
Durham E-Theses

Redocumentation through design pattern recovery:: an

investigation and an implementation

Hyoseob, Kim

How to cite:

Hyoseob, Kim (2001) Redocumentation through design pattern recovery:: an investigation and an

implementation, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/3952/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3952/
 http://etheses.dur.ac.uk/3952/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

The copyright of this thesis rests ''ith
the author. No quotation from it should
be published in any form, including
Electronic and the Internet, without the
author's prior written consent. All
information derived from this thesis
must be acknowledged appropriately.

Redocumentation through Design Pattern

Recovery: An Investigation and an

Implementation

Hyoseob Kim

PhD Thesis

Department of Computer Science

University of Durham

December 2001

2 2 MAR 2002

Abstract

In this thesis, two methods are developed in an aid to help users capture valuable de­

sign information and knowledge and reuse them. They are the design pattern recovery

(DPR) method and pattern-based redocumentation (PBR) method. The DPR method

is for matching up metrics of patterns with patterns themselves in order to capture

valuable design information. Patterns are used as a container for storing the informa­

tion. Two new metrics, i.e., p-value and s-value are introduced. They are obtained

by analysing product metrics statistically. Once patterns have been detected from a

system, the system can be redocumented using these patterns. Some existing XML

(eXtensible Markup Language) technologies are utilised in order to realise the PBR

method.

Next, a case study is carried out to validate the soundness and usefulness of the DPR

method.

Finally, some conclusions drawn from this research are summarised, and further

work is suggested for the researchers in software engineering.

Acknowledgements

A technical work of this size can obviously not be produced without a great deal of

help, advice and encouragement from others. A number of people have aided and

abetted in its production.

I owe a great debt of gratitude to my supervisor Dr. Cornelia Boldyreff, who was

always on hand to listen to my ideas and always willing to contribute her own. Also,

she took the time to read the drafts of this thesis and provided invaluable feedback.

I am really grateful to my thesis examiners, Prof. Malcolm Munro and Prof. Ian

Sommerville for their constructive suggestions that have helped me improve the con­

tent and representation of this thesis.

I really thank Dr. Elizabeth Burd for allowing her valuable time to review the draft

of this thesis.

On a personal level, my deepest thanks are due to my parents who have always

supported their son emotionally and financially.

ii

Declaration

No part of the material offered has previously been submitted by the author for a degree

in the University of Durham or in any other University. All of the work presented here

is the sole work of the author and no-one else.

lll

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should be

acknowledged.

iv

Contents

1 Introduction 1

1.1 The Problem . 1

1.2 A Proposed Solution 8

1.3 Contributions and Their Criteria for Success 0 ••• 0 • 0 10

1.4 The Outline of the Thesis 0 • • • • 0 • • • • • • • • • • • • • • 11

2 Background of the Research 13

2.1 Introduction 0 • 14

2.2 Software Reuse 0 0 • • • • • 16

2.2.1 Existing Types of Software Reuse 0 • • • 19

2.2.2 Factors Militating against Software Reuse 22

v

2.2.3 Object-Oriented Programming (OOP) and the Unified Mod-

elling Language (UML) . 29

2.2.4 Software Design Reuse . 33

2.3 Design Patterns . 36

2.3.1 Definition . 36

2.3.2 Describing Design Patterns 38

2.3.3 Using Design Patterns . 46

2.3.4 Existing Work on Design Pattern Recovery 47

2.4 Software Measurement . 48

2.4.1 The Goal/Question/Metric (GQM) Method 50

2.4.2 Kinds of Software Metrics 52

2.5 Software Documentation and Redocumentation 53

2.5.1 Document Management: XML. 55

2.6 Summary . 58

3 The Design Pattern Recovery (DPR) Method 60

3.1 Introduction . 61

vi

3.2 00 Software Development and Maintenance Model 61

3.3 The Design Pattern Recovery (DPR) Method 66

3.3.1 Applying the Goal/Question/Metric (GQM) Method 70

3.3.2 Characteristic Classes of Patterns 78

3.3.3 The Pattern Matching Algorithm Using P-Values and S-Values 80

3.4 Reconciliation Process after Design Pattern Recovery 95

3.5 Summary . 96

4 The Pattern-Based Redocumentation (PBR) Method 97

4.1 Introduction . 98

4.2 Redocumenting Software Systems Using Patterns and XML: the PBR

Method . 102

4.2.1 Consistent Representation of XML Documents 103

4.2.2 Flexible Representation of XML Documents 108

4.3 Summary . 109

5 Case Study 115

5.1 Introduction . 116

vii

5.2 Experimental Framework . 116

5.3 Experimental Results and Their Analysis. 119

5.4 Summary . 130

6 Conclusions 132

6.1 Summary of Contributions and Their Evaluation 132

6.2 Limitations of Approach . 136

6.3 Other Areas for Future Research . 137

6.4 Final Remarks . 139

A PBR Templates 141

Bibliography 149

Glossary 169

viii

List of Tables

2.1 The improvement made on processor chips between 1971 and 1995 . 17

2.2 Design pattern categories (Gamma, 1994) 40

3.1 c-classes of each pattern example from the pattern book [45] 79

3.2 CBO metric values of each class in the GoF patterns examples 1/3 . . 82

3.3 CBO metric values of each class in the GoF patterns examples 2/3 . . 83

3.4 CBO metric values of each class in the GoF patterns examples 3/3 . . 84

3.5 GoF patterns signatures based on c-classes and p-values 85

3.6 The weights assigned to each metric 86

3.7 s-values of Class A . 88

3.8 s-values for showing similarity between patterns 90

3.9 Patterns and their abbreviations . 91

ix

3.10 s-values between the creational patterns 92

3.11 s-values between the structural patterns 92

3.12 s-values between the behavioural patterns 93

5.1 The experimental materials . 117

5.2 Patterns in ET ++and their c-classes and s-values 120

5.3 Patterns in InterViews 2.6 and their c-classes and s-values 120

5.4 Patterns in InterViews 3.2a and their c-classes and s-values 121

5.5 Patterns in Unidraw and their c-classes and s-values 122

5.6 Different cases obtained with ET ++ 124

5.7 Different cases obtained with InterViews 2.6 126

5.8 Different cases obtained with InterViews 3.2a 126

5.9 Different cases obtained with Unidraw 126

5.10 Instances of creational patterns and theirs-values 127

5.11 Instances of structural patterns and theirs-values 128

5.12 Instances of behavioural patterns and theirs-values 129

5.13 Different cases obtained with the creational patterns 130

X

5.14 Different cases obtained with the structural patterns 130

5.15 Different cases obtained with the behavioural patterns 131

xi

List of Figures

1.1 Engineering design (Kogut, 1995) 6

2.1 UML core package - backbone (OMG UML Specification 1.3) 32

2.2 Relationships between different software components 37

2.3 Software engineering processes related to design patterns 46

3.1 Four different worlds represented in 00 systems 62

3.2 Software development and pattern investigation steps 64

3.3 The two types of reverse engineering processes 65

3.4 Representation of a graph G = (v ,E) 67

3.5 Representation of a bipartite graph G = (v ,u ,E) 67

3.6 The structure of the Composite pattern 69

xii

3. 7 The process to extract pattern signatures 69

3.8 An instantiation of the GQM method for the DPR method 72

3.9 The structure of the Abstract Factory pattern (from Gamma et al. [45]) 79

3.10 Reverse engineering a class diagram from C++ source code using Ra-

tional Rose . 94

3.11 The 4 types of the recovered patterns (from Shull et al. [119]) 96

4.1 Evolution of abstractions . 101

4.2 Redocumenting a system using patterns and XML technologies 103

4.3 A class diagram reverse engineered from pattern.dtd. 106

4.4 A class diagram reverse engineered from pbr.dtd 107

4.5 Options for displaying XML documents 108

4.6 The rendering of a pattern description in XML using XSL 110

4.7 The rendering of a PBR description in XML using XSL 111

4.8 The access to class documentation from a PBR XML document . . . 112

4.9 The access to metrics documentation from a PBR XML document . . 113

5.1 Positive false cases obtained with ET ++ 123

xiii

5.2 Positive false cases obtained with InterViews 2.6 124

5.3 Positive false cases obtained with InterViews 3.2a 124

5.4 Positive false cases obtained with Unidraw 125

5.5 Accumulation of positive false cases obtained with the four systems . 125

xiv

Chapter 1

Introduction

This chapter gives an introduction to the thesis. First, the typical problem of develop­

ing high quality software at low cost is studied. Second, a solution for this problem

is proposed. Then, the contributions made during this research are listed, and some

criteria for measuring the success of the research are suggested in the next section.

Finally, this chapter ends by giving an outline of the thesis.

1.1 The Problem

Originally people had believed that software would not outlive the hardware systems

on that it was running. However, as the computing history tells us, many software sys­

tems have actually survived beyond their developers' expectation. A typical example

1

of this is software with the so-called "millennium bug" [121]. When they built their

software systems decades ago, they did not think they would need them beyond the

20th century!

Like any other creatures or artificial things, software systems evolve, adapting to

changing environments and having their errors fixed as they are detected. Thus, the

need for the four kinds of maintenance activities arises to keep our system running.

They are corrective maintenance, adaptive maintenance, peifective maintenance, and

preventive maintenance [105].

Corrective maintenance is concerned with the location and removal of faults in the

program. These are errors in what the program actually does according to the current

specification; it is not concerned with erroneous output caused due to a change in the

specification.

Adaptive maintenance involves the updating of the program due to a change in the

environment in which it has to run. This may be a minor change which involves lit­

tle change in the structure of the program, for example, a change in printed output

from English to American spelling, or it may be a major change, such as rewriting the

program to run in a distributed fashion on a network.

Perfective maintenance is maintenance resulting from a change in a program's spec­

ification. This might be as simple as a change in the format in which a report is

required, or as complex as the addition of a different kind of account to a financial

2

banking program. Perfective maintenance takes up as much as half of a maintenance

programmer's time.

Finally, preventive maintenance is the modification to software undertaken to im­

prove some attribute of that software, such as its "quality" or "maintainability" without

altering its functional specification.

These four kinds of maintenance are often carried out together so that it may not be

easy to distinguish them.

Further, the above maintenance activities are supported by the following four activ­

ities [32]:

• restructuring: The transformation from one representation form to another at the

same relative abstraction level, while preserving the subject system's external

behaviour, i.e., functionality and semantics.

• redocumentation: The creation or revision of a semantically equivalent represen­

tation within the same relative abstraction level. The resulting forms of repre­

sentation are usually considered alternate views intended for a human audience.

• reengineering: The examination and modification of a system to reconstitute it

in a new form and the subsequent implementation of the new form. Sometimes it

is difficult to differentiate reengineering from restructuring. The main difference

between them is that restructuring keeps the functionality of the subject system

3

intact, while reengineering changes it usually.

• reverse engineering: The process of analysing an existing system to identify its

components and their interrelationships and create representations of the system

in another form or at a higher level of abstraction [89]. Reverse engineering is

usually undertaken in order to redesign the system for better maintainability or

to produce a copy of a system without access to the design from which it was

originally produced.

The costs and difficulties involved in software maintenance have been well docu­

mented. A major contributor to these costs is the time-consuming process of "program

comprehension". Program comprehension is performed during the process of reuse,

reengineering, and enhancing existing systems. It is also performed during review

or code walk-through of new programs. In a narrow sense, program comprehension

means the understanding of program code. In a wide sense, however, it incorporates

all aspects of understanding of an application or system. The comprehension process

is the sum of a number of understanding techniques [11, 108, 11 0].

To summarise, program comprehension is one of the first things to be performed

before any maintenance activities begin. Because without having a full and correct

understanding of a subject system, the above remedial activities can make situations

worse rather than actually improving it.

The software engineering discipline is a comparatively new branch of the computer

4

science, mainly attempting to find efficient ways of building quality software. The

term, software engineering itself was first coined at the First NATO Software Engi­

neering Conference held at Garmisch in 1968 [90]. Since then, whether software engi­

neering is an engineering discipline in the true sense has been always arguable. Among

the many reasons why software engineering has failed to become a true engineering

branch, people agree that software engineering lacks design reuse and measurement

compared to other mature engineering disciplines such as chemical engineering and

electronics [66, 98].

First, design reuse is not actively practised in the software engineering discipline.

Generally, engineering designs can be classified into two kinds: routine designs and

innovative designs [66]. The former ones involve solving familiar problems whereas

the latter ones indicate finding novel solutions to unfamiliar problems [117]. There­

fore, it is right to say that innovative designs are the ones that needs greater attention

from developers when systems are built, while it is desirable to maximise the benefits

from reusing existing solutions, i.e., routine ones. Other names for these two kinds of

designs are state-of-the-practice and state-of-the-art designs, respectively. Obviously,

innovative designs take more time and cost more than routine ones to develop. Fig­

ure 1.1 shows how engineering designs are extensively reused. As in other engineering

disciplines, innovative designs are much rarer than routine ones within software engi­

neering. Jones reports that less than 15% of the software developed is innovative [58].

This means that in theory new software can be built out of already existing parts of

5

Figure 1.1: Engineering design (Kogut, 1995)

systems and adding only minor new features to them. However, it is also true that

because of the difficulties of adapting those parts to the new environment, systems are

usefully built from scratch incurring high cost. This certainly gives a plenty of room

for furthering reuse practices. However, other engineering disciplines show a big dif­

ference in terms of capturing, organising and sharing their design knowledge in order

to make routine design simpler.

Second, the maturity of software measurement1 is quite unsatisfactory for software

engineering. It is obvious that an improvement in software productivity and quality

cannot be assured unless systems are properly measured and, hence, there exists a basis

for a better understanding of these two key factors. One major problem with measuring

software is that software is intangible unlike other real world objects. Therefore, when

measurement is mentioned in the software domain, it actually means measuring the

1The terms software measurement and software metrics themselves are often used interchangeably

within the software engineering community, revealing the confusing situation of software measurement.

6

reflection of programs as in the form of source code or other project artifacts like

design documents. Another problem with software measurement is the proliferation

of software metrics. Many similar kinds of metrics have been proposed without ever

attempting to unify or standardise them as in the case of 00 methods, e.g, the Unified

Modelling Language (UML). Therefore, software engineers often find it difficult to

decide which metrics they would use for their specific projects.

As a result, the goal of software engineering has not been fully achieved. Developers

are still observing their software projects ending disastrously. Further those delivered

systems often do not live up to their original expectations. These events have caused

users to adapt themselves to their systems, not the other way around forcing their

business activities to be modified undesirably.

These two drawbacks have been partly caused by the fact that software is not tan­

gible, thus it is difficult to manage it in the first place. Further software systems

are considered disposable, focussing on the development of one specific application

rather than building a family of systems that can be reused later. The research work

on "component-based software engineering (CBSE)" [6] and "product line architec­

tures" [53] is related to this problem.

7

1.2 A Proposed Solution

Software design activities are one of the most time-consuming and creative tasks dur­

ing the software life cycle, thereby requiring a high degree of human intelligence. This

explains the reason why the transition from analysis into design is often figuratively

described as the miraculous transformation of a caterpillar into a butterfly, in other

words, "metamorphosis". Also, as faults originating from the early stages of the soft­

ware life cycle need more efforts to fix them than those introduced in the later coding

stage, time spent on design can have an impact on later stages [123].

Reuse in general provides a basis for intellectual progress in most human endeav­

ours. While code reuse can save time and effort to some extent, it must be noticed that

the savings will obviously not exceed the coding time which is approximately 13% of

the whole investment during the software life cycle [59], although this rate varies de­

pending on the types of systems [22]. Much bigger savings can be made from reusing

artifacts produced during design, testing, and maintenance. Thus, reusing software de­

signs is considered a good way of improving programmers' productivity and software

quality.

The object-oriented programming (OOP) paradigm developed after the structured

programming paradigm has been touted as a solution to tackle the software crisis

by providing powerful reuse facilities like inheritance for static reuse and polymor­

phism for dynamic reuse at the code level. However, its limitations have long been

8

recognised, and alternative approaches or complementary approaches to overcoming

its weaknesses have eagerly been researched for the past two decades [100]. Three

of the most representative ones are based on the concepts of software architecture,

(object-oriented) frameworks2 and software design patterns [46, 134, 72, 45].

This thesis attempts to find a way of achieving a high degree of design reuse prac­

tised in other mature engineering disciplines by applying design patterns. To assist

the OOP paradigm, many object-oriented analysis and design (OOA/D) methods have

been developed. They model the real world using various new features; inheritance

and encapsulation are two of their most useful features. However, they fail to describe

the overall system structure and have not brought the same degree of extensive de­

sign reuse experienced in other engineering disciplines. For example, it is difficult to

identify suitable classes and their relationships upon building new systems, thus later

ending up refactoring classes into suitably sized ones [93]. It is argued that that pat­

terns can improve these situations as each pattern embodies a collection of classes and

their relations.
2In the software engineering community, object-oriented frameworks or object-oriented application

frameworks are simply called frameworks as these are built under object-oriented programming envi­

ronments. Abstract classes and object composition are two of the most heavily used and useful language

features to build frameworks.

9

1.3 Contributions and Their Criteria for Success

First, the manner in which software systems are developed under the OOP paradigm

is studied. By doing so, a coherent understanding of the structure of an 00 system

is obtained. Then, to improve the current reuse practices, a method to detect design

patterns instances is developed. The method uses existing software metrics reported

in software engineering literature. Three different categories of metrics are selected;

these are procedural, structural and object-oriented metrics [37, 31]. Having identified

patterns from a system, the system can be redocumented using these patterns; thereby

improving program comprehension.

To validate the soundness of this approach, three criteria for the success of the re­

search are set out.

First, the development of a design pattern recovery (DPR) method3 is investigated.

In the research, development of a method to recover new patterns is not attempted.

This kind of process is obviously much more difficult than the first one as the structure

and behaviour of patterns are not known. Here, identification of the existence of 23

GoF design patterns catalogued in the design pattern book [45] is made. The proposed

method should be as accurate as possible so that users can use it with confidence.

3In a strict meaning, the word, "detection" will be a more correct one than "recovery" because

finding new patterns is excluded from this research. However, the word, "recovery" is used in this thesis

as it is a common term in the software engineering community. It is a very similar kind of phenomenon

with the usage of "metrics" and "measurement".

10

Second, having located patterns, users need to apply these patterns to their projects.

Among the many potential usages of patterns, the focus of attention is on redocument­

ing programs. Some of the XML (eXtensible Markup Language) technologies are

used to document patterns and redocument software based on identified patterns. This

process comprises the pattern-based redocumentation (PBR) method.

Third and finally, this approach needs to be validated through experimentation in a

series of case studies. Several systems are chosen for the experiments. Other people

have observed the presence of patterns in these systems.

As a whole, the success of the research will be judged by whether the two methods

are powerful enough to detect design patterns and allow successful redocumentation

to occur.

1.4 The OutUne of the Thesis

The overall organisation of the thesis is as follows:

Chapter 2 gives an overview of background related to the research described in this

thesis. The important topics to be dealt with in that chapter are design pattern, software

metrics and redocumentation methods.

In Chapter 3, the design pattern recovery (DPR) method is presented. An expla­

nation of how semantic and high-level design information captured in a pattern can

11

be reverse engineered by analysing syntactic and low-level information of programs is

given. To obtain syntactic information software measurement techniques are employed

and some statistical analyses are applied to the collected data.

Chapter 4 describes the pattern-based redocumentation (PBR) method whereby de­

tected patterns can be applied to improve the current state of documentation. Pattern­

based redocumentation is useful for improving program comprehensibility, thus re­

ducing future maintenance costs. The PBR method is realised through utilising XML

technologies in order to ensure consistent representation, validation of information,

and a high degree of flexibility.

To investigate the usefulness and soundness of this research method, a case study

is conducted in the following chapter. The experimental results and their analyses are

gtven.

Finally, in Chapter 6, a summary of the major research contributions is given, and

the research results are evaluated. Also, some further work is suggested for future

research.

12

Chapter 2

Background of the Research

This chapter describes the background of this research. First, the main causes of the

software crisis and some existing solutions for them are discussed. Then, software

reuse is suggested as one of the most promising approaches to overcoming this crisis.

The limitations of the more traditional code-based reuse methods are pointed out along

with arguments for the benefits from reusing higher level artifacts such as designs.

Three of the most representative design reuse approaches are identified. They are

software architecture, object-oriented frameworks, and design patterns [46, 134, 45].

Among these, patterns are chosen as the most promising approach to meet the aim of

reusing software components, especially those developed in the object-oriented pro­

gramming paradigm. Then, an overview of software measurement is given as software

product metrics are used to detect patterns from legacy systems in the research. Finally,

13

the history and development of software documentation is surveyed and a special em­

phasis is put on XML (eXtensible Markup Language). XML technologies are used

to document a pattern catalogue and redocument a system with detected patterns in

Chapter 4.

2.1 :n:ntroduction

Since the dawn of the modem computing era, i.e., back in 1940s, the huge gap between

the development of hardware and software has resulted in the software crisis, repre­

sented by low productivity and poor quality of software systems produced. Recognis­

ing this kind of urgent phenomena, the term, "software engineering" was coined at the

First Software Engineering Conference held in Garmisch, Germany in 1968 [84]. Al­

though there exist many definitions depending on each person's different perspective,

a typical definition of software engineering reads [90]:

The established use of sound engineering principles in order to obtain soft­

ware economically that is reliable and works efficiently on real machines.

This definition is good in that it addresses the point that software engineering can be­

come a fully fledged engineering discipline only if engineering principles are applied.

The issues concerning sound engineering principles have been already discussed in

Chapter 1.

14

A more comprehensive definition of software engineering is:

Software engineering is the science and art of specifying, designing, im­

plementing and evolving - with economy, timeliness and elegance - pro­

grams, documentation and operating procedures whereby computers can

be made useful to man [82].

This is a good definition in that it stresses the art, i.e., creativity, required in software

engineering, at all stages of the software life cycle, the economics of the software

engineering process and the fact that software engineering involves the production of

more than just program code.

As with traditional engineering, software engineering involves the use of a rigorous

method for software production [28].

A method is a set of procedures (guidelines) for selecting and sequencing

the use of tools and techniques [21].

Therefore it is true to say that in software engineering it is very important to build

various models and to develop methods to support and validate them, considering that

software is an intangible object.

It is interesting to see that at the First Software Engineering Conference Mcilroy

proposed the idea of producing software out of prefabricated software components [84]

15

as a solution to the software crisis. His original intention was that if portions of previ­

ously built software, say software components are reused, programmers' productivity

can be increased and, at the same time, software quality can be improved; as time­

tested software components are used. Although some progress has been made to re­

alise his vision into reality, it is still a long way before the same level of reuse as in

other engineering disciplines is achieved.

In the next section, the implications of reusing software components are studied in

more detail.

2.2 Software Reuse

Looking back to the history of computing it is observed that both in the hardware and

software communities developers have been trying to reuse processes, products and

resources in order to maximise their ability to cope with ever demanding and changing

users' requirements. For example, consider the speed with which RAM (Random Ac­

cess Memory) and microprocessors are upgraded these days. Moore's Law explains

this well. In 1965 Intel co-founder Gordon Moore made an observation while prepar­

ing a speech, that each new memory integrated circuit contained roughly twice as

much capacity as its predecessor, and each chip was released within 18 to 24 months

of the previous chip. If this trend continued, he reasoned, computing power would rise

exponentially with time [88, 85].

16

Date II Chip I Transistors I MIPS I clock/MHz I

Nov 1971 4004 2300 0.06 0.108

Apr 1974 8080 6000 0.64 2

Jun 1978 8086 29000 0.75 10

Feb 1982 80286 134000 2.66 12

Oct 1985 386DX 275000 5 16

Apr 1989 80486 1200000 20 25

Mar 1993 Pentium 3100000 112 66

Nov 1995 Pentium Pro 5500000 428 200

Table 2.1: The improvement made on processor chips between 1971 and 1995

Moore's observation still holds today and is the basis for many performance fore­

casts. In 24 years the number of transistors on processor chips has increased by a factor

of almost 2400, from 2300 on the Intel4004 in 1971 to 5.5 million on the Pentium Pro

in 1995, doubling roughly every two years as shown in Table 2.1.

In short, software engineers have the potential to build more powerful software be­

cause they have more powerful hardware, but having this potential does not mean that

building larger systems is any easier. They need to apply more rigorous engineer­

ing principles, e.g., design reuse and measurement, to the development of software­

intensive systems as done in the hardware industry.

Coming back to the software domain, there exist many definitions of software reuse.

17

Although a quite narrow definition that "software reuse is the re-application of source

code" is possible, much broader definitions are needed to accommodate reuse ap­

proaches at higher abstraction levels and on a broader scale than source code. After all,

only 13% of the investment made during the software life cycle is spent in the coding

phase [59]. More time and a larger proportion of the budget are spent on maintaining

and evolving software rather than developing it, thus forcing users to be concerned

about program comprehension to prepare for those activities.

In terms of the above facts, Biggerstaff's following definition of software reuse is

more suitable and useful for this investigation [18]:

Software reuse is the re-application of various types of knowledge about

a certain system with the aim of reducing the burden of development and

maintenance. The reusable elements consist of domain knowledge, de­

velopment experiences, project choices, architectural structures, specifi­

cations, code, documentation and so on.

According to the above definition, anything produced and used during a software

project becomes potentially an object of reuse.

18

2.2.1 Existing Types of Software Reuse

Many different kinds of reuse have been identified and it is not easy to classify them

according to any strict criteria. The reason is that they are often applied in a combined

way. It is very rare that only one single method is used. Below existing reuse types

that frequently appear in the literature are summarised.

First, reuse can be classified into systematic and non-systematic reuse according to

the degree of how carefully software reuse schemes are planned and managed [106].

Systematic software reuse means:

• understanding how reuse can contribute toward the goals of the whole business,

• defining a technical and management strategy to achieve maximum value from

reuse,

o integrating reuse into the total software process, and into the software process

improvement programme,

• ensuring all software staff have the necessary competence and motivation,

• establishing appropriate organisational, technical and budgetary support, and

• using appropriate measurements to control reuse performance.

Non-systematic reuse is, by contrast, ad hoc, dependent on individual knowledge

and initiative, not deployed consistently throughout the organisation, and subject to

19

little if any management planning and control. If the parent software organisation is

reasonably mature and well managed, it is not impossible for non-systematic reuse

to achieve some good results. The more probable outcome, however, is that non­

systematic reuse is chaotic in its effects, feeds that high risk culture of individual

heroics and fire-fighting, and amplifies problems and defects rather than dampening

them.

