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Abstract

Adenylyl  cyclase  catalyses  the  formation  of  the  second  messenger 

adenosine-3’, 5’-monophosphate from adenosine triphosphate, and is involved 

in  a  number  of  diverse  signalling  pathways  in  eukaryotes  and  prokaryotes. 

Adenylyl  cyclases  are  diverse  in  their  structure  and  biochemistry,  and have 

been grouped into six distinct Classes (I–VI). The Class  III cyclase homology 

domain comprises the majority of prokaryotic and eukaryotic adenylyl cyclases, 

and has  been further  divided into  4  sub-Classes (a-d)  based on  active  site 

polymorphisms. A number  of  Class  IIIb  adenylyl  cyclases  display  elevated 

catalytic activity in the presence of inorganic carbon. Whether a response to 

inorganic carbon can be observed in enzymes which do not possess a Class 

IIIb cyclase homology domain remains to be established. 

Experiments  were  performed to  investigate  the  response to  inorganic 

carbon of a Class  IIIa cyclase homology domain; mammalian transmembrane 

adenylyl  cyclase.  In  vivo experiments  demonstrated  that  the  activity  of 

mammalian  transmembrane  adenylyl  cyclase  was  potentially  regulated  by 

inorganic carbon, and that this had a downstream effect on the cAMP response 

element binding protein.  In vitro experiments performed on a transmembrane 

adenylyl cyclase demonstrated that the increase in activity in the presence of 

inorganic  carbon  occurred  through  an  increase  in  kcat and  increased  metal 

affinity.

Experiments were performed to test the response to inorganic carbon of 

several enzymes that share a structurally similar active site with the adenylyl 

cyclases;  the  polymerase  I family  of  prokaryotic  DNA  polymerases,  the 

polymerase β family of DNA polymerases,  and the guanylyl cyclases. Initial in 

vitro experiments performed on T7 RNA polymerase demonstrated a response 

to inorganic carbon, however, it  was discovered that this was likely due to a 

non-specific effect of pH. It was shown that inorganic carbon increased assay 

pH over time, and this warranted a re-design of the in vitro assay used to test 

the  response  of  an  enzyme  to  inorganic  carbon.  This  new  in  vitro assay 

methodology was used to  re-test  T7 RNA polymerase,  as well  as test  DNA 

polymerase  β  and  several  guanylyl  cyclase,  and  demonstrated  that  these 

enzymes were non-responsive to inorganic carbon.

Using this newly devised in vitro assay, experiments were performed to 

re-test  the  response  of  mammalian  transmembrane  adenylyl  cyclase  to 
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inorganic  carbon,  and  demonstrated  that  this  enzyme  was  unlikely  to  be 

regulated by inorganic carbon. Furthermore, this new in vitro assay was used to 

re-test  the  response  of  several  Class  IIIb  cyclase  homology  domains  to 

inorganic  carbon.  Results  demonstrated  that  mammalian  soluble  adenylyl 

cyclase  was  responsive  to  inorganic  carbon,  however,  results  provided 

evidence to suggest that two prokaryotic Class IIIb cyclase homology domains 

(CyaB1 from  Anabaena PCC 7120 and CyaC from  Spirulina platensis)  were 

possibly non-responsive to inorganic carbon.
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Introduction Philip Townsend

1.1 The importance of Ci

All life on Earth is ultimately dependent upon inorganic carbon (Ci), as 

the  substrate  of  the  carbon  fixing  enzyme  ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RuBisCO). Ci is predominantly found as gaseous CO2, 

however, in solution Ci is composed of CO2, CO3
2- and HCO3

- (and to a lesser 

extent  H2CO3),  which  exist  in  a  pH dependent  equilibrium (Figure  1.1).  It  is 

believed  that  ancient  photosynthetic  bacteria,  first  occurring  somewhere 

between 2.7 and 1.9 billion years ago, were responsible for creating conditions 

suitable  for  sustaining  modern  O2 dependent  non-photosynthetic  life  through 

their evolution of O2 and fixation of atmospheric CO2 (Hetherington and Raven, 

2005; Ohno, 1997). Due to many factors, all life on Earth has been subjected to 

large  fluctuations  in  the  levels  of  Ci  in  both  the  atmosphere  and  aquatic 

environments,  yet  life  has  continued  to  flourish  (Beerling  et  al.,  2002). 

Photosynthetic organisms are known to be able to acclimate to relatively large 

changes  in  atmospheric  CO2 (Kaplan  et  al.,  2001). However,  due  to  the 

currently accepted problem of anthropomorphic increases in atmospheric CO2, 

understanding  how Ci  interacts  with  organisms has become more  urgent.  It 

would be prudent to assume that due to the continuous fluctuations in the level  

of Ci that organisms have been exposed to, that they have evolved mechanisms 

through which they can adapt their physiology, and indeed many examples of 

which are known.

In  the  long  term,  plants  are  thought  to  regulate  the  morphology  and 

number  of  stomata  expressed  on  their  leaves  in  response  to  variable 

atmospheric CO2 (Beerling et al., 2002; Franks and Beerling, 2009). In the short 

term, plants are known to possess Ci sensitive signalling mechanisms through 

which they can regulate the opening and closing of their stomata in response to 

atmospheric CO2 levels (Hashimoto et al., 2006; Hu et al., 2010). Furthermore, 

photosynthetic  cyanobacteria  have  been  shown  to  possess  a  mechanism 

through which they can regulate their carbon concentration mechanism (CCM) 

in response to available Ci  (Giordano  et al., 2005). These CCMs are found in 

photosynthetic  bacteria  and  represent  a  key  mechanism  though  which  an 

appropriate concentration of Ci can be exposed to the carboxysome; the main 

site of carbon fixation through the Calvin cycle. 

Heterotrophic organisms can be exposed to large, short term fluctuations 

in the levels of Ci they are exposed to, since CO2 is the predominant by-product 
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Introduction Philip Townsend

of metabolism. Due to the continuing need to excrete CO2 as a metabolic by-

product, mammals have evolved mechanisms through which they can vary their  

rate of ventilation in response to elevated blood CO2 (Daristotle  et al., 1990). 

Certain species of nematode worms, organisms which feed off decaying plant 

matter,  can  be  exposed  to  high  levels  of  CO2 (which  can  lead  to  hypoxia, 

anaesthetisation, and death) in the soil, and as such have evolved a mechanism 

through which they can sense elevated CO2 and avoid it (Hallem and Sternberg, 

2008). More ingeniously, certain species of blood feeding insects have evolved 

a mechanism which allows them to exploit plumes of exhaled CO2 as a means 

to direct host location (Gillies, 1980).

Despite many organisms having evolved sensing mechanisms through 

which they can adapt their physiology in response to small fluctuations in Ci,  

large, uncontrolled changes can have severe effects. This is highlighted by a 

plethora of physiological problems associated with perturbations in the balance 

of Ci in the body of mammals. Increased or decreased whole body CO2, which 

can be caused by respiratory acidosis or alkalosis, causes impaired function of  

almost all  organs  (Epstein and Singh, 2001; Foster  et al.,  2001). Aside from 

direct effects as a result of a drop in blood pH during respiratory acidosis, the 

associated rise in whole body CO2 concentration has been shown to cause a 

number of problems, such as impaired alveolar fluid re-absorption in the lungs 

and imbalanced ion re-absorption in the kidneys (Brazeau and Gilman 1953; 

Hoppe,  Metler  et  al. 1982;  Briva,  Vadasz  et  al. 2007).  Under  conditions  of 

respiratory alkalosis, the associated drop in plasma CO2 concentrations have 

been shown to affect almost all organs in the body, notably the central nervous 

system, lungs and heart (Foster et al., 2001).

Although organisms are heavily  dependent  upon Ci  as a  substrate  or 

product for carboxylase and decarboxylase enzymes, they are also dependent 

upon the equilibrium between the two species of  Ci  in  solution to provide a 

buffering  mechanism  through  which  they  can  resist  small  changes  in  pH 

(Adrogue and Adrogue, 2001; Boron, 2004). In solution at physiological pH, the 

two main species of Ci, CO2 and HCO3
-, exist in a pH dependent equilibrium, 

such that as pH is varied the 'contribution' of each Ci species to the total Ci pool 

varies (Figure 1.1). However, it is also true that as the concentration of either 

species of Ci is altered, the re-equilibration is able to effect pH. In fact, certain 

cell types in mammals are known to detect fluctuations in CO2 concentration 

3



Introduction Philip Townsend

through the effect  that  it  has upon pH, and this  is  commonly referred to as 

CO2/H+ sensing (Lahiri and Forster 2003). Furthermore, although the CO2/HCO3
- 

equilibrium forms naturally, it is deemed so important that a family of enzymes 

have evolved in almost all organisms to speed the acquisition of equilibrium; the 

zinc  dependent  carbonic  anhydrases  (CAs)  (see  Figure  1.2 for  mechanism) 

(Smith and Ferry, 2000; Tripp et al., 2001). 

Aside from CA, Ci is known to interact with a number of proteins, both as 

a substrate or product in catalysis, but also in an allosteric manner. There are a 

multitude  of  carboxylase  enzymes,  such  as  phosphoenolpyruvate 

carboxykinase and RuBisCO, which utilise either CO2 or HCO3
- directly within 

their  catalytic  mechanism  (Cotelesage  et  al.,  2007).  There  are  also  several 

enzymes, such as RuBisCO and Class D β-lactamases, which require allosteric 

activation  through  CO2 binding  to  specific  amino  acid  side  chains  prior  to 

gaining catalytic competence (Golemi et al., 2001; Lorimer and Miziorko, 1980). 

Furthermore, certain prokaryotic and eukaryotic adenylyl cyclases (ACs), which 

are highly prevalent signalling enzymes, have been shown to increase their rate 

of catalysis in the presence of Ci (Cann et al., 2003; Chen et al., 2000; Hammer 

et al., 2006; Klengel  et al., 2005; Mogensen  et al., 2006). However, despite a 

number of proteins being shown to interact with Ci, in many cases the way in 

which this interaction occurs is not completely understood, as is the case for 

ACs (Steegborn et al., 2005b).

There is ongoing effort to understand the nature of how Ci interacts with 

proteins,  however,  much of the information gained to date has largely relied 

upon crystallisation and mutational studies and as such details have been slow 

to emerge. One way in which Ci has been shown to interact with a protein is 

through the formation of a carbamate with the ε-amino group (i.e. the side chain 

amine) of a lysine, as is typified in RuBisCO and Class D β-lactamases (Golemi 

et  al.,  2001;  Lorimer  and  Miziorko,  1980).  However,  it  is  also  possible  for 

carbamates to form at the  α-amino group (i.e the N-terminal amine within the 

protein  backbone)  of  lysine,  as is  the case in  haemoglobin  (Matthew  et  al., 

1977). Ci may also interact with proteins in a non-covalent manner, through the 

formation of  hydrogen bonds with amino acid side chains, as is identified in 

phosphoenolpyruvate carboxykinase, where an arginine and lysine were shown 

to co-ordinate CO2 in the active site in a position ideal for catalysis (Cotelesage 

et  al.,  2007).  In  fact,  a  recent  study  has  revealed  that  of  the  amino  acids 
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reported to be involved in binding CO2, arginine, histidine and lysine accounted 

for  more than half,  indicating that  basic  amino acid  side chains  represent  a 

major CO2 binding site (Cundari  et al., 2009). Although almost all amino acids 

were shown to be involved in binding CO2, negatively charged amino acids were 

far  less  frequent,  indicating  that  interaction  with  CO2 predominantly  occurs 

through  the  slightly  negatively  charged  oxygens  (Cundari  et  al.,  2009). 

Furthermore, work has identified that of the two predominant protein secondary 

structures,  β-sheets  were  more  commonly  involved  in  CO2 binding  than  α-

helices (Cundari et al., 2009). Although the knowledge of how Ci interacts with 

proteins is advancing fast, there is still no reliable way to predict Ci responsive 

proteins and as such their  identity  in  many known Ci  sensing pathways still 

remains a mystery.

The following sections will  cover, as broadly as is feasible, the known 

mechanisms through  which  plants,  invertebrates,  mammals  and  prokaryotes 

sense Ci. Although fluctuations in  Ci have a vast  array of  effects  in  various 

organisms,  an emphasis  will  be placed upon systems where the Ci sensing 

pathway is at least partially characterised. 
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Figure 1.1: Inorganic carbon equilibria in solution, and the effect of pH on the 
relative contribution of each species to the total inorganic carbon pool.
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Figure 1.2: Proposed mechanism of carbonic anhydrase.

Taken from (Domsic et al., 2008)

Originally proposed by (Liang and Lipscomb, 1987)
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1.2 Ci sensing in prokaryotes

As a photosynthetic carbon fixing organism that is likely to be subjected 

to fluctuating levels of available Ci it would be advantageous to be able to sense 

available Ci and modify physiology accordingly. Cyanobacteria depend upon the 

accumulation of  cytoplasmic HCO3
- to  supply  the carboxysome with  CO2 for 

photosynthesis, carbon fixation and as such growth (Badger and Price, 1994). 

Indeed, a sufficient supply of HCO3
- in the cytoplasm is of such importance to 

cyanobacteria  that  they have evolved a mechanism through which they can 

actively transport HCO3
- into the cell when the extracellular supply is limited; the 

carbon concentrating mechanism (CCM, Figure 1.3) (Raven, 2003; Raven et al., 

2008). 

Since the active transport of HCO3
- into the cytoplasm is a process which 

consumes  ATP  it  is  likely  that  cyanobacteria  have  evolved  a  mechanism 

through which available HCO3
- can be sensed and the transport  mechanism 

turned  on  or  off  accordingly.  In  fact,  it  was  observed  that  HCO3
- uptake  in 

Anabaena flos-aquae could be linked to intracellular cAMP, suggesting a cAMP 

signalling pathway could be involved (Franko and Wetzel, 1981). 

1.2.1 S. platensis

Following the identification of mammalian sAC as an enzyme that has its 

activity  increased  by Ci,  and  the  discovery  that  it  shares  significantly  more 

sequence homology with prokaryotic ACs than mammalian tmACs, studies into 

the effect of Ci on prokaryotic ACs began (Buck et al., 1999; Chen et al., 2000). 

The AC activity of recombinant CyaC from Spirulina platensis was up-regulated 

by Ci  in vitro at pH 7.5, showing an EC50 of 18.8 ± 1.6 mM for total Ci with a 

maximal stimulation seen at 30 mM total Ci (Chen et al., 2000). More recent in 

vitro work has shown CyaC activity to increase almost four fold in the presence 

of  40  mM  total  Ci  at  pH  7.5,  giving  support  to  the  earlier  observation  of 

regulation by Ci (Steegborn et al., 2005b). 
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Figure 1.3: The mechanisms through which cyanobacteria obtain cytoplasmic 
HCO3

-.

Taken from (Giordano et al., 2005)
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Figure 1.4: Crystal structures of S. platensis CyaC active site shown from 
different angles. 

(A) Overlay of  the active site before (blue) and after  (yellow) the addition of 
HCO3

-. (B) Overlay of a closer view of the active site, showing the substrate in 
more detail before (blue) and after (yellow) the addition of HCO3

-.

Taken from (Steegborn et al., 2005b)
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Crystallisation  studies  have  helped  to  provide  some  insight  into  the 

mechanism by which Ci stimulates these ACs. Crystals of CyaC soaked in 50 

mM HCO3
- dissolved, however, when soaked in ammonium nitrate or sodium 

phosphate or sodium acetate there was no effect (Steegborn et al., 2005b). This 

suggested that Ci was specifically inducing some form of conformational change 

in the protein,  although without further evidence this was purely speculative. 

Further evidence was obtained through flash soaking and freezing crystals to try 

and catch a glimpse of the conformational change. This method allowed the 

visualisation of an active site closure induced by HCO3
-, mediated through a 4-5 

Å movement of the β7-β8 loop and the α1 helix towards the centre of the CyaC 

dimer  (Figure  1.4A)  (Steegborn  et  al.,  2005b). This  conformational  change 

caused a re-orientation of the substrate ATP, causing a 180o turn of the terminal 

phosphate (Pγ) moiety to close proximity of  an arginine group (Figure 1.4B) 

(Steegborn et al., 2005b). It is possible that this arginine group aids the release 

of  pyrophosphate  following  the  synthesis  of  cAMP,  and  as  such  increases 

activity via acceleration of the rate of product release, and as such substrate 

uptake for a new round of catalysis (Steegborn et al., 2005b). 

1.2.2 Anabaena PCC 7120

Following the demonstration that  Ci  increases the activity of the Class 

IIIb AC CyaC from S. platensis investigation into the effects of Ci on other Class 

IIIb  ACs  began.  The  filamentous  cyanobacterium  Anabaena PCC  7120 

encodes within its genome at least five adenylyl cyclases CyaA, CyaB1, CyaB2, 

CyaC and CyaD  (Katayama and Ohmori, 1997). The ACs CyaB1 and CyaB2 

were shown to possess significant sequence homology with the C1 domain of 

sAC and CyaA was shown to possess significant homology with the C2 domain 

of sAC (Buck et al., 1999). Since the strongest homology was seen in CyaB1 

this  enzyme was chosen as  a  good candidate  to  begin  testing  whether  the 

response to  Ci was a  conserved feature  of  Class  IIIb ACs.  Indeed,  in  vitro 

experimentation show the activity of CyaB1 to be up-regulated in the presence 

of  Ci  (Cann  et  al.,  2003).  More  recent  research  performed  using  in  vitro 

experiments conducted under conditions of Ci disequilibrium, indicated that this 

enzyme may in fact respond to CO2 directly and not HCO3
- as was previously 

speculated (Hammer et al., 2006).
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1.2.3 Synechocystis PCC 6803

The  genome  of  the  freshwater  photosynthetic  cyanobacterium 

Synechocystis PCC 6803 encodes 3 putative nucleotide cyclases  (Ochoa De 

Alda  et  al.,  2000;  Terauchi  and Ohmori,  1999).  The gene  cya1 encodes an 

adenylyl cyclase (Slr1991) that is essential for regulation of motility in response 

to fluctuations in available light (Masuda and Ono, 2004; Terauchi and Ohmori, 

1999).  The  gene  cya2 encodes  a  putative  guanylyl  cyclase  (Sll0646),  and 

although  it  has  been  subjected  to  some  biochemical  and  crystallographic 

studies its physiological relevance has yet to be identified (Ochoa De Alda et al., 

2000;  Rauch  et  al.,  2008).  The final  gene  cya3 (Sll1161)  has  not  yet  been 

studied, although it shares significant sequence homology with other nucleotide 

cyclases, and as such the question as to whether it  is  a nucleotide cyclase 

remains a mystery (Ochoa De Alda et al., 2000)

Investigation  has  revealed  Slr1991  to  be  the  likely  candidate  for  Ci 

sensing in this organism, however, there is slight ambiguity between studies as 

to how Slr1991 actually reacts to Ci. Early work carried out in vitro at pH 7.5 

using a recombinant protein corresponding to the full length Slr1991 molecule 

showed a near 50 % inhibition of enzyme activity in the presence of 50 mM total 

Ci (Masuda and Ono, 2005). More recently, in vitro work at pH 7.5 has shown a 

truncated recombinant form of Slr1991 (amino acids 120-337) to increase in 

activity by nearly 100 % in the presence of only 20 mM total Ci (Hammer et al., 

2006).  Furthermore,  the recent  study provided compelling evidence that  this 

enzyme  is  in  fact  likely  to  be  responsive  to  CO2 and  not  HCO3
- as  was 

previously thought (Hammer et al., 2006).

1.2.4 M. tuberculosis

Mycobacterium tuberculosis H37Rv is a pathogenic bacteria and is the 

main  causative  agent  of  tuberculosis.  This  pathogen,  following  entry  to  the 

lungs,  is  taken  up  by  alveolar  phagocytes  that  are  unable  to  digest  it,  and 

subsequently  the  pathogen  multiplies  therein.  M.  tuberculosis encodes  15 

putative ACs within its genome, and the production of cAMP is important for 

pathogenesis, and also the ability to resist degradation within the phagosome 

(Lowrie  et  al.,  1979).  Furthermore, CO2 has been shown to be an important 

molecular  cue  for  Mycobacterium  microti to  resist  degradation  in  the 
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phagosome (Lowrie et al., 1975).

Two ACs from M. tuberculosis, Rv1625c and Rv1319c, have been shown 

to be stimulated by Ci (Cann et al., 2003; Townsend et al., 2009). It is possible 

that  the stimulation  of  these ACs by  Ci,  resulting  in  the increase in  cellular 

cAMP, provide the source of secreted cAMP needed to avoid degradation within 

the phagosome. 

1.2.5 C. aurantiacus

Chloroflexus  aurantiacus is  a  thermophilic,  photosynthetic  bacterium 

found  in  hot  springs  at  temperatures  up  to  70oC  (Pierson  and  Castenholz, 

1974).  C. aurantiacus produce energy through photosynthesis, harvesting light 

with a chlorosome containing bacteriochlorophyll cs, however, these anoxygenic 

phototrophs do not produce oxygen as a by-product of photosynthesis  (Gloe 

and  Risch,  1978). Instead  of  utilizing  H2O  as  an  electron  donor  during 

photosynthesis  C.  aurantiacus  (and  all  Chloroflexi species)  utilise  sulphur 

containing compounds (mainly H2S and S2O3) as an electron source (Madigan 

and Brock, 1975). 

C. aurantiacus possesses three ACs with strong sequence homology to 

mammalian sAC; Chlo1187, Chlo1066 and Chlo1431 (Kobayashi et al., 2004). 

In  vitro assays  demonstrated  Chlo1187  activity  to  be  up-regulated  in  the 

presence of Ci, with an EC50 of 25 mM, and a nearly 10 fold increase in activity 

in the presence 50 mM total Ci (Kobayashi et al., 2004). Although the regulation 

of this enzyme by Ci was demonstrated, no physiological relevance was cited 

and as such the full details of the Ci sensing pathway (if one exists) remain to 

be established.

1.2.6 S. aurantiaca

Stigmatella aurantiaca is a gram-negative bacteria found living in the soil 

and is a member of the Myxobacteria family. These Myxobacteria undergo a two 

phase  life  cycle,  compromised  of  a  vegetative  growth  cycle  and  a 

developmental phase in which cells aggregate into a multicellular fruiting body 

(myxospore)  (Vasquez  et  al.,  1985).  The  developmental  phase  is  initiated 

through nutrient depletion and is hypothesised to be similar to the formation of 

multicellular fruiting bodies in Dictyostelium discoideum, a process controlled by 
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cAMP signalling pathways (Coudart-Cavalli et al., 1997).

S. aurantiaca possesses two ACs, CyaA and CyaB, and in vitro assay on 

CyaB have shown it to be activated by Ci, although the relevance of this is still 

unknown (Cann et al., 2003).
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1.3 Ci sensing in plants

1.3.1 RuBisCO

Although it does not represent a true sensing mechanism as such, the 

activation of RuBisCO by CO2 does represent one of the earliest characterised 

regulatory interaction of Ci with a protein (Lorimer et al., 1976). RuBisCO, which 

catalyses the first step in the Calvin cycle (addition of molecular CO2 to ribulose-

1,5-bisphosphate), requires CO2 not only within its catalytic cycle but also as a 

covalent activator, enabling catalytic competence (Lorimer  et al., 1976). It was 

shown that formation of a carbamate, through covalent interaction of CO2 with 

the ε-amino (i.e the side chain amine moiety) group of a lysine, was essential to 

facilitate  the recruitment  of  a Mg2+ ion required for  catalysis  (Lorimer,  1981; 

Lorimer  et  al.,  1978; Lorimer and Miziorko, 1980).  Furthermore, the  ε-amino 

group  of  another  lysine  was  shown  to  be  involved  in  the  co-ordination  of 

substrate CO2 to the active site, through non-covalent interaction (Lorimer et al., 

1993; Lorimer et al., 1989).

1.3.2 Stomatal pore regulation

The  stomata  on  plant  leaves  represent  the  main  entry  point  for  the 

atmospheric  CO2 required  for  the  Calvin  cycle.  These  small  pores  also 

represent a major site of water loss through transpiration, something that if not 

properly  controlled  can  have  deleterious  effects  for  the  plant  (Casson  and 

Hetherington, 2010).  Due to the waxy cuticle  present on plant leaves, these 

stomata are crucial for CO2 entry and as such a balance must be established 

between CO2 entry  and H2O loss. Due to  this  it  is  not surprising that plants 

possess mechanisms through which they can regulate stomatal opening and 

closing to maintain a balance (Vavasseur and Raghavendra, 2005). The control 

of  stomatal  opening  is  mediated  through  alterations  in  guard  cell  turgor, 

whereby  a  loss  of  turgor  pressure  results  in  stomata  closure  through  an 

alteration in the shape of the guard cells (Taiz and Zeiger, 2006). Although the 

regulation of stomata in response to factors such as light and water stress are 

well characterised, the response to CO2 is less well understood  (Casson and 

Hetherington, 2010; Kinoshita  et al., 2001; Schroeder  et al., 2001). However, 

details are beginning to emerge, with a protein kinase and CA being shown to 
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be important in CO2 induced stomatal closure in Arabidopsis thaliana, although 

the mechanism through which this occurs is not fully understood (Hashimoto et 

al., 2006; Hu et al., 2010).

It has also been known for many years that in the long term, fluctuations 

in atmospheric CO2 can influence the number of stomata expressed on leaves 

(Woodward,  1987).  Intriguingly,  there is  fossil  evidence to  suggest  that  long 

term variations in atmospheric CO2 not only influences stomatal numbers, but 

also their morphology  (Beerling  et al., 2002; Franks and Beerling, 2009). The 

mechanism  through  which  plants  couple  atmospheric  CO2 to  stomatal 

development is still poorly understood, however, the involvement of one gene 

has been demonstrated; the high carbon dioxide (HIC) gene (Gray et al., 2000). 

Arabidopsis thaliana mutants lacking HIC, which encodes a protein involved in 

the synthesis of  very long chain fatty  acids,  do not  decrease the number of 

stomata in response to high CO2, but in fact increase the number (Gray et al., 

2000).  Although  the  actions  of  several  environmental  factors  on  stomatal 

development  have  been  characterised,  the  mechanisms  involving CO2 still 

remain to be detailed (Casson and Hetherington, 2010).
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1.4 Ci sensing in invertebrates

1.4.1 D. melanogaster

Drosophila melanogaster feed, mate and lay eggs on fallen fruit that are 

rapidly  populated by microorganisms that  cause fermentation; leading to  the 

release of many volatile compounds including CO2. Despite the release of CO2 

also being a marker for ripened fruit D. melanogaster actively avoid CO2 (Suh et 

al.,  2004).  This  avoidance  behaviour  is  possibly  due  to  the  toxicity  and 

anaesthetising  ability  that  CO2 has  on  D.  melanogaster,  but  may also  be  a 

mechanism to avoid predation through detection of CO2 emitted from potential 

predators  (Badre  et al.,  2005). Furthermore, dSO (Drosophila stress odorant) 

released from stressed  D. melanogaster is actively avoided by other flies and 

contains high levels of CO2 among other volatile compounds (Suh et al., 2004).

Research shows that hypercapnic conditions in D. melanogaster lead to 

problems  such  as  a  decreased  rate  of  egg  laying,  defects  in  embryonic 

development and an increase in mortality related to bacterial infection (Helenius 

et al., 2009). Hypercapnia specifically caused a decrease in the expression of 

genes related to  fertility  and immunity,  and an  increase in  genes related to 

metabolism  (Helenius  et  al.,  2009).  The increased mortality  due to  bacterial 

infections was mediated through a decrease in the expression of antimicrobial 

peptide  genes  (Helenius  et  al.,  2009).  Following  detection  of  bacterial 

peptidoglycans, Relish (a homolog of mammalian nuclear factor  κB; NF-κB) is 

endoproteolytically  cleaved  to  release  its  N-terminal  Rel  homology  domain 

(RHD)  (Stoven  et al.,  2000). The RHD activates transcription of antimicrobial 

peptides  through  binding  to  κB-sites  on  AMP  promotors  (Lemaitre  and 

Hoffmann, 2007). CO2 specifically inhibits the actions of Relish, however, the 

mechanism through which this occurs is not fully understood  (Helenius  et al., 

2009). This effect of CO2 on Relish echoes the effects of CO2 on NF-κB seen in 

human and mouse macrophages, and indicates that the effect of CO2 on NF-κB 

(and its homologs) may be a conserved feature (Helenius et al., 2009; Wang et 

al., 2010).
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Figure 1.5: The basic anatomy of D. melanogaster olfactory organs.

(A) The third antennal segment  (a) and maxillary palp  (p).  (B) Location of the 
CO2 sensing Gr21a/Gr63a neurons, and other important features of fly olfactory 
and gustatory organs. 

Taken from (de Bruyne et al., 2001) and (Luo et al., 2009)
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Figure 1.6: Composition of the ab1 sensillum in D. melanogaster.

Illustration of the ab1 sensillum, highlighting the CO2 responsive ab1C neuron 
(red),  and  also  indicating  the  olfactory  receptors  expressed in  each  type  of 
neuron.

Taken from (Jones et al., 2007) 



Introduction Philip Townsend

D.  melanogaster possess  two  olfactory  organs;  the  antennae  and 

maxillary palp (Figure 1.5) (de Bruyne et al., 2001). On the antennae are found 

numerous  small  hair-like  projections  called  sensilla  (classed  as  basiconic, 

trichoid and coeloconic based on morphology) which contain the fly olfactory 

receptor  neurons (ORNs)  (Venkatesh,  1984).  The basiconic  sensilla  are  the 

main sites of  olfactory  detection  (de Bruyne  et  al.,  2001;  Venkatesh,  1984). 

Axons from ORNs located within these sensilla project directly to the antennal 

lobe  (Figure  1.5)  where  different  ORNs  are  clustered  into  structures  called 

glomeruli (Gao et al., 2000).

Drosophila melanogaster is known to be able to detect low levels of CO2 

and  modulate  its  behaviour  accordingly  (de  Bruyne  et  al.,  2001).  When 

presented  with  a  simple  T-maze  experiment,  flies  avoided  CO2 in  a  dose 

dependent manner, avoiding CO2 from 0.1 % (v/v) above ambient levels (0.035 

% (v/v))  (Suh  et al., 2004). Amputation of the third antennal segment (Figure

1.5A) removed this CO2 avoidance behaviour (Suh et al., 2004). Closer analysis 

using  Ca2+ imaging  identified  the  most  ventral  pair  of  glomeruli  (the  V-

glomerulus; Figure 1.5B) as being involved in CO2 detection (Suh et al., 2004). 

The V-glomerulus is innervated by the ab1 class of ORNs (ab1A, ab1B, ab1C 

and ab1D) which are projected from the ab1 class of large basiconic sensilla 

(Figure 1.6), located on the third antennal segment. The ab1C neuron uniquely 

expresses the putative gustatory receptor Gr21a, a 7-transmembrane spanning 

receptor.  These ab1C neurons are  the  primary  site  for  CO2 detection  in  D. 

melanogaster (Faucher et al., 2006; Suh et al., 2004).

Work has been carried out to establish whether Gr21a is simply a marker 

for  CO2 responsive  neurons  or  is  directly  involved  in  CO2 detection  itself. 

Interference with  gr21a in  both adult  and larval  flies showed Gr21a to be a 

fundamental requirement of CO2 detection  (Faucher  et al., 2006; Jones  et al., 

2007;  Suh  et  al.,  2004).  More  recent  work  has  identified  a  second putative 

gustatory receptor Gr63a in the ab1C neuron which co-expresses with Gr21a in 

these neurons  (Jones  et  al.,  2007;  Kwon  et  al.,  2007).  Genetic  knockout  of 

gr63a produced a similar phenotype to that of gr21a null flies, with the ability to 

detect  CO2 lost  (Jones  et  al.,  2007).  Expression  of  either  Gr63a  or  Gr21a 

individually  in  the  CO2 non-responsive  ab3A  neurons  did  not  confer  a  CO2 

response. However, when Gr63a and Gr21a were expressed together in ab3A 

neurons  a  CO2 response  was  established,  suggesting  that  a  Gr63a/Gr21a 
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heterodimer  is  required  for  CO2 detection  (Jones  et  al.,  2007;  Kwon  et  al., 

2007). Interestingly, homologues of these two receptors have been identified in 

a  number  of  other  insect  species  (such  as Gr22  and  Gr24  in  Anopheles 

gambiae) and may be involved in CO2 detection in these species as well (Jones 

et al., 2007; Robertson and Kent, 2009).

