
Durham E-Theses

Attack of the clones: an investigation into removing

redundant source code

Bailey, John Oliver

How to cite:

Bailey, John Oliver (2002) Attack of the clones: an investigation into removing redundant source code,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4115/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4115/
 http://etheses.dur.ac.uk/4115/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Acknowledgements

I would like to thank my supervisor Dr Liz Burd for her support and guidance

throughout this thesis. Dr Ira Baxter of Semantic Systems has been extremely

generous with his time and allowed me to use CloneDr. Thanks also goes to Dr

Toshiro Kayima of the Osaka University for allowing CCFinder to be used in this

thesis. Plus a special thank you to my parents for obvious reasons.

Attack of the Clones: An Investigation into Removing

Redundant Source Code

The copyright of this thesis rests with the author.

No quotation from it should be pubHshed without

his prior written consent and information derived

from it should be acknowledged.

John Ohver Bailey

MSc

University of Durham

Department of Computer Science

2002

Table of Contents
1. Introduction 10

1.1. Criteria for success 12
1.2. Plan for the Thesis 12

2. Literature Survey 14
2.1. Software Maintenance 14

2.1.1. Definitions 14
2.1.2. Types of Software Maintenance 15
2.1.3. Program Understanding / Comprehension 17
2.1.4. Reverse Engineering 23

2.2. Software Visualisation 27
2.2.1. Definitions 27
2.2.2. Software Visualisation of Legacy Systems 30
2.2.3. Potential Representations 32
2.2.4. Software Measurement 34
2.2.5. Software Measurement Goals 34
2.2.6. Application of Software Measurement for Software Evolution 36

2.3. Chapter Summary 38
3. Clone Detection 39

3.1. Definitions 39
3.2. Reasons / Motivation for Code Duplication 41
3.3. Side Effects of Code Duplication 42
3.4. Clone detection techniques 42

3.4.1. Baker Algorithm 43
3.4.2. Johnson Algorithm 44
3.4.3. Mayrand Algorithm 45
3.4.4. Baxter Algorithm 46
3.4.5. Ducasse Algorithm 47
3.4.6. Kamiya Algorithm 47
3.4.7. Malpohl Algorithm 48

3.5. Comparison of techniques 49
3.6. Language Independent vs. Language Dependent 49
3.7. Current Tools 50

3.7.1. Dot Plotting 52
3.8. After Clones have been detected 54
3.9. Incorporating clone detection into development 56
3.10. Metrics for clone detection 56

3.10.1. CodeCrawler and Moose (Members of the FAMOOS Project) 57
3.10.2. Datrix 61

4. Method 65
4.1. Overview of method 65
4.2. Hypotheses 66

4.2.1. Hypothesis Justification 67
4.3. Case studies 68
4.4. Clone Detection Tools 69
4.5. Manual Verification of clones 69
4.6. Qualitative Evaluation of each tool 72
4.7. Experiments 73

4.7.1. Experiment 1 Comparison of different tools output 73
4.7.2. Experiment 2 Size Breakdown of each tool's results 74
4.7.3. Experiment 3 Unique Clone Classes within results 74

4.7.4. Experiment 4 Replication Within and Across Programs 74
4.7.5. Experiment 5 Intersection between each tool's results 74
4.7.6. Experiment 6 Precision and Recall Analysis 75
4.7.7. Experiment 7 Size Threshold Sensitivity 76

5. Implementation 77
5.1. Data structures used 77

5.1.1. Representing a clone: CodeRegion and CodeRegionPair data structures 77
5.2. Determining the intersection between the clones identified by different tools

78
5.2.1. Data structures used specifically for Covet: Routinelnfo, Metric and
DatrixFileParser 81

5.3. Development of Covet 83
5.3.1. Overview and Background of Covet 83
5.3.2. Extracting Metrics for Covet 84
5.3.3. Automatically generated Thresholds 87
5.3.4. Prehminary Experiments: Results from Covet Metric trials 88
5.3.5. Comparison of Results from Covet Tuning 90
5.3.6. Further Implementation Issues 91
5.3.7. Parsing .metrix files 92

5.4. Modifications to existing tools' results 93
5.4.1. CCFinder 94
5.4.2. CloneDr 94
5.4.3. JPlag 95
5.4.4. MOSS 96

5.5. Chapter Summary 96
6. Case Studies 97

6.1. Case Studies Overview 97
6.2. Detection Tools and Target Systems 97
6.3. Qualitative Evaluation of each tool 98
6.4. Comparison of different tools output 102
6.5. Size Breakdown of each tool's results 105
6.6. Unique Clone Classes within results 108
6.7. Replication Within and Across Programs 110
6.8. Intersection between each tool's results 112
6.9. Clone by Clone visuahsation 114
6.10. Precision and Recall Analysis 115
6.11. Size Threshold Sensitivity 116
6.12. Chapter Summary 122

7. Evaluation 123
7.1. Covet's development evaluation 123
7.2. Hypotheses 1 and 2 124
7.3. Hypotheses 3 and 4 125
7.4. Hypothesis 5 128
7.5. Hypotheses 6 129
7.6. Hypotheses 7 and 8 130

7.6.1. Clone by clone visualisation 132
7.7. Hypothesis 9 132
7.8. Hypothesis 10 133

8. Conclusion and Further Ideas 135
8.1. Conclusions 135
8.2. Evaluation of criteria for success 135

8.2.1. Literature survey reviewing current issues relevant to software
maintenance and in particular code cloning 135
8.2.2. Development of an efficient metric based clone detection tool 135
8.2.3. Comparison of a range of clone detection tools, focusing on their
precision, recall and intersection of results 135

8.3. Cloning results are significantly different for each tool 136
8.4. Minimum size thresholds should be adapted for each clone detection tool and
case study 137
8.5. No single clone detection tool consistently identifies every clone within a case
study. No clone detection tool produces 100% precision 137
8.6. Integrated Development Environments increase the proportion of clones
within a case study 138
8.7. Further Ideas 139
8.8. Clone visuahsation 139
8.9. Inclusion of a Radius Metric 139
8.10. Inclusion of a language independent clone detection tool 140
8.11. RepHcation across systems 140

9. References 141

Figures and Tables
Table of figures
Figure 2-1 Levels of abstraction of a software system [Tak96] 25
Figure 2-2 Depiction of metrics using matrix [LanOl] 37
Figure 2-3 Visualisation of system evolution using Lanza's [LanOl] matrices 37
Figure 3-1 Two similar code sections 43
Figure 3-2 P match between two strings 43
Figure 3-3 String matching using dot plot 52
Figure 3-4 Dot sequence patterns (taken from [Duc99]) 53
Figure 3-5 MOOSE architecture [DucOl] 58
Figure 3-6 Datrix Source Code Assessment [Lag97] 61
Figure 3-7 Source code abstraction process in Datrix 62
Figure 5-1 UML class diagram of CodeRegionPair 78
Figure 5-2 UML class diagram of the data structure used for Covet 82
Figure 5-3 UML data flow diagram for extracting metrics from Java files 82
Figure 5-4 Example output from Datrix 91
Figure 5-5 Sample output from CloneDr 95
Figure 5-6 Output from MOSS 96
Figure 6-1 Clones identified for GraphTool case study 102
Figure 6-2 Clones identified for the Barcrawl planner case study 103
Figure 6-3 Clones identified for the Tropicana case study 104
Figure 6-4 Percentage of cloned Hnes in GraphTool 106
Figure 6-5 Percentage of cloned lines in the Barcrawl Planner 107
Figure 6-6 Percentage of cloned lines in Tropicana 108
Figure 6-7 Results from minimum clone size threshold experiments for GraphTool

117
Figure 6-8 Results from Size threshold experiments for Barcrawl Planner 118
Figure 6-9 Results from Size threshold experiments for Tropicana 118
Figure 6-10 Reduction in % of clones outputted for the minimum size threshold

ranges for GraphTool 119
Figure 6-11 Reduction in % of clones outputted for the minimum size threshold

ranges for Barcrawl Planner 120
Figure 6-12 Reduction in % of clones outputted for the minimum size threshold

ranges for Tropicana 121
Figure 7-1 Visual representation of table 7.2 127

Table of tables
Table 2-1 Program Comprehension Models 21
Table 2-2 Fundamental aspects of 3D modelling 30
Table 2-3 Comparison of Fenton and Takang objectives for software measurements

: 35
Table 3-1 Mayrand's level of cloning 46
Table 3-2 Different clone approaches based on [DucLecture] 49
Table 3-3 Datrix layout metrics 57
Table 3-4 Complexity Metrics used in MOOSE 59
Table 3-5 Coupling Metrics used in MOOSE 59
Table 3-6 Cohesion Metrics used in MOOSE 59
Table 3-7 Inheritance Tree Metrics used in MOOSE 60
Table 4-1 Experiments and their related hypotheses 68

Table 4-2 Clone categories used in manual verification 71
Table 4-3 Evaluation criteria for the clone detection tools 72
Table 4-4 Example of clone by clone visualisation 75
Table 5-1 An example CodeRegionPair 78
Table 5-2 Calculations required to work out the overlap percentage of two clones . 80
Table 5-3 A further example of the overlap percentage of two clones 80
Table 5-4 Equal control flow metrics comparison 84
Table 5-5 Similar control flow metrics comparison : 84
Table 5-6 Metrics used within the Covet tuning experiments 86
Table 5-7 Intial set of metrics used in Covet tuning 86
Table 5-8 Second set of metrics used in Covet tuning 86
Table 5-9 Top ten metrics taken from pilot study 87
Table 5-10 Example of automated thresholds method 88
Table 5-11 Results achieved by running Covet using the various sets of metrics 89
Table 5-12 Intersection results from the 5 Covet metric experiments 90
Table 5-13 Examples of mangled names within Datrix files 92
Table 5-14 Clone detection tools with their output format 94
Table 5-15 Output snippet from CCFinder 94
Table 6-1 Systems used in the clone detection experiments 97
Table 6-2 Evaluation results for MOSS 99
Table 6-3 Evaluation results for JPlag 100
Table 6-4 Evaluation results for CloneDr 101
Table 6-5 Evaluation results for CCFinder 101
Table 6-6 LOC statistics for the clones identified for the case studies 105
Table 6-7 Clone classes for GraphTool 109
Table 6-8 Clone classes for Barcrawl Planner 109
Table 6-9 Clone classes for Tropicana 110
Table 6-10 Percentage of identified clones identified within / across programs for

GraphTool H I
Table 6-11 Percentage of identified clones identified within / across files for

Barcrawl planner I l l
Table 6-12 Percentage of identified clones identified within / across files for

Tropicana 112
Table 6-13 Clone detection tool intersection for GraphTool 113
Table 6-14 Clone detection tool intersection for Barcrawl Planner 113
Table 6-15 Clone detection tool intersection for Tropicana 114
Table 6-16 Precision and recall results for the GraphTool case study 115
Table 6-17 Precision and recall results for the Barcrawl planner case study 115
Table 6-18 Precision and recall results for the Tropicana case study 116
Table 7-1 Total potential and actual clones for each case study 125
Table 7-2 Clone detection tools' clones between Backdrop and oldBackdrop 127

Declaration

This thesis is my own work. Part of it formed the basis for a paper published in the

Source Code Analysis and Manipulation workshop 2002.

Evaluating Clone Detection Tools for Use During Preventative Maintenance,

John Bailey, Elizabeth Burd

Copyright

The copyright of this thesis rests with the author. No quotation should be published

without their prior consent and information derived from it should be acknowledged.

Abstract

Long-term maintenance of code will often lead to the introduction of duplicated or

'cloned' code. Legacy systems riddled with these clones have large amounts of

redundant code and are more difficult to understand and maintain. One option

available to improve maintainability and to increase software reuse, is to re-engineer

code clones into reusable components. However, before this can be achieved

detection and removal of this redundant code is necessary.

There are several established clone detection tools for software maintenance and this

thesis aims to investigate the similarities between their output. It also looks at how

maintainers may best use them to reduce the amount of redundant code in a software

system. This will be achieved by running clone detection tools on several different

case studies. Included in these case studies will be a novel tool called Covet inspired

by research of Mayrand [May96b] which attempted to identify cloned routines

through a comparison of software metrics generated from each routine.

It was found that none of the clone detection tools achieved either 100% precision or

100% recall. Each tool identified very different sets of clones. Overall MOSS

achieved the greatest precision and CCFinder the greatest recall. Also observed was

that the use of automatically generated code increased the proportion of clones found

in a software system.

1. Introduction

Code cloning occurs when code is transplanted via a copy and paste function. This

area is of interest to various groups within the software engineering community. In

particular the software maintenance community view cloning as bad because it

increases the size of software unnecessarily. It is also performed on an ad-hoc basis

and is never documented. Furthermore if the original code has some previously

undetected error then when it is copied instead of just one error cloning means there

are now at least two errors within the application. Cloning produces redundant code

because the original code could have instead been reused properly through

parameterisation.

Extra code adds to the complexity of a system and hence increases the cost of

software maintenance. Clone detection can be applied to a software system to

identify potential clones and therefore presents opportunities to reduce the size of a

software system. This is of particular interest to software companies that produce

software for hardware with limited storage capacity such as mobile phones and

pocket PCs.

Cloning often occurs when programmers want to save time. Ducasse [Duc99] offers

three main reasons why programmers would clone code.

''(a) Making a copy of a code fragment is simpler and faster than writing the code

from scratch. In addition, the fragment may already be tested so the introduction of a

bug seems less likely.

(b) Evaluating the performance of a programmer by the amount of code he or she

produces gives a natural incentive for copying code.

(c) Efficiency considerations may make the cost of a procedure call or method

invocation seems too high a price.''

There is another specific form of code cloning which is related to Duccasse's first

point, but is of interest to academic institutions. Clone detection techniques can be

(and are) applied to the detection of plagiarism within programming courses. It

would be nearly impossible for markers to manually check a large set of student

10

programs so this saves a great deal of time. As well as saving markers time

plagiarism detection tools may pick up programs where students have attempted to

hide their cheating which may have fooled a human. Examples of this would be the

systematic re-labeUing of variables or superficial cosmetic changes to a program's

source code.

Recently the automated tools community has developed automated methods for

detecting code clones using a variety of techniques. These tools can be classified as

either language dependent or language independent. Language dependent tools make

use of lexical and parser technologies to compare sections of source code at a more

abstract level. These tools have the ability to ignore cosmetic changes to code (such

as systematic changes to variable names). An example of a language dependent tool

is Semantic System's Clone Detection and Removal (CloneDr) [Bax98] tool, which

uses parser technology to compare sections of code. It also aims to automatically

remove clones and replace them with a "unifying macro"[Bax98].

Language independent tools treat source code as plain text and use string

manipulation to compare program sources line by line. These tools obviously do not

require any parsing or lexical analysis and so can be used for any programming

language and also for natural languages. Techniques such as removing white space

and line ordering help limit a tool's sensitivity to minor changes in layout.

Visualisation is an important aspect of clone detection to allow maintainers / markers

to confirm i f a potential clone identified by a tool is an actual clone. Tools such as

DUPLOC [Duc99] present the line-by-line comparisons in a dot plotting. Geneticists

searching for similar strings of DNA first used this technique. "Such 'dot drawings'

allow immediate recognition of typical situations." [Duc99]. The ability for a

maintainer or marker to view the suspected cloned sections of code side by side is

vital to allow verification. Making the verification part of clone detection process as

efficient as possible is the aim of any clone detection tool.

A good number of clone detection tools are available for both commercial clone

detection and academic plagiarism detection and this thesis will compare the clones

they identify to establish i f they are similar. It will be interesting to see if the tools

rehably identify clones or i f there is a high percentage of false positives within their

11

results. Another point to investigate is how the development of a software system

affects its level of cloning. For example, as systems increase in size does the

proportion of clones within that system increase at the same rate? Also with the

increasing use of integrated development environments and automatically generated

code does this mean that automatically generated clones will become more

prevalent?

As part of the investigation into code clone detection tools a new tool will be created

which will aim to efficiently identify cloning based on metrics derived from source

code (Covet). An interesting comparison will be how the clones identified by a

metrics based tool compare to clones identified using other techniques.

1.1. Criteria for success

As part of the investigation into code cloning the criteria for success, which will be

evaluated in the Conclusion chapter will be as follows;

• A literature survey reviewing current issues relevant to software maintenance

and in particular code cloning

• The development of an efficient metric based clone detection tool

• A comparison of a range of clone detection tools, focusing on their precision,

recall and intersection of results.

1.2. Plan for the Thesis

The format of this thesis is as follows. Chapter 2 presents a literature survey whose

focus is software maintenance, metrics and visualisation. These three general areas of

research are then combined in Chapter 3 which looks specifically at the current state

of the art of clone detection. This consists of a broad overview of the causes of

cloning, the need for / benefits of clone detection and a description of the tools that

are currently available. Chapter 4 presents the method for the case studies describing

the criteria for choosing the software systems and clone detection tools that will be

used in the case studies. It also lists the hypotheses that will be used in the case

studies and then describes the experiments that will take place to test them. In

Chapter 5 the implementation of Covet and the adaptations to existing clone

12

detection tools is provided. Explanations of some of the interesting aspects of

Covet's development are included here. Particular attention is paid to the metrics

chosen for the clone detection algorithm. Results from the case studies are presented

in Chapter 6. This chapter provides a breakdown of the results with commentary and

graphical representation of the results achieved. Evaluation of the results is provided

in Chapter 7. Each of the hypotheses is evaluated with respect to the experimental

work carried out in the case studies. Conclusions are drawn in Chapter 8 including

comments on the criteria for success and the overall results from the case studies. In

addition ideas for further research are also included.

13

2. Literature Survey

2.1. Software Maintenance

2.1.1. DeHnitions

There are many definitions of Software Maintenance this section will discuss several.

''Maintenance is an incremental and iterative process in which small changes are

made to the system. These changes are often bug corrections or small functional

enhancements and should never involve major structural changes." [ComOO].

This definition from the Software Engineering Institute at Carnegie Mellon

University gives a "bug fixing" approach with minor alterations being applied to a

legacy system. It suggests that maintenance is reactionary triggered only when an

error is discovered. Comella-Dorda [ComOO] goes on to define "modernization" as

involving more extensive alterations to a system whilst still keeping a "significant

proportion of the existing system".

"Software maintenance is the set of activities, both technical and managerial, that

ensures that software continues to meet organisational and business objectives in a

cost effective way." [CSM].

The above view is more abstract, not giving any specific details about potential

activities. It does, however, relate software maintenance to business issues and

acknowledges that managerial support is needed. Also definition raises the question

is raised that i f maintenance is not cost effective then what needs to be done instead.

Takang [Tak96] does not give a definition of maintenance but instead summarises

motivating factors for software maintenance.

• "To provide continuity of service" - bug fixing, failure recovery and coping

with changes in hardware or software.

• "To support mandatory upgrades" - changes in the law, for example the

introduction of a single European currency, or "attempts to gain a competitive

edge over rival products".

14

• 'To support user requests for improvements" - improvements in usability,

performance or customisations (for example company colour scheme).

• 'To facilitate future maintenance work" code / data restructuring, updating

documentation.

The first factor relates closely to the definition given in Comella-Dorda [ComOO]

describing an "odd job man" approach. Takang's third point about supporting

mandatory changes could also fall into the definition given by Comella-Dorda

[ComOO] depending on the scale of the change. For example for a financial system

the introduction of a new currency (i.e. the single European currency in the E.U.)

would probably require large-scale changes. Responding to user requests would, as

the Center for Software Maintenance in Durham [CSM] underlines, require

managerial input. Customers will usually contact a support / commercial manager

with requests for system improvements. Finally the facilitation for future

maintenance work depends on economic as well as technical issues. Software

engineers must consider whether the effort expended on this activity will produce a

great enough reduction in future maintenance costs. This factor depends on the size

and complexity of the required changes. These correspond to the technical aspects of

the project.

2.1.2. Types of Software Maintenance

Once a system is being used there are a number of different types of changes that

could be made to it. These different types of maintenance are as follows:

Perfective

Usually this type of maintenance aims to expand on the original requirements of the

system. Munro [MMLecture] defines it as ''improving the function of software by

responding to user defined changes". As users explore the system more novel or

unexpected usage can arise. Enhancing the system by providing the extra

functionality or performance improvements constitutes perfective maintenance.

Changes will usually affect the requirements, code and design of the system. One of

the dangers of this type of growth is that documentation becomes out-of-date and the

overall structure of the system is lost.

15

Adaptive

Software engineers can produce a near perfect, stable system but any systems in

active use has to evolve to reflect changes in its outside environment. A system's

environment refers to "the totality of all conditions and influences which act from

outside upon the system''' [Tak96]. Examples might include new laws (i.e. the Data

Protection act) a new company strategy or structure (mergers) and changes to

hardware and other software being used in the organisation. Changes in these

instances will usually affect the code and design of the system.

Corrective

Corrective maintenance involves correcting errors uncovered in the design of the

system, the logic behind the code or the code itself. This type of maintenance is ad

hoc by nature as it is reactionary (i.e. an error is found and the reaction is to fix it

straight away). Such changes will usually only affect the system's code and so the fix

can cause further errors, ("unforeseen ripple effects" [Tak96]). In the long term

corrective maintenance increases the program's complexity, as changes are

disruptive the structure of the system and documentation is usually not updated.

Preventative

It is widely accepted that prevention is better than the cure. Munro describes a

preventative maintenance approach in terms of software maintenance as "updating

the system to forestall future problems and improve maintainability" [MMLecture].

By taking steps to improve the structure of the system and update documentation,

maintenance costs in the long term can be decreased. In order to make such major

changes to a system some form of reverse engineering is required. Reverse

engineering is looked at in detail later in this Chapter, Section 2.5.1. It allows

maintainers to build abstract representations of the system by using the only reliable

documentation at hand i.e. the source code. Such representations assist program

understanding (see Program Understanding in Section 2.1.4) that is used in creating a

mental model of the system in the maintainer's mind. Once an accurate model of the

system is built then the process of restructuring the system and updating the

documentation can begin.

16

2.1.3. Program Understanding / Comprehension

During maintenance software engineers are asked to make alterations to a system.

Rugaber [Rug94] points out however that rather than the actual act of modification

itself ''the greatest part of the software maintenance process is devoted to

understanding the system being maintained". Ideally before a change can be made

the modifier should know how the alteration would affect the rest of the system.

Thus, it is vital that maintainers acquire adequate knowledge and understanding

about the system. "A programmer must first understand the code well enough to

know what changes are needed, how to make them, and how to integrate new code

into existing applications." [May97]. Clayton [Clay98] makes the point that

programmers have "...no agreed-upon definition or test of understanding!"

Rugaber [Rug95] presents a simple and clear definition for program comprehension,

"Program comprehension is the process of acquiring knowledge about a computer

program."

Rugaber [Rug95] also presents the difficulties involved in carrying out program

comprehension. In particular, there are five gaps he identifies that must be bridged to

enable successful program comprehension. These are:

1. "The gap between a problem from some application domain and a solution to it in

some programming language."

A program is written to solve a problem in a particular application domain. Utilising

the source code to solve the problem relies on "hints" such as mnemonic variable

names or comments. Rugaber [Rug95] points out that such hints "are inherently

informal and tend to be out-of-date". Automatic program understanding tools can

only work on the formal source code. Responsibility for bridging this gap then falls

entirely on the reverse engineer or program reader (knowledge of both the

programming language and the application domain is vital here).

2. "The gap between the concrete world of physical machines and computer

programs and the abstract world of high level design descriptions."

17

Reverse Engineers need to decide what are the most important aspects of the system

to represent and at what level this abstraction should be presented. Abstractions can

overlap and one abstraction can cover more than one concept.

3. "The gap between the desired coherent and highly structured description of a

system as originally envisioned by its designers and the actual system whose

structure may have disintegrated over time."

Originally the architecture of the system was documented when the system was

designed. Design documents present a highly structured and detailed description of

how the system works and describe the purpose of each component. During the

working life of the system bug fixing and various other changes will have

undoubtedly occurred. These will have not only made the design out-of-date but will

have also eroded the architectural structure. It is the task of the program reader to

capture the higher-level design and actual purpose of what may in effect be a

completely different system to the original design.

4. "The gap between the hierarchical world of programs and the associational

nature of human cognition."

"Raw data are perceived, patterns are detected, and are constructed relating them."

[Rug95]. Program readers must use their knowledge about the programming

language, application domain and other aspects of software engineering to recognise

patterns at a low level. Once this is done they must build up high level "chunks"

[Rug95] from the information available at the lower level.

5. "The gap between the bottom-up analysis of the source code and the top-down

synthesis of the description of the application."

Higher-level constructs in a program are built from low-level patterns. Reverse

engineers must analyse the program from the bottom-up whilst at the same time

bearing in mind the idea of the higher-level purpose of the program. "As the program

is perused, the overall concept is refined into a more complete description by adding

lower level details" [Rug95]. So the synthesis is carried out top-down. The

18

complicating factor is that the synthesis and analysis must be carried out

simultaneously "in a synchronized fashion" [Rug95].

Comprehension Aids

There are a number of aspects of a program that can be examined to aid

comprehension. Takang [Tak96] lists the following:

Problem domain

The problem domain is the specific area in which the problem being addressed

exists. Examples might include telecommunications, financial services or public

transport. Familiarisation with the problem domain allows the developer to put into

context the work being carried out. It also allows them to make more informed

decisions about which algorithms and tools to use.

Execution Effect

The execution effect is how the system behaves when run. Initially maintainers may

not need to know low-level details about program interaction. If this knowledge is

required, control and data flow diagrams are often used to give a diagrammatic

description. Understanding execution effect allows maintainers to establish whether

or not changes have had the desired effect.

Cause-effect Relation

This relation allows maintainers to observe a specific effect and discover which part

of the system caused it. The cause-effect relation is also useful to predict ripple

effects / knock-on effects of changing a piece of code.

Product-environment relation

An understanding of how the product fits into its environment is vital to predicting

and understanding how changes in the product environment will affect the system.

Decision-support features

Such features are attributes of the system such as complexity and maintainability.

They provide both technical and managerial staff with information required to make

decisions about the maintenance of the system.

19

Mental Model

Our understanding of something complicated relies on our ability to use abstraction

to create a high level representation. The something here is termed the 'target

system' and the representation a 'mental model'. Building a mental model of a

system uses cognitive structures and cognitive processes. Takang [Tak96] gives the

following definitions:

• "Cognitive structures represent the way in which knowledge is stored in

human memory.

• Cognitive processes describe how the knowledge is manipulated during the

formation and use of mental models"

Weiderman [Wei97] describes these cognitive aspects of program understanding as

"the study of problem-solving behavior of software engineers."

Forming a mental model requires the engineer to examine the target system in detail

using "observation, inference or interaction" with the target system [Tak96]. A

mental model does not necessarily have to be 100% complete but it should however

highhght the key features of the system (i.e. the functionality).

In order to form a model a program comprehension strategy must be chosen which

will dictate how the engineer will go about examining the system. Table 2.1 contains

definitions of several popular strategies;

'Strategy ^Description

Top-down "The top-down approach begins with a pre-existing notion of

the functionality of the system and earmarks individual

components of the system responsible for specific tasks."

[Til96].

Takang [Tak96] describes this as "mapping how the program

works (programming domain) to what is to be done (problem

domain)"

Bottom-up "The bottom-up approach reconstructs the high-level design of

a system, starting with source code, through a series of

20

chunking and concept-assignment steps." [Til96]. The chunking

mentioned here is the clustering of recognised patterns.

Iterative

Hypotheses

Refinement

"The iterative refinement approach creates, verifies, and

modifies hypotheses until the entire system is explained by a

consistent set of hypotheses." [Til96].

Opportunistic This involves combining all of the approaches to achieve the

best results.

Table 2-1 Program Comprehension Models

Program Comprehension Tools

Takang [Tak96] lists one of the objectives of a Program Understanding Tool (PUT)

as "to serve as aids to enable the understander to speed up the understanding

process". Most PUTs analyse the source code of a system to build higher-level

representations of the system. There are a great variety of such tools available. Some

examples now follow:

GRASP - Graphical Representation of Algorithms, Structures and Processes

GRASP provides a development environment which supports the creation of Control

Structure Diagrams (CSDs). These CSDs highlight data and control flow of the

system. They are made explicit via the actual source code.

PUI - Program Understanding Implement

"The main objective of PUI is facilitate the comprehension and is based on a matrix

of relations between elements of a program" [Cha97]. Elements are aspects of a

program such as variables, types and functions and by presenting them in a

controlled and gradual manner the user can build up his/her knowledge of the system

at their own pace.

Foundations of Automated Program Comprehension

There are various levels of program analysis. Rugaber [Rug95] presents a list of

approaches ranging from a purely textual approach to dynamic analysis of how the

program executes.

• Textual Analysis

21

o Textual analysis involves looking at source code as purely a textual

document. The main usage for this type of analysis is to look at the

size of the system (in lines of code). This is the most important factor

into how much effort will be required to understand it.

Lexical Analysis

o Lexical analysis allows recognition of identifiers, operators, keywords

etc. This can be useful in tracking how frequently and where

identifiers occur in the code. It also allows the compilation of

software complexity metrics - i.e. number of unique operators or

variables.