Next, reuse can be classified by the artifacts that are reused [83]. In essence, every

artifact produced during the software life cycle can become an object for various reuse

methods, including requirements, specifications, designs, code, documentation, and

test cases. It is not unusual that "defined processes" are included into this category.

One of the most popular classification schemes is judging by the degree of modifi­

cations made before reuse takes place [7, 17, 1 06]. If an asset is reused without the

need for any adaptation, this is known as black box reuse. If reengineering is neces­

sary, that is to say if it is necessary to change the internal body of an asset in order

to obtain the required properties; this is the case of white box reuse. The intermedi­

ate situation, where adaptation is achieved by setting parameters, is called grey box

reuse. Glass box reuse refers to the situation where it is necessary to "look inside" an

asset, on a "read-only" basis, in order to discover its properties, in the case where the

available description of those properties is inadequate. It has long been believed that

non-modification style reuse, i.e., black box reuse, is the most desirable. However,

the lack of adequate technology has hindered software engineers from achieving this.

20

Recently, component-oriented programming (COP) technologies such as binary com­

position techniques represented by Microsoft's DCOM (Distributed Common Object

Model) and OMG (Object Management Group)'s CORBA (Common Object Request

Broker Architecture) are starting to enable developers to reuse without requiring mod­

ifications [133, 116, 94]. While DCOM is only for the Microsoft Windows platforms,

CORBA is basically platform independent. These new technologies certainly opened

a new horizon for the success in reuse. However, it will be still a long way before COP

is a main stream technology like OOP.

The scope of domains where reuse is achieved can be used to divide reuse into two

groups, i.e., vertical reuse and horizontal reuse [106]. In general, the term, vertical

reuse is used to refer to reuse which exploits functional similarities in a single applica­

tion domain. It is contrasted with horizontal reuse, which exploits similarities across

two or more application domains. There are two fon:ns of horizontal reuse. The first

refers to the exploitation of functional similarities across different domains; an exam­

ple might be loans and reservations functions in the domains of libraries and car hire.

The second refers to the exploitation of similarities in technical domains such as user

interface and operational platform, which are independent of application domains. It

is generally believed that vertical reuse is easier to achieve than horizontal reuse. Thus

greater emphasis is placed on it. Evidence of this belief is research on domain-specific

software architectures (DSSAs) [47].

Finally, Biggs argues that different approaches should be adopted depending on

21

the size and available resources of the organisations where a reuse scheme can take

place [20]. In short, very often reuse approaches that work well in big organisations

are not directly applicable to small ones without some sorts of adaptation.

2.2.2 Factors Militating against Software Reuse

Since Mcilroy suggested the idea of building software out of prebuilt software compo­

nents, software reuse has been a dream of many software engineers [84]. However, this

dream is yet to be fully realised. There are many reasons why software engineers have

failed to realise the potentials of reuse, which include both technical and non-technical

issues.

There are four kinds of barriers that have to be tackled before widespread reuse can

be realised. They are technical, cultural, managerial and legal factors. It has been

reported that non-technical aspects are as important as technical ones [122, 107].

Technical Factors

Sommerville identified six technical problems to be solved for the success of soft­

ware reuse [124].

First, desirable attributes for reuse are to be investigated. Once the characteristic,

reusability is known, highly reusable, new components can be developed. Also, exist­

ing components can be reengineered in a cost-effective way to increase their reusabil-

22

ity [62]

Second, methodology problems arise since most existing software design methods

are intended to support software development without reuse. Therefore a new devel­

opment methodology is needed to open the so-called "software component industry".

In other words, there is a consensus that designjor-reuse should precede design-with­

reuse [63].

Third, new documentation standards for reusable components need to be estab­

lished. The documentation of a reusable component must specify both its functional

and non-functional characteristics. Usually, more documentation is required for reusable

components than for components which are simply part of a larger system. Ideally,

reusable components would be formally specified so that there is no ambiguity about

their behaviour. However, this is unlikely to happen in the foreseeable future since for­

mal methods are not fully integrated into standard software development. Thus, more

rigid documentation standards should be used to help users reuse their components

more easily.

The fourth problem is about how components can be certified as reusable. In order to

convince managers of the value of reuse, they must have confidence in the components

that will be reused. This implies a need for some kind of component certification

scheme which will certify the quality or usefulness of the component [140]. But setting

up such a scheme has been shown to be both difficult and expensive.

23

Fifth and probably the most important and frequently mentioned problems in the

reuse research community are about component retrieval [54, 87]. In a large company

such as an aerospace company there might be potentially hundreds of, if not thousands

of, reusable components available. They are collected from many different types of

hardware and software projects. Therefore finding what components exist and retriev­

ing these components could be a major problem. A cataloguing scheme using existing

database systems must be established.

Finally, configuration management (CM) needs to be carefully planned in the reuse

environment [67]. The normal model of configuration management is currently project­

based. The software developed as part of a project is maintained in a project archive.

On the contrary, reuse requires software to be shared and, perhaps, components to be

modified and stored in a software library or a software repository [71, 99]. The follow­

ing questions associated with configuration management need to be answered for the

success of reuse. What relationships should be maintained between the reuse library

and the original base components in the CM system? How should changes be prop­

agated? How can traceability back to the original components be implemented? The

answers to these questions are still being studied.

Cultural Factors

One of the fundamental questions that has to be answered is whether the structure

of a society has an effect on the acceptance of reuse. It has been claimed that there

24

is a paradox between the application of a software reuse technology and the approach

to life in a Western society [123]. In the West, society tends to be very individual­

istic, with competitiveness rife in almost all fields of life. This results in an inno­

vative approach to product development. It is argued that this conflicts with a reuse

technology which relies on cooperation and trust for its successful application. It is

noticeable that one of the best examples of success in applying reuse has occurred

in "Japanese Software Factories", in a society where a cooperative and paternalistic

ethos is supported [79]. The adoption of the SIGMA project by major industrial and

academic bodies in Japan is a venture that one would never expect to be undertaken in

the West [1].

There is a very widespread phenomenon called "Not-Invented-Here (NIH)" syn­

drome within the software community. This arises from the fact that software engi­

neering is perceived as a skilled profession, and reuse implies a form of de-skilling,

thus there is a lack of motivation to cultivate a reuse technology [48]. This can only be

removed by supplying cheap components of high quality and encouraging sufficient

management motivation.

Managerial Factors

A major factor in the successful implementation of reuse is its acceptance and en­

couragement by management [49]. Unless such backing is forthcoming, reuse stands

little chance of success. There are many obstacles which have to be reconciled with

25

the potential benefits from reuse.

The first fact to be taken into consideration is the greater cost of producing reusable

code compared to "solution-specific" production [48]. It is not easy to produce "gen­

eral" or "generic" components that are suitable for reuse. This results in much more

time and effort on the part of a software team, and greater cost for the project as a

whole. Since project managers are rewarded for producing systems to deadline and

within budgetary constraints, there is little incentive for them to encourage the produc­

tion of generic components.

There is little quantitative evidence of the successful application of reuse in many

fields [101, 44]. In incorporation of a reuse technology, management must be prepared

to sacrifice short-term returns to gain unquantifiable benefits in the long-term. This is

something many organisations are unprepared to risk. The only way this problem is

likely to be alleviated is by wider scale availability of component libraries.

Management obstacles to reuse may be the most intractable of all to surmount. The

adoption of risk-taking policies is necessary to promote the application of reuse, and

demonstrate the immense benefits that can accrue from it. It is very much a "chicken­

or-the-egg" situation, requiring enterprising firms who are prepared to sacrifice returns

in the short-term for the undeniable but unquantifiable benefits in the long-term.

Legal Factors

There exist two kind of legal issues associated with reuse, i.e. intellectual property

26

right and liability [113]. The former forces responsibility to keep copyright, patent,

and trade secret laws, whereas the latter is about handling any damage caused by a

certain piece of software. Many decisions about the development, distribution, main­

tenance, enhancement and, especially, reuse of software are likely to be affected by

constraints imposed by intellectual property laws and liability laws.

The primary purpose of the intellectual property laws is to encourage the develop­

ment and dissemination of innovative works for use by the public [112]. The creation

or invention of useful items and artistic works generally requires the investment of

considerable time, energy, and resources by skilled, talented people. To encourage

such activities, the intellectual property laws provide, as an incentive, the opportunity

to obtain exclusive rights to commercial exploitation of the innovative or artistic work

for a specified period of time. Generally it is said that developing reusable components

needs a big initial investment. Thus the developers' rights must be protected. Other­

wise reuse would not happen [33]. This results in the fact that active reuse more likely

occur within an organisation rather than across different organisations.

Copyright issues arise not only in external reuse environment, but also in internal

reuse. For instance, if a component is developed by an employee, who will own its

copyright between him and his employer? As another problem, nowadays many com­

ponents are reverse-engineered. In this case, it must be made sure whether reverse­

engineering old legacy code is legal or not.

27

Another thing that should be considered when software is reused is software product

liability. It has been believed that software defects are rarely lethal and the number of

injuries and deaths is very small. Software, however, is now the principal controlling

element in many industrial and consumer products. Thus, users are starting to realise

that software, particularly poor quality software, can cause products to do strange and

even terrifying things. Software bugs are erroneous instructions and, when computers

encounter them, they do precisely what the defects instruct. As a worst case, an error

could cause a 0 to be read as a 1, or, in the case of a radiation machine in a hospital, a

shield to be removed instead of inserted. A software error could mean life or death.

The best way to overcome this problem is to develop software of high quality.

Software reuse and SEI (Software Engineering Institute)'s CMM (Capability Maturity

Model) are such attempts to achieve this goal [96, 97]. But until it becomes common

practice, software products liability laws are needed.

The intellectual property laws and liability laws are in the process of evolving to

provide adequate and appropriate protection for software. However, there are many

questions about these laws for which there are as yet no clear answers [29].

Because this research aims at reusing design information by applying reverse engi­

neering and redocumentation techniques, the above points are very much relevant.

28

2.2.3 Object-Oriented Programming (OOP) and the Unified Mod­

elling Language (UML)

One of the most popular buzz words for the past two decades or so is object-oriented

programming (OOP). The advocates of OOP claim that software reuse is all but auto­

matically guaranteed if software systems are built using OOP. Also many people think

that OOP is equal to programming in the C++ Language because of the huge popular­

ity it has gained since its invention. However, OOP is not achieved by simply writing

C programs that can be compiled with C++ compilers. There is more to OOP than that.

The power of OOP can be extended to much bigger objects, e.g., components and 00

frameworks [1 00].

OOP was the first attempt to achieve code-level reuse by embedding reusability

facilities such as encapsulation and inheritance directly into programming languages

themselves, and, hopefully, some degree of design reuse, as well, in the corresponding

object-oriented designs [130].

Although there are still many limitations of OOP, generally speaking, OOP has im­

proved software quality and programmers' productivity. These days, people cannot

imagine developing large systems without some degree of OOP features. As a typical

example, Microsoft Visual BASIC has many OOP features in it as a way of overcoming

the weak aspects of the traditional procedural BASIC language.

Realising the difficulties experienced during the early stages of software life cycle,

29

e.g., requirements, specification, analysis, and design, many object-oriented analysis

and design (OOA/D) methods have emerged, provoking the so-called "00 method

war" [24]. Some representative ones are Booch's method [23], Rumbaugh's OMT

(Object Modelling Technique) [111], and Jacobson's OOSE (Object-Oriented Soft­

ware Engineering) [56], to name but a few 1• However, recently the OOA/D notations

associated with these methods were incorporated into and standardised as the Unified

Modelling Language (UML) by the Object Management Group (OMG) [92]. UML is

a language for visualising, specifying, constructing, and documenting the artifacts of

a software-intensive system.

In UML, five different kinds of views are used to describe a software-intensive sys­

tem. They are use case view, design view, process view, implementation view, and de­

ployment view [24]. In addition, these five views are captured and represented through

nine different diagrams. They are class diagram, object diagram, component diagram,

deployment diagram, use case diagram, sequence diagram, collaboration diagram,

statechart diagram, and activity diagram. The first four diagrams are useful for de­

scribing the static parts of a system whereas the latter five are used to view the dynamic

parts of a system [24].

On top of the above features, UML provides a formal definition of a common ob­

ject analysis and design (OOA&D) metamodel to represent the semantics of OOA&D

models, which include static models, behavioural models, usage models, and archi-

1 A comprehensive survey of object-oriented methods can be found in Biggs [19].

30

tectural models [92]. For example, Figure 2.1 shows how various modelling elements

are connected together to comprise a class. According to the diagram, a class can

have structural feature and behavioural feature, and they all are subclasses of the class,

"ModelElement", and so on. It is interesting to see that UML semantics itself is de­

scribed by using UML.

UML facilitates reuse in terms of both products and processes, and provides users

with visual modelling techniques, something like blueprints used in building architec­

ture domain. Although some naive people admire UML as perfect in a similar manner

that they did to "OOP" and "design pattern", it has also some limitations. For exam­

ple, when it was first released, it lacked the capacity of specifying various kinds of

constraint on modelling elements. Later OCL (Object Constraint Language) strength­

ened this weakness of UML [142].

UML is a good conceptual tool for software developers because it is a standard and

is based on earlier accomplishments in OOP. As people are collaborating to improve it

further, its continued use in the future is certain.

31

u.l
N

!Element l

7f.
Mode/Element I

ElementOwneiShip name :Name I 1 .. • {ordered}
visibility: VisibilityKind .

~
+constrain

isSpecification : Boolean +~o!"!:':_dEiement
-

I +namespace I I I 0 .. 1
.

Generilli zableE/ement
Feature Name:s;pace Parameter I Constraint l isRoot: Boolean

ownerScope : ScopeKind isLeaf: Boolean
defaultValue : Expression I body: BooleanExpression .. l

visibility: VisibilityKind isAbstract: Boolean
kind: ParameterDirectionKind
'------.

~ ~ 6 . . +feature +owner
+parameter

0 .. 1-' C/as~fier j1 +type

{ordered} l r
+type,...,....-T 1 {ordered}

I ~
structurii/Feature

I Beha~iorii/Feature I 0 ··1

multiplicity :Multiplicity
lisQuery: Boolean I

changeability : ChangeableKind ~ tatget Scope : ScopeKind

I
1 Operation

concurrency: CaiiConcurrencyKind Method

isRoot: Boolean 1 .
body: ProcedureExpression

l Attribute isLeaf: Boolean

linitiaiValue : Expression isAbstract: Boolean +sp e cifi cation

specification : String

Figure 2.1: UML core package- backbone (OMG UML Specification 1.3)

2.2.4 Software Design R.euse

Influenced by OOP and attempting to overcome its weakness, many promising design

reuse approaches have emerged. Although these approaches vary greatly in their meth­

ods and scales, they all have one commonality, i.e., they all attempt to capture and use

higher abstractions than those more traditional small scale ones such as data structures

and algorithms [83].

As explained Chapter 1, design reuse can bring much greater benefits than simply

reusing code. The idea of reusing software designs is not new. One of the earliest

examples of design reuse was the DRACO approach proposed by Neighbors at the

University of California at Irvine in the early 1980s [91]. He attempted to construct

software systems from reusable software parts. In particular he was concerned with

the reuse of analysis and design information in addition to programming language

code. The goal of his work on DRACO was to increase the productivity of software

specialists in the construction of similar systems. The particular approach he took was

to organise reusable software components by problem area or domain. Statements of

programs in these specialised domains are then optimised by source-to-source program

transformations and refined into other domains. However, at that time he could not

implement his idea fully because of the inadequate technology.

Based on Neighbors's work and improving it further, Batory has been working on

software generators at the University of Texas at Austin [14]. He argues that the pro-

33

duction of well-understood software will eventually be the responsibility of software

generators and generators will enable high-performance, customised software systems

and subsystems to be assembled quickly and cheaply from component libraries. These

components are intelligent and they encapsulate domain-specific knowledge, e.g., best

practitioners' approaches, so that their instances will automatically customise and op­

timise themselves to the system in which they are being used. Currently Batory et

al. are transferring their technological innovations to Microsoft in order to help the

company's software production lines like its popular Office suite.

Since the broad adoption of OOP, people have been eager to develop large-scale,

higher abstraction-based reuse approaches. Two of the most prominent ones are object­

orientedframeworks and design patterns [72, 45]. These depend on each other very

much as observed by many researchers both from the industry and the academia. Evi­

dence for this fact is that most GoF patterns were discovered by developing 00 frame­

works and then later reflecting on them.

A design pattern systematically names, motivates, and explains a general design

that addresses a recurring design problem in object-oriented systems [45, 5]. It de­

scribes the problem, the solution, when to apply the solution, and its consequences.

It also gives implementation hints and examples. The solution is a general arrange­

ment of objects and classes that solve the problem. The solution is customized and

implemented to solve the problem in a particular context.

34

Framework is a set of cooperating classes that makes up a reusable design for a

specific class of software [57, 72]. A framework provides architectural guidance by

partitioning the design into abstract classes and defining their responsibilities and col­

laborations. A developer customises the framework to a particular application by sub­

classing and composing instances of framework classes.

Originally independent from these two approaches, research on software architec­

ture has been carried out, mainly identifying architectural styles and building domain­

specific software architectures (DSSAs) [137]. The Software Engineering Institute

(SEI) sponsored by the Department of Defense is the champion of this area of research.

This is probably the largest scale design reuse approach at present [47, 118].

In terms of abstraction level, software architecture and design patterns are at a higher

level than frameworks. This is explained by the fact that the former two are not nec­

essarily linked to any implementation details while the latter is tightly associated with

implementation details through OOP features such as abstract classes and the object

composition mechanism.

In the mean time, with respect to the size, the order is a little bit different, software

architecture being the largest, design patterns being the smallest, and frameworks po­

sitioned in the middle between them. It is true that frameworks can contain many

patterns, while the reverse is never so. Also an instance of software architecture is

often made of several frameworks.

35

Another noticeable thing about these three design reuse approaches is that frame­

works and patterns are realised in OOP, whereas software architecture covers much

broader areas beyond OOP.

Because only the design pattern concept is used in this research, an in-depth study

on it is carried out in the following section.

2.3 Design Patterns

2.3.1 Definition

Software design patterns are an emerging concept for guiding and documenting sys­

tem design. The original interest in patterns was sparked by the work of an architect,

Christopher Alexander, whose patterns encode knowledge of the design and construc­

tion of communities and buildings [3, 2]. His use of the word "pattern" takes on more

meaning than the usual dictionary definition. Alexander's patterns are both a "descrip­

tion" of a recurring pattern of architectural elements and a "rule" for how and when to

create that pattern [35, 15]. They are the recurring decisions made by experts, written

so that those less skilled can use them. They describe more of the "why" of design

than a simple description of a set of relationships between objects.

It is remarkable that one of most popular set of design patterns, so-called Gang of

36

11

o.:

u

o.·

Figure 2.2: Relationships between different software components

Four (GoF) patterns2 were discovered while developing frameworks such as ET ++ and

HotDraw and reflecting on them later [45]. This shows good quality applications and

frameworks do contain many kinds of patterns. Figure 2.2 shows the relationships

between class, pattern, framework, and application using the UML class notation. Pat­

terns are constructed of classes and/or objects. In turn, they comprise frameworks.

Finally, application can be instantiated from existing frameworks. The containment

existing between these software components are expressed using "aggregation" and

"mutiplicity". For example, a pattern contains at least one class by its own nature,

whereas a framework might not include any patterns at all, although it is desirable.

2In the pattern community, Gang of Four indicates the four authors who wrote the book, "Design

Patterns: Elements of Reusable Object-Oriented Software", i.e., Erich Gamma, Richard Helm, Ralph

Johnson and John Vlissides.

37

2.3.2 Describing Design Patterns

There have been many attempts to specify patterns more precisely either using formal

specification or graphical notations [69, 70]. However, it does not appear that a high

degree of success has been achieved. This is mainly because the approaches are impor­

tant and useful but they are not sufficient; they simply capture the end product of the

design process as relationships between classes and objects. To reuse the design, there

is a need for recording the decisions, alternatives, and trade-offs that led to it [45].

In general, a pattern has four essential elements, i.e., pattern name, problem, so­

lution, and consequences [45].

First, the pattern name is a handle that describes a design problem, its solutions,

and consequences in a word or two. Like identifiers used in programs, choosing suit­

able names for patterns is very important because they are important media of commu­

nication between developers. For example, in the structural programming paradigm, if

"stack" is mentioned; then the audience can be immediately reminded of the details of

the data structure. In a same token, by naming patterns properly, quite a large chunk

of information can be conveyed to others without explaining the details.

Second, the problem describes when to apply the pattern.

Third, the solution describes the elements that make up the design, their relation­

ships, responsibilities, and collaborations.

38

Finally, the consequences are the results and trade-offs of applying the pattern. The

consequences resulting from one pattern becomes a starting point from which other

patterns can be applied. This is where pattern languages move in. Pattern language

encapsulate a collection of patterns that tend to collaborate to achieve bigger goals that

one individual pattern can [16].

Containing the above four essential elements, the so-called GoF Pattern Template

is one of the most popular way of describing individual patterns. It was adapted from

Alexander's Pattern Template by the GoF [3]. The GoF Pattern Template has 13 sec­

tions to describe each pattern [45]:

Pattern Name and Classification: The pattern's name conveys the essence of the pat­

tern succinctly. A good name is vital, because it will become part of design vocabulary.

Design patterns can be classified by two criteria as shown in Table 2.2. The first

criterion, called "purpose", reflects what a pattern does. Patterns can have either cre­

ational, structural, or behavioural purpose. Creational patterns concern the process of

object creation. Structural patterns deal with the composition of classes or objects.

Behavioural patterns characterise the ways in which classes or objects interact and

distribute responsibility.

The second criterion, called "scope", specifies whether the pattern applies primarily

to classes or to objects. Class patterns deal with relationships between classes and their

subclasses. These relationships are established through inheritance, so they are static,

39

Purpose

Creational Structural Behavioural

Scope Class Factory Method Adapter(class) Interpreter

Template Method

Object Abstract Factory Adapter(Object) Chain of Responsibility

Builder Bridge Command

Prototype Composite Iterator

Singleton Decorator Mediator

Facade Memento

Flyweight Observer

Proxy State

Strategy

Visitor

Table 2.2: Design pattern categories (Gamma, 1994)

40

i.e., fixed at compile-time. Object patterns deal with object relationships, which can

be changed at run-time and are more dynamic. Almost all patterns use inheritance to

some extent. So the only patterns labeled "class patterns" are those that focus on class

relationships. Most patterns are in the object scope.

Creational class patterns defer some part of object creation to subclasses, while

creational object patterns defer it to another object. The structural class patterns use

inheritance to compose classes, while the structural object patterns describe ways to

assemble objects. The behavioural class patterns use inheritance to describe algorithms

and flow of control, whereas the behavioural object patterns describe how a group of

objects cooperate to perform a task that no single object can carry out alone.

Intent: The intent of a pattern describes the rationale for using the pattern.

Also Known As: This section indicates other well-known names for the pattern, if

any.

Motivation: A scenario that illustrates a design problem and how the class and object

structures in the pattern solve the problem. The scenario will help users understand the

more abstract description of the pattern that follows.

Applicability: This section explains the situations in which the pattern can be ap­

plied.

Structure: A graphical representation of the classes in the pattern using a notation

41

based on the Object Modeling Technique (OMT). Interaction diagrams are also used

to illustrate sequences of requests and collaborations between objects. Since the emer­

gence of UML, people use it to describe the structure of a pattern instead of using other

various 00 notations. Obviously, by using the standardised UML the communication

between developers can be improved.

Participants: The classes and/or objects participating in the pattern and their respon­

sibilities.

Collaborations: This section addresses the collaborations between the participants

of the pattern to carry out their responsibilities.

Consequences: The trade-offs and results of using the pattern are dealt with in this

section.

Implementation: The details of implementing the pattern are described.

Sample Code: Code fragments that illustrate how the pattern might be implemented

in an 00 programming language.

Known Uses: Examples of the pattern found in real systems are shown.

Related Patterns: This sections describes which other patterns are closely related to

this one, and the differences between them.

The GoF pattern catalogue contains 23 design patterns. Below a short description

of each pattern is given based on their names and intents in alphabetical order [45].

42

1. Abstract Factory: Provide an interface for creating families of related or depen­

dent objects without specifying their concrete classes.

2. Adapter: Convert the interface of a class into another interface that clients ex­

pect. Adapter lets classes work together that could not otherwise because of

incompatible interfaces.

3. Bridge: Decouple an abstraction from its implementation so that the two can

vary independently.

4. Builder: Separate the construction of a complex object from its representation

so that the same construction process can create different representations.

5. Chain of Responsibility: Avoid coupling the sender of a request to its receiver by

giving more than one object a chance to handle the request. Chain the receiving

objects and pass the request along the chain until an object handles it.

6. Command: Encapsulate a request as an object, thereby letting you parameter­

ize clients with different requests, queue or log requests, and support undoable

operations.

7. Composite: Compose objects into tree structures to represent part-whole hierar­

chies. Composite lets clients treat individual objects and compositions of objects

uniformly.

8. Decorator: Attach additional responsibilities to an object dynamically. Decora­

tors provide a flexible alternative to subclassing for extending functionality.

43

9. Facade: Provide a unified interface to a set of interfaces in a subsystem. Facade

defines a higher-level interface that makes the subsystem easier to use.

10. Factory Method: Define an interface for creating an object, but let subclasses

decide which class to instantiate. Factory Method lets a class defer instantiation

to subclasses.

11. Flyweight: Use sharing to support large numbers of fine-grained objects effi­

ciently.

12. Interpreter: Given a language, define a representation for its grammar along with

an interpreter that uses the representation to interpret sentences in the language.

13. Iterator: Provide a way to access the elements of an aggregate object sequentially

without exposing its underlying representation.

14. Mediator: Define an object that encapsulates how a set of objects interact. Me­

diator promotes loose coupling by keeping objects from referring to each other

explicitly, and it lets you vary their interaction independently.

15. Memento: Without violating encapsulation, capture and extemalise an object's

internal state so that the object can be restored to this state later.

16. Observer: Define a one-to-many dependency between objects so that when one

object changes state, all its dependents are notified and updated automatically.

44

17. Prototype: Specify the kinds of objects to create using a prototypical instance,

and create new objects by copying this prototype.

18. Proxy: Provide a surrogate or placeholder for another object to control access to

it.

