
Durham E-Theses

A comparative analysis of the wrist and ankle

morphology of hominoids and lorisids, with

implications for the evolution of hominoid locomotion

Read, Catriona S.

How to cite:

Read, Catriona S. (2001) A comparative analysis of the wrist and ankle morphology of hominoids and

lorisids, with implications for the evolution of hominoid locomotion, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3775/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3775/
 http://etheses.dur.ac.uk/3775/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


A Comparative Analysis of the Wrist and Ankle Morphology of Hominoids 

and Lorisids, with Implications for the Evolution of Hominoid Locomotion 

A Dissertation presented 

by 

Catriona S. Read 

to 

The Graduate School 

For the degree of 

Master of Science 

m 

Biological Anthropology 

Department of Anthropology 

University of Durham 

September 2001 

The co11yright of this thesis rests with 
the author. No quotation from it should 
be published in any form, including 
Electronic and the Internet, without the 
author's prior written consent. All 
information derived from this thesis 
must be acknowledged appropriately. 



Declaration 

This thesis is the result of my own work, and no part of it has previously been 

submitted for a degree at any University. Material from the published or 

unpublished work of others, which is referred to in the thesis, is credited to the 

source in the text. 



A Comparative Analysis of the Wrist and! Ankle Morphology of Hominoids 
and! Lorisids, with Implications for the Evolution of Hominoid Locomotion 

by 

Catriona S. Read 

m 

Biological Anthropology 

Department of Anthropology 
University of Durham 

October 2001 

There has been considerable debate concerning the adaptive significance of 
hominoid postcranial anatomy. One of the hypotheses promoted is that the early 
hominoids were adapted to a loris-like deliberate quadrupedalism. The aim of the 
analysis reported here is to test this hypothesis by examining features of the wrist 
and ankle anatomy of lorisids and hominoids that pertain to increased joint 
mobility, in a comparative context with other arboreal quadrupeds. These 
characters are then compared with the Proconsulidae from the early Miocene to 
discern any similarities between these taxa and the lorisids and/or hominoids. 

Fourteen characters were examined, related to the ulnocarpal and radioulnar 
articulations, and the talocrural, subtalar and midtarsal joints, across four lorisid 
and four hominoid genera, and a selection of primates from the other major 
groups. Original measurements were taken for two hundred and twenty-nine 
neontological specimens in total, from fourteen genera. Indices were devised and 
compared by statistical analysis. 

The results suggest that lorisids and hominoids are similar in some of the 
characters examined, but differ in others. The proconsulids show varying degrees 
of similarity across the features, to the hominoids and lorisids. The results support 
a hypothesis that an early hominoid ancestor did indeed have similar functional 
adaptations to those of extant lorisids, but not across the whole suite of characters 
examined. It is therefore reasonable to assume that the ancestral hominoid 
locomotor pattern showed resemblances to that of the extant lorisids, but was not 
identical. 
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CHAPTER 1 

Introduction 

OBJECTIVES 

As a group hominoids possess a suite of postcranial synapomorphies in the 

forelimb, hindlimb, thorax, pelvis and vertebral column, and these characteristics 

can be related to the postural and locomotor behaviour of these genera 

(MacLatchy and Bossert, 1996; Harrison, 1987). Due to the apparent cohesive 

nature of this group in terms of its postcranial morphology, it is reasonable to 

assume that these taxa derive from a common morphological, and hence 

behavioural, base. Various studies have proposed a number of hypotheses for a 

basal hominoid locomotor type, ranging from the specialised brachiation or 

knucklewalking behaviours seen in the extant forms, to vettical climbing, or slow 

quadrupedal types (e.g., Lewis, 1971a, 1972a-b, 1974; Conroy and Fleagle, 1972; 

Cattmi11 and Milton, 1977; Fleagle et al., 1981; Gebo, 1996). 