Recent investigation shows that this CO2 avoidance behaviour can be 

inhibited by 2,3-butanedione and 1-hexanol (Turner and Ray, 2009). This effect 

was mediated through a direct inhibition of the CO2 responsive ab1C neurons 

(Turner and Ray, 2009). These two compounds are found in  D. melanogaster 

food  sources,  especially  certain  ripe  fruits,  and  may  serve  as  a  means  of 

overcoming innate CO2 avoidance in  favour  of  allowing feeding  (Turner  and 

Ray, 2009).

Whereas detection of gaseous CO2 in the olfactory system provokes an 

avoidance  behaviour  in  D.  melanogaster,  recent  studies  have  shown  that 

detection  of  aqueous  CO2 in  the  gustatory  system  has  the  opposite  effect 

(Fischler  et al., 2007). It is possible that the acceptance behaviour initiated by 

CO2 in solution could be a method through which  D. melanogaster permit the 

feeding  on  microorganisms.  Although  the  presence  of  microorganisms  will 

eventually  cause  a  rise  in  local  CO2 (a  condition  potentially  harmful  to  D. 

melanogaster) there will be an initial period where atmospheric CO2 is low and 

as  such  feeding  could  be  beneficial.  Research  indicated  that  detection  of 

aqueous CO2 was mediated through E409 gustatory neurons, which innervate 

sensilla located on the labellum of the proboscis (Figure 1.5)  (Fischler  et al., 

2007). The exact molecular mechanism through which CO2 sensing in these 

neurons occurred was not identified (Fischler et al., 2007). 

1.4.2 Mosquitos

Haematophagous (blood feeding) insects require acute sensory systems 

to enable them to identify and locate their hosts over potentially large distances. 

Female mosquitoes are able to detect various olfactory cues, such as plumes of 

CO2 exhaled from the host, and utilise them to direct their flight to locate a host 

for  oviposition  (Bowen,  1991;  Gillies,  1980).  Since  haematophagous  insects 

such as mosquitoes are major disease vectors, research into the mechanisms 

of  host-detection  are  vital.  Such  disease  carrying  CO2 sensing  mosquitoes 

include  Anopheles gambiae (malaria),  Culex quinquefasciatus  (filariasis)  and 
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Aedes  aegypti (yellow  and  dengue  fever)  (Cooperband  and  Carde,  2006b; 

Dekker  et  al.,  2005;  Healy  and Copland,  1995).  Research into  the ability  of 

mosquitoes to use CO2 as a cue for host location has led to the development of 

CO2 traps (traps that emit CO2 to attract mosquitoes) as a means to controlling 

populations (Burkett  et al., 2001; Cooperband and Carde, 2006a, b; Reisen et 

al., 2000).

Removal of the maxillary palp (Figure 1.7) of Culex mosquitoes removed 

the response to CO2, identifying this organ as the likely site of CO2 detection 

(Omer,  1971).  More  recent  studies  have  confirmed  that  CO2 detection  is 

mediated  through  the  maxillary  palp,  more  specifically  through  capitate  peg 

sensilla  (Figure  1.7)  containing  cpA  ORNs  (Lu  et  al.,  2007).  Receptors 

homologous  to  Gr63a/Gr21a from  D.  melanogaster were  identified  in A.  

gambiae; AgGr22 and AgGr24 (Jones et al., 2007; Robertson and Kent, 2009). 

The response to CO2 was confirmed to be dependent upon the co-expression of 

these two 7-transmembrane spanning receptors (Lu et al., 2007). Furthermore, 

a third receptor AgGr23 was identified and although its co-expression was not a 

total  requirement  for  CO2 detection,  its  presence  seemed  to  enhance  the 

sensitivity of CO2 detection (Lu et al., 2007).
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Figure 1.7: Basic anatomical features of female A. gambiae olfactory 
appendages. 

(A) Scanning electron micrograph of the olfactory appendages (B) An illustration 
of  the  maxillary  palp,  highlighting  the  capitate  pegs  (red).  (C) Transmission 
electron micrograph of an individual capitate peg sensillum. 

Taken from (Lu et al., 2007)
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1.4.3 Other insects

The moth Manduca sexta, and other related moth species, are known to 

sense elevated CO2 produced by flowering plants through receptor cells in the 

labial-palp pit  organ  (Guerenstein  et  al.,  2004a).  It  seems that certain  night-

blooming plants,  such as  Datura wrightii which  is  primarily  pollinated  by  M. 

sexta, emit plumes of CO2 during periods of high nectar availability (Guerenstein 

et al., 2004b; Thom et al., 2004). 

Certain plant  predatory insect  larvae such as the larvae of Diabrotica 

virgifera and  Helicoverpa armigera use elevated levels of CO2 to locate food 

(Bernklau, 1998; Bernklau et al., 2004; Rasch, 1994). Numerous subterranean 

termites of the  Reticulitermes species are also known to use CO2 gradients in 

the soil to guide themselves towards food (Bernklau et al., 2005). Since these 

species feed on living and decaying (both sources of CO2) plant matter, CO2 

would appear to be a useful environmental cue for food location. 

Colonies  of  the  honey-bee  Apis  melifera are  also  known  to  initiate 

fanning  behaviour  to  ventilate  the  hive  following  detection  of  elevated  CO2 

(Seeley,  1974).  Elevated levels of CO2 pose a risk to developing larvae and 

adults, and as such this fanning behaviour is vital to the survival of the colony.

Tsetse  flies  (Glossina species),  the  major  disease  vector  for 

trypanosomes,  are  attracted  to  CO2 exhaled  from livestock  and use  it  as  a 

directional cue to find hosts (Willemse and Takken, 1994).

1.4.4 C. elegans

The  nematode  Caenorhabditis  elegans  feeds  on  bacteria  found  in 

compost  and  decomposing  fruit,  environments  which  are  subjected  to  wide 

concentration ranges of O2 and CO2. High levels of CO2 in the soil would likely 

cause an increase in CO2 within the body of C. elegans, potentially causing an 

increase in cellular acidity. It would be expected that these two increases would 

have an adverse  affect  on  the  physiology  of  C.  elegans,  and in  fact  recent 

research has shown that hypercapnia (an increase in CO2) within  C. elegans 

causes impaired motility, decreased fertility and slowed development  (Sharabi 

et al., 2009a). 

C. elegans was shown some time ago to alter its direction of motility in 

response  to  HCO3
- gradients,  but  the  effects  of  CO2 were  not  studied 
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(Dusenbery, 1974). Recent investigation shows that  C. elegans actively avoid 

areas with elevated CO2 in a dose-dependent manner, displaying an avoidance 

of CO2 at 0.5 % (v/v) and above (Bretscher et al., 2008; Hallem and Sternberg, 

2008). This avoidance was specific to CO2 and was not due to acidification or 

increased HCO3
- caused by CO2 entering solution in the plate media (Bretscher 

et al., 2008). Mutational studies have revealed that this CO2 avoiding behaviour 

is dependent upon a cGMP gated ion channel encoded by tax-2 and tax-4, with 

mutations in either gene disrupting the ability to sense CO2 (Bretscher  et al., 

2008). The involvement of Tax-2 and Tax-4 has been confirmed and also the 

receptor guanylyl cyclase Daf-11 has been shown to be a requirement for CO2 

sensing in this system (Hallem and Sternberg, 2008). 12 neurons in C. elegans 

co-express Tax-2 and Tax-4, and of those it was shown that the BAG neurons 

were mainly responsible for the CO2 response with the ASH, ADL and AWB 

neurons  playing  a  minor  role  in  CO2 avoidance  (Figure  1.8)  (Hallem  and 

Sternberg, 2008).

Since  the  bacteria  which  C.  elegans  feeds  off  are  responsible  for 

elevating the local CO2 concentration it was surprising that C. elegans avoided 

CO2 since it would appear to be a good marker for the presence of food. It was 

discovered that  if  C.  elegans was  starved prior  to  the  application  of  a  CO2 

gradient  then the CO2 avoidance behaviour  was abolished  (Bretscher  et  al., 

2008;  Hallem and Sternberg,  2008).  It  is  possible  that  since  the  benefits  of 

feeding for a starved animal outweigh potential deleterious effects of elevated 

CO2 that  a  mechanism  has  evolved  to  overcome  the  innate  avoidance 

behaviour. Once the worm has fed, and CO2 levels begin rising (or were already 

high),  the  CO2 avoidance  behaviour  would  cause  the  worm  to  leave  that 

environment in search of better feeding grounds.
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Figure 1.8: Relative location of all chemosensory cilia and ciliated neurons in C. 
elegans.

Taken from Inglis, P.N. et al. The sensory cilia of Caenorhabditis elegans (March 8, 2007), 
WormBook, ed. The C. elegans Research Community, WormBook, 

doi/10.1895/wormbook.1.126.2, http://www.wormbook.org.
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Figure 1.9: A model for the CO2 avoidance pathway in C. elegans.



Introduction Philip Townsend

Further  investigation  has  revealed  the  CO2 sensing  pathway  in  this 

organism to be surprisingly complex (Figure 1.9), with several other pathways 

modulating  the  ability  of  Tax-2/Tax-4  to  elicit  a  CO2 avoidance  behaviour. 

Firstly,  work  shows  that  starved  animals  have  a  lowered  activation  of  the 

abnormal  dauer  formation  2  (DAF-2)  insulin-like  receptor  pathway,  with  a 

subsequently  higher  activation  of  the  DAF-16  forkhead  transcription  factor 

leading to a depression of the CO2 avoidance behaviour (Bretscher et al., 2008; 

Hallem  and  Sternberg,  2008).  Secondly,  it  has  been  shown that  in  starved 

animals the transforming growth factor β (TGFβ) pathway is able to depress the 

CO2 avoidance behaviour in a similar  fashion  (Hallem and Sternberg, 2008). 

Thirdly, the CO2 avoidance behaviour is also reduced through the activation of 

hypoxia inducible factor 1 (HIF-1) under hypoxic conditions  (Bretscher  et al., 

2008). Finally, the natriuretic peptide receptor A (NPR-1) has also been shown 

to be capable of  modulating the CO2 avoidance behaviour  (Bretscher  et  al., 

2008; Hallem and Sternberg, 2008). 

1.4.5 Fungi

The  fungus  Cryptococcus  neoformans, which  lives  in  pigeon  guano 

among other locations, is an opportunistic pathogen that often infects patients 

with  a  depressed  immune  system  (such  as  those  suffering  from  acquired 

immunodeficiency syndrome (AIDS)). Outside of the host it is exposed to near 

atmospheric (about 0.035 % (v/v)) levels of CO2, but following spore inhalation 

and subsequent entry into the vascular system is exposed to concentrations 

around 5 % (v/v). Aside from being able to tolerate this large fluctuation in CO2 

levels C. neoformans uses increased CO2 as a molecular cue (as well as pH 

7.4,  37oC and serum) to  initiate synthesis of  the polysaccharide capsule;  an 

important virulence trait  (Granger  et al., 1985). Although this response to CO2 

was documented long ago it  was only relatively recently that the mechanism 

through which this CO2 increase was signalled was identified.

Two CAs (Can1 and Can2) were identified in C. neoformans, and through 

mutational studies Can2 was shown to be involved in CO2 sensing (Bahn et al., 

2005; Mogensen et al., 2006). Not only was Can2 shown to be involved in the 

initiation  of  synthesis  of  the  polysaccharide  capsule  but  also  was shown to 

prevent mating in response to high CO2 (Bahn et al., 2005). Although Can2 is 

involved in sensing CO2 it was unlikely to be the actual molecular sensor since 

28



Introduction Philip Townsend

can2 mutants were still able to respond to CO2 albeit at much higher levels. This 

was proposed to be due to the fact that CO2 naturally but slowly equilibrates into 

HCO3
-,  and that HCO3

- is  the species of  Ci  sensed  (Bahn  et  al.,  2005).  The 

observation that  in vitro assays on a  C. neoformans  adenylyl cyclase (Cac1) 

showed  activity  to  increase  in  the  presence  of  Ci  lead  to  the  proposed 

mechanism (Figure 1.10) citing Cac1 as the molecular sensor  (Klengel  et al., 

2005;  Mogensen  et  al.,  2006).  However,  the actual  molecular  species of  Ci 

(HCO3
- or  CO2)  that Cac1 responds to has not yet  been proven. Due to the 

apparent importance of CA in this system, and the ease with which inhibitors 

specific  to  it  can  be  developed,  Can2  appears  a  desirable  pharmacological 

target. As such, Can2 has been subjected to crystallisation and inhibitor trials 

(Schlicker et al., 2009). 

Another  pathogenic  fungus  which  routinely  infects  patients  with  a 

depressed immune system is Candida albicans. This fungus, found naturally in 

the gastrointestinal and genito-urinary tracts, forms cylindrical cells in tubular 

arrays known as hyphae following invasion of mucosal linings. CO2 has been 

shown to be induce this virulence trait through activation of a cAMP signalling 

pathway, however,  until  recently the mechanism through which this occurred 

was not fully understood (Rocha et al., 2001). Mutational studies on C. albicans 

demonstrated  the  importance  of  a  CA  (Nce103)  on  pathogenesis  under 

conditions  of  limited  CO2 (Klengel  et  al.,  2005).  More  importantly,  research 

revealed  that  the  activity  of  a  C.  albicans  adenylyl  cyclase  (Cdc35)  was 

increased in the presence of Ci, implicating it as the CO2 sensor in C. albicans. 

In vitro experiments showed Cdc35 to be more sensitive to changes in Ci than 

Cac1, and it could be speculated that this difference in sensitivity is the reason 

for the differential requirement for CA between these two species (Bahn et al., 

2005; Klengel et al., 2005).
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Figure 1.10: Proposed model for CO2 sensing in C. neoformans. 

Adapted from (Mogensen et al., 2006) 
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1.5 Ci sensing in mammals

1.5.1 AC

1.5.1.1 General

The second messenger  adenosine 3’, 5’-monophosphate (cyclic AMP / 

cAMP) is produced from adenosine triphosphate (ATP) by a family of  highly 

prevalent enzymes; adenylyl cyclases (ACs) (Sutherland et al., 1962). ACs are 

found  in  both  eukaryotes  and  prokaryotes,  and  are  highly  diverse  in  their 

structure and biochemistry,  and as such have been grouped into  6 different 

Classes (Danchin, 1993). The Class I cyclase homology domain (CHD) includes 

ACs that are involved in the regulation of catabolic operons in enteric bacteria 

such as  Escherchia, Salmonella,  and  Haemophilus  species  (Danchin,  1993).  

Class  II CHDs  are  virulence  factors  produced  by  the  pathogens  Bordetella  

pertussis and Bacillus anthracis (Danchin, 1993; Drum et al., 2002; Ladant and 

Ullmann, 1999). The Class  III CHD is commonly referred to as the ‘Universal’ 

Class, since this Class comprises ACs and guanylyl cyclases (GCs) from both 

eukaryotes and prokaryotes  (Danchin,  1993; Linder and Schultz,  2003).  It  is 

within Class  III that  the majority  of  ACs are placed,  and as such has been 

further  divided into  4  sub-Classes (a-d;  see  Table 1.1)  (Linder  and Schultz, 

2003). Classes  IV,  V and  VI CHDs include ACs from the species  Aeromonas 

hydrophila, Prevotella rumenicola and Rhizobium etli  respectively (Cotta et al., 

1998; Sismeiro et al., 1998; Tellez-Sosa et al., 2002).

Mammals  express  10  ACs in  total;  9  Class  IIIa  transmembrane  ACs 

(tmACs) and one Class IIIb soluble AC (sAC) (Cooper, 2003b; Kamenetsky et 

al., 2006). 

1.5.1.2 tmAC

The tmACs are selectively expressed in various tissues, and are involved 

in  the  regulation  of  diverse  physiological  processes,  ranging  from  memory 

formation to olfaction (Cooper, 2003b; Kamenetsky et al., 2006; Sunahara and 

Taussig, 2002). Type I AC was shown to be specifically expressed in the brain, 

retina and adrenal medulla,  indicating that is was likely to be neural  specific 

(Pfeuffer  et al., 1985; Xia  et al., 1993). Type  II  AC is highly expressed in the 

brain, and to a lesser extent in the olfactory epithelium and lungs (Feinstein et 
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al.,  1991). Type  III  AC was originally thought to be specifically expressed in 

sensory  neuronal  cilia  in  the  nose,  but  was  later  shown to  be  more  widely 

expressed, including tissues such as the brain, heart and lungs (Bakalyar and 

Reed, 1990; Xia et al., 1992). Type IV AC is widely expressed in the body, with 

mRNA identified in tissues such as the lungs, liver, kidney and brain (Gao and 

Gilman, 1991). Type V AC is predominantly expressed in the heart, however, it 

was also identified in the brain (Ishikawa et al., 1992; Katsushika  et al., 1992; 

Premont et al., 1992). Type VI AC is highly expressed in the brain, but also to a 

lesser extent in the heart, kidneys and liver (Katsushika et al., 1992; Premont et 

al.,  1992;  Yoshimura  and  Cooper,  1992).  Type  VII AC  is  predominantly 

expressed in the lung, spleen and heart, but also to a lesser extent in the brain 

(Krupinski et al., 1992; Watson et al., 1994). Type VIII AC is localised to specific 

regions in the brain (Cali  et al., 1994). Type IX  AC is widely distributed in the 

body,  in  tissues such as skeletal  muscle,  kidney and brain  (Premont  et  al., 

1996).

Regulation by heterotrimeric G-proteins represents a major mechanism 

through which the production of cAMP by tmACs can be controlled  (Cooper, 

2003b; Defer et al., 2000; Sunahara and Taussig, 2002). G proteins, which are 

membrane bound, are usually coupled to a membrane spanning receptor, which 

upon binding of its cognate ligand causes dissociation of the βγ and α subunits 

of  the G-protein.  Following dissociation,  the  βγ subunit  of  the G-protein  can 

effect  the  catalytic  activity  of  tmACs,  stimulating  type  II,  IV and  VII,  and 

inhibiting type  I (Cooper, 2003b; Defer  et al., 2000). The α subunits, following 

dissociation, effects  tmACs in  different  ways depending upon the type of  G-

protein and tmAC, for example the α subunit of the stimulatory G protein (Gαs) 

stimulates all tmACs, however, the α subunit of the inhibitory G protein (Gα i) 

only inhibits type I, V and VI (Cooper, 2003b; Defer et al., 2000). Investigation 

into the biochemical and regulatory properties of tmACs has been aided by the  

construction of a 'soluble' tmAC. Work by Tang and Gilman demonstrated that 

the catalytic domains (C1 and C2) of tmACs could be expressed individually in E.  

coli, and when the two domains were combined, produced a catalytically active 

AC with properties very similar to the native enzyme (Tang and Gilman, 1995).
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Class Defining motifs Class distribution

IIIa (F/Y)XX(F/Y)D motif forming dimer interface.
EKIK motif (K is substrate defining).
Arm region required for catalytic domain 
dimerization 14 amino acids long.

Mammalian tmAC
Higher eukaryotes e.g. 
mammals, D. melanogaster,
M. tuberculosis, S. platensis

IIIb Substrate defining D changed for T or S.
Phosphate-binding R often changed for G or 
S.
Arm region mostly 15 amino acids.

Mammalian soluble AC.
Some gram negative bacteria 
(e.g. cyanobacteria and
P. aeruginosa), M. tuberculosis,
Plasmodium, E. gracilis

IIIc Arm region reduced (7-11 amino acids) or 
absent.
Considerable plasticity in canonical catalytic 
domains.

Some gram positive bacteria 
(e.g. S. coelicolor
and B. liquefaciens)

IIId YEVKT motif (K is substrate defining).
Arm region 13 amino acids.

Protozoa and fungi

Table 1.1: Defining features of AC Class III sub-Classes.

Taken from (Cann, 2004)
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Another mechanism through which regulation of the activity of tmACs can 

occur is mediated by phosphorylation by certain kinases, commonly through the 

cAMP dependent  protein  kinase  (PKA)  or  protein  kinase  C (PKC)  (Cooper, 

2003b; Defer  et al., 2000). The effects of PKA and PKC vary depending upon 

the particular kinase isoform and type of tmAC, for example type V and VI ACs 

are inhibited by phosphorylation by PKA, however, the remaining 7 tmACs are 

unaffected  (Cooper, 2003b; Defer  et al., 2000; Sunahara and Taussig, 2002). 

Receptor  tyrosine  kinase  has  also  been  shown  to  regulate  tmAC  activity, 

specifically increasing the activity of type VI AC through phosphorylation (Tan et 

al., 2001). Furthermore, calmodulin kinase II and IV are known to phoshorylate 

and cause an inhibition of type III and I ACs, respectively (Wayman et al., 1996; 

Wei et al., 1996). 

Ca2+ is another key regulator of tmAC activity, a process that is mediated 

through  either  the  action  of  free  Ca2+ on  tmACs,  the  action  of  Ca2+-bound 

calmodulin, or the activation of calmodulin kinases (Cooper, 2003a; Defer et al., 

2000;  Kamenetsky  et  al.,  2006;  Sunahara  and  Taussig,  2002).  Ca2+-bound 

calmodulin is able to stimulate the activity of certain tmAC isoforms, such as 

type  I and  VIII ACs (Cooper, 2003a; Kamenetsky  et al., 2006). Although high 

concentrations of free Ca2+ are able to inhibit all tmAC isoforms, sub-micromolar 

concentrations of free Ca2+, independently of calmodulin, is able to inhibit type V 

and VI ACs (Cooper, 2003a; Kamenetsky et al., 2006). This inhibition by Ca2+ 

has  recently  been  shown to  occur  through  binding  to  one  of  the  metal  ion 

binding  sites,  preventing  binding  of  the  second  Mg2+ ion,  and  as  such  the 

conformational change required for catalysis does not occur (Mou et al., 2009).  

The  effects  of  Ci  on  the  activity  of  tmACs  has  been  studied  twice 

previously, however, the results obtained are contradictory (Chen et al., 2000; 

Xie  et  al.,  2006).  Early  in  vitro investigation,  performed  on  a  recombinant 

'soluble' tmAC at pH 7.5 in the absence of any tmAC activators, did not detect a 

significant difference between basal tmAC activity and that in the presence of 40 

mM total Ci (Chen et al., 2000). More recently, in vitro experiments on type III 

tmAC,  expressed  and  purified  from  mammalian  cells,  have  shown  a  pH 

dependent stimulation of this AC by 25 mM total Ci, with a stimulation being 

seen between pH 7.2 and pH 8.2 (Xie et al., 2006). 
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Figure 1.11: Previous in vitro Ci assays performed on mammalian tmAC.

(A - Chen et al.) In vitro assay was performed on an 'engineered' soluble tmAC 
(5C1●5C2). Assay contained 50 mM Tris-HCl pH 7.5, 40 mM MgCl2, 10 mM ATP. 
With or without 50 mM HCO3

- or 100 μM forskolin. (B - Xie et al.) In vitro assay 
was performed at 37oC for 20 minutes, with native tmAC type III,  purified from 
HEK 293 cells. Assay contained 40 mM Tris–HCl, 5 mM MgCl2, 0.2 mM cAMP, 
10 mM phosphoenolpyruvate, 3 units of pyruvate kinase, 10  μM GTP, 1 mM 
ATP. With or without 25 mM NaHCO3.

Taken from (Chen et al., 2000; Xie et al., 2006)
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1.5.1.3 sAC

While the tmACs are found in various tissues, sAC was originally found to 

be  expressed  highly  in  tissues  and  cells  exposed  to  high  fluxes  of  HCO3
-, 

including sperm, testes, kidney and the choroid plexus (Braun and Dods, 1975; 

Braun et al., 1977; Buck et al., 1999; Chen et al., 2000). However, the use of 

more sensitive methods has indicated that sAC is present in almost all tissues 

tested, albeit at lower levels than that of the tissues originally identified (Sinclair 

et al., 2000; Xie and Conti, 2004). Two splice variants of sAC were originally 

identified, 48 kDa (referred to as truncated sAC: sAC t) and 187 kDa (referred to 

as full-length sAC: sACfl) isoforms, of which sACt represents the predominantly 

active form in sperm (Buck et al., 1999; Jaiswal and Conti, 2001). Although the 

role  of  sACfl has  not  yet  been identified,  it  has  been shown to  possess  an 

autoinhibitory domain on the C-terminus of the protein (Chaloupka et al., 2006). 

Interestingly, a third isoform of sAC has been identified more recently in somatic 

tissues, however, its role remains unknown (Farrell et al., 2008).

In vivo and in vitro studies on sACt have shown that its activity is up-

regulated in the presence of Ci and Ca2+, and is likely to be a sensor for these 

two species, although the species of Ci (CO2 or HCO3
-) that it responds to is still 

unproven (Chen et al., 2000; Hammer et al., 2006; Litvin et al., 2003; Zippin et 

al., 2001). Although sACt is not membrane bound, it is currently thought to be 

located  in  specific  signalling microdomains  within  the  cell,  such  as domains 

within  the nucleus,  mitochondria  and microtubules  (Bundey and Insel,  2004; 

Feng  et al., 2006; Feng  et al., 2005; Sayner  et al., 2006; Zippin  et al., 2010; 

Zippin et al., 2003; Zippin et al., 2004). 

1.5.1.4 The role of sAC in sperm 

Mammalian sperm,  stored  in  the testis  are  immotile  and incapable  of 

successfully  fertilizing  an  egg  (Visconti  et  al.,  1999).  In  order  for  sperm  to 

develop progressive forward motility and acquire fertilisational competence, they 

must complete a series of defined maturational events collectively termed as 

capacitation (Visconti et al., 1995a; Visconti et al., 1995b; Visconti et al., 1999). 

Sperm  capacitation  is  initiated  by  an  increase  in  cytoplasmic  Ci and  Ca2+, 

following ejaculation into the female reproductive tract  (Visconti  et al., 1999). 

During capacitation a number of distinct changes in the sperm can be detected, 
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including changes in plasma membrane composition, altered protein tyrosine 

phosphorylation,  acquisition  of  hyper-activated  motility,  and  the  ability  to 

undergo acrosomal  exocytosis  (Visconti  et  al.,  2002).  A defining hallmark of 

capacitated sperm is a distinct pattern of protein tyrosine phosphorylation, which 

is  regulated  by  a  cAMP dependent  pathway involving  the  cAMP dependent 

protein kinase (PKA)  (Breitbart and Naor, 1999; Visconti  et al., 1995b). These 

capacitation  events  are  dependent  upon  signalling  pathways  involving  the 

second messenger cAMP (Visconti et al., 1999).

Following  the  identification  of  sAC,  it  was  shown  through  in  vitro 

experiments that sACt was activated by Ci (Chen et al., 2000). The activation of 

sACt by Ci was also confirmed through in vivo  experiments performed on rat 

sperm (Jaiswal and Conti, 2001). This activation by Ci, combined with the fact 

that sACt is highly expressed in sperm, indicated that sACt was involved in the 

initiation of capacitation events in sperm (Chen et al., 2000). The importance of 

sAC  in  sperm  activity  was  later  highlighted  through  mutational  studies 

performed on mice (Esposito  et al., 2004). Mice that carried a sAC-/- genotype 

were sterile, and although sAC was shown to be widely expressed in the body, 

displayed a normal phenotype with no other obvious abnormalities (Esposito et 

al., 2004; Sinclair et al., 2000). However, this apparently normal phenotype (with 

the exception of  being  sterile)  has  recently  been proposed to  be due to  an 

isoform of sAC specifically expressed in somatic cells (Farrell et al., 2008). 

The  sAC-/- sperm were  shown to  develop  normally  in  the  testes,  but 

displayed  impaired  motility  with  a  complete  lack  of  forward  progressive 

movement,  a  feature  that  could  be  restored  through  the  addition  of  cAMP 

(Esposito  et  al.,  2004).  Further  evidence  to  support  the  role  of  sAC  in 

capacitation  was gained through studies  on  wild  type  sperm using  the  sAC 

specific inhibitor KH7 (Hess et al., 2005). Under conditions conducive to in vitro 

fertilisation, application of KH7 prevented protein tyrosine phosphorylation and 

in vitro  fertilisation in response to high concentrations of extracellular HCO3
-, 

and again this was overcome with the addition of cAMP (Hess et al., 2005).
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1.5.1.5 sAC and membrane channels

Mature sperm are stored in the lumen of the epididymis in an inactive 

state, maintained by a low HCO3
- concentration (about 2.5 mM) and acidic pH 

(about pH 6.7)  (Levine and Marsh, 1971). The acidic pH in the lumen of the 

epididymis  is  maintained  by  the  vacuolar  H+-ATPase  (V-ATPase),  which  is 

located on the apical membrane of clear cells (Breton et al., 1996). The function 

of V-ATPase is dependent upon HCO3
- and its activity is controlled through the 

cycling of V-ATPase between the apical membrane and cytoplasmic vesicles 

(Breton et al., 1998; Breton et al., 2000; Brown and Breton, 2000). It was shown 

that sACt was present in clear cells, but not the surrounding epididymal cells, 

and  that  sACt was  involved  in  regulating  the  cycling  of  V-ATPase  from 

cytoplasmic vesicles and the apical membrane (Pastor-Soler et al., 2003). How 

sACt regulates this system is still unknown, but it is proposed that it acts as a 

chemosensor for lumenal HCO3
-. It is possible that in response to an increase in 

lumenal HCO3
-, activation of sACt initiates a cAMP signalling cascade promoting 

V-ATPase cycling to the apical membrane, with the subsequent secretion of H+ 

causing a drop in lumenal pH and subsequent conversion of HCO3
- into CO2 

(Pastor-Soler et al., 2003). 

sACt has also been shown to be present in the kidneys, where it  has 

been  shown  to  be  located  in  the  epithelial  cells  of  the  distal  tubule,  thick 

ascending limb and collecting duct (Figure 1.12) (Hallows et al., 2009; Pastor-

Soler et al., 2003; Paunescu et al., 2008). It was shown that sACt co-localised 

with the V-ATPase in intercalated epithelial cells (cells responsible for acid-base 

homeostasis)  (Paunescu  et  al.,  2008).  Although  no  direct  evidence  for  the 

involvement  of  sACt in  the  regulation  of  this  V-ATPase  was  obtained,  the 

parallel with that seen in the epididymis raises the possibility of a role. More 

recently, sACt has also been shown to regulate a Na+,K+-ATPase located on the 

apical membrane in these intercalated cells (Hallows et al., 2009).
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Figure 1.12: Schematic representation of a kidney nephron.

Taken from (Campbell, 1996)
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Figure 1.13: Proposed model for the role of sAC in the regulation of the CFTR 
protein in corneal epithelial cells.

Adapted from (Sun et al., 2003)
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sACt has  also  been  implicated  in  the  regulation  of  the  cystic  fibrosis 

transmembrane conductance regulator (CFTR) protein in corneal endothelium 

and airway epithelial  cells  (Sun  et  al.,  2003; Wang  et  al.,  2005).  The CFTR 

protein is subject to complex regulation by a number of enzymes involved in 

phosphorylation/dephosphorylation reactions, of which PKA appears to be the 

most important  (Rommens  et al., 1991; Tabcharani  et al., 1991). The corneal 

endothelium  is  responsible  for  maintaining  hydration  of  the  cornea  through 

secretion of anions (Cl- and HCO3
-) by CFTR, leading to the formation of an 

osmotic gradient and subsequent diffusion of H2O  (Riley  et al., 1997). HCO3
- 

and Cl- are required in the corneal epithelial cells for CFTR to function on the 

apical membrane, and as such channels exist on the basolateral membrane to 

allow their  entry (Figure 1.13)  (Jelamskii  et al.,  2000; Sun  et al.,  2000). It  is 

proposed that sACt in this cell acts as a sensor of HCO3
-, activating the function 

of CFTR when intracellular concentrations are high enough (Sun et al., 2003). It 

is possible that sACt activation by HCO3
- produces cAMP which in turn activates 

PKA, which phosphorylates CFTR to promote its activity  (Sun et al., 2003). In 

airway epithelial cells CFTR performs a similar function, maintaining the correct 

fluid balance of mucus lining the airway (Wang et al., 2005).

