
Durham E-Theses

An investigation of the neuropharmacological and

behavioural e�ects of fenamate and other NSAIDs.

Foxon, Graham Ronald

How to cite:

Foxon, Graham Ronald (2001). An investigation of the neuropharmacological and behavioural e�ects of

fenamate and other NSAIDs., Durham e-Theses. http://etheses.dur.ac.uk/3990/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

https://www.durham.ac.uk
http://etheses.dur.ac.uk/3990/
 http://etheses.dur.ac.uk/3990/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


An Investigation of the Neuropharmacological and 

Behavioural Effects of Fenamate and Other NSAIDs. 

Graham Ronald Foxon 

The copyright of this thesis rests with 
the author. No quotatioa from it should 
be published in any form, including 
Electronic and the Internet, without the 
author's prior written consent All 
information derived from this thesis 
must be acknowledged appropriately. 

Dept. of Biological Sciences 
University of Durham 

November 2001 

2 MAR W 



Graham Ronald Foxon 
An Investigation of the Neuropharmacological and Behavioural Effects of 
Fenamate and Other NSAIDs. 

Abstract 

Recent evidence has indicated that NSAIDs might have direct effects on CNS tissue in 
addition to their classical inhibitory action on COX enzymes. This thesis addresses this 
hypothesis using electrophysiological and behavioural techniques. 

The effects of fenamate and other NSAIDs on native neuronal G A B A A , 5-HT3, nicotinic 
ACh, P2x and strychinine-sensitive glycine receptors, expressed on isolated vagus or 
optic nerves, was investigated using an extra-cellular recording technique. The fenamate 
NSAID, mefenamic acid (MFA) potentiated G A B A (10)xM)- evoked responses in the 
vagus nerve. Application of MFA also resulted in non-competitive inhibition of 5-HT-
and a,PMeATP- evoked responses. Non-competitive like inhibition was also observed 
with flufenamic acid on DMPP- and a,PMeATP- evoked responses and with 
meclofenamic acid on G A B A - evoked responses. Non-fenamate NSAIDs, including 
aspirin, did not significantly modulate the G A B A A , 5-HT3, nicotinic ACh, P2x or 
glycine receptors. 

The cognitive and behavioural effects of fenamates and other NASIDs were then 
investigated. MFA (5-20mg/kg) caused a significant dose- and time-dependent 
enhancement in the non-spatial object discrimination working memory task when 
compared to saline controls. The enhancement observed with MFA was greater than 
that of the cognitive enhancer piracetam. This enhancement was not due to a change in 
non-mnemonic processes such as arousal, anxiety or locomotion. MFA also enhanced 
rats' performance in the spatial object location working memory task. 

The fenamate NSAID, meclofenamic acid (20mg/kg) mimicked the effect of MFA, but 
the non-fenamate NSAIDs aspirin and ibuprofen, did not enhance object discrimination 
indicating that these cognitive effects are not via inhibition of COX. The G A B A A 

receptor modulators diazepam, bicuculline and loreclezole, did not replicate the effect 
of MFA on object discrimination, suggesting that its effects do not depend entirely on 
the G A B A A receptor. Scopolamine (0.25-lmg/kg) significantly impaired object 
discrimination in a dose-dependent manner. This action could be fully reversed by co-
treatment with MFA (20mg/kg). 

In the T-maze task, MFA (20mg/kg) decreased the number of arm entry errors and days 
taken to reach criterion. The number of arm entry errors made when a 5-minute intra-
trial interval was introduced was also significantly reduced by MFA compared with 
saline treated animals. In the radial maze, MFA (20mg/kg) did not decrease the number 
of never baited arm entries to reach criterion. However MFA did significantly reduce 
the number of re-entry errors to baited arms, compared to controls, when an intra-trial 
delay (10-30 sees) was introduced. These results support the hypothesis that MFA 
enhances spatial working memory and that these effects are not task-specific. 

Overall, the data in this thesis show that fenamate NSAIDs can directly modulate native 
neuronal ligand-gated ion channels and that MFA can enhance working memory in 
normal and scopolamine-impaired rats. These results suggest additional 
pharmacological potential for certain fenamate NSAIDs. 
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Chapter One: General Introduction 

1.1: Non-steroidal anti-inflammatory drugs 

Non-steroidal anti-inflammatory drugs (NSAIDs) is the term used for a broad range of 

chemically diverse compounds (figure 1.1). They are probably the single most important 

group of self-prescribed pharmaceuticals and certainly the most widely consumed drugs 

world-wide (Mitchell & Warner, 1999). NSAIDs are taken to treat a diverse range of 

ailments mainly through their anti-inflammatory, anti-pyretic and analgesic properties 

(Orme, 1990). The most commonly used and well known NSAID is aspirin which has 

been chemically synthesised on a large scale and used clinically since 1874 

(Weissmann, 1991). However it was not until the early 1970's that the mechanism of 

action of these drugs was elucidated. 

1.2: Mechanism of action of NSAIDs 

In 1971 three related papers, published in Nature, showed for the first time that the 

NSAIDs, aspirin and indomethacin, could inhibit prostaglandin synthesis. The first 

paper (Vane, 1971) reported that the prostaglandins, P G E 2 and P G F 2 obtained from 

guinea-pig lung could contract isolated rat stomach strips and colon and that these 

contractions could be blocked in a concentration-dependent manner by aspirin and 

indomethacin. The second paper (Smith & Willis, 1971) went on to show that aspirin 

and indomethacin could prevent the thrombin-induced formation of the prostaglandins 

P G E 2 and P G F 2 „ , from human platelets. The third paper (Ferreira et al, 1971) showed 

that prostaglandin release from the dog spleen, induced by intra-aiterial injection of 

bradykinin, could be abolished when the spleen was perfused with aspirin or 

indomethacin. The conclusions drawn from these papers were that aspirin-like drugs 
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produced their anti-inflammatory and anti-pyretic actions by inhibiting the formation of 

prostaglandins since it was recognised that prostaglandin levels are elevated in inflamed 

tissue (Ferreira, 1972) and are found in the cerebrospinal fluid during fever (Feldberg & 

Gupta, 1973). However, their analgesic properties could not be explained simply by 

inhibition of prostaglandin synthesis, since prostaglandins elicit a pain response only 

when they are injected into humans at high concentrations (Ferreira, 1972). The 

analgesic properties of NSAIDs were only explained when it was recognised that 

prostaglandins potentiated the actions of other pain mediators, such as bradykinin, and 

induced marked hyperalgesia by sensitising sensory nerve endings (Ferreira et ah, 

1973). The hypothesis that NSAIDs produce their analgesic actions through inhibition 

of peripheral prostaglandin synthesis has now been generally accepted for several years. 

1.3: Prostaglandin biosynthesis 

Prostaglandins are cellular mediators which are derived from arachidonic acid (van 

Dorp et ah, 1964, Bergstrom et al, 1964), a twenty carbon unsaturated fatty acid (Figure 

1.2). Prostaglandins are designated by a capital letter and a subscript number, the letter 

(A - I) refers to the type of ring substitutions and the number refers to the number of 

double bonds present within the chemical structure (Bergstrom et al., 1968). 

Arachidonic acid is converted to prostaglandins via two unstable prostaglandin 

endoperoxides, PGG2 and PGH2 (Hamberg & Samuelsson, 1974). The conversion is 

catalysed by an enzyme known as cyclooxygenase (COX), also known as prostaglandin 

H2 synthetase. The COX enzyme has a dual function: firstly, it oxidises arachidonic acid 

to produce the unstable intermediate PGG2 which is then reduced to the more stable 

PGH2; PGH2 is then converted to individual prostaglandins or thromboxane A2 via 

tissue specific prostaglandin synthetases or thromboxane synthetase respectively (figure 

1.2; for review see Vane et al, 1998). 
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Figure 1.2: Prostaglandin synthesis pathways from arachidonic acid. Arachidonic acid is 

first oxidised by cyclooxygenase -1 or -2 to form the unstable PGG2 which is then hydrolysed 

to form PGH2. This compound is then converted into specific prostaglandins by specific 

enzymes. Thromboxane (TXA2) and prostacyclin (PGI2) are also formed from this pathway. 

Diagram adapted from Vane et al. (1998) 
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1.4: COX-1 and COX-2 isoenzymes 

It was originally thought that there was only one COX enzyme, which was first purified 

from bovine vesicular gland in 1976 (Miyamoto et al., 1976) and was subsequently 

cloned by three separate groups in 1988 (DeWitt & Smith 1988, Meriie et al., 1988 and 

Yokoyama et al., 1988). However, by the early 1990's immunoprecipitation 

experiments revealed a second COX enzyme gene (Rosen et al., 1989; Holtzmann et al., 

1992), which was found to be an inducible gene product (Kujubu et al., 1991; Xie et al., 

1991). This inducible gene was shown to encode a protein with COX related activities 

(Fletcher et al., 1992, O'Banion et al. 1992) and has since been termed COX-2. 

Structurally COX-1 and COX-2 enzyme proteins are similar, with human COX-1 and 

COX-2 proteins sharing 64% amino acid sequence homology (Funk et al., 1991, Hla & 

Neilson, 1992) and accordingly, they have similar molecular weights of around 70kDa. 

They are both glycosylated integral membrane haemoproteins (Garavito & DeWitt, 

1999), which are similar in structure, except that the COX-2 protein has a larger 

substrate channel and also contains a larger inhibitory pocket binding site (Kurumbail et 

al., 1996). The COX-2 isoenzyme is located in the endoplasmic reticulum and the 

nuclear envelope whereas the COX-1 isoenzyme is predominantly located in the 

endoplasmic reticulum (Morita et al., 1995). 

i.5; Function and location of COX isoenzymes 

The COX-1 isoenzyme protein is found within most mammalian tissue at a relatively 

constant level (Otto & Smith, 1995), with high levels found in the kidney (Smith & Bell, 

1978), seminal vesicles (DeWitt et al., 1981), platelets (Funk et al., 1991), vascular 

endothelial cells (DeWitt et al., 1983) and monocytes (O'Sullivan et al., 1992). It is 
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thought that the main role of COX-1 is in the maintenance of normal physiology such as 

inhibition of gastric acid secretion in the stomach (Robert et al., 1967, Cohn, 1997) and 

vascular homeostasis (Eliasson, 1959; Kargman et al., 1996). COX-2 enzyme mRNA is 

found in very low levels in human body tissue under normal physiological conditions 

(O'Neill & Ford-Hutchinson, 1993) with the exception of the kidney (Harris et al., 1994) 

and certain brain regions including the cortex, hypothalamus and hippocampus (Breder et 

al., 1995, Breder & Saper, 1996) where COX-2 is constitutively expressed. 

Levels of COX-2 are rapidly increased, however, in arthritic human synovial joints 

(Sano et al., 1992; Crofford et al., 1994) and in rat models of peripheral inflammation 

(Sano et al., 1992, Kargman et al., 1994). Within the CNS COX-2 levels are also 

increased in rat cortical neurones after normal synaptic activity (Yamagata et al., 1993, 

Kaufmann et al., 1996) and during kainic acid- induced seizures in adult rats (Tocco et 

al., 1997). COX-2 levels are also increased in the brain immediately after ischaemic 

insult as detected by Northern blot analysis of COX-2 mRNA (Collaco-Moraes et al., 

1996). This increase in COX-2 has been shown to contribute to focal ischaemic 

hippocampal brain damage, as it has been shown that administration of a COX-2 

selective inhibitor (NS-398) reduced the infarct volume by one third. COX-1 levels 

remained constant throughout the ischaemic episode (Nogawa et al., 1997). COX-2 

mRNA expression is also increased in the frontal cortex taken from post mortem 

Alzheimer's diseased human brain (Pasinetti & Aisen, 1998). 

Together this evidence has led to the hypothesis that the COX-1 enzyme is involved in 

maintaining normal physiological function and is constitutively expressed, whilst COX-

2 levels are generally only induced in disease states such as inflammation or 

excitotoxicity. Targeting inhibition of the COX-2 isoenzyme has therefore been 
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suggested as a means of gaining effective therapy whilst decreasing the adverse effects, 

such as gastro-intestinal irritation, associated with currently available non isoform 

selective NSAIDs (Vane et al, 1998). 

1.6: Inhibition of COX by NSAIDs 

Although Vane and colleagues were the first to show that NSAIDs inhibited 

prostaglandin formation (Vane, 1971), it was Smith and Lands (1971) who first showed, 

indirectly, that the inhibition of prostaglandins by NSAIDs was due to their ability to 

block an (COX) enzyme. They showed that aspirin and indomethacin inhibited, in a 

concentration-dependent manner, the increase in oxygen consumption observed during 

prostaglandin formation from sheep vesicular glands, concluding that NSAIDs inhibited 

an oxygen dependent enzyme in the prostaglandin formation cascade. 

Today NSAIDs can be classed into three groups depending on the mechanism by which 

they inhibit COX isoenzymes (Smith & DeWitt, 1995), thus. 

Class I NSAIDs: Involves a 'simple' competitive interaction between the NSAID and 

arachidonic acid for the COX binding site. Three examples of competitive antagonists 

of COX are ibuprofen, mefenamic acid and flufenamic acid (Rome & Lands, 1975). 

Class n NSAIDs: Includes indomethacin and meclofenamic acid (Laneuville et al., 

1995. These agents initially bind rapidly and reversibly to the COX enzyme, 

but after a sufficient period of time, a conformational change in the NSAID 

binding site on the COX enzyme occurs from which the NSAID can only 

slowly dissociate. These NSAIDs are said to inhibit the COX enzyme in a 

competitive and time-dependent reversible manner, (Kulmacz & Lands, 1985). 
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Class in NSAIDs: These are competitive and time-dependent but irreversible antagonists 

of COX. The only commonly used NSAID in this class is aspirin, which 

acetylates the COX enzyme to form an irreversible bond (Roth et al., 1975). 

1.7: Specificity of action of NSAIDs for COXl and COX2 isoenzymes 

The majority of NSAIDs available on the market are not selective for the COX-1 or 

COX-2 isoenzymes in humans (Cryer & Feldman, 1998). This is consistent with 

previous studies, which showed that NSAIDs were not particularly selective in cell lines 

expressing human (Gierse et al., 1995, Chulada & Langenbach, 1997) or murine (Meade 

et al., 1993, Mitchell et al., 1994) COX-1 or COX-2 isoenzymes. 

Recently two new NSAIDs, rofecoxib (Chan et al., 1999) and celecoxib (Geis, 1999) 

have been shown to be relatively selective for the COX-2 isoenzyme and have been 

given federal drug administration (FDA) approval for the relief of osteoarthritis and 

management of acute pain. Clinical studies have shown that these compounds 

significantly reduce the gastrointestinal side effects, such as gastroduodenal ulceration, 

associated with the use of more traditional NSAIDs (Brooks & Day, 2000). 

i .^ ; NSAIDs and central analsesia 

Although a considerable body of literature shows that NSAIDs produce analgesia 

through actions in the periphery, there is now a growing body of evidence suggesting 

that NSAIDs may have a central as well as a peripheral analgesic action. 

In 1971, Dubas and Parker reported that sub-cutaneous injection of sodium salicyclate 

dose-dependently suppressed the pain escape responses in rats evoked by electrical 
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stimulation of the hypothalamus, indicating a central analgesic action. This work was 

later supported by Ferreira et al. (1978) who showed that intracerebroventricular 

injection of aspirin or indomethacin dose-dependently decreased the hyperalgesia 

induced by injection of carrageenin into the rat hind paw. Intrathecal administration of 

indomethacin or diclofenac, at concentrations found in the CNS after therapeutic oral 

administration, inhibited the pain vocalisation response to electric shock in the arthritic 

rat model (Okuyama & Aihara, 1984). Malberg and Yaksh (1992a) also demonstrated 

that intrathecal administration of indomethacin, flurbiprofen, ketorolac, ibuprofen or 

aspirin dose-dependently reduced the painful responses induced by formalin injected 

into the hind-paw of rats at concentrations 100-1000 times lower than doses required to 

inhibit the response when these NSAIDs were given by intra-peritoneal injection. These 

studies provide evidence that NSAIDs may have a central analgesic action, although the 

mechanism of action remains to be determined. 

One possible hypothesis is that NSAID-induced analgesia is due to inhibition of 

centrally formed prostaglandins. As it has been shown that intrathecal injection of PGF2„ 

induces hyperalgesia in rats (Yaksh, 1982). Additionally, in vivo formation of PGF2„, 

and PGE2 in the CNS is reduced in a dose-dependent manner following subcutaneous 

administration of indomethacin, diclofenac or naproxen but not aspirin (Abdel-Halin et 

al., 1978). This evidence supports the hypothesis that NSAIDs produce analgesia via 

inhibition of centrally formed prostaglandins. 

A second hypothesis hitherto investigated was that NSAIDs increase the levels of brain 

endorphins. Sacerdote and colleagues (1985) for example, showed that intra-peritoneal 

injection of diclofenac or piriprofen into rats increased excretion of P endorphins from 
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the pituitary gland and elevated levels of P endorphins in the hypothalamus. The authors 

concluded that these effects could explain the potent analgesic properties of NSADDs. 

NSAED modulation of neuronal pathways involved in nociception has also been 

postulated as a mechanism for their central analgesic actions. Intra-peritoneal injection 

of aspirin (300-400 mg/kg) dose-dependently prevented the pain-induced behaviour 

following intrathecal administration of substance P or capsaicin in mice (Hunskaar et 

al., 1985), suggesting that their analgesic action could be due inhibition of a substance P 

sensitive mechanism. Aspirin, ketoprofen and ibuprofen can block the thermally-

induced hyperalgesia caused by activation of substance P receptors (NK-1) by substance 

P or glutamate, NMDA and AMPA receptors by glutamate, (Malmberg & Yaksh, 

1992b), which again suggests that NSAIDs may modulate neuronal transmission. 

Centrally administered aspirin also dose-dependently increased the pain threshold of 

electrical stimulation of tooth pulp afferent fibres in monkeys (Shyu et al., 1984). These 

analgesic properties of aspirin in monkeys were directly related to the increased level of 

5-HT neuronal activity in the hypothalamus and spinal cord. Shyu and Lin (1985) 

additionally reported that centrally administered aspirin resulted in anti-nociception in 

monkeys and that it could be blocked by the 5-HT antagonist cyproheptadine. Aspirin 

also reduced thalamic neuronal activity associated with mechanical noxious stimuli in 

rats, which could be blocked by the 5-HT antagonist metergoline (Groppetti et al., 

1988). These studies indicate a possible interaction between NSAIDs and serotonergic 

neurotransmission. 

In man, electroencephalogram recordings of brain electrical potentials, which could be 

related to pain responses associated with painful tooth stimulation, were significantly 

reduced in the presence of aspirin (Chen & Chapman, 1980). A reduction in neuronal 
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activity has also been reported in rats because intravenous injection of aspirin, (Carlsson 

et al., 1988) indomethacin or ibuprofen (Juma & Brune, 1990) depressed the activity of 

rat thalamic neurones evoked by electrical stimulation of C-fibres in the peripheral sural 

nerve. This depression of thalamic neuronal activity was also observed when aspirin or 

indomethacin were administered via intrathecal injection (Juma et al., 1992). 

However, despite a wealth of evidence indicating that NSAIDs might have a central 

analgesic effect, the mechanism remains to be determined, but it could be due to 

inhibition of central prostaglandins, elevation of brain endorphin levels, modulation of 

neurotransmission, or a combination of the above mechanisms. 

1.9: Neuroprotection by NSAIDs 

Aspirin has been used as a prophylactic agent in the prevention of stroke in susceptible 

patients for several years. The stroke preventative actions are thought to be due to 

aspirin's ability to block platelet aggregation (Muir et al., 1997). However 

electrophysiological studies have suggested that there may be additional neuroprotective 

mechanisms. For example, Grilli and colleagues (1996) have shown that aspirin can 

reduce glutamate induced excito-toxicity in primary rat cerebellar granule cells and 

hippocampal slices. Aspirin also improves neurone viability (as indicated by population 

spike activity) following hypoxia of hippocampal slices (Riepe et al., 1997). An in vivo rat 

focal ischaemic model (achieved by ligation of the common carotid artery) has also shown 

that intra-peritoneal administration of aspirin (20mg/kg) can significantly reduce infarct 

volumes by up to 60% as measured by immunological staining (Khayyam et al., 1999). 

Other NSAIDs have also been shown to provide neuroprotection against ischaemic 

insult. Thus high concentrations of piroxicam or indomethacin reduced and delayed the 
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cell death of rat hippocampal C A l neurones after global ischaemia (Sasaki et al., 1988; 

Nakagomi et al., 1989). The fenamates mefenamic acid, flufenamic acid and 

meclofenamic acid (all tested at ImM) protected chick embryo retinal cells from low 

glucose and low oxygen induced ischaemic injury (Chen et al., 1998). Ibuprofen has 

also been shown to protect dopaminergic neurones (the integrity of which was assessed 

by high affinity dopamine uptake) in embryonic rat mescencephalic cell cultures against 

glutamate induced- neurotoxicity (Casper et al., 2000). 

The increase in COX-2 levels observed during ischaemia has led to the hypothesis that 

NSAIDs could provide protection from ischaemic injury. The COX-2 selective inhibitor 

NS-398 (N-[2-(cyclohexyloxy)-4-nitrophenyl]methane-sulphonamide), given via intra­

peritoneal injection, significantly reduced the ischaemic infarct in rats whose middle 

cerebral artery was occluded (Nogawa et al., 1997). Another COX-2 selective inhibitor, 

SC58125 (l-[(4-methylsulfonyl)phenyl]-3-tri-fluoromethyl-5-(4-fluorophenyl)pyrazole) 

has been shown to be neuroprotective against global ischaemia in rats when administed 

by gastric lavage (Nakayama et al., 1998). 

These studies show that NSAIDs can be neuroprotective against a range of neurotoxic 

insults and that their neuroprotection may be due to inhibition of COX-2. 

1.10: Modulation of seizure activity by NSAIDs 

NSAIDs have been reported to modulate seizure activity in vivo. Indomethacin (given 

by intra-peritoneal injection) blocks the increase of prostaglandins evoked by 

pentamethylentetrazole, picrotoxin, isoniazid (Spagnuolo et al., 1978) or pentetrazole 

(PTZ) (Steinhauer et al., 1979) induced- and electrically- induced (Zatz & Roth, 1975) 

seizures in rats. This effect has also been observed with intra-muscular injection of 
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flurbiprofen and ibuprofen but not aspirin in rats (Steinhauer & Hertting, 1981) and with 

diclofenac, flurbiprofen and indomethacin in mice (Forstermann et al., 1982). Inhibition 

of prostaglandin formation does not, however, prevent these seizures from occurring, 

indicating that prostaglandins are not important in the onset of convulsions. 

Diclofenac, flurbiprofen and indomethacin have been reported to lower the LD50 of 

PTZ- induced seizures (Forstermann et al., 1982) as has ibuprofen (Steinhauer & 

Hertting, 1981) which also decreased the time for the onset of seizures. When aspirin 

was administered centrally it also potentiated both PTZ and electrically- induced 

seizures in rats (Climax & Sewell, 1981). These studies indicate that some NSAIDs may 

in fact lower the convulsive threshold of convulsants. 

The seizures reviewed above were reported from whole body responses. Wallenstein 

(1985a) used a more sensitive and objective technique to monitor brain seizures. He 

reported that intra-peritoneal injection of indomethacin or ibuprofen attenuated electro-

cortical activity from PTZ induced seizures in rats, while injection of mefenamic acid 

(15mg/kg) or meclofenamic acid (15mg/kg) potentiated the excitatory effects of PTZ. 

Higher concentrations of mefenamic acid (150 mg/kg) or meclofenamic acid (150 

mg/kg) induced concentration-dependent excitation alone. Wallenstein suggests that 

NSAIDs can be divided into two groups, with one group (mefenamic acid and 

meclofenamic acid) producing CNS excitation and the other group (indomethacin and 

ibuprofen) causing CNS sedation, implying that such central effects of NSAIDs are not 

related to modulation of cyclooxygenase activity. In a penicillin model of generalized 

epilepsy, mefenamic acid and ibuprofen decreased the number of penicillin-induced 

electro-cortically recorded seizures, while ibuprofen but not mefenamic acid delayed the 

onset of seizures (Wallenstein, 1987). The NSAIDs, sodium salicyclate and 
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phenylbutazone, converted a non-convulsive dose of pilocarpine to a convulsive one, 

while inducing no central effects alone. In the same study, mefenamic acid prevented the 

pilocarpine- induced seizures and protected the rats against the seizure- induced 

forebrain damage, while neither ibuprofen nor indomethacin had any effect on the 

seizures (Ikonomidou-Turski et al., 1988). The contrasting effect observed with 

mefenamic acid was highlighted by Wallenstein (1991) when he showed that low doses 

of mefenamic acid (20 mg/kg) attenuated PTZ- induced excitation in rats, while higher 

doses of mefenamic acid (60 mg/kg) potentiated PTZ- induced excitation. 

High doses of indomethacin have also been shown to provide protection against 

generalised seizures induced by PTZ, bicuculline and electroshock treatment in mice 

whereas aspirin was without effect (Wong, 1993). In contrast Baran and colleagues 

(1994) showed that indomethacin increased the mortality rate from kainic acid induced 

seizures in rats, while ibuprofen was without effect. Neither aspirin, ibuprofen, 

indomethacin, metanizole nor piroxicam affected the threshold for electro-convulsions 

in mice but they all, however, enhanced the protective activity of the anti-convulsant, 

valproate against electrically induced seizures (Kaminski et al., 1998). In contrast, both 

the COX-2 selective inhibitor, NS-398 and the non-selective COX inhibitor, 

indomethacin, aggravated kainic acid- induced seizures in rats, leading to increased cell 

damage in the hippocampus. The seizures observed with the COX-2 inhibitor were 

earlier and more severe than in controls and it was observed that it did not prevent the 

increase in prostaglandin synthesis induced by the seizure (Baik et al., 1999). However 

the selective COX-2 inhibitor, rofecoxib, significantly reduced the hippocampal cell 

damage associated with kainic acid- induced seizures in rats (Kunz & Oliw, 2001). 
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These studies demonstrate that NSAIDs can modify seizure activity in a range of animal 

models. However the data is conflicting with some studies reporting that NSAIDs 

potentiate seizure activity whilst others report attenuation of seizure activity. These 

diverse effects of NSAIDs maybe in part a result of differences in dose and route of 

administration. They may also stem from additional and undefined direct effects on 

neuronal function. 

1.11: Modulation of non-neuronal ion channels by NSAIDs 

NSAIDs, especially the fenamate class, have been shown to modulate a number of non-

neuronal ion channels. For example, niflumic acid (Cousin & Motais, 1979) and 

flufenamic acid (Cousin & Motais, 1982) are both potent non-competitive and reversible 

inhibitors of chloride transport across human erythrocyte membranes, as measured by 

radio-labelled CI' flux. 

Flufenamic acid and niflumic acid have been reported, from patch clamp studies, to be 

potent reversible inhibitors of Câ "̂  activated C\ channels expressed in Xenopus oocytes 

(White & Aylwin, 1990). In addition, Ca"̂ ^ activated CI' channels recorded using patch 

clamp experiments on rabbit portal vein smooth muscle cells have been shown to be 

inhibited in a voltage-dependent manner by niflumic acid (Hogg et al., 1994), 

flufenamic acid and mefenamic acid (Greenwood & Large, 1995). Ca*^ activated CI" 

channel activation, evoked by caffeine or noradrenaline, is inhibited in a concentration-

dependent manner by niflumic acid in rat vascular smooth muscle (Kirkup et al., 1996). 

Flufenamic acid and niflumic acid are potent, concentration-dependent inhibitors of 

suproterenol- or forskolin- stimulated chloride conductance as demonstrated by from 

patch-clamp recordings of cultured bovine and canine tracheal epithelial cells (Chao & 

Mochizuki, 1992). Higher concentrations of flufenamic acid (200^M) induce a voltage-
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dependent block of a CI" channel known as the cystic fibrosis transmembrane 

conductance regulator channel, when expressed in Xenopus oocytes (McCarty et al., 

1993). Together these studies show using a variety of methods, that fenamate NSAIDs 

are clearly able to inhibit CI" conductance across cell membranes through several 

different ion channels in an array of tissues. 

Niflumic acid, flufenamic acid and mefenamic acid reversibly block Câ "̂  activated non­

selective cation channels as measured by patch-clamp recordings of inside-out patches 

from the membranes of rat exocrine pancreas (Gogelein et al., 1990). Flufenamic acid 

and mefenamic acid (both at lO^iM) also produced rapid and reversible block of non­

selective cation channels in mouse fibroblasts, while aspirin, indomethacin and 

ibuprofen were without effect (Jung et al., 1992). 

Flufenamic acid and tolfenamic acid (10-30^iM) but not the non-fenamate ketoprofen, 

block radiolabelled calcium influx into human polymorphonuclear leukocytes 

(Kankaanranta & Moilanen, 1995). Tolfenamic acid has also been shown to inhibit 

calcimicin- induced Ca^^ influx by 60% into human neutrophils (Kankaanranta et al., 

1995) and, like flufenamic acid (10-100|xM), suppress the proliferation of human 

peripheral blood lymphocytes via inhibition of Ca*^ influx into the cells (Kankaanranta 

et al., 1996). The authors suggest that these mechanisms may explain an additional 

prostaglandin-independent mechanism of action for their anti-inflammatory actions. 

