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MAXJMUM ENTROPY METHODS APPLIED TO NMR AND 

MASS SPECTROMETRY 

By 

LESLIE PETER HUGHES BSc, MRSC 

Maximum Entropy data processing techniques have been widely available for use by NMR 

spectroscopists and mass spectrometrists since they were first reported as a tool for enhancing 

damaged images. However. the techniques have been met with a certain amount of scepticism 

amongst the spectroscopic community; not least their apparent ability to get something for nothing. 

The aim of the work presented in this thesis is to demonstrate that if these techniques are 

used carefully and in appropriate situations a great deal of information can be extracted from both 

NMR and mass spectra. This has been achieved by using the Memsys5 and Massive Inference 

algorithms to process a range of NMR and mass spectra which suffer from some of the problems 

which are commonly encountered in spectroscopy, i.e. poor resolution. poor sensitivity. how to 

process spectra with a wide range of peak widths. 

The theory underlying the two algorithms is described simply and the techniques for 

selecting appropriate point spread functions are outlined. Experimental rather than simulated spectra 

are processed throughout. 

Thwughout this work the Maximum Entropy results are treated with scepticism. A 

pragmatic approach is employed to demonstrate that the results are valid. 

It is concluded that the Maximum Entropy methods do have their place amongst the many 

other data processing strategies used by spectroscopists. If used correctly and in appropriate 

situations the results can be worth the investment in time needed to obtain a satisfactory result. 
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5 Introduction 

CHAPTER 1: INTRODUCTION 

Probabilistic processing of spectroscopic data is a relatively new extension of the principles 

learnt and applied in such diverse fields as image analysis and telecommunications11 •21• 

Conventional data pn:x:essing relies on linear techniques to improve one particular facet of 

some damaged dataset. The procedures usually involve a compromise between, for example. 

resolution and signal: noise ratio (S/N). The research described in this thesis employs the Maximum 

Entropy algorithm (Memsys5). developed by Skilling and Bryan131 • and the later Massive Inference 

algorithm (Masslnf), developed by Skilling and Sibisif4l, to demonstrate the level of extra 

information that can be recovered from spectroscopic data. In the context of this thesis the term 

MaxEnt will he used to infer Bayesian analysis based on either the Memsys5 algorithm or the 

Massinf algorithm. 

It has become clear that the few spectroscopists who actively use the various MaxEnt 

algorithms are more concerned with tackling the fundamental problems of data processing. e.g. 

truncation artifacts, rather than applying the principles learnt to real systems. It is perhaps this lack 

of industrial application, which has led to the scepticism surrounding these techniques, that was the 

main driving force for undertaking this research. The following chapters will describe the 

application of the principles of Bayesian analysis to a range of spectroscopic problems, e.g. the 

determination of polymer microstructure from severely overlapped NMR data. 

The preliminary results describing the determination of polymer microstructure by 

NMR and MaxEnt data processing were presented in the form of a poster at the 16th International 

Conference On Maximum Entropy and Bayesian Analysis (MaxEnt '96), Kruger National Park, 

South Africa. August 1996. (See Appendix 1 ). 

1.1 Introduction to Maximum Entropy Techniques 

The key difference between the algorithms used in this research and conventional data 

processing is that the new algorithms use a probabilistic approach to quantifying the position and 

intensity. along with error bars. of any feature in a spectrum. As will be discussed in Chapter 2, both 
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the algorithms described in this thesis have their foundations in Bayesian analysis, a general method 

for inferring the rorm of a probability distribution. 

Conventional data processing techniques try to filter the damaged spectrum somehow in 

order to recover. in one-step, what the original spectrum must have been. These linear method<;, e.g. 

line-broadening. are limited because there is always a compromise between resolution (the ability to 

separate peaks) and the signal:noise ratio (S/N) found in the spectrum, i.e. as the resolution increases 

so the SIN decreases. Furthermore. any artifacts or spikes present in the raw data are likely to be 

enhanced with traditional processing methods. 

In contrast, the MaxEnt algorithms never actually process the experimental spectrum. rsJ The 

experimental spectrum is used only as a reference with which to compare the MaxEnt result at any 

point on its iteration cycle. The algorithms sample the probability cloud of possible trial spectra and 

compare each with the starting data. The difference between each trial spectrum and the original. 

taking into account the noise, is used to guide the algorithm to its next better choice of possible 

candidates. For the Memsys5 algorithm. the optimum candidate is chosen as the one with the 

Maximum Entropy. i.e. that trial spectrum which best fits the experimental spectrum but contains the 

minimum structure. For Masslnf the concept of optimum candidate is discarded and the full 

probability distribution of plausible spectra are considered, and if required the user can take an 

arithmetic mean of a number of plausible spectra to obtain a spectrum for comparison. Apart from a 

few standard instructions the only input to either Memsys5 or Masslnf is a peak profile or point 

spread function (PSF) and an estimate of the RMS noise level in the data (Sigma). When necessary 

the PSF may be optimised from the program's output diagnostics. 

In summary, the MaxEnt result is a synthetic reconstruction of the experimental spectrum. 

It leads to quantification of position and intensity for any feature in a spectrum. accompanied by 

probabilistic error bars. The MaxEnt reconstruction is largely free from noise and artifacts. 

Simultaneous improvements in both resolution and S/N are possible. 

Whilst Memsys5 will be shown to produce perfectly acceptable results, in practice it suffers 

from an internal mathematical inconsistency. Massinf avoids this difficulty and gives a new method 



7 Introduction 

of probabilistic data processing, which has no internal mathematical contradictions; i.e. it uses the 

full probability distribution of plausible spectra. The differences between the two algorithms will be 

discussed in Chapter 2. 

1.2 This thesis 

This thesis falls into two main sections: techniques (Chapters 2 and 3) and application 

(Chapters 4-7). Chapter 2 describes the necessary mathematical background of Bayesian data 

processing as applied to NMR spectroscopy and Mass spectrometry. It is complete in terms of 

providing all the necessary mathematical concepts. However, the detailed mathematics of the 

algorithm is beyond the scope of this work and is excluded. All the NMR techniques employed in 

this report are well understood both in terms of theory and application. Accordingly, following a 

brief introduction to the principles of NMR. Chapter 2 describes only those particular aspects of 

NMR theory which give rise to the underlying problems that this thesis has tried to address. e.g. line­

broadening. Chapter 3 describes how the Maximum Entropy techniques employed in this work are 

used in practice. It includes a description of the Maximum Entropy hardware and software and 

describes the preliminary data processing required to change the experimental data into a form 

appropriate for data analysis. The basic operation of the Memsys and Massive Inference software is 

discussed and the link between the software inputs and the appropriate theory is highlighted. 

Chapter 4 introduces the chemical characterization of sodium carboxymethyl cellulose as an 

area which may benefit from a more rigorous approach to spectral data processing. The NMR 

spectra of these systems suffer from very poor signal:noise ratio. especially if the spectra are of 

commercially available systems, and normally rely on hydrolysis methods in order to realise useable 

NMR spectra. This chapter describes how the MaxEnt algorithms can be used to 'de-noise' such 

spectra providing valuable information without the need for chemical modification of the sodium 

carboxymethyl cellulose. 
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Chapter 5 describes the application of MaxEnt techniques to the 13C NMR spectrum of a 

styrene I maleic anhydride copolymer. It describes how the techniques can simultaneously improve 

spectral resolutinn and the signal:noise ratio in the spectrum. 

Chapter 6 is concerned with the application of these techniques to NMR spectra which 

contain peaks of significantly different linewidth. The concept of using Linear Prediction techniques 

as a pre-processing stage is introduced. 

Chapter 7 describes the application of MaxEnt techniques to the electrospray mass spectra 

of complex dye mixtures. The techniques are used to overcome some of the problem.<; associated 

with assigning peaks in such mixtures and the measurement of the peaks areas is shown to be 

consistent \Vith the current models for the electrospray ionisation process. 

Chapter 8 summarizes the principal conclusions from the work described and highlights 

areas where, in the future, these techniques may become a viable alternative to conventional 

processing methods. 
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CHAPTER 2: THEORY 

This chapter is split into two sections that outline the theory behind the Maximum Entropy 

algorithms, i.e. Mcmsys and Masslnf. The theory of NMR is also outlined in a third section. 

Section 2.1 describes the Memsys algorithm in a form which can be applied to NMR 

spectroscopy ancl mass spectrometry ancl which has the following properties: 

• It is consistent in terms of nomenclature. 

• It is complete in terms of providing all the necessary mathematical concepts. However, the 

detailed mathematics of the algorithm is beyond the scope of this work and is excluded. 

• It describes the origins of the parameters used in the practical application of the Memsys 

algorithm. 

The theoretical problems associated with the Memsys algorithm are discussed. 

Section 2.2 presents the Masslnf algorithm in a manner that fulfils the above criteria and 

highlights hmv this algorithm overcomes some of the difficulties associated with Memsys. Again, 

the detailed mathematics of the algorithm is beyond the scope of this work. The differences between 

the two algorithms are highlighted. 

All the NMR techniques employed in this report are well understood both in terms of theory 

ancl application. 1'·21 Accordingly, following a brief introduction to the principles of NMR, section 

2.3 describes only those particular aspects of NMR theory which give rise to the underlying 

problems that this thesis has triecl to address. e.g. line-broadening. 
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2.1: ~ernsystheory 

This chapter presents an outline of the theory underlying the Memsys algorithm and is 

largely based on a collection of expository essays by Oavies et al.[31, Oaniell141, Skilling151 , and 

Hore161. Wherever possible, the mathematics is deliberately kept to a minimum For a review of the 

use of Maximum Entropy methods in NMR spectroscopy see Stephenson171• 

2.1.1 The problem 

Oavies 131 states that spectroscopic data are affected by a variety of imperfections which 

include: 

• data truncation, 

• distortion introduced by the spectrometer detection system, 

• corruption due to thermal and digital noise, 

• the finite bandwidth caused by the finite data sampling rate. 

He concludes that any data processing method. which acts on the data directly. will 

incorporate these imperfections into the resultant spectrum An example of such a direct 

manipulation technique is the discrete Fourier transform (OFT) used in modern pulsed NMR 

spectroscopy. When using the OFT, if a spike is observed in the time domain it will be translated 

into the frequency domain as a sine function. On the other hand, the direct approach to data 

processing does have advantages that include speed and linearity. i.e. the relative intensities of 

resonances ot' different widths. shapes and frequencies are not distorted. The OFT is not model­

dependent. Ferrige and Lindon181 have reviewed conventional data processing methods involving the 

Fourier transform They conclude that with suitable data filtering, e.g. multiplication of the time 

domain data with a mathematical function, improvements in either spectral resolution or signal-to­

noise ratio can be achieved. However, it is difficult with Fourier techniques to achieve both 