19. Singleton: Ensure a class only has one instance, and provide a global point of

access to it.

20. State: Allow an object to alter its behaviour when its internal state changes. The

object will appear to change its class.

21. Strategy: Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients that

use it.

22. Template Method: Define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses redefine certain steps

of an algorithm without changing the algorithm's structure.

23. Visitor: Represent an operation to be performed on the elements of an object

structure. Visitor lets you define a new operation without changing the classes

of the elements on which it operates.

45

R'--.Jcteum~ntin,g.
Re~ngineering.
R~stm..:tulin!!

Figure 2.3: Software engineering processes related to design patterns

2.3.3 Using Design Patterns

Five kinds of software engineering processes are associated with design patterns as

explained in Figure 2.3. They are design recovery process, redocumentation process,

restructuring process, reengineering process, and forward-engineering process [57,

115, 102, 114, 129, 60]. The first one focusses on recovering design patterns, while

the other four are about the usage of those recovered patterns or the usage of known

patterns. First of all, it is necessary to recover design patterns from existing software by

applying design recovery techniques. There exist two kinds of design pattern recovery.

One is detecting the existence of already known patterns like GoF patterns. Another

is finding new patterns. Certainly the latter process will be much more difficult than

the former. In a sense, this is similar to data mining in artificial intelligence. Having

identified and catalogued them in pattern repositories, those patterns can be applied to

redocument software for improving program comprehensibility, and to restructure it

46

into a more desirable shape in terms of those specific software quality issues that users

are interested in such as low coupling and high cohesion. Also some users might want

to reengineer their software to adapt to new technologies like Enterprise Java Beans

(EJBs) and CORBA, or to meet the requirements of new business environments like

e-commerce. Finally, those patterns can be used in the development of new software,

i.e., forward engineering process, along with the usual data structures like stack and

queue.

2.3.4 Existing Work on Design Pattern Recovery

Fundamental to all pattern investigations is the attempt to recognise recurring situ­

ations in design so that users can learn from other people's experience. The pro­

cesses that investigators use to find patterns vary widely. There are three general

categories [61].

The introspective approach is when people reflect on the systems that they have

built and find patterns relating to their experience. This approach can be described

as a search for individual architectural style. The work of Shull et al carried out at

University of Maryland belongs to this category [119].

The artifactual approach studies systems built by different teams working on similar

problems. The pattern investigator is not involved with system development and seeks

a more objective perspective. This approach can be described as a study of the software

47

artifacts. Most work including the one developed in this thesis follows this approach.

The sociological approach studies the people building similar systems to discover

the recurring problems in the systems and in developer interactions. This technique

can best be described as an investigation through interview. Patterns that are recovered

from this approach tend to be at higher abstractions such as requirements and analysis

patterns [43].

Patterns thinking is new; so, too, is patterns investigation. No doubt there are other

approaches, and some researchers are using a combination of methods.

A few pieces of work on discovering design patterns from existing applications have

been reported from academia and industry [78, 27, 64]. However, most of the results

are special cases or, if general, inefficient for applying to industrial applications. Fur­

ther, some ways of identifying patterns are language-specific so that people cannot use

those methods for applications built with other programming languages. A typical one

is the work done with programs in Smalltalk by Brown [27].

2.4 Software Measurement

Effective management of any process requires quantification, measurement, and mod­

eling. Software metrics provide a quantitative basis for the development and vali­

dation of models of the software development process [37]. Metrics can be used to

48

improve software productivity and quality. Below some of the most commonly used

software metrics are introduced and their use in constructing models of the software

development process is reviewed. Although current metrics and models are certainly

inadequate, a number of organizations are achieving promising results through their

use. Results should improve further as additional experience with various metrics and

models is gained.

Software metrics are necessary to know the properties of the software that are devel­

oped and predict the needed effort and development period. Moreover, they are needed

when software is maintained for various reasons that fall into the four kinds of mainte-

nance, i.e corrective maintenance, adaptive maintenance, perfective maintenance and

preventive maintenance [132].

The history of measurement is as old as human history. Among those measuring

units, some such as foot still exist until now. It is believed that one of the most impor­

tant concepts in engineering discipline is measurement [42], as is reuse. An engineer

needs to know why to make measurements, what can be measured, how to measure,

and what to do with the results.

Confusion in using terms such as metrics and measurement proves that the area is

still a young discipline, and has been neglected by computer scientists. Lorenz defines

the terms as follows [76]. Metrics is a standard of measurement used to judge the at­

tributes of something being measured, such as quality or complexity, in an objective

49

manner. On the other hand, measurement is the determination of the value of a metric

for a particular object. Therefore, considering these two definitions, the term, mea­

surement should be used, when mentioning the activity itself to measure something.

However, since the term, metrics, is generally accepted and used in the discipline of

software engineering, the distinction between two terms is not strictly made in this

thesis.

2.4.1 The Goal/Question/Metric (GQM) Method

Originally proposed by Basili at the University of Maryland at College Park, the GQM

method is based upon the assumption that for an organisation to measure in a pur­

poseful way it must first specify the goals for itself and its projects, then it must trace

those goals to the data that are intended to define those goals operationally, and finally

provide a framework for interpreting the data with respect to the stated goals [10, 8].

Thus it is important to make clear, at least in general terms, what informational needs

the organisation has, so that these needs for information can be quantified whenever

possible, and the quantified information can be analysed in order to determine whether

or not the goals have been achieved.

The approach was originally defined for evaluating defects for a set of projects in the

NASA Goddard Space Flight Centre environment [12, 13]. The application involved

a set of case study experiments and was expanded to include various types of experi-

50

mental approaches. Although the approach was originally used to define and evaluate

goals for a particular project in a particular environment, its use has been expanded to

a larger context. It is used as the goal setting step in an evolutionary quality improve­

ment paradigm tailored for a software development organisation. The result of the

application of the Goal Question Metric method is the specification of a measurement

system targeting a particular set of issues and a set of rules for the interpretation of the

measurement data. The resulting measurement model has three levels [9]:

1. Conceptual level (Goal): A goal is defined for an object, for a variety of reasons,

with respect to various models of quality, from various points of view, relative

to a particular environment. Objects of measurement can be divided into "prod-

ucts", "processes", and "resources".

2. Operational level (Question): A set of questions is used to characterise the way

the assessment/achievement of a specific goal is going to be performed based on

some characterising model. Questions try to characterise the object of measure­

ment (product, process, resource) with respect to a selected quality issue and to

determine its quality from the selected viewpoint.

3. Quantitative level (Metric): A set of data is associated with every question in

order to answer it in a quantitative way. The data can be either objective or

subjective. For example, "Lines of Code (LOC)" is an objective metric whereas

"maintainability" is a typical subjective metric. It has been known that subjective

51

metrics are much more difficult to obtain than objective ones as the former ones

depend on both the objects that are being measured and the viewpoints from

which they are taken.

2.4.2 Kinds of Software Metrics

There are many ways of classifying software metrics. One popular classification

scheme is based on the objects of measurement, i.e, process metrics and product met­

rics. Process metrics try to improve software quality and productivity by measuring

properties of the processes of developing software systems whereas product metrics

are used to measure the characteristics of each software product or component [37].

As for software product metrics, they can be classified by many different crite­

ria. One way is to divide product metrics according to the programming paradigms

in which the subject system is developed. Thus, procedural, structural, and object­

oriented metrics exist [55, 42, 31, 76]. Procedural metrics measure properties of soft­

ware parts such as sizes of each module whereas structural metrics are based on the

relationships of each module with others. Other names cited for these two kinds of

metrics in the software metrics literature are intra-module metrics and inter-module

metrics, respectively. For example, "lines of code (LOC)" and "McCabe's cyclomatic

number (MVG)" are two of the most representative procedural metrics while "cou­

pling" and "cohesion" belong to the structural metrics group [81, 34]. On top of these,

52

another kind of metrics, i.e., 00 metrics have to be considered. Among many 00 met­

rics proposed, Chidamber and Kemerer's 00 metrics suite, in short, CK class metrics,

is the most popular [31]. They proposed six new class metrics. They are "weighted

methods per class (WMC)", "depth of inheritance tree (DIT)", "number of children

(NOC)", "coupling between object classes (CBO)", "response for a class (RFC)", and,

finally, "lack of cohesion in methods (LCOM)". With respect to the scope covered by

each group of metrics, object-oriented metrics are a superset of the other two, because

object -oriented systems contain those features that can be found in the traditional pro­

gramming concepts as well as newly added ones; whereas the the reverse is never true.

Thus, specific attributes of 00 systems are not reflected well using only procedural

metrics and structural ones.

2.5 Software Documentation and Redocumentation

To manage documents produced during software development, many documentation

methods have been developed. Here four representative ones are discussed. They are

the literate programming, hypertext-based redocumentation method, object-oriented

documentation method, and, finally, pattern documentation method.

Literate programming was originally proposed by Knuth, and it is a programming

methodology that combines a programming language with a documentation language,

making programs more robust, more portable, and more easily maintained than pro-

53

grams written only in a high-level language [65]. The main idea is treat a program as a

piece of literature, addressed to human beings rather than to a computer. The program

is also viewed as a hypertext document as with the World Wide Web (WWW). Users

combine the use of a text formatting language such as TeX, which is another invention

by Knuth, and a conventional programming language so as to maintain documentation

and source together. The program is sometimes marked to distinguish it from the text,

rather than the other way around as in normal programs. CWEB is an example of one

of many working literate programming prototypes.

Fletton and Munro developed a method to redocument software systems using hy­

pertext technology [38, 39]. They argue that software documentation should be pro­

duced as a by-product of the development process and handed over as a complete

package along with the source code to the team that will maintain the program. Their

method is a hypertext-based technique for browsing and documenting source code us­

ing a purpose-built prototype. The system uses hypertext links to allow programmers

to locate areas of interest rapidly and efficiently in source code and to examine and

update related documentation.

Matthews and Grove developed a documentation method based on object-oriented

concepts [80]. They proposed that the principles of object-oriented design, originally

developed to address software complexity, can also be applied to documentation.

There have been a few pieces of work on explicitly using patterns for documentation

54

and redocumentation purposes, although this work has by no means been complete.

Among them, Prechelt and Unger performed some experiments where they put pat­

tern information into programs as internal documentation, i.e., comments [104, 103].

They found that documenting design patterns in code as internal documentation eases

program maintenance.

Finally, Johnson did some research on documenting frameworks using patterns [57].

He argues that the documentation for a framework must meet several requirements to

encourage its use. He attempts to meet these requirements by structuring the docu­

mentation as a set of patterns, sometimes called a pattern language. He claims that

patterns can describe the purpose of a framework, can let application programmers use

a framework without having to understand in detail how it works and can teach many

of the design details embodied in the framework.

2.5.1 Document Management: XML

The origin of XML (eXtended Markup Language) can be traced to SGML (Standard

Generalised Markup Language) [51]. The intention of the invention of the language

was efficient document management. HTML (Hypertext Markup Language), a more

immediate descendent of SGML has done much to facilitate Internet revolution for

the past decade. However, the tags available in HTML are limited, and as companies

like Netscape or Microsoft added their own tags to HTML, users are gradually fac-

55

ing incompatibility problems. Thus the need for more open and extensible markup

languages has arisen [146].

Some recent development on XML technologies are studied below.

An XML document is well-formed only if it conforms to basic rules of XML such

as [52]:

• It must have start and end tags for every element.

• It must have one, and only one, root element.

• Empty elements are formatted correctly.

• The case of start and end tags can be either uppercase or lowercase, but they

must match.

• Elements must nest correctly.

• Attribute values must always be in quotes.

A valid document is well-formed and has been validated against a DTD (Document

Type Definition) or other specified XML Schema. This means that the document con­

forms to the rules of the DTD or Schema associated with the document.

A DTD describes the grammar expected of documents that use its vocabulary. Just

as English grammar helps writers form proper sentence structure, XML grammar

helps authors create properly structured documents. The expected XML grammar is

56

recorded in the DTD. The DTD provides the means to verify the document's confor­

mance: that is, its validity.

XML schema emerged as a way of overcoming some limitations of DTD. For ex­

ample, DTDs are very limited in their descriptive powers because they are based on

the use of EBNF syntax.

XSL (eXtensible Style Language) is a very powerful tool for transforming XML

documents into other formats by transforming an XML document into a separate tree

structure. Currently, XSL is used primarily to transform XML semantics into a display

format, such as the kind of display used in Web browsers. Despite considerable debate

about semantics within the XML/XSL development community, XSL has moved along

rapidly as a viable XML presentation language.

HTML linking only goes in one direction, i.e., transporting viewers from one page

to another. Because of this limitation, the XML community have been trying to extend

the linking facilities to be used with XML documents. XML linking and address­

ing mechanisms are specified in three W3C (World Wide Web Consortium) Working

Draft Documents. These are XML Path Language (XPath), XML Pointer Language

(XPointer), and XML Linking Language (XLink) Draft Documents. These are briefly

explained below.

The primary purpose of XPath is to do the actual addressing of parts rather than

the whole document. The name XPath comes from "path notation", which is used for

57

navigating through the hierarchical structure of an XML document.

XLink uses XML syntax to create structures to describe both the simple unidirec­

tional hyperlinks of today's HTML as well as more sophisticated multi-ended and

typed links. The important part of XLink is that it defines the relationship between

two or more data objects as opposed to a whole document.

XPointer builds on XPath to support addressing into the internal structures of XML

documents. Thus, it is possible to use the XML markup to link to specific parts of

another document without supplying an ID reference.

Tool builders are working rapidly to exploit these new technologies. At the time of

writing this thesis, only few web browsers support a certain degree of XML function­

ality.

In Chapter 4, the PBR method uses some of XML technologies to document a cata­

logue of patterns and redocument a system using detected patterns.

2.6 Summary

This chapter gave the background information on the research presented in this thesis.

First the emergence of the software engineering discipline as a solution to the soft­

ware crisis was reviewed. This is followed by a discussion on reuse in general and

design reuse in particular. Also the importance of measuring software as a means of

58

improving its quality and predicting its certain characteristics has also been mentioned.

Finally, a survey of the recent developments on XML and its related technologies was

conducted. This chapter concludes that XML helps users exchange their data more

easily and effectively.

59

Chapter 3

The Design Pattern Recovery (DPR)

Method

To apply patterns during software maintenance and evolution, it is essential to detect

patterns from legacy systems. This chapter shows a method to identify patterns from

object-oriented systems using software product metrics. The kind of patterns that this

research aims at identifying are the previously described GoF design patterns that con­

sist of 23 patterns catalogued in the pattern book [45].

This chapter is organised as follows:

Section 1 explains the reasons why it is necessary to detect pattern instances from

existing systems. Then, it is followed by a study on 00 development and maintenance

model that is fundamentally based on OOND and OOP. In Section 3, a pattern re-

60

covery method is developed and its implications are studied in detail with a specific

example. Finally, a summary of the the DPR method is given in the end.

3ol Introduction

Software design patterns are a way of facilitating design reuse in object-oriented sys­

tems by capturing recurring design practices. For several years, people from both

industry and academia have discovered many design patterns. Among them, the GoF

patterns are the most popular. Also, people are finally realising various usages of pat­

terns, e.g., documenting frameworks [57] and reengineering legacy systems [68, 129].

Furthermore, patterns and pattern languages are used to improve software processes

and software organisational structures [129, 35]. To maximise the benefits of using

this new abstraction and structuring concept, it is essential to develop a more system­

atic method to detect patterns. While it is equally important to discover new patterns,

for this research the focus is only on detecting GoF patterns.

3.2 00 Software Development and Maintenance Model

In 00 methods, problem space and solution space are linked closely through various

features such as static ones like encapsulation and inheritance and more dynamic ones

like message passing and object composition [23]. Four different worlds are assumed

61

Figure 3.1: Four different worlds represented in 00 systems

in object-oriented systems, i.e., the real world, the abstract world, the technical world

and the normative world [86] as shown in Figure 3.1. Each of these are associated with

their respective tasks. Thus it is right to say that developing 00 systems is essentially

an evolutionary process. All these worlds are potentially fruitful sources of discovering

patterns. In most existing work, however, the emphasis has been on examining design

and programming artifacts of the abstract and technical worlds, and this is where this

research work has focussed.

Although many variants of software life cycle exist, normally software is developed

starting from defining a problem, via finding a solution for the problem, finally, to

implementing it. Thus recovering the design information needs a reverse process of

the software development steps.

Along with the system-wide software life cycle, classes themselves have their own

life cycle. The Fractal Model proposed by Foote explains this well [41]. His model

differentiates three distinct stages that a typical class goes through.

62

The first stage is called a Prototype, or Initial Design Phase. This is a quick first pass

that may be quite loosely structured, and makes use of expedient, inheritance-based

code borrowing. During this stage, the designer should concentrate on the problem at

hand, and reuse is his secondary concern.

If an object proves successful, then it enters an Expansionary, or Exploratory Design

Phase. Foote argues that there is a distinctly Darwinian quality about this. Because the

object has demonstrated utility, users of the object attempt to reuse it in ways that differ

from its original purpose to varying degrees. In conventional systems, such reuse might

be undertaken by scavenging copies of the original component, or by introducing flags

and conditionals into the original code. These kinds of activities result in destroying

the system's structure and behaviour.

Object-oriented systems can retain the integrity of the original code by placing new

code in subclasses. As a result, broad, shallow white-box class hierarchies are devel­

oped. The subclasses added during the exploratory phase preserve the integrity and

identity of the requirements that inspired them, but are not yet truly general.

During the Consolidation, or Design Generalisation Phase, experience accrued dur­

ing successive reapplications of an object is used to increase its generality and struc­

tural integrity. During this phase, the programmer reorganises the class hierarchy, and

abstract classes that reflect the structural regularities in the system and the problem

domain emerge. The informal, inheritance-based, white-box relationships that may

63

~ Soliw.lr~? n .. ~\·~,.·kipllll;'lll Slt·ps

---~ l\lllt'111fd._.-ruiti~.:ation Sh:ps.

Figure 3.2: Software development and pattern investigation steps

be present in the system can be recast using black-box components. Consolidation is

undertaken in an opportunistic fashion, when the insight to justify refactoring has been

developed.

These three phases of evolving classes can be useful for designing frameworks as

they attempt to capture the reuse potentials of classes and objects during software

development.

Shull et al [119] identified three major parts comprising any design patterns on the

basis of the descriptions used in GOF's pattern catalogue. They are "purpose", "struc-

ture" and "implementation". Figure 3.2 shows the opposite directions that software

development and pattern identification steps take, respectively.

As indicated in Figure 3.3, design pattern recovery can bring greater benefits than

the normal reverse engineering process as the former captures more fragments of de-

sign information than the latter one. Further, the design information captured in design

pattern recovery process offers greater grains and is in a more formal fashion than the

64

IA"iign Pattrm
R~owry flr,x~"

R~"'\'f:I'St'·t>n~irh:~'fing

Pn_M.:e5-s

Figure 3.3: The two types of reverse engineering processes

software knowledge obtained through more traditional reverse engineering processes.

There are many ways of representing 00 systems either formally or informally. One

of the most helpful representations for this research purpose is the one that views an

00 system as "a collection of classes interacting with each other in the form of design

patterns". Ideally, an object-oriented system can be wholly represented with design

patterns. However, usually this is not the case. It is more common that some portions

of an 00 system are implemented in a less organised manner rather than following

the pattern-based approach. This is why it is necessary to restructure software in order

to reveal design rationales more clearly. Further, the improvements of programming

languages have resulted in the situations where certain patterns can be directly realised

just by following the language rules. For example, classes and objects might be called

patterns in some traditional language environments like COBOL or C. This indicates

the need for more explicit language support with regards to the easy application of

design patterns [25, 50, 26, 36].

65

3.3 The Design Pattern Recovery (DPR) Method

Design pattern matching is essentially a bipartite graph matching problem [95]. That

is, in the case of pattern detection, a mapping needs to be established between a group

of classes/objects that comprise a pattern to another group in a system. Below a more

detailed explanation of this situation is given.

To begin with, any simple graph, G can be identified as consisting in a finite set

of nodes, say V, generally referred to as vertices and a set, say E , which contains

as elements subsets of v, each subset consisting of a pair of vertices which may join

together and refer to as an edge [109]. Thus a graph, G is essentially the pair of sets V

and E that is to say: G = (vIE).

Consider a simple case where a graph G consists off our vertices, V = { v1 I v2 I v3 I v4}.

If it is assumed for simplicity that this graph does not contain repeated edges, i.e., is

not a multigraph, the possible edges of a graph constructed from the Cartesian product

of the vertices of the graph are E ~ V x v. The above subset does allow of directional

edges, such as E = { [v1 1 v2]~ [v2 I v1]}, and such graphs are referred as digraphs. For

instance, given

V = {v11v21V31v4},andE = {[vllv2]~[v21v3]~[v31v4]~[v4,vl]~[vllv3]~[v41v2]},

the graph G = ({vllv21v31v4}~{[vllv2]~[v21v3]~[v31v4]~[v41vl]~[vllv3]~[v41v2]}) is

produced. Diagrammatically, this may be represented as Figure 3.4.

A bipartite graph possesses the quality that the set of vertices V , of the graph

66

v1 v2

C8J
v3 v4

Figure 3.4: Representation of a graph G = (v ,E)

v1 u1

z
v2 u2

Figure 3.5: Representation of a bipartite graph G = (v ,u ,E)

G = (v ,E) may be considered as being divided into two distinct sets, say v and u.

Any individual edge, e such that e E E has one of its pairs from the set V and another

from the set U such that a mapping from the elements of V to those of u is obtained,

v <---+ U . E may now be considered as a subset of the Cartesian product, V x U , that

is E ~ v xu. Suppose there is a bipartite graph, G, such that G = (v ,u ,E) where

V = { v1 ,v2 } and U = { u 1 ,u2}. An arbitrary value may be assigned toE in a similar

way to above to obtain all mapping permutations from V to U . This should give a set

E with the cardinality of V x U, that is IE I = I (v x u) I·

matically, this may be represented as Figure 3.5.

In the case of design pattern matching, the set v will be the collection of classes

comprising each pattern while the second set, u is the whole collection of classes in a

67

system where users are interested in finding patterns. Obviously, this process is com­

putationally complex and expensive in general. The worst case complexity is 0 (n!) as

every possible permutation may have to be explored [77]. In addition, a class does not

necessarily participate in only one pattern. As it is known, the same class can be used

to realise other patterns. Clearly, this phenomenon makes it more difficult to map the

classes of a pattern to another group of classes in a system. One solution to solve this

problem is finding characteristic or functionally dominant classes or objects among the

ones that comprise patterns. This kind of classes are called c-classes hereafter. Users

of this method can simply select a class having a high metric as a characteristic one,

or expressed in \l better way, choose a characteristic class by analysing it semantically.

For example, the Composite pattern consists of several classes as shown in Figure 3.6.

Among them, the class named "Composite" is really essential for the pattern to carry

out its tasks and achieve its goals so that this class may be more characteristic than

others with regards to achieving its own goal of the pattern usage. Therefore using this

kind of information is semantically more viable.

For this work there are three steps involved in the DPR method. First, the GQM

approach is used to model the measurement plan for detecting pattern existence. Then,

c-classes of each GoF pattern are identified by inspecting their description appearing

in the pattern book in the format of the GoF pattern template. Finally, on the basis

of the measurement plan established and the c-classes identified, a pattern matching

algorithm is developed by applying some statistical analyses. The matching algorithm

68

I Cliont I Component

Operation()
Add(Component)
Remove(Componenl)
GetChild(int)

A
I I

Loaf Composite

Operatkm() Operation() o------
Add(Component)
Remove(Component)
GetChild(int)

children

-------- lorall g in ctli!dren
g.OperabonO:

Figure 3.6: The structure of the Composite pattern

ecce

~lali>til'~l

Analysrs

Figure 3.7: The process to extract pattern signatures

utilises p-value, s-value and a weighting scheme for different kinds of metrics based on

heuristics and experience'. In addition, each set of p-values comprises their respective

signatures for identifying themselves uniquely. Figure 3.7 shows these steps involved

in extracting signatures for pattern matching.

1p-value and s-value are named such because they are associated with percentile and similarity,

respectively.

69

Below the above steps are explored in greater details.

3.3.1 Applying the Goal/Question/Metric (GQM) Method

In 00 systems design information can be recovered more easily than in the ones pro­

grammed in procedural languages. This is because in the former, semantic information

and syntactic information are more closely associated than in the latter. It is possible

that by measuring and analysing the syntactic characteristics of software, the semantic

information embedded in those syntactic program structures can be obtained. How­

ever, using only procedural metrics and structural metrics is insufficient for this kind

of task as 00 programs do not follow the traditional way of software building. 00

metrics should be collected along with the other two groups of metrics to recover pat­

terns properly.

Establishing a proper measurement plan is important in order to achieve the goal

that is aimed at, and to measure what is intended. The GQM method is one of the most

popular ways to plan a measurement scheme. A detailed explanation of it has already

been given in Chapter 2, and it is used here for the purpose to recover patterns from

00 systems and evaluate the PBR method itself. In this research, the GQM plan can

be simply established as follows:

Goall: Recover design patterns.

Question 1: What are the main constituents of an 00 system?- classes, objects as

70

their dynamic instances, and their various relationships like aggregation, association,

and generalisation.

Metrics 1: procedural metrics- to measure intra-module properties.

Metrics 2: structural metrics -to measure inter-module properties.

Metrics 3: object-oriented metrics- to measure 00 properties.

Question 2: What are the building blocks that design patterns are implemented

with? -classes, objects as their dynamic instances, and their various relationships like

aggregation, association and generalisation.

Metrics 1: procedural metrics- to measure intra-module properties.

Metrics 2: structural metrics- to measure inter-module properties.

Metrics 3: object-oriented metrics- to measure 00 properties.

Goal2: Determine the effectiveness and correctness of the DPR method2•

Question 3: How accurate is the method at picking out design patterns?

Metrics 4: positive true cases and negative false cases

2 As in the most typical pattern matching examples, there are four different occasions when dealing

with recovered pattern candidates. They are positive true, positive false, negative true, and negative

false. The first two are about deciding the trueness of identified pattern candidates, whereas the rest two

handle the trueness of pattern instances that were not recovered as pattern candidates.

71

Figure 3.8: An instantiation of the GQM method for the DPR method

Question 4: Does the method pick out patterns that are not there?

Metrics 5: positive false cases

Question 5: Does the method fail to find patterns that are there?

