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A B S T R A C T 

The nature and structure of stock-market price dynamics is an area of ongoing and 

rigourous scientific debate. For almost three decades, most emphasis has been given 

on upholding the concepts of Market Efficiency and rational investment behaviour. 

Such an approach has favoured the development of numerous linear and nonlinear 

models mainly of stochastic foundations. Advances in mathematics have shown that 

nonlinear deterministic processes i.e. "chaos" can produce sequences that appear 

random to linear statistical techniques. Til l recently, investment finance has been 

a science based on linearity and stochasticity. Hence it is important that studies of 

Market Efficiency include investigations of chaotic determinism and power laws. As 

far as chaos is concerned, there are rather mixed or inconclusive research results, 

prone with controversy. This inconclusiveness is attributed to two things: the nature 

of stock market time series, which are highly volatile and contaminated with a sub

stantial amount of noise of largely unknown structure, and the lack of appropriate 

robust statistical testing procedures. In order to overcome such difficulties, within 

this thesis it is shown empirically and for the first time how one can combine novel 

techniques from recent chaotic and signal analysis literature, under a univariate time 

series analysis framework. Three basic methodologies are investigated: Recurrence 

analysis, Surrogate Data and Wavelet transforms. Recurrence Analysis is used to 

reveal qualitative and quantitative evidence of nonlinearity and nonstochasticity for 

a number of stock markets. It is then demonstrated how Surrogate Data, under a 

statistical hypothesis testing framework, can be simulated to provide similar evide

nce. Finally, it is shown how wavelet transforms can be applied in order to reveal 

various salient features of the market data and provide a platform for nonparametric 

regression and denoising. The results indicate that without the invocation of any 

parametric model-based assumptions, one can easily deduce that there is more to 

linearity and stochastic randomness in the data. Moreover, substantial evidence of 

recurrent patterns and aperiodicities is discovered which can be attributed to ch

aotic dynamics. These results are therefore very consistent with existing research 
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indicating some types of nonlinear dependence in financial data. Concluding, the 

value of this thesis lies in its contribution to the overall evidence on Market Effi

ciency and chaotic determinism in financial markets. The main implication here is 

that the theory of equilibrium pricing in financial markets may need reconsideration 

in order to accommodate for the structures revealed. 

xvii 



C H A P T E R 1 
Introduction 

1.1 Chaos and Markets 
The term "Chaos" comes from the Greek word "x&oc;" and in its original co

ntext is used to signify a complete lack of order. In mathematics it has a deeper 

meaning. Chaos is used to characterise nonlinear deterministic dynamical systems. 

The mathematical theory of Chaos1 deals with systems that exhibit nonlinearities, 

determinism, non-periodic cycles and strong imbalances. In such systems, violently 

oscillating behaviour can occur even for very small perturbations in their initial 

states. As a paradigm, it is very popular in physical sciences as the phenomena 

there reveal a plethora of characteristics consistent with chaos. Moreover, chaos in 

the sense of nonlinear determinism can be detected easily in such sciences as the 

processes examined are usually known or controlled and the outside factors, na

tural or artificial, can be easily determined most of the times. Thus any external 

processes that may be generating noise contaminating experiment measurements, 

can normally be determined a priori. This makes research work more easy as the 

nonsystematic noise components can be identified and filtered. Usually, the nonsto-

chastic nature of many physical or physiological phenomena, such as EEG signals 

and earthquake measurements, can be revealed successfully even with large signal 

to noise ratios in the original measurements. 

Social sciences and especially Economics or Finance, are a different case. The 

structures of the phenomena observed there are "assumed". The assumptions are 

based on the notion of a well defined equilibrium relationship and logical premises 

which should ensure stability. Balance is ensured within a "rational" context and 

usually under the protection of an all-important "ceteris paribus" clause. Major co

ntributing factors here are the decision rules of individual agents. Their attitude is 

1 Chaos was developed by many different independent efforts. See Gleick's book (1987) where 
all the issues regarding this theory are covered in a non-technical way. The book by Prigogine and 
Stengers (1984) is also an excellent reading and has become one of the recent science bestsellers in 
this area. 

1 
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assumed to abide to certain expected utility axioms. For example, financial market 

models were designed to reside upon a convenient framework based on market cle

aring conditions owing themselves to the Rational Expectations Hypothesis. Adam 

Smith's thinking that all agents in an economy will try individually to improve their 

position and their collective efforts would lead to a kind of overall optimum, seems 

to have influenced greatly economic thought in this case. In our example of the 

stock market, all those who participate, say the traders, are assumed to be "ratio

nal". According to the Efficient Market Hypothesis (EMH), their beliefs about the 

market and about each other as well, will be reflected in the market prices as all 

available information for a homogeneous commodity, is common knowledge. As a 

result, all deviations from rational expectations would be reflected in market prices 

and immediately counterbalanced by the trading community. After almost three 

decades of continuous debate on the EMH issue and a range of often utterly unanti

cipated market shocks, the EMH remains still a dubious, not to say a controversial 

hypothesis. Especially after the market crash of 1987, many research papers have 

focused on the issue of whether the weak and semi-strong form of the EMH should 

hold or not. 

The establishing of the EMH has necessarily been based on "linear thinking". 

During the 60s and 70s, most of the models devised to explain stock market dynamics 

were based on linear premises. The tests used on price data, in order to explain 

generating processes, were themselves linear as well. Most of these were evolving 

around explorations of linearity based on first and second moments and were mainly 

tests of independence and randomness.2 Successive non-random price changes would 

allow for trading rules leading to above-normal earnings and hence the EMH would 

not hold. The weak form of EMH was put under scrutiny by tests of randomness 

and the semi-strong form by market anomaly studies. 

The EMH, although very attractive as a theory, did not provide any explana

tions on what exactly is the significance for the stock market as a system to have all 
2 See earlier works of Working (1934, 1960a, 1960b, 1962, 1963, 1947a and 1974b also in Working 

and Peck 1977), Samuelson (1965) and Fama (1965) and the excellent book by Granger and 
Morgenstern (1970). See also Cowles (1933,1937 and 1960). Most of the earlier and seminal works 
can be found in the famous collection by Cootner (1964). 
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relevant information reflected on the prices of the securities. The answer was given 

by the development of the Asset Pricing Theory. Its foundations were the modern 

portfolio theory and the Capital Asset Pricing Model also known as "CAPM". Al

though we will discussing these more extensively in chapter 2, we should mention 

here that their theoretical premises were to be put to the test alongside the EMH. 

Moreover, given that most risk strategy policies have their foundations within th

ese theories, it is inevitable that any proof against the EMH, would have serious 

implications on how agents perceive and account for financial risk. 

1.2 Information and noise 
Information, even when freely disseminated, is not always accurate and free 

from irrelevant to the issue news. In most sciences, these are termed as "noise". 

According to Black (1986), "Noise makes financial markets possible, but also makes 

them imperfect". Informational efficiency describes a market situation in which all 

security related information is reflected on the price of the security. There are no 

implications though about the context and the quality of the information itself. In 

this sense, the information that is contained in security market prices may or may not 

be related to their fundamental values. The notion then of fundamental efficiency 

is a more precise proposition as this certifies that prices are indeed indicators of 

the intrinsic value of a security. The fundamental empirical research question is 

then posed: How may one distinguish between noise and information in such a way 

that information on the fundamental value is obtained and used? Another way of 

putting this question is what is the nature and the quality of noise? Unfortunately, 

in social sciences one may only speculate on these issues as noise and information is 

not a physically observable quantity. In physics or engineering for example, many 

experiments deal with matter or energy which can be measured accurately even 

when their processes are not always free from measurement errors and random, 

unanticipated factors-events. Knowledge of physical laws and careful calibration of 

the instruments may enable the researcher to approximate extremely well the noise 

processes and "filter them out". 

In Finance particularly, there are two major problems. Firstly, the measu-
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rement functions themselves are not well defined. We can only assume that the 

prices reflect all socioeconomic activity that generates them. Secondly we have no 

real or exact knowledge of the laws behind the dynamics of the processes observed 

and termed as "financial markets". In other words, we anticipate that all system 

dynamics are captured by the pricing mechanisms and reflected fully in the observa

ble quantities such as closing prices, volumes etc. etc. There is no way of a-priori 

establishing the informational quality of these observations or the nature and cau

ses of the noise, if this indeed exists within the measurements. Above these issues, 

there is often no clear-cut indication of how natural, liquidity or regulatory factors 

restrain the dynamics and affect the equilibrium positions of markets. For these 

issues we can only speculate. Frequently research will hide behind the protective 

cape of stochasticity and randomness and according the law of large numbers, the 

great assumption will be that eventually, all non-systemic factors should fade away 

on average, revealing the true dynamics of the markets. 

Due to necessity, various models have been devised through the years to 

account for most the matters we discussed so far. Based on noise-theory and empiri

cal evidence, economists have tried to explain if and how or why markets are infected 

by unrelated information to fundamental asset values. Models such as the ones re

ferring to "noise trading" and ideas such as "irrational exuberance"3, attempt to 

show how contaminating information due to ill-informed or non-rationally behaved 

investors may cause feedback and frictions to the system that can not be arbitraged 

away in the EMH fashion. In his early "Noise" paper, Black (1986) provides an 

excellent, very insightful discussion of these issues. As Black analyses his ideas, one 

discerns in these something very close to the notion of chaos although they were 

never identified as such. 

1.3 Complexity and Chaos 
Financial markets as socioeconomic phenomena or systems, are undoubtedly 

very "complex" (Anderson and Arrow, 1988). There is no globally agreed definition 
3 I n Shiller (2000): "Was Federal Reserve Chairman Alan Greenspan right when he referred to 

current investor behaviour as "irrational exuberance" in a 1996 speech?". 
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of complexity. According to Peters (1999a), they exhibit "global structure and local 

randomness". Structure leads to strength, randomness leads to "innovation and 

resilience". Chaos and complexity are not exactly synonyms. Day (1994) provides 

a broader definition. According to his, complex dynamics will not tend to a limit 

cycle, fixed point or explode, their behaviour may be discontinuous and may be 

sufficiently described by a set of nonlinear differential or difference equations that 

may also contain stochastic terms. Both Peter's and Day's definitions allow for chaos 

and its predecessor, catastrophe theory, developed by the French mathematician 

Rene Thorn in 1975. 

So why one would accept complexity or chaos as a valid paradigm for financial 

dynamics? An important point here is that complex-chaotic systems react more 

efficiently to outside stimulus and have the ability to self organise. This is what 

makes the search for chaos in finance an interesting one. The complexity is reflected 

in their observable output and financial time series are such an output. Empirical 

investigation has revealed a wealth of levels of complexity, structure and randomness 

which have not been adequately or convincingly explained until today. 

Due to the significant amount of feedback, the dynamics of financial market 

systems are assumed to be influenced by a multitude of interacting agents in a highly 

nonlinear fashion. This alone is a sufficient reason for complexity. And chaotic, un

like stochastic processes, allow for such complexity. Unfortunately, standard linear 

methodologies will not pick up these processes or will misinterpret them for ran

domness. Not surprisingly, early research on prices and returns has reported small 

autocorrelations (linear feedbacks) and weak nonstochastic structures. This led to 

the initial support of the market efficiency notion. Original sequences were often 

revealed to be stationary and random, individually identically distributed. Since 

then, the continuous exploitation of arbitrage opportunities led to increased scaling 

in measurements (high frequency tick by tick data), and availability of information 

on various levels. The new data revealed novel structures. Today the research focu

ses on extreme events, scaling or power-laws, heavy-tailed distributions, chaos and 

fractals, long memory, switching regimes and asymptotic stationarity such as in the 

ARCH-GARCH type of models. During the last ten years or so, tools from the 
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area of statistical physics have been employed for the investigation of the dynamics 

of financial time series. The combination of ideas from economics and physics has 

lead to the development of the new term "econophysics". Conferences are held with 

this context, books are written and physics departments hold tutorials and worksh

ops on "phynance."4 Moreover, numerous papers have appeared in Physica A and 

other interdisciplinary journals identifying the need to provide plausible explana

tions to the complexity of financial phenomena. These facts show the concerns of 

the academic community about the issues discussed here as well as the necessity to 

break free from conventional modelling approaches and investigate financial dyna

mics with every available tool. Especially when the observables from the financial 

markets are claimed to resemble the complexity and dynamics of some phenomena 

in the physical sciences. 

1.4 Mandelbrot, chaos and finance 
The EMH implicitly assumes investor rationality. However, many markets, 

especially the emerging ones, are characterised by nonrational in the sense of non 

risk averse investment behaviour. This kind of behaviour may be the cause of mar

ket imperfections that lead to nonlinearities and feedback in the price generating 

processes. Benoit Mandelbrot, a student of Paul Levy, initially wrote a number 

of original papers between 1962 and 1972 (see collections Mandelbrot, 1999b and 

1997a) which have been by and large ignored and he eventually was treated as an 

outsider. He was the first to identify that prices did not exhibit any continuity and 

that there was substantial volatility clustering. Patterns seemed to change continu

ously and the root mean squared deviations did not seem to stabilise asymptotically. 

This was a clear indication that stochastic Brownian motion was not an adequate 

representation for the dynamics of such sequences. Using elements of the "stable 

Paretian" theory, he deduced that price changes were not Gaussian, but "fat-tailed", 

with numerous outliers. Following these findings he advanced to search for cyclical 

and long memory structures that could explain variants of Brownian motions for 

4 See for example conferences: h t t p : / / f e l i x . p h y s i c s . s u n y s b . e d u / U G / p h y 6 8 0 0 4 . h t m l , or 
h t t p : / / w w w . u n i f r . c h / e c o n o p h y s i c s / p r i n c i p a l / e v e n t s / d u b l i n _ 9 9 . h t m l or the book by T h 
omas Baas (2000) " The Predictors: Adventures in High Phynance". 

http://felix.physics.sunysb.edu/UG/phy68004.html
http://www.unifr.ch/econophysics/principal/events/dublin_99.html
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price-fluctuation dynamics. Most of this history is beautifully described in Mirow-

ski's 1990 paper (see also Mirowski, 1989). Since then, the advances in information 

technology, have enabled researchers to employ tools that could find what Mandel

brot saw in the data. The results were not conclusive as we shall see in the next 

chapter. 

Mandelbrot (1999c) made a comeback in 1999 with his Physica A article "Re-

normalisation and fixed points in finance, since 1962". A modified version appeared 

in Scientific American. There he discusses that financial time series may have a kind 

of a "fractal" nature. He has demonstrated that series can be simulated that appear 

as the original financial returns sequences and exhibit the same stylised facts, but 

are not exactly stochastic. Mandelbrot discusses his idea about a "multifractal" 

structure. The skeptical would point out that he has used "reverse engineering" 

without providing a theoretically sound framework that allows for this kind of stru

cture. His point though, well taken, is that he proposes this as a means of estimating 

the "probability of what the market might do" rather than forecasting a financial 

shock. 

On the opposite side of the issue is Granger (1994) and Malliaris and Stein 

(1999). They do not readily accept chaos and fractality as a plausible explanation 

for market dynamics. Granger's skepticism is based on the fact that long-term 

forecasting is not possible under the deterministic chaos hypothesis. Malliaris and 

Stein show through Bayesian statistical analysis that a model can be formulated 

that allows for types of noise consistent with a GARCH generating processes and 

random price fluctuations but not necessarily deterministic chaos. 

Concluding, it seems that the question of deterministic-chaotic financial dy

namics, as posed by Mandlebrot's work and his followers, is an open issue that has 

generated considerable debate and led to no conclusive result so far. The nature of 

this question is also a philosophical one that may as well lead us back to rethinking 

or reevaluating at least fundamental premises in Adam Smith's and other pioneers' 

works. Until an adequate analytical dynamical equilibrium model can be devised 

that generates output explained clearly and globally by market observations, this 

question will remain open and create a lot of controversy and scientific debate. 
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1.5 About this thesis 
This thesis belongs to the domain of nonlinear time series analysis and evolves 

around three empirical essays. These essays are focused on revealing hidden features 

of stock market data that are consistent with the hypothesis of a deterministic rather 

than stochastic underlying data generating process. We concentrate on the empirical 

investigation of nonlinear deterministic structures (i.e., chaos) within financial time 

series and more precisely on daily frequency closing prices of stock-market indices 

and their corresponding logarithmic returns. Chapters 5, 6 and 8 are the empirical 

essays. Chapter 2 contains the literature review and chapters 3, 4 and 7 are dedicated 

to background theoretical information on the techniques and methodologies used in 

the empirical part. The mainstream approach is that of a univariate discrete 

time series analysis framework. 

Problem Statement: The problem tackled in this thesis is how an array of novel 

qualitative and quantitative time series tools can be utilised to reveal hidden patterns 

in the data, not explained by the premises of the Efficient Market Hypothesis. We 

examine the methodologies of Recurrence Analysis, Surrogate Data Analysis and 

Wavelet Transforms. 

In this thesis we use mainly two different approaches. We employ methodologies 

developed for the examination of chaotic deterministic time series and Wavelets. 

These methodologies have been applied successfully in physical sciences and produ

ced often conclusive results. As far as we know, only a few applications of these 

exist in the financial literature, under different contexts. Based on research from ch

aos theory and dynamical systems we endorse here Recurrence and Surrogate Data 

analysis on financial time series. We rely on a basic topological theorem by Takens 

(1981) which dictates that all available dynamics are captured within the output 

of any system. Using this output, and under certain general assumptions, we can 

regenerate these dynamics in a kind of a pseudo phase-space through a technique 

called "Embedding". Provided that this embedding is successful, we can then apply 

statistical techniques to examine the existence or absence of stochastic randomness 

or to reveal qualitative information on the structure of the dynamics. For the latter, 
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we employ Recurrence plots originated by Eckmann et ai, (1987) and "Recurrence 

Quantification Analysis", as developed by Webber and Zbilut (1994). Chapters 3-5 

deal with this subjects. Following the discovery of structures that reveal substa

ntial absence of stochasticity, we turn to "Surrogate Data Analysis" in chapter 6, 

in order to provide a statistical hypothesis testing framework to refute stochastic 

linearity for our series. This is a methodology based on permutation testing, very 

similar to Efron's idea of Bootstrapping but with significant differences. The results 

there indicate that there is statistically significant absence of stochastic linearity in 

stock market returns. For both empirical essays 5 and 6, The data used are in their 

raw form. They have not been pre-whitened or pre-filtered in any way as prepro

cessing may affect the validity of tests and results and hinder our efforts to reveal 

deterministic structures. 

Given that Takens (1987) theorem is based on an infinite amount of noise-

free observations and following the results of previous research which indicates the 

existence of a significant amount of noise in finite financial time series, we propose 

a nonparametric model-free filtering approach based on Wavelet theory. Wavelets 

are functions which enable us to model time series in time and frequency domain. 

Moreover, wavelets are able to capture localised events and denoise highly irregular 

sequences. Their application ensures that any sequence is examined as a whole as 

well as in parts. In this way, even the smallest discontinuity is identified and pre

sented. Needless to say that wavelet filtering has already been applied successfully 

on chaotic time series and revealed a wealth of information while identifying corre

ctly nonlinear deterministic structures. In econometrics, they have been used so far 

mainly for long-memory empirical investigations on financial time series. Using the 

continuous wavelet transform we show that there is significant self-similar structure 

within the returns sequences of the FTSE ALL SHARE market index. Moreover, 

we use the discrete version of the transform to conduct wavelet based denoising. 

According to the properties of wavelet functions, such filtering should leave any de

terministic signatures in the returns untouched. The pure noise obtained shows that 

the filtering has worked remarkably well, without any model-based parametric assu

mption about the data generating process. We then examine the denoised sequence 
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with the methodologies already covered in chapters 5 and 6, in order to establish 

whether there are indeed deterministic chaotic structures. The results indicate that 

there are substantial nonlinear aperiodicities and deterministic components. The 

dynamics seem to be interrupted only during severe financial shocks. The overall 

attitude of the index is inconsistent with the assumptions of the EMH and sto-

chasticity. Concluding, the results suggest that indeed, there is no homogeneous 

structure based on stochastic premises, but nonlinear determinism is evident within 

the dynamics. The implication here is that the EMH should probably be modified 

in order to account for these kind of structures. 

1.5.1 Software and data 

For the empirical parts of this thesis we have utilised widely available software. 

We concentrated on using mainly General Public License software (GPL) such as R5 

for some of the statistics and GNU PLOT 6 for some of the diagrams. We experimented 

with the same algorithms and data under both Microsoft Windows 20007 and Linux 

operational systems (Linux Mandrake8 versions 7 to 8.2). More precisely, we used 

S-Plus 20009, R versions 1.4.0 and 1.5.1 and Matlab 1 0 (releases 11 and 12) for most 

of the numerical simulations and estimations. R is an object-oriented GPL S-Plus 

clone, regarded by most as far superior to its copyrighted counterpart. 

In order to obtain some particular measurements and graphical plots which are 

not part of the standard econometric and signal analysis libraries, such as recurrence 

plots (chapters 5 and 8), we used 3rd party applications, freely available for research 

over the web. For recurrence plots and recurrence quantification analysis, we used 

VRA (Visual Recurrence Analysis) version 4.2 1 1 under Microsoft Windows 2000. We are 

grateful to E. Kononov, the programmer of VRA and financial analyst for his useful 

comments and guidance. The VRA program is extremely versatile and produces 

Software's homepage: http//www.r-project .org 
6Related webpage: http://www.gnuplot.info 
7 Microsoft©: http: //www.microsoft. com/windows2000/ 
Operational System's webpage: http://www.mandrakelinux.com/en/ also available from 

ftp://ftp.mirror.ac.uk/sites/sunsite.uio.no/pub/unix/Linux/Mandrake/Mandrake/8.2/i586/ 
9http://www.insightful.com 

1 0Mathworks website: http://www.mathworks.com 
u Available on-line from: http://pwl.netcom.com/~eugenek/download.html 

http://www.r-project
http://www.gnuplot.info
http://www.microsoft
http://www.mandrakelinux.com/en/
ftp://ftp.mirror.ac.uk/sites/sunsite.uio.no/pub/unix/Linux/Mandrake/Mandrake/8.2/i586/
http://www.insightful.com
http://www.mathworks.com
http://pwl.netcom.com/~eugenek/download.html
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very good results with datasets up to a million observations in size. For obtaining 

most of the chaotic invariant statistics, we used TISEAN 2.01 1 2 under both Microsoft 

Windows 2000 and Linux Mandrake 8.2. Finally, we should mention that this thesis' 

typesetting was conducted entirely on WT^i2s.13 

1.6 Concluding remarks 
So far we have clarified that this thesis is based on the empirical investigation 

of nonlinear deterministic structures in stock market data. As such an investi

gation, it will be concentrating on a specific set of methodological tools proven to 

work in other disciplines. It is evident from the examination of the "nonlinearities" 

empirical finance literature, that there is an extensive set of methodologies which are 

not utilised in this work. For example, we avoid the area of nonlinear econometrics 

such as Switching Regime models and Time-Varying Smooth Transition Autore-

gressive models (STAR). We have also not considered Artificial Neural Networks 

approach for the standardised criticism that applies to these models regarding their 

poor out-of-sample performance and overfitting of data. Most of the models mentio

ned above are treated in texts such as Franses and Dijk (2000), Tong (1990, 1993) 

and Granger and Terasvirta (1993) among others. Our approach differs to theirs in 

the sense that we adopt a more "systemic" view of the dynamics. Without parame-

terising the phase-space of the market system, using techniques from topology and 

chaos theory, we simulate and examine the dynamics in a pseudo phase-space. Our 

main interest is to discover limit attitudes consistent with chaotic determinism. A 

possible direction for future research would be to see how well our approach would 

compete with the earlier mentioned methodologies. 

2Software's homepage: http: //www.mpipks-dresden.mpg.de/~tisean/TISEAN_2. l/index .html 
3 T h e MikTex version, which is available online from: http://www.miktex.org 

http://www.mpipks-dresden.mpg.de/~tisean/TISEAN_2
http://www.miktex.org


C H A P T E R 2 
Literature review 

2.1 Introduction 
A thesis that deals with the structure of time series of stock market data, will 

have sooner or later to provide a discussion on the issue of Market Efficiency (ME). 

The Efficient Market Hypothesis is explained in more detail in section 2.2 and has 

been the most influential premise in early financial literature. It has shaped the 

methodological approach of many an empirical or theoretical problem. Numerous 

pieces of research have provided very strong support to this idea whereas other 

results have shown even stronger evidence against it. Til l present, views are mixed 

end ME remains a controversial scientific area. 

In this thesis we demonstrate the use of an alternative univariate time series 

analysis framework, in exploring and if possible explaining the dynamics of stock 

market prices. In this sense we expand the toolkit used so far to support or refute 

market efficiency. Consequently, a relevant discussion to efficiency can not be ab

sent from the literature review. In this chapter we present early as well as recent 

works on the field. We also refer to research that has provided new views on the 

underlying dynamics of financial time series, such as overreaction and contrarian 

investment. We also provide a brief outline of the new approach that suggests the 

existence of deterministic rather than stochastic structures for stock market prices. 

We will be examining this in chapters 4,5 and 6 where we explore the applicability 

of methodologies derived from chaos theory in financial time series analysis. Finally, 

we provide a brief discussion on wavelets as a new method of time series analysis 

and decomposition. These will be more rigorously treated in chapters 7 and 8. 

2.2 The basics 
A large number of studies over the past century have suggested that certain 

asset prices, or at least some aspects of the factors of their generating mechanisms, 

can be predicted. It is still debatable though whether the academic community 

12 
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has endorsed a fully acceptable theory about what these generating mechanisms 

may be. Systematic examination of stock market prices structure and variability 

has intensified during the last half of the past century. The last thirty years have 

been invested in the examination of price movements in the capital markets under 

the concept of ME. The core problem being that of the evaluation of the Efficient 

Market Hypothesis (EMH). The EMH (not to be confused with the notion of "Pareto 

efficiency"), as presented by Fama (1970), states (in its "strong" form) that all 

available information is fully reflected in the assets' prices. The origins of this 

idea have been originally attributed to Louis Bachelier (1900). His dissertation 

(reprinted in Cootner, 1964), based on the random walk and martingale models, 

was to influence financial thought profoundly. Bachelier introduced the "Brownian 

motion" (or "Wiener Process") as a model for interpreting the Paris stock market 

price fluctuations.14 

It was Fama (1970) that provided what was publicly accepted as early evi

dence in support of the EMH. His research identified the three classifications of 

financial markets, according to their informational context: weak form, semi-strong 

form and strong form efficient. Weak form efficiency implies that all relevant in

formation is included in the past history of stock prices or returns. Semi-strong 

form, encompassing weak form efficiency, suggests the incorporation of other publi

cly available information such as new issues, changes in dividend yields and stock 

splits to name but a few. Finally, strong form efficiency contains the information 

set of both previous forms and focuses on privileged-private information i.e., on the 

monopolistic access to specific information by some group of investors only. 

Since the 60s, a large number of empirical studies has supported or attacked the 

EMH. So strong were the early research findings in favour of the EMH that Jensen 

et al, (1978) have called it the best established empirical fact in economics. Recent 

results tend though to stress the fact that the EMH fails to provide an adequate 
1 4 T h e discovery of Brownian motion is usually attributed to Einstein due to his famous 1905 

paper but was anticipated by Bachelier five years earlier. Bachelier's models were studied again, 
some 60 years later by the Nobel laureate Samuelson (1965) and during the 60s by Mandelbrot (see 
in Mandelbrot's collections, 1997a and 1999b). Prices under the Brownian motion framework are 
allowed negative values. Samuelson remedied this by introducing the geometric Brownian motion, 
defined as the pathwise solution Xt = XQ exp(aWt+mt) of the linear stochastic differential equation 
dXt = aXtdWt + [iXtdt (where Wt denotes a standard Brownian motion and m = fi — 
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representation of market reality. On the other hand, no competing theory proposed 

so far, has been accepted by both the academic community and the markets as a 

candidate for the replacement of the EMH. 

The tests of the EMH can be clusterised in 3 main categories according to 

Fama (1991). Weak form efficiency tests are now being termed as tests of "return 

predictability". Volatility tests, autocorrelation in returns tests, methods of fore

casting returns with dividend yields and term structure variables, tests for market 

anomalies and chaotic dynamics belong to this wide category. Semi-strong form te

sts are termed "event studies". These focus on the economic impact of firm-specific 

or economy-wide events on asset prices. As "events" may be characterised invest

ment and financing decisions which include changes in management and corporate 

control, mergers and acquisitions, earnings or macroeconomic indicators announce

ments, changes in the regulatory and political environment and other. Finally and 

intuitively, strong-form tests are renamed "tests of private information". These 

study the impact of insider trading, the performance of money managers, invest

ment consulting services such as the well known case of the "Value Line enigma" 

(Copeland and Mayers, 1982) and other similar activities. 

2.2.1 The early literature 

The idea of an "intrinsic" or "fundamental" value around which the security 

price is expected to fluctuate, appeared not to be consistent with reality. Cowles 

(1933) suggested that forecasting on the base of fundamental analysis was a waste of 

money and brokerages operating in this manner were not outperforming the market. 

Working (1934) realised that cumulated series of individually, identically distributed 

(i.i.d.) shocks had the same appearance as those patterns exhibited by stock prices. 

Again, Working (1960) provided evidence in support of the randomness of stock 

prices by demonstrating the existence of spurious correlation between random walk 

data averaged over time. Kendall (1953) found that stock prices did indeed follow 

a random walk as earlier suggested by Working. Granger and Morgenstern (1963) 

and Godfrey, Granger and Morgenstern (1964), using spectral analysis, supported 

the same result. However, all these results have been remarkably accounted for in 
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Bachelier's original thesis in 1900 who has anticipated many mathematical results. 

2.2.1.1 The E M H in developed and developing markets 

Kendall (1963) using serial correlation coefficients for the first difference of 

weekly London Stock Exchange price indices, has examined the random character 

of the price fluctuations. This method was applied to weekly data from the New 

York Stock Exchange by Cootner (1962) and Moore (1964). The result was some 

evidence of correlation. Using the set of the 30 Dow Jones industrial index US 

companies, Fama (1965) produced evidence in support of the dependence between 

the price changes. Kemp and Reid (1971), by applying non-parametric methods on 

British data, have also found evidence of the same kind of dependence. Conrad and 

Juttner (1973), utilising parametric and non-parametric methodologies, have reje

cted the random walk hypothesis for the German Stock market. Serial correlation 

tests were employed by Dryden (1970), Jennergen and Korsvold (1974 and 1975) 

and Roux and Gilbertson (1978) in their studies of testing the weak form efficiency. 

Australian share prices were examined by Praetz (1969, 1973, 1979). Wong and Kw-

ong (1984), using daily closing prices of 28 Hong Kong stocks, concluded that weak 

form efficiency cannot be supported for the Hong Kong market. Ang and Pohlman 

(1978) studied the Australian market as well as that of Malaysia, Hong-Kong, Japan 

and Singapore. Solnik (1973) collected data from 234 stocks from Belgian, British, 

Dutch, French, Italian, German, Swiss and Swedish stock markets. Cooper (1982), 

using spectral analysis, runs tests and correlation analysis, has reviewed weekly and 

daily data from 36 countries and found that only for the USA and UK markets the 

random walk hypothesis is clearly supported. 

A number of papers, utilising conventional statistical methodologies, examined 

the applicability of the EMH in developing economies. Hong (1978) has tested 

for weak form efficiency on the Singapore Stock Exchange and did not reject the 

random walk hypothesis. Ang and Pohlman (1978) supported the weak efficiency 

for the same stock exchange. Barnes (1986) finds the Kuala Lumpur stock market 

to be inefficient. The inefficiency of the Kuwaiti stock market has been examined 

by Gandhi et ai, 1980. Butler and Malaikah (1992) report that the Kuwaiti market 
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is not inefficient and they provide evidence for the lack of efficiency of the Saudi 

Arabian market. Panas (1990) has investigated the efficiency of the Athens stock 

market using monthly returns and an array of nonparametric tests. Recently, Los 

(1999) examined the ten year weekly data history (1986-1996) of six east Asian 

markets. He ranked them according to their level of efficiency: Singapore, Thailand, 

Indonesia, Malaysia, Hong Kong and Taiwan (the latter being the most inefficient 

ones). Antoniou et al., 1997, examining the evolution of the Istanbul Stock Exchange 

suggest that efficiency comes wi th high trading volume, reliable information and 

institutional reforms. 

2.3 Bubbles, fads, anomalies and overreaction 
In the last two decades, a number of financial phenomena have been exhibited 

for which no undisputable probabilistic models have yet been developed. For exa

mple, Smith et al., (2000) during a set of experiments, had all uncertainty regarding 

the formation of price expectations 1 5 eliminated by making known to all partici

pants the distribution of future dividends. Thus one would expect a deterministic 

price process. In fact, more than 50% of the set of experiments were exhibiting price 

bubbles followed by crashes wi th respect to intrinsic dividend value. This is a clear 

contradiction to what should occur under the E M hypothesis. 

There is also a growing collection of literature focusing on tests of weak and 

strong form efficiency, providing evidence against the E M H . Evidence of predictabi

l i ty of stock and bond returns, has come under the guise of autocorrelation patterns 

within their structure. Fama and French (1988) claimed that returns could not be 

predicted by using their history as stock prices follow a random walk. Conrad and 

Kaul (1988 and 1989) provide evidence that short-horizon returns are positively cor

related. Lo and Mackinley (1988 and 1990) support the same finding. Poterba and 

Summers (1988) and Fama and French (1988) also report negative autocorrelation 

for long-horizon stock returns. Moreover, fads, mean reversion, market overreaction 

and time-varying expected returns, are all concepts emerging from the attempt to 

model market inefficiency and provide a suitable explanation for correlation in re-
1 5Based solely on dividend forecasts. 
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turns. The question remains, as to which of these three concepts is the correlation 

clearly attributed to. Unt i l now studies have not led to a widely accepted disti

nction between them. The fads literature suggests that psychological factors, noise 

and feedback trading can influence investors in their investment decisions (Shiller, 

1984 and 1989 and Black, 1986). 

DeBondt and Thaler (1985 and 1987) introduce the overreaction model (see 

also Shefrin and Statman, 1985). Under the E M H , investors' reactions to market 

signals at any time, are specific to the available information set at that time. This 

information set contains past experience and expertise (asset price history, funda

mentals, heuristics, scientific theory). New information is filtered and classified 

according to a set of investors' learning rules which have not been identified yet. 

In theory, the most popular available learning rule is that of Bayes but this has 

not been established as an apt characterisation of how investors react to new infor

mation. There has been substantial evidence that individuals tend to overweight 

recent information and disregard prior input (as "a-priori beliefs"). Although Bayes 

rule implies that investors should "weigh" new information by some consistent rule 

and refine this through a tr ial and error process, they seem to attribute dispro

portionate importance to short-run economic developments. Examining this short 

memory attitude, De Bondt and Thaler (1985) find that "losers" portfolios outper

form "winners" by 25% even though the latter exhibit a higher degree of riskiness. 

This anomaly is being exploited by the so-called "Contrarians" in order to achieve 

abnormal returns. The main criticism to the De Bondt and Thaler conclusions is 

that systematic risk and the size effect are factors that can explain sufficiently this 

market anomaly. "Fundamentally riskier" assets should be awarded wi th higher 

returns and contrarian investment is more risky by definition. 

Chan (1986) suggests that time-varying expected returns are responsible for 

the "overreaction" of certain investors. These are caused by a positive covariance 

between contrarian portfolios' betas and the risk premium. De Bondt and Thaler 

(1987) re-examine the issue and conclude that the overreaction effect still exists after 

controlling for differences in size and beta. The beta of their contrarian portfolio is 

positive in up-markets and negative in down-markets which suggests that time var-
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ying betas are not suitable for risk-adjustment of the returns of this type of portfolio. 

Ball and Kothari (1989) are in accordance wi th Chan's approach but do not detect 

a positive covariance between beta and the risk premium. Zarowin (1989) attribu

tes overreaction to the "size" phenomenon. Lehmann 1 6 (1990) provides evidence 

against market efficiency. Lo and MacKinlay (1990) show that when positive cross-

covariances across securities exist (even if returns are serially dependent) then there 

is space for profitable contrarian investment strategies. Chopra et al., (1992) detect 

stock price overreaction for small firms. They also reveal the distinctiveness between 

the January and overreaction effects. Jegadesh and Ti tman (1993) report that there 

is no sufficient evidence to prove that systematic risk is an important factor. They 

conclude that a more sophisticated model is needed to interpret the patterns in ex

pected returns. The buying winners and selling losers strategy could be attributing 

to the temporary deviation of prices from their long-run (equilibrium) prices and 

thus creating the overreaction effect. Moreover, information about long-term and 

short-term prospects of companies is filtered diversely by individual investors 1 7 and 

this fact may generate a climate suitable to contrarian strategies. Conrad and Kaul 

(1993) report a methodological obstacle that could be leading to the exaggeration 

of the overreaction effect. Lakonishok et al., (1994) note that out-of-favour (value) 

stocks, outperform glamour stocks in the long run simply because investors are not 

informed about them (they are prone to "judgmental errors"). Another plausible 

explanation is that they have merely identified an ex post pattern in the data. 

Between the general overreaction hypothesis and the concept of arbitrage are 

some significant theoretical links. These are mainly based on the hypothesis of 

existence of rational and quasi-rational investors (those who are unable to revise 

their beliefs according to the Bayes rule). The generated rational equilibrium fra

mework has been proved to be unstable and the presence of rational agents is not 

sufficient to guarantee any stability for the economy under the assumption of hete

rogeneous information. Basu (1977) has addressed the overreaction anomaly via the 

P /E (price-earnings ratio) and distinguished between undervalued and overvalued 

1 6Through examination of the profits of zero net investment portfolios that earn only if investors 
overreact. 

17Depending mainly and most likely on their risk tolerance. 
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companies describing the reactions to their assets' price adjustments. I t is obvious 

that the whole spectrum of the overreaction issue is closely related to the efficient-

market hypothesis. In fact i t implies weak-form inefficiency and easily expands this 

to semi-strong and strong forms. Moreover, i t violates the rationality principle of 

investors, since the present value of expected future dividends is no longer the basis 

of rational investment decisions. 

Summers (1986) and Poterba and Summers (1988) expose the mean reverting 

movement of asset prices. They suggest that stock prices exhibit temporary de

viations from the path that their fundamental (intrinsic) values were expected to 

follow, only to return gradually to this rationally determined equilibrium trajectory 

(Engel and Morris (1991) review this subject extensively). Poterba and Summers 

report that the mean reversion is stronger for small firms. They calculate variance 

ratios for horizons of two to eight years on monthly excess NYSE returns from 1926 

to 1985. They report a less than one variance ratio for all investment horizons gre

ater than two years, although the eight year return variance would be expected to 

be eight times the variance of the one-year returns (to claim that the E M H holds). 

Fama and French (1988a) extend this methodology to multi-year returns and test 

for mean reversion for investment horizons of one up to ten years. They use infla

tion adjusted NYSE monthly data for various industry groups for the same period 

as Poterba and Summers (1988). They too conclude that stock prices are mean 

reverting and mean reversion is stronger for stocks of small firms. When dividends 

are used to measure fundamental values, Fama and French (1988b) again find that 

stock prices are mean reverting. I f prices were mean reverting, one would expect 

returns to be negatively correlated to the difference between prices and dividends. 

This was demonstrated in their article and for one more time, mean reversion was 

more intensive for small firms. Campbell and Shiller (1988) included earnings in 

their estimation of fundamental values and using S&P500 inflation adjusted returns 

and excess returns from 1971 to 1978. They found that prices were mean reverting 

for one-year, three-year and ten-year horizons. 

Evidence of mean reversion has caused a lot of researchers to conclude that the 

stock market is inefficient. However there are studies that have posed some questions 
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against this conclusion. Some argue that mean reversion could be the facet of a more 

sophisticated expression of the E M H . I t is also argued that observations are too few 

to provide powerful estimates when testing wi th long horizons. Mankiw et al., 

(1991), Nelson and K i m (1990), K i m et al., (1991) effectively argue that statistical 

tests lack the power to suggest evidence of mean reversion and consequently the 

collapse of the EMH. Secondly, there is a suggestion that if stock prices are mean 

reverting, markets might still be efficient. The constancy of real interest rates may 

be assumed incorrectly and this is a hypothesis that may have to be relaxed. I f real 

interest rates are mean reverting then so too wi l l be the stock prices. Variability of 

real interest rates could be due to the change of risk tolerance of individual investors 

or riskiness of stocks (see Fama and French, 1988b, Black, 1990 and Cecchetti et 

al., 1990). Poterba and Summers (1988) oppose this view as this change would 

have to be unrealistically large to cause mean reversion of the observed magnitude. 

Moreover, as in Lo and MacKinlay (1988), evidence of feedback trading in the short 

run is not in accordance to wi th changes in the riskiness of stocks or the risk aversion 

of investors. Miller et. al (1994) attribute mean reversion to infrequent trading when 

drawing results from stock market indexes. Bodoukh et al., (1994) argue that the 

autocorrelation patterns of short-horizon returns have been overstated and that they 

are caused most likely by institutional factors. 

2.3.1 Asset-pricing models and "anomalies" 

As part of the E M H debate, we can consider the literature about "calendar 

anomalies" in stock returns. Returns seem to be higher on average before holidays 

and at the end of the month. Inversely, Monday returns are on average lower than 

returns on other days as Cross (1973) and French (1980) point out. There is also 

a "January" effect as especially small stocks have on average higher returns during 

that month . 1 8 Lakonishock and Levi (1982) argue that calendar effects should not 

contradict the E M H if adjustments for interest gains on certain days during the 

trading period are made. Intraday patterns are also anomalous. Harris (1986) finds 

1 8 Keim (1983) and Roll (1983a and 1983b) show that the higher January return on small stocks is 
realised the last trading December day and the first five January days. This seems to be occurring 
because investors drop underperforming stock in December for tax reasons. 
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that most of the average daily return is localised in time around the beginning and 

the end of the day. Ariel (1987) shows that most of the monthly average return 

comes in the first half. 

There are also suggestions that asset-pricing models fail to reflect efficiency. 

These models should predict that the market betas are describing in a effective 

manner, cross-sectional expected returns. Basu (1977 and 1983) reports positive 

correlation between expected returns and P /E ratios. Banz (1981) reports negative 

relation between risk-adjusted returns and size. Bhandari (1988) reveals correlation 

between returns and leverage and demonstrates that small firms are highly levered. 

Fama and French (1991) and Chan et al, (1991) have found correlation wi th book-to-

market ratios. Fama and French (1991) also detect that leverage is highly correlated 

with book-to-market ratios. Reinganum (1981) and Basu (1983) also report size and 

P/E relationship. 

2.4 A new approach: chaotic determinism 
Since the late 80s, a number of papers have explored the possibility of chaotic 

evidence in financial markets 1 9. The statement of chaos is a very strong one as 

it implies a deterministic, often very complex DGP process whereas the previous 

stochastic paradigm was allowing for a purely random behaviour. Such stochasticity 

could often be approximated by some linear function. Moreover, chaotic processes 

may appear to behave randomly and can be predictable in a short term basis. Most 

linear methodologies for detecting stochasticity usually fail to produce a correct 

answer when applied to non-stochastic chaotic data. Finding chaotic patterns in 

financial time series involves the application of non-standard methodologies and the 

search for self-similar and fractal structures within the data. Chaotic systems are 

also highly dependent on init ial states. Small shocks in init ial conditions wi l l lead 

to large deviations from the initial state of the system. Usually, this is another way 

we can explore the existence of chaos in dynamical systems. 

I t becomes apparent that under the chaotic or deterministic non-linear dy-

1 9We dedicate chapter 4 to the basics chaos and dynamical systems theory and the metric tests 
used to determine whether a sequence is chaotic-deterministic or stochastic. 
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namical systems view, the "linear" view of stock market efficiency is abandoned. 

Sudden clustering of volatile sequences and bursts of instability may appear ran

dom but could just as well be chaotic. Standard techniques may be misleading as 

they might report a chaotic process as a purely random one. Unfortunately, there 

is no well established and robust statistical test for chaos as a null or an alternative 

hypothesis. 

One of the most applied tool so far has been the BDS test named after Brock, 

Dechert and Scheinkman (1987) based on the Grassberger and Procaccia (1983) 

correlation dimension concept (also used as a proof of existence of chaotic dynamics). 

The drawback here is that the BDS test detects whether the data is identically 

independently distributed (i.i.d.) and the rejection of the null does not necessarily 

imply the existence of chaos. Unfortunately, early efforts have applied the BDS test 

as a direct test for chaos and their results have been biased if not erroneous. Recently 

the BDS test has been criticised in more expanded frameworks such as the one in 

Brooks and Henry (2000a and 200b). They showed that for a particular class of 

heteroscedastic models, the test fails remarkably to detect common misspecification 

in the sense that i t confuses quite different types of nonlinear structures such as the 

Threshold Autoregressive (STAR) and a range of GARCH-type models. 

Other statistics that can provide support for the existence of chaotic determi

nistic dynamics are the Lyapunov exponents which should also be computed wi th 

caution (Sauer et al., 1998). These show whether there is an exponential diverge

nce from init ial conditions, something that could imply the presence of chaos. More 

recently, the "Surrogate Data Methodology" has been developed as a means of distin

guishing weakly deterministic and possibly chaotic patterns from linear stochastic 

ones. Other tools for distinguishing chaotic dynamics are visual. Diagrams such as 

scatter plots of lagged values or phase plots and recurrence plots can provide evide

nce of chaotic or deterministic dynamics. We explore these issues in the following 

chapters and especially in chapters 5 and 8. 

Revealing empirical evidence for the existence of chaos in financial data has 

been met wi th mixed feelings and various degrees of success. Attempts to design 

a theoretical framework that would explain why determinism should characterise 
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such series, seems to have enjoyed less publicity and fame. Among early attempts 

to provide an analytical framework for market structure that allows for chaotic 

dynamics were that of Savit (1988) and Shaffer (1991). The first, combining theory 

based on logistic maps and the cobweb, attempted to explain the problem of price 

movements in financial markets. Shaffer (1991), driven by the 1987 stock market 

crash, demonstrated that some simple and widely accepted fundamental factors were 

enough to generate chaotic paths for profits and stock returns. Slight perturbation 

of init ial parameters could lead to large increase of the volatility and dividend pay

outs could induce chaos. The conclusion was that even regulatory procedures on 

trading strategies could not prohibit the existence of chaos in the data. More recently 

Malliaris and Stein (1999) have presented their version on this issues. While they 

do not conclude on a chaotic underlying process, they suggest that maybe market 

dynamics are expressions of a high dimensional stochastic mechanism. They point 

that due to the absence of information on all the finer parameters defining the 

market system, certain deterministic aspects can be masked as randomness. They 

do not agree with the hypothesis of chaos as this excludes long term forecasting in 

markets which is apparently not true. 

Hinich and Patterson (1985), Scheinkman and LeBaron (1989), Brock et al., 

(1991), Hsieh (1991), Liu et al., (1992), Lane et al., (1996), Gilmore (1996) and 

Yadav et al., (1996 and 1999) among others, have all examined whether stock returns 

exhibit non-linear dependence and dynamics consistent wi th chaos theory. Ashley 

and Patterson (1989) detect nonlinearities consistent wi th chaotic dynamics but 

fail prove the existence of chaos. Among early attempts for the discovery of chaos 

in non stock-market data should be mentioned the papers of Brock and Sayers 

(1988) who found nonlinearities in U.S. labour data and Barnett and Chen (1988) 

who detected similar artifacts in U.S. monetary measures. Frank et al., (1988) 

also detected nonlinearities in Japan's GNP. Most of this research focuses around 

bilinear-bispectral techniques (see Granger and Andersen 1978) or the estimation of 

the invariant statistical measures that can characterise chaotic systems such us the 

correlation dimension. 