enhancements simultaneously. One method that claims to offer both improvements simultaneously 

~~~ -~------
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is the TRAF function developed by Traficante and Nemeth.r91 The TRAF function was derived by 

examining the resultant Free Induction Decay (FID) achieved by adding one FID to another FID that 

had been reversed in the time-domain, whilst simultaneously taking advantage of the matched filter 

condition, i.e. multiplying the FID with an exponential function that decays at exactly the same rate. 

Traficante points out that in cases where the signals do not have a perfect exponential decay, 

application of the TRAF function will not yield the expected improvement in both sensitivity and 

resolution. This is because the derivation of the function is based on purely exponential decays. 

Most experimental FIDs are not purely exponential. Furthermore, an FID that is composed of 

signals that have different spin-spin relaxation times (T2) will produce baseline distortions with the 

TRAF function in the form of sine (sine x I x) sidelobes. 

Maximum Entropy methods. such as that implemented in the Memsys algorithm, do not act 

directly on the experimental data but calculate a theoretical spectrum. As the experimental time 

domain data arc used for comparison only, any imperfections are not translated into the frequency 

domain. Further. as will be demonstrated later in this thesis. simultaneous improvements in spectral 

resolution and signal-to-noise ratio can be achieved using Maximum Entropy methods. 

A theoretical trial spectrum should incorporate any prior knowledge of the experimental 

conditions, e.g. in NMR spectroscopy if the peak shape is known this can be modelled into the 

estimate of the spectrum. Davies f
31 notes that the theoretical data are then fitted to the experimental 

data via some appropriate constraint, yielding either model parameters or an idealized spectrum He 

describes the problem facing the spectroscopist in a mathematical form. i.e. 

where: 

N 

di =I oikfk + ai 
k=l 

d; are the imperfect experimental data 

...................... (2.1) 
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fk represent the 'perfect' spectrum of the sample 

the matrix 0 represents the instrumental response or blurring function 

o; represent rhe noise on each digitized point. 

Theory 

The aim of all data-improvement methods is to obtain the best possible estimate off, using 

all the available information about the causes of likely imperfections in the data. This prior 

information is used to build a model of the blurring function. 0. As Davies points out,f cannot be 

recovered by inversion of equation (2.1 ), even if the matrix 0 is known, owing to the presence of the 

noise and the finite nature of d. The situation is further complicated because there may be a large 

number of spectra,f, which is consistent with the experimental spectrum, d. given the noise, cr. In 

the absence of extra knowledge about the spectrum there would be no reason to pick one of these 

trial spectra over the others. This selection problem is fundamental to Maximum Entropy data 

processing. 

2.1.2 Summary of the constraints 

There are two opposing constraints in trying to find the bestf Firstly, maximising the fit to 

the experimental data and secondly constraining the selection off Maximum Entropy data 

processing attempts to overcome this selection problem by choosing thefthat contains the minimum 

structure. and yet is consistent with d given the noise. u. 

2.1.2.1 Minimise the structure, maximise the entropy 

Hore161 argues that. for comparison, if the theoretical trial spectra ,f. are inverse Fourier 

transformed. the vast majority can be immediately rejected in that they bear no resemblance 

whatsoever to the inverse Fourier transform of d. i.e. the comparison is made in the time domain. 

However. there is a reasonable number that will match the experimental FID closely, and in the 

absence of extra knowledge about the spectrum, there is no reason to prefer one of these trial spectra 
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rather than the others. Given that. the Maximum Entropy choice is to select thatfwith the minimum 

information content, or equivalently the maximum entropy, i.e. the maximum disorder. This choice 

is the most easily defended because it is the least likely to lead to over-fitting d. The selection 

problem is now more rigorously defined: select that}: with the greatest entropy, from all the possible 

f s that are consistent with d. The entropy. S. is measured in the frequency domain but cr is 

measured in the time domain. 

The most commonly used entropy in spectroscopic applications is defined by: 

.............. (2.2) 

where: 

• ft is the (real. positive) weighted NMR intensity at the kt 11 point in a trial spectrum that is 

digitised at N1 regular intervals in the frequency domain. 

• 4 is a v.;eighting function applied to each frequency. k. It is known as the regularization 

parameter and, according to Hore161• for spectroscopy it serves to incorporate prior knowledge 

about the spectrum baseline. Setting 4 equal to a number much smaller than the expected peak 

intensities ensures that the baseline has a low intensity and any noise frequencies are not 

reconstructed as peaks in the final Maximum Entropy reconstruction. An alternative definition 

of entropy has I/k in place of 4. such that the spectral intensities are normalised. This has the 

disadvantage of pulling up the baseline to an unsatisfactory level. See section 2.1.4.1 for a more 

detailed description of the regularization parameter. 

This definition of entropy is analogous to that using in statistical thermodynamics. Here, the 

entropy of a system is related to the number of states that are thermally accessible. 1101 (see section 

2.1.4.1) 
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Davie~·P 1 notes that the definition of entropy in the form pIn p enforces positivity on the 

Memsys result. Clearly, the logarithm term cannot take a negative value. Therefore, this approach 

for deciding which is the bestf can not be used when the collection of plausible results contains 

signals of varying phase, i.e. all the spectra must be correctly phased and contain only positive going 

peaks. 

Thus. for a correctly phased NMR spectrum, maximising the entropy of the trial spectra 

enables the selection off to be constrained to that containing the minimum structure. However, 

opposing this is the desire to maximise the degree of fit to d. 

2.1.2.2 Minimise the residuals, maximise the fit 

According to Daviesr31, the procedure adopted to calculate the maximum entropy spectrum is 

to start with a trial spectrum that is usually flat and featureless. This avoids any bias. If prior 

knowledge is available, e.g. the number of peaks expected in the result, this can be incorporated into 

the model at this stage, but it is more usual not to impose any such constraint. It has not been used 

in any of the examples shown in the following chapters. 

The Mcmsys algorithm compares f with d in the time domain. Therefore, this first trial 

spectrum. /I. is inverse Fourier transformed to give a mock FID. using a form of 0 appropriate for 

NMR spectroscopy, e.g. a baseline correction function. The ability to control 0 makes this a general 

technique. The mock FID is then compared with the experimental FID using an appropriate 

consistency test. For NMR spectroscopy, it is assumed that the measured data are corrupted 

solely by additive Gaussian noise with constant variance, cr2
• Given this approximation, a 

normalised chi-squared measure. x2
• is an appropriate test. The constraint. C(f), that the 

reconstructed spectrum must be consistent with the measured data takes the form C(f) s Ca . where 

Co is an upper bound on the allowed error. Given a prior estimate of the amount of noise in the data, 

Co should be comparable to the power of the noise. i.e. Co =I lo; 12 
. Other forms of the constraint, 

C(f). are possible. but x2 is the one generally used for NMR spectroscopy. i.e. C(f) = x2
. 
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The convex chi-squared surface. x2
• has the following form: 

2 1 Nt 2 
X =-

2 
L_(D.- F.) 

0" i=l I I 
............................................ (2.3) 

where: 

Fi is the i111 complex intensity in the mock FID 

Di is the i1h complex intensity in the experimental FID 

O"is the root-mean-square noise amplitude, which is assumed to be constant for all Fi. 

The aim is to match Di and Fi to within a certain tolerance specified by the noise level. This 

results in an essentially noise-free Fi. 

2.1.3 The Memsys solution 

The aim of Maximum Entropy methcxls is to solve this constrained optimisation problem. 

Hore[6
J states that the Memsys task is to maximise S(j) with respect to fk, where k = 1 ,2, ... . N1, 

subject to the constraint C(f) ~ Co . 

Converting the above into an equivalent unconstrained optimization problem often solves 

such constrained problems. For Maximum Entropy reconstruction, the equivalent problem is to 

maximize the function: 

Q(-1. f)= S( f)- -iC( f) . . . .......................... (2.4) 

where: 

'A is a Lagrange multiplier. This is a standard mathematical method for finding the 

maxi mu m of a function of several variables if the relations among the variables are known. 

(See the footnote at the end of this chapter for a numerical example of Lagrange 

multipliers). 
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The required solution corresponds to a critical JX)int of Q, i.e. a point where VQ = 0. There 

is no general analytical solution so numerical techniques are used. The Mernsys algorithm attempts 

to solve for Q iteratively using a procedure developed by Skilling and Bryanl121
• This procedure 

comprises three search directions within the N1 -dimensional space: 

• The gradient of the entropy in the spectral domain 

• The gradient of the consistency test C(f), in the spectral domain 

• A combination of the two in the form of the gradient of Q. 

The angle between the gradient of the entropy and the gradient of C(f) is an important diagnostic 

in determining if the algorithm is following the optimum iterative path. i.e. the Mernsys trajectory. 

If the algorithm is following the optimum trajectory. the gradient of the entropy and the gradient of 

the consistency test should be parallel. Therefore, 1-cos(angle between the two gradients)= 0. This 

is the Mernsys 'Test' parameter described in section 3.2.3.1. A mathematical description of the 

iterative techniques is beyond the scope of this thesis. 

While a numerical solution is required in the case of the Mernsys algorithm, there is a 

special case of l'vlaximum Entropy reconstruction that has an analytical solution. It arises when the 

number of points in the reconstructed spectrum is equal to the number of experimental data points, 

i.e. the relationship between the trial spectrum and the mock FID is given simply by the inverse 

Fourier transform. Forcing the chi-squared measure to be equal to the number of observations is not 

the definitive rule. Alternative possibilities are discussed by Gull. !111 

2.1.4 The origin of the two constraints 

As indicated earlier, the trial spectrum should incorporate any prior knowledge of the 

experimental conditions and the iterative search procedure should 'learn' from previous estimates. 

This is essentially a Bayesian probability approach to data analysis. Probability theory allows us to 

assign a numerical code that expresses our belief as to what the trial spectrum should look like. 

Furthermore, to asses the reliability or a maximum entropy (or other) selection. a probabilistic 
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description is necessary. There are two basic rules of probability theory. from which Bayes 

Theorem is derived. These rules form the basis of Maximum Entropy data processing and are 

illustrated below with everyday examples. 

1. The sum rule 

P(A)+P(A)=I ................. (25) 

where: 

P(A) is the probability of A. i.e. a proposition is true. 

P( A) Is the probability of not A i.e. a proposition is not true. 

Equation (2.5) is read as "the sum of the probability of event A being true and the 

probability ot"lhat event being false is unity." This is intuitively correct given that Pis defined as a 

fractional probability. For example, consider tossing a coin. For an unbiased coin the probability of 

a head is V2 and that of a tail is V2. This is a normalised probability. i.e. fractional. 

2. The product rule 

For two events, A and B, given that propositions A and B can each be either true or false. 

P(A,B) = P(A)P(BjA) ................. (2.6) 

where: 

P(A,B) is the joint probability that proposition A and Bare both true. 

P(BIA) is the conditional probability that proposition B is true given that proposition A is true. 

Equation (2.6) is read as "the probability that the compound event A and B will happen is 

the product of the probability that A will happen and the probability that B will happen if A does." 

A good description is given in Boasr121 and is reproduced here for clarity. 
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Visualisation of the Product Rule[121 

Consider, two successive events A and B. 

Let P(A) =probability that A will happen 

Let P(A,B) =probability that both A and B will happen 

Let P(BIA) = probability that B will happen once A has happened 

Let N = Total number of sample points in a uniform sample space 

Let N(Al =Number of sample points corresponding to event A 

Let N(B) = Number of sample points corresponding to event B 

Let N(AB) = Number of sample points corresponding to the compound event A and B 

This can be pictorially represented in a N x N matrix as shown in Figure 2.1 where the 

• • • • • • • • • 

Figure 2.1 

probability of the different events is represented by the asymmetric shapes, i.e. all the points which 

correspond to A happening are encircled and labelled appropriately. Then, 

P(A,B) = N(AB) 
N 

P(A) = N(A) 
N 

According to Boas. N(A) is the number of sample points corresponding to event A; theN 

points in the original sample space all had the same probability so we can assume that if we cross off 

all the points corresponding to A not happening. the remaining N(A) points also have equal 



20 TI1eory 

probability. Thus we have a new uniform sample space consisting of N(A) points. N(AB) of these 

points correspond to the event B assuming A. Thus. 

P(B!A) = N(AB) 
N(A) 

From these three probabilities. 

P(A,B) = N(AB) 
N 

= N(A) PCBIA) 
N 

Alternatively, P(B,A) = P(B) P(AIB) 

(c.f. equation 2.6) 

= P(A) N PCBIA) = P(A) P(BIA) 
N 

If prior information, I. is available. this can be incorporated into the two probability rules in 

the following v-ray: 

P( All) + P( All) = 1 ................. (2.7) 

P(A,Bil) = P(AII)P(BIAJ) ................. (2.8) 

The product rule allows two alternative factorisations. Thus equation (2.8) can be written in 

two equivalent forms, i.e. equations (2.8 and 2.9): 

P(A,BII) = P(Bii)P(AiBJ) ........................ (2.9) 
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Rewriting equations (2.8) and (2.9) in a form that is appropriate for our spectroscopic 

problem gives: 

P(f,Djl) = P(fJ!) P(D[f,l) = P(Djl)P(~D,I) ....................... (2.10) 

P(~l) is defined as the prior and is the probability assigned to the mock spectrum before the 

actual data are acquired, i.e. what the probability is of finding structure in the spectrum given only 

our background information. This could take the form of expert knowledge of the system 

P(D[f.l) is the likelihood and is a measure of how likely our damaged spectrum is given our 

estimate of the mock spectrum and our background knowledge of the problem 

P(Dj!) is the evidence and quantifies how well the actual data could have been predicted in 

advance given our background knowledge of the problem. 

Finally, P(jJD,J) is the posterior and is the result we require. It quantifies our inferences 

about the mock spectra.f Memsys attempts to find the most probable/by maximising P(~D,J), i.e. 

the probability of finding the perfect spectrum,.{, given the measured spectrum, D, and our 

background information,/. It also gives a measure of the reliability of this choice. This is derived 

from the spread of reasonably plausible[ This distribution encapsulates all that we know about the 

mock spectra. f. From this complete distribution, we may want to extract the most probable value, 

the mean. and error bars on the distribution. 

Rearranging equation (2.10) gives an expression for the posterior in the form of an 

expression kno\vn as Bayes' theorem: 

P(DJ.f ,/) 

P(DII) 
.................. (2.11 )I 

Bayes' theorem tells us how to update prior probabilities in the light of experimental data. 

This gives a posterior probability that includes all relevant information. From Bayes' theorem it is 
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apparent that the measurements which define P(Dlf,I) do not fully describe our result. The prior, 

P(~l), also needs to be assigned. Much of the skill of Bayesian data processing lies in developing 

priors that retlcct the experiences and assumptions of scientists, i.e. building the model. It is in this 

area that most of the current research in Bayesian methods lies. 

2.1.4.1 The prior 

As always, in probabilistic analysis, the prior must be assigned tirst, i.e. how we tell the 

analysis what sort off we expect to find before factoring in our data. Different priors will result in 

different posterior probabilities; hence the choice of prior is not arbitrary. The use of the entropy 

prior can be justified in several ways. One method uses the so-called Monkey Model described by 

Jaynesr141 and summarized by Daniellr41
• 

Daniell considers that the problem is to determine some function. F(x). x-space is then 

divided into cells of width L'lx. L'lx is much smaller than the experimental resolution. so no 

approximation is involved. If the intensity of F(x) in a cell, i, is C and this intensity is quantized 

such that C = n,6, where the quantum 6 is so small that it again is not an approximation and the 

numbers ni are all large, then the function F(x) can be represented by a set of integers, n~.n2, ..... 

Daniell then imagines the classic problem of a team of monkeys, throwing balls into boxes. 

The boxes correspond to the cells of F(x). This is a completely random process, with no regard for 

any experimental data that is collected as the monkeys continue to throw the balls. The probability 

that the monkeys produce n1.nz, ..... nn is the combinatorial expression: 

oc 

where: 

LM __ M._._ 

~ !r; !...~1! 
................ (212) 
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M is the total number of balls. 

The l\llonkey Problem exhibits the important constraint of independence. Independence 

refers to the distinct boxes. Learning about F(x) through knowledge of the number of balls in one 

box does not help to predict how many balls will be placed in another box without knowing the total 

number of balls to be thrown. 

Expression (2.12) is effectively the number of different ways of throwing the balls to give 

the same result and is analogous to the weight of a purely random configuration found in statistical 

thermodynamics. [IOJ A general configuration (n1, n2 ..•. nn) can be achieved in W different ways, 

where W is the \Veight of the function. i.e. the number of distinguishable ways in which M balls can 

be sorted into boxes with ni in bin i. 

Expanding equation (2.12) gives: 

log(P) = log(TM) +log( M!) -log(nJ!) -log(n2!) -log(2""1
) -log(T"2

) ••. (2.12a) 

for nn configurations. 

Daniell then notes that since ni are large, Stirling's approximation gives: 

log(P) oc cons!. + 2:, n, - L:(nilog(nD ..................... (2.12c) 

P oc const. exp(L:(nilog(ni)) .......................... (2.12d) 

a Stirling'sapproximationsimplifiesto lnx!=xlnx-x. 
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In the case of spectroscopy, 

................... (2.13) 

where: 

S = -2: /"log .1; 
• l ~ 6 ....................... (2.14) 

and a and8 are constants depending on M. 

The quantity S is called the entropy of the function F(x) and is used as the Prior equation 

2.11 and is normalisecl by the function a. This normalisation parameter is related to the amount of 

material in the balls and is called the regularizarion paramerer. In practical spectroscopy a is 

unknown and is cleterminecl along with F(x) and defines the relative importance of the entropy and 

the data in obtaining a solution. 

Equation (2.14) is analogous to equation (2.2) and is one of the constraints on finding that 

spectrum which is consistent with the data but which contains the minimum structure. 

A variant of the classic maximum entropy prior. describecl by equation (2.13), is the so-

called pre-blur maximum entropy technique. The classic prior tenets to produce irregular results by 

amplifying the noise level found in the estimates off. This is particularly true for mass-

spectrometry. which exhibits Poisson noise statistics. Consequently, the classic prior was altered to 

make it spatially smoother without destroying the entropy maximization. 

Skilling[ 151 states that tllis was achieved by assuming that the spectra we seek,J: are a 

convolution or some hidden spectrum. h. and some 'intrinsic correlation function' (ICF). 

f = ICF0h .................... (2.15) 
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The ICF is smooth and broad, which results in correspondingly smooth/. Placing an entropic prior 

on h gives: 

P(h) = exp(a5(h)) ..................... (2.16) 

The experimental data, D, are related to h via a composite convolution with both the ICF and the 

instrumental response. 0. (C.f. Equation(2.1 )) 

D = 00 f +noise= 00 ICF0h+noise .............. (2.17) 

Skilling notes that instead of reconstructing the experimental spectrum directly, the pre-blur 

method uses classic maximum entropy techniques to find the hidden spectrum. This is then blurred 

to give f. He continues that when using the pre-blur, the functional form of the ICF is required, i.e. 

its shape and width. This is the point-spread-function (PSF) parameter used as an input to Memsys. 

Properties l~lthe Memsys Prior 

Memsys is the MSL implementation of the general Maximum Entropy method. In order to 

find the 'best' maximum entropy solution a number of constraints were assigned to the best solution 

and to the tv1cmsys prior. Firstly, the bestfmust be positive. The spectrum we seek must have a 

positive inteiLsity value at each point. Secondly. the best/ must be additive. The additivity refers to 

the total intensity residing in a specified area. Skilling illustrates these points with the example of 

light intensity being both positive and additive, with its sum representing a physical energy flux. 

whereas the amplitude of incoherent light is not additive. Secondly, it was hoped that the Memsys 

prior would be independent and divisible. Independence refers to the distinct domains of the bestf: 

learning ablJUt our bestfin one domain does not help to predict the bestfusing another domain. 

Divisibility means that the cells (data points describing the best)/ can be divided arbitrarily tinely. 
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Problems with the Memsys Prior 

The Memsys prior proved not to be divisible, and as the bestfwas divided into finer and 

finer cells the early Mernsys algorithms did not behave sensibly. This can be illustrated by 

considering equation 2.14. As the bestfis divided onto a finer grid it becomes clear that: 

N Log (N) et: 2 ( N/2 Log (N/2) ) 

This problem was due to the Gaussian approximation. This was needed to practically 

compute the probability maximum. Furthermore, the Gaussian approximation destroyed the other 

property of positivity. Samples for f could and did go negative. Although, as will be seen in this 

thesis, the Mem~ys prior still works well for most spectroscopic problems, these internal 

mathematical inconsistencies led to the development of the Massive Inference (Massln1) prior. (see 

section 2.2) 

2.1.4.2 Likelihood 

P(Dif,l) is the likelihood. It is the conditional probability of acquiring that particular 

spectrum. D, given/ and our background understanding of the problem. I. Skilling observes that the 

form of the likelihood ought, in an ideal world. to be provided by the instrument manufacturer. It 

could be observed over many samples. This would allow the manufacturer to derive an idea of what 

the output, D, \Vould be for any given input. Of course, this prediction of D will be imprecise and 

any variation in Disallowed for in the form of P(Dif;l). 

The normal method for determining the likelihood is to assume a linear experiment with 

Gaussian noise (see equation 2. I). Skilling observes that knowledge of the normal distribution gives 

the likelihood as a function of the usual chi-squared statistic. (c. f. equation 2.3) 

P(Dif,I) = Func. (C(j)) .................................. (2.18) 
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If the data do not follow normal Gaussian statistics then the likelihood should he changed to 

accommodate the new circumstances. For example. mass spectrometry exhibits 'shot' or Poisson 

noise. A small change in the likelihood function will accommodate this change in the noise 

characteristics. The form of the likelihood function is well known for both Gaussian and Poisson 

noise and will not be described here. 

The likelihood function can always be determined, apart form some ignorance of the exact 

shape of the point-spread-function (hidden spectrum). 

2.1.4.3 Evidence 

P(Dil) is the evidence and in the Memsys algorithm this is measured in decibels: 

Log Prob -log10 P(Dil) = logw Evidence .................... (2.19) 

The Evidence. as used by this algorithm, is described in Chapter 3. 

The evidence depends on the theorist who is advising on the form of the prior for f and is 

defined as: 

P(Dil) = L: P(f ,Dil) 
f 

.................... (2.20) 

From equation (2.20), evaluating the evidence involves a sum over all possible f and cannot be 

calculated directly. Skilling approximates the evidence. 

The evidence is a crucial safety guard against arbitrary misuse. As there is complete 

freedom in the choice of prior. the Memsys result could, in principle, take almost any form. The 

saving grace is that an inappropriate prior will almost never manage to predict the data well, so that 

it will have only a low numerical value for the evidence. Hence, the evidence, through a series of 

trials, allows the Memsys operator to refine his choice of prior (hidden spectrum). 
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2.1.4.4 Posterior Inference 

P(flJJ,l) is the posterior inference and quantifies the plausibility of the different spectra,f, 

after the data, D. have been taken into account. This is the main objective of the Bayesian approach 

to data analysis. The aim is to maximise the posterior and hence maximise the entropic prior. 

In NMR spectroscopy, where any f can be described by thousands of data points, the only 

feasible way ol presenting the inference is directly. as a list of 'typical' f. randomly sampled from 

the posterior inference. For clarity, Memsys augments this inference with the most probable/ 

Fortunately, all the major properties off, e.g. location and intensity of lines, can be found after only 

a dozen or so random samples. 

2.2: Masslnf theory 

As described earlier, the Gaussian approximation of the posterior inference detroys the 

property or positivity and the entropic prior proves not to be divisible. Although the Memsys 

algorithm works well in practice and has been used regularly in this thesis, the mathematics behind 

the Memsys prior were tlawed. 

The clue as to how to develop a new prior comes from the divisibility argument. Skillingl161 

describes this problem by giving a simple example. Consider our prior knowledge about some 

quantity F. Let the intensity of F in one domain. A. be one unit with a standard deviation of one 

unit. If the domain A is divided into N independent cells, then the total intensity should be divided 

into N-1 equal parts, each with a standard deviation of N-').5
• Therefore, the intensity in each cell, i, 

is: 

........................ (2.21) 
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If N is large, the standard deviation greatly exceeds the mean, i.e. positivity is violated. 

Positivity must be enforced. 

No F;can be negative, so the standard deviation can only he reached with a prior that usually makes 

F; very small, hut just occasionally gives it a substantial value. 

This suggests that the prior on F must be atomic. This implies that, no matter how many 

cells are used to describe the original problem, all of the intensity is almost certainly contained in a 

bounded number of cells. 

The prior that is actually assigned in the Massinf kernel uses a distribution that has a finite 

number of atoms that are distributed at random. For completeness, the prior is assigned on a small 

cell of importance. &. and is: 

P(l~) oc t5(F;)+(E/ a£j)exp(-F; I q) .......................... (2.22) 

The parameter a is similar to the parameter a found in the Mernsys5 prior (see equation 

(2.13)). In both cases, it represents the expected degree of macroscopic uniformity. In Massinf, 

uniformity arises by adding more atoms, in Mernsys by making the prior increasingly peaked around 

the global maximum at S = 0. 

The parameter q governs the scale of the expected quantities F. 

One feature of Masslnf is that there is no most probable spectrum. The conventional 

reconstruction ror display is the mean <f> of the posterior. 
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Skilling summarizes the differences between the two algorithms thus: 

Mern$ys, · Ma~_&IIU' 
Displayed result Max S(f) Mean <f> 

Positive Yes Yes 
Additive Yes Yes 

Samplcf positive No Yes 
Sample f additive Yes Yes 

Divisible prior No Yes 
Approximation Gaussian None 

2.3: NMR Theory 

All the NMR techniques employed in this report are well understood both in terms of theory 

and application. 11.2l Accordingly, following a brief introduction to the principles of NMR 

spectroscopy. this section describes only those particular aspects of NMR theory which give rise to 

the underlying problems that have been addressed in this thesis. e.g. line-broadening. 

2.3.1 Introduction 

Many conunon nuclei have a 'motion' which gives them angular momentum. This motion 

is called spin. and according to quantum mechanics it is quantized with a quantum number, I, having 

possible values of positive multiples of 1/2. When a direction in space is specifled by the 

application of an external magnetic field the orientation of the angular momentum also becomes 

quantizecl. The relevant quantum number is M1 and can have values between -1 and +I in unit steps. 

The removal of the energy level degeneracy (Zeeman splitting) results in: 

• unequal Boltzmann populations in the energy levels 

• the possibility of transitions between the energy levels. 
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In order to maximise the population differences, strong, static external magnetic fields (B0) 

are employed. Typical magnetic field strengths put the transition frequency (Larmor frequency) in 

the radiofrequcncy region of the electromagnetic spectrum. 

At equilibrium. the nuclear spins of a particular isotope, say 1H, have a net magnetisation 

vector parallel to the applied magnetic field. say along the z-direction of a Cartesian co-ordinate 

system. Following a radiofrequency pulse, of amplitude B" in the xy- plane perpendicular to this, 

the bulk magnetisation is induced to precess about B,. This complex precession has two time­

dependent term'> (motion about B0 and about BJ). To overcome the visualisation of such a complex 

motion. a rotating frame of reference is adopted. i.e. a frame rotating about B0, at the same frequency 

as the carrier radiofrequency. In this frame of reference. the bulk magnetisation is tipped towards 

the xy-plane. a motion termed nutation. Any component of this bulk magnetisation that lies in the 

xy-plane when the RF pulse is switched off can be detected by the signal it induces in a receiver coil 

placed in tills plane. The spin-system, in the absence of B1, is able to relax to equilibrium, and the 

induced signal is called the free induction decay (FID). The detected FID contains characteristic 

frequencies of all the protons contributing to the net magnetisation vector. For solutions ,these 

frequencies vary depending on the local magnetic environment of a nucleus (chemical shift), and 

interactions between two or more nuclear spins (spin-spin coupling). 

The acquired FID is then subjected to a Fourier Transform to give the characteristic NMR 

frequency spectrum. 

2.3.2 Sensittivit}' 

The energy difference between the Zeeman energy levels is very small compared to thermal 

energy and so the population difference between the spin states is minute. This leads to small NMR 

intensities and correspondingly small S/N ratios. which restrict the accuracy of intensity and 

frequency measurements. 

In considering ways to improve the sensitivity of the NMR spectrum by data processing 

techniques alone it is necessary to distinguish the differences between genuine signals and noise. In 
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the frequency domain, genuine signals tend to be smooth and usually sharp while noise is random 

and has a broad frequency distribution. These differences may be used to discriminate between 

noise and signal by applying a digital filter in the time-domain. This linear smoothing is normally 

applied before Fourier transformation, by multiplying the FID by a weighting function, e.g. a 

decaying exponential. This process gives greater weighting to the time domain points with the 

highest S/N ratio. and lesser weighting to those points with the lowest S/N ratio. This has the 

corresponding effect of broadening lines in the frequency domain. This compromise between 

sensitivity ancllinewidth is common to all linear processing techniques. A paper by Ferrige et al.[171 

describes most of the available linear filters. 

The Maximum Entropy approach to sensitivity improvement is somewhat different. As 

described above, genuine signals tend to have finite width. This would normally distinguish them 

from random noise. This difference is exploited by designing the PSF such that it is characteristic of 

the genuine signal alone. In Maximum Entropy data processing this has the effect of essentially 'de­

noiseing' the spectrum with no loss of resolution. Any signals that do not match the applied PSF are 

treated as noise by the algorithm. However, this approach is limited because the algorithm is based 

on one input PSF. In generaL NMR signals tend to have variable width. Therefore. the data have to 

be treated either by regridding. if possible, such that all the peaks have the same width but maintain 

their areas, or by treating only that part of the NMR spectrum which contains peaks of similar width. 

2.3.3 Resolution 

The observed NMR lineshape can be considered to be composed of two parts. Firstly, the 

naturalline>vidth, which in itself suffers from several possible origins of line-broadening, and 

secondly, the magnetic field distribution function which arises from inhomogeneities in the applied 

magnetic field. Of the several possible sources of line-broadening the most important are 