Syntactic Analysis

o Syntactic analysis relies on a language specific parser. Parsers can

build an abstract syntax tree, which forms the basis of most

sophisticated program analysis tools.

Control Flow Analysis

o Control Flow analysis relies on the syntactic structure of the program

being known. Two types of control flow analysis exist

intraprocedural, which determines the order of execution of

statements within a subprogram and interprocedural, which looks at

the calling relationship between subprograms within the system.

Data Flow Analysis

o Data flow analysis provides extra information that control flow

analysis lacks. Data flow analysis looks at how variables are defined

and referenced. It is significantly more complicated than control flow

analysis. "In particular, whereas CPA merely has to detect the

possibility of loops, DP A has to describe what might happen to the

variables inside the loop body." [Rug95]. Information such as whether

variables are referenced before being defined or whether or not code

will not execute is available.

Program Dependence Graphs

o Program dependence graphs treat control and data flow dependencies

in the same representation.

Slicing

o Slicing targets a particular variable or line in code and determines

either what affects that target or what the target effects.

22

• Cliche Recognition

o "Searching the program text for instances from common

programming patterns" [Rug95]. These are termed cliches or idioms.

Tools are available which compare patterns with a library of

previously defined idioms.

• Dynamic Analysis

o Previous analysis approaches have been based on a static analysis of a

system. Dynamic analysis involves "systematically executing a

program" [Rug95].

2.1.4. Reverse Engineering

As previously mentioned, maintenance of legacy systems (especially corrective) can

lead to out-of-date and therefore misleading documentation. Hence, these documents

are no longer useful tools to maintainers wishing to understand a system. Thus, only

the source code can be relied upon to describe the system correctly. In order to gain

ful l advantage of this important documentation there needs to be some automatic

way of building a higher-level representation of the code. Reverse engineering is a

technique that can be employed to form such representations. Rugaber uses the term

reverse engineering in his description of program understanding, "The process of

understanding a system involves reverse engineering the source code" [Rug92].

Chikofsky and Cross [Chi90] have presented the following definition:

"Reverse Engineering is the process of analyzing a subject system to:

• identify the system's components and their interrelationships and

• create representations of the system in another form or at higher levels of

abstractions"

The analysis mentioned in the definition above is carried out with the aid of a

program understanding tool (see Program Understanding 2.1.4). Components are

anything produced during the software life cycle such as requirements specification,

detailed design and the source code itself. Abstraction is a key idea behind reverse

engineering. By abstraction it is possible to convey the major features of the system

without overwhelming the maintainer with masses of low-level information. There

23

are three types of abstraction used in reverse engineering that are applicable to

software systems:

Function Abstraction

Function abstraction involves identifying the functions within a target system. The

focus is what the function actually does rather than how it does it.

Data Abstraction

Data Abstraction involves identifying the actual data objects as well as the functions

that use them. The creation of abstract data types based on the data available may be

useful. Encapsulating the data item with its associated functions into a class might

also be an option.

Process Abstraction

Process abstraction involves extracting the exact order in which operations are

carried out and allows an insight into the processes in use. There are two types of

processes that can be abstracted, concurrent and distributed. Concurrent processes

communicated via a shared memory / data and distributed processes use message

passing and do not have access to shared data.

Aims of Reverse Engineering

"The goal of reverse engineering is to facilitate change by allowing a software

system to be understood in terms of what it does, how it works and its architectural

representation." [Tak96]. Reverse engineering can provide the following facilities to

enhance a maintainers understanding.

• Recover lost information

o "Recovering lost information means recovering both development of

never existing design documents as well as recovering information

that has been lost during software development or even during years

of maintenance operations." [Klo96]. Recovered information could be

a formal specification in Z or a design document using generated

control and data flow diagrams.

• Assisting with maintenance - identification of side effects and anomalies:

o Identification and treatment of such unintended aspects of a system

fall into the category of corrective maintenance. "Reverse Engineering

24

advocates this goal by several techniques, such as providing

additional documentation and restructuring" [Klo96].

• Migration to another hardware/software platform or integration into a CASE

environment:

o "In order to take advantage of a new software platform (for example,

a CASE environment) or hardware platform a combination of reverse

and forward engineering can be used' [Tak96]. By extracting the

specification and design of the old system it is much easier to

redevelop the system and maintain consistent functionality on a new

platform. This approach ensures developers reduce the risk of

functionality loss.

• Facilitating software reuse:

o Components extracted by reverse engineering techniques

(documentation as well as source code) will be at a higher level of

abstraction. These are therefore ideal candidates for reuse as they

capture something general and useful.

Types of Reverse Engineering

There are three major types or levels of reverse engineering

Abstraction Level Lifecycle Phase

High

Intermediary

C
[

Intermediary

Low

-C
[

Specification]5 Redocumentation

Design

Specification recovery

Reverse Eng.

Redocumentation

Design recovery

Implementation P, Redocumentation

Figure 2-1 Levels of abstraction of a software system [Tak96]

25

Figure 2.1 is taken from Takang [Tak96] and shows the relationship between

redocumentation, design recovery and specification recovery within reverse

engineering.

Figure 2.1 shows the levels of abstraction at three stages of the software lifecycle. At

the lowest level the implementation. Design recovery uses this to move to a higher

level of abstraction, the design. From the design documentation it is possible to go a

further stage and recover the specification of the implemented system. This may not

be the same as the original specification of the system due to past maintenance

processes. At each stage, redocumentation is carried out and can be browsed by the

maintainer.

Redocumentation

Redocumenting a system is vital when the original documentation has been lost or

has become out of date. It involves recreating a representation which carries the same

meaning and at the same abstraction level.

Design Recovery

Design recovery is the process of recovering useful higher-level abstraction directly

from inspecting the source code. This new recovered design may not be the same as

the original design because of changes made during maintenance. It can be used as a

baseline for redeveloping and modifying the system.

Specification Recovery

A system may be a candidate for a complete redevelopment. Here the design of the

system may not be useful, as the new system will achieve the same functionality in a

totally different way, for instance, in order to improve performance. By recovering

the specification, the functionality of the legacy systems requirements are uncovered

and a new design can be created to meet this specification. Obtaining such a

specification requires access to the source code (and possibly a recovered design).

Specifications can be produced in many forms for example UML or a mathematical

specification language such as Z. A comparison of the original and recovered

specifications may reveal that the system serves a different purpose than was

originally intended.

26

2.2. Software Visualisation

After the process of clone detection has been completed the results have to be

presented to the user. This section will focus on the visualisation of software in

general.

2.2.1. DeHnitions

Software visualisation is a broad area of research consisting of several specialised

sub fields. These include program visualisation, algorithm animation, data

visualisation and code visualisation. Jeffrey [Jef99] defines software visualisation as

"the depiction of software artefacts such as directories, user data or log files". With

regards to program visualisation he identifies it as "a sub field of software

visualisation focused on the dynamic behaviour of programs themselves rather than

the data they manipulate."

According to Domingue [Dom95] software visualisation is "basically the unification

of algorithm animation and program visualization", algorithm animations are "high

level characterisations of how data is manipulated during a program execution."

And finally program visualisation systems "display graphical representations that

are more tightly coupled with a program's code or data and show more or less

faithful representations of the code as it is executing."

Large Software systems are often complex and in their original source code

representation extremely difficult to comprehend. It is this comprehension that any

form of visualisation must assist, "Software visualisation aims to aid the

programmer by providing insight and understanding through the graphical displays

and views, and to reduce the perceived complexity through the use of suitable

abstractions and metaphors." [KniOla]

Maintainers or indeed anyone wishing to comprehend and then manipulate a piece of

software must build a mental model (see Program Understanding 2.1.4). Jonassen

[Joh95] describes such models as "...the conceptual and operational representations

that humans develop while interacting with complex systems". In order to assist the

27

construction of such a model it is widely accepted that a graphical representation of

the system makes understanding it easier.

Stasko [Sta93] states that "The general term program visualization refers to

graphical views or illustrations of entities and characteristics of computer

programs." Stasko then introduces a method for characterising program visualisation

systems with respect to four terms:

• Aspect

o Focusing on a particular aspect of the system to represent. A simple form

of aspect level program representation is "an enhanced presentation of

program text". For example line highlighting.

• Abstractness

o The same aspect of a program can be represented at different levels of

abstraction.

• Animation

o Animation involves representing the dynamic state of the system.

Showing the stages involved in adding nodes to a linked list is an example

provided in [Sta93].

• Automation

o Program visualisations can be either almost totally generated

automatically or may require significant input from the programmer to

form the representations of a system.

Roman [Rom92] defines program visualisation as "mapping from programs to

graphical representations". Like Stasko [Sta93], Roman identifies four

characteristics; Scope, Abstraction / Specification and Technique. Figure 2.2 is taken

from the paper and gives an overview of the mapping process.

28

Participants

Ammator Pmgmmmet Fiewer

Program

Scape

Visualization

Abstraction
+

Specification

esemanoti

Technique

Taxonomic Criteria

Figure 2-2 Mapping programs to visualisation

Figure 2.2 details the relationship between the user of a visualisation, the

visualisation and the characteristics of visualisation.

According to Young [You98] there are six fundamental points (table 2.2) that have to

be considered when designing visualisations. Although these are related to 3D

visualisations they are general enough to relate to any form of visual representations

of software. They also appear to overlap with those of Stasko [Sta93].

Representation Designers must consider in what form they wish to present the

software components and how they will map them onto a

graphical form. Efforts must be made to make the information

presented as clear and intuitive as possible and hence aid rather

than hinder information retrieval.

Abstraction Abstracting away from low level details (i.e. source code, textual

reports on clones, raw data) is one of the main purposes of any

form of visualisation. Decisions on what level to abstract to will

ultimately dictate how the system is to be used.

Navigation Large systems result in large visualisations. It is essential to

29

provide adequate support for users to get to the information they

require quickly. Young [You98] suggests the use of "signposts,

landmarks and paths". Tools such as maps are also a useful aid

as in the real world.

Correlation Users require access to both the information and the visualisation

to get some benefit. This requires that the visualisation be linked

with the information it is representing.

Automation Visualisations can be generated manually by users (as in the

design stage), or automatically using a program understanding

tool like CodeSurfer [CSurferWP] or by using a combination of

both. Allowing the user to 'build' the visualisation as they

explore a system. It is suggested that this approach may be more

beneficial to their understanding of the system rather than relying

completely on a visualisation of the system.

Interaction Interaction may simply be the user navigating through the

system. Users may however require more, data miners for

example. Filtering and extraction are techniques that could aid

the user focus on the information they are interested in.

Table 2-2 Fundamental aspects of 3D modelling

2.2.2. Software Visualisation of Legacy Systems

It has already been identified that software systems are complicated. This is

especially true of legacy systems that have been maintained for a number of years.

Eick [Eic96] states that "Knowledge of code decays as the software ages and the

original programmers and the design team move to the new assignments." Eick

[Eic96] also offers software visualisation as a tool to "help software engineers cope

with complexity and to increase programmer productivity". The expression "a

picture is worth a thousand words" would seem to be apt here. Legacy systems can

contain hundreds of thousands of source lines and without the aid of some form of

overviewing the task of comprehension is both time and effort intensive. One

possibility should be to consult the system documentation, however this is usually

out-of-date, and so the source code is the only reliable description of how the system

30

operates. "Pictures of the software can help slow down the knowledge decay by

helping project members to remember and new members to discover how the code

works." [Eic96]. According to Eick [Eic96] there are three basic properties of

software to be visualised:

• Software Structure - directed graphs where the nodes can represent a method

and an edge the calling relationship between two methods.

• Run-time behaviour - animated algorithms can represent the workings of an

algorithm

• The code itself - syntax highlighting, line highlighting.

Eick [Eic96] claims that current software visualisations including algorithm

animation are designed for smaller scale systems and do not scale up well. Also

"algorithm visualizations are usually hand-crafted and require the designer to

understand the code before visualizing it". Hence, they offer little benefit to

program comprehension. In order to gain the "big picture" of the system Eick

describes a technique and tool that visualises "program text, text properties, and

relationships involving program text". Each utilises four visual representations;

• Line Representation - colour coded program text seen at varying levels of

magnification. Indentation, length and colouring is maintained even where a

line is represented by a single row of pixels. Colour coding can be used to

represent a particular statistical view and is used as "an effective technique of

layering information" [Eic96].

• Pixel Representation - higher information density is achieved by representing

a single line of code as a small number of colour coded pixels. Each file is

represented in a rectangle whose size corresponds to the actual file size. This

allows the user to quickly spot large and small files.

• File Summary Representation - file statistics are presented in a rectangle.

• Hierarchical Representations - by reflecting the hierarchical nature of the

software system in a tree-map it allows users to compare the size of systems

and their subsystems.

31

Eick [Eic96] also discusses the need for dynamic program slicing which allows the

programmer to identify a line or data structure in a program and the system will

automatically highlight code that is relevant to it (and hence will be affected if any

modification is made).

2.2.3. Potential Representations

The previous section described the four representations presented in Eick [Eic96].

There are of course many other forms of representing the large amounts of data that

any system examining a legacy code would produce. This includes virtual reality and

graphs that are now described in detail.

Virtual Reality

Virtual Reality allows users to immerse themselves in a 3D world and to interact

with virtual objects. These objects can represent various aspects of a software

system. Maletic [MalOl] lists some the software visualisations that his project

Imsovision (IMmersive Software VISualizatlON) provides;

• Static structure of physical source code

• System architecture

• Software metric information

• Dynamic aspects of software

• Software Evolution and change

• Design patterns and reuse abstractions

The major difference and advantage of a virtual reality representation is given by

Knight [Kni98] "an extra dimension that can be used to encode some knowledge or

to aid visualisation of the knowledge shown in the two dimensions". By adding this

extra dimension that humans take for granted in the real world, the user has an ""extra

element of familiarity and realism" [Kni99]. Three dimension systems are more

intuitive and require less "cogitative strain" [Kni99]. Users can apply knowledge

gained in the real world to the navigation of a virtual one. Our natural environment is

one with three dimensions and so that is the one with which we are most familiar.

This familiarity can be exploited by heeding the words of Chalmers [Cha95]

'"dynamism, exploration and memory combine over time to help form our perceptions

of the environment around us". Chalmers [Cha95] asserts that on top of providing a

32

space for people to navigate through, designers must consider how the angles and

points of view will affect what the user is viewing.

Chalmers [Cha95] defines ''semantic structure" as a way to facilitate information

retrieval. He states, ''the design should 'make sense' somehow". An obvious example

of this in the real world, which is cited in the paper, is the Dewey decimal system

used in libraries. Books of similar textual content are in shelves physically near each

other. A side effect of this clustering is that i f we cannot find the precise object we

wanted, and then there is a good chance of finding something else which may be

useful or interesting.

Graphs

Graphs are a well-established representation of software. "Directed graphs are an

appealing target for visualization because of their pervasive presence in information

systems" [Mun97]. There are various types of graphs that can represent data / control

flow and other features such as hierarchy and inheritance. More recent developments

have been in drawing graphs in 3D space.

Liang [Lia98] presents a System Dependence Graph (SDG). SDGs contain one

Procedure Dependence Graph (PDG) for each procedure. A PDG "represents a

procedure as a graph in which vertices are statements or predicate expressions"

[Lia98]. According to Liang there are also two types of edges in the graph; data

dependence and control dependence-edges representing the "flow of data between

statements or expression" and the "control conditions on which the execution of a

statements or expression depends" respectively.

Burd [Bur97] uses a PERFORM graph to approximate a call graph within COBOL

programs. PERFORM graphs are used as an abstraction aid in order to evaluate

modules of code and specifically their similarities.

Unfortunately for large systems graph representations can be just as difficult to

understand as attempting to read the source. They can become vast, confusing

masses of vertices and edges and therefore provide no simplification of the data.

33

Dot Plotting

Dot plotting is a form of data visualisation particularly useful for spotting patterns.

One of its most common uses is in biology for identifying similarities in DNA

sequences (homology), "w/ien applied to software, dot plots identify patterns that

range in abstraction from the syntax of programming languages to the

organizational uniformity of large, multi-component systems" [Chu93].

2.2.4. Software Measurement

When measuring attributes of a software system the term metric is often used. Bache

explains that this is because "the term software metric means simply measurement

applied to software" [Bac94]. Both Bache and Fenton [Fen96] agree that within

software engineering the term metric is used a synonym for measure. Frakes

describes a metric as "a quantitative indicator an attribute of a thing" [Fra96].

Breaking down attributes into sub-attributes is required in order to generate a set of

metrics needed to evaluate the system.

Fenton [Fen96] describes measurement as "the process by which numbers of

symbols are assigned to attributes of entities in such a way as to describe them

according to clearly defined rules.". For example, an entity may be a human being

and one attribute would be their height. In order to be useful, measurements must be

appropriate, accurate and conform to a standardised system. It is also important to

use the correct scale.

As software engineering aims to apply scientific principles to the production of

software any measurements taken must be accurate and objective. Measurement can

take place throughout the lifecycle of a system and this includes non-executable

components. Bache [Bac94] defines such components as "all the documentation

associated with the program such as functional specifications, design documents, test

plan, user manuals, etc." Simple metrics such as number of words or number of

pages can be used as a measure for the size of documentation.

2.2.5. Software Measurement Goals

Engineers in any field have to take measurements. By measuring aspects of a

project's development it is possible to keep a better understanding on its

34

development. Software is invisible; there are no physical properties on display that

could indicate exactly how it functions and whether or not it is functioning properly.

Each stage of software's development can be assisted by the use of metrics. Both

Takang [Tak96] and Fenton [Fen96] list the main objectives for any software

measurement (see table 2.3).

Fenton Takang

Understanding Evaluation

Control Control

Prediction

Assessment Assessment

Improvement Improvement

Prediction

Table 2-3 Comparison of Fenton and Takang objectives for software measurements

Fenton's list is a broad overview of software measurement whereas Takang's

concentrates solely on maintenance.

Understanding

Evaluating the state of a project is vital in order to build an understanding of whether

or not changes to its development are required. This understanding is then used by

the software engineer to predict what might occur in the future. Next is to decide

what action to take and when to take it. Fenton [Fen96] describes this as setting

"baselines" and setting "goals" for future work. For example, one measure of quality

might be looking at the number of faults detected.

Control

Control is essentially interpreting the results gained from our measures. Then using

this information to predict what is likely to happen in the near future. If this

prediction is not favourable then changes can be made to allow the project to meet its

set goals. For example, i f the number of faults being detected for a specific software

module is far greater than anticipated it may be necessary to make personnel changes

or offer additional training.

35

Improvement

Improvement in the way it achieves its gaols is the major aim of any organisation. A

high fault level in software may lead to extra training being provided as standard or

the introduction of more frequent project evaluations.

2.2.6. Application of Software Measurement for Software Evolution

Evaluation is essential during maintenance because the maintainer may not be the

original developer. It is therefore important for the maintainer to build up an

understanding of their target system. An important attribute that affects the amount

of effort required is size. This is generally measured in lines of code (LOC) it can be

expressed as thousands of lines of code (KLOC). Complexity is also an important

attribute that must be measured. One such measure is McCabe's cyclamate

complexity [McC76]. This is used as an indicator of the psychological complexity of

a system. This measurement estimates the relative amount of effort required to

understand a section of code.

Maintainers must also decide which tools should be used to complete the task.

Control is important to keep track of changes being made to the system and to

minimize the amount of new problems introduced. This controlUng involves an

assessment of the system and whether or not it is economically feasible to carry out

the change.

The side effect of this change should be an improvement in the overall quality of the

target system. Without the correct measures for quality or productivity it is

impossible to assess whether or not a system has been improved. For example, a

maintainer may have the aim of simplifying a routine in a program. They can assess

whether or not they have been successful by recording the complexity measure of

that routine before a change and comparing it with the complexity measure after a

change.

Lanza [LanOl] uses a combination of software visualisation and software metrics to

present the changes in software systems over a number of releases. This is achieved

through an "evolution matrix". The matrix depicts the evolution of each class in the

36

system through a series of versions. Columns within the matrix represent a different

version of the software system and the rows contain classes within the system. Each

class is represented by a two dimensional box whose width and height correspond to

two class level metrics (see figure 2.3).

•Width Metric-

CLASS Height
Metric

Figure 2-3 Depiction of metrics using matrix [LanOl]

Vccsittiil Version 2 VeniionJ Version 4

Class A

ClE-sB

Class C

• a s D

1 1 1 1 1 1

n n

n n 1 1 u n 1 1

TIME -

Figure 2-4 Visualisation of system evolution using Lanza's [LanOl] matrices

Lanza's work focuses on the evolution of classes within a system and uses the

number of methods as the width metric and number of instance variables as the

height metric. At the system level the evaluation matrix (figure 2.4) displays the

following information:

Size of the system - the matrix clearly shows the number of, and size of classes, that

comprise the system across the versions.

37

Addition and removal of classes - empty spaces mean a class has been removed

new classes appear at the bottom.

Growth and stagnation phases in the evolution - the shape of the whole matrix is

a guide to growth in the system. An increase in height of the matrix indicates growth

whereas stagnation is depicted by the height remaining the same.

Lanza [LanOl] also presents a categorisation of classes based on the evolution

matrix.

Pulsar - classes that grow and shrink in size repeatedly.

Supernova - classes that suddenly explode in size.

White Dwarf - classes that used to be of significant size but have lost functionality

and now have little use.

Red Giant - classes that remain large over several versions.

Stagnant - classes that remain unaltered over several versions.

Dayfly - classes that are created in one version and removed in the next.

Persistent - classes that remain throughout the whole lifetime of the system.

2.3. Chapter Summary

This chapter has reviewed the important aspects of software maintenance.

Specifically it has considered the problems in maintaining large legacy systems. It

has considered the benefits to maintenance of reverse engineering, visualisation and

measurement of aspects of a system. The next chapter will review the issue of code

clone detection and identify why this is a critical issue for the maintenance of

software applications.

38

3. Clone Detection

This chapter introduces and describes code cloning and code clone detection. The

latter of which is the main focus of this thesis. Current work on these topics have led

to the development of a number of techniques and tools to aid maintainers in the

identification, presentation and potentially the removal of unwanted, cloned code.

This thesis takes into account two distinct applications of clone detection; that of

traditional clone detection for software maintenance and plagiarism detection in

computer programs. Each of the algorithms used in the different clone detection

techniques is described in sections 3.4.

Section Algorithm

3.4.2 Johnson [Joh94]

3.4.3 Mayrand [May96b]

3.4.4 Baxter [Bax98]

3.4.5 Ducasse [Duc99]

3.4.6 Kamiya [Kam02]

3.4.7 Malpohl [PreOO]

The main distinction between these two forms of clone detection is ethical rather

than technical. Students copying and pasting source code in order to cheat, use the

same technique as a maintainer copying and pasting in order to save themselves time.

One difference however, wil l usually occur. It is often the case that students will go

to extra lengths to alter the copied code in an attempt to disguise their plagiarism.

3.1. Definitions

There is no single authoritative definition of a clone code. This lack of a universal

definition makes clone detection difficult and ambiguous. I f a piece of code is copied

and pasted from one program to another without modification it is fairly obvious.

However, this is rarely the case, a more realistic example (especially in plagiarism) is

where the code is copied, pasted and then modified in some fashion. Thus the

39

question has to be asked, when does a clone stop being a clone? In plagiarism if a

student copies another student's program and in an attempt to disguise this almost

completely re-writes the program can this be considered plagiarism?

Each piece of research into code cloning directs detection according to their own

definition. This section will attempt to summarise and compare these varying

definitions.

Code duplication or cloning is the process of copying a fragment of code and pasting

it to somewhere else. Balazinska [BalOO] describes it as "manual source code copy

and modification". Clones then can be exact copies or as Mayrand [May96b] puts it

"mutants" of other existing code fragments. Mutant clones are defined in Baxter

[Bax97] as "near miss clones" where its definition of a clone is a "program fragment

that [is] identical to another fragment". The original fragment is defined as an

"idiom" in the paper and Baxter describes it as a fragment that "implements a

recognizable concept (data structure or computation)".

Cloning is not just limited to the system where the original idiom was created. Two

further categories are introduced in Burd [Bur97]. Firstly "Replication within

Programs" describes cloning within a single file and "Replication Across Programs"

identifies cloning from one file to another. Ducasse [Duc99] also examines this

occurrence and equates files with "high duplication ratio between each other" as

"clonedfiles".

Kamiya [Kam02] defines a clone relation as "an equivalence relation (i.e. reflective,

transitive and symmetric relation) on code portions". This relation holds if (and only

i f) two portions of code are the same sequences of code. Further definitions are

introduced by Kamiya, are that of a clone pair (i.e. a pair of code portions that

belong to a clone relation). Also there is the notion of a clone class, which is a set of

maximal sized portions of code that belong to the same clone relation. If three sorting

algorithms all originated from the same code sequence they would be considered to

be in the same class. This generalised class is comparable to the idiom described by

Baxter [Bax97].

40

Johnson [Joh94] points out that cloning in software production can also occur in the

documentation as well.

3.2. Reasons / Motivation for Code Duplication

Computer programs contain logic that aims to solve specific problems. If a

programmer comes across a problem with a similar solution to one previously coded

the temptation to simply cut and paste the logic from the previous solution can be

overwhelming. Ducasse [Duc99] gives some simple explanations for the

proliferation of clone duplication. He explains that "making a code fragment is

simpler and faster than writing from scratch" and also "evaluating the performance

of a programmer on how much code he or she produces gives a natural incentive..."

finally another factor is the feeling that "...the cost of a procedure call or method

invocation seem too high a price".

Organisations' business models evolve and so their software must also evolve to

reflect their new environment. As the software evolves and new functionality is

required programmers might decide that rather than "risk breaking a working feature

by making a major revision, a programmer might choose to leave the old section of

code untouched and to add another slightly modified copy of it for the new feature."

[Duc99]. This would seem to fi t in well with the Mayrand's [May96b] remark that

clones are modified to adapt to the new functionality required. He goes on to state

that one of the major reasons for this slightly modified cloning is when an

organisation "does not have a good re-use process in place".

Sometimes there may be valid justification for the duplication of code. Baxter

[Bax98] points out that, "systems with tight time constraints are often hand-

optimized by replicating frequent computations". It also highlights that a particular

"coding style" used for tasks such as "error reporting or user interface displays"

may form a "mental macro" meaning the programmer copy and pastes from memory.

Baxter classes these coincidental clones as "near misses".

The use of integrated development environments can lead to the inclusion of

duplicated code as they have a Hmited library of code and so clones are likely to

occur.

41

For plagiarism, the motives are quite simple. The student for some reason is either

unable or unwilling to complete the programming exercise set within the deadline.

3.3. Side Effects of Code Duplication

One of the major drawbacks to code cloning is the additional understanding required

for maintenance. More code "forces programmers to inspect more code than

necessary" [Bax98]. This is obviously more time consuming and causes greater

cognitive strain. Burd [Bur97] illustrates the scale of the problem by identifying that

in one particular COBOL legacy system up to a 50% reduction in SECTION'S size

was possible by removing clones where it existed.

The extra effort caused by replication is especially wasteful as the logic behind the

code clones is almost identical, the only difference being cosmetic. Mayrand

[May96b] gives a concrete example of the increase in resources required to store the

extra code size and thus increased operational costs. The example given is the

necessity to purchase new network cards when software becomes too large.

When code is copied and pasted systematic renaming of variables can lead to

"unintended aliasing, resulting in latent bugs" [Joh94]. Johnson also establishes the

fact that cloning is a form of "software ageing" or "hardening of the arteries" and

this ageing process means "even small design changes become very difficult to

make".

Errors found or changes made in a cloned function require alteration to all other

clones throughout the program, "when enhancements or bug fixes are done on one

instance of the duplicated code it may be necessary to find other instances in order to

perform the corresponding modification" [KomOl]. In addition, the very presence of

code duplicates indicates that the designers have not identified an important

procedural abstraction and suggests that there are design flaws within the system.

3.4. Clone detection techniques

42

There are a number of techniques available for code duplication/clone detection. This

section will describe in detail several of them and relate them to their corresponding

tools. The various techniques will now be detailed in publication date order.

3.4.1. Baker Algorithm

Baker [Bak92] uses string matching to detect cloned lines in software. However the

system not limited to only exact string matches. It can also detect near miss clones

where there has been a "systematic change of parameters such as identifiers and

constants".

For example

f o r (i n t i = 0 ; i < = l i m i t ; i + +)
{

p r i n t " i . " + Person[i]
)

f o r (i n t j=0;j<=end;j++)
{

p r i n t " j . " + C a r [j]
}

Figure 3-1 Two similar code sections

Figure 3.1 shows two code sections that would be considered a "parameterized

match" as the variables /, limit and Person have simply replaced with j , end and Car

respectively. Baker introduces the notion of a parameterized strings or "p-strings".

These are strings over two alphabets one of constant symbols and the other with

parameter symbols. Two p-strings match ("p-match") i f they are equal except for a

one-to-one mapping of the parameter symbols.

axbxyazyx
aubuvaxvu

Figure 3-2 P match between two strings

Figure 3.2 shows a p-match where x, y and z in the first p-string map directly onto u,

V and X in the second p-string. In order to confirm a p-match a parameterised suffix

tree "p-suffix tree" is used in the paper [Bak93] as opposed to a standard suffix tree

in previous work [Bak92]. To establish if a pattern p-string P contains a p-match in

text p-string T it takes O (m+n) time and O (n) space (where m, n are the lengths of P

and T).