Metrics 6: negative true cases

As indicated above, in the case of this research the first goal is quite clear, i.e., to

recover patterns. Then, to address the goal two questions can be asked. One is about

an 00 system, and another about a pattern as patterns are identified from 00 systems.

The same set of metrics are assigned to these two GQM questions.

Software systems developed in languages like C++ and Java mainly consist of classes,

their dynamic instances, i.e., objects, associations, generalisations and interactions be­

tween these. Also if a thorough investigation is made on them, it can be observed

that they are based on more traditional language features such as variables, operators,

72

conditional branches, functions, and procedures. Thus, if people want to know the

structure and behaviour of an 00 system, they should consider the three kinds of met­

rics that were mentioned above. The following are the metrics that have been adopted

in this pattern investigation:

1. Procedural metrics

• Lines of code (LOC): This is one of the oldest measures that simply counts

the number of non-blank, non-comment lines of source code. Many people

have argued against the usefulness of this fairly simple metric because of

its limitations in terms of predicting many different system characteristics.

However, it is still highly likely that code portions containing larger and

more important information like the one included in a c-class require more

LOC than others playing minor roles in the pattern instances.

• McCabe's cyclomatic complexity (MVG): Cyclomatic complexity is de­

fined for each module to be e - n + 2, where e and n are the number of

edges and nodes in the control flow graph, respectively. Cyclomatic com­

plexity is also known as v(G), where v refers to the cyclomatic number

in graph theory and G indicates that the complexity is a function of the

graph [81, 143]. This was developed to overcome the weakness of LOC.

As with LOC, MVG is a useful metric for locating which parts of code are

more complex, and therefore likely to contain relevant information.

73

• Lines of comments (COM): This is the counting of number of lines of

comments, and can be used to guess the quantity of design information

contained within a specific portion of code. Although at the worst case

programmers do not bother to put comments into their code irrespective

of the importance and complexity of the code. It is a common practice

that most well-trained professionals put a reasonable amount of comments

proportional to the importance and complexity of code they are writing.

2. 00 metrics

These four different metrics were developed by Chidamber and Kemerer at MIT

Slone Business School in the early 1990s [31]. It is interesting to know that the

original usage of these 00 metrics was to assist managerial decision making in

IT sectors. They are as follows:

• Weighted methods per class (WMC): This measures the sum of a weighting

function over the functions of a module. Two different weighting functions

are applied: WMC 1 uses the nominal weight of 1 for each function, and

hence measures the number of functions, while WMCv uses a weighting

function which is 1 for functions accessible to other modules, 0 for private

functions. The main weakness of this metric is that it does not address the

different types of methods or operations3. An operation denotes a service

3In UML terms, this kind of type is called stereotype that is an extension of the vocabulary of the

UML, which allows users to create new kinds of building blocks that are derived from existing ones but

74

that a class offers to its clients. Booch classifies the five most common

kinds of operations as follows [23]:

- Modifier: An operation that alters the state of an object.

- Selector: An operation that accesses the state of an object, but does

not alter the state.

- Iterator: An operation that permits all parts of an object to be accessed

in some well-defined order.

- Constructor: An operation that creates an object and/or initialises its

state.

- Destructor: An operation that frees the state of an object and/or de­

stroys the object itself.

Lippman suggests a slightly different categorisation: manager functions,

implementor functions, helping functions (all kinds of modifiers), and ac­

cess functions (equivalent to selectors) [75].

WMC is not concerned about these classifications but it simply differenti­

ates between private operations and non-private ones. The rationale behind

the inclusion of this metric despite its drawback is that operations are one

of few ways through which different parts of an 00 system can communi­

cate. By including this metric it is possible to predict the characteristics of

the class where these operations belong.

are specific to their problem [24].

75

• Depth of inheritance tree (DIT): This is the measure of the length of the

longest path of inheritance ending at the current module. The deeper the

inheritance tree for a module, the harder it may be to predict its behaviour.

On the other hand, increasing depth gives the potential of greater reuse by

the current module of behaviour defined for ancestor classes. This metric

is concerned about the vertical hierarchy of generalisation of a system.

As generalisation is one of major building blocks of a pattern, this is an

especially useful metric.

• Number of children (NOC): This counts the number of modules which in­

herit directly from the current module. Moderate values of this measure

indicate scope for reuse, however high values may indicate an inappro­

priate abstraction in the design. While DIT is for measuring the vertical

hierarchy of a generalisation relationship, NOC measures its horizontal as­

pect. As observed in some structural patterns like Facade, NOC can be a

useful measure for detecting the essentiality of a pattern.

• Coupling between objects (CBO): This is the measure of the number of

other modules which are coupled to the current module either as a client

or a supplier. Excessive coupling indicates weakness of module encapsu­

lation and may inhibit reuse. This metric has been used for detecting an

undesirable property of a system or a component as tightly coupled classes

make it difficult to maintain them. However, in this research quality as-

76

pects of a system are not dealt with but only the detection of patterns is

addressed. CBO can be a good candidate metric for figuring out collabora­

tions between classes because patterns are basically a group of collaborat­

ing classes/objects achieving their own specific goals.

3. Structural metrics

There exist three variants of each of the structural metrics: a count restricted to

the part of the interface which is externally visible (Flv, FOv and IF4v), a count

which only includes relationships which imply the client module needs to be

recompiled if the supplier's implementation changes (Fie, FOe and IF4c), and

an inclusive count (Fli, FOi and IF4i), where FI, FO and IF4 are respectively

defined as follows [34, 55]:

• Fan-in (FI): This measures the number of other modules which pass infor­

mation into the current module.

• Fan-out (FO): This is obtained by counting the number of other modules

into which the current module passes information.

• Information flow measure (IF4): This is a composite measure of structural

complexity, calculated as the square of the product of the fan-in and fan-out

of a single module.

Although FI, FO and IF4 are grouped as structural metrics, they actually capture

static snapshots of dynamic features going on between modules in a system. Dif-

77

ferent patterns cause different degrees of actions thus these metrics are included

for pattern detection.

3.3.2 Characteristic Classes of Patterns

Characteristic class of a pattern is defined as the most important and thus functionally

dominant class among the many participants of the pattern. The concept of c-class was

originally proposed by Spanoudakis and it was used to measure the significance of an

inconsistency in object-oriented software development [125].

For example, consider the Abstract Factory pattern. This pattern provides an in­

terface for creating families of related or dependent objects without specifying their

concrete classes [45]. Figure 3.9 shows how each constituent of the pattern collabo­

rates to achieve the intended aims of the pattern. Obviously, the class, AbstractFactory

seems to be the most important one among the pattern participants. Thus it is not a

surprise that the pattern is named such.

Table 3.1 indicates the characteristic classes of each pattern identified from the de­

sign pattern examples published in the design pattern book [45]. They were obtained

by inspecting the sections of each pattern carefully. This approach has an advantage

over simply choosing classes having maximum or minimum metric values because it

makes use of a certain degree of semantic information.

Not all patterns are suitable for detection in the above way though. Especially, in the

78

AbslrBCIFscloly Cli<!nt j
Crur•ProductA() I AbstractPmductA CreeloProductB{)

!
-- ProductA2 I 1 ProductA1 --

I I
Concrelefael0ry1 - Conc..Cefaelory2 ---------
CreatePrcdu::tA() CreetaProduciAIJ I AblfrtlttProdut:tB CrealaPIOductB() CreateProdut1BO :

;\
J

-- Product92 I 1 Product91
__ ,

Figure 3.9: The structure of the Abstract Factory pattern (from Gamma et al. [45])

Pattern C-Class Pattern C-Class

Abstract Factory MazeFactory Iter a tor Iterator

Adapter TextShape Mediator DialogDirector

Bridge Window Imp Memento Memento

Builder MazeBuilder Observer Observer

Chain of Responsibility HelpHandler Prototype MazePrototypeFactory

Command Command Proxy ImageProxy

Composite CompositeEquipment Singleton Singleton

Decorator Decorator State TCPState

Facade Compiler Strategy Compositor

Factory Method MazeGame Template Method View

Flyweight Glyph Visitor Visitor

Interpreter BooleanExp

Table 3.1: c-classes of each pattern example from the pattern book [45]

79

case of the Singleton pattern, it would certainly be better to search for a static instance

operation and a static member that holds the one and only instance.

3.3.3 The Pattern Matching Allgorithm Using P-Values and S-Values

In the previous sections the GQM plan for this investigation was developed and c­

classes of each pattern were identified. Now, it is necessary to develop an algorithm

to map each design pattern to their corresponding metrics patterns that are unique to

each other. First, using CCCC4
, the GoF patterns examples appearing in the pattern

book [45] are processed to obtain various software metrics information. Then some

statistical analysis techniques are applied to them. Obviously, this mapping scheme for

allotting real data to formal data, i.e., metrics, is comparative. As the size of classes

varies greatly depending on each program, it is meaningless to allot absolute metrics to

each pattern. Among many plausible statistical analysis methods, rank and percentile

analyses were selected. These analyses produce a table that contains the ordinal and

percentage rank of each value in a data set. The relative standing of the values in a

data set can be analysed. For example, Tables 3.2 to 3.4 show how p-values of each

CBO metric value can be obtained. The data appearing in column 1 to 5 represent the

names of the classes, their CBO metric values, ranks, percentile values, and p-values,

respectively. The p-value of a metric value is determined by its rank and percentile

4CCCC (C and C++ Code Counter) is a metrics producer for the C language and the C++ language.

It was developed by Tim Littlefair in Australia in 1997.

80

value. The Data Analysis facility of Microsoft Excel 97 is used to generate p-values

semi-automatically5
• They are called p-values as they originate from percentile values

and the range of the values are between 0 and 1 inclusive. In this transformation,

the maximum value corresponds to 1 whereas 0 is for the minimum value. P-values

are not absolute but relative to the metric values of other classes in a system. This

approach of using ranks and percentile values is better than using normal distribution

curve generated by computing average and standard deviation regarding the breadth

of the values obtained. It was observed that some metrics do not show the normal

distribution. One of the reasons for this phenomenon is that unlike class libraries or

00 frameworks, application programs are not carefully planned and thought out when

designed in the first place. For example, class libraries like the Java class libraries have

inheritance hierarchies that are both much broader and deeper than normal programs,

resulting in a high variance of DIT and NOC metrics.

More formally, p-value can be defined as follows.

Definition 1: The p-value of a class c; is defined as:

(
·)_Percentile o Rank(Metriem(ci))

Pm Ci - 100

where
5 Excel 97 is a registered trademark of Microsoft Corporation.

81

Module Name CBO Rank Percentile P-Value Module Name CBO Rank Percentile P-Value

ASCII7Stream I 131 5.50% 0.06 Coord I 131 5.50% 0.06

AStrategy I 131 5.50% 0.06 CountingMazeBuilder I 131 5.50% 0.06

AbstractList 0 171 .00% 0.00 Creator 4 35 67.00% 0.67

AnalogCiock 4 35 67.00% 0.67 Currency I 131 5.50% 0.06

AndExp 2 86 27.90% 0.28 Decorator 3 61 53.00% 0.53

Application 4 35 67.00% 0.67 DerivedCiass I 131 5.50% 0.06

ArrayCompositor I 131 5.50% 0.06 Dialog 3 61 53.00% 0.53

BTree I 131 5.50% 0.06 DialogDirector 6 9 89.30% 0.89

BaseCiassSubject I 131 5.50% 0.06 DigitaiCiock 4 35 67.00% 0.67

Body I 131 5.50% 0.06 Document 2 86 27.90% 0.28

BombedMazeFactory I 131 5.50% 0.06 Door 5 21 81.50% 0.82

BombedMazeGame I 131 5.50% 0.06 DoorNeedingSpell 3 61 53.00% 0.53

Bombed Wall 2 86 27.90% 0.28 Element 4 35 67.00% 0.67

BooleanExp 6 9 89.30% 0.89 ElementA 3 61 53.00% 0.53

BorderDecorator 2 86 27.90% 0.28 ElementB 3 61 53.00% 0.53

Bus 4 35 67.00% 0.67 Employee 0 171 .00% 0.00

Buuon 5 21 81.50% 0.82 EnchantedMazeBuilder 3 61 53.00% 0.53

BytecodeStream 3 61 53.00% 0.53 EnchantedMazeFactory 2 86 27.90% 0.28

Cabinet I 131 5.50% 0.06 EnchantedMazeGame 2 86 27.90% 0.28

Card 4 35 67.00% 0.67 EnchantedRoom 2 86 27.90% 0.28

Character 4 35 67.00% 0.67 Entry Field 4 35 67.00% 0.67

Chassis 6 9 89.30% 0.89 Equipment 5 21 81.50% 0.82

Clocklimer 3 61 53.00% 0.53 Equipment Visitor 10 4 98.30% 0.98

CodeGenerator 6 9 89.30% 0.89 Event 3 61 53.00% 0.53

Collection 2 86 27.90% 0.28 ExpressionNode 5 21 81.50% 0.82

Column 0 171 .00% 0.00 ExtendedHandler 2 86 27.90% 0.28

Command 3 61 53.00% 0.53 FileStream I 131 5.50% 0.06

Compiler 2 86 27.90% 0.28 FilteringListTraverser 3 61 53.00% 0.53

Component 3 61 53.00% 0.53 AoppyDisk 5 21 81.50% 0.82

Composite I 131 5.50% 0.06 Font 2 86 27.90% 0.28

CornpositeEiement 3 61 53.00% 0.53 FontDialogDirector 5 21 81.50% 0.82

ComposileEquipment 6 9 89.30% 0.89 Glyph 4 35 67.00% 0.67

Composition 2 86 27.90% 0.28 GlyphContext 4 35 67.00% 0.67

Compositor 4 35 67.00% 0.67 GlyphFactory I 131 5.50% 0.06

CompressingStream 2 86 27.90% 0.28 Graphic 9 5 97.20% 0.97

Constant 2 86 27.90% 0.28 Handle I 131 5.50% 0.06

ConstraintSol ver 2 86 27.90% 0.28 Handler 4 35 67.00% 0.67

ConstraintSolverMemento 2 86 27.90% 0.28 HelpHandler 4 35 67.00% 0.67

Context 9 5 97.20% 0.97 HelpRequest 2 86 27.90% 0.28

Table 3.2: CBO metric values of each class in the GoF patterns examples 113

82

Module Name CBO Rank Percentile P-Value Module Name CBO Rank Percenlile P-Value

Image 7 8 96.00% 0.96 Parser 2 86 27.90% 0.28

lmageProxy 6 9 89.30% 0.89 PasteCommand 2 86 27.90% 0.28

ImagePtr I 131 5.50% 0.06 Point 6 9 89.30% 0.89

Inventory 2 86 27.90% 0.28 Pricing Visitor 6 9 89.30% 0.89

Inventory Visitor 6 9 89.30% 0.89 PrintNEmployees 2 86 27.90% 0.28

Item 3 61 53.00% 0.53 PrintRequest 2 86 27.90% 0.28

Item Type 0 171 .00% 0.00 Product 4 35 67.00% 0.67

JterationState I 131 5.50% 0.06 Productld 2 86 27.90% 0.28

lterator 3 61 53.00% 0.53 ProgramNode 3 61 53.00% 0.53

lteratorPtr I 131 5.50% 0.06 ProgramNodeBuilder 2 86 27.90% 0.28

Leaf I 131 5.50% 0.06 RISCCodeGenerator 4 35 67.00% 0.67

List /4 I 99.40% 0.99 Request 4 35 67.00% 0.67

ListBox 5 21 81.50% 0.82 ReverseListlterator 2 86 27.90% 0.28

Listlterator 5 21 81.50% 0.82 Room 14 I 99.40% 0.99

ListTraverser 4 35 67.00% 0.67 Room WilhABomb 2 86 27.90% 0.28

Manipulator I 131 5.50% 0.06 Row 0 171 .00% 0.00

MapSile 3 61 53.00% 0.53 Scanner 2 86 27.90% 0.28

Mare 4 35 67.00% 0.67 ScroiiDecorator 2 86 27.90% 0.28

MazeBuilder 4 35 67.00% 0.67 Shape 2 86 27.90% 0.28

MazeFactory 5 21 81.50% 0.82 SimpleCommand I 131 5.50% 0.06

MazeGame 5 21 81.50% 0.82 SimpleCompositor I 131 5.50% 0.06

MazePrototypeFactory 5 21 81.50% 0.82 Singleton 2 86 27.90% 0.28

Memento 2 86 27.90% 0.28 Skiplist I 131 5.50% 0.06

MouseEvent 4 35 67.00% 0.67 SkipListherator 2 86 27.90% 0.28

MoveCommand 3 61 53.00% 0.53 Spell 2 86 27.90% 0.28

MyCreator 2 86 27.90% 0.28 StandardCreator I 131 5.50% 0.06

My Product I 131 5.50% 0.06 Slandan!MareBuilder 3 61 53.00% 0.53

My Singleton I 131 5.50% 0.06 State 2 86 27.90% 0.28

MyS1ra1egy 0 171 .00% 0.00 StatementNode 2 86 27.90% 0.28

MySubjecl I 131 5.50% 0.06 Stream 4 35 67.00% 0.67

MyType I 131 5.50% 0.06 StreamDecorator 2 86 27.90% 0.28

My View I 131 5.50% 0.06 Subjecl 6 9 89.30% 0.89

NameSingletonPair 0 171 .00% 0.00 TCPCiosed 2 86 27.90% 0.28

NoiExp 2 86 27.90% 0.28 TCPConnection 6 9 89.30% 0.89

Observer 4 35 67.00% 0.67 TCPEslablished 3 61 53.00% 0.53

OpenCommand 2 86 27.90% 0.28 TCPListen 2 86 27.90% 0.28

OrExp 2 86 27.90% 0.28 TCPOcleiStn:am 3 61 53.00% 0.53

Originator 2 86 27.90% 0.28 TCPState 6 9 89.30% 0.89

ParentCiass I 131 5.50% 0.06 TeXCompositor I 131 5.50% 0.06

Table 3.3: CBO metric values of each class in the GoF patterns examples 2/3

83

Module Name CBO Rank Perrensile P-Value Module Name CBO Rank Percentile P-Value

Text I 131 5.50% 0.06 Visitor 8 7 96.60% 0.97

TextDocument I 131 5.50% 0.06 VisuaiComponent 5 21 81.50% 0.82

TextManipulator 2 86 27.90% 0.28 Wall 3 61 53.00% 0.53

TextRangc I 131 5.50% 0.06 Widget 12 3 98.80% 0.99

TextShape 4 35 67.00% 0.67 Wmdow 4 35 67.00% 0.67

Text View 3 61 53.00% 0.53 Window Imp 0 171 .00% 0.00

TheirProduct I 131 5.50% 0.06 YourProduct I 131 5.50% 0.06

Token 0 171 .00% 0.00 YourType I 131 5.50% 0.06

Thpic 5 21 81.50% 0.82 anonymous 0 171 .00% 0.00

TwistyThrnyPassage I 131 5.50% 0.06 boo! 4 35 67.00% 0.67

VariableExp 3 61 53.00% 0.53 istream 5 21 81.50% 0.82

View 2 86 27.90% 0.28 ostream 3 61 53.00% 0.53

Table 3.4: CBO metric values of each class in the GoF patterns examples 3/3

• m E M, and M is the set of the 17 kinds of metrics:

M {LOG, MVG, COM, W MC1, W MCv, DIT, NOC, CEO, FOv,

FOe, FOi, Fiv, Fie, Fli, I F4v, IF4e, IF4i}

o Rank (x) produces the rank of the value x in a data set.

• Pereentile(x) assigns the lOOth percentile to the value x if xis the maximum

value and Oth percentile to it if it is the minimum value in a data set. Intermediate

values have percentiles in steps of 1/ (n- 1), where n is the number of the values

in a data set.

• Metriem(ei) is them metric of the class ei.

Using the above formulae and steps, metrics signatures of each pattern were ob­

tained. They consist of p-values. Table 3.5 shows them all.

84

00
Ul

Pattern

Abstract Factory

Adapter

Bridge

Builder

Chain of Responsibility

Command

Composite

Decorator

Facade

Factory Method

Flyweight

Interpreter

Iterator

Mediator

Memento

Observer

Prototype

Proxy

Singleton

State

Strategy

Template Method

Visitor

C-Ciass LOC MVG COM WMCl WMCv DIT NOC CBO Fov Foe Foi Flv

Maze Factory 0.99 1.00 0.98 0.83 0.73 0.00 0.93 0.82 0.88 0.91 0.87 0.31

TextShape 0.97 0.89 0.97 0.70 0.73 0.90 0.00 0.67 0.52 0.00 0.46 0.85

Window Imp 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MazeBuilder 0.79 0.82 0.63 0.70 0.73 0.00 0.93 0.67 0.88 0.91 0.87 0.00

HelpHandler 0.94 0.86 0.84 0.83 0.73 0.00 0.87 0.67 0.77 0.83 0.75 0.31

Command 0.37 0.00 0.32 0.46 0.49 0.00 0.93 0.53 0.77 0.91 0.75 0.00

CompositeEquipment 0.87 0.82 0.86 0.97 0.98 0.53 0.93 0.89 0.77 0.91 0.75 0.63

Decorator 0.68 0.00 0.73 0.46 0.49 0.53 0.87 0.53 0.68 0.83 0.65 0.31

Compiler 0.72 0.00 0.53 0.36 0.37 0.00 0.00 0.28 0.00 0.00 0.00 0.63

MazeGame 0.99 0.99 0.99 0.97 0.98 0.00 0.87 0.82 0.68 0.83 0.65 0.85

Glyph 0.69 0.00 0.77 0.99 1.00 0.00 0.76 0.67 0.52 0.71 0.46 0.85

BooleanExp 0.43 0.00 0.53 0.70 0.73 0.00 0.99 0.89 0.94 0.99 0.94 0.31

Jterator 0.65 0.00 0.25 0.70 0.63 0.00 0.87 0.53 0.77 0.83 0.75 0.00

DialogDirector 0.50 0.00 0.53 0.70 0.73 0.00 0.76 0.89 0.94 0.71 0.94 0.31

Memento 0.58 0.00 0.77 0.61 0.20 0.00 0.00 0.28 0.52 0.00 0.46 0.00

Observer 0.37 0.00 0.00 0.46 0.49 0.00 0.87 0.67 0.77 0.83 0.75 0.31

MazePrototypeFactory 0.98 0.97 0.92 0.70 0.73 0.53 0.00 0.82 0.00 0.00 0.00 0.98

imageProxy 0.95 0.89 0.96 0.94 0.94 0.53 0.00 0.89 0.00 0.00 0.00 0.98

Singleton 0.92 0.89 0.80 0.61 0.63 0.00 0.76 0.28 0.52 0.71 0.46 0.00

TCPState 0.82 0.00 0.65 0.94 0.94 0.00 0.93 0.89 0.77 0.91 0.87 0.63

Compositor 0.68 0.00 0.86 0.46 0.49 0.00 0.93 0.67 0.88 0.91 0.87 0.00

View 0.75 0.00 0.65 0.70 0.73 0.00 0.76 0.28 0.52 0.71 0.46 0.31

Visitor 0.62 0.00 0.65 0.70 0.73 0.00 0.00 0.97 0.88 0.00 0.87 0.93

Table 3.5: GoF patterns signatures based on c-classes and p-values

Fie Fii IF4v IF4c IF4i

0.00 0.28 0.89 0.00 0.86

0.91 0.80 0.84 0.00 0.78

0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.49 0.28 0.84 0.96 0.78

0.00 0.00 0.00 0.00 0.00

0.91 0.80 0.93 0.99 0.95

0.49 0.28 0.77 0.96 0.74

0.00 0.58 0.00 0.00 0.00

0.00 0.80 0.93 0.00 0.91

0.00 0.80 0.84 0.00 0.78

0.00 0.28 0.92 0.00 0.89

0.00 0.00 0.00 0.00 0.00

0.00 0.28 0.92 0.00 0.89

0.00 0.28 0.00 0.00 0.68

0.00 0.28 0.84 0.00 0.78

0.49 0.97 0.00 0.00 0.00

0.91 0.99 0.00 0.00 0.00

0.00 0.28 0.00 0.00 0.68

0.00 0.58 0.93 0.00 0.93

0.00 0.00 0.00 0.00 0.00

0.00 0.28 0.73 0.00 0.68

0.00 0.92 0.98 0.00 0.98

Metric Weight Metric Weight Metric Weight

LOC 1 NOC 2 Fie 1

MVG 2 CBO 2 Fli 1

COM 1 FOv 1 IF4v 1

WMC1 1 FOe 1 IF4c 1

WMCv 1 FOi 1 IF4i 1

DIT 2 Flv 1

Table 3.6: The weights assigned to each metric

Note that the same set of metrics were allotted to Questions 1 and 2 of Goal 1 in the

GQM plan developed in Chapter 2. This implies that the subject system that users are

interested in needs to be measured and compared to pattern metrics signatures. The

similarity between both sets of p-values is explored. Different weights were assigned

to the 17 kinds of metrics according to their importance to pattern composition as

shown in Table 3.6. These weights were decided by the importance of the design con­

cepts, experience and heuristics regarding the formation of a pattern. If these weights

are applied to the absolute values of the difference between the two pairs of p-values

and the sum of these values is divided by the sum of the weights, then the s-values

ranging from 0 to 1 inclusive are obtained. They are called s-values as they measure

similarity between two classes.

This is expressed in the following definition.

86

Definition 2: The s-value between two classes c,: and sis defined as:

s(c,: ,q) = L:mEM(wm ·IPm(G:)- Pm(S)I)
L:mEMWm

where

• w is the weights of each metric rn E M .

• Pm (c,:) and Pm (s) are as defined in Definition 1.

• The set M is as defined in Definition 1.

For example, consider detecting patterns from a system called System 1, and it has

a class called Class A. Using the steps described earlier, suppose the p-values of each

metric of Class A were obtained. They are 0.59, 0.00, 0.00, 0.37, 0.19, 0.00, 0.00,

0.26, 0.63, 0.00, 0.57, 0.00, 0.23, 0.28, 0.00, 0.00, and 0.76, respectively. These p-

values are compared with the p-values in Table 3.5 according to the formulae in order

to gets-values appearing in the last column of Table 3.7. Theses-values indicate the

likelihood of a class being an active participant, in other words, c-class, of a pattern

instance.