highlighted below: 
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o Shielding anisotropy 

In liquids magnetic dipole-dipole interactions are mainly responsible for the exchange in energy 

between the lattice and the nuclear spin system and is characterised by the spin-lattice relaxation 

time (T1). The shielding effect of a cloud of electrons around a nucleus alters the magnetic field 

experienced by that nucleus and hence its resonant position. The magnitude of this effect depends 

on the orientation of the molecule relative to the external magnetic field. In a solid, the molecules. 

are in fixed alignments and a range of possible frequencies is observed which contributes to broad 

lines. In liquids molecular tumbling of the molecules averages out this spread of resonant 

frequencies and a relatively sharp line is observed. This tumbling efi'ect can be simulated in solids 

by rapidly rotating the sample when inclined at the magic angle to the applied magnetic field, a 

technique known as magic-angle spinning. 

• Spin-spin coupling 

Nuclear spins that are J- coupled affect the magnetic field strength that they each experience 

since they each have a magnetic moment. For any given nucleus. this will experience an interaction 

with the magnetic moments of all other magnetic nuclei in the immediate vicinity. The size of this 

interaction >vill depend primarily on the through bond distance for so-called scalar coupling and the 

through space distance for dipolar coupling. Other int1uences on the size of this effect depend on 

their relative orientations and the nature of the bonding present. This spin-spin interaction manifests 

itself in the NMR spectrum as peak slitting or as a spread of resonant frequencies, i.e. broadened 

peaks. In the work described in this thesis, a system containing aluminium and hydrogen nuclei. 

heteronuclear coupling is observed between protons and aluminium This may be removed with 

heteronuclear decoupling techniques. Further, homonuclear decoupling may exist between 

aluminium nuclei. Homonuclear decoupling is much more difficult to achieve. For the spectra 

shown in tllis thesis no decoupling techniques have been employed. 
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• Chemical shift dispersion 

If the nuclei of interest are in a range of similar environments there will be slight differences 

in chemical shifts that will produce a broadening of the lines in the spectra. 

• Electric quadrupole moments. 

Nuclei. such as 27 AI (I= 5/2). with spin I greater than 1/2 have an electric quadrupole 

moment. This quadrupole moment can interact with any gradient in the electric field surrounding 

the nucleus. This results in a quadrupolar splitting of the enery levels which is supplementary to the 

Zeeman splitting created by the application of the external magnetic field in NMR spectroscopy. 

This quadrupole splitting results in a change in the observed transition frequency and hence a 

broadening of the NMR signal. In the examples pre..;;entecl in this thesis, all the 27 AI spectra 

recorded are of aqueous aluminium chlorohydrate solutions. In this case, the averaging effects of 

molecular tumbling help to reduce the quadrupolar effect. Further, the size of this residual effect 

will depend on the asymmetry of the ligand field. For example. the resonances of low symmetry 

Al 3
+ species can he so broad (linewidth greater than a few thousand Hz) that they are lost in the 

baseline, whereas when the ligand symmetry is high, e.g. AI hexahydrate, the AI resonance is sharp 

(a few Hz). Therefore, even in solutions the electric quadrupole moment can interact with the 

electric Held gradient of the nucleus and so introduce further relaxation mechanisms. For example, 

in chlorine this relaxation mechanism is so effective, that it is practically non-magnetic as far as 

NMR measurements are concerned. 
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Footnote: Numerical Example Of Lagrange Multiplierr 18
l 

This numerical example of the use of a Lagrange multiplier is taken directly from ref. [18]. 

By Lagrangc's method, if among all points (x. y) satisfying the constraint g(x, y) = 0, the function 

_f{x, y) takes on its greatest or least value at (xo. yo), then there is some number A such that 

.Mxo, Yo) = A gx(Xo,yu) .................... (1) 

and 

J;.(xo, Yo) = A gy(xo.Yo) .................... (2) 

where A is called a Lagrange multiplier andfx .. t;., gx. gy are partial derivatives. 

We want to minimise the function: 

• ( ) ? ? .1 x, y = x- +y- .................... (3) 

subject to the constraint: 

g (x, y) = 3x + 4y -15 = 0 .......... (4) 

Solution: \1../e begin by calculating partial derivatives: 

f, (x. y) = 2x 8x (x. y) = 3 

fy (x. y) = 2y gy (x. y) = 4 
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By Lagrange's method, we seek a number A such that equations (1) and (2) are satisfied. 

By Equation (I) 

2x = ).3. i.e. x = 3A I 2 

and by equatiun (2) 

........................... (5) 

2y = H. i.e. y = 2'A ........................... (6) 

Substituting (5) and (6) into (4) gives 

3(3),,/2) + 4(2'A)-15 = 0 

and hence ), = f./5 .................................. (7) 

Substituting (7) into (5) and (6) gives 

X= 9/5 

y = 12/5 

Theory 

Hence, the only point on the line 3x + 4y = 15 at whichj(x, y) can be a maximum or minimum is 

(9/5, 12/5). 
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CHAPTER 3: PRACTICAL METHODS 

This chapter describes how the Maximum Entropy techniques employed in this work are 

used in practice. The NMR or mass spectrometry methods will be discussed as part of the 

appropriate chapters. Section 3.1 includes a description of the Maximum Entropy hardware and 

software and describes the preliminary data processing required to change the experimental data into 

a form appropriate for analysis. In section 3.2, the basic operation of the Memsys and Massive 

Inference software is discussed and the link between the software inputs and the appropriate theory 

is highlighted. Standard methods which have been used in this work for optimizing the software 

inputs. e.g. determination of the optimum point spread function, will be demonstrated. The output 

from the two algorithms will be demonstrated. 

3.1: Hardware, software and pre-processing 

All the Memsys and Massive inference data processing described in this thesis has been 

carried out using proprietary software developed and sold by MaxEnt Solutions LtdY1• The software 

package comprises: 

MernsysS KerneL SpecS v.2.2S, 1995 

Masslnf Kernel, Deconvolve vl.lO, 1996 

Electrospray kerneL SprayS v2.21, 199S 

Maxlnt2 graphics interface, v2.46, 1994 

Various plotting and utility programs. 

This runs on a computer system comprising a 90 MHz Pentium personal computer. with 

32MB RAM and a I GB disc drive. The computer uses a Sun operating system. Solaris v2.4 for 

X86. The total cost of this package was ea. £2S,OOO and is considered to be beyond the cost of most 
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academic I small industrial NMR groups unless a particular application has been identified. This 

may explain the limited exposure the techniques have received in the literature for the applications 

described in this work. 

Both Memsys and Masslnf can accept data from any spectroscopic technique provided the 

following minimum requirements are met: 

o the experimental spectrum must be real, with no imaginary components from Fourier 

transforms. Ideally. the data should be correctly phased. 

o the spectrum must be unfiltered, i.e. not convolved with other lineshapes such as exponential 

line broadening. 

o the peak widths present in a spectrum should not vary. The half-height peak widths should. 

ideally, be \vithin a range of 50% of each other for the optimum results. 

o the best deconvolutions will be achieved if the digital resolution is sufficient to give a minimum 

of four data intervals at the half-height-width of peaks. 

o the baseline should be uniformly spread about zero. 

For most NMR spectra the above criteria can be easily met. The main limitation is that of peak­

width variability. This limitation will be discussed in more detail in Chapter 6, where the 

combination of linear prediction and Maximum Entropy data processing is used to derive additional 

information from the 27 AI NMR spectra of aluminium-chlorohydrate systems. The practical 

implications of the above are that a FID must be Fourier transformed without the application of 

window functions. The subsequent spectrum should be correctly phased and baseline corrected. 

The real part of the spectrum is then converted into ASCII as two columns, one of intensity and the 

second the corresponding data-channel number. The Maximum Entropy software does not 

recognize the o chemical shift scale. The ASCII 11le is then transferred to the PC and converted into 

a binary format that can be read by the program kernels. This use of a data-channel scale and the 
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ASCII format makes the software general and removes the need for third-party data conversion 

programs. It relies on the instrument manufacturers to provide routines for conversion to ASCII. 

The above only describes how to get a spectrum into a format ready for further processing. It 

does not attempt to establish if Maximum Entropy data processing is appropriate. or if the desired 

information can be extracted from the spectrum. Ferrige et al. r21 have developed an empirical 

relationship, the deconvolution criterion (D). which enables the analyst to assess if the required 

information can be extracted from a spectrum using deconvolution techniques. The deconvolution 

criterion is given by: 

D = P 2• ( W .S ) o.s 

where W = half-height peak width in data intervals 

S =SIN of weakest peak of interest (measured peak to peak) 

P = separation between peaks measured in units of peak width at half -height. 

For D > 2.5 good separation is expected in the Maximum Entropy result. 

For D < 2.5 p(X)r separation is expected. 

FerrigelJJ has noted that the error on D is about 1.2. Accordingly, when D is greater than 4 

peak separation is likely to be baseline resolved. Similarly, when D is less than about 1.3 it is most 

unlikely that any degree of peak separation can be achieved. Furthermore, by fixing D, the smallest 

peak separation that can be separated by a deconvolution technique can be estimated from values of 

W and S. If the required degree of separation cannot be obtained. the data must be improved by re­

designing the experiment such that W or S is increased. Ferrige continues that the deconvolution 

criterion provides a good estimate of data quality for virtually all situations. However, the empirical 

relationship breaks clown under the combination of very high S and W and a small value for P. 
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Where Jppropriate in the following chapters, the use of the deconvolution criterion will be 

demonstrated. However, it is worthwhile illustrating the usefulness of the relationship for a known 

system. The selected spectrum was a 1H NMR spectrum of glucose penta-acetate. This system 

proved useful because the five acetyl peaks are equally intense. which makes assessment of a 

successful deconvolution more straightforward. The system could also be used to validate the 

software for GLP compliance in line with the policy of Unilever Research. Port Sunlight 

Laboratory. Hl_ All the research presented in this thesis was conducted within a GLP environment. It 

is worth noting. at this point, that the software has never been subjected to modern quality assurance 

standards, e.g. ISO 9000. and cannot be validated per se. 

Approximately lOmg of {3-D-glucose penta-acetate were dissolved in approximately 1 cm3 of 

deuterochloroform. The subsequent 1H spectrum, Figure 3.1. was acquired on a Bruker AM360 

spectrometer fitted with a four-nucleus QNP probe using a pulse with a 30° flip-angle and an inter-
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Fig. 3.1 1H NMR spectrum of glucose penta-acetate. 

pulse delay of 20 seconds, i.e. suftlcient for full spin-lattice relaxation. 
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The two peaks to be separated (24.05 x 103 data channels) are, to the naked eye, coincident. 

The value of P cannot be easily measured. Furthermore, the digital resolution of the spectrum is 

limited, with only 2.5 data channels at half-height peak width. The SIN ratio of the peaks has been 

measured at approximately 420:1. Assuming P to have a value of approximately 0.1, i.e. almost 

coincident. the deconvolution criterion gives a value of D of 0.3. This is considerably less than the 

value of 2.5 required for a successful deconvolution. 

Applying the Memsys algorithm to this spectrum produces the results shown in Table 3.2. 

The algorithm has failed to separate the two overlapped peaks. The deconvolution criterion could 

have saved considerable time and effort by indicating that the required peak separation was not 

possible. A Lorentzian PSF of width 3.2 data channels was used. 

Table 3.2 Memsys: Table of Peak Areas for Glucose Penta-acetate 

, Peak,P6siti6n /data·. CtirtnH~t•:, . Emtr' .• 
. .. chahheis xl(P . 

'.c ' .. ,..,: ' '. ,• 

23.93 81.295 0.456 

23.97 82.135 0.555 

24.045 162.313 0.695 

24.07 83.496 0.712 

*Expressed as a percentage of the total spectral intensity 

This system will also be used to demonstrate the standard methods that have been used in 

this work for optimizing the software inputs, e.g. determination of the optimum point spread 

function. If the glucose penta-acetate solution is mixed with deuterobenzene (CDCh: C6D6 = 2:1 

(v/v)) a partial separation of the two overlapped peaks can be achieved. (See Fig.3.3). 

Applying the deconvolution criterion to this system gives a value of D of approximately 32, 

assuming a peak separation equivalent to one peak width. This is well in excess of the 2.5 that 

Ferrige indicates is required for a good separation. The Maximum Entropy deconvolution is 

expected to achieve baseline resolution for this system This is easily achieved and, as shown in 

Table 3.4, the error bars associated with overlapped peaks are slightly larger than those on the 
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discrete peaks. Even the area of the peak at 24.36 data channels carries a slightly larger error than is 

expected for a discrete peak. This is due to the small degree of overlap with the other peaks. This is 

intuitively correct. but the errors are still below the 1% leveL which is indicative of a very successful 

deconvolution. The size of these errors is also considerably smaller than would be expected for the 

normal integration methods associated with NMR spectroscopy. 

"' + 
0 

~ 
+ 

V 

+24200 +24300 +24400 
Data Intervals 

Fig. 3.3 Glucose penta-acetate in CDC13 : CJ)6 2:1 (v/v) 

Table 3.4 Memsys: Table of Peak Areas for Glucose Penta-acetate 

Pe:~Kgos.itioll{:ctata ~. : . C401ili~nt' ··· ·· • furOi- ' • ·. 
c}lanne1sx:t0 ·· ...• > ...... 

24.29 18.89 0.19 

24.33 19.52 0.20 

24.352 19.25 0.24 

24.353 19.31 0.25 

24.36 19.75 0.26 

'Expressed as a percentage of the total spectral intensity 
2The position of these peaks is quoted to 5 significant figures to 
aid assignment 
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It is clear from the above examples that the deconvolution criterion can provide a useful 

decision-making tool for estimating whether or not a successful deconvolution can be achieved. It 

is not limited to Maximum Entropy methods but can be applied before any deconvolution technique. 

Once it has been decided that a successful deconvolution can be achieved, there are two key 

inputs to both the Memsys and Massive Inference algorithms, i.e. point spread function and sigma. 

These program inputs will now be discussed. 

3.2: Operation of Software 

Once the spectrum to be processed is in the correct form and the Deconvolution Criterion 

suggests that the desired peak separation can be achieved, a number of measurements have to be 

taken from the spectrum before the algorithms can be started. 

3.2.1 Point Spread Function 

The point spread function (PSF) is a key input to both the Memsys and Masslnf algorithms 

if a successful deconvolution is to be achieved. The PSF is an estimate of the underlying peak width 

and shape. There are a number of different methods for determining the optimum PSF 

parameters. [:2.3J All the methods have been developed by MSL Ltd. [IJ Only those methods employed 

in this work will be described here. 

3.2.1.1 Evidence matrix: Design of a parametric PSF 

If the desired PSF can be adequately modeled in terms of a mixture of a Lorentzian and 

Gaussian peak-shape, and the level of noise in the spectrum can be measured, an evidence matrix is 

one of the most useful methods for determining the PSF parameters. This process uses either 

algorithm to retine the PSF parameters based on a number of trial deconvolutions. It can be a 

laborious process. For a Gaussian peak the program input, wing. is set to a value of zero and for 
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Lorentzian peak a value of one is used. Mixed Gaussian I Lorentzian peak shapes can be achieved 

by adjusting the value of the wing parameter. 

PSF optimisation is achieved by recording a series of trial deconvolutions for. say, a range 

of peak widths, whilst keeping the PSF shape parameters (wing) constant. By observing the 

algorithm's evidence diagnostic (see Chapter 2) it is possible to construct an evidence matrix of left 

width against right width for a parametric curve. providing the estimate of the noise input to the 

algorithm is kept constant throughout any one series of trials. The more positive the evidence 

value, the greater the likelihood that the chosen PSF parameters fit the data. Table 3.5 gives the 

width evidence matrix for the glucose penta-acetate spectrum shown in Figure 3.1. The columns 

represent the change in evidence for the PSF right width for the range 0. 75-1.2 data channels in 

increments of 0.05 channels, and the rows the change in evidence for PSF left width for the same 

range. 

-4266.10-4266.83 -4266.17 -4265.23 -4264.23 -4262.73-4261.18 -4259.92 -4260.87 -4263.96 

-4267.13-4260.12-4260.75-4260.49-4259.80-4258.92-4257.46-4256.47-4258.11 -4260.84 

-4267.26-4261.39 -4254.79 -4255.82 -4255.54 -4254.68 -4253.48 -4253.05 -4255.02 -4257.11 

-4267.19 -4261.78 -4256.16 -4249.12 -4250.42 -4249.68-4248.80-4249.23 -4251.24 -4254.53 

-4267.40 -4261.97 -4256.67 -4251.04 -4244.33 -4245.31 -4244.86-4246.45 -4248.68 -4251.70 
left' 

-4267.64 -4262.45 - 4256.97 - 4251.39 -4245.87 -4240.78 -4241.91 - 4243.44 -4246.17 - 4249.88 

-4267.88 -4262.50 -4257.05 -4251.91 -4246.82 -4242.01 -4238.08 -4241.22 -4244.72 -4249.07 

-4268.53 -4263.10-4258.07 -4253.73 -4248.96-4244.11 -4241.11 -4241.09 -4245.26-4250.13 

-4270.53 -4265.55 -4261.18 -4256.80 -4252.27 -4247.83 -4244.53 -4245.09 -4247.87 -4245.13 

-4274.54 -4269.96 -4265.43 -4261.43 -4257.34 -4253.64 -4250.67 -4249.86 -4252.82 -4258.26 

Table 3.5. Glucose penta-acetate: Width evidence matrix for a purely Lorentzian Line 

The above matrix can be better represented as a contour plot of left width against right width 

in which the optimum PSF parameters become more obvious to the eye. For this system the 

optimum PSF width parameters indicate a symmetrical line of half-width 1.05 data channels. The 

single maximum value indicates that there is only one peak width present in the data. If a range of 

peak widths were present this would be apparent by a number of local maxima in the evidence 

values. The system can only be described by one PSF. For a spectrum with different peak widths, 
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the evidence values will indicate a maximum at the position corresponding with the average peak 

width. 

Width Evidence Contour Plot 

w 

Fig. 3.6 PSF width contour plot with left width represented on 

the horizontal axis and right width on the vertical axis in units 

of data channels. 

In principle. some knowledge of both peak width and shape can be obtained from such 

evidence plots. However, in practice, the evidence values for optimizing the peak-shape parameters 

tend to be much less informative than the corresponding width trials. For example, in the case of a 

noisy spectrum, where the peaks are known to be Gaussian, an input width that is in error by a few 

percent is sufiicient to prevent the input PSF from fitting the data. There will also be a 

corresponding reduction in the evidence value. However. within the noise level, virtually any shape 

can be used and will fit the data adequately, resulting in little change in the evidence diagnostic. The 

input PSF shape parameters only become important when the signal:noise ratio is high. 

There are two exceptions to the above observations. Firstly, for a particularly noisy 

spectrum it is possible to obtain an enlarged evidence value for an umeasonably narrow PSF. This 

corresponds to the optimum PSF for the noise frequencies and should not be confused with the 

optimum PSF for the genuine peaks. This may become a problem for solution-state 13C NMR 

spectra where the peak widths can be very similar to the noise frequencies. Secondly for peaks 
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which are severely overlapped. if, within the freedom provided by the noise, there is greater 

evidence for fewer peaks than the number known to be actually present, there will be a greater 

evidence value corresponding to an umeasonably wide PSF. With these caveats in mind, it is 

possible to use the evidence diagnostic to accurately design parametric PSFs for an unknown 

spectrum. 

3.2.1.2 Sigma Profile: If the noise level is in doubt 

This is the most general method for determining the optimum PSF because it also 

determines the optimum value for sigma (noise level : see chapter 2). If the measured noise level in 

a spectrum is unreliable. through, for example, the application of a window function, the estimate of 

sigma will cause an error in the determination of the PSF parameters. In these circumstances, 

additional trial runs are necessary in which the value of sigma is varied along with the PSF 

parameters of width and shape. For each sigma there will be an optimum PSF with the greatest 

evidence value. A plot of PSF width against input sigma produces a curve with one or more points 

of inflection. At these points a relatively large change in sigma corresponcls to a small change in 

PSF width. The optimum width and sigma are measured from the point with the minimum slope. 

This method of PSF optimization has been used for the styrene I maleic anhyclride spectrum 

described in Chapter 5. 

3.2.2 Other !Program Inputs 

Apart from the PSF parameters of left width. right width. left shape and right shape. there 

are a number or other inputs available. These are well described in the Memsys manuals but the 

most useful are listed below: 

• LEVEL. This controls the extent of the output diagnostic information (see section 3.2.3.1 ). 

When the default value of ten is used, diagnostic information is output at the end of each 

iteration. With a value of zero, only the final convergence criteria are output at the end of a 

deconvolution. 
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• MOVIES. A positive value determines the numher of samples that are taken from the 

probability cloud of plausible results. These samples are used to calculate the error bars on any 

spectral feature. The default is fifteen. 

• RATE. This parameter controls the rate of change between each step of the iteration. If rate is 

set to too high a value, the algorithm will fail to follow the Memsys trajectory and may not 

converge. The default setting is one. 

• SIGMA. This value is measured directly from the spectrum and, as shown above, is used in PSF 

optimization. The algorithms are provided with graphical facilities for measuring the noise level 

in a spectrum 

• UDEF and UTOL. For spectra with a very high SIN ratio and severely overlapped peaks the 

algorithms may fail to converge for a given PSF. One method for overcoming this difficulty is 

to force the algorithm to follow the Memsys directory in smaller steps. This can be achieved by 

relaxing the values of UDEF and UTOL. The default values are each 0.1. 

• AIM. The default value of aim is 1.0. Setting this parameter to a smaller value forces the 

algoritlun to proceed further down the trajectory towards fitting the data more closely. 

3.2.3 Program Output 

The primary output is a table of peak position against peak intensity, each presented with the 

appropriate standard errors determined from the movie samples. The program is also capable of 

generating a range of different graphical outputs as an aid to visual interpretation of the 

deconvolution results. The following are examples of the different types of output available. 
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Fig.3 .7 A Typical unprocessed spectrum 
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Fig.3.8 Mock Data 

The mock data are determined during the final Memsys iteration and are the convolution of 

the Memsys result and the applied PSF, i.e. the algorithm's reconstruction of the data, and are 

essentially noise free. When the applied PSF accurately fits the raw data peak-wiclth ancl peak-

shape. the mock clata will be identical with the raw clata apart from the noise. The mock data are 

useful for assess ing the qua lity of the MaxEnt result , since for an ideal fit the difference between the 

mock data and the raw data shoulcl give resicluals within the noise. This method for cle-noising a 
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spectrum will be utilized in Chapter 4 in the analysis of the NMR spectrum for sodium carboxy 

methyl cellulose. 
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Fig. 3.9 Spike Plot with Errors 

For the 'spike plot with errors ' the program has condensed the total intensity of the peaks 

found in the Memsys result into their median positions. In these plots the absolute peak areas are 

directly proportional to the spike heights. The user may observe the true intensity ratios directly 

from the plot. The width of the spikes indicates the assigned positional errors as reported in the 

table of quantification. This facility is particularly useful for examining NMR spectra to establish if 

multiplet peak separations are the same within the standard error. 

The Masslnf algorithm produces the same graphical output as Mernsys. However, because 

Masslnf uses the full probability distribution. which is usually sampled fifteen times to produce the 

movies samples. it is possible to display each movie sample. (See Fig.3 .1 0). 
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Fig. 3.10 Typical Masslnf output for 5 movie samples 

As can he seen in Fig.3.10, each of the five movie samples has evidence for peaks of sl ightly 

different int ensity and pos ition. The lower trace represents the arithmetic mean of all the movie 

samples. 

3.2.3.1 Diagnostic Information 

As well as the graphical information presented above, the algorithm also outputs an array of 

diagnostic information that describes how well the algorithm is proceeding with a deconvolution. 

The most important of these are: 

• TEST. This is (1-cose). where e is the angle between the gradients of entropy and x2
. Test is 0 

on the rvlemsys trajectory and less than 1 whenever the angle is acute. (See section 2.1. 3). 

• CHISQ. This is the normalised chi-squ ared test of how well the Mernsys result fits the 

experimenta l spectrum. It assumes Gaussian statistics. 

• OMEGA. This is the algorithm's stopping criterion for reaching convergence. At covergence 

omega= 1. 
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CHAPTER 4: THE APPLICATION OF MAXIMUM ENTROPY 

DATA PROCESSING TO SPECTRAL 

DE-NOISING 

SODIUM CARBOXYMETHYL CELLULOSE 

Sodium carboxymethyl ceiJulose (SCMC) is a chemicaiJy modified natural polymer and is the 

most widely used water soluble derivative of cellulose. Its applications include use as an anti­

redeposition agent and an emulsifier in the detergent, food and textile industries. 

SCMC is made by the reaction of cellulose with monochloroacetatic acid. The resulting 

linkage of the carboxymethyl ( - CH2 coo· ) groups with the free hydroxyl functions of the cellulose 

is used to achieve water solubility. This is a major benetit for the above industries[l1• For industrial 

applications, the stoichiometry of the reaction is normally chosen such that the cellulose does not react 

completely. i.e. not all the hydroxyl groups on the anhydroglucose ring undergo carboxymethyl 

substitution. Typically, this results in a product with an average degree of substitution (ds) in the 

range 0.4- 1.3 (ds attains the value of 3 for complete reaction of the hydroxyls). The three possible 

sites for substitution are shown in Figure 4.1. 

By limiting the reactivity of the available hydroxyl groups the resulting polymer can consist 

of up to eight t1ifferent monomers: 

• one unsubstituted glucose residue 

• three monosubstituted glucose residue.<>. i.e. 2-, 3-, and 6- carboxymethyl glucose 

• three disubstituted glucose residues, i.e. 2.3-. 2.6-, and 3.6- carboxymethyl glucose 
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" one trisubstituted glucose residue, i.e. 2,3,6- carboxymethyl glucose. 

Fi~rure 4.1 Section from cellulose molecule showing the three different hydroxyl groups 
before and after substitution. (ds = 1.0). 

Figure 4.2 shows one of the eight possible monomers, the trisubstituted SCMC, and indicates 

the carbon numbering that will be adopted in tllis thesis. Taking into account the a and p anomeric 

glucose units the situation is complicated further; there is the possibility of sixteen different 

monomers. 
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Figure 4.2 2.3.6-carboxymetJ1yl glucose. 

The NMR spectra of SCMCs can consist of a large number of resonances which are usually 

broad. prone to severe overlap and very poor signal : noise ratio. The situation is further complicated 

because the industrial grade raw material is normally less than 70% pure SCMC. The remainder 

consists of \Vater. various inorganic salts, glycollic acid derivatives and unreacted cellulose fibre. 121 

Section 4.1, describes the characterization of SCMC as presented in the literature with 

supporting NMR spectra acquired during the course of this research. The aim of this review is to 

illustrate the limitations of the NMR technique for these systems as a point of comparison witJ1 the 

Maximum Entropy processed spectra which arc shown in section 4.2. 

4.1 SCMC Charactelization : No data processing 

As noted by Chaudhari et al. 131 SCMCs have remained poorly characterized materials and 

Baar et al. [I I comment that the chemical characterization of CMC has been limited to determination of 

the average ds. Traditional analysis has relied upon classical chemical methods for determination of 

ds. These have included conductornctry1151, gravimctry1161• and colorimetry1171 . More recently. 13C 

NMR spectroscopy has been used to characterize cellulose ethers1141 and the use of this technique to 

study the microstructure of carboxymethyl derivatives has been reported 18·141 . 
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The industrial characterization of SCMC has been limited to the determination of some non­

specific relationship between ds and improved prcxluct perf(mnance. In the detergents industry. if a 

direct correlation could be established between, e.g. ds and improved soil anti-redeposition, this was 

normally sufficient to ensure the 'correct grade' of SCMC was used. More retlned measurements are 

needed if industry is to tailor SCMCs to meet specitic product requirements. For example. it may be 

that substitution at only one position. say C-6. is required in order to achieve an improvement in 

polymer functionality and tllis structural characteristic would not necessarily manifest itself in the 

measurement of a mean ds. 

Information about microstructure can also give important insights into polymer functionality. 

For example. are all the di-substituted glucose residues together in a block ? Baar et al. have 

reported a 13C NMR method involving sample degradation and spectral deconvolution techniques for 

determining the distribution of substituents over the three possible positions PI_ 

The aim of the work presented in this thesis is to establish if more information could be 

extracted fmm the NMR spectra of a variety of SCMCs. Samples from different manufacturers, 

with different molecular masses and different degrees of substitution have been analysed. Whilst this 

would appear to be a modest aim. the level of information that can be extracted directly from a typical 

spectrum is small. 

Typical fabric washing powder formulations indicate SCMC levels of only -0.5wt% (quoted 

as 100% SCMC ). However, SCMC raw materials contain significant levels of impurity, e.g. 

glycollates. so the level of 'active' SCMC measured is likely to be lower than the 0.5% quoted. 

Furthermore losses. which may be associated with any pre-concentration stage, e.g. ultrafiltration, 

result in the level of SCMC measured in the NMR experiment being lower than that actually present 

in the powder. 



59 SCMC 

Given the above. it is difficult to determine accurate SCMC levels in a fully formulated 

product. although approximate values tend to suftlce for competitor product screening, and so a 

spectral fingerprinting method is likely to he of most use for these systems. 

4.1.1 NMR Spectroscopy Of SCMC: Sample degradation 

The NMR spectrum of polymeric SCMC usually suffers from very pt-mr signal : noise ratio 

due to the limited solubility of the SCMC and the high viscosity of the resulting polymer solutions. 

The spectrum is Jurther complicated because the natural NMR line-width of polymers is large and the 

spectral bands overlap considerably. yielding little quantitative infonnation. 

The difference between the NMR line-width of polymers and those of low molecular weight 

molecules is clue to the T2 contribution to the line-width. T2 is the time constant that describes the 

decay of transverse magnetization as a result of a loss of phase coherence between the nuclear spins. 

The T2 value can provide information about the distribution of resonant frequencies and about tl1e 

local Jields experienced by the magnetic moments of the nuclei. The local fields are related to the 

structure and nature of the local magnetic environment around the nucleus. 

If molecular tumbling is fast compared with the Lannor frequency the proportion of 

molecules tumbling at the resonant frequency is low. i.e. a low spectral density function at tl1e 

resonant frequency. and so relaxation is not particularly efficient. This results in long T2 values and 

hence narro">v resonant lines. This is the case for the SCMC monomers. 

In highly viscous polymer solutions molecular tumbling is slow compared with the resonant 

frequencies. i.e. they have a large spectral density function at the precessional frequency. Relaxation 

is efficient resulting in a rapid loss of phase coherence between the spins. Hence, the T2 values 

nonnaiJy observed in polymers are very short and the resonant lines broad. As the chemical shift 

difference between most of ilie bands observed from SCMC is very small the resultant spectrum is 

severely overlapped. 