Flufenamic acid and mefenamic acid have been shown from patch-clamp studies to be 

potent and dose-dependent activators of K"̂  currents from a number of tissues, including 

rabbit corneal epithelium cells (Rae & Farrugia, 1992), canine circular smooth muscle 
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cells (Farrugia et al., 1993a), human jejunum (Farrugia et al., 1993b) and rabbit portal 

vein smooth muscle cells (Greenwood & Large, 1995), resulting in hyperpolarisation of 

the cells. current from slowly activating voltage-dependent human channels, 

expressed in Xenopus oocytes, is increased by low concentrations (10|J,M) of flufenamic 

acid, mefenamic acid and niflumic acid, while higher concentrations (100|aM) of 

niflumic acid and flufenamic acid decrease the current. In contrast, even at higher 

concentrations mefenamic acid (lOOjlM) caused an additional increase in K"*̂  

conductance (Busch et al., 1994). Ca"*̂^ activated channels, from pig coronary smooth 

muscle cells, are dose-dependently (50-1000|iM) activated by flufenamic acid, 

mefenamic acid and niflumic acid. External application of the fenamates was five times 

more potent than internal application suggesting an external fenamate binding site 

(Ottoha & Toro, 1994). 

These studies show that fenamate NSAIDs can modulate a number of non-neuronal ion 

channels in a prostaglandin- independent manner. The actions of NSAIDs on neuronal 

ion channels will now be reviewed. 

1.12: Modulation o f neuronal ion channels by NSAIDs 

One of the first experiments investigating the effects of NSAIDs on neurones was by 

Barker and Levitan (1971), who showed that salicyclate rapidly increased the 

permeability of mollusan ganglion cells to and decreased the permeability to CI" ions 

in a reversible dose-dependent manner, resulting in hyperpolarisation of the ganglion. 

They followed this work up by investigating the ability of a range of non-narcotic 

analgesics to hyperpolarise mollusan neurones (Levitan & Barker, 1972) and found a 
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good correlation between their ability to alter membrane permeability and their 

analgesic action. 

Salicylate has been shown to prolong the repolarisation of the action potential and at 

higher concentrations (> 1.5 mM), completely blocked nerve conduction along giant 

squid axons (Neto & Narahashi, 1976). The authors followed up this finding by 

investigating the effect of salicyclate on compound action potentials evoked in the rabbit 

vagus or frog sciatic nerve using the sucrose gap recording technique. They showed that 

salicyclate caused a concentration-dependent reduction in the amplitude of the 

electrically stimulated compound action potential, and that higher concentrations of 

salicyclate caused direct depolarisation of the nerve resulting in blockade of nerve 

conduction (Neto, 1980). 

At the frog neuro-muscular junction, niflumic acid increased the amplitude of pre­

synaptic voltage-activated K"̂  currents, while decreasing the amplitude of Na* currents, 

in a concentration-dependent manner (0.1-lmM). Indomethacin (O.lmM) had no effect 

on these currents when tested at the neuromuscular junction, suggesting a 

cyclooxygenase independent mechanism of action (Miralles et al., 1996). Voltage-clamp 

recordings from snail circumoesophageal ganglia showed that high concentrations of 

flufenamic acid (500|a,M) but not mefenamic acid, can inhibit Ca^^ activated non­

selective cation channels (Shaw et al., 1995). A similar inhibitory effect has previously 

been observed in non-neuronal preparations (Gogelein et al., 1990; Jung et al., 1992). 

In addition to NSAIDs being able to modulate a number of voltage-gated and Ca"̂ * 

activated neuronal ion channels they have also been reported to modify the actions of a 

number of neuronal ligand-gated ion channels. 
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When certain NSAIDs are co-applied with fluoroquinolones it has been shown that there 

is a syngerstic antagonism of the G A B A A receptor. Whole cell patch-clamp recordings 

from rat dorsal root ganglion cells showed that neither the NSABD fenbufen nor its 

active metabolite, biphenyl acetic acid ( B P A A ) , had any effect on G A B A - e v o k e d 

currents. Application of the fluoroquinolones, ciprofloxacin or ofloxacin, resulted in a 

weak but concentration-dependent inhibition of G A B A - evoked currents. In contrast, 

when B P A A or fenbufen and quinolones were applied together there was marked 

synergistic inhibition of G A B A - e v o k e d currents (Halliwell et a/., 1991). This 

synergistic inhibition of G A B A currents by B P A A and fluoroquinolones has also been 

observed in patch-clamp recordings from cultured rat hippocampal neurones (Akaike et 

a/., 1991; Shirasaki et ai, 1991a; Halliwell et al, 1995). The interaction between B P A A 

and ciprofloxacin appears to be selective for the G A B A A receptor, since there was no 

effect on 5 - H T 3 , nicotinic ACh, or P2x receptor- mediated responses recorded from 

isolated rat vagus nerve, whereas G A B A induced responses were markedly inhibited by 

addition of B P A A and ciprofloxacin (Green & Halliwell, 1997). Also, N M D A currents 

recorded from rat hippocampal neurones are not inhibited by addition of fluroquinolones 

and B P A A (Shirasaki et al, 1991b; Halliwell et al., 1995). 

Niflumic acid potently inhibits the anion evoked radio-labelled TBPS binding to the ion 

channel pore of the G A B A A receptor complex from rat brain homogenates. This 

suggests that niflumic acid binds to the G A B A A receptor complex and that it may 

regulate the flow of anions through the ion channel (Evoniuk & Skolnick, 1988). High 

concentrations of indomethacin bind to the G A B A A receptor complex as indicated by 

[̂ H] G A B A binding assay (Wong, 1993). The author also reported that indomethacin is 
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a weak non-competitive inhibitor of G A B A uptake in mouse cortical synaptosomes, 

suggesting it might prolong the inhibitory actions of G A B A (Wong, 1993). 

In Xenopus oocytes expressing rat brain G A B A A receptors, fenamate NSAIDs have been 

shown to have a dual effect on G A B A currents; they potentiate G A B A currents elicited 

by low concentrations of G A B A (lOjxM), but non-competitively inhibit currents elicited 

by high concentrations of G A B A (100|iM). Mefenamic acid induced the greatest 

potentiation of the sub-maximal G A B A current by around 300%, while niflumic acid 

produced the greatest inhibition, reducing the G A B A response to 40% of control. 

Thirteen other NSAIDs were also tested in this study, of which only diflunisal had 

similar effects to the fenamates, and only indomethacin (lOOfxM) was shown to inhibit 

G A B A (lO^iM) currents by around 40% of control (Woodward et al, 1994). 

Mefenamic acid (3|aM) has also been reported to potentiate G A B A currents from human 

G A B A A receptor subunits aiP2Y2L and a4|32Y2L expressed in Xenopus oocytes, although 

the level of potentiation depended on the sub-unit composition being 325% and 160% of 

control G A B A response, respectively (Whittemore et al., 1996). It has recently been 

reported (Halliwell et al., 1999) that modulation of human recombinant G A B A A 

receptors expressed in Xenopus oocytes and HEK-293 cells is highly dependent on the p 

subunit. Mefenamic acid potentiated GABA-evoked currents (IOJAM) and directly 

activated G A B A A receptors composed of aiP2Y2s subunits, but did not potentiate or 

directly activate aiPiY2s receptor constructs. Furthermore G A B A - evoked currents were 

inhibited by mefenamic acid in oocytes expressing aiPi receptors (Halliwell et al., 1999). 

Nicotinic ACh receptors expressed in Xenopus oocytes are differentially modulated by 

niflumic acid and flufenamic acid, depending on the nicotinic ACh sub-units expressed. 
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a3P2 nACh receptor currents are inhibited by niflumic acid and flufenamic acid with 

ICso's of 90nM and 260nM respectively, while a3P4 nicotinic ACh receptor mediated 

currents were potentiated by niflumic acid and flufenamic acid (Zwart et al, 1995). 

These data show that the subunit composition of ligand-gated ion channels are important 

for modulation by fenamates. 

Finally high concentrations of niflumic acid and flufenamic acid have been shown to be 

non-competitive inhibitors of NMDA currents (IC50 ~330|J,M) evoked in cultured mouse 

spinal neurones (Lerma & Del Rio, 1992). 

Together these studies have shown, using a wide range of methods, that NSAlDs can 

modulate a number of neuronal and non-neuronal ion channels. Fenamate NSAK)s, in 

particular, can modulate the G A B A A receptor and there is limited evidence suggesting 

that other ligand-gated ion channels are modulated by these and other NSAIDs. 

To date there have been no studies that have looked directly at how NSAIDs modulated 

native neuronal ligand-gated ion channels. The first part of this study aims to investigate 

the effects of a range of NSAIDs on native neuronal ligand-gated ion channels. 

1.13: Clinical adverse effects of NSAIDs 

Clinically, NSAIDs are relatively safe medicinal compounds with few serious adverse 

effects, even when taken in overdose (Smolinske et al., 1990). In 1999 only 4% of all 

cases of adverse drug effects reported to the American Association of Poisons Control 

Centres were associated with NSAIDs, and of these only 5% resulted in a serious or life 

threatening outcome (Litovitz et al., 2000). 
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The most common unwanted effect associated with NSAID use is gastro-intestinal 

ulceration, mainly in the stomach (Orme, 1990). This is thought to be due to inhibition 

of prostaglandin production, where they prevent gastric ulceration by reducing gastric 

acid secretion and evoke vasodilation of the gastric mucosa (Vane & Dotting, 1997). 

A number of central effects f rom NSAID use have been reported. For example, a study 

f rom New Zealand has reported that over a third of adverse effects f rom NSAIDs were 

of a neurological origin (Clark & Ghose, 1992) including dizziness, headache, 

drowsiness, confusion and depression. A number of clinical case reports have also 

shown that fenamate NSAIDs, in particular, when taken in overdose, cause more serious 

adverse central effects including seizures and coma. For example a nineteen year old 

woman was found in a tonic-clonic epileptic state after taking an overdose of 12.5g 

mefenamic acid (Young, 1979). Seizures relating to mefenamic acid overdose have also 

been reported by Robson et al. (1979), Balali Mood et al. (1981), Frank et al. (1983) 

and Shipton & Muller, (1985). Prescott and colleagues (1981) reported that seizures 

occur in over a third of mefenamic acid overdoses. Notably, mefenamic acid has also 

been reported to cause coma in overdose (Gossinger et al., 1982, Hendrickse, 1988), as 

has ibuprofen (Chelluri & Jastremski, 1986, Lee & Finkler, 1986). 

These reports indicate that NSAIDs can enter the human CNS at clinically relevant 

doses and can have profound effects upon the CNS. However there have been few 

studies on human or animal models which have investigated the mechanisms underlying 

these adverse central effects. 
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1.14: Some effects of NSAIDs on coenition 

The clinical reports outlined above indicate that NSAIDs can enter the CNS and this has 

led investigators to address the effect of NSAIDs on cognition. Two small clinical 

studies have shown that NSAIDs may impair cognitive performance. A retrospective 

study by Goodwin and Regan (1982) investigated eight patients f rom their clinic for 

alterations in cognition after taking ibuprofen or naproxen. They found that six patients 

developed forgetfulness and an inability to concentrate within two months of starting 

NSAID treatment and that these symptoms disappeared within two weeks of 

discontinuing the drug. Another study (Wysenbeek et al., 1988), involving naproxen, 

showed that four out of twelve elderly patients studied were impaired in at least one of 

four memory tests fol lowing a three week course of naproxen (750 mg/day). 

Conversely several clinical reports provide evidence that NSAIDs can enhance cognitive 

function. For example, a study of elderly volunteers has shown that indomethacin can 

improve sensorimotor co-ordination and short-term memory but not attention (Bruce-

Jones et al., 1994). Epidemiological studies in the elderly have also shown that NSAIDs 

can be protective against cognitive decline. For example, Rozzini et al. (1996) looked at 

data f rom six thousand patients in a longitudinal study and found that long-term NSAID 

use was protective against cognitive deterioration when they assessed patients by the 

short portable mental status questionnaire (SPMSQ) over a three year period. Another 

longitudinal study of nearly three thousand patients showed that "indeterminate" (i.e. 

over-the-counter) but not regular prescription NSAID use had a protective effect against 

cognitive decline over a three year period, as determined by SPMSQ scores (Hanlon et 

al., 1997). The same study, using an additional memory concentration test at the end of 

the three year period, also reported that patients who had regularly taken NSAIDs over 

this period performed better than those not taking NSAID's and that patients who had 
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taken high doses of NSAID did not perform as well as patients using low doses of 

NSABD. A large longitudinal study in elderly hypertensive patients showed a small but 

significant protection by NSAIDs against cognitive decline over a f ive year period, 

when measured by a paired associate learning test (Prince et al., 1998). 

These and other epidemiological studies have led Karplus and Saag (1998) to the 

conclusion that long-term use of low dose NSAIDs protects against cognitive decline, 

while higher doses of NSAID may impair memory. However there have been no 

experimental or animal model studies undertaken to date to address these 

epidemiological findings. There have also been no studies which have investigated the 

mechanism of action behind these cognitive effects. 

1.15: Protection against Alzheimer's disease associated with the use of NSAIDs 

A number of epidemiological studies have shown that treatment with NSAIDs can lead 

to a reduced risk of developing Alzheimer's disease. This link was first shown, 

indirectly, by Jenkinson et al. (1989) whose case control study found a reduction in the 

incidence of Alzheimer's disease in patients suffering f rom rheumatoid arthritis (for 

which the first line of treatment is NSAIDs) when compared to age-matched controls. A 

link between osteoarthritis (where the first line treatment is also NSAIDs) and a 

decreased risk of Alzheimer's disease was found by Breteler et a/. (1991) who suggested 

that long term use of NSAIDs might cause the protective effects against Alzheimer's disease. 

Since these initial reports a number of studies have addressed directly the association 

between Alzheimer's disease and use of NSAIDs. A n Australian study by Broe et al. 

(1990) examined 400 control-matched pairs of Alzheimer's disease cases for incidence 

of arthritis and found a reduced odds ratio between Alzheimer's disease and arthritis. A 
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follow-up study with the same patients (Henderson et al., 1992) found a significant 

inverse association between "heavy analgesic (including NSAIDs) use" and Alzheimer's 

disease. Using data f rom the Canadian study of health and ageing (McDowell et al., 

1994), a large case control study showed that a history of NSAID use resulted in a lower 

risk of developing Alzheimer's disease. A reduction in the risk of developing 

Alzheimer's disease in patients taking NSAIDs was also observed in a population based 

study of disease and disability in older people in Rotterdam, when compared to age, 

education and gender matched controls (Andersen et al., 1995). 

In 1996, McGeer and collegues collated the findings f rom seventeen published 

epidemiological studies which had investigated the possible l ink between NSAIDs or 

arthritis and Alzheimer's disease. Using statistical analysis to combine the results f rom 

these studies they found negative associations between the use of NSAIDs or arthritis 

and the development of Alzheimer's disease (McGeer et al., 1996). The combined data 

also showed that NSAID users had a low odds ratio for developing Alzheimer's disease 

when compared to control subjects. This f inding was supported by data analysed f rom 

the Baltimore longitudinal study of ageing (Stewart et al. 1997) in which subjects were 

tested on a range of neuropsychological tasks every two years. They reported that 

NSAIDs, with the exception of aspirin and paracetamol, were protective against 

Alzheimer's disease and they also found a decrease in the risk of developing 

Alzheimer's disease when the NSAIDs had been taken for longer than two years. 

In order to control for the genetic influences possibly involved in developing 

Alzheimer's disease, Breitner et al. (1994) examined f i f t y elderly twin pairs (twenty six 

of which were monozygotic) for protection against Alzheimer's disease with NSAIDs. 

They discovered that anti-inflammatory drug use (including steroidal treatment and 
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NSAIDs) was protective against Alzheimer's disease, although when NSAID protection 

alone was analysed, i t was not significant, probably due to the small number (six) of 

twins in that group. In a follow-up investigation (Breitner et al., 1995), the association 

between NSAIDs and Alzheimer's disease in siblings whose family history showed a 

high risk of Alzheimer's disease was investigated. They reported that sustained use of 

NSAIDs resulted in a delay in the onset (by an average of eleven years) and a reduced 

risk of developing Alzheimer's disease. 

In addition to the reduction in risk and onset of Alzheimer's disease, several studies 

have also shown that NSAIDs may slow the progression of cognitive decline after the 

onset of Alzheimer's disease. A clinical trial investigating the effect of indomethacin 

(150mg/day) on Alzheimer's diseased patients showed that the untreated groups 

performance on mini-mental state examination tests declined f rom baseline after six 

months, whereas the indomethacin group showed a slight improvement over baseline 

(Rogers et al., 1993). However a high number of patients (20%) taking indomethacin 

withdrew f rom the trial with gastrointestinal problems. Another small double blind 

randomised clinical trial has shown that the NSAID, diclofenac, taken in conjunction 

with a gastro-protective agent, misoprostal, results in a cognitive improvement, as tested 

by a broad range of cognitive tests, in Alzheimer's diseased patients taking the NSAID 

(Scharfera/., 1999). 

From the epidemiological and limited clinical data presented above, there is strong 

evidence that NSAID use is associated with a reduced risk of developing Alzheimer's 

disease as well as with a delay in the onset of Alzheimer's. There is also evidence 

suggesting that NSAIDs may improve cognitive performance is patients suffering f rom 

Alzheimer's disease. The underlying mechanisms behind the effect of these NSAIDs are 
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not clearly understood and there have been no animal studies which have investigated the 

effects of NSAIDs on memory. The second part of this study w i l l investigate the 

behavioural and cognitive effects of NSAIDs in a range of animal behavioural paradigms. 
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Chapter Two; Modulation of Ligand-Gated Ion Channels By NSAIDs 

2.1: Introduction and rationale 

The main aim of this chapter is to investigate the actions of a range of NSAIDs on 

several native neuronal ligand-gated ion channels. The rationale behind this is that 

fenamate NSAIDs have been reported to modulate rat brain G A B A A receptors 

(Woodward et al., 1994), and nicotinic ACh receptors (Zwart et al., 1995) expressed in 

Xenopus oocytes. Also a preliminary study by Halliwell and Davey (1994) showed that 

G A B A currents recorded from rat hippocampal neurones were positively modulated by 

mefenamic acid. The effect of non-fenamate NSAIDs on ligand-gated ion channels is 

still unclear; Woodward and colleagues (1994) report that indomethacin but not other 

non-fenamates can modulate G A B A A currents in Xenopus oocytes and bi-phenyl acetic 

acid has been reported to have weak inhibitory actions at the G A B A A receptors on rat 

hippocampal neurones (Halliwell et al., 1995), and the isolated rat vagus nerve (Green 

& Halhwell , 1997). 

The rat isolated vagus and optic nerves have proved useful preparations to investigate 

the mechanism, site and selectivity of compounds on a number of ion channels that are 

present on these nerves (Marsh, 1989). 

The first part of this chapter w i l l investigate the effects of known modulators on the 

G A B A A , 5 - H T 3 , nicotinic ACh (nACh) and P2x receptors present on the vagus nerve 

and the G A B A A and glycine receptors present on the optic nerve, in order to ascertain 

the pharmacological validity of these preparations. The second part of this chapter w i l l 

examine the actions of fenamate and non-fenamate NSAIDs on agonist evoked-

responses f rom the isolated rat vagus and optic nerves. 
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2.2: Methods and Materials 

2.2i: The extra-cellular recording technique 

The extra-cellular "grease-gap" recording technique has been used by many 

investigators to investigate the pharmacology of neuronal ligand-gated ion channels. For 

example several studies have shown concentration-dependent depolarisations evoked by 

G A B A (Green & Halliwell 1997; Patten et al., 2001); 5-HT (Ireland & Tyers, 1987; 

Bley et al. 1994) and ACh (Marsh, 1989; Green & Halliwell 1997) in the rat isolated 

vagus nerve. ATP and (X,P-methylene ATP also evoke depolarisations through 

activation of P2x receptors in the rat vagus nerve (Trezise et al., 1993; Green & 

Hall iwell , 1997) and rat sympathetic ganglia (Connolly, 1995). Concentration-

dependent depolarisation responses were also evoked by glycine and G A B A in the rat 

isolated optic nerve (Simmonds, 1983; Patten et al., 2001). 

The extra-cellular recording technique used in this study to investigate the potential 

modulation of ligand-gated ion channels by NSAIDs is based on a method devised by 

Green and Halliwell (1997) and is described below. 

2.2ii: Animals 

Male Wistar rats (250g - 400g), bred in-house and maintained under standard laboratory 

conditions of a light (07:00-19:00)/dark cycle with ad libitum access to food and water, 

were killed by a rising concentration of CO2. 
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2.2iii: Dissection 

Vagus nerve dissection: 

The skin suiTounding the throat area was removed exposing the thyroid glands, the 

stemomastoideus, posterior digastricus and stemohyoideous muscles, which were 

carefully removed. The vagus nerves could be seen lying adjacent to the common 

carotid arteries running bilateral to the trachea. Using fine forceps and small dissecting 

scissors, the vagus nerves were carefully separated f rom the carotid arteries and cut 

away at the nodose ganglion and at the point where they entered the thorax. The free 

vagus nerves were then placed in a dish of cold, oxygenated, physiologically buffered 

salt solution (PBS) and the connective tissue sheaths surrounding the nerves were 

removed using watchmaker forceps under a binocular dissecting microscope (Nikon 

SMZ-2B, Surrey, U.K.) . 

Optic nerve dissection: 

Following sacrifice the cadavers were decapitated and the skin overlying the skull was 

removed exposing the dorsal surface of the skull, which was bisected using bone 

scissors. The bone on the skull was broken away with artery forceps to reveal the brain; 

bone around the eye orbit, above the zygomatic arch was also removed. The 

oculormotor muscles were then teased away, using fine forceps, to expose the optic 

nerves. The brain was then gently lif ted caudally out of the skull cavity using a spatula, 

exposing the f u l l length of the optic nerves which were cut at the optic chiasma and 

removed f rom the back of the eyeballs using small dissecting scissors. The free optic 

nerves were then transferred to a dish of cold oxygenated PBS. 

Chapter 2: Electrophysiolgical investigation of NSAIDs 30 



2.2iv: Electrophysiology 

Extra-Cellular Recording from the Excised Rat Vagus and Optic Nerves: 

A thin seam of high vacuum silicone grease (British Drug Houses (BDH), Poole U.K. ) 

was placed halfway across the width of a microscope slide. A T-shaped piece of one­

way nappy liner (Mothercare, Herts U.K.) soaked in PBS was placed on either side of 

the grease seal and served to facilitate perfusion of the nerve and removal of PBS and 

drugs f rom the nerve. Freshly excised vagus or optic nerve was placed across the grease 

seam and another layer of grease placed across the first grease layer and nerve to create 

a high resistance seal around the middle portion of the nerve. The slide was then placed 

onto a perspex frame housed inside a Faraday cage (built in-house). Silver-silver 

chloride recording electrodes ( R C l electrodes, Clark Electromedical, Kent, U.K.) were 

positioned onto the nappy liner on either side of the grease seam, adjacent to the free 

ends of the nerve (figure 2.1). 

PBS and drugs were dripped onto the free ends of the nerve via 21G hypodermic 

needles, (positioned 1cm above the slide) at a rate of 2ml per minute using a variable 

speed peristaltic pump (Gilson Miniplus 3, Villers le Bel, France). Before agonists were 

applied to the nerves, the potential difference across the grease seal was allowed to 

equilibrate, this generally took between twenty minutes and one hour and is thought to 

be due to the nerve ends sealing over and redistribution of ions across the nerve 

membrane (Marsh, 1989). 

Agonist-evoked direct current (DC) potentials across the grease seam were recorded, at 

ambient room temperature (20-23°C), via the silver-silver chloride electrodes. The 

current was relayed through miniature coaxial cable to a Neurolog amplifier ( N L 100, 

Digitimer, Hertfordshire, U.K.) and fil ter (NL 125) with signals filtered between DC 
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and 50Hz. The signal was then relayed to a flatbed chart recorder (Sycopel, Tyne & 

Wear, U.K.) where agonist-evoked changes in DC potential were detected and recorded 

between O.OlmV and 5.0mV. Baseline noise was generally less than 0.02mV and was 

caused mainly by the dripping of PBS onto the nappy liner. The noise could be reduced 

by a slight repositioning of the perfusion needles and/or recording electrodes. 

PBS 

Amplif ier 
and filter Chart recorder 

DC^SOHz 

Ag/AgCl 
electrodes 

Nerve 

1̂  
Grease seal Nappy liner 

_PBS& 
agonist 

Figure 2.1: Schematic of the extra-cellular recording technique. A vagus or optic 
nerve was placed onto a glass slide across a grease seal barrier. The nerve was perfused 
with a physiologically balanced salt solution (PBS). Agonist -evoked responses were 
recorded extracellulary via Ag/AgCl electrodes, amplified, filtered (DC - 50Hz), then 
displayed and stored on a flat-bed pen chart recorder. 

Experimental Protocol: 

Agonists, dissolved in PBS, were applied via the perfusion system to one side of the 

nerve with PBS being applied to the other side of the nerve. Pilot studies showed that a 

two-minute administration of agonist elicited a clear equilibrium peak. These studies 

also showed a ten to fifteen minute interval between agonist application resulted in 
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stable and repeatable agonist responses. Concentration effect curves were constructed 

using a quasi-random order of agonist concentration applications. 

To investigate the effect of drugs on agonist-evoked responses, the drug was added to 

the bath solution and continuously perfused onto both ends of the nerve for two minutes 

prior to agonist application (unless stated otherwise). Agonist concentrations that were 

approximately 50% of the maximum agonist-evoked response or 20% of the maximum 

agonist evoked response were then observed in the presence of drug. These sub-

maximal agonist concentrations were applied to the nerve until two consecutive 

responses of agonist resulted in equal (± 10%) depolarisation responses. A fu l l agonist 

concentration effect curve in the presence of a drug could then be obtained. 

2.2vi: Data analysis 

Agonist responses were measured f rom baseline to peak amplitude of response and 

expressed as the mean ± standard error of mean (s.e.m. of n experiments). In the case of 

concentration-effect experiments, agonist-induced depolarisations are expressed as a 

percentage of the maximum control agonist response. 

The concentration-effect data was then plotted and fitted by a least squares f i t t ing, non­

linear regression analysis (a sigmoidal concentration response curve with a variable 

slope; Graphpad Prism v2.1) to the fol lowing logistic equation: 

R = Rmax X { [ A ] " " / ( [ A ] " " - h EC50"") } 

Where R and Rmax represent the response evoked by the agonist concentration, [ A ] , and 

a saturating concentration, respectively. EC50 is the concentration evoking half of the 

maximal response and n H is the H i l l slope. 
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From this analysis, the mean concentration of drug that resulted in 50% of the control 

maximum response (EC50) or the mean concentration of drug which resulted in a 50% 

inhibition of control agonist response (IC50) and the 95% confidence intervals (95% 

C.I.) were obtained. The H i l l slopes (± s.e.m) reported were also calculated f rom the 

curve f i t . H i l l slopes f rom concentration effect curves in the presence of varying 

concentration of NSAID were compared statistically using A N O V A , followed by 

Student Newman-Keuls post hoc analysis i f the overall analysis was significant (p< 

0.05). Care should be taken when interpreting these H i l l slopes since the final 

concentration of agonist that reaches the receptor may be different f rom the 

concentration applied exogenously. For example, the degree of agonist 

uptake/metabolism within the neuronal preparation is unknown and may reduce agonist 

concentrations at the receptor site (Simmonds, 1990). 

Where agonists are applied in the presence of a drug, the data is presented as a 

percentage of the control agonist response height. Concentration effect curves in the 

presence of a drug were presented as percentage of the control maximum agonist 

response. 

Agonist responses in the presence of a NSAID (at a test concentration of 100|xM) were 

analysed statistically by comparing the depolarisation responses in the absence and 

presence of the NSAID, with a paired Student's t-test (two-tailed). I f there was a 

significant difference in agonist response heights, a concentration effect curve for that 

NSAID against sub-maximal agonist concentrations was then performed. Concentration 
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effect curves for the agonist in the presence of a range of concentrations of the NSAID 

were also constructed. 

2.2vii: Drugs and solutions 

PBS was made up in ultra pure double distilled deionised water (Milli-Qpius, Millipore, 

Hertfordshire, U.K.) with the following analytical grade compounds obtained from BDH 

unless otherwise stated (in mM): 118 NaCl, 1.18 KH2PO4, 4.7 KCl, 1.18 MgS04, 2.5 

CaCl2, 11 glucose and 10 HEPES (Sigma, Poole, U.K.). The PBS was then titrated to 

pH 7.2 using 2.5M hydrochloric acid. 

Al l drugs were supplied by Sigma unless otherwise stated. GABA and glycine were 

each dissolved in PBS as I M stock solutions. 5-HT and a,P-methyleneadenosine 5-

triphosphate (a,|3MeATP) were dissolved in PBS as lOmM stock solutions. 1,1-

dimethyl-4-phenylpiperazinium (DMPP) was dissolved in PBS to give a I m M stock 

solution. Al l compounds were serially diluted as required in PBS. 