43

3.4.2. Johnson Algorithm

Johnson [Joh94] treats source code purely as a text based document and by doing this

provides a language independent approach to clone detection. Clones are detected by

substring matching and the approach taken is as follows:

1. Text-to-text source transformation is carried out to remove characters that are

not wanted in the matching process. There are a number of different types of

transformations presented including:

a. Remove all white space characters, carriage return, space, line feed

and tab. This means the resulting matches are not layout sensitive.

b. Remove all white space characters except for line separators.

Produces similar results to l.a but line layout is preserved.

c. Replace all chains of white spaces with a single blank. This means

matches are returned i f spaces are in the same position in the text.

d. Remove all comments

e. Retain only comments

f. Replace identifiers with identifier marker.

g. Mix of the above.

2. Generate substring candidates that cover the whole source. The resulting

collection of substrings will be checked for matches. Ensuring the correct

number of substrings is generated is crucial; too many and performance will

be hindered; too few results in matches being totally missed.

3. Identify raw substring matches involves a simple "sorting a file containing

the content of the substring and an indication of its origin".

4. Transformation of the database of matches into a more concise description

requires that a new set of substrings with minimal overlapping be generated.

"This set has the minimum number of substrings and each substring is of

maximum length".

5. Performing task-specific data reduction will obviously vary for each

particular task.

6. Presentation of the high level data can be by report generation or some form

of visualisation. (See section 3.7.1). The example given in his paper is that of

a graph where vertices are files and an edge represents a match between a

pair of files.

44

3.4.3. Mayrand Algorithm

Mayrand [May96b] advocates the use of software metrics to describe a file and then

compare to the results. His paper presents a technique for comparing cloned

functions not fragments of code. Mayrand et al devised a list of 21 metrics grouped

into four "points of comparison". Metrics were extracted using a tool called Datrix,

developed by Bell Canada. The four points of comparison and their metrics are as

follows:

1. The name - this simply compares the names of each function to establish

whether or not they are equal

2. Layout - this contains metrics about attributes such as number of non-blank

lines, number of logical comments

3. Expressions - covers metrics such as number of declaration statements, total

calls to other functions

4. Control flow - covers metrics such as number of loops, number of control

statements, average nesting level etc...

Two functions are equal i f all the metrics within that group are equal. Functions are

considered similar i f the absolute difference is equal or below a set threshold defined

for each metric within that group. If two functions are neither equal nor similar then

they are considered distinct.

Once two functions have been compared Mayrand et al provide an ordinal "clones

identification scale" ranging from 1 to 8 to describe classify cloning (table 3.1).

1 ExactCopy EqualName & EqualLayout & EqualExpression &

EqualControlFlow

2 DistinctName DistinctName & EqualLayout & EqualExpression &

EqualControlFlow

3 SimilarLayout SimilarLayout & EqualExpression &

EqualControlFlow

4 DistinctLayout DistinctLayout & & EqualExpression &

EqualControlFlow

5 SimilarExpression SimilarExpression & EqualControlFlow

45

6 DistinctExpression DistinctExpression & EqualControlFlow

7 SimilarControlFlow SimilarControlFlow

8 DistinctControlFlow DistinctControlFlow

Table 3-1 Mayrand's level of cloning

In order to detect functional cloning it is necessary to compare every function with

every other function in the system(s) under consideration. The functions are firstly

tested at scale 1 (ExactCopy) i f this returns false then the scale 2 DistinctName is

carried out, this process carries on up to the scale 8. "The effort required for testing

each pair is approximately 500 mathematical operations".

3.4.4. Baxter Algorithm

Baxter [Bax98] looks at software at the syntactic level to produce Abstract Syntax

Tree (AST) representations. Building an abstract view of the system's logic allows

"the discovery of code fragments that compute the 'same' result". This is obviously

different from the text-based approach taken by Johnson [Joh94] and Baker [Bak92].

Parsing the software allows the production of an AST for the source code. After this,

a series of three algorithms are applied to the AST. Firstly a "basic" algorithm looks

for sub-tree clones, next comes the "sequence detection algorithm" which looks for

variable sized sequences of sub-tree clones. Finally, the third algorithm attempts to

find near miss clones by generalising combinations of other clones.

Scale is a major problem, for an AST of N nodes comparison is of the order O (N^)

and the paper states that a system with M lines of code will means N=10*M. The

computation required is even greater for the second algorithm O (N'^). Hashing is

used to reduce the amount of computation required. As mentioned the sub-trees are

compared by looking at their similarity, using the formula:

Similarity = 2 x S / (2 x S - i - L + R)

Where:

S = #shared nodes

L = #different nodes in sub-tree 1

R = #different nodes in sub-tree 2

46

3.4.5. Ducasse Algorithm

Ducasse [Duc99] puts a great deal of emphasis on the language independence of the

clone detection technique it uses. It addresses three basic issues of clone detection;

algorithms, visualisation and pattern matching. Clone detection is carried out by first

performing a simple transformation on the source code (removing all white space

and comments) to ensure that the approach would not be language dependent there is

no conversion to a more abstract level. Al l transformations are "within the realm of

string manipulation". Removing all white space and commenting, reduces the source

code into "an ordered collection of effective lines". Each transformed line is

compared with every other line and the result is saved in a comparison matrix (false,

i f not equal, else true). The coordinates of the source lines give the coordinates in the

matrix where the result is saved. The search space for n lines of source is large (O

(n^)) so as with [Bax98] hashing is used to reduce computation required as the same

line is stored in the same bucket or location in the hash table. There are two possible

options when using the results gained from the comparison. Firstly visualisation is an

option, the most obvious being dot plotting (plotting the lines of code side by side

and marking lines that are equal with a dot, see Section 3.7.1). Secondly a pattern

matcher can look for broken diagonals in the matrix, this indicates a clone sequence

that has been altered. This produces a textual report providing a useful representation

of the cloning in the system.

3.4.6. Kamiya Algorithm

Kamiya [Kam02] tokenises the source code into a single token stream and then uses

a suffix-tree matching algorithm to detect similarity in the token stream. The whole

clone detection process consists for four stages.

1. Lexical Analysis - each line of all the source files is tokenised and

concatenated into a single token stream. White space is stripped but the tab,

carriage return and comment characters are stored and sent to the formatting

stage in order to allow the reconstruction of the original line numbering.

2. Transformation - there are two sub-processes that transform the token stream.

The first sub-process uses predefined rules to standardise the token stream

(such as the removal of package names and the removal of accessibility

keywords). Following this the next sub-process is parameter replacement.

Each identifier is replaced by a special token (making sure simple variable

name changes will not fool the algorithm).

47

3. Match Detection - Taking all the substrings of the sequence clone pairs are

detected. Each pair is recorded as the start and end indices of the two

substrings involved in the match (called Left and Right).

4. Formatting - the location of each clone pair is converted back to the original

location in the source code.

3.4,7. Malpohl Algorithm

Malpohl [PreOO] in his tool JPlag uses the Greedy String Tiling Algorithm to detect

similarities within source code. It tokenises the source and compares pairs of token

streams by attempting to cover one pair with substrings or "tiles" from the other.

Similarity is measured by the percentage of token streams that can be covered in this

manner. The first stage in this process is to tokenise the strings. JPlag uses a parser or

scanner depending on the language to enable more semantic information to be

extracted. Malpohl gives an example of generating a BEGINMETHOD as opposed

to simply an OPEN_BRACE. This enhanced token set provides a more detailed

description of the ''essence of a program" and so it is harder for plagiarists to fool.

JPlag ignores comments and white spacing, as these are the most likely targets for

disguising copied code by students.

The algorithm itself compares two Strings A and B and consists of two phases. It

attempts to find a set of substrings that are equal and follow the following rules:

1. Any token of A may only be matched with exactly one token in B.

2. Searching for substrings is done independent of their position within the

string this ensures that simple reordering will not fool the algorithm.

3. Long substrings are preferred to shorter substrings this is because shorter

matches are more likely to be "spurious". This is enforced with a minimum

match threshold.

Phase one searches for the longest contiguous matches. Three nested loops are used

the outer loop iterates over every token in String A. The second loop then compares

each token with ever token in String B. Finally, the third loop tries to extend the

match as far as possible (i.e. while the string tokens are equal and have not been

matched before).

48

Phase two marks strings of maximal length to prevent them from being used again

for matches in phase one in further iterations. This ensures that every token is used in

only one match and hence satisfies the first rule mentioned previously. Marking

strings and hence reducing the number of potential matches ensures that the

algorithm terminates.

3.5. Comparison of techniques

Author Level Transformed Code Comparison Technique

[Joh94] Lexical Substrings String-Matching

[Duc99] Lexical Normalised substrings String-Matching

[Kam02] Lexical Tokenised strings String-Matching

[Bak92] Syntactic Parameterised strings String-Matching

[PreOO] Syntactic Tokenised strings String-Matching

[May96b] Syntactic Metric Tuples Discrete Comparison

[Bax98] Syntactic AST Tree-Matching

Table 3-2 Different clone approaches based on [DucLecture]

Table 3.2 above gives a comparison of the different techniques used to detect clones.

Johnson [Joh94] and Ducasse [Duc99] are grouped together because they are

language independent whilst the others rely on language specific parsing.

3.6. Language Independent vs. Language Dependent

Language dependent techniques can behave quite intelligently; by looking at the

logic of system they cannot be 'fooled' by elementary cosmetic changes, however,

there are a number of problems related to their use.

• Legacy systems can be written in a dialect of a language and thus a parser for

that specific dialect needs to be used (which may be hard to find / may need

to be rebuilt)

• Building a system graph takes a large amount of computation

• Multiple programming languages may have been used in the system

Language independent approaches view source code as just another form of

documentation "and analyse it the way other documents are analysed' [Joh94]. This

49

is justified as it is the way maintainers and developers view software. Drawbacks to

this approach include;

• Systematic variable renaming will totally 'fool' the system

• Non contiguous clones are missed

3.7. Current Tools

There are several tools that have been developed to aid with the identification of

code duplication. Below is a list of the main utilities available and a brief description.

. DUPLOC

o DUPLOC is the language independent tool used in Ducasse [Duc99].

It uses a two-step approach to the detection of clones. Firstly a

transformation is carried out that "reduces the entire file to an ordered

collection of ejfective lines". These effective lines are ones with all

spaces stripped and comments removed. Finally the tool uses simple

string matching to compare and locate clones. DUPLOC provides

textual reporting of matches and also a dot plot visualisation (see

section 3.7.1).

• MOSS

o The Measure Of Software Similarity (MOSS) is a tool designed to

detect plagiarism in software code written by students. It is an online

service provided by the Berkeley University in the US. A perl script is

used to submit program files. Details are not available on the

algorithm used with the following explanation provided. "While there

is a big difference between a good cheating detection algorithm and a

bad one, all such algorithms can befooled if one knows how they

work. It's best if we don't say too much here about the ideas behind

Moss" [MossHome].

• CloneDr

o CloneDr is a commercial package from Semantic Designs presented

in Baxter [Bax98]. It is a language dependent tool that transforms the

source code into ASTs. Once the code has been parsed, transformed

into an AST, three algorithms are used. Algorithm one is to find sub

tree clones. Two is concerned with "the detection of variable-size

sequences of sub-tree clones, and is used essentially to detect

50

statement and declaration sequence clones." Thirdly "more complex

near-miss clones" are looked at by generalising combinations of other

clones.

• Datrix

o Datrix itself does not provide clone detection. However this product is

a language dependent tool that can produce software metrics from

source code. Mayrand [May96b] presents a "technique to

automatically identify duplicate functions in a large software system."

This technique provides an ordinal scale of similarity of code clones

from ExactCopy to DistinctControlFlow. These are worked out by

using four "points of comparison" each point has a set of associated

metrics which have been generated by Datrix.

• CodeSurfer

o CodeSurfer is another language dependent tool spawned out of

academic work. It is produced by GrammaTech and is the

implementation of the technique presented in Komondoor [KomOl].

The technique transforms the program into a Program Dependence

Graph (PDG) and uses program slicing to identify "Isomorphic sub

graphs" which correspond to similar logic and hence clones. The

major advantage cited by Komondoor [KomOl] is "our tool can find

non-contiguous clones" the slicing process filters out segments of

code that may have been added. Also line reordering does not confuse

the tool.

• DUP

o DUP uses parameterised strings (p-strings) to detect cloned strings (a

p-match). Baker [Bak93] explains that "each occurrence of first, last,

0, and fun in one section may be replaced by init, final, 1, andg,

respectively, in the other section;" Baker [Bak93] also provides a

formal definition of a p-string, "Two parameterized strings are a

parameterized match, or p-match, if they are the same except for a

one-to-one correspondence between the parameter symbols occurring

in them"

• JPlag

o JPlag [PreOO] uses tokenised substring matching to determine

similarity in source code. Its specific purpose like MOSS is to detect

51

plagiarism within academic institutions. Firstly the source code is

translated into tokens (this requires a language dependent process).

JPlag aims to tokenise source code in such a way that the "essence" of

a program is captured and hence is effective for catching plagiarism.

Once converted the tokenised strings are compared to detect the

percentage of matching tokens, which is used as a similarity value.

JPlag is an online service freely available to academia.

CCFinder

o CCFinder aims to have "industrial-size strength" with a limited

amount of language dependence. It transforms the source code into

tokens. CCFinder aims to identify "portions of interest (but

syntactically not exactly identical structures)". After the string is

tokenised a suffix tree algorithm is used to detect matches. CCFinder

also provides a dot plotting visualisation tool this allows visual

recognition of matched within large amounts of code.

3.7.1. Dot Plotting

Within the DUPLOC tool [Duc99] and CCFinder's Gemini add-on [Kam02], a dot

plot visualisation, is provided to aid the identification of duplicated lines of code.

DUPLOC uses a comparison matrix to examine each line of one program with

another. (Figure 3.3)

Source

Lines

a b c d

a O

b (>

c p

d

Figure 3-3 String matching using dot plot

52

It is a straightforward process to show such a matrix as a dot/scatter plot. Ducasse

[Duc99] cites Church [Chu93] and gives several meaningful patterns that are

immediately recognisable from a dot plot.

a. Diagonal lines of dots = copied sequences of code. (Fig 3.4a)

b. Sequences with holes = copied code with partial modification. (Fig 3.4b)

c. Broken Sequences with a shift in the lower half = new portions of code. (Fig

3.4c)

d. Rectangle formation of dots = reoccurring sections of code. An example

given is that of the C command 'break'; within a switch statement. (Fig 3.4d)

a. Diagonals b. Diagonals with Holes

« « * *

« « •

• • «

c. Broken Diagonals d. Rectangles

Figure 3-4 Dot sequence patterns (taken from [Duc99])

In order to reduce trivial matches (or "noise" as it is referred to by Ducasse [Duc99])

on screen such as "int DUPLOC has incorporated a filtering process. Before the

comparison a sweep is performed on the matrix to remove single dots.

One of the main benefits offered for the dot plotting visualisation or textual reporting

is that it allows "an exploratory approach to the investigation of the duplication".

Patterns in the dots attract the eye instantly and can lead to unexpected discoveries.

53

Whereas pattern matching (used within the text-based reporting) will simply catch

"preprogrammed, known configurations".

By applying the predefined patterns stated earlier (in particular that of fig. 3.4d) the

process of software evolution can be easily seen. Comparisons of different software

versions reveal how the software has evolved. Broken diagonals progressively

shifting to the right indicate where code has been added. Downward shifts in the

diagram point to where code has been removed. The scale of such additions and

removals are obvious because of the one-to-one relationship between a line of code

and a matrix coordinate.

3.8. After Clones have been detected

Once a legacy system has been searched and code clones identified then it is

important to consider what can / should be done with them. Unless the clones are

intentional to improve performance as mentioned in Baxter [Bax98] then a change to

the system is required. Several strategies have been implemented:

• Baxter [Bax98] describes a process where macros are generated that abstract

each clone. This is justified by the argument that the "act of copying indicates

the programmer's intent to reuse the implementation of some abstraction".

• Burd [Bur97] suggests that by looking at the "degree to which the fragment of

code is used' can reveal whether or not the clone fragment is viable for reuse

reengineering.

• Mayrand [May96b] considers code cloning from purely a maintenance

viewpoint, "the goal of the cloning reduction action plan is to increase the

maintainability of a system". It does not give a definite post-detection

strategy. "The selection of a specific technique will be based on the nature of

the cloning between functions".

• Komodoor [KomOl] takes a similar approach to Baxter [Bax98] suggesting

the extraction of clones in order to create procedures that can be called in

replacement stating that a "good clone is one that is meaningful as a separate

54

procedure (functionally) and that can be extracted out easily without

changing program semantics".

Balazinska [Bal99] presents a methodology for the "process restructuring

actions based on clone detection" this process involves factorising common

aspects of the clones identified and then disassociating the clones with their

specific purpose and hence creating more general reuse candidates.

Kamiya [Kam02] has devised a set of metrics that are used to quantify

cloning and answer questions about the frequency and distribution of clones

within the system.

o Length; LEN (p) and LEN(C) this metric gives the length (which

could be measured in tokens or lines of code) of either a portion of

code p orC which looks at the maximal code portion within a clone

class.

o Population of a Clone Class; POP(C) measures the number of code

portions within a clone class. The higher the value the more copies

within the system.

o Deflation by a Clone Class; DFL(C) using LEN and POP to estimate

the amount of code that can be removed from the system by the

extraction of a particular clone class. This estimation is computed by

the following equation:

D F L (C) = L E N (C) * P O P (C) - (U S E L E N (C) * P O P (C)

+ L E N (C))

where USELEN(C) is the length of a method call for a generalized

method which has been introduced to replace the functionality of the

clone code portions.

o Coverage of Clone Code; COVERAGE (% LOC), COVERAGE (%

FILE) COVERAGE (% LOC) is the percentage of lines that include

any portion of clone, and COVERAGE (% FILE) is the percentage of

files that include any clones.

o Radius; RAD(C) RAD (p) measures the longest path (in the directory

structure) from each file containing a clone portion belonging to class

C to the lowest common ancestor directory containing all the files. If

55

all clones appear in a single file then RAD = 0. This metric tells

maintainers the extent of influence a clone class has on a system.

Higher RAD values equates to a wide spread of clones.

3.9. Incorporating clone detection into development

Mayrand [May96a], [May96b] describes a "cloning reduction plan". This plan first

addresses prevention and then reduction of cloning within a system by the following

steps:

1. Establishing a multi-version control system that will provide sufficient

metrics to monitor change in the system. This will enable maintainers to

estimate the impact of change to the development process.

2. Review design and progranmiing guidelines with specific attention paid to

the issue of cloning. Obviously programmers should be discouraged from

copy and pasting and designers are encouraged to look for commonality in

the design which could then be abstracted.

3. Employ a clone tsar charged with the task of monitoring cloning within the

system. Mayrand recommends in [May96a] that this person be a system

architect "since clone removal has a lot to do with the architecture and the

libraries of the system."

These three steps should ensure that the introduction of new clones to the system is

under control. After this Mayrand then goes on the list the steps required for clone

reduction of the existing system.

4. Target the clones to be removed from the system. Areas of the system that are

heavily maintained should be prioritised.

3.10. Metrics for clone detection

When attempting to discover a cloning relationship between functions Mayrand

[May96b] defined four attributes or "points of view". Mayrand looked at the name of

a function, its layout, the expressions used within the function and finally its control

56

flow. These points of view are used to compare two functions. Three possible

outcomes were "similar, equal or distinct" functions.

Each point of view contained a set of metrics. A delta or threshold was assigned to

each metric. For example, two functions were considered to have equal layout i f all

the metrics within that point of view were equal. If the absolute difference between

each and every metric was not zero but within its set individual threshold then the

two functions were considered to have similar layout. If neither is the case then the

two functions had distinct layouts. The metrics used to examine layout are listed in

Table 3.3.

IVletric Description Delta

Declaration comments volume 10

Control comments volume 10

Number of logical comments 5

Number of none blank lines 5

Avg. name length of variables 2

Table 3-3 Datrix layout metrics

3.10.1. CodeCrawler and Moose (Members of the FAMOOS Project)

Source Code Assessment and Presentation of Results

CodeCrawler [DucOl] is a language independent tool designed to support reverse

engineering by using a combination of metrics and visualisation features.

CodeCrawler was built as an add-on for the Moose re-engineering environment

[DucOl]. Moose handles source code assessment and provides the metrics "services'

(see figure 3.5) for CodeCrawler to visualise.

57

¥ Tool Integration Framev/ork

Moose Tools

Moose

Services

Navigation

Querying

Mgtrics

Analysis

Grouping

Refacloring

Repository and Model Management

linport/Export Framewor*:

VisualWofks parser CDIF

I
XMI

SNiFF+ parser

Figure 3-5 MOOSE architecture [DucOl]

Figure 3.5 shows how source code is imported into Moose. SmallTalk source is

parsed by the VisualWorks parser which is available because Moose (and

CodeCrawler) is written in SmallTalk. Java, C-i~i-, Cobol and Ada are parsed using

parsers such as SNiFF-i- into the interchange format CDIF [CDF97]. Source code

written in other programming languages can be imported if they are transformed into

CDIF also X M I [XMI]. These formats are industry standards and so allow Moose to

include systems written in any language.

CodeCrawler uses a set of simple metrics and simple visualisation techniques and it

is then possible to gain an overview of the evolution of large-scale systems. Boxes

represent classes, the dimensions and colour of the boxes can be set to represent

various class metrics. Metrics are divided into four categories; complexity, coupling,

cohesion and inheritance tree metrics. Listed below are a selection taken directly

from the FAMOOS Handbook [Bar99].

58

Complexity Metrics

Abbreviation Description

LOC Lines of Code: Measures the size of a class by counting its lines of

code.

WMC Weighted Method Count: Measures the complexity of a class by

adding up the complexities of the methods defined in a class.

NOM Number of Methods: Measures the complexity of a class by counting

the number of methods defined in that class.

Table 3-4 Complexity Metrics used in MOOSE

Table 3.4 describes the three complexity metrics used within the MOOSE system.

Coupling Metrics

Abbreviation Description

DAC Data Abstract Coupling: Measures coupling between classes

resulting from attribute declarations.

RFC Response Set for a Class: Measures complexity and coupling

properties of a class by evaluating the size of the response set of the

class.

Table 3-5 Coupling Metrics used in MOOSE

Table 3.5 shows the Coupling metrics used within the MOOSE system.

Cohesion Metrics

Abbreviation Description

TCC Tight Class Cohesion: Measures the cohesion of a class as the

relative number of directly connected methods. Methods are

considered connected i f they share at least one instance variable.

Table 3-6 Cohesion Metrics used in MOOSE

Table 3.6 shows the Cohesion metric used within the MOOSE system.

59

Inheritance Tree Metrics

Abbreviation Description

DIT Depth in Inheritance Tree - Measures the depth of a class in the

system's inheritance tree.

NOC Number Of Children - Counts the number of children (direct

subclasses) of a class.

NOD Number Of Descendants - Counts the number of descendants (direct

and indirect subclasses) of a class.

Table 3-7 Inheritance Tree Metrics used in MOOSE

Table 3.7 shoes the Inheritance Tree metrics used within the MOOSE system.

Justification for metrics chosen

The metrics listed here are used to diagnose object-oriented legacy systems with a

view to re-engineering. Complexity metrics allow a re-engineer to estimate how

much effort it would take to understand or modify a particular section of a system (in

this case a class). Since complexity cannot be measured directly, metrics that can be

used to infer it are required. Obviously the greater the complexity of a module or

class the greater the effort required understanding and re-engineering it. Coupling

occurs between classes i f classes depend, or are aware of, another class. For example,

i f one class invokes another's method or accesses its variables. Re-engineers are

concerned with coupling because i f two classes are tightly coupled then changes

made to one can have repercussions to the other class. Also classes with high

coupling usually form a key part of a system and therefore are an entry point into re-

engineering. Cohesion describes how closely attributes within a class are related. For

example, how many methods access the same variables, or invoke other methods

within the class. Ideally classes should have high cohesion as it indicates a good

design encapsulating related concepts. According to Bar [Bar99] "Classes with low

cohesion often represent violations to a flexible, extensible or reusable design".

Inheritance is a key concept within object-orientated design. It allows designers to

describe relationships between classes with similar behaviours and to reuse common

aspects of their design. Measuring the inheritance allows engineers to focus on a

special type of coupling. Bar cites the example of classes with low DIT and high

NOC (or NOD) values affecting lots of classes because they are super classes to the

60

child classes. Changes in the super class will probably require changes in many child

classes.

3.10.2. Datrix

Source Code Assessment and Presentation of Results

Datrix is a source code analyser and one of its outputs is a set of metrics. As this is

the only feature relevant to this study, this section will only give a broad overview to

the aspects of Datrix which are not directly related to software metrics. Following

this a detailed examination of the metrics produced by Datrix is provided.

V

Siiurce Co<lc D»trix Parser

Cliaracterizatioii with Metrics

Intermediate Representation
Language

Abstrac^ynt^

Identifiers Graph

Control Flow Graph

Graphical Representations

1
1

Figure 3-6 Datrix Source Code Assessment [Lag97]

61

[^^Abstrac^ynta)rR^^^J

I
Abstract Syntax Tree

[^ ^ A r c l T i t e c t u i ^ e p r e s ^ ^

c Data Declaration Graph

Data Flow Graph

T

Figure 3-7 Source code abstraction process in Datrix

Figure 3.6 shows how Datrix [May96b] takes source code as its input and converts

this into either graphical representations or metrics. Figure 3.7 shows in more detail

the process of abstraction performed on the source code. Initially Datrix parses the

source code and generates an Abstract Syntax Tree representation. The next

abstraction translates the Abstract Syntax Tree into the Intermediate Language

Representation. Al l the necessary information to produce software metrics is

contained within this 2°^ level of abstraction. Figure 3.7 shows that the "measures" or

metrics are generated by a further transformation on the intermediate language

representation.

Unlike CodeCrawler there is no visualisation feature. Results are presented in a

simple summary format and can be stored in files.

Datrix Metrics

Datrix organises software metrics into three domains each domain corresponding to

the scope of the metrics contained within them. Routine Metrics provide metrics at a

routine or function level. Class Metrics are metrics that summarise a whole class.

62

File Metrics are metrics that look at a whole file. Within these domains the metrics

are split into statement families.

• Declarative statements are those were a variable, object, parameter or type

are declared.

• Control-flow statements are "statements that can alter the flow at intra-

procedural level" [DatrixManual]. (i.e. decision statements such as if or

switch, jump statements such as break, continue or goto and loop statements

such as for, while and repeat).

• Executable statements are any expression other than declarative or control-

flow statements within a function scope (i.e. ' { ' and ') ') . Also executable

statements are any statement, other than either a declarative or control-flow

statement, that is separated by a statement-separator (such as a comma). Or

any expression, "other than a declarative or empty statement, that is stated in

the initialisation or incrementation parts of a for-statement" [DatrixManual].

Each metric produced is given an abbreviated name and these names follow the

following rules:

The metric abbreviation (MetricAbbreviation) is formed by taking the domain of the

metric (MetDomain), then the metric description (MetDescription) and finally the

quantifier (MetQuantifier). i.e. MetricAbbreviation : MetDomain MetDescription

MetQuantifier

MetDomain represents the metrics domain and as consist of:

• Cla : Class domain

• Rtn : Routine domain

• F i l : File domain

MetDescription describes the element that is being measured:

• Lns : Lines of code

• Sep : Scope

• ScpNstLvl: Scope nesting level

63

MetQualifier represents the "mathematical nature of the metric" [DatrixManual] and

is one of the following:

Nbr: Simple count

Sum : Sum

Avg : Average

Rto : Ratio

Wgt: Weighted metric value

Len : Length

Max : Maximum value

V o l : Volume

This chapter reviewed the current state of the art in code clone detection. The review

shows that there appears to be no universal agreement of what is considered a clone.

It found that cloning presents a number of problems to a software maintainer

including the addition of redundant code, the potential proliferation of errors

throughout a software system. It focused on certain clone detection techniques and

the tools that implement these techniques. The concept of a clone reduction program

is also discussed with ideas for further application of clone detection in

documentation.

64

4. Method

As mentioned in the introduction, several software case studies will be used as test

subjects for a set of clone detection tools. In this chapter the method used for these

case studies will be described. The rest of the method chapter is as follows. Firstly an

overview of the method applied to each of the case studies. This will be a high level

description of the method. Following this the hypotheses chosen are presented and

described. The criteria for choosing each of the case studies is then given after this it

gives the criteria for choosing the clone detection tools. After this an explanation of

the manual verification of clones describes how potential clones identified by a clone

detection tool were verified as an actual clones. Next, an outline of the qualitative

evaluation of each of the clone detection tools used in the case studies. Finally brief

descriptions of the experiments used to test the hypotheses chosen. This section will

also introduce a novel visualisation technique for comparing the clones identified by

different clone detection tools.

4.1. Overview of method

A selection of case studies will be carried out. Within each case study the same clone

detection tools will be used to identify a maximal set of clones. Clones identified by

the tools, are potential clones (because the clone detection tools can identify false

positives). Every clone identified will be manually verified and if they are considered

to be clones then will be marked as actual clones and added to a total base set of

actual clones for that case study. As these case studies were taken "as is" and thus

there can be no assurance that a variety of clone types were present.