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One method of overcoming peak overlap in polymer systems is molecular degradation. The 

high molecular weight polymer can be degraded either completely to monomeric units or partially to 

small oligomers. Whilst the subsequent spectra are often better resolved. due to the sharper spectral 

lines. interpretation of these spectra does not describe the polymer system as used in practice. There 

is often less information available about microstmcture and position of substitution. 

The 1itcrature11.
41 describes three methods as being suitable for SCMC degradation: 

• acidic hydrolysis 

• sonication 

• enzymatic degradation 

As described by Adams et al. 151 other methods of degradation are generally avoided. These 

include: 

• oxidative attack. This can result in a variety of reactions other than chain scission; generally 

oxidizing agents are unspecific in their action upon cellulose and consequently they lead to a 

variety of products. Given the already complex nature of the SCMC spectrum this type of 

degradation is not suitable for characterizing SCMCs. 

• alkaline degradation. Under rigorous conditions, i.e. normal alkali at 170°C, alkaline hydrolysis of 

the glycoside linkages results in random chain scission. 1181 These conditions do not lend themselves 

to easy sample preparation for NMR analysis and are considered to be unsuitable for the work 

associated \Vith this degree. 

4.1.1.1 Sample Preparation 

• Acid Hydrolysis 

For the work associated with this research typical hydrolysis conditions are: ca.20 mg SCMC 

added to 1 cm1 solution of 20% DC! in 0 20 and heated for I hour 15minutes at 70°C. 
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Acid hydrolysis of cellulose proceeds by random scission of the glycoside linkages until the 

monomcr. glucose, is produced. As described in the introduction to this chapter. it is possible to 

generate eight different substituted monomers following acid hydrolysis and. taking into account the a 

and p anomeric glucose units. sixteen different anomeric glucose units are possible. Whilst Ho et al.r61 

describe a method for determining both the average ds and the order of reactivity of the hydroxyls in 

cellulose, Baar conunents t11at the sixteen different units cannot be completely resolved by 1H NMR[11. 

Furthermore. f(.1llowing acid hydrolysis to the monomers it is not possible to determine the distribution 

of substituents on a macromolecular scale or indeed derive any microstructural infonnation. 

• 
1H NMR Of Acid Hydrolyzed SCMC 

A 1H NMR spectrum of an acid hydrolyzed SCMC ex Aldrich Chemical Co. (ref.: 41,927-3) 

is shown in Figure 4.3, with expansions shown in Figure 4.4 and Figure 4.5. According to Aldrich. 

the sample has a weight average molecular mass of 90 kDa and a ds of 0. 7. This spectrum was 

acquired on a Bmker DRX500 spectrometer following acidic hydrolysis of the SCMC as described 

above. The spectmm was acquired with a 30 degree pulse of 4 ~ts duration and an interpulse delay 

of 5 s. The probe temperature was 27 °C. 

The molecular mass of this sample is relatively low compared to other conunercial SCMC 

samples (typical values for a commercial SCMC arc -200 kDa). Apart from intensity differences and 

any impurities present t11c spectrum of the acid hydrolysed SCMC is independent of the starting 

material. i.e. glucose is always produced. Nevertheless. this low molecular weight SCMC was chosen 

as a standard because it was hoped that this sample could later be used to produce a 13C spectrum free 

from severe band overlap. Unfortunately, as will be shown later in this chapter, the main spectral 

bands are still clearly overlapped even at 125 MHz for 13C and spectral deconvolution is required. 

Samples with a high ds value may require a longer period of heating than indicated above. 

although care should be taken to avoid decomposition of the glucose monomers. Decomposition is 
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known to accompany acid hydrolysis17l and may change the spectral intensities sufficiently to pnxluce 

errors in a calculation of ds. One of the prcxlucts of the decomposition gives rise to doublets near 7.0 

ppm and 7.8 ppm. These doublets are due to hydroxymethylfurfural which is formed as an 

intennecliate during the acid decomposition of glucose to laevulic acid. 112 l 

HC-CH 

11 11 + 
HOH2C.C C.CHO 

\I 
0 

Hydrox ymethylfurfural 

These bands provide a useful internal control to establish if the hydrolysis has proceeded too 

far. If they are particularly intense, the hydrolysis should be repeated using a lower temperature 

and/or shorter hydrolysis time. 

According to Clernett and Wright121• apart from decomposition there are a number of other 

possible sources of error in calculating the average ds from the 1H spectrum of the acid hydrolyzed 

monomers. 

Firstly, specific hydrogen I deuterium exchange may occur as a result of using DCl for the 

hydrolysis. lf this occurs preferentially at one site. the spectral intensities would be distorted, and the 

calculation of average ds would be in error. Clemett notes that if the mild hydrolysis condition.-. 

described above are used, the effect of isotopic exchange on the calculation of average ds is likely to 

be small. 

Secondly, interfering species such as glycollates may be observed in the spectral region of 

interest. Clemett comments that sodium glycollate and disodium cliglycollate are present in varying 

amounts in most samples of crude SCMC. Sodium ethoxyglycollate is present in the product of some 

manufacturers only, suggesting that ethanol may be used in the manufacturing process. 
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Figure 4.3 1H NMR spectrum of acid hydrolyzed SCMC 

HOCH')COONa 

Sodium Glycollate Disodium diglycollate Ethoxyglycollate 

Unfortunately, the 1H NMR resonance of glycollic acid. derived from sodium glycollate, is 

almost coincident with that of the primary substituted carboxymethyl group and severely affects the 

calculation of ds. This problem can be overcome by either further sample preparation involving a 

methanol w·ash to remove the glycollates or by measuring the ds based on the intensity of the 

secondary alcohols. which do not suffer from interference. 

Figure 4.4 is an expansion of the spectral region 4.6- 5.6ppm. The progress of the 

hydrolysis can be monitored by observing an increase in the intensity of the NMR signals from 

protons at the reducing end [Cl] of the degraded sugar. i.e. the anomeric protons. This group of 
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signals arises as a result of the cleavage of the glycoside linkage in cellulose. and is observed as two 

sets of doublets. 

~~-S~T~TI-;. s:x.· s;;~ 5iv s1s 5!0 ->·:,.; ;;.:.v ~,.., ~""-~ 48•", ~~~~~ 
i .. J;n'oj 

Figure 4.4 C 1 protons of hydrolyzed SCMC 

The doublet splitting is caused by coupling with the single proton at C2. Ho has assigned the 

set of high frequency doublets to the Cl proton of the a-anomer Oaxiai-equitoriai = 3.8Hz). while the set of 

low frequency doublets is due to the proton at Cl of the P-anomer Oaxial-axial = 7.9Hz). The Sand U 

identifications of the doublets refer to substituted and unsubstituted hydroxyl group at C2. There are 

also other unresolved minor bands, possibly more doublets (marked with an asterisk), which have not 

been identified in the literature. but may be clue to long-range coupling. 

Based on the identitied bands. it is possible to calculate the relative amounts of: 

I. a-anomer with the C2 hydroxyl substituted 

2. a-anomer with the C2 hydroxyl unsubstituted 

3. p-anorner with the C2 hydroxyl substituted 

4. P-anorner >vith the C2 hydroxyl unsubstituted. 
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If absolute amounts are required. an internal intensity standard such as Analar Acetic Acid 

must be incorporated into the system. The quantification may be compromised by the overlapping 

unidentified resonances; some form of deconvolution would be required for the most accurate values. 

There are other possible sources of error. 

Firstly. the different species may have different Tt sand so the experimental conditions need 

to be set for quantitative analysis. Tt is the time constant that describes the spin- lattice relaxation of 

the nuclear spins. 1191 

Secondly, care must be taken to ensure that there is no preferential hydrolysis of any one 

moiety. This can be checked by comparing the intensity of the bands in the spectral region 4.6 -

5.6ppm (the anomeric protons) with the intensity of the bands in the region 3.2 - 4.1 pp m (the other 

CH protons of the glucose unit). For complete. quantitative hydrolysis the intensities should be in the 

ratio of 1 :6. 

It is also worth noting that as the ds increases the intensity of the ClaS proton increases at 

the expense or the Cl aU intensity. 

For samples free from glycollate impurities the ds can be calculated from the following 121 : 

ds = (6B-A) I 2A ...................... { 1 } 

where A is the intensity of the region 3.0 - 4.2 ppm. corresponding to the 6 protons of the 

anhydroglucose unit, and B is the intensity of the region 4.2 - 5.5 ppm, corresponding to the anomeric 

protons. 

For samples of SCMC contaminated with glycolJates the 'total ds' is obtained via the 

secondary hydroxyl ds, i.e. 

ds (secondary)= C/2 x 6/A ...................... {2} 
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where C is the intensity of the region 4.4- 4.6 ppm and A is as before. Allowance for the 

contribution of ethoxyglycollate to A must be rnacle if it is present. Clemett then shows a plot 

of total ds versus secondary ds for a number of SCMC samples free from glycollates. These data fit 

a straight line described by equation { 3} with a coefficient of correlation of 0. 992. 

ds (total) =0.1 + 1.38ds (secondary) ....................... {3} 

Hence. if the secondary ds can be measured, the total ds can easily be found. 

For the Aldrich SCMC sample the cl<; has been calculated as 0.84 using equation { 1} and 

standard integration teclmiques. This value is higher than that quoted by Aldrich. 

As stated earlier, Baar comments that the 16 different a and f3 anomeric glucose units cannot 

be separately resolved by 1HNMRSpectroscopy. However. Ho et all6
l describe a 1H NMR method 

for determining the distribution of the substituents over the positions C2, C3 and C6 following 

complete hydrolysis. Furthermore. from the peak intensities in the 1 H spectrum, information about the 

relative reactivity of the three hydroxyl groups in the anhydroglucose unit can be deduced. 

Ho calculates the distribution of substituents from the spectral region 4.0- 4.5ppm. He has 

assigned the intense peak.;; in this region to carboxymethylation of hydroxyl groups at C3, C2a, C2f3 

and C6 going from low to high field. Ho continues with the argument that assignment of the C2a 

and C2f3 peaks is difficult at 90 MHz. and differentiates between the two by using a priori 

knowledge that the latter should be the larger of the two signals. 
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Figure 4.5 Acid hydrolyzed Aldrich SCMC, 41,927-3. 

Ho's samples were acquired at 90 MHz and consequently were poorly resolved. Figure 4.5 

shows a spectrum of the Aldrich SCMC acquired at 500 MHz. The improved resolution at the higher 

field would tend to indicate that Ho's assignment of C2 and C3 should be reversed. The coupling 

constants for the peaks at 4.452ppm and 4.43ppm are 3.2Hz and 6.9Hz respectively, indicating C2a 

and C2f3. There are clearly other bands present in the spectrum with sodium glycollate present as a 

large singlet next to the C6 resonance at 4.21 pp m. 

Despite some difficulty in assigning the spectrum, Ho used the intensities of the signals to 

deduce the relative reactivity of the hydroxy Is in cellulose toward carboxymethylation varied in the 

order: 

C2 > C6 > C3 
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This result is somewhat surprising given that according to Ekkundi et al. r201 the primary OH 

group on C6 is expected. theoretically, to be the most reactive in alkali catalysed condensation with 

chloroacetic acid. Ho explained his experimentally derived order by the higher acidity and greater 

accessibility of the hydroxyl at C2 compared to C6. even though the latter is a primary OH group. 

• 
13C NMR of acid hydrolysed SCMC 

The failure to achieve separation of all 16 different a and P anomeric glucose units by 1H 

NMR. led other research groups to consider 13C NMR spectroscopy as a method for characterizing 

hydrolysed SCMC. Reuben and Connorr81 achieved separation with 13C NMR spectroscopy for an 

acid hydrolysed SCMC. Like Ho et al.. Reuben and Conner concluded that the order of reactivity 

of the hydroxyls is: 

C2 > C6 > C3 

Their results relied on spectral deconvolution. Lorentzian lines were constructed and matched 

with the experimental peaks until the difference between the two spectra was minimized. Reuben and 

Conner note that the r.ms. deviations between the experimental and calculated spectra were less than 

1%. The integrals of the curve-resolved spectrum were then printed out. The authors estimate that 

based on the integrated areas of the monoprotonatecl carbons. C 1. C2. C3. C4 and C5 of glucose, this 

approach is accurate to +1- 3%. 

As Baar points out, this is an extremely laborious measuring procedure, followed by an 

equally time consuming evaluation over the 120 resonances observed in the aliphatic region of the 13C 

spectrum. There is clearly scope for a maximum entropy approach in this sort of spectral analysis. 
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It is Wt)rth re-emphasizing that acid hydrolysis reduces the SCMC to the monomer. As a 

consequence it is not possible to examine the distribution of the substituents in the macromolecule, i.e. 

in the form the polymer is used in practice. 

o Sonication 

Baar continues with the argument that a mechanical method of degradation fails to break the 

polymer dmvn completely to the monorner. Hence. the occurrence of end groups and their associated 

effects on the chemical shifts of adjacent carbons is avoided. This is achieved because the molecule 

is always undergoing main chain cleavage in the centre of the macromolecule. His ultrasonication 

based results rely heavily on spectral deconvolution, using the WINNMR programl91• They enable 

the determination of the composition of the eight monomers of SCMC. 

Baar's sonically derived spectra are severely overlapped and would benetlt from a more 

rigorous approach to spectral deconvolution. Baar relies on the differential curve. i.e. experimental 

spectrum minus simulated spectrum. as a guide to the quality of the spectral deconvolution. He 

concludes that the deviations are of the same order of magnitude as the baseline noise, and hence there 

is a high degree of fit. The difficulty with the WINNMR approach to curve titting is that there is a 

danger of over-titting the spectrum. i.e. titting the data to t<.10 many lines to ensure good quality 

residuals. One advantage of the MaxEnt approach is that the data will be titted with the minimum 

number of lines that match the data and the number of lines chosen is independent of the operator. 

o Enzymatic Treatment 

Enzymatic (cellulase) hydrolysis has also be used for SCMC degradation. Gautier and 

Lecourtierr41 comment that acidic hydrolysis of SCMC leads to poor results due to a strong alteration 

of the sample. Enzymatic hydrolysis leads to short polymer chains and hence 13C NMR spectra can 
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be obtained with relatively good sensitivity and resolution. The authors compare the 13C NMR 

spectra of a commercial SCM C (Relative molecular mass = 1. I x 10 6
) and observe that a better 

spectrum quality is obtained for the enzymatically clegraclecl sample, especially concerning: 

• the spectral resolution. Gautier and Lecourtier comment that tllis is clue the greater efficiency of 

the enzymatic process in degrading the polymer. 

• the signal to noise ratio. The authors claim that because the enzymatic hydrolysis is more 

efficient, the viscosity of the solution is no longer a problem. and it is then possible to use a more 

concentrated sample solution. 

• the number of resolved singlets is higher. Anomeric carbon atoms at the end of the polymeric 

chains v,:ere detected following enzymatic hydrolysis inclicating shorter polymeric chain lengths. 

i.e. many more chain ends. 

Gautier and Lecourtier found that the relative intensity of the C2(s), C3(s) and C6(s) were in 

the order: 

C3 > C2 >C6 

This is clearly not in agreement with the other literature and Baar et al conclude that 

enzymatic treatment leads to the occurrence of oligomers and monomers which introduce spectral 

overlap and hence increase the errors on the measurement of peak intensities. 

4.1.2 NMR Spectroscopy Of Intact SCMC 

Based on the viscosity and polymer linewidth arguments described earlier, the NMR spectrum 

of an intact SCMC is likely to be poorly resolved with poor S:N ratio. Chaudhari et alliOJ describe 

how the ds and relative reactivity of the three hydroxy Is has been determined clirectly from the 13C 

NMR spectrum ( 125 MHz for 13C) of an intact SCMC recorded at 70°C. Assignments are presented 
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(see Table 4.1) and the intensity of the peaks assigned to C2, C3 and C6 are used to detemline the 

relative reactivity of the three possible sites of substitution. 

Table 4.1 13C chemical shifts and assignments of CMC1101 (Shifts in ppm). 

c6 (us) c6 (s) CH2COO c~ (us) Cs Carbons 
. C3 (us)· c,· C, (s) C, (s) c, Carbonyl 

+c.· anorueric 

62.96 71.56 73.34. 7HJ6 75.86. 76.53. 77.68 81.4 I 87.21 104.54. 87.84 
73.85 76.13 76.70. 104.99. 

76.91 105.30 

Tentative Assignment, (us) Unsubstituted. (s) Substituted 

The sensitivity and resolution of Chaudhari · s spectra are poor and the spectra are not fully 

assigned. It is difficult to establish how accurate values for the peak areas could be detemlined using 

conventional integration methods and how chemical shifts can be quoted to 2 decimal places from 

spectra of such poor quality. Nevertheless, Chauclhari concludes that, based on the intensities of the 

three peaks. the relative reactivity order of the hydroxyls is: 

C2 > C6- C3 

Chaudhari comments that whilst these results are in reasonable agreement with Reuben's 13C study 

and Ho's 1H v .. ·ork on acid hydrolysed systems they are different from results presented by Parfonclry 

and Perlin ll-IJ who used enzymatic hydrolysis to improve resolution. Parfonclry and Perlin found: 

C2 > C6 >>C3 

Chaudhari continues with the arguernent that these discrepancies are clue to the majority of 

the literature work being based on depolymerised SCMC whereas his results are for the intact 
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polymer. There is still clearly a discrepancy here and a more definitive piece of work is required to 

determine the order of reactivities with more confidence. 

Chaudhari' s assignments, combined with the resolution enhancement and sensitivity 

improvements from modem data processing techniques, offer an opportunity to improve on the level 

of infonnation that can be extracted from the NMR spectra of SCMC. 

4.1.2.1 Solid State NMR of Intact SCMC 

Hosluno et al[''1 describe the use of 13C CP/MAS NMR spectroscopy for the study of 

cellulose derivatives. A spectrum of CMC is presented (ds = 1.35) and the carbon peaks have been 

assigned as sho'Wn in Table 4.2. 

Table 4.2 13C CPMAS chen"rical shifts or CMC (Slufts in ppm) 

C=O Ct C2.3.4 Cs.6 (OCH2) c6 
177.18 103.73 81.40 73.78 61.87 

In tlus work. Hoshino's experiments have been extended to include a range of SCMCs of 

different molecular weights and different ds. The spectra. presented in Figure 4.6, were recorded at 

75 MHz on a Bruker DSX300 using a 4mm High Speed MAS probe. The contact time was 2rns 

with a 10s re{:ycle delay. Typical spin rates were 4kHz. (Spectra courtesy of Jeff Rockliffe, 

Unilever re..;;earch) 

The spectra are consistent with the single spectrum of SCMC presented by Hoshino. There is 

clearly little difference between the spectra. Molecular weight or ds have little effect on the 

subsequent CPMAS spectrum. 
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Figure 4.6 13C CPMAS Spectra Of SCMC 

It is concluded that, apart from confinning the CMC stmctural fragments, little infonnation 

about ds or microstructure can be extracted from these systems by studying them in the solid-state. 

4.2 Data Processing 

The following section describes how Maximum Entropy techniques have been applied to the 

NMR spectra of SCMC. The ability of the techniques to successfully de-noise spectra is shown to be 

an extremely powerful method for improving the identification of SCMC in a commercially available 

detergent pLW.lder. 

4.2.1 13C Nl\·1R spectroscopy of intact SCMC and MaxEnt data processing. 

The system chosen for this study is a SCMC from Aldrich Chemical Co. (Aldrich Ref. 

41.927-3) \Vith a Molecular Weight of 90.000 Da and an average ds of0.7 (Aldrich figures). A 10% 
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(w/w) solution in 0 20 was prepared and the 13C spectrum recorded at 75 MHz on a Bruker DRX 500. 

The spectrum was recorded with inverse gatecl 1H decoupling to suppress Nuclear Overhauser effects 

and with a relaxation delay of 1 s, i.e. the same relaxation delay as used by Chaudhari. The short 

relaxation delay was chosen to provide adequate sensitivity in as short a time as possible. As only 

peaks from 13C nuclei in very similar environments are to be deconvoluted. any differences in intensity 

due to T1 are considered to be small. 

Figure 4. 7 is the 13C spectrum of the intact AJdrich SCMC at 300 K. Expansions of the 

regions 55- 95 ppm (C2- C6) and 177- 185 ppm (carbonyl carbons) are shown above the main 

spectrum The spectrum has been processed with 10Hz line broadening (decaying exponential) to 

improve the apparent sensitivity but at the expense of line-width. The spectrum is referenced to 3-

(Trimethylsilyl)-1-propane sulfonic acid. sodium salt at 0 ppm The 10% aqueous solution was very 

viscous. Consequently. the mean line-width in the above spectrum is large and the degree of band 

overlap makes integration difficult. An attempt to narrow the lines was made by increasing the probe 

temperature and so the mobility of the aqueous solution. The corresponding spectrum at 343 K is 

shown in Figure 4.8. 

Despite the relatively large 10Hz line-broadening the resolution at 343 K is improved and the 

spectrum is very similar to that of Hercules 7H SCMC presented by Chaudhari et al at 343 K. Note 

the extra structure in the carbonyl region ( -180 ppm) of the spectrum recorded at 343K. 

For any probabilistic data processing the raw data must be unfiltered, [131 i.e. without line­

broadening. The expanded spectrum (C2- C6 region), acquired at 343 K, is displayed in Figure 4.9 

following direct Fourier Transformation, i.e. without line-broadening. Unfortunately, the Maximum 

Entropy software can only display the spectra in data clmmels and not the more usual ppm scale. 

The relative noise level and degree of band overlap is such that integration of individual 

resonances is not possible without spectral deconvolution. 
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Figure 4.7 13C NMR spectrum of intact SCMC at 300K 
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Figure 4.8 13C NMR spectrum of intact SCMC at 343K 
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Maximum Entropy deconvolution requires the input of an estimate of the average bandwidth 

and bandshape present in the spectrum. i.e. the Point Spread Function (PSF). Consequently, peaks 

which are actually wider than the estimate may be incorrectly split into multiple resonances and peaks 

narrower than the estimate will carry large error bars. 

For data of this quality, three different methods are available for estimating that PSF which 

will extract the desired information. These methods are discussed separately in the following sections. 

40e3 -

7500 8000 8500 9000 
Data Channels 

Figure 4.9 Aldrich SCMC 41,927-3 at 343k, no window function. 

4.2.1.1 Estimate of PSF By Eye Directly From Raw Data 

Initially. a deconvolution was attempted by using the discrete peak at 63ppm. 9178 data 

chmmels as an estimate of the PSF. A parametric curve was fitted by eye to this resonance. 

Although Baar et al assigned this peak to four discrete resonances. i.e. 60 , 62, 63, and 62.3 . where the 

indices indicate the site of substitution on the anhydroglucose unit and the G stands for the 
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unsubsititutcd glucose unit, the WINNMR deconvolution only found one peak. This will be used as 

the basis for starting this MaxEnt deconvolution, although this peak will be subsequently processed 

independently to ascertain if there is any evidence for the presence of more than one peak. 

Figure 4.10 shows the C6 resonance overlaid with the parametric estimate of the PSF. The 

residuals are also shown and indicate that the PSF is a close fit to the raw data. 

~ 
Ill 

j 
.5 

9100 9150 9200 9250 
Data Channels 

Figure 4.10 Parametric estimate of PSF. 

The peak is clearly asymmetric with evidence for a shoulder on the down-field side. 

Comparison, by eye, of this peak with the rest or the spectrum suggests that it is a good match for 

some of the peaks, although the peaks at 8359 and 8410 data channels (which Baar has assigned to 

C3,C6 for 8359 and C2 for 8410 aJI unsubstituted) are considerably narrower. This would suggest 

that either there is a number of peaks sitting under the PSF peak or there is a range of peak-widths 
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present in the spectrum. Nevertheless, the MaxEnt result is shown in Figure 4.11 with the Mock data, 

i.e. the MaxEnt reconstruction of the raw data, overlaid with the residua1s in Figure 4.12. 
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Figure 4.11 MaxEnt result 
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Figure 4.12 Mock Data and residuals 
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The residuals show structure above that present in the background noise. This is indicative of 

PSF mismatch. The structure is not present at all positions indicating that there may be a range of 

peak-widths present. Most of the structure is present on the peaks at 8359 and 8410 data channels 

which were identified earlier as being narrower than the PS F. If the peak chosen as the PSF standard 

(9178 data channels) is considered in the MaxEnt result there is evidence for a minor peak down-field 

of the main resonance. This is further proof that the PSF chosen was not an adequate description of 

all the peaks present in the data. That said, the residuals are not much larger than the noise level 

which suggests that a reasonable deconvolution has been achieved. The standard deviation of the 

residuals is I. 92e-t03 compared with 1.84e+03 for the random noise. 

If the MaxEnt result is quantitied. the intensity of the substituted C2, C3, and C6 peaks can be 

derived if Chaucihari's assignments are followed. (Table 4.3) It is worth noting that in this 

cieconvolution the C3 and C6 peaks are split in the MaxEnt result into a number of peaks. 

Table 4.3. MaxEnt intensity of 13C peaks for an intact SCMC 

A;Ssigl1111ent ··.·• ·. MaXEnt Peak Position·.· 

•·· I.P~ti :Cti~nnei~· · 
7810 
7533 
7544 
7557 
7562 
8523 
8530 
8554 

· MixEntLAbsolute : ; . 
'illt~l1$1t), x.·r.o~ . · · · 

1.20 +1- 0.08 
0.06 +1- 0.14 
0.18 +1- 0.26 
0.32 +1- 0.32 
0.27 +1- 0.37 
0.34 +1- 0.11 
0.15 +1- 0.26 
0.11 +1- 0.14 

The PSF misfit is also apparent from the error bars associated with the C3 and C6 peaks. The 

error bars for some of the peaks are actually larger than the peak intensity itself suggesting that the 

peaks have been incorrectly split. Even allowing for these error bars, it is obvious that the most 
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reactive hydroxyl group is at C2 • but. because of the large error bars. no definite conclusions can be 

drawn about the C3 and C6 peaks. It is dear that. if quantitative information is to be derived from 

spectra of this quality. more accurate measurements of the peak intensities are required. 

4.2.1.2 Estimate Of PSF Parameters From Evidence Values 

A'S described in ref.[ 13]. at the end of every deconvolution the MaxEnt algorithm outputs an 

evidence value. This is an internally calculated value which is effectively the logarithm of the 

probability of finding that PSF in the data. The more positive the number the better that PSF 

describes the peaks present in the d:1ta. This value can be used in a series of trials where, for 

example, the PSF left width and right v.-idth are varied and the effect on the evidence value noted. 

Thus. it is possible to derive an objective PSF. The main disadvantage with this method is that it,does 

not adequately describe a PSF' s parameters if there is a range of bandwidths present in the spectrum. 

a mean PSF bandwidth will be deduced. 

This nrethod has been used. for the SCMC spectrum recorded at 343 K. in an attempt to 

improve the etTor bars associated with the deconvoluted peak intensities. The optimised PSF was 

found to be a symmetric line of half-width 12.4 data channels. compared to the PSF optimised by eye. 

which was estimated to be an asymnretric line of left half-width 11.9 data channels and right half­

width 17 data channels. Despite these width differences the resultant deconvolutions were found to be 

very similar. Figure 4.13 is the raw data overlaid with the MaxEnt result. For comparison. the 

corresponding MaxEnt peak intensities are shown in Table 4.4. 

Whilst the error bars associated with the probabilistic 111ethod of determining the PSF are 

generally smaller they are not sufficiently small to be able to differentiate between the reactivity of the 

C3 and C6 hydroxyls. This is further evidence that there is a range of bandwidths present in the data 

and that the derived PSF is an average for all the peaks. 
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It is clear that neither of the above methods can fully describe the bandshape present in these 

spectra. In order to establish if there is any evidence for the peak at 9178 data channels being a 

composite band this will now be processed independently. The probabilistically optirnised PSF will, 

hopefully, he free of the other line-broadening in1luences in the spectrum 

Table 4.4 MaxEnt intensity of 13C peaks for an intact SCMC 

ASsignment 

c3 (s) 

MaxEnt Peak Position I 
· -. -Da~a Chalmeis_ · 

7810 
7533 
7544 
7557 
7562 
8523 
8530 
8554 

MaxEntAbsoiute 
;. c·.Intel1SttYX10~ :::. ,: .. 

1.18 +/- 0.05 
0.06 +1- 0.08 
0.10 +1- 0.14 
0.30 +1- 0.33 
0.39 +1- 0.18 
0.24 +1- 0.12 
0.16 +1- 0.15 
0.10 +1- 0.08 
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Figure 4.13 MaxEnt result using evidence optimised PSF. 

• Analysis Of Peak At 9178 Data Channels, C6 

This discrete part of the unfiltered spectrum was saved as a new file and processed using the 

evidence description of the PSF, no prior knowledge of PSF parameters was used. As shown in 

Figure 4.10, the peak is asymmetric with evidence for a down-field shoulder. The evidence values 

indicated an asymmetric peak of left half-width 13.5 data channels and right half-width of 18 data 

channels. 
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Figure 4.14 MaxEnt result and residuals. 

values are quite close to those estimated by eye for this peak but are dissimilar to the parameters 

ret1ecting aJI the peaks in the data. The MaxEnt result and residuals are shown in Figure 4.14. 

The residuals are well within the noise level indicating that the PSF is a good description of 

the bandshape present in the data. Apart from the main resonance there is evidence for additional 

structure contributing to this band. As described earlier. Baar's assignments indicate that a number 

species are expected to contribute to this resonance although Baar presents no spectral evidence that 

this is the case. i.e. deconvolution into a single band. Baar's assignments are based on an incremental 

calculation \~lhich he compares to experimental observation. Accordingly. the following are expected 

to give rise to resonances in this spectral region (calculated shifts in parentheses) : 

C6 not substituted, 60.39ppm (60.8ppm) 
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C6 •vith substitution occurring at C2, 60.4lppm (60.2ppm) 

C6 ~Nith substitution occurring at C3, 60.4lppm (60.2ppm) 

C6 with substitution occurring at positions C2 and C3. 60.llppm (59.6ppm). 

Note: The calculated C6 shifts for the moieties substituted at C2 and C3 are coincident. 

If the intensity of the Max.Ent derived peaks is considered only three are signit1cant at one 

standard deviation (Table 4.5). Tl1is would be consistent with the three peaks predicted by Baar. 

Table 4.5 Max.Ent intensities reported to one standard deviation (Peak 9178). 

9148 0.12 C6 sub. at C2 

9178 1.36 
9249 0.06 

C6 sub. at C3 
(coincident peaks) 

C6 no sub. 
C6 sub. at C2,3 

The existence of these peaks has relied on empirical prediction. The observation of these 

peaks, whether directly or following data processing techniques, has not previously been described in 

the literature. 

4.2.2 Spectral Fingerprinting I De-noising 

As described earlier, typical fabric washing powder formulations indicate SCMC levels of 

only 0.5wt~T~'. Traditional methods of characterizing these systems have relied on the 1H NMR 

spectrum of the acid hydrolysed sample following ultra-filtration of the powder. The only information 

reported is ds, and ads derived molecular weight for the average monomer. 

Max.Ent data processing techniques offer a new approach for monitoring competitor products 

by spectral fingerprinting using the Mock Data facility. i.e. building a database of the range of 
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SCMCs used in typical competitor products. The techniques could be applied to either the spectrum 

of the intact SCMC or the acid hydrolysed system. 

A major advantage of the Mock data is that, unlike the results obtained from conventional 

methods. it represents a method for improving the signal:noise ratio of the spectrum without 

broadening the peaks. Furthermore. MaxEnt trials are unnecessary so the procedure is very fast. 

The method involves making an estimate of the width of the narrowest peak in the spectrum 

and then reducing this value by about 10 %. This is then used as the input to the MaxEnt algoritlun; 

the shape parameters are of little consequence in this application and for most circumstances a 

gaussian lineshape can be used with confidence. At convergence of the MaxEnt algorithm, there will 

be too many peaks in the MaxEnt result because all the peaks that are significantly broader than the 

applied PSF \vill be spilt into more than one component. The MaxEnt result is irrelevant in tllis 

application. Provided the app1ied PSF is no wider than the narrowest peak, the Mock Data will be 

faithful to the spectrum. Furthermore, the signal:noise ratio of the Mock Data will be significantly 

higher than the original spectrum. Care should be taken to ensure that the width of the applied PSF 

does not approach that of the noise frequencies, otherwise unwanted correlations will be present in the 

final result. 