Bicuculline was dissolved in a small volume (~ 0.5mL) of I m M hydrochloric acid then 

diluted down to I m M stock with double distilled deionised water. Sodium 

pentobarbitone was made up as a I m M stock solution in PBS. laH,3a,5aH-tropan-3-

yl-3,5-di-chlorobenzoate (MDL 72222) was dissolved in I M hydrochloric acid to give a 

I m M stock solution. Hexamethonium was dissolved in PBS to give a lOmM stock 

solution. Pyridoxyalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS; Tocris, 

Bristol, U.K.) was made as a lOmM stock solution in double distilled deionised water. 

Strychnine was made as a I m M stock in double distilled deionised water. Propofol 

(kindly provided by Organon Laboratories, Newhouse, Scotland) was dissolved in 
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absolute ethanol as a lOOmM stock solution and then serially diluted in PBS (the 

maximal concentration of ethanol used was < 0.1%). 

Mefenamic acid, acetylsalicyclic acid and indomethacin were each made up in O.IM 

NaOH to give lOmM stock solutions. Niflumic acid, flufenamic acid and meclofenamic 

acid were each dissolved in O.IM NaOH as a 50mM stock solutions. Ibuprofen was 

dissolved in O.IM NaOH to give a lOOmM stock solution. 4-biphenylacetic acid 

(BPAA) was made up as a lOOmM stock in absolute ethanol. 
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2.3: Results 

2.3i: Pharmacological characterisation of GABA, 5-HT, DMPP and a,pMeATP 

evoked responses in the isolated rat vagus nerve 

GABA (3^M - 3mM), 5-HT (O.l^iM - SO^iM), DMPP (3nM - ImM) and a,PMeATP 

( l | i M - 300|xM) each evoked concentration-dependent depolarisations of the rat isolated 

vagus nerve (figure 2.2). ECgo's (95% C.I.; for n experiments) for GABA, 5-HT, DMPP 

and a,|3MeATP were 45|aM (38^M - 53^M; n=23), l^ iM (0.9nM - L l ^ i M ; n=36), 

26nM (22^M - 29|iM; n=40) and 47)LIM (SS^iM - 58nM; n=19) respectively. Hill slopes 

for these agonists were calculated to be 1.0 ± 0.11 for GABA, 1.3 ± 0.07 for 5-HT, 1.0 ± 

0.11 for a,|3MeATP and 1.5 ± 0.09 for DMPP. 

Concentrations of each agonist approximating their respective ECjo's were used to 

investigate the effects of control drugs and NSAIDs. Responses to GABA (50nM), 5-

HT (l^iM), DMPP (30^M) and a,PMeATP (30^M) evoked depolarisations (mean ± 

s.e.m) of 0.60 ± 0.04mV (n=90), 0.73 ± 0.04mV (n=57), 0.52 ± 0.04mV (n=48) and 

0.86 ± 0.08mV (n=20), respectively. In some experiments, designed to examine the 

effects of positive allosteric modulators, a concentration approximating the GABA EC20 

of 10|a,M was used, which evoked a depolarisation of 0.09 ± O.OlmV. 

The potencies of the four agonists tested were compared to that of a I m M GABA 

response (figure 2.3). The largest depolarisation was observed with a,PMeATP 

(300^iM) of 1.98 ± 0.24mV, this was followed by 5-HT (30nM) with 1.44 ± 0.1 mV; 

GABA (lOmM) with 1.38 ± 0.17mV and DMPP (lOO^iM) with 0.98 ± O.lmV. 
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GABA 5-HT 

lOuM 50uM ImM 0.1|iM l^ iM lOiaM 
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Figure 2.2 Electrophysiological recordings of GABA-, 5-HT-, DMPP- and 
a,(3MeATP- evoked depolarisations in the rat isolated vagus nerve. The figure 
shows chart recorder traces of GABA-, 5-HT-, DMPP- and a,PMeATP- evoked 
depolarisations. The agonist applied is given above triplets of responses and the 
concentration of agonist is given below each individual response, the agonist contact 
time is represented by a solid bar beneath each trace. 
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Figure 2.3: GABA, 5-HT, DMPP and a,pMeATP each evoke concentration-
dependent responses in the rat isolated vagus nerve. 
The figure shows log concentration response curves for GABA, 5-HT, DMPP and 
a,PMeATP. The logio of the agonist concentration is shown on the x-axis and the 
agonist response, expressed as % of I m M GABA- evoked response is shown on the y-
axis. Each data point is the mean ± s.e.m of 23, 36, 40 and 19 experiments for GABA, 
5-HT, DMPP and a,PMeATP respectively. 

In order to establish the type of receptors mediating the depolarisations on the rat 

isolated vagus nerve, the selective antagonist, bicucuUine, for the G A B A A receptor, 

MDL 72222, for the 5-HT3 receptor, hexamethonium, for the nicotinic ACh receptor and 

PPADS for the P2x receptor were applied to the nerves. 

Bicuculline (0.3nM - 10|LiM) caused a concentration-dependent inhibition of the GABA 

(50|j,M) evoked responses (figures 2.4; 2.5), with an IC50 of 1.4|xM ( l . l j i M - 1.8|xM; 

n=6). Bicuculline (lOjxM) resulted in complete abolition of the GABA response. The 

effects of bicuculline were fully reversible upon washout and responses comparable to 

those of control were observed after thirty minutes of drug wash out. 
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Figure 2.4: Electrophysiological recordings of G A B A - , 5-HT-, DMPP- and a,pMeATP-
evoked responses inhibited by antagonists of the G A B A A , S - H T S , nACh and P2x 
receptors, respectively. Examples of chart recorder traces showing sub-maximal GABA-, 
5-HI-, DMPP- and a,PMeATP- evoked responses in the absence and presence of 
bicuculline (Bic; l ^ M ) , MDL 72222 (MDL; 0.1|.iM), hexamethonium (Hex; l^iM) and 
PPADS (lO^M) respectively. The concentration of agonist and antagonist applied to the 
isolated rat vagus nerve is indicated below each response, the agonist contact time is 
represented by the solid bar beneath each response. 

Application of M D L 72222 (lOnM - 300nM) resulted in a concentration-dependent 

inhibition of 5-HT ( l ^ M ) responses (figure 2.4) with an IC50 of 36nM (25nM - 52nM; 

n=4; figure 2.5). It was observed that the maximum inhibition of the 5-HT response 

was 80 ± 4% of the control response with MDL 72222 (300nM). The effects of MDL 

72222 were only partially reversed following extensive (> 90 minutes) washing. 
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Figure 2.5: Bicuculline, MDL 72222, hexamethonium and PPADS inhibit sub-
maximal GABA-, 5-HT-, DMPP-, and a,(3MeATP- evoked responses, respectively. 
Logio concentration inhibition curves for (A) bicuculline on GABA (50|J,M) responses; 
(B) MDL 72222 on 5-HT ( l ^ M ) responses; (C) Hexamethonium on DMPP (30nM) 
responses. The y-axis of each graph is the response, expressed as % of control, and the 
X-axis is logio concentration of antagonist. (D) Histogram summarising the inhibitory 
effects of PPADS on the a,PMeATP (SO^iM) response. Each data point represents the 
mean ± s.e.m. of 4-6, 4-8, 3-7 and 3 experiments for bicuculline, MDL 72222, 
hexamethonium and PPADS respectively. 
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Addition of hexamethonium (0.1|j,M - 100^lM) resulted in a concentration-dependent 

inhibition of DMPP {30\iM) responses (figure 2.4) with an IC50 of 393nM (302nM -

511nM; n=4). Hexamethonium (lOO^iM) completely blocked the DMPP- evoked 

depolarisation (figure 2.5), which was fully reversible following thirty minutes of drug 

wash out. 

PPADS (lO^iM) induced a 66% ± 6% (n=3) inhibition of the a,pMeATP (30nM) 

response (figures 2.4; 2.5). The effect was fully reversible after extensive drug wash out 

(> 90 minutes). 

The known G A B A A receptor modulators, sodium pentobarbitone and propofol, were 

investigated for their effects on the G A B A (10|a,M) responses in the rat isolated vagus 

nerve. 

Sodium pentobarbitone (10|a.M - 300[xM) concentration-dependently potentiated GABA 

(10|xM) responses (figure 2.6), with a maximum enhancement to 345 ± 26% of control 

response at 300nM (n=4). The effect of pentobarbitone was fully reversible upon 

extensive washout (> 90 minutes). 

Propofol ( l |xM - 10|iM) concentration-dependently potentiated GABA (lOjxM) evoked 

responses with a maximal enhancement to 458 ± 53% (n=25) of control in the presence 

of lOjiM propofol (figure 2.6). GABA responses were still potentiated to 210% + 9% of 

control even after ninety minutes of washout of propofol (lOjiM). 
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Figure 2.6: Sodium pentobarbitone and propofol potentiate sub-maximal GABA-
evoked responses in the isolated rat vagus nerve. (A) Examples of chart recorder 
traces of GABA (10|a,M)-evoked responses potentiated by (i) sodium pentobarbitone 
(10|iM) and (ii) propofol (lO^iM). The drug concentration applied to the nerve and 
agonist contact time, represented by the solid bar, are indicated below each response. 
(B) Log concentration effect curves for the potentiation of GABA (10|xM) responses by 
propofol (0.3fj,M - 30^iM) and sodium pentobarbitone (lOjoM - 300|xM). The logio of the 
modulator is plotted on the x-axis and the responses, as % of control, plotted on the y-
axis. Each data point represents the mean ± s.e.m. of 8-12 and 4-7 experiments for 
propofol and sodium pentobarbitone, respectively. 
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These results are consistent with data from other studies using extracellular recording 

techniques for the activation of the G A B A A , 5-HT3, nACh and Pax receptors in the rat 

isolated vagus nerve (e.g. Patten et al, 2001; Green & Halliwell, 1997; Trezise, 1993; 

Ireland & Tyers, 1987). 

2.3ii: Pharmacological characterisation of GABA and glycine evoked responses on 

the rat isolated optic nerve 

In the rat isolated optic nerve, application of GABA (100|a,M - 30mM) or glycine 

(lOOfxM - 30mM) evoked concentration-dependent depolarisations (figure 2.7) with 

EC50 values (95% C.I.) of I m M (BOO^M - 2.3mM; n=6) and 3mM (2.4mM - 3.8mM; 

n=5) for GABA and glycine, respectively. The Hill slopes for GABA and glycine were 

1.0 ± 0.10 and 1.3 ± 0.17, respectively. Sub-maximal concentrations of ImM for GABA 

and glycine (approximating 50% and 25% of maximum response, respectively) were 

used in subsequent experiments and resulted in depolarisations of 0.35 ± 0.03mV (n=9) 

and 0.25 ± 0.04mV (n=7), respectively. Maximum responses to GABA (30mM) and 

glycine (30mM) resulted in depolarisations of 0.68 ± 0.04mV (n=9) and 0.82 ± 0.13mV 

(n=7), respectively. 

The selective antagonists, bicuculline for the G A B A A receptor, and strychnine for the 

glycine receptor, were investigated for their inhibitory actions on the G A B A - and 

glycine- evoked responses in the rat isolated optic nerve. 

GABA (ImM) responses were inhibited in a concentration-dependent fashion by 

bicuculline (3|xM - 30nM; figure 2.8) with an IC50 of IS^M (13|xM - 24nM; n=4). The 
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GABA response was completely inhibited in the presence of bicuculline (lOOfxM). The 

effects of bicuculline were completely reversible upon thirty minutes of drug washout. 
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Figure 2.7: GABA and glycine each evoke concentration-dependent 
depolarisations in the isolated rat optic nerve. (A) Examples of chart recorder traces 
of GABA- (top left) and glycine- (top right) evoked responses. The agonist 
concentration and contact time, represented as a solid bar, is shown below each 
response. (B) Log concentration-effect curves for GABA and glycine. The logio agonist 
concentration is given on the x-axis and the response, expressed as % of maximum 
agonist response, is given on the y-axis. Each data point is the mean ± s.e.m. of 5 
experiments for GABA and glycine. 
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Figure 2.8: GABA and glycine- evoked responses are inhibited by bicuculline and 
strychnine respectively. (A) Example chart recorder traces of sub-maximal GABA-
and glycine- (both ImM) evoked responses in the absence and presence of bicuculline 
(10|xM) and strychnine (0.1|J,M), respectively. The drug concentrations applied to the 
isolated rat optic nerve and agonist contact time, represented as a solid bar, are given 
below each response. (B) Log-concentration inhibition curves for (i) bicuculline on 
GABA (ImM) responses and (ii) strychnine on glycine (ImM) responses. The x-axis for 
each graph is the logio concentration of the antagonist and the y-axis is the response 
expressed as % of control. Each data point is the mean ± s.e.m. of 4-10 and 3-4 
experiments for GABA and glycine respectively. 

Strychnine caused a concentration-dependent inhibition (0.01|i,M - 3 | iM) of glycine 

(ImM) responses (figure 2.8) with an IC50 of 130nM (94nM - 179nM; n=4). The glycine 

response was abolished in the presence of 3|a,M strychnine. The effect of strychnine on 

glycine responses was completely reversible upon thirty minutes of drug washout. 
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This data is consistent with that from other studies using the extracellular recording 

technique for activation of the G A B A A and strychnine-sensitive glycine receptors in the 

rat isolated optic nerve, (e.g. Patten et al, 2001; Green & Halliwell, 1997; Simmonds 

1983) 

2.3iii: Determination of the effects of fenamate NSAIDs on GABAA, S-HTS, nicotinic 

ACh and P2x receptors. 

Agonist evoked- responses in the presence of fenamate NSAIDs (initially at 100|a.M) 

were compared to the control responses using a paired Student t-test (two-tailed). On the 

isolated rat vagus nerve, only mefenamic acid significantly enhanced the G A B A A 

receptor- mediated response (t5= 4.20, p< 0.05). In contrast, flufenamic acid 

significantly inhibited nACh (t4= 3.58, p< 0.05) and P2x (t6= 4.88, p< 0.05) receptor-

mediated responses; meclofenamic acid significantly inhibited G A B A A receptor 

mediated- response (t7= 6.48; p< 0.05) and mefenamic acid significantly inhibited 5-

HT3 (t6= 7.91, p< 0.05) and P2x (t6= 5.80, p< 0.05) receptor mediated- responses, 

whereas niflumic acid did not significantly change (p> 0.10) any agonist- evoked 

response. Additionally the fenamates did not significantly change the G A B A or glycine 

responses in the isolated rat optic nerve. The effect of fenamate NSAIDs (100|LIM) on 

sub-maximal agonist evoked responses from the rat isolated vagus and optic nerves are 

summarised in table 2.1 and table 2.2 respectively. 
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Table 2.1: Fenamate NSAIDs modulate agonist- evoked responses in the rat 
isolated vagus nerve. Table showing the agonist responses, as a % of control ± s.e.m. 
for GABA, 5-HT, DMPP, a,|3MeATP in the isolated rat vagus nerve after application of 
the fenamates (at 100|lIM): flufenamic acid (FFA), mefenamic acid (MFA), 
meclofenamic acid (Meclo) and niflumic acid (NFA). Results highlighted in bold are 
responses that were significantly (p< 0.05) different from control in the presence of a 
fenamate NSAID. n= number of experiments, t=test statistic with degrees of freedom in 
subscript. 

Agonist Fenamate (at lOOixM) 

(concentration) FFA Meclo MFA NFA 

GABA 91 ±9% (n=3) 41±6% (n=8) 155±11% (n=6) 92±6% (n=6) 

(50^M) (t2= 0.71) (t7= 6.48) (ts= 4.20) (t5=1.38) 

5-HT 78±5% (n=7) 82±2% (n=4) 43±2% (n=ll) 106±7% (n=7) 

( l ^ M ) (t6=1.19) (t3= 0.80) (tii=7.91) (t6=1.4) 

DMPP 50+9% (n=5) 77±6% (n=4) 76±2% (n=6) 76±5% (n=4) 

(30|aM) (t4=3.59) (t3=0.19) (t5=6.30) (t3=2.94) 

a,pMeATP 59±7% (n=7) 106±16% (n=4) 65±6% (n=7) 79±4% (n=4) 

(30|aM) (t6=4.88) (t3=0.03) (t6=5.80) (t3=1.26) 

Table 2.2: Modulation of agonist responses by fenamate NSAIDs in the rat isolated 
optic nerve. Table showing the response as % of control ± s.e.m. for GABA, and 
glycine depolarisations in the isolated rat optic nerve in the presence of fenamates (at 
lOO^M): flufenamic acid, mefenamic acid, meclofenamic acid and niflumic acid. None 
of the fenamates significantly affected (p> 0.10) these responses. n= number of 
experiments. t=test statistic with degrees of freedom in subscript. Abbreviations as in 
table 2.1, above. 

Agonist Fenamate (at lOOjxM) 

(concentration) FFA Meclo MFA NFA 

GABA 107±5% (n=4) 87±6% (n=4) 98+3% (n=10) 89±6% (n=4) 

(ImM) (t3=2.35 ) (t3=0.17) (tc,=1.41) (t3=2.16) 

Glycine 97±3% (n=6) 100±3% (n=4) 97±1% (n=4) 108±4% (n=7) 

(ImM) (t5=0.78) (t3=0.40) (t3=1.73) (t6=1.62) 
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2.3iv: Experiments to address the mechanisms underlying the inhibition of nicotinic 

acetylcholine receptors by fenamates 

Flufenamic acid (30|xM - 300|a,M), inhibited DMPP responses in a concentration-

dependent manner (figure 2.9). 
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Figure 2.9: Flufenamic acid inhibits nACh-mediated responses. (A) Examples of 
chart recorder traces for DMPP- (30^M) evoked responses in the absence and presence 
of flufenamic acid (FFA; lOO^iM). The DMPP contact time is represented by the solid 
bar beneath each response. (B) Histogram showing DMPP (30nM) response, as % of 
control, in the presence of flufenamic acid (30|xM - 300^M). Each data bar is the mean 
(± s.e.m.) of 3-4 experiments. 

Concentration response curves to DMPP (3-300|aM) were depressed and shifted to the 

right by increasing concentrations of flufenamic acid (30-300nM). The maximal DMPP 

response was decreased to 67±5%, 48±5% and 23±5% of the control maximal DMPP 

response in the presence of 30nM, 100|xM and 300)^M flufenamic acid respectively. 

These data are shown in figure 2.10. Hill slopes for DMPP were not significantly 

changed from control by flufenamic acid (F3.i8= 0.55, p> 0.10). 
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Figure 2.10: Flufenamic acid inhibits nicotinic ACh receptors in a non-competitive 
fashion. Graph showing log concentration-effect curves for D M P P in the absence and 
presence of flufenamic acid (FFA; 3 0 ^ M - 300|J.M). The X-axis shows the logio 
concentration of D M P P and the y-axis gives the D M P P response, represented as % of 
maximum control D M P P response. Each data point is the mean ± s.e.m. of 4-8 
experiments. 

This data suggests that flufenamic acid causes a weak non-competitive antagonism of 

nicotinic acetylcholine receptors. 

2.3v: Experiments to address the mechanisms underlying the modulation of GABAA 

receptors by fenamates 

GABA- evoked responses (50nM) were inhibited in a concentration dependent fashion 

manner by meclofenamic acid (30-300m,M) as shown in figure 2.11. 
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Figure 2.11: Inhibition of G A B A A receptors by meclofenamic acid. ( A ) Examples of 
chart recorder traces for G A B A - (50nM) evoked responses in the absence and presence 
of meclofenamic acid (Meclo; lOOuM). ( B ) Histogram showing the % of G A B A 

(50|aM) control response in the presence of meclofenamic acid (30|iM - 300|iM). Each 
data bar is the mean ± s.e.m. of 3-10 experiments. 

Concentration response curves to G A B A (3|J,M - I m M ) were depressed and shifted to 

the right by increasing concentrations of meclofenamic acid (30-300|xM). The maximal 

G A B A response was decreased to 77±7%, 55±5% and 36±4% of the control maximal 

G A B A response in the presence of 30|lM, lOOuM and 300nM meclofenamic acid 

respectively, as shown in figure 2.12. Hill slopes were not significantly changed (F3,i3= 

2.34, p> 0.10) by meclofenamic acid. This data indicates that meclofenamic acid causes 

a non-competitive like inhibition of G A B A A receptors. 
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Figure 2.12: Non-competitive-like inhibition of G A B A A receptors by meclofenamic 
acid. Graph showing log concentration-effect curves for GABA in the absence and 
presence of meclofenamic acid (Meclo; 30|iM - 300|xM). The x-axis is the logio 
concentration of GABA and the y-axis is the GABA response represented as % of the 
control maximum GABA response. Each data point is the mean ± s.e.m. of 4 
experiments. 

In contrast to meclofenamic acid, mefenamic acid potentiated the G A B A (50|LIM) -

mediated response. Therefore, the effects of mefenamic acid on submaximal G A B A 

(10|xM) responses were further investigated. Mefenamic acid (10-lOOnM) 

concentration-dependently increased the amplitude of the G A B A response with a 

maximum of potentiation of 153±10% (n=12) of control in the presence of mefenamic 

acid (30|xM) as shown in figure 2.13. At mefenamic acid (lOOuM), the enhancement 

was lower than that of mefenamic acid (30|a,M), and was also associated with a shift in 

the baseline recording possibly due to direct activation of the G A B A A receptor. 
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Figure 2.13: Concentration-dependent potentiation of G A B A A receptor mediated 
responses by mefenamic acid. (A) Examples of chart recorder traces for GABA-
(10|iM) evoked responses in the absence and presence of mefenamic acid (MFA; 
30|xM). The agonist contact time is represented as a soHd bar beneath each response. (B) 
Histogram showing the response, as a % of GABA (10|U,M) control, in the presence of 
mefenamic acid (3|J.M - 100|J,M). Each data bar is the mean ± s.e.m. of 3-5 experiments. 

This data demonstrates that mefenamic acid can act as a positive modulator at the 

G A B A A receptor. 

2.3vi: Experiments to address the mechanisms underiying the inhibition of S-HTj 

receptors by fenamates 

Mefenamic acid (30|iM - 300nM) inhibited 5-HT- (l |xM) responses in a concentration-

dependent manner (figure 2.14). Concentration effect curves to 5-HT were depressed 

and shifted to the right in a concentration-dependent manner by mefenamic acid (30-

300|iM). The maximal 5-HT response was decreased to 85±4%, 51+5% and 21±4% of 

control maximal 5-HT response in the presence of 30|J,M, lOOfxM and 300|i,M 

mefenamic acid, respectively, as shown in figure 2.15. Hill slopes for 5-HT in the 
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presence of mefenamic acid were not significantly different from the control Hill slope 

for 5-HT (F3,22= 0.66, p> 0.10). 
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Figure 2.14: Concentration-dependent inhibition of 5 - H T 3 - receptor mediated 
responses by mefenamic acid. (A) Examples of chart recorder traces for 5-HT- (l |xM) 
evoked responses in the absence and presence of mefenamic acid (MFA; 100|J.M). The 
agonist contact time is represented as a solid bar beneath each response. (B) Histogram 
showing the 5-HT (l^iM) response in the presence of mefenamic acid (lOjiM - lOOjuiM) 
as % of control. Each data bar is the mean ± s.e.m. of 7-10 experiments. 

These results demonstrate that mefenamic acid causes a weak non-competitive 

antagonism of 5-HT3 receptors. 
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2.15: Non-competitive like inhibition of 5 - H T 3 receptors by mefenamic acid. Graph 
showing log concentration-effect curves for 5-HT in the absence and presence of 
mefenamic acid (MFA; 30|xM - 300^M). The x-axis shows the logio concentration of 5-
HT and the y-axis gives the 5-HT response, represented as % of the control maximum 5-
HT response. Each data point is the mean ± s.e.m. of 4-10 experiments. 

2.3vii: Experiments to address the mechanisms underlying the inhibition of P2x 

receptors by fenamates 

Flufenamic acid (30^M - 300|iM) inhibited a,pMeATP - i30\iM) responses in a 

concentration-dependent manner (figure 2.16). Concentration effect curves to 

a,PMeATP were depressed and shifted to the right in a concentration-dependent manner 

by flufenamic acid (30-300|xM). The maximal a,PMeATP response was decreased to 

73±3%, 53±4% and 39±2% of the control maximal a,PMeATP response in the presence 

of 30|iM, lOOuM and 300|U,M flufenamic acid, respectively. These data are shown in 

figure 2.17. Hill slopes for a,PMeATP in the presence of flufenamic acid were not 

significantly different from the control a,pMeATP Hill slope (F3,28= 0.70, p> 0.10). 
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This data suggests that flufenamic acid inhibits P2x receptors in a non-competitive like 

manner. 
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Figure 2.16: Concentration-dependent inhibition of P2x receptors by flufenamic 
acid. (A) Examples of chart recorder traces for a,pMeATP - (ATP; 30|AM) evoked 
responses in the absence and presence of flufenamic acid (FFA; lOOfxM). The 
a.PMeATP and flufenamic acid concentration and agonist contact time, represented as a 
solid bar, is given below each response. (B) Histogram showing the response, as % of 
control, in the presence of flufenamic acid (30|a.M - 300^iM). Each data bar is the mean 
± s.e.m. of 4-7 experiments. 
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Figure 2.17: Non-competitive like inhibiton of P2x receptors by flufenamic acid. 
Graph showing log concentration-effect curves for a,PMeATP in the absence and 
presence of flufenamic acid (FFA; 30M.M - 300|J,M). The x-aXis is the logio 
concentration of a.^MeATP and the y-axis is the a,PMeATP response represented as % 
of maximum control a,PMeATP response. Each point is the mean ± s.e.m. of 4 
experiments. 

Mefenamic acid (30|xM - 300nM) inhibited a,PMeATP responses (30nM) in a 

concentration-dependent manner (figure 2.18). Concentration effect curves to 

a,|3MeATP were depressed and shifted to the right in a concentration-dependent manner 

by mefenamic acid (30-300nM). The maximal a,PMeATP response was decreased to 

68±12%, 55±5% and 52±9% of control maximal a,PMeATP response in the presence 

of 30|J,M, lOOjiM and 300^M flufenamic acid, respectively as shown in figure 2.19. Hill 

slopes for a,PMeATP in the presence of flufenamic acid were not significantly different 

from the control a,pMeATP Hil l slope (F3,28= 0.55, p> 0.10). This data indicates that 

flufenamic acid inhibits P2x receptors in a non-competitive like fashion. 
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Figure 2.18: Concentration-dependent inhibition of P2x receptors by mefenamic 
acid. (A) Examples of chart recorder traces for a,pMeATP - (ATP; 30nM) evoked 
responses in the absence and presence of mefenamic acid (MFA; 100|aM). The 
a,PMeATP and mefenamic acid concentration and the agonist contact time, represented 
by the solid bar, is given below each response. (B) Histogram showing the response, as 
% of control, in the presence of mefenamic acid (30|xM - SOO îM). Each data bar is the 
mean ± s.e.m. of 4-7 experiments. 

The effects of all fenamate NSAIDs on each agonist-evoked response were poorly 

reversible even after prolonged (> two hours) washout. 
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Figure 2.19: Mefenamic acid induces a non-competitive like inhibition of P2x 
receptors. Graph showing log concentration-effect curves for a,PMeATP in the 
absence and presence of mefenamic acid (MFA; 30|aM - 300|a.M). The x-axis gives the 
logio concentration of a,PMeATP and the y-axis shows the a.pMeATP response 
represented as % of maximum control a,PMeATP response. Each point is the mean ± 
s.e.m. of 4 experiments. 

2.3viii: Effect of Non-Fenamate NSAIDs on Agonist- Evoked Responses 

To investigate the hypothesis that the effects of fenamates on the ligand-gated ion 

channels described above were the result of COX inhibition in the nerves, the effects of 

non-fenamate NSAIDs on sub-maximal GABA, 5-HT, DMPP and a,pMeATP 

responses in the isolated rat vagus nerve and GABA and glycine responses in the 

isolated rat optic nerve was investigated. 

Statistical analysis of agonist-evoked responses in the absence and presence of each 

NSAK) was performed using a paired Student t-test (two-tailed). None of the non-

fenamate NSAIDs had a significant effect on agonist responses in the isolated rat vagus 
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or optic nerves (p> 0.10). The results of these experiments are summarised in tables 3.3 

and 3.4 respectively. 

Table 2.3: Non-fenamate NSAIDs have Httle effect on agonist- evoked responses in 
the rat isolated vagus nerve. Table showing the agonist response, as a percentage of 
control ± s.e.m. for GABA, 5-HT, DMPP and a,p MeATP in the rat isolated vagus 
nerve after application of (at lOOjiM) aspirin (ASA), bi-phenyl acetic acid (BPAA), 
ibuprofen (IBU) and indomethacin (INDO). None of the NSAIDs significantly affected 
(p> 0.10) these responses. n= number of experiments. t=test statistic with degrees of 
freedom in subscript. 