Ramsey et al., (1990) find that after correcting for nonstationarity and small-
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sample bias, no evidence of low dimensional dynamics can be revealed. Most of 

these researches though have been focused on stock index returns and provided 

weak evidence for or against chaotic behaviour. Yadav et al., (1999) examined the 

UK stock market stocks over a period of 20 years. They concluded that nonlinear 

dependence exists but i t seems to be the result of an EGARCH element and no strong 

evidence for the existence of low dimensional deterministic dynamics is obtained. 

Approaches such as Brock et al., (1991), De Grauwe et al., (1993), Hsieh 

(1991), Mayfield and Mizrach (1992), Peters (1991 and 1994), Scheinkman and Le-

Baron (1989), LeBaron (1992, 1993, 1994) and Bollerslev (1990) have highlighted 

the issue regarding the origins of the financial volatility. Regarding "chaos", most 

findings reported no convincing evidence of chaotic dynamics but often indicated 

strong nonlinear dependencies among the data. The issue raised was the possibi

lity of forecasting financial time series that might contain chaotic components or 

nonlinear structures. This fact is of great importance to investors who are stron

gly interested in market t iming dynamic trading and similar investment strategies, 

which are clearly depending on the short-term forecastability of these time series 

(LeBaron, 1994). Similar research has been undertaken wi th futures data. Yang and 

Borsen (1993) conclude that the can not provide strong support for or against chaos 

in futures data but also show that the GARCH specification is not totally adequate 

in characterising the dynamics. Investigating nonlinearities in emerging markets, 

Antoniou et al., (1997) show that non-linear terms can be found insignificant and 

then their model collapses to a random walk. They argue that non-linearities may 

not necessarily imply market inefficiency. The conclusion from most of all the rese

arches outlined here is that further analysis is required on the underlying structure 

and dimensionality of financial time series. 

One of the most early and appreciated researchers of chaos in finance is LeBa

ron. His work involves research not only on the structures of asset-price and returns 

time series but also on the volatilities of these. As LeBaron (1994) states, "One of 

the largest deviations from pure randomness in financial series is volatility persiste

nce". Forecasting return movements may be a tedious and unsuccessful process but 

magnitudes of the movements are predictable. LeBaron demonstrated that the DGP 
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for a substantial set of financial time series appears to follow the pattern: 

rt = log(pt) - log(pt_x) 

n = f((?t)rt-i + €t 

for t= l ,2 , . . . ,T , where / ( • ) is a decreasing function of conditional variance indicating 

higher local predictability during periods of lower volatility. Relating these findings 

to investment strategies we should note that risk is relative to market volatility. 

Volatile periods reward risk-lovers wi th excess returns whereas passive strategies 

are f ru i t fu l during relatively stable markets. 

In another of his working papers LeBaron (1993) provides evidence of local 

instabilities in the volatility-volume process. "A 10% shock to the volume process 

may be amplified several times in volume over several days in the future". This 

power-law feature cannot be captured when utilising linear techniques. Although 

this may not imply the existence of deterministic chaos in volume and volatility, i t 

does strongly state that local instability prevails. 

Closing this brief review of chaotic literature in finance, one feels obliged to 

present a counterpoint. Granger has seriously criticised since very early the whole 

idea of chaos in economics. This is evident from numerous replies to Mandelbrot in 

the past. More recently, Granger (1994) discussing a collection of articles on chaos: 

"If the purpose of this research effort is to show that it is possible to produce economic 

theory that has chaos as an outcome then this certainty has been achieved, but it is 

unclear why more than one paper is required that shoxus this. The recent papers 

produce more general models but are still not realistic and are not in a form that is 

empirically testable in any specific fashion". Evidence is thus required that the chaos 

paradigm can reproduce many features of the actual economy and not just a few and 

also predict features that have not been previously tested or explained. I t remains to 

be seen if a robust technique could be constructed that can pinpoint nonlinearities 

in financial data and withstand specification testing at the same time. Surrogate 

data analysis (which we wil l be exploring in chapter 6), seems to provide a promising 

framework towards this direction. One recently designed analysis framework, based 
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on earlier mathematical research is wavelet analysis of time series. Due to the 

intermittent and volatile nature of financial time series, i t seems a very suitable 

alternative to other parametric approaches. We discuss this briefly below but we 

wil l be returning to this issue in chapters 7 and 8 were we review the theory more 

in-depth and provide an exploratory analysis of financial time series. 

2.5 Wavelets in finance 
Non stochastic structure, cycles and even low dimensional chaos can also be 

detected by implementing Wavelet functions. The potential of this approach, alth

ough obvious from the examination of its mathematical foundations and properties, 

has not been fully exploited in Economics or Finance yet. Wavelets can also be 

used to detect (a)cyclical components and high frequency localised in time bursts 

that "conventional" techniques would fail to capture. Following is a brief analysis 

of why wavelets are more useful than other standard Fourier-transform methodolo

gies. Other tools have also been developed and used for detecting various kinds of 

cyclicity within the structure of any univariate or multivariate time series model, 

such as spectral decomposition or seasonal filtering techniques (e.g. X I 1 filter or 

seasonal A R I M A models), trigonometric regression or the somewhat "brute-force" 

method of seasonal dummies to name but a few. These existing techniques suf

fer from the fact that even when implemented successfully, they are either time or 

frequency localised, thus enabling us to view only one dimension of the cyclical pat

tern. Furthermore, these techniques, tend to under-perform when the time series 

signals are contaminated wi th noise or contain non-stochastic components, such as 

chaotic cycles and low dimensional chaotic noise. Although wavelets wi l l be more 

extensively covered in chapter 7, we can provide a brief introduction here for the 

sake of clarity. In most disciplines, the most traditional technique for the cyclical 

decomposition of any signal, is that of Fourier (or Spectral) analysis (FA). The spe

ctrum of any sequence of numbers is defined as the variance decomposition of this 

sequence. Any spectral peak signifies the existence of a cycle at that frequency. I t 

is this cycle that contributes substantially to the variance of the sequence. Thus a 

series of observations along time can be "translated" (i.e., decomposed) into high 
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and low frequency components, depending on the existence of respectively high and 

low frequency cycles within the original sequence. 

The Fourier Transform (FT) decomposes a function into sinusoids of diffe

rent frequencies. The original function is described in terms of orthogonal basis 

functions of sines and cosines, of infinite duration. These sinusoids when summed 

up, reconstruct the original function. The F T of a function f ( x ) is defined as: 

/

+ 0 O 

f(x)e-i2*xsdx (2.1) 
'OO 

Suppose we have a sample time series { x 0 , x t _ i } wi th mean x, of zero (or the mean 

has been already removed). Parseval's theorem states that the sample variance of 

{xt} is: 
n—1 n—1 

s2 = 1/nJ>2 = l/nJ2 I A(2nj/n) | 2 , (2.2) 
t=o j=0 

where: 
n - 1 

A(u>) = J > t e - ^ (2.3) 
t=o 

is the discrete Fourier transform (DFT) of {xt}. The D F T analyses discretely sa

mpled time series. Equation (2.2) shows that the variance of the series can be 

decomposed into a set of frequencies. The expression | A(2irj/ri) | 2 is the spectrum 

of the series. Unfortunately FA is not without its drawbacks. Firstly, FA requires 

the use of the entire range of the sequence for an evaluation of the spectrum at any 

specific frequency point. For instance, to evaluate / at point LJO 

/

oo 

f{t)e-l^dt (2.4) 
-oo 

one must use f ( t ) along its entire range (FA assumes an infinite time horizon). 

Secondly, the method demands a great deal of information for sufficiently capturing 

any local fluctuation. The Fourier representation of time localised events, requires 

many terms of Aeinw. This signifies in itself that a large set of cycles of different 

frequencies must be measured (sampled) wi thin the time series in order for the 

method to be able to successfully detect any kind of shock or irregularity in the 
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variance. Moreover, the D F T or F T has difficulty wi th functions wi th transient 

components (i.e., components localised in time such as any sharp oscillations, spikes-

shocks or violent regime shifts within the time series). Any local oscillations may 

contribute to the calculated FT but the locality of such oscillations wi l l be lost. 

There is no way of establishing whether the value of F(u) at a particular point in 

time t derives from frequencies during a few selected periods or the entire range of 

the signal. 

Financial time series may be either non-stationary Gaussian, stationary non-

Gaussian, chaotic of some deterministic/fractal nature or combination of these (sto

chastic contaminated wi th chaotic components or chaotic wi th embedded stochastic 

noise). One possible reason for this may be that in financial time series, one de

als wi th a DGP which is not well defined. Rational financial decisions that wi l l 

eventually generate or formulate financial market indicators, are based upon the ob

servation of fundamental economic variables as well as unobserved emotional factors. 

The wavelet transform does not depend upon any presumptions on the stationarity 

of the time series or the distribution properties of the underlying DGP. What the 

wavelet transform does, is to generate in a linear manner different levels of scales of 

coefficients preserving thus the time element of the data. 

The literature on wavelets is vast and focuses greatly on image analysis and 

compression, signal analysis, data transfer rates analysis and sound and vibration 

modelling to name but a few important areas. In the area of Economics and Finance, 

there are a number of recent publications, mostly in the form of working papers for 

the past decade. Ramsey et al., (1995) analyse U.S. stock prices using wavelet 

methodologies. They report evidence of non-randomness in the data and limited 

evidence of quasi-periodicity of large amplitude shocks. A demonstration of wavelet 

techniques on Spanish stock market data can be found in Arino and Vidakovic 

(1995). Early attempts to provide an insight are Cody (1992 and 1994 not so 

technical papers) and Klimasauskas (1992). Strang's (1989) SIAM review paper is 

an excellent starting point. More recently Ramsay and Zhang (1995), use waveform 

dictionaries 2 0 to analyse foreign exchange data. Ramsay and Zhang (1994) apply the 
20Waveform dictionaries are function libraries based on wavelets. 
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same methodology to stock market index data demonstrating again their complexity 

and implying that random walks might not be a plausible explanation for such series. 

2.6 Conclusions 
There is no doubt that financial time series exhibit nonlinearities and highly 

volatile and intermittent structures. So far a multitude of traditional econometric 

methods has not been able to provide adequate and robust explanations for such 

structures and dynamics. Chaos has been an attractive alternative to stochasticity 

for financial time series but there has been no conclusive evidence for or against 

its existence in these sequences. W i t h the advent of cheap computational power, 

previously impossible to apply techniques have been used and new results have come 

to light. New mathematical methodologies have also been proposed for the analysis 

of such data, namely the wavelets and neural networks. 2 1 A n entire new area has 

slowly been forming called "econophysics". This simply is the combination of ideas, 

models and techniques from the physical sciences, applied in solving economic and 

financial problems. 

Financial markets are extremely complex systems and constantly bombarded 

by external noise. I f we are to adopt this "complex systems" approach when exa

mining these markets, we should have a good idea about the underlying structure 

of the system producing the market dynamics. External factors such as noise, regu

latory frameworks and information impose shocks and restrictions on how a system 

functions and more importantly on how i t reaches an equilibrium state. The insta

bilities caused by these factors can lead to large deviations from an "equilibrium" 

point, thus implying a chaotic and complex overall market structure or at least a 

chaotic mechanism that may be masking the true dynamics of the overall market. 

Chaos is also an attractive alternative to the simple stochastic-probabilistic frame

work of such dynamics. Although a chaotic system may tend to deviate from a 

"steady state", depending on init ial conditions at time of externally caused shock, 

it is also capable of "self organising" and returning to a stable path before being 

2 1 We will not be addressing the applicability of neural networks in this thesis. This is left for 
future research. 
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thrown off-balance again. This is not possible wi th most of the linear or stochastic 

systems. In general, chaotic structures can withstand shocks better than stocha

stic ones. This may be why results are dubious when modelling a complex-chaotic 

phenomenon wi th "stochastic" tools that are incapable of reporting correctly on 

nonlinear deterministic processes. 

Chaos also represents a radical change of perspective on business cycles. Bu

siness cycles receive an endogenous explanation and are traced back to the strong 

nonlinear deterministic structure that can pervade the economic system. This is dif

ferent from the (currently dominant) exogenous approach to economic fluctuations, 

based on the assumption that economic equilibria are determinate and intrinsically 

stable, so that in the absence of continuing exogenous shocks the economy tends 

towards a steady state, but because of stochastic shocks a stationary pattern of 

fluctuations is observed (Barnett et al., 1997). 

In this thesis we wi l l be examining from a new perspective, the applicability 

of certain methodologies derived from chaos theory and signal analysis, in order to 

reveal structures that exist but have not been reported so far in financial time series. 

More precisely we wil l be addressing the issue of whether the stock market returns 

are characterised by stochastic randomness and whether there is evidence of a linear 

structure in the data generating processes. We wi l l be examining this using both 

quantitative and qualitative information drawn from the time series themselves. 

In the following chapter we wil l be discussing the most popular statistical pro

cesses that have been said to provide an adequate representation of the dynamics 

of financial time series. Following that chapter we wi l l be providing the basic theo

retical framework for dynamical models and chaos. We next explore financial time 

series prices and returns for deterministic dynamics using recurrence diagrams. Th

ese can discern high dimensional nonlinear dynamics and the possible existence of 

chaos. Following this chapter, we show how a hypothesis testing framework can be 

arranged and applied to rule out the possibility of the existence of linear or tran

sformed linear dynamics in these series. The following two chapters are based on a 

more relaxed approach driven from the successful application of wavelets in other 

disciplines. We provide the basic framework of multiresolution analysis and waveiet 
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transforms in chapter 7 and following this we explore asset returns and prices in 

various ways and provide a new point of view of their dynamics and structure. In 

this chapter we also combine techniques from econometrics and chaos theory and 

suggest that the underlying dynamics may indeed be deterministic but appear to be 

stochastic, due to the high level of signal corruption caused by noise and volatility. 



C H A P T E R 3 

Statistical processes for asset prices 

3.1 Introduction 

Since Bachelier's thesis in 1900 (in Cootner, 1963), the prices of financial assets 

have been considered as a result of various generating mechanisms. Unt i l today, no 

robust evidence has been revealed to maintain a specific hypothesis for asset price 

data generating processes (DGP). Unlike in the physical sciences, the evolution 

mechanisms and theory governing the dynamics of the complex socio-economic and 

financial phenomena, are largely unknown. Moreover there is no possibility of a 

controlled experiment which would provide evidence for or against a specific DGP 

structure. One can only speculate on a parametrisation of the DGP provided that 

some theoretic assumptions are met within a market-clearing equilibrium framework. 

Parametric approaches, although very attractive have failed to provide until today 

a clear-cut answer regarding the nature of the asset price dynamics. 

A more recent approach has suggested to "let the data speak for themselves" 

and proposed a nonparametric examination of the information from the stock mar

kets. Such model-free approaches can only provide qualitative information about the 

data involved. To obtain a more precise view of the whole phenomenon, one must 

often resort to semi-parametric approaches without though providing a complete 

specification of the price processes. Again here, although there is a parameter 

estimated on a specific property of the DGP, we cannot obtain a ful ly parametric 

expression for the complete dynamics. 

Originally, financial innovations were demonstrated to be following stochastic 

processes, either discrete or continuous. W i t h the wake of Chaos theory and the 

research on deterministic nonlinear dynamical systems, implications for or evidence 

of chaotic processes in financial time series has been reported by many researchers 

such as Mandelbrot (1963), Peters (1991), Evertsz (1995a), Evertsz and Berkner 

(1995b), Hsieh (1991) and LeBaron (1988). Their views have been largely criticised 

and the academic community is reluctant to adopt the new paradigm of Chaos 

32 
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theory as no strong supporting evidence has been discovered yet. Secondly, i t is 

hard, even for academics, to interpret irregular and volatile -apparently random-

financial phenomena by merely adopting the view that everything is predetermined 

but too complex to forecast and anticipate, at least in the long run. 

The examination of nonlinear determinism in financial time series, requires 

the use of non standard methodologies and this might prove disturbing. Secondly, 

the academic community is stil l in the dark regarding what economists are trying 

to prove. There is no mathematical equilibrium model yet that could act as a point 

of origin and proven to be robust. Moreover, some of the most promising methodo

logies are still "under development". For these reasons, economists have turned to 

other disciplines such as mathematics, physics, engineering or even medicine where 

turbulent and highly irregular phenomena exhibit similar characteristics. Technical 

analysis methods could also favour the existence of chaos in financial phenomena 

but these are not entirely accepted as scientific and fail-proof. 

Since this thesis is focused on novel methodologies that explore the possibilities 

of various non-standard DGP structures for asset prices, i t would be helpful to 

include a brief outline and some basic mathematical properties that have been the 

object of interest so far. We begin from the widely adopted martingale and Brownian 

processes. We then present the Levy, fractional Brownian and 1 / / processes as in 

Mandelbrot (1997 and 1998) and Wornel (1993) and finally present the fractal and 

multifractal processes. In the following chapters we show how new methodologies 

such as wavelets, recurrence plots and surrogate data analysis can be used to shed 

new light into the problem of the nature of the asset prices' DGPs. 

3.2 Statistical properties of asset returns 

Asset prices are the output of the market dynamics. This is the real observable 

quantity one can obtain from the financial news services around the world. As one 

is really interested in dynamics, the first differences of asset prices are the ones that 

show how the latter fluctuate around a mean value. In this thesis we wil l be mainly 

focusing on closing prices and the corresponding logarithmic returns. These can be 

obtained by taking the 1st differences of the natural logarithms of the closing prices 
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and are also called "continuously compounded returns". The logarithmic function 

is a positive monotonic (i.e., invertible) transformation and provides sequences that 

are independent of the corresponding levels of (the closing) prices. 

Among the early attempts to provide a stylised approach to economic or fina

ncial time series structure were those of Granger (1966) and Fama (1965). Here we 

follow Cont's (2001) more recent work and provide a list of stylised empirical facts 

of asset returns and volatilities: 

• Asset prices up to daily frequencies appear to be a unit root process 1(1) 

whereas the returns usually exhibit stationarity. 

• Linear correlations of asset returns are often insignificant in low-medium fre

quencies. In high frequencies such as tick-by-tick data, they are more prevalent 

due to microstructure effects. 

• The unconditional distribution of asset returns appears to behave in a Pareto-

like fashion, displaying fat tails which exclude normality and infinite variance 

stable laws. 

• The conditional distribution of the residuals after correcting returns for the 

heavy tails (as in the previous point), sti l l exhibit heavy tails although these 

are weaker than those of the unconditional distribution of returns.. 

• Gain-loss asymmetry is more obvious in asset returns than in exchange rates. 

Large drops are more prevalent then equally large gains. 

• As one increases the time scale, returns distributions approximate the normal 

i.e, the distribution of returns varies wi th the time scale. 

• Irregularly distributed bursts within the history of asset returns and non-

homogeneous patterns of volatility, give an intermittent character to these 

series. Intermittence is a very common characteristic of physiological time 

series and all methodologies that we examine in the empirical chapters of this 

thesis have been applied on such data. 

• Asset returns usually exhibit long memory and long-range dependence. 
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There are also a number of stylised facts about the volatility of asset returns: 

• Volatility clustering is another characteristic of asset returns. High-volatility 

events seem to cluster in time. 

• Most measures of asset return volatility are negatively correlated wi th the 

original returns sequences. This has been termed as the "leverage effect". 

• Trading volume is usually correlated wi th all measures of volatility. 

• Fine-scale volatility can be better predicted from coarse-gained measures of 

volatility than the other way around. 

3.3 Martingales and Random Walks 

According to the "martingale model", tomorrow's price is expected to be the 

same as today's. A stochastic process xt follows a martingale wi th respect to a 

sequence of information sets f l t i f 

Et(xt+1\nt) = xt (3.1) 

where S7t is the information set at time t i.e., fit = {xi, x 2 , x t } and xt being 

the best forecast for x t + i . This holds true for any information set Qt. What the 

martingale model states is that (xt+i — xt) is a "fair game". A stochastic process yt 

is a fair game if i t has the property 

Et(yt+1\nt) = 0 (3.2) 

Furthermore, yt is a "submartingale" if 

Et(yt+1\Qt) > yt (3.3) 

This itself implies that Et[(yt+i — yt)\^t) > 0. The analogous concept here is a that 

of a "subfair game". 

I t is obvious that a process xt is a martingale i f f 2 2 (xt+i — xt) is a fair game. 
2 2 i f f : if and only if. 
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A fair game can also be called a "martingale difference". Under the martingale fra

mework, increments in prices (adjusted for dividends) are unpredictable given only 

the existing information set flt- This is fully reflected in prices i.e., we can obtain 

no improvement on the predictions of the rates of return by exclusively utilising 

information in fit. This premise is the core of the "Efficient Market Hypothesis" 

(EMH) celebrated by Fama's 1970 paper. Depending on the relevance of the infor

mation set f l t , markets are divided in weak-form, semi-strong form and strong-form 

efficient. As already defined in the previous chapters, weak-form means that Qt 

includes past prices and returns alone, semi-strong implies that Qt includes all pu

blicly available information and finally, strong-form suggests that f l t includes also 

private information. Strong-form implies semi-strong form and semi-strong implies 

respectively weak-form efficiency. Clearly the reverse does not hold. 

Denoting et as the martingale difference (or fair game) process, we can rewrite 

(1) as: 

xt+i = xt + et (3.4) 

The random walk model states that the price at any time t is equal to the past 

price at time t — 1 plus a residual at time t. Using Pt and et to denote respectively 

the price and the residual observation at time t, we can then write the random walk 

model as: 

P t = P t _ x + e t (3.5) 

where E[et] = 0 and cov[e te t_ s] = 0, V s ^ 0. In its general form (3.5) states si

mply that the best possible "linear" prediction for tomorrow's price is today's price. 

By relaxing the assumptions about the residual component e f, one can obtain less 

general variations of the random walk model. I f the sequence of the residuals is 

uncorrelated, then (3.5) is a second order martingale. I f the residuals are indepen

dently distributed, then (3.5) is a random walk in a strict-sense. Finally, i f the et is 

an i.i.d.23 Normal process then (3.5) is a Wiener process. 

The martingale model in its form is less restrictive than that of the random-

walk model. The latter requires independence of higher conditional moments of the 
23i.i.d.: Independent, Identically Distributed 
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probability distribution of price changes whereas the former demands only indepen

dence of the conditional expectation of the price changes from f2 t . More precisely, 

the martingale rules out any kind of dependence between the conditional moments 

of the conditional expectation of the martingale differences xt+\ — xt and the in

formation Q. available at time t, as in (3.2). That enables the distinction between 

correlation and independence to be realised within a time series of price changes 

analysis framework. As detected by Mandelbrot (1963) and Fama (1965), price ch

anges though uncorrelated, have a tendency to be dependent over time and exhibit 

volatile periods interchanged with relatively calm ones. This implies dependence on 

higher order conditional moments (i.e., variance, skewness and kurtosis). 

At this point, i t would be insightful to note that Granger and Morgenstern 

(1970) caution about the relevance of the random walk hypothesis. They point out 

that the hypothesis does not state clearly (as misconceived by many researchers) 

that the price changes are unpredictable. On the contrary, i t is stated that price 

changes, in absolute terms are not predictable on the basis of any linear com

bination of the past history of these changes. I t does not rule out any underlying 

nonlinear relationships nor contradicts the possibility of predicting the relative 

price change of one stock compared to another. This is a very strong statement as i t 

does not rule out the possibility of the professional ability of some financial analysts 

to outperform the market (for some period and not on average). The random walk 

model concentrates on the absolute price changes and makes no statement about 

the state of the market and its competitiveness. 

Equilibrium in financial markets is defined under the framework that martin

gales and fair games provide. Rates of return are a fair game if and only if the 

corresponding prices series plus cumulated dividends discounted back to the pre

sent, is a martingale. Defining the rate of return as the sum of dividend yield plus 

capital gain minus one, denoting the dividends as D and defining p a constant, the 

stock price Pt at time t can be written as 

Pt = (1 + pY'EiPt^ + D t + 1 | f i t ) (3.6) 

Under (3.5) the present value of stock price equals the sum of expected future price 
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plus dividends, discounted at rate p. 

The E M H ensures that all relevant information is incorporated into the prices 

of stocks and therefore errors in the forecasted prices are zero and uncorrelated wi th 

the set of all prior information Qt- This is known as the "orthogonality property". 

Etet = Et(Pt+1 - EtPt+l) = EtPt+1 - E[EtPt+1] = 0 (3.7) 

A necessary but not sufficient condition for both the random walk and martin

gale hypothesis to hold is that the price series or their logarithms are 1(1) (integrated 

of order one i.e., they have a "unit root"). There is a vast literature on unit root 

testing. 

The tests of the random walk hypothesis concentrate mainly on tests of the 

linear relationships within the historical sequences of price changes. Types of nonli

near dependence have not been captured by the random walk literature in its early 

stages. 

3.4 Self-similarity, Affinity, Scale Invariance and Fractals 

Before presenting the multifractal processes, i t would be useful to outline the 

basics of the underlying theory. A Self-similar process is invariant in distribution 

under different scaling of space and time. Samorodnitsky and Taqqu (1994) define as 

"self-similar" a process X — {X(t), t G R } if, for any a > 0, the finite dimensional 

distributions of {X(at), t 6 1 } identical to the finite dimensional distributions 

of {aHX{t), t G K } . As H we denote a non-negative scaling coefficient which is 

the index of self-similarity. More analytically, the increments of a random process 

{X(t),t G M} satisfy the self-similarity property wi th parameter H > 0 i f f V t e R 

2 4 As Leroy (1989) argues, (3.5) implies that using the prices PT themselves without the dividends, 
generally leads to a formulation that is in conflict with the martingale definition (3.1). Under the 
fair game concept, the variability of the dividend-price ratio (due to the fluctuations in current 
dividends related to the variables that predict the future dividends) implies that the variation 
of the conditionally expected rate of capital gains must have an offsetting effect. This is needed 
to maintain the nonrandomness of the conditionally expected rate of return. In the general EM 
literature, the prices are supposed to be following a martingale and are regarded to be including 
reinvested dividends. 
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£ u-H X(t0 + t)-X(to)±h X{t0 + ht) - X(t0) (3.8) 

where = denotes equality in probability. The increments of this process X(t) can be 

stationary or not. For instance, Brownian motion is a self-similar process wi th index 

H = 1/2 and stationary increments. Other processes can exhibit though long-range 

dependence or memory such as fractionally integrated processes. 

A random process X(t), —oo < t < oo, is statistically self-similar if its stati

stics are invariant to dilations (expansions) or compressions of the waveform in time 

(Wornell, 1995). More analytically, a random process X( t ) is statistically self-similar 

wi th parameter H if for any a > 0, a € R, 

X(t) a~HX(at) (3.9) 

If this holds for all finite-dimensional joint probability distributions, then self-

similarity is defined in a strict sense. Wide-sence statistical self similarity is inter

preted with second order statistics i.e., means and covariances. Thus (3.9) can be 

redefined as 

Mx{t) 4 E[x(t)} = a~HMx{at) (3.10) 

and 

Rx(t, s) = E[x{t),x(s)} = a~2HRx(at, as) (3.11) 

Geometrically, affinity is defined as a transformation which preserves parallel 

lines. Algebraically, any invertible linear transformation is an affine one. Falconer 2 5 

(1990) defines as Affine transformation a mapping S of R" on W1 of the form: 

S(x) = T(x) + b (3.12) 

where T is a linear transformation of W1 and b is a vector in Rn. Mandelbrot (1977) 

defines self-affinity for a time to vector function X(t) wi th respect to exponent 

a > 0 and init ial time point t0: X(t) is self affine if there exists an exponent 

2 5 "An affine transformation S is a combination of a translation, rotation, dilation and perhaps 
a reflection". 
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log(re)/log(r) — a > 0 such that V/i > 0, the function 

h~aX[h(t - tQ)} (3.13) 

is independent of h. 

Self-Similarity and self-affinity 2 6 are two terms not to be confused. The latter 

expresses invariance under some linear reductions and dilations whereas the first 

one corresponds to the well known isotropic (homothetic) family of transformations 

(reductions). 

3.5 Mult i fractal and 1/f processes 

Fractional Brownian motion was introduced by Mandelbrot and Van Ness 

(1968) but together wi th fractional Gaussian noise models were first proposed by 

Kolmogorov (in Wornell, 1995). Multifractal analysis focuses on the local singular 

behaviour of measures of functions in a geometrical and statistical function (Riedi, 

1995). Intuitively, multifractals could be of great use in finance as they provide 

a useful tool for modelling erratic or irregular (intermittent) data. The Mult i f ra

ctal Market Hypothesis states that speculative markets follow a piecewise fractional 

Brownian motion process. This model emerged in financial literature because of its 

mathematical properties that appear to fit observed financial phenomena. Inten

sive scientific research has revealed multifractal patterns in various areas other than 

finance and exchange rate economics such as in the study of network data traffic, 

geophysics and turbulence. 

Before presenting the multifractal model, an outline of the ordinary and fra

ctional Brownian motion is provided. A gentle and intuitive introduction is found 

in Mandelbrot (1982). For a more elaborate analysis of these areas, we recommend 

Falconer (1990), Devaney (1989) and Peitgen et ai, (1992). Readings especially fo

cused in finance are Peters (1991, 1994, 199a, 1999b) and more recently Mandelbrot 

(1997 and 1998) as well as Barnett and Serletis (2000). 

Both "ordinary" Brownian (or Wiener) and fractional Brownian motions are 

2 6 A s introduced by Mandelbrot (1977). 



41 

random processes Xti of Gaussian increments wi th mean E(Xt2 — X t l ) = 0 and 

variance: 

var(Xt2 - X t l ) oc \t2 - h\2H (3.14) 

where the H exponent is allowed to vary between (0,1). I f H = | then the Brownian 

motion generalises to a fractional Brownian motion. Increments of X are statistically 

self-similar with parameter H while ( X t — Xto) and (X( r t ) — X(to))/rH have the same 

finite dimensional joint distribution functions V to and r > 0. Fractional Brownian 

motion is defined as the stochastic integral, for t > 0 

Xli{t) = ml 1/2) \ J [ { t ~ S ) H ' 1 ' 2 ~ ( - s ) " - 1 / 2 ] ^ ( s ) + / ( * - s)H-1/2dW(s) 
-̂00 0 ' 

(3.15) 

where (W(s ) , —oo < s < oo} denotes a Wiener process extended to the real line. 

We can classify fractional Brownian motion to three categories according to the 

value oi H: H < \, H = \ and H > | . The price of H is also directly related to the 

correlation structure of the fractional Brownian motion. I f H = | then the process is 

an ordinary Brownian motion i.e., exhibits probabilistically independent increments 

wi th 0 linear correlation. For H > ^, increments are positively correlated and for 

H < | they are negatively correlated. 2 7 

The autocorrelation between times t and say 2i , given the value LH(0) at the 

beginning of the subinterval, is defined as: 

£ { ( L w ( i ) - L H ( 0 ) - J E [ L H ( t ) - L w ( 0 ) ] ) ( L H ( 2 0 - L H ( i ) - J E ; [ L H ( 2 i ) - L H ( ^ ] ) } (3.16) 

More analytically, the logarithm Ln(t) of the asset prices, wi thin each time line 

subinterval A t , follows a fractional Brownian motion. The sequence of its increments 

have a zero average and variance o~2A2H: 

t 

L„{t) = L „ ( 0 ) + T { H \ l / 2 ) f i t - s)H-"2dW{s) (3.17) 
o 

Exhibit more erratic oscillations. 
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with 0 < s < t, for a given LH (0) and dW(s) the differential of a standard Wiener 

process. The gamma function is introduced in F(H + 1/2) so that the fractional 

integral in ( 3 . 15 ) becomes an ordinary one when H — 1/2 is an integer. Weighting 

each independent increment dW(s) by (it — s)H'1^2 enables us to calculate at any 

time t wi thin a subinterval, the price of Ln{t) by summing up all the increments up 

to time t (given the init ial value L//(0) at the beginning of the subinterval). 

An important class of statistically scale-invariant or self-similar random pro

cesses is the 1 / / processes. The family of 1 / / statistically self-similar random 

processes are defined as having power spectra that follow a power law of the form 

Sx(w) ~ (3.18) 
\w\i 

where 7 = 2H + 1 some spectral parameter. Mandelbrot (1982) shows that the sa

mple paths of 1 / / processes are fractals. Graphs of sample paths of fractal processes 

exhibit high irregularity. Their topological dimension28 is more than unity in the 

plane. For these processes there is a direct relationship between the self-similarity 

parameter H and the fractal dimension D. An increase in H causes a decrease in 

the fractal dimension D. The spectral parameter 7 increases wi th H and this leads 

to a redistribution of power from high to low frequencies (e.g. trends or long cycles) 

leading to a smoother sample path graph. For processes like financial time series 

such as stock index price indices, usually 7 « 1 and generally i t is expected to vary 

between 0 and 2. Moreover, 1 / / processes exhibit statistical dependence. Their 

autocorrelation function (ACF) decays slowly and this renders modelling methods 

such autoregressive moving average models (ARMA) inappropriate for identifying 

their long-range dependence. 

For fractional Brownian motions, 1 < 7 < 3 and for classical Brownian mo

tions, which is a special case, 7 = 2 . Fractional Gaussian processes which correspond 

to derivatives of fractional Brownian motions, have — 1 < 7 < 1 and stationary white 

Gaussian noise is a special case with 7 = 0 . For 7 ' s -1 and 3 we derive degenerate 

models. 
2 8 The topological dimension of graphs of pure random processes is unity i.e., they are one-

dimensional curves in the plane. 
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3.6 L e v y processes 

A random function X(t), denned on [0, oo), is called a Levy stable motion i f 

X(0) = 0, the increments of the process are independent and stationary and for 

each t > 0 and a parameter A e K , the characteristic function $ t is defined by 

$ t (A) = E { e i X X t } = e- t v , ( A ) (3.19) 

where: 

ip(X) = c\X\a{l + i/?sign(A)w(A, a)} (3.20) 

wi th w(X,a) = tan(?ra/2) for a ^ 1 and w(X, 1) = - ( 2 / T T ) log | A | . In (3.20), a e 

[0,2] is the characteristic exponent, (5 € [1,1] is the symmetry parameter and c > 0 

is the scale parameter. 

3.7 Long memory processes 

A generalisation of the standard ARlMA(p,d,q) models (Box and Jenkins, 

1976) are the fractional ARIMA models introduced by Granger and Joyeux (1997) 

and Hosking (1981). Defining Xt a stationary process, then we can write the dih 

order backward difference as 

(1 - B)dXt = f ; ( - V - l ) * X t _ f c = et (3.21) 
fc=o ^ ' 

where d 6 R and B is the backshift lag operator. From elementary combinatorics, 

the number of k size combinations of d objects is given from the following formula: 

d \ _ d\ _ r(d + i) 
k ] k\{d-k)\ T{k + l)T(d-k + l ) 

(3.22) 

The simplest form of a fractional A R I M A process is the fractional ARIMA(0,d,0). 

In this case, the residual term { e t } is a white noise process wi th mean 0 and variance 

cTg. In figure (3.1) we depict the autocorrelation function of a FARIMA sequence 

which exhibits smooth and slow decay, an indicative characteristic of such a process. 
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Figure 3.1: The autocorrelation function (ACF) of a fractional ARIMA 
process, ARFIMA(0,0.3,0). 

I t can be shown that a { X t } zero mean fractional ARIMA(0,d,0) process wi th 

— | < d < | is stationary and invertible (Hosking, 1981). The variance of such a 

process is given by 

V a r ' x '> = t rFa-"d)P > = S o < 3 ' 2 3 ) 

and the autocovariance of { X t } is 

— PS Y Y \ ^ 2 ( - i ) f c r ( i - 2 d ) 
sk = E{XU Xt_k) = T { l + k _ d ) T { l _ k _ d ) (3.24) 

3.8 Conclusions 

In this thesis we wi l l be dealing wi th financial time series, mainly closing prices 

and returns of indices and stocks from various stock markets, and wi l l be exploring 
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the structure of their data generating processes. For this reason, we concentrated 

here on the stylised facts about these sequences. We also described the most basic 

generating processes according to the existing literature, relevant to our subject. 

Our intention was to provide the necessary theoretical background and scientific 

jargon for the following discussions on the dynamical structures of the time series 

that we wi l l examine. 

In the following chapters, we wil l be utilising techniques developed specifically 

to detect such processes as the ones described here. Since the main theme is "non-

linearity" , in the continuation of the thesis we wi l l be dealing wi th a more refined 

issue, and more specifically the existence of nonlinear determinism. In the next 

chapter we introduce the theory behind chaotic deterministic dynamics and show 

how specific invariant measures can be used to produce metrics which enable us to 

characterise a process as nonlinear deterministic or purely stochastic. 



C H A P T E R 4 

Dynamical systems 

4.1 Introduction 

In the previous chapters we examined the research so far regarding the dyna

mics of financial time series as well as their basic structures and characteristics. We 

have seen so far that the basic hypothesis of Market Efficiency and linear stochastic 

dynamics, does not seem to provide an adequate explanation for the finer details 

revealed in stock market data. I f one selects to test for stochastic randomness in 

these sequences, the alternative hypothesis intuitively is determinism and possibly 

chaos. That is why, in this chapter we provide a brief introduction to the theoretical 

framework on dynamical systems, chaos and time series embedding. The scope is to 

produce a platform necessary to comprehend and critically evaluate the empirical 

methodologies, their application and their outcome on real financial data. 

We begin by introducing the notion of dynamical systems and their properties. 

Following the introductory section, we provide a collection of ideas, theories and 

criteria used to classify dynamical systems as nonlinear-deterministic and distinguish 

them from other types of systems such as purely stochastic ones. Finally we provide 

the description of a set of the most popular statistical-mathematical tools used to 

examine dynamical systems through their outputs. 

The study of dynamical systems is mainly relevant to dynamical macroeco-

nomic literature. Economic systems are represented there in their analytical form 

and one seeks usually the closed form solution that provides information on the 

equilibrium conditions or the steady states of such systems. Under such a framew

ork, economic theory has justified - in some cases- nonlinearity and chaoticity in the 

economy as a driving force that leads to stability or deviations from i t . The most 

famous early model in macroeconomics was the so called "cobweb". That shows the 

path to market equilibrium when market forces are incited by some usually external 

factor. 

Setting up an abstract and complicated mathematical chaotic market model is 

46 



47 

not the scope of this thesis. Our aim rather is to investigate empirically and possibly 

capture any existing nonlinearities or non-stochasticities. These may be apparent in 

the data generating processes realised within the dynamics of the financial markets. 

In doing so we utilise some novel techniques which are mostly based on the theory 

outlined in this chapter. Such methodologies have been used successfully in the 

physical sciences were the deterministic dynamics of the phenomena are more easily 

detected. Our intention is to provide an additional empirical analysis framework that 

could shed new light in the investigation of the nature of financial time series data 

generating processes. The presentation of the basic theory here is not exhaustive. 

This is outside the general scope of this thesis. There are many books that cover 

the issues discussed in this chapter. Our discussions here are guided mainly by 

Williams (1997), Kantz and Schreiber (1997) and Kaplan and Glass (1995). One of 

the earlier and prestigious writings on chaotic dynamics is the monograph by David 

Ruelle (1989). We should also mention the book by Urbach (1999) who seems to be 

presenting mostly the theory while providing li t t le or no empirical evidence. 

4.2 Dynamica l systems and Chaos 

A system can simply be defined as dynamical when i t evolves from an init ial 

state, according to a set of rules dictated by system of differential equations or 

discrete difference equations. In the first case, when the solution is continuous in 

time, i t is called a flow. In the second case, i t is referred to as a map. 

In the simplest cases, we can characterise the state of the system by a set of 

real quantities x\, x2, Xd- Two different instances of the quantities x\, x2,Xd 

and x[, x ' 2 , x ' d represent two different states. The "closeness" of any two states 

is dependent on the degree of closeness of the Xi and x\ values of for all z's. I f the 

respective states of a system are termed as being close then we can represent the 

evolution of that system as a set of ordinary differential equations: 

Xi = f i ( x u ...,xd), for i = 1, ...,d. (4.1) 

Dynamical systems have a finite number of degrees of freedom and the evo-
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lution of any system can be represented in its phase or state space. A phase space 

is simply a coordinate system formed by all the variables that are used in the ma

thematical formulation of that system. In an d-dimensional phase space, a set of 

d-dimensional "embedding vectors" defines a point i.e., a state of the system at a 

certain instant of its life. The sequence of such instances over time defines the "tra

jectory" of the system. Using the definition (4.1), we can consider the quantities 

X\, x 2 , X d as representing a point x in d-dimensional space. In such a case, we can 

represent the corresponding state of the system by this point x. This is also known 

as simply the phase point while the entire space is the phase space (or state space). 

Sequential states of a system can be represented as a motion of a phase point along 

a curve. This is called the phase trajectory or simply trajectory. 

We can define vectors in phase space combining the x j , x2, Xd points to form 

f(x) vector components such as 

( f i ( x 1 , x 2 , ...,xd), . . . f d { x i , x 2 , . . . ,x d )) . (4.2) 

In this way we can abbreviate the system of differential equations (4.1) as 

* = / (* ) • (4.3) 

A more useful notation of the system of equations in (4.3) is: 

x(t) = /(x(<)), for x = ( x u x 2 , ...,xd) (4.4) 

This enables us to write the solution to system (4.4) for the continuous case as the 

flow F: 

x(t) = F ' (x 0 ) (4.5) 

where xo is the vector of initial conditions or the system's "start" and Fl is referred 

to as the flow or "flow map". 

In the study of dynamical or chaotic systems, it is of primary importance to 

detect and measure the trajectory of the orbit (or simply the orbit) x(£) in 4.5. 

What one usually tries to investigate, as we will see in the following sections, is the 
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"shape" of this orbit and any deviations from it. The way this orbit behaves will 

classify the system as chaotic, nonlinear, deterministic, linear or stochastic. Small 

deviations from the orbit x(i) are denoted as <9x. That enables us to define the time 

evolution of the system in (4.4) as: 

dx=^ (F<(x 0 ) ) c>x (4.6) 

with 

J = * r ( 4 7 ) 

for J being the Jacobian matrix of / after t steps (or iterations), t being the conti

nuous time variable. 

For the discrete case, the map of the dynamical system can be defined as: 

x f c = F*(x 0) (4.8) 

where x is a d-dimensional state vector, xo the initial state vector, t the discrete 

time variable and F f c : M4 —> M d the system function. In the discrete case we can 

show that the Jacobian matrix for the map after fc-iteratiohs is as in the continuous 

case (4.7) : 
dFk 

J = a r < 4 - 9 > 
There are two main classifications of dynamical systems according to their 

"behaviour" in phase space. A "Hamiltonian" or conservative system retains volume 

in phase space. Such a frictionless system exhibits no loss of energy and continues 

its motion forever. A "dissipative" or "nonconservative system is a system that 

contracts volume in phase space. Generally, if the energy of the system fluctuates 

with time, then this is called a dissipative system. In such a system, the trajectories 

converge with time to a bounded subset of the phase space. For this case we can 

represent the Jacobian as J = eA where the eigenvalues of the matrix A are X{ for 

i=l,2,...,d. Following this representation, the "trace" of matrix A will be: 

Trace(A) = Ai + A2 + ... + A d (4.10) 



50 

For a dissipative system, although the eigenvalues of A can be both negative and 

positive, the Trace(A) will be a negative value. This implies that the system will 

be locally unstable. 

Trajectories in phase space that lie sufficiently close together (are "concentra

ted") are said to be lying in the "basin of attraction" and the bounded region to 

which all trajectories converge is called an "attractor". Basically, any limit set wh

ich collects these trajectories is an attractor. In the study of dynamical systems, 

one is interested in a well bounded sub-region (or sub-space) of the phase space 

that "collects" the trajectories of the system's orbits. That is where the system's 

dynamics are said to be concentrated and that has important implications for the 

characterisation, modelling and study of the system. 

Attractors are classified according to their topology. There are three basic 

types of attractors: points, limit cycles and torus. When all trajectories converge 

to a point in phase space, that is termed a ''fixed point" attractor. In the case of the 

attractor being a closed curve due to a periodic attitude of the system, this is called 

a "limit cycle". If the system exhibits a quasiperiodic motion, the attractor is some 

kind of a closed surface, representing a kind of a "torus". A limit cycle attractor 

is one dimensional whereas a torus is a two dimensional one. Finally, when the 

attractor is of a non-integer dimension, this is termed as a "strange attractor" and 

its dimension is called a "fractal" dimension. The main property of such attractors 

is their sensitive dependence on initial conditions. Small perturbations in the initial 

states of the system can lead to entirely different final states for that system. In 

such a case, trajectories that begin closely in phase space, diverge exponentially 

after some iterations. There is a kind of a confusion in the literature about the 

"dimensionality" of dynamical systems, especially in sciences which are not purely 

mathematical such as the social or medical sciences. In these, one can come across a 

number of papers that endeavour to discover nonlinear determinism or dynamics on 

areas that were believed to be governed by stochastically driven systems. In such 

instances, the term "dimensions" may be used to express the number of degrees 

of freedom, the number of variables or the number of differential equations needed 

to explain the dynamics of the system. What is of importance here is to note 
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and emphasise that when the issue of u attractor dimensionality" will be addressed 

throughout this thesis, we will be implying the dimensions of the sub-region of the 

phase space where the attractor lies. This effectively describes the topology of the 

sub-manifold where the dynamics are concentrated. 

Another useful measure for the classification of the behaviour of dynamical 

systems is the set of Lyapunov exponents for that system. The eigenvalues A» for i 

= l,2,...,d are related to the logarithms of the eigenvalues of the linearised dynamics 

across the attractor which are also termed as the Lyapunov exponents. If the sum of 

the Lyapunov exponents is positive, the dynamics of the system will follow an explo

sive path end there will be no attractor. In such a case, the system is non-chaotic. 

In the opposite case, the system is termed chaotic and the steady state trajectories 

form the attractor of such a system in the phase space. As we mentioned earlier, 

this attractor has a non-integer dimension and it is popularly defined as a ustrange 

attractor". On such attractors, the dynamics are characterised by stretching and 

folding of the phase space. Stretching indicates the divergence of nearby trajecto

ries and folding indicates the concentration of the dynamics in a finite region of the 

phase space. The contraction of an attractor in phase space i.e., the strength of 

the concentration of trajectories to the attractor is indicated by the magnitude of a 

negative Lyapunov exponent. 

4.2.0.1 Definition of Chaos and stylised facts 

The meaning of the Greek word 2 9 "Chaos" is easily misunderstood as "di

sorder" and "unpredictability". In the Encyclopedia of Mathematics (Hazewinkel, 

1997), the following definition applies: 

"Chaos describes a situation where typical solutions (or orbits) of a 

differential equation (or typical solutions of some other model descri

bing deterministic evolution) do not converge to a stationary periodic 

function (of time) but continue to exhibit a seemingly unpredictable 

behaviour." 
2 9 T h e word "chaos" apparently has also lead to the making of the word "gas" which was created 

to show the nature of disorder in the movements of the gas molecules. 
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It is obvious that the term refers to dynamical deterministic systems and 

may thus be used as an alternative paradigm to stochastic systems in various other 

sciences. There are some general and basic properties or stylised facts about chaotic 

systems30: 

1. Only deterministic processes can produce chaotic results. 

2. Only nonlinear systems have been proved (so far) to produce such processes 

that lead to chaos. 

3. Feedback in systems such as recurrent structures or lagged effects, can cause 

dynamics that may lead to deterministic chaos. 

4. Chaotic systems may be very simple and exhibit sensitive dependence on initial 

conditions. It is not possible though to determine a chaotic system's prior 

history. 

5. Chaotic systems allow relatively accurate short term predictability. 

6. The dimension of their attractor is non-integer (or fractal). This means that 

the phase space trajectory where the dynamics are concentrated, lies on a 

hyperplane (or manifold) with non-integer dimensions.. 

7. Chaos is a self generated process and not necessarily caused by external factors. 

8. Chaos is broad-band. This implies that there is a broad Fourier spectrum such 

as for an uncorrelated noise process, with some peaks due to some periodicity. 