As an example, consider Tide Ultra fabric washing powder from the Philippines. This is a 

typical competitor product containing about 0.3wt% SCMC with ads of- 0.3. The problem lies in 

the relatively low level of SCMC in the powder. The polymer fraction is normally concentrated by 

ultrafiltration and then the 1H NMR spectrum of the fraction is recorded following acid hydrolysis. 

Figure 4.15 is an example of such a powder. Note the very poor signal:noise ratio. Accurate 

integration or tllis spectrum is extremely difficult using conventional integration techniques, accurate 

estimates of ds are not possible with such a system. Furthermore, it is not possible to establish if this 

SCMC is different from one used in. say. a previous formulation. Of course, the signal:noise of the 
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spectrum could be improved by increasing the acquisition time but this is not always possible given 

the time pressures on spectrometers in industry. 

An estimate of the narrowest linewidth present in this spectrum was made by eye. This value 

was then used as the basis of the MaxEnt deconvolution shown in Figure 4.16. Clearly, the noise 

level on the mock data is signiticantly reduced and the quality of the integral trace is much better. An 

estimate of the ds could be more easily made with this spectrum. An indication of the quality of the 

mock data is given by the residuals which are sho\\-'n in Figure 4.17, i.e. the Mock spectrum has been 

subtracted from the raw spectrum to leave a band of noise. There is little obvious structure in the 

residuals indicating that the mock spectrum is a good match for the experimental spectrum. Typical 

deconvolution times were of the order of two minutes, making this approach much more desirable than 

having to acquire many more scans to improve the signal:noise ratio. 
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Figure 4 .15 SCMC ex Tide Ultra 
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Figure 4.16 Mock spectrum with integral 
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Figure 4.17 Mock spectrum and residuals 

The Mock Spectrum offers an opportunity to build a spectral database of the types of SCMC 

present in competitor products. What happens if the signal:noise ratio is substantially reduced ? This 

was tested by adding random gaussian noise to the spectrum of Tide Ultra presented above. The 

signal:noise was reduced until it was no longer possible to make any accurate estimates of ds by 

conventional methods. The spectrum is shown in Figure 4. 18, with the Mock Spectrum shown in 

Figure 4.19. The PSF parameters used were the same as for the system described earlier. 
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Figure4.18 Tide Ultra SCMC with poor S:N Ratio 

The signaJ:noise ratio of the above spectrum is such that it is not possible to say with any 

certainty that this is indeed a spectrum of SCMC. Furthermore. the extra noise actually gives the 

algorithm more degrees of freedom with which to fit the data and so computation times are 

signitlcantly reduced. The Mock spectrum took just 30 seconds to produce. 

The main spectral features are entirely consistent with those shown in Figure 4.16; the 

spectrum is unmistakably that of SCMC. 
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Figure 4.19 Mock spectrum 

This type of approach to spectral denoising is not limited to spectra of SCMC but is a general 

method for improving the signal:noise ratio in all spectra where an estimate of the bandwidth can be made. 
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CHAPTER 5: STYRENE I MALEIC ANHYDRIDE 

Detennination of polymer composition and microstructure. 

This chapter describes the application of Maximum Entropy data processing to the 13C NMR 

spectra of a vinyl copolymer, i.e. styrene-maleic anhydride. The intensities derived from this data 

processing arc used to derive the polymer composition. The results of the data processing are also 

used as the basis for suggesting a model, based on Markovian statistics, to describe the polymer 

microstructure. Both the carbonyl and aromatic regions of the 13C spectrum are processed to 

demonstrate the consistency of the derived results. The resu Its of pn:x.:essing spectra acquired at two 

different magnetic field strengths are presented: it is demonstrated that for this system the 

advantages or \l.'Orking at the higher field strength are limited. 

An alternative to a literature peak assignment is made on the basis of a stereochemical 

argument. Whilst the Maximum Entropy results are inconclusive in determining which assignment 

is correct, the analysis does demonstrate the ability of this type of processing for simultaneously 

deconvoluting peaks that are severely overlapped. and improving the signal : noise ratio (SIN) of the 

spectrum. Conventional data processing methods cannot simultaneously improve the SIN ratio and 

separate overlapped peaks. 

5.1 Introduction 

Copolymers. such as styrene I maleic anhydride, can exhibit a very large number of different 

possible structures. The polymer can exist as a random copolymer, a block copolymer or an 

alternating copolymer. For a copolymer of monomers A and B: 

ABAAABBABBA is a random copolymer 

AAAABBBBBBB is a block copolymer 
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and ABABABABABA is an alternating copolymer. 

These structural distributions are determined by the nature of the polymerisation process, 

whether the process is stochastic or chemically controlled in some way. These distributions are 

known as the polymer microsu·ucture and can have a profound effect on the physical and mechanical 

properties of that polymer. Therefore. determination of polymer microstructure is an important 

analytical requirement. Under favourable conditions, it may be possible to probe polymer 

microstructure by 13C NMR spectroscopy, especially for low molecular weight polymers which tend 

to produce relatively narrow NMR peaks and so NMR spectra free from peak overlap. 

The 13C nucleus is a useful nucleus for probing polymer microstructure. It has a natural 

abundance of only 1.1% and as a result 13C - 13C couplings are not normally observed in the NMR 

spectrum. 13C- 1H coupling can be easily removed by decoupling techniques and the typical 13C 

solution state NMR spectrum consists of a number of well resolved singlets. The 13C chemical shift 

range is over 200ppm and minor changes in chemical structure can cause a shift in a 13C resonance 

due to an interaction with another nucleus as far as five bonds away. This enables the analyst to use 

the chemical shirt to probe polymer microstructure over the triad (three carbon neighbours) to pentad 

(five neighbours) range, although being able to derive pentad structure is very unusual and model 

systems are usually employed. 

Unfortunately in polymers the situation may be further complicated because the chemical 

shift is also sensitive to any tacticity present in the polymer. This can result in uncertainty in 

assignment. particularly if the peaks are overlapped. Tacticity is the type and extent of 

stereoregularity within a polymer. If all the monomers possess the same enatiomorphic 

conJiguration the polymer is described as isotatic, i.e. all the substituents on a polymer chain appear 

on the same side of the chain. When the substituents alternate regularly from one side of the chain 

to the other the polymer is said to be syndiotactic. and when a random configuration of substituents 

is found the polymer is atactic. A 13C nucleus in a sydiotactic environment is likely to resonate at a 

slightly different chemical shift to a nucleus in a wholly atactic polymer. The extent of this 
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stereoregularity also effects the properties of a polymer; irregular tacticity can determine the degree 

of crystallinity present in the polymer and may render it useless for a particular application. 

Such an unfavourable case. exhibiting both irregular tacticity and microstructural effects on 

the NMR spectrum. is seen for the copolymer of styrene and maleic anhydride (see Figure 5.1 ). The 

styrene-quaternary aromatic carbons are found in many different environments and in the 13C spectrum 

the styrene-quaternary aromatic region exhibits such a number of diiierent 13C peaks that the region 

spans a range as large as 1 Oppm. 

H H H H H H 

I I I I -c c c c--

I H I H H 0 
H H 

0 

H 
H 

H 

Figure 5.1 Structure of styrene-maleic anhydride-styrene unit 

The difliculty in analysing this particular region of the spectrum has been described by Hill et 

al. 111 However. assignments are presented by Bhuyan121 and Buckak131• together with the conunent that 

the monomer distribution calculated using these assignments could have up to 20% error due to poor 

spectral resolution. 

This chapter describes how, using Maximum Entropy data prtxessing, an accurate measure of 

monomer composition can be obtained from the 13C spectrum of styrene-co-maleic anhydride. A 

model is presented to describe the polymer microstructure based on the Maximum Entropy derived 

peak intensities and a literature assignment made by Bhuyan 121 and Buckak 131 is reversed based on a 

stereochemical argument. 
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5.2 Experimental 

5.2.1 NMR Spectroscopy 

The styrene I maleic anhydride copolymer chosen for analysis has a number molecular weight 

average of 190ll. and is described by Aldrich as nominally 75% styrene. 141 It is assumed that the 

Aldrich figure is based on the known monomer feed ratio. A 1H NMR spectrum was acquired in 

deuteroacetone -d6 (3% wlw) and is used to calculate the polymer composition as a check for the 

subsequent >vork. It is shown in Figure 5.2. This spectrum was acquired on a Broker AM 

spectrometer operating at a proton frequency of 360.13 MHz. A 20° llip angle was used and an 

interpulse delay of 3 seconds. The spectral width was chosen to ensure all the bands of interest were 

observed. 

'' .,....,....,---,~.,..---,--,.--, ''8--.-,--..,..-,-,-, ·~,....,.,-,---..---,-6, ·~..,.....,.....,,,-,-,--,-,--.---.--,·~·~~~~.-.m·~~··· r-r-
0 -1 ~ 2 J 0 

(ppxn) 

Figure 5.2 1H NMR spectrum of Styrene I Maleic Anhydride 

The spectrum is consistent with a number of severely overlapped peaks of considerable width 

due to the polymer as well as much narrower peaks from species or lower molecular weight. These 

narrow peaks include residual acetone, possibly succinic acid and cumene. The cumene is known to 

be used as a terminator for the free radical polymerisation. 151 
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Using this spectrum an approximate polymer composition can been calculated. If it is 

assumed that the intensity in the aromatic region (6- 8ppm) is due to the five protons from the styrene 

and the intensity in the aliphatic region (1 - 4ppm) is due to the backbone from both the styrene and 

maleic anhydride, i.e. 3 protons from the styrene and 2 from the maleic anhydride, a composition of 

73% styrene is calculated, based on the integrals of these two regions. A crude correction for the low 

molecular \Veight species is made by ignoring their contribution to the integrals. Although this value is 

in good agreement with that determined by Alclrich141 the use of 1H NMR in this context may be 

limited due the presence of water. Water is often difficult to exclude in such systems. 

Fwther evidence supporting tllis composition is provided by carbon and hydrogen elemental­

analysisf61, lh1m which a figure of 81% Styrene has been calculated (oxygen level deternlined by 

difference). and from direct chemical ionisation mass-spectrometry which indicates a styrene content 

of78%.f71 

13C NMR spectra of this system were acquired on a Bruker AMX360 spectrometer operating 

at 90 MHz for 13C and a Bruker DRX500 spectrometer operating at 125 MHz for 13C. Approximately 

0.3g of polymer was dissolved in 3cm3 deuteroacetone-d6. Both spectra were acquired over a spectral 

width of 27kHz. with broad-band 1H decoupling. A 90° carbon pulse was used with a 5 second 

interpulse delay. The spectra were acquired at 27°C for approximately 28 hours. The spectrum 

acquired at 125 MHz is shown in Figure 5.3. The most obvious comment to make about this spectrum 

is that, despite being acquired at a relatively high magnetic field strength, the signal : noise ratio of the 

polymer peaks is very low. The spectrum is dominated by the solvent resonances. It is very clifficult 

to determine any chemical information from this spectrum without both signal :noise improvement 

and resolution enhancement. The aromatic quaternary (Cl) region of the spectrum is shown in the 

expansion. This area will be used as the basis for the following data processing because it is likely that 

these carbon nuclei will be particular sensitive to the polymer microstructure. 

The following assumptions have been made before applying Maximum Entropy data 

processing techniques to any of the 13C spectra: 
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e The spin-lattice relaxation times, T1 . of each of the Cl aromatic peaks are very similar and 

unlikely to have any differential effect on the relative intensitics of the deconvoluted peaks. 

• Any enhancements in signal intensity due to the Nuclear Overhauser Effect are likely to be small. 

These are quaternary carbons and so are unlikely to be effected by NOE enhancements. 

The above assumptions are based on the argument that any deconvolution performed is on a number of 

carbon resonances in very similar magnetic environments. 

Solvent--
Aromatic Cl Region 

lOO 60 20 0 
(pp m) 

Figure 5.3 13C NMR (125 MHz) spectrum of styrene-maleic anhydride copolymer 

5.2.2 Data Processing 

An expansion of the aromatic quaternary region (Cl) (134 ppm -150ppm) and the carbonyl 

region (168 ppm- 176 ppm) is shown in Figures 5.4 and 5.5. Both these spectra were acquired at 90 

MHz. There is a strong similarity between these spectra and the spectra of polymer SMA 3000A (75% 

styrene, 25% maleic anhydride) in reference [3]. 

Both the aromatic and carbonyl regions of the spectrum clearly contain a large number of 

unresolved peaks. This lack of any one discrete peak makes optirnisation of the Maximum Entropy 

PSF width and shape parameters difficult- there is no obvious peak on which to base the model. This 
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difficulty can be overcome by designing a series of trial deconvolutions in which the overall width of 

the applied PSF is varied for each of a suitable range of values of sigma. A graph of optimum peak 

width against sigma is plotted. i. e. a sigma profile. and the optimum total PSF width and corresponding 

value of sigma are then determined by estimating the point of inflection. This method for determining 

PSF parameters for spectra in which the peaks are severely overlapped or the noise level is in doubt 

has been described in section 3.2.1.2. 

·f 
j 
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lOO 1ll5 

Figure 5.4 13C NMR spectrum (90 MHz) of styrene I maleic anhydride 
(aromatic region) 

1741 17~ 172 170 188 
Ctwmlcal Shift I ppm 

Figure 5.5 13C NMR spectrum (90 MHz) of styrene I maleic anhydride 
(carbonyl region) 
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The sigma profile for the aromatic quaternary region. generated using the Mernsys5 algorithm. 

is shown in Figure 5.6. The overall width determined from the point of intlcction was then used as 

the basis for generating an evidence matrix in width the left width : right width ratio was changed (see 

section 3.2. l .1 for a description of evidence matrix). The shape parameters were also determined from 

an evidence matrix. 

Figure 5.6 Sigma profile - optimum peak width - 70 data channels 

The sigma profile shown in Figure 5.6 has an ill-defined point or intlection and is indicative of 

the fact that the this part of the spectrum contains a number of peaks of different width. The point of 

intlection could lie anywhere between a peak left-width of 34 and 36 data channels. This lack of 

accuracy was examined by repeating the optimisation process. The newly derived PSF differed 

slightly from that derived earlier. see Table 5.7, but this di fference will be shown to have little 

effect on the calculat ion of polymer compos ition or on the stereochemical conclusions. 
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Table 5.7 PSF parameters derived from Memsys5 

Wi~th (L /R}/ 
iliitac cllannels 

39 I 31 

0.7 I 1.4 
where L = left and R = right 

OldP:SF: 
38 I 32 

0.611.4 

From Table 5.7. the overall width of the PSF has not changed and. given the low SIN ratio 

of the spectrum, the change in ratio (left I right) is unlikely to have an effect on the resultant 

deconvolutions. i.e. on the number or intensity of the resultant peaks. The peak shape parameters 

are much less critical to an accurate deconvolution than the corresponding width values so a small 

change in PSF shape is unlikely to have a significant effect. 

Experience. with spectra of this quality, has shown that the width of the input PSF can be 

within +1- 1 091:· of the optimum without having a detrimental eiTect on the 11na1 deconvolution. This 

variation in pe.ak width is not surprising. The spectrum is likely to contain a range of peak widths 

reflecting the different mobilities present within a polymeric chain. It should be noted that each 

spectral region has been processed independently with sigma profiles being generated, where 

necessary, for each. 

Figure 5.8 shows the Memsys5 mock spectrum overlayed with the residuals (experimental 

spectrum minus Memsys mock spectrum) for the 90 MHz data. The intensity and randomness of the 

residual's intensity enable an assessment to be made as to the reliability of any feature in the 

Memsys5 result. The fact that the intensity of the residuals is very close to that of the noise and very 

little structure is observed on the residuals suggests that the Memsys5 calculated spectrum is in very 

close agreement with the experimental spectrum. The Memsys5 result is shown in Figure 5.9 and 

Table 5.10 gives the Memsys5 derived intensities presented with one standard error. Fourteen main 

peaks are observed in this aromatic quaternary carbon region or the spectrum together with seven 

minor peaks. The fourteen most intense peaks fall into four groups. which based on triad structure 

can be desribed as MSM, SSM, MSS, and SSS, where S refers to one styrene unit and M refers to 

one maleic anhydride unit. The groups are highlighted in Table 5.10. 



101 Styrene I maleic anhydride 

The peaks at 144.39 ppm and 144.66 ppm have not been baseline resolved by the algorithm 

and the intensity of each peaks has a substantial error because of the uncertainty in the absolute 

intensity of the individual peaks. However, as the Memsys5 errors are negatively correlated, the 

combined peak intensity is known with a much greater degree of accuracy and hence the errors 

assigned to the total cumulant for each group are much smaller. 

150 145 140 tS6 
Chemical Shift I ppm 

Figure 5.8 Memsys5 mock data and residuals: aromatic region 

Figure 5.9 Experimental spectrum overlaid with Memsys5 result 
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Tahle 5.10 Chemical shift I intensity data based on Memsys5 deconvolution (old PSF) 

Group tJC Chemical Cumulant Total Triad Based Triad 

Shift /ppm (+1- one Cumulant For On Literature Assignment 

standard Group(+/- Assignment1 Based On this 

error) one standard Work1 

error) 

136.~7 5.27 +/- 0 0~ 

I 137.20 4.41 +1- 057 24.21 +1- 0.19 MSM MSM 

137.94 6.75 +1- 0 75 

138.26 7.79 +1- 0 9:1 

2 138.91 9.56 +1- 0 22 9.56 +1- 022 SSM MSS 

3 141.91 5.53 +1- 1.79 5.53 +1- 1.79 MSS SSM 

142.54 4.44 +1- 0.26 

142.92 5.28 +1- 0.46 

143.29 12.96 +1- 0.47 

4 143.95 6.04 +1- fU5 55.61 +1- 0.26 sss sss 
144.39 4.42 +1- '2.27 

144.66 10.37 +1- 1.63 

145.06 6.61 +1- 0 92 

145.49 5.52 +1- 0.31 

1 where M = maleic anhydride, S = styrene, so MSS = maleic-styrene-styrene triad. 

5.2.3 Discussion 

The following discussion will desribe how the Memsys5 derived intensities have been fitted to 

a number of different polymerisation models. 

5.2.3.1 Assignment of block ends 

Ramey and Buckak [31 and Bhuyan and Dass lZJ have made the 13C assignments shown in Table 

5.11. The author's claim these assignments are based on substituent additivity etlects and statistical 

considerations. In this work, the block end, styrene-styrene-maleic anhydride (SSM), an(i maleic 

anhydride-styrene-styrene (MSS) assignments are reversed. 
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Table 5.11 Group Assignments 

Triad Group based on literature assignment12.3J Group as 

Re-assigned In 

This Work 

MSM 1 l 

SSM 2 3 

MSS 3 2 

sss 4 4 

There are two main rea.;;ons for making this re-assignment. Firstly, the literature assignments 

are based on the assumption that the B substituent will have the largest effect on the chemical shift of 

the 13C nucleus of interest. This ignores the through space eftect of ay substituent. The sensitivity of 

the C 1 aromatic carbon of polystyrene toy effects is noted in reference [8]. The re-assignment 

presented in this work is more compatible with these steric considerations. Secondly, the statistical 

considerations presented give no information on the relative assignments of the MSS and SSM triads 

as the probabilities of both are assumed to be the same. 

5.2.3.2 Calculation of polymer composition 

It is possible to calculate a polymer composition. based on the Memsys5 derived intensities, 

which is independent of the block encl assignments discussed above. In the following calculations it is 

assumed that the probability of a maleic anhydride unit joining another maleic anhydride unit is zero. 

Total Maleic Intensity = 0.5 x (2MSM + SSM + MSS) ................. { i} 

Total Styrene = SSS + MSS + SSM + MSM ................. { ii} 
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Substituting the values from Table 5.10, for both PSFs. into the above equations gives the 

polymer compositions as shown in Table 5.12. 

Table 5.12 Determination of polymer composition 

Memsys5 with old PSF Memsys5 with new PSF 

% Styrene 74.9 +1- 1.2 73.8 +1- 1.6 

Both dcconvolutions lead to a calculated styrene composition which is in very good agreement 

with the figures quoted by Aldrich, the result<> from the 1 H NMR spectrum and the mass-spectrometry 

results. This is an extremely encouraging result because, despite the very poor signal : noise ratio and 

the severe peak overlap in the spectrum, it means that the peak intensities can be trusted for making 

micro-structma I conclusions. 

The error bars on the polymer composition have been calculated by taking one standard error 

on the total cumulants for each group (see Table 5.10) and calculating the maximum range in styrene 

content. The above results are independent of the assignments of the block ends. MSS and SSM. 

5.2.3.3 Polymer Microstructure 

General inspection of the Memsys5 results and making the assumption that the structure 

within each of the groups of Table 5.11 is largely the result of tacticity, leads to the conclusion that 

there is a strong correlation between microstructure and tacticity. There is only one preferred 

conformation ror the triads MSS and SSM, but four conformations for the triad MSM. This in itself 

suggests that at least a second order Markovian model is required to describe the microstructure of this 

polymer. The values of the total group cumulants. given in Table 5.10, can be used to test different 

polymerisation models. 
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5.2.3.3.1 First Order Markovian Model 

For a nrst order Markovian process the probabilities PMtss , i.e. the probability that a maleic 

unit will add to a 'styrene-styrene' block, and PM&ts. i.e. the probability that a maleic unit will add to 

a 'maleic-styrene' block, must be equal. This can be rationalised by the following equations: 

PMtss = Ass M I ( AssM + As ss ) ................. { iii} 

PM/MS = AMsM I ( AMsM + AMss ) ................. {iv} 

where A = peak area 

Substituting the values from Table 5.10, and using either of the block end assignments, it 

has been calculated that for both algorithms, with either the old or newly derived PSF, the two 

probabilities are not equal. One example is shown below for the old PSF. 

Pr.11SS = 5.53 I (5.53 + 55.61) = 0.090 

PM/Ms= 24.21 I (24.21 + 9.56) = 0.72 

Therefore, a l'irst order Markovian model does not adequately describe the polymerisation process. 

5.2.3.3.2 Second Order Markovian Model 

If a second order Markovian process is assumed, it is possible to calculate the polymer 

composition for both block end assignments based on: 

Ps/PM = 1 + (A,tss I AMss + AMsM)(AssM + Asss I AssM) 

where PM is the proportion of maleic anhydride in the polymer ancl 

Ps is the proportion of styrene in the polymer. 

.................. {V} 
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The results of calculating the polymer composition using equation {v} are given in Table 

5.13. Presented are the Mernsys5 results using both PSFs and also the results from a Masslnf 

deconvolution. again using both PSFs. 

Table 5.13. Polymer composition(% Styrene content) based on second order Markovian statistics 

·t>~umoorOfc ·.- Memsys5With OldJ'SF 
Standard. 

Masslllf:With Old f>SF . Mernsys5 WithN~w PSF. . MasslnfWi!llNewP$F ··• 

Reversed Liteia~re •.. l. .·· ~ever sed ·. Literature . Reversed· 

-2 60 90 71.8 78.2 70.9 75.9 71.9 77.7 
-1 66 84 72.0 78.3 71.1 76.1 72.1 77.8 
0 69 80 7J ) 78.4 71.3 76.3 72.2 77.9 

+1 72 77 72.4 78.6 71.5 76.5 72.3 78.1 
+2 74 75 72.6 78.7 71.7 76.7 72.5 78.2 

From Table 5.13 the Mernsys5 deconvolution, using the old PSF with the 'reversed' 

assignment. gave a calculated styrene content of 75% if two standard errors were allowed on the 

peak at 141.9 L pp m This agreement with the Aldrich value supported the stereochemical argument 

for the reversed end-group assignment if a second order Markovian statistics described the 

polymerisation process. However, the introduction of the Masslnf algorithm has resulted in smaller 

errors for this peak and it is clear that for the old PSF neither the literature nor the reversed 

assignment are consistent with a second order model. 

The introduction of the new PSF has also demonstrated the inadequacy of the second order 

Markovian model; both algorithms, with either block end assignment, failed to give a calculated 

composition in agreement with that claimed by Aldrich. It is interesting to note that in all cases the 

literature block end assignments tended to give a styrene composition less than expected and the 

reversed assignments a styrene level higher than expected. 

In conclusion, apart from the stereochemical argument presented in section 5.2.3.1, the peak 

intensities derived from the 90 MHz spectrum do not conclusively confirm the reassignment of the 

polymer block ends. The errors on the Mernsys5 and Masslnf results are too large to confirm or 

deny this reassignment. In an attempt to reduce these errors and simplify the spectra a 13C spectrum 
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was recorded of the same system at a higher magnetic field strength, equivalent to a 13C frequency of 

125 MHz. (see section 5.2.3.5). 

5.2.3.4 Discussion of the number of peaks in each group 

There is only one peak in each of groups 2 and 3 given in Table 5.10. This suggests that the 

ends of the styrcne blocks require a specific stereochemistry. The four peaks in group 1 are easily 

rationalised in terms of each maleic anhydride unit having two possible orientations with respect to the 

styrene, each orientation having a similar probability (within a factor of -1.5) based on the peak 

intensities. It will be shown in section 5.2.3.4.2 that there is evidence for this assignment in the 

Mernsys5 deconvolution of the carbonyl region of the spectrum. The peaks in group 4 are more 

difficult to account for. 

5.2.3.4.1 Rationalisation of the eight peaks in the SSS triad region of the spectrum 

For clarity the eight peaks observed in the SSS region (group 1) are listed in Table 5.14. 

Table 5.14 The Eight Peaks in the SSS triads 

Peak 13C Chem. Shift I Mernsys5 Empirical Calculated 
pp m Intensity expression for intensity 

intensity 

4a 142.54 4.44 As5
{ 1+s} 4.25 

4b 142.92 5.28 As4{1+s} 5.31 

4c 143.29 12.96 A{l+s} 12.96 
(normalised) 

4d 143.95 6.04 As 5.76 

4e 144.39 4.42 As2 4.61 

4f 144.66 10.37 As{ l+s} 10.37 

4g 145.06 6.61 As3{l+s} 6.64 

4h 145.49 5.52 As4
{ 1+s} 5.31 
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A full assignment of this region is beyond the scope of this work The aim of this discussion is 

to show that the structure in this region is not an artifact of the deconvolution programme 

Considering the areas A associated with the peaks presented in Table 5.14, the following 

relationships can be seen: 

(~g+ ~h ) I (~+A4<1) = (0.80)2 

~b IA4g = 0.80 

~a I ~h = 0.80 

It would seem unreasonable to assume that the agreement between these tlgures is coincidental. 

If we let u=0.8. then the intensities of all eight peaks can be expressed in terms of simple 

powers of a constant, s. The 4th column of Table 5.14, presents these empirical expressions for the 

intensities of the eight peaks. Numerical values, calculated from the expressions in column 4 are 

presented in column 5. These agree with the experimental values to within -5%. 

This section will show that the structure in this region of the spectrum can be described in terms 

of a simple model (determining whether or not this is the only or the best model is beyond the scope 

of this work). This model is based on two observations: 

1) The styrene blrx:ks are short (Table 1 group 4 I group 2 = 5.8). 

2) There is only one configuration at the end of each block. 

Together these suggests that the styrene units in the block will be influenced by a 'steric handle', 

i.e. the fixed configuration of MSS at the end of the block. This lifts the degeneracy of the relative 

configurations SmSrS and SrSmS. It is convenient to dispense with relative configurations and to think 

in terms of absolute configuration. here arbitrarily denoted u and d. 

There are now 8 possible S~S environments. as shown in the vector v 
uuu 
uucl 
uclu 

V = udd 
duu 
clucl 
cldu 
cl del 
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The relative populations P of these configurations in the block can be calculated using a 

transition matrix a approach191 , 

........... {VI} 

where V is the initial populations of configuration vector. v. corresponding to the block end. The block 

end is a MSS unit, provided only with tacticity statistics of second order or lower are dealt with this 

can be simulated using the matrix v with identical values for pairs of elements (uuu = duu, dud= uud 

etc). Each pair of elements refers to one configuration of the end block. 

It is necessary to perform the sum as the block end has a fixed configuration which imposes 

constraints on the allowed configuration in the next triads in the block. This effect diminishes further 

along the block. 

The above discussion of the ratios of peak intensities suggests that the transition matrix a should 

contain elements of value 0.556 and 0.444 (0.444 I 0.556 = 0.8 = s above, 0.444 + 0.556 = 1 ), if r = 

0.556 then a u·ial form of a is, 

r 0 0 0 r 0 0 0 

1-r 0 0 0 1-r 0 0 0 

0 r 0 0 0 r 0 0 

0 1-r 0 0 0 1-r 0 0 

0 0 r 0 0 0 r 0 

0 0 1-r 0 0 0 1-r 0 

0 0 0 r 0 () 0 r 

0 0 0 1-r 0 0 0 1-r 

a has the property that an for n>3 = a3
. Therefore the sum in equation {VI} only requires terms 

in a1
, a2 and a3

• The challenge is to find coefficients A1• A2, A3 and vector V such that P contains 
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populations consistent with the experimental data. It is found that for A1= 7.53. A2=3.33, A3= 16.77 

and 

V= 

0 

1 

0 

0 

0 

1 

0 

0 

then P= 

5.76 

4.60 

12.96 

10.36 

6.66 

5.32 

5.32 

4.25 

compared with experimental values of 

5.76 

4.61 

12.96 

10.37 

6.64 

5.31 

5.34 

4.28 
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The elements of V suggest non-zero values only for the cont'igurations uud and dud. 

To conclude, it is possible to show that the measured intensitics of the eight peaks are consistant 

with a simple 13ernoullian model of tacticity provided that we allow two constraints: 

1) a single fixed orientation of the end group 

2) the styrcnc blocks being short. 

No input of the number of peaks expected from any one deconvolution is made to the Mernsys5 

algorithm. 1t has been demonstrated that the eight peaks in the ratio describecl above are more than an 

artefact of the deconvolution program. The fact that they can be fitted to such a simple model is 

probably an oversimplification. However. development of more appropriate models is beyond the 

scope of this current work. 

5.2.3.4.2Carbonyl region of the spectrum 

The Iv1SM triplet region of the C1 aromatic spectrum showed four peaks attributed to each 

maleic anhydride having two possible orientations with respect to the styrene. If this is the case then 

evidence for this should be seen in the carbonyl region of the spectrum. Figure 5.15 shows the 

carbonyl region of the 90 MHz 13C spectrum with the Mernsys5 deconvolution of this spectrum 

overlaid. The Mernsys5 result shows five major peaks and one minor peak, as summarised in Table 

5.16. 

/i1J 

] Jl 
,,, ... ~.-;-.. , .. ~ 

171> 174 172 170 168 
Chemical Shift I ppm 

Figure 5.15 90 MHz 13Cspectrum of carbonyl region with Mernsys5 
deconvolution overlayecl. 
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Table 5.16 Peaks in the Memsys5 result for the Carbonyl Region of the 13C Spectrum 

Chemical shift /ppm Intensity (% of overall Assignment 
cumulant) 

169.8 1.3 +1- 0.3 Unknown Minor impurity 

171.0 13.9 +1- 0.4 PI 

171.5 29.1 +1- 2.5 P2 

171.8 11.1 +1- 2.7 Unknown possibly 
Succinic Anhydride 

172.4 22.0 +1- 0.6 P3 

172.8 21.3 +1- 0.6 P4 

The peaks of interest to the discussion of stereochemistry are those at 171. 0, 171.5, 172.4 and 

172.8ppm The.o;;e four peaks, attributed to carbonyl groups in the SMS triads, can be divided into two 

groups corresponding to the two different carbonyl environments (different both in terms of substituent 

effects l
2
•
31 and stereochemistry). Hence. peaks PI and P2 are grouped together. likewise peaks P3 and 

P4. Note. the total intensity within each group is the same. 

Peaks PI and P2 can be attributed to the carbonyl group MA 1 or Figure 5.17 on the basis of the 

greatest steric effect. The effect is seen in both chemical shift and stereochemistry, the latter being 

indicated by the greater effect on the relative intensities of the peaks. Therefore, P3 and P4 are 

assigned to carbonyl group MA2. The relative intensities or PI and P2 indicate that when a styrene 

unit adds to a polymer with a maleic anhydride unit at its growing terminus it does so with a preferred 

relative configuration. The preferred configuration accounts for 68% of the total. For the addition of 

a maleic anhydride unit to a styrene terminus there seems to be little preference. 
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H I H H H H 0 0 H 
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Figure 5.17 Styrene I maleic anhydride showing assignment of carbonyl groups 

5.2.3.4.3 Aliphatic region of the spectrum 

To derive microstructural information from this region of the spectrum requires the use of 