Whether sACt regulates different membrane channels in other tissues still 

remains to be addressed.

1.5.2 The kidney proximal tubule

The kidneys  play  a  major  role  in  whole  body acid-base homeostasis, 

through a controlled re-absorption of filtered HCO3
-, a process mediated through 

the secretion  of  H+ into  the urine  (Gilman and Brazeau,  1953).  This  filtered 

HCO3
-, which would otherwise end up in urine, is re-absorbed by the proximal 

tubule, and also to a lesser extend by the thick ascending limb and distal tubule 

(Figure 1.12). The proximal tubule actively secretes H+ into the urine through a 

sodium-hydrogen exchanger  (NHE3)  and a  V-ATPase located  on  the  apical 

membrane (Gluck et al., 1998; Weinman et al., 2005). The increase in lumenal 

H+ consequently alters the position of the HCO3
-/CO2 equilibrium, leading to a 

CA  converting  HCO3
- into  CO2 (Sly  and  Hu,  1995).  This  CO2 subsequently 

diffuses into the proximal tubule cell, where it is converted back to HCO3
-, and is 

subsequently  pumped across the basolateral  membrane by a Na+/HCO3
- co-

transporter (Seki et al., 1996; Sly and Hu, 1995). This re-absorbed HCO3
- then 
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passes  into  the  blood  stream where  it  is  vital  for  neutralising  various  acids 

produced  through  metabolism,  and  as  such  maintaining  a  stable  blood  pH 

(Gilman and Brazeau, 1953). 

Due  to  the  importance of  the  proximal  tubule  in  maintaining  a  stable 

blood pH, a regulatory mechanism exists through which it can moderate HCO3
- 

re-absorption. It has long been known that in response to increased blood pCO2 

(hypercapnia),  the  proximal  tubule  increases  its  rate  of  HCO3
- re-absorption 

(Brazeau  and  Gilman,  1953).  Until  recently,  it  was  unknown  whether  the 

proximal tubule responded to CO2 directly, or through a decrease in intracellular 

pH  associated  with  CO2.  Investigation  using  'out-of-equilibrium'  CO2/HCO3
- 

solutions, demonstrated that the basolateral membrane of proximal tubule cells 

responded  to  CO2 (and  HCO3
-),  and  not  pH  (Zhou  et  al.,  2005).  Further 

investigation revealed, through the use of inhibitors specific to the ErbB family of 

receptor  tyrosine  kinases,  that  a  receptor  tyrosine  kinase  was  involved  in 

signalling changes in basolateral CO2 (Zhou et al., 2006).  

The  proximal  tubule  is  also  an  important  contributor  to  whole  body 

phosphate homeostasis, through the regulation of phosphate uptake from the 

urine (Murer  et al., 2003). The control of phosphate re-absorption is mediated 

through the controlled endocytosis of type  IIa Na-Pi co-transporters from the 

apical membrane to intracellular lysosomes for degradation (Murer et al., 2000, 

2003).  Binding of  parathyroid hormone (PTH) to  its  cognate receptor  on the 

basolateral membrane is an important initiator of type IIa Na-Pi co-transporter 

endocytosis,  and  represents  the  main  phosphaturic  (reduced  phosphate  re-

absorption) agent in this system (Malmstrom and Murer, 1986). Binding of PTH 

to  its  receptor  (a  G-protein  coupled  receptor)  activates  a  complex signalling 

pathway,  involving  PKA  and  PKC,  and  consequently  mediates  the 

internalisation of the type IIa Na-Pi co-transporter (Traebert et al., 2000). 

It  has  been  known for  many  years  that  respiratory  alkalosis,  with  its 

associated decrease in plasma pCO2, causes an inhibition of the phosphaturic 

effects of PTH, and a subsequent increase in phosphate reabsorption (Berndt 

and Knox, 1985; Hoppe et al., 1982). The blunting of PTH's phosphaturic effect 

is  mediated  through  a  decrease  in  pCO2 at  the  basolateral  membrane  of 

proximal tubules, and not through an accompanied pH effect (Berndt and Knox, 

1985; Hoppe et al., 1982). The effects of respiratory alkalosis on PTH signalling 

were shown to be mediated through a β-adrenergic signalling pathway, although 

42



Introduction Philip Townsend

the exact details of this still remain to be elucidated (Hoppe et al., 1988; Tucker 

et al., 1996). 

1.5.3 The carotid body

The carotid body, located near the fork of the carotid artery (Figure 1.14), 

contributes to the regulation of CO2 (and O2) homeostasis in the blood stream 

(Gonzalez  et al., 1994). The carotid body is composed of type  I glomus cells 

that  are  the  chemoreceptors  and  glial-like  type  II cells  that  are  principally 

supporting cells (Gonzalez et al., 1994). It is known that when arterial blood is 

hypercapnic (elevated CO2) these cells respond by releasing neurotransmitters 

at  their  basolateral  boundary,  causing  firing  of  the  carotid  sinus  nerve.  The 

excitation of these neurons causes several physiological changes, principle of 

which is an increased rate of ventilation (Gonzalez et al., 1994). 

Although the exact mechanism through which CO2 is sensed by these 

cells is not fully understood, it is known that hypercapnic conditions cause an 

increase in cAMP levels within type I cells (Perez-Garcia et al., 1990; Summers 

et  al.,  2002).  Activation  of  PKA,  with  subsequent  phosphorylation  of 

downstream targets,  has  long  been  known to  modulate  the  activity  of  Ca2+ 

channels  (Hartzell,  1988).  More recently  CO2 has been shown to  cause the 

activation of L-type Ca2+ channels in type I cells, with an associated increase in 

cellular cAMP and subsequent activation of PKA (Summers et al., 2002). 
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Figure 1.14: Location of the carotid body in humans.

Taken from (Dorland, 2003)
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1.5.4 The brain

Whilst the peripheral chemoreceptors in the carotid body are thought to 

contribute about 30 % of the ventilatory response to hypercapnia, the central 

chemoreceptive  neurons  in  the  brain  account  for  the  remaining  contribution 

(Lahiri and DeLaney, 1975; Lahiri and Forster, 2003). The carotid body, since it 

senses CO2 levels directly in the arterial blood, is fast to react to conditions of 

hypercapnia, whereas the central chemoreceptors are much slower since they 

detect CO2 levels in the cerebro-spinal fluid  (Smith  et al.,  2006). The central 

chemoreceptive neurons are currently  acknowledged to  predominantly  sense 

alterations in pH as a response to CO2, i.e. CO2/H+ sensing (Jiang et al., 2005; 

Lahiri and Forster, 2003; Putnam et al., 2004; Sharabi et al., 2009b). However, 

the existence of direct CO2 sensors is supported by the observation that the 

ventilatory response is much stronger under conditions of hypercapnic acidosis 

than normocapnic  acidosis  (Wang  et  al.,  1998).  There  is  some evidence to 

suggest that direct sensing of CO2 in cerebral neurons occurs through cGMP 

signalling pathways, although this is poorly understood (Wang et al., 1999). 

Hypercapnia is a potent signal in mammals, which also causes cerebral 

vasodilation  through  the  relaxation  of  vascular  smooth  muscle  in  the  brain. 

Crosstalk between cAMP and cGMP, is known to be a major contributor to the 

control of cerebral vasodilation  (Wang  et al., 1999). Although the mechanism 

through which CO2 sensing occurs is still not fully understood, there is certain 

evidence  to  suggest  the  involvement  of  cyclic  nucleotides  (Leblanc  and 

Peterson, 1989; Parfenova and Leffler, 1996; Wang et al., 1999). One study has 

shown the  levels  of  cAMP produced by  cerebral  microvascular  and smooth 

muscle cells to increase in the presence of elevated CO2, although it is still not 

known whether this is simply a downstream effect of CO2 sensing  (Parfenova 

and Leffler, 1996).

1.5.5 The lungs

In alveolar epithelial cells in the lungs, the main site of CO2 excretion, the 

rate  of  fluid  re-absorption  is  known  to  be  impaired  under  conditions  of 

hypocapnia  and  hypercapnia  (Briva  et  al.,  2007;  Myrianthefs  et  al.,  2005). 

Alveolar  fluid  re-absorption  is  mediated  through  apical  Na+ channels  and 

basolateral Na+,K+-ATPases, and a controlled rate of re-absorption is critical for 

45



Introduction Philip Townsend

effective gas exchange  (Matthay  et al., 2002). It has been demonstrated that 

under hypercapnic conditions, the reduced rate of fluid re-absorption is caused 

by endocytosis of the Na+,K+-ATPase (Briva et al., 2007; Vadasz et al., 2008). 

Endocytosis of the Na+,K+-ATPase in response to hypercapnia was shown to 

proceed through phosphorylation of the Na+,K+-ATPase by PKC-ζ, a process 

dependent  upon  AMP-activated  protein  kinase  (Vadasz  et  al.,  2008). 

Interestingly, it was noticed that application of  β-adrenergic receptor agonists 

ameliorated the impaired fluid re-absorption seen in response to hypercapnia 

(Vadasz  et al., 2008). Although the possibility exists that sAC is acting as the 

initial sensor of CO2 in this system, the effects of β-adrenergic receptor agonists 

indicate the involvement of tmACs.

Studies in  the lung have also provided strong evidence that  CO2 can 

effect the activation of nuclear factor κB (NF-κB), an important protein complex 

that  is  involved  in  the  control  of  DNA  transcription  (Takeshita  et  al.,  1999; 

Takeshita  et al., 2003). In response to hypercapnia, a decreased activation of 

NF-κB was identified in pulmonary artery endothelial cells, but also in alveolar 

macrophages  (Takeshita  et  al.,  1999;  Takeshita  et  al.,  2003). In  alveolar 

macrophages, hypercapnia was shown to attenuate the activation of  NF-κB in 

response to endotoxins released from the cell  wall of gram-negative bacteria 

(Takeshita  et al., 2003). Lipopolysaccharides released from the walls of gram-

negative  bacteria  stimulate  specific  signalling  pathways  in  alveolar 

macrophages, which trigger the release of certain inflammatory proteins, such 

as tumour necrosis factor α and interleukin 1β (Takeshita et al., 2003; Wang et 

al., 2010).    

1.5.6 The taste and smell of CO2

Mammals  are  known  to  detect  CO2 through  taste  receptors  on  the 

tongue, however, until recently the mechanism through which this occurred was 

unknown  (Chandrashekar  et  al.,  2009;  Dessirier  et  al.,  2001;  Simons  et  al., 

1999).  Rodents  have  also  been  shown  to  be  able  to  detect  CO2 through 

olfactory receptors in the nose (Hu et al., 2007; Youngentob et al., 1991). Why 

certain  mammals  are  able  to  taste  and smell  CO2 is  still  unknown but  it  is 

hypothesised  to  be  a  mechanism  through  which  they  can  detect  CO2 as  a 

marker of fermenting fruit,  and as such avoid the potentially lethal effects of  

alcohol. 
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Investigation into the detection of CO2 in carbonated beverages through 

taste receptors on the tongue demonstrated that the oral sensation of CO2 was 

not  due  to  the  mechanical  actions  of  CO2 bubbles.  Firstly,  experiments 

performed in a hyperbaric chamber (at 3.4 atmospheres), where bubbles of CO2 

could  not  form,  still  identified  a  strong  taste  sensation  (McEvoy,  1998). 

Secondly,  experiments  performed  with  the  CA  inhibitors  dorzolamide  and 

acetozolamide, where bubbles of CO2 were still present, were unable to detect a 

taste response of CO2 (Graber and Kelleher, 1988; Simons et al., 1999). Recent 

work  demonstrated  that  the  detection  of  CO2 was  specific  to  a  set  of  sour 

sensing  cells  on  the  tongue  (Chandrashekar  et  al.,  2009).  Furthermore, 

microarray  analysis  and  subsequent  knock-out  studies  identified  one  gene, 

car4, as being responsible for conferring a response to CO2 (Chandrashekar et 

al.,  2009).  This  gene  encodes  an  extracellular,  glycosylphosphatidylinositol 

(GPI) anchored CA and is the key CO2 sensor in this system. The molecular 

mechanism through which Car4 transmits the CO2 signal into the cell  is  still 

unknown.

Studies into the detection of CO2 through olfactory receptors in rodents 

revealed a remarkable sensitivity to CO2,  detecting CO2 at near atmospheric 

concentrations (Hu et al., 2007; Youngentob et al., 1991). Studies revealed that 

the  detection  of  CO2 was  specific  to  olfactory  neurons  that  express 

phosphodiesterase 2A (PDE2A), guanylyl cyclase D (GC-D), CA II (Car2) and 

cGMP-sensitive  cyclic  nucleotide  gated  (CNG)  channels  (Hu  et  al.,  2007; 

Leinders-Zufall et al., 2007). More recent work has shown that GC-D is directly 

acted upon by Ci to increase its activity,  and as such it  is  possibly the CO2 

sensor in these cells, leading to the proposed mechanism of CO2 detection in 

these cells (Figure 1.15) (Guo et al., 2009; Sun et al., 2009). 
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Figure 1.15: Proposed model for CO2 sensing in mouse olfactory neurons.

Taken from (Guo et al., 2009)
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1.6 Aims of the thesis

There  is  a  wealth  of  information  in  the  literature  pertaining  to  the 

physiological  effects  of  Ci  in  many  diverse  organisms,  both  prokaryotic  and 

eukaryotic. However, despite the importance of understanding the mechanisms 

through  which  these  physiological  changes  occur,  the  details  of  many  Ci 

sensing  pathways  remain  largely  unknown.  This  is  particularly  apparent  in 

mammals,  where  despite  many of  the  physiological  effects  of  Ci  being  well  

documented, the molecular mechanisms through which these effects occur are 

poorly  understood.  Much  of  the  current  focus  has  been  upon  Ci  sensing 

pathways  involving  sAC,  a  proven  Ci  sensitive  signalling  enzyme,  however, 

there is amounting evidence to suggest that sAC is not the only Ci sensitive 

cyclase. Despite sAC being shown to act as a Ci sensor in many pathways in 

mammals,  there  are  still  several  Ci  sensing  pathways which  are  unlikely  to 

involve sAC. As such, this thesis will attempt to answer the following questions:

1. The tmACs and sAC share a structurally homologous active site,  and the 

experimental evidence in the literature is contradictory as to whether tmACs are 

also regulated by Ci. Does sAC represent the sole Ci sensitive AC in mammals 

or are the tmACs also Ci sensitive?

2. Given the structural similarities between the AC and GC active site, and the 

evidence suggesting the involvement of a GC in the olfactory detection of Ci in  

rodents, are cyclases universally regulated by Ci? Can a Ci responsive GC be 

identified?

3.  Analysis  of  the  crystal  structures  of  ACs  and  certain  DNA  polymerases 

revealed that their tertiary structures are similar, in that they both possess a 

'palm' domain (see Chapter 4.1 for discussion). Given this structural similarity, 

and  the  fact  that  their  catalytic  mechanisms  are  related,  are  DNA  or  RNA 

polymerases also regulated by Ci?

4. How does Ci interact with ACs? Given the fact that the mechanism through 

which  Ci  acts  upon ACs is  largely  unknown,  a  biochemical  analysis  will  be 

performed to attempt to gain information regarding the mode of action of Ci.
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2.1 Materials

Chemicals and reagents Company Product 
code

Agarose Bioline BIO-41026

Tris(hydroxymethyl)aminomethane Sigma 93362

Glacial acetic acid Sigma A6283

Ethylenediaminetetraacetate Sigma E5134

DNA marker ladder Fermentas SM0311

Ethidium bromide Sigma E7637

Sodium perchlorate Sigma S1513

Sodium chloride Sigma S3014

Ethanol Sigma E7023

Tryptone Sigma (Fluka) T7293

Glucose Sigma G7528

Yeast extract Sigma Y1625

Magnesium chloride Sigma M8266

Lysogeny broth (LB) agar Sigma L2897

Dulbecco's Modified Eagle Medium (DMEM) Gibco (Invitrogen) 31966-021

DMEM/F12 (1:1) Gibco (Invitrogen) 31331-028

Non-essential amino acids Gibco (Invitrogen) 11140-050

Penecillin/streptomycin Gibco (Invitrogen) 15070-063

Heat inactivated newborn calf serum Gibco (Invitrogen) 26010-074

Trypsin-EDTA Gibco (Invitrogen) 15400-054

Isopropyl β-D-thiogalactoside Sigma I5502

LB medium Merck 10285.5000 

Imidazole Sigma I5513

Phenylmethylsulfonyl fluoride Sigma P7626

Glycerol Sigma G5516

Sodium dodecyl sulphate Sigma L4390

Bromophenol blue Sigma B0126

Dithiothreitol Sigma 43816

Glycine Sigma G7126

Coomassie G-250 Sigma 201391

Tween-20 Sigma 63158

Anti-mouse IgG, HRP-linked Antibody Cell Signalling 
Technology

7076

Phospho-CREB (Ser133) Mouse mAb Cell Signalling 
Technology

9196
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α-Tubulin Mouse mAb Cell Signalling 
Technology

3873

Potassium chloride Sigma P9333

Sucrose Sigma S7903

Calcium chloride Sigma C2661

Isobutylmethylxanthine (IBMX) Sigma I5879

Sodium bicarbonate Sigma S6297

Forskolin Sigma F6886

Isoproterenol Sigma I6504

Trichloroacetic acid Sigma T6399

Adenosine triphosphate (ATP) Sigma A6559

Adenosine 3,5 cyclic monophosphate (cAMP) Sigma A9501

Guanosine triphosphate (GTP) Sigma G8877

Guanosine 3,5 cyclic monophosphate (cGMP) Sigma G7504

Optiphase HiSafe 3 Perkin Elmer 1200-437

[α-32P]-ATP Perkin Elmer BLU003H

[α-32P]-GTP Perkin Elmer BLU006H

[α-32P]-deoxyATP Perkin Elmer BLU012H

[2,8-3H]-cAMP Perkin Elmer NET275

[8-3H]-cGMP Perkin Elmer NET337

[2,8-3H]-adenine Perkin Elmer NET063

Ampicillin Sigma A9518

Kanamycin Sigma K1377

G418 Sigma G5013

Tetracycline Sigma T7660

Chloramphenicol Sigma C0378

Dowex AG 50W-X4 resin Biorad 142-1341

Aluminium oxide (Activity grade 1, Type WN-3: 
neutral)

Sigma A9003

Activated calf thymus DNA Sigma D4522
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Kits Company Product 
code

Zero Blunt® TOPO® PCR cloning kit Invitrogen K2830-20

Wizard® Plus Miniprep kit Promega A7100

Ni2+-NTA superflow resin Qiagen 30410

Vivaspin 20 centrifugal concentrator Sartorius Biolab VS2011

Vivaspin 6 centrifugal concentrator Sartorius Biolab VS0611

PageRuler™ Prestained Protein Ladder Fermentas SM0671

PageRuler™ Plus Prestained Protein Ladder Fermentas SM1811

ECL™ Western Blotting Detection Reagent Amersham RPN2109

dNTP set Bioline BIO-39025

Polyprep chromatography column Biorad 731-1550

Mini-PROTEAN  Tetra  Electrophoresis 

System

Biorad 165-8038

Enzymes Company Product 
code

Pfu DNA polymerase Promega M774A

BIOTAQTM Red DNA polymerase Bioline BIO-21061

Xho I Fermentas ER0691

Eco RV Fermentas ER0301

Pst I Fermentas ER0611

Sph I Fermentas ER0601

T4 DNA ligase Fermentas EL0015

Calf intestinal alkaline phosphatase Fermentas EF0431

Cell lines Company Product 
code

HEK 293T ATCC CRL-11268

NIH 3T3 ATCC CRL-1658

E. coli Tuner (DE3) Novagen 70623

E. coli M15 (DE3) pREP4 Qiagen 34210

E. coli BL21 (DE3) Novagen 69387

E. coli CJ376 See section 4.3

E. coli Mach1 T1 Invitrogen K2830-20
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2.2 Cloning procedures

2.2.1 Polymerase chain reaction

Reactions using  Pfu DNA polymerase were set up on ice following the 

manufacturers protocol. Reactions typically contained 20 mM Tris-HCl pH 8.8, 

10 mM KCl, 10 mM (NH4)2SO4, 2 mM MgSO4, 1 % (v/v) Triton® X-100, 0.1 mg 

mL-1 BSA, 25 pmoles of each primer, 200 μM dNTPs, 250 ng DNA template and 

1 unit  Pfu DNA polymerase. Polymerase chain reaction (PCR) was typically 

cycled as listed below (Table 2.1).

Reactions using BIOTAQTM Red DNA polymerase were set up on ice. 

Reactions typically contained 16 mM (NH4)2SO4,  67 mM Tris-HCl pH 8.8,  25 

pmoles of each primer, 200 μM dNTPs and 1.5 units DNA polymerase. DNA 

was added as 0.5  μL of a DNA miniprep (see 2.2.6) or by directly picking a 

single colony from an lysogeny broth (LB) agar plate containing Escherichia coli  

transformants, and scraping into the PCR reaction. PCR reactions were typically 

cycled as listed below (Table 2.2).

Reactions were analysed by agarose gel electrophoresis (see 2.2.2).

2.2.2 Agarose gel electrophoresis

1 % or 1.5 % (w/v) agarose gels in TAE buffer (40 mM Tris-acetate, 1 mM 

EDTA  pH  8.0)  were  run  at  12  V  cm-1.  DNA  sample  was  mixed  4:1 

(sample:buffer) with loading buffer (2 % (w/v) orange G and 20 % (w/v) sucrose 

in  TAE  buffer)  prior  to  loading,  DNA  sizes  were  estimated  relative  to  a  1 

kilobase DNA marker ladder. Visualisation of DNA was attained through the in 

gel presence of ethidium bromide (0.5 μg mL-1) and a UV transilluminator. 

2.2.3 Extraction of DNA from agarose gels

The DNA band was excised from an agarose gel (see 2.2.2) and was 

allowed to dissolve in 600 μL binding buffer (6 M Sodium Perchlorate, 50 mM 

Tris-HCl pH 8.0, 10 mM EDTA). 10 μL 166 mg mL -1 silica in water was added 

and the suspension was incubated at room temperature for 30 minutes. The 

suspension was centrifuged (12,000 g, 30 sec), the supernatant was discarded, 

and the pellet was re-suspended in 200 μL binding buffer. This new suspension 

was centrifuged (12,000 g, 30 sec) and the pellet was re-suspended in 750 μL 
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wash buffer (400 mM NaCl, 20 mM Tris-HCl pH 7.5, 2 mM EDTA and 50 % (v/v) 

ethanol).  The  previous  wash  step  was  repeated,  the  suspension  was 

centrifuged (12,000 g, 30 sec), the supernatant was discarded, and the pellet 

left  to  air  dry  for  30  minutes  at  room  temperature.  The  dry  pellet  was  re-

suspended in 15 μL H2O and incubated at 37oC for 15 minutes. The sample was 

then centrifuged (12,000g,  2  min)  and the  supernatant  containing  DNA was 

removed and stored at -20oC until further use. 

2.2.4 Zero Blunt® TOPO® PCR cloning reaction

A 6 μL Zero Blunt® TOPO® PCR cloning reaction was assembled on ice 

and contained 200 mM NaCl, 10 mM MgCl2, 5 ng pCR®-Blunt II-TOPO® vector 

and  3  μL  of  blunt  ended  purified  PCR  product  (see  2.2.3).  Reaction  was 

incubated at 22oC for 30 minutes before a 2  μL aliquot was transformed into 

competent E. coli (see 2.2.5).

2.2.5 Transformation of chemically competent E. coli

Frozen  50  μL  aliquots  of  chemically  competent E.  coli  were  thawed 

quickly in the hand and transferred immediately onto ice. 25 ng of plasmid DNA 

or 2 μL of a DNA ligation mixture (see 2.2.4 and 2.2.8) was added, gently mixed,  

and left on ice for 30 minutes. Cells were heat shocked for 45 seconds in a 42oC 

water bath and immediately placed back on ice for 2 minutes. 950 μL of 37 oC 

SOC medium (2 % (w/v) tryptone, 0.5 % (w/v) yeast extract, 8.5 mM NaCl, 10 

mM MgCl2 and 20 mM glucose) was added to the cells and then cultured at 

37oC for 2 hours before plating onto LB agar plates containing required selection 

agents. Plates were grown at 37oC overnight.

2.2.6 Purification of plasmid DNA

A 5 mL overnight culture of E. coli was centrifuged (5,000 g, 10 min) and 

the pellet was processed using a commercial plasmid miniprep kit according to 

the manufacturers protocol. 

55



Materials and methods Philip Townsend

Time / minutes Temperature / oC

Initial denaturation 2 95

Denaturation 0.5 95

Annealling 0.5 55

Elongation 1 per 0.5 kb * 72

Final Elongation 5 72

Table 2.1: Cycling conditions for Pfu DNA polymerase.

* Manufacturer recommends allowing Pfu DNA polymerase 1 minute to extend 500 

base pairs

Time / minutes Temperature / oC

Initial denaturation 5 95

Denaturation 0.5 95

Annealling 0.5 55

Elongation 1 per 1 kb * 72

Final Elongation 5 72

Table 2.2: Cycling conditions for BIOTAQTM Red DNA polymerase.

* Manufacturer recommends allowing BIOTAQTM Red DNA polymerase 1 minute to 

extend 1000 base pairs

Fermentas Buffer Enzyme 1 / μL Enzyme 2 / μL

(1) Bam HI  (2) Hind III R 2 1

(1) Pst I       (2) Sph I B 2 1

(1) Eco RV   (2) Xho I R 1 1

Table 2.3: Buffer and relative enzyme amounts used for double digests.
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2.2.7 Restriction digestions

40  μL restriction digests were set up on ice, contained 200 ng plasmid 

DNA (see 2.2.6), and were incubated for 2 hours at 37oC. Digests contained 2 

different  restriction  endonucleases;  the  reaction  buffer  used  and  relative 

amounts  of  enzyme  used  were  determined  following  guidelines  on  the 

manufacturers website for double digests (Table 2.3). DNA vectors were also 

digested  in  the  presence  of  2  Units  of  Calf  alkaline  intestinal  phosphatase. 

Digests were analysed by agarose gel electrophoresis (see 2.2.2) and correct 

DNA fragments were purified (see 2.2.3) for further use. 

 

2.2.8 DNA ligations

10 μL DNA ligation reactions were set up on ice and contained 40 mM 

Tris-HCl pH 7.8, 10 mM MgCl2, 10 mM DTT, 5 mM ATP, 3 Units T4 DNA Ligase, 

and a 3:1 molar ratio of purified DNA insert:vector (see 2.2.7). Ligations were 

incubated  at  22oC  for  1  hour  before  a  2  μL  aliquot  was  transformed  into 

competent E. coli (see 2.2.5).

2.2.9 Preparation of chemically competent E. coli 

25 mL LB medium was inoculated with 250 μL of an overnight LB starter 

culture and grown with shaking (180 rpm) at 30oC to an OD600 of 0.5. Cells were 

transferred to ice for  15 minutes,  centrifuged (2700 g,  10 min,  4oC) and re-

suspended in 30 mL ice cold wash solution (80 mM MgCl2 and 20 mM CaCl2). 

Cells were centrifuged again (2700 g, 10 min, 4oC), re-suspended in 1 mL ice 

cold 100 mM CaCl2, split into 50 μL aliquots in chilled micro-centrifuge tubes, 

and stored at -80oC.

2.2.10 Preparation of genomic DNA from Synechocystis PCC 6803

2 mL of a confluent  culture of  Synechocystis PCC 6803 was pelleted 

(12,000 g, 2 min) and re-suspended in 500 μL H2O. Suspension was boiled for 

10 min and then pelleted (16,700 g, 10 min) to yield a crude preparation of 

genomic DNA in the supernatant. 
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2.2.11 Estimation of DNA concentration

Concentrations of DNA in solution were estimated using a quartz crystal 

cuvette and a Biowave S2100 Diode Array Spectrophotometer using the inbuilt 

software to  automatically  estimate concentration of  double stranded DNA.  A 

preparation of DNA free from contaminating proteins was deemed present if the 

A260 / A280 reported was between 1.8 and 2.0. 

2.2.12 Preparation of bacterial -140oC freezer stocks

E. coli cells were grown in 10 mL LB containing appropriate antibiotics at 

37°C overnight. The cells were harvested by centrifugation (5,500 g, 5 min and 

4°C). The bacterial pellet was re-suspended in 1 mL LB containing 40 % (v/v) 

glycerol. The suspension was placed in a labelled cryovial and stored at –140°C.

2.2.13 Sll0646 and Sll1161 expression constructs

Coding sequences for  Sll0646 (amino acids  424-756),  Sll0646 (amino 

acids 1-756) and Sll1161 (amino acids 73-285) were amplified (Table 2.4) from 

Synechocystis PCC 6803 genomic DNA (see 2.2.10) by PCR with  Pfu DNA 

polymerase (see 2.2.1). DNA was analysed by agarose gel electrophoresis (see 

2.2.2),  purified (see 2.2.3),  ligated into the  pCR®-Blunt  II-TOPO® vector (see 

2.2.4), and transformed into chemically competent E. coli Mach1 T1 (see 2.2.5). 

Positive colonies were identified through PCR (see 2.2.1) and were isolated, 

and grown in 5 mL LB medium at 37oC overnight. Plasmid DNA from overnight 

E.  coli Mach1 T1 cultures was isolated (see 2.2.6),  digested with  restriction 

endonucleases  (see  2.2.7),  analysed  by  agarose  gel  electrophoresis  (see 

2.2.2),  and  purified  (see  2.2.3).  Purified  DNA  was  ligated  into  the  required 

plasmid vector (see 2.2.8) and transformed into chemically competent  E. coli 

DH5α for maintenance (see 2.2.5).
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Direction Sequence (5'-3') Restriction site Vector

Sll0646424-756 Sense GGCGCATGCGCCACCCTACTGGAA
AACCCC

Pst I pQE30

Sll0646424-756 Antisense GGCCTGCAGCTAGCCCCCCTGAGC
GGAAG

Sph I pQE30

Sll06461-756 Sense GGCGCATGCATGGGTTGGACCATA
CCGTCA

Pst I pQE30

Sll06461-756 Antisense GGCCTGCAGCTAGCCCCCCTGAGC
GGAAG

Sph I pQE30

Sll06461-756 Sense GGCGATATCCTAGCCCCCCTGAGC
GGAAG

Eco RV pCDNA3.1

Sll06461-756 Antisense GGCCTCGAGATGGGTTGGACCATA
CCGTCA

Xho I pCDNA3.1

Sll116173-285 Sense GGCGGATCCCTATTAATGGCTAAT
ATTCGTGGG

Bam HI pQE30

Sll116173-285 Antisense GGCAAGCTTTTAAGAAGATTTTAG
CCAAGAACC

Hind III pQE30

Table 2.4: Primers used for cloning Synechocystis PCC 6803 CHDs.
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2.3 Mammalian cell culture

2.3.1 General cell culture

Mammalian cell lines were routinely cultured at 37oC in a humidified CO2 

incubator set to 5 % (v/v) CO2 in air. HEK 293T cells were cultured in DMEM 

supplemented with 10 % (v/v)  heat inactivated newborn calf  serum, 100  µM 

non-essential amino acids, 50 Units penicillin, and 50 µg streptomycin. NIH 3T3 

cells were cultured in DMEM/F12 (1:1 (v/v) DMEM:F12) medium supplemented 

with  10  % (v/v)  heat  inactivated  newborn  calf  serum,  100  µM  non-essential 

amino  acids,  50  Units  penicillin,  and  50  µg  streptomycin.  Cells  were  sub-

cultured  at  about  90  %  confluency  by  aspirating  the  medium,  washing  cell  

monolayer twice with phosphate buffered saline (PBS), and incubating with 1 

mL 0.05 % (w/v) trypsin for 3 minutes at 37oC. Trypsinisation was halted with 

the addition of fresh medium; cell clumps were broken by pipetting up and down 

in a 10 mL serological pipette. 