This total actual clone base set will contain clones identified from all of the tools.

This base set is considered to contain the maximal number of clones for that case

study and will be used to determine precision and recall values for each of the tools.

However, it is important to note that this base set does not contain the total number

of clones possible. It is possible that some clones were missed by all of the tools.

As well as adding each tool's set of clones to the base set their clones will be

compared to determine the intersection between each the sets of clones identified by

65

each clone detection tool (i.e. to determine the similarity of the clones identified by

each tool).

Further analysis on the types of clones each tool identifies will be carried out.

Aspects such are average size of clones identified by each clone detection tool will

provide useful information as whether one tool identifies larger clones on average

than another.

Finally a qualitative evaluation of the tools used in each of the case studies will

provide information that will be of interest to maintainer such as customisation

options and level of user support.

4.2. Hypotheses

During each of the case studies a series of hypotheses will be evaluated. These

hypotheses are based partly on questions raised in the current literature and partly on

testing aspects of cloning of interest to software maintenance. They are as follows:

1. Each clone detection tool will identify different proportions of cloning for the

same case study.

2. Case studies of differing size and development background will identify

different proportions of cloning for the same clone detection tool.

3. Case studies developed without the aid of an integrated development

environment will contain on average clones which are greater in size.

4. Clones identified using metric comparisons will differ greatly in size from

clones identified by tools that directly compare source code.

5. Case studies developed with the aid of automatic code generation will

produce more clone classes.

6. Replication across programs is more prevalent than replication within

programs.

7. Each clone detection tool will identify different sets of clones.

8. No clone detection tool will find every clone within a case study.

9. No clone detection tool can achieve 100% precision for every case study.

66

10. The proportion of cloning identified by clone detection tools within a case

study is very dependent of the tools ininimum size threshold

4.2.1. Hypothesis Justiflcation

1. It was considered, because of the different approaches to clone detection (and

indeed to the very nature of cloning) that each tool adopted, the the amount of

cloning identified by different tools would vary.

2. Different coding styles it was felt would produce differing levels of cloning.

For example, the use of automatically generated code. Development

environments with less experience would be more likely to take shortcuts.

3. The use of an integrated development environment would allow the insertion

of ready made clones for simple tasks. These clones do not necessarily

contain any complicated logic but are usually short functions for initialising

GUI components.

4. As the metrics based clone detection tool was focused entirely on cloning

between whole functions it is artificially restricted in the potential size of

each clone. For example, a whole program could be copied but this would be

detected as a series of shorter clones by Covet.

5. Automated code generation copies from a library of code into a program's

source this is in effect copy and pasting. This process will increase the

amount of clones within a piece of software.

6. It was considered that the potential for replication across programs was

greater than within the same program as programmers would often copy and

paste from other programs because of the extra complication of including the

other program. A function within in the same program would be easier to call.

67

7. Each clone detection tool's concept of a clone is different so their detection

algorithm will detect different portions of code as clones. Further more, the

restrictions on academic tools to only identify replication across programs

means their clones will differ greatly from industrial clone detection tools.

8. As mentioned in 4.1 it is possible for all the clone detection tools to miss

some clones. Therefore, it is considered that none of the tools will identify all

the clones.

9. Total precision would be difficult to achieve because of the subjective nature

of cloning. Tools are looking for attributes of two regions of code to match a

certain pattern but that does not necessarily mean they are clones.

10. Raising the size threshold of a tool would lower the proportion of cloning

identified as the criteria for what is to be considered a clone is narrowed.

A series of experiments are set out in this chapter (see Section 4.7) each aimed at

testing one or several of the ten hypotheses described above. The results of these

experiments are in Chapter 6. Table 4.1 shows which experiment covers which

hypothesis/ hypotheses.

Experiment # Experiment Title > Hypotheses

. , , Tested

1 Comparison of different tools output 1,2

2 Size Breakdown of each tool's results 3,4

3 Unique Clone Classes within results 5

4 Replication Within and Across Programs 6

5 Intersection between each tool's results 7

6 Precision and Recall Analysis 8,9

7 Size Threshold Sensitivity 10

Table 4-1 Experiments and their related hypotiieses

4.3. Case studies

68

Each clone detection tool in the study will be evaluated using three case studies.

Three will be chosen to ensure that any observations made about the clone detection

tools they are not specific to the case study. Using case studies which are different

sizes and which have been developed under differing conditions can provide insight

into whether cloning is more prevalent in one type of system than another.

These case studies will consist of academic and non-academic projects. Academic

projects may contain a higher proportion of cloning and so are ideal candidates for

clone detection. It will also be interesting to compare the results of systems

developed with the aid of integrated development environments and those that were

developed without their assistance.

4.4. Clone Detection Tools

A sample of five clone detection tools will be used to conduct the case studies.

Included in this sample is a novel tool Covet. Covet will be developed as part of this

thesis and is an attempt to develop an efficient and effective mechanism for detecting

clones. The remaining four tools are CloneDr, CCFinder, Moss and JPlag.

4.5. Manual Verification of clones

In order to reliably establish whether two sections of source code are part of a

cloning relation it is necessary to manually check one section against the other. This

code reading is a focused example of program comprehension. Maintainers must

have a sufficient understanding of each region of code to be able to tell i f there is

some shared logic that has been copied and altered or if the similarities that caused

the clone detection tool to identify that region of code was merely coincidental.

Program comprehension is time consuming. Although the size of each section of

code being studied is small there are many of them. For example, i f a tool produced

500 identified code sections each with a minimum threshold of 10 lines then the

maintainer has a minimum of 500 x 2 x 10 (10,000) lines of code to read. These

sections could (and probably will) be spread throughout the source code of an entire

system. Hence even more time is taken finding the sections of code. It is for this

reason that clone detection tools such as JPlag and CCFinder have developed user

69

interfaces that allow the maintainer to go directly from the result summaries to the

actual source code. This manual verification is particularly important in the detection

of plagiarism as it not feasible or indeed wise to accuse someone of plagiarising

based solely on automated detection, as false positives are possible.

When carrying out the comparisons of clones from several tools it is not possible to

take advantage of the user interfaces provided by any of the tools like JPlag. So other

methods of facilitating the retrieval (for inspection) of specific code regions must be

used. Initially a database containing the entire source of each system was planned.

Maintainers could query the database and display code regions side-by-side using a

graphical user interface. However, due to time restraints this was not completed. In

its place a substitute was found. A utility program was created that took a set of

clones identified by a tool and produced two files. Firstly a summary file was

produced which lists each clone pair identified by a tool of a new line. Secondly, a

file containing the specific regions of source code involved in that clone summary.

Ensuring the order of each file was the same allowed the maintainer to browse the

entire source in a single file and use the other summary file to record the results.

However, maintainers still have to scroll through the files manually and if a clone is

too long the both sections of code do not fit on the screen, which can cause a time

delay. Another improvement found was if the second file containing the actual

source code was saved as a ".Java" and opened in a text editor with syntax

highlighting this made verification of similar control flow easier.

Manual verification is obviously still fairly subjective. In order to attempt a more

formalised approach a set of criteria were devised that if applied to source code

regions would ensure consistent evaluation of clones. Clones were also judged by

their significance to maintenance. For example, a series of declarations or imports

would not be considered a clone. The criteria applied were as follows:

Similar / Identical control flow and layout: Series of repeated layout blocks could

often point to a copy of another piece of code elsewhere in the system. For example,

if two functions both contained the same number of if-statements testing similar

conditions.

Similar / Identical method names: These usually took the form of a verb-noun

70

combination with the verb remaining constant and the noun being changed. (For

example saveGraph and saveGINGraph).

Similar / Identical variables: Clusters of identical variables and assignments were

often a good indication that the code originated elsewhere.

Similar / Identical comments: Occasionally the same or very similar comment

blocks were interspersed in the code. This is quite obviously a legacy of cloning

within the source.

During the verification of the potential clones a classification system (see table 4.2)

was developed. Five categories were created and each were given a letter and a

number which were used a shorthand to record the results in the summary file.

Each clone was considered either a clone (denoted by the letter 'C') or a non-clone

(denoted by the letter 'N') . Within these two main categories were sub-categories

denoted by numbers. These numbers have no weighting and merely represent the

order in which they were created.

Letter Number i Description

C 1 Same functionality, variable name changes

c 2 Identical

N 3 Non-clone - similar control flow but considered

distinct

C 4 Similar functionality but with some changes

N 6 Possible cloned code but not considered significant,

either too short or of no interest

Table 4-2 Clone categories used in manual verification

Table 4.2 documents the categories of clone used in the manual verification. These

were used to mark a clone as either a non-clone or an actual clone.

Within Chapter 6 in the case studies clones will be viewed as either clones or non-

clones. I f a clone is not significant to maintenance then in industry they can be

considered a false positive as no benefit is gained in removing them.

71

4.6. Qualitative Evaluation of each tool

Part of this study was devoted to evaluating each clone detection tool from a more

qualitative viewpoint. Assessing usability aspects is crucial to support any decision

to choose one tool over another.

Attribute Explanation

Maximum Source

Size (SLOC)

An important consideration is how many lines of code a

tool can cope with. For example, i f a file had 500K lines

then a tool who with a maximum capacity of 200K is

useless.

Languages

Supported

This is a yes/no question the tool can either read the

source code or it can't depending on the languages it

supports.

Number of

preparation steps

Storey [StoreyLecture] highlights the importance of taking

into account the amount of extra work or "housekeeping"

is needed to achieve a specific task.

Time Overhead Will the tool become slow and perform badly when

handling files close to its limits?

Visualisation

Features

Since visualisation is an area of particular interest it will

be interesting to look at how each tool represents the clone

information / statistics.

Documentation

level

How much documentation is provided and how often is it

updated?

Support Level Is there long-term support for the tool or is the user on its

own once it has got the tool?

Learning Curve How easy is the tool to learn and does this come at a

price?

User Interface Does the tool have a graphical front end or a command

based interface? Is the GUI customisable is it extensible?

Table 4-3 Evaluation criteria for the clone detection tools

When deciding the evaluation criteria contained in table 4.3 it was important to

consider what aspects of usability were most relevant to the very specific field of

72

clone detection. One definition of evaluation that seems particularly relevant (cited in

[IntroEval]) is "Evaluation is the systematic acquisition and assessment of

information to provide useful feedback about some object". The object or objects

referred to are the clone detection tools. Systematic acquisition is the measurement of

the attributes listed in table 4.3. Assessment of this information will be carried out

using an evaluation table. By asking the same questions of different tools and

presenting these answers in tables, like-for-like comparisons can be made and a more

informed assessment is possible.

One of the most important attributes is the number of languages supported. If the

clone detection tool does not support the language in which a software system was

written in then it cannot be used. Time overhead, learning curve and number of

preparation steps can all be indicators of how much time will be required to use the

tool. I f a maintainer is investing a great deal of time and effort to the removal of

clones then they will require a tool that is well documented and has sufficient support

i f they encounter problems when using the tool. Visualisation features could also be

required before actual clone removal i f the maintainer requires a visual

representation of the extent of cloning within a software system.

4.7. Experiments

To test the hypotheses identified in section 4.2 a number of experiments were

defined. These are described below.

4.7.1. Experiment 1 Comparison of different tools output

The first and most obvious aspect to measure is the number of clones each tool

identifies. Each tool's output is recorded for each case study. Combining these

results and presenting them side by side with the number of actual clones (clones

which have been manually verified) provides a clear comparison of the accuracy of

each tool during the study.

73

4.7.2. Experiment 2 Size Breakdown of each tool's results

Closer inspection of the size of cloned regions will then take place. This will involve

simple statistical analysis of the lengths of code regions identified by a tool. Also an

assessment will be made of how much source code could potentially be removed i f

the clones were removed from the system. Hypotheses three and four are tested in

this experiment.

4.7.3. Experiment 3 Unique Clone Classes within results

The study will look at the distribution of clones. How many "original" sections may

have been cloned and where they appear in the system. This will be of particular use

to software maintainers as if an error is found in one clone it is likely that the error

has been copied along with the logic of the original code. It is also relevant

identifying potential reuse candidates.

4.7.4. Experiment 4 Replication Within and Across Programs

Another interesting aspect of the clone detection is to look at replication across and

replication within programs as described by Burd [Bur97]. In other words comparing

the proportion of the clones that are found within the same files and what proportion

are found in separate files. Results from this analysis will not be relevant for JPlag

and MOSS as they are attempting to detect plagiarism and so do not examine

replication within the same file. This is because plagiarism is the copying of

someone else's work.

4.7.5. Experiment 5 Intersection between each tool's results

Further analysis of the clone results will examine the intersections and differences

between the result sets. This will attempt to estabhsh the extent to which each tools'

results are similar.

74

Clone by clone visualisation

As part of the analysis of where the tools agreed and disagreed, a simple visualisation

technique has been applied. Each set of clones outputted by a clone detection tool is

presented as a table; each row within the table represents a clone detected by that

tool. Within that table there will be four columns, one for each of the other tools. If

the clone in that row was identified by another tool then the cell in that other tool's

column is coloured in black. Whereas if the clone was not identified the cell is

coloured in yellow (see table 4.4 for an example).

Tool A

Clones

ToolB ToolC ToolD

Clonal

Clone2

Clones

Table 4-4 Example of clone by clone visualisation

This visualisation technique is useful to highlight which clones are being detected by

some tools and not by others. I f a row is entirely black it means that that particular

clone was found by all the clone detection tools. Whereas a predominantly yellow

row shows that the clone was only identified by one or two tools. If a column is

mainly/entirely black then this shows that the tool in that column picked up most/all

of the clones. For example tool B in table 4.4.

4.7.6. Experiment 6 Precision and Recall Analysis

Precision and recall values will be established for each of the case studies. In order to

calculate these statistics a base clone set will be created. This base clone set will

contain all the actual (manually verified) clones identified by each of the clone

detection tools. Precision and recall will be calculated using the following formulae.

75

Precision = number of actual clones identified by tool / number of potential clones

identified by tool

Recall = number of actual clones identified by tool / number of actual clones

identified by all tools

4.7.7. Experiment 7 Size Threshold Sensitivity

During the experiments a minimum size threshold of 20 was used to filter out smaller

spurious clones. However, it is interesting to investigate how altering this threshold

affects the number of clones outputted by each clone detection tool. Clone detection

tools were executed using thresholds ranging from 10 to 30. Focusing on the

differences between the number of clones identified using different minimum size

thresholds may give a better indication of a standard size threshold that should be

used. This experiment is focused solely on the clones identified by each tool. No

precision measurements will be taken as any extra clones identified for the lower

thresholds are not treated as actual clones as they are considered too small to warrant

maintenance effort. Experimenting with the threshold will test hypothesis eleven.

Evaluation will consist of looking at the actual number of clones filtered out or lost

with the increases in the minimum size threshold. Further to this the increases will be

grouped into quartiles 10 - 15, 15 - 20, 20 - 25 and 25 - 30. By monitoring the

percentage filtered out at each quartile it is possible to assess at which stage the most

clones are being filtered out.

This chapter presented the hypotheses to be tested and the experiments that will be

used to test them. It also gave criteria for choosing a set of case studies and the set

clone detection tools to be used. The set of clone detection tools will include

plagiarism detection tools. Case studies of different sizes and development

environments will be used. There will also be a small qualitative evaluation of each

of the clone detection tools focusing on attribute. Such as the number of

programming languages supported and preparation time required. Details of the

manual verification process were also demonstrated. This showed how potential

clones will be verified as either actual clones or non-clones.

76

5. Implementation

As discussed in Chapter 4 a new tool called Covet was used in each of the case

studies. This chapter will introduce the data structures used both in Covet and for

each of the other tools. This chapter then gives a description of how the intersection

between the clones identified by different clone detection tools was calculated.

Following this is a description of how Covet was developed. In addition, details of

modifications made to the other clone detection tools to facilitate the comparison of

their outputted clones are provided.

5.1. Data structures used

When developing Covet it was necessary to represent the clones outputted. As well

as this it was also necessary to create a tool-independent data structure that would

allow the comparison of results.

5.1.1. Representing a clone: CodeRegion and CodeRegionPair data structures

Representing cloned code is quite simple. The information required is the name of

the files where the clone was identified. In addition, the start and end indices (line

numbers) of the regions of code identified as being clones.

The data structure used to model this was named a CodeRegionPair (figure 5.1).

There are only three main components which make up a CodeRegionPair object, two

CodeRegion objects (which as the name infers represent a region of code) and finally

the name of the tool that identified the clone. Each CodeRegion stores the name of

the file and the start and end indices of the region in question. Within a

CodeRegionPair the two CodeRegions are ordered alphabetically by the name of the

file and then by the start index.

Some clone detection tools provide additional information about a code clone such as

the number of tokens matched in each region of code. However, as not all of the

tools provide this feature this information was not taken into consideration.

77

C odeHi^onP air

Toolname

CoddRegion

Filename
Startbidei;
Endladex

Figure 5-1 UML class diagram of CodeRegionPair

Variable Value Object

Toolname JPLAG CodeRegionPair

Filename ContextPreferencesPanel .j ava 1" CodeRegion

Start Index 10

1" CodeRegion

End Index 32

1" CodeRegion

Filename InterfacePreferencesPanel.java 2'"' CodeRegion

Start Index 12

2'"' CodeRegion

End Index 34

2'"' CodeRegion

Table 5-1 An example CodeRegionPair

Table 5.1 gives an example of an instance of a CodeRegionPair. In this example

JPlag has identified a match between the files ContextPreferencesPanel (1^*

CodeRegion) and InterfacePreferencesPanel (2"'̂ CodeRegion) the 1 '̂ region of code

starts at line 10 and ends at 32 while the 2"'' starts at line 12 and ends at 34. By

storing each match from all the tools as CodeRegionPairs it was possible then to

perform comparisons between each tool's results set without any further conversion.

5.2. Determining the intersection between the clones identified by

different tools

78

A comparison of the clones identified by each of the clone detection tools is required

to establish whether the clone detection tools identify similar clones. To compare the

clones identified by two tools each clone (CodeRegionPair) identified by one tool is

compared with every clone identified by the other tools.

This comparison could be a strict equality function. For instance, equality requires

two CodeRegionPairs contain exactly the same CodeRegion objects (i.e. the same

files with the same start and end indices). However, this approach is not flexible

enough and is not really useful to a maintainer. A more flexible approach would be

to compare the amount of code that is shared between two clones. By defining a

minimum percentage of code that has to be shared by both CodeRegionPairs for

them to be considered a match, a more useful comparison is achieved. The minimum

percentage used throughout the experiments was a constant 60%. 60% was chosen to

ensure that the majority of the code regions overlapped whilst still allowing for the

fact that different tools wil l probably not find the exact same regions of code.

The following examples show how the CodeRegions and CodeRegionPairs were

stored in files and then how an overlap was calculated.

For example

FileOne.java (10-50)& FileTwo.java (11-62) (first CodeRegionPair)

FileOne.java (5 - 45) & FileTwo.java (16- 56) (second CodeRegionPair)

The first CodeRegionPair in the example shows that lines 10 to 50 in FileOne.java

and lines 11 to 62 in FileTwo.java are clones. Below is a CodeRegionPair that

describes a clone involving similar but not identical CodeRegions.

To work out the percentage of code shared between these two CodeRegionPairs we

first check that both the files involved in the CodeRegions are the same. In this case

both CodeRegionPairs consist of CodeRegions from FileOne.java and FileTwo.java.

Following this, the start and end indices of each corresponding CodeRegion are

checked.

Table 5.2 gives details of how the overlap percentage was established. Clones A and

B correspond to the first and second CodeRegionPairs given in the above example.

79

CodeRegionPair 1st CodeRegion 2"" CodeRegion

Clone_A Start - End

{length)

10 - 50 {41) 11-62 (52)

Clone_B

Start - End {length)

5-45 {41) 16 - 56 {41)

lines shared (45 - 10) = 36 (56 - 16) = 41

%ofClone_A 88% 79%

% of Clone_B 88% 100%

Table 5-2 Calculations required to work out the overlap percentage of two clones

Table 5.2 shows that the two CodeRegionPairs would be considered a match as there

is an overlap of over 60% for each CodeRegions in both CodeRegionPairs. However

if the 2"'' CodeRegion in Clone_A had been significantly longer, and Clone_B's 2°''

CodeRegion remained the same, the overlap percentage would be reduced. Table 5.3

shows how using this method of overlap percentage one clone might be considered a

match for another but be the reverse might not hold true.

CodeRegionPair 1st CodeRegion 2°" CodeRegion

Clone_A Start - End

{length)

10 - 50 {41) 11-162(152)

Clone_B

Start - End {length)

5-45 {41) 16 - 56 {41)

lines shared (45 - 10) = 36 (56 - 16) = 41

% of Clone_A 88% 30%

% of Clone_B 88% 100%

Table 5-3 A further example of the overlap percentage of two clones

Table 5.3 shows how although Clone_B is considered as a match for Clone_A using

the minimum percentage overlap to determine a match Clone_A is not considered a

match. The next example shows an example of when two clones are not considered a

match.

80

FileOne.java (10 - 50) & FileTwo.java (11-62) (first CodeRegionPair)

FileOne.java (67 - 130) & FileTwo.java (16- 56) (second CodeRegionPair)

These two CodeRegionPairs are not considered as a match because the CodeRegions

in FileOne.java do not overlap.

5.2.1. Data structures used specifically for Covet: Routinelnfo, Metric and

DatrixFileParser

CodeRegions only store the start and end of a region of code. Extending this to store

only whole routines was required to create Covet. Routinelnfo objects also stored the

start and end indices of a region of code, the main difference being this region

encapsulated exactly one routine. Additional information was also required such as

the routine's metrics (generated from Datrix). Each Routinelnfo object stored the

name of the routine, the class to which the method belonged, filename, pathname, its

list of parameters and a hash map giving a mapping from each metric name to a

specific value.

Each metric was represented as a Metric object containing the name of the metric, a

short description and a specific Delta (threshold).

Data stored in a Routinelnfo was generated mainly by the Datrix metric tool. It takes

as input a source code file and produces a set of metrics for each routine within that

file. These metrics along with other data are then stored in a Routinelnfo object.

These objects are in turn held within a DatrixFileParser object. Figure 5.2 is a UML

class diagram showing the relationship between these three classes.

81

DatriadFileParstr

Pathaame

1.. *

JRoutlineliifa

Far am eta-s
filename
Oasaiame
Startlndex
Indindex

1 *

h #
Metric

Metricname
Delta
Description

Figure 5-2 UML class diagram of the data structure used for Covet

Figure 5.2 shows that both DatrixFileParser and Routinelnfo store the name of the

source file. The filename variable is used when all the Routinelnfo objects are stored

in a larger set. This avoids naming clashes when comparing routines from other files.

Datiix©^
Parse îavm files
snd produces a

.mtttii ftte

DalnzFilcParsei

Sie ^ Sie

Routirulnfo

Roulinelnfo

Rouiinelnfio

Rouiin«lnfb

iMvax Koutoi«Info

RioiUinemfl!)

Figure 5-3 UML data flow diagram for extracting metrics from Java files

Figure 5.3 shows how Datrix processes the java files and outputs files containing the

metric information about each routine (called .metrix files). These are then read by a

DatrixFileParser object which then creates and populates Routinelnfo objects.

After all the routines within a system have been read-in, the next stage is to compare

them and to examine their metrics. This was achieved with the

82

MultipleFilesComparer program. Users input a list of files (.metrix), a minimum

threshold (used to filter out routines which are too short) and a file containing a list

of metrics (and their associated deltas) that are to be used in the comparison. This

allows a pre-selected set of metrics to be used in any comparison. At the end a list of

routine pairs is outputted which are considered potential clones.

5.3. Development of Covet

Some aspects of Covet have already been mentioned in this chapter. This section

gives an overview and explains some of the background of Covet. After this a

description of how the tool was "tuned" to improve its clone detection. It describes

how metrics were chosen both manually, and later by trying to spot patterns in the

metrics of the clones outputted by the other tools.

5.3.1. Overview and Baclcground of Covet

Covet was inspired by the research carried out by Mayrand [May96b]. Mayrand

attempted to identify routines that had been cloned. Four ''points of comparison"

[May96b] were examined in order to determine i f two distinct routines belonged to a

cloning relationship. These were name, layout, expressions and the control flow of

each function. Within these points of comparison a set of metrics were used to

determine whether two points of comparison were equal, similar or distinct.

Mayrand [May96b] used student source code (widely known to potentially contain a

reasonable percentage of plagiarism) to select the metrics that were chosen.

Thresholds were set in accordance from previous experience of large-scale systems.

Mayrand [May96b] uses three levels of similarity for each "point of comparison".

Routines are considered to have "equal" control flows i f every metric within the

control flow set is equal. I f the absolute difference between each of the metrics in the

set is less than or equal to that metric's threshold then they are considered "similar"

from that point of comparison. Otherwise two routines are considered "distinct".

Table.5.4 shows RoutineA and RoutineB are considered here to have "equal" Control

83

Flows because the metrics defined in the Control Flow set are all equal.

Control Flow Routine A Routine B Threshold

Metricl 3 3 5

Metric2 3 3 2

Metrics 2 2 2

Metric4 1 1 10

Table 5-4 Equal control flow metrics comparison

Table 5.5 shows that RoutineA and Routine B are considered to have "similar"

Control Flows because the absolute difference between the corresponding metrics

defined in the Control Flow are less than or equal to the threshold.

^Control Flow Routine A Routine B Threshold

Metricl 3 4 5

Metric2 3 5 2

Metric3 2 2 2

Metric4 1 7 10

Table 5-5 Similar control flow metrics comparison

Mayrand has attempted to choose a set of metrics that can be used to diagnose the

cloning relationship between two routines and this is what Covet attempts to emulate.

Covet uses a more recent version of Datrix© which offers additional metrics for

example, as well as deriving metrics at a routine level there are Halstead metrics

provided. Datrix can also now produce metrics for a whole class or file. However,

these new metrics were ignored because the aim was to find cloning within routines.

By only looking at class or file metrics cloning occurring within classes and files

would be missed and also the chances of whole files and classes being cloned is

much less than just single routines.

5.3.2. Extracting Metrics for Covet

Covet recieves all its metrics data from Datrix. Datrix is a command line driven

program and uses an interactive, rather than batch mode, for producing metrics data

for each routine within a program. As Datrix can only be run in interactive mode, a

84

wrapper program was required to run the tool in batch mode. This was a fairly simple

task involving a perl script to create a batch file / c-shell script. The resulting batch

file then made each individual call to Datrix on the correct source file and piping that

output to the correct destination file. A naming convention was introduced to the

Datrix produced files, each file had the suffix .metrix. Discussion of the format of

these files is continued in Further Implementation Issues later in this chapter.

Covet Methodology

Rather than attempting to reuse the metrics chosen by Mayrand, experiments were

carried out in an attempt to find a set of metrics that best suited clone detection. Five

experiments were devised each using either differing metrics or thresholds. Initially

the first two sets of metrics were based on general observations and ideas of cloning.

Metrics describing both control flow and the volume of statements were chosen

(table 5.7). The second set (table 5.8) has different threshold values. Following this

metrics for the third set (table 5.9) used a similar technique to Mayrand's sample

study. The only difference was, in this instance, instead of using student created

programs the programs were artificially created.

Four basic programs were devised, a HelloWorld application, a BubbleSort

algorithm, a currency conversion application and a Binary Search algorithm. These

were altered in similar fashion to produce a series of clones. Metrics were taken from

these programs and were inputted into a spreadsheet and plotted onto a graph. From

these results a top ten metrics were produced.

Table 5.6 provides a description of each metric used in the experiments described
previously.

Metric Description

RtnStmCtlNbr number of control flow statements

RtnStmDecNbr number of declarative statements

RtnStmNbr total number of all statements

RtnStmExeNbr total number of executable statements

RtnCalXplNbr number of explicit function/methods calls made within the

routine.

RtnCplExeAvg mean complexity of executable statements in the function

85

RtnCplExeMax maximal complexity of executable statements in the function

RtnCplCtlAvg mean complexity of predicate statements

RtnCplCycNbr cyclomatic number or v(G) of the routine defined by McCabe

[McC76]

RtnCplCtlMax maximal control predicate complexity

RtnScpNstLvlAvg mean nesting level of scopes in the function

RtnScpNstLvlMax maximal nesting level of scopes in the function.

RtnStmNstLvlAvg mean nesting level of statements in the function.

Table 5-6 Metrics used within the Covet tuning experiments.

Metric Threshold

RtnCplCtlAvg 7

RtnCplExeAvg 3

RtnCplExeMax 3

RtnScpNstLvlAvg 3

RtnStmCtlNbr 3

RtnStmDecNbr 3

RtnStmNbr 3

RtnStmNstLvlAvg 3

Table 5-7 Intial set of metrics used in Cove

Metric Threshold

RtnCplCtlAvg 2

RtnCplExeAvg 2

RtnCplExeMax 2

RtnScpNstLvlAvg 2

RtnStmCtlNbr 2

RtnStmDecNbr 2

RtnStmNbr 2

RtnStmNstLvlAvg 2

Table 5-8 Second set of metrics used in Covet tuning

86

Tables 5.8 and 5.9 list sets of metrics and their associated thresholds used in the

second and third metrics experiment respectively. As can be seen from a comparison

of tables 5.8 and 5.9 the metrics used are identical the only change made is in the

thresholds set.

