(one percent response rate). However, due to promotion budgets, companies 

of this size would typically not mail to all prospects on a list, but instead would 

chose randomly or by predictive methods a subset of this list towards which to 

direct the campaign. 

Assume there is now a budget that restricts this subset to one hundred 

thousand customers (ten percent of the target set of customers). To select 

this subset three different methods were employed. Firstly, using a random 

selection only 1000 customers were caught, secondly, implementing RFM 

(Recency/Frequency/Monetary) which is a predictive technique that sorts a list 

of prospective customers according to their recent purchases, how often they 

purchase, and how much they purchase, they caught 2000 responders. 

Thirdly, 4000 answers were received applying Neural Networks. 

Assume each direct mail piece costs the company $1.0 (including mailing 

costs) and each responder represented $100 in annual profit. Table C.1 

shows the gross profit for each alternative discussed above. 

Table C.1 - Results of NN example. Reproduced with permission of Prof. 
Raymond Burke, Indiana University, USA. 

Piec 

es 

Cost 
per 

piece 

Marketing 
Costs 

Respon
ders 

Response 
Rate 

Annual 
Revenue per 
Responder 

Revenue 
Gross 
Profit 

Random 100.000 $ 1 $ 100.000 1.000 1 % $ 100 $ 100.000 $0 

RFM 100.000 $1 $ 100.000 2.000 2% $ 100 $ 200.000 $ 100.000 

Neural 
Network 100.000 $ 1 $ 100.000 4.000 4% $ 100 $ 400.000 $ 300.000 

It is evident from the above example that there are significant financial gains 

to be generated by employing a neural network system in terms of gross profit 

benefits. 
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C.3 Genetic Algorithms 

Darwin is a data mining commercial tool that implements Genetic Algorithms 

through one of its modules called StarGene. The main function of StarGene is 

to optimise the parameters used by data mining algorithms of other modules. 

For instance, StarGene can be used to optimise the interconnection weights 

of neural networks in the StarNet module (Freitas & Lavington, 1998). 

Another important application of Genetic Algorithms in the financial area, has 

been developed by the company Rabatin Investment Technology Ltd through 

its project, Adaptive Portfolio Trading (APT), which involves the development 

of self-learning, self-adapting intelligent trading models, for portfolios of 

financial instruments. 

The design of trading models developed within the APT system is based on 

the following requirements with the aim being not to maximise predictability of 

market prices, but to maximise consistency and predictability of trading 

performance. Namely, 

• Integrating all aspects of the trading/investment decision into one complete 

decision-making model, which incorporates: 

- Market Selection Decision. 

- Portfolio Allocation Decision. 

- Buy/Sell Decision. 

- Market Price Risk Analysis. 

- Portfolio Risk Analysis and Portfolio Risk Management Decision. 

• Application of real-time constraints, such as user-defined risk thresholds, 

allocation restrictions, defined by the trading manager, throughout the 

entire training process. 

• Designing trading models, as distributable objects, that can be executed 

across a network and allowing for performance to be replicated on several 

locations (but performing the training process centrally). 
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• Creating adaptive models that can learn and adapt without human 

interference. 

Another interesting application of Genetic Algorithms has been implemented 

in the Operations Research area, for solving the classic Travelling Salesman 

Problem. In this problem the goal is to find the shortest distance between N 

different cities. 

C.4 Decision Trees 

Figure C.2 illustrates an example of Decision Trees using an algorithm called 

CHAID (Chi-square Automatic Interaction Detector) oriented to find the 

characteristics of a person likely to respond to a direct mail piece. These 

characteristics can then be translated into a set of rules. 

It is shown in Figure C.2 that 8% of all people who received a direct mail piece 

responded to the offer. However, if we split the group into those who own their 

home versus those who do not, we can see that 17% of renters responded to 

the piece whereas only 6% of owners responded. It is possible to continue 

separating the group into segments to find a segment most likely to respond. 

Respond 
8% 

Rent 
17% 
T 

Own Home ?" 

Family Income 

Low 
10% 

Med 
14% 

High 
25% 

Savings Account ? 

I 
YES 
16% 

NO 

Own 
6% 

Mortgage ? 

YES 
5% 19% 

Figure C.2 - Decision Tree application. 
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This segment can then be expressed as a rule such as "If the recipient rents, 

and if the recipient has high family income, and finally if the recipient does not 

have a savings account, then that recipient is likely to respond with probability 

of 46%. Or more simply, 46% of the segment with those characteristics is 

likely to respond to a direct mail piece. 

Another commercial application has been implemented by the company PMSI 

through one of its products called Galvano Decision Trees Data Mining. This 

tool establishes a link between descriptions of people (selected attributes) to 

the financial risk which they represent. The data comes from files of loans like 

those filed in the banks. The borrowers are described by a whole series of 

attributes: age, family circumstances, number of children, incomes, 

assembled saving, amount and duration of the authorised loan, etc, in order to 

determine a description of a good or bad course of the loan. The goal consists 

in finding the relationships between the various descriptive variables of the 

borrowers and the Good one or Bad risk. 