9. Chaotic processes can be controlled. 

The first property implies that small perturbations on initial conditions may 

lead to entirely different paths of evolution for a chaotic system although such a 

system is deterministic. The second fact refers to what has been mentioned earlier 

about the local instability and the positive Lyapunov exponents of such systems. 

The last property points out the "strangeness" of the attracting set of the dynamics 

of chaotic systems. There is extensive literature which demonstrates those key 
3 0 Wil l iams (1997) provides a rather exhaustive list. Here we include the most interesting points. 
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properties (see Devaney, 1989 and Falconer, 1990). The most famous chaotic systems 

are the Lorenz, Henon and Rossler systems. 

4.2.0.2 Chaotic attractors 

We defined the notion of chaotic attractors earlier in this section. Here we 

outline the basic characteristics in more detail. A chaotic attractor is defined in 

Grebogi et ai, (1992) as "a complex phase space surface to which the trajectory 

is asymptotic in time and on which it wanders chaotically". Eckmann and Ruelle 

(1985) prefer a different definition, that of extreme sensitivity to initial conditions. 

Generally, chaotic attractors are characterised by their distinctive features: 

• A cycle-trajectory in a chaotic regime exhibits complexity. A trajectory may 

never repeat it self (overlap). This is called "aperiodicity". 

• The trajectories of chaotic attractors never intersect themselves. 

• Trajectories that are close in time may diverge exponentially in the future and 

lead to entirely different states for the system. This is due to the sensitivity 

to initial conditions. 

• The dimensions of a chaotic attractors are usually noninteger quantities. 

In figure (4.1) we show an example of an attractor, the projection of the Henon 

attractor3 1 in 2 dimensions. In figure (4.2) we show the Lorenz attractor, projected 

in 3 dimensions. 

As explained earlier, chaotic attractors will exhibit fractal dimensions. In 

chaos theory, the word "fractal" was introduced by Benoit Mandelbrot (1977 and 

1982) in order to signify this fractional nature of the dimensions. Fractals are usu

ally complicated graphs which are derived from the complex solutions of the set 

of equations representing the dynamics of chaotic systems. They exhibit all the 

important characteristics of chaotic systems, namely complexity and self-similarity. 

The graphs of fractal are usually very elaborate but not informative or useful when 
3 1 T h e Henon map is defined as (X, Y) -> (1.4 - X2 + 0.3Y, X) (see Nusse and Yorke, 1994). 
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Figure 4.1: The Henon chaotic attractor. An example of how orbits of 
trajectories concentrate in a small subspace of the phase space 
without overlapping or crossing each other. 

5C 1 
4 0 

30 

'0 

10 

10 
4 0 

20 
I 0 

20 
10 

-40 20 

Figure 4.2: The Lorenz attractor represented in three-dimensional phase-
space (constructed with Matlab). 
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Figure 4.3: The Mandelbrot fractal, also known as the "Gingerbread 
man". 

it comes to financial time series analysis. Fractals are derived as graphical represe

ntations of solutions and are not really structures that can be fitted to time series 

so as to reveal chaotic data generating processes. In order to reveal determinism or 

chaos we really need to follow other paths, such as the reconstruction of dynamics 

based on pseudo phase-spaces derived from observed quantities. This is a complex 

methodology based on topology and embedding theorems by Takens and Whitney 

and will be discussed in the following pages. 

Concluding our brief discussion on attractors, we present a set of fractals which 

are parts of the original fractal graph based on the basic Mandelbrot (1982) fractal 

in figure (4.3). Figures (4.4) and (4.5) show close-up sections ("zoomings") on the 

original fractal. It is easily understood that we can obtain even more detail by 

magnifying the original fractal and reveal patterns that exhibit great similarity with 

the original. All graphs were generated with Winfract version 18.21 for windows, a 

freeware package accompanying Wegner et al., (1992). 

4.2.1 Ergodic Theory 

Ergodic theory is very important for the classification of phenomena as chaotic. 

The theory is based on probability statements concerning the state of a dynamical 
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Figure 4.4: A magnification of an area from figure (4.3). This is a part 
from the tail on the left half of the fractal in figure (4.3), the 
area contained in a white box. 

2 
Figure 4.5: Another closeup of an area from figure (4.4) this time. No

tice the self-similar structures repeating themselves along the 
edges of the fractal. 
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systems in space and time. This is achieved by the equation -when feasible- of space 

and time averages derived from the system's activity. Ergodicity lies behind the 

equation between the probability that a dynamical system is at some state A (i.e., 

some set of possible values describing this state) and the limiting proportion of time 

spent by the process in A. The key is to find an invariant probability distribution 

P, with respect to the dynamic function / , that generates the observed dynamics. 

If X is a random variable with distribution P, then (the mapping) f ( X ) will also 

be of the same distribution. Under these conditions, the function / is said to be 

measure-preserving with respect to P. 

What is of interest in dynamical system analysis is to be able to define qua

ntities that are invariant under smooth coordinate transformations in phase space. 

This implies that whatever is our starting point on the attractor, we should always 

derive the same value for these quantities. The invariance of these particular measu

rements is what exactly ergodicity allows. In plain terms, it allows for the "rotation" 

of the phase space and helps us thus obtain different views of the dynamics of the 

system without altering their nature. It follows that it is easier to observe ergodicity 

in dissipative systems where dynamics are concentrated in a small portion of the 

phase space which we call attractor or basin of attraction. A measure can thus be 

denned that will calculate the time spent by a trajectory in a specific area of the 

phase space. Ergodicity can be established when this measure is independent of the 

initial conditions. In other words, ergodicity ensures that time averages taken over 

a typical trajectory of the system will equal phase space averages. 

In a similar way of defining the mean of any sample sequence of a random 

variable, we can define the time-average of a random process over an interval [—T, T] 

as: 

As T tends to infinity, for many random processes, the time-average will reach 

random processes. The time-average is then defined as an average over an infinite 

Or phase-space average. 

/ x{t)dt 
J-T 

1 
2T 

(4.11) 

the ensemfr/e-average32 fix = £ Y^i=\xi- Such processes are called ergodic in mean 
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interval 

J x(t)dt 
1 Mx = (X(t)) = lim (4.12) 

The time-average for the second moment is similarly defined as 

I x2(t)dt (4.13) 
J-T 

An ergodic process is wide-sense stationary i.e., the expected value is independent of 

the time origin ( j E 1 ^ ] = E[xj+i],V and the correlation and covariance between 

any two subsequences must depend only on the time difference between them. The 

inverse does not necessarily hold i.e., not all wide-sense stationary processes are 

ergodic. These are important notions for time series analysis as any inference is 

based on a set of sample statistics. This implies that the information we retrieve 

is from an incomplete realisation of an unknown data generating process. Without 

the assumption of ergodicity and thus wide-sense stationarity, we would not ever be 

able to estimate any parameters of the random process. 

Ergodicity is not a testable property of time-series. It is usually assumed. 

For a more rigourous treatment of the subject one may refer to the books by Tong 

(1990), Granger and Newbold (1986) or the more recent Medio and Lines (2001). 

4.3 Phase Space Reconstruction 
A scalar measurement is a projection of the unobserved internal variables of 

a system onto an interval on the real axis. It is preferable to reconstruct a new 

phase-space so as the attractor in that space is equivalent to the original one. In 

order to guarantee that the quantities computed for the reconstructed attractor are 

identical to those in the original state space, the structure of the tangent space i.e., 

the liberalisation of the dynamics at any point in that state space, must be preserved 

by the reconstruction process. 

To explain how phase space can be reconstructed in practice, we need to 

introduce a number of measures that help us determine the general shape and size 

of this space and the dynamics that govern the system. These are the various 

dimension calculation measures, the Lyapunov exponents and a number of entropy-
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based criteria. We discuss these in the following sections. 

4.3.1 Invariant measures 

The central idea behind the chaotic analysis of dynamical systems is that th

eir seemingly stochastic i.e., random behaviour can be modelled by a system with a 

small "number of modes", "degrees of freedom" or "dimensions". The key element is 

that although such systems may be fairly complicated and complex in structure, with 

relatively calm periods succeeding erratic and oscillatory behaviour in an aperiodic 

fashion, near to the transition to this "unstable" behaviour, one could describe ade

quately the state and dynamics of the system using a "low-dimensional" model. In 

the case of artificially constructed dynamical systems with a-priori known structure, 

the dimension can be easily established. In the opposite case, dimensionality must 

be determined by observation of the system's output. For example, if the system 

exhibits a stable oscillatory behaviour, its dynamics can be represented by some 

kind of a limit cycle attractor in the appropriate phase space, its topology being 

expected to be a one dimensional closed curve. One of the most popular approaches, 

as we will see in the progress of this thesis, is to examine the dimensionality of the 

attractor in a reconstructed phase space from the observable output time series of 

the system. A kind of a "pseudo phase space" that retains the basic characteristics 

of the dynamical structure and attitude of the system under examination. 

4.3.1.1 Euclidian Dimension d and Similarity dimension D$ 

In order to comprehend the dimensionality of a dynamical system's attractor, 

we have to perceive it as an object with a compact "volume" of a certain size that 

we wish to measure. The attractor will be an orbit, a trajectory of a set of N 

equiprobable and distinguishable states (Shaw, 1984), localised in the phase space 

within a region of radius E. If each single state can be contained in a "sphere" of 

radius e, the dimension d of the region containing all N states is related to the total 

size: 
E 

N (4.14) 
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Taking the logarithms on both sides and solving for d: 

, „ g W = rf,„g(f)^ = j - ^ (4.15) 

More intuitively, let us first recall that a line, a plane surface and a cube 

have dimensions 1, 2, and 3 respectively. This integer dimension is the Empirical 

or Euclidian dimension and it coincides with the degrees of freedom. If we now 

imagine a line segment, a square and a cube divided into similar objects (forms) of 

half their spatial ("Euclidian") size, their numbers will be 2 1, 2 2 and 2 3 respectively. 

We denote these exponents which pertain to the Euclidian dimension, d. Thus, 

if an object consists of nd smaller objects of size 1/n of the same form, d is the 

dimension. Consequently, when an object consists of b similar objects of size 1/a 

then the similarity dimension Ds is: 

fl. = J=S» (4.16) 
log a 

The similarity dimension can also take non-integer values and is helpful in deter

mining the dimensionality of fractal shapes. As a measure, it is cumbersome and 

difficult to compute but is the basis of all other dimension definitions. 

4.3.1.2 Hausdorff Dimension DH 

This measure is based on the topology concept of covering' sets. For D > 0 

and e > 0 real numbers, we construct a covering of a set S by k spheres33 with 

diameters smaller than e and radii r l t r 2 , r3,...,rfc. The D-dimensional Hausdorff 

measure is: 
k 

MD(S) = lim inf V r ^ (4.17) 

The Hausdorff dimension DH is the value of D for which this measure varies from 

infinity to zero. It is a generalisation of the Euclidian and Similarity (d, Ds) di

mensions and can be applied to any set of points through the method of covering. 

It is obvious that for DH, not only the mathematical determination but also the 
3 3.D-dimensional closed surfaces. 
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computational estimation is difficult. 

4.3.1.3 Capacity (Kolmogorov) Dimension D0 and 

Box-counting dimension 

Like the Hausdorff dimension, the Capacity dimension is based on the covering 

of a set by spheres. It has been introduced by Kolmogorov (1959) and is also called 

Kolmogorov dimension. It is defined as: 

ft-lUnJ^ («8) 
ê o log 1/e 

where N(S, e) is the minimum number of spheres of size 1/e needed to cover the set 

S. The previous definition is equivalent to: 

N(S,e) oc (l/e)Do^ (4.19) 

This expression demonstrates the power law relation between the number of spheres 

and their size and exists in all definitions of fractal dimensions.34 When all sizes 

e of spheres are constant, the Hausdorff dimension DH is equal to the Capacity 

dimension. The following relation holds: 

D0<DH<d (4.20) 

The Capacity dimension is a geometric and not a probabilistic measure. In this sense 

it does not take into account the frequency (clustering) of points in the covering 

spheres and does not capture efficiently the finer structure of the fractal shape of 

the attractor. 

4.3.1.4 Information Dimension D\ 

An extension of the definition of the Capacity dimension is the Information 

dimension which is based on entropic measures from Information theory. As a 
3 4 Scale invariance for fractal shapes implies the existence of such a power law as the only scale 

invariant function is power function (def: a function f ( x ) is scale invariant if f ( x ) oc / ( A x ) for all 
A. 
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measure itself, it is suitable for the analysis of stochastic and uncorrelated data. We 

recall from Information theory that the amount of information associated with the 

occurrence of an event q with probability P(q) is given by 

J( 9 ) = - l o g P ( 9 ) = logl/P(g) (4.21) 

Under certainty of the occurrence of q, P(q) = 1 and I(q) = 0. Under uncertainty, 

as P(q) —> 0, information I(q) —> oo. Moreover, for two independent events p and 

Q, I(p + q) = I{p) + I(q). 

Covering a set S with the minimum number N(S, e) of spheres of size e, we 

can calculate the probability Pj(S, e) of a random point of the attractor to reside in 

the i th sphere. The associated information for that event is Ii(S, e) = — log Pi(S, e). 

The information entropy i.e., average information for every point to be in a specific 

sphere is 
N(S,e) 

7(5, e )= ^ - ^ ( 5 , e) logics, e) (4.22) 

i=l 

The Information entropy is a measure of predictability. In other words, it measures 

(see Weaver and Shannon, 1949 and Shannon, 1948) the information needed to 

observe the system at a certain state i i.e., our degree of ignorance about the system's 

state. It is also called the "Shannon information criterion". In the case of uniformly 

distributed stochastic (random) data in S, I(S, e) takes a maximum value which 

implies minimum predictability. In the case of the data clustering in some area of 

the phase space, for example a certain sphere, then the average information is zero. 

The information dimension is defined as: 

A = hm (4.23) ê o log 1/e 

Again the information dimension is a generalisation of the capacity dimension D$. 

In the case that all probabilities of points residing in spheres are equal,35 DQ = D\. 

Moreover, if this distribution is in d-dimensional space, then D\ = d which means 

that the size of the spheres is directly related to the probability of points residing in 
3 5 Uniform distribution of points. 
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them i.e., Pi{S,e) oc ed. In the opposite case of non-uniformly distributed points in 

the phase space, the information dimension is smaller that the capacity dimension, 

Dx < D0. 

4.3.1.5 Correlation dimension D2 

The most widely used attractor descriptive parameter is the "correlation di

mension" (D2). This complexity measure is related to the system's topological di

mension, or more intuitively, with its degrees of freedom. It is useful in determining 

whether the system under examination is stochastic or deterministic. For the latter 

kind of systems, D2 converges to a finite value whereas for randomly behaving sy

stems, it does not converge to any number. That has established D2 as a commonly 

used statistic for determining the noisy or deterministic nature of any dynamical 

system (for more discussion see works by Theiler, 1987, 1988a and 1988b, Schuster, 

1984, Sauer and Yorke, 1993, Ruelle, 1989, Abarbanel, 1995 and Ding et ai, 1993). 

The Grassberger and Procaccia (1983) method for determining D2 has been the 

most popular in chaotic literature. The first step is the phase space reconstruction 

via time delay coordinate embedding which will be discussed in more detail in section 

4.3.2.1. Briefly we can describe that as in Takens (1981), from a single observable 

output series of the system, we construct n-dimensional vectors: 

x = {x{t),x(t + r ) , x { t + (n - 1) • r ) } (4.24) 

where T a fixed increment called the time delay and n is the embedding dimension. 

The correlation integral C(e) is then defined as a function of the distances between 

these "reconstructed" vectors as: 

C(e) = Im^ ± ] T 0(e - \x, - x3\) (4.25) 
iyij 

where TV is the sample size and 0 is the Heaviside function. C(e) is the probability 

measure that two arbitrary points Xi, Xj will close by a distance less than e. The 

correction to this expressed by Theiler (1986) is to use vectors that are distanced 

by at least W data points (\i — j\ > W), where W is a measure of the temporal 
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correlation of the signal. In that way we may avoid temporal spurious correlations. 

If an attractor exists and it is a curve in the phase space, C(e) wi l l be proportional 

to el. In the case of the attractor being a two dimensional surface, the correlation 

integral wi l l be proportional to e2 and if i t is a fixed point then C(e) ~ e°. In 

general: 

C(e) ~ e°2 (4.26) 

where D2 is as we defined earlier the correlation dimension. This means that for 

small e, the correlation integral can be approximated by a power of the distance 

e. For sufficiently large number of observations and the embedding dimension, we 

obtain: 

D ^ l i m 1 ^ (4.27) 
e-»o log e 

The common practice is to plot logC(e) against loge and determine D 2 f rom 

the slope of the curve. For an attractor wi th unknown topology i t is necessary to 

calculate an array of C(e) for several different embedding dimensions (see comments 

by Sauer and Yorke, 1993). I f the signal is deterministic, the correlation dimension 

should converge towards a value as the embedding dimension increases. 

4.3.1.6 Kolmogorov Entropy 

The most important measure that characterises chaotic motion is the Kolmo

gorov Entropy or K-Entropy {KE). Classical information entropy from thermody

namics measures the lack of order in a physical system, or our degree of surprise of 

finding the system at a certain state and was defined as in equation (4.22). To calcu

late KE we need the vector x(t) which comprises of the points Xi(t) for i = 1 , d 

that define the trajectory of a dynamical system's attractor in d-dimensional space. 

The phase space is partitioned into hypercubes of size ed. We define probabilities 

Pi0,...,in t n a t a trajectory resides in hypercube i0 at time t = 0, i\ at t — r , i2 at 

t = 2r, etc. etc. According to Shannon, we can define a quantity 
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which is proportional to the information needed to locate the system on a specific 

trajectory i0,...,in wi th precision ed (Schuster, 1984). The quantity Kn+\ — Kn is 

the information needed to predict which hypercube wi l l contain the trajectory at 

(n + 1)T given the trajectories up to time nr . This is the loss of information from 

state n to state n + 1. The average loss of information is given by K-entropy which 

is defined as: 
N-l 

K = l im l im l im — V ( A T „ + i - Kn) (4.29) 

n=0 

As e —• 0, k becomes independent of the specific box/hypercube and for maps wi th 

discrete time steps we can omit r. K for random systems where initially adjacent 

points are distributed with equal probability is infinite. For deterministic chaotic 

systems where the divergence is exponential, i t is larger than zero and constant. 

4.3.1.7 Lyapunov exponents 

As we have described earlier in this chapter, Lyapunov exponents (Wolf et 

al., 1985) are useful for the characterisation and classification of attractors. They 

provide us wi th a quantitative measure of the existence and the level of chaos in a 

dynamical system. The magnitude of the Lyapunov exponents enables us to quantify 

the dynamics of a systems attractor in information theoretic terms. That is, the 

measure the rate at which a system's evolution creates or destroys information. 

Moreover, Lyapunov exponents measure the mean exponential divergence of initially 

close orbits (trajectories) in phase space wi th time. The more rapid this divergence 

is within a certain period of time, the more chaotic the system is - this being a clear 

indication of sensitive dependence on init ial conditions. 3 6 

There is one Lyapunov exponent for every dimension in phase space. A positive 

Lyapunov exponent implies divergence i.e., a form of "stretching" in the phase space. 

In this way one can establish how rapidly nearby points diverge from one another. 

Inversely, a negative Lyapunov exponent implies "contraction" and indicates the 

speed with which a system returns to balance after i t has been perturbed. To 

illustrate, in the case of three-dimensional dynamics wi th a point attractor, three 
3 6 This is a prerequisite for the existence chaos in a system by definition (see section 4.2.0.1 and 

page 52). 
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Figure 4.6: Sensitivity to initial conditions makes close trajecto
ries diverge exponentially with time: Divergence(at time 
i)=Divergence(at time 0 ) x e A t where A is the Lyapunov ex
ponent. 

negative Lyapunov exponents exist, as all three dimensions wi l l "collapse" to a fixed 

point in the phase space. For the same dynamics wi th a l imi t cycle attractor, two 

negative and one zero exponents exist as convergence is only in two dimensions. In 

the case of a strange attractor, the exponents are one negative, one positive and 

a zero one. A positive (+) exponent indicates a local average rate of expansion, a 

negative exponent (-) indicates contraction whereas a zero exponent (0) indicates the 

direction of the flow itself. The above information is summarised in the following 

list which shows the signs of the spectrum of Lyapunov exponents for a three-

dimensional case: 

1. Fixed point attractor: (-,-,-) 

2. Periodic l imit cycle: (0,-,-) 

3. Quasiperiodic attractor (or torus): (0,0,-) 

4. Chaotic attractor: (+,0,-) 

As described earlier, the negative exponent causes diverging points to remain 

within the range of the attractor whereas the positive allows sensitive dependence on 

init ial conditions and therefore a steady state is defined by how far points wi l l diverge 

before they obtain again a stable distance. In figure (4.6) we show graphically this 

exponential divergence. 
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Lyapunov exponents are defined in terms of the long time average rate of 

evolution of a perturbation to a system's orbit trajectory. We can deduce from the 

discussion above that there exists a relationship between Lyapunov exponents and 

the eigenvalues of the linearised dynamics averaged across the attractor (Kugiumtzis 

et al, 1993 and 1994, see also 1997a and 1997b for further discussions). For a 

continuous system, the eigenvalues of (4.7) are: 

k(t) = e (4.30) 

where Aj is the system's dynamics rate of contraction-expansion in phase space. 

Following (4.30) one can define the Lyapunov exponents for that system as: 

Aj = l im - In | ^ ( i ) | , for i — 1 , 2 , d e 

t—fOO t 

(4.31) 

where dem is the embedding dimension which is equal to the number of Lyapunov 

exponents when the l imit exists. Similarly, for the discrete case (4.9), the Lyapunov 

exponents are defined as: 

A, = l im \ In \k{k)\, for i = 1, 2 , d e 

k—»oo K 
(4.32) 

For the simplest case of a 1-dimensional map, the Lyapunov exponent can be defined 

as: 

A ( J C O ) l im — In 
n—too n 

d f n ( x 0 ) 
dx0 

= l im — In 
n—>oo fl 

n-1 

n / ' ( * < ) 
i=0 

n—l 

= l im - J ^ l n 1/(^)1 

(4.33) 

n—>oo n i=0 

The third expression of equation (4.33) explains that the Lyapunov exponent is the 

mean growth rate of the infinitesimal distance between trajectories along a reference 

trajectory through x0 (Diks, 1999). When the systems are ergodic, the Lyapunov 

exponent has the same value for almost all choices of the init ial conditions for XQ. For 
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this reason the latter is usually dropped as an argument of A. For larger dimensions 

than unity, the k Lyapunov exponents are defined as the mean logarithms of the 

moduli of the eigenvalues of the Jacobian of the map along the reference trajectory. 

When we refer to a spectrum of Lyapunov exponents, usually we order these by 

decreasing order, i.e., Ai > A 2 > A 3 > ... > A^. In a similar fashion we define 

the spectrum of Lyapunov exponents for continuous-time dynamical systems. In 

this last case, there wil l always be a zero exponent as any perturbation along the 

direction of the flow wil l exhibit a mean growth rate of zero. 3 7 

In theory, when the evolution equations of the dynamical system are given, 

the obtaining of estimates for Lyapunov exponents and/or their spectrum is usually 

straightforward. In cases such as in this thesis, where Lyapunov exponents must be 

obtained from dynamics which are reconstructed from empirical time series, such a 

task is extremely difficult (Diks, 1999). Since the seminal work of Wolf et ai, (1985), 

several methods have been proposed for the estimation of the largest Lyapunov 

exponents from a time series. These methods are very sensitive to the presence of 

noise and require huge amounts of data, a fact that has been repeatedly ignored in 

the relevant financial and economic literature. 

An interesting relationship described by Pesin (1977) states that the informa

tion entropy K\ is the sum of the positive Lyapunov exponents in such a way that 

the largest Lyapunov exponent coincides wi th a positive value of K\. That implies 

that for 1-dimensional maps, the Lyapunov exponent as defined in equation (4.33), 

wi l l be equal to the information entropy. 

4.3.2 How to reconstruct the phase space 

As we already discussed, embedding theorems make possible the reconstruction 

of the phase space dynamics. Given a single output sequence of scalar numbers from 

a dynamical system, we can construct a "pseudo-phase space" that would encompass 

all dynamics. This requires and infinite amount of noise-free observations that are 

generated from a system's operation. In practice, obtaining noise free data in vast 

amounts is very difficult i f not impossible. This applies most to social sciences. 
3 7 A s long as the attractor is not a fixed point. 
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When one has in hand a time ordered sequence of scalars, what actually is 

observed is not a complete picture of the system that generated them but just 

a part of its output. The problem is to t ry to "guess" the dynamics from this 

sequence which is the projection of these dynamics onto M. Due to this projection, 

a large part of the information about the dynamical system has been "distorted" 

i.e., transformed, masked or even lost. There is though a way to identify a specific 

flow of information from the unobserved dynamics or state variables of the system 

to the projections, i f our measurements on the projected sequence are unaffected 

from this "distortion". 

Topological measures such as dimensions, Lyapunov exponents and entropies 

are only invariant under smooth non-singular transformations. In this sense, dyna

mics can be reconstructed adequately either through obtaining a large set of very 

good quality data or by denoising these very carefully so as not to destroy the fine 

details of the attractors while reconstructing the dynamics. This implies that for 

transforming-denoising the original data, we should only use functions which are 

smooth (continuous) and invertible i.e., monotonic everywhere. Under this condi

tions, the pseudo-phase space we reconstructed f rom the filtered observations wi l l 

mimic most fai thfully the true dynamics of the system. In practice this is easier 

said than done. Various techniques have been proposed. Most of these are based 

on the embedding of time series obtained from the dynamics os the systems under 

examination. We already briefly discussed time delay embedding earlier. This is the 

most popular method for time series embedding. Below, we wi l l be discussing the 

issue to more extent. Embedding is defined as follows: 

Definition: A n embedding to a compact smooth manifold A into M m is a map F 

which is a one-to-one immersion on A i.e., a one-to-one C 1 map with a Jacobian 

DF(x) which has fu l l rank everywhere. 

The crucial question here is under which conditions the projection due to the scalar 

measurements and the subsequent reconstruction by time delays, forms an embed

ding. 

Whitney (1936) proved that every D-dimensional smooth manifold can be 
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embedded in the R2D+1 for integer D, and that the set of maps forming an embedding 

is a dense and open set in the space of C 1 maps. Sauer et al., (1991) extended this 

to fractal sets A wi th box counting dimension Dp < d. They show that almost every 

C 1 map from A to the R m wi th m > 2DF forms an embedding. These theorems 

and their extensions are of great importance. They simply enable us to recreate the 

dynamics of a very wide range of dynamical systems in some carefully constructed 

"pseudo" phase-space, from a single observable sequence. 

4.3.2.1 Time-delay embedding 

Time-delay embedding, also known as delay coordinate embedding or method 

of time delays, is the most popular phase-space reconstruction method. I t was 

introduced by Packard et al., (1980) but apparently developed independently by 

Ruelle who did not publish. In this section we briefly present the mathematical 

framework that supports this reconstruction methodology. 

The Whitney (1936) embedding theorem and its generalisations refer to sets 

and spaces. In time series analysis we deal wi th sequences of numbers, which are 

projections of dynamics from higher dimensions i.e., of the true trajectories of the 

dynamical orbits in the original phase-space. We term these true orbits z(t). What 

we actually observe is time series x(t)38 which is a mapping of z(t) to R via a function 

h(-y. 

x(t) = h(z(t)) (4.34) 

We need to unfold the original dynamics solely from process x(t). This requires a 

generation of a matrix which wi l l contain as columns, vectors which are lagged sub-

samples of the original sequence x{t). The length of those subsamples is determined 

by a lag or delay parameter, usually denoted r . This parameter is straightly related 

to the embedding window . We construct n of these lagged subsamples preserving 

the time order of the observations in x(t) and construct vector (4.24) given here in 

3 8 We assume for simplicity that x(t) is homogeneously sampled in time, i.e., that we have no 
missing observations. The approach described here can be extended to cover the case of non-
uniformly sampled data but we find this outside the general scope of this thesis. 
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slightly different notation: 

x(t) = {x(t), x(t + r),x{t + 2 r ) , x(t + (n - l ) r ) } ' (4.35) 

The embedding window is thus: 

T n = ( r a - l ) r (4.36) 

In this way we obtain n observations from x(t), skipping every r t h . Vectors x ( i ) are 

filled wi th repeated observations from x(t) in the sense that two vectors x(t) and 

x(t + T ) wil l have almost the same elements. For example, embedding an ordered 

sequence of numbers from 1 to 10 (i.e., x(t) = { 1 , 2, 3 , 1 0 } ) for time delay r = 1 

and n = 3, would produce a 4 x 3 matrix say V : 

(3 2 A 

4 3 2 

5 4 3 

^ 6 5 V 

(4.37) 

The parameter n is called embedding dimension. In order to unfold the dyna

mics from x{t) effectively, we need to choose very carefully the value of parameters 

r and n. For that reason a number of procedures exist such as the Average or Auto 

Mutual Information criterion and the autocorrelation function for the time delay 

and the Faise Nearest Neighbours criterion for the embedding dimension. 

4.3.3 Phase-space reconstruction: some practical issues 

The embedding theorems ensure that a phase-space can be reconstructed to 

emulate the original dynamics of any dynamical system. The practical issue arising 

is how this is achieved given a single time series as an observable output from 

a dynamical system. Based on these theorems, procedures have been developed 

that enable us to determine the embedding parameters: the time delay r and the 

embedding dimension. We present below the most popular which wi l l be also utilised 

in the empirical work that follows. The most common way to determine r is by 
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the calculation of the Average Mutual Information. Embedding dimensions can be 

determined via an iterative technique called the False Nearest Neighbours. 

4.3.3.1 Average Mutua l Information 

The Average Mutual Information criterion (AMI) has been introduced by Fra-

ser and Swinney (1986) and is the average amount of common information contained 

in a set of variables. More precisely, i t provides a measurement of the nonlinear 

correlation between different sub-samples of a given series. I f the series exhibit non-

linearities the mutual information wil l be significantly greater than zero for small 

lag values. I t can be regarded as a statistic analogous to the linear correlation 

coefficient, r, but sensitive to any kind of relationship and not just some linear 

dependence. 

For a pair of discrete random variables X and Y, mutual information is denned 

as: 

I(X;Y) = H(X) + H(Y)-H(X,Y) (4.38) 

where H(X) and H(Y) denote entropies and H(X, Y) denotes joint entropy. From 

(4.38) we can easily see that for two discrete sequences39 Oj and bj, the amount of 

information we can gain for Of by bj measured in bits is: 

log 2 

PAB(a.i,bj) 
(4.39) 

_PA{ai)PB(bj)_ 

where PA{CH) and Pe(6j)is the normalised histogram of the distribution of the a, and 

bj sequences respectively. PAB{ai,bj) is the joint distribution for both sequences. 

This is another way of expressing mutual information. I f a, and bj are independent, 

then 

PAB(ai, bj) = PA(ai)PB(bj) (4.40) 

and mutual information is zero. I f we average the mutual information over all 

sequences, we derive the A M I given by: 

3 9These can be different histories of the same time series. 
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IAB = P a b ^ b i ) l oS2 

For a signal s(n), we choose Cj to be the measurement of the sequence at time 

n and bj to be the measurement of the sequence at time n + T thus the A M I is 

defined as a function of the time lag T and is usually denoted I(T). For T = 0 the 

A M I is the entropy In order to sufficiently define the time delay r for embedding, 

we choose i t to be equal to the lag where the A M I reaches it's first minimum value. 

4.3.3.2 False Nearest Neighbours 

A set of points being close to any chosen point in embedded (i.e., reconstructed) 

space, are called nearest neighbours. The issue is discerning between false and true 

neighbouring points. I t follows that some points wi l l be close to others in the true 

dynamics, and some other points wi l l appear to be close in embedded space but in 

reality, they are very far apart in the true phase space. They only appear to be 

close due to the reconstruction. 

The F N N procedure works as follows: For a given delay 4 0 r , we choose arbi

trarily a central point and start increasing the number of embedding dimensions. 

We observe the neighbouring points. I f their distance to the central point remains 

constant, these are termed true neighbours as opposed to false neighbours whose 

distance increases. We choose as embedded dimension the one that decreases the 

percentage of false nearest neighbours to zero. More analytically, from the delay 

vector x ( i ) in (4.35), reconstructed for some dimension d, we are interested in lo

cating the nearest neighbour for each point in the reconstructed space. We denote 

the neighbour of x ( t ) as X J V J V ( £ ) . We add one dimension to d and reexamine the 

distance between x ( t ) and xjvAr(i) in d + 1 space. From the transition from d to 

d+ 1: 

x ( t ) — > [ x ( i ) , z ( i + d r ) ] 

X A W W — • {xNN(t),xNN(t + dr)] (4.42) 

4 0 This implies that r has to be a priori estimated and the accuracy of the FNN technique relys 
heavily apon this parameter. 

PAia^Psibj) 
(4.41) 
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I f distance \x(t + dr) — x^^(t + dr)\ is small, then x(£) and XATN(£) are also near 

neighbours in d+1 dimension. The dimension in which the unfolding of the attractor 

is complete, is identified when the percentage of false nearest neighbours drops to 

zero. Usually we accept a threshold value of 1%. This dimension is called the global 

integer embedding dimension and is denoted de. 

4.3.3.3 Other approaches 

The A M I and FNN criteria are not the only ones available for the reconstru

ction of the phase space dynamics. The autocorrelation function has been used in 

earlier work in order to determine the time delay. As we wi l l also demonstrate in the 

next chapter, i t does not always provide clear results as the autocorrelation function 

is based in the first 2 moments of the data and is essentially a linear function. The 

underlying structure in the time series may be a result of nonlinearity and determi

nism. The data may also be contaminated wi th unknown noise (Sauer, 1992 and So 

et al., 1996). This hinders the accurate determination of r and the reconstruction 

may thus be "blurred". In this sense we may not be able to determine accurately 

the embedding dimension. Secondly, false neighbours may appear to be true due to 

the inaccurate unfolding of the dynamics from the observable sequence. 

As wi th A M I , the FNN criterion is not the only way to determine the value 

of the dimension of embedding. Kennel and Isabelle (1992) have proposed a short-

term nonlinear predictability criterion based on surrogate tests. 4 1 The optimum 

embedding dimension and time delay should produce the best predictability when 

comparing this wi th surrogate data simulations. 

There are more techniques which we wi l l not cover here. We found for our 

purposes that A M I and FNN produce good results wi th relatively economical co

mputations and algorithmic complexity. Moreover, most of the existing phase-space 

reconstruction empirical literature is incorporating these, which makes our results 

comparable. In practice i t is preferred to combine more than one techniques in 

calculating the embedding parameters in order to double-check their validity. For 

4 1 We dedicated a separate chapter on surrogate data analysis (SDA). At this point it suffices to 
say that SDA is a simulation technique similar to bootstrapping where one is interested in rejecting 
the null of linearity. More on this sector is covered in chapter 6. 
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instance, correlation dimension can be used to support the FNN results. Secondly, 

data allowing, one may choose to estimate a range of values and check whether the 

reconstructions based on this range provide similar answers. 

4.4 Conclusions 
In this chapter we presented the basic theory behind chaotic systems and out

lined a set of tools used to produce metrics that would enable us to characterise 

any process as chaotic. The methodology is based on examining a single observable 

quantity which is a result of a system's functioning i.e., a single time series gene

rated by the dynamics of the system. These metrics wi l l remain stable for certain 

transformations of the phase-space dynamics, hence the name "chaotic invariants". 

This allows us to manipulate the dynamics obtained or "guessed" from the series 

in such a way so as to detect and possibly visualise their chaotic structure. In this 

approach, all the techniques discussed in the current chapter are purely univariate. 

These measurements though can be misleading and their calculation is prone to 

serious deviations. For this reason, a number of methodologies have been developed 

in order to validate results based on measurements for the detection of chaos and 

to provide a clearer view of the dynamics. 

In the following chapter we examine "recurrence plots" based on a kind of 

nonlinear, high-dimensional autocorrelation matrix. This approach is rather visual 

and qualitative, but enables us to view the dynamics in even very high dimensions. 

I t can also provide the base for a quantitative framework and can be used to cross

check measurements obtained by chaotic invariants calculations. As we shall see, 

it can provide a powerful tool for establishing whether time series are results of 

deterministic or stochastic data generating processes or even whether these two 

processes interchange within the dynamics. 

In the chapter after the next, we examine how one can combine statistical 

measurements and a hypothesis testing framework to obtain an answer on whether 

the sequences examined are linear-stochastic or deterministic. This approach is 

called "Surrogate Data Analysis" and is based on a similar idea to bootstrapping 

and requires a number of simulations. These simulations are designed to produce 
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data wi th the same autocorrelation and spectral density structure. In this sense, 

any nonlinear structure and determinism in the original sequences can be clearly 

contrasted to the simulated "linear" counterparts. This enables us to refute linearity 

with a good amount of statistical certainty. Summarising, we can say here that 

there is a wide array of statistical tests and computations one can apply on data 

to determine (with various degrees of success) whether they have been produced 

by a deterministic or a stochastic system. In this thesis we focus on a specific 

approach which concentrates on a subset of these and we suggest possible strategies 

for analysing nonlinear and possibly chaotic financial data. 



C H A P T E R 5 
Recurrence Analysis 

5.1 Introduction 
In most financial time series analysis applications there is no clear evidence of 

the nature of the noise "contaminating" the data. Moreover, the academic commu

nity is still arguing 4 2 about the nature of the Data Generating Process (DGP)(e.g., 

see Mandelbrot, 1999, 2001a-2001d, Marchesi and Lux, 1999, Malliaris and Stein, 

1999). Any assumptions about the statistical properties of noise should be carefully 

validated by thoroughly examining the consistency of our modelling results. Fur

thermore, noise may cover the dynamics or the fine details of the underlying DGP. 

One technique that allows us to view these dynamics and assess on the presence and 

level of noise is presented in this thesis. 

Our a i m 4 3 is to show the usefulness of "recurrence analysis" as a univariate 

time series analysis tool. Recurrence analysis consists of "recurrence plots" and "re

currence quantification analysis". Here we focus on re-introducing the recurrence 

Plots (RP) for financial time series analysis. In their seminal paper Eckmann et 

al. (1987) have presented the RP as a new visual method for the qualitative asses

sment of time series. I t is a tool for the detection of hidden patterns, similarities, 

temporal correlations, intermittence and structural changes in the data. Unti l now, 

i t has been used mainly for the study of physiological time series and generally in 

phenomena which usually exhibit nonlinear determinism. Similar work in economics 

was undertaken by Gilmore (1990, 1992, 1996 and 2001) who introduced the Close 

Returns Plot (CRP, see also latest application by Belaire-Franch et al., 2002). Both 

above RP and CRP techniques "suffer" from the fact that the interpretation of their 

graphical output is not as straightforward as in the "conventional" linear autocor-

4 2 For interesting discussions and reviews on the topic one may refer to Chiarella (1992), Creedy 
and Martin (1994) or the more recent Opong et al., (1999). 

4 3 Part of this chapter has been presented in Belgium at the Parallel Applications in Statistics 
and Economics, 7th International Workshop (PASE, April 2000) and appears in the proceedings, 
a special issue of the Neural Network World journal (vol 10, No 12, p 131-145). 
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relation (ACF) or partial autocorrelation function (PACF) plots that frequentists 

have been accustomed to. Moreover, an understanding of the notion of embedding 

of time-series plus a background in chaos and information theory is deemed neces

sary. W i t h RP though we can visualise successfully the underlying dynamics in 

many different dimensions and enhance the information provided by the ACF and 

PACF plots. A n other important point is that the time series examined may not be 

stationary. On top of these, RP are computationally very cheap. In the following 

sections of this chapter we provide a brief outline of the theoretical foundations and 

practical issues required to generate successfully an RP, so as to display any kind 

of structure within the examined time series (elements of these explained in more 

detail in the previous chapter). In section 5.2 and 5.3 we provide guidelines for the 

construction and interpretation of RPs by using illustrative examples wi th simulated 

time series. Following these sections, we generate RPs of real financial time series 

and derive the Recurrence Quantification Analysis results from these plots. Below 

we briefly discuss the Close Returns Plots, an idea similar to RPs, introduced by 

Gilmore (1990). 

5.1.1 Close Returns plots 

Close returns plots have been developed by Gilmore (1990) and revised by 

Midl in et al., (1990), Midl in and Gilmore (1991) and Gilmore (1992). They are 

based on the same premises as the recurrence plots i.e., on the idea that different 

segments of time series may display very similar behaviour. The starting point for 

these diagrams is the observable time sequence xt though without an embedding as 

in Eckmann et al., (1987). I f one of the observations of Xi occurs near an unstable 

periodic orbit, the subsequent observations wi l l lie near this orbit for a period of 

time, before being repelled away from i t (Gilmore, 1992). I f these evolve near his 

orbit for a sufficiently long time, they wil l return to the neighbourhood after some 

time T. This parameter T also indicates the length of the orbit. The conclusion 

is that we can retrieve topological information for the attractor when distances 

\xi — x i + r \ are small. I f is near X i + i + x , then wi l l be near xi+2+r, and so 

on and so forth. Close returns plots indicate a series of consecutive observations for 
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which \xi — Xi+r\ is small. Effectively a close return plot can be approximated by a 

recurrence plot when the latter is constructed without embedding at all. 

Gilmore (1992) has used close returns plots on exchange rate data. His impro

ved scheme involve the plotting of distances \xt — xt+r\ as a function of t in the 

horizontal axis against T on the vertical axis, where t and T range from 1 to N, 

where N is the sample size. A threshold value e is determined as a percentage of 

the maximum absolute value of differences between observations across the sample. 

This is usually between 1% and 5%. I f \xt — xt+r\ < e, point (t,T) is coded black 

(and in the opposite case white). Chaotic data produce plots wi th almost horizontal 

line segments whereas stochastic sequences wi l l produce plots without any pattern. 

Gilmore (1992) checks via simulations the robustness of such plots at the presence of 

noise and concludes that his diagrams can provide clear and conclusive results even 

under such circumstances. He also uses extensively exchange rate time series and 

stock market data to put his plots to the test. He concludes that there is evidence 

of nonlinear structure but he cannot obtain a clear answer on whether this nonline-

arity is due to chaotic determinism or some other reason. He reveals clear aperiodic 

structures which could lead us to conclude on some deterministic component for the 

series but more research is needed for this. 

Gilmore's work was not conclusive about chaos but did not exclude i t as well. 

The main difference is that close returns plots do not require time series embedding. 

In this chapter we wi l l be discussing the use of recurrence plots on stock market data 

and wi l l be revealing qualitative and quantitative information that could support 

the existence of chaotic attitude in their dynamics. More recent works influenced 

by Gilmore's research are Choo (1997) and McKenzie (2000). 

5.2 RPs and phase-space reconstruction 
The philosophy behind RP's is based on the concept that the dynamics of 

a multi-dimensional system can be recreated and predicted from a single history 

of anyone of its observable output variables. Using the time-delayed copies of this 

observable we can reconstruct, under certain circumstances4 4, the phase-space of 
4 4Infinite amount of noise-free data, as Takens (1981) describes. 
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the dynamical system.45 Two factors are needed for this purpose: the value of the 

embedding dimension de of the time-series and the time-delay r . The method of 

delays or delay coordinate embedding is regarded as the most popular phase-space 

reconstruction technique (Abarbanel, 1995). When the embedding is correct, the 

relevant theorems described in Takens (1981) and Sauer et ai, (1991) guarantee (see 

also the preprint by Sauer and Yorke, 1992) that certain properties of the original 

system i.e., its dynamic invariants are preserved in the reconstruction, enabling us 

to identify its dynamics. Recently Iwanski and Bradley (1998) suggested that higher 

dimensional space embedding is not needed and that for de—l the RP capture the 

same information as do those that are generated using higher embedding dimensions. 

The correct selection of the time delay parameter r is crucial for the proper 

phase space reconstruction of the underlying dynamics. The careful selection of 

the embedding dimension parameter allows for the system's dynamics to be "unfol

ded".4 6 

The criterion used for the determination of the delay parameter r is the average 

mutual information (AMI). AMI has been introduced by Eraser and Swinney (1986) 

and is the average amount of common information that allows for a time separation 

of the dynamics. In order to sufficiently define the time delay r we choose it to be 

equal to the lag where the AMI reaches it's first minimum value. To demonstrate 

this, we simulated an ARCH(2) process, series x, of size 5000, from normal random 

data. The series x is depicted in figure 5.1 (a). The AMI plot in figure 5.1 (b) 

clearly indicates that we should set the time delay parameter equal to 3 where the 

AMI reaches its first minimum. 

In this empirical chapter, in order to determine the embedding dimension de for 

the vectors y(n), we employed an improvement of the global false nearest neighbours 

(FNN) statistic (Kennel et al, 1992) as it is implemented in the TISEAN package 

(Kantz and Schreiber, 1999).47 For clean chaotic signals, the percentage of false 
4 5 See section 4.3.3, page 71 onwards. 
4 6 T h e r e is a large bibliography covering this topic. One may refer to Abarbanel (1995) or Kantz 

and Schreiber (1997) for a discussion. 
4 7 I n this research we employed a variant of the F N N algori thm given in the T I S E A N (Kantz 

and Schreiber, 1999) library. I t determines false neighbours when the rat io of the distance of the 
i terat ion and tha t of the nearest neighbour exceeds a given threshold the point . I n their a lgori thm, 
the authors (Hegger and Kantz, 1999) have implemented a new second stricter cri terion for the 
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(a) ARCH(2) process. (b) A M I 

Figure 5.1: An ARCH(2) process and the Average Mutual Information 
plot. 
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Figure 5.2: False Nearest Neighbour Percentages. 

nearest neighbours will converge to zero when dimension CLE is reached and will stay 

to that level for successive calculations. This is a good indication for the existence 

of noise and its level in our data. In figure 5.2 we have plotted the graphs of the 

FNN percentages for embedding dimensions 0 to 7, for the six stock market index 

returns in table l . 4 8 

closeness of points. I f the distance to the nearest neighbour becomes smaller than the standard 
deviation of the data divided by the threshold, that point is omit ted. For a critique on F N N one 
may refer to (Abarbanel, 1995). For a very insightful critique of delay coordinate embedding one 
should refer to Kugiumtzis (1996). 

4 8 W e have not fi l tered any of the 6 series of returns so we expect a level of noise to be present. 
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5.2.1 RPs and correlation dimension 

Both close returns and recurrence plots provide us with significant advantage 

over the calculation of certain invariant statistics such as the correlation dimension. 

This becomes more obvious when examining real life financial time series data which 

are always not noise-free and limited in length. As we have already discussed, the 

methods concentrated on the calculation of certain statistical quantities that would 

reveal chaos, require theoretically an infinite amount of noise-free observations. Such 

samples were not available in finance until recently with the generation of high-

frequency tick-by-tick databases. With historical data, one is limited to samples 

of a few thousands observations when dealing even with daily data. That is why 

graphical approaches such as the one proposed in this chapter are deemed as a more 

appropriate tool for the detection of determinism. Brock (1986) among others, has 

drawn our attention to the fact that correlation dimension can not be calculated 

accurately on noisy data (see also Castro and Saure, 1997). Secondly, the correlation 

dimension estimation procedure will not provide us with any information about 

the underlying DGP. Finally, all these chaotic invariant statistics should not be 

readily accepted unless they were put to the test within a Surrogate Data Analysis 

framework which we will be examining in the next chapter. 