Metric Threshold

RtnScpNstLvlMax 2

RtnCplCycNbr 2

RtnCplCtlAvg 3

RtnCplExeAvg 3

RtnStmCtlNbr 2

RtnStmExeNbr 2

RtnStmNstLvlAvg 2

RtnCplCtlMax 2

RtnCplExeMax 5

RtnScpNstLvlAvg 2

RtnCalXplNbr 2

Table 5-9 Top ten metrics taken from pilot study

5.3.3. Automatically generated Thresholds

During the development of Covet attempts were made to automatically generate

thresholds from the clones produced by the other tools. The formula used was as

follows:

1. Retrieve all the manually verified CodeRegionPairs from the other clone

detection tools (CloneDr, JPlag, Moss and CCFinder);

2. Attempt to map each CodeRegionPair to two distinct functions (one for each

CodeRegion);

3. Record the metrics of function pair;

4. Work out the differences between the metrics within each function pair;

5. Use simple statistical analysis to estimate a threshold.

87

An example

CloneDr identifies a match between file_one.java from lines 10 - 100 and

file_two.java lines 110 - 200. Within file_one.java there is a routine FunctionA

which starts at line 5 and ends at Mne 90 and file_two a routine called FunctionB

which starts at line 105 and ends at line 190. These two routines will then be taken as

the function pair and the absolute difference between each metric will be recorded.

The process is repeated for every other match identified and the differences are

recorded as a mapping function from a metric name to a set of differences. (See table

5.10).

Metric Name Differences Mean Median

Metricl [1,2,3,3,2,1,2,2] 2 2

Metric2 [3,2,4,2,1,3,4,3] 2.75 3

Table 5-10 Example of automated thresholds method

Table 5.10 shows an example of how the automated thresholds were calculated using

the differences in the metrics of routines that were identified by the other tools.

From these differences, simple statistics can be taken such as mean, maximum and

median values. These values can then be used as thresholds. Al l the available metrics

were chosen rather, than a subset, as this meant the results were not affected by any

human decision.

When matching a region of code to a whole routine it was important to ensure that

erroneous and misrepresentative matches were not made. It was decided that only

CodeRegions that covered a minimum of 60% of the lines in a routine would be

considered a match.

5.3.4. Preliminary Experiments: Results from Covet Metric trials

These are the results from the experiments involving Covet using differing sets of

metrics and threshold levels. The selection process for the metrics used in the trials is

described in section 5.3.2. These sets of metrics were then used to configure Covet

and then run on an application called GraphTool. Appendix B contains the

differences between the artificially created clones and the original programs.

88

Experiment Metrics #Potential

clones

#Actual

clones

Precision Recall

1 Initial set derived from

general observation.

(Table 5.7).

248 41 16% 18%

2 Further refinement

taken from the original

set with thresholds all

set to two. (Table 5.8).

58 32 55% 15%

3 Top Ten metrics

derived from sample

study (Table 5.9).

51 46 83% 20%

4 Metrics derived from

the results of other

tools (with

verification).

121 41 34% 18%

5 Metrics derived from

the results of other

tools (without

verification and using

median differences).

276 65 23% 29%

Table 5-11 Results achieved by running Covet using the various sets of metrics

The results from running Covet using these metrics were promising. However, a high

proportion of false positives were found (see table. 5.11). After examining the clones

identified by the prototype set, it was obvious that further refinement was needed.

This was achieved by not altering the metrics but by lowering their thresholds to a

universal level of 2. As table 5.11 shows this restriction produced a significant drop

of 77% in the number of potential clones identified. This is not reflected in the recall

which shows a small drop of just 3%.

Clones identified using the metrics taken from the sample study produced the best

precision. Although the smallest set of potential clones was identified, it identified

the second highest number of actual clones (46). Only experiment 5 achieved a

89

higher recall. However, experiment 5 also identified the highest number of potential

clones and had a much lower precision.

5.3.5. Comparison of Results from Covet Tuning

An interesting comparison is to look at the similarity of the results produced by each

experiment. Table 5.12 shows each of the four metric experiments, the number of

clones identified in each (in brackets) and in the third column the number of clones

that were found in both experiments. Column four lists the number actual clones

manually verified from this intersection.

Results A (#) Results B (#) Intersection Actual Clones

Experiment 1 (248) Experiment 2 (58) 58 32
u Experiment 3 (51) 35 32
tt Experiment 4 (121) 17 13
((Experiment 5 (276) 60 33

Experiment 2 (58) Experiment 3 (51) 30 29
u Experiment 4 (121) 16 13
it Experiment 5 (276) 38 29

Experiment 3 (51) Experiment 4 (121) 14 13

Experiment 5 (276) 34 34

-

Experiment 4 (121) Experiment 5 (276) 50 25

Table 5-12 Intersection results from the 5 Covet metric experiments

Table 5.12 shows the intersection analysis between the results of the Covet

experiments. An interesting observation is that the results from Experiment 2 are a

subset of the results from Experiment 1. However this is to be expected as the same

metrics were used and the only difference was a reduction in the threshold settings

not the metrics themselves. Experiment 3 has the highest proportion of matches. It

retrieved 51 potential matches, 35 five of which appeared in experiment one's

results, 30 in Experiment 2, and 34 in Experiment 5. Only 14 matches were found in

the results from Experiment 4.

90

Experiment 4 appears to have produced the most dissimilar results. Sharing 17 with

Experiment 1, 16 with Experiment 2, 14 with Experiment 3 and 50 with Experiment

5. This last result is much higher than the others but this is probably due to

Experiment 5's large result set.

5.3.6. Further Implementation Issues

Producing Datrix .metrix files

Metrics produced by Datrix were stored in text files. The method for using these is

explained in section 3.10.2 (see figure 5.5). This section provides more detail as to

the issues faced by parsing the files and coping with incorrect line numbering.

BEGIN_RTN
BEGIN_GEN_INFO
NAME "ColoredSguare"
SCOPED_NAME "unnamed::ColoredSquare::ColoredSquare"
MANGLED_NAME " Q27unnamedl3ColoredSquare5Color"
FILE_NAME "ColoredSquare.java"
PATH_NAME "c:\datrix\clones\GraphTool"
LINE_START 7
LINE_END 10

END_GEN_INFO
BEGIN_METRIC

RtnArgXplSum 0.0000
RtnCalXplNbr 0.0000
RtnCastXplNbr 0.0000

RtnStmNstLvlSum 1.0000
RtnStmXpdNbr 2.0000
RtnStxErrNbr 0.0000

END_METRIC
END_RTN

Figure 5-4 Example output from Datrix

Figure 5.4 shows an abridged example of the output produced by Datrix. The data is

marked up with a simple tagging system. BEG1N_X and END_X tags encapsulate

91

groups of fields. As Covet was examining cloning on a routine level the only metrics

it was interested in were those encapsulated within BEGIN_RTN and END_RTN

tags. There are two types of information stored about each routine. Inside the BEGIN

and END GEN_INFO were fields containing information about each routine

including the method name, its scoped name, mangled name (which contained details

of any parameters) and the start and end line of the routine. Specific metrics were

presented inside the BEGIN_METRIC and END_METRIC tags. They are presented

as the metric name followed by a space and then the value for that particular routine.

5.3.7. Parsing .metrix files

Data taken from the .metrix files was parsed using a Java file created called

DatrixFileParser. Parsing the files was quite straightforward. The only slightly

complicated matter was deciphering the mangled name to extract the parameters

passed to a routine. There is little to no documentation available on how to use or

interpret Datrix's results so this took a little time to work out.

Classriame ' * Mangled Name Parameters

FilePreferences "save Q27unnamedl5FilePreferencesllPrintWriteri" PrintWriter

Object and

Int

Coord3D "_Q27unnamed7Coord3Dfff" Float, Float

and Float

CLLOptionsDialog " Q27unnamedl6CLLOptionsDialog6JFrame" JFrame

Table 5-13 Examples of mangled names within Datrix files

Table 5.13 shows how the mangled name field in Datrix translates into parameters.

The basic method for extracting parameters is as follows.

i . Find the name of the class in the mangled name so for the first example the

classname was FilePreferences.

save Q27unnamedl5 F i l e P r e f e r e n c e s l l P r i n t W r i t e r i

remove upto and including the classname to leave the parameters.

92

i i . l l P r i n t W r i t e r i

iia. i f the string begins with a number (n) then the next parameter is a class rather
than a primitive whose name is n characters long. Next up to the end of the class
name and store this as a parameter. Loop from i i . In the example given above the
number 11 tells Datrix that the next parameter is a class whose name is 11 characters
long. (PrintWriter)

iib. Else i f the string doesn't begin with a number then it must be a primitive and will

be exactly one character i = int, b = boolean, f = float etc... Read this character in and

store it as a parameter. Loop from i i .

After initial testing of Datrix and its results, a problem / error was discovered. Datrix

for an unknown reason produced incorrect line numbering for some routines. There

appeared to be no pattern to the mis-numbering (it wasn't simply a case of Datrix not

including commented out lines). One of the main experiments was to compare each

tool's results to see how many find the same clones. As Covet identifies whole

routines rather than just regions of code it was necessary to convert each routine into

a region of code (using the start and end line numbers as the bounds). If these indices

were inaccurate this would make any comparison involving Covet's CodeRegions

invalid. The solution was to create a simple parser that extracted each method name,

its class name, its parameters and most importantly accurate start and end indices.

Results from this parsing were stored in a text mark-up file similar to the .metrix

files. Each java file had its own method summary file and this was used within the

DatrixFileParser to allocate the correct start and end indices to each routine.

5.4. Modifications to existing tools' results

In addition to the modifications made to Covet had to be made to the results

produced by the other clone detection tools. Every clone detected by a tool had to be

translated into a CodeRegionPair.

Each of the clone detection tools presents its clones in a distinct format. Table 5.14

gives a summary of each tools output format.

93

Tool Format

CCFinder Text file containing pairs of matched code regions

CloneDr Text file containing series of matched code regions

JPlag Multiple HTML files containing pairs of matched code regions

MOSS Text file containing pairs of matched code regions

Covet Internal set of code regions

Table 5-14 Clone detection tools with their output format.

Reading in each tool's results required a specific class to parse the data and convert

them into CodeRegionPairs. There will now follow a brief description of each tool's

results format.

5.4.1. CCFinder

FileL EromL ToL FileR FromR, ToR

0.0 44,13,38 72,13,76 0.0 64,13,64 97,12,102

0.0 161,17,233 172,13,265 0.0 162,17,237 173,17,269

Table 5-15 Output snippet from CCFinder.

Table 5.15 shows a section of the CCFinder output that describes each matched code

region. There are six main fields. FileL is the ID of the first file in the match, FromL

of FileL and is composed of three sub fields separated by commas; Line number,

column and token index which represent the start position of FileL. ToL is similar to

FromL but each sub field represents the end index of FileL.

FileR contains the ID of the second file in the match and FromR and ToR hold the

same information for FileR as FromL and ToL did for FileL. Each file's mapping

from filename to file ID is recorded at the start of the CCFinder report.

5.4.2. CloneDr

=== Tree Clone Tuple ====
Tuple w i t h 3 cl o n e s , 2 parameters; s i m i l a r i t y = 0.9333333333333333
#4 #5b7f450 #4c9a7c0

94

Clone 1: 3 l i n e s from L i n e 113 to 115 F i l e :
F:/Customers/UDurham/GraphTool/Node.java
// Access f u n c t i o n f o r groupParent
p u b l i c Node getParentNode() {

r e t u r n groupParent;
}

#4 #5b7f450 #84db380

Clone 2: 3 l i n e s from L i n e 503 to 505 F i l e :
F:/Customers/UDurham/GraphTool/Edge.java
p u b l i c Node getRealLinkTo() {

r e t u r n l i n k T o ;
}

#4 #5b7f450 #84dbdc0

Clone 3: 3 l i n e s from L i n e 508 to 510 F i l e :
F:/Customers/UDurham/GraphTool/Edge.java
p u b l i c Node getRealLinkFrom() {

r e t u r n linkFrom;
}

Figure 5-5 Sample output from CloneDr

As can be seen from Figure 5.5 CloneDr provides the actual code of each match in its

report. This is probably to compensate for the lack of graphical visualisation

available. The specific parts of this report required for converting the clone series

into pairs of CodeRegions are the number of clones in the series (in this case 3), each

region of code's filename (Node.java and 2 x Edge.java) and finally the start and end

lines. From the example in figure 5.5, three pairs of CodeRegions would be

generated.

5.4.3. JPlag

95

JPlag returns results in a series of HTML files. It was necessary to parse each file

using a perl script and then store all results in a single text file. This text file uses a

very simple format of two CodeRegions' toStringO form separated by a hash

character.

i.e.

C o o r d 3 D . j a v a (1 - 7 2) # I n t C o o r d 3 D . j a v a (1 - 7 2)

S e1ec tMenu.j ava(8-40)#GraphMenu.j ava (1 4 - 4 5)

S e l e c t M e n u . j a v a (4 2 - 6 6) # G r a p h M e n u . j a v a (6 0 - 8 5)

5.4.4. MOSS

MOSS presents each match grouped into the two files involved.

T y p i c a l S . j a v a + T y p i c a l 4 . j a v a : tokens 964 l i n e s 164
t o t a l tokens 2090 + 2763, t o t a l l i n e s 469 + 507, percentage matched

46% + 34%
67-76, 67-76: 23
85-165, 83-163: 380
253-267, 164-178: 109
273-282, 179-188: 67

Figure 5-6 Output from MOSS

As figure 5.6 shows MOSS provides two files and then a series of matches found

within and between the two files. It also provides details of the number of tokens

involved in each match. However, this information is not required to generate

CodeRegions and is ignored. Figure 5.6 would produce 4 CodeRegions all involving

the files Typical5.java and Typical4.java.

5.5. Chapter Summary

This chapter gave the details of the implementation phase of the thesis. This included

the creation of Covet by making adaptations to Datrix such as the fix added to the

line numbering system. It also included details of how the different tools clones were

translated into a single data structure. The creation of such a data structure was

important to allow the comparison of each tool's clones. An explanation of how the

metrics used in Covet were chosen.

96

6. Case Studies

6.1. Case Studies Overview

This chapter will present the three case studies used in this thesis. Following this, the

results from each of the experiments are presented (described in chapter 4).

6.2. Detection Tools and Target Systems

Each clone detection tool in the study was evaluated using 3 software systems (case

studies) written entirely in Java. Al l of the systems were written at the University of

Durham by either undergraduates or postgraduates from within the university. This

offered several advantages, firstly i f necessary, the original programmer could be

contacted to verify whether or not a piece of code was the result of copy and pasting.

It also made independent verification easier because of the uniformity of layout style.

The three systems were as follows:

System name Purpose Development Size

GraphTool Graph plotting tool Developed for the Computer

Science department by a

postgraduate student (1999)

16,335

Club Tropicana Cocktail mixing and

optimising system

Developed as part of a group

project consisting of 6 people

(2002)

23,967

Durham

Barcrawl Planner

Route Planner for a

"bar crawl"

Developed as part of a group

project consisting of 6 people

(2001)

8,741

Table 6-1 Systems used in the clone detection experiments

In the method it was stated that variation in size was an important factor to see how

scale affects the clones detected. Table 6.1 shows that the tools range from just under

9K to nearly 24K. There are also differences in the development of each case study

as Club Tropicana and the Durham Barcrawl Planner are both academic projects

whereas GraphTool, although developed for the university, was in effect a

97

commercial project. GraphTool is also distinguished because it was developed by a

single individual not a group. Club Tropicana is the largest of the three case studies

in size but it includes an open source project called JavaLayer [JavaLayer], which is

used to decode and play MP3 audio files. Both Club Tropicana and The Durham

Barcrawl Planner were created with the aid of JBuilder which is an integrated

development environment. JBuilder also provides automatically generated code for

GUI's. Automatically generated code should provide a substantial amount of cloned

code.

Four established detection tools' were used in the case study; JPlag, MOSS,

CCFinder and CloneDr. JPlag and MOSS are web-based academic tools aimed at

detecting plagiarism in student's source code. CloneDr and CCFinder are stand-alone

tools looking at code duplication in general. A fifth tool Covet is also included in the

results from the study.

6.3. Qualitative Evaluation of each tool

This section contains the results of the qualitative evaluation described in section 4.6.

Each tool is evaluated on the same metric.

M O S S ' ; :

Supported Platform Any platform, processing is carried out on a server at

Berkeley University. Submission requires a perl script.

Languages 8 (C, C-i~i-, Java, Pascal, Ada, ML, Lisp, and Scheme)

Maximum Source Size

(SLOG)

No maximum limit was stated. But it is designed for

academic submissions.

Number of

preparation steps

0. Submission to the server is carried out automatically by

a perl script.

Time Overhead Moss relies on submission of the source code over the

internet. Turnover time can also be affected by network

traffic and the speed of connection being used by the user.

Visualisation Features HTML summary of matches found. Selecting a match

takes user to the two sections of code presented side-by-

1 Originally DUPLOC was planned to be included but problems with the batch mode
operation made this unfeasible.

98

side and colour coordinated.

Documentation level Minimal but sufficient explanation of how the tool works

and how to interpret the results. Comments within the

submission script explain its usage.

Support Level MOSS is a non-commercial tool and so there is no formal

support.

Learning Curve MOSS provides a simple service and is very easy to

operate minimal learning is required.

User Interface Command line submission and web based presentation of

results.

Table 6-2 Evaluation results for MOSS

Table 6.2 describes the various features MOSS provides. MOSS accepts submissions

solely for academic purposes. This and the lack of security and support means that it

is not suitable for commercial application. However, MOSS is compatible with a

wide range of programming languages and is widely used in academia for plagiarism

detection.

JPlag

Supported Platform Any platform, processing is carried out on a remote

server. Submission uses either a Java application or

applet.

Languages 4 (C, C - I - + , Java and Scheme)

Maximum Source Size

(SLOC)

No maximum limit was stated. But it is designed for

academic submissions.

Number of

preparation steps

0. Submission is carried out automatically by the Java

applet/application.

Time Overhead JPlag faces similar delays to MOSS. JPlag also requires

the user to wait while it returns the results to the user as

opposed to MOSS which simple emails the user the URL

from where they can browse the results online.

Visualisation Features HTML summary of matches found. Selecting a match

takes user to the two sections of code presented side-by-

side and colour coordinated. JPlag and MOSS use

identical interfaces JPlag was the original.

99

Documentation level More extensive than MOSS there is a paper explaining

how JPlag works and detailed descriptions of how to

interpret the results.

Support Level Support is provided by Guido Malpohl via email

responses were usually returned within 24 hours.

Learning Curve JPlag provides simple functionahty and is very easy to

use.

User Interface Command line submission and web-based presentation of

results.

Table 6-3 Evaluation results for JPlag

As with MOSS the academic nature of JPlag (described in table 6.3) means that it is

not viable for commercial application. It supports fewer languages than MOSS but

still is used widely in academia.

An evaluation of CloneDr (table 6.4) is a difficult task as a Java version of the

system was not ready for release. Semantic systems [SemSys] very kindly allowed

the submission of source code and then returned the results via email. However, it is

possible to describe several features of CloneDr that can be used to compare it with

the other tools.

CloneDr

Supported Platform Windows NT / 2000

Languages COBOL, C, C+-I- and Java but can be extended by

providing the relevant parsing information.

Maximum Source Size

(SLOG)

1 million source lines - which again according to

Semantic Designs can be upgraded for larger systems.

Number of

preparation steps

If the target system contains only source code written in

the languages mentioned previously then none. Otherwise

a "DMS domain language definition" must be provided.

Time Overhead Unknown.

Visualisation Features None.

Documentation level Documentation consists of two text files Readme.txt (2

pages) and Userguide.txt (12) pages. They provide

adequate detail on how to use the tool.

Support Level Very Good. Semantic Designs appear very responsive to

100

user enquiry.

Learning Curve Unknown.

User Interface CloneDr provides a graphical and command line

interface.

Table 6-4 Evaluation results for CloneDr

C(ode)C(lone)Finder

Supported Platform Windows NT / 2000.

Languages C, C-i-f-, Java and Cobol but can apparently be extended.

Maximum Source Size

(SLOC)

None. CCFinder is aimed at finding code in large scale

systems.

Number of preparation

steps

None.

Time Overhead Minimum. CCFinder has been developed with speed in

mind.

Visualisation Features CCFinder comes with a Java application called Gemini.

Gemini provides interprets the results as a dot plot. This

compares the files with each other. Very similar to

DUPLOC. Focusing in on a dot reveals the actual code.

Documentation level Two Files. A text file describing how to use the command

line driven CCFinder and a HTML page on how to use

Gemini. Both are detailed.

Support Level Unknown.

Learning Curve Higher than the other tools as there is more functionality

with the addition of Gemini.

User Interface CCFinder is a simple command line interface and Gemini

uses a GUI.

Table 6-5 Evaluation results for CCFinder.

CCFinder (see table 6.5) provides an efficient and scalable clone detection method.

With the addition of Gemini, the detection of clones is fairly straightforward. Gemini

also allows the user to change the settings, making clone detection much simpler.

Although the additional visualisation features provided means the learning curve for

the tools is steeper than the other tools.

101

6.4. Comparison of different tools output

Presented here are the results from executing each clone detection tool from the three

case studies. For the following experiments the minimum size of clone considered

(the threshold) was set to 20 lines. This value was eventually chosen as the best cut

off point between wasting time reading through hundreds of spurious matches and

missing valuable clones. Figures 6.2 to 6.4 are bar charts showing the results

obtained for the case studies. Alongside the potential clones detected by each of the

clone detection tools is the number of actual clones. These actual clones are the

number of potential clones that were manually verified using the method described in

section 4.7.1.

GraphTool: Clone Detection Tool Results vs
Manually Verified

300 7

250

200

150

100

50

0

H Potential Clones

1 Actual Clones

C C F I N D E R

272

144

CLONEDR

20

20

C O V E T

51

34

JPLAG

71

49

MOSS

26

26

B Potential Clones |

• Actual Clones

Figure 6-1 Clones identified for GraphTool case study

Figure 6.1 shows the clones identified by each of the clone detection tools from

GraphTool. These results show clearly that CCFinder identified a much greater

(nearly 4 times greater) number of potential clones (272) than any of the other tools.

JPlag identified the second largest number of clones with 71. Following this Covet

identified 51, Moss 26 and CloneDr identified the least number of potential clones

(20). An interesting statistic to investigate is the percentage of actual clones. CloneDr

and MOSS identified the lowest number of clones but achieved a 100% precision

102

because every potential clone identified was verified as an actual clone. As the

number of clones identified increased it seems the general trend is the percentage of

actual clones decreased. Covet and JPIag's precision ratings were 68 and 69%

respectively. Out of the potential 272 clones identified by CCFinder only 52% were

verified as actual clones.

Barcrawl Planner: Clone Detection Tool Results vs
Manually Verified

600

500

400]

300

200

100

0

m Potential Clones
• Actual Clones

CCF INDER

559

388

CLONEDR C O V E T JPLAG

118

88

MOSS

100

96

Figure 6-2 Clones identified for the Barcrawl planner case study

Figure 6.2 shows that as with GraphTool CCFinder identified a much greater number

of potential clones than the other tools (559). However, in this case study CCFinder

identified nearly 5 times as many clones as JPlag. JPlag was the tool that found the

second highest number of potential clones with 118. MOSS found slightly less with

100. CloneDr and Covet identified a very small number of clones, 6 and 7

respectively. As with the GraphTool case study, CloneDr identified the least number

of potential clones. This low figure for Covet is in contrast as it identified the second

highest number of clones in the GraphTool case study. Examining the percentage of

potential clones that were verified as actual clones shows that CCFinder's reliability

rate increased by 17% from the GraphTool case study to 69% for the Barcrawl

planner. Although MOSS and JPlag identified a similar number of potential clones

there was a significant difference in their reliabihty ratings. 96% of MOSS's

potential clones were actual clones whilst only 74% of JPIag's were actual clones.

103

CloneDr and Covet had very high reliability rates, 83% and 100%. CloneDr's

reliability rating is lower but considering that it only identified 6 potential clones the

inclusion of only 1 false-positive has a significant impact on the reliability rate.

Tropicana : Clone Detection Results vs Manually
Verified

300

250

200

150

100

50

0

B Potential Clones

I Actual Clones

CCFINDER CLONEDR

251

155

C O V E T

21 157

13 140

[k
JPLAG

55

31

MOSS

40

33

B Potential Clones

• Actual Clones

Figure 6-3 Clones identified for the Tropicana case study

Figure 6.3 shows that CCFinder has again identified the greatest number of potential

clones of all the tools (251). As with GraphTool, Covet has identified the second

highest number of potential clones with 157. The difference between the number of

potential clones identified by CCFinder and Covet is the smallest of all the case

studies. JPlag identified the lowest number of clones for all the case studies with 55

potential clones. MOSS identified 40 potential clones, which is lower than the

Barcrawl Planner but greater than GraphTool. CCFinder has a slightly lower

reliability rating for Tropicana with 61% than the Barcrawl Planner (69%) but this is

still greater than the 52% reliability achieved in GraphTool. CloneDr again, as with

all the other case studies, identified the least number of potential clones (21). One

particular difference here is the much lower reliability rating of 61%. MOSS

identified 40 potential clones and for this case study has a fairly high reliability

rating of 82%. JPlag identified more potential clones than MOSS with 55 but less

actual clones (31) hence its reliability rating is much lower at 52%. Covet's

reliability rating of 89% is again high. The number of actual clones identified by

104

Covet was only 15 less than CCFinder this despite identifying 94 less potential

clones. These two facts indicate that Covet was the most successful of all the tools

for this particular case study.

6.5. Size Breakdown of each tool's results

This section will attempt to analyse the sizes (in terms of LOC) of clones each tool

identified as a potential clone. Obviously this figure is bounded by the minimum

threshold set along with the size of the source code being examined. Calculating the

statistics was a simple case of iterating through the CodeRegionPairs generated and

totalling up the largest CodeRegion's size and keeping track on the maximum value

within that set.

Tool GraphTool Barcrawl Planner Tropicana Tool

Max Mean Max Mean Max Mean

CloneDr 100 37 50 29 497 61

Covet 114 37 22 21 169 40

JPlag 78 33 112 37 426 44

CCFinder 80 30 50 30 423 31

MOSS 57 27 100 31 275 41

Table 6-6 LOC statistics for the clones identified for the case studies

Table 6.6 shows the mean and maximum sizes for the potential clones identified for

each of the case studies. There appears to be no trend to the size of clones identified

by each tool. Whereas for each of the case studies it was evident that CCFinder

consistently identified the greatest number of potential clones. For example for the

Graph Tool case study CloneDr and Covet identified, on average, larger clones

whereas in the Bar crawl case study the opposite is true. Table 6.6 shows that within

Tropicana there was one very large clone. Three tools, CloneDr, JPlag and CCFinder

found at least one clone with a size in excess of 420 lines of code however their

mean sizes are not significantly higher than the means for the other case studies.

Moss's maximum clone size is smaller than the other tools but in comparison to the

maximum for the other case studies is very high. Covet's maximum for Tropicana is

the odd one out at 169. This is an expected outcome if the clone spans more than one

105

routine. As Covet is restricted to cloning within routines it could only find a portion

such a clone.

One of the most useful measures for any maintainer is the total percentage of a

system that can be reduced through clone removal. Kamiya [Kam02] describes this

as the potential deflation made possible by removing clones from a system. Figures

6.4 to 6.6 show the percentage of cloned lines for the three case studies according to

each of the clone detection tools.

100.00

90.00

80.00

u 70.00

= 60.00

50.00

40.00

30.00

20.00

10.00

0.00

c
u

% cloned lines in GraphTool

CloneDr Covet JPlag
Tools

CCFinder MOSS

Figure 6-4 Percentage of cloned lines in GraphTool

Figure 6.4 shows that the percentage of code that can be potentially removed

according to all the tools ranges from approximately 6% (MOSS) to 32%

(CCFinder).

106

(0
a> c

c o

% cloned lines in Barcrawl Planner

100.00 -

90.00 -

80.00 -

70.00 -

60.00 -

50.00 -

40.00 -

30.00 -

20.00 -

10.00 -

0.00 -
CloneDr Covet JPlag

Tools

CCFinder MOSS

Figure 6-5 Percentage of cloned lines in the Barcrawl Planner

Figure 6.5 shows that compared with GraphTool a much greater percentage of the

Barcrawl Planner is cloned and can therefore potentially be removed. According to

the clone detection tools the estimate ranges from 2% to 73%. This much greater gap

in estimates from the tools is expected considering the number of clones identified

for Barcrawl Planner (figure 6.2).

107

(0
c

100.00

90.00

80.00

70.00 4

60.00

"S 50.00

% 40.00 4

^ 30.00

20.00

10.00 4
0.00

% cloned lines in Tropicana

CloneDr Covet JPlag

Tools

CCFinder MOSS

Figure 6-6 Percentage of cloned lines in Tropicana

Figure 6.6 shows overall a more conservative estimate of cloning percentage for

Tropicana than the Barcrawl Planner. The estimates from the tools range from 8%

(Covet) to 31% (CCFinder).