Agonist Non-fenamate NSAID (at lOO^M) 

(concentration) ASA BPAA IBU INDO 

GABA 111±4% (n=6) 76±4% (n=8) 88±11% (n=5) 77±5% (n=6) 

(50^AM) (t5= 1.25) (t7= 1.88) (t4= 0.03) (t5=1.50) 

5-HT 85±l%(n=4) 77±6% (n=4) 108±4% (n=3) 106±4% (n=7) 

dlAM) (t3= 1.53) (t3= 1.24) (t2= 2.69) (t6=0.71) 

DMPP 77±2% (n=4) 84±3% (n=3) 78±6% (n=6) 83±9% (n=3) 

(30^M) (t3=2.94) (t2= 2.51) (t5= 2.54) (t2= 1.61) 

ocp MeATP 117±14%(n=3) 77±3% (n=9) 84±4% (n=6) 97±5% (n=4) 

(30|iM) (t2= 0.84) (t8= 1.42) (t5=1.15) (t3= 0.92) 

Table 2.4: Non-fenamate NSAIDs have little effect on agonist- evoked responses in 
the rat isolated optic nerve. Table showing the agonist response as a percentage of 
control ± s.e.m. for GABA and glycine depolarisations in the isolated rat optic nerve in 
the presence of (at 100|iM) aspirin, bi-phenyl acetic acid, ibuprofen and indomethacin. 
None of the NSAIDs significantly affected (p> 0.10) these responses. n= number of 
experiments. t=test statistic with degrees of freedom in subscript. Abbreviations as in table 
2.3, above. 

Agonist Non-fenamate NSAID (at lOOuM) 

(concentration) ASA BPAA m u INDO 

GABA 97±3% (n=3) 97±5% (n=4) 101±3% (n=4) 92±5% (n=4) 

(ImM) (t2= 1.0) (t3= 0.92) (t3= 0.00) (t3= 2.22) 

Glycine 88±4% (n=6) 94±6% (n=6) 93±10% (n=5) 95±4% (n=4) 

(ImM) (t5=2.12) (t5= 1.59) (t4=0.14) (t3= 1.22) 
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2.4: Summary 

The first part of this thesis has focused on the hypothesis that NSAIDs modulate native 

neuronal ligand-gated ion channels. 

G A B A , 5-HT, DMPP and a,PMeATP all evoked concentration dependent 

depolarisations on the isolated rat vagus nerve, these responses could be inhibited by 

application of bicuculline, MDL 72222, hexamethonium and PPADs respectively. Sub-

maximal G A B A responses were also potentiated by sodium pentobarbitone and 

propofol. Together these results are consistent with the activation of G A B A A , 5-HT3, 

nicotinic ACh and P2x receptors, respectively. G A B A and glycine each evoked 

concentration-dependent depolarisations on the isolated rat optic nerve, which were 

selectively inhibited by bicuculline and strychinine, respectively. These data are 

consistent with the activation of G A B A A and strychinine-sensitive glycine receptors. 

Certain fenamate NSAIDs significantly modulated neuronal ligand-gated ion channels. 

Mefenamic acid positively modulated sub-maximal GABA- evoked responses in a 

concentration dependent manner. Mefenamic acid also caused a non-competitive 

inhibition of 5-HT- and a,pMeATP- evoked responses. Non-competitive inhibition was 

also observed with flufenamic acid on DMPP- and a.PMeATP- evoked responses and 

with meclofenamic acid on GABA- evoked responses. 

Application of non-fenamate NSAIDs did not significantly affect agonist-evoked 

responses. These data indicate that the effects observed with fenamates on neuronal 

ligand-gated ion channels are not due to inhibition of COX enzymes. 
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The fenamate effects observed on ion channel function may account for some of the 

"cenfra/" behavioural effects reported from their use in human and animal studies (see 

chapter one). 
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Chapter Three; The Effect of Mefenamic Acid on Open Field 

Behavioural Paradigms 

3.1: Introduction 

It was reported in the previous chapter that application of mefenamic acid positively 

modulated GABA- evoked responses and inhibited 5-HT- and a,pMeATP- evoked 

responses in the isolated rat vagus nerve. Considering this and other recent 

electrophysiological studies, which have shown that mefenamic acid can bi-directionally 

modulate GABA- evoked responses recorded from Xenopus oocytes (Woodward et al, 

1994; Halliwell et al., 1999), it is hypothesized that mefenamic acid may have 

behavioural and/or cognitive effects. 

There is a paucity of studies that have investigated the central effects of mefenamic acid 

in vivo and these have shown it to modulate seizure activity (Ikonomidou-Turski et 

a/.,1988; Wallenstein, 1985a,b, 1991). 

To date there are no studies that have investigated the effect of fenamate NSAIDs on 

behaviour and cognition. The aim of this chapter was therefore to investigate the 

hypothesis that mefenamic acid modulates behaviour. 
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3.2: Methods and Materials 

3.21: The object recognition task 

Introduction: 

The object discrimination task was developed by Ennaceur and Delacour (1988), to 

investigate object recognition memory in the rat. The method utilises the rat's 

spontaneous exploration of a new object, does not require the learning of a rule and does 

not require food deprivation to investigate the effects of drugs or lesions on working 

memory, which has been defined by Olton et al. (1979) as "memory that is specific for 

the completion of a single task". A number of studies have shown that this method is a 

valid paradigm for the investigation of drug treatments. For example, the muscarinic 

acetylcholine antagonist, scopolamine (Ennaceur and Meliani 1992a) and the histamine 

H3 agonists, methylhistamine and imetit (Blandina et al., 1996), have been shown to 

cause concentration dependent impairments in object discrimination. In contrast, 

injections of piracetam (Ennaceur et al., 1989), apamin (Deschaux et al., 1997) or 

nicotine (Puma et al., 1999) have all been shown to enhance object discrimination in this 

task. A modified and revised version of the object discrimination task is described below. 

Apparatus: 

The testing arena consisted of a 85cm x 85cm x 50cm aluminium box (built in-house) 

with the floor covered in sawdust. The arena was lit (approx. 40 Lux) by a 60w angle 

poised lamp. The objects were made of glass, plastic or clay and weighted so they could 

not be moved by the animals. Al l objects existed in triplicate and had no apparent 

ethological significance for rodents and had never been associated with re-enforcement. 

After each trial, the objects were cleaned with ethanol and the sawdust moved around 

the arena to prevent build up of odours in certain areas. 
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Animals: 

Male Lister hooded rats (250 - 350g; Charles River U.K.) were housed in pairs with ad 

libitum access to food and water throughout the study. Animals were maintained on a 

twelve hour light (07:00 - 19:00)/ twelve hour dark cycle and were tested during the 

light phase. The ambient room temperature was 23±1°C. 

Experimental protocol: 

Prior to testing, rats were habituated to the arena and testing room by placing them in 

the arena and allowed to explore freely for five minutes each day for three days. 

Experimental sessions comprised of two three-minute phases, a 'sample' and 'choice' 

phase, which were separated by an intra-trial interval. 

Two identical objects (defined as, A l and A2) were placed about ten centimetres from 

the far comers of the arena (see figure 3.1). A rat was then placed into the arena, for the 

sample phase, at the centre of the near wall, with its head facing the near wall and was 

given three minutes to explore the objects. Exploration was defined as directing the nose 

at a distance of less than two centimetres from the object and/or touching the object with 

its nose. Turning around or sitting on the object was not considered exploratory 

behaviour. After three minutes the rat was removed from the arena and placed back in to 

its holding cage. During this intra-trial interval, the two objects were removed from the 

arena and replaced with two new objects, one familiar (A3) and one novel (B) in the 

same location as the previous objects. After the intra-trial interval the rat was re­

introduced into the arena, again at the centre of the near wall, for the choice phase, and 

given three minutes to explore the objects. The rat's exploration time of each object 

during the sample phase and choice phase was individually recorded. The objects used 
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as the familiar and novel objects were counter-balanced between animals and the 

position of the objects was randomly alternated during the choice phase to prevent any 

place preference. 

Sample phase 

Intra-trial interval 

B 

Choice phase 

Figure 3.1: Schematic diagram of the object discrimination task. Diagram showing 
the apparatus used in the object discrimination task. During the sample phase the rat was 
presented with two identical objects {circles) and give three minutes to explore. The rat 
was then removed from the arena for a pre-determined intra-trial interval and then 
returned to the arena, for the choice phase, where it was presented with a familiar object 
(circle) and a novel object (square) and again given three minutes to explore. 

Data analysis: 

The time spent exploring each of the objects in the sample and choice phases was 

individually recorded enabling further analysis of the data that is described in table 3.1. 

Table 3.1: The measures and data analysis applied in the object discrimination task. 

A l , A2 Time (sees) exploring A l and A2 objects, respectively, in the sample phase 

A3,B Time (sees) exploring A3 and B objects, respectively, in the choice phase 

el Total exploration time (sees) in sample phase ( A l + A2) 

e2 Total exploration time (sees) in choice phase (A3 + B) 

d l Discrimination time (sees) between objects (B - A3) in the choice phase 
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Investigation of side and object preferences: 

For all experiments, analysis of the times spent exploring the two pairs of objects in the 

sample phase was analysed, with an un-paired Student t-test, to investigate for object 

preferences. None of the animals showed a preference for either pair of objects used in 

the experiments (p> 0.10). Analysis of side preferences within the arena was also 

analysed for each experiment using a paired Students t-test. None of the experiments 

revealed a significant side preference (p> 0.10) for any experiment. 

e l , e2 and d l values were analysed with either the un-paired Student t-test (two-tailed) 

to compare two groups, or one-way ANOVA to compare the differences between three 

or more groups. When an overall ANOVA proved significant (p< 0.05), the means of 

each group were compared with Student-Newman-Keuls post hoc analysis. Al l 

statistical tests were performed using INST AT V2.05a (Graphpad software, San Diego, 

USA). A two-way ANOVA was performed on results with two variable factors, 

followed by Student-Newman-Keuls post hoc analysis i f results were significant (p< 

0.05), using SPSS vlO.O. 

3.2ii: The object location task 

Introduction: 

A modified version the object discrimination, known as the object location task, was 

developed by Ennaceur and Meliani (1992b) to investigate spatial memory in the rat. 

This test has been shown to be sensitive to electrolytic lesions of the medial septum 

(Ennaceur & Meliani, 1992b) and neurotoxic lesions of the fornix and cingulate 

(Ennaceur et al. 1997). A revised version of this task is described below. 
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Apparatus: 

The testing arena and objects, which exisited in quadruplicate was described above (pg 64). 

Animals: 

Male Lister hooded rats (250 - 350g; Charles River U.K.) were housed and maintained 

as described above (pg 65). 
Experiment protocol: 

Prior to testing, rats were habituated to the arena and testing room as described earlier 

(pg 66). Experimental sessions comprised of two three-minute phases, a sample and 

choice phase, which were separated by an intra-trial interval. 

Two identical objects ( A l and A2) are placed about ten centimetres from the rear 

comers of the arena (figure 3.2). A rat was then placed into the arena, for the sample 

phase, at the near comer of the arena, with its head facing the near wall, to allow an 

approximate equal distance between each of the objects and the rat and given three 

minutes to explore the objects. Exploration of an object was defined of pg 65. After 

three minutes the rat was removed from the arena and placed in its holding cage. During 

this intra-trial interval the two objects were removed and replaced with two objects 

identical to those in the sample phase, one object (A3) was placed in the same location 

as in the sample phase, the other object (A4) was located in a new position within the 

arena (figure 3.2). The rat's exploration time of each object during the sample phase and 

choice phase was individually recorded. The position of the objects in the arena for the 

sample and choice phases was randomly altemated. 
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Intra-trial interval 

Sample phase Choice phase 

Figure 3.2: Schematic diagram of the object location task. Diagram showing the 
apparatus used in the object location task. During the sample phase the rat was 
presented with two identical objects (circles A l and A2) and given three minutes to 
explore. The rat was then removed from the arena for a pre-determined intra-trial 
interval and then returned to the arena, for the choice phase, where it was then presented 
with two identical objects (circles A3 and A4) with one of the objects moved to a new 
location. The rat was given three minutes to explore. 

Data analysis: 

The time spent exploring each of the objects in the sample and choice phases was 

individually recorded enabling further analysis of the data that is described in table 3.2. 

Table 3.2: The measures and data analysis applied in the object location task. 

A l , A2 Time (sees) exploring A l and A2 objects respectively in the sample phase 

A3, A4 Time (sees) exploring A3 and A4 objects respectively in the choice phase 

el Total exploration time (sees) in sample phase (Ar+ A ^ ) 

e2 Total exploration time (sees) in choice phase (A3 + A4) 

d l Discrimination time (sees) between locations (A4 - A3) in the choice phase 

e l , e2 and d l values were analysed with either the un-paired Student t-test (two-tailed) 

to compare two groups or one-way ANOVA to compare the differences between three 

or more groups. When the overall ANOVA proved significant (p< 0.05), the means of 

each group were compared using the Student-Newman-Keuls post hoc analysis. Al l 

above statistical tests were performed using INSTAT V2.05a (Graphpad software). 
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3.2iii: Open field tests 

Introduction: 

The open field paradigm is a widely used test that has been used to investigate the 

effects of drugs on anxiety, defined as "persistent and recognisably irrational fears of a 

circumscribed objects or situations" (File, 1995), and locomotion. For example, anxiety 

and locomotion in the open field are sensitive to the effects of the G A B A A receptor 

modulator, diazepam (Bodnoff et al., 1989), the G A B A A receptor antagonist, 

bicucuUine (Car et al., 1998), the 5-HT3 antagonist, ondansteron (Rex et al., 1998) and 

the NMDA channel blocker, MK-801 (Jessa et al., 1996). 

Rat's were tested in open field tests to gain insight into the effects of mefenamic acid on 

anxiety and locomotor activity since both of these factors can lead to changes in object 

discrimination or object location results (Buhot et al., 1989; Besheer & Bevins, 2000). 

Anxiety Testing 

Animals: 

Male Lister hooded rats (250 - 350g; Charles River U.K.) were housed and maintained 

as described above (pg 65). They were handled by the investigator for five days prior to 

testing but were not placed in the testing room until the day of testing. 

Apparatus: 

An 85 X 85 X 50cm aluminium arena (built in-house) with the floor covered in sawdust 

was used as the open field. An unmoveable object was placed in the middle of the arena. 

A video camera (Sanyo, Herts, U.K.) was set-up above the arena, which was connected 

to a T.V. monitor in an adjoining room. 
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Experimental protocol-

Rats were given an intra-peritoneal injection of either saline or mefenamic acid 

(20mg/kg) thirty minutes prior to testing. They were then taken individually into the 

testing room, placed in the comer of the arena and given three minutes to explore the 

arena and the object. The amount of time taken for the rat to approach the object and the 

amount of time spent exploring the object was recorded via the T.V. monitor in the 

adjoining room. 

Data analysis: 

The amount of time taken to approach the object (sees) and the amount of time spent 

exploring the object (sees) were analysed with an un-paired Students t-test (two-tailed), 

p< 0.05 was considered significant. 

Locomotor Test 

Animals: 

Male Lister hooded rats (250 - 350g; Charles River U.K.) were housed and maintained 

as described above (pg 65). They were handled daily by the investigator and habituated 

to the testing room and arena by placing them in the arena and allowing them to explore 

for five minutes a day for three days. 

Apparatus: 

The test arena is described previously on pg 70. The T.V. monitor was spilt into twenty 

equal sized squares by placing a cotton thread grid over the monitor screen. 
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Experimental protocol-

Thirty minutes prior to testing, the rats were given an intra-peritoneal injection of either 

saline or mefenamic acid (20mg/kg). They were then individually placed into the arena 

for three minutes and the number of squares crossed, as observed on the monitor screen, 

was counted. A square was considered to have been crossed when both the front and 

hind paws crossed the dividing line. 

Data analysis: 

The number of squares crossed for each group was analysed with an un-paired Student t-

test (two-tailed), and p< 0.05 was considered significant. 

3.2iv: Dniss and drug administration 

Mefenamic acid (Sigma) was dissolved in 0.05M NaOH and made up with double 

distilled water to a dose of lOmg/ml. Saline was made up as a 0.9% solution in double 

distilled water. Drugs were given via an intra-peritoneal injection, with 0.2-l.Omls given 

per injection, thirty minutes prior to testing (unless otherwise stated). 
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3.3: Results 

3.3i: The effect of mefenamic acid on behaviour: 

The aim of the first experiment was to observe the gross behavioural effects of 

mefenamic acid. 

Treatments and testing: 

Twenty-four rats were divided into one of three groups. Each group received an intra­

peritoneal injection of mefenamic acid at either 20mg/kg (n=8), 40mg/kg (n=8) or 

60mg/kg (n=8). The behaviour of rats in their holding cage was monitored for thirty 

minutes after injection of mefenamic acid. 

Results: 

Rats injected with mefenamic acid (5mg/kg - 20mg/kg) did not show any unusual 

behavioural effects compared to saline controls: they maintained normal posture and 

showed exploratory behaviour. However injection of mefenamic acid (40mg/kg) 

resulted in all rats having myoclonus and head bobbing within five minutes of injection. 

Five of the eight rats were also apparently sedated, with the animals being motionless 

and bodies carried low or flattened against the cage floor. They remained in this state for 

thirty minutes post-injection and therefore were not tested further. Injection of 

mefenamic acid (60mg/kg) resulted in heavy sedation in all rats within five minutes of 

injection: they were motionless and flattened against the floor, when lifted by their torso 

they hung motionless until returned to their cage. These animals also made "swimming­

like" movements when they tried to move around their cage. Six of the rats also had 

severe whole body jerks, which lasted for up to fifteen seconds per episode, but these 

were not apparent twenty minutes post-injection. All rats were still heavily sedated 
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thirty minutes after injection and could not therefore be tested in the object 

discrimination task. 

Conclusion: 

High doses of mefenamic acid (40mg/kg and 60mg/kg) result in "centraF behavioural 

effects such as sedation and seizures. 

3.3ti: The effect ofmefenamic acid on anxiety 

To investigate whether mefenamic acid acts as an anxiolytic or anxiogenic agent, its effect 

on anxiety in the open field task was investigated (see pg 69 for further discussion of this). 

Treatments and testing: 

Sixteen non-habituated rats were randomly divided into two groups. One group was 

given an intra-peritoneal injection of saline (n=8) the other group an injection of 

mefenamic acid (20mg/kg; n=8), thirty minutes prior to testing in the open field. 

Results: 

There was no significant difference between saline and mefenamic acid treated groups 

in the time taken to approach an object in the open field (ti4= 0.08, p> 0.10) as shown in 

figure 3.3A. The amount of time spent exploring the object was also not significantly 

different between groups ( t i4= 0.41, p> 0.10) as shown in figure 3.3B. 
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Figure 3.3: Mefenamic acid does not affect the time taken to approach a novel 
object or the duration of exploration of a novel object in the open field. (A) The 
histogram shows the time (sees) taken to approach an object in the open field on the y-
axis, for saline and mefenamic acid (MFA) treated groups. (B) The histogram shows the 
exploration time (sees) of an object in the open field on the y-axis for saline and MFA 
treated groups. n=8 for each group. Each bar represents the mean ± s.e.m. 

Conclusion: 

Mefenamic acid does not change the "anxiety state" of the rat. 
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3.3iii: The effect of mefenamic acid on gross locomotor activity 

Treatments and testing: 

Sixteen non-habituated rats were randomly divided into two groups. One group was given 

an intra-peritoneal injection of saline (n=8) the other group an injection of mefenamic acid 

(20mg/kg; n=8), thirty minutes prior to testing in the open field. The number of squares 

crossed in the open field over a three-minute interval was then observed. 

Results: 

There was no significant difference between the saline and mefenamic acid treated 

groups in the number of squares crossed in the open field (ti4= 0.84, p> 0.10), as shown 

in figure 3.4. 
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Figure 3.4: Mefenamic acid does not affect the number of squares crossed in the 
open field. The histogram shows the number of squares crossed in the open field on the 
y-axis for saline and mefenamic acid (MFA; 20mg/kg) treated groups. MFA did not 
significantly change in the number of lines crossed within an open field during a three-
minute session when compared to saline controls. Each bar represents the mean ± s.e.m. 

Conclusion: 

Mefenamic acid did not affect gross motor activity in the open field. 
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3.3iv: Investigation of the effects ofmefenamic acid on arousal 

Another possible behavioural effect of mefenamic acid is that it can affect arousal, 

defined as "a state of alertness and high responsiveness to stimuli" (Uttal, 1978). In 

order to investigate this, the effect of mefenamic acid on object exploration times when 

the two objects in the choice phase are either both identical or both different to the 

objects in the sample phase was undertaken. 

Treatment and testing: 

Thirty-two rats were randomly allocated to one of four groups. Two groups were given 

an intra-peritoneal injection of saline (n=8 for each group), and two groups were given 

an intra-peritoneal injection of mefenamic acid (20mg/kg; n=8 for each group), thirty 

minutes prior to testing in the object discrimination task. For this experiment, one saline 

and one mefenamic treated group were exposed to two identical objects in the sample 

phase and re-exposed to the same objects during the choice phase. The second saline 

and mefenamic treated groups were exposed an identical set of objects during the 

sample phase but during the choice phase they were presented with two new identical 

objects but different to those presented in the sample phase. 

Results: 

When the two objects in the choice phase are identical to those in the sample phase (figure 

3.5A) the total exploration time during the sample (ti4= 0.66, p> 0.10) and choice phases 

(ti4 =0.15, p> 0.10) are not significantly different between groups. Comparison between el 

and e2 with a paired Student t-test revealed no significant difference between saline (t7= 

1.10, p> 0.10) or mefenamic acid (ti5= 1.83, p> 0.10) treated groups. 
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Figure 3.5: Exploration times are not affected by mefenamic acid when the two 
objects in the choice phase are either identical to or novel to those in the sample 
phase. (A) The histogram shows the total exploration time during the sample (el) and 
choice phase (e2) on the y-axis for saline and mefenamic acid (MFA; 20mg/kg) groups 
when both objects in e2 were identical to those in e l . The total exploration times during 
el and e2 were not significantly different between groups. (B) The histogram shows the 
total exploration time during the sample (el) and choice phase (e2) on the y-axis for 
saline and mefenamic acid (MFA; 20mg/kg) groups when both objects in e2 were 
different to those in e l . The total exploration times during e l and e2 were not 
significantly different between groups. Each data bar represents the mean ± s.e.m. n=8 
for each group. 
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When the two objects in the choice phase are different to those in the sample phase, the 

total exploration times during the sample (tn =0.22, p> 0.10) and choice phases (tu 

=0.02, p> 0.10) are not significantly different between saline and mefenamic acid 

treated groups (figure 3.5B). Comparison between el and e2 with a paired Student t-test 

revealed no significant difference between saline (t7= 0.14, p> 0.10) or mefenamic acid 

(t7= 0.43, p> 0.10) treated groups. 

Conclusion: 

The exploration times of animals pre-treated with mefenamic acid during the choice 

phase when the objects were either identical or different to those in the sample phase 

were not significantly different from control. These data suggest that mefenamic acid 

does not enhance non-specific exploratory behaviour. 

3.3v: Behavioural measures in the object discrimination task 

To establish the behavioural parameters of the object discrimination task, the total 

exploration time and discrimination of objects over a range of intra-trial intervals was 

compared. 

Testing and treatments: 

Forty-two rats were randomly allocated to six different groups and tested in the object 

discrimination task. Each group was tested with either a one-minute (n=7), fifteen-

minute (n=7), thirty-minute (n=7), sixty-minute (n=7), four-hour (n=7) or twenty-four 

hour (n=7) intra-trial interval. 
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Investigation of the effect of the intra-trial interval on object exploration: 

The total exploration time of the two objects in the sample phase (el) was not 

significantly different across intra-trial intervals (F5,36= 0.95, p> 0.10). The total object 

exploration time during the choice phase (e2) was also not significantly different across 

intra-trial intervals (F5,36= 1-69, p> 0.10) as shown in figure 3.6. 
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Figure 3.6: The effect of the intra-trial interval on exploration activity during the 
choice phase. The histogram shows the total exploration time (sees) of objects during 
the choice phase (e2) on the y-axis against the intra-trial interval (ITI) on the x-axis. The 
data shows that increasing the TTI does not result in a significant change (p> 0.10) in the 
exploration of objects during e2. Each bar represents the mean ± s.e.m., n=7 for all 
groups. 

The effect of the intra-trial interval on object discrimination: 

The groups mean exploration time of novel and familiar objects for each intra-trial 

interval is shown in table 3.3, where it can be seen that there is a significant difference 

in the discrimination between objects with a one-minute, fifteen-minute, thirty-minute 

and sixty-minute intra-trial interval. However, rats did not discriminate between the 

familiar and the novel object with a four or twenty-four hour intra-trial interval. 
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Table 3.3: Exploration times for familiar and novel objects during the choice phase. 
Table showing that as the intra-trial interval (ITI) is increased the difference in the 
exploration time between the novel and the familiar object is decreased. Comparison of 
the exploration of each object for each TTI (n=7) is analysed with a paired Student t-test 
(two-tailed). 

m Exploration (sees) of familiar 
object (mean ± s.e.m.) 

Exploration (sees) of novel 
object (mean ± s.e.m.) 

P 

1 min 6.8±1.2 25.3±2.9 <0.001,t7=5.7 

15 min 9.7±1.9 33.2±3.9 < 0.001, t7=5.7 

30 min 13.6±2.7 28.6±2.9 <0.001,t7=5.7 

60 min 15.9 ± 1.6 28.7 ± 2.3 < 0.05, t7=4.8 

4 hrs 13.6 ±2 .5 19.3 ±2 .2 > 0.05, t7=2.2 

24 hrs 19.3 ±3 .2 25.0 ±4 .6 >0.05, t7=1.2 

The level of discrimination (dl) between novel and familiar objects for each intra-trial 

interval are shown in figure 3.7, where it can be seen that d l decreases as the intra-trial 

interval was increased. A one-way ANOVA revealed significant differences between 

groups (F5,36= 4.23, p< 0.01). A post hoc analysis showed significant differences (p< 

0.01) between the fifteen-minutes intra-trial interval group compared to the groups 

tested with four hour and twenty-four hour intra-trial intervals. Comparison of d l for 

linear progression between intra-trial intervals revealed a significant linear trend (F536= 

17.41, p< 0.001) between groups. 
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Figure 3.7: The effect of the intra-trial interval on object discrimination. The 
histogram shows the object discrimination time (dl) on the y-axis against the intra-trial 
interval (ITl) on the x-axis. The data shows that changing the ITI results in a significant 
change in d l (F536= 4.23, p< 0.01,), ** p< 0.01 when compared to 15 minute ITI. Each 
data bar represents the mean ± s.e.m. n=7 or each intra-trial interval. 

Conclusion: 

The results of these studies demonstrate that rodents are able to discriminate between 

objects and that such discrimination is sensitive to intra-trial intervals. This finding is 

consistent with the hypothesis that object discrimination over time involves working 

memory (Ennaceur & Delacour, 1988; Ennaceur & Meliani, 1992a; BartoUni et al., 

1996). Therefore, the following series of experiments used this task to address the effect 

of mefenamic acid on working memory. 

3.3vi: The effect of drug solvents on object discrimination 

In order to test the hypothesis that the drug solvents used in subsequent experiments can 

influence object discrimination. The effect of NaOH, ethanol and cyclodextrin on rats' 

performance in the object discrimination task was investigated. 
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Treatments and testing: 

Thirty-two rats were randomly allocated to one of four different groups. Each group 

received an intra-peritoneal injection of either saline (n=8), NaOH (O.IM; n=8), 

cyclodextrin (10%; n=8) or ethanol (10%; n=8), thirty minutes prior to testing. Each 

group of rats were then tested in the object discrimination task with a fifteen-minute 

intra-trial interval. 

The ejfect of solvents on total exploration: 

The overall exploration of objects was not significantly different between groups in el 

(F3.28= 0.42, p> 0.10) or e2 (F3,28= 0.86, p> 0.10), as shown in figure 3.8. 
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Figure 3.8: The drug solvents do not influence total exploration times. The 
histogram shows the total exploration time (sees), on the y-axis, for the objects in the 
sample (el) and choice (e2) phases for control, NaOH, cyclodextrin and ethanol groups. 
There was no significant difference between groups for el or e2. Each data bar 
represents the mean ± s.e.m. n=8 for each group. 

The ejfect of drug solvents on object discrimination: 

The discrimination time (dl) was not significantly different across saline and solvent 

groups (F3,28= 0.70, p> 0.10). These data are shown in figure 3.9. 
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Figure 3.9: The drug solvents do not influence object discrimination. The histogram 
shows the object discrimination time (dl), on the y-axis, for control, NaOH, 
cyclodextrin and ethanol treatment groups. None of the drug solvents significantly 
affected d l . Each data bar represents the mean ± s.e.m. n=8 for each drug group. 

Conclusion: 

None of the drug solvents used in this study significantly affected object discrimination. 

3.3vii: The effect of mefenamic acid on object discrimination 

Treatment and testing: 

Thirty-two rats were randomly allocated to one of four groups, each group received an 

intra-peritoneal injection of either saline (n=8) or mefenamic acid at 5mg/kg (n=8), 

lOmg/kg (n=8) or 20mg/kg (n=8), thirty minutes prior to testing. Each group of rats was 

then tested in the object discrimination task with a fifteen-minute intra-trial interval. 