Recurrence plots do not seem to suffer from what was just discussed. Firstly 

we demonstrate here that when noise contaminates the original DGP, these plots 

will be able to recover the "larger picture" of the dynamics effectively. Secondly, 

their results are not disturbed by small size samples. Rather, we should be careful 

when analysing large data-sets to try to reveal the finer patterns by magnifying 

parts of the plots or by careful examination of the recurrence matrix itself. Finally, 

recurrence plots are able to reveal information which could support or contradict 

the hypothesis of a chaotic DGP or the presence of it for some parts of the history of 

the series. In the following section we provide a demonstration of these plots using 

both simulated and real data. 
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5.3 Recurrence Plots 
There are two types of RP, the thresholded and the unthresholded. The thre-

sholded RP (also known as recurrence matrix) is generated by the comparison of all 

embedded vectors with each other and by drawing a point when the distance be

tween the vectors is below some threshold. A point is drawn at the coordinates (i,j) 

when the i'th and the j ' t h embedded vectors are less than some arbitrary distance 

r apart: 

\\Ui ~ Vj\\ < r I 5 - 1 ) 

with i corresponding to the horizontal axis and j to the vertical one. The unthre

sholded RP is a coloured version of the thresholded with the points being coloured 

according to the i—j vectors distance. The usual colour coding requires dark colours 

for long distances and light colours for short ones. In this chapter we concentrate on 

the analysis of thresholded RPs. The RPs are symmetric around the main diagonal 

(45° axis), as the distance between the i ' th embedded vector to the j ' t h embedded 

vector is the same as that of the j ' t h to the i ' th. 

As Eckmann et ai, (1987) point out, the i , j are in fact times. This effectively 

implies that through an RP we visualise a natural time correlation structure of the 

series. With RPs we can easily locate a wealth of recurring patterns. Moreover 

we can visualise and detect trends, abrupt changes or drifting dynamics. Recurring 

patterns appear in the RP as diagonal line segments, parallel to the main diagonal. 

If the time series is a random process, any patterns should be absent. The length of 

these lines is related to the inverse of the largest positive Lyapunov exponent. Due 

to the construction of the RP, the correlation integral C(r) is given by the number 

of darkened points in the RP divided by the total number of points. Another salient 

feature of the RP is that the distribution of the line segment's length, is related to 

the entropy of the time series. This distribution is exponential and the exponent is 

equal to the entropy of the series. 

When visually inspecting an RP one must examine the way the distribution of 

the dots varies for different distances from the main diagonal. For stationary series 

we should encounter a distribution of a number of dots around the diagonal that 

is independent from their distance form it. In other words, changes in the density 
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Figure 5.3: Examples of recurrence plots for the Lorenz system. 

of the points around and close to the diagonal is an indication of non-stationarity. 

This is clearly demonstrated in the sine wave in figure 5.5 (a), where we can see 

due to the periodic nature of the series, a specific periodic recurrent pattern of dark 

(vectors that are closer) and light areas (vectors that are further apart) repeated 

throughout the surface of the RP. 

In figure 5.3 we have generated the thresholded and unthresholded RPs of the 

variable x from the Lorenz chaotic system of equations.49 It is fairly straightforward 

that both graphs support the chaotic nature of this deterministic system. 

In Figure 5.5 (b) we produce an RP of a white-noise process. It is evident that 

there is no periodic component or structure. There is also a extremely large number 

of "stray" points uniformly distributed in the graph in the sense that none of these 

belong to a straight line segment parallel to the main diagonal. This is indicative 

of the "stochastic" nature of the signal. 

One may be able though to discover the nature the high dimensional pseudo

random number generator that has been used to generate these series and capture 

49 The three Lorenz differential equations define system that exhibits chaotic dynamics: 

x = —ox + oy 

y = — xz + rx — y 

z = xy — bz 

(5.2) 

where x,y,z £R and o,r,b > 0. We chose arb i t rar i ly the o, r and b to be positive parameters. 

file://F:/Frograro
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the periodicity in the algorithm provided that the series are of sufficient length. For 

the same signal in Figure 5.5 (b) we generated another RP in (d) using a higher 

embedding dimension de in order to capture the high dimensionality of the unknown 

pseudo-random number generator. As seen in figure 5.5 (d) it is evident from the 

cross like formation in the middle of the RP that there is some underlying pattern in 

the random number generating procedure. Also line segments parallel to the main 

diagonal can be discerned in various parts of the RP. Figure 5.5 (c) is an RP of a 

Brownian motion without any delay coordinate embedding carried out. 

For an embedding with embedding dimension d#=35 and time delay r=19, 

the RP becomes the straight diagonal (the 45° axis) line. This implies that there is 

no deterministic temporal relation between the points xt and x t_, for any i50 and 

hence no recurrence can be viewed in the RP. 

For the ARCH(2) process described in section 3, for r=3 and de = 1 we have 

created the RP in figure 5.5 (e) where some kind of structure can be discerned. This 

RP is different than the one in figure 5.5 (b). Although the ARCH(2) process is 

based on a computer generated pseudo-random process, we can see that there is a 

collection of horizontal and vertical lines. These lines correspond to the volatility 

clusters in various parts of the ARCH(2) signal. 

To illustrate the importance of the correct selection of the time delay parameter 

r, we generated a sine wave signal of 5000 observations length and contaminated it 

with a fractional noise (an ARFIMA(0,.4,0) signal). We use the AMI criterion and 

calculate the FNN percentage and for time delay r = l and embedding dimension 

de=7 we produce the RP in figure 5.6 (a). The periodical attitude of the signal is 

evident and very close to figure 5.5 (a). The careful reader will be able to discern 

the "mosaic" like pattern of white and dark areas which are more fuzzy now due 

to the presence of fractional noise. This noise was not able though to conceal 

the deterministic nature of the underlying sine wave whose main characteristics we 

managed to retrieve by delay coordinate embedding. 

Had we chosen to use the ACF to determine the time delay, we would have 

calculated a r = 4 and a de=6. These parameters lead to the RP in figure 5.6 (b) 
5 0 As the increments of a Brownian mot ion are i . i .d . Gaussian noise. 
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Figure 5.4: Sine with ARFIMA(0,0.4,0) noise. 

which is of a much poorer quality. 

In order to overcome the obvious difficulties of interpreting the RP and provi

ding a framework for quantitative results, Webber and Zbilut (1994, see also Zbilut 

and Webber, 1992) have suggested a parametrisation according to: 

1. the percentage of recurrence (darkened points in the recurrence matrix); 

2. the percentage of determinism (darkened points included in diagonal segme

nts); 

3. the Shannon entropy of the distribution of these lines and 

4. the inverse of the longest diagonal line. 

They have termed this Recurrence Quantification Analysis (RQA) and produce va

rious applications on physiological time series (see Zbilut et ai, 1998b, 2000 and 

2002). Zbilut et al, (1998a) have also introduced the Cross Recurrence Quantifica

tion (CRQ) analysis.51 

5 1 They propose this as a fi l ter able to recognise and extract signals contaminated w i t h large 
amounts of noise. They demonstrate that CRQ can extract informat ion f rom a sequence w i t h very 
low signal-to-noise ratio (large noise variances) and detect successfully hidden periodicities. 
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Figure 5.5: Thresholded recurrence plots of various simulations. 
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Figure 5.6: Examples of the power of the A M I criterion over the A C F . 

5.4 Recurrence plots and Market Efficiency 
An efficient market is one for which no pattern can be identified in the activity 

of the investors. In an efficient market, with a frictionless flow of information, a "buy-

and-hold" is the best trading strategy. In other words, there are no pure arbitrage 

opportunities. The absence of predictability in the asset or stock index returns series 

guarantees that the Efficient Market Hypothesis (EMH) holds. Any deterministic 

pattern in the histories of returns, could then be evidence against the EMH. The 

most popular approaches have been mainly the tests for the decay of predictability 

in the histories of returns and the BDS test (Chiarella, 1992, Opong et al, 1999, 

Creedy and Martin, 1994, Sheinkman and LeBaron, 1989) as signs of chaos. 

Chaos describes a notion of disorder, irregularity and unpredictability. In the 

physical sciences context, "chaos" means that a physical phenomenon may appear 

to be behaving irregularly but upon closer examination one may find it to possess 

considerable regularity. Low order chaos i.e., "low dimensional order of nonlinear 

determinism" is a form of non-stochasticity. In the EMH context, any test that 

concentrates on whether the returns exhibit low dimensional chaotic patterns or 

not, could therefore be regarded as a weak form efficiency or returns predictability 

test (Fama, 1991). Chaos implies determinism of a nonlinear structure and allows 

for short term forecasting under certain conditions. In our case, the real problem 

lies in the detection of low order determinism. In financial time series analysis 
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one deals with unknown DGPs, usually contaminated with stochastic noise which 

could easily be mistaken for high dimensional chaos as certain "linear tools" as the 

autocorrelation or partial autocorrelation functions or even spectral analysis, fail to 

detect the nonlinear structure within this high frequency information (Granger and 

Lin, 1994). Another big issue is the frequency the observations used. Determinism 

could be more apparent in weekly or monthly aggregates than in high-frequency 

intra-daily data and vice-versa. Secondly, caution is needed when dealing with 

the nonstationarity of the observed series as de-trending, differencing or using price 

deflated information could introduce, alter or even destroy any deterministic pattern 

in the data (see Abarbanel, 1995 and Kantz and Schreiber, 1997). In this chapter we 

are using returns which we constructed as the first differences of the logarithms of 

the actual closing prices series. By taking first differences we have introduced a high-

pass filter (Abarbanel, 1995) in the series and this can hinder correct determination 

of the underlying dynamics. 

It would be astonishing and highly debatable to assume that financial time 

series are governed mainly or entirely by chaotic mechanisms. Until today there has 

been a relatively small number of cases where chaos has been detected in economic 

time series. This could be due to problematic and limited data and the use of 

techniques that are unable to provide robust evidence in favour of chaos. Given 

the limitations and problems of the techniques and the available data, one would be 

safer to examine whether financial time series are governed by irregular stochasticity 

with some degree of determinism. This premise implies that the DGP is consisting 

of stochastic and deterministic components which come in the form of coloured or 

white noise, irregular cycles, trends, volatility clustering, long memory etc. etc. 

A certain classification of chaotic or non-chaotic systems can be made using 

the embedding theory of nonlinear dynamical systems as defined by Takens (1981) 

and this is what we follow in this chapter. What we propose is the use of RPs as a 

qualitative tool to compare the structure of the dynamics of the generating system of 

financial time series with that of purely random time series. Any deviation from the 

form of a purely stochastic signal's RP i.e., structure of any kind around the diagonal 

instead of uniformity, should be treated as evidence against the EMH. One may even 
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Price I N D E X Description r de 

DJINDUS DOW JONES INDUSTRIAL 1 6 
FTSE FTSE ALL SHARE 3 6 
NYSE NYSE COMPOSITE 2 5 
NIKKEI500 NIKKEI 500 3 6 
HNGKNGI HANG SENG 3 5 
DAX30 DAX 30 PERFORMANCE 2 7 

Table 5.1: Time Delays and Embedding Dimensions for the 6 time series 

be able to detect periods where the series are "more" stochastic and periods where 

they exhibit a strong recurrent structure. Secondly, by comparing the RPs of the 

same series in two or more different histories, we could detect any change of the 

dynamics for that series. Thirdly, by comparing the RPs for different frequencies 

of the same series we could deduce whether there is a certain underlying dynamical 

cycle that is not apparent in high-frequency but is evident in lower frequencies. By 

using cross-recurrence analysis we could also deduce whether the series include a 

cycle of some periodicity and try to extract this information. 

We collected from Datastream, daily data for 6 major stock market indices 

covering the period from January 1991 to October 1999. The original series are 

depicted in figure 5.8. We calculated the relevant time delays r and embedding 

dimensions de with the AMI criterion and the FNN method respectively. The results 

are tabulated in table 5.1. 

It is obvious from our discussion so far that these series clearly do not indicate 

a random walk (see figure. 5.7). The formations in the RPs resemble more that of 

the ARCH(2) process in figure 5.5 (e). We can notice the relatively blank areas and 

the dark horizontal and vertical lines. These correspond to periods of crises (such 

as the Asian), shocks and in general of volatility clustering in the original series 

(mainly during the period after 1996-1997 for the European and the US indices). 

These events are so strong that dominate the whole phase space. The lighter areas 

are related to periods of relative calmness. The RPs (in subfigures a-f in 5.7) for the 

European and US indices are very close and exhibit horizontal and vertical thick line 

formations in the same approximately time point. The Japanese and Hong-Kong 
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Figure 5.7: Thresholded recurrence plots of the indices in table 5.1. 
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Figure 5.8: The stock market indices time series in Table 5.1. 

indices exhibit some differences in their RPs as the original series are not following 

closely the movement and trends of those of the European and the US ones. We can 

still though discern the same kind of formations where intense volatility makes its 

presence. Another feature is that there seems to be for some RPs (Hang-Seng and 

NIKKEI 500 especially) a fade repetition of some recurrence structure throughout 

the plot. The careful eye will discern recurrent patterns that repeat themselves in 

different times and scales. These come in the form of a collection of horizontal and 

vertical lines or entire sub-areas (boxes) of the RPs. Of course this could be due 

to the volatility or variance inhomogeneity of these series, incorrect embedding or 

the general nature of the constructions of RPs. It remains to be seen if these are 

indications of some kind of self-similar processes. 

One immediate conclusion is that these series are far from a random walk. 
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Figure 5.9: Daily and hourly data frequency recurrence plots. 

We cannot though detect clearly any formation of line segments, parallel to the 

RP's diagonal which would be indicative of nonlinear determinism. This may be 

mainly due to the presence of noise in the returns, which covers the deterministic 

nature of a possible chaotic attractor in the series by leading us to false delay 

coordinate embedding. Secondly, as mentioned earlier, these returns are a product 

of differencing and this could intensify the presence of noise and alter the underlying 

deterministic patterns in the original series (Abarbanel, 1995). It remains to be 

seen if one can denoise the returns without "tinkering" with the determinism or 

stochasticity of the series. For this reason we experiment with wavelet based filtering 

and denoising in chapter 8. A very interesting discussion on the subject is by Theiler 

and Eubanks (1993).52 

In figure 5.9 (a) we have generated the RP for a very long FTSE ALL SHARE 

history (daily data since 1969). If we compare this to the same series RP in figure 

5.7 (b) for the last decade, we can clearly see that the recurrences in the last decade 

are present in both graphs (strong vertical lines on the right hand side of the RPs 

appearing thinner in 5.9 (a) due to the scale of the plot). The figure 5.7 (b) is the 

upper right corner of 5.9 (a). In the latter we can also see the turbulent period of 

the oil crisis as a thick black line between the 1000th and 2000th observation. An 
5 2 0 r i g i n a l l y a SFI Working Paper under the No. 93-05-026. This is available online f rom: 

h t t p : / / w w w . s a n t a f e . e d u / s f i / p u b l i c a t i o n s / w p a b s t r a c t / 1 9 9 3 0 5 0 2 6 

file://D:/vra4
file://G/dlfise.dat
file://D:/vra4.0/J1seh.dal
http://www.santafe.edu/sfi/publications/wpabstract/199305026
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interesting finding comes from the hourly FTSE ALL SHARE data in figure 5.9 (b). 

In this figure we have a clear indication of determinism as there are parts all over 

the RP that contain line segments parallel to the main diagonal. 

5.4.1 "Zooming in" 

Most of the RPs we discuss here exhibit significant patterns in the sense that 

they differ substantially from the ones that were derived from pseudo-random data 

(the closest thing to purely stochastic processes). We indicated that the ARCH pro

cess sequence and the original financial time series generate similar artifacts in their 

corresponding RPs. The volatility clustering effect seems to develop nonlinearities 

which are detected from the RPs and spread throughout the phase-space dynamics 

as thick horizontal and vertical segments. 

In the very limited previous research that has been focused around RPs, there 

has been no significant discovery with the exception of the work by Gilmore which 

focused on returns plots. The main problem being here the sheer size of a recurrence 

matrix. For low embeddings, a RP of a million points will be approximately a ma

trix of a million by million pixels or points. Graphical representation of such plots 

with computers capable of depicting only 1024 by 768 points at a time, 5 3 requires 

a considerable amount of "normalisation". Only in that way the actual RP will fit 

on a screen or even an A4 page. Even under these circumstances though, patterns 

can be revealed. For the sake of accuracy, we produce here magnifications of segme

nts of RPs on the FTSE ALL SHARE index closing prices and the corresponding 

logarithmic returns. We use the same data set as in chapter 8 which spans 3 deca

des (1970-2001) in daily frequency, totaling 8192 observations. The AMI criterion 

returned a delay of 19 for the levels and 3 for the returns series. The FNN criterion 

returned an embedding dimension of 9 for the levels and 7 for the returns. 

It is fairly obvious that the RP in figure 5.10 exhibit patterns consistent with 

absence or stochastic randomness. This may also be more apparent from the exa

mination of the unthresholded plots. It is not though possible to discern the finer 

details of the recurrence matrices from most of these RPs. Examination could be-
5 3 O n e of the "large" graphic cards V G A definitions for I B M PC compatible computers. 
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Figure 5.10: Thresholded and unthresholded recurrence plots of closing 
prices and returns of the F T S E A L L S H A R E , 1970-2001, 
daily frequency. 

nefit greatly from the magnification of sub-regions of the RPs. That would allow 

the identification of segments parallel to the main diagonal, indicating the presence 

or nonlinear deterministic recurrences. 

A closer inspection of the RPs in figure 5.11 reveals their interesting characte

ristics. Firstly, we can easily discern in (a), (b) and (c) that the plots are replete 

with small parallel segments to the main diagonal. This implies the presence of 

deterministic recurrences. The plot in figure 5.11 (c) refers to the period before and 

after the oil crises of the 70s. We can clearly see the recurrent patterns and compa-

file://H:/DATA/Nse.dat
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file://H:/DATA/rehjrnB.dat
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Figure 5.11: Discovering details of the R P s in figure 5.10 (b). 

ring them to figure 5.3 we can also detect some similarities. Another interesting 

structure is the break of the recurrences during the crisis period at the right edge 

of RP in (c). This is also very evident in plot (d) where we have focused on the 

1987 crash. The dynamics break there as well. The extreme volatility shocks during 

these periods create observations that are much more far apart than the rest points 

in phase space. The time-delay embedding can not under these circumstances help 

us to detect any recurrences for these periods. What is interesting though is that 

these "gaps" in the dynamics coincide mostly wi th localised shocks in the history of 

the time series. The more longer lasting, violent or turbulent the shocks the wider 

these "gaps" are. 
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One can support more strongly the presence of chaos after computing the 

range of invariant measures needed to characterise a process as chaotic. Moreover 

a "Surrogate Data Analysis" (see following chapter) would provide further evidence 

of the presence of deterministic structures. In Chapter 8, we filter the FTSE re

turns series using wavelets. This process may leave untouched the structure of the 

attractor enabling us to view its dynamics more clearly as we wil l demonstrate. 

5.4.2 Recurrence Quantification Analysis 

Following Webber and Zbilut (1994) we conduct Recurrence Quantification 

Analysis (RQA). Earlier, while calculating the A M I , the Shannon entropy for the 

FTSE data was found to be 1.151465 for the returns sequences and 2.360013 for the 

levels. The "spatio-temporal" entropy 5 4 was found to be 0 for the entire recurrence 

plot in figure 5.10 (b). For the magnified portions of this plot in figures 5.11 (c) and 

(d), the spatio-temporal entropy was found to be 72% and 80% respectively (for a 

sample of 1000 observations around the time of the financial shock). The results 

here indicate that indeed there is some form of periodicity and non-randomness in 

the data. The RQA results are presented in table 5.2. The most interesting statistic 

here is the "Maximum Line" length which corresponds to the largest segment of 

continuous points parallel to the main diagonal of the RP. Eckmann et al, (1987) 

show that this is inversely proportional to the largest positive Lyapunov exponent. 

Cao and Cai (2000) identified this recently as a lower bound for the largest positive 

Lyapunov exponent. For the FTSE returns this was calculated to be 0.0411 which 

is positive and indicative of low dimensional deterministic dynamics. The RQA 

measurement gave a lower bound of 0.004 approximately which is consistent wi th a 

5 4 "Spatio-Temporal Entropy ( S T E ) measures the image "structureness" in both space and time 
domains. Essentially, it compares the global distribution of colours over the entire recurrence 
plot with the distribution of colours over each diagonal line of the recurrence plot. The higher 
the combined differences between the global distribution and the distributions over the individual 
diagonal lines, the more structured the image is. In physical terms, this quantity compares the 
distribution of distances between all pairs of vectors in the reconstructed state space with that 
of distances between different orbits evolving in time. The result is normalised and presented as 
a percentage of "maximum" entropy (randomness). That is, 100% entropy means the absence of 
any structure whatsoever (uniform distribution of colours, pure randomness), while 0% entropy 
implies "perfect" structure (distinct colour patterns, perfect "structureness" and predictability)." 
Kononov (1999). 
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R Q A Statistic Value 
Mean 0.000 
Standard Deviation 0.010 
Mean Distance 89.149 
% Recurrence 34.339 
% Determinism 27.678 
Ratio 0.806 
Entropy 5.009 
Maximum Line 263 
Trend -1.683 

Table 5.2: F T S E returns R Q A results from R P in 5.10 (b). 

lower bound measurement. Though, in our case, a large maximum line length may 

indicate less instability than a smaller one. This could imply the presence of a l imit 

point attractor. 

In order to follow the fluctuations of the maximum line length across time, 

a "windowed" version of RQA (Zbilut et ai, 2001 and 2002) is possible. This 

"windowed" RQA was applied on the returns sequence which was 8192 observations 

length. For de=7 and r = 3 , we generated 779 rolling subsamples of 260 observations 

each. 5 5 The choice of window refers to the number of observations per year for daily 

data and the shift corresponds to a week's observations. In figure 5.12 we summarise 

the results of the RQA on the FTSE returns. Diagram (a) refers to the mean of 

each selected subset of input points. Diagram (b) is the standard deviation of each 

selected subset. Diagram (c) refers to the mean of the rescaled distances in the 

upper triangular area of the RP. Diagram (d) refers to the actual recurrence as a 

percentage from the number of recurrences in the upper triangular area of the RP. 

Diagram (e) refers to the percentage of the determinism as the number of recurrent 

points forming parallel line segments to the RP's main diagonal by the number of 

recurrences as in (d). I f there are no recurrent points, the number is set to - 1 . 

The ratio depicted in ( f ) is simply the percentage of determinism divided by the 

percentage of recurrent points. In diagram (g) we have the Shannon information 

entropy of the distribution of parallel segments to the main diagonal of the RP 

5 5 W e had a window of 260 observations which was rolled on the returns sequence with a step 
(shift) of 5 observations each time. This generated 779 samples or "epochs". 
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Figure 5.12: R Q A results on the F T S E returns. 

(measured in bits). Diagram (h) is the longest diagonal line segment plot. This is 

inversely proportional to the largest positive Lyapunov exponent. Finally, the trend 

diagram (i) is the slope of the regression of the percentage of recurrence in (d) on 

the displacement from the main diagonal, expressed in units of percentage of local 

recurrence per 1000 points. 

RQA is not always very straightforward. Usually we should be able to locate 

upper and lower bounds of the (a-i) sequences in figure 5.12. We can clearly see 

that there is a large peak around epoch 200 which coincides wi th the recurrences 
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Figure 5.13: R Q A results on the F T S E returns. 

of the oil crisis. I t seems that the volatility in that period has a very significant 

impact on the phase space dynamics. Overall the structures in these diagrams are 

consistent wi th some nonlinear deterministic nature in the returns sequences and 

not some purely stochastic structure. The maximum line length in (h) fluctuates as 

well wi th a maximum value during the oil crisis period. Apparently, the strongest 

determinism is located around that time. In figures 5.13 (a) to (i) we have generated 

the RQA measurements for the maximum possible epochs (8170 epochs, for 5 days 

windows with 1 day shift at a time) in order to correlate the RQA measurements 

to the original returns sequence topology. From plots (a) and (d) we see that the 

highest peaks are located close to the observations related to the oil crisis and the 
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crash of 1987. The maximum recurrence and entropy is located on the crash of 1987. 

The maximum line length fluctuates between 2 and 14 for the whole period which 

implies the presence of a positive largest Lyapunov exponent. I t is straightforward 

from are analysis here that there is a strong deterministic characteristic for the 

FTSE returns, whether one looks at the series wi th a weekly window or a daily one. 

Similar characteristics were obtained for other frequencies as well which implies that 

there is more than stochastic randomness at hand. A l l results are consistent wi th 

the corresponding RPs. 

An interesting discussion can be generated around the structures of the plots 

of RQA measurements especially in figure 5.12. In these we examine the recurrences 

on a weekly rolling window and we can see clearly that they exhibit high spikes for 

the epochs around 200. We identified this as the effect of the oil crisis of the 70s. 

An interesting research objective would be to relate these changes in dynamics wi th 

a "transition to chaos". I f there are elements of chaotic determinism in financial 

time series, we could detect via RQA the point where stochastic dynamics change 

to low dimensional deterministic dynamics. From figure 5.12 (e) we see the % of 

deterministic points is close to 0 but during crisis periods this number shoots up 

to very high levels. This could be an indication that in times of "financial chaos", 

there is indeed a specific structure within the turbulence and the volatility of the 

markets which could be detected according to our time window. To analyse further, 

is seems that when using a weekly rolling window, one can see in 5.12 (e) that 

there are periods of "stochastic" calmness interrupted by periods of deterministic 

structure in the dynamics (during the various financial crisis). Looking at 5.13 (e), 

we can see that using a daily window, one can use information to forecast the high-

frequency dynamics more accurately as determinism is quite high. Comparing 5.13 

(e) wi th 5.12 (e) one can start understanding how RQA could be used to determine 

time-windows for risky periods. 

5.5 Conclusions 
In this chapter we followed a geometric-topological approach in analysing re

turns of stock market indices in daily frequencies. We used the A M I and FNN 
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criteria to establish an embedding in order to reconstruct the phase space dyna

mics. These dynamics we visualised wi th thresholded and unthresholded RPs. I t is 

shown that these indices are not following a random walk which could be perceived 

as a contradiction to the Efficient Market Hypothesis. There are also visual impli

cations of the existence of self-similarity in the recurring patterns and the dynamics 

of the series, as these are viewed through the RPs. I t is fairly intuitive that one may 

make "careful" use RPs to model time-series after they have been properly filtered. 

This may reveal more deterministic features. Nevertheless, recurrence quantification 

analysis on the index returns has revealed interesting characteristics. We indicated 

that i t is possible to discover through this technique when series become "more 

chaotic" or whether indeed the DGP is characterised by stochastic randomness or 

determinism. We believe that i t is fairly self explanatory that recurrence plots and 

the corresponding quantification analysis can provide very powerful analytical tools. 

In the following chapter we focus on a statistical hypothesis framework called 

"Surrogate Data Analysis". We wi l l be showing how ideas discussed so far, can be 

used to set up a hypothesis of linearity which when refuted would provide a plausible 

explanation for the underlying dynamics. We wil l be using various simulations and 

real-life data to demonstrate the power of such an approach. 



C H A P T E R 6 
Surrogate Data Analysis 

6.1 Introduction 
I t is a widely accepted fact that there has been no well defined statistical hypo

thesis testing procedure publicised so far that would determine whether a time series 

is chaotic or not. There is no widely established and powerful hypothesis testing 

framework of a nonlinear deterministic null against the alternative of stochastic data 

generating process. Many empirical problems require detecting whether the system 

under examination is characterised by deterministic or stochastic dynamics. More

over, i t is often necessary to establish not only the nature of the dynamics but also 

the dimensionality of the system. This becomes increasingly difficult when one ta

kes into account that many phenomena that may in fact be nonlinear-deterministic, 

may posses dynamics of higher dimensions which could render them indistingui

shable from stochastic processes. This creates the need for a hypothesis testing 

framework that would also detect successfully weak determinism. 

In this chapter we suggest the use of the Surrogate Data Analysis framework 

in order to detect nonlinearity and determinism. Surrogate analysis enables us 

essentially to test whether the dynamics are consistent wi th linearly filtered noise or 

a nonlinear dynamical process. We describe the various null hypothesis considered 

under this framework, the most commonly used discriminating (test) statistics, the 

most popular surrogate data generating procedures, their properties and the pitfalls 

of the whole approach. We finally apply a number of tests to financial time series 

in order to dismiss or accept stochasticity in their data generating process. A direct 

implication is that the surrogate data analysis framework can produce more evidence 

for or against the Efficient Market Hypothesis (EMH). Moreover i t can provide a 

suitable "data-mining" platform or an improved description of the dynamics of the 

data, predetermining thus the appropriateness of a parametric or nonparametric 

analysis approach. 

103 



104 

6.2 Previous research 
During the last decades, a number of methodologies were designed to detect 

nonlinearities in time series. McLeod and L i (1983), Keenan (1985) and Hinich 

(1982) among others were some of the most popular earlier attempts to define te

sts for the detection of nonlinearity in time series. Bilinear models (Granger and 

Anderson, 1978), threshold autoregressive (TAR) models (Tong, 1978) or Volterra 

expansions (Nisio, 1960) have also enjoyed some success in this area. A t the same 

time, applications focused on determining the independence of time series by means 

of functionals of first and second moments and the autocorrelation and partial au

tocorrelation functions (ACF and PACF respectively). Ljung and Box (1978) and 

later McLeod and L i (1983) (both in Harvey, 1994) proposed statistics for detecting 

model misspecification under the null hypothesis of an autoregressive moving ave

rage (ARMA) underlying process. Since the eighties, another modelling approach 

has enjoyed wide acceptance from the scientific community. The autoregressive con

ditional heteroscedasticity (ARCH) model (Engle, 1982) and later the generalised 

(GARCH) version of i t (Bollerslev, 1986) have been used in many applications in 

order to explain inherent nonlinearities in economic-financial data and the peculiar 

structure of their volatilities. These models came as an answer to Mandelbrot's 

(1963) observation that financial returns series exhibited interchanging periods of 

volatility clustering and relative smoothness of dynamics ("tranquillity": see also 

other works of Mandelbrot, 2001a, 2001b, 2001c, 2001d, 1999a, 1999d, 1997a, 1997b, 

1997c, 1997d and 1997e). 

In this research we focus on determining between stochastic and deterministic 

dynamics for financial time series. In this respect, establishing nonlinearity for our 

series is not enough if this nonlinearity does not necessarily imply or provide evidence 

for the existence deterministic dynamics. Tests have been suggested during the past 

in this respect. Liu et al., (1992) have proposed the use of the correlation exponent as 

means to decide whether and economics series is chaotic or not. Earlier Brock (1986), 

Brock and Baek (1991) and Brock and Sayers (1988) have entertained similar ideas. 

Brock et al., (1987 and 1991) have proposed the BDS test as a means to determine 

the independence or i.i.d.'ness of a time series. Erroneously this has been used 
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frequently by others as a test for chaos although it is a test of independence. I t was 

a first bold attempt though towards the designing of a test for chaos and was based 

on the correlation integral which is a chaotic invariant (Grassberger and Procaccia, 

1983). Others followed wi th suggestions on the original ideas and applications such 

as the late Hiemstra 5 6 and Kelejian (1992), LeBaron et ai, (1988) and Hsieh (1991). 

Ramsey and Yuan (1989 and 1990) have concentrated on the statistical validity of 

correlation dimension calculations wi th small data sets and explored the potential 

of such computations wi th economic data. An early approach similar to the one we 

suggest in this chapter was that of Sugihara and May (1990) who proposed the use of 

a nonlinear forecasting statistic as a means of distinguishing between deterministic 

and stochastic processes. 

In order to bypass the shortcomings from the absence of a well-defined powerful 

statistical test for chaos, a new methodology has been proposed during the last 

decade. This framework is called "Surrogate Data Analysis" (SDA) (see in Theiler et 

al, 1992a, 1992b, 1992c, 1993). The general SDA procedure has been also described 

in Theiler (1995), Theiler and Prichard (1996) and Theiler and Rapp (1996). Among 

early workings on this area we have to mention the paper by Takens (1993). 

The SDA is regarded as a logical and consistent statistical framework for te

sting hypothesis about time series. I t has been applied extensively on physical 

signals and physiological time series but has seen very li t t le or no application in 

the social sciences. This approach is based on an idea similar to bootstrapping 

(Efron, 1979, 1982 and Efron and Tibshirani, 1986). In fact i t involves a technique 

such as bootstrapping, a kind of "permutation testing" (see Good, 1994 and Moore, 

1999) as i t wi l l be explained. The aim of this technique is to simulate-produce a 

set of "surrogate" copies of the original time series that exhibit usually the same 

autocorrelation and spectral structure. A null hypothesis is formulated and the ap

propriate statistic is computed for the original and each of the surrogate series. I f 

the original series statistic is outside the range of the surrogates one, we can safely 

conclude that the original series is inconsistent wi th the null hypothesis. Although 

the basic manipulations of the Bootstrap and SDA appear to be the same, the two 
5 6 O n e of the people who encouraged me to undertake this Ph.D. 
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methodologies are fundamentally different (Smith, 2001). The former makes a va

riety of assumptions about the data generating process (DGP) and then establishes 

the uncertainty of a discriminating statistic by assuming these assumptions hold. 

Through bootstrapping, an estimation of this uncertainty is computed and a distri

bution is constructed which is consistent wi th the true uncertainty of the observed 

results. The SDA on the other hand, identifies a process inconsistent wi th the one 

believed to be the DGP and attempts to establish that the value of the statistic 

obtained from the data is unlikely under the null hypothesis. A distribution is si

mulated from a well defined known "surrogate" process in order to show whether 

the observed result is inconsistent wi th this distribution or not, identifying thus the 

insignificance or significance of the "real" result. We should note here that surro

gate data are created without replacement whereas in bootstrapping, resampling is 

done with replacement in order to generate an empirical distribution of a statistic. 

This is clearly why Moore (1999) argues5 7 that the SDA approach is based rather 

on a permutation testing framework than a bootstrapping one. Moreover in SDA 

the samples are generated to be consistent wi th a null hypothesis which is one more 

strongly diversifying characteristic. 

A problem that arises wi th either bootstrap or permutation tests is the compli

cations that temporal dependencies (i.e., recurrences, autocorrelations, aperiodic or 

periodic cycles in general) can produce interesting artifacts that may mask though 

the dynamics of the sequences themselves and distort our view of the noise that co

ntaminates the processes. I t becomes increasingly difficult to discern between data 

and noise, especially when the DGPs of the noise or the data are unknown. Tech

niques that require the individual realisations to be independent, suffer most from 

these artifacts. Textbook approach suggests preprocessing the sequences via some 

kind of linear filters such as A R M A models which can remove linear dependencies, 

an approach that many researchers do not recommend. Abarbanel (1992, 1993 and 

1995) and Theiler and Eubank (1993) among others demonstrate that nonlinearity 

in chaotic data is harder to detect when the original series are preprocessed. On the 

other hand, many techniques designed for the detection of nonlinear recurrences, 
5 7 K a p l a n and Glass (1995) refer to the SDA method as "bootstrapping". 
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such as R Q A , 5 8 lead to inaccurate conclusions when nonstationarity 5 9 is present. In 

general, there is a thin line between choosing to analyse between raw observations 

and transformations of those. In Finance for instance, the analysis of logarithmic 

returns may be of more empirical interest than examining the levels of the rele

vant closing prices. And differencing the series to obtain returns, is essentially a 

"high-pass" filter which may magnify the noise signature. 

In this chapter we follow mainly the formulations and discussions by Schreiber 

and Schmitz (2000), Kaplan and Glass (1995) and Kantz and Schreiber (1997). I t 

seems that SDA has been developed independently by a number of researchers in the 

area. Generally, the paper by Theiler et al., (1992) is regarded as the starting point of 

all discussions.60 Very good insight is provided also by the famous paper by Theiler 

et al., (1992) in "Nonlinear Modelling and Forecasting" by the Santa Fe Institute 

which specialises in areas of complexity and chaos theory research. Theiler et al., 

(1993) focus on tests for nonlinearity wi th a null of linearly correlated Gaussian 

noise. This is not a investigation for chaos per se but for nonlinearity, searching 

for a significant statistic that would discriminate the original series from its linear 

surrogates. Surrogate data analysis is also discussed more recently in Schreiber 

(1998) and Urbach (1999) and mentioned in Williams (1997). SDA is a relatively 

new idea and has not found its way yet into the economic-social time series analysis 

curriculum or textbooks (although bootstrapping has). A forthcoming paper by 

Kugiumtzis (2000) included in the book "Nonlinear Deterministic Modelling and 

Forecasting of Economic and Financial Time Series"6 1 sets the spot in our discipline. 

6.3 Why use Surrogate Data? 
Complex systems can exhibit chaos in the sense that their dynamics could be 

represented wi th a set of nonlinear (dynamical) differential equations. Analytically, 

5 8 R Q A : Recurrence Quantification Analysis, see previous chapter. 
5 9 Schmitz and Schreiber (1999) note that a common approach is the segmentation of a series 

in parts that can be considered nearly stationary and the performance of the tests there. This 
though may not be feasible in small data sets or in the presence of slowly varying stationarity. 

6 0 I n the classic Physica D volume 58 issue which is dedicated to nonlinear time series analysis 
and cited in hundreds of applications as a "seminal paper" collection volume. 

6 1 by A. Soofi and L .Cao editors, still unpublished while this thesis was being written. 
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this can be proven for a number of abstract, physical or theoretical systems. In 

empirical sciences, when one tries to determine this from an observable quantity 

generated by the system, approximating the dynamics wi th a set of equations may 

prove difficult. Moreover, determining whether the system exhibits stochastic or 

deterministic dynamics may be an even more difficult task. A starting point would 

be a set of system properties that define chaotic structure or behaviour. In the 

textbook approach, chaos or nonlinear determinism is characterised mainly by: 

• determinism, 

• non-cyclical periodicity (aperiodicity), 

• "boundedness" of dynamics and 

• sensitive dependence on init ial conditions. 

Although one could rush to regard these points as "stylised facts", one should also 

note that i t has frequently been noted in the chaos literature that the above chara

cteristics or properties of chaotic systems may not always clarify whether a system is 

deterministic or stochastic. While chaos can not develop from linear systems, there 

is a wide variety of such systems that would produce measurements which could 

easily be mistaken to exhibit chaotic structure. As discussed in Kaplan and Glass 

(1995), all four characteristics mentioned above, may not help us conclude whether a 

sequence is t ruly random or chaotic. Moreover, parametric and nonparametric tests 

(such as the RUNS test, the BDS, the Augmented Dickey-Fuller or the portmanteau 

Q-test for instance) may detect successfully independence or stationarity but do not 

provide an alternative hypothesis that would support non-randomness in the sense 

of "chaos".62 Most tests operate in a "linear" function space which deprives them 

of the ability to discern deterministic nonlinearities and these are frequently misi

nterpreted as stochastic randomness. A n added problem is the nature and length 

of the data and the noise contaminating them. 

6 2Specifically, independence as a null is not a very "interesting" hypothesis for most data as 
argued in Schreiber (1998): "It becomes relevant when the residual errors of a time series model 
is evaluated. For example in the BDS test (Brock et al., 1988 and 1991), an ARMA model is 
fitted to the data. If the data are linear, then the residuals are expected to be independent". The 
importance of this remark becomes even stronger when B D S is used erroneously to detect chaos 
instead of independence. 
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In social sciences the data come from unknown data generating processes and 

are "contaminated" by noise of unknown nature. As we have already discussed, the 

limited length and precision of the data may lead to miscalculated nonlinearity sta

tistics. On the other hand, one can only suggest a suitable "stochastic" hypothesis 

testing framework when backed by sound theoretical reasoning and robust suppor

tive empirical findings. This can sometimes be fairly arbitrary and misleading. Any 

kind of manipulation of deterministic data may destroy the fine structures of the 

dynamics and provide false evidence of stochasticity (see Abarbanel, 1995 and Th-

eiler and Eubank, 1993). We should also note her that so far we have concentrated 

on the description of the dynamics of the DGP but not commented on the noise 

that may be masking them. In Economics or Finance, one of the true problems 

is deciding on the nature of the noise. This is quite difficult in social sciences as 

one does not usually know the cause of i t (for an excellent discussion see Black, 

1990). Usually, one determines the distribution properties of the noise according to 

sound theoretical assumptions and empirical evidence. In social sciences in general, 

i t is extremely difficult or even impossible to clearly identify the structure of the 

noise contaminating the processes examined. Only assumptions can be made and 

these should be verified by some appropriate statistical hypothesis framework, often 

dictated by the theoretical approach and the surrounding scientific literature. This 

difficulty is augmented by the fact that most series in Finance or Economics should 

be regarded as strictly stochastic. This would allow specific market-clearing or equi

librium conditions to be met under the relative ut i l i ty constrained or unconstrained 

optimisation frameworks. 

In this chapter we suggest the alternative of SDA as i t provides a way round the 

problems discussed above. As an added plus, i t is based on a statistical hypothesis 

testing procedure. Under this, there are a number of different nulls that can be 

considered. Usually the null hypothesis formulated under SDA is the one that 

postulates that the dynamics are linear wi th Gaussian white noise random inputs 

(Kaplan and Glass, 1995). This is called the linear-dynamics null hypothesis. I f the 

time series in question is chaotic, "in principle" this null should be rejected. 
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Concluding this discussion i t would be appropriate to mention here what is also 

pointed out in Kantz and Schreiber (1999) and Kaplan and Glass (1995). Quite a few 

pieces of past research in chaos are satisfied wi th simply the computation of single 

chaotic invariants. In that sense, the mere determination of a positive Lyapunov 

exponent, a finite fractal dimension or a suitable BDS test is evidence enough to 

refute stochastic randomness. In reality this should not be regarded as an accurate 

conclusion. As pointed out earlier, linearly structured dynamics can yield outputs 

which can "mask" themselves as deterministic. The only safeguard against this is 

the determination of scaling regions i.e., confidence intervals which when containing 

the computed discriminating statistics, would lead us to accept their validity. In 

other words, one should check what would the values of the statistic be if the data 

were indeed generated by a linear model. I f this is not consistent wi th the one 

obtained by the original series, this could constitute evidence of nonlinearity. 

6.4 The general SDA hypothesis testing framework 
The objective of SDA is to determine the nature of the data generating process 

behind the series. As a second objective, and according to which kind of "discri

minating" statistic (as i t is called) we use to test the null hypothesis, SDA wi l l 

determine the significance of this statistical measure. The methodology focuses on 

the comparison of the results wi th those of linear-stochastic sequences. Moreover, 

an insight of the different states of the system in examination may be provided as 

a by-product of the SDA approach. The discriminating statistic is compared to 

the distribution of statistic values consistent wi th the given hypothesis. Wherever 

there is a difference we reject the null. Again, rushing to conclude under SDA about 

randomness or determinism should be avoided. As Theiler et al., (1996) point out, 

" The null hypothesis corresponds to an answer of 'no', and is the default conclusion 

in the lack of contrary evidence. One does not positively prove (or disprove) the null 

hypothesis; instead one attempts to reject the null hypothesis by showing that the 

data are unlikely to have resulted from it". 
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6.4.1 S D A Hypothesis and Statistics 

Theiler and Prichard (1996) provide two classifications of discriminating stati

stics: "pivotal" and "non-pivotal". A test statistic t is called pivotal i f its probability 

distribution (given the data generating process) is the same for all processes F con

sistent wi th the hypothesis. I f this does not hold, the statistic is called non-pivotal. 

Let 0 be a specific hypothesis and T$ the set of all processes (systems) consistent 

wi th that hypothesis. I t is well known from basic statistical inference theory that 

a hypothesis is simple i f all DGPs consistent wi th constitute a singleton set. 

Otherwise the hypothesis is termed as composite. I t follows that under a compo

site hypothesis, the problem is not only to generate the surrogate data consistent 

wi th the process F but also to estimate F G (Small et al., 2001). The type of 

the hypothesis wi l l dictate the type of the statistic. Theiler and Prichard (1996) 

propose the use of a pivotal test statistic in the case of a composite null. Unless 

the discriminating statistic is pivotal, one has to specify precisely the process F. 

In the case a non-pivotal statistic must be used wi th a composite hypothesis, they 

suggest that a type of "constrained-realisation"63 process should be utilised for the 

generation of the surrogates. This is also discussed in detail in Small and Judd 

(1998). I t effectively implies that as well as generating surrogate data that are ty

pical realisations of a model of the original observations, i t must be ensured that 

these surrogates are also realisations of a process that provides identical estimate 

values wi th the estimates of the parameters from the original data. This is what 

clearly discriminates SDA from bootstrapping as we already discussed above. 

The SDA hypothesis testing procedure is not entirely as straightforward as 

one would like. Not all statistics perform equally well and not all hypotheses are 

clear-cut and well defined to suit the purpose (Small et al., 2001). The Correlation 

Dimension D2 as we wi l l discuss, presents a favourable choice for a discriminating 

statistic. Small et al., (2001) demonstrate a method where the hypothesis tested is 

not known beforehand, but is determined by the "pivotalness" of the test statistic. 

They show that nonlinear models can be used to generate surrogates as well as test 

6 3 Assume a time series Xn and F e ^ the process estimated from Xn. Let 2 j be the surrogate 
data set generated from F j £ T$. Let F j G T$ be the process estimated by Z{. We call surrogate 
Zi a "constrained realisation" if F ; = F and "unconstrained" if F j / F. 
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nonlinear hypothesis. Because D2 is pivotal, they avoid the necessity to employ a 

constrained realisation surrogate generator method. They suggest the generation 

of many noise driven simulations of the original data, based on nonlinear models, 

and the comparison of the distributions of a test statistic for each model (or groups 

of models) with that of the original observations. This comparison will determine 

the acceptance or rejection of the hypothesis that the original data sequence was 

generated by a process with the same structure as one of the models. 

6.4.1.1 Types of null Hypothesis 

The different memberships to specific classes of dynamical systems are reflected 

in different types of null hypothesis. Theiler et al., (1992) describe three basic types 

of the null: 

• Hi. white noise; 

• H2: linearly filtered white noise; 

• H3: monotonic nonlinear transformation of linearly filtered noise. 

Assume tOTig is the value of the statistic calculated on the original data and i s u r r the 

value of the same measure calculated for each surrogate sequence. As we already 

mentioned, the null is rejected when the test statistic from the original series lies 

outside the range of prices of the test statistics for the surrogate data or when tOTig 

and E[tsmT] are sufficiently different. Rapp et al., (1994 and 2001) suggest three 

criteria for accepting or rejecting the null: 

• Criterion 1: 

The null is rejected if £ o r; g > i s u r r or torig < t s m r for all iSurr- This is termed the 

"nonparametric criterion" (Hope, 1968). A single larger surrogate statistic 

value can lead under this criterion to a rejection of the null. 

• Criterion 2: 

This is based on a Monte-Carlo probability estimation of the surrogate null 

(p-value) P: 
number of CBS6S th&.t t c , t r r tariff , _ _ , 
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The numerator of (6.1) may also contain the >: instead of the ^ inequality 

operator. This is determined by the type of the discriminating statistic used 

on the data. This criterion has good power when the number of surrogate 

samples is small. 

Criterion 3: 

In the case the values of tSUTT are distributed normally, we can define the 

following criterion: 
_ l̂ orig ~ -5'[̂ surr]| 2̂  

fsurr 
where <7surr is the standard deviation of i ? [ i s u r r ] . The p-value then is given by 

Pcrit3 = ^ ( l - e r f ( - | ) ) (6.3) 

where "erf is the error function: 

erf(*) = ^= [ e~s2ds (6.4) 

For one-tailed test, the null is rejected at a = 5% statistical significance level 

if Z < 1.65 and for a = 1% if Z r< 2.33. 

A legitimate question that arises is how many samples of surrogate data should be 

simulated. This number in general depends on the level of significance a. For a 

given a and a one-tailed test, I/at — 1 surrogates are required on a minimum basis. 

For a two-tailed test, one should acquire at least 2/at — 1 surrogate samples. For 

example, for at = 5%, one would normally require 19 surrogate data sets for a one 

tailed test and 39 for a two-tailed one. 