6.6. Unique Clone Classes within results

Kamiya [Kam02] describes series of related clones as clone classes and Baxter

[Bax97] as idioms. They both relate to an original piece of logic which has been

proliferated throughout a system. Within each clone class are regions of code that

belong to the same cloning relationship and therefore identifying these allows

maintainers to identify related clones and carryout impact analysis. For example, if

one piece of code has an error in it there is a good chance that its clones will also

contain that same error. A class's length (or size) is the number of CodeRegions that

belong to that class's cloning relation.

108

Tables 6.7 to 6.9 describe the number of clone classes found for each of the case

studies identified by each clone detection tool. They also contain the maximum and

mean lengths. The term length is defined by Kamiya [Kam02] to represent the

number of clones within a clone class. However because of the confusion with may

arise (because length can also mean the size of code regions) the term set size will be

used instead.

Tool # Clone Classes Max. Set Size Mean Set Size

CloneDr 18 2 1.05

Covet 20 6 1.7

JPlag 33 14 3.09

CCFinder 59 90 6.81

MOSS 15 9 2

Table 6-7 Clone classes for GraphTool

Table 6.7 shows that the number of clone classes each tool identified for the

GraphTool case study varied greatly. CCFinder found nearly 60 unique classes of

clones whereas MOSS found only 15. CloneDr and Covet found a similar number of

classes (18 and 20 respectively) but on average the classes in Covet were larger.

CCFinders clone classes contained an average of nearly 7 clones in them which was

more than double those found by JPlag. JPlag identified the second highest number

of clone classes (33) and these classes had a mean set size of approximately 3. The

longest clone class contained 90 related CodeRegions and was identified by

CCFinder.

Tool % Clone Classes Max Set Size Mean Set Size

CloneDr 5 2 1.2

Covet 3 2 1.67

JPlag 38 36 4.66

CCFinder 46 148 15.98

Moss 21 36 6.42

Table 6-8 Clone classes for Barcrawl Planner

109

Table 6.8 shows that the clone detection tools identified less clone classes in the

Barcrawl Planner case study than GraphTool. CCFinder ,as with the GraphTool case

study identified the most and largest clone classes. It identified 13 less clone classes

for the Barcrawl Planner than GraphTool. However, the clone classes were much

larger with nearly 16 instances. All the clone detection tools found larger clone

classes for the Barcrawl Planner in comparison to GraphTool.

Tool # Clone Classes Max Set Size Mean Set Size

CloneDr 19 2 1.05

Covet 17 15 2.65

JPlag 29 10 2.34

CCFinder 68 44 4.98

Moss 24 8 1.96

Table 6-9 Clone classes for Tropicana

Table 6.9 shows that the clone detection tools identified a similar number of clone

classes in Tropicana as they did in GraphTool. CCFinder again found the most clone

classes of all the case studies with 68. However, CCFinder's classes were smaller in

Tropicana with an average set size of approximately 5. CloneDr's results were

almost identical in Tropicana to those in GraphTool. The only difference was in

Tropicana, CloneDr identified one more clone class, the maximum and mean set

sizes of these clone classes were identical to GraphTool.

6.7. Replication Within and Across Programs

Burd [Bur97] distinguishes between clones that appear throughout the same program

and those that appear in other programs within a system. Replication across programs

could indicate the need for a new program which can be included in each source.

Replication within a program can be tackled by applying a unifying method. Tables

6.10 to 6.12 show the results for each system. It must be noted that both JPlag and

MOSS, due to the specific nature of their clone detection (i.e. academic plagiarism),

only look for replication across programs (because there is no rule against students

copying their own code) and so these figures have been marked N/A in the tables

6.10-6.12.

110

Tool Across Programs (%) Within Programs (%)

CloneDr 35 65

Covet 25 75

CCFinder 63 37

JPlag 100 N/A

MOSS 100 N/A

Table 6-10 Percentage of identified clones identified within / across programs for GraphTool

Table 6.10 shows that Covet found the highest proportion of replication within

programs followed by CloneDr. However, CCFinder differs from the other two tools

as it finds a higher proportion of replication across programs.

Tool Across Programs (%) Within Programs (%)

CloneDr 83 17

Covet 57 43

CCFinder 98 2

JPlag 100 N/A

MOSS 100 N/A

Table 6-11 Percentage of identified clones identified within / across files for Barcrawl planner

Barcrawl Planner has some very interesting results. Table 6.11 shows that all the

tools identified a higher proportion of replication across programs. Covet and

CloneDr identified a small number of clones (see figure 6.2) for Barcrawl Planner

and therefore their results are probably not useful in attempting to evaluate the

replication across and within programs. This low number of clones is in contrast to

CCFinder's results as it retrieved its largest number of potential clones for all the

systems. 98% of these were found across programs. This would seem to indicate that

there is a much higher replication of cloning across programs as opposed to within

programs. Although looking at the difference in replication across and within

programs for JPlag and MOSS is possibly not useful it may be useful to note that

JPlag and MOSS identified more clones in Barcrawl Planner than any of the other

systems.

Tool Across Programs (%) Within Programs (%)

111

CloneDr 62 38

Covet 22 78

CCFinder 77 23

JPlag 100 N/A

MOSS 100 N/A

Table 6-12 Percentage of identified clones identified within / across files for Tropicana

From table 6.12 there appears to be no pattern to the results for Tropicana. CloneDr

and Covet are almost symmetrically different with Covet finding 22% of its clones

across and 78% within programs. CloneDr finds 77% of its clones across and 23%

within programs. CloneDr appears to agree with CCFinder by showing a higher

proportion of cloning across programs.

6.8. Intersection between each tool's results

One of the aims of this thesis is to investigate the similarity in the results returned by

various clone detection tools. In other words the experiment is trying to estabhsh

whether the different clone detection tools are finding the same clones. In order to

investigate these issues a decision has to be made as to what constitutes a match.

This is discussed in the Implementation Chapter in the Section 4.5. A specific

CodeRegionPair A is considered a match with another CodeRegionPair B i f A

overlaps more than 60% of B. This overlap relation is not necessary reflective.

Because of the minimum percentage criteria, A overlaps B could be true but B

overlaps A false. It is dependent on the size of each CodeRegion and the number of

lines shared between them.

Tables 6.13 - 6.15 present the results from the experiments carried out on the three

case studies to see i f the clones identified by each tool were similar. In each table the

first column lists the clone detection tool and the row next to it (column two)

contains the total number of potential clones returned by that tool. Subsequent

columns (headed by the name of other clone detection tools) contain the number of

potential clones identified by both the clone detection tool on that row and the other

clone detection tool named in the column. Next to this figure is its percentage of the

total results (in brackets).

112

For example, the second row of table 6.15 shows the results for CloneDr in the

GraphTool case study. The second column (under Total Results) shows that CloneDr

identified 20 clones in GraphTool. Next to this is an x because comparing CloneDr's

clones with themselves is not useful. In the fourth column (labelled Covet) is the

number of clones identified by CloneDr that Covet also identified (in this case 8).

The percentage in brackets is the number of CloneDr's clones that Covet also found,

divided by the total number of clones identified by CloneDr (40%).

Total Results CloneDr Covet JPlag CCFinder MOSS

CloneDr 20 X 8 (40%) 3(15%) 7 (35%) 2 (10%)

Covet 51 6(11%) X 5(10%) 15 (29%) 2 (4%)

JPlag 72 3 (4%) 6 (8%) X 38 (53%) 12 (17%)

CCFinder 272 9 (3%) 20 (7%) 35 (13%) X 14(5%)

MOSS 26 3(11%) 2 (8%) 14(54%) 17(65%) X

Table 6-13 Clone detection tool intersection for GraphTool

Table 6.13 shows the intersection between the clones identified for the GraphTool

case study. There appears to be little intersection between each of the tools. The

tables show that with its large recall, CCFinder has proved the most successful at

finding the other tool's clones. CCFinder found 65% of MOSS's clones and 53% of

the clones identified by JPlag. Covet appears to have identified very different clones

to the other tools in GraphTool, with the exception of CloneDr. Covet found less

than 10% of each of the other tools' clones. CloneDr also found a very small

percentage of the other tool's clones but this is expected as it identified the lowest

number of clones for GraphTool.

Total Results CloneDr Covet JPlag CCFinder MOSS

CloneDr 6 X 2 (30%) 2 (30%) 5 (83%) 0 (0%)

Covet 7 2 (28%) X 0 (0%) 1 (14%) 0 (0%)

JPlag 118 2 (2%) 0 (0%) X 90 (76%) 37 (31%)

CCFinder 559 4 (1%) 1 (0.01%) 91 (16%) X 79 (14%)

MOSS 100 0 (0%) 0 (0%) 40 (40%) 84 (84%) X

Table 6-14 Clone detection tool intersection for Barcrawl Planner

113

Table 6.14 shows the intersection between the clones identified for the Barcrawl

Planner case study. In this instance, there is less intersection between the tools than

in the GraphTool case study. One interesting fact is that JPlag and Covet found no

clones in common. Also CloneDr and JPlag only agreed on two clones. This was also

the case with MOSS and Covet and MOSS and CloneDr. Obviously the low number

of clones identified by Covet and CloneDr meant that they were unable to find a

significant number of the other tool's clones. As with the GraphTool case study

CCFinder found the highest percentage of other tools' clones. It found 83% of

CloneDr's clones, 76% of JPlag and 84% of MOSS's clones. The only exception was

Covet these two tools only agreed on one clone.

Total Results CloneDr Covet JPlag CCFinder MOSS

CloneDr 21 X 3(14%) 6 (28%) 17 (81%) 7 (33%)

Covet 157 4 (2%) X 6 (4%) 43 (27%) 8 (5%)

JPlag 55 4 (7%) 14(25%) X 37 (67%) 24 (43%)

CCFinder 251 21 (8%) 32 (13%) 39 (15%) x 36 (14%)

MOSS 40 10(25%) 16(40%) 26 (65%) 38 (95%) X

Table 6-15 Clone detection tool intersection for Tropicana

Table 6.15 shows an overall higher level of intersection between the clone detection

tools' clone sets for Tropicana than the other two case studies. Yet again CCFinder

found a high percentage of the clones identified by other tools. With the exception of

Covet it found between 67 - 95% of the other tool's clones. Throughout all three

case studies CCFinder has found a lower percentage of Covet's clones than any other

tools which indicates that the two tools identify very different clones. Conversely

CCFinder consistently identifies more of MOSS's clones than it does for the other

tools. CCFinder found 65% of MOSS's clones in GraphTool, 83% in the Barcrawl

Planner and finally 95% in the Tropicana case study. This indicates that CCFinder

identifies similar clones to MOSS.

6.9. Clone by Clone visualisation

The clone-by-clone visualisation technique (Appendix A) could be used to spot

which clones are found by the majority if not all of the clone detection tools. An

114

enhancement to this would be the ability to focus in on the actual source code

identified by each row in the table.

6.10. Precision and Recall Analysis

Precision and recall are two widely used metrics in the evaluation of information

retrieval systems such as search engines. Recall can be used as a measure of the

proportion of actual clones identified by the tool. It is unfeasible to find all clones

within a case study as it would require an extremely large amount of code reading.

This degree of accuracy was not deemed necessary given the breadth of the analysis

covered within the thesis. Precision looks at the proportion of potential clones

identified that were verified as actual clones. These metrics obviously depend on the

manual verification process which was explained in Chapter 4, Section 4.5.

CloneDr CCFinder Covet JPlag MOSS

Precision (%) 100 52 52 69 100

Recall (%) 8 59 14 20 11

Table 6-16 Precision and recall results for the GraphTool case study

Table 6.16 shows that both MOSS and CloneDr achieved a precision value of 100%.

However, CloneDr and MOSS's recall is quite low, 8% and 11% respectively. JPlag

managed the second highest precision value with 69% and has a higher recall value

of 20%. Covet and CCFinder recorded a precision value of just 52%. However,

CCFinder had the largest recall value, with 59%, whereas Covet scored quite poorly

with a recall of just 14%.

CloneDr CCFinder Covet JPlag MOSS

Precision (%) 83 69 100 74 96

Recall (%) 1 79 1 18 19

Table 6-17 Precision and recall results for the Barcrawl planner case study

In contrast to the results for GraphTool, table 6.17 highlights Covet showed a

significant increase in its precision for the Barcrawl Planner. However although all

the potential clones identified were verified it only identified 1% of the total clone

set. This small recall value was shared with CloneDr whose precision also dropped

115

from 100% in GraphTool to 83% in the Barcrawl Planner. MOSS's precision fell in

this case study by 4% but its recall value increased by 8%. JPlag's values,

conversely, showed a 5% increase in precision and a 2% drop in recall (when

compared to GraphTool). CCFinder's precision and recall values were both

significantly better in the Barcrawl Planner with an increase of 17% in precision and

20% in the recall value.

CloneDr CCFinder Covet JPlag MOSS

Precision (%) 56 61 90 56 82

Recall (%) 4 48 43 9 10

Table 6-18 Precision and recall results for the Tropicana case study

Table 6.18 shows a large increase in Covet's recall value (43%) whilst still returning

a high degree of precision (90%). CloneDr's precision in contrast dropped to 56%

and it also only achieved a 4% recall. CCFinder again had the highest recall with

48% but its precision was only 61%. MOSS and JPlag performed considerably worse

with lower recall (82% and 56% respectively) and lower precisions (9% and 10%)

than they managed for any of the other case studies.

6.11. Size Threshold Sensitivity

For each of the experiments described so far a minimum size threshold of 20 was set.

However, low recall values for certain clone detection tools using a threshold of 20

may indicate that one size threshold may not be an appropriate approach. To

investigate this further, clone detection was carried out using thresholds ranging from

10 to 30. The results are presented in figures 6.7 to 6.9. Figures 6.10, 6.11 and 6.12

show the percentage of clones identified by each tool as the minimum clone size

threshold increases. The minimum size thresholds are separated into quartiles along

the X-axis. Each bar shows the percentage of clones identified for each tool during

the increase from the minimum size threshold of ten for that range.

116

Size thresholds output for GraphTool

700

a 400

C 300

>—CLONEDR

I - C O V E T

, J P L A G

C C F I N D E R

M O S S

- I \ 1 r

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Min size threshold

Figure 6-7 Results from minimum clone size threshold experiments for GraphTool

Figures 6.7 - 6.9 show the actual number of clones identified by each tool for the

three case studies GraphTool, Barcrawl Planner and Tropicana respectively. Figures

6.10 - 6.12 show the decrease in percentage of the number of clones outputted by

each of the tools for the three case studies. The percentage is calculated from an

"original" clone set where the minimum size threshold was set to 10.

117

2500

Size thresholds output for Barcrawl Planner

c 1000

ro~-rg-ai-i . i . i . i . i . i a;
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Mln size thresholds

•CLONEDR
•COVET
JPLAG

•CGFINDER
•MOSS

Figure 6-8 Results from Size threshold experiments for Barcrawl Planner

T3 2500

I
S- 2000

Size thresholds output for Tropicana

\
IB

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Min size threshold

- C L O N E D R

- C O V E T

- J P L A G

- C C F I N D E R

- M O S S

Figure 6-9 Results from Size threshold experiments for Tropicana

118

Reduction in % of clones outputted for GraphTool

s;
(0 2 o
0)

100.00

90.00 4

70.00

60.00

40.00

30.00

20.00

10.00

"10-15" "10-20" "10-25"

IVIin. Size Threshold Ranges

"10-30"

m CLONEDR
• COVET
• JPLAG
HI CCFINDER
• MOSS

Figure 6-10 Reduction in % of clones outputted for the minimum size threshold ranges for

GraphTool

Figures 6.8 and 6.12 show interesting results for the number of clones identified for

the Barcrawl Planner case study. The result indicates that clones identified for

Barcrawl Planner were far more sensitive to increases in the minimum size threshold.

Figure 6.11 shows a remarkable change in the results for CloneDr. In the first

quartile there was only a reduction of approximately 4% from 462 clones outputted

to 445. This figure had dropped to just 6 clones identified using a minimum size

threshold of 20 a decrease of approximately 99%. Figure 6.11 shows that there are

two large drops in the number of clones identified at threshold settings of 18 (from

444 to 38) and then again at 20 (from 38 to 6). Finally by the fourth quartile nearly

100% of the clones had been filtered out and only one clone remained with a size

greater than 30 hues. Again as with the GraphTool case study. Covet's results

followed a similar pattern to CloneDr's. The gap between the 1 '̂ and 2"'' quartiles

were not as great as 44% of Covet's clones were already filtered out by 15.

Examining figure 6.8 it is clear that the increase from 10 to 11 filtered out

approximately 40% of Covet's clones. This reduction was low and steady until a

minimum size threshold of 19 was reached. A drop from 473 clones identified to just

7 clones at 19 explains the reduction figure of 99% in the second quartile. By the

third quartile (and more precisely a minimum size threshold of 23) 100% of Covet's

119

clones were filtered out making Covet the most sensitive to increases in the

minimum size threshold for Barcrawl Planner. Results for CCFinder and MOSS were

very similar both lost 48% of their clones in the first quartile. CCFinder filtered out

slightly less than MOSS in the second quartile 76% as opposed to 78%. The third

quartile again showed CCFinder filtering out slightly less than MOSS with a loss of

87% to MOSS'S 89%. Overall, CCFinder filtered a higher percentage of clones by 30

(93%) whereas MOSS only lost 91% of its clones in total. JPlag (as with GraphTool)

was the least sensitive to the increases in minimum size threshold. 68% of its clones

were filtered out by 30, slightly less than with GraphTool. In the first quartile only

20% of its clones were lost, by the second quartile the reduction was 41% and 55%

in the third quartile.

Reduction in % of clones outputted for Barcrawl
Planner

0)

•a

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

"10-15" "10-20" "10-25" "10-30"

Min. Size Threshold Ranges

Isl CLONEDR
• COVET
• JPLAG
E CCFINDER
• MOSS

Figure 6-11 Reduction in % of clones outputted for the minimum size threshold ranges for

Barcrawl Planner

120

Reduction in % of clones outputted for Tropicana

0)
(0
(0

2

•o

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

20.00

10.00

mCLONEDR
• COVET
• JPLAG
El CCFINDER
• MOSS

"10-15" "10-20" "10-25"

Min. Size Threshold Ranges

"10-30"

Figure 6-12 Reduction in % of clones outputted for the minimum size threshold ranges for

Tropicana

Figures 6.9 and 6.12 show a steadier reduction in the number of clones filtered out

for Tropicana. CloneDr especially has a steadier filtering out of the clones produced;

There are no large increases in the number of clones filtered out from one size

threshold to the next. Figure 6.12 shows that 57% of its clones are filtered out in the

first quartile this increases to 69% in the second, 85% in the third and 89% in the

fourth. This is a flattening out of the number of clones being filtered out (see figure

6.6) the largest drop is seen at 11 with the number of clones identified decreasing

from 67 to 47. This figure then decreases to 34 clones by 12 but from 12 to 30 the

largest drop in number of clones identified leaving just 4 clones left.

The reduction in the number of clones identified for Covet is greatest in the first

quartile, losing 73% of the clones originally identified with a threshold of 10 by 15.

In particular, the increase in threshold from 10 to 11 and 11 to 12 sees a large

reduction in the number of clones identified. After the first quartile the number of

clones filtered out is much smaller in the second quartile. A further 11% is filtered

out taking the total to 84% and this reduction increases by 2% in the third quartile

and remains at 86% in the fourth and final quartile. MOSS filters out 92% of the

clones identified by the final minimum size threshold of 30. Initially with a threshold

121

setting of 10 MOSS identifies 262 clones and at 15, 92 clones this shows a reduction

of approximately 65%. Significant loss is also made in the 2"̂ * quartile with 85% of

the original clone set filtered out. This loss is steadier in the 3'̂ '' and 4"* quartiles

increasing by 6% to 90% in the 3"̂ and finally 92% in the 4'" quartile.

JPlag continues to be the least sensitive to changes in the minimum size threshold

having the lowest total reduction (77%) in clones identified from the original clone

set. It also filters out significantly less than all the other clone detection tools in the

1'' quartile at 33%. By the 2"*̂ quartile it has filtered out 49%, 64% by the 3"̂ and

77% by the 4*.

As with the Barcrawl Planner case study CCFinder filters out the greatest percentage

of clones from the original clone set and therefore is the most sensitive to increases

in the minimum size threshold. CCFinder actually filters out approximately the same

percentage of clones in its 1 '̂ quartile as JPlag filtered out in total (approximately

78%). CCFinder's larger recall means that 2232 clones are lost in its 1 '̂ quartile

whereas just 83 clones were lost for JPlag. The number of clones filtered out for

CCFinder increases in the 2"̂ * quartile to 92%, which is greater than or equal to every

other tools' total reduction in percentage terms. In the 3'̂ '' quartile 96% of the clones

in CCFinder's original clone set have been filtered out and by the 4* quartile 98% of

CCFinder's original clone set are lost.

6.12. Chapter Summary

This chapter presented the results from each of the case studies of the experiments. It

details the results of the qualitative experiments. The next chapter provides further

evaluation of the results from the case studies.

122

7. Evaluation

The purpose of this study was to investigate different techniques and tools for

removing cloned (and therefore redundant) code. This particular investigation can be

split into two main parts. Firstly the creation of an experimental clone detection tool

called Covet. Secondly a wider study (which included Covet) attempted to discover

which tools best aid preventative software maintenance.

Clone detection tools address code optimisation, which is a specific part of

preventative maintenance. Less code means less code reading which is one of the

most time and labour intensive aspects of software maintenance. Chapter 3 outlined a

set of ten hypotheses which were to be tested through a series of experiments. This

chapter first evaluates the development of Covet and then examines the results for

each of the experiments carried and relating them to the hypotheses they tested.

7.1. Covet's development evaluation

Results from Covet's initial metrics experiments would seem to justify Mayrand's

[May97] use of a test group to select the metrics used in clone detection. With a

precision of 83% and the second highest recall (20%) of all the metric groups

experiment three would seem to point out that any further work in refining Covet

should again make use of a preliminary study using sample programs which are

known to contain significant cloning. It appears that the attempts to automatically

generate thresholds were not a success. This may not be surprising when considering

that the other clone detection tools can find matches that do not conform necessarily

to routines. Other clone detection tools might find a cloning relationship between the

last 30 lines of two 50-line routines. However, if the first 20 lines in these routines

are not clones and are completely different then this will produce unhelpful threshold

settings that will not identify actual clones. One solution to this might be in future to

ensure that when the CodeRegions from other tools are "rounded" up or down to

whole routines that at least 90% of the routine is overlapped. Also within the

automatically generated clones there were clones that had not been manually verified

(experiment 5). These may have included false positives and so have been unhelpful.

123

This chapter will now focus on the hypotheses described in the chapter 4.

7.2. Hypotheses 1 and 2

Hypothesis 1. Each clone detection tool will output different proportions T R U E

of cloning for the same case study.

Hypothesis 2. Case studies of differing size and development background T R U E

will output different proportions of cloning for the same clone detection

tool.

Hypothesis 1 predicts that the percentage of cloned code identified by each tool will

vary significantly and the results for each case study prove this to be true.

Throughout each case study CCFinder identified a much larger set of potential clones

than any of the other tools whereas CloneDr consistently identified the least number

of clones. One interesting fact was that out of the three case studies none of the tools

identified the same number of clones. This then poses a dilemma for a maintainer.

Which tool should be beheved? One use for a clone detection tool might be to run as

a preliminary stage of re-engineering. The percentage of cloning can be used to

indicate the state of a legacy software system. Johnson [Joh94] points out that

cloning is a symptom of ''software ageing". The maintainer must decide whether to

trust a diagnosis from CloneDr or the to believe the percentage of cloning found by

another tool such as CCFinder. An obvious solution, which is analogous to the

medical profession, is to seek a second, third or even fourth opinion. If two or more

tools agree that there is a high proportion of cloning within a legacy system then this

will provide the evidence a maintenance team requires to justify some form of

modification.

Within this thesis clones were categorised as replication within a program and across

programs. From the case studies it appears that some of the tools tend towards

identifying a majority of clones either within a program or across programs. This is

certainly the case with JPlag and MOSS which only attempt to identify replication

across programs. Furthermore, CCFinder consistently identified the majority of its

clones across programs, 68% in GraphTool, 98% in the Barcrawl Planner and 77% in

Tropicana.

124

Case study Total Potential Clones Total Actual Clones

GraphTool 440 273

Barcrawl Planner 779 584

Tropicana 524 372

Table 7-1 Total potential and actual clones for each case study.

Hypothesis 2 predicts that the development environment and size of a case study will

have a significant effect on the proportion of clones within it. Table 7.1 summarises

the total number of potential clones identified for each of the case studies alongside

the total number of actual clones. Of the three case studies used in this thesis the

majority of the clone detection tools found that the smallest case study in terms of

lines of code contains the most clones. GraphTool is the only tool to have been

developed without the aid of an Integrated Development Environment and is also the

only non-academic project. Despite being nearly twice the size of the Barcrawl

Planner, GraphTool contains approximately half the number of clones (both actual

and potential). An explanation for this high proportion of cloning might be the

inclusion of automatically generated Graphical User Interface (GUI) code. During

manual verification of the clones in each case study it was found that a high

proportion of the clones detected were in GUI related code. If this is the case then

why is the number of clones identified in the Tropicana case study not higher?

Tropicana was also developed with the aid of an Integrated Development

Environment and is much larger than the Barcrawl Planner case study. An

explanation might be that included within Tropicana is an open source project that

decrypts and plays MP3 music files. This project has no GUI related source code in it

and is 12,710 LOC in size. Subtract this from the total 23,937 LOC and Tropicana is

only 11,257 LOC in size.

7.3. Hypotheses 3 and 4

Hypothesis 3. Case studies developed without the aid of an integrated F A L S E

development environment will contain on average clones which are

greater in size.

Hypothesis 4. Clones identified using metric comparisons will differ F A L S E

greatly in size from clones identified by tools that directly compare

125

source code.

Hypotheses 3 and 4 focus on the average size of the clones identified in the case

studies. Size in this instance refers to the number of lines of code contained within a

clone and was found to be one of the most successful metrics for verification. The

larger the sections of code identified as potential clones by a tool the less likely their

similarity is coincidental. Taking advantage of this fact allowed the use of a

minimum size threshold. Potential clones below a certain threshold were filtered out.

Maintainers will also use this threshold because there is very little benefit in the

detection and removal of small clones. Large clones were found to be of greater

significance and value to software maintenance. These large clones also are better

candidates for reuse as they usually captured a whole piece of logic, for example file

operations. Maintainers may wish to remove only a percentage of the clones within a

case study and prioritising clones on the basis of their size may provide a useful

device.

Hypothesis 3 states that case studies developed without the aid of an integrated

development environment will contain larger clones. This hypothesis was chosen

because it was thought that clones created by a human would contain a significant

piece of logic and would therefore be quite large. Integrated development

environments are incapable of generating original code and therefore even small

sections of code will be clones. However, this was not found to be the case. Results

from the size breakdowns of each case study showed although GraphTool contained

on average clones of greater length than the clones contained within the Barcrawl

Planner case study its clones were much shorter than Tropicana's clones.

126

Tool name First Clone (lines

cloned)

Second Clone (lines

cloned)

Third Clone (lines

cloned)

CCFinder 9-66 82-505

JPlag 9-77 79-504

CloneDr 9-505

MOSS 83-357 475-494

Covet 164-242 264-303 305-472

Table 7-2 Clone detection tools' clones between Backdrop and oldBackdrop

1 66 164 242 357 505

• cCFInderlJPlag . CloneDr • MOSS BCovet

Figure 7-1 Visual representation of table 7.2

Hypothesis 4 tests the differences in the average sizes of clones identified by Covet

and the other tools used in the case studies. One obvious reason why this might be

the case is the scope at which the metrics were generated and compared. Covet uses

metrics generated at the routine level and therefore any clones identified are

restricted in size. It is impossible, for example, for Covet to identify a whole file

even i f it is compared to another identical file. Table 7.2 and Figure 7.1 illustrate this

point. Two virtually identical files (Backdrop.java and oldBackdrop.java) were

included in the Tropicana case study. Comparing these two files showed that apart

from the renaming of the class and constructor there were only two differences; a

variable called delay set to a different value and a GUI layout statement which had

been commented out. Table 7.2 shows how Covet identifies three relatively smaller

(79 LOC, 40 LOC and 168 LOC) clones in comparison to the other tools (CloneDr

found only 1 clone which was 497 LOC in size). These smaller clones were sub

clones of the longer clone identified by CloneDr.

However the difference observed in the example given in Table 7.2 is not reflective

of cloning as a whole. Results from the three case study show that although for the

127

GraphTool and Tropicana case studies the maximum clone size identified was

significantly lower than the other tools this was not reflected in the mean. None of

the tools consistently identified clones of the same size. It therefore appears that

there is no great difference in the size of clones identified using metric comparisons

as opposed to other clone detection techniques.

In addition, the scope of the metrics can be altered. If Covet were changed from

comparing the metrics of routines to the metrics of files then it would have probably

identified the whole of Backdrop and oldBackdrop.java.