spectral editing techniques[I1• In the work presented here, this region is compromised by the large 

carbon signal from the solvent and the poor sensitivity. This illustrates the advantage of the approach 

presented here: the aromatic Cl region is not compromised by overlapping peaks or poor sensitivity. 

Furthermore. the microstructural information is obtained without the need for spectral editing. 

5.2.3.5 125 MHz 13C Spectrum 

The failure of the Memsys5 results at 90 MHz to confirm the re-assignment of the polymer 

block ends was a consequence of the lack of resolution at this magnetic field strength. Acquiring the 

spectrum at the higher field strength may consolidate the block end re-assignment and also help to 

clarify the polymerisation model. 

Initial attempts at acquiring a spectrum on the new DRX500 spectrometer at Unilever 

Research proved troublesome. A large spectral discontinuity in the Cl aromatic region of the 13C 

spectrum made design of PSF parameters impossible. The source or the discontinuity was 

eventually traced to filter breakdown and the troublesome part replaced by the manufacturer. 

However, the spectrometer time available for this work was limited due to other demands on the 
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spectrometer and the signal : noise ratio observed in the final spectrum is not what was originally 

hoped for (see Figure 5.18). Nevertheless, the gross spectral features are consistent with those 

observed at 90 MHz. 

10096 

b 5086 
"iii 
j 
.5 

0 

asea «Jea 
Data Channel& 

Figure 5.18 125 MHz Cl Aromatic Region 

The similarity of this spectrum with that acquired at 90 MHz is initially surprising given the 

extra dispersion at the higher field strength. This lack of resolution is highlighted if the PSFs used at 

90 MHz are compared with that at 125 MHz. 

Table 5.19 Comparison Of PSF Widths At Different Fields 

1 H Frequency I - PSF Width l.ppm 
- J\,fHZ 

90 0.65 
125 0.70 

In order to establish if this difference in PSF width was significant the 125 MHz spectrum 

was reprocessed with the narrower PSF. The narrower PSF resulted in each of the end groups 
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starting to split into two peaks and a subsequent increase in the error bars associated with the 

Memsys5 intensities. Therefore, this difference in width is believed to be genuine and suggests that 

the higher field strength will not give the insight into the polymerisation process that was at first 

imagined. 

It should also be noted that there are a number of very sharp peaks evident in the later 

125 MHz spectrum which are probably due to monomer or lower molecular weight oligomers. 

suggesting that during the time evolved between acquiring the spectra at different fields the polymer 

had started to degrade. These sharp peaks, although only very small in terms of overall intensity, 

can lead to an underestimation of the applied PSF width - suggesting that the true PSF may be 

slightly larger than the 0. 70 ppm quoted. 

The difference in NMR line-width between the monomer and polymer peaks manifests due 

to the T2 contribution to the line-width. T2 is the time constant that describes the tiecay of transverse 

magnetization due to a loss of phase coherence between the nuclear spins. The T2 value gives 

information about the distribution of resonant frequencies and about the local fields experienced by 

the magnetic moments of the nuclei. The local fields are related to the structure and nature of the 

local magnetic environment around the nucleus. As the local magnetic field in low molecular 

weight molecules 1luctuates very rapidly and can average to zero, the internal local fields are weak 

and yield long T 2s or narrow resonant lines. This is the case for the monomers. The atoms in solids 

or highly viscous polymer solutions are in nearly fixed positions, and the internal magnetic fields are 

large resulting in a rapid loss of phase coherence. Therefore. the T2s in polymers are very short and 

the resonance lines broad. It is worth noting that there is an additional contribution to T2 which is 

not molecular in origin- the rate of decay of transverse magnetisation is influenced by the 

inhomogeneity of the external magnetic field. The experimentally observed T2• is the sum of the 

internal molecular T2 and the contribution resulting from the non-uniformity of the applied field. 

T2 should be roughly independent of the applied magnetic field strength; if anything it 

should increase. The lack of extra dispersion at 125 MHz is probably due to the effect of the 

disorder in groups relative remote from the site of interest becoming more apparent in the spectrum. 
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For comparison the 125 MHz spectrum has been processed with Memsys5. The calculation 

of polymer composition and attempts at fitting to Markovian statistics are reported below. It is 

interesting to note that the 125 MHz spectrum was acquired with a much greater digital resolution in 

the hope of improving the quality of the deconvolution. i.e. more points per Hz. However, this had 

the drawback of making the spectrum un-useable with the Masslnf algorithm; the time involved for 

any one iteration of the algorithm proved prohibitive. 

5.2.3.5.1 Memsys5 result and calculation of polymer composition 

The intensities of the Memsys5 derived peaks are given in Table 5.20, they are expressed as 

a percentage of the total cumulant. 

Table 5.20 125 MHz Memsys5 Intensities 

GrPl!P - IntensitY~ 
.. '- ttc Ass~gnfllent J;{everseti<Assignmeht · 

-' 

I 23.0280 +1- 0.6008 MSM MSM 
2 9.8819 +1- 0.49711 SSM MSS 
3 9.99365 +1- 0.56616 MSS SSM 
4 54.1325 +1- 2.5374 sss sss 

Substituting values into equations { i} and {ii} gives: 

cro Styrene = 74.6 +1- 6.6 

This is again in good agreement with the Aldrich value of 75% . The error bars are much 

larger than for the 90 MHz spectrum. This is probably due to the poorer sensitivity of the 125 MHz 

spectrum. 

5.2.3.5.2 First Order Markovian Model 

Substituting the values from Table 5.20 into equations {iii} and {iv}, again for both block 

end assignments. indicates that the probabilities PM1ss and PM/MS are not equal. Therefore, the 

polymerisation model does not fit a first order Markovian model and is consistent with the results 

from the 90 MHz deconvolution. 
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5.2.3.5.3 Second Order Marlkovian Model 

Again substituting the values from Table 5.21 into equation { v} and allowing two standard 

errors on the peak at 141.91ppm, the styrene content can be calculated if a second order Markovian 

model is assumed. The styrene content is presented in Table 5.21 for both end group assignments. 

Table 5.21 Polymer Composition Based On Second Order Markovian Statistics 

Number Of ... % St)irene With Literature % Styrene With .Reversed 
·Assignment Standard Errors On 

·. Peak At 14{9ppfl1: · · ·. 
Assignment 

-2 73.7 73.6 
-1 74.2 74.1 
0 74.7 74.5 

+I 75.2 75.0 
+2 75.7 75.4 

From Table 5.21, it is clear that either block end assignment could give the desired 

composition and the deconvolution thus fails to give conclusive support to the stereochemical 

argument for the reversed assignment. In this context the results obtained at higher field have 

proved somewhat disappointing. Furthermore. the higher field results indicate that the intensities of 

the block end peaks are similar. which is in agreement with Bhuyan and Dass.l21 

5.2.3.5.3 SSS Triad Region 

The error bars associated with this deconvolution are much larger than for the 90 MHz 

spectrum and it is diftlcult to draw any conclusions as to whether the peaks are still in the same 

constant ratio. 

5.3 Conclusions 

13C NMR, in conjunction with probabilistic data prcx:essing. has been successfully used to 

determine the composition or a styrene I maleic anhydride copolymer. Reproducible results have 

been derived. using both the Memsys5 and Massinf algorithms. for spectra acquired at two different 
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magnetic field strengths. The results are consistent with those reported by Aldrich and some in­

house rnass-spectrometry data. 

Given the poor quality of the spectra, in terms of both sensitivity and resolution, the level of 

extra information that can be recovered this type of probabilistic data processing is encouraging. For 

the 90 MHz spectrum the internal consistency demonstrated by comparison with the deconvolution 

of the carbonyl region. and the agreement with the literature composition, supports the conclusion 

that the extra structure observed in the spectra is real. 

The polymerisation method has been shown to be not consistent with a first order 

Markovian model. Furthermore, it has been demonstrated that a second order Markovian model 

cannot account ror the intensity observed in the spectra. It has been postulated that the intensity of 

the eight peaks observed in the SSS region of the spectrum can be described by simple empirical 

expressions. 

A literature assignment has been reversed based on a stereochemical argument. The 

intensity results, even at the higher field. have failed to confirm either assignment. It has been 

demonstrated tl1at acquiring data at higher magnetic field strengths is not necessarily an advantage as 

far as assigning assignment peaks from a copolymer is concerned and strengthens the case for data 

processing I deconvolution techniques. 

The Masslnf algorithm has proved un-useable for large clatasets or spectra which require 

many trials for design of the optimum PSF. 
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CHAPTER6: 

The appnication of Linear Prediction and Maximum Entropy 

data processing to NMR spectra containing a range of pealk 

widthso 

The 27 AI NMR spectra of aluminium 

c.hh).rohydR"ate systems 

Using the MaxEnt Solutions Ltd. implementation, Maximum Entropy data processing is 

limited to spectra that contain peaks of similar width. This chapter describes the application of 

linear prediction techniques as a precursor to Maximum Entropy deconvolution. The aim is to use 

linear prediction methtxls on a spectrum containing peaks of very different widths with a view to 

producing sub-spectra containing only peaks of similar width. The sub-spectra are then suitable for 

Maximum Entropy data processing. 

The 27 AI NMR spectra of aluminium chlorohydrate solutions are examples of a system that 

exhibits peaks of very different widths. Linear prediction is used to produce a sub-spectrum 

containing only the sharp peaks or the broad peaks. The peak areas are maintained. An auto­

pro!,'fam has been written to enable many hundreds of the-o;;e spectra to be processed more timely and 

more reproducibly than a manual method of integration. The results of the auto-pro!,'fam are 

compared with the previous method of manual integration. 

The sub-spectrum containing the broacl peaks is processed with a Maximum Entropy 

algorithm Tl1ree peaks are iclentifiecl in the tetrahedral aluminium region of the spectrum An 

attempt is made to correlate this extra structure with sweat reduction ancl hence antiperspirant 

eft1cacy. 
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6.1 ][:ntroduction 

As shown in the earlier chapters of this thesis, Maximum Entropy data processing has been 

successfully applied to spectral deconvolution. It has also been shown, in Chapter 4, that the method 

can be used to improve the signal to noise ratio observed in a spectrum. This has been achieved 

without the loss of resolution that is normally observed with more conventional methods, e.g. 

window functions. 

Apart from a few standard instructions the main inputs to either the Memsys5 algorithm or the 

newer Mass lnf algorithm are the point spread function (PSF) and an estimate of the noise level 

present in the data (Sigrna). It has been recognised, throughout the earlier chapters, that the main 

limitation of the Maximum Entropy techniques is the fact that only one PSF can be used for each 

Maximum Entropy deconvolution. Therefore, the successful application of this type of data 

processing has relied upon the fact that one PSF can adequately describe all the peaks of interest in 

the spectrum. 

Normally. if a peak is present in the spectrum that is wider than the chosen PSF the Maximum 

Entropy result will be split into more than one peak. Conversely, if a peak is present that is slightly 

narrower than the applied PSF, the algorithm will still attempt to fit the peak but the corresponding 

Maximum Entropy result will carry significantly increased errors. Provided that the peak width 

variation across the spectrum is not too large an average PSF has been shown to suffice for most 

applications. Although, as described in Chapter 3, the average PSF may be optimized from the 

program's output diagnostics, it is clear that for many NMR spectra a single PSF is not appropriate. 

Methods are available to try to overcome this limitation of using one PSF. For example, if the 

variation in peak width across a spectrum is known to be a systematic function of frequency and can 

be mathematically modeled, it is possible to regrid the spectrum onto a different x-axis. The peak­

widths are then forced to be similar and the peak intensities are maintained. If the difference in 

peak-width across a spectrum is large this regridding process results in either peak compression or 
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expansion. In the extreme, this can result in one peak expanded such that the interval between 

successive points is large compared with the peak-width itself. i.e. step functions are apparent 

between the points, and at the other end of the spectrum a peak described by an unnecessarily large 

number of points. Any Maximum Entropy deconvolution will then be compromised as the 

expanded peaks are likely to fail the Deconvolution Criterion (See Chapter 3 ), i.e. there will be an 

insufficient number of points describing a composite peak to enable a successful deconvolution. 

Rather than NMR spectra, this type of regridding is better suited to chromatography data, where the 

peak widths can be modelled as a function of retention time. Many examples of chromatograms 

which have been regridded onto a different x-axis are available in the literature. [lJ 

This PSF limitation has been highlighted in earlier work (lJ and in a poster presented by Ebbels 

et al., on work carried out primarily by Ebbels but in conjunction with L.P.Hughes. [ll For a range of 

simulated bands that were not overlapped, with the same peak shape but different widths, Ebbels 

attempted to fit the spectra with a variety of PSF widths. He compared the Memsys5. Masslnf and 

GIFA [31 algorithms. Ebbels concluded that lines wider than the PSF were reconstructed as clusters 

of thin lines. and for peaks that are thinner than the applied PSF the reconstruction was very poor 

leading to highly structured residuals. Ebbels suggests that, for these peak-width tests, Memsys5 

and Masslnf produced residuals below the noise. whereas for GIF A, the residuals were comparable 

with the noise level or greater than the root-mean-square (rms) noise-level. This suggests that the 

two MaxEnt Solution's algorithms, Memsys5 and Massinf, were capable of producing a better fit to 

the data for the same input PSF. It is noted that for spectra with a low signal:noise ratio Masslnf 

generally produces integrals with smaller error bars than direct integration methods. It is worth 

remembering that the work presented by Ebbels was performed on simulated NMR spectra. 

However, he concludes that sophisticated methods such as Maximum Entropy can perform better 

than traditional methods for analyzing NMR spectra. 

In the work presented in this thesis, an attempt has been made to overcome the limitation of 

using only one PSF for genuine NMR spectra. This is achieved by separating the peaks of similar 

widths into sub-spectra whilst maintaining their correct intensities. 
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One method of achieving this peak separation based on width is to remove the more quickly 

decaying components from the free induction decay (FID) and then to backward linear predict the 

FID based on the more slowly decaying spectral components. This backward linear prediction will 

then produce a sub-spectrum containing only the sharpest peaks. If correctly scaled. this can then be 

subtracted from the original spectrum to produce a further sub-spectrum that contains only the broad 

peaks. 

Backward linear prediction is a well-established NMR technique. l4J It has been used routinely 

for the removal of rolling baselines and for predicting that part of the FID that has been lost during 

the radiofrcquency pulse and receiver dead-time. The application of linear prediction to produce sub­

spectra containing peaks of similar width as a precursor to Maximum Entropy processing is novel. 

Specifically, this chapter describes the application of linear prediction to the solution-state 

aluminium Nl\,1R spectra of aluminium chlorohydrate systems. The technique of regridding is not 

appropriate in this case because the variation in peak width is not uniform across the spectra. 

In this application, the linear-prediction technique is used to produce a sub-spectrum containing 

only broad peaks and a second sub-spectrum containing only sharp peaks. The spectral intensities 

are maintained. The sub-spectrum containing the broad peaks is then processed with a Maximum 

Entropy algorithm. The linear prediction program has been automated and a comparison with a 

manual methocl for quantifying the species present in aluminium chlorohydrate systems is discussed. 

6o2 Background to aluminium speciation problem 

6.2.1 Line broadening mechanisms in NMR spectroscopy 

The reader is directed to Chapter 2 for a description of the possible origins of line­

broadening which are important for the aluminium chlorohydrate systems studied in this chapter. 
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6.2.2 Aluminium Speciation 

The Unilever Research, Port Sunlight. method for determination of aluminium speciation in 

aluminium chlorohydrate and related species by solution-state NMR has been summarised by Lee151 . 

The background and manual integration method is briefly described below for comparison with the 

linear prediction method. 

Aluminium chlorohydrate (ACH) and activated aluminium chlorohydrate (AACH) are used as 

high-efficacy aluminium antiperspirant actives. Their synthesis and characterisation have been 

described by Nazar et al. 16·7l The antiperspirant performance of these actives is modified by 

manipulation of the inorganic species present. ACH contains three types of structural unit that can 

be identified by 27 AI solution-state NMR. Al 13 (Keggin ion) is a stable intermediate which 

undergoes activation by loss of one Ae+. This results in a defect site producing the Al12 species. 

Dimerisation of Al 12 can then occur to form Ah4. Higher molecular weight 'polymers' are also 

possible and are observed in the NMR spectrum as broad lines. The full synthetic process produces 

the following species (presented in order of increasing relative molecular mass): 

Ae+ ... [Al 12] ... Al137
+ ... AIPI ... AIP2 ... AIP3 ... higher polymers 

AIP1 is Alu with one triad rotated by 60°. The P designation refers to a polymeric type with the 

relative molecular mass of the polymer increasing in the order PI> P2 > P3. 

The symhesis involves reacting NaOH with AICh at 95 °C. This reaction produces mainly 

AI13
7
+ and a few [Al06] monomers. Further healing produces the higher molecular weight polymers 

which are neecled for anti-perspirant activity and are found in a typical ACH solution (Figure 6.1 ). 

The precise structure of all these polymers is not known. Recent work by Allouche et al. rwJ 

suggests that thermal treatment of an Al 13 solution produces a cluster of two Al13 Keggin units 

connected by a ring of four octahedral [Al06] units and is called Ahoor AIP2. It is obvious that 
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there are a Large number of species present in solution and a full description is beyond the scope of 

this work; of greater importance to the antiperspirant industry is to limit the polymer size. 

The activated system refers to the depolymerisation of the very high molecular weight ACH 

species to produce smaller molecules that are thought to be more efficacious because they can 

diffuse more readily to the sweat duct and provide a more effective blockade upon interaction with 

sweat components. 

Based on the size of the species present in ACH it is believed that the AlP2 has the optimum 

molecular \veight for sweat reduction. The quantification of ALP2 and the lower molecular weight 

species is an important analytical measurement for the optimisation of antiperspirant actives. Many 

NMR measurements have been carried out at Unilever, Port Sunlight. in an attempt to quantify the 

level of ALP2, Al 3
+ and Al 13 

7
+ in solution and to try to relate these measurements to sweat reduction 

figures for a particular antiperspirant formulation. 

Figure 6.1 summarises some of the aluminium species found in a typical ACH solution. 

3t 
-AI 

'Activation' 

/ Al12 

/ Dimerization 

Low activity 
higher polymers 

Figure 6.1. Some of the structural units found in ACH/ AACH (AlP2 not shown). 

(Figure courtesy of K. Gosling, Unilever) 
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The single AI nucleus of Al3
+ gives a resonance that should allow quantification of all the AI 

in this form. A1 13 and AIP2 contain AI nuclei in two environments, i.e. tetrahedral and octahedral. 

The tetrahedral signals are sharp enough to allow good quantification of the total tetrahedral 

intensity by manual integration methods. However. the octahedral signals are too broad to allow 

goocl quantification. In order to quantify all of the aluminium in the form of Al 13 and AIP2, the 

corresponding tetrahedral signals are determined and a scale factor is appliecl to the octahedral 

region based on the known structure of each of these species. Al13 has one tetrahedral and twelve 

octahedral environments, AlPl has one tetrahedral and twelve octahedral aluminium atoms and 

basecl on the work by Allouche et al. fiOJ AlP2 has two tetrahedral and twenty-eight octahedral 

aluminium environments. This accounts for the Al in the octahedral environments. (Section 6.2.3) 

Table 6. I summarises the NMR assignments for the low molecular weight species present in 

ACH/ AACH. These peaks are usecl in the determination of aluminium speciation. together with the 

sharp signal at approximately 80 ppm from a sodium aluminate reference capillary. 

Table 6.1 NMR activity of Al species in ACH and relatecl materials 

(#Relative to Al3
+ which has been assigned to 0 ppm) 

c, ,. ' 
. ..· ' . 

· · .. c~~cat shitir· ·· 
Tetrahedral * 1 -60. Sharp 

Al 13 , Keggin ion Octahedral * 12 -10, Broad 

AIP2 Tetrahedral *2 -70, Broad 

AlP2 Octahedral *28 -10, Broad 

Octahedral * 1 -0. Sharp 

Higher polymers 
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Figure 6.2 is the 27 AI spectrum of a typical AACH sample. The spectrum was acquired on a 

Bruker DRX500 NMR spectrometer equipped with an aluminium-reduced probe. The level of 

backgroud probe signal was measured and does not make a significant contribution to the following 

calculations for a typical antiperspirant active. The normal total aluminum level in these systems is 

I5 wt% by XRF. 

lOmm quartz NMR tubes (Wilmad 5 I3-7PP QTZ) and 5mm quartz NMR tubes (Wilmad 

528-PP QTZ) for the capillary were used to minimise the possibility of interfering aluminium 

resonances. A known weight of ACH was dissolved in about 5 cm3 H20 and made up to the mark in 

a volumetric flask. About 3 cm3 of this solution was transferred to the I 0 mm NMR tube. A known 

weight of sodium aluminate was added to 5 cm3 of 0 20 and this was transferred to the 5 mm NMR 

tube. The smaller tube was place inside the IO mm tube, acting as a capillary. It was held in place 

using a IO mm vortex plug. A direct polarization experiment with 2000 transients was used, spectral 

width 50 000 Hz, pulse-width 7 !!S (i.e. -50°pulse), and an interpulse-delay of0.2 s. An exponential 

line broadening of I Hz was applied before Fourier transformation. In all cases the solvent used was 

H20 with the 0 20, used in the internal sodium aluminate capillary, necessary for spectrometer 

locking. 

It is clear from Figure 6.2 that there is a significant difference in the linewidths present in 

this spectrum. A representative PSF could not be found for direct Maximum Entropy processing. 
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Sodium A.Juruina~e Inlensit)' Sl:illdru-d 

AB-t 

:\1 Cktahedra.l I :\113. AIP2. -t higher JX~lyn~r.i I 

Fig.6.2 27 AI spectrum of AACH 

6.2.3 Quantification of aluminium speciation by manual integration. 

Deternlination of aluminium speciation by a manual method of integration has been carried 

out for many years at Unilever Research, Port Sunlight. The existing method was described by 

Leer71 and is summarised below. 

The quantification of the aluminium species relies on the use of an internal standard of 

known concentration of sodium aluminate held in a 5 mm capillary within the ACH solution. The 

intensity standard is calibrated against a primary standard of aluminium nitrate ( > 98% ex Aldrich 

Chemical Co.) as shown in Figure 6.3. 
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Figure 6.3. Capillary calibration 

The number of moles of AI represented by the signal from the capillary (Aicap) can be 

determined by equation { l } : 

Alcap. = B/A X (M/375) ................................... { 1} 

where A and B are the integrals corresponding to the aluminium nitrate (Al3+) peak and the sodium 

aluminate peak respectively (Figure 6.3). M is the mass of the aluminium nitrate used and 375 is the 

molecular weight of the aluminium nitrate nonahydrate. 

Figure 6.4 shows the integrals required to determine the number of moles of aluminium in 

the form of A13
+ and Al 13 by means of equations { 2} and { 3}: 
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Imegul F ,. 
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Figure 6.4. Integrals Required For Determination of Moles Ae+ and Al 13 

Moles of aluminium in the form of Al3
+ = (H/F) x Alcap. . ............... { 2} 

Moles of aluminium in the form of Al 13 = (G/F) x Alcap. x 13 ................ { 3} 

where F. G. Hare the integrals of the sharp resonances shown in Figure 6.4 and Alcap. is calculated 

from equation { 1 } . The factor 13 in equation { 3} accounts for the fact that for each tetrahedral 

aluminium contributing to integral G there are 12 octahedral aluminium atoms. 

Determination of the number of moles of aluminium in the form of AIP2 requires the 

integrals shov . .rn in Figures 6.4 and 6.5. The total tetrahedral content is given by the intensity of (K-

L). Lis an arbitary integral offset introduced to make it easier to distinguish the integral from the 

spectrum. There is some uncertainty in this measurement clue to overlap with the sloping baseline 

from the broad octahedral resonances. From this is subtracted the intensity due to the capillary (J) 

and the contribution due to Al 13 . In some samples. the integral of the tetrahedral Al 13 is very small 

compared with the integral of the tetrahedral AlP2, for example. and Lee comments that the Al 13 

integral can be difficult to measure directly from Figure 6.5. It is calculated as ( J x G/F). 

The number or moles of AI in the form of tetrahedral AlP2 is then given by: 

(K-L-J- (J X G I F)). 
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Hence. the total number of moles of AI in the form of AIP2 is given by: 

Moles of AI in the form of AIP2 = (K-L-J-(J x G/F)) x 15 x AJ(capillary)/J .......... { 4} 

Figure 6.5. Determination of Total Tetrahedral Aluminium 

The factor 15 arises from the fact that for each AIP2 there are two aluminium atoms in 

tetrahedral environments and 28 in octahedral environments. 

Lee concludes that the total moles of aluminium based on speciation present in a AACH is 

calculated as: 

%Recovery= Moles Al3
+ +Moles Al 13 +Moles AlP2 x 100 x 27 ..... {5} 

(mass of sample x 25) 

Equation {5} is based on the assumption that there is nominally 25% aluminium in the 

sample. 
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Aluminium spectra have been recorded for many hundreds of these ACH systems and until 

the implementation of the automatic linear prediction and integration methods described in this 

report they have all relied upon the manual methods described above. The integrals are measured 

with a ruler and the results entered into a Lotus 123 spreadsheet for calculation of the levels of each 

aluminium species present. 

6.2.4 Limitations of the manual method of integration 

Lee points out that there may be additional structure on the peaks at -70 pp m and -10 pp m 

(described as AIP2). Indeed, evidence for this extra structure can be seen in Figure 6.2. There is a 

shoulder to higher frequency of the AIP2 resonance. He continues that one possibility is the 

presence of higher molecular weight polymers or polymers at least slightly larger than AlP2. The 

manual method of quantification cannot resolve this additional structure and in the absence of 

further information all of the intensity in the -70 pp m peak is assigned to AlP2. 

Other limitations lie in the measurement of the integrals themselves. The integral range for 

the sharp peakc.; is chosen to be as close as possible to the peak base (estimated by using 'normal' 

vertical expansions). The aim of this is to minimise the contributions from the underlying broad 

resonances. Tllis is clearly a source of error. The selection of the integral window is subjective and 

may not be consistently selected when comparing one sample with another. Furthermore, for the 

broad peaks, intensity will be lost outside the region over which the integration is performed and 

there is again the problem of consistency from sample to sample. These are known shortcomings of 

the method used for comparison. 

The manual method of plotting and integration is also very time consuming. Three different 

plot expansions are required in an attempt to try to minimise the errors described above. The 

automatic linear prediction program described below alleviates the need for manual plotting, and 

consistently selects the same integral regions for the peaks of interest. Whilst the method may not 

be completely quantitative it should be more reproducible than the manual method and hence more 

useful for following trends. 
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One limitation for all these techniques is the length of the receiver 'dead time' on the high-

resolution spectrometer. For typical ACH/ AACH samples only 65% of the aluminium is observed, 

based on C(JUation { 5}. This is compared to the total aluminium content as determined by XRF 

measuements. Approximately 35% of the aluminium intensity is lost and this is believed to be 

associated with the higher molecular weight aluminium species. Neither Maximum Entropy nor 

linear prediction methods can recover these lost signals; solid-state NMR or solid-echo techniques 

would be required if these species were of particular interest. Work has been carried out by R.K. 

Harris, University of Durham. on the solid-state NMR spectra of Al13 (Keggin ion).r 111 

6.2L Linear JIDrediiction 

6.3.1 Background 

Linear prediction is a widely used data-processing method and relies on the principle that 

each value in a time series can be represented by a fixed linear combination of the immediately 

preceding values. This principle has been found to be true for the free induction decays found in 

NMR spectroscopy. The mathematics underpinning the method is complex. A summary can be 

found in references [4,8], but the basic linear prediction equation is: 

m 

dk= Lajdk-j· k=m, .... M-1 ......... {6} 
}=I 

In equation { 6}, the values 'a/ are the linear prediction coefficients, sometimes referred to 

as the prediction filter. and the number 'm' is called the order of the prediction (NCOEF). 

For the work presented in this report the linear prediction algorithm is the standard 

implementation found in the Bruker XWINNMR program. [SJ The key program inputs are: 

o NCOEF. This is the number of coefficients used for the linear prediction calculation. This 

parameter is empirically round. According to Hoch etc al. [SJ the recommended approach to 
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determining the number of coefficients is to use a number much higher than the expected 

number of peaks given the SIN. 

• LPBIN. The number of points contributing to the backward linear prediction. LPBIN is 

determined empirically and is set to a value between one and the time domain data size. 

e TDoff. The number of points to be predicted. This is again found empirically and depends on 

the number of points removed from the start of the FID and hence on the T2 of the faster 

decaying components. 

• NSP. The number of left shifted points, i.e. the number of points deleted before applying the 

linear prediction filter. It should be numericaHy equal to Tdoff. 

The classical use of backward linear prediction in NMR spectroscopy is to predict the first 

few points of an FID which may be corrupted due to ringing in the analogue circuitry of the 

spectrometer or lost completely in the receiver dead time. The consequence of these corrupted or 

lost points manifests itself as baseline curvature. As is discussed below, in this application the first 

hundred or so points of the FID, i.e. NSP, are deliberately discarded to remove the broad, fast 

decaying components and then these are predicted back using only the slowly decaying data points 

as the reference for the linear prediction. For the ACH systems. currently studied at Unilever 

Research, Port Sunlight, the number of points required to completely remove all the quickly 

decaying frequencies has been found empirically to be 206. The number of coefficients used for the 

linear prediction was also found empirically. The value of 4096 has been used in this work. This 

was selected by choosing that value which produced the spectrum that showed least discontinuities. 

6.3.2 Implementation of Linear Prediction for AACH Spectra 

6.3.2.1. Digital filtration 

The 27 Al spectra presented in this report have all been acquired on a Bruker DRX500 

spectrometer using digital filtration. Amongst the advantages of digital filtration are the removal of 
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spectral artifacts and the ability to select small spectral widths without signals being folded back into 

the region of interest. 

Digital filtration is achieved by convoluting the time domain data with a sine x /x (sine) 

function. This has the effect of applying a square wave to the frequency domain. The very sharp 

edges of the square wave function en<>ure signals cannot be folded back. 

The convolution of the sine function with the FID creates a problem for conventional 

backward linear prediction. The resultant FID starts from zero and ramps to a maximum value 

within the first few hundred points. The FID then decays as is normally observed. The sine-

function is applied as the FID is acquired. This means the original FID, i.e. without the ramp, is not 

available to the operator. This ramp is clearly seen in Figure 6.6. Backward linear prediction cannot 