C.5 Discriminant Analysis 

A typical example of applying a discriminant analysis technique consists of 

identifying common customer group behaviours. Figure C.3 displays the 

distribution of a group of customers who show similar patterns when renewing 

certain products of commercial and extensive use (videos, computer games, 

CDs, car hiring, bicycles, etc.). 

The analysis consists of testing the factors leading to the non-renewal of a 

determined product. If it is possible to identify the right factors, the model 

should be able to use these factors to discriminate between those likely to 

renew and those likely to not renew. Observing the probabilistic distribution of 

customers in Figure C.3, it is possible to say that this outcome constitutes a 

'successful' discriminant analysis. The fitted model was able to find factors to 

separate those who renewed, from those who did not renew. Inevitably, there 

will be some variability in the scores within each of the groups, as is shown by 

the distribution of probabilities. A 'successful' discriminant analysis will be able 

to minimise the amount of overlap between these two distributions. 
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Another main goal of the above application is to make a prediction or tentative 

allocation for an unclassified entity (new customer). 

Discriminant Analysis 

© 
O 

to © # # # 
© O © © © © © o © © © 4> © © © © 

<§## # © © © © © © © © © © © 
70% 90% 30% 50% 10% 

Probability of Non-Renewal 
© 

Figure C.3 - Discriminant Analysis to classify similar customer behaviours. 

In another example concerning prediction, an economist may wish to forecast, 

on the basis of his/her most recent accounting information, those members of 

the corporate sector that might be expected to suffer financial losses leading 

to failure. For this purpose, a discriminant rule may be formed from 

accounting data collected on failed and surviving companies over many past 

years (McLachlan, 1992). 

Examples where prediction or tentative allocation have to be made for an 

unclassified entity, occur frequently in medical diagnosis, when the definitive 

classification of a patient often can be made only after exhaustive physical 

and clinical assessments or perhaps even surgery. In some instances, the 

true classification can be made only on evidences that emerge after the 

passage of time, for instance, an autopsy. Hence, frequent diagnostic tests 

are performed, based on clinical and laboratory-type observations without too 

much inconvenience to the patient. 
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APPENDIX D 

Regression and Correlation Analysis 

Multiple Linear Regression and Correlation Analysis are two statistical 

techniques widely applied in the area of KDD. This Appendix addresses their 

analyses and applicability. 

D. 1 Multiple Linear Regression Analysis 

Multiple Linear Regression is a statistical method for studying the relationship 

between a single dependent variable and one or more independent variables, 

(Allison, 1999). 

The term Multiple involves the existence of two or more independent 

variables. Linear means that the relationships between variables can be 

represented on a linear equation; in turn, a linear equation gets its name from 

the fact that if we graph the equation we get a straight line. The term 

Regression is harder to explain and it is associated with the early works 

undertaken by Sir Francis Galton (1822-1911) who used a linear equation to 

describe the relationship between heights of fathers and sons. He noticed that 

fathers tended to have sons who were taller than they were. He called this 

phenomenon "regression to the mean", and somehow that name was 

associated to the entire method. 

There are two major uses of multiple regression: prediction and causal 

analysis. In a prediction study, the goal is to develop a formula for making 

predictions about the dependent variable, based on the observed values of 

the independent variables. In a causal analysis, the independent variables are 

regarded as causes of the dependent variable, being the aim of the study to 

determine whether a particular independent variable really affects the 

dependent variable, and to estimate the magnitude of that effect, if any. 

For prediction studies, multiple regression combines many variables to 

produce optimal predictions of the dependent variable. For causal analysis, it 
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separates the effects of independent variables on the dependent variable, 

trying to examine the unique contribution of each variable. 

The main objective of regression analysis is to find appropriate regression 

coefficients to determine an optimum value of a dependent variable given any 

values assigned to the independent variables. Figure D.1-A shows the basic 

elements of multiple linear regression with k independent variables, using 

Schooling and Age as predictor variables of a person's Income. 

A ) Mul t ip l e Linear Regression Model 

Y = a + (b,*X,) + (b 2 *X 2 ) + . . . + (b k * X k ) ; 

I 

INCOME = 5.000 + (800 * Schooling) + (400 * Age) + (b k * X k ) ; 

Regression Coefficients 

Choose coefficients that make the 
sum of the squared prediction 
errors as small as possible 

IEE£> I b, = 

Y = Dependent variable; 
X, = Independent variables; 

= the intercept coefficient; 
the slope coefficients; 

B) The kth degree Polynomial Regression Model 

y = a + blx+b2x2 +...+bkxk; 

X r X 

(i) Quadratic model, b2 < 0 (ii) Quadratic model, b2 > 0 (Hi) Cubic model, b3>0, 

Figure D.1 - Basic elements of Multiple Regression (Linear and Polynomial). 