The three hypothesis Hi, H2 and i / 3 are rejected for the simple shuffled sur

rogates, FT surrogates and AAFT surrogates (and variants) respectively, for data 

generated by a nonlinear system. However, we reiterate that rejecting these hypo

theses does not necessarily imply that the cause is a nonlinear deterministic DGP. 

For example, from the rejection of hypothesis H3, it is only safe to conclude that it 

is unlikely that the original observations sprang from a monotonic nonlinear tran

sformation of linearly filtered noise. 
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6.4.1.2 The SDA discriminating statistics 
Usually, the type of the null hypothesis will dictate the nature of the discrimi

nating statistic. One may use the ACF in order to refute linearity and Gaussianity 

although this may not be very interesting given the nature of our problem (Kantz 

and Schreiber, 1999). Schreiber and Schmitz (1997) examine the power of an array 

of statistics of nonlinearity and complexity measures and find that it is preferable 

to use an algorithm with good overall performance such as higher order autocorre

lations or nonlinear predictor errors. They evaluate different nonlinear observables 

which require the embedding of the time series in phase space. It is known that the 

embedding parameters should be determined accurately in this case and that may 

prove to be a weakness of the use of these proposed statistics. Given that we can 

successfully determine the time delay r and the embedding dimension de parame

ters for the original series, by fixing these quantities for all surrogate data sequences 

we can conduct the relevant tests. It is incorrect to recalculate these observables 

for every surrogate sequence (Kantz and Schreiber, 1999). Popular statistics to use 

within the SDA framework are: 

« The Grassberger and Procaccia (1983) measure of correlation dimension D2. 

This is based on the correlation sum C(e) which at scale e is defined as: 

for a fixed minimum distance t m i n and 0 the Heaviside function. The linear 

processes consistent with the Hi, H2 and Hs hypothesis stated above, are 

effectively all forms of filtered noise and therefore infinitely dimensional. It 

follows that a measure such as the correlation dimension D2 will be also infi

nite. Hence D2 can be regarded as a pivotal statistic (for a proof see Small et 

al, 2001). Schreiber and Schmitz (1997) propose the use of the Taken's esti

mator (Theiler, 1988) for the correlation dimension D2, which is the maximum 

likelihood estimator of the Grassberger-Procaccia measure: 

C(e) = constant x £ e<ll 0 X X (6.5) 
\i-j\>t; 

tML(m,r,e) = C m (e ) (6.6) 
f£ Cm(e') j i 
0 e' U t 
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They use the Takens (1993) estimator and the BDS (follows) statistic to pro

vide single values for the correlation sum within the SDA hypothesis testing 

framework. 

• The Brock et ai, (1988) statistic. Schreiber and Schmitz (1997) propose a 

simpler version: 

tBDS(m,r,e) = ^ $ - (6.7) 
v ' Ci(e)m v ' 

in order to obtain an asymptotic form of the probability distribution. 

• The False Nearest Neighbour statistic (FNN) by Kennel et ai, (1992), descri

bed earlier in this thesis. This is used to calculate the minimum embedding 

dimension de in the state reconstruction. If this criterion does not saturate for 

a very low percentage of false neighbours (usually 1%), then there is evidence 

that our series is either stochastic or severely contaminated with stochastic 

noise. 

• The Mutual information (MI) criterion. Again, this statistic is used as the 

FNN criterion in delay coordinate embedding (see previous chapters). MI 

is based on measures of general correlation, both linear and nonlinear and 

can show on average how much of information past subsequences can offer on 

future subsequences. For detailed discussions see Granger and Lin (1994) and 

Fraser and Swinney (1986). 

• A version of the nonlinear prediction error defined as 

* N L P E ( m , r, e) = ( $ > * + i - F{xn)f^ (6.8) 

where F is a locally constant predictor and the prediction over one time step 

is performed by averaging the future values of all neighbouring delay vectors 

in m dimensions which are closer than a small distance e. 

• Higher order autocovariances (or cumulants). 

• A time reversibility statistic64 which is based on the concept of "directionality", 
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under which series differ when viewed in reverse time ordering: 

)3> x X R E V 71 n—T 

\ \ X n Xn—ryi 
(6.9) 

This statistic is known as "time reversal asymmetry". The time reversibility 

statistics are explained in Diks et al, (1995) and Diks (1999). He proposes an 

approach that does not rely on SDA but can be combined with a Monte-Carlo 

like test procedure if needed. In general, these kind of statistics65 belong to 

a wider class of simple nonlinear averages statistics and are related to the 

bispectral analysis and the bilinearity principle (Rao and Gabr, 1984). A 

similar to time-reversibility measure is the "crinkle" statistic introduced by 

Theiler based on the 4th moment of the series Xn: 

for t — 1 , 2 , 3 , n . Note that Xt-\ — 2Xt + Xt+i refers to the 2nd difference 

of the series. 

• Volterra polynomials are also considered for the generation of correlation based 

statistics (Kugiumtzis, 1999). 

• The largest Lyapunov exponents (LLE) is another popular statistic in SDA as 

an indication of the complexity of the DGP. 

6.5 Types of Surrogates 
Over the last ten years, various procedures for generating surrogate data have 

been proposed. Most of them are based in permutations of the original data set and 
6 4 A stationary time series Xn is said to be reversible of its probabilistic properties are invariant 

under time reversal i.e., (Xn, X n + i , X n + 3 , X n + k ) and ( X n + k , X n + k ^ i , X n + k ^ 2 , have the 
same joint probability distribution for all k and n (Weiss, 1975 and Lawrence, 1991). This is a 
very important property as any presence of "directionality" excludes linear Gaussian processes. 
Lawrence (1991) argues: "The view taken here is that directionality is an aspect of time series 
analysis which deserves wider recognition; for instance, it does not make sense to forecast with 
a time series model which is reversible, when past data are definitely irreversible. In simulating 
inputs to a system based on directional historical data, directional simulated data should be used. 
Such obvious requirements are not met by the use of Gaussian A R M A models. " 

6 5Time-reversibility statistics will be covered more analytically in the last part of this chapter. 

((Xt^-2Xt + Xt+1)4) 

a m 2 
(6.10) 
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are relatively computationally cheap. As Theiler and Prichard (1996) and Small et 

al., (2001) point out, the type of null hypothesis dictates the type of the statistic 

to use and this in turn dictates the type of procedure to be used in generating 

the surrogate data. In this section we will concentrate our discussion on the most 

popular surrogate data generators and examine their properties. 

6.5.1 Simple shuffled surrogate data 

This is the simplest type of surrogates and should be generally avoided unless 

we are certain of the Gaussianity of the underlying DGP process. The surrogates 

are generated by shuffling the order of the original observations (via Monte-Carlo). 

A Gaussian independent identically distributed (i.i.d.) data set is simulated via a 

pseudo-random number generator and the original sequence is reordered so that it 

has the same rank distribution as the simulated set. The hypothesis tested here 

is essentially that the given series is IDD according to H\. These surrogates are 

constructed to exhibit the same mean and variance as the original sequence. This 

approach as well as the type of the hypothesis tested is not regarded as very intere

sting and at the same time does not provide any valuable insight in the alternative 

of a nonlinear deterministic DGP hypothesis. 

6.5.2 Fourier Transform based surrogate data 

Under the SDA framework, a suitable null is that the series under examina

tion are linear and more precisely that the DGP is linear stochastic with Gaussian 

innovations. This is effectively what hypothesis H2 pertains to. It is imperative that 

the surrogate series are "properly" generated (Schreiber, 1998) as any differences 

with the original series may be misinterpreted as evidence of nonlinearity. Moreo

ver, the correct size of the test will be directly related to the way surrogate data 

are produced. The surrogate data are constructed to be consistent with the null 

hypothesis. The most common surrogate data generation algorithm is the one that 

utilises a discrete Fourier transform (DFT) of the original observations. The phases 

for each frequency are replaced with random numbers from the interval [0, 2TT) while 

the magnitude at each frequency i.e., the power spectrum is kept as is. The last 
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stage incorporates an inverse Fourier transform (IFT) which produces the surrogate 

sequences. The process can be summarised in the following 3 steps: 

1. First compute the Fourier transform of the original sequence, i.e., an amplitude 

A{UJ) and a phase <p(u>) at each frequency u>. 

2. Replace the phases 0(w) with random numbers between 0 and 2TT. 

3. Compute the inverse Fourier transform of the amplitude and the randomised 

phase and obtain the surrogate data. 

This approach is an improvement over the previous "simply shuffling" algo

rithm and results to surrogate data which have the same amplitude and power 

spectrum as the original sequence. Intuitively, the autocorrelation function which 

is the Fourier transform of the power spectrum, is the same as well. In this sense, 

the original and surrogate sequences can not be distinguished by means of autocor

relation functions. The rationale behind this process is explained clearly in Kaplan 

and Glass (1995). For a linear Gaussian process, all dynamics and properties are 

based on the first and second moments and the autocorrelation function. In order 

for the structure to be preserved in the surrogate data, the mean, the variance and 

the autocorrelation function should be identical to that of the original sequence. 

This approach results to surrogate data which have the same amplitude and power 

spectrum as the original sequence. Intuitively, the autocorrelation function which is 

the Fourier transform of the power spectrum, is the same as well. In this sense, the 

original and surrogate sequences can not be distinguished by means of autocorrela

tion functions under the null. The process described above can be compared to that 

of a nonparametric bootstrap (Theiler et ai, 1993). The surrogate data will have 

exactly the same power spectrum of the original series and by the Wiener-Kintchine 

theorem they will also exhibit the same autocorrelation function. The reason why 

we engage in such a practice to design FT surrogates, is also analysed in Kaplan and 

Glass (1995). The FT surrogates are also called "phase randomised" surrogates. 
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6.5.3 Amplitude Adjusted Fourier transformed surrogate data 
The FT (or phase randomised) surrogates, may produce spurious results if the 

original time series consists of linearly correlated noise that has been transformed 

by a static, monotone nonlinearity (Rapp et ai, 1994). Following Theiler et ai, 

(1992), a consistent surrogate data generator procedure with hypothesis H3 is a 

modification of the previous algorithm of FT surrogates: 

1. Starting with the original sequence Xn, generate an i.i.d. Gaussian data set 

Y. 

2. Reorder Y so that it has the same rank distribution as Xn. 

3. Use the FT surrogate algorithm to generate a surrogate Yi of the Y i.i.d. 

sequence. 

4. Reorder the original data Xn to generate a surrogate Xni which will have the 

same rank distribution as Fj. 

These surrogates are referred to as "Amplitude adjusted Fourier Transformed" 

surrogates or A AFT for sort. This has been the algorithm of choice so far for many 

applications. Again, it fails to perform properly in the presence of linear correlations 

(Palus, 1995). Kugiumtzis (1999, 2000 and 2001) discusses that in AAFT surrogates 

we assume inherently that the static transform in the null is monotonic. This is not 

as safe assumption for real life data. Both non-monotonicity of transformations and 

nonlinear dynamics may lead to linear correlations that would tend towards the reje

ction of the null when we use statistics sensitive to these correlations. Schreiber and 

Schmitz (1996) propose an improved procedure for the generation of AAFT surroga

tes ("Iteratively" refined surrogates: IAFFT). This involves a two step modification 

which processes the original linear correlations in the first step and the original data 

cumulative density function as a second step. IAFFT surrogates are shown to ap

proximate reasonably well the original linear correlations. A small linear correlation 

bias and variance is introduced though in the surrogate data, which when combined 

may be significant. Schreiber (1998) proposes a simulated annealing algorithm to 

overcome these problems. This comes though with increased algorithmic complexity 
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and computational cost. A correction of the bias just discussed, leads to yet another 

modification of the AAFT surrogates, the corrected AAFT surrogates or CAAFT. 

6.5.4 Corrected A A F T surrogates 

Corrected Amplitude Adjusted Fourier Transform surrogates (CAAFT) were 

introduced by Kugiumtzis (2000) as a correction to AAFT surrogates. The design 

mimics exactly the original data cumulative density function and linear correlations 

(on average). The CAAFT surrogates are statically transformed realisations of a 

Gaussian autoregressive process, which have the same amplitude distribution and 

autocorrelation as the original data Xn. The generated surrogate data are like AAFT 

surrogates, but corrected to match the autocorrelation function. The correction re

quires a linear interpolation for the graph of the relation between the Gaussian and 

the transformed autocorrelation, for lags up to a given lag r m a x . This interpolation 

function is then used to estimate the ACF of the series given the ACF of the original 

sequence Xn. Based on this autocorrelation, the coefficients of the corresponding 

AR(p) model are estimated and an autoregressive time-series is generated. This 

series is transformed to match the amplitude distribution of the original sequence 

Xn. The same process is then repeated a set number of times to obtain a statistic 

for the candidate AR models. Finally the most proper is selected, so as the autocor

relation of the generated surrogate sequence approximates best the autocorrelation 

of Xn (comparison done via Euclidean norm). Based on this AR model, a number 

of realisations are generated and transformed to match the amplitude distribution 

of Xn. This algorithm is provided by Kugiumtzis (2000). 

6.5.5 ARM A based surrogates 

An alternative approach is to generate the surrogates by fitting directly the 

original series to a finite order ARMA(p,g) model: 

p 
o L i V t - x + b i yt = yo + 22 (6.11) 
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This involves choosing the correct order values for the ARQ and MA() parameters 

p and q (usually using some informational criterion such as the Akaike (1974) (AIC) 

or the Schwarz-Bayesian (1978) (BIC) -the latter being more powerful for small 

data sets- and by examining the stationarity of the residual processes). Over-fitting 

should be avoided and a parsimonious model should be obtained. Stability can be 

checked through the Yule-Walker equations. When an appropriate ARM A model has 

been fitted on the data, one can generate the surrogate sequences by introducing 

Gaussian i.i.d. random numbers into the error terms et and iterate the equation 

(6.11). This will produce surrogates with slightly different statistics than those 

of the FT surrogate procedure (Theiler et al., 1993). An improvement would be 

bootstrapping the residual sequences et, reshuffling them randomly and re-inserting 

them into equation (6.11). By this way the Gaussian assumption is relaxed, we can 

obtain a wider class of time series but understandably the null is slightly different 

in such a case. Again here we reiterate the fact that since we are focusing in linear 

processes with non-Gaussian innovations, the behaviour we obtain may not be linear. 

References for this can be found in Theiler et al., (1993). 

Since FT and ARMA surrogates depend on the autocorrelation function of 

the original data set through their the Fourier and AR coefficients, both kinds of 

surrogates may behave quite similarly. The basic difference is that the FT based 

surrogates, will match exactly the first and second moments of the original sequ

ence plus the autocorrelation function. ARMA surrogate statistics will usually be 

approximate to the original i.e., not exactly the same. Moreover, while FT surroga

tes are produced by a procedure that attempts to replicate the data (spectral and 

autocorrelation structure), ARMA ones are obtained by a procedure that attempts 

to generate a model that fits the original series. 

Another difference is that the FT-based surrogates will be series generated all 

at once, of the same length of the original data. The ARMA surrogate procedure, 

works iteratively on the data and generates new points, one at every iteration and 

can generate any length of series. That could be potentially useful for various 

applications or may pose a problem as small errors can be sequentially propagated 

to large future deviations when modelling long term phenomena. 
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Essentially, the FT approach is nonparametric as it does not directly attempt 

to fit any kind of linear or nonlinear model to the data. One can argue that the 

large number of Fourier coefficients may be compared to the parsimony of a few 

parameter ARMA model and that should lead us to accept the latter as a more 

desirable solution (provided that the parameters are carefully chosen). In practice, 

the application dictates the modelling approach. Theiler et at, (1993) argue that the 

FT surrogates will be more suitable for testing hypothesis whereas ARMA surrogates 

may be more appropriate for determining confidence intervals. 

6.5.6 Pseudo-periodic surrogates 

An interesting use of the SDA framework is reported in Theiler (1992, 1994 

and 1995) and Theiler and Rapp (1996). They address the problem of detecting the 

presence of temporal correlations between cycles. They suggest that the surrogates 

there should also exhibit periodicity and propose the decomposition of the signal 

to its cycles and then the shuffling of the individual cycles. The purpose here is to 

reject the null of an absence of dynamical correlation between the cycles.66 

Based on the idea discussed above, a modification of the surrogate data ge

neration techniques was proposed by Small and Judd (1998a and 1998b), Small et 

al., (2001a, 1001b and 2002a) and Small and Tse (2002). They term these surro

gates "pseudo-periodic" (PPS). This kind of surrogates allows for the detection of 

aperiodic determinism, a fine cyclicity in the signals that may be destroyed by any 

phase randomisation. The hypothesis they test is that of a series being generated by 

noise driven by some periodic mechanism against that of non-periodic deterministic 

dynamics. Pseudo-periodic surrogates must exhibit two properties: 

1. The surrogate data must exhibit the same periodic structure as the original 

sequence. 

2. There must be no other deterministic structure present in the data. 

In order to use the PPS framework, delay-coordinate embedding is applied to the 

data as a first step. For more details on this kind of surrogates one should refer to 
6 6 T h i s approach may prove an interesting test for business-cycle applications in macroeconomic 

time-series analysis. 
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the articles by Small. 

6.6 SDA applications 
In this part we have generated a number of simulations of data that are cha

racterised by deterministic nonlinearity or stochasticity and conducted SDA tests, 

in order to examine the performance of a subset of algorithms we have presented 

earlier. Continuing, we applied SDA on real life data. We choose 9 financial markets 

and execute the SDA on their main stock market indices. More precisely, we select 

USA (Dow Jones industrial average and NYSE New-York stock exchange indices), 

Canada (Toronto stock exchange TSE 300 index), Germany (DAX 30 Performa

nce index), Hong-Kong (Hang-Seng index), Japan (Nikkei 225 stock average index), 

Mexico (IPC Bolsa index), Greece (ASE main market index), and UK (FTSE ALL 

SHARE index). In that way we cover 3 series from North America, 3 series from 

Europe and 3 series worldwide (including Latin America). Data are daily closing 

prices and the time span ranges from 1/1/1980 ti l l 31/5/2002 i.e., 5849 daily obse

rvations. The Greek and Mexican time series are slightly smaller in length. Greek 

observations start from 30/9/1988 (while Mexico starts from 4/1/1988). The source 

is Datastream International. The statistics we apply under an SDA framework are 

the Mutual Information based, the "crinkle" and the time-reversibility test. We 

avoid using any fractal dimension based estimation statistic. We do this for various 

reasons. The most basic ones are that proper embedding of the series is required 

and this may be tricky as already described in the previous chapter. Secondly, for 

financial data, dimension calculations do not saturate at specific levels due to the 

existence of heteroscedastic noise in the sequences. According to some preliminary 

tests67 the correlation integral based dimension calculations did not offer any valid or 

strong insight in the nature of the DGP as they did not converge to low dimensions 

for a number of embedded lags. 

Among all data, only the UK market (figure 6.1) seemed initially to saturate 

at a level between 20 and 25 dimensions. All other markets' estimations exhibited 

highly oscillatory behaviour. This may provide some evidence for higher dimension 
6 7 Results available from the author upon request. 
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Figure 6.1: The correlation dimension plot for the UK market index re
turns. The results depicted here are not to be trusted as we 
do not have a real saturation for low embedding dimensions 
and the diagram shoots off for large ones. The saturation 
appears to be smooth for low embedding dimensions but be
comes very erratic for larger ones as one would expect, given 
the nature of the data. 

dynamics behind the DGP of this specific market. These results though are highly 

questionable as saturation should really be achieved for low dimension levels. The 

presence of noise in our data is expected to create severe problems in dimension 

estimation calculations. 

6.6.1 Simulations 

In figures (6.2) and (6.3) we show three types of surrogate data realisations for 

3500 observations of the Lorenz "x" variable series. The three Lorenz differential 

equations define system that exhibits chaotic dynamics: 

x — —ax + ay 

y = —xz + rx — y (6.12) 

z = xy — bz 

where x, y, z € M and a,r,b > 0. 
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Figure 6.2: Original Lorenz sequence and amplitude adjusted surrogates. 
Note that although the histograms show the same distribu
t ion, the ACF functions differ. 
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Figure 6.3: Phase and phase-amplitude adjusted surrogates of the Lorenz 
sequence in figure (6.2). Note the relationship between the 
A C F functions of these realisations and the original data. The 
phase-adjusted data are different as seen in their histogram. 
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Original random sequence Normal Q-Q Plot 
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Figure 6.4: 300 normal random observations and their amplitude adju
sted surrogates. Note the approximate equality of distribu
tions and ACF functions supporting the null hypothesis. 

In figure (6.2) we show the original Lorenz sequence with the amplitude ad

justed surrogate sequence, histograms and ACF. In figure (6.3), we show the phase 

(FT) and phase-amplitude adjusted (AAFT) surrogates for comparison. These gra

phs were generated with the original SDA algorithms as described in the appendix of 

Theiler et al, (1992) via the TSERIES version 0.9-0 package (Trapletti, 2002) provi

ded in "R" statistical programming language by Ihaka and Gentleman (1996).69 We 

also generated 100 normally distributed random numbers based on the algorithm AS 

241 by Wichura (1988), also implemented in "R". The power of SDA is obvious from 

the inspection of figures (6.2 to 6.5). The Lorenz sequence, clearly chaotic, leads 

the procedure to reject the null whereas in the second case of the Gaussian random 

numbers, one can surely fail to reject i t . 7 0 In table (6.1) we have included the first 

20 coefficients of the ACF of a simulated AR(1) autoregressive process. Note the 

very small values of the difference of the ACF coefficients for the original sequences 

from that of the surrogate data and the very small standard error, indicating that 

6 8 We chose arbitrarily the a, r and b positive parameters. 
6 9 B o t h library and language are available from http://www.r-project.org under general public 

license (GPL), free for scientific research (see also introduction). 
7 0 Note that these figures are generated by single realisations of the surrogate data sets for each 

algorithm. In practice, a number of those sequences must be generated in order to actually refute 
the null. 

http://www.r-project.org
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Figure 6.5: Phase and phase-amplitude adjusted surrogates of the ran
dom sequence in top figure (6.4). Again the same conclusion 
is reached supporting the null. 

the null should be rejected. 

In order to show how SDA can be used with a discriminating statistic, we ge

nerated the same length (3500) normally distributed random numbers. We used the 

Mutual Information criterion to test the three null hypotheses with simple random 

surrogates, phase randomised FT surrogates and AAFT surrogates. We test both 

the Lorenz and random sequences. 

6.6.2 SDA with financial time series 

Continuing our demonstration of the SDA framework, we apply the Mutual 

Information criterion test on the 9 stock market indices. The original closing prices 

time series are plotted in figure (6.8). We first conduct a test for i.i.d. vs. any 

dependence (Hi) and plot the results for the Mutual Information criterion in figure 

(6.9). We then conduct tests with hypothesis H2 and H3 with FT phase randomised 

and AAFF surrogates respectively in figures (6.10-6.11). 

It is evident from figure (6.9) that Hi should be clearly rejected at a = 5% for 

all markets. Diagrams for Hong-Kong and Japan are less clear, as the confidence 

bounds are close to the statistic values. In fact, all tests for all hypotheses were 

rejected. The difficulty that generally arises in obtaining clearer or more powerful 

Normal Q-Q Plot 

Phasa-amplitudo adjusted Normal Q-Q Plot 
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Figure 6.6: S D A with the Lorenz series. I t is straightforward that the null 
is rejected in all three cases. Level of significance is a = 5%. 30 
surrogate data samples were generated and the Mutua l Infor
mation criterion used. Dashed lines indicate the confidence 
bounds. 
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Figure 6.7: S D A with the normal random series. I t is straightforward 
that the null is accepted in all three cases. Level of significa
nce is a = 5%. 30 surrogate data samples were generated and 
the Mutua l Information criterion used. Dashed lines indicate 
the confidence bounds. 
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Lag Original bias std. error 
n 0.364570 -0.007051 0.04593 

0.078227 -0.003578 0.05120 
T3 0.038625 0.002531 0.05483 

0.003403 -0.002702 0.05494 
0.032144 0.003304 0.06458 
-0.040358 0.012629 0.06560 
-0.051926 -0.001310 0.07939 
-0.030304 0.003288 0.08890 

7 9 -0.030866 0.018067 0.07058 
no -0.051793 -0.002556 0.06319 
T i l -0.103726 0.007442 0.07271 
T 1 2 -0.041744 0.005070 0.07315 
Tl3 0.067786 0.019490 0.05620 
Tl4 0.080881 0.016454 0.05907 
Tl5 0.124059 -0.015057 0.05862 
Tl6 0.096451 -0.018595 0.06360 
Tl7 0.059631 -0.016266 0.05869 
Tl8 -0.047576 -0.006706 0.05894 
Tl9 -0.012457 0.005777 0.06999 
T20 0.017235 0.011584 0.08179 

Table 6.1: T h e first 20 lags of the autocorrelation function of a simulated 
A R ( 1 ) process and the bias of the surrogate data A C F sta
tistic. 50 phase-amplitude adjusted F T surrogate sequences 
were generated. 
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Figure 6.8: Dai ly closing prices for the 9 stock market indices. See text 
for further details. 
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Figure 6.9: Testing for i.i.d. vs. any dependence for 9 markets. S D A 
was conducted with 50 surrogate samples, a — 5% and the 
Mutua l Information criterion. Simple shuffling was used here 
to generate surrogates consistent with H\. 
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Figure 6.10: Testing for H2 i . i .d. vs. any dependence for 9 markets. 
S D A was conducted with 50 surrogate samples, a — 5% and 
the Mutua l Information criterion. Phase randomised ( F T ) 
surrogates were used in this case. 
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Figure 6.11: Testing the linearity hypothesis H3 for the closing prices in 
figure (6.8). Phase randomised amplitude-adjusted ( A A F T ) 
surrogates were in this case ( F T ) . 

results for H2 and H$ testing is usually attributed to the nonstationarity of the 

levels data. For this reason we repeated the process for the returns sequences. 

We applied the same SDA framework on the returns sequences generated by 

the original financial market indices for every country Yt. We generated the conti

nuously compounded returns as ln(P t ) — ln(P t _i ) where P t is closing price at time 

t. Then we simulated 50 simple Gaussian shuffled, phase-randomised and phase-

randomised amplitude-adjusted surrogates in order to test respectively for Hi, H2 

and H3. The results are displayed in figures (6.12) to (6.14). I t is evident that for 

the returns sequences, all three hypothesis for linearity should be rejected as the 

calculated statistics for the original series are exceeding the confidence boundaries. 

6.6.2.1 Theiler's "crinkle" statistic 

This test is based on the 4th moment and was developed by Theiler et al, 

(1992) in order to demonstrate problems arising wi th surrogate data analysis. We 

use the statistic as in equation (6.10) on the 9 indices and the corresponding returns 

series to test hypothesis H3.n The results are summarised in table (6.2). 50 phase 

randomised (FT) amplitude adjusted surrogates ("polished") where generated for 
7 1 This test assumes de-meaned or stationary data. 
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Figure 6.12: Testing for Hi with S D A on the returns sequences. 
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Figure 6.13: Testing for Hi with S D A on the returns sequences. 

each test. The test is one-sided (right) t-student based which means that for a 5% 

significance level, 19 surrogates would suffice. We can reject the null for all variables 

at a. = 2% except for US (NYSE at 6% and Dow-Jones at 10%) and Japan (at 4%). 

Therefore, evidence of nonlinearity is extremely strong in almost all of the returns 

sequences. 

http://hWlhirhilH.UUU.i-
http://lliill.lllhin.il
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Figure 6.14: Testing for H3 with S D A on the returns sequences. 

Markets t-statistic p-value 
Returns Returns 

Canada 7.310 0.02 
Dow-Jones (US) 1.219 0.10 

NYSE (US) 1.800 0.06 
Germany 8.910 0.02 

Greece 10.887 0.02 
UK 5.105 0.02 

Hong-Kong 5.133 0.02 
Mexico 10.733 0.02 
Japan 3.818 0.04 

Table 6.2: Theiler's "Crinkle" statistic S D A results on returns seque
nces. 50 phase randomised ( F T ) amplitude adjusted surro
gates ("polished") where generated for each test. T h e test is 
one (right) sided t-student based which means that for a 5% 
significance level, 19 surrogates would suffice. We can reject 
the null for all variables at a = 2% except for U S ( N Y S E at 
6% and Dow-Jones at 10%) and Japan (at 4%). Therefore, evi
dence of nonlinearity is extremely strong in almost all of the 
returns sequences. 
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6.6.2.2 T i m e reversibility 

Before we provide the results of our analysis, we should look into the time-

asymmetry issue a bit deeper. Time reversibility is not a new concept. I t is based on 

the asymmetry of data across time. Early attempts to detect this asymmetry were 

based mainly on observation of graphical displays. Namely the time series plots 

and delay maps (scatter diagrams of autocorrelations of various orders). Any kind 

of asymmetry in these plots was treated as an indication of time-irreversibility and 

therefore nonlinearity. For example, in Tong (1990) reverse data plots are suggested 

i.e., time series plots wi th the time axis reversed. 

As we already discussed, a sequence X is time-reversible if any n-length sub-

sample has the same joint probability distribution when ordered reversely in time as 

in its proper (original or natural) sequencing. This effectively means that a reversible 

time series should not look "different" when viewed in forward (original or natural) 

or reverse time. Any linear Gaussian random process or static transformation of i t , 

is inherently time reversible. This property makes the time-reversibility statistic an 

essential tool in detecting nonlinearities and determinism. 

I t has been shown that time reversibility is essentially restricted to A R M A 

linear Gaussian processes (Weiss, 1975). Later research has indicated that, under 

certain regularity conditions for the existence of all-order moments, general linear 

processes are time-reversible (Hallin et ai, 1988). I t was conceived that higher order 

cumulants (moments around the mean) may reflect temporal order. Second order 

was not enough to reveal irreversible time-structure. Recently Cheng (1999) has 

provided a sufficient condition which does not require moments of order higher than 

two. These findings essentially indicate that we can detect reversibility through 

comparative measures of distance such as the Euclidean norm or other kind of 

metrics. 

Phillip Rothman's doctoral dissertation (1991) was dedicated to irreversibi

l i ty in economic time series and more precisely business cycles. He introduced 

a time-reversibility statistic that was shown to posses good power when testing 

against bilinear and threshold autoregressive processes (TAR). He also showed that 

this test statistic, converged more quickly than the BDS and the Hinich (1982) 
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bispectrum tests. 7 2 In order to provide clarifications on some issues regarding bu

siness cycles, Ramsey and Rothman (1996) demonstrated the application of the 

"symmetric-bicovariance" function as a statistic for time-asymmetry (also known as 

the "Ramsey-Rothman" time reversibility (TR) test): 

the bicovariances E[Xf • X t _ f c ] and E[Xt • X^k] respectively. The Fortran based 

algorithms for the test were provided and described thoroughly in Rothman (1997). 

Smitchz and Shreiber (1998) use surrogate data analysis and a time-reversibility 

statistic to examine unevenly sampled time series. They propose the use of the fol

lowing measure: 

where Xn and X n _ i is the sequence sample at times t n and tn-i respectively. This 

is a good indicator for nonlinearity but not very informative about what the source 

of this nonlinearity may be. I f the DGP is a linear process, then 7 ~ 0 for both the 

original sequence and the surrogates. Nonlinearities in the data wi l l cause 7 7̂  0 

which implies that the statistical test here should be two tailed. 

In table (6.3) we present the result of a test for H3 as a null. We used 50 

"polished" surrogate samples (which is more than enough for a 5% significance 

level). We can reject the null for the US market (Dow-Jones at a = 3% and NYSE 

at a = 7%). We can also reject the null for the Greek market at a = 4%. The results 

are not that surprising for this version of the time-reversibility criterion. Diks 1999 

reports the same results for his reversibility criterion (which does not involve SDA). 

Scmitz and Schreiber (2000) have concluded similarly for the same test. They used 

1500 daily returns of the BUND Future but generated 19 surrogate samples based 

on the simulated annealing algorithm. They too could not refute the null. This 

does not constitute of course evidence of linearity, merely we can not reject the null 
72See also the articles by Hinich (1982), Hinich and Patterson (1985, 1989 and 1993) and Hinich 

and Rothman (1998). 

72,i(fc) = B 2 , 1 ( f c ) - 5 l i 2 ( A : ) (6.13) 

where k is the order of the lag and ^ 2 , 1 (k) and Bi^ik) are moment estimators of 

N X X 1 \3 n 7 
(a2)-2(N- 1) t t n - l n 71 = 2 

(6.14) 
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Markets t-statistic p-value 
Returns Returns 

Canada 0.110 0.44 
Dow-Jones (US) 2.934 0.03 

NYSE (US) 2.075 0.07 
Germany -1.156 0.93 

Greece 1.910 0.04 
UK 0.414 0.31 

Hong-Kong 0.227 0.38 
Mexico -0.830 0.81 
Japan -0.377 0.66 

Table 6.3: T i m e reversibility S D A results on the levels of the each index 
and the corresponding returns sequences. 50 phase randomi
sed ( F T ) amplitude adjusted surrogates ("polished") where ge
nerated for each test. T h e results here do not support strongly 
the rejection of the null as in table (6.2). Only the U S markets 
and the Greek can support the rejection of the null for a low 
significance level. 

of linearity as i t is expressed by H3 wi th these data. A l l of the above results while 

not supportive to the existence of nonlinearity, are consistent wi th the random walk 

hypothesis for the logarithms of the index level prices. 

One explanation for our results may be that the time-asymmetry statistic 

should be modified to capture higher moments if this is important in describing the 

data. Secondly, these series contain heteroscedasticity which can be captured by an 

(G)ARCH model. I f we assume that such a process is at hand here, the surrogate 

data should be modified in order to exhibit such a structure. This is something 

that has not been tried yet. GARCH processes are not monotonic transformations 

and in such a capacity, there is no surrogate data testing framework yet to consider 

such processes. Following Diks (1999) the question posed here is: can a GARCH 

DGP give rise to a reversible logarithmic return sequence? If the answer is yes, then 

reversibility as a null hypothesis would exclude GARCH processes as well. This is 

an interesting area for future research. 



137 

6.7 Conclusions 
In this chapter we presented the general framework of SDA as a test procedure 

for weak determinism. We described the types of linearity hypothesis that can be 

used wi th the original observations, the surrogate data generation procedures and 

how one should interpret the results. SDA is a recent development and has seen 

very li t t le application in our discipline. I t has an advantage over the bootstrap in 

the sense that we do not have to assume a specific parametric model for the DGP. 

We merely need to simulate surrogate samples which exhibit the same spectral and 

distribution structure as the original sequence. By using some appropriate test 

criterion we can then compare its values when applied to the original observations 

and the surrogates. I f the values differ substantially, we may refute the null of the 

existence of linearity in the DGP. That does not necessarily imply that our data 

are nonlinear deterministic. What we may safely assume is that there is no linear 

dependence among the data according to the rejected null. This can be evidence of 

nonlinearity. One should be careful not to accept such a result as a clear indication 

of chaoticity in the series. Further testing and the use of measures suitable for 

characterising chaotic dynamics may be required. 

By applying this framework to financial data, we concluded that for our se

ries, some statistics such as the "crinkle" and the Mutual Information seem to 

provide results consistent wi th the existence of nonlinear structure in the data. 

Time-reversibility statistics were less clear in the same data sets but our results 

were consistent wi th previous work in this area. 

Summarising, we should carefully advocate the use of SDA as a supplementary 

testing procedure to those already applied in mainstream econometric analysis. SDA 

is quite different to bootstrapping and provides useful insight into the possible nature 

of the DGP. One should combine this wi th other techniques when trying to establish 

a parametric model for the data. Moreover, i t could be used as a "second opinion" 

when testing the validity of parametric approaches. For instance one could examine 

regression residuals and test them for nonlinearity using Mutual Information or 

time-reversibility based criteria. SDA is not without flaws. Some problems may 

appear due to random number generation routines, or the surrogate data generation 
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procedures in general. Research is constant in the field and we should soon see SDA 

related procedures that may be even more useful or appropriate for the analysis of 

financial or macroeconomic data. 

In the following chapter we deviate from our "chaotic" discussions in order 

to provide the basic theoretical background needed in wavelet analysis. Wavelets 

are a counterpart to Fourier analysis and can cope very well wi th nonlinear and 

volatile time sequences such as financial time series. They can also provide a very 

good tool for denoising these and can allow us to visualise their structure in various 

resolutions. I n the next chapters we wil l demonstrate how wavelets can be used to 

provide qualitative and quantitative information on financial time series. We wi l l 

also show how they can be used in conjunction with what was discussed so far to 

reveal very interesting facts about the structure of these series. 



C H A P T E R 7 
Wavelet Theory 

7.1 Introduction 
As we have seen in chapters 5 and 6, the results of the nonlinear methodologies 

rely heavily on the quality of the data. The noisy and volatile nature of stock market 

series, creates the need of pre-filtering in order to clearly reveal interesting patterns. 

As we have discussed and is also stressed in the literature (Abarbanel, 1995) not all 

data preprocessing methodologies are appropriate when searching for determinism 

and nonlinearities. For this reason we explore a novel approach, based on wavelet 

transforms, so as to provide a new means of financial time series denoising. Our aim 

is to reveal any details that could be amplified wi th the use of nonlinear techniques 

already discussed and thus provide evidence for or against Market Efficiency and 

linear stochastic dynamics. 

In the previous chapters we examined ways of determining whether a time 

series is characterised by deterministic or stochastic dynamics. We suggested a range 

of metrics that can be calculated, a number of invariant statistics that can reveal the 

amount of determinism that governs the data generating processes. I t is important 

to determine in finance what is the structure of time sequences of observations as 

this has direct implications for the structure of the markets and the psychology of 

the participating agents. Especially, in a theoretical point of view, notions such as 

Market Efficiency can be refuted or accepted on the basis of the structure of these 

sequences. This has a profound impact on the whole framework of finance as most 

of the intertemporal equilibrium relationships and market clearing conditions are 

based on such notions. Moreover, risk estimation techniques are strongly dependent 

on the fact that financial time series are stochastic processes. 

As we discussed so far i t is not always possible to establish determinism in 

financial data. This is for various reasons. Unt i l recently, large data sets were not 

available for markets and this has an effect on the quality of results we obtain while 

calculating chaotic invariant measures. Secondly, financial time series are extremely 

139 
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volatile and noisy wi th very unclear dynamics. Any attempt to parameterise on 

these dynamics, wi l l greatly affect the nature and shape of any existing attractor. 

This could result in determining that these series are stochastic when indeed they 

are deterministic or vice versa. One should carefully preprocess data wi th smooth 

transformations which do not affect the original dynamics and make sure at the same 

time that such transformations can be reversed so the original information can be 

retrieved with no loss. One of these transformations is the wavelet transform, which 

has been used so far wi th great success in the physical sciences, often analysing 

chaotic multidimensional dynamics. 

In this chapter 7 3 we provide an introduction into wavelet theory in order to 

explain the mathematical framework which enables us to filter financial time series 

without any parametric assumptions on their underlying distributions. We wil l 

demonstrate the ability of wavelets to deal wi th finite and highly irregular samples 

in continuous and discrete time. We wi l l also show the advantages of wavelets over 

Fourier analysis and how these can be used within a regression framework to provide 

smoothed sequences. In the following chapters we wil l be applying this theory 

to denoise UK stock market time series. Furthermore, we wi l l be incorporating 

techniques already discussed in the previous chapters in order to establish whether 

the data are governed by stochastic randomness or chaotic determinism or both. 

7.1.1 T h e basic framework 

The limitations of the applicability of Fourier analysis on various experime

ntal and empirical data has led scientists to develop the hierarchical representations 

of functions. The basic concept behind these methods (also called multiresolution 

methods) is to represent signals wi th (i.e., transform them to) a set of coefficients. 

Each of these coefficients provides limited information about the frequency and the 

position of the signal. The inverse transformation can then be used to retrieve the 

original data from the coefficients wi th no loss of information. Instead of carrying 

7 3 We focus on the purely theoretical framework of wavelet analysis, we will be citing scientific 
work that is relevant to our presentation. In the next chapter we deal with empirical applications 
of the theory and we will be citing and discussing there the relevant applied literature. For more 
details refer to a plethora of books on the subject such as: Chui (1992a, 1992b, 1997), Burrus et 
ai, (1997), or Strang and Nguyen (1996). 
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any analysis in real (original) time and space, one may choose to work in the functio

nal space of the transformation which usually exhibits a wealth of useful properties. 

Although the roots of wavelet theory can be found a hundred or more years 

back, i t is only during the past decade that i t has enjoyed such popularity and 

growth. Wavelets have become by now a necessary tool in many signal analysis 

related investigations. They are most suitable for the examination of nonstationary 

signals that exhibit sharp irregularities and brief but violent structural breaks. This 

is mainly due to the ability of wavelets to establish not only the frequency patters 

in a signal but also the time stamp of any non periodic shock or singularity. They 

are especially useful in the analysis of signals of various different nonstationarity 

classes, of non-homogeneous in time (or space) signals 7 4 and fractal or long memory 

time series. 

Wavelets have many important characteristics which enable them to be a ver

satile tool in signal analysis. Although i t is not our purpose to provide an extensive 

analytical framework of the wavelet theory in this thesis, we shall cover the most 

important aspects. Introductory i t is important to mention that their most disti

nctive characteristic is their ability to be constructed through dilations i.e., changes 

in scale and translations i.e., changes in position. The scale actually refers to the 

width of the wavelet function utilised. Changes in scale result in changes in the 

wavelet width. I t can also be defined as the distance between the oscillations of 

the wavelet. This feature allows them to be very useful for data compression and 

analysis of irregularly spaced or nonstationary series. Wavelet functions can also 

filter information very effectively even when the nature of the noise contaminating 

the data is unknown. 

To demonstrate here a result of wavelet compression, we provide figure 7.1. 

The left image of Einstein is the original whereas the right image is a compressed ver

sion of the original using a Haar wavelet. I t is obvious that there has been very li t t le 

optical information lost due to compression. A n image can be regarded as a two-

dimensional signal. A financial time sequence is nothing else than one-dimensional 

signal as we already noted. In the same fashion one would apply wavelet analysis on 
74Non-homogeneously sampled in time such as series with missing observations. 



142 

A 

Figure 7.1: Wavelet compression of Einstein's photo. Left original scan
ned image, right 30% compressed image. I t is obvious from an 
eye inspection that no visible loss of information has occurred. 

a picture, one can decompose, compress and denoise a single one-dimensional time 

series. 

Another example of the power of wavelet filtering is in figure 7.2 featuring a 

picture of Ingrid Daubechies.7 5 Wavelets were used here to denoise a detail of the 

image. 7 6 

So what exactly are wavelets and how do they work? Wavelets are orthogonal 

functions that have compact support i.e., they exist only wi thin a certain range and 

not outside of i t . 7 7 A crude but effective explanation of the functionality of wavelets 

is to imagine them as functions that we can expand or contract and move along 

the horizontal axis in order to "imitate" a specific event in the history of a signal. 

Something like a mathematical magnifying glass that enables us to concentrate on 

a very specific event in the history of a signal. The dilations enable wavelets to 

7 5 Ingr id Daubechies is a very active researcher in the field of wavelet analysis and author of 
the classical wavelet book "Ten Lectures on Wavelets," (1992). She is the inventor of smooth 
orthonormal wavelets of compact support. 

7 6 From a demonstration of the Wavelab (1995) wavelet library for MATLAB©available on the 
W W W from: http:/ /www-stat .stanford.edu/~wavelab/ 

7 7 The support of a function refers to the region of the parameter domain over which the function 
has a nonzero price. Functions that are supported over a bounded interval are said to have compact 
support. Box functions are an example of compactly supported function. 

http://www-stat.stanford.edu/~wavelab/
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Figure 7.2: Demonstration of wavelet denoising of two-dimensional si
gnals. 

scale themselves to distinguish local characteristics of time series in various different 

scales and the translations allow them to cover the whole length of the series. Most 

of the wavelet families of functions form a complete orthonormal system with finite 

support (compactness) which allows them to exhibit such functionality and at the 

same time enable the inverse wavelet transformation to exist, similarly to the Fourier 

transform. Their substantial advantage over the Fourier transform is that the latter 

provides us only wi th the global frequencies of a specific event as i t works on an 

infinite interval. 

In spectral analysis, each Fourier coefficient contains complete information 

about the structure of the time series at one frequency but no information at the 

other frequencies. I t should also be noted that Fourier analysis assumes an infinite 

and periodic signal whereas most empirical work is carried on finite and aperio

dic series. Moreover, Fourier analysis uses sine, cosine and imaginary exponential 

functions whereas wavelet analysis has a much wider class of functions available. 

Discrete and continuous wavelet functions exist wi th different usefulness in signal 

analysis. Wavelet theory has also delivered us the Wavelet packet transform which 
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Figure 7.3: A n example of how translations and dilations affect the posi
tion and shape of the s8 wavelet. 

enables the use of libraries (sets) of wavelet functions to be applied on a single signal 

analysis at the same time. Among the basic properties of wavelets we should also 

include 

1. Linear-time complexity: Wavelet transforms and inverse wavelet transforms 

can accomplished wi th very fast algorithms (faster then Fourier transforms) 

which work in linear time. 

2. Sparsity: in practice, many of the coefficients of a wavelet decomposition are 

zero or negligible. This allows compression of information and acceleration of 

iterative procedures. 

3. Adaptability: Wavelets are extremely flexible functions and can be adapted to 

represent a wide variety of other functions such as uni and multidimensional 

signals of about any kind of structure. 

Wavelet functions provide what is known as a time-scale view of the signal. 

The signal is decomposed into simple functions as in spectral analysis. Instead of 

using sine and cosine functions, a scaled and shifted elementary function is used, 

known as the mother wavelet and usually represented as ip(t). The mother wavelet 

is scaled (or dilated) by a quantity a and time-shifted (or translated) by a quantity 



145 

0.0 0.2 0.4 0.6 0.8 1.0 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 
'Haar" mother. psi(O.O) 'Dauoechies 4' mother, psi(O.O) 

1 
-2 0 2 4 -4 -2 0 2 4 6 

'Symmiet S' mother. psi(O.O) Coiflet 12' mother. psi(O.O) 

Figure 7.4: 4 types of mother wavelet functions from left to right, from 
top to bottom: T h e Haar , Daubechies 4, Symmiet 8 and Co i -
flet 12 wavelet functions. 

b. These dilations and translations generate the wavelet basis function: 

< M * ) = -7=^( — ) > a,b ER, a>0 (7.1) \/a a 

The representation that is obtained by decomposing a signal using 7.1 is called a 

time-scale representation also known as wavelet representation. The normalisation 

factor \/\/a allows the equality of the Euclidean norms (lengths) of the mother 

wavelet and the basis functions | |^ | | = ||f/'a,fc[|-

Wavelet functions are localised or compactly supported. This means that they 

have finite length unlike the sinusoids used in spectral analysis which are of infinite 

length. They also exhibit irregularity, asymmetry and lack of smoothness which 

enables them to provide a better approximation of signals wi th irregularities. 

The dilations and translations of the mother wavelet constitute the Wavelet 

Transform (WT) which is defined in continuous or discrete functional space. Re

constructing the original sequence from the decomposition by applying a reverse 

process (much alike as the inverse Fourier transform), requires the mother wavelet 
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Figure 7.5: T h e Daubechies 4 mother wavelet and its scaling function (or 
father wavelet). 

ip(t) to satisfy the following admissibility condition: 

C, - f " M M ^ < oo ( 7 . 2 ) 

J-oo M 

where ip(uj) is the Fourier transform of the mother wavelet ip(t). By (7.2) is implied 

that J^ip^dt — i){uj) = 0 as should be a finite quantity. This explains why 

mother wavelet basis functions are designed to have finite energy and are compacted 

(i.e., locally concentrated) as opposed to the Fourier basis functions. The constant 

Cif, varies according to the choice of the wavelet. In the following sections we wil l 

provide a more rigourous treatment of the basic concepts of wavelet theory. 