87

00
00

Pattern

Abstract Factory

Adapter

Bridge

Builder

Chain of Responsibility

Command

Composite

Decorator

Facade

Factory Method

flyweight

Interpreter

lterator

Mediator

Memento

Observer

Prototype

Proxy

Singleton

State

Strategy

Template Method

Visitor

LOC MVG COM

0.40 1.00 0.98

0.38 0.89 0.97

0.54 0.00 0.00

0.20 0.82 0.63

0.35 0.86 0.84

0.22 0.00 0.32

0.28 0.82 0.86

0.09 0.00 0.73

0.13 0.00 0.53

0.41 0.99 0.99

O.ll 0.00 0.77

0.16 0.00 0.53

0.06 0.00 0.25

0.09 0.00 0.53

0.01 0.00 0.77

0.22 0.00 0.00

0.39 0.97 0.92

0.36 0.89 0.96

0.33 0.89 0.80

0.23 0.00 0.65

0.09 0.00 0.86

0.17 0.00 0.65

O.D3 0.00 0.65

WMCI WMCv orr NOC CBO Fov Foe

0.46 0.53 0.00 0.93 0.56 0.26 0.91

0.33 0.53 0.90 0.00 0.41 0.11 0.00

0.37 0.19 0.00 0.00 0.26 0.63 0.00

0.33 0.53 0.00 0.93 0.41 0.26 0.91

0.46 0.53 0.00 0.87 0.41 0.14 0.83

0.09 0.30 0.00 0.93 0.27 0.14 0.91

0.60 0.79 0.53 0.93 0.63 0.14 0.91

0.09 0.30 0.53 0.87 0.27 0.05 0.83

0.01 0.17 0.00 0.00 0.02 0.63 0.00

0.60 0.79 0.00 0.87 0.56 0.05 0.83

0.63 0.81 0.00 0.76 0.41 0.11 0.7!

0.33 0.53 0.00 0.99 0.63 0.31 0.99

0.33 0.44 0.00 0.87 0.27 0.14 0.83

0.33 0.53 0.00 0.76 0.63 0.31 0.71

0.25 0.01 0.00 0.00 0.02 O.ll 0.00

0.09 0.30 0.00 0.87 0.41 0.14 0.83

0.33 0.53 0.53 0.00 0.56 0.63 0.00

0.57 0.75 0.53 0.00 0.63 0.63 0.00

0.25 0.44 0.00 0.76 0.02 O.ll 0.71

0.57 0.75 0.00 0.93 0.63 0.14 0.91

0.09 0.30 0.00 0.93 0.41 0.26 0.91

0.33 0.53 0.00 0.76 0.02 0.11 0.71

0.33 0.53 0.00 0.00 0.71 0.26 0.00
-- -

Table 3.7: s-values of Class A

Foi Fiv Fie F"ti JF4v IF4c IF4i S-Value

0.30 0.31 0.23 0.00 0.89 0.00 0.!0 0.49

O.ll 0.85 0.68 0.52 0.84 0.00 0.02 0.46

0.57 0.00 0.23 0.28 0.00 0.00 0.76 0.19

0.30 0.00 0.23 0.28 0.00 0.00 0.76 0.42

0.18 0.31 0.26 0.00 0.84 0.96 0.02 0.48

0.18 0.00 0.23 0.28 0.00 0.00 0.76 0.28

0.18 0.63 0.68 0.52 0.93 0.99 0.19 0.64

0.09 0.31 0.26 0.00 0.77 0.96 O.Q3 0.37

0.57 0.63 0.23 0.30 0.00 0.00 0.76 0.19

0.09 0.85 0.23 0.52 0.93 0.00 0.14 0.54

0.11 0.85 0.23 0.52 0.84 0.00 0.02 0.38

0.37 0.31 0.23 0.00 0.92 0.00 0.13 0.38

0.18 0.00 0.23 0.28 0.00 0.00 0.76 0.28

0.37 0.31 0.23 0.00 0.92 0.00 0.13 0.35

0.11 0.00 0.23 0.00 0.00 0.00 0.08 0.08

0.18 0.31 0.23 0.00 0.84 0.00 0.02 0.27

0.57 0.98 0.26 0.69 0.00 0.00 0.76 0.48

0.57 0.98 0.68 0.71 0.00 0.00 0.76 0.53

0.11 0.00 0.23 0.00 0.00 0.00 0.08 0.30

0.30 0.63 0.23 0.30 0.93 0.00 0.17 0.43

0.30 0.00 0.23 0.28 0.00 0.00 0.76 0.32

0.11 0.31 0.23 0.00 0.73 0.00 0.08 0.26

0.30 0.93 0.23 0.64 0.98 0.00 0.22 0.31
-

The values in the metrics columns are the absolute values of the difference between

two pairs of p-values, while the last column contains their s-values. According to the

results appearing in the table, it can be assumed that Class A is highly likely to be

a participant of a Memento pattern instance as its s-value is only 0.08, whereas it is

unlikely that the class is included in a Composite pattern instance having the s-value

of0.64.

Also an investigation was carried out to see how similar each pattern is to others by

calculating theirs-values. Table 3.8 shows theirs-values. According to the s-values in

the table, each pattern has a reasonably high degree of distinctiveness or uniqueness in

their metrics characteristics.

Because there are 23 patterns, the number of occasions are equal to the number of

2-combinations of a set with 23 distinct elements, i.e.,

23!
c (23,2) = '()' = 253 2. 23-2 .

146 s-values are greater than equal to 0.30, thus the percentage is 57.71%. This rate

shows the reasonably high degree of uniqueness or distinctiveness of the pattern sig-

natures of each metric. In Table 3.8, abbreviations were used to display all mappings

properly. They are indicated in Table 3.9.

The metrics similarity is commutative but not transitive. This means that when two

classes have high similarity and one of them has also high similarity with the third one,

that this does not imply that the first one has high similarity with the third one.

89

\0
0

Pattern

AB

AD

BR

BU

CH

CM

CP

DE

FA

FT

FY

IN

IT

MD

MM

OB

PR

PX

Sl

ST

SY

TE

VI

AB AD BR BU

0.00 0.39 0.66 0.18

0.00 0.64 0.49

0.00 0.49

0.00

CH CM CP DE FA FT FY IN IT MD MM OB PR

0.13 0.33 0.25 0.34 0.55 0.10 0.27 0.18 0.32 0.19 0.45 0.24 0.45

0.37 0.62 0.33 0.44 0.46 0.33 0.37 0.53 0.58 0.49 0.42 0.51 0.22

0.67 0.33 0.84 0.57 0.18 0.71 0.53 0.54 0.35 0.51 0.22 0.42 0.49

0.22 0.16 0.37 0.37 0.43 0.28 0.33 0.25 0.14 0.26 0.37 0.28 0.43

0.00 0.36 0.18 0.21 0.55 0.19 0.28 0.26 0.32 0.26 0.45 0.25 0.47

0.00 0.51 0.27 0.32 0.42 0.31 0.21 0.04 0.23 0.28 0.14 0.57

0.00 0.27 0.66 0.21 0.33 0.35 0.49 0.36 0.62 0.41 0.44

0.00 0.45 0.38 0.27 0.26 0.27 0.25 0.36 0.20 0.53

0.00 0.53 0.36 0.45 0.32 0.41 0.16 0.39 0.32

0.00 0.18 0.27 0.38 0.27 0.49 0.30 0.39

0.00 0.21 0.27 0.17 0.31 0.19 0.47

0.00 0.21 0.04 0.36 0.12 0.60

0.00 0.21 0.27 0.16 0.53

0.00 0.32 0.12 0.56

0.00 0.31 0.43

0.00 0.61

0.00

Table 3.8: s-values for showing similarity between patterns

PX Sl ST SY TE VI

0.49 0.22 0.18 0.27 0.26 0.35

0.22 0.40 0.47 0.58 0.44 0.34

0.54 0.45 0.60 0.39 0.41 0.48

0.48 0.18 0.27 0.12 0.27 0.43

0.50 0.23 0.26 0.32 0.26 0.42

0.61 0.27 0.27 0.06 0.23 0.42

0.39 0.41 0.25 0.47 0.43 0.44

0.58 0.34 0.28 0.27 0.21 0.34

0.36 0.36 0.42 0.34 0.29 0.32

0.41 0.26 0.18 0.37 0.30 0.33

0.47 0.28 0.13 0.27 0.13 0.23

0.63 0.34 0.10 0.20 0.18 0.24

0.57 0.24 0.25 0.08 0.19 0.38

0.59 0.30 0.11 0.21 0.14 0.20

0.47 0.23 0.39 0.28 0.20 0.27

0.65 0.30 0.17 0.18 0.16 0.30

0.06 0.41 0.55 0.53 0.53 0.39

0.00 0.46 0.53 0.57 0.57 0.42

0.00 0.34 0.26 0.16 0.46

0.00 0.23 0.19 0.21

0.00 0.23 0.38

0.00 0.30

0.00

Pattern Abbreviation Pattern Abbreviation

Abstract Factory AB lterator IT

Adapter AD Mediator MD

Bridge BR Memento MM

Builder BU Observer OB

Chain or Responsibility CH Prototype PR

Command CM Proxy PX

Composite CP Singleton Sl

Decorator DE State ST

Facade FA Strategy SY

Factory Method FT Template Method TE

Ayweight FY Visitor VI

Interpreter IN

Table 3.9: Patterns and their abbreviations

Another investigation has been performed to see whether patterns belonging to the

same category, i.e., one of the three categories, creational, structural, and behavioural,

have a strong correlation between them. This has been measured by computing their s-

values. According to the results shown in Tables 3.10, 3.11, and 3.12, the percentages

of s-values between patterns belonging to a same category that are less than 0.30 were

60.00%, 19.05%, and 74.55% for creational, structural, and behavioural categories,

respectively. Thus, it can be said that in the case of creational and behavioural patterns

there exists a high correlation between patterns belonging to a same category regarding

their metrics characteristics.

Low s-values between patterns increase the chance of negative true and positive

false occurrences. This results from the fact that this metrics-based pattern detection

method is not perfect. Therefore at the final stage of this method, a filtering or checking

process needs to be performed. As with most software engineering problem solving

91

Pattern Abstract Factory Builder Factory Method Prototype Singleton

Abstract Factory 0.00 0.18 0.10 0.45 0.22

Builder 0.00 0.28 0.43 0.18

Factory Method 0.00 0.39 0.26

Prototype 0.00 0.41

Singleton 0.00

Table 3.10: s-values between the creational patterns

Pauem Adapter Bridge Composite Decorator Facade flyweight Pro•y

Adapter 0.00 0.64 0.33 0.44 0.65 0.37 0.22

Bridge 0.00 0.84 0.57 0.18 0.53 0.54

Composite 0.00 0.27 0.66 0.33 0.39

Decorator 0.00 0.45 0.27 0.58

Facade 0.00 0.36 0.36

Ayweight 0.00 0.47

ProKy 0.00

Table 3.11: s-values between the structural patterns

techniques, a certain level of human intervention is almost inevitable, and actually

helpful for users; because of various uncertain aspects and limitations of the current

methods.

92

I

\0
w

Pattern

Chain of Responsibility

Command

Interpreter

lterator

Mediator

Memento

Observer

State

Stra~egy

Template Method

Visitor

Chain of Responsibility Command Interpreter lterator Mediator Memento Observer State Strategy Template Method Visitor

0.00 0.36 0.26 0.32 0.26 0.45 0.25 0.26 0.32 0.26 0.42

0.00 0.21 0.04 0.23 0.28 0.14 0.27 0.06 0.23 0.42

0.00 0.21 0.04 0.36 0.12 0.10 0.20 0.18 0.24

0.00 0.21 0.27 0.16 0.25 0.08 0.19 0.38

0.00 0.32 0.12 0.11 0.21 0.14 0.20

0.00 0.31 0.39 0.28 0.20 0.27

0.00 0.17 0.18 0.16 0.30

0.00 0.23 0.19 0.21

0.00 0.23 0.38

0.00 0.30

0.00

Table 3.12: s-values between the behavioural patterns

Having produced s-values, the accuracy of detected pattern instances can be checked

by manually inspecting them by looking at the source code and/or reverse engineer-

ing UML diagrams with 00 CASE tools like Rational Rose6 . Figure 3.10 shows an

example of reverse engineering class diagrams from source code using Rational Rose.

'.' " I '' .. -If IX

~ £io , .. ~- Fgmol &"""" 8- IIIIOIY loolo ~no li{nlow tiel> ~
D tiiiHil l ~~ IG ~!Btl ii?L_c::Jjl ~ ID li:ll!ll fll 11 1lil ¢o I• ~ ~ !lf~,j

Iii docdau r ~ ~ 3

\\
I t~·~--.~. I •UttJt•• •~•v

~
----;- " ~'

If! D u~easevleW "' \
... Mtlol:.l•);.

•. :uud.~ I

1
s DLogic<oiV- Cl < ._...,

~· s D<..,..,.doed> ~~t:~t/ 1m Reva"se Engi
Ell I E1l A ~ Auocioliono - -<>

.. , 1\
Ddocclan!eo..,.: "'"" .. :" \ \~I I ~ I 1m 19 r' ot:".: ·;;j. &tn ' ...
ltl @ {Gc.loction< ;r .,_"''=' <a o ~'•••tlllllt• r-
~ {Gc.loction< ~ljloalto)

~ ~ ~-~~ ~~~~UI: IIIot ~ :(HI '

~ {Gc.loction< Ell ::~·~
ltl i!!l {Gc.loction< .• , , .

.:.;. •e••Utlol• •;;.
• ll,fMio) ~~~t(. •· t:t•Dtloi:<U ~·

~ {Gc.loction< ' .. ~)1("1111 4)
.,..t!t• o;- ~·~-.;. ._

~ {Gc.lection< _j 't:owc.) ~II\;• ~"":• ~ ::'.::-~~) .. Cb:l \• ~-:-

ltl @ {Gc.loction< .. t ~·\IX<) ..
~~o:.t .. ••r. ~ ..

m ~ o ~.r».1J--'-j - ..
i'ffl•iiM•·ffl!1M 6MriM ~x! ~ a £io ,.. a«ion ~- 11{.- 11"' .. • !l!l ..
) I tiii) lliillaJii}! l !~ill!lfBI 'j ll~l..,.[wl 4 1 4.s i Q-;;J~I DocC1au .,_

!!!![..... ~,...,,. L...

~ z:\docclau -- c:\dpc++\z\doccla11 l m~cpp -- .cnq
.h - .cnh

t_ : U<None>

b.!O~ f,!ot:;:/ 1--

I -stortliM:x-.:. 1~~~ 14'-[~"'- liEJIIIn .. ~ -s~;~AM

Figure 3.10: Reverse engineering a class diagram from C++ source code using Ratio-

nal Rose

6 Rational Rose is a registered trademark of Rational Rose Corporation.

94

3.4 Reconciliation Process after Design Pattern Recov-

ery

In the previous section, a method was developed so that design pattern candidates

can be detected by collecting various software metrics and analysing them. Having

detected patterns, it is necessary to perform a reconciliation process where users verify

the detected patterns, and decide what to do about them.

According to the study carried out by Shull et al., detected patterns fall into 4 dif­

ferent types [119]. They are Types I to 4 divided by their completeness in terms of

implementation and purpose. Type 4 patterns are the most desirable ones as they are

complete both in their original purposes and implementations. The next desirable ones,

i.e., Type 3 patterns, succeed in achieving the same purposes but they fail in their im­

plementations. Patterns belonging to Type 2 lack in addressing their purposes but they

still have sophisticated implementations. The least desirable ones belong to Type 1.

They hardly address their purposes nor their implementations. Patterns belonging to

Types 1, 2, and 3 are the ones that need to be reengineered for the sake of future main­

tenance and evolution. The reason for this is that they are hard to understand and less

maintainable. Figure 3.11 shows the four different types of design patterns on two­

dimensional surface with "X" and "Y" representing "Purpose" and "Implementation",

respectively.

95

3
"0
ii"
3
~ =
liol
:::r.
0

=

f)
0
3

"2..
s
"'
3::
~

r,
:::;-

-o
:.>
:::.
:3" -
3::
r,

Only pan nf th..: N..:ar-p\:rkct
pall..:rn is l<lllllll. hut match
that portion hm; a
"'Phisti<·akd
unpknwntati<•n

2 4

Not rl'lc"'<llll :\ patkrn is fuund
that tri..:s to <Khi..:vc•
th..: sam..: purpns..:. its
its impkm..:ntati<•n
is primith~ 111

C.:lHllparisl'll.

I -'
Partial 1\'latch Complete Match

Pnq)Ose

Figure 3.11: The 4 types of the recovered patterns (from Shull et al. [119])

3.5 Summary

In this chapter, the 00 software development and maintenance model and the evolu-

tion of classes were studied. Then, it was followed by development of a GQM plan

based on Basili's GQM method. The plan is the basis of the design pattern recovery

method and is also used to evaluate the accuracy and effectiveness of the method. Soft-

ware product metrics were extensively used to investigate the characteristics of each

class and interactions between them. After analysing the metrics data of GoF patterns,

pattern signatures were extracted. By these signatures each pattern can be distinctively

identified from others.

96

Chapter 4

The Pattern-Based Redocumentation

(PBR) Method

This chapter explains a method to document design patterns and then redocument a

system using detected patterns. There is a need for good documentation during devel­

opment and maintenance. This chapter proposes an approach to improving the existing

documentation. This approach recovers design and architectural information, then re­

documents the program by reusing the information. The PBR method is based on the

XML technologies like DTD, XSL, XLink and XPointer.

97

4.1 Introduction

As many software engineers have confessed, software maintenance is the most time­

consuming and costly activity during the software life cycle. Further, maintenance is

hampered by comprehension tasks [141]. Thus applying good documentation schemes

can be a promising starting point towards successful maintenance and evolution.

The documents associated with a software system have a number of requirements [123].

First, they should act as a communication medium between members of the develop­

ment team. Second, they should be a system information repository to be used by

maintenance engineers. Third, they should provide information for management to

help them plan, budget and schedule the software development process. Finally, some

of the documents should tell users how to use and administer the system. For soft­

ware engineers, the first two are most relevant, leaving the last two for managers and

end-users.

Most of time developers only have unreliable documentation that is often outdated,

inconsistent with the other parts of the system, and difficult to comprehend. Therefore,

it is necessary to overcome this situation by adopting reverse engineering and redocu­

mentation techniques for future maintenance. In this respect, redocumentation can be

viewed as a preventive maintenance activity.

Redocumentation is one of the oldest forms of reverse engineering [136]. The stan­

dard definition of the term "redocumentation" made by the IEEE-CS Technical Council

98

on Software Engineering (TCSE)- Committee on Reverse Engineering [32] reads:

a form of restructuring where the resulting semantically-equivalent repre­

sentation is an alternate view intended for a human audience.

According to the definition, redocumentation allows users to get the right under­

standing that reflects the human-oriented representation of their software.

There certainly exists an analogy between software development and software doc­

umentation within the software engineering community. Developers often fail in their

projects because they apply the same approaches to systems of different sizes and

complexities. Some principles that work well on a small scale often cannot be di­

rectly applied to large projects without some sort of modification. Therefore it is true

that "documentation-in-the-large (DitL)'' is as different from "documentation-in-the­

small (DitS)" as "programming-in-the-large (PitL)" is to "programming-in-the-small

(PitS)" [120, 135]. In PitL, a more rigorous manner of applying processes and system

modelling techniques is required, not to mention a formal measurement plan like the

GQM plan in order to minimise the high risks associated with large projects. In a sim­

ilar manner, DitL should help users understand the whole picture of software not just

localised and limited information such as data structures and algorithms.

When maintaining existing software, the need for understanding the software arises.

However, most existing documentation fails to supply maintainers with enough accu­

rate information showing different system perspectives, thus high maintenance costs

99

are incurred. Many times, maintainers are bombarded with tediously detailed informa­

tion that is not relevant to what they are trying to do. The other times, they only receive

documentation that describes the whole system architecture but without giving any de­

tailed description of the software components. Thus it is important to strike the right

balance between these two kinds of information when documenting systems [145].

"Abstraction" and "structuring" are two of the most powerful conceptual tools that

software engineers can use [82]. Looking back the developments made in Computer

Science, many fine examples of these can be found, not just in the software industry

but also in the hardware industry. Design patterns are a good abstraction tool because

they are conceptually higher than basic software building blocks like classes and ob­

jects, or data structures and algorithms. Figure 4.1 shows various software abstractions

available to software engineers at present. The items at the lower parts can be used to

implement or realise the higher parts ones. For example, frameworks can be designed

on the basis of patterns and pattern languages that are again supported by building

blocks situated at the lower abstraction levels.

The difficulties of developing good quality documentation are often compared with

those of developing software itself [135]. Therefore software documentation should

be treated with the same importance as software development itself.

Most software development organisations spend a substantial amount of time devel­

oping documents, and in many cases the documentation process itself is quite ineffi-

100

< r;

Software Architectures

Frameworks

Pattern Languages

Patterns

Abstract Data Types

Classes

Figure 4.1: Evolution of abstractions

cient. It is not unusual for a software development organisation to spend as much as

20 or 30 percent of all software development effort on documentation [123].

Unfortunately, it has been observed that software documentation is not satisfactory

when it is desperately needed. For example, documentation of software processes

and products is usually neglected during software development on account of sched-

ule pressure and budgetary constraints. Later during maintenance, both internal code

documentation and external documentation tend to become inconsistent as changes are

continuously made to the original software; later forcing maintainers to investigate the

source code line by line in order to get an understanding of software.

101

4.2 Redocumenting Software Systems Using Patterns

and XML: the PBR Method

As mentioned earlier, structuring is an indispensable conceptual tool for software en­

gineers along with abstraction [82]. By dividing software into well-structured modules

or subsystems, and explaining the software using abstractions captured through reverse

engineering techniques, it can be expected to gain a more comprehensive understand­

ing of the software.

Design patterns are useful for both structuring and abstraction because they are es­

sentially collaborating classes and objects to solve recurring problems. Design patterns

are conceptually higher than the usual building blocks of OOP. Rather than commu­

nicating with each other using primitive fine-grained programming features, users can

convey their intentions to other people more quickly and correctly. Another advantage

of using patterns as a documentation tool is the reduction of mistakes. This is because

time-tested conceptual components are used. A recurring structure is considered as a

valid pattern only if it appears in several different applications [45].

In this research various XML technologies are utilised to represent data in a con­

sistent manner by way of DTD. For the display of the information XSL is applied to

XML documents. This scheme gives users a more flexible documentation structure

than when using normal text formats or HTML. This results from the fact that in XML

102

P DTD DP XSL I PBR_D;D I PBR

'
' \, I '

'
' di play inst~R.~:.~• 1ay insta'~tiate

' '
'
'
'

Pattern Catalogue
X Link

Pattern Doc -........

Figure 4.2: Redocumenting a system using patterns and XML technologies

meaningful tag names can be assigned, and data or content as an abstraction is sepa-

rated from any presentation information. Key elements of the PBR method are shown

in Figure 4.2.

4.2.1 Consistent Representation of XMJL Documents

Two DTDs are developed and XML documents are validated against these1
• This will

be useful for ensuring the consistency between XML documents. These documents

contain pattern instances detected from a system. A pattern catalogue consisting of

the 23 different GoF patterns is documented. The size of this pattern catalogue will

certainly increase as users find more patterns. Each element of the first DTD roughly

matches up with the sections of the pattern template. By marking up different sections

with some meaningful tags rather the simple HTML tags, the information can be used

1 Appendix A shows the actual source code of the two DTDs and their instantiated XML documents

along with their corresponding style sheets.

103

in a more useful manner.

If a user wants a different pattern description template, he may define the above tags

differently. For example, Frank Buschmann and his collegues from Siemens developed

a slightly different pattern catalogue [30]. It will be interesting to combine theirs and

GoF's together in the DTD.

The concept of pattern language is still very weak so that the PBR method does not

use this concept. Using a pattern language is not a particularly good idea, because the

DPR method can only recover the existence of individual patterns in code.

Once patterns have been detected from a system, then the system can be redocu­

mented using this pattern information along with other kinds of information like class

documentation and metrics documentation. Class documentation is obtained with a

CASE tool called "DocClass2" while metrics documentation is from "CCCC". Class

documentation contains various information on classes and objects such as attributes

and methods. DocClass produces this documentation based on in-line comments and

source code analyses. Thus it can be said that DocClass is comparable to the javadoc

utility available to the Java programmers.

The grammar and vocabulary of DTD are similar to those of classes of UML. Fig­

ures 4.3 and 4.4 are graphical representation of the above two DTDs. These were

2DocClass is a simple C++ program which reads in C++ header files, and outputs documentation

describing the class hierarchy, methods, inherited methods, etc. It was developed by Trumphurst Ltd.

104

reverse engineered using Rational Rose's XML DTD reverse engineering facility to

get the overview of the different elements and attributes existing in the two DTDs. In

these figures, each class represents their corresponding elements and entities in the two

DTDs, while attributes of each XML element are transformed into attributes of their

matching classes. Each class in linked with other classes according to their composi­

tion and groupings. These are association relationships and represented with directed

arrows in these class diagrams.

Because the XML documents used in the PBR method mainly consist of texts and

UML diagrams, DTD was chosen rather than the more complex and powerful XML

Schema.

The metrics documentation contains various software metrics. In fact these metrics

were used to implement the DPR method in Chapter 3.

Finally, the pattern documentation includes names of patterns and their c-classes

classes. Of course, users can change the structure of these DTDs as they see fit to

whatever their different situations require.

105

'

.....
0
0'1

melric
/~~

<<DTDEiemenlEMPTY>> I I <<DTDEJementEMPlv» I «DTOEiementPCDATA>> !
_.:::.,.., _=..,, {1} -""=.., :

I name:COATA l {2} S<C:ENTTIY ~~~~~~-------=
p_value:COATA

1
o .. ~:-~ ~v--;.---· -r,.,;,-~--~ --

.