When simple linear regression is applied, the methods used to calculate the 

coefficients a and b, are too simple, as can be seen for the equations (D.1) 

and (D.2); however, the computations become quite complicated as the 

number of independent variables increases (multiple regression). 
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XCy, - )0(*, -x) 

i 

Equation (D. 1) 

a = y - bx; Equation (D.2) 

The Ordinary Least Squares is the method most often used to get optimum 

values for the regression coefficients. The goal is to compute those 

coefficients that make the sum of the squared prediction errors as small as 

possible. The sum of the squared errors is given by Equation (D.3). 

X [y.• - (« + bxi ) l 2 * Equation (D.3) 

There are some cases when linear regression models are not appropriate to 

represent the data being analysed, so, different models must be considered. 

Figure D.1-B shows an example of a polynomial regression model, plotting 

some common polynomial regression functions. 

There are non-linear relationships that can be appropriately transformed 

before applying a linear analysis, however, complicated methods must be 

used and there are also relationships that can not be linearised by 

transformations. A discussion of non-linear regression methods is beyond the 

scope of this section. 

The main drawback of multiple linear regression analysis is that all variables 

are required to be continuous (and thus, the attribute to be predicted). The 

use of categorical values (low/high, present/absent, etc.) results inappropriate 

and requires conversion mechanisms that sometimes do not guaranty a good 

determination of the magnitude of the difference between two values, which is 

crucial in regression analysis. 

D.2 Correlation Analysis 
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Another way of describing the relationship between two variables is using the 

Correlation Coefficient, more precisely called the Pearson Product-Moment 

Correlation Coefficien. Figure D.2 shows scatterplots for some correlation 

coefficient values. 

The correlation coefficient can have any value between -1 and +1. If the 

correlation between x and y is +1, then there is a perfect linear relationship 

between the two variables. That means that if we draw a scatterplot for data 

on xand y, the points will all lie exactly on a straight line, as in Figure D.2-a. 

a) Correlation = +1 b) Correlation = -1 

1 1 1 H 

c) Correlation = 0 

H 1 h 

d) Correlation = 0.50 

H 1 • 

• 0 • 

H h H • 

Figure D.2 - Scatterplots for various values of correlation coefficients. 

In Figure D.2-b a scatterplot for a correlation of -1 is showed. Again there is 

perfect linear relationship between x and y, but now it is an inverse 

relationship: as x increases, y decreases. 

In Figure D.2-c, we see a scatterplot for two variables that have a correlation 

of 0. In this case there is not linear relationship between xand y. If we were to 

draw a least squares regression line for Figure D.2-c, it would be a horizontal 

line passing through the mean of y. In other words, the slope would be 0. 
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Finally, Figure D.2-d shows a scatterplot corresponding to a correlation of 

0.50. In this graph, there is a relative tendency for y to go up as x goes up, so, 

if we drew a least square regression line, there would be a good deal of 

scatter around the line. In general, it is possible to affirm that the correlation 

coefficient measures the degree of scatter around a regression line (Allison, 

1999). 

Regression and correlation are closely related. One way is when the slope 

coefficient is 0, then the correlation coefficient must also be 0, and vice versa. 

The correlation coefficient is often denoted by the letter r and can be written 

as: 

S xv 
ryy =——; This expression says that the correlation is equal to the 

covariance of x a n d / divided by the standard deviation of xmultiplied by the 

standard deviation of y. One point to observe here is that both r and b (the 

regression slope coefficient) have the same numerator (the covariance). That 

means that if one of them is equal to zero, the other must also be zero. It also 

has a major practical implication: testing the hypothesis that r= 0 is equivalent 

to testing whether b = 0, so, there is no need for two distinct tests. 
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APPENDIX E 

Table E.1 - Test Data for Turning Operation (TTS). 

Test# Seco Material 
Group 

Grade Chipbreaker Insert Type 

1 1 TP100 M3 WNMG 

2 8 TP300 M3 WNMG 

3 14 TP05 M4 CNMA 

4 6 TP100 M3 SNMG 

5 2 TP200 M5 SNMG 

6 12 TP100 MF2 WNMA 

7 3 TP200 R4 DNMM 

8 12 TP05 M4 CCMT 

9 10 TP40 MF3 CNMG 

10 9 TP 15 F l VBMT 

11 1 TP300 F l VBMT 

12 5 TP 15 MF2 WNMG 

13 3 TP200 M5 TPMR 

14 4 TP25 M3 TPMR 

15 10 CP50 MF1 WNMG 

16 9 TP300 M3 WNMG 

17 13 TP 10 MF2 CNMG 

18 7 TP20 M5 TNMG 

19 15 TP 100 M3 CNMG 

20 12 TP 10 M4 CNMG 

21 3 TP100 MF2 DNMG 
22 1 TP200 MR7 SNMG 

23 8 TP40 M3 TPMR 

24 6 890 MF1 SNMG 

25 11 TX150 M5 SNMN 

26 4 TP200 M3 CNMG 
27 13 TX10 M5 TP UN 

28 14 TX150 M5 SNMG 
29 7 TP 100 MF2 DNMG 

30 2 TP200 M5 DNMM 

31 10 TP35 MR7 CCMT 
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