7.2 The Continuous and Discrete Wavelet Transforms 
There are two approaches to time series analysis when using wavelets, the co

ntinuous and the discrete. In the continuous case, what is simply carried out is a 

sliding of a wavelet function across the signal in such a way that every wavelet over

laps the next to i t . This has a result the generation of a lot of redundant information. 

A way round this is to use the discrete version of the wavelet transform which con

sists of sliding a wavelet function across the series but skipping observations such 

that there is no overlap between successive wavelet positions. 

The continuous Wavelet Transform (CWT) is defined as the sum over all time 
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of the signal or function f ( t ) times the scaled (dilated i.e., stretched or compressed) 

shifted (translated) versions of the mother wavelet function ip: 

More precisely, in the case of the analysis of a function of continuous variables, 

the C W T is defined as: 

where ip(t) is the mother wavelet and a, b € R continuous variables wi th a ^ 0. 

The parameter a is called the "scale" or "dilation" parameter which determines the 

amount of stretching (expansion) or compression of the wavelet. The parameter 

"b" is the shift or "translation" parameter which dispositions the wavelet from its 

original position on the time axis along this time axis itself. When the scale is small 

(|a| <C 1), the wavelet function is highly concentrated (shrunken-compressed) wi th 

frequency contents mostly in higher frequency bands. In the opposite case (\a\ ^> 1), 

the wavelet is stretched and contains mostly low frequencies. For small scales we 

obtain thus a more detailed view of the signal (or "higher resolution") whereas for a 

larger scale we obtain a more global view of the signal. This implies that the wavelets 

are the mathematical analogue of a "magnifying glass", enabling us to "zoom-in" 

on very short-lived phenomena, i.e., singularities such as sharp shocks-breaks in 

time series wi th very short duration. Changing the b translation parameter, we 

can localise in time i.e., "move" the wavelets across the history of the signal. The 

C W T operates in all possible scales and ranges of the signal in a continuous manner. 

The resulting wavelet coefficients are functions of these two parameters. Thus, the 

init ial function-signal f ( t ) is projected onto a particular wavelet and the retrieved 

transformation belongs now not to the original functional (time) space but to a time-

oo 

/

oo 

f{t)ip (scale 
•oo 

W( scale, position) position, t)dt 
1 

oo 

(7.3) 

oo t - b f°° t - b 
/ f(W(—)dt 

J-no 

1 WJa,b) 
OO 

(7.4) 

and the inverse transform is defined as: 

1 r°° r°° 1 1 t - b 
Ht) = 7r / -2W^a,b)]-r^ )dadb 

W ./-co J-oo a V a a 

(7.5) 
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frequency domain. By repeating this process we break down the original signal into 

its components. This is called "Wavelet Decomposition". The C W T function (7.4) 

ensures that when the wavelet resembles the signal, the retrieved wavelet coefficients 

wil l be large. The inverse transformation (7.5) ensures a perfect reconstruction of 

the original signal without any loss of information. 

From our discussion above, i t is obvious that the C W T provides us wi th a large 

amount of extra information on top of that of the original signal. To reduce this we 

subsample the information of the C W T at a discrete smaller number of resolution 

levels, by selecting a specific finite set of wavelet coefficients. We critically sample 

s and u translations and dilations respectively: 

s = 2~j (7.6) 

and 

u = k2-j (7.7) 

obtaining the Discrete Wavelet Transform (DWT) resolution in time and frequency. 

The term "critical sampling" implies that we select the minimum number of coef

ficients necessary to ensure that no loss of information occurs wi th respect to the 

original signal or function. I n figure 7.6 one can see the differences between D W T 

and C W T for the step function in figure 7.11. 

7.3 Definitions 
Before we start our discussion on wavelet theory, 7 8 i t is essential that we review 

necessary terminology from functional analysis to provide the basic jargon used in 

the discussions that wi l l follow. 

A vector space is a set i.e., a collection of "things" for which scalar addition 

and multiplication are defined. A function space is a linear vector space of finite 

or infinite dimensions where functions can be defined as its vectors, and scalar 

7 8 Although we are showing a number of wavelet applications in this thesis, It is not our intention 
to provide a comprehensive or rigourous treatment of the wavelet theory and its background. 
Bibliography is already vast. An initial starting point for introductory, intermediate or advanced 
concepts should be the L u c e n t Technologies website at: http://www.wavelets.org. 

http://www.wavelets.org
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Figure 7.6: D W T of the step function in figure 7.11 with a level 9 Haar 
wavelet. 

multiplication and addition are denned. The inner product of two vectors / (£) and 

g(t) is a scalar a and is obtained by the integral: 

a=(f(t),g(t)) = / f(t)g(t)dt (7.8) 

The inner product on any vector space V is a mapping from V x V to R that is 

symmetric, bilinear and positive definite. The norm or length of a vector / is defined 

by 

11/11 = V\iU)\ (7-9) 

The definition (7.9) refers to the 2-norm is defined in finite-dimensional vector space 

but this can also be expanded to n-norms where n > 2. Two vectors wi th non-zero 

norms are called orthogonal if their inner product is zero. The space of all functions 

f ( t ) w i th a well defined integral of the square of their modulus is called L 2 ( K ) . The 

" L " stands for "Lebesque" integral and the "2" denotes the square of the modulus 

of the function. The "(R)" signifies that the independent variable of integration £eR 

(i.e., t is a real number). 
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A basis for a vector space consists of the minimum set of vectors from which 

all other vectors in that vector space can be generated through linear combinations. 

For a vector space V, a collection of vectors Ui,u2,--.eV are said to be linearly 

independent i f 

A collection of linearly independent vectors Ui,u2, ...eV" forms a basis for V i f every 

vector veV can be written as a linear combination of the Ui vectors: 

for real numbers Q C R . The vectors in a basis for V are said to span V. When a 

basis is formed by a finite number of elements ui,...,um, then V is finite-dimensional 

with dimension m. Otherwise V is said to be infinite-dimensional. 

Assuming that we represent two real-valued time series X and Y as column 

vectors: 

CiUi + c2u2 + ... = 0 iff ci = c 2 = ... = 0 (7.10) 

E v (7.11) 

X XQ, X 1; 

and 

Y = Y0, Y1 

where T ' denotes transpose, then the inner product is: 

JV-l 
( X , Y ) = X T Y = Vx ty t 

t=0 

(7.12) 

and the squared norm of any of the two vectors, say X : 

N-\ 

||x||2 = <x,x> = Tx^s x, (7.13) 
t=o 

defines the quantity <?x which is called 'energy' of the X vector. 

A very important definition is that of "orthonormality". An N x N real-valued 
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matrix A called "orthonormaV if 

1 0 0 

ATA = I N = 
0 1 0 

0 0 1 

i.e., when the transposed matrix is also the inverse. 

7.3.1 A brief history of wavelets 

Wavelets can be regarded as a relatively new approach to signal analysis. Du

ring the last decade they have become enormously popular due to their versatility 

and economy. Applications range from fingerprint recognition, image or voice analy

sis and compression, military applications and medicine to finance. The roots of the 

theory lie a century ago in the work of Weierstrass (1895) who described a family of 

functions that bear his name. These functions were constructed by superimposing 

scale copies of a given base function and were what today we term as "fractals" 

i.e., everywhere continuous but non-differentiable. Fifteen years later Alfred Haar 

(1910) constructed the first orthonormal system of compactly supported functions 7 9 

which today we call the Haar basis functions. The "compact support" property of 

Haar's wavelets ensured that these functions would exist only within a finite inte

rval and vanish outside i t . This development was to form the foundation of modern 

wavelet theory. The only drawback was that Haar's wavelets were not continuously 

differentiable which limited their applicability. Some decades later Dennis Gabor 

(1946) described a nonorthogonal basis of wavelets based on Gaussian functionals. 

He thus described the "short term" Fourier transform which today is also known 

as "Gabor" or "windowed" transform. Unti l wavelet theory was developed, Gabor 

analysis was used as a modified spectral analysis which was able to cope better wi th 

localised events. 

The term wavelet was introduced in seismology. Ricker (1940) used it to 

describe disturbances that follow sharp seismic shocks. Morlet et al., (1982) demon-
7 9 Actually the first mention of wavelets appears in an appendix of Alfred Haar's thesis 
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strated that these small waves could be modelled wi th Gabor's functions. 

7.4 Wavelets vs Spectral analysis 
The classic tool for frequency analysis of time series has been Fourier analysis 

also known as spectral analysis. This technique focuses on the frequency localisation 

of events. Fourier analysis enables us to determine the frequency of occurrence 

of a specific event that affects the prices of the time series. I t answers to "how 

often" but not to "when". The main difficulty being that each Fourier coefficient 

contains complete information on the behaviour of the series at a single frequency 

but not information on the rest of the frequencies. Secondly, one basic requirement 

of Fourier analysis is that the examined series are of infinite length and more or 

less periodic functions. In real life however, data and especially financial time series 

are almost always aperiodic and of finite length. Wavelets were designed as an 

answer to the need to localise also in time. They enable us to determine not only 

the frequency of an event but also its time stamp. In order to explain this ability 

further, we generated two figures. Figure 7.7 shows the Fourier coefficients of a 

signal of 1000 pseudo-random numbers which are normally distributed. As we can 

see all frequencies contribute the same to the dynamics of the sequence. This is 

exactly the "flat spectrum" as discussed by Granger (1968). We can thus determine 

the randomness of the data from this figure. Figure 7.8 shows the scalogram of 

the same sequence of random numbers. Although we have not discussed yet the 

scalograms in detail, we see that we can obtain information on a number of scales 

(here limited to 40) as well as in time. We can thus see the values of the coefficients in 

lower scales (higher frequencies) and in larger scales (lower frequencies). This is not 

possible in figure 7.7 as we only obtain the magnitude of coefficients by frequency. 

In the following section we briefly describe how Fourier transforms work in order 

to contrast them to the wavelet transforms and see clearly their advantages and 

limitations. 
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Figure 7.7: Fourier coefficients from spectral decomposition of a signal of 
1000 random normal observations. 
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Figure 7.8: Wavelet coefficients of the signal in Figure 7.7. 

7.4.1 Fourier Series and transforms 

Joseph Fourier in 1807, the father of frequency analysis, asserted that any 

27r-periodic function can be explained as the sum of sines and cosines. That is 

known today as Fourier or spectral analysis. To explain the requirements for Fourier 

analysis, we consider the set of square integrable functions L2(0,2n) or the space of 
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all squared 2ir periodic integrable functions which have a finite energy form: 

\f{t)\2dt < oo, tE{0,2n) (7.14) I 
This is how we define any piecewise continuous function f ( t ) which can be defined 

on the entire real number axis R(—oo, oo) as f ( t ) — f(t — 2n) for t 6 1 . Any 

function belonging to the L 2 (0 ,27r) functional space can be expressed in a series of 

sinusoidal functions (sines and cosines) i.e., expanded into a Fourier series: 

oo 

/ ( t ) = 5>etat
 (7.15) 

—oo 

where i = \/—T imaginary number. The Fourier coefficients cn are then defined as: 

1 f 2 n 

c» = - | f(t)e~mtdt (7.16) 

and (7.15) converges uniformly to f(t): 
/•2rr N 

l im / \ f ( t ) - ^ c n e i n t \ 2 d t = 0 (7.17) 
M,N—»oo / n

 1 * — ' 1 

An important point here is Parseval's theorem which states for Fourier analysis that 

the Fourier series are constrained by the following identity: 

- / \f(t)\"dt = J 2 \ c n \ 2 (7.18) 

In Fourier analysis, we can thus define an orthonormal basis in L 2 (0 ,2 i r ) by dilating 

a single exponential function e1* so that e%t = emt. Any 27r-periodic function that 

is square integrable can be represented by superimposing scaled transformations of 

the basis function elt. We should recall f rom basic trigonometry that: 

e1' = cos(i) + is in(f ) (7.19) 
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This effectively implies that we can deconstruct-reconstruct signals by using sinusoi

dal wave functions of different frequencies. We can use Fourier transforms to analyse 

a signal in the time domain in order to examine its frequency content. Using Fourier 

theory we can transfer any function from the time-domain to the frequency-domain 

(i.e., from the original functional space to Fourier functional space). Then we can 

analyse the signal for its frequency content as the Fourier coefficients (7.16) of the 

transformation represent the contribution of each sine and cosine functional at each 

frequency (i.e., the contribution of each frequency to the energy of the signal). The 

original signal can always be retrieved by an inverse Fourier transform which brings 

back the signal from Fourier functional space to the original time-domain. Much 

alike wavelet transforms, Fourier transforms are defined in a discrete or continuous 

space. The discrete Fourier transform (DFT) estimates the Fourier transform of a 

function or signal for a finite (discrete) number of sampled points which provide a 

typical representation of the original continuous function or signal. 

Fourier analysis assumes that the signal of function f ( t ) under analysis is pe

riodic and infinite. I f / (£) is aperiodic (such as most financial or economic time 

series), the superimposition of sine and cosine functions provides a poor represe

ntation. A n improvement on the original Fourier idea was the windowed Fourier 

transform (WFT, or short term Fourier transform (STFT) known also as Gabor 

analysis). The W F T basis provides a representation in time as well as in frequency. 

W i t h W F T , f ( t ) is segmented into sections according to a window which defines the 

size of these sections (hence the term "windowed") which are analysed individually. 

For uniformly sampled in time signals, in order to approximate using D F T the 

Fourier integral (7.16) to compute the Fourier coefficients, we use the Fast Fourier 

Transformation (FFT) . The FFT is a technique that has been applied widely to 

the analysis in the frequency domain of many time series. The FFT requires n l o g n 

arithmetic operations which are as we wil l see more than the Discrete Wavelet Tran

sform (DWT) but the same as the Maximum Overlap Wavelet Transform described 

later in this chapter. Both FFT and D W T require series of 2™ length (where n 

integer). The algoritmic complexity though of the D W T is much simpler than that 

of the FFT. Due to the orthonormality of the basis, both inverse FFT and D W T 
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Figure 7.9: T h e effect of different bases in time-frequency analysis 

are the inverse transform matrix of the original transformation which implies that 

both D W T and FFT can be conceptualised as rotation of the functional space to a 

different domain. Whereas the basis functions differ between FFT and D W T , both 

are localised in frequency. In Fourier analysis we obtain the power spectrum which 

shows how much power or energy is contributed by every frequency. The equivalent 

of a power spectrum in wavelet theory is the wavelet scalogram which shows how this 

energy is contributed in time but also in scale. A n example of a wavelet scalogram 

for a series of 1000 normally distributed random numbers is provided in figure 7.8. 

Another scalogram, which shows how wavelets capture the periodic nature of a sine 

wave contaminated wi th white noise, is shown in figure 7.10. The power of wavelet 

transforms over Fourier transforms to localise in time, is clearly demonstrated in 

figure 7.13 which contains the scalogram of the step function in figure 7.11. Notice 

that the break in the level of the function is clearly identified by the scalogram 

(figure 7.13) whereas such an information is not obtained by the inspection of the 

Fourier coefficients of the same function given in figure 7.12. 

Scalograms provide us wi th a visualisation of the time frequency localisation 

of the wavelet transform. Each detail coefficient is plotted as a rectangle (cell) 

filled with a colour which represents the magnitude of the coefficients. The exact 
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Figure 7.11: A step function with a break at observation 500. 
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Figure 7.12: The Fourier coefficients of the step function in figure 7.11. 
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Figure 7.13: The scalogram (using a Haar wavelet transform) of the step 
function in figure 7.11. The break at 500 is very clearly 
indicated by the wavelet coefficients. 
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location and size of each cell refers to the time interval and the frequency range of 

the coefficient. After careful inspection of a scalogram, i t becomes apparent that 

low level coefficients are wider and shorter, implying a wide localisation in time but 

narrower localisation in frequency. The higher the level of a coefficient the thinner 

and taller the cell as we have a better localisation in frequencies (allowing for larger 

frequency ranges) but this localisation is provided in a smaller time range than the 

previous levels. The heights of the cells grow at a power of 2 as the levels increase. 

An interesting comparison between the F F T periodogram and the wavelet 

scalogram is displayed in figures (7.14) and (7.15). Although one can easily see 

the relation between the white noise process and the Brownian mot ion 8 0 in the 

spectrograms, the visual inspection of the respective periodograms does not allow us 

to conclude the same. We can clearly see that the Brownian motion is nonstationary 

in the periodogram of figure (7.15) wi th the low frequencies indicating a dr i f t or a 

trend. In the case of the scalograms in figure (7.14) we can also see that the high 

frequency structure of the two series is almost identical which is something the 

periodogram does not reveal. 

Apart f rom the different nature and usefulness of spectrums and scalograms, 

there are other differences between wavelet and Fourier transforms which make the 

former more elegant for time series analysis of signals of a specific nature. Wavelet 

functions are localised not only in frequency but also in time. Fourier functionals 

provide only frequency localisation. In order to demonstrate this dissimilarity, figure 

7.9 is provided where i t is shown that wavelet basis varies allowing for a multitude 

of different windows which capture lower, medium and higher frequencies more 

effectively than other methods. I n this way, sharp discontinuities, shifts or breaks 

can be captured by short length basis whereas long basis functions provide the time 

identity of these events. Wavelet transforms are characterised by an infinity of basis 

functions which are translations and dilations of the init ial "mother" wavelet. This 

is exactly what enables one to capture "structure" more efficiently choosing wavelet 

transforms over any other transform. What we actually achieve through wavelet 

functions is a series of "correlations" of these functions wi th every single part of the 
8 0 Generated as a cumulative sum of the white noise. 
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Figure 7.14: T h e scalogram of a Whi te noise process compared to that of 
the related Brownian motion. Although the low frequency 
wavelet coefficients seem to be different as the Brownian 
motion is exhibiting trends, it is easy to see at the top of 
the scalograms that they both have almost identical high 
frequency content. 

time series. By shrinking or expanding the wavelet and rolling i t on the series we 

can obtain high correlations where the wavelet resembles the structure of the series 

and low where this structure is different. Moreover, these correlations are obtained 

over all possible scales. This is clearly depicted in the scalogram which shows areas 

of high and low "correlations" i.e., areas where the series dynamics at a certain scale 

can be approximated by the wavelet function. 

A careful selection of the mother wavelet is necessary in order to obtain accu

rate results. As we shall see, one chooses wavelets that "look" like the series investi-
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Figure 7.15: T h e periodograms of the Whi te noise and Brownian seque
nces in figure (7.14. 

gated. Smooth wavelets can capture smoother cycles while highly irregular wavelets 

can detect localised sharp shocks in the sequences. In the next chapter we wil l be 

showing how continuous wavelet transforms can provide us wi th very informative 

scalograms. We wi l l be using these scalograms not only to identify specific historic 

events in the history of the data but also self similar structures in various scales that 

could imply the presence of deterministic dynamics. 

7.5 Criteria and Properties of Wavelet Functions 
Wavelets exhibit a number of useful properties as discussed below. As already 

discussed, selecting a particular wavelet function over another implies a tradeoff 

between these different properties. 

1. Linearity 

A wavelet transform W [ / ( f ) ] of any function f ( t ) for any constant a satisfies 

the linearity condition: 

W[af(t)} = aW[f(t)} (7.20) 



162 

And this can be generalised for more than one functions: 

W[af(t) + bg(t)\ = aW[f(t)} + bW[f(t)\ (7.21) 

2. Smoothness. 

Although some particular wavelets are not smooth functions (such as the Haar) 

they do generally exhibit smoothness which enables them to efficiently capture 

the characteristics of signal structures. Smoothness is measured by the number 

of derivatives that exist for each wavelet. For example, the discontinuity of 

the Haar wavelet function implies that i t is not differentiable. There are also 

some wavelets that although continuous, are not differentiable everywhere. 

3. Invariance 

Invariance to translations is what allows the commutativity of differentiation 

of any wavelet transform: 

W[f(t-b0)] = W(a,b-b0) (7.22) 

Invariance to dilations allows to determine whether the function / exhibits 

singularities: 

W \ S ^ = V W ^ b (7.23) 

4. Temporal or Spatial Localisation. 

As already mentioned, wavelets can localise in time-space and as well as in 

frequency enabling the detection of both the time and frequency signatures 

of singularities wi thin sequences. The compact support is one reason for this 

characteristic. We obtain very compact wavelets that can produce very good 

localisation in time-time. This property is in general inversely related to the 

previous one. Smoother wavelets enable wider support widths and improved 

localisation. 

5. Frequency Localisation 
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Again, in this case as in the time-space localisation property, smoothness is a 

determining factor. Smoother wavelets allow better frequency localisation. 

6. Zero mean and Vanishing Moments 

The zero mean of wavelets is implied by 

In most applications i t is usually necessary to have in addition the first M 

moments zero. Higher vanishing moments enable wavelets to improve their 

approximation of higher degree polynomial structures. Smoothness is also 

closely related to this property. The following condition is satisfied by every 

mother wavelet t f ) wi th M vanishing moments: 

Such wavelets are referred to as mth-order wavelets. The conclusion here is 

that wavelets possessing many zero moments enable one to ignore most regular 

polynomial components of signals and actually capture more efficiently small-

scale fluctuations or higher-order features. 

7. Symmetry 

Symmetry follows form the definition that the cf) and ip functions are sym

metric. This property also allows wavelet coefficients to be stable and not to 

"drif t" relative to the signal analysed avoiding thus phase-shifts. The family of 

orthogonal wavelet functions which have compact support (with the exception 

of the Haar family) are not symmetric. Biorthogonal wavelets can be either 

symmetric or anti-symmetric. 

8. Orthogonality 

Although non-orthogonal wavelet functions (e.g. the biorthogonal) have been 

constructed, the orthogonality principle is a central characteristic for most of 

the wavelets applied in practice. 

oo 

/

oo 
if)(t)dt 

•no 
0 

oo 

(7.24) 

J tmiP(t)dt 0 m = 0 , l , . . . , M - 1 (7.25) 
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9. Compactness 

Wavelet functions are denned within a closed numerical set and their value is 

zero for any number outside that set. 

10. Boundedness 

Boundedness is shown by 

J \4>(t)\2dt < oo (7.26) 
and can be written also as 

\iP(t)\ < ( l + | * | n ) _ 1 or < ( l + l f c - w o p ) - 1 (7.27) 

where u>0 is the dominant wavelet frequency and n is an as large as possible 

integer. 

11. Basis self-similarity 

A l l wavelets of a given family ipa,b{t) have the same number of oscillations as the 

basis mother wavelet ip(t) as they are dilated and translated (i.e., transformed) 

versions of i t . This is why wavelets are exceptionally useful for signals of self-

similar or fractal structure. 

7.6 Multiresolution Analysis 
The multiresolution analysis (MRA) is an important concept in wavelet th

eory which makes wavelet functions extremely attractive for signal analysis. I t is 

regarded as the core of wavelet analysis. When a series is decomposed M R A allows 

us to obtain information on various levels of frequency and time detail. Through 

M R A the signal's (or function's) resolution is adapted to a specific level of detail 

analysis, allowing the examination to "zoom" into the particular characteristics of 

its structure. The basic idea behind M R A is the decomposition of the whole fu 

nctional space L 2 ( R ) into orthogonal projections i.e., subspaces so as each of those 

subspaces to contain a part of the original signal (or function). The subspaces pro

vide us wi th the finer details of the original signal (or function) at 2j (for any integer 
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j) total number of scales At' = 1 , 1 / 2 , ( 1 / 2 ) - 7 which range from lower to higher 

frequencies. 

The original idea belongs to Mallat (1989) which had in mind a "scale-invariant" 

representation of the signal (referring actually to images from image analysis i.e., 

2-dimensional signals). M R A works like a magnifying glass, providing information 

on finer details of the signal but at the same time allowing for a "zooming out" 

to provide a (more) complete view of the overall structure. To understand M R A 

even better, one should regard wavelet transforms as a kind of a band-pass filter 

where larger scales imply lower frequencies and small bandwidth. While computing 

the wavelet transform of a signal progressing our computations from lower scales to 

larger scales, we can stop at each stage and compute the inverse wavelet transform. 

As we do that we are actually using the remaining coefficients for that stage while 

setting the smaller scale coefficients to zero. We thus obtain and "interim" version 

of the series i.e., a subset of the characteristics of the signal, as we build a seque

nce of smooth (low-pass), detailed (band-pass) or rough (high-pass) versions of the 

original data. Thus, by starting from the lowest resolution, we can add details to 

create the higher resolution versions of the original signal ending wi th a complete 

synthesis of the signal at the highest resolution. 

The formal definition of M R A requires the definition of a function space (se

quence of closed subspaces) Vj C L2(M), j G Z, such that: 

Vj = {f e L 2 ( M ) : / is piecewise constant on [k2~j, (k + l)2~j],k G Z } (7.28) 

This sequence (7.28) of space represents an array of subspaces on increasing reso

lution as j increases. Each subscpace Vj defined in (7.28), consists of piecewise 

constant functions over intervals of M which are precisely two times the length of 

the Vj-\. This sequence as defined above, exhibits the following properties: 

1. • • • C V3 C V2 C Vl C V0 C V-i C • • • 

<— coarser finer —> 

As j increases, the space Vj becomes more and more like the original function 

space. 
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Figure 7.16: Nested subspaces. 

2. x(-) € Vo if and only if Xo,fc(-) G Vo also, where x0^{t) = x(t — k) for k G Z 

3. :r(-) G Vo if and only if Xj>0(-) G Vj also, where £ j ,o(£) = x(^j)/y/2j for j £ Z 

4. The following two technical conditions hold: 

(here '0' refers to function that is 0 for all t) there exists a scaling function 

(/>(•) G Vo such that {0o,fc(-) : k G Z } forms an orthonormal basis for Vo, 

where <fo,fc(*) = <M^ — and V} called approximation space for scale \j — 2 J . 

Property (4) is also known as "completeness". 

7.7 Wavelet Regression 
Assume the following regression model: 

where ~ N(0,1), n — V and Xi = i/n. In this section we wil l show the steps for 

estimating / using wavelet functions. We represent f ( x ) as: 

\ J V j = L2(R) and f ] V , = {0} 

Yi = f ( x i ) + vti (7.29) 

2 J O - 1 oo V-\ 
(7.30) 

k=0 j=jo k=0 
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where 

aj0,k = J f{x)(j)j0ik{x)dx and bjtk = J f(x)tpjtk(x)dx (7.31) 

We define the empirical scaling coefficients (ESC) and the empirical wavelet coeffi

cients (EWC) St and Djk respectively as: 

Sk = -y= ^2<l>jo,k(xi)Yi a n d Di,k = —j= ̂ 2,i>i,k{x)dx (7.32) 
V i V i 

Intuitively, the following conditions hold for ESC and EWC: 

* i 

* i 
\/TI f 

\f^a3o,k (7.33) 

In a similar way we can show that E(Djik) ~ \/n~Pj,k- We construct vector Z which 

contains all the empirical coefficients, where Z\ — Si, Z2 — S2,---,Zn = Dj_12j-i-i-

Defining W and n x n matrix such that the first row is the first father wavelet 

(scaling function) evaluated at x i , x n , the second row is the second father wavelet 

evaluated at the same points etc. etc. adding all the basis elements one row at a 

time. Then: 

<Ajo,OOEI) • • • <Pj0 

,o(xn) 

1 

y/n 

<t>j0,2io-i(Xl) 

V>jo,o(Zl) 

•0.7-1,0 fal) 

(t>j0,2m-i(Xn) 

^3ofl(Xn) 

1pJ-lfi{Xn) 

ll>J-l,2J-i-l(xi) • • • 1pJ-l,2J-i-l(xn) 

(7.34) 
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and Z can be written as: 

Z = W Y (7.35) 

This matrix of the empirical wavelet coefficients Z need not be calculated as the 

product in (7.35). In practice, we approximate the highest level of scaling coefficients 

aj-i,k by Yk since, 

E{Yk) = f(k/n) » J f(x)<f>j-lik(x)dx = aj_hk (7.36) 

A cascade algorithm is applied to obtain the rest of the coefficients and then we 

multiply this by l/y/n to obtain Z. We estimate the scaling coefficients as: 

ah,k = ~~/^Zio,k (7.37) 

For the detail coefficients (or mother wavelets) we obtain (3j^k as a "shrunken" version 

of the Zjtk. A methodology of "non-linear shrinkage" is used here called "thresh

olding". A non-linear approach is preferred in this case as i t allows for a better 

detection of structural changes in the function or sequence. Thresholding generates 

a sparse vector of wavelet coefficients where most of them are 0 except in the case 

of the ones that correspond to the jumps or breaks in the continuity of the function 

or the sequence.81 We estimate a as: 

- = med ian( |Z j - 1 | f c | : k = 0,.... 2J~l - 1 
a 0.6745 1 ' ' 

We then insert the computed estimates in formula (7.30) and obtain the estimation 

/ where: 

/ = W T Z (7.39) 

and 

Z T = ^ « o , - , ^ - i , 2 ^ i - i ) (7.40) 

8 1 More analysis is provided on this in the section of "thresholding" in this chapter 
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7.8 Wavelet Shrinkage-Thresholding 
The popularity of wavelets in nonparametric estimation of functions is due to 

the principle of wavelet shrinkage.82 This refers to removing the denoising of signals 

by "shrinking" (reducing) the below some specific "threshold" wavelet coefficients 

to zero. In order to demonstrate how this works, we assume an additive i . i .d. noise 

process which contaminates a discrete sequence fi producing the series j / j which 

is the data under examination: 

Vi = fi + o-u (7.41) 

where Cj ~ N(0,1). Instead of assuming a certain parametric structure of the data 

generating process, we follow a "nonparametric regression" approach: 

1. The wavelet transform is applied to j / j . Function / must be approximated 

(estimated) as accurately as possible which means that the estimation / should 

be determined with a small mean square error which implies that the L2 risk 

function 

R ( f > = \ E E t i - ( 7 - 4 2 ) 
t=i 

should be small. 

2. Some wavelet coefficients are reduced towards zero (shrink). 

3. The inverse wavelet transform produces then a "smoothed" version of yt. 

This idea was refined by Donoho and Johnstone (1994, 1995) and Donoho (1995) 

and augmented by Nason (1995). Wavelet shrinkage as a smoothing technique is 

becoming extremely popular in sciences such as seismology, medicine, physics and 

statistics among others. The ability of wavelets to represent a signal in wavelet space 

with a few coefficients and successfully capture localised events is what allowed the 

"shrinkage" concept to be developed. The most popular shrinkage method intro

duced by Donoho and Johnstone, is called " Waveshrink" and focuses around the 
8 2 I n this section, in order to describe the methodology with accuracy, we follow closely Bruce 

and Gao (1996). 
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estimation of the shrinkage coefficients. This estimation is based on three principles 

(Bruce and Gao, 1996) which also define the steps of the estimation procedure in 

the same order: 

1. The most important features of any signal can be represented by just a few 

coefficients. 

2. Noise affects all wavelet coefficients (at all scales). As i t has been already 

shown, using matrix notation, a wavelet decomposition comprises of the mul

tiplication (projection) of the signal vector y in (7.41) wi th the wavelet matrix 

w producing the transformation W — W y which can also be denoted as 

w = W f + Wae (7.43) 

due to the orthonormality of the transformation in (7.43). Hence Were is i . i .d. 

normal noise wi th variance a2 assigned to every component of W i.e., noise is 

spread over all the wavelet coefficients. 

3. By "shrinking" specific wavelet coefficients to zero (usually setting the smal

ler ones to zero), noise can be eliminated while the important structure is 

preserved. This principle may be understood better by the explanation in 

Hubbard (1994). What actually is achieved by wavelet shrinkage i t to project 

the function or signal onto a functional (wavelet) space where noise and true 

signal are disentangled, thus retrieving through the inverse wavelet transform a 

"clean" sequence. What is of importance is to locate the subset of the wavelet 

coefficients that capture the largest energy portion of the original "unclean" 

signal. 

Under the Waveshrink approach Donoho and Johnstone propose to wavelet-

decompose / , threshold the coefficients and then reconstruct the function from the 

thresholded coefficients, producing the estimation / . There are a number of diffe

rent thresholding rules and functions available which lead to different amounts of 

smoothing according to the wavelet functions used in the decompositions and the 

signal's overall structure. 
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7.8.1 Thresholding functions and rules 

In this section we present, following very closely Bruce and Gao (1996), the 

most popular thresholding functions or "policies" available in wavelet nonparametric 

denoising of signals: 

Threshold policies 

1. H a r d thresholding 

Under the hard thresholding policy, we only keep the coefficients wi th absolute 

values above a fixed threshold level A > 0. 

The hard thresholding function is defined as: 

Bruce and Gao (1996) 8 3 have shown that hard shrinking leads to larger error 

variance because of the discontinuity of the shrinkage function. 

2. Soft thresholding 

Soft thresholding shrinks all coefficients towards 0: 

Bruce and Gao (1996) again showed that this policy tends to have larger bias 

as all large coefficients are shanked towards zero by an amount A. These 

characteristics of soft and hard thresholding have lead to the development of 

the next policy: 

3. Semi-soft Thresholding 

The shrinkage function for the semi-soft policy is defined as: 
3See also Gao and Bruce (1997). 

if K f c | < A 0 hard d 
d otherwise 

(7.44) 

soft d sign(rf j , f c )( |d j ) f c | - A ) + (7.45) 
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0, if \x\ < Aj 

d X l M = \ s i g n ( ^ , f c ) A 2 ( ^ ; A l ) , i f X, < \dj,k\ < A 2 (7.46) 

dj,k if \dj,k\ > A 2 

For values of d^k near the lower threshold A 1 ; the semisoft policy acts like the 

soft policy whereas for values of d j t k above the upper threshold A 2 , d \ l t \ 2 = 

d j i k = < ^ r d i.e., equivalent to the hard policy. From the above definition 

(7.46) i t follows that we can define hard and soft policies as l imiting cases of 

the semi-soft function for Xi = A 2 and A 2 = co respectively. 

4. Quantile thresholding 

This policy focuses on shrinking only a fixed percentage of the smallest wavelet 

coefficients, say keeping only 10% or the top 100 coefficients on a signal of 1000 

observations: 

^quantile = I °> i f d j , k < 1 ^ ^ 

3 ' 1 dj^k, otherwise 

where q is the q-t\\ quantile, arbitrarily set. 

5. Universal thresholding 

As proposed by Donoho and Johnstone (1994), where threshold 

A = (7.48) 
y n 

is imposed on a transformed series of t/i/n, where n is the length of the series 

and a is the scale of the noise on a standard deviation scale. We can accom

modate both hard or soft thresholding approach wi th this universal threshold 

A. 

Research in wavelet analysis has provided a number of different rules which 

can be combined with the threshold functions-policies in order to obtain various 

degrees of smoothing. The most basic ones that we also apply in this thesis are the 

following: 
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(a) lb) (c) 

Figure 7.17: Threshold policies from left to right: hard (a), soft (b) and 
the semi-soft (c) shrinkage. 

Threshold Rules: 

Researchers in wavelets are constantly exploring the possibilities of new thre

shold policies and rules. Here we present the most popular, namely the universal, 

minimax, top and adapt. 

1. T h e Universal rule The universal threshold is defined as Xj = y/2 log(n), 

where n is the sample size. This method yields the largest thresholds. In tu i t i 

vely, applying the universal scheme wil l result in a high degree of smoothness. 

2. T h e Min imax rule The threshold Xj is determined via the minimax rule 

such as to minimise a theoretical upper bound on the asymptotic risk. This 

wi l l always be smaller than the universal and thus provide less smoothing. 

Donoho and Johnstone (1994) and Bruce and Gao (1996) have computed the 

minimax threshold values for a range of sample sizes both for the soft and 

hard thresholding policies. 

3. T h e Top rule Instead of using statistical theory to determine the level of the 

threshold, using the top rule one decides for the number of coefficients that 

wi l l be reduced to zero. This is equivalent to hard shrinkage with threshold 

A = \dj \ where j corresponds to the 1 - ^ o p t h quantile of the wavelet coefficients. 

4. T h e Adapt rule Donoho and Johnstone (1995) provide a threshold rule which 

adapts on the signal at every multiresolution level. The basis of this approach 

is the minimisation of the Stein's Unbiased Risk Estimator, popularly know as 

"SURE" at each resolution level. 
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7.9 A simple wavelet: The Haar 
The simplest way to demonstrate how wavelet functions work would be to use 

the Haar wavelet. The Haar is regarded as the most basic and simple type of wavelet. 

W i t h no loss of generality, we can concentrate on the discrete case where the Haar 

roots lie in the projection operation called the Haar transform. This transform may 

be regarded as a prototype for all other wavelet transforms. Haar (1910) showed 

that certain square-like wave functions can be translated and scaled to create a basis 

that spans the L2 set. I t was only years later that this has historically identified as 

a wavelet system. 

The Haar transform is an easy way to demonstrate how wavelets work. One 

prerequisite for most wavelet analysis approach is that the length of the one-dimensional 

signal analysed is of an integer power of 2 i.e., 2 J for some integer j.M Let us repre

sent all one-dimensional signals of length 2-? as vectors of the same length. These 

vectors wi l l belong to a vector space say VK A basis can be defined for this space. 

The basis functions for the vector spaces are called scaling functions and are 

usually represented by the letter <f> in wavelet literature. A simple basis for the 

Vi vector space would be a set of scaled and translated compactly supported box 

functions: 

Mix) = (p(2jx - i ) i = 0 , 2 j - 1 (7.49) 

where 
I 1 for 0 < x < 1 , 

<j>(x)={ ~ ~ (7.50) 
I 0 otherwise 

The function <f> 7.50 is called the Haar father wavelet or Haar scaling function. 

To demonstrate the functionality of the Haar transform better, let us consider 

two numbers a and b. We use a simple linear transform that replaces these numbers 

by their average and their difference: 

H = — - (7.51) 

84Modifications of this rule exists as we shall see, which allow sequences of different lengths of 
those of power of 2 to be regarded for analysis. 
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and 

d = b-a (7.52) 

There is no loss of information in the above transforms as both a and b numbers 

can be immediately recovered as: 

a = f i - ^ (7.53) 

and 

b = II + \ (7.54) 

What has been demonstrated here is the basic idea behind the Haar wavelet tran

sform. Assume a series xn of 2 n observations xny. 

xn = {xn,k | 0 < k < 2n} (7.55) 

To each pair of observations a = x^k and b = X2fc+i the average and difference 

transformations (7.51) and (7.52) above are applied. There wi l l be 2n~1 a and b 

numbers pairs for k = 0. . .2" - 1 from the two transformations: 

A*n-i,fc = y ~ ('-56) 

and 

dn-l,k = %n,2k+l — %n,2k (7-57) 

In that way, the xn original series are split into two parts, the nn-\ (the average 

transformations /xn-i,fe) and dn-i (the difference transformations dn_i,fc) of 2n~l 

observations each. Using the averages ^n-\%k and differences dn-itk, one can retrieve 

the original signal xn. The nn-i,k averages are a more "coarse" representation of 

the xn data i.e., one can say that the transformed series is of "less detail" than the 

original one. The amount of detail lost due to the transformation depends highly 

on the nature of the original series. I f these are fairly smooth, the transformation 

resembles closely the original information and the finer details of the series can be 

represented effectively. The dn-i,k differences are the information needed to retrieve 
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the original signal. 

The same transformation steps (7.56) and (7.57) above can be applied again 

on the transformed series % n - \ generating two more sequences of averages / i n _ 2 and 

differences d n _ 2 and obtaining an even more coarse series xn-i of length 2™~2. This 

can be repeated n times in total. A t the end we wi l l have retrieved n vectors of 

details wi th 0 < i < n. Each of these vectors wil l constitute of T coefficients. 

Finally we wil l have retrieved a vector XQ which wi l l be of the most coarse scale and 

wil l only contain one value, XQ,O which wi l l be the average of all the samples of the 

original series. Again, by using the inverse transform we can regenerate the original 

series, starting from XQ and working back using the di elements. The total number 

of wavelet coefficients is: 
n - l 

1 + ^ 2 ^ = 2" (7.58) 

i = 0 

which is exactly the length of the series xn. The Haar transform is equivalent to the 

application of a N x N square matrix of power of two dimension (N = 2") to the 

series xn. The computational cost is proportional to the length of the series but much 

less than that of a Fourier transformation. The operations required for the latter are 

of the order n log n whereas the wavelet transform only requires n 2 transformations 

due to the hierarchical structure of the transform. This fact produces remarkable 

economy in computational time and is one of the features that make wavelets so 

attractive solutions to filtering signals. 

7.10 The Maximal Overlap Discrete Wavelet 

Transform 
The maximal overlap discrete wavelet transform (MODWT) is also known as 

the undecimated DWT, shift invariant DWT or non-decimated DWT. M O D W T is 

regarded as a modification on the D W T and has five important properties which 

distinguish i t from the latter: 

1. The Partial D W T requires a power of two sample size i.e., for any j integer, 

the sample size must be j2. M O D W T can be applied to signals of any size. 

The drawback is that i t requires more than O(N) computations of the D W T 
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and specifically 0 ( n l o g 2 n) multiplications which is as many as the fast Fourier 

transform (FFT) . 

2. The M O D W T can be utilised for multiresolution analysis. Shifting circularly 

the signal by any amount results into shifting the detail and smoothness coef

ficients by the same amount. 

3. The M O D W T makes it easier to align the structural features of the multire

solution analysis wi th the original signal. 

4. The M O D W T wavelet variance estimator is asymptotically more efficient than 

the one that is based on the D W T . 

5. the MODWT-based spectra are invariant to circular shifts of the signal. 

We provide here a brief introduction of the mathematical background for the 

M O D W T following the framework of Percival and Walden (1999). For a thorough 

discussion of the process one may refer to Percival and Mofjeld (1997), Percival 

and Walden (1999) or Gengay et al, (2002). We define W = VVX the J t h order 

partial M O D W T which comprises of J + 1 iV-length vectors of wavelet coefficients 

W 1 ) . . . , W J - , V j : 

W = [ W 1 W 2 . . . W j V j ] T (7.59) 

Every vector W j is related to Xj = 2 J _ 1 size changes of length and the vector V j is 

associated wi th averages of length Xj and higher. D W T can still be obtained from 

M O D W T for sequences of N = 2 J length wi th subsampling and rescaling. In the 

same fashion of the D W T matrix W , the M O D W T matrix W is constructed from 

a total of J + 1 N x N submatrices and is expressed as 

W = [W1,W2,...,WJ,Vj]T (7.60) 

where W\ is N x iV matrix: 
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h0 0 0 •• • 0 0 0 h3 h2 hi 

hi hQ 0 •• • 0 0 0 0 hs h2 

h2 hi ho • • • 0 0 0 0 0 

0 0 0 •• • hs h2 hi ho 0 0 

0 0 0 •• • 0 h3 h2 hi h0 
0 

0 0 0 •• • 0 0 hz h2 hi h0 

(7.61) 

The rows of h i = h i / \ / 2 are the rescaled wavelet filter coefficients which we circu

larly shift by m— 1 for m = 1 , T V . Generalising this we can show that for rescaled 

wavelet coefficients hj = h j / 2 J / ' 2 and scaling filter coefficients g j = g j / 2 J / 2 , we can 

construct the remaining sub-matrices in (7.60) in a similar way as in (7.61). That 

leaves matrix V j to be defined. This has the same structure as W ; but circularly 

shifted scaling coefficients are used instead of the wavelet coefficients. 

Just as in the D W T , the M O D W T is an energy preserving transform and the 

total energy of any time series X can be partitioned by the M O D W T scaling and 

wavelet coefficients: 
j 

| | X | | 2 = ^ H W j - f + l l V j I I 2 (7.62) 

This allows for the formulation of the M O D W T wavelet variance, covariance and 

correlation. 

7.11 Conclusions 
In this chapter we presented the basic outline of the wavelet analysis framew

ork. Understandably, one can not cover such an issue in a few pages. Wavelet theory 

is a subject for a Ph.D. thesis alone. The presentation here though has clearly indi

cated that wavelet filters can be used in conjunction wi th financial data, to provide 

interesting answers. The highly volatile and intermittent character of financial time 

series, their possible chaotic structure and their irregular periodicities, makes these 

sequences ideal candidates for wavelet analysis. 

The fact that wavelet transforms have clear advantages over Fourier tran-
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sforms, does not necessarily invalidate the latter. I t is clear from our discussion so 

far that for financial time series wavelets seem to be more appropriate. These series 

are of limited length, they exhibit volatility clustering and violent localised shocks. 

Hence Fourier analysis is not very helpful as i t wi l l misinterpret singularities such 

as market crashes as periodic artifacts. Spectral analysis is still helpful though, 

especially for long periodic signals which could be obtained for example from high 

frequency data sets such as tick by tick financial data. Of course we could stil l 

apply wavelet transforms and obtain even more information. The conclusion is that 

wavelets do not render other techniques useless but can be very effective when used 

on financial data. 

In the next chapter we wil l be using wavelets to produce qualitative informa

tion for financial time series and their volatilities. We wi l l be using the continuous 

transforms to generate scalograms which indicate any periodic or non-periodic stru

cture and can also reveal self similarity, chaotic or stochastic characteristics for the 

time series examined. Following this investigation we wi l l be applying the discrete 

wavelet transform to decompose financial time series in various resolutions and re

cover their high, medium and low frequency structures. We wil l also be using the 

same approach to denoise these series and demonstrate how wavelet smoothing can 

provide residual sequences remarkably white wi th very li t t le computational effort. 

We wi l l be using this approach on 30 years of daily data for the FTSE A L L SH

ARE index closing prices and logarithmic returns. Combining the methodologies 

and theory discussed in chapters 3-6 we demonstrate that wavelets can amplify the 

nonlinear characteristics of the series by filtering out noise efficiently. The recur

rence plots reveal a very strong deterministic chaotic nature for the FTSE returns 

and the calculation of certain invariant measures confirms these results. 



C H A P T E R 8 
Time-frequency analysis 

8.1 Introduction 
In the previous chapter we have provided a brief introduction on the most 

basic aspects of wavelet theory. In this chapter we are using wavelet transforms 

exploring their applicability in describing financial time series.85 Our intention is 

to demonstrate that a wavelet semiparametric (and boldly atheoretic) approach can 

provide more insight on the structure and behaviour of financial time series. Our 

main interest is to show that by using wavelets we do not only capture salient 

features and provide better approximations for financial time series but we also 

reveal details of nonlinear structure and recurrent patterns in various scales. 

The first part of this chapter is dedicated to the demonstration of continuous 

wavelet transforms (CWT) on the daily closing prices of the FTSE A L L SHARE 

(FTSE) index for the last 30 years. We also apply the C W T on the continuously 

compounded returns (or logarithmic) returns of the series and the realised volatility 

of the FTSE. We run the C W T on the above data sets using different wavelet fu

nctions and cross-examine the results. Our main purpose is to provide a cartography 

through wavelet transforms of the dynamics of the series under examination for va

rious different time scales and investigate any localised events such as stock market 

crashes etc. etc. We also investigate seasonal or self similar recurrent structures 

that may appear in the wavelet scalograms as a result of the time-scale analysis. 

As a second application of wavelet theory in the analysis of financial time 

series we examine the same daily data as above using the discrete wavelet transform 

(DWT) . We provide a multiresolution analysis (MRA) approach and explore the 

dynamics of the series in various scales-frequencies via the D W T . We then use 
8 5 Our aim is not to provide an exhaustive demonstration of the applicability of wavelet theory on 

the analysis of financial time series. Such an endeavour would require time and space that would 
take us beyond the limits of this thesis. I t is fairly self-explanatory that the wavelet approach 
potential in signal analysis is enormous. Here we demonstrate some key applications which are in 
accordance with previous research and provide a sane basis for critical evaluation of past findings 
and incentive for future advances. 
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as a second step the Waveshrink algorithm, as described in the previous chapter, 

to denoise the series. We use wavelets to reduce the amount of noise in a non-

parametric fashion. We compare the fit ted values and residuals wi th the original 

sequences and check for normality and stationarity. We furthermore examine the 

fits and residuals for traces of deterministic recurrences and structures using the 

methodologies described in chapters 4 to 6. We investigate mainly by inspecting 

and comparing the recurrence plots (RP) of the sequences and by calculating chaotic 

invariant statistics. 