7.4. Hypothesis 5

Hypothesis 5. Case studies developed with the aid of an automatic F A L S E

code generation will produce more clone classes.

Clone classes are important to maintainers because they represent groups of clones

that share a common source. Identifying these classes allows the maintainer to

potentially replace all the clones within a class with some unifying construct. If a

clone class is large it indicates that the logic being cloned is widely used and, as with

larger individual clones, may be ideal candidates for extraction for reuse.

Hypothesis 5 attempts to link an increase in the production of clone classes with the

use of automatically generated code. It was thought that since automatically

generated code has a very limited capacity for variation in programming then this

would lead to clusters of clones all sharing a common ancestor. The act of including

generated code is in effect cloning. The only difference is it is the machine that is

doing the copy and pasting.

However the results from the case studies were inconclusive. Although CCFinder

found significantly larger clone classes for the Barcrawl planner, nearly 16 clones per

class on average as opposed to approximately 7 in GraphTool, it found on average

just fewer than 5 clones in the Tropicana. CloneDr found clone classes of exactly the

same size in Tropicana and GraphTool an average of just over 1 clone. There seemed

to be no overall pattern to the size of clone classes with Covet finding the largest

128

classes (2.65) in Tropicana and classes virtually identical in size for GraphTool and

the Barcrawl Planner (1.7 and 1.67 averages respectively).

As with the other experiments described in this thesis CCFinder found more than any

of the other tools. It identified more classes and these were larger than any of the

other tools. Covet and CloneDr identified similar numbers of clone classes but their

sizes were different with CloneDr finding on average larger clone classes than Covet.

7.5. Hypotheses 6

Hypothesis 6. Replication across programs is more prevalent than T R U E

replication within programs.

Replication across programs pose different maintenance problems than replication

within the same program. Clones spread widely throughout a system cause the

potential ripple effect to increase. Kamiya [Kam02] presents a metric called radius

for measuring exactly how far a clone has spread. Clones with a large radius cause

maintainers greater problems because it is "'difficult to maintain their consistency

correctly" [Kam02]. This is the case because the clones spread further away from

their original source the relationship between the two is lost. This increases the

program complexity of the system because future maintainers will attempt to

understand both pieces of code. When two cloned code routines are serial it is fairly

obvious to the maintainer. The maintainer then only has to understand one of the

functions (of course an understanding of modifications to the clones is required as

well). This thesis did not look specifically at the radius of clones instead the focus

was simply whether a clone was contained within the same program or belonged to

more than one program. Systems with a high proportion of replication across

programs will require greater effort to maintain than those with a higher proportion

of cloning within programs.

Hypothesis 6 focused on the proportion of replication that exists across programs. It

was thought that replication within a program would be less prevalent because a

programmer would not design a single program to contain duplicated logic.

However, i f the software system was extended further on in its life cycle additional

programs may be added. These additional programs may share similar functionality

129

with the existing programs but as a time saving device the programmer decides to

clone existing code rather than re-engineering it. Also the prevalence of

automatically generated code in Tropicana and the Barcrawl Planner means that

cloning will happen across files as each GUI screen would usually be contained

within separate files and these files would contain cloned code. Hence, if cloning

exists it was thought that it would more likely exist across programs. From the results

this appears to be the case for the three case studies. Case studies containing more

clones had a higher proportion of replication across clones. Tropicana contained the

most clones and was the only case study to contain a proportion of replication across

clones greater than 50% for all the tools. Tropicana contained the second highest

number of clones and the tools CloneDr and CCFinder both found a much higher

percentage of replication across programs than for GraphTool.

7.6. Hypotheses 7 and 8

Hypothesis 7. Each clone detection tool will identify different sets of T R U E

clones.

Hypothesis 8. No clone detection tool will find every clone within a T R U E

case study.

Ideally each clone detection tool should find every actual clone within a case study.

If this was the case then all the tools used in the case study would return the same

clones and there would be no need to use more than one clone detection tool.

Unfortunately for maintainers this is not the case and as the results show none of the

tools consistently record a 100% precision for actual clone detection. It is also the

case that the tools disagree on the clones identified within the same case study.

Hypothesis 7 states that different tools do not identify the same clones. Results from

the case studies confirm this by demonstrating a low level of intersection between

many to the tools' results. Out of all of the tools CCFinder found the highest

percentage of the other tools' clones. Its large recall means that there is greater

chance of finding clones identified by other tools. In the GraphTool case study

CCFinder found on average 46% of the other tools clones. This figure increased in

the Barcrawl planner case study to 64%. Finally in the Tropicana case study

CCFinder found on average 67% of the clones identified by other tools. Of all the

130

tools CCFinder found the least amount of intersection with Covet. However this was

not just the case for CCFinder as it appears that Covet has the lowest intersection

with the clone sets of the other tools. One interesting relationship is that between

MOSS and JPlag. JPlag found a greater percentage of clones identified by MOSS

than it did for any other tool. For example, in the GraphTool case study JPlag

identified 54% of MOSS clones whereas it only identified 15% of CloneDr's, 10% of

Covet's and 13% of CCFinder's clones.

Intersection between the clones identified by each tool is influenced greatly by the

size of each tool's clone set. This is demonstrated in the three case studies. The

overall level of intersection is lowest in the Barcrawl Planner case study. Although

this case study has the greatest number of potential clones, 72% of these were

identified by CCFinder. As a result CCFinder was the only tool to find a significant

percentage of the other tools clones. GraphTool and Tropicana case studies had a

more even spread of clones identified by all the tools and this meant a greater level

of intersection.

In the Barcrawl Planner MOSS and JPlag failed to find any clones in common with

Covet and very few in common with CloneDr. This lack of agreement indicates that

the different tools are looking for different attributes to identify clones. This is a

reflection of the subjective nature of clone detection for clones that have been

modified.

Hypothesis 8 states that no clone detection tools will find every actual clone within a

case study. This was proven true as none of the tools had a 100% recall. In this case

then it means that maintainers may wish to use more than one clone detection tool in

order to capture the greatest number of clones possible. Of all the tools CCFinder had

the highest recall throughout the case studies. In the case of GraphTool its recall was

59% (39% greater than the second highest recall which was JPlag). Its recall was

even higher at 79% in Barcrawl Planner, as was the gap between itself and the tool

with the 2°'' highest (60% greater than MOSS whose recall was just 19%). In the

Tropicana case study CCFinder's recall fell sharply to 48%. This figure was only 5%

greater than Covet's who had the 2""̂ highest recall (43%). CloneDr was the tool with

the lowest recall. Throughout the case studies CloneDr's recall did not reach 10%.

131

Intersection between the tools is important to a maintainer because if two tools

consistently find the same clones then the maintainers can omit one and save

themselves effort. JPlag identifies more potential clones than MOSS and also finds a

significant proportion of MOSS's clones. This could be motivation for just using

JPlag. An argument for using as many tools as possible can also be made as if several

tools all identify the same clones then the maintainer can be more confident that

these are actual clones and not false positives. In effect the maintainer could support

manual verification with tool verification.

One possible method experimented with during this thesis was the use of a

visualisation feature which highlighted where tools agree and disagree each other's

clones.

7.6.1. Clone by clone visualisation

The visualisations in Appendix A provide an extremely useful insight into the

similarity of the clones produced by each tool. For example table A15 gives a very

clear indication that most of MOSS's clones were found by the other tools because of

the amount of black cells. The size of the tables also shows the amount of cloning

identified by each tool. Table A15 also shows that MOSS identified the second

smallest number of clones for Tropicana. By looking down a specific column for

each case study it is possible to assess how a specific clone detection tool intersected

with the other tools. In each of the three case studies column D had the greatest

number of black cells which told the maintainer that CCFinder had found more of the

other tools' clones. Another interesting fact that has been highlighted by the

visualisation is that the number of clones found by all five tools is only three. In the

tables this fact is shown as an entire row of all black cells or a "black row". Two of

these occurrences appear in table A12 and the other in A13 (CloneDr and Covet's

clones for Tropicana).

7.7. Hypothesis 9

Hypothesis 9. No clone detection tool can achieve 100% precision for T R U E

every case study.

132

Each of the clone detection tools in one sense obtains 100% precision. However, they

are 100% precise because they identify every instance of what the developers of that

tool considered to be a clone. Ideally maintainers would be able to select a software

system, pick a clone detection tool, and that tool would find every clone as i f the

maintainer themselves had inspected the code. However, this is not the case. Firstly

each maintainer may have a different idea of what they consider is and is not a clone.

Some maintainers may consider automatically generated code whereas others may

choose to ignore it. As there is no agreed definition of what a code clone is,

measuring precision can be considered subjective.

Hypothesis 9 looks at precision for the purposes of software maintenance. It states

that none of the tools can be relied on completely by a maintainer because there will

always be false positives. When manually verifying clones, potential clones were

identified as non-clones not only i f they obviously had not been copied and pasted

but also i f there was no benefit from removing them. For example, i f the clone

contained only a few lines of executable code or the last few lines of one routine and

the first few of the next. Of all the clone detection tools MOSS was the most reliable

out of all the three case studies MOSS had an average precision of 93%. CloneDr

was the next most reliable. In the GraphTool case study CloneDr managed 100% and

in the Barcrawl Planner the small number (6) of potential clones identified meant that

as one of the potential clones identified was not considered relevant to maintenance

the precision dropped to 86%. This was also the case in the Tropicana case study,

seven of the potential clones were not considered useful to maintenance even though

they were similar. Overall each tool's precision value was quite good with no tool

having a precision value less than 50%. CloneDr and MOSS's unique objectives

require a high precision value. CloneDr offers the facility of automatic removal of

clones so it is important that it does not remove code that shouldn't be removed.

MOSS is used to identify plagiarism and if institutions are to be confident enough to

use MOSS then a minimum number of false positives is very important.

7.8. Hypothesis 10

Hypothesis 10. The proportion of cloning identified by clone detection T R U E

tools within a case study is very dependent of the minimum size

threshold.

133

The use of a threshold to filter out potential clones that are too small to be considered

is important as it reduces the amount of time required to manually verify non-clones.

This mechanism of filtering allows the maintainer to impose one of his or her own

criteria on what is and is not a clone. By setting a minimum size threshold of 20 lines

for the experiments described previously only potential clones of a "useful" size

were presented by the tools. However, this constant size threshold appeared to be

unsuitable for all tools in all case studies. One example is the number of potential

clones filtered out of Covet and CloneDr for the Barcrawl Planner case study. A size

threshold setting of 18 for CloneDr and 19 for Covet would have produced much

larger clone sets. Plotting the number potential clones identified by a clone detection

tool against the minimum size threshold could be used by a maintainer to select the

most appropriate threshold. This threshold can then be used for that tool to identify

the potential clones that will then be manually verified.

Hypothesis 10 aims to establish whether changes in the minimum size threshold has

a significant effect on the number of potential clones identified by a clone detection

tool. Results from the size threshold sensitivity experiments show that Covet is the

most sensitive tool to increases in the size threshold as it consistently filters out over

80% of the potential clones identified between the thresholds of 10 and 20. This is

because of the discrete nature of its clone detection. For example, suppose the size

threshold was set to 20, i f two 18 line routines (which are physically next to each

other in the program source) are copied and pasted to another part of the system as

Covet compares each routine individually it will filter these two routines out because

neither meets the set threshold. This is not the case with the other tools as they will

be able to find both routines as a single region of code whose size will be greater

than the size threshold. JPlag is the least sensitive to increases in changes as the

percentage of clones filtered out is the lowest by some margin. Throughout the case

studies JPlag filters out between 40-50% of the potential clones identified between

the thresholds of 10 and 20.

134

8. Conclusion and Further Ideas

8.1. Conclusions

This thesis has presented some interesting results, the lack of agreement between

clone detection tools is a reflection on the lack of agreement between the tool's

developers as to what exactly to consider a clone and what to consider a non-clone.

8.2. Evaluation of criteria for success

Three main aims were set out in section 1.1 these will now be reviewed

8.2.1. Literature survey reviewing current issues relevant to software

maintenance and in particular code cloning

The literature survey was crucial to the evolution of the thesis as it highlighted the

variety in approaches to clone detection that currently exist. It also allowed the

discovery of the tools that were used later in the thesis as part of the case studies.

Covet was inspired by the work on metric based clone detection presented by

Mayrand [May96b]. The amount of recent literature on the detection / removal of

clones proves that there is need for such an activity and that the current state of the

art is far from agreeing on a single solution to the problem.

8.2.2. Development of an efficient metric based clone detection tool

Covet was developed to a satisfactory level of efficiency and gained acceptable

precision and recall values. Covet operates with a command line interface which is

not ideal for use within industry. It is however still in the prototype stage and in two

of the case studies produced very high precision. However, Covet achieved a very

low recall for the GraphTool and Barcrawl Planner case studies.

8.2.3. Comparison of a range of clone detection tools, focusing on their

precision, recall and intersection of results.

135

Comparing the clone detection tools was essential to establish i f maintainer can rely

on a single tool to identify reliable all instances of cloning. The disparity in the

clones that each tool identified proves that none of current tools available will

identify every clone in a system with 100% precision.

8.3. Cloning results are significantly different for each tool

The results of the experiments carried out for each case study showed that the clones

identified by each clone detection tool differed greatly. No two tools consistently had

high intersection ratings with another tool's results. Although CCFinder's found a

high proportion of the other tools clones a very small proportion of its clones were

found by the other tools. One surprising aspect was how dissimilar the results of

JPlag and MOSS were. These are both academic plagiarism detection tools and

neither searches for replication within programs yet the intersection between the tool

results sets for each of the case studies was much lower than might be expected. It is

impossible to attribute these differences to completely different detection strategies

as, although the detection method employed by JPlag has been published, no details

of MOSS's detection method have been published. Of the clone detection tools

Covet appears to have identified the most dissimilar clones. This is not surprising as

it is the only tool (with the possible exception of MOSS) that uses a whole routine as

its primary point of comparison rather than tokens or lines. It also differs in

comparing metrics rather than the actual program text or syntax. CloneDr's deep

syntactical analysis of programs enables a high degree of precision but this also

restricts the tool's recall.

Clones identified by each clone detection tool also appear, as would be expected, to

be completely dependent on the case study. The only patterns that can be taken from

comparisons of each case study is that CCFinder consistently found a greater number

of clones than the other tools for every case study. The number of clones identified

by each tool varied for each case study and apart from CCFinder there was no

consistent ranking of the tools performance across case studies. For example, in

GraphTool Covet identified more clones than MOSS whereas the opposite was true

in the Barcawl Planner case study.

136

8.4. Minimum size thresholds should be adapted for each clone
detection tool and case study

Results from the experiments show clearly that the minimum size threshold has a

significant impact on the proportion of clones. It is not the case that one minimum

size threshold fits all tools or all case studies. For example in the Barcrawl Planner

case study (figure 6.8) when the minimum size threshold is at 17, CloneDr found 444

clones but an increasing of just one to 18 reduces the number of clones identified to

38. Similarly for Covet with a minimum size threshold of 18, found 473 clones

whilst with a threshold of 17 the number of clones identified to reduced to seven. In

order to take this sensitivity into account a solution might be to run a preliminary

clone detection tool at various stages and record the number of clones identified from

each tool for the case study in question. From these results it would be possible to

select which minimum size threshold to use for the main clone detection task based

on the expectations of the maintenance process.

During each of the case studies a constant minimum size threshold of 20 was used.

This setting as the specific example of Covet and CloneDr (described above)

highlights was not ideal for all the clone detection tools as it filtered out a large

proportion of some of the clones and so affected the intersection between clone sets.

The minimum size threshold in terms of lines of code can be misleading. For

example some integrated development environments can impose double spacing or

other forms of padding.

8.5. No single clone detection tool consistently identifies every clone
within a case study. No clone detection tool produces 100% precision.

CCFinder identified the most clones for each case study. It did not, however, find

every clone within the case studies. In order to achieve the greatest recall a

combination of tools should be used. This would give the maintainer not only a much

greater volume of clones but from comparisons of results can lead to a form of

automatic, instead of manual, verification. For example, i f a maintainer uses a set of

five clone detection tools and all five identify the same clones then there is a high

probability that this will be an actual clone. This is one aspect of clone detection

where visualisation would be extremely useful. In this case the effect would be to

137

reduce the amount of manual checking required by a maintainer. An effective

combination might be the use of CCFinder to gain an overview of the level of

cloning within a system. I f CCFinder found a high degree of cloning within a system

then a second scan of these results using CloneDr would reduce the amount of

manual verification required. The clone-by-clone visualisation technique (Appendix

A) could be used to spot which clones are found by the majority, if not all, of the

clone detection tools. An enhancement to this would be the ability to focus in on the

actual source code identified by each row in the table.

If due to cost or efficiency reasons a maintainer wishes to use only one tool then

CCFinder identifies the greatest recall of clones. However, for precision and

efficiency CloneDr would be a better choice. CloneDr has a much lower recall but

greater precision. This needs to be the case due to the potential for automatic re-

engineering of clones provided by this tool. I f CloneDr's precision was not as high

then potentially costly mistakes could be made by altering code that did not require

alteration.

8.6. Integrated Development Environments increase the proportion of

clones within a case study

During the manual verification of clones identified for the three case studies it was

observed that a significant proportion of the clones identified for Tropicana and

Barcrawl Planner were the result of automatically generated code produced by

JBuilder. This is also reflected in the actual clones identified for each case study (see

Table 6.1) with the two case studies developed using JBuilder resulting in a much

greater number of verified clones than GraphTool. This trend would seem extremely

logical because of the method JBuilder uses to build applications. Users design the

look and feel of their applications from a GUI with JBuilder copying and pasting

from its library of code to the source of the user's appHcations. The only changes

made to JBuilder's original generated code are those in the variables such as width or

height attributes of a frame. The same process was found in sections of GraphTool

involving the GUT. Because of the desire to display a consistent user interface copy

and pasting would seem the perfect solution. Also programming GUIs can be a

lengthy but not overly complicated process. For example, setting up a second menu

bar will be done in almost exactly the same way as the first with the only

138

modifications being the labels used and the method names to which the labels refer.

Of course from a maintainers point of view it would be better to have a single

parameterised menu bar set-up method.

8.7. Further Ideas

Clone detection is an evolving research topic. This section will look at some of the

options available in extending the work carried out in this thesis.

8.8. Clone visualisation

One issue that has only been touched upon within this thesis is that of visualisation of

clones. Several of the clone detection tools used in the case studies provide their own

visualisation techniques. None of these tools, however, provide a facihty to import

the results of other clone detection tools into this visualisation. Appendix A and

Chapter 4 (see figure 4.4) describe a novel approach to viewing clones produced by

one tool and allowing comparisons to the clones identified by other tools. This could

be extended to allow the maintainer to select a particular clone of interest and view

the relevant source code. Another visualisation technique might be a Venn diagram

of each tool's clone set which could show clearly how much intersection there are

between each of the tools.

8.9. Inclusion of a Radius Metric

Kamiya [Kam02] recently pubUshed a set of clone specific metrics (see section 3.7).

Amongst them was the clone radius which records how wide spread clones are

through out a case study. This would have been a very useful statistic to have

included in the case studies and would have provided the facility to quantify how far

replication across programs had spread for specific clone classes. Unfortunately

Kamiya's paper [Kam02] is still only a draft and was only released towards the end

of this thesis.

With this metric it would also be possible to create a visualisation of the cloning

throughout a system. This could be added to by colour coding clone classes and

displaying the clones on a graph of the system.

139

8.10. Inclusion of a language independent clone detection tool

The intention was to include both DUP [Bak95] and DUPLOC [Duc99a] with the

other clone detection tools used in the case studies. Unfortunately due to licensing

issues DUP was unavailable and technical difficulties DUPLOC was not used. The

inclusion of a language independent detection tools would provide useful data to see

how similar / dissimilar the clones between that and CloneDr's syntactic analysis.

8.11. Replication across systems

One aspect of cloning that has not been considered is whether cloning is prevalent

across different software systems. This could be used to justify the creation of a reuse

program and if one already exists then it indicates it is not working properly.

140

9. References

[Bak92] Baker B. S., A Program for Identifying Duplicated Code, Proceedings of the

24th Symposium on the Interface: Computer Science and Statistics, pp. 49-57 1992

[Bak93] Baker B. S., Parameterized Duplication in Strings: Algorithms and an

Application to Software Maintenance, SIAM Journal on Computing 1993

[Bak95] Baker B.S., On Finding Duplication and Near-Duplication in Large

Software Systems, Working Conference on Reverse Engineering, pp. 86-95 1995

[Bal99] Balazinska M . et. al. Partial Redesign of Java software Systems Based on

Clone Analysis, 6* Working Conference on Reverse Engineering, p. 326 1999

[BalOO] Balazinska M . et al. Advanced Clone Analysis to Support Object-Oriented

System Refactoring, 7thWorking Conference on Reverse Engineering, pp.98-107

2000

[Bax98] Baxter I.D., Yahin A., Moura L., Sant'Anna M. , Bier L., Clone Detection

Using Abstract Syntax Trees, International Conference on Software Maintenance, pp.

368-377 1998

[Bur97] Burd E.L., Munro M. , Investigating the Maintenance Implications of the

Replication of Code, International Conference on Software Maintenance, p. 322 1997

[Cha95] Chalmers M. , Design perspectives in visualising complex information.

International Federation for Information Processing, pp. 103-111 1995

[Cha97] Chan P., Munro M. , PUI: A Tool to Support Program Understanding,

International Conference on Software Maintenance, pp. 192 - 198 1997

[Chi90] Chikofsky E. J., Cross n J.H., Reverse engineering and design recovery: A

taxonomy IEEE Software, pp. 13-17 1990

141

[Chu93] Church Ward K., Helfman J., Dotplot: a Program for Exploring Self-

Similarity in Millions of Lines of Text and Code, American Statistical Association,

pp. 153-174 1993

[Cla98] Clayton R., Rugaber S., Wills L., On the Knowledge Required to Understand

a Program, Working Conference on Reverse Engineering, pp. 69 - 78 1998

[ComOO] Comella-Dorda S. et al, A Survey of Legacy System Modernization

Approaches, Software Engineering Institute, Technical Note CMU/SEI-2000-TN-

003.,

[Dem99] Demeyer S., Ducasse S., Lanza M. , A Hybrid Reverse Engineering

Approach Combining Metrics and Program Visualisation, Working Conference on

Reverse Engineering, pp. 175-186 1999

[Dom95] Domingue J.B., Using Software Visualization Technology In The

Validation Of Knowledge Based Systems, Knowledge Acquisition Workshop 1995

[Duc99a] Ducasse S., Rieger M. , Demeyer S., A Language Independent Approach

for Detecting Duplicated Code, International Conference on Software Maintenance,

pp. 109-118 1999

[Duc99b] Ducasse S., Rieger M. , Golomingi G., Tool Support for Refactoring

Duplicated 00 Code, Workshop on Experiences in Object-Oriented Re-Engineering,

pp. 177-178 1999

[DucOl] Ducasse S., Lanza M. , Tichelaar S., The Moose Reengineering

Environment, Smalltalk Chronicles 2001

[Eic96] Ball T.J., Eick S.G., Software Visualization in the Large, IEEE Computer,

pp. 33-43 1996

[Fra96] Frakes W., Terry C, Software Process Reuse In An Industrial Setting,

Article in ACM Computing Surveys, pp. 22-30 1996

142

[Hel95] Helfman J., Dotplot Patterns: A Literal Look at Pattern Languages, Theory

and Practice of Object Systems, pp. 31-41 1995

[Joh94] Johnson J. H., Substring Matching For Clone Detection and Change

Tracking, International Conference on Software Maintenance, pp. 120-126 1994.

[Joh94b] Johnson J. H., Visualizing Textual Redundancy in Legacy Source,

GASCON, pp. 120-126 1994

[Joh95] Jonassen D. H., Operationalizing Mental Models: Strategies for Assessing

Mental Models to Support Meaningful Learning and Design- Supportive Learning

Environments, Computer-Supported Collaborative Learning, pp. 182-186 1995

[Jor95] Jorgenson M. , An empirical study of software maintenance tasks. Software

Maintenance: Research and Practice, pp. 27-48 1995

[KamOl] Kamiya T., Ohata F., Kondou K., Kusumoto S., Inoue K., Maintenance

Support Tools for Java Programs: CCFinder and JAAT, International Conference on

Software Engineering, pp. 837-838 2001

[Kam02] Kamiya T., Kusumoto S., and Inoue K., CCFinder: A Multi-Linguistic

Token-based Code Clone Detection System for Large Scale Source Code, IEEE

Trans. Software Engineering, pp. 368-377 2002

[Kaz97] Kazman R., Playing Detective: Reconstructing Software Architecture from

Available Evidence, Software Engineering Institute Technical Report CMU/SEI-97-

TR-010 1997

[Klo96] Klosch R., Reverse Engineering: Why and How to Reverse Engineer

Software, Proceeding of the Software Symposium, pp. 32-40 1996

[Kni98] Knight C , Munro M. , Visualisation for Program Comprehension:

Information and Issues, University of Durham, Computer Science Technical Report

12/98 1998

143

[Kni99] Knight C , Munro M., Comprehension with[in] Virtual Environments

Visualisations, International Workshop on Program Comprehension, pp. 41 i 1999

[KniOl] Knight C , Munro M., Visual Information; Amplifying and Foraging,

Proceedings of SPIE 2001

[KniOla] Knight C , Munro M., Software Visualisation Conundrums, University of

Durham, Department of Computer Science Technical Report 2001

[KomOl] Komondoor R., Horwitz S., Using Slicing to Identify Duplication in Source

Code, Symposium on Static Analysis, pp. 40-56 2001

[KriOl] Krinke J . , Identifying Similar Code with Program Dependence Graphs,

Working Conference on Reverse Engineering, 2001

[Lag97] Lague B., Proulx D., Mayrand J . , Merlo E . , Hudepohl J . , Assessing the

Benefits of Incorporating Function Clone Detection in a Development Process,

International Conference on Software Maintenance, pp. 314-321 1997

[LanOl] Lanza M., The Evolution Matrix: Recovering Software Evolution using

Software Visualization Techniques, International Workshop on Principles of

Software Evolution, pp. 37-42 2001

[Lia98] Liang D., Harrold M. J . , Slicing Objects Using System Dependence Graphs,

International Conference on Software Maintenance, pp. 358-367 1998

[MalOl] Maletic J . I . , Leigh J . , Marcus A., Visualizing Software in an Immersive

Virtual Reality Environment, (Research Group Knowledge and Language

Processing) W S V 2001

[May96a] Mayrand J . , Leblanc C , Merlo E . , Evaluating the Benefits of Clone

Detection in the Software Maintenance Activities in Large Scale Systems, Workshop

on Empirical Studies of Software Maintenance, 1996

144

[May96b] Mayrand J . , Leblanc C , Merlo E . , Automatic Detection of Function

Clones in a Software System Using Metrics, International Conference on Software

Maintenance, p 244-254 1996

[May97] Mayrhauser A., Marie Vans A., Howe A., Program Understanding

Behaviour during Enhancement of Large-scale Software, Software Maintenance:

Research and Practice Vol 9 pp.299-327 1997

[McC76] McCabe T. J . , A Complexity Measure, I E E E Transactions on Software

Engineering, pp. 308-320 1976

[Mun99] Munzner T. , H3: Laying Out Large Directed Graphs in 3D Hyperbolic

Space, IEEE Symposium on Information Visualization, pp. 2-10 1997

[Nie97] Niessink F . , van Vliet H. , Predicting Maintenance Effort with Function

Points, International Conference of Software Maintenance, pp. 32-39 1997

[PreOO] Prechelt L . , Malpohl G. , Philippsen M., JPlag: Finding plagiarisms among a

set of programs. Technical Report 2000-1

[Rom92] Roman G - C , Cox K . C . , Program Visualization: The Art of Mapping

Programs to Pictures, International Conference on Software Engineering, pp. 412-

420 1992

[Rug92] Rugaber S., Program Comprehension for Reverse Engineering, AAAI

Workshop on AI and Automated Program Understanding 1992

[Rug95] Rugaber S., Program Comprehension, Encyclopaedia of Computer Science

and Technology 1995

[Sta93] Stasko J. T., Patterson C , Understanding and Characterizing Program

Visualization Systems, Graphics, Visualization, and Usability Centre Technical

Report GIT-GVU-91-17 1993

145

[Stor97] Storey M.-A.D., Cognitive Design Elements to Support the Construction of

a Mental Model during Software Exploration, International Workshop on Program

Comprehension, pp. 171-185 1997

[Til96] Tilley S. R., Smith D. B., Coming Attractions in Program Understanding,

Software Engineering Institute Technical Report CMU/SEI-96-TR-019 1996

[Von98] von Mayrhauser A., Program Comprehension and Enhancement of

Software, Information Technology and Knowledge Engineering, 1998

[Wei97] Weiderman N.H. et al. Approaches to Legacy System Evolution, Software

Engineering Institute Technical Report CMU/SEI-97-TR-014 1997

[You98] Young P., Munro M., Visualising Software in Virtually Reality,

International Workshop on Program Comprehension, 1998

WWW pages

[Aik02] Aiken, Alex, A System for Detecting Software Plagiarism (Moss

Homepage), Last visited 11th April 2002

[Amazon] http://www.amazon.co.uk, Amazon Website, Visited 2°'' November 2001

[Bar99] Bar et al, http://www.iam.unibe.ch/~lanza/PubHcations/PDF/handbook.pdf

The FAMOOS Object-Oriented Reengineering Handbook, Visited 1'' July 2002

[CDIF97] http://www.eigroup.org/cdif/intro.html, Introduction to C D I F Visited 30

August 2002

[CSurferWP] http://www.grammatech.com/research/slicing/slicingWhitePaper.pdf,

CodeSurfer Technology Overview - Dependence Graphs and Program Slicing.