I «DTO~tion» I
!---)
~ ... __ _j

JP9. ···~PG ' ;-::~~:.;;-~~~<t"~
/~>- ,·. ~- ' I / "" I ···. ·.. ·.. I «DT0En1l1y>> «DTDEntity.>>

ABSTRACT _FACTORY2
__ ,

._.?~ • ~c:---· -~-· - • • . • I ~~RY1
metric_signatura_g ,-::-_ ._motlvation_gr ~<. structure_gr ~-----~~ ~~--JrnQ!amentatlon_gr known_uses_g · _____ ----

rp t .. n ·--·---.p__ -··----.P rp ~-------.____ grpstn.rcture p-------..._ collabol~JJ!ons_grp

•
(trommntc_lllgnatul1l) (trommollvidlon).__ (fl'om•~~~~_grp(1romcollaboratlonel (from~-~: {from~llon) --[f'mrn-~1.1-~-

--.... __ / ·1 /"-7 ---~------------ /\ ·--------
<d>TDElementPCOATA>> I I <<DTDElementPCDAT~;~~ /1 <<DTOEiemenbj • I «DTDEiementPCOATA>> --- ----..__ _____ .J <<DTDEiement>> __ I <<DTDBementPCCiATA»~--

InUml -/ / lcoblll1y 1\ -.. l pa-
autho< __ , (21 / -----(ham~ ,· (fnlnl~) (from~) (6 :----- 1 I -- • - . I

~~~~--- --------- __ :,:_ -~:$g~"'~-ll.. I ,.) -- __ \--\ // /---=~------_::-.. --=-· 

author ::..------------ -/. ~ ~~~IItty structure-_- pa"-~r.IIS ___._..---
conaequenc;e:(_grp --fmplfi!!'Gntation_grp -._ _ - , , .·• k!lowr( .. 'uses_g{P-collabOratlons 

// ?-- =:;~:~:i-~:c<_r_·· ..... <'/ 

// 

~;;:~I 
!7LI _collabo~ ~ 
-<"'i·-(f!Qm~~ 

.,.;;,sequences '"""""'""'"",;_.:::.-,.-,;;pie_~· 1"'" ......,, • '··,nown=;;,;.;;-.;~...,.-me1rlc_slg.;;;iU,.-. 

.· ------?~/~~:- . _/ ./ - pa··r.. . ·. ·.\_ -=----- -·-~- ---~-~- -- {13} 

--c==--.L cc= I . __...- I <llTOElemen1PCOAT;;:-::l «DT0Eiemen1>> I ·-~, \ - .. _ .. -·--~- - .. 0 1 ~-----. 

I 
<<DTDEiement>> r,__.....-----------1 <<DTOE!ement>> ~----- < sample code > (10} pattern {11) I «DTDElement>> --,;~ <<DTDEiementPCDATA>> ~---------==-~ «DTDElement>> I _....,.. - ,.,.,.,.,.,_ I I _ _...._, I ___ , known uses {12} I '"la1ed_pallems I me1ric_slgna1u,. 

{fnlm~l (fromNewPDageJ I t • ~me:C.DATA {trom_._._J {flarl~l (from~l' 
(B) I I I :::~:~ . ' ' c= ___ ' 

number : COAT A 
------

::nl-· _, 

par 

• 
catalog_grp 

~~m.,, 
,,, __ :r .. 

l <<llTDEie~en1>> ca1alog 

lhvmN!wP!dc!Q!L 
~-----

Figure 4.3: A class diagram reverse engineered from pattem.dtd 



................................................. =----------------------------------------------------------------

....... 
0 
-.J 

,, 
(1J"""': 

~ttem 

1 <<DTDEiementE. . MPTY» .I I «DTD~tPCoATA>>-
I 

metnc a_ value ___ , __ (4} -.....,., 

I uni1:COATA. ~ _ .. ! 
,. {2} (3} '---~-' ---- /' ''-------~ 
',, I __ _--

cc~~-~. ~~-=-~- ;:,~,;,. 

i <<DTOEiemenlPCOATA>> I 
I cdass 

! ---'-----· I C=-~="'=====:JI f-(11 
----f~./ 

~ddress 

• 
organisation_gr 

(lrom or!,..tlon) pattem_doc_gr Jlll!f9m_doc_grp 

<<DTDNotallon» 
TXT -......,, 

I 
TXT ___ j ___ 

r
. «DIDEntlty>> I 

ClASS_OOCO> 1 

1--->--, 
i ______ I 

~ p 
__ organ~_grp r Bm'M_doc) -···--........ .. _ ·--------

1

. «DID._,.,__ DATA>> 

1 

I <<DIDElemont>> ~ . <<DIDEtementPCDATA>> 

1 

I «DIDElemonlPCDAT..,~ • 1:::-, I <<DIDEiemen1EMPTY» 1 
diMdopef {1) organisation (2) complexity no_classes pattem_doc dasa_doc ' 

, ____ , ____ ,u -~'-- .. , . __._, r•> I 

' ,">- ----.:=:_ - ""h.COATA ;~! ..,_.,:,./' ~;~"' _ _.-----d;:-::=======--~ 
cteviroper--------... _ _:-o~!_lon ·~ co~'re.xtty / patte~;:-;¢x"··· cta~-~oo~ ~-----· 

----{3}_-::_--:::::;:C.:-_-:::_-_C, --"-"ii ~c;;;;~;~-::__-:: 

documentatlon_gr 
p 

----~-""' 
I 

<<DTDEJemenr>> 
documenlaiJ<m 

·--~'---
~==, 
~nt_date: COAT A 
documenlatton_dale: COAT A 

-~-: -------r -- . 
documentation 

I 
I • 

""'-""' 
,Jb~' 

T 

i <<DTOEiement>> 
i pbr 

~'-1 

-----
-;;;_model 

Figure 4.4: A class diagram reverse engineered from pbr.dtd 

I 

«DIDNolaiJ<m>> I 
MDL 

~ 
I i 
~--

MOL 
___j __ _ 

I 

«DIDEntity>> I 
ROSE_MOOEl01 [ 

__ ._, ____ ! 
l ______ _j 



Figure 4.5: Options for displaying XML documents 

4.2.2 Flexible Representation of XML Documents 

Unlike HTML, XML does not contain any information regarding how its different ele­

ments can be viewed. There are many different ways of displaying an XML document 

on a web browser. Figure 4.5 shows the three different ways of displaying an XML 

document on a web browser. At the time of writing this thesis, there are only few web 

browsers that are capable of displaying XML documents including Microsoft Internet 

Explorer, Netscape Communicator and InDelv3 . In this research, InDelv was chosen 

because it supports formatting objects (FOs) and XLink unlike the other two. 

People used many various formats to describe patterns, e.g., plain text or HTML in 

the case of the electronic version of the design pattern book. However, it is difficult to 

describe patterns using those formats. Also managing those types of documents can 

31nternet Explorer, Netscape Communicator, and lnDelv are registered trademarks of Microsoft Cor-

poration, Netscape Communications Corporation, and lnDelv Inc., respectively. 

108 



be as difficult as maintaining software systems. As for descriptions written in HTML, 

HTML tags are not descriptive, not having any semantic meanings. Because of this, 

they are difficult to use; although they are good as a representation form on a web 

browser. 

Two XSL documents were developed to display the two kinds of XML documents 

on InDelv. Figures 4.6 and 4.7 are examples of applying these two XSL documents to 

their related XML documents. 

There are three different kinds of documentation available in a PBR XML document, 

i.e., class, metrics and pattern documentation. Upon selecting one of these, users are 

directed to the respective documentation. Figures 4.8 and 4.9 show the first two kinds 

of documentation that users get. 

4.3 Summary 

Recovering patterns will only be meaningful and useful when they can be applied to 

help software engineers perform their various software engineering activities. In this 

chapter, one application of patterns, i.e., redocumenting software was discussed. This 

PBR method utilises the information of the detected patterns in a system along with 

other kinds of documentation like class and metrics documentation. This method was 

implemented using some of the XML technologies such as DTD, XSL and XLink. 

It can be claimed that the PBR method can help users produce and maintain system 

109 



~J] abshaciFaclory Kml - lnDelv ~~ £i 
File Ed~ View Go Help 

Open Back Forwani Home Reload Refresh Stop 

Also Known As 

Kit 

Motivation 

Consider a user interface toolkit that supports multiple look-and-feel standards, such as Motif and 
Presentation Manager. Different look-and-feels define different appearances and behaviors for us er 
interface "widgets" like scroll bars, windows, and buttons . To be portable across look-and-feel standards, 
an application should not hard-code its widgets for a particular look and feel. Instantiating 
look-and-feel-specific classes of widgets throughout the application makes it hard to change the look and 
feel later. 

We can solve this problem by defining an abstract WidgetF actory etas s that de clare s an interface for 
creating each basic kind of widget. There's also an abstract class for each kind of widget, and concrete 
subclasses implement widgets for specific look-and-feel standards . WidgetFactory's interface has an 
operation that returns a new widget object for each abstract widget class . Clients call these operations to 
obtain widget instances, but clients aren't aware of the concrete classes they're using. Thus clients stay 
independent of the prevailing look and feel. 

mphic: 8bfac109.g[ 

IVidgeiFKtory 

Creat95croff8ar(} 
CreatBI1rrndow() 

Figure 4.6: The rendering of a pattern description in XML using XSL 

110 



ffi] pbr4Unidraw.xml - lnDelv !I~ICJ 

File Edit View Go Help 

Opon Back Forward Home Reload Refresh Stop 

System Name 
... 

L. 

Unidraw 

Development History 
John Vlis sides 
1993 
Stanford University, Palo Alto, California, USA 

~ 
I 

Class Documentation 

I Class Documentation ofUnidraw 
lj 

Metrics Documentation 

Software Metrics ofUnidraw 
1l 

Pattern Documentation 
Detected pattern instances and their respective c-classes 

I 
Chain Of Responsibility: Component View 

I Command: Command 

Factory Method: Creator 
~~ ,, To 

- ~~-

,ll _____ 

Figure 4.7: The rendering of a PBR description in XML using XSL 

111 



~ - -- --------------- ---------------.=J.QJ~ 

File Ed~ View Go Help 

Open Back Forward Home 

cla33 ComponentView 

#include "Component3\compview.h" 

Derived cla33e3 

public Exte:rnView 
public P:reo:rde:rView 

public Po3tSc:riptView 
public PSEllip3e 
public PSLine 
public PSLink 
public PSPad 
public PSPin 

Reload Refresh 

public Po3tSc:riptView3 
public PSRaBte:r 
public PSRect 
public PSSlot 
public PSStencil 
public PSText 
public PSVe:rtice3 

public PSMultiLine 
public PSPolygon 
public PSSpline 
public PSClo3edSpline 

1~1 , nuhlic InorderVieTJ 
lt•_lfl 

Stop 

I~ 

Figure 4.8: The access to class documentation from a PBR XML document 

112 



Refresh Stop 

lndic ate s density of comments with respect to logic e.! complexity of pro gram 
IF4 =Information Flow measure 
Me e.sure of information flow between modules suggested by Henry and Ke.fure.. The 
ane.lys er makes an approximate count of this by counting inter-module couplings identified in 
the module interfaces. 

Two variants on the information flow measure IF4 are also presented, one (IF4v) calculated using only 
relationships in the visible part of the module interfe.c e, and the other (IF 4c) c e.lcule.te d using only those 
relationships which imply that changes to the client must be recompiled of the supplier's definition changes. 

c e. Overe.ll Per Module 
Number of modules NOM 304 
Lines ofCode we 4791 15.760 
McCabe's Cyclome.tic MVG 74 0.243 

Number 
Lines ofComment COM 2527 8.313 
WC/COM LC 1.896 
MVG/COM MC 0.029 
Information Flow measure IF4 1126653 3706 .095 
( inclusive ) 
Information Flow measure IF4v 1004606 3304.625 
( visible) 
Information Flow me e.sure IF 4c 8712 28 .658 
( concrete) 
Lines ofCode REJ 233 

Figure 4.9: The access to metrics documentation from a PBR XML document 

113 



documentation. By doing so, the problems of software maintenance can be eased as 

well because the two things are very much associated with each other. 

Sometimes redocumenting software is not enough, and it might be necessary to 

carry out more serious program restructuring tasks. However, these restructuring and 

reengineering of systems were not covered in this research. 

114 



Chapter 5 

Case Study 

In this chapter, experiments with some systems within which design patterns have 

previously been identified. They are documented in the design pattern book and they 

are ET ++, Unidraw and two different versions of InterViews, i.e., 2.6 and 3.2a. Using 

these systems as experimental materials is better and fairer than manual checking of 

the trueness of patterns appearing in a system because manual checking is difficult, if 

not impossible with large systems, and can incur errors. A more objective and correct 

evaluation of the detection method can be guaranteed in the former case. Through 

these experiments, the usefulness and limitations of the approach can be judged. 

115 



5.1 Introduction 

In Chapter 3, the DPR method was developed. Experiments are needed to see whether 

this method is suitable and sound. 

In the rest of the chapter, first the experimental framework is described. Then, the 

experimental results are reported. Finally, a detailed experimental analysis of the re­

sults is given. 

5.2 Experimental Framework 

Experimental Goals 

The main goal of the experiments is to investigate the usefulness and correctness of 

the pattern recovery method. This goal was set out specifically when the GQM plan 

for this research was discussed in Chapter 3 . 

Experimental Materials 

As previously explained within this chapter, the four systems are used. The existence 

of GoF patterns in these systems are documented in a detailed manner. By selecting 

these experimental materials, the fairness and ease of the experiments can be guaran­

teed. 

116 



Software LOC MVG No. of Classes Year Place 

ET++ 3.0b 53202 10284 579 1993 Univ. of Zurich, Switzerland 

InterViews 2.6 4400 200 215 1989 Stanford Univ., USA 

InterViews 3.2a 8667 200 507 1993 Stanford Univ., USA 

Unidraw 4791 74 304 1993 Stanford Univ., USA 

Table 5.1: The experimental materials 

Table 5.1 is a brief overview of these systems with respect to their sizes, complexi­

ties, development years and organisations. 

The following is a brief introduction to these systems. 

ET ++ is a portable and homogeneous object-oriented class library integrating user 

interface building blocks, basic data structures, and high level application framework 

components [144]. ET ++ eases the building of highly interactive applications with 

consistent user interfaces following the direct manipulation principle. A byproduct of 

the ET ++ project is a set of tools, which were designed to support the exploration of 

ET ++ applications at run-time. The ET ++ class library is implemented in C++ and 

can be used on several operating systems and window system platforms. Since its 

initial conception the class library has been continuously redesigned and improved. 

It originated from an architecture which was close to MacApp [4]. During several 

iterations a new and unique architecture evolved. 

InterViews is an object-oriented user interface package that supports the composi-

117 



tion of a graphical user interface from a set of interactive objects [74, 73]. The base 

class for interactive objects, called an interactor, and base class for composite objects, 

called a scene, define a protocol for combining interactive behaviours. Subclasses of 

scene define common types of composition: a box tiles its components, a tray allows 

components to overlap or constrain each other's placement, a deck stacks its compo­

nents so that only one is visible, a frame adds a border, and a viewport shows part of a 

component. Predefined components include menus, scrollers, buttons, and text editors. 

InterViews also includes classes for structured text and graphics. InterViews is written 

in C++ and runs on top of the X window system. Here two different versions of this 

software, i.e., Versions 2.6 and 3.2a are selected. As the software evolved, slightly 

different design concepts were introduced, thus adding new design patterns. 

Finally, Unidraw is a framework for creating graphical editors in domains such 

as technical and artistic drawing, music composition, and circuit design [139]. The 

Unidraw architecture simplifies the construction of these editors by providing pro­

gramming abstractions that are common across domains. Unidraw defines four basic 

abstractions: components encapsulate the appearance and behavior of objects, tools 

support direct manipulation of components, commands define operations on compo­

nents, and external representations define the mapping between components and the 

file format generated by the editor. Unidraw also supports multiple views, graphical 

connectivity, and dataflow between components. As from InterViews Version 3.1 re­

leased in 1993, Unidraw has been included in InterViews. Unidraw was the basis of 

118 



John Vlissides' thesis work at Stanford University [ 138]. He is one of the four authors 

of the design pattern book. 

Experimental Method 

In Chapter 3, pattern signatures were extracted on the basis of a GQM plan. Those 

signatures are used to check whether there is a strong relationship between patterns of 

metrics and patterns themselves. It is desirable to perform experiments with systems 

where the usage of patterns is known. In order to map the signatures to classes in the 

subject systems, first the c-classes of the patterns present in those four systems were 

identified. These c-classes were identified by analysing their descriptions appearing in 

the pattern book. Then, their metrics are obtained, and their p-values are computed. 

Finally, these p-values are compared with the p-values of each pattern signature to 

get the s-values. By checking these s-values, the correctness of the pattern recovery 

method is judged. In other words, if s-values are reasonably low, then it proves that 

the method works well. 

5.3 Experimental Results and Their Analysis 

By following those steps described in the previous section, experimental results were 

produced. Tables 5.2, 5.3, 5.4, and 5.5 show the patterns present in each system, their 

c-classes and s-values. 

119 



Pattern c-class s-value 

Abstract Factory WindowSystem 0.25 

Bridge Window Port 0.89 

Builder Converter 0.28 

Chain of Responsibility EvHandler 0.19 

Composite Vobject 0.11 

Command Command 0.46 

Decorator Stream 0.26 

Facade EtProgEnv 0.29 

Factory Method Application 0.41 

Flyweight Layout 0.27 

Iterator Iterator 0.38 

Observer View 0.49 

Proxy ImageCache 0.47 

Table 5.2: Patterns in ET ++and their c-classes and s-values 

Pattern c-class s-value 

Adapter GraphicBlock 0.22 

Composite Graphic 0.11 

Table 5.3: Patterns in InterViews 2.6 and their c-classes and s-values 

120 



Pattern c-class s-value 

Abstract Factory WidgetKit 0.26 

Abstract Factory DialogKit 0.29 

Abstract Factory LayoutKit 0.43 

Adapter GraphicBlock 0.35 

Command Action 0.30 

Composite Graphic 0.15 

Decorator DebugGlyph 0.48 

Flyweight Glyph 0.33 

Observer Observer 0.10 

Singleton Session 0.41 

Strategy Compositor 0.24 

Table 5.4: Patterns in InterViews 3.2a and their c-classes and s-values 

121 



Pattern c-class s-value 

Chain of Responsibility Component View 0.19 

Command Command 0.43 

Factory Method Creator 0.55 

Iter a tor Iterator 0.22 

Mediator Connector 0.29 

Memento MoveCmd 0.23 

Observer Component View 0.18 

Prototype GraphicCompTool 0.10 

State Tool 0.14 

Table 5.5: Patterns in Unidraw and their c-classes and s-values 

A total of 35 pattern instances were present in those four systems and they are of 20 

different kinds of patterns. Remembering that the total number of GoF patterns is 23, 

it is right to say that these instances cover most cases. 

The sum of the s-values of the 35 pattern instances is "10.75" and their mean, 

"0.3071". This mean value is used as a critical point by which positive cases and 

negative cases are divided. In other words, a case is positive if its s-value is less than 

"30.00". For instance, the class Observer of InterViews 3.2a is a highly positive case 

of being an Observer pattern as its s-value is just "0.10". 

Among the s-values of the 35 c-classes, 60%, i.e., 21 cases are less than 0.30 evi-

122 



:>, 
u 
c 
QJ 

::J 
CT 
QJ 

u: 

350 

300 

250 

200 

150 

100 

so 

ilW9~a~~MUITITlliiT~~oo~n~ITITTIW 

Pattern 

Figure 5.1: Positive false cases obtained with ET++ 

dencing that there exists a mapping between design patterns and their metrics patterns. 

In the case of false cases, i.e., picking out instances that are not really patterns, 

Figures 5.1, 5.2, 5.3, and 5.4 show the positive false cases detected from the four 

systems, respectively. As shown in the figures, the DPR method has some weakness in 

the case of the Bridge, Facade, Memento, Prototype, and Proxy patterns. The method 

detected those instances as patterns but they were not really. 

Tables 5.6, 5.7, 5.8, and 5.9 summarise the above findings. The values in the third 

column are the proportion of different positive or negative cases to the overall true 

or false cases, accordingly. For example, the proportion of the positive true cases 

detected from ET ++is 7/(7+6) = 0.5385 as the frequencies of the positive true cases 

and negative true cases are 7 and 6, respectively. 

In addition to the above assessment, the correlations between the correctness of 

123 



"' u 
c 
Q) 

=> 
r::T 
Q) 

It 

140 

120 

100 

80 

60 

40 

20 

0 
o~~w~~amurrnrnrr~~oon~nnnn~ 

Pattern 

Figure 5.2: Positive false cases obtained with InterViews 2.6 

~ 250 1----1 
c 

~ 200 1----t 
r::T 
Q) 

It 150 t----tl. 

50 

0 L-~~~-~~~~L-~~~-L-~~~L-~~~==~~~--L-~~ 

o~~w~~amurrnrnrr~~oon~nrrnn~ 

Pattern 

Figure 5.3: Positive false cases obtained with InterViews 3.2a 

Case Frequency Proportion 

Positive True 7 53.85% 

Negative True 6 46.1 5% 

Positive False 2498 18.78% 

Negative False 10806 81.22% 

Table 5.6: Different cases obtained with ET ++ 

124 



i:l 150 1------l 
c:: 
Q) 
::::> 
cr s: 1 00 1-----1 

"' u 
c:: 
Q) 
::::> 
cr 
~ 
LL 

1000 

800 

600 

400 

200 

il~~w~~~mnrrnrnrr~~oonnnrriTn~ 

Pattern 

Figure 5.4: Positive false cases obtained wi th Unidraw 

il~~w~~~mn rr nrnrr~~oonnnrriTn~ 

Pattern 

Figure 5.5: Accumulation of positive false cases obtained with the four systems 

125 



Case Frequency Proportion 

Positive True 2 100.00% 

Negative True 0 0.00% 

Positive False 967 19.56% 

Negative False 3976 80.44% 

Table 5.7: Different cases obtained with InterViews 2.6 

Case Frequency Proportion 

Positive True 5 45.45% 

Negative True 6 54.55% 

Positive False 2199 18.88% 

Negative False 9451 81.12% 

Table 5.8: Different cases obtained with InterViews 3.2a 

Case Frequency Proportion 

Positive True 7 77.78% 

Negative True 2 22.22% 

Positive False 1438 20.59% 

Negative False 5545 79.41% 

Table 5.9: Different cases obtained with Unidraw 

126 



Pattern c-class s-value 

Abstract Factory Window System 0.25 

Abstract Factory WidgetKit 0.26 

Abstract Factory DialogKit 0.29 

Abstract Factory LayoutKit 0.43 

Builder Converter 0.28 

Factory Method Creator 0.55 

Factory Method Application 0.41 

Prototype GraphicCompTool 0.10 

Singleton Session 0.41 

Table 5.10: Instances of creational patterns and theirs-values 

the detection method and the category of patterns, i.e., creational, structural and be­

havioural pattern categories are examined. This will help reveal any limitations and 

weakness of the method. Tables 5.10, 5.11, and 5.12 show the s-values of the patterns 

belonging the three different categories. 

According to the results, the accuracy of detection is more or less same irrespective 

of the different pattern categories. In the case of the false cases, however, the method 

is less accurate when dealing with structural patterns than the other two categories of 

patterns. This is due to the fact that the DPR method has weakness in processing such 

structural patterns as the Bridge, Facade, and Proxy patterns as mentioned earlier in 

this section. This may indicate that the software metrics used in the recovery method 

127 



Pattern c-class s-value 

Adapter GraphicBlock 0.22 

Adapter GraphicBlock 0.35 

Bridge Window Port 0.89 

Composite Vobject 0.11 

Composite Graphic 0.11 

Composite Graphic 0.15 

Decorator Stream 0.26 

Decorator DebugGlyph 0.48 

Facade EtProgEnv 0.29 

Flyweight Layout 0.27 

Flyweight Glyph 0.33 

Proxy ImageCache 0.47 

Table 5.11: Instances of structural patterns and theirs-values 

128 



Pattern c-class s-value 

Chain of Responsibility EvtHandler 0.19 

Chain of Responsibility Component View 0.19 

Command Command 0.46 

Command Action 0.30 

Command Command 0.43 

Iterator Iterator 0.38 

lterator lterator 0.22 

Mediator Connector 0.29 

Memento MoveCmd 0.23 

Observer View 0.49 

Observer Observer 0.10 

Observer Component View 0.18 

State Tool 0.14 

Strategy Compositor 0.24 

Table 5.12: Instances of behavioural patterns and their s-values 

129 



Case Frequency Proportion 

Positive True 5 55.56% 

Negative True 4 44.44% 

Positive False 1001 12.49% 

Negative False 7015 87.51% 

Table 5.13: Different cases obtained with the creational patterns 

Case Frequency Proportion 

Positive True 7 58.33% 

Negative True 5 41.67% 

Positive False 3177 28.31% 

Negative False 8046 71.69% 

Table 5.14: Different cases obtained with the structural patterns 

have some limitations to represent the information contained in those patterns, whether 

it is semantic and/or syntactic dynamic information. Tables 5.13, 5.14, and 5.15 show 

how the method works with the different categories of patterns. 

5.4 Summary 

In this chapter, case studies were performed to evaluate the recovery method using 

the four pieces of software. The systems have patterns in them and their existence 

130 



Case Frequency Proportion 

Positive True 9 64.29% 

Negative True 5 35.71% 

Positive False 2924 16.58% 

Negative False 14717 83.42% 

Table 5.15: Different cases obtained with the behavioural patterns 

was well documented in the literature, so that they were good materials for the exper­

iments. According to the results produced, the method has a reasonably high degree 

of accuracy although depending on the pattern categories, the accuracy varies in some 

cases. 

131 



Chapter 6 

Conclusions 

This chapter summarises the research reported in this thesis. First, a list of the ma­

jor contributions made in this research is given and these contributions are evaluated 

according to the success criteria set out in Chapter 1. Then, some areas of research 

requiring further investigation are suggested. Finally, this chapter ends with some con­

cluding remarks. 

6.1 Summary of Contributions and Their Evaluation 

At the start of this thesis, two research problems that the software engineering com­

munity is currently facing were identified. One is the lack of design reuse and another 

is the immaturity of software measurement practices. 

132 



A survey of the literature on software reuse in general and software design reuse 

in particular has been presented. Reuse is considered to be a partial solution to the 

software crisis. The limitations of the more traditional code-based reuse have been 

presented, and thereafter existing promising design reuse approaches were surveyed. 

Software architecture, 00 frameworks, and design patterns were recognised as cur­

rently important and popular solutions, having attracted the interests both from the 

industry and the academia. Finally, design patterns were chosen for the main reuse 

approach to be adopted in this research because of their scale and abstraction level. 

In the following two chapters, a detailed explanation of the DPR method and PBR 

method is given. This approach is meaningful in that it first recovers design infor­

mation in the form of patterns, then supports their reuse to redocument existing sys­

tems. The two methods were realised using existing tools like MS Excel 97 and an 

XML-enabled browser, InDelv. In the DPR method, two new metrics, i.e., p-value and 

s-value were defined. P-value is computed based on the ranking and percentile of each 

metric, whiles-value is a similarity metric computed by applying different weights to 

each p-value. 

A case study was carried out to see whether this approach was able to detect doc­

umented patterns in existing systems. Four applications were used in the case study. 

They varied in their sizes, development environments, and the number and kinds of pat­

terns that they contain. Due to the fact that the existence of patterns in these systems is 

known, the correctness and fairness of these experiments can be ensured. According 

133 