8.1.1 Previous research 

Wavelets are becoming more popular day by day as the academic community 

appreciates their ability to detect localised events as well as periodic structures. Sch

leicher (2002) provides an interesting introduction to the general subject. One of the 

first applications was by Greenblatt (1994) who used wavelets for outlier detection. 

Jensen (1994) uses wavelets to estimate fractionally integrated processes. He sh

ows an alternative way to estimate the fractional differencing parameter and shows 

the advantages of wavelets over the existing method of Geweke and Porter-Hudak 

(1983). Jensen has developed a consistent OLS estimate of a fractionally integrated 

processes' differencing parameter, using continuous wavelet theory as constructed 

from smoothing kernels. He derived the asymptotic biasness and variance of the 

OLS estimate and tested the consistency of the estimate wi th a number of Monte 

Carlo experiments. Jensen (1999b) continues his long memory related research ap

plying compactly supported wavelets to the ARFIMA(p , d, q) long-memory process 

to develop an alternative maximum likelihood estimator of the differencing parame

ter d. He shows that this is invariant to the unknown mean of the process and the 

model specification as well as the noise contaminating the data. Again, he finds the 

wavelet based maximum likelihood estimator to be robust to model specification 

and as such he proposes i t as an attractive alternative semiparametric estimator to 

the Geweke and Porter-Hudak (1983) one. Olmeda and Fernandez (2000), provide 

a counter-balance by drawing our attention to the pitfalls of using wavelet filte

ring for denoising and forecasting purposes. Capobianco has also a series of papers 
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on the field (see Capobianco 1997,a 1997b, 1999a, 1999b and 1999c). Capobianco 

(2001) uses wavelets for describing financial returns processes. He studies the Nikkei 

stock index in high frequency and shows results about modelling wi th GARCH when 

the data have been preprocessed by wavelet transforms. He demonstrates that one 

can obtain better volatility prediction power for one step ahead forecasts implying 

that latent volatility features can be detected more efficiently. Capobianco (2002) 

uses multiresolution analysis to approximate volatility processes. He focuses on 

intra-day dynamics and again shows how wavelet transforms can improve our view 

of volatility dynamics provided by a GARCH specification or wavelet pre-processed 

sequences. These findings are consistent wi th his earlier work (see Capobianco 1997a 

and 1997b). 

In this chapter we follow a slightly different approach. We do not concentrate 

on long memory specifications and dr i f t parameters for high and ultra-high freque

ncy data. We rather use a combined approach of wavelet filtering and chaos theory 

in order to establish whether our series are governed by deterministic dynamics or 

if these dynamics are partially deterministic and contaminated by stochastic rando

mness. We use wavelets in a continuous and discrete multiresolution framework to 

show their overall functionality. We then use discrete transforms to denoise financial 

returns. We establish the whiteness of the residuals and continue by applying an 

array of tests for nonlinearity and determinism on the filtered series. To this extent, 

our approach is very novel. 

8.1.2 Datasets and their descriptive statistics 

The dataset utilised in this chapter comprises of 8 192 8 6 daily observations 

of the FTSE index closing prices. We decompose this set via both discrete and 

continuous wavelet transforms. In the same fashion we decompose the continuously 

compounded (logarithmic) returns of the FTSE and the realised volatility (that 

being calculated as the squared returns sequences). A l l daily sequences start form 

the 10th of July 1970 and end the 30th of November 2001. A l l daily closing prices 

8 6 Although the Maximum Overlap DWT (see MODWT in previous chapter) approach allows 
us to examine time series of any length and not just of a power of 2, we have selected this sample 
size in order to compare MODWT with other discrete wavelet transforms that require sequences 
of length n = V'. 
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Figure 8.1: T i m e series plot of the data and their corresponding distri
butions 

of the FTSE have been downloaded from Datastream. 

In table 8.1 we display the descriptive statistics for the FTSE index, its loga

rithmic returns and the realised volatility. From this table and the inspection of the 

relevant distribution histograms in figure 8.1 we can deduce that the distribution of 

the closing prices of the FTSE index is positively skewed whereas the corresponding 

returns are leptokurtic and the realised volatility positively skewed as well. These 

results are according to the stylised facts for this kind of data (see Cont, 2001). The 

Jarque-Bera (see Bera and Jarque, 1981) test for normality clearly rejects the null 

for all sequences, as expected. 

As a second stage examination we generate the autocorrelation (ACF) and 

partial autocorrelation (PACF) function plots of the three series in figure 8.2. The 

actual values of the ACF and PACF coefficients are listed in tables 8.2 and 8.3 

together wi th the corresponding Q-statistic values and their \ 2 probability values. 

These can help as distinguish any A R I M A structure in the sequences. 
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Statistic index returns realised volatility 
minimum 61.92 -0.1191000 0.000e+000 
Q l 221.60 -0.0048350 5.287e-006 
median 768.90 0.0003343 2.859e-005 
mean 1001.00 0.0003669 9.995e-005 
Q3 1514.00 0.0058370 9.368e-005 
maximum 3266.00 0.0894300 1.419e-002 
st. deviation 899.0817 0.009992 0.000335 
skewness 0.941687 -0.332639 19.48220 
kurtosis 2.741635 12.32305 608.4498 
Jarque-Berra 1233.378 (0.0) 29815.85 (0.0) 1.26e+08 (0.0) 

Table 8.1: Descriptive statistics. Jarque-Bera p-values within parenthe
sis. 

Series: ftse Series: ftse 

s 10 

us 

Series: returns Series: returns 

Senes: realised Series: realised 

Figure 8.2: T h e A C F (left column) and P A C F (right column) functions 
of the series. 
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lags index Q-Stat returns Q-stat volatility Q-stat prob. 
1 1.0000 8188.6 1.0000 217.78 1.0000 1667.80 0.00 
2 0.9997 16373 0.1630 217.78 0.4512 2243.80 0.00 
3 0.9993 24552 0.0000 222.33 0.2651 2665.40 0.00 
4 0.9990 32727 0.0236 237.81 0.2268 3234.60 0.00 
5 0.9987 40897 0.0434 239.22 0.2635 3575.90 0.00 
6 0.9983 49062 0.0131 239.33 0.2041 3813.50 0.00 
7 0.9980 57223 0.0038 239.98 0.1702 4079.80 0.00 
8 0.9976 65379 -0.0089 246.09 0.1802 4259.70 0.00 
9 0.9973 73531 0.0273 256.13 0.1481 4512.20 0.00 
10 0.9969 81678 0.0350 291.90 0.1755 4783.90 0.00 
11 0.9966 89820 0.0660 300.82 0.1820 5051.10 0.00 
12 0.9962 97958 0.0330 302.47 0.1805 5297.90 0.00 
13 0.9959 106091 0.0142 305.77 0.1734 5463.00 0.00 
14 0.9955 114219 0.0200 309.83 0.1418 5579.30 0.00 
15 0.9952 122342 0.0223 312.16 0.1190 5682.20 0.00 

Table 8.2: Autocorrelation function coefficients with their corresponding 
Q-statistics and their probability values. 

lags index Q-Stat returns Q-stat volatility Q-stat prob. 
1 0.9997 8188.6 0.1630 217.7800 0.4512 1667.80 0.00 
2 -0.0255 16373 -0.0273 217.78 0.0773 2243.80 0.00 
3 0.0168 24552 0.0288 222.33 0.1030 2665.40 0.00 
4 -0.0047 32727 0.0358 237.81 0.1472 3234.60 0.00 
5 -0.0092 40897 0.0008 239.22 0.0209 3575.90 0.00 
6 0.0039 49062 0.0023 239.33 0.0356 3813.50 0.00 
7 0.0017 57223 -0.0116 239.98 0.0643 4079.80 0.00 
8 0.0066 65379 0.0298 246.09 -0.0011 4259.70 0.00 
9 -0.0149 73531 0.0254 256.13 0.0792 4512.20 0.00 
10 -0.0125 81678 0.0590 291.90 0.0531 4783.90 0.00 
11 0.0052 89820 0.0138 300.82 0.0416 5051.10 0.00 
12 0.0003 97958 0.0057 302.47 0.0444 5297.90 0.00 
13 -0.0058 106091 0.0133 305.77 -0.0070 5463.00 0.00 
14 -0.0023 114219 0.0114 309.83 -0.0069 5579.30 0.00 
15 0.0291 122342 0.0102 312.16 0.0069 5682.20 0.00 

Table 8.3: Part ia l autocorrelation function coefficients wi th their corre
sponding Q-statistics and probability values. 

8.2 A time-frequency approach: the C W T scalograms 
In the C W T and D W T analysis that follows, we utilise two wavelet functions. 

The Haar and the symmlet 8 (or s8 for short) wavelet. These two "mother" fu

nctions are depicted in figure 8.3 together wi th their corresponding "father" or 

scaling functions. These wavelets were chosen after careful experimentation. Given 

that a wavelet should resemble the time series analysed, the Haar is not really an 

appropriate choice. I t is though a very simple function and as we shall demon-
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02 8 

The Haar bttof wavelet (scaling function) The Haar mother wavelet 

-2 0 2 4 0 2 4 6 

The SymrrJel 8 mother wavelet The Syrrmtfet 8 father wavelet (seating function) 

Figure 8.3: F r o m top to bottom: the Haar and s8 mother wavelet fu
nctions and their corresponding scaling functions. 

strate, the information we obtain from the C W T qualitatively similar to that of the 

s8 wavelet. The s8 mother function seems a more likely candidate and produces 

slightly more detailed scalograms. The overall structure of those though does not 

differ significantly from the Haar versions. In figures 8.4 - 8.6 we have produced the 

C W T scalograms for the first 8000 observations of the FTSE A L L SHARE index 

closing prices, the corresponding logarithmic returns and the realised volatility. We 

have produced 2 scalograms for each case, one for every wavelet function utilised. 

From an initial inspection of the various scalograms, we can see that the Haar ones 

provide a finer decomposition ("thinner") than the symmlet 8 (s8) for the returns 

(figure 8.5) and the realised volatility (figure 8.6), due the "blocky" discontinuous 

structure of the Haar mother wavelet depicted in figure (8.3). Because of the smoo

thness of the symmlet 8 mother wavelet, the C W T scalograms for that wavelet are 

more "elegant", sometimes even more informative, wi th smoother transitions betw

een low and high valued wavelet coefficients and clearer bifurcations. An interesting 

point derived from the comparison of the Haar and s8 scalograms is that for both 

the levels and the transformations of the FTSE series, the story they deliver is the 

same. 
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By careful examination of the index closing prices scalograms in figure 8.4, 

we can see that both the Haar and sym8 C W T coefficients change patterns after 

the 3000th (mainly 4000th i.e., roughly the 1st half of the history of the series) 

observation onwards and especially from the short "booming" period before the 1987 

crash. Unti l that point, the prices of the wavelet coefficients are lower, indicative of 

the relative smoothness or lack of excessive volatility and of very weak positive trend. 

Both Haar and s8 versions of the story are quite similar wi th a small difference. For 

the larger scales of between 150 and 250 days, the Haar C W T scalogram reports 

wider and fewer periods of smaller coefficients than that of the s8 wavelet. We 

attribute this difference to the structure of the wavelet function itself. Both wavelets 

though are able to recognise that for the lower scales there is a relative absence 

of trend (i.e., of a low frequency component) whereas for larger scales and larger 

time "windows", a very weak trend is more obvious for the first half of the index 

series. One may recognise those as the darker areas ("tree trunk" like formations) 

i.e., collections of high coefficients on the top of both scalograms in figure 8.4. I t is 

obvious form the two scalograms that the wavelet coefficients are able to capture the 

change of the pattern after the 4000th observation. They also capture the increase 

in volatility and trend of the series. The difference between the Haar and the s8 

scalogram is more evident on the right bottom half of the graphs where for the s8 

wavelet, one can identify more easily the bifurcations formed by the coefficients. 

This mainly shows how small and large sequences of coefficients interchange and 

may imply a multifractal structure or some kind of aperiodic cyclicity. 

The patterns discussed so far, clearly change for the last half of the series. I t 

is obvious f rom the time series plot on top of figure 8.4, that there is a increase of 

the steepness and the variance of the index sequence. This follows up historically 

the occurrence of the 1987 stock market crash. The crash occurs in the vicinity 

on the 4500th x-axis coordinate, where both Haar and s8 C W T scalograms show 

a concentration of high coefficients on all scales (shown as an inverted dark peak). 

We see that regardless of the choice of the mother wavelet, the actual t iming of 

the crash of 1987 is detected successfully. Following that point, the volatility of the 

series seems to increase considerably wi th finer bifurcations of wavelet coefficients 
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occurring in low, medium and large scales. I t is obvious that the frequency and 

the intensity of the aperiodic cycle structures has changed for the last half of the 

series. The keen eye can also identify the rest of the famous crises as they occur after 

observation 7000 such as the Asian crisis, the NASDAQ and others. These and the 

effect of the incident of the 11th of September 2001 can be seen in figure 8.7 where 

we have produced the s8 C W T scalogram of the whole 8192 index observations. 

In our analysis so far we have chosen to l imit our scalograms to the first 8000 

observations in order to exclude the intensive fluctuations of the last part of the 

history of the series. Although our discrete and continuous analysis has included 

all 8192 observations, we choose to truncate the sample in order to avoid depicting 

the large valued coefficients at the end of the scalograms by excluding 192 points. 

We do this as we are mainly interested in the 1987 crash which seems more isolated 

and clear to interpret. We examine though the scalogram of this last cluster of 

observations at the end of this section. We can thus concentrate on the oil crisis, 

the 1987 and Asian markets crashes and avoid "blurring" of the results at the edge 

of the series because of the increased concentration of high valued coefficients due 

to the clustering of well known recent events. I t would be interesting to see in a 

couple of years how these scalograms would have evolved wi th the inclusion of the 

recent and future history of the series. 

In figure 8.7, we can clearly see after the vertical line the change in the scalo

gram's pattern. We can also locate the intense oscillations following the Asian crisis, 

the NASDAQ crash and the September the 11th events at the darker regions of the 

right edge of the scalogram. An interesting point is that the oil crisis of the 70s is 

not that evident from the levels of the index as in the scalograms of the returns and 

the realised volatility. This is more clearly shown in figure 8.8. 

For further analysis we selected three sub-samples f rom equal distinct sub-

periods to examine. We utilised only the s8 C W T scalograms. The first period 

covers 500 sample points, starting from the 1000th one and ending on the 1500th 

one. I t covers the daily observations ranging from 09/05/1974 to 08/04/1976. The 

second and the third have both length of 1000 observations. The second starts 

on the 4000th one and ends on the 5000th observation. I t covers the timespan 
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07/11/1985 - 07/09/1989. The third and last subsample refers to the period between 

the 7000th and 8000th observation i.e., the dates 08/05/1997 and 07/03/2001. The 

analysis of the first, second and third sub-samples is displayed in figures 8.9, 8.10 

and 8.11 respectively. In table 8.5 we have listed the 19 largest shocks or oscillations 

encountered in the history of the whole sample by date of occurrence and position 

in the sample for reference reasons. In all the above mentioned figures, we choose 

to display on top the corresponding realised volatility sequences which provides an 

adequate representation of the magnitude of the oscillations, as these are captured 

by the wavelet coefficients. 

Subsample Dates Range Size 
1 09/05/1974-08/04/1976 1000-1500 500 
2 07/11/1985-07/09/1989 4000-5000 1500 
3 08/05/1997-07/03/2001 7000-8000 1500 

Table 8.4: T h e 3 subsamples used in figures 8.9-8.11. 

Dates Observation 
06/12/1973 890 
14/12/1973 896 
01/03/1974 951 
02/01/1975 1170 
24/01/1975 1186 
27/01/1975 1187 
29/01/1975 1189 
30/01/1975 1190 
07/02/1975 1196 
10/02/1975 1197 
11/03/1975 1218 
17/04/1975 1245 
19/10/1987 4507 
20/10/1987 4508 
21/10/1987 4509 
22/10/1987 4510 
26/10/1987 4512 
10/04/1992 5676 
11/09/2001 8134 

Table 8.5: Dates and positions of th 19th largest oscillations in the F T S E 
series as these are identified by the 19 largest D W T wavelet 
coefficients. 
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8.3 The D W T of the F T S E 
In the previous section we used C W T coefficients in scalograms to establish 

facts about financial time series, their fluctuation and volatility patterns. In this 

section we concentrate on the application of the discrete wavelet transform (DWT) 

for the analysis and denoising of the same sequence used in the preceding C W T 

experimentation. Specifically we concentrate on the analysis of the FTSE A L L 

SHARE index and its logarithmic returns. Our main purpose here being to show 

how a multiresolution analysis (MRA) approach can be used to describe and smooth 

the series. As a second step we utilise the WAVESHRINK algorithm, as described in 

the previous chapter, in order to denoise the levels and returns sequences.87 As a last 

step we use the techniques demonstrated in chapters 2 and 3 to detect deterministic 

patterns and recurrences, using both the information from the C W T scalograms 

and the recurrence plots of the smoothed and residual series. We find evidence of 

deterministic structures in parts of the smoothed series. 

In the analysis that follows, we have applied the Maximum Overlap Discrete 

Wavelet Transform (MODWT) as defined in the previous chapter for the reasons 

stated there. We examined the series using the Haar, daubechies 6 and 20 (d6, 

d20), symmlet 20 (s20) and coiflet 30 (c30) wavelets M O D W T as in figure 8.12. We 

found that the results do not differ remarkably for the d20, s20 and c30 wavelets so 

we concentrate in this chapter on the report of the Haar and d20 D W T and M R A 

results. For the Waveshrink algorithm, we experimented wi th the above wavelets 

for various levels and smooth factors and we found that the best results were not 

that much due to the selection of an "appropriate" wavelet function as for the 

correct selection of the algorithm parameters. We concluded that a d6 wavelet was 

producing adequate smoothing. The data we use are again the 8192 observations 

of the FTSE A L L SHARE index closing prices and their continuously compounded 

returns. 

8 7 We compared the residuals from this smoothing with the ones obtained from a GARCH(1,1) 
estimation (assuming both Gaussian and Student-t distributions) and we deduced that the WA
VESHRINK approach provides much "cleaner" normal residuals than that of the GARCH(1,1). 
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Figure 8.12: F r o m left to right, top to bottom: the Haar , Daubechies 20 
(d20), Symmlet 20 (s20) and Coiflet 30 (c30) mother wavelet 
functions. 

8.3.1 Multiresolution Analysis 

In figures 8.13 and 8.14 we display the multiresolution approximations and 

decompositions of the FTSE A L L SHARE index closing prices and its returns re

spectively. The M R A in these figures was conducted wi th a Haar wavelet. We used 

8 levels of approximation which we found to provide adequate analysis. For each of 

these figures, the right part contains the detail coefficients sequences which when 

added to the smooth series s8, generate the reconstruction sequences for each of the 

8 levels. For example, in order to obtain the smoothed sequence S6 of the FTSE 

index in figure 8.13, one just needs to ad to S8 the detail coefficient sequences D8, 

and D7 i.e., S6 is simply: 

S6 = S8 + D8 + D7 (8.1) 

In figure 8.15 we show how the FTSE A L L SHARE index closing prices are approxi

mated (smoothed) by the S6 smooth level. In figure 8.16 we show the original series 

overlapped by the S6 sequence for the period 1985-1988 and the level 6 residuals e6 

which are computed as: 
3 

€i = DATA - ] T Bi (8.2) 
8=1 
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Mult iresolut ion approx imat ion Mult i resolut ion d e c o m p o s i t i o n 
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D2 
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S 5 
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S 8 S8 

0 2000 4000 6000 8000 0 2000 4000 6000 8000 

Figure 8.13: F T S E A L L S H A R E index closing prices M R A . 

Mult iresolut ion approx imat ion Mult i resolut ion d e c o m p o s i t i o n 

Figure 8.14: F T S E A L L S H A R E index logarithmic returns M R A . 
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F T S E index closing prices 

§ 

07/10/1870 07/10/1976 07/10/1982 07/10/1988 07/10/1994 07/10/2000 

S 6 approximation wilh a Haar wavelet 

07/10/1970 07/10/1976 07/10/1982 07/10/1988 07/10/1994 07/10/2000 
Time 

Figure 8.15: The actual F T S E A L L S H A R E closing prices and the S6 
level smoothed series. 

for j ' = 6 . As we can see, the arbitrarily chosen M R A S6 level of smoothing follows 

the FTSE very close, especially during the 1987 crash. 

The Haar D W T transform coefficients for the first 6 levels, the S6 smooth and 

the inverse discrete wavelet transform of the FTSE series is depicted in figure 8.17. 

The D W T of the FTSE logarithmic returns sequence, computed for 13 levels, 

is represented in figure 8.18. Again we utilised here a Haar wavelet. In this at

tempt we have accounted for all the possible discrete wavelet decomposition levels 

to demonstrate the 2 J order of the D W T algorithm. We should recall here that 

8192 = 2 1 3 which allows for 13 levels of discrete decomposition. In practice, one 

may choose to concentrate on the first 5 to 7 levels as higher decompositions provide 

no further information on the variability of the series. In the same figure we may 

see how the oil crisis and the crash of 1987 have been picked up by the dl to d4 

coefficients series, seen as negative and positive spikes on those levels. 
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8.3.2 Waveshrinking the F T S E 

In this section we use the tools described earlier in chapter 4, to smooth 

the FTSE A L L SHARE index returns. More precisely, we utilised the discrete 

wavelet transforms to obtain the wavelet coefficients for each level (scale) of the 

decompositions. We then used the Waveshrink methodology to retain the most 

important coefficients. Finally by conducting the inverse wavelet transforms wi th 

the retained coefficients, we obtained the smoothed versions of the returns sequences. 

This analysis can be outlined in the 3 steps: 

1. Choosing a suitable mother wavelet function. 

2. Denoising the returns using the Waveshrink approach as described in the pre

vious chapter. 

3. Obtaining the fit ted values and residuals and examining their structure. 

The first step refers to the selection of a wavelet function that approximates the 

series adequately. Suitable candidates should be functions that are short enough 

to localise on singularities of the returns sequence (such a the 1987 crash). As re

turns do not exhibit any trend, i t is not necessary to use functions that are much 

"stretched" in time i.e., the horizontal axis. For our analysis purposes we experime

nted with Daubechies, Haar, Coiflet and Symmlet wavelets. We also examined the 

possibility of using biorthogonal wavelets. The results were similar. High and low 

order wavelets were used. In all cases we used the maximum overlap or nondecima-

ted discrete wavelet transform ( M O D W T ) . Some wavelets performed better than 

others. After tedious experimentation and calibration of the Waveshrink denoising 

approach, the conclusion derived was that the choice of the wavelet function was 

less important than the Waveshrink functions and rules utilised during the denoising 

process. 

On every step, the normality of the residual noise was tested using the Jarque-

Bera and Kolmogorov-Smirnov statistics. The QQplots were also generated and 

the empirical quantiles of the Waveshrink residuals were checked wi th those of the 

standard normal distribution. A straight line would indicate clearly the normality 

of the residuals. Comparing our results to the ones obtained by a GARCH(1,1) 
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Variable A D F test statistic T Cr i t i ca l Values 
FTSE returns 
Waveshrink fit 
Waveshrink residuals 

-35.56652 
-25.09999 
-48.87310 

Qi%= -2.5661 
a5%= -1.9394 
«io%= -1-6156 

Table 8.6: Augmented Dickey-Fuller unit root test results with M a c K i n 
non critical values for rejection of hypothesis of a unit root. 
It is obvious that even for 1% statistical significance level the 
Waveshrink residuals are a stationary process. 

Parameter Value 
Mother wavelet 
Shrink rule 
Shrink function 
Scale rule 
Scale function 

Daubechies 6 
top 1900 largest coefficients 
hard thresholding 
all coefficients considered 
mean absolute deviation 

Table 8.7: T h e parameters of the Waveshrink denoising process on the 
F T S E returns using the d6 wavelet. 

specification of the series (which is a common approach in the literature) made 

obvious that the residuals of the GARCH processes do not follow closely the assumed 

underlying distributions. 

The results we demonstrate in figures 8.19-8.22 are the ones that were obtai

ned from the application of the Waveshrink denoising process via a Daubechies 6 

(d6) mother wavelet. The elements of this approach are summarised in table 8.7. 

The best results were obtained by using the "hard" thresholding function and by 

keeping the top 1900 wavelet coefficients in size. These were capturing the energy 

of the FTSE returns signal sufficiently. The actual, fi t ted and residual processes 

are displayed in figures 8.19-8.20. In figure 8.20 we can see better the result of the 

denoising process on the FTSE returns sequence. 

Figure (8.21) compares the distributions of the actual returns and the fi t ted 

(denoised) series. I t is obvious that the "fat-tailed" structure has remained as a 

key element of the underlying process, though the variance of the series has been 

reduced considerably due to the omission of the process captured by the residuals. 

In table 8.8 we display the descriptive statistics for the fitted and residual sequences. 
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Statistic fitted residuals 
Mean 
Median 
Maximum 
Minimum 
Standard dev. 
Skewness 
Kurtosis 

0.000367001895299 
0.000592908206597 

0.0804649099356 
-0.119011327871 
0.0057592733608 
-1.35125715114 
78.3633836757 

2.21030297151e-08 
-1.7054051905e-05 

0.027347065248 
-0.0269594711128 
0.00735614022242 
-0.0247104586328 

3.10564694301 

Table 8.8: T h e descriptive statistics of the Waveshrink obtained proces
ses. 
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F T S E logarithmic returns Haar wavelet waveshnnked returns 
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F T S E returns histogram Waveshnnked returns histogram 
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Figure 8.21: A comparison of the distributions of the F T S E returns and 
the Waveshrink fit. 

In table 8.6 we report the results of stationarity test via the Augmented Dickey-

Fuller (Dickey and Fuller 1979) procedure for various levels of statistical significance. 

I t is straightforward the processes are 1(0) or stationary from the A D F statistic va

lues obtained even at a 1% level of significance. Moreover we have conducted the 

Jarque-Bera (Bera and Jarque, 1981) and Kolmogorov-Smirnov one sample (Cono-

ver, 1971), tests to establish the normality of the Waveshrink obtained residuals. 

These results are listed in tables 8.11 and 8.10 respectively. The Jarque-Bera stati

stic is distributed as a x2 wi th 2 degrees of freedom and the critical value for a=5% 

level of statistical significance is 5.991. That leads us to accept normality for the 

residuals.8 8 The very low p-value leads us to accept again normality for the Wave-

shrink residuals. Conducting a RUNS 8 9 test for independence for the Waveshrink 

residuals returned a value for the statistic of -0.6661 and a p-value of 0.50. Because 

the statistic is less than the critical value 1.96 for a=5%, the null hypothesis of in

dependence is accepted. The opposite was shown for the fitted values wi th a RUNS 

8 8 We are testing the null hypothesis that the distribution of the residuals is the normal. 
8 9 The RUNS statistic for independence is approximately distributed as a N(0,1). 
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Figure 8.22: Assessing the normality of the Waveshrink residuals. 

statistic of -5.9457. 

In table 8.9 we have tabulated the first 20 values of the autocorrelation (ACF) 

and partial autocorrelation(PACF) functions for the Waveshrink fi t ted values and 

residuals wi th the corresponding Q-statistic values. As we can see, the values of the 

coefficients are extremely small and thus can be regarded as negligible quantities. 9 0 

These functions are depicted in figure 8.23. 

8.4 Nonlinear Determinism 
Following the denoising of the returns series, we applied the theory and me

thodologies described in chapters 4 to 6 in order to establish whether the sequence 

exhibited nonlinear determinism or not. Our main rationale here being that wa

velets would have removed the nonsystematic components of the variability of the 

series, leaving a clear data generating process structure. I f indeed the FTSE returns 

series was contaminated by a normally distributed noise process that masked the 

dynamic structure of the underlying generating process, the inverse discrete wavelet 
9 0 From a personal communication with Prof. Chris Chatfield. 
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Waveshrink Residuals Waveshrink fitted values 
lag A C F P A C F Q - S T A T A C F P A C F Q - S T A T 

1 0.008 0.008 0.438 0.299 0.299 659.520 
2 -0.095 -0.095 66.272 0.152 0.069 830.210 
3 -0.096 -0.095 133.990 0.248 0.204 1282.500 
4 -0.083 -0.093 184.400 0.241 0.130 1710.100 
5 -0.066 -0.087 216.220 0.157 0.038 1892.300 
6 -0.070 -0.102 252.070 0.135 0.030 2026.200 
7 -0.097 -0.140 321.040 0.186 0.084 2282.100 
8 -0.027 -0.083 326.310 0.116 -0.014 2380.500 
9 -0.012 -0.084 327.300 0.124 0.047 2493.500 
10 0.013 -0.062 328.630 0.176 0.081 2722.800 
11 -0.004 -0.079 328.750 0.150 0.036 2887.800 
12 -0.024 -0.097 332.890 0.092 -0.010 2950.100 
13 -0.009 -0.085 333.430 0.094 0.000 3015.700 
14 -0.028 -0.115 339.300 0.115 0.013 3112.500 
15 0.017 -0.070 341.470 0.035 -0.062 3121.300 
16 0.004 -0.089 341.570 0.021 -0.031 3124.500 
17 0.002 -0.089 341.590 -0.031 -0.104 3131.500 
18 0.003 -0.092 341.670 0.001 -0.009 3131.600 
19 0.013 -0.086 342.850 0.022 0.012 3135.100 
20 0.035 -0.060 352.120 0.040 0.040 3146.700 

Table 8.9: T h e first 20 values of the autocorrelation ( A C F ) and partial 
autocorre lat ion(PACF) functions for the Waveshrink fitted va
lues and residuals with the corresponding Q-statistic values. 

Series K - S statistic p-value 
Waveshrink residuals 
Waveshrink fit 

0.0121 
0.1939 

0.0091 
0.0000 

Table 8.10: Kolmogorov-Smirnov ( K - S ) test of composite normality. 

Series J - B statistic p-value 
Waveshrink residuals 
Waveshrink f i t 

4.6702 
1941626 

0.0968 
0.0000 

Table 8.11: Jarque-Bera ( J - B ) test of normality. T h e test is distributed as 
a x 2 distribution with 2 degrees of freedom test. T h e critical 
value for a = 5% is 5.991. 
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Figure 8.23: A C F and P A C F functions of the Waveshrink residuals. 

transform would provide a "cleaner" representation of this structure. 

As we have already discussed in previous chapters, we have to be extremely 

careful when preprocessing time series prior to attractor reconstruction calculations. 

This is called "bleaching" (Theiler and Eubank, 1993). Abarbanel (1995) suggests 

the use of FIR (Finite Impulse Response filters) for this kind of manipulations. In 

general, one should transform the series via a smooth monotonic function i.e., a 

function that is continuous (smooth dynamics) and invertible. That wi l l ensure 

that certain topological conditions are met for the dynamics (Takens, 1981) i.e., 

the attractor structure has not been distorted from the transformation. Wavelet 

transforms qualify for this only in their discrete case ( D W T ) . 9 1 What we follow here 

is a complete investigation of the dynamics of the Waveshrink filtered series. 

We reconstructed the dynamics of the phase space via delay coordinate em-

9 1Prom a personal communication with Prof. James B. Ramsey: "The discrete wavelet tran
sform is a one to one onto mapping, but not the continuous (CWT) or the various oversampled 
versions (MODWT). You can not really talk about a monotonic function, except in exceptional 
circumstances; and the one-to-one'ness (sic) holds only for the full set of coefficients, not any 
approximation that may be involved. Tests for nonlinearity should be easily incorporated in the 
wavelet framework; a more precise answer depends on the wavelet transformation used and the 
nature of the nonlinearity to be detected." 
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L A G R E T U R N S F I T R E S I D U A L S 
Entropy 1.15146500 0.35874360 2.19788100 

2 0.03936236 0.14599210 0.01608972 
3 0.03003536 0.10321960 0.02195078 
4 0.02377835 0.07943605 0.02113038 
5 0.02662920 0.06850084 0.01860383 
6 0.02332719 0.06125449 0.01745880 
7 0.02598398 0.05747043 0.01962191 
8 0.02235857 0.05159686 0.01714247 
9 0.02376081 0.04784449 0.01734900 
10 0.02548636 0.04632784 0.01672281 
11 0.02215267 0.04012481 0.01860825 
12 0.02033222 0.03733414 0.01474768 
13 0.02081499 0.03750026 0.01481370 
14 0.01942279 0.03720081 0.01346067 
15 0.01808479 0.03443327 0.01407659 

Table 8.12: F i r s t 15 values of the Average Mutua l Information ( A M I ) fu
nctions (see figure 8.24) of the actual F T S E returns, Wavesh-
rink fits and Waveshrink residual sequences. Bold numbers 
indicate the 1st local minimums. A n interesting finding is 
that both the returns and residual sequences exhibit a local 
minimum as well where the 1st minimum of the Waveshrink 
fit is ( r = 12). 

bedding, in table 8.12 we display the results of the computation of the Average 

Mutual Information criterion ( A M I ) . The lag order for the time delay r (i.e., the 

first minimum of the A M I function) for the returns, the Waveshrink fitted returns 

and the Waveshrink residuals were respectively 4, 12 and 2 as indicated by the bold 

numbers in table 8.12. In figure 8.24 we display the three A M I functions wi th arrows 

that indicate the locality of the 1st minimum. 

Using the time delays r in table 8.12, we calculated the embedding dimensions 

for the 3 sequences via the False Nearest Neighbors (FNN) methodology, as this is 

described in chapters 4 and 5. The results for the FTSE returns, Waveshrink fitted 

values and residuals are tabulated in tables 8.14, 8.15 and 8.13 respectively. 

An interesting finding is the graceful convergence of both the A M I and FNN 

criteria functions for the Waveshrink fitted values (table 8.15) and figure 8.25. In 

the following sections we construct diagrams in order to visualise more clearly the 
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Figure 8.24: T h e Average Mutua l Information functions of the three se
quences in table (8.12), 2nd-15th lag. Arrows indicate where 
first minimum is located. 

Embedding Fraction Average Average 
Dimension of F N N size of squared size of 

neighborhood neighborhood 
1 9.976801e-01 5.772006e-05 6.860344e-08 
2 8.809821e-01 2.872275e-03 1.300435e-05 
3 6.441538e-01 8.508392e-03 8.085705e-05 
4 5.319444e-01 1.059754e-02 1.174292e-04 
5 4.814815e-01 1.118932e-02 1.277096e-04 

Table 8.13: F N N algorithm results for the Waveshrink residuals. 
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Embedding Fraction Average Average 
Dimension of F N N size of squared size of 

neighborhood neighborhood 
1 9.974302e-01 2.857821e-05 2.667477e-08 
2 8.738098e-01 8.947465e-04 1.396515e-06 
3 5.888966e-01 2.701687e-03 8.370320e-06 
4 4.402939e-01 3.669201e-03 1.416172e-05 
5 4.242424e-01 4.066201e-03 1.697205e-05 
6 4.000000e-01 4.021737e-03 1.678563e-05 

Table 8.14: F N N algorithm results for the F T S E returns. 

F T S E returns FNN 

8 ° 

1 6 

Embedding Dimension 

Waveshrink fit of F T S E returns FNN 

V 
<£> 

CM 

0 10 20 30 40 

Embedding Dimension 

Waveshrink residuals FNN 

1 2 3 4 5 

Embedding Dimension 

Figure 8.25: Embedding dimensions according to the F N N criterion as in 
tables (8.14), (8.13) and (8.15). I t is obvious that the em
bedding dimension for the returns and residuals sequences 
is low whereas the Waveshrink obtained fitted values have a 
much larger embedding dimension. 
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Embedding Fraction Average Average 
Dimension of F N N size of squared size of 

neighborhood neighborhood 
1 9.850582e-01 2.042813e-05 1.500015e-08 
2 2.896907e-01 3.252177e-04 2.764600e-07 
3 5.093644e-02 9.384883e-04 1.181869e-06 
4 1.486000e-02 1.396898e-03 2.285555e-06 
5 6.946857e-03 1.542079e-03 2.702321e-06 
6 4.324121e-03 1.607818e-03 2.894843e-06 
7 4.419446e-03 1.658367e-03 3.047319e-06 
8 4.040834e-03 1.694972e-03 3.163020e-06 
9 4.270623e-03 1.728534e-03 3.271531e-06 
10 3.789673e-03 1.757896e-03 3.369958e-06 
11 2.486325e-03 1.784847e-03 3.461092e-06 
12 2.610966e-03 1.806778e-03 3.533881e-06 
13 2.464403e-03 1.826278e-03 3.599295e-06 
14 1.438021e-03 1.841930e-03 3.65451 le-06 
15 1.511031e-03 1.854205e-03 3.699481e-06 
16 1.586798e-03 1.863491e-03 3.734467e-06 
17 1.667222e-03 1.873007e-03 3.771303e-06 
18 1.751313e-03 1.881180e-03 3.803668e-06 
19 1.832845e-03 1.890046e-03 3.838984e-06 
20 1.149425e-03 1.896096e-03 3.861257e-06 
21 1.197605e-03 1.901297e-03 3.879315e-06 
22 1.247920e-03 1.907320e-03 3.900388e-06 
23 1.303215e-03 1.912803e-03 3.919247e-06 
24 1.358081e-03 1.917058e-03 3.933527e-06 
25 1.415762e-03 1.918389e-03 3.937148e-06 
26 1.477105e-03 1.919160e-03 3.938654e-06 
27 1.540041e-03 1.917816e-03 3.931240e-06 
28 1.605996e-03 1.914844e-03 3.916603e-06 
29 1.675042e-03 1.912064e-03 3.902694e-06 
30 1.745201e-03 1.910670e-03 3.894237e-06 
31 1.821494e-03 1.907147e-03 3.877712e-06 
32 1.904762e-03 1.901691e-03 3.852412e-06 
33 1.989390e-03 1.896082e-03 3.827146e-06 
34 2.073255e-03 1.891692e-03 3.806227e-06 
35 2.869440e-03 1.889659e-03 3.795823e-06 
36 1.484781e-03 1.889323e-03 3.791188e-06 
37 1.536098e-03 1.889931e-03 3.790570e-06 
38 1.592357e-03 1.889186e-03 3.783675e-06 
39 1.643385e-03 1.891993e-03 3.791525e-06 
40 0.000000e+00 1.894156e-03 3.797516e-06 

Table 8.15: F N N algorithm results for the Waveshrink fitted values. 



218 

dynamics of the series we produced via the Waveshrink algorithm. We wi l l be using 

delay, phase and recurrence plots. 

8.4.1 Exploring dynamics v ia lag and phase plots. 

A "lag plot" or "time-delay plot" is simply a scatter-plot of the series against its 

lags. These are very common plots in physical sciences and show the time evolution 

of certain phenomena revealing periodic behaviours. What actually we obtain from 

these is a 2-dimensional diagram of the orbits of any existing attractors. A delay 

plot can be extended to 3 dimensions if this provides meaningful information. A 

phase-plot is a scatter diagram of the series against its derivatives. In our case, a 

phase-plot would be the scatter-plot of the FTSE against its returns or the fi t ted 

values. 

We used the time delays r and the embedding dimensions to generate the 

recurrence plots for the three sequences, returns, fi t ted values and residuals. We 

also generated the phase-plots of the fitted returns sequences. In figure 8.26 (a) 

we have the delay plot the first 100 observations of the Waveshrink fitted returns. 

The lag order for this scatter diagram is the same as the time-delay we determined: 

r = 12. 

In figure 8.26 (b) the first 100 observations of the FTSE residuals, the Wavesh

rink fit and residual sequences are displayed for the better comprehension of figure 

8.26 (a), wi th a lag order of 12. The fitted sequence is replete wi th such patterns 

indicating clearly that an attractor or cycle of some certain structure exists. The 

patterns indicated here are distorted during periods of intense market volatility. 

This fact is confirmed by the recurrence plots in figure 8.41. In order to visualise 

the dynamics around a period of strong fluctuations, we focused on the 1987 market 

crash. 

In figures 8.27 and 8.28 we have included the delay plots of the periods a 

year before the 1987 crash and exactly during the crash respectively. I t is obvious 

that the financial shocks of 1987 have caused a serious perturbations of the market 

dynamics which are evident in the structure of the orbits that the FTSE returns 

were following. The whole 8192 observations sequence of the Waveshrink fitted 
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Figure 8.26: Subfigure (a): Phase diagram of the first 100 days of the 
Waveshrink fitted values. Subfigure (b): F i r s t 100 observa
tions, time series plots. Top: F T S E returns sequence with 
the Waveshrink fitted values. Bottom: Waveshrink residu
als. 

FTSE returns is replete wi th such patterns that interrupt when there is a significant 

shock. We found that during the period from 1/1/1988 to 1/8/1988, the dynamics 

show evidence of recovering to a smoother structures as before the shock (in figure 

8.29). 

In figure 8.30, we chose to project a history of the orbit of the fit ted returns. We 

collected a daily sequence of the Waveshrink fitted observations, spanning 2 years 

before the market crash. The dynamics, as these are projected in 3-dimensional 

space, exhibit the smoothness and periodicity that we detected earlier from the 2-

dimensional delay plots. As we collect more and more observations, the dynamics 

become less clear, as subsequent volatile periods generate outliers that mask the 

smoothness of the dynamics. This is evident from the examination of the delay plot 

in figure 8.31. These periods can also be discerned in the corresponding recurrence 

plots in figure 8.41 as wide blank gaps between the recurrences. An interesting 

research question here would be to examine the dynamic structure of these identified 

periods where the "smooth" functioning of the markets breaks down. 

In order to examine how the orbits unfold for different delay windows, we 

generated a sequence of delay plots in figures 8.33 and 8.34, for the first 100 and 



220 

0.006 -r 

0.004-

0.002-

LU 

g 0.000-

-0.002-

-0-004 J , , , , , 
-0.004 -0.002 0.000 0.002 0.004 0.006 

WSFIT 

Figure 8.27: Delay plot showing the cycle the F T S E index returns were 
following just a year before the crash of 1987. 
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Figure 8.28: Delay plot showing the effect of the crash of 1987 on the 
F T S E returns dynamics. I t is obvious that the presence 
of outliers have concealed the smoothness of the dynamics 
that we could discern in figure (8.27). I t was found that 
removing the outliers could not recover the smoothness of 
the dynamics. 
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Figure 8.30: 3D delay plot showing the cycle the F T S E index returns 
were following 2 years before the crash of 1987. 
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Figure 8.31: T h e delay plot of the F T S E Waveshrink fit returns for the 
whole sample period 10/7/1970 to 30/11/2001. 

200 days respectively. These sets of "delay-cartoons" can show us how the orbits 

develop as well as the effect of the selection of the correct delay time r for examining 

the dynamics. For r = l , the delay plot is almost like a straight line which indicates 

1st order serial correlation. As the delay parameter becomes larger, the delay plots 

acquire a cyclical pattern which becomes even more distorted as the r value becomes 

larger. The orbits of the attractor unfold more gracefully for values closely around 

the correct time delay. In figure 8.34, we can see how the smoothness in figure 8.33 

is being distorted with the inclusion of more observations which introduce volatility. 

Interesting patterns can be revealed for the original sequence of the FTSE A L L 

SHARE index closing prices. We calculated via A M I a very large time-delay factor 

of a value of 87. We generated the delay plot for the whole sequence in figure 

8.35. There we can see clearly a certain time-dependence in the closing prices which 

becomes more and more diffused for larger closing prices of the index i.e., smaller 

values seem to have stronger time-dependence than larger ones. 

The important message from the delay plots in figures 8.26-8.34 is that given we 

have fai thfully reconstructed the dynamics by careful delay coordinate embedding, 

we can use simple scatter diagrams to view these and discover certain a-periodic 

characteristics. The very interesting point here is that we have to be very careful 
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Figure 8.32: How the cycle is distorted. 

when examining the finer structure of these dynamics. I f we just generate a delay 

plot for the complete sequence, this wi l l probably be very fuzzy or incomprehensive. 

The scatter diagrams wil l be crammed wi th swarms of points which reveal no sensible 

pattern (depicted clearly in figure 8.31). In figure 8.32 we can clearly see how this 

can become a problem. Subfigure (a) is the delay plot corresponding to the first 

hundred observations of the fi t ted returns. Subfigure (b) is the same as (a) wi th 

the inclusion of a few more observations (spanning precisely the period between 

10/7/1970 and 30/12/1970). We can see clearly how the orbit becomes more jerky 

for the new information. 

Past research in the field has failed to reveal interesting patterns because of 

this fact. I f instead one "zooms" into sub-periods, one can discover very interesting 

details. The conclusion would be that while increasing our sample size, there seems 

to be a tendency of the attractor to shift, expand, contract and change periodicity 

as new information comes in. This may well be the effect of the change of structure 

introduced by increasing financial volatility since the 70s. 

Delay plots are not the only tool to visualise dynamics. We can also generate 

phase plots. In figure 8.36 we generate phase plots for the same period between 

10/7/1970 and 30/12/1970, for the FTSE returns (a) and the Waveshrinked fitted 

values (b) respectively. We can clearly see that the phase plot (b) of the fitted values 

is much more informative and that there is again evidence of cyclicity. We can also 
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Figure 8.33: Delay plots of the first 100 days. Delay r = l to 40. 
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Figure 8.34: Delay plots of the first 200 days. Delay r = l to 40. 

see how this is distorted exactly as in figure 8.32. 

Finally we can retrieve more interesting visual information from the simple 

scatter plots of the FTSE closing prices against the returns and the Waveshrink fit, 

as in figures 8.37 and 8.38 respectively. Here we attempt to generate a phase plot 

with a difference. The scatter diagram in figure 8.37 is indeed a phase plot as defined 

earlier and covers the whole period. Instead of plotting the returns against their 

first derivative (1st difference), we choose to plot the actual closing prices of the 
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Figure 8.36: 2-Dimensional phase-plot of the FTSE returns and the Wa
veshrink f i t . 

index against the 1st derivative which is simply the returns themselves. We can see 

no clear structure there. If one though replaces the returns with the fitted values, 

as these have been "cleaned" by Waveshrink, we obtain a much more informative 

phase plot in figure 8.38. We can clearly see a pattern revealing itself as some kind 

of a vortex or spiral orbit. Some parts of the dynamics are though distorted. It 

remains to be seen if one can improve that image by better filtering of noise in the 

original returns sequences. What we clearly see though is that there exists some 
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Figure 8.37: Scatter (phase) plot: FTSE A L L S H A R E I N D E X against 
FTSE logarithmic returns. 

structure in the dynamics of the FTSE closing prices (if we accept that Waveshrink 

has correctly identified the nonsystematic component of the returns sequence). 

8.4.2 Searching for nonlinear dependence 

Following our visual inspection of the dynamics, we conduct here a sequence 

of tests in order to obtain a more definite answer on the nature of the structure of 

the returns sequences. We concentrate on analysing the Waveshrink fitted values 

and the Waveshrink residuals via RQA (see chapter 5) and by computing the largest 

Lyapunov exponent and the BDS test (Brock et ai, 1986). 

In table 8.16 we have tabulated the results of the calculations for the Lyapunov 

exponent, using up to 9 embedded dimensions. The corresponding graph is in figure 

8.39. The maximal Lyapunov exponent was calculated to be positive and close to 0 

(as it can be also deduced from the slopes of the curves in the above figure) and could 

imply the presence of a limit point attractor. There is though a strong indication 

of instability that could be explained by deterministic dynamics. The information 

from table 8.18 seems also to be supporting this scenario. 