Visited 26* October 2001 15:00

[DatrixManual] http://www.iro.umontreal.ca/labs/gelo/datrix/refmanuals/metricdoc-

4.1.pdf, Datrix Metric Reference Manual Version 4.1, Visited 18'" January 2002

146

[DucLecture] http://iamwww.unibe.ch/~scg/Archive/Lectures/OOSR-W99.pdf,

Lecture Notes from Object-Oriented Software Reengineering, Visited 26* December

2001 17:00

[Lag97] http://www.iro.umontreal.ca/labs/gelo/datrix/RD/qamc97.pdf, Assessing

Risks related to Software Source Code using Datrix, Visited 30"̂ August 2002 10:40

[MossHome] http://www.cs.berkeley.edu/~aiken/moss.html. Homepage for the Moss

appliciation. Visited 26"" October 2001 11:00

[CSM] http://www.dur.ac.uk/~dcsOwww/research/csm/rip/introduction.html,

Definition of software maintenance from the Centre for Software Maintenance,

Visited 7* November 2001 12:00

[MMLecture] http://www.dur.ac.uk/malcolm.munro/local/lectures/sm-

Introduction.ppt, Introduction to software maintenance lecture slides. Visited 7*

November 2001 17:10

[IntroEval] Introduction to Evaluation website,

http://trochim.human.comell.edu/kb/intreval.htm. Visited 14.11.2001

[ISO] http://www.iso.ch/ International Standards Organisation, Visited 28* June

2002 14:00

[IWPC-talk] http://www.ai.univ-paris8.fr/lJPU/IWPC00-slides.ps, Talk on Program

Comprehension, Visited 8* November 2001 09:20

[JavaLayer] http://www.javazoom.net/javalayer/javalayer.html. Main page for the

JavaLayer project Visited 23"̂ July 2002

[StoreyLecture] Storey P., Wong K. , Muller H., On Evaluating Program

Understanding Tools, Presentation from

http://www.cs.ualberta.ca/~kenw/talks/dagstuhl98-talk.pdf, Visited 14th November

2001

147

[XMI] http://www.omg.org/technology/documents/formal/xmi.htm OMG X M L

Metadata Interchange page. Visited 30* August 2002

Books

[Bac94] Bache R., Bazzana G., Software Metrics for Product Assessment, McGrall-

Hill Book Company 1994

[Ber94] Bergman S., Compiler Design : Theory, Tools and Examples, Wm.C. Brown

1994

[Fen96] Fenton N. E . , Pfleeger S. L . , Software Metrics A Rigorous & Practical

Approach, Thomson Computer Press 1996

[FowOO] Fowler M., U M L Distilled 2°'' Edition: A Brief Guide to the Standard

Object Modelling Language, Addison-Wesley 2000

[Jef99] Jeffrey C. L . , Program Monitoring and Visualization: An Exploratory

Approach, Springer 1999

[Mol93] Moller K. H. , Paulish D. J . , Software Metrics: A Practitioner's Guide to

Improved Product Development, Chapman and Hall 1993

[Tak96] Takang A., Grubb P., Software Maintenance: Concepts and Practice,

Thomson Computer Press 1996, ISBN 1-85032-192-2

148

Appendix A.

Tool Label
CloneDr A
Covet B
JPlag C
CCFinder D
MOSS E
Table A1 Tool Key

GraphTool Results
CloneDr

B C D E

Table A2 GraphTool clones identified by
CloneDr

Covet

Table A4 GraphTool clones identified by JPlag

MOSS

Table A5 GraphTool clones identified by MOSS

CCFinder

Table A3 GraphTool clones identified by Covet

Appendix A.

Tool Label
CloneDr A
Covet B
JPlag C
CCFinder D
MOSS E
Table A1 1 "ool Key

GraphTool Results
CloneDr

B C D E

Table A2 GraphTool clones identified by
CloneDr

Covet

Table A4 GraphTool clones identified by JPlag

MOSS

Table A5 GraphTool clones identified by MOSS

CCFinder
A B C

Table A3 GraphTool clones identified by Covet

Barcrawl Planner Results
CloneDr

B C D E

Table A7 Barcrawl Planner clones identified by
CloneDr

Covet
A C

Table A8 Barcrawl Planner clones identified by
Covet

JPlag
A B

Table A6 GraphTool clones idenfified by
CCFinder

Table A9 Barcrawl Planner clones identified by
JPlag

Barcrawl Planner Results
CloneDr

B C D E

Table A7 Barcrawl Planner clones identified by
CloneDr

Covet
A C D

Table A8 Barcrawl Planner clones identified by
Covet

JPlag
A B

Table A6 GraphTool clones identified by
CCFinder

Table A9 Barcrawl Planner clones identified by
JPlag

MOSS

Table A l O Barcrawl Planner clones idenfified by
MOSS

CCFinder
A B

MOSS
A B

Table AIO Barcrawl Planner clones identified by
MOSS

CCFinder
A B

Table A l 1 Barcrawl Planner clones idenfified by
CCFinder

Club Tropicana Results
CloneDr

B C D E

Table A12 Tropicana clones idenfified by
CloneDr

Table A11 Barcrawl Planner clones identified by
CCFinder

Club Tropicana Results
CloneDr

B C D E

Table A l 2 Tropicana clones identified by
CloneDr

Covet
A C

Table A14 Tropicana clones idenfified by JPlag

Table A l 3 Tropicana clones idenfified by Covet

MOSS

Table A l 5 Tropicana clones idenfified by MOSS

CCFinder
A B D

Covet
A C

Table A14 Tropicana clones identified by JPlag

Table A13 Tropicana clones identified by Covet

MOSS

Table A15 Tropicana clones identified by MOSS

CCFinder
A B

Table A l 6 Tropicana clones idenfified by
CCFinder

Table A16 Tropicana clones identified by
CCFinder

Appendix B

Difference results for experimental programs
This appendix presents difference summaries for the experimental programs used in
the development of the clone metrics and their thresholds. These summaries were
produced by the text editor Textpad©.

HelloWorldApp and Clones
Compare: (<)C:\covet\clones\HelloWorldApp.java (287 bytes)

w i t h : (>)C:\covet\clones\HelloWorldAppAddedFor.java (393 bytes)

l , 5 c l , 6
< /**
< * The HelloWorldApp class implements an a p p l i c a t i o n t h a t
< * simply d i s p l a y s "Hello World!" t o the standard output.
< */
< p u b l i c class HelloWorldApp

> /**
> * The HelloWorldAppAddedFor class implements an a p p l i c a t i o n t h a t
> * simply d i s p l a y s "Hello World!" t o the standard output.
> * a meaningless f o r loop has been added
> */
> p u b l i c class HelloWorldAppAddedFor
9cl0,13
< System.out.println("Hello World!"); //Display the s t r i n g .

> f o r (i n t i = 0 ; i < l ; i + +)
> {
> System.out.println("Hello World!"); //Display the s t r i n g .

}

Compare: (<)C:\covet\clones\HelloWorldApp.java (287 bytes)
w i t h : (>)C:\covet\clones\HelloWorldAppErrors.java (352 bytes)

l , 5 c l , 6
< / * *
< * The HelloWorldApp class implements an a p p l i c a t i o n t h a t
< * simply d i s p l a y s "Hello World!" t o the standard output.
< */
< p u b l i c class HelloWorldApp

> /**
> * The HelloWorldAppErrors class implements an a p p l i c a t i o n t h a t
> * simply d i s p l a y s "Hello World!" t o the standard output.
> * Simple Syntax e r r o r s
> */
> p u b l i c class HelloWorldAppErrors
l O a l l
> System.out.print()

Compare: (<)C:\covet\clones\HelloWorldApp.java (287 bytes)
w i t h : (>)C:\covet\clones\HelloWorldAppOneXtraVar.java (407 bytes)

l , 9 c l , l l
< /**
< * The HelloWorldApp class implements an a p p l i c a t i o n t h a t
< * simply displays "Hello World!" t o the standard output.
< */
< p u b l i c class HelloWorldApp
< {
< p u b l i c s t a t i c v o i d m a i n (S t r i n g [] args)
< {
< System.out.println("Hello World!"); //Display the s t r i n g .

> /**
> * The HelloWorldAppOneXtraVar class implements an a p p l i c a t i o n t h a t
> * simply d i s p l a y s "Hello World!" t o the standard output.
> * an e x t r a s t r i n g member v a r i a b l e i s added th a t w i l l be outputed
> */
> p u b l i c class HelloWorldAppOneXtraVar
> {
> S t r i n g iMessage = "Hello World";
> p u b l i c s t a t i c v o i d m a i n (S t r i n g [] args)
> {
> System.out.println(iMessage); //Display the s t r i n g .

Compare: (<)C:\covet\clones\HelloWorldApp.java (287 bytes)
w i t h : (>)C:\covet\clones\HelloWorldAppTwoXtraVars.java (475 bytes)

1,9cl,12
< /**
< * The HelloWorldApp class implements an a p p l i c a t i o n t h a t
< * simply displays "Hello World!" t o the standard output.
< */
< p u b l i c class HelloWorldApp
< {
< p u b l i c s t a t i c v o i d m a i n (S t r i n g [] args)
< {
< System.out.println("Hello World!"); //Display the s t r i n g .

> / * *
> * The HelloWorldAppTwoXtraVars class implements an a p p l i c a t i o n
t h a t
> * simply displays "Hello World!" t o the standard output.
> * two e x t r a s t r i n g member v a r i a b l e s are added t h a t w i l l be
outputed
> */
> p u b l i c class HelloWorldAppTwoXtraVars
> {
> S t r i n g iFirstMessage = "Hello"
> S t r i n g iSecondMessage = "World";
> p u b l i c s t a t i c v o i d m a i n (S t r i n g [] args)
> {
> System.out.println(iFirstMessage + " " + iSecondMessage);
//Display the s t r i n g .

Compare: (<)C:\covet\clones\HelloWorldApp.java (287 bytes)
w i t h : (>)C:\covet\clones\HelloWorldAppXtraClass.java (592 bytes)

l,9cl,24
< /**

< * The HelloWorldApp class implements an a p p l i c a t i o n t h a t
< * simply displays "Hello World!" to the standard output.
< */
< p u b l i c class HelloWorldApp
< {
< p u b l i c s t a t i c v o i d m a i n (S t r i n g [] args)
< {
< System.out.println("Hello World!"); //Display the s t r i n g .

> /**
> * The HelloWorldAppXtraClass class implements an a p p l i c a t i o n t h a t
> * simply displays "Hello World!" t o the standard output.
> * I n t e r n a l Class added and an array, and a loop!
> */
> p u b l i c class HelloWorldAppXtraClass
> {
> s t a t i c class HelloClass
> {
> c h a r [] iMessage = {'H','e','l','l','o','
','Wo','r','1','d','!'};

>
> p u b l i c HelloClass0
> {
> f o r (i n t i = 0 ; i < = l l ; i + +)
> {
> System.out.print(iMessage[i]);
> }
> S y s t e m . o u t . p r i n t l n () ;
> }
> }
>
> p u b l i c s t a t i c v o i d m a i n (S t r i n g [] args)
> {
> HelloClass tHelloClass = new Hel l o C l a s s () ;

Compare: (<)C:\covet\clones\HelloWorldApp.java (287 bytes)
w i t h : (>)C:\covet\clones\HelloWorldAppXtraComments.java (459

bytes)

1,6cl,10
< /**
< * The HelloWorldApp class implements an a p p l i c a t i o n t h a t
< * simply d i s p l a y s "Hello World!" to the standard output.
< */
< p u b l i c class HelloWorldApp
< {

> /**
> * The HelloWorldAppXtraComments class implements an a p p l i c a t i o n
t h a t
> * simply displays "Hello World!" t o the standard output.
> * e x t r a comments have been added
> */
> p u b l i c class HelloWorldAppXtraComments
> {
>
> //main method outputs h e l l o world
> //args i s the parameters passed t o the program by the command
l i n e

Compare: (<)C:\covet\clones\HelloWorldApp.java (287 bytes)
w i t h : (>)C:\covet\clones\HelloWorldAppXtraIfs.java (606 bytes)

4,5c4,6
< */
< p u b l i c class HelloWorldApp

> * Two meaingingless i f statments are added
> */
> p u b l i c class HelloWorldAppXtralfs
9cl0,24
< System.out.println("Hello World!"); //Display the s t r i n g .

> i f (a r g s [0] . e q u a l s (" "))
> {
> i f (a r g s [l] . e q u a l s (" "))
> {
> System.out.println("Hello World!"); //Display the
s t r i n g .
>)
> else
> {
> System.out.println("Hello World!"); //Display
the s t r i n g .
> }
> }
> else
> {
> System.out.println("Hello World!"); //Display the
s t r i n g .
> }

Compare: (<)C:\covet\clones\HelloWorldApp.java (287 bytes)
w i t h : (>)C:\covet\clones\HelloWorldAppXtraLine.java (382 bytes)

1, 5 c l , 6
< / * *
< * The HelloWorldApp class implements an a p p l i c a t i o n t h a t
< * simply displays "Hello World!" t o the standard output.
< */
< p u b l i c class HelloWorldApp

> /**
> * The HelloWorldAppXtraLine class implements an a p p l i c a t i o n t h a t
> * simply displays "Hello World!" t o the standard output.
> * command p r i n t i n g out i s s p l i t over two l i n e
> */
> p u b l i c class HelloWorldAppXtraLine
9cl0,11
< System.out.println("Hello World!"); //Display the s t r i n g .

> S y s t e m . o u t . p r i n t (" H e l l o ") ;
> System.out.println("World!"); //Display the s t r i n g .

Compare: (<)C:\covet\clones\HelloWorldApp.java (287 bytes)
w i t h : (>)C:\covet\clones\HelloWorldAppXtraSwitch.java (585 bytes)

l , 5 c l , 6

< /**
< * The HelloWorldApp class implements an a p p l i c a t i o n t h a t
< * simply d i s p l a y s "Hello World!" to the standard output.
< */
< p u b l i c class HelloWorldApp

> /**
> * The HelloWorldAppXtraSwitch class implements an a p p l i c a t i o n
t h a t
> * simply d i s p l a y s "Hello World!" to the standard output.
> * Switch statement added 3 cases ' ' , 'a' and d e f a u l t
> */
> p u b l i c class HelloWorldAppXtraSwitch
9cl0,27
< System.out.println("Hello World!"); //Display the s t r i n g .

> switch (a r g s [0] . c h a r A t (0))
> {
> case ' ':
> {
> System.out.println("Hello World!");
> } ;
> break;
> case 'a':
> {
> System.out.println("Hello World!");
> }
> break;
> d e f a u l t :
> {
> System.out.println("Hello World!");
> }
> break;
> }

EuroConverterApp and Clones

Compare: (<)C:\covet\clones\EuroConverterApp.java (938 bytes)
w i t h : (>)C:\covet\clones\EuroConverterAppAddedFor.java (1158

bytes)

I , 3cl,8
< import j a v a . i o . * ;
<
< p u b l i c class EuroConverterApp

> import j a v a . i o . * ;
>
> /* a l l the questions asked are put i n t o an array as are the answers
> * the f o r loop i s a s t a t i c i = 0..2 and uses the index i t o
recognise the question, answer p a i r
> */
>
>
> p u b l i c class EuroConverterAppAddedFor
I I , 20cl6,28
< System.out.println("Which Currency do you want to work
in? For Example; German, Portuguese");

< S t r i n g tCurrency = s t d i n . r e a d L i n e () ;
< System.out.println("Converting t.o or f.rom euros?");
< S t r i n g toOrFrom = s t d I n . r e a d L i n e () ;
< boolean toEuro = t r u e ;
< i f (toOrFrom.toUpperCase().charAt(0) == 'F')
< toEuro = f a l s e ;
< System.out.println("How much are you converting?");
< S t r i n g tAmmount = s t d l n . r e a d L i n e () ;
< double tMoney = new Double(tAmmount).doubleValue() ;

> S t r i n g [] tQuestions = {"Which Currency do you want to
work in? For Example; German, Portuguese","Converting t.o or f.rom
euros?","How much are you converting?"};
>
> S t r i n g [] tAnswers = new S t r i n g [3] ;
> boolean toEuro = t r u e ;
> f o r (i n t i = 0; i <= 2; i++)
> {
> S y s t e m . o u t . p r i n t l n (t Q u e s t i o n s [i]) ;
> tAnswers[i] = s t d l n . r e a d L i n e () ;
> }
> S t r i n g tCurrency = tAnswers[0];
> i f (tAnswers[1].toUpperCaseO.charAt(0) == 'F')
> toEuro = f a l s e ;
> double tMoney = new Double(tAnswers[2]).doubleValue();

Compare: (<)C:\covet\clones\EuroConverterApp.java (938 bytes)
w i t h : (>)C:\covet\clones\EuroConverterAppErrors.java (1021 bytes)

l , 3 c l , 5
< import j ava.io.*;
<
< p u b l i c class EuroConverterApp

> /* missing ';''s from the l o g i c */
>
> import j ava.io.*;
>
> p u b l i c class EuroConverterAppErrors
12,13cl4,16
< S t r i n g tCurrency = s t d l n . r e a d L i n e () ;
< System.out.println("Converting t.o or f.rom euros?");

> //missing ';' s on the next two l i n e s
> S t r i n g tCurrency = stdln.readLine()
> System.out.println("Converting t.o or f.rom euros?")

Compare: (<)C:\covet\clones\EuroConverterApp.java (938 bytes)
w i t h : (>)C:\covet\clones\EuroConverterAppOneXtraVar.java (1178

bytes)
l , 3 c l , 5
< import j ava.io.*;
<
< p u b l i c class EuroConverterApp

> /* e x t r a v a r i a b l e t o hold the exchange r a t e once the currency has
been selected */
>

> import j a v a . i o . * ;
>
> p u b l i c class EuroConverterAppOneXtraVar
l l a l 3 , 1 5
> //added v a r i a b l e
> double tExchangeRate = 0.0;
>
23c28,33
< System.out.println("Exchange Rate i s : " +
tEuroConverter.getExchangeRate());

>
> //here the v a r i a b l e i s set
> tExchangeRate = tEuroConverter.getExchangeRate() ;
>
> / / v a r i a b l e outputed
> System.out.println("Exchange Rate i s : " +
tExchangeRate);

Compare: (<)C:\covet\clones\EuroConverterApp.java (938 bytes)
w i t h : (>)C:\covet\clones\EuroConverterAppTwoXtraVars.java (1391

bytes)

l , 3 c l , 6
< import j ava.io.*;
<
< p u b l i c class EuroConverterApp

> /* two ex t r a v a r i b l e s are added here S t r i n g holding the name of the
f i l e t h a t contains the exchange
> * rates and the second v a r i a b l e i s a useless v a r i a b l e t h a t does
nothing */
>
> import j ava.io.*;
>
> p u b l i c class EuroConverterAppTwoXtraVars
9cl2,21
< EuroConverter tEuroConverter = new
EuroConverter("xchangerates.txt");

>
> / / f i r s t e x t r a v a r i b l e
> S t r i n g tFilename = new St r i n g (" x c h a n g e r a t e s . t x t ") ;
>
> //second e x t r a v a r i a b l e
> S t r i n g tUselessVariable = new
String("lAMAUSELESSVARIABLETHATDOESNOTHINGEXCEPTWASTESPACE.");
>
> tUselessVariable = tUselessVariable.trim().toLowerCase();
>
> EuroConverter tEuroConverter = new
EuroConverter(tFilename);

Compare: (<)C:\covet\clones\EuroConverterApp.java (938 bytes)
w i t h : (>)C:\covet\clones\EuroConverterAppVarNameChange.java (1366

bytes)

l,23cl,33
< import j ava.io.*;
<

< p u b l i c class EuroConverterApp
< {
< p r i v a t e s t a t i c BufferedReader s t d i n = new BufferedReader(new
InputStreamReader(System.in));
<
< p u b l i c s t a t i c v o i d m a i n (S t r i n g [] args) throws lOException
< {
< EuroConverter tEuroConverter = new
EuroConverter("xchangerates.txt");
<
< System, out . p r i n t l n ("Which Currency do you want to worlc
in? For Example; German, Portuguese");
< S t r i n g tCurrency = s t d I n . r e a d L i n e () ;
< System.out.println("Converting t.o or f.rom euros?");
< S t r i n g toOrFrom = s t d I n . r e a d L i n e () ;
< boolean toEuro = t r u e ;
< i f (toOrFrom.toUpperCase0.charAt(O) == 'F')
< toEuro = f a l s e ;
< System.out.println("How much are you converting?");
< S t r i n g tAmmount = s t d I n . r e a d L i n e () ;
< double tMoney = new Double(tAmmount).doubleValue();
<
<

System.out.println(tEuroConverter.convert(tCurrency,tMoney,toEu
ro)) ;
< System.out.println("Exchange Rate i s : " +
tEuroConverter.getExchangeRate());

> /* systematic v a r i a b l e name changes using f i n d / r e p l a c e f u n c t i o n i n
t e x t e d i t o r */
> import j a v a . i o . * ;
>
> p u b l i c class EuroConverterAppVarNameChange
> {
> / / i n used to be s t d I n
> p r i v a t e s t a t i c BufferedReader i n = new BufferedReader(new
InputStreamReader(System.in));
>
> //pArguments used to be pArguments
> p u b l i c s t a t i c v o i d m a i n (S t r i n g [] pArguments) throws lOException
> {
>
> //tEC used to be tEC
> EuroConverter tEC = new
EuroConverter("xchangerates.txt");
>
> System.out.println("Which Currency do you want to work
in? For Example; German, Portuguese");
> //tCountrySelection used to be tCurrency
> S t r i n g tCountrySelection = i n . r e a d L i n e () ;
> System.out.println("Converting t.o or f.rom euros?");
> //tConversionDirection used to be toOrFrom
> S t r i n g tConversionDirection = i n . r e a d L i n e () ;
> //tEuroConversion used to be toEuro
> boolean tEuroConversion = t r u e ;
> i f (tConversionDirection.toUpperCase0 .charAt(0) == 'F')
> tEuroConversion = f a l s e ;
> System.out.println("How much are you converting?");
> //tMoneyStr used to be tAmmount
> S t r i n g tMoneyStr = i n . r e a d L i n e () ;
> //tMoneyDouble used to be tMoney

> double tMoneyDouble = new
Double(tMoneyStr).doubleValue();
>
>

System.out.println(tEC.convert(tCountrySelection,tMoneyDouble, t
EuroConversion));
> System.out.println("Exchange Rate i s : " +
tEC.getExchangeRate());

Compare: (<)C:\covet\clones\EuroConverterApp.java (938 bytes)
w i t h : (>)C:\covet\clones\EuroConverterAppXtraClass.java (1251

bytes)

l , 5 c l , 2 1
< import j ava.io.*;
<
< p u b l i c class EuroConverterApp
< {
< p r i v a t e s t a t i c BufferedReader s t d l n = new BufferedReader(new
InputStreamReader(System.in));

> /* e x t r a class added - takes user input */
>
> import j a v a . i o . * ;
>
> p u b l i c class EuroConverterAppXtraClass
> {
> / / e x t r a class
> s t a t i c class UserlnputClass
> {
> p r i v a t e BufferedReader s t d l n ;
>
> p u b l i c UserlnputClass()
> {
> s t d l n = new BufferedReader(new
InputStreamReader(System.in));
>)
>
> p u b l i c S t r i n g getUserlnput() throws lOException
> {
> r e t u r n s t d l n . r e a d L i n e () ;
>)
> }
10,14c26,31
<
< System.out.println("Which Currency do you want t o work
in? For Example; German, Portuguese");
< S t r i n g tCurrency = stdln.readLine() ;
< System.out.println("Converting t.o or f.rom euros?");
< S t r i n g toOrFrom = stdln.readLine() ;

> UserlnputClass tUserlO = new UserlnputClass();
>
> System.out.println("Which Currency do you want t o work
in? For Example; German, Portuguese");
> S t r i n g tCurrency = tUserlO.getUserlnput() ;
> System.out.println("Converting t.o or f.rom euros?");
> S t r i n g toOrFrom = tUserlO.getUserlnput() ;
19c36
< S t r i n g tAmmount = s t d l n . r e a d L i n e () ;

S t r i n g tAmmount = tUserlO.getUserlnput()

Compare: (<)C:\covet\clones\EuroConverterApp.java (938 bytes)
w i t h : (>)C:\covet\clones\EuroConverterAppXtraComments.java (1565

bytes)

l,5cl,24
< import j ava.io.*;
<
< p u b l i c class EuroConverterApp
< {
< p r i v a t e s t a t i c BufferedReader s t d l n = new BufferedReader(new
InputStreamReader(System.in));

> /* e x t r a comments added - takes user input */
>
> import j ava.io.*;
>
> p u b l i c class EuroConverterAppXtraComments
> {
> / / e x t r a class
> s t a t i c class UserlnputClass
> {
> //buffered reader standard input
> p r i v a t e BufferedReader s t d l n ;
>
> p u b l i c UserlnputClass()
> {
> //new instance of the class
> s t d l n = new BufferedReader(new
InputStreamReader(System.in));
> }
>
> //wrapper f u n c t i o n f o r the BufferedReader.readLine method
> p u b l i c S t r i n g getUserlnput() throws lOException
> {
> r e t u r n s t d l n . r e a d L i n e () ;
> }
> }
9,15c28,39
< EuroConverter tEuroConverter = new
EuroConverter("xchangerates.txt");
<
< System.out.println("Which Currency do you want to work
in? For Example; German, Portuguese");
< S t r i n g tCurrency = s t d l n . r e a d L i n e () ;
< System.out.println("Converting t.o or f.rom euros?");
< S t r i n g toOrFrom = s t d l n . r e a d L i n e () ;
< boolean toEuro = t r u e ;
> //EuroConverter Object t h a t w i l l read i n a l i s t of
currencies and work out conversions
> EuroConverter tEuroConverter = new
EuroConverter("xchangerates.txt");
> UserlnputClass tUserlO = new UserlnputClass();
>
>
> //user i n t e r a c t i o n

> System.out.println("Which Currency do you want t o work
in? For Example; German, Portuguese");
> S t r i n g tCurrency = tUserlO.getUserlnput();
> System.out.println("Converting t.o or f.rom euros?");
> S t r i n g toOrFrom = tUserlO.getUserlnput();
> boolean toEuro = t r u e ;
> //are we converting t o or from Euro's
19,21c43,46
< S t r i n g tAmmount = s t d l n . r e a d L i n e () ;
< double tMoney = new Double(tAmmount).doubleValue();

> S t r i n g tAmmount = tUserlO.getUserlnput();
> double tMoney = new Double(tAmmount).doubleValue();
>
> //output the r e s u l t s

Compare: (<)C:\covet\clones\EuroConverterApp.java (938 bytes)
w i t h : (>)C:\covet\clones\EuroConverterAppXtraIfs.java (1016 bytes)

l , 3 c l , 4
< import j ava.io.*;
<
< p u b l i c class EuroConverterApp

> /* e x t r a decision p o i n t s i n t he form of i f s */
> import j ava.io.*;
>
> p u b l i c class EuroConverterAppXtralfs
21,23c22,26
<
<

System.out.println(tEuroConverter.convert(tCurrency,tMoney,toEu
ro)) ;
< System.out.println("Exchange Rate i s : " +
tEuroConverter.getExchangeRate());

> i f (true)
> {
>

System.out.println(tEuroConverter.convert(tCurrency,tMoney,toEu
ro)) ;
> System.out.println("Exchange Rate i s : " +
tEuroConverter.getExchangeRate0);
> }

Compare: (<)C:\covet\clones\EuroConverterApp.java (938 bytes)
w i t h : (>)C:\covet\clones\EuroConverterAppXtraLine.java (102f

bytes)
l , 3 c l , 4
< import j a v a . i o . * ;
<
< p u b l i c class EuroConverterApp

> / * e x t r a l i n e added on the end by s p l i t t i n g up l a s t l i n e */
> import j ava.io.*;
>
> p u b l i c class EuroConverterAppXtraLine

23c24,25
< System.out.println("Exchange Rate i s : " +
tEuroConverter.getExchangeRate());
> System.out.println("Exchange Rate i s : ") ;
> System.out.printIn(tEuroConverter.getExchangeRate0);

Compare: (<)C:\covet\clones\EuroConverterApp.java (938 bytes)
w i t h : (>)C:\covet\clones\EuroConverterAppXtraSwitch.java (1066

bytes)
l , 3 c l , 3
< import j a v a . i o . * ;
<
< p u b l i c class EuroConverterApp

> import j ava.io.*;
>
> p u b l i c class EuroConverterAppXtraSwitch
20a20,27
> switch (tAmmount.charAt(0))
> {
> case •0':
> {
> System.out.println("less than 1");
> }
> break;
>)