2.3.2 Coating tissue culture plates with poly-D-lysine

100 μg mL-1 poly-D-lysine solution was added to completely cover the 

surface to be coated and was incubated at room temperature for 1 hour. The 

poly-D-lysine solution was aspirated, plates were washed 3 times with water 

and left to dry.

2.3.3 Intracellular pH measurement

HEK 293T cells attached to a 24 mm2 glass coverslip were loaded with 

the pH sensitive fluorescent dye 2’,7’-bis(carboxyethyl)-5(6)-carboxyfluorescein 

(BCECF)  through  exposure  to  1  µM  BCECF-AM  (an  acetoxymethyl  ester 

derivative)  for  30 minutes.  The cell  monolayer  was constantly  perfused with 

each incubation solution and intracellular pH (pH i) was measured by exciting a 

small patch of cells at 490 and 440 nm using a microspectrofluorometric system, 

and  measuring  emission  at  535  nm.  pHi was  calibrated  using  the  high 

potassium nigericin method (Hegyi et al., 2004).

2.3.4 Preparation of cell lysates

Unless  indicated  all  steps  were  performed  on  ice  or  at  4oC. Cell 
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monolayer was washed with PBS, suspended in 10 mL hypotonic lysis buffer 

(10 mM Tris-HCl pH 7.5, 10 mM MgCl2 and 5 mM CaCl2), and incubated for 20 

minutes. The cell suspension was pelleted (200 g, 2 min), re-suspended in 10 

mL  hypotonic  lysis  buffer  and  incubated  for  a  further  20  minutes.  The  cell 

suspension was pelleted (200 g, 2 min), re-suspended in 1 mL lysis buffer (20 

mM Tris-HCl pH 7.5,  5  mM NaCl,  1 mM DTT, 1 mM IBMX and 20 % (v/v) 

glycerol),  and  homogenised  with  vigorous  passage  through  a  G21  needle. 

Samples were aliquoted and stored at -20oC until  further use. Samples were 

only allowed to freeze-thaw once.
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2.4 Protein manipulations

2.4.1 Expression of recombinant proteins in E. coli

For conditions related to individual proteins refer to  Table 2.5.  1 L LB 

medium was inoculated with 10 mL of an overnight  E. coli  starter culture and 

was  grown in  a  37oC temperature  controlled  shaking  incubator  at  180  rpm. 

Protein expression was induced once cells reached the specified absorbance 

value with the addition of isopropyl β-D-thiogalactoside (IPTG) to the required final 

concentration (Table 2.5).  Bacteria  were grown with  shaking at  the required 

temperature and for the required time (Table 2.5). 

A different  induction procedure was used for  the Klenow D424A  exo- 

fragment of E. coli DNA polymerase I. Four flasks of 750 mL LB medium (100 

μg μL-1 ampicillin) were inoculated with 10 mL of an overnight LB (100 μg μL-1 

ampicillin) starter culture of E. coli CJ376 pXS106 (Klenow D424A exo- KF) and 

cultured at 30oC with shaking (180 rpm) till an OD600 of 0.6 was reached. Protein 

expression was induced with the addition of 250 mL LB preheated to 90oC and 

cultures were grown at 42oC for 2 hours (Joyce and Derbyshire, 1995). 

All  bacteria  were  harvested  through  centrifugation  (12,000g,  4oC,  10 

min). The pellet (one pellet corresponds to cells from 2 L LB) was washed with  

40 mL bacterial wash buffer (50 mM Tris-HCl pH 8.5, 1 mM EDTA), centrifuged 

(5,500g, 4oC, 15 min), and frozen at –80oC.

2.4.2 Lysis of bacteria

Frozen bacterial pellets (see 2.4.1) were thawed quickly in a 37oC water 

bath. All  subsequent steps were performed on ice or at 4oC. The pellet (one 

pellet corresponds to cells from 2 L LB; see 3.4.1) was re-suspended in 30 mL 

lysis buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM imidazole, 2 mM DTT, 

5 mM MgCl2, and 1 mM PMSF), sonicated (2.5 min, 74 W, 2 pulses per second), 

and  centrifuged  (50,000g,  30  min).  Crude  supernatant  containing  soluble 

proteins was saved for purification.
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E. coli strain OD600 at 
induction

[IPTG] 
/ μM

Temperature
 / oC

Time
/ hours

7C1 Tuner (DE3) 0.5 30 22 19

2C2 M15 (DE3) 0.5 30 22 16

Gαs M15 (DE3) 0.5 30 22 16

Sll0646424-756 M15 (DE3) 0.5 500 30 4

Sll0646434-635 BL21 (DE3) 0.5 500 30 4

CyaB1 M15 (DE3) 0.5 300 30 3

T7 RNAP BL21 (DE3) 0.5 400 37 4

Klenow CJ376 0.5 1000 30 4

Pol β BL21 (DE3) 0.5 50 22 15

Table 2.5: Expression conditions for each recombinant protein.

(see 2.4.1)

1o / 2o Species Dilution
Ab : block *

Temperature
/ oC

Time
/ hour

pSer133CREB 1o mouse 1 : 250 4 15

α-tubulin 1o mouse 1 : 1000 22 4

Anti-mouse IgG 2o mouse 1 : 1000 22 1

Table 2.6: Conditions used for individual antibodies.

* Ab denotes antibody and block denotes blocking buffer (see 2.4.6)
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2.4.3 Ni2+-NTA affinity chromatography

All  steps were performed on  ice  or  at  4oC.  1 mL Ni2+-NTA resin  was 

added to 30 mL crude supernatant (see 2.4.2) and incubated with gentle rocking 

for 2 hours. Ni2+-NTA resin was pelleted (200g, 2 min), loaded into a 10 mL 

polyprep chromatography column, and allowed to settle. Resin was washed with 

15 mL (per 1 mL of Ni2+-NTA resin) wash buffer (50 mM Tris-HCl pH 8.0, 150 

mM NaCl, 20 mM imidazole, 2 mM DTT, and 5 mM MgCl2) and eluted with 5 mL 

(per 1 mL of Ni2+-NTA resin) elution buffer (50 mM Tris-HCl pH 8.0, 150 mM 

NaCl, 150 mM imidazole, 2 mM DTT, and  5 mM MgCl2). An aliquot of eluate 

was saved for analysis by SDS-PAGE (see 2.4.5). Eluate was concentrated to 2 

mL  with  a  vivaspin  20  centrifugal  concentrator  as  per  the  manufacturers 

guidelines. Concentrated eluate was dialysed (3 x 1 hour) into storage buffer (50 

mM Tris-HCl pH8.0, 2 mM DTT, 10 mM NaCl, 20 % (v/v) glycerol) and stored at 

–20oC until needed.

2.4.4 Ammonium sulphate fractionation

All  steps  were  performed  on  ice  or  at  4oC.  9.03  g  solid  ammonium 

sulphate was slowly added to the crude supernatant with stirring (see 2.4.2) to 

50 % (w/v) saturation, the suspension was centrifuged (5,500 g, 10 min), and 

the pellet was discarded. A further 8.26 g ammonium sulphate was added to the 

supernatant  with  stirring  to  85  %  (w/v)  saturation,  the  suspension  was 

centrifuged (5,500 g, 10 min), and the  pellet was re-suspended in 5 mL fast 

protein liquid chromatography (FPLC) buffer  (20 mM Tris-HCl pH 8.0,  1 mM 

DTT, 0.5 mM EDTA, and 2 mM MgCl2).

2.4.5 SDS-PAGE

0.75 mm polyacrylamide gels (12 % or 15% (v/v) bis-acrylamide resolving 

and 5% (v/v) bis-acrylamide stacking) were poured using the Mini-PROTEAN 

Tetra Electrophoresis System. Samples were mixed 1:1 (v:v) with loading buffer 

(50 mM Tris-HCl pH 6.8, 2 % (w/v) SDS, 0.1 % (w/v) bromophenol blue, 10 % 

(v/v) glycerol, and 100 mM DTT), incubated at 95oC for 5 minutes and run at 20 

V cm-1  in running buffer (25 mM Tris-HCl pH 6.8, 200 mM glycine, 0.1 % (w/v) 

SDS). Protein sizes were estimated relative to a protein marker ladder. Gels 

were stained with Coomassie Brilliant Blue dye (0.1 % (w/v) Coomassie G-250 
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dye, 10 % (v/v) acetic acid, and 50 % (v/v) methanol) and de-stained in de-

staining solution (10 % (v/v) acetic acid and 50 % (v/v) methanol).

2.4.6 Immunoblotting

Freshly  run  agarose  gels  were  assembled  along  with  Hybond  ECL 

Nitrocellulose membrane in the Mini-PROTEAN Tetra Electrophoresis System. 

Proteins were transferred at 2 V cm-1 at 4oC overnight in transfer buffer (25 mM 

Tris-HCl pH 8.5, 190 mM glycine, and 15 % (v/v) methanol). Membranes were 

washed for 5 minutes in TBS-T (25 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.05% 

(v/v) Tween-20) and incubated in blocking buffer (5 % (w/v) non-fat milk in TBS-

T) for 2 hours at room temperature. Membranes were washed 3 times in TBS-T 

for 10 minutes each and then probed with primary antibody diluted in blocking 

buffer (Table 2.6). Membranes were washed again with TBS-T and then probed 

with secondary antibody diluted in blocking buffer (Table 2.6). Membranes were 

again washed with TBS-T before a 5 minute incubation with ECL™ Western 

Blotting Detection Reagent at room temperature. Western blots were scanned 

using a Fuji Las-1000 chemiluminescent scanner. 

2.4.7 Fast protein liquid chromatography

All steps are performed on ice or at 4oC. Protein (see 2.4.3 and 2.4.4) 

was thawed, dialysed (3 x 1 hour) into FPLC buffer (20 mM Tris-HCl pH 8.0, 1  

mM DTT, 0.5 mM EDTA, and 2 mM MgCl2) and was applied to a 25 mL Q-

sepharose liquid chromatography column (Biorad) pre-equilibrated with FPLC 

buffer. Columns were always run at 1 mL min -1. Columns were washed with 100 

mL FPLC buffer and protein was eluted in 5 mL fractions with a 100 mL linear 

gradient of 0 – 400 mM NaCl and a 50 mL steep gradient of 400 mM – 1 M NaCl.  

Fractions were analysed for protein content and peak fractions were analysed 

via SDS-PAGE (see 2.4.5). Clean fractions were pooled and concentrated to 2 

mL with  a  vivaspin  20  centrifugal  concentrator  (Sartorius  Biolab)  as per  the 

manufacturers guidelines. Concentrated eluate was dialysed (3 x 1 hour) into 

storage buffer (50 mM Tris-HCl pH 7.5, 5 mM NaCl, 2 mM MgCl2, 20 % (v/v) 

glycerol) and stored at –20oC until needed.
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2.4.8 Estimating protein concentration

The  concentration  of  purified  recombinant  proteins  in  solution  were 

estimated using a quartz  crystal  cuvette  and a Biowave S2100 Diode Array 

Spectrophotometer scanning at 280 nm. Concentrations were estimated from 

the A280 value using the Beer-Lambert law and the Lasergene software package 

by DNASTAR to estimate the molar extinction coefficient of the protein based on 

the predicted sequence.
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2.5 Biochemistry

2.5.1 Preparation of CO2 solutions for in vivo assays

10 mL of incubation medium stock (200 mM Hepes-NaOH pH 7.0, 1.17 M 

NaCl, 45 mM KCl, 10 mM MgCl2, 110 mM glucose, 100 mM sucrose, and 25 

mM CaCl2)  was added to  80  mL H2O and left  in  a  37oC water  bath  for  30 

minutes while 0, 5 or 10 % (v/v CO2 in air)  was constantly bubbled through. 

Small aliquots of 1 M NaHCO3 (Table 2.7) were then added to adjust the media 

to the desired pH and once established the solutions were adjusted to a 100 mL 

final volume. 100 μL 100 μM isobutylmethylxanthine (IBMX) was added to each 

solution and they were then quickly transferred to their respective humidified 

tissue culture incubator ready for use.

2.5.2 In vivo AC assay

HEK 293T cells  were sub-cultured (see 2.3.1)  into  12 well  poly-lysine 

coated plates (see 2.3.2) and labelled overnight with 1.5 µCi  [2,8-3H]-adenine 

once 80-90 % confluence was achieved. The following day, cells were washed 

three times with PBS and incubated at 37oC at the required CO2 concentration in 

980 µL incubation media (20 mM Hepes-NaOH pH 7.0, 117 mM NaCl, 4.5 mM 

KCl, 1 mM MgCl2, 11 mM glucose, 10 mM sucrose, 2.5 mM CaCl2, and 1 mM 

IBMX; see 2.5.1) for 30 minutes. After 30 minutes the assay was initiated by the 

addition of 20 µL agonist, incubated at the required CO2 concentration and at 

37oC. Assays were stopped after 30 minutes by aspirating the media and adding 

1 mL ice cold 5 % (w/v) trichloroacetic acid (TCA) containing 1 mM ATP and 1 

mM cAMP. Cells were lysed at 4oC with mixing for 30 minutes before the TCA 

solution was removed and stored for quantification of total adenine nucleotides. 
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Condition pH CO2 / % * HCO3
- / mM CO2 / mM

Acidotic hypocapnic 7.0 0.04 0 0

Acidotic normocapnic 7.0 5 7 2

Acidotic hypercapnic 7.0 10 15 4

Table 2.7: Final concentration of HCO3
- in each incubation mix.

* [% = percentage (v/v) CO2 / Air]
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Products were  quantified  via  modification  of  the  twin  column 

chromatography  approach  used  to  purify  nucleotides.  1  mL  samples  were 

applied to 1 mL Dowex columns and the flow-through was collected. The Dowex 

column was washed with 2 mL H2O, this was pooled with the previous flow-

through, mixed with 3 mL scintillation fluid, and counted on a liquid scintillation 

counter.  Nucleotides  bound  to  the  Dowex  column  were  washed  onto  1  mL 

aluminium oxide columns with 5 mL H2O. cAMP was then eluted twice from the 

aluminium oxide columns with 3 mL 100 mM Tris-HCl pH 7.5, mixed with 3 mL 

scintillation  fluid  and  counted.  Total  counts  were  defined  as  the  combined 

counts from the Dowex elutions and the two aluminium oxide elutions. Product 

counts were defined as the combined counts  from the two aluminium oxide 

elutions. Percentage nucleotide converted was defined as (product counts / total 

counts)*100. 

2.5.3 In vitro AC assays (old method – Sections 3.4 and 4.2)

Adenylyl cyclase assays were performed at 37oC unless otherwise stated 

and were carried out in a final volume of 100 μL in a 1.5 mL microcentrifuge 

tube. Assays were buffered with 50 mM Mes-NaOH (pH 6.5) or Tris-HCl (pH 7.0 

and above). Assays were spiked with [α-32P]-ATP (25 kBq)  as a substrate. An 

ATP regenerating system (5 units creatine phosphokinase and 5 μM creatine 

phosphate)  and  1  mM  IBMX  was  included  when  assaying  crude  cell 

preparations (see 2.3.4).

Assays were always initiated by the addition of substrate and reactions 

were stopped with the addition of 150 μL stop solution (50 mM Tris-HCl pH 7.5 

and 5 % (w/v) SDS). 100 μL tritium control solution (1 mM ATP, 1 mM cAMP 

and  [2,8-3H]-cAMP (150 Bq)) was added to each sample followed by 650 μL 

H2O. 

cAMP was resolved using the twin column chromatography approach. 1 

mL samples were applied to 1 mL Dowex columns, allowed to flow through, and 

washed with 2 mL H2O. Nucleotides bound to the Dowex column were washed 

onto 1 mL aluminium oxide with 5 mL H2O. Cyclic nucleotides were then eluted 

from the aluminium oxide columns with 3 mL 100 mM Tris-HCl pH 7.5, mixed 

with 3 mL scintillation fluid, and counted. Protein concentration was adjusted to 

limit substrate utilisation to below 10%. 
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2.5.4 In vitro AC assays (new method – Section 4.3 onwards)

100 μL assays were carried out in closed 1.5 mL microcentrifuge tubes at 

37oC. Assays were buffered with 100 mM Mes-NaOH (pH 6.5) or Tris-HCl (pH 

7.0 and above). An ATP regenerating system (5 units creatine phosphokinase 

and 5 μM creatine phoshate) and 1 mM IBMX was included when assaying 

crude cell preparations.

For each NaHCO3  assay pH a series of NaCl assay pHs were used to 

ensure that the pH of the NaHCO3 point fell between that of the NaCl points (see 

section 4.3).

While  the  main  assays  were  spiked  with  [α-32P]ATP  (25  kBq)  as  a 

substrate, an identical series of assays was set up without radioactive substrate. 

This set of assays was used to accurately measure pH at the end of the assay 

using a computer driven pH microelectrode (see 2.5.9).

Assays were stopped and analysed as previously (see 2.5.2).

2.5.5 Preparation of DNA template for RNA polymerase assays

Using M13 forward and M13 reverse primers, the 3.8 kb DNA fragment of 

pQ3N1 was amplified through PCR with BIOTAQTM Red DNA polymerase (see 

2.2.1), analysed by agarose gel electrophoresis (see 2.2.2), and purified (see 

2.2.3) (Katayama and Ohmori, 1997). 

2.5.6 In vitro RNA polymerase assays

RNA polymerase assays were performed at 37oC in a final volume of 100 

μL in a 1.5 mL microcentrifuge tube, following essentially the same protocol as 

that used used for ACs (see 2.5.3 for experiments in Section 4.2 and 2.5.4 for 

experiments in Section 4.3). Assays were buffered with 50 mM Mes-NaOH (pH 

6.5) or Tris-HCl (pH 7.0 and above). Assays were all spiked with [α-32P]-ATP (25 

kBq) as a substrate and contained 10 μg DNA template (see 2.5.5). Following 

completion  of  the  reaction  40  μL  was  spotted  onto  Whatmann  3MM  paper 

(which had been pre-soaked in 10 % (w/v) TCA and dried), allowed to dry fully  

and then washed in 10 % (w/v) TCA for 1 hour. Filters were then washed three 

times  in  2.5  %  (w/v)  TCA for  30  minutes  each,  placed  in  scintillation  vials 

containing  4  mL scintillation  fluid,  and  then  counted  on  a  liquid  scintillation 

counter. Protein concentration was adjusted to limit substrate utilisation to below 
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10%.

2.5.7 In vitro DNA polymerase assays

DNA polymerase assays were performed essentially  the same as the 

RNA polymerase assays in Section 4.3, with the exceptions that assays were 

spiked with [α-32P]-dATP (25 kBq) and 10 μg activated calf thymus DNA as a 

template.

2.5.8 In vitro GC assay

Guanylyl  cyclase  assays were performed essentially  the same as the 

new method adenylyl cyclase assays (see 2.5.4), but with a few modifications. 

Assays were spiked with [α-32P]-GTP (25 kBq) as substrate and 100 μL tritium 

control  solution  (1  mM GTP,  1  mM cGMP and  [8-3H]-cGMP (150  Bq))  was 

added following the termination of the assay.

62 mg of total protein from GC-A transfected NIH 3T3 cell lysates, and 45 

mg of total protein from GC-E transfected NIH 3T3 cell lysates were used.

1 mL samples were applied to 1 mL Dowex columns, allowed to flow 

through and washed with  1  mL with  H2O.  Nucleotides  bound to  the  Dowex 

column were  washed  onto  1  mL aluminium oxide  columns with  5  mL H2O. 

Aluminium oxide columns were washed with 2 mL 100 mM Tris-HCl pH 7.5, and 

cGMP was eluted from the aluminium oxide columns with 3 mL 100 mM Tris-

HCl pH 7.5, mixed with 3 mL scintillation fluid and counted. 

2.5.9 pH measurements

pH  measurements  were  made  using  a  computer  driven  micro-pH 

electrode (Hamilton Biotrode connected to the Orion pH SensorLink program) to 

measure 100 μL solution in a 1.5 mL microcentrifuge tube. The pH meter was 

calibrated using standard pH buffer solutions (pH 4, 7 and 10).
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2.6 Statistics

All  error  bars represent  the standard error  of  mean.  All  statistics  and 

graphical  analysis  was  performed  using  GraphPad  Prism  4  (GraphPad 

Software,  inc.).  All  data  shown  is  representative  of  at  least  2  independent 

experiments.
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3.1 Introduction

Following the identification of mammalian soluble adenylyl cyclase (sAC) 

as a Ci responsive enzyme, several other adenylyl cyclases (ACs) were shown 

to respond to Ci, including ACs from Spirulina platensis (CyaC), Anabaena PCC 

7120 (CyaB1),  Synechocystis PCC 6803 (Slr1991),  Chloroflexus aurantiacus 

(Chlo1187) and Stigmatella aurantiaca (CyaB) (Cann et al., 2003; Chen et al., 

2000; Hammer et al., 2006; Masuda and Ono, 2005; Steegborn et al., 2005b). 

These ACs all possess a Class IIIb cyclase homology domain (CHD), and the 

defining feature of this group (the replacement of a substrate defining aspartate 

with  a  serine or  threonine residue)  was hypothesised to  be a marker  for  Ci 

responsiveness  (Cann  et  al.,  2003;  Linder  and  Schultz,  2003).  Despite  the 

response to Ci being thought to be a feature unique to ACs in possession of a  

Class  IIIb CHD,  several  ACs possessing  other  CHDs were shown to  be  Ci 

responsive,  including  ACs  from  Mycobacterium  tuberculosis (Rv1625), 

Cryptococcus neoformans (Cac1), and  Candida albicans (Cdc35)  (Klengel  et 

al., 2005; Mogensen et al., 2006; Townsend et al., 2009).   

These Ci responsive enzymes were originally proposed to be activated 

by HCO3
-, as opposed to the other physiologically relevant species of Ci; CO2 

(Cann  et  al.,  2003;  Chen  et  al.,  2000).  However,  recent  work has  provided 

strong evidence that these Ci responsive enzymes are actually activated by CO2 

and not HCO3
-, as was previously assumed (Hammer et al., 2006). Due to the 

effect that pH has upon the equilibrium formed between  CO2 and HCO3
-, the 

relative molar amounts of each species varies significantly as the pH is changed 

(Figure 1.1). At pH 8.5 the total Ci pool is almost totally comprised of HCO3
-, but 

as the pH is lowered the concentration of HCO3
- decreases as CO2 increases, 

such that at pH 6.5 the Ci pool is about 40 % (mol/mol) CO2 and 60 % (mol/mol) 

HCO3
- (Figure 1.1). 

Previous  investigation  into  the  effect  of  Ci  on  a  mammalian 

transmembrane AC (tmAC), which possesses a Class IIIa CHD, has provided 

contrasting data  (Chen  et  al.,  2000;  Xie  et  al.,  2006).  Although more recent 

investigation suggested that mammalian type III AC was activated by Ci in vitro 

(Figure 1.11B), earlier research showed no response of a recombinant 'soluble' 

tmAC to Ci  in vitro (Figure 1.11A)  (Chen  et al., 2000; Xie  et al., 2006). When 

new evidence suggesting that CO2 (as opposed to HCO3
-) was the activating 

74



Ci and mammalian tmAC Philip Townsend

species of Ci was taken into account, it became apparent that a response of the  

'soluble' tmAC to Ci in vitro had possibly been missed, since the concentration 

of CO2 was potentially too low at the pH tested to elicit a response (Chen et al., 

2000;  Hammer  et  al.,  2006).  The assays performed  in  vitro  on the  'soluble' 

tmAC were conducted at pH 7.5, a pH where the levels of CO2 were relatively 

low (Chen et al., 2000). Working on the assumption that CO2 activates these Ci 

responsive ACs, the response of a tmAC to Ci was re-tested at a more suitable 

pH where the concentration of CO2 was higher. Since it is possible that not all 9 

tmACs are Ci responsive, this was initially carried out using an in vivo approach 

to  study  the  endogenous  tmACs  in  a  mammalian  cell  line.  To  build  upon 

previous  experimentation,  the  response  of  a  tmAC  would  also  be  tested 

biochemically in vitro, to aid the identification of the mechanism through which 

Ci mediates its effects. 
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3.2 The effect of Ci on intracellular pH

The  effects  of  Ci  on  the  production  of  cAMP  by  tmACs  in  vivo  was 

examined through a cAMP accumulation assay using Human Embryonal Kidney 

(HEK)  293T  cells.  Cultured  HEK  293T  cell  monolayers  were  exposed  to 

hypocapnic (below normal levels of CO2; 0.03 % (v/v) CO2 in air), normocapnic 

(normal levels of CO2; 5 % (v/v) CO2 in air) or hypercapnic (above normal levels 

of CO2; 10 % (v/v) CO2 in air) conditions. However, before cAMP accumulation 

assays  were  performed,  a  series  of  control  experiments  were  performed  to 

identify  any  effects  that  variable  CO2 concentrations  could  have  upon 

intracellular pH (pHi). 

HEK 293T cells were grown under normocapnic conditions until the start 

of the experiment whereby they were exposed to hypocapnic, normocapnic or 

hypercapnic conditions. Due to the fact that the equilibrium formed between CO2 

and HCO3
- (Figure 1.1) can affect  pH, it  was possible that exposing cells to 

elevated CO2 would cause an intracellular acidification through an influx of CO2 

into the cell (and vice versa). Following diffusion of CO2 into the cell, carbonic 

anhydrases (CAs) would accelerate the equilibration of CO2 into HCO3
-, causing 

a  release  of  protons  (Figure  1.1 and  Figure  1.2).  Although  there  is  some 

evidence  to  suggest  that  certain  tmACs  are  protected  from changes  in  pH i 

through  co-localisation  with  a  Na+/H+ exchanger  on  lipid  rafts,  it  was  still 

necessary to  quantify  any pH changes since they could  effect  a  plethora of  

intracellular processes (Willoughby et al., 2005).

This pH control experiment was performed in collaboration with Dr. Mike 

Gray at Newcastle University and involved exposing cells to a pH sensitive dye 

which was used to quantify pHi using a microspectrofluorometric system. Cells 

were grown on a glass coverslip to confluence and then loaded with the pH 

sensitive  dye  2’,7’-bis(carboxyethyl)-5(6)-carboxyfluorescein  (BCECF)  in  the 

form  of  its  acetoxymethyl  ester  (BCECF-AM).  Following  entry  into  the  cell 

BCECF-AM was cleaved by the endogenous esterases in the cell, liberating the 

active molecule BCECF. The coverslip carrying BCECF loaded cells was placed 

onto a specially  adapted microspectrofluorometric system and the incubation 

solutions  (see  2.5.1;  hypocapnic,  normocapnic  or  hypercapnic)  allowed  to 

perfuse across the cell monolayer, and pHi was recorded (Figure 3.1).
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Figure 3.1: Intracellular pH measurements on HEK 293T cells.

Cells  were  adhered  to  a  24  mm2 coverslip  and  loaded  with  1  μM  2’,7’-
bis(carboxyethyl)-5(6)-carboxyfluorescein  acetoxymethyl  ester.  Calibration  of 
intracellular pH was carried out using the high potassium nigericin method. % = 
percentage (v/v) CO2 in Air.
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As can be seen (Figure 3.1), changing between different CO2 solutions 

had a moderate effect on pHi, however, this change in pHi was always followed 

by a gradual recovery back to the starting pH i. It was observed that when the 

CO2 concentration  in  the  perfused  solution  was  raised,  an  initial  rapid 

acidification of the cell would occur, followed by a gradual recovery of pH i back 

to the original pH 7.0 over a period of about 8 - 10 minutes (Figure 3.1). The 

converse  was  seen  when  reducing  the  CO2 concentration  in  the  perfused 

solution; a rapid increase in pHi,  followed by a gradual recovery back to the 

original pHi (Figure 3.1). This data demonstrated that if the cells were given at 

least 10 minutes to recover following a change in the CO2 concentration of the 

incubation medium that the pHi would return to the initial value.
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3.3 The effect of Ci on the production of cAMP in vivo

Since the level of cAMP within cells is controlled by two opposing forces, 

ACs  producing  cAMP and  phosphodiesterases  (PDEs)  degrading  cAMP,  an 

incubation with  the generic  PDE inhibitor  isobutylmethylxanthine (IBMX) was 

required prior to the stimulation of cAMP production, to allow all cAMP produced 

to  be quantified.  This  incubation with  IBMX was carried out  for  30 minutes, 

following the addition of the required CO2 medium to the cells. The incubation 

allowed  the  pHi of  the  HEK  293T  cells  to  recover  following  exposure  to 

hypercapnic or hypocapnic conditions, and also allowed IBMX to act upon its 

target. As such, in vivo  cAMP accumulation assays on HEK 293T cells were 

always  performed  in  a  two  step  manner.  Step  one  was  the  pre-incubation 

phase, where cells were pre-incubated for 30 minutes at 37oC in the required 

CO2 media containing 1 mM IBMX. Step two was the stimulation of the cells with 

an agonist for 30 minutes, to stimulate the production and thus accumulation of 

cAMP within the cell.

Before studies into the effects of Ci on the production of cAMP by tmACs 

in vivo could commence it was necessary to ensure that cells were exposed to 

the correct concentration of agonist. If too high a concentration of agonist were 

used it was possible that tmAC activity would be high enough to convert all ATP 

available to the tmACs into cAMP, preventing any effects of Ci being seen. A 

suitable concentration of isoproterenol was determined by exposing HEK 293T 

cells to a range of isoproterenol concentrations and quantifying the amount of 

cAMP produced (Figure  3.2A).  It  was observed that  there  was a  significant 

difference in cAMP accumulated between 1 and 100 nM isoproterenol, but no 

further  increase  in  cAMP  between  100  and  1000  nM  suggesting  the 

endogenous tmACs were at maximal activity at 100 nM. From this experiment it 

was concluded that the most suitable concentration of isoproterenol would be 10 

nM. An identical control experiment was performed to identify the appropriate 

concentration  of  forskolin  (a  plant  diterpene  and  non-specific  activator  of 

tmACs)  to  suitably  stimulate  tmACs within  HEK 293T  cells  (Seamon  et  al., 

1981). A dose response of forskolin was performed on HEK 293T cells (Figure

3.2B) and indicated that 5 μM forskolin would be a suitable concentration. 
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Figure 3.2: Preliminary cAMP accumulation assays on HEK 293T cells.

Cells were incubated under normocapnic conditions at pH 7.0 for 30 minutes at 
37oC in incubation medium (see Section 2.5.1) containing 1 mM IBMX. Cells 
were  then  incubated  for  30  minutes  at  37oC  in  the  presence  of  variable 
isoproterenol (A) or forskolin (B). (n = 3)
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With  suitable  concentrations  of  agonists  identified  it  was  possible  to 

investigate the effects of Ci on the production of cAMP in HEK 293T cells. HEK 

293T  cells  were  exposed  to  hypocapnic,  normocapnic  and  hypercapnic 

conditions and the production of cAMP through tmACs was quantified (Figure

3.3). When cells were stimulated with 10 nM isoproterenol (Figure 3.3A) a clear 

decrease in the production of cAMP could be seen when the CO2 concentration 

was dropped from normocapnic (5 %) to hypocapnic (0.03 %) levels. A similar 

effect  was  also  seen  when  the  endogenous  tmACs  in  HEK  293T  were 

stimulated  with  forskolin  (Figure  3.3B),  where  a  clear  decrease  in  cAMP 

production was seen from normocapnic to hypocapnic  levels. Interestingly, an 

increase in cAMP production was not seen when moving from normocapnic to 

hypercapnic (10 %) levels of CO2,  in  either the presence of  isoproterenol or 

forskolin (Figure 3.3A/B). 

These  experiments  provided  strong  evidence  that  a  decrease  in 

intracellular Ci in HEK 293T cells resulted in a decrease in cAMP production, 

when the tmACs were stimulated with an agonist (Figure 3.3A/B). However, the 

possibility that sAC was in fact responsible for these increases in cAMP could 

not be ruled out and was investigated further. This was done by repeating the 

forskolin  experiment  (Figure  3.3B) in  the  presence  or  absence  of  the  sAC 

specific inhibitor KH7 (kind gift from Professors Lonny Levin and Jochen Buck) 

(Figure  3.4)  (Hess  et  al.,  2005).  The addition  of  KH7 had  no  effect  on  the 

decrease  in  cAMP  seen  between  normocapnic  and  hypocapnic  conditions 

(Figure 3.4). 
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Figure 3.3: The effect of Ci on the accumulation of cAMP in HEK 293T cells.