Continuing our calculations of chaotic invariance metrics, we estimated the 

correlation and capacity dimension values. The correlation dimension was estimated 

to be 1.86 which shows that we can not exclude the presence of low dimensional 
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time d2 d3 d4 d5 d6 d7 d8 d9 
0 -7.271145 -7.202302 -7 160007 -7.118117 -7.07683 -7.011904 -6.937624 -6.91934 
1 -5.509712 -6.357552 -6 910519 -7.03832 -7.003449 -6.992186 -6.912909 -6.910013 
2 -5.033595 -5.956734 -6 777051 -6.98232 -6.970116 -6.943216 -6.851219 -6.866161 
3 -4.812322 -5.70629 -6 706622 -6.94426 -6.920337 -6.883374 -6.775203 -6.784495 
4 -4.642391 -5.503484 -6 625691 -6.893774 -6.856007 -6.819489 -6.705294 -6.707279 
5 -4.536468 -5.387661 -6 545305 -6.829669 -6.767481 -6.761345 -6.646933 -6.652775 
6 -4.468019 -5.28041 -6 491634 -6.764757 -6.698928 -6.718224 -6.610766 -6.618373 
7 -4.392264 -5.223751 -6 441175 -6.746184 -6.69653 -6.698041 -6.599961 -6.609992 
8 -4.329657 -5.165006 -6 417873 -6.751848 -6.704675 -6.702241 -6.609735 -6.63878 
9 -4.312444 -5.150391 -6 428015 -6.772029 -6.765853 -6.731491 -6.634256 -6.696717 
10 -4.297177 -5.158731 -6 454546 -6.789794 -6.770654 -6.772241 -6.673363 -6.766084 
11 -4.30532 -5.161997 -6 481984 -6.818569 -6.814396 -6.811364 -6.712728 -6.829305 
12 -4.33772 -5.21149 -6 516485 -6.852583 -6.858897 -6.841146 -6.740695 -6.849782 
13 -4.203048 -5.08653 -6 463403 -6.842752 -6.862809 -6.857106 -6.754526 -6.835975 
14 -4.127285 -5.011987 -6 410891 -6.813765 -6.849366 -6.852617 -6.751421 -6.802695 
15 -4.069028 -4.939197 -6 383165 -6.798482 -6.84625 -6.828882 -6.729829 -6.751636 
16 -4.025461 -4.862711 -6 346866 -6.753655 -6.820865 -6.790686 -6.699028 -6.708716 
17 -3.98885 -4.814983 -6.30588 -6.707423 -6.772429 -6.747605 -6.663863 -6.676416 
18 -3.960939 -4.751951 -6 246264 -6.663817 -6.731538 -6.706903 -6.63094 -6.648751 
19 -3.916913 -4.706795 -6 205829 -6.623326 -6.702769 -6.67754 -6.60506 -6.63889 
20 -3.875599 -4.674112 -6 168017 -6.587522 -6.670793 -6.662794 -6.597697 -6.665944 
21 -3.86031 -4.654021 -6 183111 -6.576747 -6.663955 -6.664534 -6.603242 -6.716312 
22 -3.835916 -4.641725 -6 195877 -6.581382 -6.67805 -6.679715 -6.625319 -6.769025 
23 -3.822345 -4.626398 -6 197597 -6.588406 -6.6989 -6.700061 -6.6554 -6.816522 
24 -3.800894 -4.61773 -6 214719 -6.62037 -6.719893 -6.718291 -6.681332 -6.834134 
25 -3.761239 -4.583639 -6 193282 -6.610883 -6.717088 -6.729272 -6.69149 -6.824392 
26 -3.750595 -4.55701 -6 156524 -6.595566 -6.704003 -6.730083 -6.691945 -6.796684 
27 -3.737304 -4.53082 -6 134899 -6.582288 -6.698049 -6.716586 -6.67235 -6.75121 
28 -3.720834 -4.486848 -6 088976 -6.538124 -6.673751 -6.691099 -6.640063 -6.708924 
29 -3.707755 -4.455796 -6 038359 -6.489456 -6.634183 -6.660532 -6.609539 -6.67686 
30 -3.701383 -4.411802 -5 991457 -6.440786 -6.600937 -6.630686 -6.584441 -6.651943 
31 -3.692149 -4.37649 -5 941794 -6.39598 -6.576809 -6.608794 -6.563097 -6.646561 
32 -3.689308 -4.347115 -5 897257 -6.366598 -6.546945 -6.596072 -6.556804 -6.676534 
33 -3.690044 -4.329093 -5 896254 -6.333486 -6.538167 -6.594756 -6.562357 -6.72524 
34 -3.68868 -4.315132 -5.90719 -6.35425 -6.552216 -6.604233 -6.579687 -6.769411 
35 -3.684383 -4.305417 -5 923646 -6.399619 -6.575561 -6.618019 -6.603718 -6.802923 
36 -3.680952 -4.294647 -5 951081 -6.425445 -6.597122 -6.630951 -6.626674 -6.809292 
37 -3.666941 -4.29027 -5 942626 -6.429194 -6.592251 -6.636692 -6.632902 -6.796246 
38 -3.665805 -4.274849 -5 927875 -6.413548 -6.583328 -6.639424 -6.630283 -6.775563 
39 -3.676363 -4.271757 -5 913153 -6.411211 -6.587121 -6.63811 -6.61713 -6.749789 
40 -3.665615 -4.2572 -5 869218 -6.3514 -6.563483 -6.628139 -6.596423 -6.730632 
41 -3.667731 -4.254617 -5 822498 -6.290857 -6.526304 -6.612282 -6.577275 -6.706169 
42 -3.679349 -4.235997 -5 799621 -6.241456 -6.462198 -6.59389 -6.558796 -6.662457 
43 -3.666012 -4.221624 -5 761033 -6.178312 -6.425435 -6.575848 -6.536909 -6.619841 
44 -3.665184 -4.221215 -5 710672 -6.158996 -6.407885 -6.562404 -6.528244 -6.610788 
45 -3.663635 -4.222998 -5 694237 -6.13243 -6.396353 -6.558447 -6.53218 -6.641962 
46 -3.66059 -4.224461 -5 687519 -6.17204 -6.411993 -6.565279 -6.548501 -6.696498 
47 -3.650914 -4.225269 -5 705311 -6.213243 -6.431165 -6.578519 -6.572169 -6.756991 
48 -3.647624 -4.234907 -5 743078 -6.236089 -6.47321 -6.591046 -6.591307 -6.789013 
49 -3.654933 -4.243547 -5 752128 -6.246065 -6.488149 -6.594681 -6.591661 -6.763805 
50 -3.645627 -4.231486 -5 750458 -6.243817 -6.514893 -6.59389 -6.580468 -6.705096 

Table 8.16: Maximal Lyapunov Exponent 
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Figure 8.38: Scatter (phase) plot: F T S E A L L S H A R E I N D E X against 
Waveshrink fit. 

dynamics. Capacity dimension was estimated to be 1.25. 

In tables 8.19-8.21 we have included the results of the BDS test calculations 

following Cromwell et ai, (1994). This was conducted on the Waveshrink denoi-

sed returns, the actual returns and the residuals. We calculated the statistic for 

embedding dimensions according to the corresponding AMI values for time-delay r 

and for various sizes of neighbourhoods of close points e. The null hypothesis H0 

is that the sequences are series of i.i.d. random variables (independently identically 

distributed) and the test statistic is asymptotically normal. 

For a—5% statistical significance level, the critical value is 1.96. It is strai

ghtforward that for all sequences, we have to reject the null of independence. As 

we argued in chapter 5, it is preferable to use such tests within a surrogate data 

analysis framework. The only difference here is that by preprocessing the original 

FTSE returns sequences with wavelet filters, we may have altered the significance 

levels for the whole statistical hypothesis testing procedure. Our BDS test results 

should be treated with caution as they may be misleading, at least for the Wavesh

rink denoised sequences. Further research is needed to establish the power of such 

tests when wavelet preprocessing is applied to the test data. 
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Figure 8.39: Maximal Lyapunov Exponent 

8.4.3 Recurrence Quantification Analysis 

The visual information from the delay and phase plots as well as the calculated 

metrics suggest that there may be a low dimensional deterministic dynamics within 

the generating process for the FTSE Waveshrink-denoised returns time series. The 

next logical step was to investigate these using recurrence quantification analysis 

(RQA) (Webber and Zbilut, 1994) as described in chapter 5. 

In figure 8.41 we generated the recurrence plots (RPs) for the Waveshrink 

residuals and fitted values, using the embedding parameters as determined earlier. 

We generated both thresholded and unthresholded versions of the RPs. Subfigures 
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De cd 

2 0.122 
3 0.172 
4 0.218 
5 0.261 
6 0.313 
7 0.379 
8 0.455 
9 0.545 
10 0.647 
11 0.765 
12 0.902 
13 1.06 
14 1.23 
15 1.41 
16 1.64 
17 1.75 
18 1.79 
19 1.83 
20 1.85 

Table 8.17: Correlation dimension Cd for Waveshrink fit. Proposed value 
for dimension is (7^=1.86 

Type Value 
Capacity 
Information 
Correlation 

1.25 
1.46 
1.86 

Table 8.18: Dimension estimation for Waveshrink fitted values. 

(a-b) in 8.41 refer to the residuals. These RPs are devoid of any significant structure 

as expected. Magnifications of various sections of these RPs did not reveal any de

terministic recurrences. Subfigures (c) and (d) refer to the fitted returns. As we can 

clearly see there, the dynamics are very strong and more intense than those reported 

earlier in chapter 5 for the original returns sequences. Various magnifications of the 

thresholded RP of subfigure (d) revealed remarkable structures. Subfigures (e) and 

(f) show clearly that there are very strong deterministic recurrences. By comparing 

these RPs with the ones demonstrated in chapter 5, we can clearly see that the fitted 

returns' dynamics resemble more the ones in the Lorenz RP (figure 5.3 on page 84) 

than the actual FTSE returns one (figures 5.10 and 5.11 on page 95). 
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De e=0.0029 e=0.OO58 e=0.0086 e=0.0115 
2 1.851752e+02 104.7695 76.3662 65.3040 
3 2.217260e+02 104.7264 74.4398 63.1530 
4 2.679491e+02 103.3663 71.1855 59.9907 
5 3.340442e+02 103.4542 68.8693 57.6563 
6 4.287900e+02 104.8513 67.3118 55.7507 
7 5.646849e+02 107.3747 66.2819 54.3269 
8 7.597906e+02 110.9035 65.6517 53.2347 
9 1.041572e+03 115.3997 65.3556 52.3979 
10 1.451400e+03 120.8850 65.3504 51.7829 
11 2.052455e+03 127.4431 65.6091 51.3263 
12 2.939294e+03 135.1792 66.2306 51.1331 
13 4.256397e+03 144.0559 67.0498 51.0377 
14 6.224739e+03 154.1624 68.0639 51.0613 
15 9.178386e+03 165.5993 69.2377 51.1704 
16 1.363079e+04 178.5201 70.5883 51.3863 
17 2.036672e+04 193.0740 72.1009 51.6785 
18 3.060562e+04 209.5349 73.7857 52.0357 
19 4.620032e+04 228.1187 75.6384 52.4591 
20 7.000361e+04 249.0734 77.6774 52.9596 
21 1.064126e+05 272.7013 79.8978 53.5170 
22 1.622306e+05 299.2581 82.3255 54.1639 
23 2.480387e+05 329.1081 84.9535 54.8897 
24 3.801729e+05 362.6921 87.7794 55.6870 
25 5.840141e+05 400.5221 90.8073 56.5437 
26 8.989943e+05 443.1813 94.0402 57.4555 
27 1.386315e+06 491.2678 97.4904 58.4241 
28 2.141330e+06 545.4998 101.1644 59.4490 
29 3.312328e+06 606.7626 105.0859 60.5310 
30 5.130501e+06 675.9171 109.2816 61.6949 
31 7.956396e+06 754.1236 113.7692 62.9312 
32 1.235319e+07 842.5252 118.5421 64.2314 
33 1.919837e+07 942.5995 123.6209 65.5949 
34 2.986618e+07 1055.8158 129.0329 67.0316 
35 4.650643e+07 1183.9533 134.7818 68.5379 
36 7.248517e+07 1329.1457 140.8855 70.1144 
37 1.130651e+08 1493.6304 147.3633 71.7610 
38 1.765086e+08 1680.0780 154.2483 73.4803 
39 2.757708e+08 1891.5935 161.5566 75.2742 
40 4.311253e+08 2131.6122 169.3129 77.1453 

Table 8.19: B D S test statistics for the Waveshrink fitted values. Embed
ding dimension De ranges from 2 to 40. 
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De e=0.005 e=0.01 e=0.015 e=0.02 
2 19.5158 22.3919 25.7312 28.5046 
3 25.4327 27.7493 30.8304 33.6993 
4 29.7449 31.3975 33.6811 36.1074 
5 34.9725 35.1123 36.0299 37.7345 
6 40.4283 38.6889 38.0289 38.8859 
7 48.2491 43.1466 40.3045 39.9644 
8 58.0616 47.9569 42.5383 40.9241 
9 69.8953 53.8184 45.1180 41.9534 
10 84.1499 60.8204 47.9608 43.0562 

Table 8.20: B D S test statistics for the F T S E A L L S H A R E returns sequ
ence. Embedding dimension De ranges from 2 to 10. 

e=0.0037 e=0.0074 e=0.011 e=0.0147 
2 5.4147 5.2439 4.9389 4.0153 
3 10.0185 9.2285 8.2396 6.7585 
4 14.1093 12.8060 11.3598 9.4550 
5 18.4796 16.3753 14.1669 11.7171 
6 22.1520 19.3503 16.3747 13.4423 
7 27.1757 23.2274 19.0033 15.4200 
8 32.2873 27.0065 21.3365 17.0626 
9 41.2059 31.2639 23.7854 18.6433 
10 53.1275 36.1510 26.2818 20.1204 

Table 8.21: B D S test statistics for the Waveshrink residuals sequence. 
Embedding dimension De ranges from 2 to 10. 

Variable Std Normal p-value 
FTSE returns 
Waveshrink fit 
Waveshrink residuals 

-0.7721 
-5.9457 
-0.6661 

0.4401 
2.753e-09 

0.5053 

Table 8.22: Runs test results for the three sequences. 

Variable L L E 
FTSE index 
FTSE returns 
Waveshrink fit 
Waveshrink residuals 

0.0056543 
0.032205 
0.008199 
0.135448 

Table 8.23: Largest Lyapunov Exponents ( L L E ) . 



233 

0.45 

0.445 

lim
en

sio
n 0.44 

0.435 / ; 
Co

rre
la

tio
n 

D
 

0.43 

0.425 / 

0.42 

/ 
/ 

/ 
/ 0.415 / 

-0.5 0 0.5 1 1.5 2 2.5 3 
Embedded Dimension 

Figure 8.40: Waveshrink fit correlation dimension calculations. 

R Q A Statistic Value 
Mean 0.000 
Standard Deviation 0.006 
Mean Distance 93.306 
% Recurrence 29.256 
% Determinism 45.26 
Ratio 1.547 
Entropy 1.658 
Maximum Line 906 
Trend -3.214 

Table 8.24: Waveshriked F T S E returns R Q A results from R P in 8.41 (d). 

In table 8.24 we present the results of RQA on the wavelet pre-filtered returns. 

Comparing these results to the ones in chapter 5 (table 5.2, page 98), we can clearly 

see that the filtering has improved the metrics that indicate determinism. The 

standard deviation has diminished whereas the mean distance has become larger. 

The percentage of determinism has risen by 17.58 % whereas the entropy has fallen. 

This indicates that wavelets have managed to pick up and filter out a substantial 

stochastic component of the series. The maximum line length has also increased 

indicating that we have picked up even longer recurrences. All these findings here 

lead to the conclusion that wavelet pre-filtering and denoising may be the way 

ahead in establishing whether financial time series are governed partially or fully by 



234 

V i s u a l Recu r r ence A n a l y s i s - H : \ D A T A \ r e s id-dat Q 00 

1000 2000 3000 4000 SOOO 6000 7000 8000 " 

(a) Residuals 

V i s u a l Recu r r ence Ana lys i s - H: \LlATA\wsf iLrJa t 

1U0U 2000 3000 4000 5000 SOOO 

(c) WS fit 

V i s u a l Recu r r ence A n a l y s i s - H : \ D A T A \ w s f i t . do t n.00 

% 

4200 4400 4600 4000 5000 

V i s u a l Recu r r ence A n a l y s i s - H : \ D A T A \ r e s i r i . d a l • oo 

mm 

1000 2000 3000 4000 5000 6000 7000 0000 

(b) Residuals 

V i s u a l Recu r r ence A n a l y s i s - H : \ D A T A \ w s f t t d o t N QQ 

1000 2000 3000 4000 5000 6000 7000 

(d) WS fit 

V i s u a l Recu r r ence A n a l y s i s - H : \ D A T A \ w s f i t . d a t o.00 
5BQQ-! 

»oo * mnm <pm#*Mni 

3200 3400 3600 3000 4000 4200 

(e) Zoom 1 (f) Zoom 2 

Figure 8.41: Recurrence plots for Waveshrink f i t and residual sequences. 

file://H:/DATA/res
file://H:/LlATA/wsfiLrJat
file://H:/DATA/wsfit
file://H:/DATA/resiri.dal
file://H:/DATA/wsfttdot


235 

nonlinear deterministic processes. 

8.5 Conclusions 
Wavelet transforms can be used on data in order obtain information on various 

frequencies as well as in time. This is a clear advantage over spectral analysis which 

can only focus on frequencies. Financial time series exhibit volatility and sharp 

localised fluctuations. This makes them ideal candidates for wavelet analysis. 

In this chapter we showed how continuous and discrete wavelet transforms 

can be applied on financial time series. We also showed how the results from th

ese transforms can be used to gain an insight on the dynamics and the structure 

of these time series. Initially we obtained from continuous transforms the wavelet 

scalograms. We revealed a wealth of structures in various scales and showed how 

these graphs can identify significant events that altered the structure of the seque

nces. More precisely, using the FTSE ALL SHARE daily time series, we were able 

to identify the timing of shocks such as the oil crisis of the 70s or the 1987 stock 

market crash. We were also able to find how these events translate in various scales. 

As a second application we used discrete wavelet transforms to obtain views 

on the structure of the FTSE closing prices and returns at various scales. Following 

that, we used the Waveshrink algorithm to denoise the returns sequences and showed 

that the obtained residuals (noise) were stationary, i.i.d. normal random variables. 

All results seem to concur that Waveshrink was able to filter out nonsystematic 

components. The fitted values were then passed through an array of qualitative 

and quantitative tests in order to establish what kind of dynamics were governing 

their data generating process. Careful examination of their structure revealed that 

we can not rule out deterministic nonlinearities and chaos. There is a strong indi

cation that the dynamics are not stochastic or random. We supported this finding 

using recurrence quantification analysis, by calculating measures such as Lyapunov 

exponents and correlation dimensions and finally by conducting statistical tests for 

independence (BDS and Q-statistics) and nonlinearity (RQA). 

The final conclusion of this chapter is that wavelets can be used in conjunction 

with other linear and nonlinear techniques in order to provide a clearer view of the 
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data generating processes of financial time series. Wavelet filtering can provide 

an enormous wealth of information and detail for the dynamics of the time series. 

Moreover, it can be used to obtain cleaner processes. We experimented with a 

single time series of the FTSE logarithmic returns and revealed very clear and 

interesting dynamics. Future research may be focused on refining this information 

and combining the tools used here possibly under a multivariate framework. 



C H A P T E R 9 
Conclusions 

9.1 What can we deduce from our results 
As we discussed in the introduction, the emergence of chaos theory in finance 

implies a substantial paradigm shift. Complexity as a descendent of chaos theory, 

while contributing to the dynamical systems overall theoretical framework, stops at 

the border of regular behaviour and unpredictable chaotic irregularity. In this sense, 

tools from nonlinear deterministic system analysis are required to characterise cha

otic structures or attitudes. The nonlinear methodologies utilised in this thesis can 

deduce whether a system's dynamics abide to nonlinear determinism or stochastic 

randomness. 

Until recently we were not well equipped to detect any significant shifts from 

randomness. Most commonly the BDS (Borck et ai, 1987) test for independence 

was used, which is though inappropriate for application to small, noisy data sets. 

Secondly, this test can reveal wether the data generating process is an individually 

identically distributed sequence. The alternative to this is not necessarily a chaotic 

process. The introduction of qualitative tools such as the close returns (Gilmore, 

1993) and recurrence plots (by Eckmann et al, 1987), gave us the opportunity to vi

sualise dynamics, with a few non-critical and non-parametric assumptions and very 

little or no manipulation of the data. Moreover these tools enable us to deduce in a 

clearer fashion whether the dynamics involved are deterministic or stochastic. Wa

velets (Daubechies, 1992) on the other hand have provided a new filtering approach 

that enables global and localised view of dynamics and structure for any sequence 

whether being stochastic, deterministic or a result of mixed processes. Furthermore, 

they can be applied to finite and highly discontinuous sequences, even to series wh

ich are non-homogeneously distributed in time. Wavelets do not suffer from the 

shortcomings of Fourier analysis and have been used successfully in many sciences 

with multidimensional data. Wavelet filtering has also been extremely successful 

in the exploratory analysis of sequences that exhibit chaotic dynamics (see Wornell 
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1993 and 1995). Combining the so far mentioned techniques we revealed that the 

dynamics behind the stock market series are characterised by absence of stochasti-

city. Moreover we found strong presence of nonlinear deterministic structures. We 

achieved this with a minimal set of parametric or theoretical model assumptions and 

the results appear to be reproducible. Another important aspect of this research is 

that we established nonlinearities in the data by avoiding using invariant statistical 

measures as a basic approach as these have been proven to be prone to miscalcu

lations and to often lead to inconsistencies, due to the quality of the financial data 

used. 

The results from all three empirical essays point to the same direction. We 

believe that we have compelling evidence from both qualitative and quantitative 

sources that stock market returns are not characterised entirely by stochastic data 

generating processes. Visual inspection of the dynamics as these are revealed in 

chapters 5 and 8, implies that the structure of these sequences does not agree with 

the expected theoretical facts. In chapter 5 (figure 5.11, page 96) the magnified areas 

of the recurrence plots indicate that the returns have considerable deterministic 

recurrent structure. This is also identified by the quantification procedure in page 

98 (see table 5.2). These findings were the initial point for the path followed in the 

rest of the thesis. 

In econometric theory the important issue is to put specific hypothesis to the 

test. Parametric model fitting is assumed preferable to any atheoretic approach. 

Even then though, the dynamics of any system defined by a set of structural rela

tionships should be put to the test via a statistical hypothesis testing procedure. 

Surrogate Data Analysis (SDA, Theiler et al, 1992) as examined in chapter 6, pro

vides a link between such an approach and the suggested strategy in this thesis. In 

section 6.3 (page 107) we discuss our rationale. It is important to stress again that 

the SDA scheme is a prerequisite for most approaches that involve the calculation of 

chaotic invariants for the determination of chaos in time series. Although this meth

odology exists since 1992, it seems that it has been largely ignored by the empirical 

finance literature. This fact puts previous research results under serious scrutiny. 

Our experimentation with various types of tests in chapter 6 has provided a clear 
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view on how this methodology can be utilised to furnish us with a direct answer. 

The main conclusion is that the set of linear hypotheses referred to in section 6.4.1.1 

(page 112) can be strongly refuted. The alternatives to these hypotheses allow di

rectly for nonlinear and nonstochastic structures. The implications are that we can 

not rule out with certainty deterministic and chaotic structures for the financial 

returns sequences. This provides further support to our investigation objectives. 

So far we had achieved to provide strong implications of deterministic stru

ctures and nonlinearities in index closing prices and return sequences. The main 

problem, always identified in approaches like ours, is the lack of clean "observa

tions". This was clarified from our introduction. Intuitively the logical course of 

action would be to consider transformations of the data that could ensure substantial 

noise filtering without tampering with the underlying dynamics of the sequences. 

Unfortunately not all preprocessing approaches are useful when it comes to revealing 

unknown dynamics. If indeed the case was that nonlinear determinism is at hand, 

a number of pre-filtering techniques should be ruled out. Abarbanel (1995) and Th-

eiler and Eubank (1993) among others have shown that there are a few techniques 

that would capture nonsystematic noise components efficiently and provide us with 

series that contain "untouched" structural information. In the case of chaotic deter

minism, the approach should be very sensitive to the presence of any attractors and 

allow them to exist in the dynamics of the "clean" data. Using a slightly different 

approach we employed wavelet transforms and more precisely the discrete transform 

version and the denoising strategy called "Waveshhrink" (Donoho and Johnstone 

1994 and 1995, also in Bruce and Gao, 1996) based on wavelet regression. In section 

8.3.2 (page 205) we demonstrated how this can be applied to returns sequences such 

as the FTSE index, to provide a denoised version of these. The noise obtained 

was remarkably white. Furthermore, the transform was monotonic-invertible which 

implied that the loss of original information was minimal. This ensured that cha

otic information had been preserved to a very large degree (if not entirely). The 

examination of the preprocessed sequences with the methodologies outlined in the 

previous chapters revealed qualitative information on the existence of cycles consi

stent with chaos and determinism. Moreover, quantitative measurements provided 
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strong implications for the existence of determinism. Visual information from sca-

lograms (in section 8.2, page 185) suggested also the existence of some type of self 

affinity and self similarity, characteristic indications of fractal structures. These re

sults are also reproducible. The evidence here suggests that the processes are purely 

aperiodic and nonstochastic. Yet after all this evidence it would be a very strong 

and somewhat rushed premise to suggest that chaos is at hand. A plausible answer 

would be to entertain the idea of mixed processes, chaotic and stochastic. For such a 

position though there is yet no well defined and structured methodology that allows 

for robust testing. This could be an interesting area for future research. There is 

a new though scientific concept that could explain the structures revealed in this 

thesis, that of the self-organised critical phenomena (Bak, 1994) and we discuss this 

in subsection 9.2.1 that follows. 

Similar to this thesis' context research has failed to provide in the past, strong 

evidence of low dimensional dynamics in stock market indices. For example, Abh-

yankar et al., (1997) study the S&P 500 index and although they report nonlinear 

structure they do not support low dimensional deterministic chaos. Peters (1994), 

using a very small set of 496 monthly observations, provides evidence of low dimen

sional deterministic dynamics for the same index. His data though are preprocessed 

with the use the of Consumer Price Index. Andreadis (2000) uses the same index 

and transformations of it via a self-criticality (Bak et al., 1989) approach to demon

strate the existence of fractional Brownian dynamics for the series and absence of 

chaos, supporting the indications of Hsieh (1991). Willey (1992) investigates the 

NASDAQ 100 and S&P 500 daily index but fails to reach conclusive results that 

support the existence of chaos. 

We could refer to a plethora of similar research results that have been obtai

ned over the last ten years. The conclusion is that noise in the stock index time 

series, affects the performance of the methodologies utilised and leads to inconclu

sive results. To adopt the philosophy of our approach in chapter 6, any research 

that is based on statistical hypothesis testing is prone to misinterpretations due to 

inconsistent use of testing procedures or miscalculation of the power of the tests. 

Secondly, parametric approaches and preprocessing set limits to the upper bounds 
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of statistical tests, an issue which is largely ignored in the literature. This implies 

that one may be conducting a test at a 5% level of significance though the real level 

may be much larger, leading thus to acceptance of linearity, log-normality and sto-

chasticity when in fact we should have been rejecting these. And last but not least, 

the refutal the presence of chaos, via statistical hypothesis testing, implies clearly 

that on the basis of the data set, one can not support its existence. It does not 

necessarily mean that nonlinear determinism is not there or in other similar data 

(or even a larger sample of the same data). 

In this thesis, with the exception of chapter 6, where tests can be conducted 

within a "safeguarded" statistical environment, we avoid the pitfalls discussed so 

far. We adopt a purely topological time series analysis approach and search for 

deterministic structure, avoiding methodologies and calculation of statistics that 

can produce misleading results due to the nature of our data. We thus provide 

compelling qualitative evidence as well as quantitative indications against linearity 

and stochastic randomness for our data set. The performance of the tools used can 

be improved by future research and this may lead to clearer and stronger support 

for the hypothesis of chaotic dynamics. 

We believe that the usefulness of our approach is self-explanatory. It is fairly 

straightforward that recurrence analysis can be used as a weaic from efficiency test. 

Very effectively, recurrence plots and recurrence quantitative analysis (RQA) can 

provide evidence for or against stochastic randomness for stock return sequences, 

the way we indicated in chapter 5. Lack of structure in recurrence plots can be 

easily quantified by RQA which can provide a clear-cut indication for the existence 

market efficiency. The only prerequisite here is careful delay coordinate embedding 

and preprocessing of the data, if needed. In the case of suspicions of large noise 

contents, one may choose to filter the sequences via finite impulse response filters 

(following Abarbanel, 1995) or choose the methodology suggested here, i.e., the 

discrete wavelet transforms. Moreover the results can be supported by an SDA 

statistical hypothesis testing framework, as we already demonstrated. 
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9.2 Chaos, Self-organised Criticality and the future 
We already discussed that our empirical approach aims to provide further 

evidence in support for nonlinearity and nonstochasticity for stock returns, in the 

context of novel weak form market efficiency tests. There is a wealth of previous 

research, mostly during the last 10 years that deals with this issue in an analytical 

or empirical framework. One can refer to collections of articles by Trippi (1995), 

Creedy and Lance (1994), Creedy and Martin (1994 and 1997) or Barnet et ai, 

(1996) for a concentrated view of the research so far. There are many articles which 

deal with the issue of market dynamics that would allow for chaotic prices or returns 

and the ones closer to this thesis were discussed in chapter 2. 

Our research here concentrated in the examination of daily frequency time 

series of stock indices, mainly the FTSE ALL SHARE. One may argue that there is 

a substantial part of the dynamics that would evolve intradaily, at higher frequencies. 

Aggregation to the closing prices of every day would not always allow the "true" 

high frequency dynamic components to survive. An interesting thus path for future 

research would be to identify if the methodologies utilised here would reveal the same 

results for higher or lower frequencies. Following Abarbanel (1995), Peters (1994) 

and Kantz and Schreiber (1997), we can note that collecting data for a large period 

of time i.e., over 30 years at daily frequencies, would ensure under certain general 

assumptions that we have most of the necessary information to properly unfold the 

dynamics of the phase space. Of course, in every empirical approach, there is always 

the question of how much data should we use. Intuitively, a comparative approach of 

using a long time series of stock market returns in various frequencies would provide 

a clearer view into the true dynamics of the market. Unfortunately, high-frequency 

data are available for a sort period of time relatively to daily and lower frequency 

observations. For a very detailed view on the issue of high-frequency data, one may 

refer to the work of Gwilym and Sutcliffe (1999) as well as Goodhart and O'Hara 

(2000). Most of the research in the high-frequency field (see for instance the research 

from Olsen and Associates92) seems to be pointing towards a specific direction: time 

dependent structures with highly asymmetric dynamics. Time-varying frequencies 
9 2 0n the WWW under: http://www.olsen.ch/research/working_papers.html 

http://www.olsen.ch/research/working_papers.html
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and irregular spacing of events generate structures that do not usually leave a stamp 

of their dynamics when these series are sequenced in lower frequencies. 

Experimentation with higher frequencies than daily has provided some inte

resting results: scaling laws and long memory components. Miiller et ai, (1993) 

suggest a scaling law for absolute price changes for FX data and suggest fractional 

noise structures and long memories for their volatility structures. Their findings are 

in accordance to the frameworks laid by Mandelbrot (1999a and 1999c) where he 

demonstrates clearly how a fractal dynamics in time series can be explained as long 

memories and fractional noise by existing empirical "nonlinear" methodologies. An 

interesting point here is that ARCH and GARCH type approaches do not sufficie

ntly capture the long memory structures due to the fractality or multifractality of 

the dynamics. Our contribution to this area is that by using wavelet transforms we 

were able to reveal via scalograms (see chapter 8) the evolution of the dynamics at 

different scales for the index and returns time series. We were also able to identify 

the structural and volatility breaks caused by sever financial crises with accuracy 

and to discern how these shocks affected the whole series at various time scales. The 

same gaps in the phase space can be also revealed in the recurrence plots in chapter 

5, where the vertical and horizontal line segments identify the time and severity of 

the shocks. 

Finding a plausible explanation for the structures revealed is not an easy task. 

This is still a liquid issue and an area of ongoing research. A quick answer would be 

that external events may be affecting (contaminating) the dynamics of the sequences 

under examination. That is probably why recurrent patterns seem to be interru

pted and the selfsimilar bifurcations in the wavelet scalograms appear not to be 

sharing the same structure during the periods of strong fluctuations. An interesting 

area of future research would be to identify the change of phase-space dynamics du

ring crisis and attempt to model the structures there independently. What though 

theoretical approach may one adopt in order to justify our results and suggested 

research strategy? We suggest that the answer lies in some newly developed notions 

and theories. 

The assumption of complexity in market dynamics inevitably brings us clo-
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ser to the issues of self organisation. If indeed nonlinear determinism is a major 

power behind the movements of prices, the market as a complex system should exh

ibit a certain degree of stability, instability and self-organisation. The epicentre of 

the discussion hereon will be the work and ideas expressed mostly by Bak (1996) 

and Holland (1995). These refer to the area of physical science regarding critical 

phenomena from complex systems and hidden order. 

9.2.1 Self organised criticality 

Self-organised criticality (SOC) (Bak, 1987) provides a new way of viewing 

physical and social phenomena. The basic assumption is that part of nature is 

perpetually out of balance though organised in some critical state where anything 

can occur within a framework of well-defined statistical laws. SOC can explain some 

types of complex patters which can be discerned during catastrophic events who are 

characterised by fractal dynamics. According to Bak (1995) " Complexity originates 

from the tendency of large dynamical systems to organize themselves into a critical 

state, with avalanches or "punctuations" of all sizes. In the critical state, events 

which would otherwise be uncoupled become correlated. The apparent, historical 

contingency in many sciences, including geology, biology, and economics, finds a 

natural interpretation as a self-organized critical phenomenon.". 

The basic example in Bak's work is the sandpile model. In its critical state it 

mimics a range of phenomena associated with complexity. A sandpile can be created 

by sand grains let to fall down. In the beginning the pile is flat and individual grains 

stay close to where they have originally landed. Up to this point, classical physics 

can provide an adequate explanation for the dynamic attitude of every sand grain, 

using basic Newtonian laws. As the process of dropping sand on the pile continues 

though, the pile gets larger and steeper and eventually landslides will occur. At 

some point, large landslides as "avalanches" will span most of the surface of the 

sandpile. At that point the system is out of balance and the behaviour of individual 

grains can not provide an explanation of the overall system dynamics. This is the 

critical state of the sandpile. Any slight disturbance can trigger an avalanche of 

its own dynamics. The nature of the sand slides is fractal. Their size distribution 
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(number of sand grains per slide) follows a power-law such as the fractal dynamics 

introduced by Mandelbrot and other "chaoticians". At the end of the day, Bak 

suggests that significant events do not happen gradually or smoothly but abruptly, 

in the form of "avalanches". The basic characteristics of a self-organised system 

according to Bak are: 

• The system is open and dissipative. 

• The system organises itself in a critical state with regular aperiodic avalanches 

of variable size due to its dissipative structure. 

• The system's dynamics are embedded in a single spatiotemporal fractal stru

cture. 

• Catastrophic instability for a self-organised system may occur when it is forced 

to certain optimal states which can take it out of its self-organised state. 

To use Bak's own words: "self-organisation can be described by an inescapable diver

gence of the size of avalanches". Avalanches of size say 1, 2, 3, 4,...,n would occur 

with probabilities of 1, 1/2, 1/3, l /4 , . . . , l /n respectively. Thus, the probability of 

occurrence is inversely proportional to the size of the slide. This law is in agreement 

with the existence of fractal patterns. The avalanche size according to the number 

of avalanches follows a 1 / / noise or flicker noise law. This law characterises many 

fractal and long-memory phenomena and is increasingly discovered in finance. 

Bak's views allow for the presence of SOC in financial phenomena. This has not 

been bypassed in the literature (see Pis'mak (2001), Strozzi et ai, (2002), Sornette 

(2003), Brock (1991) and Middleton (1996) among others). A common feature of 

SOC models is the presence of separation of time scales i.e., the system evolves at 

a slow rate until one of its elements reaches a certain threshold. This triggers the 

shock or avalanche, in a form of increased activity which will occur within a very 

short time window. When the shock is over, the system evolves again, following 

the same patterns until the next avalanche. Since it is an open dissipative system, 

there is provision for external driven factors or forces. For example, in the case of a 

financial market, SOC allows for interaction of agents from various sectors as well 
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as activity that is triggered by some cognitive process depending on the filtering of 

relevant but outside the market information (such as political events and other non 

quantitative observations). Institutional, economical, social, natural phenomena 

and physical laws, can all be accounted for within a SOC framework. Moreover, the 

dissipative nature of the system under SOC, allows for a wealth of other features 

that make the theory appealing to many disciplines. 

In this thesis we provided evidence that financial time series indicate a stock 

market dynamical structure with aperiodic, nonstochastic and probably dissipative 

chaotic structure. Any constraints to the agent's expected utility functions can cause 

according to Bak such dissipation. This also occurs when due to their bounded 

rationality (see Rubinstein, 1998), agents misinterpret or fail to interpret aspects 

or signals of their environment. As their choices are discrete, dissipation will also 

occur discretely. 

Concluding, SOC can be a very interesting new paradigm that may provide an 

adequate explanation for the types of dynamics observed in stock market systems, 

not accounted for in the classic financial theory literature. 

9.2.2 Investigating the causes of chaos and the future of research 

It seems that as empirical analysis tools are improved, scientific research will 

be offered more means and opportunities to discover deterministic and chaotic pat

terns in asset prices. The fundamental question though will prevail: "What causes 

chaos in the market dynamics?". An answer can not be easily found. So far we 

have been partially successful on mainly detecting nonlinear-chaotic dynamics. As 

already discussed, financial volatility and turbulence may be explained under a SOC 

framework. This is an area of ongoing research. No convincing or widely accepted 

analytical model has been presented yet that explains the existence of an econo

mic or even market-psychology mechanism that leads to the realisation of critical 

phenomena and emergent market behaviour. 

In his forthcoming book Los (2003) discusses chaos and financial turbulence. 

Regarding the causes of chaotic crashes, he provides a sensible idea (page xivii) 

which we quote below: 
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"Now some financial crises are more dangerous than others. For example 

it may not be dangerous to speed up the trading and price formation 

activity in a financial market and encounter a crisis, because the fina

ncial market may move through a so-called safe financial crisis. Whereas 

slowing down trading and price formation may lead to an unsafe fina

ncial "blues sky catastrophe". It may cause a financial crisis in which 

the pricing system close to an attractor suddenly heads for the attractor 

at infinity: the market pricing process breaks down and can't recover." 

According to Los (2003), financial turbulence could be perceived as an "efficiency 

enhancing phenomenon" and distinguished from catastrophes or crises. Any disco

ntinuity in persistent financial time series could be regarded and measured as a crisis 

and should only be detected in low liquidity markets (especially currency markets). 

Los implies that chaos can be detected by a market's transition from smooth to tur

bulent dynamics. In this case, our findings (especially in chapter 8) could provide 

an invaluable view of the structure of the market shocks. By using a combination 

of wavelets and topological time series analysis tools, we could time and examine 

closely the break down of smooth market functioning, examine the frequency and 

locality of the crises and also analyse the structural changes of the dynamics during 

the shock's history. It is evident from our preliminary results (in chapter 8) that 

there are is substantial knowledge to be gained from such an approach. 

Recently, Alvarez-Ramirez et al. (2002) attempted to provide a model that 

could produce deterministic prices which resemble actual stock market data. Atte

mpting to capture the complexity of stock market prices' behaviour, they proposed a 

framework where fundamentalist and chartist patterns of trading behaviour induce 

transient and oscillatory price dynamics. They suggest that deterministic modelling 

approaches should be used cautiously and be regarded as a complement to stocha

stic methodologies, agreeing on the issue of difficulty in short-term forecasting as in 

Malliaris and Stein (1999). 

An interesting area of current and future research is the "Compass Rose" stru

ctures discovered in phase portraits of asset returns. These formations, can increase 

asset price forecastability, help to calibrate volatility models and are attributed to 
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price discreteness and market micro-structure. Introduced through the Journal of Fi

nance by Crack and Ledoit (1996), it has found its way to random walk tests (Fang, 

2002) and chaos detection (Kramer and Runde, 1997 and Gleason et al, 2000). Our 

approach has revealed evidence of nonperiodic cycles and chaos. A future research 

path will take us to investigate how asset price dynamics, as revealed in chapters 5, 

6 and 8, can generate through the presence of noise and price discreteness, patterns 

like the compass rose. 

Allen and Phang (1994) adopt a more radical strategy. They choose to ex

plain complexity in financial markets through an evolutionary economics approach. 

Using various simulations they attempt to examine chaotic market dynamics th

rough a self adaptive trading model. Assuming a fixed chaotic attractor, using an 

evolutionary and learning process, their model developed successful trading strate

gies. Even in difficult to forecast situations, the model managed to make profits and 

acquire knowledge of long term dynamics. Their conclusion was that market effi

ciency related investment strategies were abandoned for the survival of the trading 

system. They did not though investigate time-varying chaotic dynamics and such 

an exercise could be a very interesting area for future research. The experiment 

by Allen an Phang shows an interesting case where investment behaviour renders 

market equilibrium conditions that lead to efficiency irrelevant, when the dynamics 

of the price mechanism exhibit chaotic determinism. On the same lines, Farmer and 

Lo (1999) discuss that evolutionary and ecological models of financial markets can 

provide further insight on why and how agents compete and adapt in complex dyna

mical markets though on a suboptimal level. They discuss how evidence of chaotic 

and deterministic market dynamics contradicts the EMH and at the same time can 

be explained very realistically by agent-based models. Hommes (2002) combines an 

evolutionary approach with bounded rationality. Using nonlinear adaptive systems 

he finds that certain stylised facts (fat tails, volatility clusters and long memory) 

can be explained by evolutionary models. He suggests that experimental testing 

can provide important insight on whether asset prices are driven by only news on 

fundamentals or "market psychology". 

In general, computer simulations, artificial intelligence and complexity theory, 
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combined with evolutionary economics and agent-based methodologies are regarded 

as the cutting-edge of experimental economics. The relevant literature usually points 

to the general direction of chaotic determinism and nonlinearity in the markets and 

economies investigated. We can safely assume that in the near future there is going 

to be a strong interest to put theories such as the EMH and Rational Expectaions 

to the test. In this respect, we believe that the methodological approach of this 

thesis can be easily combined with experimental and agent-based economic models 

to produce really interesting, if not ground-breaking results. 

Concluding, it would be interesting to note the implication of chaos in as

set and derivative pricing. Savit (1988 and 1988) uses purely chaotic models to 

illustrate the expected effects of nonlinearities on options calculations. Both chao

tic and probability based option pricing evaluations appear to be entirely different 

although the random and chaotic price processes are indistinguishable. They ap

pear to have the same unconditional distributions. Savit (1989) suggests that the 

knowledge of the true conditional distribution can be aided by chaotic-determinism 

related theories and methodologies. In such a case, short-term predictability may 

improve and, with the use of options, one may achieve long-term improvements in 

investment strategies. Empirical research on this field seems also to be increasing. 

Adrangi and Chartrath (2001 and 2003), Adrangi et al. (2001) and Chartrath et 

al. (2001 and 2002) investigate the possibility of chaotic price formations in futures 

and especially commodity futures markets. They do not in general discover strong 

evidence for chaos and the nonlinearities are explained mostly by GARCH structu

res. We believe that our approach could significantly improve the results of their 

research and provide more clear answers on the issue of chaotic determinism in the 

price processes investigated. 

9.3 Conclusion 
By now it should be more apparent that this thesis follows a path between 

inductive reasoning and emergence, while borrowing some elements from reductio-

nism93 in the sense that every definable process is assumed to be computable. We 

have used a combination of empirical approaches to analyse data rather in a "data-
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mining" fashion than a parametric model one. Our intention was to "let the data 

speak" to borrow a popular expression. We investigated patterns searching for cor

relations and recurrent structures that could agree with certain financial realities, 

as these are reflected within some well defined models of Economics and Finance. 

We also believe that our research is somewhere between relativism and reductio-

nism since our results may support a process that leads to better understanding of 

financial dynamics and allows for improved model formulation and prediction. As 

a final point our results are reproducible (see Antoniou and Vorlow, 2002). 

In empirical economics and finance most of the formulations follow the Occam's 

Razor rule, a reductionistic approach which ensures compact congruent representa

tions. Between competing models and ideas the simplest is the most preferable. 

Within the context of this thesis, it remains truly a philosophical question of whe

ther financial phenomena follow stochastic or deterministic paths. We provided the 

arguments against determinism in the introduction. The research path we followed 

so far has provided strong indications for the absence of linearity and simple sto

chastic rules that lead to "convenient" stabilities. In a true "wavelet" fashion, we 

attempted to see the "forest and the trees" (see94 Grapps 1995). According to this 

statement, our approach was a study of emergence. Moreover, by involving minimal 

assumptions about the systems examined, we allowed for relationships between the 

market systems and the overall financial environment. These relationships though 

did not dictate the methodologies and course of analysis applied. 

With respect to the hypothesis of "Market Efficiency" (EMH), our answer 

should be conditional to what is the true notion of an efficient market. If we follow 

Granger and Morgestern (1970) (see also page 37 in this thesis), the random walk 

may imply that: 

"...price changes, in absolute terms are not predictable on the basis 
9 3 "The logical positivist version of reductionism also implies the unity of science insofar as the 

definability of the theoretical entities of the various sciences in terms of the observable would 
constitute the common basis of all scientific laws. Although this version of reductionism is no 
longer widely accepted, primarily because of the difficulty of giving a satisfactory characterisation 
of the distinction between theoretical and observational statements in science, the question of the 
reducibility of one science to another remains controversial." by James Schombert, see also online: 
http://zebu.uoregon.edu/~js/glossaxy/reductionism.html 

9 4Also online under http://www.amara. com/current/wavelet.html 

http://zebu.uoregon.edu/~js/glossaxy/reductionism.html
http://www.amara
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of any linear combination of the past history of these changes. It does 

not rule out any underlying nonlinear relationships nor contradicts the 

possibility of predicting the relative price change of one stock compared 

to another..." 

According to the above statement, our answer should be that nonlinear determinism 

and chaos, do not contradict the random walk model and hence the EMH. We should 

also consider that the attitude of chaotic deterministic systems may be forecasted 

only in the short run as long run forecasting is inhibited by the exponential diver

gence and instability of their dynamics. This itself may suggest that techniques and 

technology and since with chaotic models we can not determine (accurately or at 

all) the long run equilibrium or disequilibrium states of any nonlinear deterministic 

system, having stock markets follow such laws would render them de facto unpredi

ctable95 and hence "efficient" in the broad sense. Essentially, our answer here would 

involve references to recent financial literature such as Peters (1999a and 1999b), 

Bass (1999), Taleb (2001) and May (1999). Quoting the last: 

"...it is impossible to have nonlinearity in finance and equili

brium in economics. They are mutually exclusive. Put ano

ther way, once we destroy linearity in finance, the concept of 

equilibrium in economics must also fall, and vice versa." 

Under this rationale, admitting the presence of "chaos" in market efficiency defini

tions, would destabilise the theoretical framework of any market equilibrium model, 

such as the ones based on discounted expected utilities. We agree in that sense with 

Bethlehem (1977) who points out that the biggest problem the EMH poses is that 

it is concerned with efficiency in an ex-ante sense. Efficiency though can only be 

judged ex-post. 

The final conclusion is necessarily that further research, surely interdiscipli

nary, is needed to provide a further incite on the dynamics we described in this 

thesis. The answer should lie somewhere between chaos theory, volatility and long 

memory models. Research should also focus on the concept of bounded rationality 
9 5 We thank the external examiners for their useful comments and discussion on this issue. 
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and how the EMH could be modified to allow for irrational investment behaviour 

that could explain nonlinear determinism in asset price dynamics. We believe that 

the combination of chaotic models and wavelets is very promising. Current scientific 

endeavours and faculties of thought appear to be in favour of our research strategy 

to this point. 
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