The effect of mefenamic acid on object exploration times: 

The overall exploration of objects was not significantly different between groups during 

the sample phase (F3,28= 2.17, p> 0.10). There was, however, a significant difference in 
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object exploration between groups during the choice phase (F3,28= 7.58, p< 0.001). This 

data is shown in figure 3.10. A post hoc analysis showed significant differences between 

the saline treated group when compared to mefenamic acid at lOmg/kg and 20mg/kg (p< 

0.05); and between the mefenamic acid (5mg/kg) group compared to the mefenamic 

acid at lOmg/kg and 20mg/kg (p< 0.05). There was no significant difference between 

saline and mefenamic acid (5mg/kg) or between mefenamic acid (lOmg/kg) and 

mefenamic acid (20mg/kg) treated groups. 
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Figure 3.10: Mefenamic acid increases total exploration time during tlie choice but 
not the sample phase. The histogram shows the total exploration time (sees) on the y-
axis for objects in the sample (el) and choice (e2) phases, against the dose of 
mefenamic acid (MFA) on the x-axis. This data shows that el is not increased by MFA, 
whereas e2 is significantly increased by MFA (F3,28=7.58, p< 0.001), * p< 0.05 when 
compared to control. Each data bar represents the mean ± s.e.m. n=8 for each drug 
group. 

The effect of mefenamic acid on object discrimination: 

The discrimination time (dl) between objects in the choice phase was significantly 

increased by mefenamic acid (F3,28= 4.90, p< 0.01) and this data is shown in figure 3.11. 
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A post-hoc analysis showed significant differences between the saline group compared 

to mefenamic acid at lOmg/kg (p< 0.05) and 20mg/kg (p< 0.01); and between the 

mefenamic acid (5mg/kg) compared to mefenamic acid at lOmg/kg (p< 0.05) and 

20mg/kg (p< 0.01). d l values were also analysed for a linear trend between groups and 

were shown to be significant p< 0.001 (F= 18.47). 

control MFA MFA MFA 
(saline) (5mg/kg) (lOmg/kg) (20mg/kg) 

Drug treatment 

Figure 3.11: Mefenamic acid significantly increases object discrimination. The 
histogram shows the object discrimination time (sees) on the y-axis for control and 
mefenamic acid (MFA) at 5, 10 & 20mg/kg groups. MFA treatment at 10 and 20mg/kg 
significantly increased object discrimination when compared to controls (F3,28= 4.90, p< 
0.05), **p< 0.01, * p< 0.05 compared to control. Each data bar represents the mean ± 
s.e.m., n=8 for each group. 

Conclusion: 

Mefenamic acid (at lOmg/kg and 20mg/kg) enhanced object discrimination with a fifteen-

minute intra-trial interval. 
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3.3viii: Is the effect of mefenamic acid time-dependent 

Mefenamic acid increased object discrimination with a fifteen-minute intra-trial interval. 

The effect of mefenamic acid on object discrimination over a range of intra-trial 

intervals was therefore investigated to determine if its effect was time-dependent. 

Treatments and testing: 

Forty-eight rats were randomly allocated to six different groups. Three groups were 

given an intra-peritoneal injection of saline and three groups were given an intra­

peritoneal injection of mefenamic acid (20mg/kg), thirty minutes prior to testing in the 

object discrimination task. Three intra-trial intervals were used in the experiment (a 

fifteen-minute, thirty-minute and sixty-minute interval) with one saline group (n=8) and 

one mefenamic treated group (n=8) tested for each intra-trial interval. 

The effect of mefenamic acid on object exploration with longer intra-trial intervals: 

A two-way ANOVA of the total exploration time during the sample phase revealed no 

significant difference between groups (F5,42= 130, p> 0.10). Total exploration time 

during the choice phase was also not significantly different between groups (F5,42= 1.25, 

p > 0.10), as shown in figure 3.12. 
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Figure 3.12: Mefenamic acid does not affect total exploration times over a range of 
intra-trial intervals. The histogram shows the total exploration time during the choice 
phase (e2) on the y-axis for control and mefenamic acid (MFA; 20mg/kg) groups with 
15, 30 and 60 minute intra-trial intervals (ITI). There was no significant difference 
between groups for exploration of objects during e2. Each data bar represents the mean ± 
s.e.m. n=8 for each group. 

Effect of mefenamic acid on object discrimination with increasing intra-trial intervals: 

There was an overall significant difference in discrimination times between treatment 

and time groups (F5,38= 2.42, p< 0.05) when analysed with an ANOVA (two-way). 

There was a significant difference between drug groups (F|,46= 5.70, p< 0.05). The 

difference between time groups, however, was not quite significant (F2,45= 2.60, p= 

0.08). A post hoc analysis for mefenamic acid treated groups at each intra-trial interval, 

revealed a significant difference at fifteen and thirty minute intra-trial intervals when 

compared to saline controls (p<0.05). There was no interaction between drug and time 

groups (F2,45= 0.71, p> 0.10). The results are illustrated in figure 3.13. 
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Figure 3.13: Mefenamic acid increases object discrimination compared to control 
over a range of intra-trial intervals. The graph shows the object discrimination time 
(dl) on the y-axis against the intra-trial interval (ITI) on the x-axis for saline and 
mefenamic acid (MFA; 20mg/kg) groups. It can be seen that d l for the MFA groups are 
significantly greater than control groups for the 15 and 30 minute ITIs. *p< 0.05 when 
compared to control for that ITI. The lines joining each data point are for visual 
purposes only. Each data point represents the mean ± s.e.m. n=8 for each group. 

Conclusion: 

The results show that object discrimination is increased by pre-treatment with 

mefenamic acid and that the effect diminishes with longer intra-trial intervals. 

3.3ix: A comparison of mefenamic acid with piracetam 

A range of other compounds have also been reported to enhance working memory in 

normal animals including the nootropic, piracetam, (Bartus et ai, 1981; Nalini et al., 

1992; Christoffersen et al., 1998). It was therefore of importance to compare the 

efficacy of mefenamic acid with that of piracetam. 
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Treatments and testing: 

Thirty-six rats were randomly allocated to different group treatments; they received an 

intra-peritoneal injection of saline (n=12), mefenamic acid (20mg/kg; n=12), or 

piracetam (400mg/kg; n=12), thirty minutes prior to testing. Each group of rats were 

then tested in the object discrimination task with a fifteen-minute intra-trial interval. 

The effect of piracetam on total exploration times: 

The overall exploration of objects was not significantly different between groups in 

either the sample phase (F2.33= 0.38, p> 0.10) or the choice phase (F2,33= 0.32, P > 0.10) 

of the test. (Figure 3.14). 
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Figure 3.14: Total exploration times are not increased by mefenamic acid or piracetam. 
The histogram shows the total exploration time (sees) on the y-axis, of the objects in the 
sample (el) and choice phase (e2) for control, piracetam (400mg/kg) and mefenamic 
acid (MFA; 20mg/kg) groups. The total exploration times during el and e2 were not 
significantly different between groups. Each data bar represents the mean ± s.e.m. of 
n=12 for all groups. 
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The effect of piracetam on object discrimination: 

The object discrimination time (dl) was significantly different between groups (F2,33= 

4.60, p< 0.05) as shown in figure 3.15. A post-hoc analysis showed significant 

differences (p< 0.05) between the saline controls when compared to the mefenamic acid 

(20mg/kg) group. There was no significant difference (p> 0.10) between saline and 

piracetam groups or between the piracetam and mefenamic treated groups. 
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Figure 3.15: The effect of mefenamic acid and piracetam on object discrimination. 
The histogram shows the object discrimination time (dl) on the y-axis for saline, 
piracetam (400mg/kg) and mefenamic acid (MFA; 20mg/kg) groups. MFA but not 
piracetam significantly increased d l (F2,33= 4.60, p< 0.05), * p< 0.05 when compared to 
saline control. Each data bar represents the mean ± s.e.m. n=12 for each group. 

Conclusion: 

The results showed that animals treated with mefenamic acid discriminated between 

novel and familiar objects to a higher degree than saline or piracetam treated rats. 
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3.3x: The affects of chronic treatment with mefenamic acid on object discrimination 

Clinically, NSAIDs are used long-term for the treatment of rheumatoid and osteo­

arthritis (Orme, 1990). The affects of long-term, daily treatment with mefenamic acid on 

rats behaviour in the object discrimination task was therefore investigated. 

Treatments and testing: 

Twelve rats that had been used in a previous series of experiments requiring repeated 

mefenamic acid treatment were utilized in this study: six of the rats had been given daily 

intra-peritoneal injections of saline for the previous twenty-five days. A second group of 

six rats had been given daily intra-peritoneal injections of mefenamic acid (20mg/kg) for 

the previous twenty-five days. On the day of testing the saline treated rats were given an 

intra-peritoneal injection of saline and the mefenamic acid treated rats given an intra­

peritoneal injection of mefenamic acid (20mg/kg), thirty minutes prior to testing in the 

object discrimination task. 

The effect of chronic mefenamic acid treatment on object exploration: 

The overall exploration of objects was not significantly different between groups in 

either the sample phase (tio= 0.74, p> 0.10) or choice phases (tio= 0.63, p> 0.10), as 

shown in figure 3.16. 
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Figure 3.16: Chronic exposure to mefenamic acid does not affect total exploration 
times. The histogram shows the total object exploration time during the sample (el) and 
choice (e2) phases on the y-axis for saline and chronic mefenamic acid (MFA; 20mg/kg) 
treated groups. Chronic exposure to MFA does not affect exploration times during the 
sample (el) or choice phases (e2) when compared to saline controls. Each bar represents 
the mean±s.e.m. n=6 for each group. 

The effect of chronic mefenamic acid treatment on object discrimination: 

The discrimination time during the choice phase was significantly different between 

saline and rats chronically treated with mefenamic acid (tio= 2.28, p< 0.05). This data is 

shown in figure 3.17. 
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Figure 3.17: The effect of chronic treatment with mefenamic acid on object 
discrimination. The histogram shows the object discrimination time (dl) on the y-axis 
for saline and chronic mefenamic acid (20mg/kg; MFA) groups. Chronic MFA 
treatment results in a significant increase in d l , * p< 0.05. Each bar represents the 
meanls.e.m. 

Conclusion: 

Chronic exposure to mefenamic acid results in increased object discrimination. 

3.3xi: Experiment to investigate the stage of the mnemonic process modulated by 

mefenamic acid 

The data obtained in this study suggest that mefenamic acid enhances object recognition 

memory. The aim of this expenment is to determine the stage of the mnemonic process 

(acquisition, storage or retrieval) that is modulated by mefenamic acid. 

Treatment and testing: 

Thirty-two rats were randomly allocated to four groups. Two groups were given an 

intra-peritoneal injection of either saline (n=8) or mefenamic acid (20mg/kg; n=8) 

thirty-minutes prior to testing in the object recognition task. Two other groups were 
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given an intra-peritoneal injection of either saline (n=8) or mefenamic acid (20mg/kg; 

n=8) immediately after the sample phase of the object recognition task. Al l groups were 

tested with a thirty-minute intra-trial interval. 

The effect of mefenamic acid injected after the sample phase on total exploration times: 

The overall exploration of objects was not significantly different between groups in 

either the sample phase (F3,28= 0.03, p> 0.10) or choice phase (F3,28= 2.52, p= 0.08), as 

shown in figure 3.18. 
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Figure 3.18: The effect of mefenamic acid on total exploration times when injected 
before and after the sample phase. The histogram shows the total exploration time 
during the choice phase (e2) for saline and mefenamic acid (MFA; 20mg/kg) groups 
injected before and after the sample phase. MFA did not significantly affect e2 when 
injected before or after the sample phase. Each data bar represents the mean ± s.e.m. 
n=8 for each group. 

The effect of injecting mefenamic acid after the sample phase on object discrimination: 

The discrimination time between objects during the choice phase was significantly 

different across groups (F3,28= 4.13, p< 0.05). A post hoc analysis revealed a significant 
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difference between mefenamic acid (injected before the sample phase) compared to 

saline (injected before the sample phase), saline (injected after the sample phase) and 

mefenamic acid (injected after the sample phase) (p< 0.05). These data are shown in 

figure 3.19. 
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Figure 3.19: Mefenamic acid does not increase object discrimination when injected 
immediately after the sample phase. The histogram shows the object discrimination 
time (dl) on the y-axis for control and mefenamic acid (MFA; 20mg/kg) groups injected, 
30 minutes before or immediately after the sample phase. MFA significantly increased d l 
when injected prior to the sample phase but not when injected after the sample phase with 
a 30 minute intra-trial interval (F3,28= 4.13, p< 0.05), * p< 0.05 compared to all other 
groups. Each data bar represents the mean ± s.e.m. n=8 for each group. 

Conclusion: 

Mefenamic acid only enhanced object discrimination when injected prior to the sample 

phase suggesting the hypothesis that mefenamic acid modulates the acquisition but not 

the retention or retrieval of information. 

3.3xii: Behavioural parameters of the object location task 

A previous study has reported that the object discrimination task, a non-spatial working 

memory task, uses different brain processes to those used in the object location task, a 
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spatial working memory task (Ennaceur & Meliani 1992b). It has been shown, above, 

that increasing the intra-trial interval causes a decrease in object discrimination. The 

following experiment addresses the effect of changes of intra-trial interval on rats' 

performance in the object location task. 

Treatment and testing: 

Thirty rats were randomly allocated into one of five groups. Each group was tested in 

the object location task with either a one-minute (n=6), fifteen-minute (n=6), sixty-

minute (n=6), four hour (n=6) or twenty-four hour (n=6) intra-trial interval. 

The effect of increasing the intra-trial interval on total exploration times: 

The overall exploration of objects was not significantly different between groups in 

either the sample phase (F4,25= 2.58, p> 0.10) or the choice phase (F4 ,25= 0.22, p> 0.10). 

These data are shown in figure 3.20. 

The effect of increasing the intra-trial interval on spatial discrimination: 

The rats exploration time of moved and un-moved objects, during the choice phase (e2), 

for each intra-trial interval is shown in table 3.4, where it can be seen that there is a 

significant difference between exploration times of each object with a one-minute and 

fifteen-minute intra-trial interval, but not with a sixty-minute, four-hour or twenty-four 

hour intra-trial interval. 
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Figure 3.20: The total exploration times are not affected by changing intra-trial 
intervals in the object location task. The histogram shows the total exploration time 
during the choice phase (e2) on the y-axis against the intra-trial interval on the x-axis. e2 
is not significantly affected by changing intra-trial intervals. Each data bar represents the 
mean ± s.e.m. n=6 for each delay. 

Table 3.4: Effect of intra-trial interval on discrimination between a moved and un­
moved object. Table showing that as the intra-trial interval (ITI) is increased the 
difference in the exploration time between moved and un-moved objects is decreased. 
Comparison of the exploration of each object for each ITI (n=6 for each ITI) is analysed 
with a paired Student t-test (two-tailed). 

ITI 

(time) 

exploration time (sees) of un­

moved object (mean ± s.e.m.) 

exploration time (sees) of 

moved object (mean ± s.e.m.) 

P 

1 min 7.8 ± 1.3 21.7 ±3.9 t4=3.29, < 0.05 

15 min 7.2 ± 1.4 19.6 + 3.3 t4=4.19,<0.01 

60 min 15.0 ± 1.5 20.3 ±4.6 t4=1.32,>0.10 

4 hrs 15.2 ±2.6 16.8 ±2.4 t4=0.54,>0.10 

24 hrs 15.0 ±1.7 16.7 ±3.1 t4=0.60, >0.10 
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There is an overall significant difference between the discrimination times (dl) across 

intra-trial intervals (F5,25= 2.82, p< 0.05), but post-hoc analysis showed no significant 

difference between comparison of individual intra-trial intervals (figure 3.21). 
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Figure 3.21: Increasing the intra-trial interval leads to a decrease in discrimination 
between moved and un-moved objects. The histogram shows the discrimination time 
between the moved and the un-moved object (dl) on the y-axis, against the intra-trial interval 
on the X-axis. It can be seen that as the intra-trial interval is increased, d l is decreased. Each 
data bar is the mean ± s.e.m. n=6 for each intra-trial interval. 

Conclusion: 

The results of these studies demonstrate that rodents are able to discriminate between 

object location and that such discrimination is sensitive to intra-trial intervals. This 

finding is consistent with that of Ennaceur and Meliani, (1992b). Therefore, the 

following experiment addresses the effect of mefenamic acid on spatial working 

memory, using the object location task. 
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3.3xiii: The effect ofmefenamic acid on spatial discrimination 

It has been shown above that mefenamic acid enhanced object discrimination in the non-

spatial object discrimination working memory task. The aim of this experiment, using 

the object location task, is to test the hypothesis that mefenamic acid can enhance spatial 

working memory. 

Treatments and testing: 

Sixteen rats were randomly allocated to one of two different treatment groups. Each 

group was given an intra-peritoneal injection of either saline (n=8) or mefenamic acid 

(20mg/kg; n=8), thirty minutes prior to testing in the object location task. 

The effect ofmefenamic acid on total exploration times: 

The overall exploration of objects was not significantly different between groups in 

either the sample phase (t i4= 0.16, p> 0.10) or the choice phase (ti4= 1.18, p> 0.10) of 

the object location task (Figure 3.22). 

The effect ofmefenamic acid on spatial discrimination: 

The discrimination between the moved and un-moved objects in the choice phase (dl) 

was significantly increased by mefenamic acid when compared to saline controls (ti4= 

2.16, p< 0.05). These data are shown in figure 3.23. 
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Figure 3.22: Mefenamic acid does not affect total exploration time in the object 
location task. The histogram shows the total exploration time during the sample (el) 
and choice (e2) phases on the y-axis for saline and mefenamic acid (MFA; 20mg/kg) 
treatment groups. MFA does not significantly affect the total exploration times during 
el or e2. Each data bar represents the mean ± s.e.m. n=8 for each group. 
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Figure 3.23: Mefenamic acid increases spatial discrimination in the object location 
task. The histogram shows the discrimination time (dl) on the y-axis. for a fixed and re­
located object for saline and mefenamic acid (MFA; 20mg/kg) treatment groups. MFA 
significantly increased d l when compared to control, * p< 0.05. Each data bar represents 
mean ± s.e.m. n=8 for each group. 
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Conclusion: 

Mefenamic acid increased discrimination between a fixed and re-located object in the 

object location task. This finding is consistent with the results from the object 

discrimination task. Together, these data suggest that mefenamic can modulate both 

spatial and non-spatial working memory. 

3.4: Summary 

The experiments from this section have shown that high doses of mefenamic acid (> 

20mg/kg) result in sedation and seizure-activity in the rats, while animals treated with 

lower doses of mefenamic acid (< 20mg/kg) show normal posture and exploratory 

activity. 

Non-mnemonic processes such as anxiety, motor activity or arousal are not modulated 

by mefenamic acid. 

The ability of rats to make a discrimination between novel and familiar objects is 

sensitive to intra-trial interval and this is consistent with previous studies (Ennaceur & 

Delacour, 1988; Ennaceur & Meliani, 1992a; Bartolini et al., 1996). These data 

therefore provided a basis for the investigation of drug actions on object discrimination 

and object recognition memory. 

Mefenamic acid increased object discrimination in a dose- and time- dependent manner, 

indicating that it can enhance non-spatial working memory. The increase in object 

discrimination was only observed when mefenamic acid was injected before the sample 
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phase, suggesting that it enhanced the acquisition or consolidation of information, but 

not the storage or retrieval of information. 

The object discrimination task was designed to investigate non-spatial working memory. 

The object location task was utilised to investigate the effect of mefenamic acid on 

spatial working memory, as it is thought that the two forms of memory use different 

neuronal networks (Steckler et ai, 1998b). It was shown that object location is sensitive 

to intra-trial intervals, which is consistent with a previous report (Ennaceur & Meliani, 

1991b). Animals treated with mefenamic acid increased object discrimination in the task 

compared to saline treated controls, indicating that mefenamic acid enhanced spatial 

working memory. 

These experiments have shown that mefenamic acid enhanced both non-spatial and 

spatial working memory in normal rats and that the enhancement is not due to non-

mnemonic processes such as arousal, anxiety or changes in locomotor activity. 
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Chapter Four; Mechanisms Underlying the Behavioural Effects of 

Mefenamic Acid 

4.1: Introduction 

The aim of the experiments described in this chapter was to determine possible 

mechanisms underlying the enhancement in object discrimination observed with 

mefenamic acid. The first group of experiments investigated the effects of several 

fenamate and non-fenamate NSAIDs to determine if the effect was a group (fenamate) 

or class (NSAID) effect. 

A second potential mechanism for the behavioural effect of mefenamic acid could be 

due to modulation of the G A B A A receptor as described in this thesis and by others 

(Woodward et al., 1994; Halliwell et al., 1999). Therefore to investigate this hypothesis, 

the effect of a range of G A B A A receptor modulators on object discrimination was 

determined. 

Additionally, epidemiological evidence has suggested that NSAIDs delay the onset and 

slow the development of Alzheimer's disease, and possibly improve memory function 

in Alzheimer's diseased patients (see chapter one). To investigate the effects of 

mefenamic acid in cognitively impaired animals, rats were treated with the muscarinic 

acetylcholine antagonist, scopolamine. This compound has been shown to impair 

performance in a range of behavioural tasks in both animal (Stevens, 1981; Dunnett, 

1985; Beninger et al., 1986; Huston & Aggleton, 1987) and human (Drachman, 1977; 

Preston et al., 1989; Flicker et al., 1990) studies. The effects of scopolamine in the 

object discrimination task were first determined. The effect of mefenamic acid was then 

investigated on the actions of scopolamine in the object discrimination task. 
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4.2; Methods and Materials 

4.2i: The object discrimination task 

The apparatus, protocol and statistical analysis for the object discrimination task have 

been described previously (chapter three, pgs 64 - 67). 

4.2ii: Drugs and drug administration 

All drugs were supplied by Sigma (Poole, UK) unless otherwise stated. Scopolamine 

(0.5mg/ml), piracetam (200mg/ml) and bicuculline (0.5mg/ml) were dissolved in double 

distilled water. Al l NSAIDs tested were initially dissolved in 0.05M NaOH and made 

up with double distilled water to a dose of lOmg/ml. Diazepam was dissolved in a 10% 

ethanol solution and administered at a dose of 0.5mg/ml. Loreclezole (kindly donated 

by Jannsen Pharmaceuticals, Belgium) was dissolved in a 10% cyclodextrin and O.IM 

tartaric acid solution at a dose of 2mg/ml. All drugs were given via an intra-peritoneal 

injection, with 0.2-l.Omls given per injection, thirty minutes prior to testing. 

4.3: Results 

4.3i: Is enhanced object discrimination a fenamate group effect? 

To observe whether the enhancement in object discrimination observed with mefenamic 

acid is a fenamate group effect, the actions of flufenamic acid, meclofenamic acid, 

niflumic acid and tolfenamic acid on object discrimination was investigated. 

Treatment and testing: 

Forty-eight rats were randomly allocated to six different groups. Each group received 

either an intra-peritoneal injection of saline (n=8), mefenamic acid (20mg/kg; n=8). 
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flufenamic acid (20mg/kg; n=8), meclofenamic acid (20mg/kg; n=8), niflumic acid 

(20mg/kg; n=8) or tolfenamic acid (20mg/kg; n=8), thirty minutes prior to testing. Each 

group of rats were then tested in the object discrimination task with a fifteen-minute 

intra-trial interval. 

The effects of fenamates on total exploration times 

The overall exploration of objects during the sample phase (el) was not significantly 

different between fenamate groups (F5,42= 1.60, p> 0.10). There was, however, a 

significant difference between groups in overall exploration of objects during the choice 

phase (e2) (F5,42= 9.86, p< 0.001), shown in figure 4.1. A post hoc analysis showed 

significant differences between the mefenamic acid treated group compared to saline, 

flufenamic acid, niflumic acid and tolfenamic acid treated groups (p< 0.05); the 

meclofenamic acid treated group compared to saline, niflumic acid and tolfenamic acid 

treated groups (p< 0.05). 

The effects of fenamates on object discrimination: 

The object discrimination time (dl) was significantly different between groups (F5,42= 

4.23, p< 0.01). This data is shown in figure 4.2. A post-hoc analysis revealed significant 

differences between the mefenamic acid treated group compared to saline, niflumic acid 

and tolfenamic acid treated groups (p< 0.05), and between meclofenamic acid compared 

to saline, niflumic acid and tolfenamic acid treated groups (p< 0.05). 
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Figure 4.1: The affects of a range of fenamate NSAIDs on total exploration time 
during the sample and choice phases. The histogram shows the total exploration time 
(sees) on the y-axis, for objects m the sample (el) and choice (e2) phases, for control, 
flufenamic acid (FFA), meclofenamic acid (Meclo), niflumic acid (NFA), tolfenamic 
acid (TOL) and mefenamic acid (MFA) groups, el was not significantly affected by 
fenamate NSADDs. e2, however, was significantly affected by MFA and Meclo. * p< 
0.05 when compared to control. Each data bar represents the mean ± s.e.m. n=8 for each 
group. 

Conclusion: 

This experiment has shown that the fenamate, meclofenamic acid can mimic the effect 

of mefenamic acid in the object discrimination task. However the fenamates, nifluminc 

acid, flufenamic acid and tolfenamic acid did not replicate the effects of mefenamic 

acid. These data, therefore, suggest that the behavioural effects of mefenamic acid are 

not entirely a fenamate group effect. 
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Figure 4.2: Fenamate NSAIDs modulate object discrimination. Histogram showing 
that the fenamates, meclofenamic acid (Meclo) and mefenamic acid (MFA), 
significantly modulate object discrimination in the choice phase (dl), whereas 
flufenamic acid (FFA), niflumic acid (NFA) and tolfenamic acid (TOL) do not 
modulate d l . * p< 0.05 when compared to control. Each data bar represents the mean ± 
s.e.m. n= 8 for each group. 

4.3ii: Is enhancement of object discrimination a NSAID class effect? 

Treatments and testing: 

Twenty-four rats were randomly allocated to one of three different groups. Each group 

received an intra-peritoneal injection of saline (n=8), aspirin (20mg/kg; n=8), or 

ibuprofen (20mg/kg; n=8), thirty minutes prior to testing. Each group of rats were then 

tested in the object discrimination task with a fifteen-minute intra-trial interval. 

The effects of non-fenamate NSAIDs on total exploration: 

The overall exploration of objects was not significantly different between groups in el 

(F2,2i= 0.77, p> 0.10) or e2 (F2.2i= 0.98, P > 0.10) of the test. (Figure 4.3). 
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Figure 4.3: Non-fenamate NSAIDs do not affect total exploration times. The 
histogram shows the total exploration time (sees) on the y-axis, for the objects in the 
sample (el) and choice (e2) phases, for aspirin (ASA) or ibuprofen (IBU). Each data bar 
represents the mean ± s.e.m. n=8 for each group. 

The effect of non-fenamate NSAIDs on object discrimination: 

The object discrimination times (dl) were not significantly affected by non-fenamate 

NSAIDs (F2,2i= 0.33, p> 0.10). These data are shown in figure 4.4. 

Conclusion: 

The non-fenamate NSAIDs aspirin and ibuprofen did not affect object discrimination, 

indicating that the enhancement observed with fenamate NSAIDs may not be due to 

inhibition of cyclooxygenases. 
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Figure 4.4: The non-fenamate NSAIDs do not affect object discrimination. The 
histogram shows the object discrimination time (dl) on the y-axis for control, aspirin 
( A S A ) and ibuprofen (IBU) groups. Each data bar represents the mean ± s.e.m. n=8 for 
each group. 

4.3iii: The effect of GAB A A receptor modulators on object discrimination 

In order to test the hypothesis that the behavioural effects of mefenamic acid is via 

modulation of the G A B A A receptor, the effect of, bicuculline a G A B A A receptor 

antagonist; diazepam a positive allosteric modulator of the G A B A A receptor and 

loreclezole, another positive allosteric modulator of the G A B A A receptor, reported to 

bind to the same site on the G A B A A receptor complex as mefenamic acid (Halliwell et 

al., 1999), were investigated in the object discrimination task. 

Treatments and testing: 

Thirty-two rats were randomly allocated to one of four different groups. Each group 

received an intra-peritoneal injection of either saline (n=8), bicuculline (Img/kg; n=8), 

diazepam (2mg/kg; n=8) or loreclezole (lOmg/kg; n=8), thirty minutes prior to testing. 
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Each group of rats were then tested in the object discrimination task with a fifteen-

minute intra-trial interval. It was noted that two of the diazepam treated rats were 

sedated and did not show exploratory activity when placed in the arena; these two 

animals were excluded from the experiment. 

The effect of GABAA modulators on total exploration times: 

The overall exploration of objects was not significantly different between drug groups 

during el (F3,26= 1.95, p> 0.10) or e2 (F3,26= 1 25, p> 0.10). These data are shown in 

figure 4.5. 