HEK 293T cells were exposed to varied CO2 concentrations (% = percentage 
(v/v) CO2/Air), and cAMP accumulation was quantified over a 30 minute time 
period in the presence of 1 mM IBMX. (A) Cells were stimulated with (dark) or 
without  (clear)  10 nM isoproterenol. (B) Cells  were stimulated  with (dark)  or 
without (clear) 5 μM forskolin. * p < 0.05 (n = 12) 
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Figure 3.4: Ci dependent cAMP accumulation was due to tmACs and not sAC.

HEK 293T cells were exposed to varied CO2 concentrations (% = percentage 
(v/v) CO2/Air) and cAMP accumulation was stimulated with 5 μM forskolin over a 
30 minute time period in the presence of 1 mM IBMX,  with (dark) or without 
(clear) 1 μM KH7. * p < 0.05 (n = 12)

0.03 % 5 %
0.0

0.4

0.8

1.2

1.6 *
*

[CO2]

%
 A

TP
 c

on
ve

rt
ed



Ci and mammalian tmAC Philip Townsend

These in vivo experiments (Figure 3.3 and Figure 3.4) provided evidence 

that Ci was either directly or indirectly acting upon tmACs, with the resulting 

effect  of  increasing  their  production  of  cAMP.  However,  at  this  stage  the 

question  still  remained as  to  whether  the  effect  of  Ci  on  intracellular  cAMP 

production  could  have  any  downstream  physiological  effects.  In  order  to 

address this it was decided to investigate the effect of Ci on the phosphorylation 

of the cAMP response element binding protein (CREB). It was expected that if  

the levels of cAMP produced from tmACs were increased (or decreased) then a 

subsequently stronger (or weaker) activation of protein kinase A (PKA) would 

occur, leading to more (or less) phosphorylation of CREB at serine 133 (Figure

3.5) (Gonzalez and Montminy, 1989). 

The  phosphorylation  state  of  CREB  in  HEK  293T  cell  lysates  was 

quantified  through  immunoblotting  with  an  antibody  specific  for  CREB 

phosphorylated at serine 133 (phospho-CREB). Cell lysates were prepared by 

repeating the the isoproterenol experiment (Figure 3.4A) with the exception that 

cells  were not  loaded with  [3H]-adenine,  and the assay was stopped by the 

addition of 1 mL SDS-PAGE loading buffer instead of trichloroacetic acid. The 

protein content of cell lysates was resolved through SDS-PAGE, transferred to 

nitrocellulose  membrane,  and  the  membrane  was  probed  with  antibodies 

specific to phospho-CREB and α-tubulin. The antibody specific to α-tubulin was 

used as a loading control to allow any small differences in total protein loaded to 

be  compensated  for.  Western  blots  were  scanned  using  a  Fuji  Las-1000 

chemiluminescent scanner and bands were quantified using the in built software 

package.

It  was  clear  when  comparing  cells  exposed  to  hypocapnia  and 

normocapnia that a marked increase in the ratio of phospho-CREB : α-tubulin 

was present in the normocapnic sample (Figure 3.6), demonstrating an increase 

in phospho-CREB in this sample. The amount of CREB phosphorylation was 

derived as the ratio of phospho-CREB : α-tubulin, such that the larger the ratio  

the  more  phospho-CREB was  present.  Interestingly,  the  levels  of  phospho-

CREB in the samples exposed to hypercapnia were not significantly different to 

those samples exposed to hypocapnia, however, the reasons for this remains 

unclear. 
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Figure 3.5: Activation of CREB through a β-adrenergic receptor linked cAMP 
signalling pathway.



Ci and mammalian tmAC Philip Townsend

86

Figure 3.6: The effect of varied CO2 concentration on the phosphorylation of 
CREB.

(Lower) Immunoblot of HEK 293T cell lysates after a 10 minute incubation with 
or without 10 nM isoproterenol at varying CO2.  (Upper)  The ratio of phospho-
CREB:α-tubulin bands from the quantified bands. 
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3.4 The effect of Ci on a mammalian tmAC in vitro.

With in vivo experiments providing evidence to suggest that Ci can act in 

HEK 293T cells to increase the production of cAMP by tmACs, attention was 

turned to the effect of Ci on tmACs in vitro, in order to establish whether Ci was 

acting in a direct or indirect manner on tmACs. It was decided to perform in vitro 

biochemical assays on recombinant proteins expressed in  E. coli.  Work done 

previously had shown that an active AC with biochemical properties similar to 

the native protein could be obtained through independently expressing the two 

tmAC catalytic domains (C1a and C2a, C1 and C2 herein; Figure 3.7) and mixing 

the  two  domain  together (Sunahara  et  al.,  1997;  Tang  and  Gilman,  1995; 

Whisnant et al., 1996).

The  AC  chosen  was  a  soluble  chimera  consisting  of  the  C1 domain 

(amino acids 263-476) of human type VII AC (7C1) and the C2 domain (amino 

acids 821-1090) of rat type  II AC (2C2)  (Tesmer  et al., 2002; Yan and Tang, 

2002).  These  two  hexa-histidine  tagged  recombinant  proteins  were 

independently  expressed  in  E.  coli  (plasmids  kind  gift  of  Roger  Sunahara, 

University of Michigan), and purified to homogeneity through Ni2+-NTA affinity 

chromatography and anion exchange chromatography (Figure 3.8).  Mixing of 

these two domains resulted in an active AC (7C1●2C2) that was activated by 

forskolin  (Figure  3.12B).  Although  forskolin  was  to  be  used  during  the 

biochemical analysis it was also important to perform assays in the presence of 

a  physiological  activator  of  tmACs;  the  alpha  stimulatory  subunit  of  the 

heterotrimeric  G  protein  (Gαs).  Hexa-histidine  tagged  recombinant  Gαs was 

expressed  in  E.  coli  (plasmid  kind  gift  from  Roger  Sunahara,  University  of 

Michigan),  and  purified  through  Ni2+-NTA  affinity  chromatography  and  anion 

exchange  chromatography  (Figure  3.8).  Following  purification,  Gαs was 

permanently  activated  through  incubation  with  GTPγS,  which  is  a  non-

hydrolysable  GTP  analog.  Gαs●GTPγS  (Gαs  herein)  also  activated  7C1●2C2 

(Figure 3.12B). 
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Figure 3.7: Structure of a tmAC.

Taken from (Cooper, 2003b)
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Figure 3.8: SDS-PAGE showing purified 7C1, 2C2 and Gαs.

2 μg of purified protein resolved on 12 % SDS-PAGE gel. (A) 7C1 (B) 2C2 (C) 
Gαs.  Proteins were stained with Coomassie Brilliant blue dye and protein size 
was estimated relative to Fermentas PagerRulerTM Prestained Protein ladder. 
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Before the effects of Ci on the G protein stimulated activity of  7C1●2C2 

could be studied, one important factor required consideration. It was paramount 

for the pH within each assay to be tightly controlled since this variable has a 

pronounced effect on AC activity. Suitable buffers were chosen to generate the 

desired pH prior to the initiation of catalysis, but also to maintain a stable pH 

throughout  the  reaction.  Since  HCO3
- and  CO2 exist  in  a  pH  dependent 

equilibrium, and addition of one or the other to a solution can effect pH, it was 

necessary to use a relatively high buffer concentration of 50 mM, to attempt to 

minimise any possible effects of Ci on pH.  Both the reaction mixture without 

substrate  and  substrate  (used  for  initiation  of  catalysis)  were  buffered 

appropriately  to  ensure  a  minimal  pH  change  following  the  addition  of  the 

substrate to the assay. Furthermore, the 100 mM salt stock mixture (NaCl or 

NaHCO3) was buffered with 50 mM buffer to the appropriate pH to minimise any 

change in pH following addition to the reaction mixture. 

The pH control assays were performed in a microcentrifuge tube, using a 

computer driven micro pH electrode to measure the pH of the 100 μL mock AC 

assay. Before the desired salt solution was added, the pH of the 80 μL reaction 

mixture lacking salt was recorded. After 20 seconds, 20 μL of the buffered 100 

mM salt mixture was added to give a final concentration of 20 mM salt. The 

solution was mixed and the pH was recorded over a 20 minute period. These 

pH control assays demonstrated that the desired pH could be achieved in the 

presence and absence of Ci, and that pH was stable throughout the time course 

of reaction (Figure 3.9A). 

The first important in vitro  experiment performed was an assessment of 

the effect of Ci on 7C1●2C2 activity across a range of different pHs. Assays were 

carried out between pH 6.5 and 8.5 in the presence of 20 mM total Ci (supplied 

as 20 mM NaHCO3) or NaCl. The pH activity profile of 7C1●2C2 in the presence 

of  NaCl  (Figure  3.9B)  was  consistent  with  data  acquired  for  a  similar 

recombinant tmAC, showing a pH optimum at about pH 8.0 (Hatley et al., 2002). 

Comparing the activities in the presence or absence of Ci across pH showed 

that a strong 2 fold activation of 7C1●2C2 by Ci occurred at pH 6.5, with a slight 

stimulation being consistently seen at pH 7.0 (Figure 3.9C). This was consistent 

with what was seen previously with prokaryotic class IIIb ACs, and was possibly 

due to the fact that the levels of CO2 are high at pH 6.5 and that these ACs are 

activated by CO2 and not HCO3
- as was previously assumed(Hammer  et al., 
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2006). Since a strong activation of 7C1●2C2 by Ci was only seen at pH 6.5 and 

not at pH 7.0 and above, all further biochemical assays were carried out at pH 

6.5 only.

An ATP dose response in the presence or absence of Ci was performed 

to investigate any effects of Ci on substrate affinity (Figure 3.10A). This dose 

response was performed across a range of 0.1 – 5 mM ATP at pH 6.5, and in the 

presence or absence of 20 mM total Ci. The data generated was analysed for 

Michaelis-Menten kinetics using the non-linear regression package in Graphpad 

Prism,  and Vmax and  Km(ATP)  values  were  generated.  Analysis  showed that 

whilst Vmax was increased in the presence of Ci (76.4 ± 4.1 nmoles cAMP mg-1 

min-1 with  Ci  and  44.9  ± 2.8  nmoles  cAMP  mg-1 min-1 with  Cl-),  Km(ATP) 

remained  unchanged  (2.0  ±  0.23  mM with  Ci  and  1.9  ± 0.2  mM with  Cl-). 

Analysis of the data also revealed that substrate turnover, kcat, increased in the 

presence of Ci (10.7 s-1 with Ci and 6.4 s-1 with Cl-).

Mammalian tmACs are magnesium dependent enzymes, with two Mg2+ 

cations critical for catalysis being coordinated to the active site by two aspartate 

residues  located  on  the  C1 domain  (D284  and  D328  on  recombinant  7C1) 

(Tesmer et al., 1999; Zimmermann et al., 1998). Previous investigation into the 

effect of Ci on CyaC (Spirulina platensis) had revealed that the effects of Ci 

were possibly mediated through altered metal binding (Steegborn et al., 2005b). 

Thus,  it  was  of  interest  to  look  at  whether  the  metal  binding  dynamics  of 

7C1●2C2 were similarly altered by the presence of Ci. A dose response to Mg2+ 

was generated across the range of 1 – 20 mM Mg2+ (Figure 3.10B). Interestingly, 

the presence of Ci appeared to increase the affinity of 7C1●2C2 for Mg2+ (1.6 ± 

0.2 mM with Ci and 2.6  ± 0.4 mM with Cl-), indicating that Ci may mediate its 

effects  through  altered  metal  binding.  Following  binding  of  Mg2+-ATP  to  the 

active site the second Mg2+ ion binds and subsequent closure of the active site 

promotes  catalysis  (Steegborn  et  al.,  2005a).  One  could  speculate  that  the 

effects of Ci are mediated through a more rapid recruitment of the second Mg2+ 

ion, and subsequent active site closure. 
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Figure 3.9: 7C1●2C2 is activated by Ci independently of pH.

1.1  μM  7C1, 5.8  μM  2C2 and  7  μM  Gαs was assayed at  varying  pH in  the 
presence of 500 μM Mg2+-ATP. (A) Mock AC assay carried out in the absence of 
[α-32P]-ATP with  a  micro  pH  electrode  to  monitor  assay  pH.  20  mM  NaCl 
(squares) or  NaHCO3 (triangles),  buffered to the appropriate pH, was added 
after 20 seconds. (B) Mean specific activity of  7C1●2C2 at varying pH in the 
presence of 20 mM NaCl (C) Fold stimulation (Inorganic carbon [C i] : chloride) 
of 7C1●2C2 at varying pH.  
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Figure 3.10: The effects of Ci on 7C1●2C2 activity in vitro.

1.1 μM 7C1, 5.8 μM 2C2 and 7 μM Gαs was assayed at 37oC for 20 minutes in 
the presence of  100 mM Mes-NaOH pH 6.5. (A) ATP dose response in the 
presence of 20 mM NaCl (blue squares) or NaHCO3 (red triangles), and 20 mM 
MgCl2. (B) Magnesium dose response in the presence of 20 mM NaCl (blue 
squares) or NaHCO3 (red triangles), and 500 μM Mg2+-ATP. (n = 9)
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The response of  7C1●2C2 to  Gαs under increasing concentrations of Ci 

was investigated to establish whether a stimulation by Ci could be observed in 

the presence of  a physiologically relevant Ci concentration (Figure 3.11A).  It 

was  again  demonstrated  that  Ci  elicits  a  significant  stimulatory  effect  upon 

7C1●2C2,  noting that the total  salt  concentration in the assay was controlled 

through the addition of NaHCO3 or NaCl as appropriate. Significant stimulation 

of 7C1●2C2 by Ci began at a physiologically relevant concentration of 4 mM total 

Ci, as assessed with 95 % confidence intervals. Analysis of the data with the 

non-linear regression package in Graphpad Prism revealed an EC50  (app) of 

10.6  ± 0.8 mM for Ci. Due to the observation that CO2 rapidly degassed from 

solution at pH 6.5 when the total Ci concentration was higher than 20 mM, it 

was not possible to extend this assay to include a these higher concentrations.  

Another possible way that Ci could act to increase activity was through reducing 

the overall activation energy required for bond cleavage or formation during the 

catalytic cycle. In order to investigate this an Arrhenius plot was derived in the 

presence and absence of Ci at 5oC, 10oC, 15oC, 19.5oC, 24.5oC, 30oC and 35oC 

(Figure 3.11B). No effect of Ci on the energy of activation was seen (100.4 ± 4.0 

kJ mol-1 with Ci and 99.6 ± 6.7 kJ mol-1 with Cl-), when the linear portion of the 

Arrhenius plot was analysed (Figure 3.11B).

It  was demonstrated that  7C1●2C2 was activated by  Ci,  and although 

results  indicate that Ci may act through an increased affinity  for  Mg2+,  other 

variables still  required testing.  Previous work indicated that  Ci  may also act 

through promoting active site closure, producing a catalytically active enzyme 

(Steegborn  et al., 2005b). Promotion of active site closure may also occur by 

increasing each domains relative affinity for the other or by mediating a stronger 

association of Gαs, which stabilises the closed active site conformation (Tesmer 

and Sprang, 1998; Tesmer et al., 1997). By producing a dose response curve to 

Gαs in  the  presence  and  absence  of  Ci,  the  relative  effects  of  Ci  on  the 

association  of  Gαs with  7C1●2C2 were  be  studied.  The  effects  of  Ci  on  the 

activity of  7C1●2C2 under different concentrations of Gαs was tested at pH 6.5 

and it  was observed that the effects of  Ci were additive to that of  Gαs.  The 

stimulation of 7C1●2C2 by Ci was apparent, with data showing a roughly 5 fold 

lower concentration of  Gαs being required to elicit a similar specific activity to 

that in the absence of Ci (Figure 3.12A). Analysis of the data with the non-linear 

regression  package  in  Graphpad  Prism  demonstrated  that  a  high  enough 
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concentration  of  Gαs had not  been used  to  reach  a  maximal  stimulation  of 

7C1●2C2 by Gαs. Unfortunately, due to the low final yield of  Gαs following the 

expression and purification procedure, it was not possible to extend the assay to 

use higher concentrations and extend the experiment across the entire sigmoid. 

The EC50(app) values for Gαs were calculated (1.56 ± 0.82 µM with Ci and 4.49 

± 0.69 µM with Cl-), and indicated that Ci increased the apparent effects of Gαs, 

however, these values may be inaccurate since a complete sigmoid was not 

obtained.

Both Gαs and the plant diterpene forskolin are known to activate 7C1●2C2 

through promotion and stabilisation of the closed, catalytically active enzyme 

conformation  (Tesmer and Sprang,  1998;  Tesmer  et  al.,  1999).  Experiments 

done  in  the  presence  of  one  or  both  of  these  activators  demonstrated  a 

synergism between them, whereby the binding of one activator would increase 

the affinity for the other and thus result in a significantly higher rate of catalysis  

(Hatley  et al., 2002). Assays in the presence of  Gαs and/or forskolin validated 

this original observation, however, a further synergism of Ci with either  Gαs or 

forskolin or both was not seen (Figure 3.12B). The effects of Ci were purely 

additive to the effects of Gαs and forskolin, and had no effect on the synergism 

between Gαs and forskolin. In each instance, about a two fold stimulation (Ci : 

Cl-) was observed.
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Figure 3.11: The effects of Ci on 7C1●2C2 activity in vitro.

1.1  μM 7C1,  5.8 μM 2C2 and 7 μM  Gαs was assayed for  20 minutes in the 
presence of 100 mM Mes-NaOH pH 6.5, 5 mM MgCl2 and 500 μM Mg2+-ATP. 
(A) Ci dose response at  37oC in the presence of  20 mM total  salt  (NaCl or 
NaHCO3).  (B) The  activation  energy  in  the  presence  of  20  mM NaCl  (blue 
squares) or NaHCO3 (red triangles). (n = 9)
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Figure 3.12: The effects of Ci on 7C1●2C2 activity in vitro.

1.1 μM 7C1 and 5.8 μM 2C2 was assayed for 20 minutes at 37oC under various 
conditions in the presence of 100 mM Mes-NaOH pH 6.5, 500 μM Mg2+-ATP and 
5 mM MgCl2. (A)  Gαs dose response in  the presence of  20 mM NaCl (blue 
squares) or NaHCO3 (red triangles). (B) 7C1●2C2 activity was stimulated in the 
presence of 20 mM NaCl (blue) or NaHCO3 (red), and either 100 μM forskolin 
(Fsk) or 7 μM Gαs or both. (n = 9)
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3.5 Discussion

Control experiments were performed on HEK 293T cells prior to studying 

the effects of Ci on the production of cAMP by tmACs in vivo. HEK 293T cells 

were  routinely  cultured  under  normocapnic  conditions,  and  the  effect  of 

hypercapnic and hypocapnic conditions on pH i was not known. Since studying 

the effects of Ci on tmACs relied upon altering the concentration of CO 2 that 

cells were exposed to, and since tmAC activity varies with pH, it was necessary 

to quantify any possible effects that varied CO2 could have upon pHi. As such, 

HEK 293T cells were exposed to normocapnic,  hypocapnic and hypercapnic 

conditions,  and  through  a  fluorescent  pH  sensitive  dye  and  a 

microspectrofluorometric system, pHi was quantified. 

It was observed that when the CO2 concentration was increased, the cells 

would undergo a rapid intracellular acidification. This acidification was caused 

by CO2 influx into the cells, with CO2 subsequently being quickly converted into 

HCO3
- by the action of CAs, liberating protons (Figure 1.1 and Figure 1.2). The 

converse was seen when the concentration of CO2 was decreased, whereby an 

outflux of CO2 from the cell caused a reversal of the CO2/HCO3
- equilibrium and 

as  such  a  removal  of  intracellular  protons.  Following  this  initial  increase  or 

decrease in pH, the HEK 293T cells were always seen to recover, with their pH i 

returning the the starting pHi over a period of no more that 10 minutes. This 

recovery in  pHi was most  likely  brought about by the actions of  various cell 

surface  ion  transporters,  such  as  Na+-H+ exchangers  (Figure  3.13)  (Boron, 

2004).

With the knowledge that  pHi  was not likely to cause inaccurate results 

when studying tmAC activity  in vivo, investigation into the effects of Ci upon 

tmACs was able to begin. Through cAMP accumulation assays on HEK 293T 

cells,  it  was  shown  that  when  the  incubation  conditions  were  altered  from 

normocapnic  to  hypocapnic,  a clear  decrease in the production of  cAMP by 

tmACs was seen.  This  Ci dependent  cAMP production was proven,  through 

experiments with a sAC specific inhibitor (KH7), not to be due to sAC. Whether 

or  not  this  response  holds  any  physiological  relevance  remains  to  be 

determined, however, it may provide an explanation for an observed effect of 

hypocapnia  in  kidney  proximal  tubules.  In  response  to  respiratory  alkalosis 

(which causes a systemic hypocapnia), proximal tubules in the kidney increase 
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their  phosphate re-absorption in  response to a decrease in  intracellular  CO2 

(Hoppe et al., 1988). Control of phosphate re-absorption is mediated through G-

protein regulated cAMP signalling pathways, and the decrease in tmAC activity 

associated with reduced pCO2 may be responsible for the increased phosphate 

re-absorption (Hoppe et al., 1988).  

The decrease in cAMP production by tmACs in vivo, observed when CO2 

load was adjusted from normocapnic to hypocapnic conditions was routinely no 

more than a 25 % drop in the levels of cAMP produced. Although this was a 

relatively large change in total  cAMP produced,  it  was not  clear whether an 

effect downstream of tmACs would occur. If a signalling pathway involving tmAC 

was  involved  in  sensing  Ci  then  it  was  reasoned  that  there  would  be  a 

noticeable effect on a downstream target in a cAMP signalling pathway. In order 

to address this question, it was chosen to quantify the phosphorylation status (at 

serine  133)  of  CREB.  In  this  β-adrenergic  signalling  pathway,  binding  of 

isoproterenol  to  the  β-adrenergic  receptor  causes  an  activation  of  a 

heterotrimeric G protein, which in turn stimulates production of cAMP by tmACs 

(Figure 3.5). This cAMP then diffuses away from the membrane and activates 

PKA,  which  in  turn  phosphorylates  CREB,  allowing  the  binding  of  CREB to 

cAMP response elements (CREs) on DNA and subsequent production of mRNA 

(Figure 3.5). It was expected that the decrease in cAMP levels seen between 

normocapnic  and  hypocapnic  conditions  would  cause  a  reduced  level  of 

activated PKA and as such a decrease in the levels of phosho-CREB. Indeed, 

Western blot analysis confirmed this expectation, with a marked decrease in 

phosho-CREB being seen in the hypocapnia treated cells when compared to 

normocapnia. Although the degree of hypocapnia (0.03 % CO2) that these cells 

were exposed to does not  occur in most tissues, it  can be found in various 

alkaline tissues within the body, such as those involved in base secretion (e.g. 

the  pancreas).  Intriguingly,  there  was  a  decrease  in  phospho-CREB  seen 

between normocapnia and hypercapnia treated samples. This was not expected 

since changing the culture conditions from normocapnic to hypercapnic resulted 

in no change in the production of cAMP by tmACs, however, the reasons for this 

remain unclear.
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Figure 3.13: The main mechanisms through which cells respond to intracellular 
acidification and alkalinisation.

Taken from (Boron, 2004)
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These  in vivo experiments provided strong evidence to suggest that in 

mammalian  cells,  tmACs  are  involved  in  sensing  Ci,  however,  the  in  vivo 

experiments do not identify whether this is through a direct or indirect effect of 

Ci on tmAC. However, it is clear that although the effect of Ci on sAC has been 

known for years, until now, the involvement of tmAC in Ci sensing had been 

missed  (Chen  et al., 2000; Townsend  et al., 2009). Although inhibitor studies 

have  ruled  out  the  possibility  that  sAC was acting  as  the  Ci  sensor  in  this  

system, the possibility existed that Ci was somehow having an indirect effect on 

tmACs. As such, in order to determine whether the increase in cAMP seen in 

vivo was due to the specific action of Ci on tmACs,  in vitro experiments were 

performed. These in vitro experiments were performed on a recombinant protein 

equating to a tmAC lacking transmembrane domains, and consisted of the C1 

domain of human type VII AC (7C1) and the C2 domain (amino acids 821-1090) 

of rat type  II AC (2C2). Upon mixing these two domains  in vitro, an active AC 

(7C1●2C2)  was  produced,  which  was  stimulated  by  both  forskolin  and  Gαs, 

mimicking the native protein.

                                                                                                                                     

It is important to point out at this stage that in vitro experiments performed in Sections 4.3 and 

6.2 indicate that the observed effects of Ci in vitro, in Section 3.4 (i.e. those discussed below), 

are likely to be due to a non-specific effect of pH, caused by the effects of Ci on assay pH. 

                                                                                                                                     

When the response of 7C1●2C2 to Ci was tested in vitro, it was seen that 

a significant stimulation by Ci (routinely about 2 fold) occurred at pH 6.5, with a  

slight  stimulation  routinely  being  seen  at  pH  7.0.  The  observation  that  Ci 

stimulated  7C1●2C2 at  lower  pH  matched  other  research  that  showed  the 

stimulation of type III AC by Ci to increase as the pH was lowered (Xie  et al., 

2006). Furthermore, this observation provided a possible explanation as to why 

a previous study into the effects of Ci on a 'soluble' tmAC in vitro had failed to 

detect  an  effect  (Chen  et  al.,  2000).  This  prior  study  had  relied  upon  the 

assumption  that  HCO3
- was  the  activating  species  of  Ci,  and  as  such, 

experiments  had  been  performed  at  pH  7.5  and  above  (where  HCO3
- 

concentrations were high) (Chen et al., 2000). Recent investigation had proven 

that certain prokaryotic Class IIIb ACs are activated by CO2 and not HCO3
-, and 

it was possible in this case that 7C1●2C2 was also activated by CO2 (Hammer et 

al., 2006). Due to this, a stimulation was only seen at low pH, since at higher pH 

the levels of CO2 were not high enough to elicit a response (Figure 1.1). 
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In order to try and establish a mechanism through which Ci causes its 

effect on these ACs, a series of in vitro biochemical assays were performed on 

7C1●2C2. The results of these experiments indicated that although the affinity for 

ATP was not affected by Ci, the overall substrate turnover of the enzyme was 

increased in the presence of Ci, through an apparent increase in Vmax  and kcat. 

The Arrhenius plot derived from a temperature response assay indicated that 

the  observed  increase in  substrate  turnover  was not  likely  to  be  due to  an 

alteration  in  the  catalytic  mechanism  since  the  energy  of  activation  for 

conversion of ATP into cAMP remained unchanged by Ci. The possibility that Ci 

did not alter the energy of activation matched a previous biochemical study on 

CyaB1 (Anabaena PCC 7120), which possesses a Class IIIb CHD (Cann et al., 

2003).

Results indicated two possible mechanisms through which CO2 acts on 

7C1●2C2 to increase its substrate turnover. Firstly, a Mg2+ dose response assay 

indicated that  Ci increased the affinity of  7C1●2C2 for  Mg2+.  The case for  Ci 

acting  through  increased  metal  affinity  was  strong,  since  recruitment  of  the 

second Mg2+ ion was known to be a rate limiting step and had already been 

implicated as a mechanism through which Ci  acts  (Steegborn  et  al.,  2005b; 

Tesmer  et  al.,  1999).  Following  binding  of  Mg2+-ATP to  the  catalytic  site,  a 

second  Mg2+ is  required  to  bind  before  active  site  closure  and  subsequent 

catalysis can occur (Tesmer and Sprang, 1998; Tesmer et al., 1999). It could be 

reasoned  that  a  more  rapid  recruitment  of  the  second  metal  ion,  following 

substrate binding, would accelerate the adoption of  a catalytically  competent 

active site conformation. Secondly, the lower EC50(app) for  Gαs determined in 

the presence of Ci indicated that Ci could possibly enhance the effect of certain 

activators. In the case of tmACs, the active site closure (following second metal 

ion  recruitment)  is  mediated  through  binding  of  Gαs (or  forskolin),  however, 

recent evidence has suggested that in CyaC from Spirulina platensis, active site 

closure is initiated by Ci  (Steegborn  et al., 2005b; Tesmer  et al., 1997). It is 

possible that Ci is mediating a similar effect in 7C1●2C2, whereby Ci and Gαs act 

in cohort through different sites to promote active site closure.
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Ci and nucleotidyltransferases
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Ci and nucleotidyltransferases
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4.1 Introduction

Investigation  into  the  effect  of  Ci  on  Class  IIIa  ACs  provides  strong 

evidence to suggest that a response to Ci was not solely limited to Class  IIIb 

ACs, but could also be found in Class IIIa ACs (Townsend et al., 2009). Work 

performed in vivo demonstrated that Ci was able to either directly or indirectly 

influence the production of cAMP by the endogenous tmACs in HEK 293T cells 

(Townsend  et  al.,  2009).  In  vitro  biochemical  assays  performed  on  the 

recombinant catalytic domains of two tmACs (7C1●2C2), seemed to suggest that 

Ci  was  directly  influencing  the  activity  of  tmAC.  Furthermore,  in  vitro 

biochemical  assays  on  an  AC  (Rv1625)  from  Mycobacterium  tuberculosis, 

demonstrated that this Class IIIa AC was also activated by Ci (Townsend et al., 

2009). 

                                                                                                                                     

It  is important to point out at this stage that experiments performed in Sections 4.3 and 6.2 

introduce the strong possibility that the above mentioned Class IIIa ACs are not activated by Ci.

                                                                                                                                     

Further evidence supporting the idea that a Ci response is not restricted 

to Class  IIIb ACs can be found in several organisms. Notably, two gustatory 

receptors in Drosophila melanogaster (Gr63a and Gr21a) have been shown to 

be  directly  involved  in  Ci  sensing,  although the  mechanism by  which  these 

receptors mediate this is not known (Jones et al., 2007; Kwon et al., 2007). It 

has also been known for many years that the plant enzyme RuBisCO requires 

activation by CO2 prior to it gaining catalytic competence (Lorimer et al., 1976). 

Furthermore,  a  CA  has  been  implicated  in  Ci  sensing  in  mammalian  taste 

receptor cells (Chandrashekar  et al., 2009). In light of this, the question was 

asked as to whether a response to Ci could be found in other enzyme families.

Ci  has  been shown to  interact  with  proteins  through  several  different 

amino  acids,  of  which  the  most  common was  through  the  interaction  (both 

covalent  and  non-covalent)  with  the  ε-amino  group  of  a  basic  amino  acid 

(predominantly arginine, histidine or lysine) (Cundari  et al., 2009). Due to the 

fact that Ci can interact with many different amino acids, and since binding of Ci 

must  influence  the  tertiary  structure  of  a  protein  in  order  to  produce  a 

biologically relevant outcome, it is currently not possible to predict biologically 

significant Ci binding sites (Cundari et al., 2009; Drummond et al., 2010). Due to 

this  it  was  decided  to  begin  investigation  into  potential  novel  Ci  responsive 
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enzymes by studying a family of enzymes that are structurally and catalytically 

related to ACs. It was decided to begin investigation into a family of enzymes 

that share a similar active site structure with ACs; the polymerase I (Pol I) family 

of prokaryotic DNA polymerases (Ito and Braithwaite, 1991). Pol I polymerases 

are similar to ACs in that they are dependent upon two Mg2+ ions for catalysis, 

and comparison of crystal structures reveals a remarkable structural similarity 

(Artymiuk et al., 1997; Zhang et al., 1997b). Following the crystallisation of an 

AC catalytic site it was noted that the structural topology of the AC active site 

was similar to the 'palm' domain found in the Pol  I family of prokaryotic DNA 

polymerases (Figure 4.1) (Artymiuk  et al., 1997; Beese  et al., 1993; Zhang  et 

al., 1997a). The structure of Pol  I  polymerases has been compared to a right 

hand grasping a rod (with the rod being a strand of DNA), with 'fingers', 'thumb'  

and 'palm' domains (Beese et al., 1993; Moras, 1993). The active site of these 

polymerases is located within the 'palm' domain, which consists of 4 β-strands 

and 3 helices, and it is this structure that is also found in ACs (Artymiuk et al., 

1997). Although this similarity was unexpected, it is unsurprising in retrospect as 

these enzymes all share a similar catalytic mechanism; an attack of the 3' ribose 

hydroxyl on the α phosphate of a nucleotide triphosphate (with DNA and RNA 

polymerases  performing  this  in  an  intermolecular  fashion  and  ACs  in  an 

intramolecular fashion). 