to the experimental results, it was observed that there is a strong relationship between 

metrics of patterns and patterns themselves; although the method shows some weak­

ness in detecting such patterns as the Bridge, Facade, Memento, Prototype, and Proxy 

patterns. These patterns are difficult to be detected using the metrics-based approach 

because of their structural and behavioural characteristics. 

In Chapter 1, four criteria for success of this research were set out. Below an expla­

nation of how those criteria were satisfied during the course of this research is given. 

The first criterion was developing a design pattern recovery method that can recover 

patterns semi-automatically. The DPR method used the three kinds of software product 

metrics, i.e., procedural, structural, and object-oriented metrics, thus matching those 

programming paradigms where an typical 00 system is built. 

Unlike other design pattern recovery methods and more traditional design recovery 

methods, this method is purely based on software measurement. The method utilises 

the object-oriented software development model and the GQM method. The object­

oriented programming paradigm evolved from the structural programming paradigm, 

that was in tum developed to complement the weakness of the earlier procedural pro­

gramming paradigm. Thus if users want to grasp both the structure and behaviour of an 

00 system, they need to investigate these three kinds of characteristics. Fortunately, 

the software measurement community has been developing software metrics that can 

cover these three aspects, i.e., procedural, structural, and object-oriented metrics. 

134 



Although the method was only applied to C++ programs, it is easily applicable to 

other 00 programming language environments such as Ada95 and Java as the metrics 

used can be obtained for these languages as well. 

The second evaluation criterion was about applying those patterns recovered us­

ing the DPR method to redocument programs efficiently. Among the many potential 

usages of patterns, the main focus of interest in this research was program redocu­

mentation; as it increases program comprehensibility and reduces maintenance and 

evolution cost. This method incorporates pattern, class and metrics information into 

existing kinds of documentation to address documentation-in-the-large (DitL) as well 

as the usual documentation-in-the-small (DitS). This is due to the fact that patterns 

are at a higher level of abstraction than commonly used building blocks like class and 

procedure. 

Although a CASE tool that realises the pattern recovery and pattern redocumenta­

tion methods will be potentially useful for users, instead a decision was made to use 

existing tools available such as MS Excel and XML browsers. By doing so, it also 

increases the applicability of these methods. 

The final criterion was the validation of the pattern recovery method through case 

studies. A case study was conducted to inspect whether the method is sound and useful. 

It was observed that it is easy to apply and produced some good results. Judging from 

the case study, it can be claimed that the DPR method is useful for recovering patterns 

135 



without need for significant user intervention. 

Chapter 4 discussed the application of patterns in redocumentation. However, the 

evaluation of the actual benefits of using patterns in redocumentation by practising 

engineers is beyond the scope of this research. The value of patterns has already been 

addressed in Chapters 1 and 2. Therefore a rationale for trying to recover patterns has 

been provided if they can be identified in the code. 

As a whole, the methods help achieve design reuse beyond the very low source code 

level. 

6.2 Limitations of Approach 

There are some problems regarding the DPR method. These are described below. 

First, the C++ language has many different dialects. Thus the method sometimes 

fails to produce correct results. If the Java language had been used, more correct 

results might have been produced as it is more standardised. 

Second, to improve the correctness of the method, it is necessary to identify more 

metrics and collect comprehensive and controlled industrial data. Unfortunately, this 

was not possible during the time frame of this research. 

Third, the recovery method is only useful for detecting an already known set of 

136 



patterns, i.e, GoP patterns in this research. It is difficult to recover new patterns using 

this method, at least without modifying and improving the pattern matching algorithm. 

In addition, there are some patterns that are not detected easily because of their high 

similarity with other patterns. This is due to the fact that they have low s-values with 

each other. 

6.3 Other Areas for Future Research 

There are some research issues that are not resolved during this research that may be 

worthwhile to investigate in the future. 

First, it will be interesting to see whether patterns can be detected at the earlier 

stages during the software life cycle rather than when the implementation of a sys­

tem has been finished. This would certainly improve the quality of the final products 

and improve the communication between the project participants. Some existing code 

metrics can be used for this purpose as they are. However, it is most likely that a pro­

cess of adaptation and defining new metrics is required. Some examples of the metrics 

applicable in analysis and modelling stages have been already developed based on the 

UML metamodel [126, 127, 128]. This approach might produce more correct results 

than simply using software product metrics because design patterns can be encoded at a 

higher level of abstraction from that currently used. This is because the syntactic struc­

tures of patterns are quite similar to each other while their semantic information varies 

137 



greatly. When this research began, a standardised 00 modelling language was not 

available. Now, there exists the Unified Modelling Language (UML) which is broadly 

embraced by the academia and the industry. By developing metrics usable onto the 6 

different kinds of UML diagrams, it is possible to specify the dynamic information of 

patterns more precisely as well as their static information. It is this dynamic informa­

tion that the DPR method lacks, and this has prevented this research from achieving a 

higher precision of detection. 

Second, with respect to the PBR method, it provided users with a textual represen­

tation using the formatting objects of XSL. It will be worthwhile to research more 

sophisticated visualisation approaches of recovered design patterns, e.g., to what ex­

tent and how patterns could be visualised. 

Third, there have been only a few pieces of work investigating the effects of patterns 

on a system that contain them. For example, some patterns can be used to restructure 

software to obtain the desirable properties of high cohesion and low coupling. The 

implications of using certain patterns against the others need to be studied more com­

prehensively in the future. 

Fourth, designing 00 frameworks is known to be extremely difficult as it requires 

designers to provide not only features for the current use but also ones for future usage. 

These future uses are difficult to predict. Reliable 00 frameworks can be more easily 

built by gradually evolving and transforming legacy systems into pattern languages. 

138 



Pattern languages themselves are made of detected patterns from the systems. They 

decompose a big problem that is tackled by a software system into subproblems that 

subsequently are addressed by each pattern. This kind of process is good for revealing 

the conflicts between each module and trying to resolve them at the same time. Also 

pattern languages provide an overall picture of the system that is essential for designing 

frameworks in the first place. It is proposed that using pattern languages can ease users 

of the difficult tasks of building frameworks, but this remains to be comprehensively 

validated. 

Finally, there is a potential benefit of developing more formal and efficient ways 

of representing pattern languages and cataloguing them. One plausible solution is 

through extending the UML metamodel in order to incorporate patterns directly into 

UML modelling elements as other researchers did for their own purposes [70, 131, 40]. 

By specifying patterns more formally, it will be possible to embed those pattern-related 

features directly in new programming languages. This could certainly improve the 

power of the current OOP languages. 

6.4 Final Remarks 

There are many important questions to be answered regarding patterns. 

Do patterns stifle creativity? This same question has been asked during the course 

of software reuse research in the past decades. Because of their limited resources to 

139 



meet the current software development demands, developers do not have any option 

but to reuse the systems that they have built previously. There is a strong argument 

for the usefulness of patterns with respect to their educational purposes for training 

inexperienced developers and stimulating the ways that more experienced developers 

think of a good solution to a problem in a specific context. 

Do people want to share their patterns with others? This is highly unlikely because 

the information contained in a pattern can be a crucial one for the business interests 

of an organisation. Except some general purpose patterns such GoF patterns, most 

patterns will be kept inside the organisations that discovered them. Therefore it can 

be predicted that domain-specific patterns will be more likely to flourish than domain­

wide ones. 

The patterns movement has changed the way developers build their 00 systems and 

communicate them with others more effectively. This takes the field one step closer to 

the component-based software engineering (CBSE) originally envisioned by Mcllory 

in the late 1960s [84]. 

140 



Appendix A 

PBR Templates 

The following is the design pattern DTD. 

<!-- pattern.dtd --> 

<!ELEMENT pattern (heading, hr, name, classification, intent, 
alsoKnownAs, motivation, applicability, structure, participants, 
collaborations, consequences, implementation, sampleCode, 
knownUses, relatedPatterns)> 

<!ELEMENT name (title,paral)> 

<!ELEMENT classification (title,paral)> 

<!ELEMENT intent (title,paral+)> 

<!ELEMENT alsoKnownAs (title,paral)> 

<!ELEMENT motivation (title, (parallumlDiagram)+)> 

<!ELEMENT applicability (title,para+)> 

<!ELEMENT structure (title, (parallumlDiagram)+)> 

<!ELEMENT participants (title,paral)> 

<!ELEMENT collaborations (title,paral)> 

<!ELEMENT consequences (title,paral)> 

<!ELEMENT implementation (title,paral)> 

<!ELEMENT sampleCode (title,paral)> 

<!ELEMENT knownUses (title,paral)> 

<!ELEMENT relatedPatterns (title,paral)> 

141 



<!ELEMENT heading (#PCDATA)> 
<!ELEMENT hr EMPTY> 

<!ELEMENT title (#PCDATA)> 

<!ELEMENT paral (#PCDATAipara2llink)+> 

<!ELEMENT para2 (#PCDATAilink)+> 

<!ELEMENT umlDiagram EMPTY> 

<!ATTLIST umlDiagram image CDATA #REQUIRED> 

<!ELEMENT link (#PCDATA)> 

<!ATTLIST link href CDATA #REQUIRED> 

Below is the second DTD for the PBR method. 

<!-- pbr.dtd --> 

<!ELEMENT pbr (heading, hr, systemName, developmentHistory, 
classDoc, metricsDoc, patternDoc)> 

<!ELEMENT systemName (title,para)> 

<!ELEMENT developmentHistory (title,developer,year,organisation?)> 

<!ELEMENT classDoc (title,link)> 

<!ELEMENT metricsDoc (title,link)> 

<!ELEMENT patternDoc (title, (patterninstance,c-class)*)> 

<!ELEMENT title (para)> 
<!ELEMENT developer (para)> 
<!ELEMENT year (para)> 

<!ELEMENT organisation (para)> 

<!ELEMENT patterninstance (link,para)> 
<!ELEMENT c-class (para)> <!ELEMENT para (#PCDATA)> 

<!ELEMENT heading (#PCDATA)> 

<!ELEMENT hr EMPTY> 

<!ELEMENT link (#PCDATA)> 

<!ATTLIST link href CDATA #REQUIRED> 

Based on the above two DTDs, for example, the following two XML documents can 

be produced. 

142 



<!-- abstractFactory.xml --> 

<?xml version='l.O'?> 
<!DOCTYPE pattern SYSTEM "pattern.dtd"> 

<?xml-stylesheet type="text/xsl" href="pattern.xsl"?> 
<pattern> 

<heading>Design Pattern Description</heading> 
<hr/> 
<name> 

<title>Name</title> 
<paral>Abstract Factory</paral> 

</name> 

<classification> 
<title>Classification</title> 
<paral>Object Creational</paral> 

</classification> 

<intent> 
<title>Intent</title> 
<paral>Provide an interface for creating families of 
related or dependent objects without specifying their 
concrete classes. 
</paral> 

</intent> 
<alsoKnownAs> 

<title>Also Known As</title> 
<paral>Kit </paral> 

</alsoKnownAs> 

<motivation> 
<title>Motivation</title> 
<paral>Consider a user interface toolkit that supports 
multiple look-and-feel standards, such as Motif and 
Presentation Manager. Different look-and-feels define 
different appearances and behaviors for user interface 
"widgets" like scroll bars, windows, and buttons. To be 
portable across look-and-feel standards, an application 
should not hard-code its widgets for a particular look 
and feel. Instantiating look-and-feel-specific classes 
of widgets throughout the application makes it hard to 
change the look and feel later. 
</paral> 
<paral> We can solve this problem by defining an 
abstract WidgetFactory class that declares an interface 
for creating each basic kind of widget. There's also an 
abstract class for each kind of widget, and concrete 
subclasses implement widgets for specific look-and-feel 
standards. WidgetFactory's interface has an operation 
that returns a new widget object for each abstract 
widget class. Clients call these operations to obtain 
widget instances, but clients aren't aware of the 
concrete classes they're using. Thus clients stay 
independent of the prevailing look and feel. 
</paral> 
<umlDiagram image='abfac109.gif'/> 
<paral>There is a concrete subclass of WidgetFactory for 

143 



each look-and-feel standard. Each subclass implements the 
operations to create the appropriate widget for the look 
and feel. For example, the CreateScrollBar operation on 
the MotifWidgetFactory instantiates and returns a Motif 
scroll bar, while the corresponding operation on the 
PMWidgetFactory returns a scroll bar for Presentation 
Manager. Clients create widgets solely through the 
WidgetFactory interface and have no knowledge of the 
classes that implement widgets for a particular look and 
feel. In other words, clients only have to commit to an 
interface defined by an abstract class, not a particular 
concrete class. 
</paral> 
<paral>A WidgetFactory also enforces dependencies between 
the concrete widget classes. A Motif scroll bar should be 
used with a Motif button and a Motif text editor, and that 
constraint is enforced automatically as a consequence of 
using a MotifWidgetFactory. 
</paral> 

</motivation> 

<!-- Omission in the middle --> 
<relatedPatterns> 

<title>Related Patterns</title> 
<paral>AbstractFactory classes are often implemented with 
<link href='factoryMethod.xml'>factory methods</link>, 
but they can also be implemented using 
<link href='prototype.xml'>prototype</link>. 
</paral> 
<paral>A concrete factory is often a 
<link href='singleton.xml'>singleton</link>. 
</paral> 

</relatedPatterns> 
</pattern> 

<!-- pbr4Unidraw.xml --> 

<?xml version='l.O'?> 
<!DOCTYPE pbr SYSTEM "pbr.dtd"> 
<?xml-stylesheet type="text/xsl" href="pbr.xsl"?> 

<pbr> 

<heading>Pattern-Based Documentation</heading> 
<hr/> 
<systemName> 

<title>System Name</title> 
Unidraw 

</systemName> 

<developmentHistory> 
<title>Development History</title> 
<developer>John Vlissides</developer> 
<year>l993</year> 
<organisation>Stanford University, Palo Alto, 
California, USA</organisation> 

144 



</developmentHistory> 
<classDoc> 

<title>Class Documentation</title> 
<link href='classDoc4Unidraw.txt'>Class Documentation 
of Unidraw</link> 

</classDoc> 

<metricsDoc> 
<title>Metrics Documentation</title> 
<link href='metricsDoc4Unidraw.html'>Software Metrics 
of Unidraw</link> 

</metricsDoc> 
<patternDoc> 

<title>Pattern Documentation</title> 
Detected pattern instances and their respective 
c-classes 
<patterninstance> 

<link href='chainOfResponsibility.xml'>Chain Of 
Responsibility</link>: 
<c-class>ComponentView</c-class> 

</patterninstance> 
<patterninstance> 

<link href='command.xml'>Command</link>: 
<c-class>Command</c-class> 

</patterninstance> 
<patterninstance> 

<link href='factoryMethod.xml'>Factory Method</link>: 
<c-class>Creator</c-class> 

</patterninstance> 
<patterninstance> 

<link href='iterator.xml'>Iterator</link>: 
<c-class>Iterator</c-class> 

</patterninstance> 
<patterninstance> 

<link href='mediator.xml'>Connector</link>: 
<c-class>Connector</c-class> 

</patterninstance> 
<patterninstance> 

<link href='memento.xml'>Memento</link>: 
<c-class>MoveCmd</c-class> 

</patterninstance> 
<patterninstance> 

<link href='observer.xml'>Observer</link>: 
<c-class>ComponentView</c-class> 

</patterninstance> 
<patterninstance> 

<link href='prototype.xml'>Prototype</link>: 
<c-class>GraphicCompTool</c-class> 

</patterninstance> 
<patterninstance> 

<link href='state.xml'>State</link>: 
<c-class>Tool</c-class> 

</patterninstance> 
</patternDoc> 

</pbr> 

145 



Two XSL documents were developed to display the two kinds of XML documents 

on InDelv. Below are them. 

<!-- pattern.xsl --> 

<?xml version='l.O'?> 
<xsl:stylesheet 

xmlns:xsl='http://www.w3.org/XSL/Transform/1.0' 
xmlns:fo='http://www.w3.org/XSL/Format/1.0' result-ns='fo'> 
<xsl:template match='/'> 

<fo:display-sequence 
start-indent='4pt' 
end-indent='4pt' 
font-size='llpt'> 

<xsl:apply-templates/> 
</fo:display-sequence> 

</xsl:template> 
<xsl:template match='heading'> 

<fo:block 
font-size='18pt' 
font-weight='bold' 
space-before='18pt' 
space-after='12pt'> 
<xsl:apply-templates/> 

</fo:block> 
</xsl:template> 
<xsl:template match='hr'> 

<fo:display-rule 
start-indent='12pt' 
end-indent='12pt' 
rule-thickness='1.5pt' 
space-before='18pt' 
space-after='18pt'> 
<xsl:apply-templates/> 

</fo:display-rule> 
</xsl:template> 
<xsl:template match='title'> 

<fo:block 
font-size='15pt' 
font-weight='bold' 
space-before='18pt' 
space-after='12pt'> 
<xsl:apply-templates/> 

</fo:block> 
</xsl:template> 
<xsl:template match='paral'> 

<fo:block 
space-before='6pt' 
space-after='6pt'> 
<xsl:apply-templates/> 

</fo:block> 
</xsl:template> 
<xsl:template match='para2'> 

<fo:block 
space-before='6pt' 
space-after='6pt' 
start-indent='15pt'> 

146 



<xsl:apply-templates/> 
</fo:block> 

</xsl:template> 

<xsl:template match='link'> 
<fo:simple-link 

external-destination='{@href}' 
color='rgb(0,0,255) '> 
<xsl:apply-templates/> 

</fo:simple-link> 
</xsl:template> 
<xsl:template match='umlDiagram'> 

<fo:display-graphic 
width='{@max-width}' 
height='{@max-height}' 
href='{@image}'> 
<xsl:apply-templates/> 

</fo:display-graphic> 
</xsl:template> 

</xsl:stylesheet> 

<!-- pbr.xsl --> 
<?xml version='l.O'?> 
<xsl:stylesheet 

xmlns:xsl='http://www.w3.org/XSL/Transform/1.0' 
xmlns:fo='http://www.w3.org/XSL/Format/1.0' 
result-ns='fo'> 
<xsl:template match='/'> 

<fo:display-sequence 
start-indent='4pt' 
end-indent='4pt' 
font-size='llpt'> 
<xsl:apply-templates/> 

</fo:display-sequence> 
</xsl:template> 

<xsl:template match='heading'> 
<fo:block 

font-size='18pt' 
font-weight='bold' 
space-before='18pt' 
space-after='12pt'> 
<xsl:apply-templates/> 

</fo:block> 
</xsl:template> 
<xsl:template match='hr'> 

<fo:display-rule 
start-indent='12pt' 
end-indent='12pt' 
rule-thickness='1.5pt' 
space-before='18pt' 
space-after='18pt'> 
<xsl:apply-templates/> 

</fo:display-rule> 
</xsl:template> 

<xsl:template match='title'> 

147 



<fo:block 
font-size='15pt' 
font-weight='bold' 
space-before='18pt' 
space-after='12pt'> 
<xsl:apply-templates/> 

</fo:block> 
</xsl:template> 

<xsl:template match='patterninstance'> 
<fo:block 

space-before='6pt' 
space-after='6pt'> 
<xsl:apply-templates/> 

</fo:block> 
</xsl:template> 

<xsl:template match='link'> 
<fo:simple-link 

external-destination='{@href}' 
color='rgb(0,0,255) '> 
<xsl:apply-templates/> 

</fo:simple-link> 
</xsl:template> 

</xsl:stylesheet> 

148 



Bibliography 

[1] N. Ak:ima and F. Ooi. Industrializing software development: A Japanese ap­

proach. IEEE Software, pages 13-22, March 1989. 

[2] Christopher Alexander. The Timeless Way of Building. Oxford University Press, 

New York, 1979. 

[3] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Lan­

guage. Oxford University Press, New York, 1977. with Max Jacobson and 

Ingrid Fiksdahl-King and Shlomo Angel. 

[4] Apple Computer, Inc. Macintosh programmers workshop Pascal 3.0 reference, 

1989. 

[5] Brad Appleton. Patterns and software: Essential concepts and terminology. 

< www.enteract.com/"'bradapp/docs/pattems-intro.html>, An earlier revision 

of this paper appeared in the May 1997 Object Magazine Online (Vol. 3, No. 

5)., 1998. 

149 



[6] Felix Bachman, Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred 

Long, John Robert, Robert Seacord, and Kurt Wallnau. Volume II: Techni­

cal Concepts of Component-Based Software Engineering. Technical Report 

CMU/SEI-2000-TR-008, ESC-TR-2000-007, Software Engineering Institute, 

Carnegie Mellon University, May 2000. 

[7] B. Barnes and T. Bollinger. Making software reuse cost effective. IEEE Soft­

ware, pages 13-24, 1991. 

[8] Victor R. Basili. GQM approach has evolved to include models. IEEE Software, 

11(1):8, January 1994. Letter to the editor. 

[9] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Experience Fac­

tory. In John J. Marciniak, editor, Encyclopedia of Software Engineering, vol­

ume 1, pages 469-476. John Wiley & Sons, 1994. 

[10] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Goal Question 

Metric Paradigm. In John J. Marciniak, editor, Encyclopedia of Software Engi­

neering, volume 1, pages 528-532. John Wiley & Sons, 1994. 

[11] Victor R. Basili and Harlan Mills. Understanding and documenting programs. 

IEEE Transactions on Software Engineering, 8(3):270-283, May 1982. 

[12] Victor R. Basili and Richard W. Selby, Jr. Data collection and analysis in 

software research and management. In Proceedings of the American Statisti-

150 



cal Association and Biometric Society Joint Statistical Meeting, pages 21-30, 

Philadelphia, August 1984. 

[13] Victor R. Basili and D. M. Weiss. A methodology for collecting valid software 

engineering data. IEEE Transactions on Software Engineering, SE-10(6):728-

738, November 1984. 

[14] Don Batory. Intelligent components and software generators. Technical Report 

CS-TR-97 -06, University of Texas, Austin, April 1, 1997. 

[15] K. Beck and R. E. Johnson. Patterns generate architectures. In ECOOP'94, 

pages 139-149, 1994. LNCS 821. 

[16] Steve Berczuk. Finding solutions through pattern languages. IEEE Computer, 

27(12):75-76, December 1994. 

[17] J. Bieman and S. Karunanithi. Candidate reuse metrics for object-oriented and 

ada software. In Proceedings of IEEE-CS First International Software Metrics 

Symposium, 1993. 

[18] Ted Biggerstaff. Software Reusability, Concepts and Models, volume I, page xv. 

ACM Press, 1989. 

[19] Peter J. Biggs. A survey of object-oriented methods. Technical Report 6/95, 

Department of Computer Science, University of Durham, 1995. 

151 



[20] Peter J. Biggs. Automating Reuse Support in a Small Company. PhD thesis, 

Durham University, August 1998. 

[21] Dines Bj!Zimer. On the use of formal methods in software development. In Proc. 

of 9th International Conference on Software Engineering, pages 17-29. IEEE, 

April1987. 

[22] B. W. Boehm. The high cost of software. In E. Horowitz, editor, Practical 

Strategies for Developing Large Software Systems. Addision-Wesley, Reading, 

MA, 1975. 

[23] G. Booch. Object-Oriented Analysis and Design. Benjamin Cummings, 2nd 

edition, 1994. 

[24] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling 

Language User Guide. Addison-Wesley, Reading, Massachusetts, USA, 1999. 

[25] Jan Bosch. Design patterns frameworks: On the issue of language support. In 

ECOOP Workshops, pages 133-136, 1997. 

[26] Jan Bosch. Design patterns as language constructs. Journal of Object-Oriented 

Programming, 11(2):18-32, 1998. 

[27] Kyle Brown. Design reverse-engineering and automated design pattern detec­

tion in Smalltalk. Master's thesis, Department of Computer Engineering, North 

Carolina State University, 1996. 

152 



[28] Tim Bull. Software Maintenance by Program Transformation in a Wide Spec­

trum Language. PhD thesis, School of Engineering and Computer Science, 

University of Durham, 1994. 

[29] Dan L. Burk. Copyrightable functions and patentable speech. Communications 

of the ACM, 44(2):69-75, February 2001. 

[30] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A system 

of patterns- pattern oriented software architecture. Wiley, 1996. 

[31] Shy am R. Chidamber and Chris F. Kemerer. A metrics suite for object ori­

ented design. IEEE Transactions on Software Engineering, 20(6):476--493, June 

1994. 

[32] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recov­

ery: a taxonomy. IEEE Software, 7(1):13-17, January 1990. 

[33] Congress of the United States, Office of Technology Assessment. Intellectual 

property rights in an age of electronics and information. Technical report, Wash­

ington, D.C.: U.S. Government Printing Office, 1986. 

[34] L. L. Constantine and E. Yourdon. Structured Design. Prentice Hall, Englewood 

Cliffs, NJ, 1979. 

[35] James 0. Coplien. A generative development- process pattern language. In 

J. Coplien and D. Schmidt, editors, Pattern Languages of Program Design, 

pages 183-237. Addison-Wesley, 1995. 

153 



[36] Yan-David Erlich. Implementing design patterns as languages constructs. ACM 

SJGPIAN Notices, 34(1):348-348, January 1999. 

[37] Norman Fenton and Shari Lawrence Pfteeger. Software Metrics: A Rigorous 

and Practical Approach. International Thomson Computer Press, London, UK, 

second edition, 1997. 

[38] N. T. Fletton and M. Munro. Redocumenting software systems using hyper­

text technology. In Proceedings of the International Conference on Software 

Maintenance 1988, pages 54-59. IEEE, IEEE Computer Society Press, 1988. 

[39] Nigel T. Fletton. A hypertext approach to browsing and documenting software. 

In HYPERTEXT II: State of the Art, Prototypes, pages 193-204. Intellect, Inc., 

1989. 

[40] Marcus Fontoura, Wolfgang Pree, and Bernhard Rumpe. UML-F: A model­

ing language for object-oriented frameworks. In E. Bertino, editor, ECOOP 

2000-0bject-Oriented Programming, volume 1850 of Lecture Notes in Com­

puter Science, pages 63-82. Springer, 2000. 

[41] Brian Foote. A fractal model of the lifecyle of reusable objects. OOPSLA '91 

Workshop on Reuse, Ottawa, Ontario, Canada, 1991. 

[42] Gary Ford. Lecture notes on engineering measurement for software engineers. 

SEI educational materials package CMU/SEI-93-EM-9, Carnegie Mellon Uni­