The effects of GABAA modulators on object discrimination: 

The object discrimination times (dl) was not significantly different between groups 

(F3,26= 1-44, p> 0.10), as shown in figure 4.6. 
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Figure 4.5: G A B A A receptor modulators do not effect total exploration times. The 
histogram shows the total exploration time (sees), on the y-axis, for the objects in the 
sample (el) and choice (e2) phases for control, diazepam, loreclezole and bicuculline 
treatment groups. Each data bar represents the mean ± s.e.m. n=6 for diazepam, n= 8 for 
control, loreclezole and bicuculline treated groups. 
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Figure 4.6: G A B A A receptor modulators do not significantly modulate object 
discrimination. The histogram shows the object discrimination time (dl) , on the y-axis 
for control, diazepam, loreclezole and bicuculline groups. There was no significant 
difference in d l between groups. Each data bar represents the mean ± s.e.m. n~6 for 
diazepam, n= 8 for control, loreclezole and bicuculline treated groups. 

Conclusion: 

None of the G A B A A receptor modulators tested significantly affected object 

discrimination by rats, although object discrimination was impaired in both diazepam 

and bicuculline treated groups when compared to saline controls. These data suggest 

that the increase in object discrimination observed with mefenamic acid may not depend 

upon modulation of the G A B A A receptor. 

4.3iv: The effect of scopolamine on object discrimination 

Treatments and testing: 

Thirty-two rats were randomly allocated to one of four different groups. Each group 

received an intra-peritoneal injection of either saline (n=8) or scopolamine at 0.25mg/kg 

(n=8), 0.5mg/kg (n=8) or 1 mg/kg (n=8), thirty minutes prior to testing. Each group of 
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rats were then tested in the object discrimination task with a fifteen-minute intra-trial 

interval. 

The effect of scopolamine on total object exploration: 

Overall exploration times during el were significantly reduced (F3,28= 7.57, p< 0.001) by 

scopolamine. A post-hoc analysis revealed significant differences between saline 

compared to scopolamine at 0.5 mg/kg and 1 mg/kg (p< 0.001). There was no significant 

difference between control and 0.25 mg/kg scopolamine (figure 4.7). Total exploration 

time during e2 was also significantly different between groups (F3,28= 9.09, p< 0.001). A 

post-hoc analysis showed significant differences between saline compared to scopolamine 

at 0.5 mg/kg and 1 mg/kg (p< 0.05). There was a significant difference between 

scopolamine (0.25 mg/kg) compared to scopolamine at 1 mg/kg (p< 0.01). There was no 

significant difference (p> 0.10) between control and scopolamine (0.25 mg/kg). 
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Figure 4.7: The effect of scopolamine on total exploration times. 
The histogram shows the total exploration time (sees), on the y-axis, for the objects in 
the sample (el) and choice (e2) phases for control and scopolamine (Sco) at 0.25, 0.5 
and Img/kg. el was significantly decreased by Sco (F3,28= 7.57, p< 0.001), e2 was also 
significantly decreased by Sco (F3,28= 9.09, p< 0.001). ** p< 0.01, * p< 0.05, compared 
to control. Each data bar represents the mean ± s.e.m. n=8 for each group. 
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The effect of scopolamine on object discrimination: 

The object discrimination (dl) was significantly different between groups (F3,28= 14.0, 

p< 0.0001). A post hoc analysis showed significant differences between saline 

compared to scopolamine at 0.25mg/kg, 0.5mg/kg and Img/kg (p< 0.01). There was no 

significant difference between the scopolamine-treated groups (figure 4.8). 
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Figure 4.8: Scopolamine signiflcantly reduces object discrimination time. The 
histogram shows the object discrimination time (dl) on the y-axis for control, and 
scopolamine (Sco) at 0.25, 0.5 and Img/kg. Sco significantly reduces d l (F3,28= 14.0, p< 
0.0001), *** p< 0.001, ** p< 0.01 compared to control. Each data bar represents the 
mean ± s.e.m. n=8 for each group. 

Conclusion: 

Scopolamine significantly impairs object discrimination. Higher doses of scopolamine 

(0.5 mg/kg, 1 mg/kg) also reduced the total exploration times during the sample and 

choice phases suggesting an impairment in gross motor activity. 
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4.3v: The affect of mefenamic acid on scopolamine-induced impairment on object 

discrimination 

Treatment and testing: 

Thirty-two rats were randomly allocated to one of four different groups. Each group 

received an intra-peritoneal injection of saline (n=8) or a combined injection of 

mefenamic acid (20mg/kg) plus scopolamine at 0.25mg/kg (n=8), 0.5mg/kg (n=8) or 

Img/kg (n=8), thirty minutes prior to testing. Each group of rats was then tested in the 

object discrimination task with a fifteen-minute intra-trial interval. 

The effect of combined mefenamic acid and scopolamine on total exploration: 

There was a significant difference between groups treated with either saline, or 

scopolamine plus mefenamic acid in total exploration time during the sample phase 

(el) (F3,28= 4.37 p< 0.01). A post-hoc analysis revealed a significant difference between 

saline controls compared to mefenamic acid plus scopolamine at 0.5mg/kg and Img/kg 

(p< 0.05). There was no significant difference between mefenamic acid plus 

scopolamine (0.25 mg/kg) treated group compared to control or between scopolamine 

plus mefenamic acid-treated groups. These data are shown in figure 4.9. 

The total exploration time during the choice phase (e2) was significantly different 

between groups (F3,28= 6.12, p< 0.01), with post-hoc analysis showing a significant 

difference between saline compaied to mefenamic acid plus scopolamine at Img/kg (p < 

0.01). 
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The effect of combined scopolamine and mefenamic acid treatment on object discrimination: 

The discrimination times between the two objects in the choice phase (dl) was 

significantly different between groups (F3,28= 7.50, p< 0.001). A post-hoc analysis 

showed significant differences between mefenamic acid plus scopolamine (Img/kg) 

compared to saline controls (p< 0.001), and mefenamic acid plus scopolamine at 

0.25mg/kg and 0.5mg/kg treated groups (p< 0.01). These data are shown in figure 4.10. 
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Figure 4.9: The effect of combined scopolamine and mefenamic acid treatment on 
total exploration times. The histogram shows the total exploration time (sees), on the 
y-axis, for the objects in the sample (el) and choice (e2) phases for control and 
combined scopolamine (Sco) plus mefenamic acid (MFA) groups. Both el (F3,28= 4.37, 
p< 0.01) and e2 (F3,28= 6.12, p < 0.01) were significantly different between groups, ** 
p< 0.01; * p< 0.05 compared to control. Each data bar represents the mean ± s.e.m. n=8 
for each group. 

When d l data for scopolamine alone is compared to the respective d l for mefenamic 

acid plus scopolamine data using an un-paired student t-test, significant differences 

were found between: scopolamine alone (0.25 mg/kg) compared to scopolamine (0.25 
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mg/kg) plus mefenamic acid (ti4=2.32, p< 0.05), and between scopolamine alone (0.5 

mg/kg) compared to scopolamine (0.5 mg/kg) plus mefenamic acid (ti4=3.31, p< 0.01). 

There was no significant difference between scopolamine alone (1 mg/kg) compared to 

scopolamine (Img/kg) plus mefenamic acid (t i4= 0.68, p> 0.10). 
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Figure 4.10: Mefenamic acid reverses the scopolamine-induced impairment in ttie object 
discrimination tasli. The histogram shows the object disciimination time (dl), on the y-
axis for control and scopolamine (Sco) at 0.25, 0.5 and 1 mg/kg in combination with 
mefenamic acid (MFA). The discrimination times between objects is significantly different 
between groups treated with Sco plus MFA (F3,28= 7.50, p< 0.001), *** p< 0.001 when 
compared to control. Each data bai" represents the mean ± s.e.m. n=8 for each git)up. 

Conclusion: 

This experiment has shown that mefenamic acid can reverse a scopolamine- induced 

impairment in object discrimination. 
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4.4: Summary 

The experiments reported above, have shown that two fenamates (mefenamic acid and 

meclofenamic acid) were associated with an increase in object discrimination, but the 

fenamates, flufenamic acid, niflumic acid and tolfenamic acid did not increase object 

discrimination. These data suggest that the enhancement observed with mefenamic acid 

is not entirely a fenamate group effect. 

The non-fenamate NSAEDs, ibuprofen and aspirin, did not significantly affect object 

discrimination, suggesting that the effects observed with fenamates is not a N S A I D 

class effect. 

Similariy, none of the G A B A A receptor modulators tested in this study were able to 

mimic the effect observed with mefenamic acid, suggesting that the increase in object 

discrimination may not depend entirely on the G A B A A receptor. 

Application of scopolamine impaired rats' performance in the object discrimination 

task. Mefenamic acid, wholly or partially reversed the scopolamine-induced 

impairment, indicating that mefenamic acid might improve the performance of 

cognitively-impaired rats. 
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Chapter Five: Investigation of the Effect of Mefenamic Acid on the T-

maze and Radial Maze Tasks 

5.i; Introduction 

The experiments reported in previous chapters have established that mefenamic acid 

increases discrimination between objects in both the object discrimination and object 

location tasks. To test the hypothesis that the effects of mefenamic acid are not task 

specific and moreover that it enhances working memory, the effects of mefenamic acid 

were investigated in the T-maze and radial maze. Both of these tasks are well 

characterised working memory paradigms (Olton & Samuelson, 1976; Stevens, 1981; 

Steckler et al., 1998a) 

5.2: Methods 

5.21: Non-matching-to-sample T-maze paradigm 

The delayed non-matching-to-sample T-maze paradigm is a spatial memory paradigm, 

which requires the learning of a rule to gain food reinforcement. It has been used 

previously to investigate the central effects of drugs on spatial working memory. For 

example, Ennaceur and Delacour (1987) showed that intra-peritoneal injection of 

choline could enhance performance in this task. Similarly, aged rats treated with the 

cholinesterase inhibitor, physostigmine, perform significantly better than age match 

controls in the delayed non-match-to-sample T-maze task (Ohta et al., 1991). Tacrine, a 

clinically used cholinesterase inhibitor, can reverse a scopolamine-induced impairment 

in the T-maze (M'Harzi et al., 1997) while the selective muscarinic M l acetylcholine 

partial agonist, sabcomeline can improve performance in the T-maze task (Hatcher et 
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a/., 1998). Therefore the effects of mefenamic acid on working memory were 

investigated in the non-matching-to-sample T-maze task. 

Animals: 

Male Lister hooded rats (250-300g, Charles river, U.K.) were housed in pairs under a 12 

hour light (07:00-19:00)/ 12 hour dark cycle, and were tested, at a regular time, in the 

light phase. The rats had ad libitum access to water but were placed on a controlled food 

diet so that their body weight was maintained at approximately 85% of normal at the 

time of testing. Their weight was monitored regularly, to ensure that their weight did not 

fall below 85% of normal. 

Apparatus: 

A matt black painted wooden T-maze was constructed (in house). Each arm of the T-

maze was 50cm long by 30cm wide. At the end of each arm was a 2cm diameter food 

cup. The stem of the T-maze was 50cm long by 30cm wide with a guillotine door 

located 20cm away from the beginning of the stem. 30cm high plywood walls enclosed 

the T-maze. A wooden barrier was also used to block one arm of the T-maze during the 

sample phase. The maze was cleaned with ethanol between trials to eliminate odour 

cues. 

Habituation: 

Rats were habituated to the T-maze by being allowed to explore the maze for three 

minutes per day for five days. During habituation sessions, food pellets were placed 

around the maze; the number of pellets was reduced daily until they were only placed in 

the food wells. After habituation the rats moved freely around the maze without 

freezing, defecation or urination and thereafter testing in the T-maze began. 
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Acquisition of non-matching-to-sample T-maze task: 

Rats were injected with saline or mefenamic acid (20mg/kg) thirty minutes prior to 

daily testing. The rats were tested for ten trials each day in the T-maze until they 

reached a criterion level of no more than three errors in total over three consecutive 

days. Each trial consisted of a sample and a choice phase. During the sample phase, the 

rat was introduced into the stem of the T-maze, with one of the arms blocked by a 

wooden barrier, forcing the rat to enter the open arm of the maze (figure 5.1). After the 

rat had visited the open arm it was removed and placed into the start box for ten 

seconds. At the end of the delay access to both arms was free and two food pellets (2 x 

45mg; Noyes INC. New Hampshire, USA) were placed only in the food cup of the 

previously closed arm. The start box was then opened for the choice phase. I f the rat 

chose the previously un-visited arm it was allowed to eat the food pellets before being 

removed and returned to its holding cage. I f the arm visited during the sample phase 

was chosen, the rat was confined to the arm for ten seconds before being removed and 

returned to its home cage. Rats were tested in groups of four, so the inter-trial delay was 

approximately three minutes. Each arm was blocked for five out of the ten sample 

phases each day in a pseudo-random order. This procedure was repeated daily until 

animals reached criterion. I f rats had not reached criterion by twenty days of testing 

they were removed from further study. 

Delayed non-matching-to-sample testing: 

The rats were trained in the T-maze, as described above, until they had reached criterion 

(defined above), after which they were not tested in the maze again until all the animals 

had reached criterion, to reduce over-training of the task. 
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Figure 5.1: Schematic diagram of the T-maze non-matching-to-sample task. The 
diagram above is an illustration of the non-matching to sample T-maze task. The rat was 
introduced into the stem of the T-maze, with one of the arms blocked by a wooden 
barrier, thereby forcing the rat to enter the open arm of the maze. The rat was then 
removed from the open arm for the intra-trial interval. At the end of the delay, access to 
both arms was free and two food pellets were placed only in the food cup of the 
previously closed arm. If the rat chose the previously un-entered arm it was allowed to 
eat the food pellets before being removed. I f the arm visited during the sample phase 
was chosen, the rat was confined to the arm for ten seconds before being removed. 
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Once all rats had reached criterion, they were tested in the T-maze with no intra-trial 

delay to ensure that they were all performing from the same baseline. The following day 

the rats were injected with either saline, piracetam (400mg/kg) or mefenamic acid (20 

mg/kg) thirty minutes prior to testing, and again tested in the T-maze with a five minute 

intra-trial delay between the sample and choice phases. During the intra-trial interval, 

animals were returned to their home cage. Each animal was tested for ten trials. Three 

days later the group previously injected with saline was injected with mefenamic acid 

and the group injected with mefenamic acid was now injected with saline in a drug 

cross-over experiment. The rats were tested again in the T-maze for ten trials per day 

with a five-minute intra-trial interval. 

Data analysis: 

To investigate the effect of mefenamic acid (20mg/kg) on T-maze acquisition, the 

number of errors made and the number of days taken to reach criterion were recorded 

and calculated for each rat. The data was then analysed using the unpaired Student t-test 

(two-tailed), and p< 0.05 was considered significant. 

To investigate the effect of piracetam (400mg/kg) and mefenamic acid (20mg/kg) on 

working memory, the number of errors made during the ten trials with a five-minute 

intra-trial interval was recorded. This data was then analysed using a one-way ANOVA 

followed by a Student-Newman-Keuls post hoc analysis. p< 0.05, was considered 

significant. 

The data for saline and mefenamic acid treated groups that were reversed and re-tested 

in the T-maze were analysed with a paired Student t-test to compare the number of 

errors within groups. Results were considered statistically significant when p< 0.05. 
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5.2ii: The radial maze task 

The radial maze, a widely used paradigm used to investigate spatial and reference 

memory, was first described in its modem form by Olton and Samuelson (1976). 

Pharmacological experiments have shown that centrally acting drugs can alter 

performance in the radial maze task. For example, scopolamine results in a 

concentration-dependent deficit in radial maze performance (Stevens, 1981; Watts et 

al, 1981) while physostigmine can improve radial maze performance (Ennaceur, 1998). 

In contrast, the NMDA antagonist, MK-801, impairs performance in the radial maze 

(Wozniak et al., 1990) and this impaimient is reversed by nicotine (Levin et al., 1998) 

or histamine (Chen et al., 1999). Therefore, to address the effects of mefenamic acid on 

reference and working memory, the radial maze was utilised in the following 

experiments. 

Animals: 

Male Lister hooded rats (250-300g, Charles river U.K.) were housed and maintained as 

described previously (pg 120). 

Apparatus: 

A radial maze was manufactured in-house. The central platform (40cm in diameter) was 

made from vinyl coated wood and eight arms (85cm long x 10cm wide), which 

extended from this central platform (figure 5.2). A 2 x 0.5cm food cup was fixed to the 

end of each arm. A 1cm wooden rim surrounded the arms to prevent the animals from 

falling off the maze. The rim however gradually increased in height at 10cm from the 

central platform until it was at a height of 10cm at the central platform. This was to 

prevent the animals from jumping from arm-to-arm without entering the central 

platform. Wooden barriers were also placed at the entry to each arm (10cm in height). 

Each of these barriers was connected by a piece of string and a pulley so that the 
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Figure 5.2: A schematic diagram of the radial maze. The diagram above is an 
illustration of the radial maze. During a trial the rat was placed in the central platform 
with all barriers down. Al l the barriers were then opened simultaneously and the rat 
allowed to select an arm to enter. Once an arm had been selected the barriers to the 
other seven arms were closed. When the rat returned to the central platform the barrier 
to the visited arm was also closed. The barriers were then all opened again and the rat 
allowed a free choice to select an arm. This procedure was repeated until the rat had 
entered the four aims containing food pellets or until ten minutes had elapsed. 
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investigator, who remained in the same place in the laboratory throughout testing, could 

raise one or all of the barriers at any time. The entire maze was positioned 70cm off the 

floor, with several large extra-maze cues positioned around the room. The room was lit 

by fluorescent tubes. The maze was cleaned with ethanol solution between trials to 

remove any potential intra-maze cues. 

Habituation: 

Rats were given four, five-minute habituation sessions (one session per day) to the 

laboratory and radial maze. During these sessions the barriers were open and food 

pellets were scattered around the maze. The amount of food pellets placed on the maze 

was reduced for each habituation session, until they were placed just in the food cups at 

the ends of each arm. After these habituation sessions there was little defecation, 

urination or freezing from the rats. 

Reference memory testing: 

On day five, testing in the radial maze began. Rats were injected daily with either saline 

or mefenamic acid (20mg/kg) thirty minutes prior to testing. For each rat, four of the 

arms were baited with a food pellet (lx45mg, Noyes) while the other four arms 

remained un-baited. The particular pattern of baited/un-baited arms differed between 

rats, but remained constant for each rat throughout the experiment. The rat was placed 

in the central platform with all barriers down. Al l the barriers were then opened at the 

same time and the rat allowed to select an arm to enter. Once an arm had been selected 

the barriers to the other seven arms were closed. When the rat returned to the central 

platform the barrier to the visited arm was also closed. The barriers were then all opened 

again and the rat allowed a free choice to select an arm. This procedure was repeated 

until the rat had entered the four arms containing food pellets or until ten minutes had 

elapsed. An arm was recorded as entered when the all four paws of the animal crossed 
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the entrance of the arm; the order of entries into arms was also recorded. This procedure 

was repeated daily until the rats had reached a criterion of no more than three entry 

errors (entries into arms without a food pellet) over three days or until twenty days of 

testing had occurred. 

Working memory task: 

Working memory errors were defined as the number of re-entries into previously visited 

arms. The criterion was no more than one working memory error over five days of 

testing was reached. Once a rat had reached criterion they were given an intra-peritoneal 

injection of either saline or mefenamic acid (20mg/kg), thirty minutes prior to testing in 

the radial maze. An intra-trial delay (Osec-30sec) was introduced between arm entries. 

During the delay the rat was confined within the central platform. Animals were 

removed from the maze when they had entered the four baited arms or after ten minutes 

had elapsed. The drug groups were then reversed and the experiment repeated for a drug 

cross-over experiment. 

Data analysis: 

To investigate the effect of mefenamic acid on reference memory the number of entries 

into never baited arms (considered reference memory errors) for each group was 

recorded and the number days to criterion was also calculated. An un-paired student t-

test (two-tailed) was performed on both the number of reference memory errors and the 

number of days to criterion. A value of p< 0.05 was considered significant. 

A one-way ANOVA (repeated measures) was performed on the number of working 

memory errors made for saline and mefenamic acid (20mg/kg) treated groups across the 

four intra-trial delays (0, 10, 20 & 30 sees) followed by Student-Newman-Keuls post 

hoc analysis. 
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5.3: Results 

5.3i: Acquisition of non-matching-to-sample T-maze task 

Treatments and testing: 

Twelve rats were randomly allocated to one of two treatment groups, with one group 

given daily intra-peritoneal injections of saline (n=6), and the second group injected 

daily with mefenamic acid (20mg/kg; n=6), thirty minutes prior to testing in the T-maze. 

Each day these groups were given ten trials in the non-matching-to-sample T-maze task 

until a criterion of no more than five errors over three consecutive days was reached. 

Results: 

Mefenamic acid treated rats (n=6) made significantly fewer errors compared to saline 

controls to reach criterion when analysed with an un-paired Student t-test (tio= 2.63, p< 

0.05). These data are shown in figure 5.3A. Mefenamic acid treated rats also took fewer 

days to reach criterion than saline controls (figure 5.3B) although this difference was not 

quite significant (tio= 1.93, p= 0.08). 

Conclusion: 

Mefenamic acid treated rats were faster than saline controls in the acquisition of the 

non-matching to sample T-maze task. 
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Figure 5.3: Mefenamic acid decreases errors to criterion in the non-matching-to-
sample T-maze task. (A) The histogram shows the number of errors taken to reach 
criterion on the y-axis for saline and mefenamic acid (MFA) groups. MFA caused a 
significant decrease in the number of errors to reach criterion compared to saline 
controls. (B) The histogram shows the number of days taken to reach criterion for saline 
and MFA groups. * p< 0.05 n=6 for each group. Each bar represents the mean ± s.e.m. 
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5.3ii: The effect of intra-trial delay in the non-matching-to-sample task 

Treatment and testing: 

Forty-nine rats that had been trained to criterion in the T-maze non-matching-to-sample 

task were randomly allocated to one of seven different groups. Each group was allocated 

an intra-trial interval of either: ten seconds (n=7), twenty seconds (n=7), thirty seconds 

(n=7), sixty seconds (n=7), a hundred and twenty seconds (n=7), three hundred seconds 

(n=7) or six hundred seconds (n=7). Each group was given ten trials in the T-maze with 

their respective intra-trial interval. 

Results: 

There was a significant difference in the number of errors between groups when 

analysed by one-way ANOVA (F6,42=7.93, p< 0.0001). A post hoc analysis revealed 

significant differences between the six hundred second interval compared to the ten 

second, twenty second, thirty second and sixty second interval groups (p< 0.01); the 

three hundred second interval was significantly different to the ten, twenty, thirty and 

sixty second interval groups (p< 0.05) and the ten second interval group was 

significantly different when compared to the two minute interval (p< 0.05). This data is 

shown in figure 5.4. 

Conclusion: 

The non-matching-to-sample T-maze task is sensitive to intra-trial delays. 
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Figure 5.4: Increasing intra-trial intervals is associated with a significant increase 
in the number of errors in delayed non-matching-to-sample T-maze task. The 
above histogram shows the number of arm entry errors on the y-axis against the inter-
trial interval, on the x-axis. The number of arm entry errors is significantly increased as 
the intra-trial interval is increased (F6,42=7.93, p< 0.0001), *** p< 0.001, ** p< 0.01, * 
p< 0.05 when compared to the ten second interval. n=7 for each group. Each bar 
represents the mean ± s.e.m. 

5.3m; The effect of mefenamic acid and piracetam on the number of errors made 

with a five minute intra-trial interval 

The effect of mefenamic acid in the non-matching-to-sample T-maze task with a five 

minute intra-trial interval was investigated in order to test the hypothesis that mefenamic 

acid can reduce the number of working memory errors. Additionally the effect of 

mefenamic acid will be compared to that of the cognitive enhancer piracetam 

Treatments and testing: 

Twenty-four rats that had been trained to criterion in the non-matching-to-sample T-

maze task were randomly allocated to one of three groups. One group was given an 

intra-peritoneal (i.p.) injection of sahne (n=8), a second group was given an injection 

(i.p.) of piracetam (400mg/kg; n=8) and a third group injected (i.p.) with mefenamic 
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acid (20mg/kg; n=8). Each group was then tested twice in the T-maze, with a zero 

second intra-trial interval and a five-minute intra-trial interval. The mefenamic acid 

treatment and saline treatment groups were then reversed so that the animals previously 

given mefenamic acid now received saline and the group previously given saline now 

received mefenamic acid, in a drug cross-over experiment. The experiment was then 

repeated with a five-minute intra-trial interval. 

The effect of mefenamic acid and piracetam on the number of errors made with a five-

minute intra-trial interval: 

There was no significant difference in the number of errors made between groups when 

there was no intra-trial interval (F2,i5= 0.09, p> 0.10). When a five minute intra-trial 

delay was introduced (figure 5.5) there was a significant difference between groups 

(F2,i5= 6.78, p< 0.01). A post hoc analysis showed a significant difference between 

control compared to the mefenamic acid treated group (p< 0.05), there was no 

significant difference between piracetam and control. 

When the mefenamic acid and saline treated groups were reversed, mefenamic acid still 

caused a significant decrease in the number of errors when compared to their own saline 

control data using a paired Student t-test (tis =2.32, p< 0.05). These data are shown in 

figure 5.6. 

Conclusion: 

Mefenamic acid treated rats' made fewer errors than saline controls in a non-matching-

to-sample T-maze task when a five-minute intra-trial interval was imposed. 
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Figure 5.5: Mefenamic acid decreases errors in the delayed non-matching-to-sample 
T-maze task with a five minute intra-trial interval. The histogram shows the number of 
arm entry errors on the y-axis for control, mefenamic acid (MFA) and piracetam groups. 
The number of arm entry en̂ ors for the MFA group are significantly decreased compared 
to saline controls, with a five minute intra-trial interval (F2,i5 =6.78, p< 0.01), * p< 0.05 
compared to control. n=8 for each group. Each bar represents the mean ± s.e.m. 
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Figure 5.6: Mefenamic acid decreases errors in the delayed non-matching to 
sample T-maze task with a five minute intra-trial interval when compared to its 
own saline control in a drug cross-over experiment. The histogram shows the number 
of arm entry errors on the y-axis for saline and mefenamic acid (MFA) groups. The 
number of errors made with a five-minute intra-trial interval is decreased by MFA when 
compared to each rats' own saline treated control. * p< 0.05. n=8 for each group. Each 
bar represents the mean ± s.e.m. 
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5.3iv: The effect of mefenamic acid on reference memory in the radial maze task 

The previous studies have investigated the effect of mefenamic acid on working 

memory. This experiment aims to investigate the effect of mefenamic acid on reference 

memory using the radial maze task. 

Treatments and testing: 

Sixteen rats were randomly allocated into one of two drug treatment groups. One group 

was given a daily intra-peritoneal injection of saline (n=8), and the second group was 

given a daily injection of mefenamic acid (20mg/kg; n=8). Drugs were administered 

thirty minutes prior to testing in the radial maze. In order to assess reference memory, 

animals were tested daily in the radial maze until they achieved a criterion of no more 

than three entries into never baited arms; the number re-entry errors into baited arms 

was also recorded until the criterion had been reached to determine the effect of 

mefenamic acid on the acquisition of the radial maze task. 

Effect of mefenamic acid on reference memory: 

Mefenamic acid did not significantly decrease the number of entry errors into never baited 

arms when compared to saline controls using an un-paired Student t-test (ti4= 1.49, p> 

0.10) as shown in figure 5.7A. The number of days taken to reach criterion was also not 

significantly different between groups (ti6 =1.34, p> 0.10) as shown in figure 5.7B. 
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Figure 5.7: The effect of mefenamic acid on the number of entries into never baited 
arms and the number of days taken to reach criterion in the radial maze. (A) The 
histogram shows the number of never baited arm entries to criterion on the y-axis for 
control and mefenamic acid (MFA) groups. (B) The histogram shows the number of 
days taken to reach criterion on the y-axis for control and MFA groups. Each bar is the 
mean ± s.e.m. n=8 for each group. 

Conclusion: 

Mefenamic acid had no effect on the acquisition of the radial maze task. 
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5.3v; The effect of increasing the intra-trial interval on working memory errors in the 

radial maze task 

Data obtained from the object discrimination and T-maze tasks suggested that 

mefenamic acid enhances non-spatial working memory. The following experiment 

therefore investigated the hypothesis that mefenamic acid could also enhance spatial 

working memory. 

Treatment and testing: 

Sixteen rats that had reached criterion of no more than one re-entry error over five days 

in the radial maze were randomly divided into one of two groups. One group was given 

an intra-peritoneal injection of saline (n=8), the second group was injected with 

mefenamic acid (20mg/kg; n=8). Drugs were administered thirty minutes before testing 

in the radial maze task. Each group of rats was then tested in the radial maze with four 

intra-trial intervals (a 0, 10, 20 and 30 second interval). Each rat was tested for ten trials 

a day over four days, with one intra-trial interval tested per day. 