Given the structural similarity and the fact that these enzymes are also 

dependent upon two Mg2+ ions for catalysis it was appropriate to investigate Pol 

I enzymes for a response to Ci. The effects of Ci on two members of the Pol I 

family of prokaryotic DNA polymerases was studied. These were chosen as T7 

RNA polymerase (T7 bacteriophage) and DNA polymerase  I (E. coli), as they 

represent two of the Pol  I subfamilies (bacterial and bacteriophage), and are 

also readily expressed as recombinant proteins (Dunn and Studier, 1983; Ito 

and Braithwaite, 1991; Joyce et al., 1982). The effects of Ci on a member of the 

Pol β family of  DNA polymerases was also investigated; DNA polymerase β 

(Polβ) from Rattus norvegicus (Sawaya et al., 1994). Although Polβ possesses 

a structural topology similar to the 'palm' domain found in Pol I polymerases, it 

was shown to be more structurally related to a family of enzymes not involved in 

the  synthesis  of  DNA;  the  kanamycin  nucleotidyltransferases  (Holm  and 

Sander, 1995).  
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Figure 4.1: Crystal structure of the palm domain.

Chain traces derived from crystal structure data of (a) Thermus aquaticus DNA 
polymerase (Taq) and (b) the C2 domain of Rattus norvegicus type II AC (2C2).

 

Taken from (Artymiuk et al., 1997)
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4.2 T7 RNA polymerase

T7  RNA  polymerase  (T7  RNAP),  an  enzyme  that  is  involved  in  the 

transcription  of  DNA,  binds  the  T7  promoter  on  DNA  and  catalyses  the 

incorporation of nucleotides into a nascent mRNA chain in a 5' to 3' direction 

(Summers  and  Siegel,  1970).  T7  RNAP is  a  member  of  the  bacteriophage 

subfamily of  Pol  I  DNA polymerases, and since it  can be expressed to high 

yields as a recombinant protein was chosen to begin investigation  (He  et al., 

1997;  Ito  and  Braithwaite,  1991).  The  expression  construct  pBH161A, 

containing T7 RNAP with a N-terminal hexa-histidine tag, was transformed into 

E. coli  BL21 (DE3), and was expressed and purified essentially as described 

(He  et al., 1997). Typical yields were reported as 0.5 – 1.5 mg per 20 mL of 

bacterial culture, however, since purity was deemed more important than yield 

in this  particular  case a slight  modification to the purification procedure was 

made  to  sacrifice  yield  for  purity  (see  2.4.3).  Ultimately,  a  homogeneous 

preparation of recombinant T7 RNAP was obtained and was more that 95 % 

pure as shown by SDS-PAGE (Figure 4.2).

The activity of T7 RNAP was tested in vitro using a suitable expression 

template for RNA synthesis, and [α-32P]-ATP was used to spike the NTP mix to 

allow  quantification  of  ATP  incorporation.  The  DNA template  used  for  RNA 

synthesis was derived from pQ3N1, which was originally constructed to allow 

the expression of an AC from  Anabaena PCC 7120 (Katayama and Ohmori, 

1997). The multiple cloning site of pQ3N1, including the T7 promoter and the 

AC coding sequence, was amplified by BIOTAQTM PCR (see 2.2.1), and the 3.8 

kb  product  was  analysed  by  agarose  gel  electrophoresis  (see  2.2.2),  and 

purified (see 2.2.3). The purified 3.8 kb DNA fragment was used directly within 

the assay as a template for RNA synthesis.

Assays were set up and performed in a similar fashion to those used to 

test the  in vitro  response of  7C1●2C2 to Ci, however, since the composition of 

the assay was slightly  different  it  was necessary to  perform new pH control 

assays. The pH control assays were carried out at a range of different pHs, in 

the presence of  20  mM NaHCO3 or  NaCl  (Figure  4.3A).  These pH controls 

demonstrated that  the desired assay pH could be obtained and that  the pH 

during the course of the assay was stable. 
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Figure 4.2: Purified recombinant T7 RNAP.

2 μg of purified T7 RNAP was resolved on a 12 % SDS-PAGE gel. Protein was 
stained  with  Coomassie  Brilliant  blue  dye  and  protein  size  was  estimated 
relative to Fermentas PagerRulerTM Plus Prestained Protein ladder. 
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Figure 4.3: The effect of Ci on assay pH and the activity of T7 RNAP.

Reactions were run at  37oC for 30 minutes in 100  μL containing 4.7 μM T7 
RNAP, 30 mM MgCl2, 3 units Rnasin, 200 μM rNTP, 7 μg DNA template  (A) 
Mock assay carried out in the absence of [α-32P]-ATP with a micro pH electrode 
to monitor assay pH. 20 mM NaCl (squares) or NaHCO3 (triangles) was added 
after 60 seconds (arrow). (B) pH profile of T7 RNAP in the presence of 20 mM 
NaCl. (C) Fold stimulation (Ci : Cl-) of T7 RNAP at varying pH. (n = 6)
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The first assay performed was a response of T7 RNAP to pH and was 

carried out in the absence of any Ci (Figure 4.3B). This assay showed a pH 

optimum of about pH 7.0, and rather surprisingly a profound difference in the 

activity seen at pH 7.0 compared to pH 6.5 (Figure 4.3B). The activity of T7 

RNAP at pH 7.0 was about 5 fold greater than the activity at pH 6.5, highlighting 

the importance of performing pH controls. When assays were performed in the 

presence of Ci a clear effect on T7 RNAP activity could be seen, with T7 RNAP 

showing about a 1.7 fold increase in activity at pH 6.5 in the presence of 20 mM 

total  Ci,  when  compared  to  20  mM  NaCl  (Figure  4.3C).  This  effect  by  Ci 

decreased as the pH was increased, showing a statistically significant (albeit  

small) 1.3 fold stimulation at pH 7.0 and pH 7.5, but no significant effect by Ci  

was seen at pH 8.0 and above (Figure 4.3C). This effect was consistent with 

what  was  seen  for  7C1●2C2,  although  in  that  case  a  greater  than  2  fold 

stimulation  was  seen  at  pH  6.5.  This  result  suggested  that  T7  RNAP  was 

possibly activated by CO2, and as such further assays would be conducted at 

pH 6.5 to ensure a high concentration of CO2.

At this stage the possibility remained that the effect ascribed to Ci could 

be due to an inhibitory effect by Cl-, however, this was tested and shown not to 

be likely (Figure 4.4A). Although a very slight decrease in activity was seen in 

the presence of Cl- (when compared to basal), this could in no way account for 

the large increase in activity seen in the presence of Ci (when compared to Cl -). 

When  the  relative  effects  of  Ci  on  T7  RNAP  were  tested  over  time  an 

unexpected result was obtained (Figure 4.4B). Whereas in the presence of 20 

mM NaCl the specific activity of T7 RNAP appeared to gradually decrease over 

time  (although  this  was  not  statistically  significant  when  assessed  to  95  % 

confidence intervals), in the presence of 20 mM NaHCO3 the specific activity 

almost  doubled  over  30  minutes  (14.4  ±  1  nmoles  ATP  mg -1 min-1 after  5 

minutes and 25.9 ± 0.7 nmoles ATP mg-1 min-1  after 30 minutes; an effect that 

was statistically significant when assessed to 95 % confidence intervals). The 

gradual  decrease  in  specific  activity  in  the  presence  of  NaCl  was  to  be 

expected, since over time the concentration of substrate would fall, and also that 

T7 RNAP itself would suffer heat degradation over time, both contributing to a 

decreasing rate of catalysis. The gradual increase in specific activity seen in the 

presence of 20 mM NaHCO3 could only be explained by one of two reasons. 

First, it was possible that the effects of Ci were slow at first and that it took time 
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for Ci to bind its cognate site. It could take a while for all Ci binding sites on T7 

RNAP to become occupied and thus for a maximum stimulation by Ci to be 

seen. Second, it was possible that this was indicative of a pH effect, whereby a 

slow  increase  in  pH  over  time  was  responsible  for  the  steady  increase  in 

specific activity. 

An increase in assay pH over time was possible in the presence of Ci at  

pH 6.5,  as the  relatively  high  concentration of  dissolved CO2 would tend to 

diffuse from solution into the surrounding atmosphere; as predicted by Henry's 

law. This loss of CO2 from solution would cause the equilibrium formed between 

CO2 and HCO3
- to become unbalanced, and as a result the equilibrium would 

shift to liberate more CO2, taking up a proton from solution (Figure 1.1). If the 

solution was not suitably buffered then removal of a proton would result in an 

increase in pH, however, in this case the solution was buffered with 50 mM 

Mes-NaOH, and an increase in pH was unlikely. Although the possibility of pH 

explaining the response to Ci was not  supported by pH control  experiments 

(Figure 4.3A) the importance of the possibility of non-specific pH effects meant 

that it was wise to re-investigate the pH control experiments to absolutely rule 

out an effect of pH. 
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Figure 4.4: Other Ci assays performed on T7 RNAP in vitro.

Reactions were run at 37oC for 30 minutes in 100 μL containing 100 mM Mes-
NaOH pH 6.5, 4.7 μM T7 RNAP, 30 mM MgCl2, 3 units Rnasin, 200 μM rNTP, 7 
μg DNA template.  (A) T7 RNAP assay at pH 6.5 containing 20 mM NaCl or 
NaHCO3 or neither (basal).  (B) T7 RNAP assay carried out over time in the 
presence of 20 mM NaHCO3 (red triangles) or NaCl (blue squares). 6 sets of 
experiments were set up in parallel, and after 5, 10, 15, 20, 25 and 30 minutes, 
one set of experiments was stopped and the specific activity determined. (n = 3)
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4.3 The effect of Ci on assay pH

Due to the large effect that pH had upon the activity of T7 RNAP between 

pH 6.5 and pH 7.0 (Figure 4.3B), and the fact that the increase in T7 RNAP 

activity  observed  over  time  (Figure  4.4B) in  the  presence  of  Ci  could  be 

explained by increasing assay pH, it was deemed extremely prudent to revisit 

the pH controls. The pH controls were repeated at pH 6.5, but this time using 

several slightly different methods, all of which were performed using a computer 

driven micro pH electrode to quantify pH. In all cases the new pH control assays 

were carried out in a volume of 100 μL, containing the same components as the 

actual biochemical assay. 

When the same method used for previous pH controls (Figure 4.3A) was 

repeated at pH 6.5 it was seen that the pH of the solution gradually rose from 

about pH 6.48 to pH 6.52 over the period of 40 minutes (Figure 4.5 blue line), 

although it is unclear why this pH increase was not seen previously. Although 

this pH change was very small it was still evidence to support the idea that even 

50 mM buffer was not capable of completely clamping assay pH. It was noticed 

during these experiments that movement of the pH micro-electrode within the 

solution being tested resulted in small  rapid increases in pH being recorded. 

When an identical pH control assay (i.e. identical to  Figure 4.5 blue line) was 

run,  except  after  20, 30 and 40 minutes the solution was mixed (Figure 4.5 

arrows), rapid pH increases were immediately seen following mixing (Figure 4.5 

black line). It was noted that if mixing was carried out in this way, the pH of the 

assay would rise nearly 0.2 pH units over the course of 40 minutes. 

This observed increase in pH was alarming, and cast heavy doubt over 

many of the experiments carried out at pH 6.5 involving Ci. However, it was 

necessary  to  validate  this  observation  by  another  method.  For  this,  a  more 

reliable  method  was  devised,  whereby  the  conditions  used  for  the  actual 

biochemical assays were more rigorously mimicked. Essentially, a large master-

mix was created and 100 μL was aliquoted into several 1.5 mL microcentrifuge 

tubes, which were then closed and incubated at 37oC. After every 5 minutes, 

one of these identical tubes was opened, the pH was measured and the tube 

was discarded (Figure 4.5 red circles).  This method demonstrated that there 

was potentially a very significant increase in pH occurring, when assay pH was 

around pH 6.5. This pH change was consistently about a 0.15 – 0.2 pH unit  

increase over 40 minutes. 
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Due to the fact that it was not possible to avoid this newly identified assay 

pH increase, it was necessary to modify the method by which the biochemical Ci 

assays were performed. The composition of the assay solution was kept the 

same, except 100 mM buffer was used instead of 50 mM to minimise these 

increases in assay pH, and the protocol was modified in two ways. Firstly, each 

experiment now comprised a biochemical and a pH control assay run parallel to 

each other to allow exact pH values to be obtained every time an assay was 

performed.  Secondly,  instead  of  just  one  pH  6.5  Cl- and  one  pH  6.5  Ci 

experiment being used, 4 Cl- (roughly at pH 6.4, 6.5, 6.6 and 6.7) and one pH 

6.5 Ci experiments would be used to ensure the starting and final pH of the Ci 

experiment fell between that of the Cl- experiments (see Figure 4.6). It is worth 

noting that in the presence of Ci, pH measurements were recorded at the start  

and the end of the assay, so that the pH increase due to Ci could be monitored. 

When  T7  RNAP  was  re-tested  using  this  new  in  vitro Ci  assay 

methodology the result demonstrated that T7 RNAP was not activated by Ci and 

that the response to Ci seen previously was actually a non-specific effect of pH 

(Figure 4.6). 
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Figure 4.5: New in vitro pH control assays.

Mock  assays  were  set  up  using  several  different  methods.  Assays  were 
performed at 37oC in 100 μL containing 50 mM Mes-NaOH, 10 mM MgCl2 and 
20 mM NaHCO3. (blue line) - Original method for pH controls (see Figure 4.3A). 
(red  circles)  -  Several  identical  mock  assays  were  set  up  in  closed  micro-
centrifuge tubes and after each 5 minutes the pH of a new tube was sampled. 
(black line) – This was identical to the original method (blue line), however, after  
about 20/30/40 minutes (arrows) the probe was used to mix the solution. 
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Figure 4.6: T7 RNAP was not activated by Ci using the new in vitro Ci assay 
methodology.

The new  in vitro Ci assay methodology carried out at 37oC for 30 minutes, in 
100 μL containing 100 mM Mes-NaOH, 4.7 μM T7 RNAP, 10 mM MgCl2, 3 units 
Rnasin,  200 μM rNTP,  7  μg  DNA template  and 20  mM NaHCO3 (triangles; 
starting pH – clear, final pH - red) or NaCl (blue squares). (n = 6)
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4.4 E. coli DNA polymerase I

Although T7 RNAP was shown not  to  be regulated by Ci,  it  was still  

deemed wise to test  another member of the Pol  I  family of prokaryotic DNA 

polymerases.  A  response  to  Ci  may  not  be  a  universal  feature  of  Pol  I 

polymerases, but may only be a feature restricted to individual proteins in this 

enzyme family. The second protein chosen was the Klenow  exo- fragment of 

DNA polymerase  I (Klenow herein)  from  E.  coli,  which  is  a  member  of  the 

bacterial subfamily of Pol I DNA polymerases (Ito and Braithwaite, 1991).

The Klenow fragment was expressed from the plasmid pXS106 in E. coli 

strain CJ376 (plasmid and strain both kind gifts from Professor Catherine Joyce) 

as previously described (Joyce and Derbyshire, 1995). The crude preparation of 

Klenow obtained following ammonium sulphate precipitation was resolved to 

greater than 95 % homogeneity by subsequent anion exchange FPLC (Figure

4.7).

Klenow was tested under similar conditions to those used at pH 6.5 to 

test the response of T7 RNAP to Ci (Figure 4.6). Since this enzyme was a DNA 

polymerase, the components of the assay mix were altered slightly to contain 

[α-32P]-dATP, dNTPs, and activated calf thymus DNA as a template. The assay 

was a nick filling assay, with Klenow repairing damage in the calf thymus DNA 

by incorporating dNTPs into sites on calf thymus DNA which needed repair. It 

was clearly seen that there was no effect of Ci on this enzyme (Figure 4.8).
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Figure 4.7: Purified recombinant Klenow.

2  μg of purified  Klenow was resolved on a 12 % SDS-PAGE gel.  Protein was 
stained  with  Coomassie  Brilliant  blue  dye  and  protein  size  was  estimated 
relative to Fermentas PagerRulerTM Prestained Protein ladder.
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Figure 4.8: Klenow was not activated by Ci using the new in vitro Ci assay 
methodology.

Assays were performed for 30 minutes at 37oC, in 100 μL containing 100 mM 
Mes-NaOH, 10 mM MgCl2, 6.4 μM dATP, 32 μM dNTP, 1.3 nM Klenow and 10 
μg DNA template. Reactions were carried out in the presence of 20 mM NaCl 
(blue squares) or 20 mM NaHCO3 (triangles; starting pH – clear, final pH – red). 
(n = 6)
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4.5 DNA polymerase beta

Neither  of  the  two  members  of  the  Pol  I family  of  prokaryotic  DNA 

polymerases were shown to be regulated by Ci, however, the 'palm' structure is 

not a unique feature restricted to this family. The 'palm' domain structure is also 

found in the polymerase β family of DNA polymerases, so it was decided to test 

a member of this family.  The enzyme chosen was DNA polymerase  β (Polβ 

herein) from Rattus norvegicus as it had already been cloned, expressed as a 

recombinant protein, and had been biochemically characterised. 

Polβ was  over-expressed  in  E.  coli BL21  (DE3)  from  a  pET28a 

expression  plasmid  as  a  43  kDa  hexa-histidine  tagged  fusion  protein. 

Recombinant  protein  was  purified  with  a  Ni2+-NTA  FPLC  column  and  was 

greater than 95 % pure when visualised on SDS-PAGE (Figure 4.9).

Following the same nick filling experiment as that used for Klenow (see 

Figure 4.8), the effect of Ci on Polβ was tested at pH 6.5. This assay clearly 

demonstrated that there was no effect of Ci on this enzyme (Figure 4.10).
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Figure 4.9: Purified recombinant Polβ.

1.5  μg of purified Polβ was resolved on a 15 % SDS-PAGE gel.  Protein was 
stained  with  Coomassie  Brilliant  blue  dye  and  protein  size  was  estimated 
relative to Fermentas PagerRulerTM Prestained Protein ladder.
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Figure 4.10: Polβ was not activated by Ci using the new in vitro Ci assay 
methodology.

Assays were performed at for 30 minutes at 37oC in 100 μL containing 100 mM 
Mes-NaOH, 10 mM MgCl2, 6.4 μM dATP, 32 μM dNTP, 200 nM Polβ and 10 μg 
DNA template. Reactions were carried out in the presence of 20 mM NaCl (blue 
squares) or 20 mM NaHCO3 (triangles; starting pH – clear, final pH – red). (n = 
10)
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4.6 Discussion

Initial investigation into the effects of Ci on T7 RNAP suggested that its 

activity  was  increased  in  the  presence  of  Ci.  This  initial  experimentation 

demonstrated a strong stimulation by Ci at pH 6.5, indicating that CO2 may be 

the  activating  species  of  Ci  on  this  enzyme.  Despite  the  early  evidence 

suggesting  that  Ci  increased  the  activity  of  T7  RNAP,  one  biochemical 

experiment cast doubt upon this observation. When the specific activity of T7 

RNAP at pH 6.5 in the presence of Cl-  or Ci was tested over time, it appeared 

that whilst  the specific  activity in the presence of Cl- decreased slightly over 

time, the specific activity in the presence of Ci increased considerably over time. 

Of course, one possible explanation for this result was that the effects of Ci on  

T7 RNAP were slow to reach a maximal effect, a possible consequence if Ci 

has a low kon rate, and as such does not rapidly occupy its cognate site on all T7 

RNAP molecules. However, it was also possible that this increase in specific 

activity was caused through a gradual increase in assay pH as the experiment 

progressed.  An  increase  in  assay  pH  between  pH  6.5  and  7.0  would 

undoubtedly increase the specific activity of T7 RNAP, and as such would cause 

a misleading increase in specific activity. At pH 6.5 this increase in assay pH in 

the presence of Ci could occur since the relatively high concentration of CO2 in 

the assay would diffuse out of solution into the atmosphere. This loss of CO2 

from solution would cause a shift  in  the equilibria  formed between CO2 and 

HCO3
-,  ultimately  generating  more  CO2 and  removing  H+ from  the  assay. 

However, the reason why a small stimulation by Ci was seen at pH 7.0, where 

an increase in  assay pH would appear not to cause an increase in enzyme 

activity, is unclear.

Due to the possibility  that the apparent stimulation of T7 RNAP by Ci 

could  be  an  artefact  of  pH,  caused  by  Ci  increasing  the  assay  pH,  it  was 

deemed necessary to perform an even more thorough pH control experiment. 

Previous pH control assays had provided evidence to suggest that only 50 mM 

buffer was required to ensure that the desired starting pH of the assay could be 

achieved and that pH was stable throughout the assay. When the pH control 

assay (at pH 6.5) was repeated, the results were very much different to those 

done previously, in that although the start pH could be obtained, there was a 

very small  increase in pH over time (about a 0.04 pH unit  increase over 40 

minutes).  Furthermore,  it  was noticed  that  periodic  mixing of  the pH control  
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assay mix resulted in rapid increases in recorded pH. When the pH control was 

repeated  to  include  these  mixes,  the  results  were  remarkably  different, 

demonstrating that the assay pH actually increased in pH at a much more rapid  

rate than had previously been detected (nearly 0.2 pH units over 40 minutes). 

Although this mixing could be argued as causing potentially misleading results, 

an independent pH control  experiment following a different method validated 

this pH control. This second method provided strong evidence to suggest that 

previous pH control experiments had failed to detect a considerable increase in 

assay pH, and there was in fact a considerable increase in assay pH occurring.

Although the reason for the failure of previous pH control experiments to 

detect  this  pH  increase  was  not  known,  a  few  suggestions  can  be  made. 

Although care was taken to maintain the cleanliness of the micro pH electrode,  

the possibility  exists  that  over  time the old  micro pH electrode had become 

contaminated.  If  this  contamination  had  occurred  on  the  ceramic  filter  that 

separates the electrode from the solution to be measured then it was possible 

that  the  electrode  could  have  become  inaccurate  at  detecting  pH changes. 

However, this was not likely since mixing the pH control experiments caused a 

rapid increase in pH to be detected, suggesting that the micro pH electrode was 

functioning correctly.  Another  explanation was that  somehow a small  micro-

environment was occurring around the ceramic filter on the micro pH electrode. 

It was possible that since the electrode was stationary in solution that somehow 

the solution that the electrode was monitoring was in part separated from the 

rest of the assay solution. As such, when the pH of the assay solution increased 

due to  the  efflux  of  CO2,  the  small  micro-environment  around the  electrode 

remained at  the  same pH,  although this  would  not  be  expected  due to  the 

effects of Brownian motion. A final explanation is that a pH gradient was being 

established within the pH control assay. Since loss of CO2 from the solution was 

occurring predominantly at the air-liquid interface, a localised decrease in CO2, 

and a subsequent localised pH increase, would be occurring here. Since the 

solution was not stirred, the localised increase in pH at the air-liquid interface 

would cause a pH gradient to be established within the pH control assay, since 

the effects of Brownian motion would not be sufficient to rapidly normalise the 

pH within the pH control assay. As such, the micro pH electrode (which monitors 

the pH at the bottom of the pH control assay) would be monitoring a region of 

the pH control assay that most closely reflected the starting pH of the solution, 
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and would  be  unable  to  take  account  of  the  increasing  pH gradient  formed 

between the micro pH electrode and the air-liquid interface.

With this newly identified increase in assay pH taken into consideration, it 

became clear  that  the method originally  employed to  test  a  response of  an 

enzyme to Ci in vitro was no longer suitable. As such, a new in vitro Ci assay 

methodology was devised, and although this new method was not capable of 

preventing  this  increase  in  assay  pH,  even  with  an  increased  buffer 

concentration of 100 mM, it allowed it to be taken into account. Thus, even with 

an increase in assay pH, the new  in vitro Ci assay methodology allowed Ci 

responsive proteins to be identified without the risk of the result being mislead 

by pH. When this new in vitro  Ci assay methodology was employed to re-test 

the effect of Ci on the activity of T7 RNAP the results were remarkably different.  

With pH fully accounted for,  the assay demonstrated that T7 RNAP was not 

stimulated by Ci. 

Although this work has shown T7 RNAP to be non-responsive to Ci, it 

was still  necessary to test another member of the Pol  I family of prokaryotic 

DNA  polymerases.  This  was  the  Klenow  exo- fragment  of  E.  coli DNA 

polymerase I, and using the new in vitro Ci assay methodology was shown to be 

non-responsive  to  Ci.  The  findings  that  two  members  of  Pol  I  family  of 

prokaryotic  DNA  polymerases  were  not  regulated  by  Ci  indicates  that  a 

response to Ci is not likely to be a conserved feature of this family of enzymes. 

Furthermore, Polβ from  Rattus norvegicus,  a member of the Pol β family of 

DNA polymerases, was also tested and also shown to be non-responsive to Ci.  

Overall, this work provided evidence suggesting that a Ci response is unlikely to 

be a conserved feature of nucleotidyltransferases possessing a 'palm' domain, 

although it is possible that one could exist. 

Due  to  these  newly  identified  increases  in  assay  pH,  this  work  has 

indicated the need for a reinvestigation of Ci responsive ACs.
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5.1 Introduction

Although  GCs  are  involved  in  a  number  of  diverse  physiological 

processes  in  eukaryotes,  their  presence  in  prokaryotes  is  still  debatable 

(Garbers  et  al.,  2006;  Linder,  2010;  Poulos,  2006).  All  known GCs possess 

Class  IIIa CHDs (with the exception of soluble GC (sGC) from  Dictyostelium 

discoideum, which  possesses  a  Class  IIIb  CHD),  and  are  diverse  in  their 

structure and biochemical properties (Garbers et al., 2006; Linder and Schultz, 

2003; Poulos, 2006; Roelofs et al., 2001). In mammals, the difference between 

AC and GC substrate specificity has been shown to depend upon two active site 

amino  acids,  with  a  lysine  and  aspartate  defining  substrate  ATP,  and  a 

glutamate and cysteine defining substrate GTP (Sunahara et al., 1998). With an 

increasing number of ACs being shown to be responsive to Ci, and the fact that  

ACs  and  GCs  share  a  structurally  related  active  site,  it  has  become  more 

plausible that Ci could have an effect on some GCs (Cann et al., 2003; Chen et 

al.,  2000; Hammer  et al.,  2006; Klengel  et al., 2005; Mogensen  et al.,  2006; 

Steegborn et al., 2005b). Indeed, the case for Ci acting on GCs is strong, given 

that  several  known  Ci  sensing  pathways  are  known  to  involve  cGMP  (see 

Sections  1.4.4  and  1.5.6).  Although  the  initial  Ci  sensing  protein  in  these 

pathways had not been proven it was reasonable to speculate that GC could 

perform this role. 

In mammals there are two distinct sources of cGMP; membrane bound 

receptor GCs and sGC (Garbers et al., 2006; Poulos, 2006). sGC is expressed 

in most tissues, is the sensor for NO, and is involved in the regulation of diverse 

physiological processes (Poulos, 2006). In rodents, receptor GCs (GC-A, GC-B, 

GC-C, GC-D, GC-E, GC-F and GC-G) are expressed in various tissues where 

they respond to various extracellular ligands  (Garbers  et al.,  2006). Although 

there is little evidence to suggest that sGC is involved in the detection of Ci in  

mammals, studies into the olfactory detection of Ci in rats has provided good 

evidence for the involvement of a receptor GC. Rodents are able to detect Ci 

through olfactory receptors in the nose, and work has shown that neurons which 

uniquely  express  GC-D  (it  is  worth  noting  that  in  Humans,  GC-D  is  a 

pseudogene)  are  responsible  for  this  (Fulle  et  al.,  1995;  Hu  et  al.,  2007). 

Although another protein could potentially be responding to Ci (e.g. PDE2A) in 

this system, the fact that ACs are known to respond to Ci provides support to  
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the notion of GC-D acting as the initial Ci sensor  (Hu  et al., 2007; Leinders-

Zufall et al., 2007) 

Further  evidence  supporting  the  notion  of  GCs being  involved  in  the 

detection of Ci was found in  Caenorhabditis elegans.  Studies showed that the 

detection of Ci in this organism was dependent upon a cGMP gated ion channel 

(Tax-2/Tax-4) and a receptor GC (Daf-11)  (Bretscher  et al., 2008; Hallem and 

Sternberg, 2008). Again, given the number of known Ci responsive ACs it was 

possible that the Ci responsive protein in this system was the receptor GC Daf-

11.

Using the new  in vitro Ci assay methodology, the response of several 

GCs  to  Ci  was  tested.  The  response  of  mammalian  GCs,  both  sGC  and 

receptor GCs, was tested. Furthermore, following the recent identification of a 

prokaryotic GC (see Section 5.4 for discussion), the response of this enzyme to 

Ci was also tested.
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5.2 Receptor GCs

NIH 3T3 cells stably expressing various mouse receptor GCs (GC-A, GC-

B, GC-D, GC-E, GC-F and GC-G) were obtained (kind gift from Dr. Kent Hamra, 

Department  of  Pharmacology,  University  of  Texas).  Cells  were  grown under 

standard conditions (see 2.3.1) in the presence of G418, and the membrane 

fractions from lysates of  these cells  were extracted (see 2.3.4).  Significantly 

elevated GC activity was detected in GC-A and GC-E transfected cells when 

compared to  non-transfected  cells,  but  not  in  GC-B,  GC-D,  GC-F,  or  GC-G 

transfected cells. The reason for this remains unclear, but it was possible that 

since the cell lines were old (Dr. Kent Hamra, personal communication), loss of 

the transfected GC gene had occurred. Unfortunately, subsequent attempts to 

resolve the issue failed and it was not possible to obtain a source of the prime 

candidate for a Ci response, GC-D, within the time frame available.

The GC activity of membrane fractions derived from non-transfected NIH 

3T3 cells was always tested along side transfected NIH 3T3 cells to ensure the 

GC activity was specific to the over-expressed receptor GC. The effect of Ci on 

GC-A and GC-E was tested in vitro at pH 6.5 with Ci supplied in the form of 20 

mM NaHCO3, however, no response was observed (Figure 5.1).

GC-A and GC-E were also similarly tested in vitro at pH 7.5 and 8.5, but 

again no response to Ci was seen (Figure 5.2). It  is worth noting that in the 

cases of both GC-A and GC-E it was seen that their GC activity was significantly 

higher at pH 6.5 than it was at pH 7.5 or 8.5, which was surprising since the pH 

optimum  for  these  enzymes  is  reported  at  around  pH  7.5  (Hardman  and 

Sutherland,  1969).  It  is  probable  that  due  to  the  fact  that  the  experiments 

conducted at pH 6.5 were performed on fresh membrane fractions, with those 

done at pH 7.5 and 8.5 a few days later, that storage at -20oC and subsequent 

freeze-thaw  lead  to  inactivation  of  membrane  bound  proteins  and  a 

subsequently artificial decrease in specific activity.
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Figure 5.1: The effect of Ci on GC-A and GC-E activity in vitro at pH 6.5.

Assays were carried out in 100 μL for 30 minutes at 37oC in the presence of 100 
mM Mes-NaOH, 10 mM MgCl2, 1 mM IBMX, 5 mM creatine phosphate, 5 units 
creatine phosphokinase, 1 mM DTT, 1 mM GTP, 1 % (w/v) triton X-100 and 
either 20 mM NaCl (blue squares) or NaHCO3 (triangles; starting pH – clear, final 
pH red). Non-transfected NIH 3T3 cell lysate (circles). (A) NIH 3T3 cell lysates 
over-expressing GC-A. (B) NIH 3T3 cell lysates over-expressing GC-E. (n = 3)
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Figure 5.2: The effect of Ci on GC-A and GC-E activity in vitro at pH 7.5 and 8.5. 