versity, Software Engineering Institute, 1993. 

154 



[43] Martin Fowler. Analysis patterns: reusable object models. Addison Wesley 

Longman, Inc, 1997. 

[44] William Frakes and Carol Terry. Software reuse: Metrics and models. ACM 

Computing Surveys, 28(2):415-435, June 1996. 

[45] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat­

terns: Elements of Reusable Object-Oriented Software. Addison Wesley, Mas­

sachusetts, 1994. 

[ 46] David Garlan and Mary Shaw. An introduction to software architecture. In 

V. Ambriola and G. Tortora, editors, Advances in Software Engineering and 

Knowledge Engineering, volume 1, pages 1-40. World Scientific Publishing 

Company, 1993. 

[47] David Garlan and Mary Shaw. An introduction to software architecture. In 

V. Ambriola and G. Tortora, editors, Advances in Software Engineering and 

Knowledge Engineering, pages 1-39, Singapore, 1993. World Scientific Pub­

lishing Company. 

[48] Edward Stewart Garnett. Software Reclamation: Upgrading Code for Reusabil­

ity. PhD thesis, Lancaster University, September 1990. 

[ 49] K. Geary. Practical problems in introducing software reuse, May 1987. lEE 

Colloquium on Reusable Software Components. 

155 



[50] Joseph Gil and David H. Lorenz. Design patters vs.language design. In J. Bosch 

and S. Mitchell, editors, Object-Oriented Technology: ECOOP'97 Workshop 

Reader, number 1357 in Lecture Notes in Computer Science, pages 108-111. 

Language Support for Design Patterns and Frameworks Workshop Proceedings, 

JyvaskyUi, Finland, Springer Verlag, June 9-13 1997. 

[51] C. F. Goldfarb. The SGML Handbook. Oxford University Press, 1990. 

[52] I. S. Graham and L. Quin. XML Specification Guide. John Wiley & Sons, Inc., 

1999. 

[53] Martin L. Griss. Implementing product-line features with component reuse. In 

William B. Frakes, editor, Software Reuse: Advances in Software Reusability, 

volume 1844 of Lecture Notes in Computer Science, pages 137-152. Springer, 

2000. 6th International Conference on Software Reuse (ICSR-6). 

[54] S. Hallsteinsen and M. Paci. Experiences in Software Evolution and Reuse: 

Twelve Real World Projects. Springer-Verlag, 1997. 

[55] Sallie M. Henry and Dennis G. Kafura. Software structure metrics based on 

information flow. IEEE Transactions on Software Engineering, 7(5):510-518, 

September 1981. 

[56] Ivar Jacobson, Magnus Christerson, Patrk Jonsson, and Gunnar Overgaard. 

Object-Oriented Software Engineering - A Use Case Driven Approach. 

Addison-Wesley, Wokingham, England, 1992. 

156 



[57] Ralph E. Johnson. Documenting Frameworks using Patterns. In Proceedings of 

the OOPSLA '92 Conference on Object-oriented Programming Systems, Lan­

guages and Applications, pages 63-76, October 1992. Published as ACM SIG­

PLAN Notices, volume 27, number 10. 

[58] T. C. Jones. Reusability in programming: A survey of the state of the art. IEEE 

Transactions on Software Engineering, 10(5):488-494, September 1984. 

[59] J. van Katwijk and E. M. Dusink. Reusable software and software components. 

In R. J. Gautier and P. J. L. Wallis, editors, Software Reuse with Ada, pages 

15-22. Peter Peregrinus Ltd., 1990. 

[60] Rudolf K. Keller, Reinhard Schauer, Sebastien Robitaille, and Patrick Page. 

Pattern-based reverse-engineering of design components. In Proceedings of the 

21st International Conference on Software Engineering, pages 226-235. ACM 

Press, May 1999. 

[61] Norman L. Kerth and Ward Cunningham. Using patterns to improve our archi­

tectural vision. IEEE Software, pages 53-59, January 1997. 

[62] H. Kim and C. Boldyreff. An approach to increasing software component 

reusability in Ada. Lecture Notes in Computer Science, 1088:89-100, 1996. 

[63] Hyoseob Kim. Ada code reuse guidelines for design-for-reuse. Master's thesis, 

Department of Computer Science, University of Durham, 1996. 

157 



[64] Hyoseob Kim and C. Boldyreff. Software reusability issues in code and design. 

ACM SIGADA Ada Letters, 17(6):91-97, November/December 1997. 

[65] Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number 27. 

Stanford University Center for the Study of Language and Information, Stan­

ford, CA, USA, 1992. 

[66] P. Kogut. Design reuse: Chemical engineering vs. software engineering. Soft­

ware Engineering Notes, 20(5):73-77, 1995. 

[67] Oh Cheon Kwon. A process model ofmaintenance with reuse: an investigation 

and an implementation. PhD thesis, Department of Computer Science, Univer­

sity of Durham, 1998. 

[68] K. Lano and N. Malik. Reengineering legacy applications using design patterns. 

In Proceedings of the 8th International Workshop on Software Technology and 

Engineering Practice, London, UK, July 1997. 

[69] Kevin Lano, Juan Bicarregui, and S. Goldsack. Formalising design patterns. In 

David Duke and Andy Evans, editors, 1st BCS-FACS Northern Formal Methods 

Workshop, Ilkley, UK, Electronic Workshops in Computing. Springer-Verlag, 

1996. 

[70] Anthony Lauder and Stuart Kent. Precise visual specification of design patterns. 

In Eric Jul, editor, ECOOP 1998-0bject-Oriented Programming, volume 1445 

of Lecture Notes in Computer Science, pages 114-134. Springer, 1998. 

158 



[71] David B. Leblang and Gordon D. McLean, Jr. Configuration management for 

large-scale software development efforts. In Proceedings of the Workshop on 

Software Engineering Environments for Programming-in-the-Large, pages 122-

127, Harwichport, Massachusetts, 1985. 

[72] Ted Lewis, Larry Rosenstein, Wolfgang Pree, Andre Weinand, Erich Gamma, 

Paul Calder, Glenn Andert, John Vlissides, and Kurt Schmucker. Object­

Oriented Application Frameworks. Prentice-Hall, 1995. 

[73] Mark A. Linton and Paul R. Calder. The design and implementation of Inter­

Views. In Jim Waldo, editor, The Evolution of C++: Language Design in the 

Marketplace of Ideas, pages 75-86, Berkeley, CA, USA and Cambridge, MA, 

USA, 1993. USENIX and MIT Press. Editor: Jim Waldo. 

[74] Mark A. Linton, Paul R. Calder, and John M. Vlissides. InterViews: A C++ 

graphical interface toolkit. Technical Report CSL-TR-88-358, Stanford Univer­

sity, Computer Systems Lab, July 1988. 

[75] Stanley B. Lippman. C++ Primer. Addison-Wesley, Reading, Mass., 1989. 

[76] Mark Lorenz. Object-oriented software metrics: a practical guide. PTR Pren­

tice Hall, 1994. 

[77] Simon Lucas. Optimisation of the similarity analyser. Master's thesis, Depart­

ment of Computing, City University, London, U.K., November 1996. 

159 



[78] Robert Martin. Discovering patterns in existing applications. In James 0. 

Coplien and Douglas C. Schmidt, editors, Pattern Langauges of Program De­

sign, pages 365-393. Addison Wesley, 1995. 

[79] Y. Matsumoto et al. SWB system: A software factory. Software Engineering 

Environments, pages 305-314, 1981. 

[80] Sky Matthews and Carl Grove. Applying object-oriented concepts to docu­

mentation. In ACM Tenth International Conference on Systems Documentation, 

pages 265-271, 1992. 

[81] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engi­

neering, SE-2(4):308-320, December 1976. 

[82] John A. McDermid. Introduction and overview to part II, methods, techniques 

and technology. In John A. McDermid, editor, Software Engineer's Reference 

Book. Butterworth-Heinemann, June 1990. 

[83] J. McGregor and D. Sykes. Object-Oriented Software Development: Engineer­

ing Software for Reuse. Van Nostrand Reinhold, New York, 1992. 

[84] M.D. Mcilroy. Mass produced software components. In P. Naur, B. Randell, 

and J. N. Buxton, editors, Proceedings of NATO Conference on Software Engi­

neering, pages 88-98, New York, 1969. Petrocelli/Charter. 

[85] Eugene S. Meieran. 21st century semiconductor manufacturing capabilities. 

Intel Technology Journal, 1998. 4th Quarter '98. 

160 



[86] Bertrand Meyer. Object-Oriented Software Construction. Series in Computer 

Science. Prentice Hall, Englewood Cliffs, NJ, 1988. 

[87] Hafedh Mili, Odile Marcotte, and Anas Kabbaj. Intelligent component retrieval 

for software reuse. In Proceedings of the Third Maghrebian Conference on Ar­

tificial Intelligence and Software Engineering, pages 101-114, Rabat, Morocco, 

April1994. 

[88] G. Moore. Cramming more components onto integrated circuits. Electronics, 

pages 114-117, April 1965. 

[89] Hausi A. Muller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl. A reverse 

engineering approach to subsystem structure identification. Journal of Software 

Maintenance: Research and Practice, 5(4):181-204, December 1993. 

[90] P. Naur and B. Randell, editors. Software Engineering: A Report on a Confer­

ence sponsored by the NATO Science Committee. NATO, 1969. 

[91] J. Neighbors. The Draco approach to constructing software from reusable com­

ponents. IEEE Transactions on Software Engineering, 10(5):564-573, Septem­

ber 1984. 

[92] Object Management Group, Inc. OMG Unified Modeling Language Specifica­

tion. Version 1.3, June 1999. 

[93] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, 

University of Illinois at Urbana-Champaign, 1992. 

161 



[94] Robert Orfali, Dan Harkey, and Jeri Edwards. Instant CORBA. John Wiley, 

1997. 

[95] C. Papidimitriou and K. Steiglitz. Combinatorial Optimisation: Algorithms and 

Complexity. Prentice Hall, Englewood Cliffs, NJ, 1982. 

[96] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. Capa­

bility maturity model for software, version 1.1. Technical Report CMU/SEI-

93-TR-024, ESC-TR-93-177, Software Engineering Institute, Carnegie Mellon 

University, February 1993. 

[97] Mark C. Paulk, Charles V. Weber, Suzanne M. Garcia, Mary Beth Chrissis, 

and Marilyn Bush. Key practices of the capability maturity model, version 1.1. 

Technical Report CMU/SEI-93-TR-025, ESC-TR-93-178, Software Engineer­

ing Institute, Carnegie Mellon University, February 1993. 

[98] A. Perlis, F. Sayward, and M. Shaw. The role of metrics in software and software 

development. In Software Metrics: An Analysis and Evaluation, pages 1-4, 

Cambridge, Massachusetts, 1981. The MIT Press. 

[99] D. Perry. System compositions and shared dependencies. Software Configu­

ration Management: ICSE'96 SCM-6 Workshop Selected Papers, Berlin, April 

25-26,1996, Published as Lecture Notes in Computer Science, 1167:139-153. 

Springer. 

162 



[ 100] Cuno Pfister and Clemens Szyperski. Why objects are not enough. In Pro­

ceedings, International Component Users Conference, Munich, Germany, 1996. 

SIGS. 

[101] J. Poulin. Measuring Software Reuse. Addison Wesley, 1996. 

[102] Lutz Prechelt. An experiment on the usefulness of design patterns: detailed de­

scription and evaluation. Technical Report iratr-1997-9, Universitat Karlsruhe, 

Institut ftir Programmstrukturen und Datenorganisation, 1997. 

[103] Lutz Prechelt and Barbara Unger. A series of controlled experiments on design 

patterns: Methodology and results. In Proc. Softwaretechnik'98, GI Conference, 

Paderborn, pages 53-60, 1998. 

[104] Lutz Prechelt, Barbara Unger, and Michael Philippsen. Documenting design 

patterns in code eases program maintenance. In Proceedings of ICSE Workshop 

on Process Modeling and Empirical Studies of Software Evolution, Boston, MA, 

May 1997. 

[105] Roger S. Pressman. Software Engineering: A Practitioner's Approach. 

McGraw-Hill, third edition, 1992. 

[106] R. Prieto-Diaz. Status report: Software reusability. IEEE Software, pages 61-

66, May 1993. 

[ 107] M. Ramachandran. An Investigation into Tool Support for the Development of 

Reusable Software. PhD thesis, Lancaster University, 1992. 

163 



[108] D. J. Robson, K. H. Bennett, B. J. Cornelius, and M. Munro. Approaches to 

program comprehension. The Journal of Systems and Software, 14(2):79-84, 

February 1991. 

[109] Kenneth Rosen. Discrete Mathematics and Its Applications. McGraw-Hill Pub­

lishing Company, June 1999 (4th ed). 

[ 110] S. Rugaber. Program comprehension. In Encyclopedia of Computer Science and 

Technology, volume 35(20), pages 341-368. Marcel Dekker, Inc., New York, 

1995. 

[111] James Rumbaugh, Michael Blaha, William Premerlani, frederick Eddy, and 

William Lorenson. Object-Oriented Modelling and Design. Prentice Hall, En­

glewood Cliffs, NJ, 1991. 

[112] Pamela Samuelson. Intellectural property for information age. Communications 

of the ACM, 44(2):67-68, February 2001. 

[113] Pamela Samuelson and Kevein Deasy. Intellectual property protection for soft­

ware. SEI Curriculum Module SEI-CM-14-2.1, Carnegie Mellon University, 

Software Engineering Institute, July 1989. 

[ 114] Reinhard Schauer and Rudolf K. Keller. Pattern visualization for software com­

prehension. In Proceedings of the 6th International Workshop on Progrma Com­

prehension, pages 4-12. IEEE Computer Society, June 1998. 

164 



[115] Douglas C. Schmidt. Using design patterns to guide the development of reusable 

object-orient software. Position statement for the ACM Workshop on Strategic 

Directions in Computing Research, MIT, June 1996. 

[116] Roger Sessions. COM and DCOM: Microsoft's Vision for Distributed Objects. 

John Wiley, 1998. 

[ 117] Mary Shaw. Prospects for an engineering discipline of software. Technical 

Report CMU/SEI-90-TR-20, ESD-TR-90-221, Software Engineering Institute, 

School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsyl­

vania 15213-3809, September 1990. 

[118] Mary Shaw and David Garlan. Software Architecture: Perspective on an 

Emergining Discipline. Prentice Hall, 1996. 

[ 119] Forrest Shull, Walcelio L. Melo, and Victor R. Basili. An inductive method 

for discovering design patterns from object-oriented software systems. Tech­

nical Report CS-TR-3597, UMIACS-TR-96-10, Computer Science Depart­

ment/Institute for Advanced Computer Studies, University of Maryland, 1996. 

[120] Paul Singleton and Pearl Brereton. A case for declarative programming-in­

the-large. Technical Report TR93-14, Department of Computer Science, Keele 

University, Keele, UK, June 1993. 

[121] Dennis B. Smith. Y2K: Organizational issues, November 1997. Presented at 

the 1997 IBM CAS Conferance (CASCON '97), Toronto, Canada. 

165 



[122] I. Sommerville. Software reuse: Potential and problems. Technical Report 

CS-SE-1-87, Department of Computing, University of Lancaster, 1987. 

[123] I. Sommerville. Software Engineering, chapter 30, pages 571-588. Addison­

Wesley, fourth edition, 1992. 

[ 124] Ian Sommerville. Software reuse courses. Software Reuse Course Slides, 1994. 

[125] G. Spanoudakis and K. Kassis. An evidential framework for diagnosing the 

significance of inconsistencies in UML models. In Proceedings of the Interna­

tional Conference on Software: Theory and Practice, pages 152-162, Bejing, 

China, August 2000. 

[126] George Spanoudakis and Panas Constantopoulos. Similarity for analogical soft­

ware reuse: A computational model. In A. G. Cohn, editor, Proceedings of the 

Eleventh European Conference on Artificial Intelligence, pages 18-22, Chich­

ester, August 8-12 1994. John Wiley and Sons. 

[127] George Spanoudakis and Anthony Finkelstein. Reconciling requirements: a 

method for managing interference, inconsistency and conflict. Annals of Soft­

ware Engineering, 3:433-457, 1997. Software Requirements Engineering. 

[128] George Spanoudakis, Anthony Finkelstein, and David Till. Overlaps in require­

ments engineering. Automated Software Engineering: An International Journal, 

6(2):171-198, April1999. 

166 



[129] Perdita Stevens and Rob Pooley. Systems reengineering patterns. In Proceed­

ings of the ACM SIGSOFT 6th International Symposium on the Foundations of 

Software Engineering ( FSE-98), volume 23, 6 of Software Engineering Notes, 

pages 17-23, New York, November 3-5 1998. ACM Press. 

[130] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, Read­

ing, MA, 1994. 

[131] Gerson Sunye, Alain Le Guennec, and Jean-Marc Jezequel. Design patterns 

application in UML. In E. Bertino, editor, ECOOP 2000-0bject-Oriented 

Programming, volume 1850 of Lecture Notes in Computer Science, pages 44-

62. Springer, 2000. 

[132] E. B. Swanson. The dimensions of maintenance. In Proceedings of the Sec­

ond International Conference on Software Engineering, pages 492-497. IEEE, 

October 1976. 

[133] Clemens Szyperski. Component-oriented programming: A refined variation on 

object-oriented programming. The Oberon Tribune, 1(2), 1995. 

[134] Talignet Inc. Leveraging object-oriented frameworks. A Taligent White Paper, 

1996. 

[135] S. R. Tilley. Documenting-in-the-large vs. documenting-in-the-small. In Pro­

ceedings ofCASCON 1993, pages 1083-1090, October 1993. 

167 



[136] Scott R. Tilley and Dennis B. Smith. Perspectives on legacy system reengineer­

ing. Draft Version 0.3, Reengineering Center, Software Engineering Institute, 

Carnegie Mellon University, 1995. 

[137] W. Tracz, L. Coglianese, and P. Young. A domain-specific software architec­

ture engineering process outline. ACM SIGSOFT Software Engineering Notes, 

18(2):40-49, 1993. 

[138] John M. Vlissides. Generalised Graphical Object Editing. PhD thesis, Stanford 

University, June 1990. 

[139] John M. Vlissides and Mark A. Linton. Unidraw: A framework for building 

domain-specific graphical editors. ACM Transactions on Information Systems, 

8(3):237-268, July 1990. 

[140] Jeffrey M. Voas. Certifying off-the-shelf software components. Computer, 

31(6):53-59, 1998. 

[141] Anneliese von Mayrhauser and A. Marie Vans. Program comprehension during 

software maintenance and evolution. Computer, 28(8):44-55, August 1995. 

[142] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise 

Modelling with UML. Object Technology Series. Addison-Wesley, Reading, 

Mass., 1999. 

[143] Arthur H. Watson and Thomas J. McCabe. Structured testing: A testing method­

ology using the cyclomatic complexity metric. NIST Special Publication 500-

168 



235, Computer Systems Laboratory, National Institute of Standards and Tech­

nology, Gaithersburg, MD, September 1996. 

[144] A. Weinand, E. Gamma, and R. Marty. Design and implementation of ET ++, 

a seamless object-oriented application framework. Structured Programming, 

10(2):63-87, 1989. 

[145] Kenny Wong, Scott R. Tilley, Hausi A. Muller, and Margaret-Anne D. Storey. 

Structural redocumentation: a case study. IEEE Software, 12(1):46-54, January 

1995. 

[146] A. Zisman. An overview of XML. Computing & Control Engineering Journal, 

11(4), 2000. 

169 



Glossary 

e abstraction The essential characteristics of an entity that distinguish it from 

all other kinds of entities. An abstraction defines a boundary relative to the 

perspective of the viewer. 

• aggregation A special form of association that specifies a whole-part relation­

ship between the aggregate (the whole) and a component (the part). 

• architecture The set of significant decisions about the organisation of a software 

system, the selection of the structural elements and their interfaces by which the 

system is composed, together with their behaviour as specified in the collabora­

tions among those elements, the composition of these structural and behavioural 

elements into progressively larger subsystems, and the architectural style that 

guides this organisation. 

• artifact A piece of information that is used or produced by a software develop­

ment process. 

170 



• association A structural relationship that describes a set of links, in which a link 

is a connection among objects; the semantic relationship between two or more 

classifiers that involves the connections among their instances. 

• black-box reuse A style of reuse based on object composition. Composed ob­

jects reveal no internal details to each other and are thus analogous to "black 

boxes". 

• class A class defines an object's interface and implementation. It specifies the 

object's internal representation and defines the operations the object can per­

form. 

• class diagram A diagram that depicts classes, their internal structure and oper­

ations, and the static relationships between them. 

• collaboration A society of roles and other elements that work together to pro­

vide some cooperative behaviour that is bigger than the sum of all its parts; the 

specification of how an element, such as a use case or an operation, is realised by 

a set of classifiers and associations playing specific roles and used in a specific 

way. 

• component A physical and replaceable part of a system that conforms to and 

provides the realisation of a set of interfaces. 

• context A set of related elements for a particular purpose, such as to specify an 

operation. 

171 



• coupling The degree to which software components depend on each other. 

• Design Pattern Recovery (DPR) The process of a program in an effort to create 

a representation of the program at a higher level of abstraction than source code. 

The recovered abstraction is in the format of design pattern. 

• Documentation-in-the-Large (DitL) Documentation in the large scale where 

the overall structure and behaviour of a system are considered more important 

than localised descriptions of modules. DitL and DitS are not contradictory but 

complementary. 

• Documentation-in-the-Small (DitS) Documentation in the small scale. As the 

size and complexity of systems increase, DitL is being considered more critical 

to the success of software development and maintenance projects than DitS. 

• Document Type Definition (DTD) The grammar by which an XML document 

is defined. In other words, DTD specifies the structure of an XML document 

and how its content is nested. 

• domain An area of knowledge or activity characterised by a set of concepts and 

terminology understood by practitioners in that area. 

• encapsulation The result of hiding a representation and implementation in an 

object. The representation is not visible and cannot be accessed directly from 

outside the object. Operations are the only way to access and modify an object's 

representation. 

172 



• eXtensible Markup Language (XML) An initiative from the W3C defining an 

"extremely simple" dialect of SGML suitable for use on the World-Wide Web. 

• eXtensible Style Language (XSL) A language used to create stylesheets for 

XML, similar to CSS (Cascading Style Sheets) that are used for HTML. In 

XML, content and presentation are separate. XML tags do not indicate how 

they should be displayed. An XML document has to be formatted before it can 

be read, and the formatting is usually accomplished with stylesheets. Stylesheets 

consist of formatting rules for how particular XML tags affect the display of a 

document on a computer screen or a printed page. 

• forward engineering The process of transforming a model into code through a 

mapping to a specific implementation language. 

• framework An architectural pattern that provides an extensible template for 

applications within a domain. 

• generalisation Another name for inheritance. 

• inheritance A relationship that defines one entity in terms of another. Class in­

heritance defines a new class in terms of one or more parent classes. The new 

class inherits its interface and implementation from its parents. The new class is 

called a subclass or (in C++) a derived class. Class inheritance combines inter­

face inheritance and implementation inheritance. Interface inheritance defines 

a new interface in terms of one or more existing interfaces. Implementation 

173 



inheritance defines a new implementation in terms of one or more existing im­

plementations. 

• instance A concrete manifestation of an abstraction; an entity to which a set 

of operations can be applied and that has a state that stores the effects of the 

operations. 

• interaction diagram A diagram that shows the flow of requests between objects. 

• level of abstraction One place in a hierarchy of abstractions ranging from high 

levels of abstraction (very abstract) to low levels of abstraction (very concrete). 

e message A specification of a communication between objects that conveys in­

formation with the expectation that activity will ensue; the receipt of a message 

instance is normally considered an instance of an event. 

• metaclass A class whose instances are classes. 

• model A simplification of reality, created in order to understand the system being 

created better; a semantically closed abstraction of a system. 

• object A run-time entity that packages both data and the procedures that operate 

on that data. 

o object composition Assembling or composing objects to get more complex be­

havior. 

174 



• Object Constraint Language (OCL) A formal language used to express side 

effect-free constraints. 

• object diagram A diagram that depicts a particular object structure at run-time. 

• pattern A common solution to a common problem in a given context. 

• Pattern-Based Redocumentation (PBR) Redocumentation of a system on the 

basis of recovered or detected patterns. 

• polymorphism The ability to substitute objects of matching interface for one 

another at run-time. 

• product The artifacts of development, such as models, code, documentation, 

and work plans. 

• Programming-in-the-Large (PitL) Programming in the large scale where sound 

engineering principles like reuse, measurement and CASE tools need to be ap­

plied for the success of the projects. 

• Programming-in-the-Small (PitS) Programming in the small scale where sys­

tems are built by a person or, at most, a small group of people. 

• relationship A semantic connection among elements. 

e~ requirement A desired feature, property, or behaviour of a system. 

• reverse engineering The process of transforming code into a model through a 

mapping from a specific implementation language. 

175 



• subsystem A grouping of elements of which some constitute a specification of 

the behaviour offered by the other contained elements. 

• system Possibly decomposed into a collection of subsystems, a set of elements 

organised to accomplish a specific purpose and described by a set of models, 

possibly from different viewpoints. 

o Unified Modelling Language (UML) A language for visualising, specifying, 

constructing, and documenting the artifacts of a software-intensive system. 

• white-box reuse A style of reuse based on class inheritance. A subclass reuses 

the interface and implementation of its parent class, but it may have access to 

otherwise private aspects of its parent. 

• XML Linking Language (XLink) An XML application that expands the way 

hyperlinks can be used. XLink makes it possible to target a specific section of a 

document, and adds other options to make linking easier. 

• XML Path Language (XPath) A language that describes a way to locate and 

process items in XML documents by using an addressing syntax based on a path 

through the document's logical structure or hierarchy. 

• XML Pointer Language (XPointer) is a language for locating data within an 

XML document based on properties such as location within the document, char-

acter content, and attribute values. 

176 

;_~/. 
-- .1 

-+-