Results: 

Analysis of the errors made between groups across intra-trial intervals with a two-way 

ANOVA (repeated measures) revealed a significant difference (F3,28= 5.36, p< 0.01). A 

post hoc analysis revealed a significant difference between the thirty second delay 

compared to a twenty, ten and zero second delay (p<0.05) for saline rats. In contrast there 

was no significant difference across intra-trial delays for mefenamic acid treated rats. The 

difference between drug groups was not quite significant (F i j4= 3.54, p= 0.08). However 

there was a significant interaction between time and drug groups (F3,28= 3.61, p< 0.05), as 

shown in figure 5.8. 
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Figure 5.8: Increasing the intra-triai interval increases the number of re-entry errors 
made in the radial maze for saline but not mefenamic acid treated groups. The 
histogram shows the number of re-entry eiTors on the y-axis plotted against the intra-
trial interval on the x-axis. The number of re-entry errors is significantly increased as the 
intra-trial delay is increased for saline (F3,28= 5.36, p< 0.01), but not mefenamic acid 
(MFA) treated groups ** p< 0.01 compared to zero second. n=8 for each group. Each 
bar represents the mean ± s.e.m. 

Conclusion: 

In contrast to saline treated controls, rats treated with mefenamic acid made no more re­

entry errors with a 10, 20 or 30 second intra-trial interval imposed than made with a zero 

second intra-trial interval. 

5.4: Summary 

The results presented above show that mefenamic acid enhanced rats performance in the 

in the T-maze and radial maze tasks. In the T-maze task mefenamic acid treated rats 

made fewer errors and took fewer days to reach criterion, suggesting they learned the 

task more quickly than saline treated controls. When a five-minute delay was introduced 
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between the sample and choice phases of the T-maze, mefenamic acid treated rats made 

fewer errors than controls and piracetam treated rats. 

In the radial maze task, mefenamic acid treated rats were not significantly different from 

saline controls in the number of never baited arm entries made until criterion. When 

delays between baited arm entries were imposed there was a time-dependent increase in 

the number of re-entry errors for saline but not mefenamic acid treated rats. 
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Chapter Six: General Discussion 

The aim of this thesis was to investigate the hypothesis that NSAIDs have direct effects 

on neuronal ion channels and thereby behavioural actions. This thesis has focussed 

mainly on fenamate NSAIDs. The rationale behind this study was reports that NSAIDs 

can produce analgesic effects even when injected directly into the CNS; that NSAIDs 

can modulate a number of ion channels in peripheral tissues and that NSAIDs can 

modulate central ligand-gated ion channel function when these ion channels are 

expressed in Xenopus oocytes. 

6.1: Modulation of neuronal ligand-sated ion channels by NSAIDs 

Initial experiments were undertaken to validate the use of the extra-cellular recording 

technique to record from ligand-gated ion channels expressed in isolated rat vagus and 

optic nerves as suitable preparations to investigate the possible effects of NSAIDs. A 

number of well characterised drugs were first investigated for their modulatory effects 

on these ligand-gated ion channels located extra-synaptically on the rat vagus and optic 

nerves. 

Characterisation of agonist-evoked responses in the isolated rat vagus and optic nerves: 

GABA, 5-HT, DMPP and a,PMeATP each evoked concentration-dependent 

depolarisations in the isolated rat vagus nerve. The GABA EC50 was calculated to be 

45nM, which is consistent with GABA EC50 values, recorded from isolated rat vagus 

nerves reported by others of 28nM (Ireland & Tyers, 1987), 69|aM (Green & Halliwell, 

1997) and 34[AM (Patten et al. 2001). The EC50 for 5-HT of l^ iM found here is 

comparable to ECso's for 5-HT reported by others of 0.8|iM (Green & Halliwell, 1997; 

Patten et al, 2001), 0.63|aM (Newberry et al., 1992) and 0.48^M (Ireland & Tyers, 

1987). EC50 values of 33|iiM (Patten et at., 2001) and 35^iM (Ireland & Tyers, 1987; 
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Green & Halliwell, 1997), for DMPP responses evoked from the isolated rat vagus 

nerve are similar to the EC50 of 26\iM reported in this study. The EC50 for a,PMeATP 

of 47|j,M is in agreement with that of Patten et al. (2001), Green & Halliwell (1997) and 

Trezise et al. (1993) who report ECso's of 48|iM, 25|iM and 26|iM respectively in the 

isolated rat vagus nerve. 

GABA and glycine both evoked- concentration dependent depolarisations in the isolated 

rat optic nerve with ECso's of I m M and 3mM, respectively. This data is consistent with 

that of Patten (2000), who report ECso's for GABA and glycine of 1.6mM and 2.6mM 

respectively and Green & Halliwell (1997) who report EC50 values of l . l m M and 

1.7mM for GABA and glycine, respectively. An interpolated EC50 for glycine of 

=1.4mM from the work of Simmonds (1983) on the rat isolated optic nerve is also 

consistent with the EC50 for glycine found in this study. 

It was noted that high concentradons of 5-HT and a,|3MeATP evoked a small after-

hyperpolarising response upon washout. This observation has also been reported 

previously for 5-HT- (Azami et al., 1985; Round & Wallis, 1986; Rhodes et al., 1992) 

and a,(3MeATP- (Trezise et al., 1993; Connolly, 1995) evoked responses in vagal 

neurones, and is thought to be due to a direct hyperpolarizing effect following 

depolarisation by the agonist. Concentrations of DMPP greater than 300|i,M sometimes 

evoked responses that were very large (> 5mV) relative to maximal responses evoked 

by other agonists. The concentration that evoked a maximum response also varied 

greatly (lOO^iM to greater than ImM). For this reason DMPP- evoked responses were 

normalised to the response evoked by DMPP (300|J,M). Other investigators have also 

limited the DMPP response to 300|xM (Patten et al., 2001; Green & Halliwell 1997). 
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Sub-maximal G A B A - , 5-HT-, DMPP- and a,PMeATP- evoked responses were 

inhibited by bicuculline, MDL 72222, hexamethonium and PPADs, respectively. 

G A B A - evoked responses were inhibited in a concentration-dependent manner by the 

classical G A B A A receptor antagonist, bicuculline (Curtis et a/., 1970) resulting in an 

IC50 of 1.4^M, this is in agreement with the IC50 for bicuculline of 1.2|i,M reported by 

Green and Halliwell (1997). 

Both sodium pentobarbitone and propofol potentiated sub-maximal GABA-evoked 

responses in the isolated rat vagus nerve. Sodium pentobarbitione (10|a.M), a well-

characterised positive modulator of the G A B A A receptor (Study & Barker, 1981; 

Sieghart, 1995), resulted in an enhancement of 155% of the control G A B A response. 

This is consistent with that of Patten et al. (2001) who reported a potentiation of 170% 

by sodium pentobarbitone (10|LIM). 

Propofol was twice as potent as sodium pentobarbitone at potentiating G A B A 

responses, and enhanced the G A B A response more than four-fold. This is comparable to 

the 360% potentiation reported by Patten et al. (2001). The bell shaped curve of 

potentiation observed with propofol in this thesis, where higher concentrations of 

propofol (> 10|J,M) resulted in a lower level of enhancement of G A B A - evoked 

responses has also been observed by others in the isolated rat vagus nerve (Patten et al., 

2001), rat hippocampal (Hara et al., 1994) and rat cortical neurones (Hales & Lambert, 

1991). This reduced level of potentiation may be due to receptor desensitisation; since it 

has been reported from patch-clamp recordings of mouse hippocampal neurones that 

propofol at these higher concentrations can also directly activate the G A B A A receptor 

and induce receptor desensitisation (Orser et al., 1994). Together these data are 

consistent with the activation of G A B A A receptors in the vagus nerve. 
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MDL 72222, a potent and selective 5-HT3 antagonist (Fozard, 1984), inhibited 5-HT 

responses in a concentration-dependent manner resulting in an IC50 of 36nM, this is 

consistent with concentration-dependent inhibition of 5-HT- evoked responses by MDL 

72222 on vagal neurones reported by Azami et al. (1985) and Ireland and Tyers (1987). 

It was noted in this study that the maximum inhibition by MDL 72222 was 80% of the 

control 5-HT response. This effect has also been observed by Azami et al. (1985) who 

showed that MDL 72222 maximally inhibited 5-HT responses to 68% of the control 5-

HT response. Another 5-HT3 selective antagonist, ondansteron, has been reported to 

only partially inhibit 5-HT evoked responses in vagus nerves (Rhodes et al., 1992; Bley 

et al., 1994). Both these authors suggest that the remaining 5-HT response could be due 

to activation of 5-HT4 receptors, since the remaining 5-HT response could be inhibited 

by the 5-HT4 antagonists, tropistetron (Rhodes et al., 1992) and GRl 13808 (Bley et al., 

1994). This data is consistent with 5-HT activating a 5-HT3 receptor-mediated response 

in the vagus nerve. 

Sub-maximal DMPP- evoked responses were inhibited in a concentration-dependent 

manner by hexamethonium. This is in agreement with previous extra-cellular recording 

studies from the vagus nerve reporting inhibition of DMPP responses by 

hexamethonium (Ireland & Tyers, 1987; Green & Halliwell, 1997), and is therefore 

consistent with the activation of nicotinic ACh receptors in the vagus nerve. 

The selective P2x antagonist, PPADs (lO^M), inhibited sub-maximal a,|3MeATP-

evoked responses to 44% of control response. This observation is consistent with those 

of Connolly (1995) and Green and Halliwell (1997) who report that PPADs (10|aM) 

inhibited a,(3MeATP responses to 43% and 21% of control, respectively in the isolated 
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rat vagus nerve. This data is consistent with a,PMeATP activating P2x receptors in the 

vagus nerve. 

G A B A - and glycine- evoked responses in the isolated rat optic nerve were inhibited in a 

concentration-dependent manner by bicuculline and strychnine, respectively. Complete 

inhibition of G A B A was observed with bicuculline (lOO^iM), which is consistent with 

that reported by Green and Halliwell (1997). Complete inhibition of the glycine 

response by strychnine was observed at 3\xM. This data is comparable to the strychinine 

inhibition of glycine responses in the rat optic nerve reported by Green and Halliwell 

(1997) and Simmonds (1983). These data are consistent with G A B A and glycine 

activating G A B A A and strychnine-sensitive glycine receptors, respectively, in the rat 

optic nerve. 

Together these experiments have shown that the pharmacology of the extra-synaptic 

G A B A - , 5-HT-, DMPP- and a,PMeATP- evoked responses in the isolated rat vagus 

nerve are consistent with the activation of G A B A A , 5-HT3, nicotinic ACh and P2x 

receptors respectively. Similariy, the pharmacology of G A B A - and glycine- evoked 

responses in the isolated rat optic nerve are consistent with the activation of G A B A A 

and strychnine-sensitive glycine receptors respectively. This data supports the use of 

vagus and optic nerves as appropriate preparations to investigate the effect of NSAID 

modulation on neuronal ligand-gated ion channel function. 

Modulation of neuronal ligand-gated ion channels byfenamate NSAIDs: 

The effect of fenamate NSAIDs on sub-maximal G A B A A , 5-HT3, nicotinic ACh and 

P2x receptor mediated responses in the isolated rat vagus nerve was therefore 

determined. Flufenamic acid inhibited the DMPP and a,PMeATP responses in a 
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concentration-dependent manner. Zwart and colleagues (1995) have previously reported 

that flufenamic acid inhibited recombinant nicotinic acetylcholine 0.^,^2 receptors 

expressed in Xenopus oocytes with an IC50 of 90|LIM. The reduction of the maximum 

DMPP response and non-parallel shift of the concentration-effect curve by flufenamic 

acid, observed in this present study, indicates that the inhibition is not due to a simple 

competitive antagonism. This conclusion has also been proposed by Zwart et al. (1995) 

who observed that the acetylcholine concentration response curves were inhibited in a 

non-competitive fashion. 

Flufenamic acid (100)xM) did not significantly modulate sub-maximal G A B A or 5-HT 

responses in the isolated rat vagus nerve. A modest potentiation of sub-maximal 

G A B A A receptor mediated responses by flufenamic acid has been reported previously 

from patch-clamp recordings of recombinant rat cortical G A B A A receptors expressed in 

Xenopus oocytes (Woodward et al., 1994) and rat hippocampal neurones (Patten, 2000). 

These contrasting findings could be due to the different preparations and recording 

techniques used or possibly due to differences in the subunit composition of the 

expressed G A B A A receptor in the vagus nerve (discussed later). 

In this study meclofenamic acid significantly inhibited sub-maximal G A B A - evoked 

responses in the isolated rat vagus nerve. In contrast. Woodward et al. (1994) and 

Patten (2000) report that sub-maximal G A B A responses are potentiated by 

meclofenamic acid. These conflicting findings could again be due to the different 

preparations and recording techniques used in each study. It is also possible that the 

effects observed could be due to the agonist concentration used. Thus Woodward and 

colleagues (1994) report that the agonist concentration critically determines the 

development of a potentiating or inhibitory effect on G A B A responses by fenamates. 
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whereby low concentrations of G A B A (ECio - EC50) are potentiated by fenamates and 

higher concentration of G A B A (EC50 - EC 100) are inhibited by fenamates. Maximum 

control G A B A responses could not be obtained in the presence of meclofenamic acid, in 

this thesis, which suggests that the inhibition is not competitive. This is in agreement 

with Woodward et al. (1994) who reported that meclofenamic acid inhibited maximal 

G A B A currents recorded from Xenopus oocytes. 

In contrast to meclofenamic acid, mefenamic acid enhanced G A B A - evoked responses. 

The level of potentiation by mefenamic acid is comparable to that reported by Patten 

(2000) who also recorded from the isolated rat vagus nerve. A greater degree of 

potentiation of G A B A - mediated responses by mefenamic acid has been reported in rat 

hippocampal neurones (Halliwell & Davey, 1994; Patten, 2000). Mefenamic acid has 

also been reported to enhance G A B A - evoked cuiTents recorded from recombinant rat 

cortical G A B A A receptors (Woodward et al., 1994) and human ai(32Y2s G A B A A 

receptors (Halliwell et al., 1999) expressed in Xenopus oocytes and HEK-293 cells. The 

variation in the level of enhancement by mefenamic acid could be due to the different 

preparations and recording techniques used or the subunit composition of G A B A A 

subunits expressed in different preparations. 

It was observed in this study that higher (> 100|iM) concentrations of mefenamic acid 

alone resulted in a shift in the baseline DC potential suggesting activation of a 

membrane current. Consistent with this mefenamic acid (> IO|xM) induced a whole-cell 

current in the absence of G A B A in rat hippocampal neurones and this current could be 

potentiated by sodium pentobarbitone and inhibited by bicuculline (Patten, 2000). These 

data are consistent with direct activation of G A B A A receptors by mefenamic acid. It 

was observed in this study that these high concentrations of mefenamic acid initially 
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enhanced G A B A responses but this was followed by inhibition of the G A B A response. 

This biphasic effect of mefenamic acid on G A B A responses has also been observed by 

Patten ( 2000) who reported that low concentrations of mefenamic acid enhanced 

G A B A - evoked responses and higher concentrations of mefenamic acid evoked a 

transient potentiation followed by an inhibition of the G A B A evoked response recorded 

from rat hippocampal neurones. It is possible that the inhibition of G A B A responses 

observed with high concentrations of mefenamic acid is due to desensitisation of the 

G A B A A receptor (partly mediated by the direct activation of the G A B A A receptor by 

mefenamic acid) and/or via the activation of the inhibitory site for mefenamic acid on 

the pi subunit containing G A B A A receptor reported by Halliwell and colleagues (1999) . 

In the present study there was a large degree of variation in the G A B A - evoked 

responses to mefenamic acid. This observation has also been reported by Patten (2000) 

who found that some rat hippocampal neurones were insensitive to mefenamic acid 

although the same neurones could be potentiated by sodium pentobarbitone and 

diazepam. The level of variation could be due to the subunit composition of the 

expressed G A B A A receptor. For example, Whittemore and colleagues ( 1996) reported 

that aiP2Y2L G A B A A receptors expressed in Xenopus oocytes were potentiated three­

fold while P2Y2L G A B A A receptors were only enhanced by 160% of control by 

mefenamic acid (3|J,M). More recently Halliwell and colleagues ( 1999) have shown that 

Xenopus oocytes expressing human aiP2/3Y2s G A B A A receptor subunits were potentiated 

by mefenamic acid whereas those containing aiPiY2s were not modulated by mefenamic 

acid. Moreover aiPi containing receptors were inhibited by mefenamic acid showing 

that the subunit composition of the G A B A A receptor is critical for the type of 

modulation observed. 
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In addition to its effect on the G A B A A receptor this study has shown for the first time 

that 5-HT3 and P2x receptor mediated responses are inhibited by mefenamic acid in a 

concentration-dependent and non-competitive-Hke manner. 

Niflumic acid (100|J,M) had a shght, but not significant, inhibitory effect on G A B A A , 5-

HT3, nicotinic ACh and P2x receptor mediated responses in the isolated rat vagus nerve. 

In agreement, Patten (2000) has shown that niflumic acid inhibits sub-maximal G A B A 

responses in rat hippocampal neurones, and Zwart and colleagues (1995) report that 

high concentrations of niflumic acid (300^M) produce a non-competitive inhibition of 

acetylcholine currents recorded from a3^2 nicotinic acetylcholine receptors expressed in 

Xenopus oocytes. 

G A B A A and glycine receptor mediated responses from the rat isolated optic nerve were 

not significantly changed by the fenamate NSAIDs tested in this study. In agreement 

with these findings. Patten (2000) showed that glycine responses from rat hippocampal 

neurones were not affected by mefenamic acid (30|a,M). 

The finding that neither meclofenamic acid nor mefenamic acid modulated the GABA 

response in the optic nerve is surprising since both of these fenamates significantly 

affected the GABA- evoked responses recorded from the isolated rat vagus nerve. One 

explanation for the contrasting result could be due to the fact that higher concentrations 

of agonist and antagonist are required to initiate a response in the optic nerve. The EC50 

for GABA was twenty-two fold higher in the optic nerve, while the IC50 for bicuculline 

was thirteen fold greater in the optic nerve. Higher concentrations of mefenamic acid 

and meclofenamic acid may have modulated the GABA response, although they could 

not be tested in this study due to the insolubility of fenamates at higher concentrations. 
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Higher concentrations of drugs required to produce a response in the rat optic nerve 

compared to the vagus nerve have also been reported by Green and Halliwell (1997) who 

found that the antagonist effects of ciprofloxacin and B P A A are forty-eight times more 

potent against G A B A - evoked responses in the vagus nerve compared with the optic 

nerve. A possible explanation for the higher concentrations of drugs required to initiate a 

response is that they may have to diffuse further into the tissue to reach the receptor sites 

and that there are fewer G A B A A receptors on the optic nerve (Simmonds, 1983). 

After application of fenamate NSAIDs, re-establishment of control agonist responses 

took a considerable time (> ninety minutes). This could be due to slow removal of the 

fenamate by the perfusion system although this seems unlikely since the effects of other 

drugs such as bicuculline, sodium pentobarbitone and hexamethonium were quickly 

reversible (< thirty minutes to recovery). Another reason is that fenamates are highly 

lipophilic (Woodward et al, 1994) and will therefore readily dissolve into the nerve 

membrane and then slowly dissociate back into the aqueous solution. The lengthy 

washout period for fenamate NSAIDs has also been reported by others (Woodward et 

al., 1994; Halliwell et al., 1999; Patten, 2000). 

Structure-activity relationship of fenamate NSAIDs: 

The data from this study show that a range of fenamate NSAIDs modulated agonist-

evoked responses. Fenamates NSAIDs are all derived from the synthetic compound N -

phenylanthranilic acid. Crystallographic and theoretical studies have shown that 

fenamates are comprised of two 6-membered rings linked by an imino bridge (Dhanaraj 

& Vijayan, 1988). For most fenamates, the A-ring (figure 6.1) carboxyl ring is coplanar 

with the imino bridge and is stabilised by an internal hydrogen bond. Rotation of the B -

ring is possible, but is limited by steric hinderance occurring between the A-ring 
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hydrogen ortho to the imino linkage and the substituted R l and R2 groups on the fi­

ring, such that the two rings have non-planar orientations. Indeed it has been proposed 

that mefenamic acid in its lowest energy conformation favours a right-angled 

conformation with the planes of the phenyl rings in an orthogonal conformation 

(Halliwell et al., 1999). In the case of niflumic acid, replacement of a carbon atom with 

a nitrogen atom on the A-ring, results in a loss of steric hindrance enabling the molecule 

to adopt an almost planar conformation. The differences in structural conformation 

between fenamates, especially the phenyl ring substitutions at the R l and R2 groups, 

might account for the differences observed in their efficacy and potency to modulate 

neuronal ligand-gated ion channels. 

Fenamate R l R2 R3 X 

Flufenamic acid H CF3 H c 
Meclofenamic acid CI CH3 CI c 
Mefenamic acid CHs CH3 H c 
Niflumic acid H CH3 H N 
Tolfenamic acid CI CH3 H c 

Figure 6 .1 : Chemical structure of fenamate NSAIDs 

Modulation of neuronal ligand-gated ion channels by non-fenamate NSAIDs: 

None of the non-fenamate NSAIDs tested in this study resulted in significant affects on 

G A B A A , 5-HT3, nicotinic ACh, or P2x receptor mediated responses in the isolated rat 

vagus nerve or G A B A A and glycine receptor mediated responses recorded from the 

isolated rat optic nerve. Woodward and co-workers (1994) reported that non-fenamate 

NSAIDs have little effect on G A B A responses recorded from Xenopus oocytes 

expressing rat cortical G A B A A receptors. Similarly, it has been reported that ibuprofen 

has little effect of G A B A - evoked currents recorded from human recombinant G A B A A 

receptors (Halliwell et al., 1999) or rat hippocampal neurones (Shirasaki et al., 1991a; 
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Patten, 2000). Moreover, Squires and Saederup (1993) demonstrated that neither 

ibuprofen nor indomethacin affected [̂ ^S] t-butylbicyclophosphorothionate (TBPS) 

binding to the G A B A A receptor in rat brain membranes. 

In agreement with results from this thesis, Shirasaki and colleagues (1991a) have shown 

that indomethacin does not modulate sub-maximal G A B A - evoked currents recorded 

from rat hippocampal neurones. Indomethacin also does not to modulate G A B A 

currents evoked from human CX1P2Y2S G A B A A receptors expressed in Xenopus oocytes 

(Halliwellera/., 1999). 

The acetic acid, B P A A (lOOuM), resulted in a weak antagonism of the G A B A A receptor, 

which is consistent with the work of Green and Halliwell (1997) who reported a 20% 

reduction of G A B A responses recorded from the isolated rat vagus nerve. These data are 

also consistent with that of Halliwell et al. (1991) who showed a small inhibition of 

G A B A - evoked currents recorded from rat dorsal root ganglion cells by B P A A . 

Effect ofNSAlDs on ionotropic glutamate receptors: 

A major class of ligand-gated ion channels in the central nervous system that were not 

investigated in this study are the ionotropic NMDA (N-methyl-D-aspartate), AMPA (a-

amino-3-hydroxy-5-methyl-4-isoxazolepropionate) and kainate glutamate receptors. 

Patten (2000) reported that sub-maximal NMDA-, AMPA- or kainate- evoked currents 

recorded from rat hippocampal neurones are not modulated by mefenamic acid (30|LIM). 

Higher concentrations of mefenamic acid (ImM) however have been shown to 

completely block NMDA- but not kainic acid- evoked currents in salamander retina 

cells (Chen et al., 1998). High concentrations of niflumic acid (IC50 = 353|xM) and 

flufenamic acid (IC50 > 200|a,M) have also been shown to inhibit NMDA- but not 
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AMP A- or kainic- evoked currents from rat spinal cord neurones (Lerma & Del Rio, 

1991). Together these studies suggest that ionotropic glutamate receptors are not a 

neuronal target for the NSAIDs investigated. 

The electrophysiological experiments in this thesis have shown that certain fenamate 

NSAIDs can modulate native neuronal G A B A A , 5-HT3 and P2x ligand-gated ion 

channels. It has previously been shown that modulation of neuronal G A B A A (Yonkov 

& Georgiev, 1981; Sieghart 1995; Steckler et al, 1999c) and 5-HT3 receptors (Pitsikas 

et al., 1993; Steckler et al., 1999c) result in "central" behavioural and cognitive effects. 

This, therefore, leads to the hypothesis that fenamates have behavioural and/or cognitive 

effects. 

6.2: Behavioural consequences of fenamates 

Mefenamic acid, at doses up to 20mg/kg, did not result in any obvious behavioural 

changes in the rat. However higher doses of mefenamic acid (40mg/kg and 60mg/kg) 

induced sedative or seizure-like effects. An action consistent with these observations 

was reported by Wallenstein (1991) who stated that "mefenamic acid (60mg/kg) had an 

excitatory behavioural effect producing body jerks, ataxia and upright convulsions 

while mefenamic acid (20mg/kg) did not result in any seizure activity". Minimally these 

behavioural effects with higher doses of mefenamic acid are consistent with this drug 

entering the central nervous system (discussed later). 

Considering the gross "central" behavioural effects observed with mefenamic acid, the 

effects of mefenamic acid on a range of behavioural tasks was investigated. Mefenamic 

acid (20mg/kg) did not change the gross locomotor activity of rodents in the open field. 

This is consistent with the results of Wallenstein (1985b) who reported that mefenamic 

acid (15mg/kg) did not change locomotor activity in the open field. 
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Electrophysiological studies from this thesis and from those reported by others 

(Woodward et al., 1994; Halliwell et al., 1999; Patten 2000) have shown that 

mefenamic acid enhanced G A B A A receptor-mediated responses. Given that positive 

modulation of the G A B A A receptor results in an anxiolytic effect (Costa et al., 1975; 

Sieghart 1995), the hypothesis that mefenamic acid acts as an anxiolytic agent was 

investigated. The results, from the open field anxiety test, showed that mefenamic acid 

did not significantly affect the time taken to approach or the amount of time spent 

exploring this object in the middle of the open field. Previous studies by Jessa and 

colleagues (1996) and more recently by Siemiatkowski et al. (2000) have shown that 

rats treated with anxyolytic agents such as diazepam will spend longer exploring the 

centre of an open field compared to control rats. These data, therefore, suggest that 

mefenamic acid does not affect the anxiety state of the rat and hence does not act as an 

anxiolytic drug. 

The hypothesis that mefenamic acid can modify arousal, defined as "a state of alertness 

and high responsiveness to stimuli" (Uttal, 1978), was then investigated. In order to test 

this hypothesis, rats were exposed to two identical objects in the sample phase and then 

during the choice phase they were either re-exposed to the same objects or exposed to 

two new (novel) objects. The results, from these experiments showed that there was no 

difference in the exploration of the objects between saline or mefenamic acid treated 

rats for either condition, which indicates that mefenamic acid does not affect arousal. A 

similar test was also used by Christoffersen and colleagues (1998a) to observe the effect 

of piracetam on arousal. These authors showed that rats treated with piracetam spent the 

same amount of time exploring a novel object in a familiar environment as control 

saline treated rats, and concluded that piracetam does not affect arousal. 

Chapter 6: General discussion 152 



Validity of object discrimination task: 

The object discrimination task, the paradigm primarily used in this study, is a two trial 

task that relies on the rats' spontaneous exploration of novelty, it does not depend on the 

retention of a rule and is not influenced by changes in responsivity to a reward. These 

factors suggest that the motivational state of the rat is more similar to those under which 

human memory is usually measured (Ennaceur & Delacour, 1988; Ennaceur & Meliani, 

1992b). These advantages make the task well suited for neuropharmacological 

investigations in the rat (Ennaceur & Delacour, 1988; Ennaceur et al., 1989; Blandina et 

al., 1996; Deschaux et al., 1997; Puma et al., 1999). 

The results obtained from the object discrimination task were compared with results 

reported by others in order to validate the task under the experimental conditions used 

by the investigator. Increasing the intra-trial interval did not change the overall total 

exploration time of objects during the sample or choice phases but did result in a time-

dependent decrease in the ability of the rats to discriminate between the novel and 

familiar objects. Rats discriminated between novel and familiar objects with delays of 

up to sixty minutes but did not discriminate between such objects with longer intra-trial 

intervals. This observation is consistent with previous studies (Ennaceur & Delacour, 

1988; Ennaceur & Meliani, 1992a,b; Bartolini et al., 1996). It was also noted that the 

discrimination between objects was greater with a fifteen-minute delay when compared 

to a one-minute delay. This has also been observed by Ennaceur and Meliani (1992b). 

One possible reason for this could be that with a one-minute delay the rats are distracted 

for a greater portion of the intra-trial interval (by removing them from, and then 

replacing them back, into the arena) than rats tested with a fifteen-minute delay. 

Consistent with this Ennaceur and Meliani (1992b) have reported that rats who are 

distracted during the intra-trial interval, by placing them in an arena with a movable 
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object, perform significantly worse than rats who are not distracted during the fifteen 

minute intra-trial interval. 

These control behavioural experiments have shown that the data obtained and recorded 

in this thesis are comparable with those of others. The effect of drug treatments on 

object discrimination was therefore investigated. 