Assays were carried out in 100 μL for 30 minutes at 37oC in the presence of 100 
mM Tris-HCl, 10 mM MgCl2,  1 mM IBMX, 5 mM creatine phosphate, 5 units 
creatine phosphokinase, 1 mM DTT, 1 mM GTP, 1 % (w/v) triton X-100 and 
either 20 mM NaCl (blue squares) or NaHCO3 (red triangles). Non-transfected 
NIH 3T3 cell lysate (circles). (A) NIH 3T3 cell lysates over-expressing GC-A. (B) 
NIH 3T3 cell lysates over-expressing GC-E. (n = 4)
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5.3 Soluble GC

Due to GCs being implicated in Ci sensing in several diverse pathways, it 

was wise to assess the response of sGC to Ci. Since sGC is expressed in most 

mammalian tissues, and a previous biochemical study performed on sGC used 

lysates obtained from HEK 293 cells, it was decided to study the effects of Ci on 

sGC using  a similar  method  (Parkinson  et  al.,  1999).  HEK 293T cells  were 

grown under standard conditions, and the soluble fraction derived from HEK 

293T cell lysates was initially probed to determine whether NO dependent GC 

activity could be detected. GC activity of the soluble fraction derived from HEK 

293T cell lysates was significantly up-regulated in the presence of the NO donor 

S-Nitroso-N-acetylpenicillamine  (SNAP)  at  a  concentration  of  1  mM, 

demonstrating  that  sGC  specific  activity  could  be  detected  (Figure  5.3).  In 

subsequent biochemical assays performed a control sample without SNAP was 

included to demonstrate that the majority of GC activity reported was specific to 

sGC and not the endogenous receptor GCs.

The effect of Ci on sGC was studied at 3 different pHs (pH 6.5, 7.5 and 

8.5) in vitro, with Ci supplied in the form of 20 mM NaHCO3, and using 20 mM 

NaCl as a control for non-specific anion or cation effects. At all pHs tested there 

was no stimulatory effect of Ci seen (Figure 5.3), demonstrating that sGC is 

unlikely to be regulated by Ci. 

Although a very slight decrease in specific activity was seen at pH 6.5 in 

the presence of Ci (when compared to NaCl), this was not likely to be a specific 

effect due to Ci. Given the relatively high concentration of CO2 in the assay, and 

the fact that NO mediates its effects on sGC through binding to haem, it is likely 

that the drop in specific  activity is  due to CO2 competing with NO for haem 

binding (Poulos, 2006). However, it is worth noting that due to this competition 

for haem binding the converse could occur, where NO binding to haem prevents 

CO2 binding and thus masking any possible effects of Ci. 
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Figure 5.3: The effect of Ci on sGC activity in vitro.

Assays were carried out in 100 μL for 40 minutes at 37oC. Assay contained 100 
mM Mes-NaOH, 10 mM MgCl2, 1 mM IBMX, 5 mM creatine phosphate, 5 units 
creatine phosphokinase, 1 mM DTT, 1 mM GTP and 45 mg total soluble protein. 
Assays also contained 20 mM NaCl (circle), 20 mM NaCl + 1 mM SNAP (blue 
squares) and 20 mM NaHCO3 + 1 mM SNAP (red triangles). (n = 3)
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5.4 Sll0646 from Synechocystis PCC 6803

The  genome  of  Synechocystis  PCC  6803  contains  3  putative  CHD 

encoding open reading frames (ORFs)  (cya1,  cya2 and  cya3),  of  which two 

have been shown to express a functional cyclase (Ochoa De Alda et al., 2000; 

Rauch  et al.,  2008; Terauchi and Ohmori, 1999). Slr1991 (cya1) has already 

been confirmed as a functional AC, and has also been shown to be regulated by 

Ci  (Hammer  et  al.,  2006;  Masuda  and  Ono,  2005).  Sequence  analysis  of 

Sll0646 (cya2) indicated that is was likely to be a GC, and mutation resulted in a 

drop of cGMP levels in Synechocystis PCC 6803 (Ochoa De Alda et al., 2000). 

Recently,  crystallographic  and  biochemical  evidence  has  been  obtained  to 

support the idea of Sll0646 being a functional GC (Rauch et al., 2008). Although 

Sll1161 (cya3) shares some sequence similarity with other CHDs, it appears to 

lack several amino acid residues essential for catalysis and as such is unlikely  

to be functional, although this has not been confirmed (Masuda and Ono, 2005; 

Ochoa De Alda et al., 2000). Given the recent evidence demonstrating Sll0646 

as a functional GC, and the fact that Slr1991 from this organism is known to be 

Ci sensitive, the response of this prokaryotic GC to Ci would be tested using an 

in vitro Ci assay (Hammer  et al., 2006; Masuda and Ono, 2005; Rauch et al., 

2008). Furthermore, it was decided to clone, express and biochemically study 

Sll1161 to identify whether it is a functional AC or GC, and if AC or GC activity  

was detected, determine if it shared a Ci response with Slr1991.

Before  in vitro biochemical investigation on Sll0646 and Sll1161 could 

start  it  was  necessary  to  obtain  sufficient  pure  recombinant  enzyme.  Since 

previous work carried out on Slr1991 had successfully relied upon purifying a 

recombinant hexa-histidine tagged protein over-expressed in  E. coli, a similar 

method was adopted (Masuda and Ono, 2004). Previous biochemical analysis 

of Slr1991 had studied a recombinant protein consisting of the CHD, but lacking 

the amino acids to the N-terminus of the CHD. Sll0646 and Sll1161 CHDs were 

identified  using  the  SMART  database  (http://smart.embl-heidelberg.de)  and 

oligonucleotide primers were subsequently designed (Table 2.4) to clone the 

CHDs of Sll0646 and Sll1161 (Figure 5.4).  The nucleotides corresponding to 

amino acids 424-756 of Sll0646 and amino acids 73-285 of Sll1161 were cloned 

into the pQE30 vector at the Pst I/Sph I and Bam HI/Hind III sites, respectively 

(see 2.2.13). Expression constructs were validated by DNA sequencing. 38 kDa, 
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hexa-histidine tagged, Sll0646424-756 was over-expressed in  E. coli M15 (DE3) 

[pREP4], and pure recombinant Sll0646424-756 was obtained following Ni2+-NTA 

affinity FPLC, and was sufficiently homogeneous for in vitro biochemical studies 

(Figure 5.5A). Unfortunately, attempts to over-express Sll116173-285 failed and it 

was not possible to obtain any recombinant protein within the limited timeframe 

available. 
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Figure 5.4: Domain architecture of Synechocystis PCC 6803 CHD encoding 
proteins.

Domain  architecture  was  constructed  using  SMART  (http://smart.embl-
heidelberg.de).  Domain abbreviations are; FHA – forkhead-associated domain; 
CHD  –  cyclase  homology  domain;  TM  –  predicted  transmembrane  domain. 
Numbers  correspond  to  amino  acid  numbers  (ascending  N-terminal  to  C- 
terminal).



Ci and GCs Philip Townsend

137

Figure 5.5: Purified recombinant Sll0646.

(A) 12 % (v/v) bis-acrylamide SDS-PAGE gel loaded with 1 μg Sll0646424-756 (B) 
15  %  (v/v)  bis-acrylamide  SDS-PAGE  gel  loaded  with  2  μg  Sll0646434-635. 
Proteins were stained with Coomassie Brilliant blue dye and protein size was 
estimated relative to Fermentas PagerRulerTM Prestained Protein ladder (A) and 
Fermentas PagerRulerTM Plus Prestained Protein ladder (B). 
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An in vitro biochemical assay on Sll0646424-756 was performed at pH 7.5 to 

confirm the activity of the expressed protein, however, it indicated that Sll0646 

was likely  to  be an AC and not  a  GC.  The enzyme showed an AC activity 

greater than 20 fold that of the GC activity (3288 ± 67 pmoles cAMP mg -1 min-1 

Vs. 137 ± 5 pmoles cGMP mg-1 min-1), an observation that was in contrast to the 

published work  (Rauch  et  al.,  2008).  The biochemical  assays  performed by 

Rauch  et al. also used a recombinant hexa-histidine tagged form of Sll0646, 

except corresponding to amino acids 434-635. In order to address this conflict 

the  expression  vector  pET151TOPO.cya2cat  (kind  gift  of  Dr.  Clemens 

Steegborn) was transformed into  E. coli.  The 26 kDa Sll0646434-635 was over-

expressed,  purified  to  homogeneity  through  Ni2+-NTA  affinity  FPLC  (Figure

5.5B) and was compared biochemically to Sll0646424-756 (Rauch et al., 2008).

The AC and GC activity of Sll0646434-635 was tested at a range of pHs and 

it was observed that the GC activity was more that 10 fold greater than the AC 

activity (Figure 5.6B), matching the findings of the published work (Rauch et al., 

2008).  It  was  apparent  that  the  GC  activity  of  Sll0646434-635 displayed  no 

significant dependence on pH, whereas the AC activity increased progressively 

from pH 6.5 to 8.5 (Figure 5.6B). When Sll0646424-756 was subjected to the same 

pH response assay the results were remarkably different, showing the enzyme 

to possess a far greater AC than GC activity (Figure 5.6A). Similarly, the GC 

activity of Sll0646424-756 showed no dependence on pH, whereas the AC activity 

showed a response to pH comparable with other ACs (Figure 5.6A). 

Although  the  GC  activity  of  both  Sll0646424-756  and  Sll0646434-635 were 

similar (at pH 8.35: 1.12 ± 0.06 pmoles cGMP mg-1 min-1  for Sll0646424-756 and 

2.33 ± 0.17 pmoles cGMP mg-1 min-1 for Sll0646434-635), the AC activities were 

vastly different (at pH 8.35: 31.4 ± 0.41 pmoles cAMP mg -1 min-1 for Sll0646424-756 

and 0.35 ± 0.1 pmoles cAMP mg-1 min-1 for Sll0646434-635).

 Although  these  results  indicate  that  Sll0646  is  likely  to  be  an  AC, 

definitive proof was dependent upon testing the full  length native protein. As 

such, the full  length gene was cloned into pQE30 and pCDNA3.1 at the Pst  

I/Sph I and Eco RV/Xho I, respectively. However, with limited time available it 

was not possible to successfully express recombinant protein in E. coli and HEK 

293T cells, respectively.
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Figure 5.6: Sll0646 is an AC with GC side activity.

Assays were carried out in 100 μL for 30 minutes at 37oC in the presence of 500 
μM ATP  (blue  circles) or  GTP  (red  squares).  Assays  also  contained  2  mM 
MnCl2, and 100 mM Mes-NaOH (pH 6.5) or Tris-HCl (pHs 7.0, 7.5, 8.0 and 8.5). 
(A) 650 nM Sll0646 (amino acids 424-756), inset shows a closer view of the GC 
activity. (B) 650 nM Sll0646 (amino acids 434-635), inset shows a closer view of 
the AC activity. (n = 3)
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In order to provide some insight into the conflict in cyclase activities of 

these two recombinant forms of Sll0646, substrate dose responses were carried 

out. Each recombinant form of Sll0646 was subjected to an ATP does response 

at pH 7.5 (and also pH 8.5 for Sll0646424-756) in order to determine Vmax and Km 

parameters (Figure 5.7). Using the Michaelis-Menten graphs and the non-linear 

regression  package  in  Graphpad  Prism,  Vmax values  were  determined  for 

Sll0646434-635 at pH 7.5 (0.49 ± 0.03 nmoles cAMP mg-1 min-1), Sll0646424-759 at pH 

7.5 (2.9 ± 0.1 nmoles cAMP mg-1 min-1) and Sll0646424-759 at pH 8.5 (25.7 ± 1.2 

nmoles cAMP mg-1 min-1).  Km parameters were estimated following the same 

procedure as Vmax and were determined for Sll0646434-635 at pH 7.5 (0.46 ± 0.1 

mM), Sll0646424-759 at pH 7.5 (0.19 ± 0.02 mM) and Sll0646424-759 at pH 8.5 (0.30 

± 0.04 mM).

Both recombinant forms of Sll0646 were also subjected to a GTP dose 

response assay and they displayed substrate inhibition by GTP (Figure 5.8). 

This  substrate  inhibition  was  most  apparent  in  Sll0646424-756,  with  a  50  % 

decrease in enzyme activity being seen from 50 μM to 125 μM substrate (3.85 ± 

0.07 nmoles cGMP mg-1 min-1 to 1.89 ± 0.13 nmoles cGMP mg-1 min-1). Due to 

this substrate inhibition it was not possible to accurately determine Km  or Vmax, 

however, it  appeared that Sll0646424-756 possessed a much stronger substrate 

affinity since its highest activity was seen at 50 μM substrate whereas Sll0646434-

635 at 1 mM. 

Substrate  inhibition  usually  occurs  when  an  enzyme possesses  more 

than  one  substrate  binding  site,  and  substrate  binding  to  the  second  non-

catalytic  site  causes  a  conformational  change,  decreasing  catalytic  activity 

through  the  first  binding  site.  As  such  it  was  necessary  to  perform  further 

analysis on the data acquired in order to determine whether it is likely that this 

enzyme  possesses  more  than  one  substrate  binding  sites.  This  was  done 

through  producing  a  sigmoidal  dose  curve  through  plotting  enzyme  activity 

against  the  Log10 of  substrate  concentration  (Figure  5.9A/B).  Non-linear 

regression analysis using the Prizm graphical analysis software determined the 

Hill  slope  of  the  linear  portion  of  the  sigmoid.  At  pH  7.5  the  Hill  slope  of  

Sll0646424-756 was 1.96 ± 0.26 and at pH 8.5 the Hill slope was 2.24 ± 0.25. The 

Hill slopes close to 2 indicate that this enzyme, like most ACs, possesses two 

substrate binding sites (or multiples of two).
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Figure 5.7: ATP dose responses on Sll0646.

Assays were carried out in 100 μL for 30 minutes at 37oC in the presence of 10 
mM MnCl2, and Tris-HCl (pHs 7.5 and 8.5).  (A)  650 nM Sll0646 (amino acids 
434-635) at pH 7.5.  (B) 650 nM Sll0646 (amino acids 424-756) at pH 7.5.  (C) 
650 nM Sll0646 (amino acids 424-756) at pH 8.5. (n = 3)

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

ATP  [mM]

M
ea

n 
Sp

ec
ifi

c 
Ac

tiv
ity

[n
m

ol
es

 c
AM

P 
m

g-1
m

in
-1

]

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

ATP [mM]

M
ea

n 
Sp

ec
ifi

c 
Ac

tiv
ity

[n
m

ol
es

 c
AM

P 
m

g-1
m

in
-1

]

0.0 0.5 1.0 1.5 2.0 2.5
0

5

10

15

20

25

ATP [mM]

M
ea

n 
Sp

ec
ifi

c 
Ac

tiv
ity

[n
m

ol
es

 c
A

M
P 

m
g

-1
m

in
-1

]

A

C

B



Ci and GCs Philip Townsend

142

Figure 5.8: GTP dose responses of Sll0646.

Assays were carried out in 100 μL for 30 minutes at 37oC in the presence of 10 
mM MnCl2, and Tris-HCl pH 7.5. (A) 650 nM Sll0646 (amino acids 434-635). (B) 
650 nM Sll0646 (amino acids 424-756). (n = 3)
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Figure 5.9: Graphical analysis of Sll0646424-756 ATP dose responses shows 
substrate inhibition.

Further analysis of data from Figure 5.7A/B. (A) Sigmoidal dose response at pH 
7.5. (B) Sigmoidal dose response at pH 8.5. (C) Eadie-Hoftsee plot at pH 7.5 
(D) Eadie-Hoftsee plot at pH 8.5.

v – velocity; Mean Specific Activity, S - Substrate
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Although substrate inhibition by GTP was easily identified from the raw 

plots  of  Sll0646  (Figure  5.8)  it  was  necessary  to  more  closely  analyse  the 

responses in the presence of ATP. This analysis was done via an Eadie-Hofstee 

plot whereby enzyme velocity (v, i.e. mean specific activity) was plotted against 

enzyme velocity over substrate concentration (v  / [S]). True Michaelis-Menten 

enzymes, when plotted in this manner,  demonstrate a complete straight  line 

bisecting all data points. It was clear that Sll0646424-756 at pH 7.5 and 8.5 did not 

fit a straight line, with the points at low v / [S] deviating below the straight line 

(Figure  5.9C/D).  This  drop  below  the  straight  line  indicated  that  at  higher 

substrate  concentrations  there  was  negative  co-operativity  between  the  two 

substrate binding site, indicating substrate inhibition.

Using the newly devised in vitro Ci assay methodology the response of 

Sll0646424-756 (both the GC and AC activity) was tested at pH 6.5 and revealed 

no response to Ci (Figure 5.10).
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Figure 5.10: Neither the AC or GC activity of Sll0646 were activated by Ci.

Assays were performed for 30 minutes at 37oC in a volume of 100 μL containing 
100 mM Mes-NaOH, 10 mM MnCl2, 9 μM Sll0646 (amino acids 424-756) and 20 
mM NaCl (squares) or NaHCO3 (triangle). (A) 1 mM ATP (B) 1 mM GTP. (n = 4)
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5.5 Discussion

In vitro biochemical analysis of three mammalian GCs (GC-A, GC-E and 

sGC)  and  Sll0646  from  Synechocystis PCC  6803,  has  revealed  that  these 

enzymes are not regulated by Ci. Although in vitro Ci experiments performed on 

sGC showed a  slight  inhibition  of  GC activity  in  the  presence of  Ci,  this  is 

possibly due to CO2 competing with NO for haem binding. Since sGC activity is 

dependent upon NO binding to haem, it is likely that a reduction in NO-bound 

haem would result in a decrease in GC specific activity. With hindsight, it would 

be wise to re-investigate the response of sGC to Ci, using a slightly different 

method to  avoid  potential  competition between CO2 and NO for  haem. This 

could be achieved through studying the response of sGC to Ci in the absence of  

NO, although whether detectable sGC activity could be detected under these 

conditions is unclear. Unfortunately, due to the failure to obtain GC activity from 

stable  cell  lines  expressing  several  other  receptor  GCs,  including  the  prime 

candidate for a Ci response (GC-D), a more complete investigation into possible 

responses of  mammalian GCs as a  whole  was not  possible  within  the time 

available. 

Work  published  shortly  after  investigation  in  this  area  was  ceased 

indicated that, as hypothesized in whole organism and  in vivo studies, GC-D 

was regulated by  Ci (Sun  et  al.,  2009).  When our  current knowledge of  the 

problems associated with studying Ci responses in vitro (see Section 4.2) was 

taken into account it was apparent that several experiments contained in that 

paper could potentially  be misleading due to pH effects.  However,  this initial 

work was soon validated by a more complete biochemical study into all receptor 

GCs,  which proved that  whilst  six  of  the receptor  GCs and sGC were  non-

responsive, GC-D was responsive to Ci  (Guo  et al.,  2009). Furthermore, this 

later  work  also  identified  the  pH issues  that  arise  when  working  with  Ci  in  

solution  and  due  to  this  observation  the  biochemical  assays  were  suitably 

controlled (Guo et al., 2009).

Biochemical  work  carried  out  on  two  different  truncated  recombinant 

proteins derived from Sll0646 has provided contrasting evidence as to whether 

the native enzyme is an AC or GC. Work performed on Sll0646424-756 indicates 

that this enzyme is an AC, whereas work performed on Sll0646434-635 indicates 

that it is a GC. However, the fact that the GC activity for both isoforms is very 
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similar, but the AC activity is much higher in Sll0646424-756 than in Sll0646434-635, 

indicates that the enzyme may be an AC. It is possible that removal 121 amino 

acids  from  the  C-terminus  of  the  protein  resulted  in  an  abnormal  tertiary 

structure, causing a loss of AC activity, however, this is purely speculative. 

The possibility that Sll0646 is an AC is further supported by the fact that 

the AC activity of both isoforms displays a standard pH dependence, whereas 

the  GC  activity  is  constant  across  the  pH  range  tested.  Most  enzymes, 

especially ACs and GCs, display a fairly standard bell shaped activity response 

to  pH,  most  commonly  displaying  a  pH  optimum  around  pH  7.5  to  pH  8 

(Hardman and Sutherland,  1969;  Hatley  et  al.,  2002).  The fact  that  the  GC 

activity  showed  no  significant  pH dependence  was  strange,  since  it  was  in  

contrast  to  other  cyclases.  However,  when  the  apparent  strong  substrate 

inhibition  by  GTP  is  taken  into  account  a  possible  explanation  becomes 

apparent.  Since  the  GTP  concentration  in  the  pH  dependence  assay  was 

maintained  at  500  μM  and  that  in  the  case  of  Sll0646434-635 the  effects  of 

substrate inhibition become apparent at concentrations of 500 μM at pH 7.5 it is  

possible that the effects of substrate inhibition are causing misleading results. It 

is  possible  that  the  GC  activity  of  the  enzyme  does  follow  a  standard  bell 

shaped response to pH, but due to the effects of substrate inhibition possibly  

varying with pH, the activity is being artificially lowered dependent upon pH. 

It  would  be  more  appropriate  to  have conducted  the  pH dependence 

assays with a much lower substrate concentration to remove strong effects of 

substrate inhibition. However, when the fact that substrate inhibition at pH 7.5 

begins  at  around  50  μM  in  the  case  of  Sll0646424-756,  choosing  a  suitable 

concentration of GTP to use becomes difficult. A series of GTP and ATP dose 

response curves would first  need to be generated across a range of  pHs in 

order the choose the most suitable concentration to conduct a pH response at. 

Within  the time available it  was not possible  to  conduct  a deeper and more 

lengthy  investigation,  and  this  remains  an  important  consideration  for  future 

work.

Finally, this work has highlighted a largely overlooked issue concerning 

working  with  recombinant  proteins,  and  especially  truncated  recombinant 

proteins; that the behaviour of recombinant proteins does not always accurately 

reflect  that  of  the  native  protein.  Much  biochemical  work  reported  in  the 

literature relies upon in vitro data derived from truncated recombinant proteins, 
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which are largely assumed to be accurate tools through which native proteins 

can be studied. This work emphasizes the need to be cautious when working 

with such proteins and ensure through comparison to native protein that their 

behaviours are comparable. 
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6.1 Introduction

With experimental evidence demonstrating that during in vitro Ci assays 

on T7 RNAP (see Section 4.3) there was a significant increase in pH over time it  

became necessary to perform a re-investigation of the response of many ACs to 

Ci. This pH increase of about 0.15 pH units (see Section 4.3) over the course of 

a 30 minute assay (at pH 6.5 with 20 mM total Ci) would result in a substantial  

increase in enzyme specific activity for most ACs. Since the activity of these 

enzymes commonly increases almost 2 fold from pH 6.5 to pH 7.0 and that the 

stimulatory effects so far seen on ACs by Ci are relatively small (commonly no 

more than a 2 fold increase seen by myself) it was necessary to re-investigate.

It was important to carry out experiments using the new in vitro Ci assay 

methodology derived through work on T7 RNAP to allow pH to be ruled out from 

any possible response to Ci. It was immediately important to perform these new 

experiments on the mammalian tmAC (7C1●2C2) studied in a previous chapter 

(see Section 3.4). However, due to the magnitude of these newly identified pH 

issues  it  was  also  deemed  prudent  to  use  this  new  in  vitro Ci  assay 

methodology to re-test some already published Ci responsive Class  IIIb ACs. 

These ACs were chosen as CyaB1 from Anabaena PCC 7120 and CyaC from 

Spirulina platensis (Cann et al., 2003; Chen et al., 2000; Hammer et al., 2006; 

Steegborn et al., 2005b). 
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6.2 Mammalian tmAC

Since previous work only demonstrated a significant stimulation by Ci on 

7C1●2C2 at pH 6.5 and that the 7C1●2C2 pH profile derived previously showed a 

roughly 2 fold increase in specific activity between pH 6.5 and pH 7.0 it was 

necessary to re-evaluate the apparent response to Ci. The new in vitro Ci assay 

methodology (see Section 2.5.4) used to address the pH issues identified when 

working on T7 RNAP was employed to test 7C1●2C2. Since a Ci effect was seen 

when  7C1●2C2 was  activated  by  both  Gαs and  forskolin,  it  was  decided  to 

perform this re-investigation using only forskolin to avoid the lengthy purification 

and activation of Gαs. 

Using the new in vitro Ci assay methodology 7C1●2C2 was assayed in the 

presence or absence of Ci under conditions replicating those used in the in vitro 

assays  done  previously  (see  Section  3.4).  When  the  new  in  vitro Ci  assay 

methodology  was  used  to  test  the  Ci  response  of  7C1●2C2 at  pH  6.5,  no 

response to Ci was observed (Figure 6.1). This indicated that it was probable 

that the stimulation of 7C1●2C2 ascribed to Ci earlier (see Section 3.4) was in 

fact a non-specific effect of pH. When the effects of pH were ignored (i.e. the 

starting  pH  was  used;  Figure  6.1 clear  triangle),  the  activity  of  7C1●2C2 

appeared  to  be  stimulated  by  Ci  by  an  amount  comparable  to  previous 

experiments  (see  Section  3.4),  however,  when  the  effects  of  pH  were 

considered (Figure 6.1 red triangle), 7C1●2C2 did not appear to be stimulated by 

Ci. However, when the in vivo experimental evidence for a response of tmACs 

to Ci was taken into account it was clear that a small degree of doubt into the 

validity of the new in vitro Ci assay methodology was present. 

In order to address this slight doubt, a control protein known categorically 

to be responsive to Ci was required to be tested to demonstrate the ability of 

this new  in vitro Ci assay methodology to show a Ci response. The enzyme 

chosen was human sACt (see Section 6.3), and this control assay was run at the 

same time as the 7C1●2C2 assay shown below (Figure 6.2). 
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Figure 6.1: 7C1●2C2 was not activated by Ci using the new in vitro Ci assay 
methodology.

Assays were performed for 30 minutes at 37oC in a volume of 100 μL containing 
100 mM Mes-NaOH, 10 mM MgCl2, 1 mM ATP, 100 μM forskolin, 1.4 μM 7C1, 
770 nM 2C2 and 20 mM NaCl (blue squares) or NaHCO3 (triangles; starting pH – 
clear, final pH red). (n = 3)
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6.3 Mammalian sAC

To provide confirmation that the new  in vitro Ci assay was capable of 

identifying a Ci responsive protein, the response of human sAC t to Ci was tested 

using this methodology. Recombinant human sACt was obtained (kind gift from 

Professor Lonny Levin),  and was tested at pH 6.5 using the new  in vitro Ci 

assay methodology. Results showed a greater than 2 fold stimulation of sAC t in 

the  presence  of  Ci,  confirming  that  sACt was  responsive  to  Ci,  and  more 

importantly  demonstrating  that  the  new  in  vitro Ci  assay  methodology  was 

capable of identifying a Ci response, when one was present (Figure 6.2). 
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Figure 6.2: sACt was activated by Ci using the new in vitro Ci assay 
methodology.

Assays were performed for 40 minutes at 37oC in a volume of 100 μL containing 
100 mM Mes-NaOH, 10 mM MgCl2, 1 mM ATP, 200 nM sACt and 20 mM NaCl 
(red squares) or NaHCO3 (triangles; starting pH – clear, final pH red). (n = 3)
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6.4 CyaB1 from Anabaena PCC 7120

Another enzyme reported to be Ci responsive is CyaB1 from Anabaena 

PCC 7120. It was previously assumed that this enzyme was activated by HCO3
-, 

but the species of Ci was later shown to be CO2 (Cann et al., 2003; Hammer et 

al., 2006). When assays were carried out under conditions of Ci disequilibrium 

(10  second,  4oC assays  where  the  predominant  species  of  Ci  in  the  assay 

remains the form in which it was added) this enzyme showed a higher activity 

when Ci was supplied in the form of CO2 as opposed to that of HCO3
- (or Cl-).

In  order  to  re-test  the  response  of  CyaB1  to  Ci  it  was  necessary  to 

express CyaB1595-859 in  E. coli as a 30 kDa hexa-histidine tagged recombinant 

protein, and purify it to homogeneity (Figure 6.3); as done previously (Hammer 

et al., 2006). It was first necessary to assess whether CyaB1595-859 was activated 

by Ci using the new  in vitro Ci assay methodology at around pH 6.5. It was 

observed that  when  the  new  in  vitro Ci  assay methodology  was used,  that 

CyaB1595-859 was not activated by Ci (Figure 6.4).

Although the new in vitro Ci assay showed no response of CyaB1595-859 to 

Ci  it  was  still  necessary  to  address  the  Ci  disequilibrium  experiments.  The 

disequilibrium assays were repeated under almost identical conditions to that 

done  previously,  with  the  exception  that  time  was  increased  from  10  to  15 

seconds in order to increase the amount of cAMP produced to higher levels. 

When these 15 second assays were performed the enzyme was consistently 

shown to produce more cAMP when Ci was supplied in the form of CO2 as 

opposed to HCO3
- or Cl- (Figure 6.5). Although this response was similar to that 

seen previously,  the magnitude was much diminished (previous experiments 

showed  a  greater  than  2  fold  increase  in  activity  in  the  presence  of  CO2 

compared  to  HCO3
- or  Cl-),  however,  the  reason  for  this  remains  unclear 

(Hammer et al., 2006). Due to the importance of this experiment it was deemed 

necessary to also test whether sodium was potentially inhibiting enzyme activity 

and consequently misleading the results. The control for this was to include a 

water experiment as well as a NaHCO3, NaCl and CO2 experiment. With this 

control included it was seen that the activity of CyaB1595-859 was increased in the 

presence  of  water  and  CO2  saturated  water,  when  compared  to  NaCl  or 

NaHCO3 (Figure 6.5). This indicated the possibility that under these conditions, 

Na+ was causing an inhibition of CyaB1595-859 activity and as such was causing 
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CyaB1595-859 activity to appear to increase in the presence of CO2.
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Figure 6.3: Purified recombinant CyaB1595-859.

3 μg of purified CyaB1595-859 was resolved on a 12 % SDS-PAGE gel.  Proteins 
were stained with Coomassie Brilliant blue dye and protein size was estimated 
relative to Fermentas PagerRulerTM Prestained Protein ladder.
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Figure 6.4: CyaB1595-859 was not activated by Ci using the new in vitro Ci assay 
methodology.

Assays were performed for 30 minutes at 37oC in a volume of 100 μL containing 
100 mM Mes-NaOH, 10 mM MnCl2, 1 mM ATP, 5 μM CyaB1 and 20 mM NaCl 
(red squares) or NaHCO3 (triangles; starting pH – clear, final pH – red). (n = 5)
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Figure 6.5: Sodium inhibits CyaB1595-859 at low temperature.

Assay was performed at 0.4oC for 15 seconds in a total volume of 100 μL in the 
presence of 100 mM Mes-NaOH pH 6.5, 40 μM CyaB1595-859, 1 mM MnCl2, 150 
μM ATP and 20 mM NaCl or NaHCO3 or CO2 or H2O. (n = 6)
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6.5 CyaC from Spirulina platensis

Another AC reported to be strongly stimulated by Ci is CyaC from the 

filamentous cyanobacterium Spirulina platensis (Chen et al., 2000; Steegborn et 

al., 2005b).  In vitro Ci assays demonstrated a roughly (estimated from graph 

without numbers) 10 fold stimulation (Ci : H2O) at pH 7.4; a fold stimulation far 

greater to that seen with any other enzyme tested by myself (Steegborn et al., 

2005b). Due to the magnitude of the stimulation it was unlikely to be due to a pH 

artefact, however, it was possible that the actual fold stimulation was artificially  

elevated due to non-specific pH effects caused by Ci increasing the assay pH. 

Due to  this  it  was decided to  re-test  CyaC using the new  in  vitro Ci  assay 

methodology to attempt to identify whether this large stimulation was present or  

whether a small portion was a result of non-specific pH effects.