be successfully applied to this FID. 

" 
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Figure 6.6 Effect of Digital Filtration on the FID. 

,---

However, this problem can be easily overcome by making use of the cyclic properties of the 

Fourier transform. The ramp can be conveniently moved to the end of the FID by making use of 

features associated with the Bruker data processing software. Fourier Transformation of a digitally 

acquired FID includes the application of a large phase shift. If the spectrum is then reverse Fourier 
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Transformed the data points of the resultant FID are cyclically shifted. The ramp is moved to the end 

of the FID. 

The effect of this ramp can then be more easily removed either by applying a decaying 

exponential window to the FID (the time constant chosen such that the FID has effectively decayed 

to zero before the start of the ramp) or by reducing the time domain size. For this work, the 

decaying exponential was chosen such that a line broadening of 15 Hz was produced in the 

frequency domain. An article by Westler and Abildgaardr91 suggests that this approach may not be 

appropriate as it may produce 'frowns', a curling. at the edges of the spectra. There is some 

evidence that this may be the case for the work presented here, but this is not believed to be a 

problem for the quantification of the aluminium species and will be shown to have little effect when 

results are compared with the manual method of integration. 

6.3.2.2 Autoprogram 

The Bruker autoprogram function within XWINNMR provides a tool for adding your own 

functionality to the XWINNMR software. In this instance, the program performs a series of 

complex operations on the FID before automatically integrating. fixing the integral windows. and 

plotting U1e resultant spectrum. The autoprogram is written in 'C' language with an interface into 

XWINNMR. The program details will not be listed here but Figure 6.7 provides a now chart that 

describes the basic program functionality. (Sec the Appendix for a program listing). The program 

relies on calls to standard parameter sets where constants such as NCOEF are stored. These 

parameter sets are an integral part of the program. Any subsequent fine-tuning of the program, e.g. 

if the aluminium system changes to include species which have different linewidths. can be 

accommodated hy changing the constants in the parameter sets rather than the autoprogram itself. 

This makes the program more user-friendly in that the key program inputs will be recognisable to an 

experienced NMR operator. 

The only subjective input at the time of running the program is the initial phasing of the 

spectrum. These phase parameters are carried through the program and are used to phase correct the 



137 Aluminium Chlorohydrate 

sub-spectra. Any phase errors will be easily recognised in the resultant sub-spectra, i.e. dispersion 

line-shapes are more easily recognised in the sub-spectrum of the sharp peaks, and a correction can 

then be applied to the original spectrum. 

Figure 6.8 shows an example of the 27 AI spectrum of a typical AACH system and will be 

used to demonstrate the application of the linear prediction autoprogram. 

Figure 6.8. Typical 27 AI spectrum of AACH. 
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Figure 6.9. Sharp Sub-Spectrum following Linear Prediction 
showing Integral values. The vertical expansion has been increased to show 

the effective removal of all the broad peaks. 
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Figure 6.1 0. Broad Sub-Spectrum following Linear Prediction 
and Spectral Subtraction showing Integral Values. The vertical expansion 
has been increased to show that there is no evidence for the sharp peaks. 
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Figures 6.9 and 6.10 show the sub-spectra derived from the linear prediction. The lack of 

discontinuities in the spectra indicates that a good separation has been achieved. The integral windows 

have been chosen such that the calculated levels of each aluminium species are similar to those already 

found using manual methods. This was considered to be the most appropriate method given the number 

of spectra that had already been processed and compared with sweat reduction figures. The size and 

position of the integral windows is consistent from one spectrum to another. The values are read 

directly from the numbers printed under the integral traces and typed into an Excel spreadsheet for 

calculation of, e.g. %AlP2. 

The sub-spectra can now be more easily processed with a Maximum Entropy algorithm. (See 

section 6.4). Although the peak widths present in the broad spectrum are still somewhat different. 

(tetrahedral versus I)Ctahedral peakwidth) the sharper peaks have been completely removed and the 

tetrahedral peaks can be processed with a Maximum Entropy algorithm separately from the octahedral 

peaks. 

Whilst processing many of these spectra it has become clear that there is a slight discontinuity 

in the Al3
+ peak, at 0 ppm. The linear prediction parameters could not be optimised to accommodate all 

the sharp peaks in the spectrum because there is small difference in linewidth between the Al3
+ peak and 

the other sharp peaks. As will be shown below this does not present too much of a problem when 

quantifying the aluminium species present. 

6.3.2.3 Quantification of aluminum speciation using the autoprogram 

Using the same arguments as described in section 6.2.3, the intensity standard is calibrated 

against a primary standard. The 27 AI spectrum, although it contains only sharp peaks. is still processed 

in exactly the same v.cay with the linear prediction autoprogram This ensures that the sodium aluminate 

integral is measured consistently from one spectrum to another. The calibration spectrum is shown in 

Figure 6.11 with the automatically scaled and printed integral values. 
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Figure 6.11 . Capillary calibration spectrum processed with the autoprogram 

Based on section 6.2.3. 

Alcap. =(fIg) X (M I 375) ....... . .. . . .. . .. . .... . .. {7} 

where f and g are the integral values shown in Figure 11 that correspond to the aluminium nitrate peak 

(Ae+) and the sodium aluminate peak respectively. Then. 

Moles of Al in the form of Al3+ = ( c I a) x Alcap. . ... . ...... . .. .. . ..... . .. .. .... . . { 8} 

Moles of AI in the form of Al 13 = ( b I a) x Alcap. x 13 .... .. .. .... . . . ... . ...... .. {9} 

where a. b, and care the integral values shown in the sub-spectrum of the sharp peaks. Figure 6.9. 

Finally, 

Moles of Al in the form AlP2 = d x 12 x Alcap . ..... .... . . . .. . . .. .. ... ... . . {10} 
a 
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where d is the integral of the tetrahedral region shown in the sub-spectrum of the broad peaks, Figure 

6.10. 

6.3.3 Comparison with manual method of integration 

Table 6.2 shows the comparison between the results obtained using linear prediction and the 

manual method of integration for a typical AACH sample. 

Table 6.2. Comparison of manual methocl ancl automatic integration 

% Al3+ % Al13 % AlP2 

Linear Prediction 0.11 4.3 50.3 
Autoprogram 

Manual integration 0.19 4.4 50.7 

There is very goocl agreement between the two methods for this part icular spectrum. The 

largest errors are associated with the Al 3
+ peak. This is to be expected given that the program is 

attempting to separate a very small sharp peak from a large broad peak. This failure to completely 

separate the peaks can be further ex plained by the slight variation in peak width seen for the sharp 

peaks. This gives rise to the spectral disconti nuity described earlier. The relati vely large difference in 

Al3+ intensity observed between the two methods is not a problem as far as antiperspirant activity is 

concerned, given the relatively small quantities present in these systems. It also has to be remembered 

that the linear prediction results may in fact be the true intensities. The manual method of integration is 

more likely to suffer from subject ive errors. 

In order to get a better idea of the differences between the two methods a variety of AACH 

spectra has been processed which covers the range of levels of each species found in the AACH 

systems. The results are compared in the following graphs. 
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The R2 for each of the regression lines is better than 0.94, indicating that there is generally very 

good agreement between the two methods. Although the amount of each species may not be accurate, 

there is very good precision and hence the autoprogram can be used reliably for following trends in 

AACH processing. 
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The autoprogram is now used routinely at Unilever Research. Port Sunlight for the 

quantification of alumjnjum species in these systems. 

6.3.4 ALP2 intensity versus sweat reduction 

Aluminium spectra have been recorded for many hundreds of these ACH systems. but until the 

implementation of the automatic linear prediction and integration methods described in this report they 

have all relied upon the manual methods of integration. Nevertheless. a crude correlation has been 

found between the level of A1P2 in these systems and improved sweat reduction based on consumer 

testing. There are, however, mscrepancies. For example. systems have been identified with a high 

AlP2 level, as measured by NMR spectroscopy, but which give a poor antiperspirant performance. The 

latest theories suggest that there may be more than one species contributing to the tetrahedral resonance 

which has previously been assigned to AlP2. This is supported by evidence from Harris's work on the 

solid ACH systems, whlch suggests there may be up to three different tetrahedral and octahedral sites. 

P. Clarke, Statistics Unit, Unilever. has made an attempt to carry out a Principal Components 

Analysis of all the available 27 AI spectra in an attempt to correlate the intensity of each of the principal 

components with sweat reduction. This method reduces the many hundreds of spectra to a small 

number of pseudo sub-spectra that indicate the major differences that appear in the overall dataset. 

Preliminary results indicate that there are three different tetrahedral peaks present in these systems. The 

results of this analysis \.Vill be reported separately, but they add to the increasing evidence for extra 

structure in the tetrahedral region. 

6.4 Maximum Entropy data processing 

Maximum Entropy processing of spectra of this type has only been made possible by the 

reduction to sub-spectra that contain peaks of similar width. Whilst processing the ACH spectra with 

the linear preruction autoprogram it has become apparent that removal of the sharp peaks from the 

spectrum has made it easier to recognise, by eye, a number of unresolved peaks in the tetrahedral region 

of the spectrum. The intensity of these tetrahedral peaks appears to change as the ACH activation 

process is allowed to continue. The areas of these peaks may explain the discrepancies with the sweat 
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reduction figures. It may also enable the ACH processing conditions to be further refined so that the 

concentration of the efficacious AIP2 can be maximised. It is not necessary to process the sharp sub-

spectra with a Maximum Entropy algorithm. all the peaks are well resolved. 

The following figures are produced using the Maximum Entropy software and presented in data 

channels rather than ppm. This is because the conversion program does not recognise the chemical shift 

unit ppm. Nevertheless, it is clear from the spectra which peaks are due to tetrahedral aluminium and 

which are due to aluminium in an octahedral environment. 
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Figure 6.12. Broad Sub-spectrum showing structure on tetrahedral peak 

Figures 6.12 and 6.13 show the shoulders that are apparent on the two of the sub-spectra. There is clear 

evidence for a peak to higher frequency of the main tetrahedral resonance, (See Figure 6.12), and also 

one to lower frequency. (See Figure 6.13). 
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Figure 6.13. Broad sub-spectrum showing structure on tetrahedral peak 

These spectra proved difficult to process with the Memsys5 algorithm. Firstly, optimisation of 

PSF parameters for the whole spectrum was difficult because of the large width difference between the 

tetrahedral and octahedral peaks. The wider octahedral peak biased the PSF width high. Secondly, the 

very high signal:noise ratio prohibited a MaxEnt deconvolution. For high signal:noise spectra the 

algorithm struggles to converge as it tries to fit a PSF to the spectrum within the noise. The problem is 

that with a range of line>vidths, no single PSF gives residuals which are dominated by the noise. 

The change in peak width was overcome by truncating the spectrum before the start of the 

octahedral peak. see Figure 6.14. The algorithm then 'pads' the data size to the next power of two so a 

fast Fourier Transform can be used. The PSF parameters could then be optimised, using the evidence 

values[l1, based solely on the width and shape of the peaks due to the tetrahedral signals. 

The optimum peak width was found to be 164 data channels, with a mixed peak shape of 85% 

Lorentzian and 159'c· Gaussian. 
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Figure 6.14. Truncated tetrahedral peak used for PSF design. 

The failure or the algorithm to converge due to the high signal:noise ratio could not be 

overcome even by relaxing the convergence tests performed by the algorithm. (See Chapter 3). The 

high signal:noise ratio is due t1rstly to the large number of scans recorded and secondly to the 

application of a large line-broadening (15 Hz) during application of the linear prediction autoprogram. 

The large number of transients was acquired mainly for historical reasons to help with the manual 

integration. 
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Figure 6.15. Spectrum of AACH overlaid with Maximum Entropy Result. 
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In order to continu e with the deconvolution a small amount of random Gaussian noise was 

added to each spectrum. The level of noise added was found empiricall y to be insufficient to change the 

point of convergence of the algorithm but enabled it to converge. The Maximum Entropy results are 

shown Figures 6. 15 and 6.16 overlaid with the noise-treated spectra. 
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Figure 6.16. Spectrum of AACH overlaid with Maximum Entropy result 

The Maximum Entropy results clearly show two tetrahedral peaks additional to the main 

tetrahedral resonance. Due to the rather narrow PSF the octahedral peak has been split into a large 

number of peaks which are not considered to be real. The areas of the tetrahedral peaks can be 

quantified and, given that baseline resolution has been achieved. the errors are likely to be much smaller 

than those associated with conventional integration methods. 

Deconvolutions of this type have been performed for a number of different antiperspirant 

actives with known sweat reduction values. These measurements are taken from volunteers who 

undergo a hot-room test under controlled conditions. The tests are known to carry significant errors. 
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If the normalised tetrahedral aluminium intensity is plotted against mean sweat reduction a crude 

correlation can be observed in which the middle tetrahedral peak increases in intensity with sweat 

reduction as the other two peaks decrease in intensity (Figure 6.17). 

This may suggest that the middle peak is from the tetrahedral aluminium in that species which is 

giving rise to the antiperspirancy. The difficulty in interpreting these data lies in the errors associated 

with the measurements of sweat reduction and also the errors associated with the Maximum Entropy 

deconvolution (the deconvolutions have not been repeated to establish the size of the errors). 
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Fig. 6.17 Maximum Entropy intensities versus mean sweat reduction 

6.5. Conclusions 

Maximum Entropy data processing is limited to spectra that contain similar peak widths. The 

27 AI spectra of aluminium chlorohydrate solutions contain a wide range of peak widths. This problem 

can be overcome with linear prediction techniques to produce sub-spectTa that contain either only broad 

peaks or only sharp peaks. The sub-spectrum containing the broad peaks can be processed with a 

Maximum Entropy algorithm. The results indicate the presence of a least three tetrahedral peaks. This 

is consistent with some provisional work carried out by solid-state NMR spectroscopy and a Principal 
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Components Analysis or the spectra. A crude correlation has been found between the tetrahedral peak 

intensities and mean sweat reduction measurements from a number of antiperspirant actives. 
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CHAPTER 7: 

Quantitative Analysis of Electrospray Mass Spectra 

Electrospray ionisation is a widely used technique for introducing non-volatile compounds 

into a mass spectrometer. If these compounds contain more than one site capable of becoming 

charged multiply charged ions may be observed on a mass/charge axis. 

Dyes are an example of analytes which have many charge sites available. This can lead to 

complex mass-spectra, which become increasingly difficult to interpret without the aid of 

reconstruction techniques. In this chapter, the Maximum Entropy approach to reconstruction is 

described qualitatively and then applied to two commercially available dye systems. Whilst the 

algorithm is widely available. it is most commonly used in positive-ion mode for reconstruction of 

data from bin-molecules, e.g. proteins. This work extends the current applications to data acquired in 

negative-ion mLxie and to systems containing more than one type of counter-ion. 

It is shown that, for the complex dye systems, the zero-charged spectra can be easily 

reconstructed. These reconstructions are based on either the mass/charge ratio of sodium or that of 

the proton. This depends on whatever counter-ion is lost to produce the charged molecule. Minor 

spectral correlations due to sodium adducts are resolved. The techniques are extended to dye mixtures 

with successful separation of individual dye species. The form of the electrospray response as a 

function of analyte concentration is described in terms of the current models for electrospray 

ionisation. 

7.1 Introduction 

Electrospray ionisation is a technique suited to the introduction of polar, thermally labile 

compounds into the mass spectrometcr. In this technique the solvent. containing the sample to be 
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analysed, is pumped through a tine needle which is maintained at a high voltage. This has the effect 

of forming a mist of highly charged droplets in the atmosphere of the spectrometer. As the ionic 

species in the sample solution emerge from the needle they move into the mass-analyser (in work 

presented here a quadrupole) in response to the imposed electric fielctY1 

These ions become desolvated by some very low energy process that does not induce 

fragmentation. Two alternative mechanisms have been proposed for this process and are described by 

ConstantopouJos121 • The first is coulomb fission. In coulomb fission. the charge density increases as 

the solvent evaporates. The surface tension forces, which keep the droplet intact, are eventually 

overcome by the increasing charge density on the droplet causing it to divide. Coulomb fission 

causes droplets of various sizes. The second mechanism for desolvating the ions is ion-evaporation. 

Like coulomb fission, in the ion-evaporation model the charge density increases while the solvent 

evaporates. Instead of forming smaller and smaller droplets, coulombic repulsion overcomes the 

attraction of the charged ions to the droplet surface and ions are expelled directly from the droplet 

surface. 

Constantopoulos continues. "although these proposed mechanisms do predict how ions in the 

electrospray droplet are transferred into the gas phase, neither mechanism predicts the preferential 

expression of particular species in the mass spectrum." Compounds, containing more than one 

charge site, are observed as singly or multiply charged ions. For many singly and doubly charged 

ions, the relative intensities of the ions in the spectrum do not reflect the relative concentration of the 

ions in solution. sometimes by several orders of magnitude. 131 Constantopoulos has described the 

effect of salt concentration on analyte response using electrospray mass spectrometry. 121 

In this work, maximum entropy methods are used to disentangle the mass-spectra of a 

mixture of analyles and the derived maximum entropy intensities are used to calibrate the electrospray 

response as a function of analyte concentration. 
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Despite the problems associated with the electrospray response and the complexity of the 

multiply charged spectra, the electrospray ionisation technique allows rapid, accurate and sensitive 

analysis of a wide range of analytes from low molecular weight (less than 200 Da) polar compounds 

to bio-polymcrs larger than 100 k.Da. Generally, compounds of less than 1000 Da produce singly 

charged protonated molecular ions (M+ Ht in positive ion mode. Likewise, these low molecular 

weight analytes yield (M- H)· ions in negative mode. although this is dependent upon compound 

structure. 

For ions from a molecule of larger mass a series of peaks is observed in the spectrum of the 

multiply-charged ions. In positive-ion electrospray. each peak represents a given ion. with adjacent 

ions in the same series differing by, generally, plus or minus one proton. Generally, ions occur with 

mass-to-charge ratio: 

(M+ zH) I z ................ { 7.1} 

where: 

M is the molecular mass of the analyte 

H is the mass of the species responsible for the charge, normally the proton 

z is the number of charges on a particular ion (assuming that His singly charged). 

In measuring the molecular weight for simple systems. the charge on any one of the ions is 

first calculated by solving a pair of simultaneous equations for any two consecutive ions in a series. 

Hence, the charge for all the ions in the series is calculated step-wise and the molecular weight 

deduced. For more complex systems. each component can give rise to a series of multiply charged 

ions and subsequent peak overlap can prohibit the calculation of accurate mass/charge ratios. 

Reconstruction is desirable. 
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Early methods for generating a zero-charged mass-spectrum produced a baseline that 

increased with mass and tended to introduce artifacts. [41 More recent methods require prior 

identification of the charge states in the multiply-charged ion series. [SJ Widely used software, whilst 

allowing automatic assignment of charge states, is limited by directly transforming the multiply­

charged spectrum onto a true molecular mass scale, i.e. components which are unresolved in the 

original data remain unresolved on the molecular mass axis[61. A probabilistic approach to 

disentangling electrospray data involves the use of the Memsys5 algorithm and will form the basis of 

this work. [?J The Memsys5 electrospray interface has been developed for the analysis of biological 

samples in positive-ion mode and is beginning to be used routinely. [8·
91 

It is worth noting that the true underlying spectrum of masses is sharper than the peaks in the 

original data. Signals in the multiply charged spectrum are inherently broadened by: 

• the isotopic distribution of the elements in the analyte (if not resolved) 

• the instrument will have a finite resolution 

By incorporating this broadening into the program it should be possible to use Memsys5 to 

deconvolute it from the spectrum, thus enhancing the resolution achievable from electrospray data. 

The current implementation of Memsys5 is limited to a single estimate of the peak-shape present in 

the multiply charged spectrum. This is a Gaussian curve of constant width and is a poor model of 

both the above line-broadening effects. An e.~timate of the peak-width-at half-height is input to the 

algorithm. 

In the work presented here, the negative-ion electrospray mass spectra of two dyes, Direct 

Red 80[101 and Direct Yellow 50[11J, will be considered. An attempt is made to use the Memsys5 

algorithm to remnstruct the mass spectrum of the zero-charged molecules for these systems. This 

feasibility study will then be used as the basis for the reconstruction of spectra from more complex 

dye mixtures. It is worth noting that the spectrum of the multiply charged ions from a mixture of two 

dyes is extremely complex with many overlapping bands. Manual estimation of molecular-masses 
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from data or this quality is very difficult even for the most experienced mass spectrometrist. The aim 

of this work is ro identify the individual dye components in complex mixtures with as little user 

intervention as possible and attempt to quantify the concentration of each dye present. 

7.2 Memsys5 Technique 

A tull mathematical treatment of how Memsys5 reconstructs a spectrum of the zero-charged 

molecule is considered to be beyond the scope of this work but is based on the principles explained in 

Chapter 2. However, a qualitative description is now presented. 

The Memsys5 algorithm does not process the experimental spectrum directly but rather uses 

it for comparison. Initially, the algorithm generates a randomly selected spectrum of the zero-charged 

molecule, trial 1, and then applies the principles of electrospray ionisation, described in equation { 1 } , 

to estimate the corresponding spectrum of the multiply-charged ions. The difference between this trial 

spectrum of the multiply-charged ions and the experimental spectrum gives rise to residuals which are 

used to assess the probability of the initial estimate being a good match for the raw data. A number of 

trial spectra will fit the experimental spectrum within the noise. The Maximum Entropy approach is 

to select that spectrum with the minimum structure. i.e. the maximum entropy. 

A fev,,. tens of trials will normally suffice for the algorithm to converge. and those trial spectra 

which agree well with the data, and which are also intrinsically plausible through having large 

entropy, make up the probability distribution of plausible results, i.e. the Memsys5 result. This 

probability distribution is then mathematically sampled to determine the optimum result: the width of 

the uncertainty distribution specifies the uncertainty associated with the optimum result and allows 

error bars to be calculated for any of its features. 

Apart from the residuals, the calculation of appropriate trial specu·a is also assisted by 

equation { 1}. If a particular compound has a peak present at charge z, then it should also be present 

to some extent at charges z+ 1, and also at z+ 2, and so on, up to a maximum depending on how many 
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charges the molecule can accept. Depending on the particular analyte this may not always be true for 

all possible charge states; defect sites may appear depending on the relative reactivity of a particular 

site. This 'failure' can add to the difficulty in interpreting spectra of this type. 

This expectation of peaks is incorporated into the Mernsys5 analysis. However. a peak at a 

particular mass can only appear in the final Mernsys5 spectrum if it appears. to some extent. in the 

spectrum of the multiply charged ions; this again holds with the principle of only selecting those 

spectra for >vhich there is maximum evidence. This expectation effectively ties each series of specu·al 

peaks together. As the connections are intrinsic, there is no need in a Mernsys5 analysis for the user 

to identify charge states prior to processing. 

Figure 7.1 is an example of the multiply-charged mass spectrum of an aqueous solution of 

Direct Red 80. with Figures 7.2 and 7.3 showing the Mernsys5 result as the algorithm iterates towards 

convergence: the algorithm converged after 30 iterations, shown in Figure 7.4. Note the way in 

which the algorithm is able to 'lock onto' the main spectral features after only a few iterations: the 

tinal iterations are associated with adding fine structural details to the result. 

i 

Fig. 7.1 Multiply charged spectrum of Direct Red 80 
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Fig. 7.2 Memsy5 result: iteration 1 
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Fig. 7.3 Memsy5 result: iteration 5 
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Fig. 7.4 Memsys5 result: iteration 30 

One benefit of the multiple charging is that it effectively increases the mass range of the 

quadrupole spectrometer. The observed mass range in the multiply charged spectrum (Fig. 7.1) is 

500 Daltons compared with a mass range up to 1500 m/z in Figures 7.2- 7.4. The greater the degree 

of multiple charging the greater the apparent mass-range that can be achieved. 

As described earlier, the probability cloud of plausible results is then sampled to determine 

the optimum result and the confidence limits. Fifteen samples are normally taken, five are displayed 

in Figure 7.5. 

It is clear from Figure 7.5 that the main spectral features are present in each of the plausible 

spectra; the optimum result for this system has been derived with very little iteration. Minor 

fluctuations in the baselines give rise to the calculated estimates of uncertainty, which manifest 

themselves as standard error bars on peak intensity and position. For systems in which the spectra of 

plausible results are not consistent, the associated probability cloud would be wider and the error bars 

on any one spectral feature much larger. The determination of tllis probability cloud relies on the 
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signal:noise ratio in the raw data. High noise levels provide the algorithm with extra degrees of 

freedom. with many more plausible spectra. and much larger error bars. 

I 

Fig. 7.5 Memsys5: plausible results 

7.2.1 Input To Memsys5 

Memsys5 requires a number of inputs in order to reconstruct an accurate estimate of the zero­

charged spectrum. i.e. 

• A measure of the peak-width-at-half-height (HWHM) is required. Given that, for the reasons 

described earlier. there is likely to be a range of peak widths present in the data the value of 

HWHM used in this work is an average width for all the peaks in the data. This can be determined 

by monitoring the algorithm's diagnostics following a series of trials (see section 7.3.1.1 for a 

description of how the HWHM is optimised). For this application, the peak shape is always 

assumed to be gaussian. 
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• The mass of the species responsible for the charge is required. For example, in equation { 7. 1 } , this 

would be the mass of the proton. This must be a negative value if the data has been acquired in 

negative ion mode. 

• A less critical input is an estimate of the fractional reduction in peak intensity towards higher and 

lower mass with respect to the envelope maximum for any particular charge state. This is 

assumed to he constant for all charge states and informs the program of the expected minimum 

intensity for adjacent charge states and is used to reduce any low probability correlation, primarily 

due to noise in the data. An accurate estimate of this input is only required for the best possible 

reconstruction, for most applications the default parameters are used. 

• An estimate of Sigma is required. A description of Sigma can be found Chapter 3. In brief, it is a 

calculated value which estimates the noise in the raw data and any mismatch between the actual 

data and the applied gaussian bandshape. Apart from trials for determining HWHM, the default 

value is used and sigma is calculated internally by the algorithm. For tllis application, the 

algorithm assumes Poisson noise characteristics. 

• An estimate of the expected output mass range and the number of Daltons per output point is also 

required. the former can be determined from the algorithm's diagnostics following an initial 

reconstruction over a large output mass range. 

7.3 Experimental 

Before spectra from dye mixtures are considered it is necessary to reconstruct the zero­

charged spectra for the individual dyes to establish peak position.'> on the mass scale. These are then 

be used as the basis for assessing the quality of the reconstruction for the more complex dye mixtures. 

All the electrospray spectra presented in this thesis were acquired on a VG Platform 11 mass 

spectrometer. 
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7.3.1 Direct Red 80 

An electrospray mass-spectrum of Direct Red 80 was recorded in negative-ion mode by Dr. 

Mike Dale, Unilever Research, in 50/50 MeOH/H20 following reaction with triethylamine. The 

structure of Direct Red 80 is shown in Figure 7.6 and the multiply charged mass-spectrum is shown in 

Figure 7.7. (Only four charge states have been recorded). 

Fig.7.6 Direct Red 80. Relative Molecular Mass= 1373 

0 
11 

NH C 

2 

The effect of the triethylamine is to produce the free-acid having a formula weight of 1241. 

The major peaks in the above spectrum can be easily rationalised without any Memsys5 processing. 

However, this system is a good starting point to establish the limitations of the Memsys5 teclmique. 

Direct Red 80 has six sulphonate groups which can each give rise to a different charge state, i.e. six 

multiply charged states may be observed in the mass spectrum. Of course. if a defect site is present 

not all of these will be observed. 
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Fig.7.7 Direct Red 80: multiply charged data. Only four charge states acquired. 

Is it necessary to use all six available charge states to achieve an acceptable reconstruction, or 

can satisfactory results be obtained by just processing the four more highly charged clusters of peaks, 

i.e. the peaks with the highest signal:noise ratio ? 

Using the Memsy5 input parameter described in section 7.2.1, it is possible to use Memsys5 

to reconstruct the zero-charged spectrum using either the mass of the proton or the mass of sodium as 

the basis. This will be demonstrated. 

7.3.1.1 Four Charge States 

Manually assigning the spectrum shown in Figure 7.7. i.e. with four charge states acquired, 

gives calculated masses given in Table 7.8. 
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Table 7.8: Manual assignment of spectrum of Direct Red 80 

This is fine in as far as it g<_--,es, but there is some variability in the value of the 

calculated parent mass and it is not possible to identify any minor correlations which may be present. 

In order to perform a Mem~>ys5 reconstruction it was necessary to establish the peak 

HWHM from a series of trial reconstructions in which the input gaussian peak width was varied and 

the algorithm's output diagnostics, i.e. the evidence, plotted as a function of peak width. As described 