Enhanced object discrimination associated with mefenamic acid: 

When mefenamic acid (5mg/kg - 20mg/kg) was tested in the object discrimination task, 

with a fifteen-minute intra-trial interval, there was no change in the exploration of 

objects during the sample phase. There was, however, a significant increase in the 

exploration of objects during the choice phase (with lOmg/kg and 20mg/kg mefenamic 

acid) and further analysis revealed that there was a significant dose-dependent increase 

in object discrimination. An increase in the discrimination between novel and familiar 

objects has been used as an index of an improvement in non-spatial working memory 

(Ennaceur et al., 1989; Blandina et al., 1996; Deschaux et al., 1997; Puma et al., 1999). 

For example, nicotine has been shown to enhance object discrimination with a twenty-

four hour delay (Puma et al., 1999) and the cholinesterase inhibitor, metrifonate, 

enhanced object discrimination in aged rats with a sixty minute intra-trial interval (Scali 

et al., 1997). The observation in this thesis that mefenamic acid was associated with a 

significant increase in object discrimination suggested that it may enhance working 

memory. Consistent with this hypothesis, mefenamic acid enhanced object 

discrimination only with delays of up to sixty minutes. The observation that the actions 

of mefenamic acid are time-dependent suggests that enhancement is upon mnemonic 

processes. 
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Recognition memory in the rat can be divided into three stages: acquisition/encoding, 

storage and retrieval (Steckler et al., 1998a). In order to investigate which stage was 

affected by mefenamic acid its effects on object discrimination when injected after the 

sample phase were determined. The results of this experiment showed that there was no 

change from control in object discrimination. This suggests that mefenamic acid does 

not affect the storage or retrieval processes. Notably, an enhancement in object 

discrimination has also been observed with the Câ "̂  activated K"*" blocker, apamin, when 

injected before but not after the sample phase (Deschaux et al., 1997). The authors 

concluded that apamin improves acquisition of information but has no effects on 

memory processes that occur after acquisition. 

The enhancement of object recognition memory observed with mefenamic acid was 

compared to that of the nootropic agent, piracetam, a putative cognitive enhancer 

(Giurgea, 1973; Giurgea & Salama, 1977; Nicolaus, 1982). Thus piracetam has been 

shown to enhance memory in normal mice (Mondadori & Petschke, 1987) and rats 

(Bartus et al., 1981; Nalini et al., 1992) in the passive avoidance test and the delayed-

matching-to-position task (Christoffersen et al., 1998b). The results from the 

experiments presented in this thesis showed that piracetam did not significantly 

modulate total exploration times or object discrimination with a fifteen-minute intra-

trial interval. This data is consistent with that of Ennaceur and Delacour (1989) who 

reported that piracetam did not enhance object discrimination at a sixty-minute delay, 

and with that of Ennaceur and colleagues (1989) who report that piracetam had no effect 

with at a one-minute delay. However, these authors did report that piracetam increased 

object discrimination with a twenty-four hour interval. The lack of enhancement 

observed with piracetam may be the result of utilizing normal rats. Indeed significant 
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cognitive effects with piracetam are reported in humans or animals that are senescent or 

suffering from brain pathologies (Christoffersen et al., 1998b). 

The differing behavioural effects of piracetam and mefenamic acid can be explained 

from their differing pharmacological properties. Although the mechanisms underlying 

the effects of piracetam which result in cognitive enhancement are not currently clear. 

Thus, unlike fenamates, piracetam does not modulate ACh, 5-HT or GABA 

neurotransmission (Poschel et al., 1983; Pugsley et al., 1983). And in agreement with 

fenamates, piracetam does not modulate NMDA and kainic glutamate receptors (Bering 

& Muller, 1985; Copani et al., 1989). However, piracetam has been shown to increase 

choline uptake, in rat hippocampal synaptosomes, although at concentrations higher 

than those required to have a positive effect on memory (Shih & Pugsley, 1985). The 

effect of fenamates on choline re-uptake is currently unknown. 

One possible mechanism for the cognitive enhancement of nootropics is through their 

facilitation of long-term potentiation (LTP), a synapse-specific enhancement of 

excitatory post-synaptic responses that has been proposed as a mechanism of memory 

(Bliss & CoUingridge, 1993). Satoh and colleagues (1986) have shown that the 

nootropic, aniracetam, augmented LTP in guinea-pig hippocampal slices. It is thought 

that the augmention of LTP by nootropics is via enhancement of AMPA sensitive 

glutamate receptors (Copani et ah, 1989), which facilitate the process of LTP by 

activating NMDA glutamate receptors (Bliss & Collingridge, 1993). This hypothesis for 

cognitive enhancement is unlikely to account for the effects observed with fenamates, as 

patch clamp-recording experiments of rat hippocampal neurones have shown that 

neither AMPA- or NMDA- evoked currents are modulated by fenamates at low 

Chapter 6: General discussion 156 



concentrations (Patten, 2000). A possible future experiment however might address the 

effect of fenamates on the formation of LTP in hippocampal slices. 

Another hypothesis for the memory enhancing effects of piracetam is that it enhances 

cognition by modulation of steroid receptors. It has been shown that piracetam does not 

enhance performance of adrenalectomized rats in the passive avoidance test (Mondadori 

et al., 1989), and that mineralocortcoid or glucocorticoid antagonists block the 

facilitating effects of piracetam in rats (Mondadori et al., 1990) and chicks (Loscertales 

et al., 1998) tested in the passive avoidance test. The effects of fenamates on steroidal 

receptors is at present unknown and may be one possible mechanism for their cognitive 

enhancing effects. 

Effect of mefenamic acid in the object location task: 

The object discrimination task is thought to involve non-spatial working memory 

(Ennaceur & Delacour, 1988). To investigate the effect of mefenamic acid on spatial 

working memory, the object location task (Ennaceur & Meliani, 1991b) was utilised, 

since it has been proposed by Steckler and colleagues (1998b) that recognition memory 

involves two parallel distributed neuronal networks. Non-spatial recognition memory 

incorporates the cortical association areas, the rhinal cortex, mediodorsal thalamic 

nucleus and orbital frontal pre-frontal cortical areas. Whereas spatial memory includes 

the hippocampus, anterior thalamic nucleus and prelimbic prefrontal cortical areas. 

Firstly the effect of increasing the intra-trial interval was investigated to test the validity 

of the task under the laboratory conditions adopted in this study. Consistent with a 

previous study (Ennaceur & Meliani 1991b) rats' were able to discriminate between the 

fixed and re-located objects with a one-minute and fifteen- minute delay but not at 
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delays of sixty minutes or more. These data are therefore consistent with the hypothesis 

that this spatial variant of the object discrimination task involves spatial working 

memory. 

The effect of mefenamic acid on object location with a fifteen-minute intra-trial interval 

was then investigated. The results of this study showed that mefenamic acid did not 

increase total exploration time during the sample or choice phases, but significantly 

increased the discrimination time between the fixed and re-located objects. These data 

indicate that mefenamic acid enhances both non-spatial and spatial working memory, 

possibly via a mechanism common to both spatial and non-spatial networks. 

Pharmacologcial mechanisms underlying the behavioural and cognitive effects of 

fenamates: 

The effect of other fenamates in the object discrimination task was investigated to 

determine i f the response observed with mefenamic was a fenamate group effect. Only 

one of fenamate, namely meclofenamic acid significantly increased the total exploration 

time during the choice phase and increased the object discrimination time. In contrast 

tolfenamic acid, flufenamic acid and niflumic acid were without effect. These results 

show that enhancement in object discrimination can be replicated by another fenamate 

but is not a fenamate group effect. The differences observed between fenamates may be 

due to their chemical structure, since both mefenamic acid and meclofenamic acid have 

relatively bulky R l and R2 groups (figure 6.1) compared to other fenamates, this makes 

rotation of the B-ring difficult due to steric hinderance occurring between the A-ring 

hydrogen ortho to the imino linkage and the substituted R l and R2 groups on the fi­

ring, thus enabling the two rings of these compounds to have non-planar orientations 

(Dhanaraj & Vijayan, 1988). It is feasible that the significant increase in object 
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discrimination observed with mefenamic acid and meclofenamic acid result from their 

non-planar orientation. 

The non-fenamate NSAIDs, aspirin and ibuprofen, did not affect total exploration times 

or object discrimination when compared to saline controls. This finding suggests that 

the enhancement in object discrimination is not a general NSAID class effect. The 

finding that non-fenamate NSAIDs had no effect on object discrimination therefore 

suggest that enhancement in object discrimination is not due to inhibition of cyclo-

oxygenase enzymes, a defining property common to all NSAIDs. Moreover aspirin, 

ibuprofen and mefenamic acid have a similar potency at inhibiting both COX-1 and 

COX-2 isoenzymes when assayed from human blood samples (Cryer & Feldman, 

1998), which is consistent with the hypothesis that the cognitive effects associated with 

mefenamic acid is through a mechanism other than inhibition of cyclooxygenase. 

An alternative hypothesis for the distinct behavioural effects observed with certain 

fenamates is that NSAIDs (that do not have behavioural effects) do not cross the blood-

brain barrier. At therapeutic doses mefenamic acid peak plasma concentrations have 

been reported to be in the range of 4|xM - 40|i,M, with half bound to plasma proteins 

(Flower, 1974; Glazko, 1966; Court & Volans, 1984). Unfortunately at the time of 

writing there is no published data on the concentrations of fenamates which enter the 

CNS. However, fenamate NSAIDs are highly lipophilic compounds (Woodward et al., 

1994), which suggests that they are able to cross the blood-brain barrier. Conversely 

other NSAIDs have been reported to cross the blood brain barrier at clinically relevant 

concentrations: Bannwarth and colleagues (1989) for example, reported that apart from 

the salicyclates the pyrazoles, acetic acids, and propionic acids NSAIDs are able to 

cross the blood brain barrier in humans and are controlled by simple physio-chemical 
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factors. Oxicam NSAIDs are also freely available to pass into the brains of rats after 

systemic administration (Jolliet et al., 1997). These data suggest that apart from the 

salicyclates, NSAIDs can enter the CNS at therapeutically relevant concentrations, and 

thereby have the ability to modulate behavioural mechanisms. 

A possible mechanism underlying the increase in object discrimination observed with 

mefenamic acid is due to its modulation of the G A B A A receptor. Thus it has been 

shown in this thesis that mefenamic acid positively modulated G A B A A receptor-

evoked responses in mammalian neurones, and it has previously been reported that 

mefenamic acid can positively and negatively modulate the G A B A A receptor depending 

on the concentration of G A B A (Woodward et al., 1994). Additionally the subunit 

composition of the G A B A A receptor also critically determine the (positive or negative) 

effects of mefenamic acid at G A B A A receptors (Halliwell et al., 1999). Indeed it has 

been proposed that G A B A is one of the major neurotransmitters involved in both spatial 

and non-spatial recognition memory (Steckler et al., 1998c) and a number of G A B A 

modulators have been shown to modulate working memory (described below). For this 

reason the effect of positive and negative modulators of the G A B A A receptor were 

investigated in the object discrimination task and to determine if they could mimic the 

effects of mefenamic acid. 

The anti-convulsant compound, loreclezole, did not significantly enhance or impair 

object discrimination. Consistent with this finding, loreclezole did not modulate rats 

working memory when tested in the passive avoidance test (Raffa et al., 1990). 

However at higher does (>20mg/kg) loreclezole has been shown to reduce rats 

locomotor activity (Green et al., 1996). 
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Diazepam impaired object discrimination when compared to the saline controls. This 

data is consistent with the work of Longone and colleagues (1996) who reported that 

diazepam impaired rats' performance in the object recognition task with a thirty-minute 

delay. Diazepam has also been shown to impair rodents performance in a number of 

other working memory tasks including the non-matching-to-sample task (although this 

was associated with a decrease in gross behavioural activity relating to sedation, 

Kalynchuk & Beck, 1992); the passive avoidance test (Venault et al., 1986); the radial 

maze (Pilcher & Sessions, 1999) and the Monis water maze in a dose-dependent 

manner (McNamara & Skelton, 1991). 

The G A B A A receptor antagonist, bicuculline impaired rats' performance in the object 

discrimination task. This is consistent with the work of Zarrindast and colleagues (1998) 

who reported that bicuculline impaired rats performance in the passive avoidance task 

and with that of Chrobak and Napier (1991) who reported that intra-septal infusion of 

bicuculline into rats impaired performance in the delayed non-matching-to-position 

radial maze task. Notwithstanding it has also been reported that bicuculline can enhance 

working memory. For example, it was first shown to improve retention in rats tested in 

a two-way avoidance task (Yonkov & Georgiev, 1981), and later to enhance 

performance in mice tested in the passive avoidance (Brioni & McGaugh, 1988) and 

visual discrimination tasks (Castellano & Pavone, 1988). Other reports have shown that 

bicuculline does not affect working memory. For example. Car and colleagues (1998) 

reported that bicuculline (0.25mg/kg) had no effect on rats' performance in the object 

discrimination task. It also has no effect on working memory in the delayed-matching-

to-sample task when given to rats by intra peritoneal injection (Harper, 2000) or infused 

into the prefrontal cortex (Herremans et al., 1996). The varying effects of bicuculline in 

memory tasks are thought to be due to the dose employed and may also be time related 
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(Nabeshima et al., 1988; Brioni, 1993). Notwithstanding, the GAfiAA receptor 

antagonist, bicuculline, did not mimic the effects of mefenamic acid in the object 

discrimination task. 

The results from this study therefore indicate that the behavioural effects of mefenamic 

acid are not dependent upon positive modulation of benzodiazepine receptors, 

competitive antagonism of the GAfiAA receptor or activation of the G A B A A receptor 

complex through the fenamate/loreclezole binding site, since neither the positive 

allosteric modulator diazepam, the competitive antagonist bicuculline, nor the novel 

modulator loreclezole, a compound thought to bind to the same site on the G A B A A 

receptor as fenamates (Halliwell et al., 1999) replicate the effects of mefenamic acid. 

These findings, however, cannot exclude the possibility that the effects of mefenamic 

acid is due, in part, to modulation of the G A B A A receptor. Thus several reports have 

shown that inhibition of the G A B A A receptor, by bicuculline, enhanced working 

memory in normal animals (Yonkov & Georgiev, 1981; firioni & McGaugh, 1988; 

Castellano & Pavone, 1988; Chrobak & Napier, 1991). It has also been reported that 

benzodiazepine inverse agonists can enhance working memory in normal animals. For 

example, sub-cutaneous injection of 3-carboxyl-|3-carboline in mice enhanced their 

performance in a passive avoidance task, when injected before but not after the first trial 

(Venault et al., 1986), an enhancement was also observed with 3-carboxyl-P-carboline 

when infused into the nucleus basalis magnocellularis of rats and tested in a two-trial 

recognition task (Mayo et al., 1992). Flumazenil, a partial inverse benzodiazepine 

agonist, has been shown to enhance normal rats performance in the passive avoidance 

task (File & Pellow, 1988) and the operant delayed-matching-to-position task (Cole & 

Hillmann, 1994). This leads to the hypothesis that benzodiazepine inverse agonists 
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might mimic the effects of mefenamic acid in the object discrimination task. Future 

experiments might address this hypothesis. 

Considering the electrophysiological results that mefenamic acid can non-competitively 

inhibit 5-HT3 receptor- evoked responses it is possible that the behavioural effects of 

mefenamic acid is via inhibition of the 5-HT3 receptor. Indeed previous behavioural 

experiments have shown that 5-HT3 antagonists can enhance cognition. For example the 

5-HT3 antagonist, itasteron has been reported to improve working memory in aged rats 

in the Morris water maze (Pitsikas et al., 1993) and multiple choice avoidance task 

(Pitsikas & Borsini, 1996). The 5-HT3 antagonists ondansteron and tropisetron have 

enhanced performance of normal rats and reversed the amnesic effect of the 5-HT3 

agonist p-chloroamphetamine in a conditioned response task (Hong & Meneses, 1996). 

A future experiment to investigate the role of 5-HT3 receptor in enhanced object 

discrimination would be to determine if 5-HT3 antagonists could replicate the effects of 

mefenamic acid in the object discrimination task. 

Mefenamic acid also non-competitively inhibited P2x receptors in this study. Only one 

study to date has investigated the effects of purines on working memory where it was 

shown that AIT-082, a PI receptor antagonist, enhanced memory in memory-deficient 

and young mice (Rathbone et al., 1998). It is therefore possible that the effect of 

mefenamic acid could be via inhibition of ATP neurotransmission, although more work 

would be required to fully determine the level of purinoceptors involvement in working 

memory. 

It has been reported that compounds that inhibit selective potassium channels result in 

cognitive enhancement. For example, inhibition of slow activating voltage-gated 
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channels, by linopirdine, has been shown to improve performance of rats tested in the 

passive avoidance task (Cook et al., 1990). Likewise aged rats treated with linopirdine 

showed improved performance in the Morris water maze (Baxter et al., 1994). It is 

thought that the cognitive effects of linopirdine is via inhibition of the slow activating 

voltage-gated channels which decreases the sub-threshold electrical excitability of 

neurones in response to synaptic inputs (Wang & McKinnon, 1995). Recently fenamate 

NSAIDs, but not indomethacin, have been reported, from whole-cell patch-clamp 

current recordings, to inhibit in a concentration-dependent manner neuronal voltage-

gated channels expressed in Chinese hamster ovary cells (Lee & Wang, 1999). It is 

therefore postulated that the cognitive enhancing effects of fenamates is via inhibition of 

these neuronal voltage-gated channels. 

Possible mechanisms underlying the reversal of scopolamine-induced impairment in object 

discrimination observed with mefenamii acid: 

The muscarinic antagonist, scopolamine, has been shown to induce memory 

impairments in a large variety of tasks including the radial maze (Stevens, 1981; Watts 

et al., 1981), T-maze (Beninger et al., 1986; Moran, 1993), both non-spatial 

(Markowska & Wenk, 1991; Ravel et al., 1992) and spatial (Dunnett, 1985; Cole et ah, 

1994; Kirkby et al., 1996) delayed-matching-to-position tasks and in non-matching-to-

position tasks (Huston & Aggleton, 1987; Deacon, 1991; Buxton et al., 1994). The 

results from this present study showed that scopolamine reduced object discrimination 

in a concentration-dependent manner. This observation is in agreement is in agreement 

with reports from others (Ennaceur & Meliani, 1991a; Vannucchi et al., 1997; Woolley 

et al., 2000). It is possible that the scopolamine-induced impairments were due to a 

decrease in gross motor activity rather than an amnesic effect. However, scopolamine 

(0.25mg/kg) did not significantly reduce total exploration times but did result in a 
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significant impairment in object discrimination. Moreover, Buhot and colleagues (1989) 

have shown that scopolamine (Img/kg) affects object discrimination more than 

locomotor activity by observing the number of squares crossed during the object 

discrimination task. 

Mefenamic acid completely reversed the impairment induced by scopolamine at low 

doses (0.25-0.5mg/kg) but not at the highest dose tested (Img/kg). The observation that 

mefenamic acid can reverse a scopolamine induced impairment leads to the hypothesis 

that mefenamic acid can modulate central cholinergic systems. 

The cholinergic system has been known to be critically involved in processes of 

cognition for many years (Bartus et al., 1982). Cholinergic neurones form an important 

component of both non-spatial (Spencer et al., 1985) and spatial (Beninger et al., 1986) 

working memory. It is feasible that the behavioural effects of mefenamic acid are due to 

a positive modulation of nicotinic or muscarinic acetylcholine receptors. 

The role of nicotinic acetylcholine receptors in working memory is still unclear; 

administarion of nicotine to rats has been shown to improve performance in the radial 

maze (Levin et al., 1995) and the object discrimination task (Puma et al., 1999), but 

impair performance in delayed matching-to-sample tasks (Sahgal et al., 1990; Dunnett 

& Martel, 1990). However, nicotine does not affect performance in delayed matching-

(Bushnell et al., 1995) and non-matching-to sample tasks (Widzowski et al., 1994). In 

contrast, antagonism of nicotinic acetylcholine receptors results in an impairment of 

performance in both matching- (Andrews et al., 1994; Bushnell et al., 1995) and non-

matching-to-sample (Deacon et al., 1991; Ruotsalainen et al., 1997) working memory 

paradigms. Given that the results presented in this thesis, that fenamates have little 
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effect on native neuronal nicotinic acetylcholine receptor- evoked responses, and that 

fenamates non-competitively inhibit the a3^2 nicotinic ACh receptor- evoked currents 

expressed in Xenopus oocytes (Zwart et al, 1995) (P2 being the predominant nicotinic 

P subunit in the brain, (Paterson & Nordberg, 2000)), it seems unlikely that the 

behavioural effects observed with fenamates is via modulation of nicotinic acetylcholine 

receptors. 

It has been widely reported that antagonism of muscarininc acetylcholine receptors 

impairs working memory (see above). Few studies have investigated the effects of non­

specific muscarinic agonists on working memory tasks and these results indicate that 

they do not modulate working memory. For example Sahgal and colleagues (1990) 

showed that oxotremorine had no effect on rats tested in delayed (non-)matching-to-

sample tasks, and Leanza et al. (1996) reported that arecoline could not ameliorate the 

effects of scopolamine in rats tested in a delayed matching to sample paradigm. 

However selective agonists of Mi receptors do have cognitive enhancing properities; the 

M | agonist, N-[2-(l-azabicyclo[3,3,0]octan-5-yl)ethyl]2-nitro aniline fumarate (SK-

946), can reverse the impairment of scopolamine in rats tested in the passive avoidance 

and Morris water maze tasks (Suzuki et al., 1998). Another selective M i agonist, L-

687,306 can reverse a scopolamine-induced impairment in rats tested in a delayed 

matching-to-sample task (Dawson & Iversen, 1993); AF150(S) (l-methyl-piperidine-4-

spiro-(2'-methylthiazoline)), a partial M i agonist, has been shown to reverse an 

ethylcholine aziridinium (which induces a cholinergic hypofunction in the hippocampus 

(Fisher & Hanin, 1986)) induced cognitive impairment in the passive avoidance, radial 

and Morris water maze tasks (Brandeis et al., 1995). To date no study has investigated 

the effects of fenamates on muscarinic acetylcholine receptors. Therefore it remains to 
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be determined if the behavioural effects of fenamates are via modulation of M i 

acetylcholine receptor activation. 

Another possible mechanism for the behavioural effects of fenamate NSAIDs is that 

they could indirectly modulate cholinergic neurotransmission. For example, it has been 

shown (by double labelling light microscopic experiments) that 5 - H T neurones 

innervate cholinergic basal forebrain (Jones & Cuello, 1989; Khateb et al., 1993) and 

hippocampal neurones (Milner & Veznedaroglu, 1993), and behavioural experiments 

have shown that 5 -HTIA agonist 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin-

p-chloroamphetamine) and parital agonist, ipspirone, attenuated a scopolamine induced 

impairment in rats tested in a operant delayed matching to position task (Cole et al., 

1994); a reversal of a scopolamine-induced impairment in object discrimination has also 

been shown with S-HTs antagonist Ro-046790 (4-amino-N-(2,6-bis-methyl-amino-

pyrimidin-4-yl)-benzene sulphonamide) (Woolley et al., 2000) and the 5-HT3 receptor 

antagonist itasetron has been shown to improve working memory in scopolamine 

impaired rats in the passive avoidance task (Brambilla et al., 1993) and the Morris water 

maze (Pitsikas et al., 1994). This leads to the hypothesis that the behavioural effects of 

mefenamic acid may be partially due to modulation of the serotonergic neurones which 

innervate the cholinergic pathways involved in working memory. 

In addition, it has been shown that some of the effects of GABAergic activation are 

mediated via interactions with cholinergic neurones involved in working memory. For 

example intra-septal infusions of the G A B A A agonist, muscimol, impaired performance 

in the T-maze (Naghara & McGaugh, 1992). Muscimol also impairs rat performance in 

the passive avoidance task when injected into the basal forebrain (Nabeshima et al., 

1988). It has also been shown that G A B A A receptors are localized on cholinergic 
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neurones projecting to the cortex (Zaborszky et al., 1986). It is therefore possible that 

the behavioural effects of mefenamic acid is through modulation of GABAeric inputs to 

cholinergic pathways involved in working memory. 

Modulation ofT-maze and radial maze performance by mefenamic acid: 

An alternative hypothesis addressed in this study was that the effect of mefenamic acid 

was due to a particular aspect of the open field test and therefore task specific. In order 

to investigate this, the effect of mefenamic acid in two widely used working memory 

paradigms, namely the non-matching-to-sample T-maze and the radial maze tasks was 

investigated. These tasks also enabled the investigation of the effect of mefenamic acid 

on reference memory. 

For a rat to complete a trial in the T-maze task, successfully, it must be able to 

discriminate and remember places in the environment (the goal arms) and that 

discrimination, based on reference memory, in turn has to be integrated with working 

memory of the place for food re-reinforcement in the previous trial (Brito & Thomas, 

1981). Mefenamic acid treated rats made fewer errors and took fewer days to reach 

criterion when compared with saline treated rats. This information indicates that 

mefenamic acid rats learned the T-maze task faster than saline controls and therefore 

enhanced reference memory. Once all rats had reached criterion they were then tested in 

the T-maze with a five-minute intra-trial delay to investigate the effect of mefenamic 

acid on working memory. Mefenamic acid treated rats made significantly fewer errors 

than control rats which indicates that mefenamic acid enhanced working memory. 

Mefenamic acid did not significantly change the number of entries into never baited 

arms to criterion in the radial maze, a measure of reference memory (Olton & 
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Samuelson, 1976). The number of re-entry errors into baited arms was, however, 

significantly decreased by mefenamic acid (a measure of working memory (Olton & 

Samuelson, 1976)) with a thirty-second intra-trial interval. This data indicates that 

mefenamic acid does not modulate reference memory but does enhance working 

memory when measured in the radial maze. 

Mefenamic acid enhanced rats performance in all four working memory paradigms, 

namely the object discrimination, object location, non-matching-to-sample T-maze and 

radial maze tasks, utilised within this thesis. These data indicate that the effect of 

mefenamic acid is not task specific and provide further evidence in support of the 

hypothesis that mefenamic acid enhances working memory. The observation that 

mefenamic acid apparently enhanced rats' reference memory in the T-maze but not the 

radial maze may be due to the differences between the mazes. For example it has been 

suggested that rats in the T-maze use ego-centric cues (left/right turns) to solve the task 

whereas in the radial maze they use extra-centric spatial cues (Olton, 1982). There is 

also a difference in the mnemonic load needed to complete each task successfully; in the 

T-maze they need to learn to enter the previously un-entered arm, whereas in the radial 

maze there was an increased mnemonic load as they had to remember which four of the 

eight arms were never baited. These two factors may account for the differing reference 

memory results. In order to clarify the effect of mefenamic acid on reference memory 

its effect on an alternative reference memory tasks such as the Morris water maze 

(Morris, 1984) will need to be investigated. 

Final remarks 

The data obtained from electrophysiological experiments has shown that fenamate 

NSAIDs can modulate native neuronal ligand-gated ion channels. Modulation of 
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neuronal G A B A A and 5-HT3 receptors could contribute to the behavioural effects of 

fenamates such as such as seizures and convulsions observed after overdose (Young, 

1979; Robson et al., 1979; Balali Mood et al., 1981; Prescot et al., 1981; Gossinger et 

al., 1982; Frank et al., 1983; Shipton & Miller, 1985; Hendrickse, 1988; Clark & 

Ghose, 1992). This modulation may also contribute to the modulation of seizure activity 

observed with NSAIDs in animal models (Wallenstein, 1985a,b; 1987; 1991; 

Ikononudou-Turski et al., 1988). 

The data therefore raised the hypothesis that fenamates may have other and additional 

behavioural and/or cognitive effects. The second major series of experiments 

undertaken in this thesis addressed this hypothesis. 

These behavioural results have shown that mefenamic acid can increase both object 

discrimination and object location when compared to saline controls. This increase in 

object discrimination is not due to an increase in arousal, gross motor activity or an 

anxiolytic effect by mefenamic acid. One other fenamate NSAID, namely meclofenamic 

acid, but not non-fenamate NSAIDs were able to mimic the effect of mefenamic acid 

indicating that its effect is not a general NSAID effect. These results therefore lead to 

the conclusion that the behavioural effects are not due to cyclooxygenase inhibition in 

the brain. The actions of fenamates were not replicated by positive or negative 

modulators of the G A B A A receptor. These data indicate that the action of mefenamic 

acid are not entirely dependent on modulation of the G A B A A receptor. Mefenamic acid 

was also shown to reverse a scopolamine-induced impairment in object discrimination, 

indicating that mefenamic acid might modulate "cholinergic mechanisms" involved in 

working memory. Mefenamic acid enhanced working memory in both the T-maze and 
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radial maze tasks indicating that the behavioural effects of mefenamic acid are not task 

specific. 

Speculatively, the chemical structure of fenamates may serve as a template for the 

design of novel compounds to help treat dementia such as Alzheimer's disease. Notably 

a recent study has shown that intracerebroventricular administration of p amyloid (1-40) 

impaired rats' performance in the object discrimination task with a five-minute intra-

trial interval (Nag et al., 2001). Given the epidemiological evidence that NSAIDs can 

delay the onset on Alzheimer's disease and the evidence from this thesis that fenamates 

can improve working memory, the effect of fenamates on the actions of (3 amyloid (1-

40) in the object discrimination task might be determined to help elucidate the 

beneficial effects of NSAIDs in the treatment of Alzheimer's disease. 
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