Recombinant,  pure  CyaC  was  obtained  (kind  gift  from  Dr.  Clemens 

Steegborn), and was subjected to Ci assays in the presence or absence of Ci 

using the new in vitro Ci assay methodology, at a range of pHs. Before the Ci 

response could be tested, CyaC was subjected to a pH response assay in the 

presence or absence of NaCl (Figure 6.6A) to determine how pH effects CyaC 

activity and whether any effect of sodium was present. It was clearly seen that 

there  was  no  significant  difference  in  the  specific  activity  of  CyaC  in  the 

presence or  absence of  NaCl  and the  enzyme displayed a response to  pH 

similar to other enzymes tested by myself.

CyaC  was  subjected  to  an  in  vitro assay  using  the  new  Ci  assay 

methodology  at  around  pH  7.5  in  the  presence  or  absence  of  Ci,  using 

conditions (where appropriate),  identical  to that of the published work.  CyaC 

was assayed at 37oC for 30 minutes with 10 mM MgCl2 and 5 mM ATP, identical 

to that done previously, however, the buffer concentration was increased from 

50 mM to 100 mM and the salt concentration (NaHCO3 or NaCl) was decreased 

from 40 mM to 20 mM, to minimise the effects of Ci on assay pH (Figure 6.6B). 

In contrast to the published work, CyaC, when using these conditions and the 

new  in vitro Ci assay methodology, displayed no response to Ci  (Chen  et al., 

2000; Steegborn et al., 2005b). 
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Figure 6.6: CyaC was not activated by Ci using the new in vitro Ci assay 
methodology.

Assays were performed for 30 minutes at 37oC in a volume of 100 μL containing 
100 mM buffer (Tris-HCl at pHs ≥ 7.0 and Mes-NaOH at pHs < 7.0) and 20 mM 
NaCl (blue squares), 20 mM NaHCO3 (triangles; starting pH – clear, final pH - 
red) or H2O (clear circles). (A) pH response with 10 mM MgCl2, 5 mM ATP and 
900 nM CyaC. (B) Response to Ci with 10 mM MgCl2, 5 mM ATP and 900 nM 
CyaC. (C) Response to Ci with 2 mM MnCl2, 800 μM ATP and 900 nM CyaC. 
(D) Response to Ci with 2 mM MnCl2, 800 μM ATP and 1.8 μM CyaC. (n > 3)
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It  was also  decided to  test  the  response of  this  enzyme to  Ci  in  the 

presence of Mn2+ instead of Mg2+ at around pH 7.5, and also at pH 6.5 (Figure

6.6C and D). However, despite using these different conditions there was no 

response to Ci observed.
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6.6 Discussion

During pH control experiments carried out whilst investigating T7 RNAP it 

was discovered that an increase in pH was occurring due to Ci in solution; a pH 

increase not detected during previous pH control experiments (see Section 4.3). 

Due to this increase in pH it was necessary to modify the previous  in vitro Ci 

assay  methodology  in  order  to  rule  out  the  possibility  that  the  increase  in 

enzyme activity seen was due to pH and thus prove an effect of Ci. Although the 

reason why this increase in pH (due to the effects of Ci) was not detected during 

previous pH control experiments was unknown, this increase in pH was unlikely 

to be an artefact since it was validated using several different methods. Since all 

ACs tested by myself showed an increase in activity between pH 6.5 and pH 7.0 

(the pH where strong responses to Ci were seen)  a re-investigation of  their  

response to Ci was performed due to these pH increases. 

The Ci  assay performed on  7C1●2C2 using the new  in  vitro Ci  assay 

methodology  provided  evidence  in  direct  contrast  to  those  experiments 

performed previously (Section 3.4). Previous experimentation demonstrated a 2 

fold increase in the activity of 7C1●2C2 to Ci at pH 6.5, however, when the new 

in vitro Ci assay methodology was used it was apparent that the response to Ci 

was  likely  to  be  due  to  non-specific  effects  of  pH.  In  order  to  maintain 

consistency between the earlier  and more recent  experimentation the assay 

conditions  were  kept  as  consistent  as  possible,  however,  the  buffer 

concentration in the recent experiments was increased from 50 to 100 mM in 

order to more tightly control pH. 

At the time of experimentation the question as to whether this new in vitro 

Ci assay methodology was actually capable of detecting a response to Ci was 

still unanswered. In order to address this problem a control protein known to be 

responsive to Ci was obtained and tested at the same time as 7C1●2C2. The 

control  protein  chosen  was  human  sACt,  and  at  pH  6.5,  under  conditions 

identical to 7C1●2C2 it showed a strong response to Ci  in vitro, whereas there 

was no response of  7C1●2C2.  This  provided strong evidence to  support  the 

notion that the effects of Ci seen previously in 7C1●2C2 were in actual fact an 

artefact of pH. Although this new in vitro evidence was compelling, they do not 

provide any explanation for the Ci response of tmACs seen in vivo.

With  new  evidence  showing  that  7C1●2C2,  a  class  IIIa  AC,  was  not 
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responsive to Ci it was decided to have a closer look at a class IIIb AC using the 

new  in  vitro Ci  assay  methodology.  This  AC  was  chosen  as  CyaB1  from 

Anabaena PCC 7120, due to the ease of obtaining it  as a pure recombinant 

protein. When this was subjected to an in vitro Ci response assay under the new 

methodology  the  results  indicated  that  at  pH  6.5,  where  a  response  had 

previously  been seen, there was no response to Ci.  Assay conditions were, 

where appropriate, consistent with previous experiments. Although this  in vitro 

assay indicated that this enzyme was not responsive to Ci it did not explain the 

selective response of this enzyme to CO2  as opposed to HCO3
- and Cl- during 

low temperature and short time Ci disequilibrium assays. In order to address the 

response of this enzyme seen during Ci disequilibrium assays it was necessary 

to repeat this series of experiments. Since these experiments were conducted 

for 15 seconds only, the effect of Ci on pH was much less of a problem due to  

the relatively slow speed with which CO2 degasses from solution. When these 

Ci disequilibrium assays were repeated with the addition of a control for sodium, 

the results indicated that the response originally attributed to an effect by CO2 

was possibly due to an inhibition by Na+. Since the stimulation by CO2 seen in 

these experiments was much lower than that seen previously, this experiment 

must be treated with slight caution and as such does not give full proof that a Ci  

response was not  present  (Hammer  et  al.,  2006).  However,  this  experiment 

does strongly suggest a more lengthy and comprehensive re-evaluation of the 

responses of such ACs should be undertaken.

The idea that the response of many class  IIIb ACs to Ci should be re-

tested is further supported by Ci  response assays performed on CyaC from 

Spirulina platensis. When the new in vitro Ci assay methodology was used to re-

test the response of CyaC to Ci, no response was seen. This failure to detect a  

response to Ci under conditions when a response had previously been seen 

was  surprising  (Chen  et  al.,  2000;  Steegborn  et  al.,  2005b).  Although  the 

response of sACt to Ci seen using the new in vitro Ci assay methodology gave 

strong support to the ability of this methodology to actually detect a Ci response, 

the vast conflict with the result for CyaC with the literature demands caution. 

Although these experiments using the new in vitro Ci assay methodology gave 

strong support to the notion that some enzymes previously reported to be Ci 

responsive are in fact non-responsive, the wealth of literature opposing this idea 

means that absolute proof was still not present. As such, this work indicates that  
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a fuller re-investigation into the effects of Ci on many ACs is necessary.
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8.1 Discussion

Evidence suggesting that tmACs are Ci sensitive was obtained from  in 

vivo and  in vitro experiments conducted in Chapter 3. When the endogenous 

tmACs in HEK 293T cells were stimulated through the  β-adrenergic signalling 

pathway, or with a non-specific tmAC activator (forskolin), the accumulation of 

cAMP within  the cell  was affected by the level  of  CO2 in  the media.  It  was 

observed that the levels of accumulated cAMP in HEK 293T cells decreased 

when the concentration of CO2 in the media was dropped from normocapnic (5 

%) to hypocapnic (0.03 %). However, it was consistently observed that when the 

CO2 concentration  in  the  media  was  increased  from  normocapnic  to 

hypercapnic  (10  %)  there  was  no  further  increase  in  the  levels  of  cAMP 

accumulated within  the cell.  The effects of  CO2 on a protein downstream of 

tmACs in the  β-adrenergic signalling pathway was also studied; by monitoring 

phosphorylation status of CREB. It was demonstrated that a decrease in CREB 

phosphorylation  occurred  when  the  media  conditions  were  changed  from 

normocapnic  to  hypocapnia,  however,  intriguingly  a  drop  in  CREB 

phosphorylation  was  also  seen  when  changing  from  normocapnic  to 

hypercapnic media, although the reason remains unclear. Through the use of a 

microspectrofluorometric system, and a pH sensitive dye, the effect of CO2 on 

pHi were quantified and these shown to be unlikely to have an effect on tmAC 

activity. 

The  effects  seen  between  normocapnic  and  hypocapnic  media  were 

consistent  with  CO2 stimulating  tmAC  activity,  however,  the  effects  seen 

between hypercapnic  and normocapnic  media were not.  It  might  have been 

expected that the levels of cAMP would increase in the presence of hypercapnic 

media  when  compared  to  normocapnic  media.  Although  the  reason  for  the 

differences between normocapnic and hypercapnic media is still not clear it is 

possible to speculate on a few possible reasons. Firstly, it is possible that at 5 % 

CO2  in the extracellular medium, the predominant tmAC isoforms in HEK 293T 

cells reach a maximal stimulation and that a further increase in CO2 has no 

effect.  Secondly,  it  is  possible that despite pH i measurements demonstrating 

that as a whole, the cell stabilises its pH i following a change in the levels of CO2, 

that the tmACs are exposed to a localised change in pH i at the membrane. If a 

pHi change were occurring at the membrane in the presence of 10 % CO2 it 

would manifest as an acidification, which would subsequently lower the activity 
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of tmACs, and as such could mask any possible direct effect of  CO2 on the 

tmACs. Work by Willoughby et al. argues that tmACs are largely protected from 

pH changes at the membrane, so this possibility is not supported in the literature 

(Willoughby et al., 2005).

Experiments in Section 3.4, performed in vitro on a recombinant 'soluble' 

tmAC, 7C1●2C2, seemed to provide an explanation for the in vivo experiments; 

that Ci was specifically increasing the enzymatic activity of tmAC. The in vitro Ci 

assays indicated that the effects of Ci on 7C1●2C2 were mediated through an 

increase in  kcat, brought about through an increased affinity for Mg2+, with no 

change  in  Ea or  Km(ATP)  observed.  Although  previous  biochemical  studies 

showed an increase in  kcat, one study on human sAC showed no alteration in 

Km(ATP)  (Litvin  et al., 2003), whereas the other studies on CyaB1 (Anabaena 

PCC  7120)  and  Slr1991  (Synechocystis PCC  6803)  actually  showed  an 

increase in  Km(ATP) in the presence of Ci  (Cann  et al., 2003; Hammer  et al., 

2006).  Although  none  of  these  previous  biochemical  studies  addressed  the 

issue  of  metal  affinity,  a  recent  crystallographic  study  demonstrated  that  Ci 

facilitated active site closure and metal recruitment, an observation in support of 

the  kinetic  parameters  derived  in  Section  3.4  (Steegborn  et  al.,  2005b). 

However, all these previous studies were performed on different ACs, and of 

course it is possible that Ci interacts with different ACs in different ways. What is 

clear is that the effects of Ci are brought about through increased kcat, which is 

unlikely to be an effect of reduced substrate affinity.

Although  Chapter  3  provided  evidence  to  suggest  that  tmACs  are 

stimulated  by  Ci  in  vitro,  experiments  performed  in  Sections  4.3  and  6.2 

suggested that this stimulation by Ci may be due to a previously undetected pH 

change.  Although  in  vitro pH  control  experiments  carried  out  prior  to  the 

initiation of the  in vitro  biochemical Ci assays on 7C1●2C2  suggested that pH 

was  stable,  pH control  experiments  performed  in  Section  4.3,  using  slightly 

different  methods,  indicated  that  a  previously  undetected  pH  change  was 

occurring during the assay. Although the reason for the discrepancy between 

the results of the pH control assays in Sections 3.4/4.2 and Section 4.3 is still  

unclear,  the  results  from Chapter  4  were  compelling  enough to  warrant  the 

design of a new in vitro Ci assay methodology. When this new in vitro Ci assay 

methodology, which allows effects of pH to be quantified and ruled out from any 

possible effect of Ci, was used to re-test the effect of Ci on 7C 1●2C2, the results 
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indicated that it was not stimulated by Ci. This finding is consistent with work 

performed previously on a similar 'soluble' tmAC (Chen et al., 2000), however, it 

is in contrast to the large stimulation by Ci observed on type III AC (Xie et al., 

2006).  Although  these  new  in  vitro assays  indicate  that  7C1●2C2 is  not 

stimulated by Ci, they do not provide an explanation for the effects of Ci seen in 

vivo in HEK 293T cells. The  in vivo pH control experiments, coupled with the 

observations  of  Willoughby  et  al.,  indicate  that  the  changes  in  cAMP 

accumulation seen between different CO2 media cannot be explained by pH 

(Willoughby et al., 2005). 

Although the results in Section 6.2 indicate strongly that 7C1●2C2 is not 

regulated by Ci  in vitro, it is important to stress that this recombinant protein, 

although it displays very similar biochemical properties to a native tmAC, is not 

a native tmAC. It  is possible that the explanation for the  in vivo experiments 

performed in HEK 293T cells is partially correct, in that certain tmACs may be 

stimulated by Ci. It  is entirely possible that Ci binds a site on tmACs that is 

absent in 7C1●2C2, such as the region on the native enzyme which links the C1 

and  C2 domain.  Recent  experiments  investigating  the  effects  of  Ci  on 

mammalian receptor GCs have demonstrated that GC-D is regulated by Ci, with 

the remaining GC isoforms remaining unaffected (Guo et al., 2009; Sun et al., 

2009). It is possible that only one (or more) tmAC is regulated by Ci, and as 

such the change in cAMP levels in response to altered CO2 in HEK 293T cells 

was due to specific effects of Ci on a tmAC. However, due to the complexity of 

cAMP signalling pathways in mammalian cells, several other factors could be 

contributing to the change in cAMP levels in response to Ci. Although at this 

stage  any  explanation  would  be  purely  speculative,  it  is  possible  that  Ci  is 

indirectly  influencing  tmAC  activity  by  modulating  certain  ion  channels.  For 

example, it is possible that Ci is influencing the levels of intracellular Ca 2+, which 

could be altering tmAC activity through calmodulin. Published experiments have 

already demonstrated that an increase in Ci is able to cause an increase in 

intracellular Ca2+ in carotid body glomus cells, although the mechanism through 

which that occurred was not identified (Summers et al., 2002). 

Experiments performed in Chapter 4 sought to address the question as to 

whether proteins containing a palm domain structure were universally regulated 

by  Ci.  Following  the  observation  that  crystal  structures  of  ACs  contained  a 

tertiary structure resembling that found in DNA polymerases, a 'palm' domain, it 
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was important to test the possible conservation of Ci sensing through the palm 

domain  (Artymiuk  et al.,  1997). The idea of coupling Ci sensing to the palm 

domain was compelling, since it would represent an elegant mechanism through 

which  cells  could  couple  the  utilisation  of  nucleotide  triphosphates  to 

metabolism; to  increase the rate  of  nucleotide incorporation by polymerases 

when metabolic rate is high (i.e. a high rate of metabolic CO2 production being 

used  as  a  marker  for  high  NTP  production).  Initial  in  vitro experiments 

performed on T7 RNA polymerase provided promising evidence to support the 

notion  of  the  existence  of  Ci  sensitive  polymerases.  However,  due  to  the 

magnitude of this initial  finding, and the fact that the assay composition was 

different to the in vitro Ci assay conducted in Section 3.4, it was necessary to 

repeat  the  in  vitro pH control  experiments to be able to  confidently  rule out 

effects of pH on the apparent Ci response. When these pH control assays were 

repeated, a small pH increase was detected at pH 6.5 during the period of the  

assay, indicating that there may be a previously undetected pH increase. Due to 

this pH increase, the methodology of the pH control assay was slightly modified 

in  several  ways,  and the  pH controls  were  repeated.  These pH controls  all 

demonstrated that there was a pH increase of about 0.15 pH units during a 30 

minute assay; a pH increase that could account for the apparent stimulation of 

T7 RNAP by Ci. The reason why this pH change was not detected in pH control  

experiments in Sections 3.4 and 4.2 is still not clear, but since the pH controls in 

Section 4.3 were carried out using several different methods, the results from 

pH controls in Section 4.3 are likely to be correct. 

With new in vitro pH control experiments indicating that there was a pH 

increase during the period of  in vitro Ci assays, efforts were made to prevent 

this pH increase, however, this was not possible. Due to this pH increase, the 

original in vitro Ci assay was modified to allow this pH increase to be quantified 

and  as  such  a  response  to  Ci  to  be  tested  without  potential  bias  from  pH 

increases. When this new in vitro Ci assay methodology was used to re-test the 

response of T7 RNAP, the results demonstrated that T7 RNAP was unlikely to 

be regulated by Ci. However, why a small stimulation by Ci was seen at pH 7.0 

and 7.5 is unclear, with hindsight it would be wise to test the response of T7 

RNAP to Ci at a range of different pHs. Since a response to Ci may not be a 

conserved  feature  of  all  palm  domain  containing  proteins,  a  second  Pol  I 

polymerase was tested; DNA polymerase I from E. coli. In vitro Ci assays using 
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this new Ci assay methodology were performed on the Klenow fragment of  E. 

coli DNA polymerase I and demonstrated no response to Ci. The response to Ci 

of DNA polymerase β, a member of the Pol β DNA polymerase family, was also 

tested  using  the  new  in  vitro  Ci  assay  methodology  and  shown  not  to  be 

responsive to Ci.  In vitro assays performed on these 3 different polymerases 

indicate that a response to Ci is unlikely to be a conserved feature of 'palm'  

domain containing proteins.

In Sections 5.2 and 5.3 the response of mammalian GCs to Ci was tested 

in vitro using the new Ci assay methodology. Mammalian GC-A and GC-E were 

over-expressed in mammalian cells, however, attempts to over-express other 

GC  isoforms  were  not  successful,  and  due  to  the  time  constraints  on  the 

program  it  was  not  possible  to  rectify  this.  When  GC-A  and  GC-E  were 

subjected to the new in vitro Ci assay they were shown to be non-responsive to 

Ci. Mammalian sGC was also tested using the new in vitro Ci assay, and shown 

to not be regulated by Ci. Work by Sun et al. and Guo et al., conducted shortly 

after  experimentation  for  Sections  5.2  and  5.3  was  concluded,  provided 

evidence indicating that while all other mammalian GCs were non-responsive to 

Ci, GC-D activity was stimulated by Ci (Guo et al., 2009; Sun et al., 2009). This 

work built upon previous knowledge that rodents are able to sense CO2 through 

olfactory receptors in the nose,  a sensory response shown to be dependent 

upon specific  GC-D expressing neurons (Hu  et al.,  2007; Youngentob  et al., 

1991). It is likely that direct stimulation of GC-D by Ci causes an increase in 

cGMP levels and initiation of a signalling pathway that culminates in firing of 

these neurons and as such sensing of Ci.

Although  the  importance  of  GCs  in  the  physiology  of  mammals  is 

indisputable, the presence of GCs in prokaryotes is debatable (Baker and Kelly, 

2004).  Although  cGMP  has  been  detected  in  cyanobacteria,  and  genetic  of 

disruption  of  the  cya2 gene  in  Synechocystis PCC  6803  caused  impaired 

production  of  cGMP,  no  prokaryotic  enzyme  had  been  proven  to  be  a  GC 

(Herdman and Elmorjani, 1988; Ochoa De Alda et al., 2000). Recently, Rauch 

et  al. provided  strong  crystallographic  and  in  vitro biochemical  evidence  to 

support the idea that Sll0646 (encoded by cya2) from Synechocystis PCC 6803 

was a GC (Rauch et al., 2008). In Section 5.4 the response of Sll0646 to Ci was 

tested and it was shown to be non-responsive to Ci, however, the initial  in vitro 

biochemical  assays  on  Sll0646  demonstrated  a  higher  AC activity  than  GC 
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activity. The initial in vitro biochemical assays performed in Section 5.4, carried 

out on a truncated recombinant protein corresponding to amino acids 424-756 

of  Sll0646  (Sll0646424-756),  were  in  contrast  to  the  published  experiments 

performed on a truncated recombinant protein corresponding to amino acids 

434-659 (Sll0646434-659) (Rauch et al., 2008). To address this conflict in substrate 

specificity,  a  series  of  in  vitro biochemical  assays  were  performed  on  both 

Sll0646424-756 and  Sll0646434-659.  The  results  from these  experiments  provided 

evidence suggesting that Sll0646 was an AC and not a GC, with Sll0646424-756 

displaying a strong AC activity, whilst the AC activity of Sll0646434-659 was lost. It 

is possible that removal of part of the C-terminus of Sll0646 resulted in the loss  

of AC activity, however, at this stage this is purely speculative.

Following the identification of a previously undetected pH increase during 

in  vitro Ci  assays,  and  subsequent  design  of  a  new  in  vitro Ci  assay 

methodology, it was decided to re-test certain Class IIIb ACs. A response to Ci 

was previously proposed to be a feature conserved in Class IIIb ACs, however, 

since many of these ACs display a pH profile that make them susceptible to the 

effects  of  an  assay  pH  increase  biasing  a  potential  Ci  response,  it  was 

necessary to confirm their Ci responsiveness using the new  in vitro Ci assay 

methodology (Cann et al., 2003). Three Class IIIb ACs were re-tested using this 

new in vitro Ci assay methodology, and the results indicated that it was possible 

that two of these ACs were not Ci responsive. The first AC, sAC t from  Homo 

sapiens, was confirmed to be Ci sensitive at pH 6.5. The second AC, CyaB1 

from Anabaena PCC 7120, was also tested at pH 6.5, however, in this case was 

shown to be non-responsive to Ci. Interestingly, even when the effects of pH on 

the assay were ignored, CyaB1 did not appear to be Ci responsive. The final AC 

tested was CyaC from Spirulina platensis, which was tested  in vitro  at pH 6.5 

and pH 7.5, and shown to be non-responsive to Ci. 

Although  the  in  vitro Ci  assays  performed  on  two  Class  IIIb  ACs  in 

Chapter 6 provide evidence to support the idea that certain Class IIIb ACs are 

not Ci responsive, these experiments are by no means conclusive. The result 

obtained for CyaC was particularly surprising given that previous studies had 

shown  a  fold  stimulation  (Ci  :  basal)  ranging  from  2  to  25  fold  (numbers 

estimated from published figures) (Chen et al., 2000; Steegborn et al., 2005b). 

The  difference  in  the  size  of  stimulation  by  Ci  observed  in  experiments 

performed by Chen et al. and Steegborn et al. could be explained by differences 
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in assay composition, since Chen et al. included 100 μM ATP and 5 mM Mn2+, 

whereas Steegborn  et al.  included 5 mM ATP and 10 mM Mg2+ (Chen  et al., 

2000;  Steegborn  et  al.,  2005b).  Experiments  performed  by  Chen  et  al. 

demonstrated a roughly 2 fold stimulation of CyaC activity by Ci, at pH 7.5 in the 

presence  of  40  mM  total  Ci,  whereas  an  assay  performed  under  similar 

conditions in section 6.5 showed no response (Chen et al., 2000). More recent 

experiments  conducted  by  Steegborn  et  al. demonstrated  a  roughly  25  fold 

stimulation of CyaC activity by Ci, at pH 7.5 in the presence of 40 mM total Ci,  

whereas an assay performed under similar conditions in Section 6.5 showed no 

stimulation by Ci (Steegborn  et al., 2005b). Experiments performed in section 

6.5 used either 5 mM ATP and 10 mM Mg2+ or 800  μM ATP and 5 mM Mn2+, 

however,  they  used  a  lower  concentration  of  20  mM total  Ci. Although  the 

possibility exists that this reduced concentration of Ci was responsible for the 

lack of stimulation seen, work performed by Chen et al. would argue against it, 

since their Ci dose response assay demonstrated a roughly 1.7 fold stimulation 

of CyaC by 20 mM total Ci (Chen et al., 2000). 

When the effects of Ci on assay pH identified in Chapter 4 are taken into 

account, it is possible to provide an explanation for the stimulation of CyaC by 

Ci observed by Chen et al., however, an increase in assay pH can in no way 

account for the stimulation of CyaC by Ci observed by Steegborn et al. Although 

the  results  obtained in  Chapter  6  are  compelling,  due to  the  fact  that  non-

specific pH effects cannot explain the stimulation observed by Steegborn et al., 

they only really emphasise the need for a more thorough re-investigation of the 

response of Class IIIb ACs to Ci. 
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7.2 Future work

Due to time constraints on the program there are several outstanding follow-up 

experiments that need to be conducted.

1. The effect of Ci on the production of cAMP by the endogenous tmACs in 

HEK  293T  cells,  seen  in  Chapter  3,  should  be  addressed.  Experiments 

performed in Chapter 6 indicate that 7C1●2C2 might not be regulated by Ci, and 

as such, tmACs in general might not be regulated by Ci. If the direct actions of  

Ci on tmAC are not the cause of the changes in cAMP production seen then 

how is Ci regulating the production of cAMP in HEK 293T cells?

• Although 7C1●2C2 might not be regulated by Ci, it is possible that one or 

more individual mammalian tmACs are, and future investigation should 

test  this  first.  This  could  be  achieved  through  over-expressing  each 

individual  tmAC  in  mammalian  cells,  and  subjecting  membrane 

preparations derived from these cells to an in vitro Ci assay.

• If no tmAC isoform is found to be Ci responsive it would be necessary to 

investigate  the  possible  effects  of  Ci  on  signalling  pathways  that  are 

capable  of  modulating  tmAC  activity.  Since  many  diverse  signalling 

pathways involve tmACs, this would be a lengthy investigation, however, 

since previous work has implicated Ca2+ as being involved in Ci sensing, 

investigating the effect of Ci on Ca2+ channels first would be logical. 

◦ It would be necessary to identify any possible changes in intracellular 

Ca2+ concentrations  in  response  to  variable  Ci.  This  could  be 

achieved using a method similar to that used to quantify intracellular 

pH, whereby a cell  monolayer would be perfused with various CO2 

solutions and a fluorescent Ca2+ indicator used to quantify intracellular 

Ca2+ concentration. 

◦ If a change in intracellular Ca2+ was detected, it would be necessary 

to identify the Ca2+ channel responsible for this change. This would be 

achieved by repeating cAMP accumulation assays on HEK 293T cells 

in  the  presence  of  inhibitors  specific  for  certain  individual  ion 
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channels. 

◦ If  changes in intracellular ion concentrations were not shown to be 

responsible for the effect of Ci on the production of cAMP, then other 

signalling pathways would need to  be investigated.  This  would be 

performed by repeating cAMP accumulation assays with the addition 

of inhibitors specific for individual signalling enzymes. 

2. Although experiments conducted in Chapter 5 indicate that Sll0646 may 

be  an  AC  and  not  a  GC,  the  results  are  not  definitive,  and  further 

experimentation is required. Is Sll0646 an AC or GC?

• In order to conclusively address this question, the AC and GC activity of 

the full-length native protein would be tested. Since expression of the full-

length protein in E. coli and HEK 293T cells failed, it would be necessary 

to attempt expression in a baculovirus system, and also to re-attempt 

expression  in  E.  coli and  HEK  293T  cells  using  different  expression 

constructs.  Once  active  full-length  Sll0646  was  obtained,  it  would  be 

subjected to  in vitro biochemical assays where the AC and GC activity 

would be analysed. 

3. Although experiments in Chapter 6 provide strong evidence that indicates 

that certain class IIIb ACs, which are currently thought to be Ci regulated, are 

not regulated by Ci, this issue is far from settled. Is the assumption that Class 

IIIb ACs are universally regulated by Ci correct?

• The response of many Ci responsive Class IIIb ACs to Ci needs to be re-

tested using methodologies that allow the effects of pH to be confidently 

removed  from  a  Ci  response.  This  could  be  done  using  the  newly 

devised  in  vitro Ci assay developed within  this  report,  or  alternatively 

using a more complex method. Ideally, the response of ACs to Ci would 

be tested using a system whereby the levels of Ci in the assay and assay 

pH could be kept constant, and this could be achieved in 2 ways.

◦ Firstly,  the  assays  could  be  conducted  in  a  sealed  box.  The 

concentration of  CO2 in  this  box would be maintained at  a  certain 

concentration designed to prevent the loss of CO2 from the assay mix, 

175



Final discussion Philip Townsend

and as such the enzyme tested would be exposed to a constant Ci 

concentration, and pH during the period of the assay.

◦ Secondly,  and more ideally,  a more elaborate method (Figure 7.1) 

could be employed to test the response of an enzyme to Ci in real 

time. A sealed chamber containing a CO2 electrode would be filled 

with  an  assay  mix  containing  enzyme,  buffer,  cofactor,  and  a  pH 

sensitive  fluorescent  dye  (e.g.  BCECF).  Into  this  cell  would  be 

introduced  a  Ci  solution,  and  the  assay would  be  initiated  by  the 

addition of a fluorescent substrate-conjugate (e.g. BODIPY-ATP). The 

concentration of Ci within the assay would be quantified by the CO2 

electrode, the pH of the solution would be quantified by a fluorometric 

system quantifying the emission of the pH sensitive dye, and enzyme 

velocity  would  be  quantified  by  the  emission  from the  fluorescent 

product-conjugate (e.g. BODIPY-cAMP).

• If many Ci responsive Class IIIb ACs are shown to be non-responsive to 

Ci, then attention would be turned towards those Class IIIb ACs that are 

shown to be Ci  responsive.  These definitively  Ci regulated Class  IIIb 

ACs  would  be  subjected  to  a  full  crystallographic,  mutational,  and 

biochemical analysis in order to identify the mechanism through which Ci 

acts on these ACs.

◦ The  response  of  an  AC  to  Ci  would  be  tested  biochemically  to 

determine what effects (if any) Ci had upon Km(ATP),  Km(metal),  kcat, 

Vmax and Ea.

◦ It would also be necessary to crystallise a Ci responsive AC in the 

presence of Ci, in order to identify the amino acids involved in co-

ordinating Ci. This would be performed by either exposing AC crystals 

to HCO3
- or by exposing frozen AC crystals to CO2. If  amino acids 

involved in Ci binding were identified then these amino acids would 

be  mutated,  and  mutant  enzymes  tested  for  a  response  to  Ci  to 

confirm a role for these amino acids in Ci binding.
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Figure 7.1: Improved in vitro Ci assay.
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8.1 Publications arising from this thesis.

Stimulation of Mammalian G-protein-responsive Adenylyl Cyclases by Carbon 
Dioxide

Philip D. Townsend, Phillip M. Holliday, Stepan Fenyk, Kenneth C. Hess, 
Michael A. Gray, David R. W. Hodgson, and Martin J. Cann

J Biol Chem. 2009 January 9; 284(2): 784–791. 

Carbon  dioxide  is  fundamental  to  the  physiology  of  all  organisms.  There  is 
considerable interest in the precise molecular mechanisms that organisms use 
to directly sense CO2. Here we demonstrate that a mammalian recombinant G-
protein-activated adenylyl cyclase and the related Rv1625c adenylyl cyclase of 
Mycobacterium  tuberculosis are  specifically  stimulated  by  CO2.  Stimulation 
occurred  at  physiological  concentrations  of  CO2 through  increased  kcat. CO2 

increased the affinity of enzyme for metal co-factor, but contact with metal was 
not necessary as CO2 interacted directly with apoenzyme. CO2 stimulated the 
activity  of  both  G-protein-regulated  adenylyl  cyclases  and  Rv1625c  in  vivo. 
Activation  of  G-protein  regulated  adenylyl  cyclases  by  CO2 gave  a 
corresponding  increase  in  cAMP-response  element-binding  protein  (CREB) 
phosphorylation.  Comparison  of  the  responses  of  the  G-protein  regulated 
adenylyl cyclases and the molecularly, and biochemically distinct mammalian 
soluble adenylyl  cyclase revealed that whereas G-protein-regulated enzymes 
are responsive to CO2, the soluble adenylyl cyclase is responsive to both CO2 

and bicarbonate ion. We have, thus, identified a signalling enzyme by which 
eukaryotes can directly detect and respond to fluctuating CO2. 
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