in Chapter 2, the evidence is the logarithm of the probability of finding that input peakwidth in the 

data; the more positive the value the better the estimate of the input HWHM. 

The optimum HWHM was estimated at 4.7 data chmmels for a symmetrical gaussian peak 

(Figure 7. 9). Given that the original data are likely to have a range of peak widths, due to isotope 

effects and increasing line-width with rnlz, this value is only a compromise and is likely to resolve 

only bulk correlations. 
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Fig.7.9 Evidence profile for a symmetrical gaussian peak 

Whilst the maximum value in Figure 4 represents a compromise value for all the spectral 

peaks, the width of the evidence profile is indicative of a range of banc! widths being present in the 

raw clata. The :rvternsys5 results basecl on this optirnised HWHM value are shown in Figures 7.10 

ancl 7.11. 
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Fig. 7.10 Reconstruction based on mass of sodium 
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Clearly, both reconstructions have identified a number of peaks. Their assignments are 

summarised in Table 7.12. 

Table 7.12: Memsys5 Results 

Both reconstructions have identified correlations due to the sodium adducts present in this 

system Additional peaks are probably due to minor correlations within the noise or the possibility of 

isotope peaks having been resolved if the applied PSF was in fact too narrow for some of the peaks in 



167 Electrospray MS 

the original data. Both reconstructions have identified three sodium adducts with some evidence for a 

fourth, although the intensity of this is such that it is very difficult to distinguish from the noise. 

Evidence for more adducts may be available if the raw data with six charge states is considered or if 

the true isotopic band shape is used as the PSF. 

7.3.1.2 Six Charge States 

The average HWHM value was again determined through an evidence profile. The Memsys5 

result for the reconstruction based on the mass of the proton is shown in Figure 7.13. 
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Fig. 7.13 Reconstruction based on mass of proton: 6 charge states 

1-450 

The main features of the above spectrum are consistent with those obtained for the system 

containing only four charge states, i.e. parent mass at 1241 and at least three sodium adducts. 

However, the spectrum is complicated by the relatively poor signal:noise which is due to minor 

correlations in the noise of the multiply charged spectrum. In the multiply-charged spectrum the 

signal:noise ratio of the less highly charged clusters is low, and this lack of signal intensity is directly 
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responsible for the poor appearance. and relatively large errors, of the Memsys5 result. The same is 

true for the reconstruction based on the mass of S(xtium. 

It would appear that recording all possible charge states is likely to deteriorate the Memsys5 

result by introducing correlations due to a low signal:noise ratio. A further advantage of acquiring just 

four charge states is that the data will be recorded with bener digital resolution and extra structure 

may be resolved. However, the reconstructed data cannot be used in any quantitative way because 

intensity will have been discarded by not recording all possible charge states. In conclusion. there is a 

trade-off between identifying those species present, where four charge states suf11ce, and determining 

the optimum result with full quantification, where all charge states must be processed. 

7 .3.2 Direct Yellow 50 

An electrospray spectrum of Direct Yellow, was recorded by Michael Dale, Unilever 

Research, in negative-ion mode in 50:50 CH30H : H20. The structure of Direct Yellow 50 is shown 

in Figure 7. 14 and the mass spectrum or the multiply charged ions is shown in Figure 7.15. 

Fig. 7.14 Direct Yellow 50. Relative Molecular Mass= 956. 
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Fig. 7. 15 Multiply charged spectrum of Direct Yellow 50 

The Memsys5 reconstructed masses are presented in Table 7.16 and Table 7.17 for the 

system with and without dialysis. As for the Direct Red 80 system, the non-dialysed system was 

studied as a function of the number of charge states. 

Table 7.16. Direct Yellow 50 following dialysis. 

3 charge states, 1H reconstruction 

mass error Assignment · 

868.563 0.079 [S- 4Na + 4H] 
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Table 7.17. Direct Yellow 50 without dialysis 

Ilia ss 

868.982 0.043 869.019 0.075 [S- 4Na + 4H] 

890.763 0.103 890.848 0.242 [S- 3Na + 3H] 

913.287 0.317 912.890 0.272 [S- 2Na + 2H] 

934.964 0.083 934.931 0.083 [S- Na + H] 

956.901 0.045 956.977 0.095 [S] 

where [S] = salt, i.e. free acid+ 4Na 

As expected, following dialysis the zero-charge spectrum can only be reconstructed on the 

basis of the 1 H. The algorithm correctly identified the lack of sodium in the system. The algorithm 

has found only one major correlation corresponding to a mass of 868.6 Da, i.e. loss of four sodium 

atoms followed by addition of four hydrogen atoms. For the system without dialysis, all four sodium 

adducts are observed if both the hydrogen and sodium reconstructed data are considered together. 

This is only true if three charge states are considered. 

If the intcnsities of these sodium adducts are considered it may give some insight into the 

mechanism of protonation of these charge sites. From Figure 7.18, the relative intensity of the [S -

2Na + 2H] adduct is small, indicating that some sites may protonate preferentially. 
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Fig. 7.18 Maximum Entropy reconstruction showing scxlium adducts 

In conclusion, it would appear to be generally unnecessary to try and chemically simplify the 

multiply charged spectra of these systems; if a peak correlation is present above the noise level the 

algorithm should find it. Moreover. simplification of these spectra leads to useful information 

regarding sodium adducts being discarded. 

7.3.3 Dye Mixtures: Electrospray Response Curves 

The following dye mixtures were studied in 50:50 CH30H : H20 

• 10: 1, 5: 1, I: L 1 :5, I: 10 Molar ratio Direct Red 80 : Direct Yellow 50. 

It >vas not possible to determine the absolute concentrations of the dyes present in solution 

because the dye<; as received were known to be very impure. Aldrich quoted values of: 

Dire.ct Red 80 -25% Pure 

Direct Yellow 50 -40% Pure. 

The systems were not chernicaiiy treated with triethylamine or dialysed as in the previous 

examples. The aim was to assess the relative amounts of each dye present in solutiuon. Wherever 

possible a mass range was recorded to encompass all charge states. The HWHM of the Gaussian 
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PSF was e..;;timated directly from the data by overlaying with a gaussian curve and adjusting its width 

until a gcxxl match was obtained by eye. i.e. no evidence profile..;; were generated. The most intense 

peaks in the spectra were used to determine the HWHM. The aim of this was to establish if a 

calibration of clyc concentration could be obtained using the cruelest optimisation available to the mass 

spectrometrist. Each spectrum was baseline corrected by fitting a polynomial curve through the noise 

present in the spectrum. No attempt was made to optimise this baseline correction. 

Figure 7.19 shows the multiply charged spectrum for the 1:1 mixture. Figure 7.20 is the 

Memsys5 reconstructed zero-charged spectrum based on the mass of scxlium. 
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Fig. 7.19 Multiply charged speclrum: 1:1 dye mixture 
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Both dyes are easily recognisable in the reconstructed zero-charged spectrum with evidence 

for sodium adducts as before. Peaks are clearly evident at m/z = 956 and 1373, corresponding to the 

Direct Yellow 50 and Direct Red 80. Even at the molar ratio of 10:1 the less concentrated dye can 

easily be resolved. Appendix A7.1 is a summary of the reconstructed peak intensities and their 

associated errors for the reconstruction based on the mass of sodium Only the most intense peaks are 

presented. 

If the intensities from all these adducts is summed for each dye and a graph is plotted of 

electrospray response ratio (Direct Yellow 50 I Direct Red 80) against the ratio of the dye 

concentration present in solution, a response curve can be determined. For this system, an 

electrospray response curve is shown in Figure 7.21. 
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Fig. 7.21 Electrospray Response Curve 
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Th.is response curve clearly deviates from linear behaviour. Th.is is to be expected, and the 

literature proposes several equations to describe the form of such an eleclrospray response as a 

function of analyte-concentration11 ~ 1 . These equations try to account for the fact that the response 

curve can be initially approximated to a linear model, followed by a reduction in gradient until a 

plateau is reached. 

The simplest from of these equations is the ion evaporation model and is described for an 

analyte in the presence of an electrolyte. Tang and Kebarle11 31 postulate that the production of gas 

phase ions is kinetically controlled and is dependent on the first order rate equation for the transfer of 

analyte and electrolyte ions into the gas phase. i.e. 

. ................. {7.2} 
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where 

I(AI is the detected analyte ion intensity 

[A+] and [E+] are analyte and electrolyte concentrations. E will also include intensity from any 

background ions due to impurities. 

KA and KE are the first order rate constants expressing the rate of transfer of analyte and electrolyte 

ions into the gas phase. 

P is the proportionality constant expressing the "sampling efficiency" of the system. 

Constantopoulos121 note•> that, like the Memsys5 derived reponse curve shown in Fig. 7.21, 

experimentally measured response curves reveal two distinct regions. In the t1rst region, at low 

analyte concentrations, the response is linear. In the second region. at high analyte concentrations, the 

curve levels off and even decreases in intensity. Tang and Kebarle1131 were unable to fit the form of 

these response curves to the ion evaporation model over a wide range of concentrations. A good fit 

was obtained in the low concentration range of A+ with the assumption that KA/KE = 1. However, the 

deviation of the predicted response curve from the experimental data at high concentrations of A+ 

indicated that the actual value of KA/KE was greater than unity. Therefore, Tang and Kebarle 

changed their model to include terms due to surface activity and ion solvation effects in the hope of 

explaining the decrease in KA/KE at low concentrations. The extension of this model is summarised 

by Constantopoulos121 . Only the main arguments are presented here. 

The revised model is based on an ion depletion phenomenon. Its main points are: 

1. Ion evaporation is assumed to occur at the droplet surface. 

2. Those analyte ions with the higher surface activity have a higher concentration at the surface than 

in the bulk liquid. 

3. A+ ions evaporate at a higher rate than E+ ions. 
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4. At high A+ concentrations, A+ ions are rapidly supplied from the bulk as A+ ions evaporate from 

the surface. This maintains the constant ratio A+ I e ions at the droplet surface and results in a 

higher KAIKE ratio. 

5. At low A+ concentrations. all of the A+ ions are at the droplet surface, where they evaporate at a 

high rate. There are no A+ ions in the bulk to replenish the surface, so there is a depletion of A+ 

ions at the surface relative toE+ ions. This results in a decrease in the KAIKE ratio. 

Whilst this revised model does explain the shape of the response curve observed for this two 

analyte sysrem there is a second model proposed by Enke1141 which also explains much of what is 

observed with electrospray ionisation. Enke proposed an equilibrium partionioning model to explain 

the shape of these curves. The main features of this model are: 

1. The excess charge on the droplet is fixed. This determines the total number of ions. which are 

un-neutralised by counter-ions, at the droplet surface. 

2. All of this excess charge is at the droplet surface. 

3. The droplet surface and the interior of the droplet are regarded as two inclepenclent phases, 

between which the ions can partition. This partitioning can be described by the equilibrium 

constants f(_-,r each analyte. 

4. The equilibrium constants account for effects clue to: solvation energy, ion-paring energy, charge 

density, hyclrophobicity, the nature of the counter-ion and the polarity of the solvent. Each of 

these can be found by experiment. 

5. Ions evaporated from the surface are not replaced by other ions from the interior. 

6. The model is independent of the mechanism of ion evaporation. 

According to Constantopoulos121• this model fits the experimental data over a wide range of 

concentrations with the same value of KA I KE , but fails to predict the electrospray bahaviour in terms 

of the suppression effects caused by the electrolyte. Constantopoulos 121 details the equilibrium 

partitioning model for the case of a single analyte and electrolyte. For completeness, the main stages 
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in the argument are presented here, with the extension to this system in which two analytes are 

present. The main stages in the partitioning model for a single analyte and electrolyte are: 

1. Define partitioning constants. KA and KE in terms of the concentration of free ions. counter ions 

and ion pairs. i.e. 

KA = [A+l~lXJi 
[A+XJ; 

KE = fE+hlX1 
[E+X]; 

where X represents the counter-ions and sand i indicate surface and interior droplet phases. 

2. Use KA and KE to establish a partition constant for the analyte and electrolyte competing for the 

counter-ion, this is shown in the diplacement reaction below. This gives the relationship between 

free analyte (A+) and electrolyte (E+). in terms of KA, KE. and the ion-pairs (A +x-) and (E+X), i.e. 

KA = nn [E+x-J! 
KE [NX]; [E+]s 

The terms (A+X);, (eX);. (E+)s are difficult to measure experimentally. Constantopoulos 

notes that tile aim is to relate these terms to measurable quantities. 

3. Eliminate (A+X); , (E+X); by expressing these in terms of the total concentration of A, (CA). the 

total concentration of E. (CE) and the excess charge. (Q). Q can be determined from the spray 

current and the flow rate. (Q is also equal to the sum of the free ions at the droplet surface). 

There is an assumption made at this point. The model assumes that Q is independent of CA and 
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CE. This is unlikely to be a valid assumption; conductivity and hence Q will depend on on the 

concentration of A and E. 

4. Constantopoulos continues with the derivation until he procluces an equation which is quadratic in 

[A +ls. i.e. the concentration of the free analyte ions at the droplet surface. 

5. Introducing the condition that CA << Q. the quadratic recluces to a linear from. i.e. 

[A+]s = CA . ___i_K,J__K!:d 
(KA I KE - 1 + CE/Q) 

6. Assuming that U1e response observed for analyte A, RA, is proportional to fA+]s, then 

RA oc CA 1 
Const + CE/ Q 

Constantopoulos[2J does not explicitly describe the case of more than one analyte but states 

that in such a case the values of CA (for each analyte). CE . KA/KE and Q "have a unique effect on the 

response of each analyte ion." It can also be argued that the same analyte ratio is unlikely to be 

observed in the gas phase as in the solution state. This suggests that a clirect relationship can not be 

established for a solution containing more than one analyte; calibration experiments are neeclecl for 

semi-quantitative analysis. Relative repsonse factors need to be determinecl over appropraite 

concentration ranges. 

Constantopoulos[2
J does not explicitly deal with the presence of multiply chargecl ions or 

adduct formation. He assumes that all the adducts will have the same contribution to the electrospray 

response. Multiple charging must have an effect on the magnitude of Q; it is unlikely that Q is 

independent of analyte concentration as described in note 3 above. 
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It is possible to extend the model presented above to more closely reflect the system studied 

here, i.e. two analytes. If the total ionic concentration is low thenCE could be replaced by the 

concentration one one of the dyes. say Cn. This gives: 

RA = ~ ( Const + C~_IQ) 
Rn Cn (Const + Cn/Q) 

If CA and C8 are very much smaller than Q then the response is likely to be linear with 

concentration. l f CA and Cn are approximately equal to Q then the curve is quadratic. If CA is small 

and Cn large then the response \Nill also be non-linear. This type of behaviour is consistent with the 

shape of the response curve derived from the Memsys5 intensities. 

7.4 Conclusions 

The Memsys5 electrospray interface has been successfully used to reconstruct the zero-

charged mass-spectra of dyes acquired in negative-ion mode. The reconstructions provide evidence 

for the presence of sodium adducts; the reconstructions are made based on the mass of hydrogen and 

sodium 

The techniques have been extended to study a mixture of two dyes and a response curve has 

been determined based on the intensities of the peaks found in the Mernsys5 reconstruction. The 

graph is initially linear before beginning to curve. The shape of this graph has been shown to be 

consistent \.Vill1 the current models of electrospray ionisation. It has been assumed that all the ions 

have the same response factor during the electrospray ionisation. This assumption appears to be 

valid. The Memsys5 results have demonstrated that if quantitative electrospray is needed, a 

bracketing experiment must be performed in which a control system is studied over a similar 

concentration range to the system of interest. 
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CHAPTER 8: CONCLUDING REMARKS 

The work presented in this thesis has attempted to demonstrate, that despite the 

scepticism that prevails within the NMR community, probabilistic data processing does have 

its place within the spectroscopist's armoury. The scepticism arises mainly from the apparent 

ability of the different algorithms to 'get something for nothing'. The approach taken in this 

research is to take a pragmatic approach to using the algorithms on a range of different real, 

i.e. not simulated. NMR and mass spectra. The systems were careful chosen such that any 

conclusions drawn from the algorithm's output could be verified by argument based on 

literature results and data supported from other techniques. 

Following a brief description of the theory and practical operation of the software the 

first system chosen was the NMR spectra of sodium carboxymethyl cellulose. The NMR 

spectrum of SCMC is typical of many native polymers. The peaks are very broad and little 

information can be extracted without sample degradation to smaller oligomers or monomer. 

Maximum Entropy techniques were applied to the NMR spectrum of an intact SCMC sample. 

The Maxim Entropy derived peaks are shown to be consistent with those observed in the 

literature. The \:I.'Ork was extended to demonstrate how these techniques could be used for 

spectral de-noising. The NMR spectrum of a typical fabric washing powder shows bands 

with very poor signal:noise ratio which are assigned to SCMC. The Memsys5 algorithm was 

used to de-noise the spectrum and show that the result is consistent with the main spectral 

features of SCMC. This type of application is of interest to the soaps industry for policing 

patent infringements by competitors. Very low levels of SCMC can have a significant effect 

on product performance. 

The ability of the Memsys5 algorithm to achieve simultaneous resolution 

enhancement and signal:noise improvement was demonstrated by the processing of the NMR 

spectrum of a styrene I maleic anhydride polymer. The resultant Memsys5 intensities were 

used to calculate a polymer composition which was shown to be consistent with the known 
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monomer feed ratio and supporting data from mass spectrometry and elemental analysis. The 

consistency of this result meant that more confidence could be placed on the subsequent 

discussion of polymer microstructure. The polymerisation was shown to be a least a second 

order Markovian process and the conclusions were shown to be internally consistent by 

checking them against the results from a different region of the NMR spectrum. It is 

demonstrated that for this particular system there is no advantage to acquiring the NMR 

spectrum at a higher magnetic field strength. Probabilistic data processing is the only method 

for extracting the level of information needed to derive both polymer composition and 

microstructure. A literature chemical shift assignment is also reversed on the basis of a 

stereochemical argument. Unfortunately, the Memsys5 derived intensities failed to confirm 

this reassignment. 

One of the major failings of Maximum Entropy based deconvolution techniques have 

been the inability to deal with spectra in which there is a wide range of peak widths. Only 

one point spread function could be used as the deconvolution model. Such a difficult system 

is the 27 AI N.MR spectrum of aluminium chlorohydrate salts. These systems are used in anti­

perspirant products and have been studied extensively for compositional information using a 

laborious manual method of peak integration. The problem of different peak widths was 

overcome by employing linear prediction techniques, prior to any Maximum Entropy 

processing, to reduce the N.MR spectrum into a series of sub-spectra. Each sub-spectrum 

contained peaks of similar width and could be then be processed with the Memsys5 

algorithm. This process has been automated and has now been implemented at Unilever 

Research. During 2000. the auto-program saved approximately one day effort per week. 

Three peaks were identified in the tetrahedral aluminium region of the spectrum. An 

attempt was made to correlate this previously unreported structure with sweat reduction and 

hence antiperspirant efficacy. 

Maximum Entropy techniques have been available for some time to disentangle mass 

spectra of multiply charged ions from an electrospray ionisation process. The previously 

reported application were all based in positive-ion mode. This work has been extended to 
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include the negative-ion mode mass spectra of dyes. The MemsysS results are used to resolve 

the effects of sodium adducts on the mass spectrum. The technique has also been extended to 

include dye mixtures, with successful spectral separation of individual dye species. The form 

of the electrospray response as a function of analyte concentration has been described in 

terms of the current models for electrospray ionisation. 

These results demonstrate that this type of data processing should be available to 

practicing spectroscopists. It will never replace simple fourier techniques but should be used 

as a last resort, when all other avenues have been exhausted. That said, the results can be 

remarkable and if a spectroscopist can afford the investment in time needed to successfully 

grasp the software the level of extra information that can be recovered from a spectrum will 

lead to further insights. 



1. /* Aluminium Data Processing */ 
2. /* L.P. Hughes; 1999 */ 
3. #include <lib/util.h> 
4. /*Proc_err (ERROR_ OPT. "Autoprogram for Linear Prediction and Plotting of 

Aluminium Spectra, 
5. L.P. Hughes, Dec 1998"); */ 
6. if (Proc_err(QUESTION_OPT, "Have you typed rpar les3 proc before running this 

program?")== ERR_CANCEL) 
7. {STOP} 
8. if (Proc_err(QUESTION_OPT, "Have you read in and correctly phased the first spectrum 

?" ) == ERR_CANCEL) 
9. {STOP} 

10. /* READ IN CURRENT OAT ASET AND COPY TO NEW FILE TEMP *I 

11. GETCURDAT A 
12. WRPA("temp", 1,1,"u","nightnrnr") 
13. WRPA("temp" ,2, 1. "u". "nightnrnr") 
14. WPAR("Ies3","proc") 

15. /* READ IN PHASE PARAMETERS FROM ORIGINAL DATASET */ 

16. DATASET ("temp",2, l,"u"."nightnrnr") 
17. GETCURDAT A 
18. VIEWDATA 
19. RPAR("lesl"."proc") 
20. em 
21. ft 
22. RPAR ("les3","all") 
23. pk 
24. abs 
25. rmisc ("intrng"."intrng.al3") 
26. plot 
27. DATASET ("temp",l,l,"u"."nightnrnr") 
28. GETCURDAT A 
29. VIEWDATA 



30. /* SET UP FILE TEMP READY FOR LINEAR PREDICTION */ 

31. RP AR( "Jcs". "proc ") 
32. ft 
33. ift 
34. RPAR("les 1 "."proc") 
35. em 
36. ls 

37. /* LINEAR PREDICT BACKWARDS. INTEGRATE+ PLOT SHARP SPECTRUM */ 

38. RPAR("les2"."proc") 
39. ft 
40. RPAR("les3"."a11") 
41. pk 
42. GETCURDATA 
43. VIEWDATA 
44. WRPA("tcmp",3,1,"u","nightnmr") 
45. apk 
46. abs 
47. rmisc ("intrng","intrng.all") 
48. plot 

49. /* SUBTRACT SHARP SPECTRUM FROM BROAD SPECTRUM */ 

50. DATASET2 ("temp",2,l,"u","nightnmr") 
51. GETCURDATA2 
52. DATASET3 ("temp",3,l."u","nightnmr") 
53. GETCURDATA 
54. RPAR("lesl","all") 
55. ADD 
56. DATASET ("temp",l, l,"u","nightnmr") 
57. GETCURDATA 
58. RPAR(''les3"."plot") 
59. abs 
60. rmisc ("intrng", "intrng.al2") 
61. plot 
62. QUITMSG ("Program Finished") 
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L.P. Hughes and K.S. Lee. Unilever Research, Bebington, Wirral, England. 

The microstructure of a copolymer can have a profound effect on 
its physical and chemical properties and therefore determination 
of microstructure is an important analytical requirement. This 
poster describes the application of 13C Nuclear Magnetic 
Resonance Spectroscopy and Maximum Entropy (Memsys 5) data 
processing to a copolymer ofstyrene I maleic anhydride (75% 
styrene ex Aldrich Chemical Co.) 

Both the aromatic and carbonyl regions clearly contain 
a number of unresolved peaks, the lack of any one discrete 
peak making optimisation of MaxEnt parameters difficult. 

The 13C chemical shift is sensitive to both the presence of 
neighbouring groups and polymer tacticity resulting in severe 
overlap of spectral bands and subsequent uncertainty in 
assignment e.g. the quaternary aromatic region of the spectrum 
spans a range of- I 0 ppm. 

The difficulty in analysing the aromatic region of the 
spectrum has been previously described [ 1 ), however, 
spectral assignments are presented in the literature 
together with the comment that the monomer distribution 
calculated using these assignments could have up to a 
20% error due to poor spectral resolution. [2,3] 

Summary Of Findings 

13C NMR Sp~tllJm Of Styrene I Ma!eic A.nhydrtde Copolymer Aremalic Region 

us 140 
Ct!eml:cal Shift I ppm 

IJC NMA Spectrum Of Srj~r~e I t.ta!a:c Aohydl1de Copolymer: Carbonyl fle9ian 

"' Chemical Shift/ ppm 

- The pragmatic use of Memsys 5 allows the determination of vinyl polymer 
microstructure and stereochemistry 

Deconvolution 

Memsys 5 gives a good deconvolution of this data with small error bars and residuals 

2. Analytical Verification OfMaxEnt Result 

The deconvolution is shown to be consistent with the mono mer composition as 
determined by other analytical methods. 

Exploration Of MaxEnt Result 

The structure in the MaxEnt result suggests a 2nd order (or greater) Markovian model 
for polymerisation. 
Literature assignments (based only on additivity ofsubstituent effects) are discussed. 

4 Rationalisation Of Model 

The reassignments are compatible with steric considerations i.e. the sensitivity of the Cl 

aromatic carbon of polystyrene to the through space effect of the y substituent. 

The interpretation of the Cl region is supported by the deconvolution of the carbonyl 
region of the spectrum. 

[IJ DJ T Hill, J H O'Donne!l, P \V O'Sullivan, Macronlolccules, 1985, 19,9~17 
[2J K Bhuyan and N N Dnss,lndian Journal OfChemistry,J990,29A,376-378 
[3} BE Buckak and KC Ramey. Polymc1 Letters Edition Vol 14,401-405 (1976) 
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1. Dcconvolution 

By designing a series of trials where the overall width of the 
applied bandshapc was varied for each of a suitable range of 
values of sigma1' 1, a graph of optimum widths against input 
sigma could be plotted i.e. a sigma profile. The optimum total 
bandwidth and corresponding value of sigma was then 
determined by estimating the point of inflection. 
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Assessment of output diagnostics fi·om subsequent trials based 
on this sigma profile, i.e. evidence profiles, gives rise to the 
optimum let\ and right width for the applied point spread 
function (PSF). Similarly, evidence profiles have been used 
to determine the shape parameters for the applied PSF. 

Experience, with data of this quality, has shown that the width 
of the input PSF can be within - +/- 10% of the optimum 
without having a detrimental effect on the output 
deconvolution, especially when it is considered that the data is 
likely to contain more than one bandshape as a result of 
different mobilities within the polymer. It should be noted 
that each spectral region has been processed independently 
with sigma profiles being generated, where necessary, for 
each. 
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Following references [2] and [3] the highlighted peaks are 
assigned to the polymer block ends. 

These errors and an assessment of the residuals, i.e. 
experimental data minus MaxEnt calculated spectrum (free 
from noise), enable an assessment to be made as to the 
reliability of any feature in the MaxEnt result. Clearly, fi·om 
the above figure the quality of the MaxEnt result is such that 
the intensity of the residuals is very close to that of the noise 
indicating that the MaxEnt calculated spectrum is in close 
agreement with the experimental data. 

2. Verification Of MaxEnt Result 

In order to verify the MaxEnt result the polymer composition 
is calculated from the MaxEnt intensities based on the 
literature assignments. It should be noted that reassignment of 
the block ends does not affect the calculation of composition. 

75% Styrene ex Aldrich 

Triad Total Cumulant 

MSM 24.21 +/- 0.19 

SSM 9.56 +/- 0.22 

MSS 5.53 +!- l. 79 

sss 55.61 +/- 0.26 

Total Maleic~ 0.5 x (2MSM +SSM + MSS) ~ 31.76 
Total Styrenc ~ SSS + MSS +SSM + MSM ~ 94.91 

giving 74.9% Styrenc 

This is in good agreement with Aldrich, 'H NMR and Mass­
Spectrometry results and has therefore given us increased 
confidence as to the reliability of the MaxEnt deconvolution. 



LExploration Of The MaxEnt Result 

Stereochemistry 

Assuming that the structure within each of the stereochemical 
groups, identified in the figure right, is largely the result of 
tacticity, leads to the conclusion that there is a strong con-elation 
between microstructure and tacticity i.e. there is only one 
preferred conformation for the triads MSS and SSM, but four 
conformations for the triad MSM. 

This in itself is evidence for a second order (or greater) 
Markovian model of polymer microstructure. 

Microstructure 

A first order Markovian model would require that the values 
of P M 1 ss and PM 1 Ms were equal. 

pM /SS= A SSM I (A SSM + A sss) 

p M I MS = A MSM I ( A MSM + A MSS ) 

where A is the peak area. 

However, using either of the assignments given below this is 
not the case. Therefore, a second order (or greater) Markovian 
model is required to describe the polymerisation process. 

Calculation Of Composition Assuming Second....Qrd6: 
Markovian Statistics 

From second order Markovian Statistics [4], 

p s I p M = I + ( A MSS I A MSS + A MSM) ( A SSM + A sss I A SSM ) 

where PM is the proportion of Maleic Anhydride in the polymer 
P5 is the proportion of Styrene in the polymer 

Nwnber Of Standard Errors % S tyre ne Baserl On '.{, Styrene Based On 
On Peak at l4L91ppm Literature Assignment Re\'ersetl Assigrunent 

-2 60 90 

-I 66 84 

69 80 

72 77 

74 7; 

Chemical Shift I ppm Literature Assignment I Reversed Assignment I 
138.91 SSM I MSS I 
141.91 MSS J SSM I 

Allowing two standard errors on the peak at 141.91ppm either 
assignment gives adequate agreement with a second order 
Markovian Model. This model will be checked using: 
a) Massive Inference Algorithm 
b) 125 MHz NMR 

150 . 
Cloem'caiShitt!ppm 

8 Peaks 

J 

MSS/SSM 
Block Ends 

One peak I end group 

I 
>35 

(model to rationalise 8 peaks) ~Nlch tH.a~~;±i(! ilft.;i 2 pos~>~h~e 
orientgflo.-.;.; V1r'3.t. g0.,c&n~ 

ends of styrene block require 1 

a specific stereochemistry /' 

4. Rationalisation Of The Model 

Aromatic Region Of The Spectrum 

The literature assignments are claimed to be based on 
substituent additivity effects and statistical considerations. 
The problem with the assignments is that the authors assume 
that the I> substituent will have the larger effect, ignoring the 
through space effect of the y substituent. (They also ignore 
the direction of the through bond effect) 

[4J J L Koenig, Chemical tvlictostructure Of Polymer Chains, 
Wiley-lnterscience, ISBN 0471 07725-9 

., 



Demonstration of Consistencji 

Carhonyl Region Of The Spectrum 

The MSM triad region of the C1 aromatic spectrum showed four 
peaks attributed to each maleic anhydride having two possible 
orientations with respect to the styrene. [fthis is the case then 
evidence for this should be seen in the carbonyl region of the 
spectmm. The MaxEnt result shows live major peaks and one 
minor peak, summarised in the table. 

13C NMR Spectrum of Carbonyl Region With MaxFnt 
Deconvolution Overlayed. 

176 174 172 
Chemical Shift I ppm 

Carbonyl Region: Mock Data and Residuals 

4e6 -

2e6 I 
I 

i 

rv\ / 
V 

170 

~~ 
176 174 172 170 168 

Chemical Shift I ppm 

168 

The quality of the deconvolution is indicated by the lack of 
structure found in the residuals and the small errors on the peak 
intensities. 

ChemicaJ shift /ppm hltensily (% or m·erall Assignmem 
cumulant) 

169.8 i.J +I- 0.3 Unknown Minor impurily 

171 0 13.9 +I- 0.4 PI 
171.5 29.1 +i- 2.5 P1 
171.8 11.1 H- 2.7 ImpUrity Probably 

Succinic Anhydride 

172.4 22.0 i/- 0.6 P3 

172.8 )1.3 +I- OJi N 

The peaks of interest to the discussion of stereochemistry are 
those at I71.0, 17I.5, I72.4 and I72.8ppm. These four peaks, 
attributed to carbonyl groups in the SMS triads, can be 
divided into two groups corresponding to the 1:\vo different 
carbonyl environments. Hence, peaks PI and P2 are grouped 
together, likewise peaks P3 and P4 (note the total intensity 
within each group is the same ). Peaks PI and P2 can be 
attributed to the carbonyl group MAl (see structure) on the 
besis of the greatest steric effect (the effect of the substituent 
is seen in both chemical shift and stereochemistry, the latter 
being indicated by the greater effect on the relative intensities 
of the peaks). P3 and P4 are therefore assigned 
to carbonyl group MA2. 

Conclusions 

l. The "C NMR spectrum of Styrene I Maleic Anhydride has 
been successfully deconvoluted using the Memsys 5 algorithm. 
The quantitative results of the deconvolution have been shown 
to be consistent with the known composition. 

2. Based on the Memsys 5 output a microstructural model has 
been derived. 

J. The assignments given in this ctuTent work have been shown 
to be physically consistent with the_ through bond effects of the 
y substituent. 

4. The deconvolution of the carbonyl region of the spectrum 
supports the reassignments presented in this work 