Despite the superficial uniformity in locomotor anatomy of the extant hominoids, 

however, these taxa are quite diverse in their positional behaviour (Tuttle, 1986), 

and possess structural differences in their postcrania that reflect these contrasting 

behavioural adaptations (Ward, 1998). Whilst analysts have attempted to 

categorise the extant forms under all-encompassing terms such as 'suspensory' or 

'brachiators' (e.g., Ashton and Oxnard, 1964; Napier and Napier, 1967), these 

definitions are not adequate to reflect the true nature of hominoid behavioural and 

anatomical diversity. The brachiation of the modem gibbon is very different to the 

essentially quadrupedal knucklewalking of the African apes, and both are different 

again to the quadrumanous climbing and bridging behaviour utilised by the 

orangutan, and human bipedalism. Thus, any underlying locomotor origin must be 

seen as pre-adaptive for the evolution of all of these modem specialisations. 

Futthermore, the wealth of analyses of the earliest hominoids from the Miocene of 

East Aftica suggests that many elements of the postcrania of these genera were 



quite different from those seen in the extant apes (e.g., Rose, 1983), but found in 

combination with undisputed hominoid synapomorphies (e.g., loss of tail [Ward et 

al., 1991]) The majority of recent studies, however, support a view that the early 

hominoids were pronograde arboreal quadrupeds (Ward, 1993a-b, 1997, 1998; 

Strait et al, 2000), which effectively falsifies hypotheses of an orthograde, 

suspensory or knucklewalking common ancestor. 

Thus, the debate about the evolution of hominoid locomotion remains largely 

unresolved. Any theory must accommodate a relatively primitive, and essentially 

monkey-like, early Miocene form, and yet must also address the specialisations 

seen in hominoids today. It is suggested that a common ancestor was a relatively 

unspecialised arboreal quadruped, with enhanced manual and pedal grasping 

capabilities, and characterised by slow progression (Aiello, 1981; Conroy and 

Rose, 1983; Rose, 1983, 1996; Walker & Pickford, 1983; Langdon, 1986; Leakey 

et al., 1988b; Begun et al., 1994). Remarkably, the closest extant analogues to this 

form of locomotion are the strepsirrhine lorisids, and indeed these taxa show 

distinct convergence with the hominoids in certain postcranial characteristics 

(Cartmill and Milton, 1977). 

The primary aim of the thesis is to critically evaluate current theories of early 

evolution of hominoid locomotion. This is accomplished through an examination 

of postcranial features in some extant primate taxa. The specific hypothesis 

addressed is that proposed initially by Cartmill and Milton (1977), and revised by 

Kelley (1997); that the initial hominoid postcranial adaptation was lorisid-like 

cautious arboreal quadrupedalism, rather than brachiation, knuckle-walking or 

vettical climbing. This hypothesis is assessed by means of a comparative analysis 

of extant primate postcrania, and the functional interpretation of statistical data. 

Elements of the w1ist and ankle joint that have been previously described as 

synapomorphic hominoid characteristics are analysed, and compared with those 

exhibited in the slow quadrupedallorisids and in other arboreal quadrupeds. If the 

lmises exhibit similar adaptations of these specific regions to extant hominoids, to 

the exclusion of other arboreal primates, it might be inferred that they are 

homoplastic charactetistics, evolved to perform the same functional role. 
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In view of the fact that lorises do not engage in the three alternative forms of 

hominoid locomotion (brachiation, knuckle-walking or vertical climbing), it 

would falsify alternative hypotheses if similarities were found between the 

hominoid and lorisid groups. A slow-climbing arboreal quadrupedal ancestor, 

with enhanced joint mobility and grasping capabilities, would provide a 

reasonable postcranial model from which the morphology seen in extant apes, 

associated with more specialised locomotor patterns, could quite easily have 

derived (Kelley, 1997). 

THESIS OUTLINE 

The thesis is organised as follows: Chapter 1 is a brief outline of the purpose of 

study, and also includes an overview of the theories of locomotor classification 

and a description of the diverse locomotor behaviours observed within the order 

Primates. Locomotor categories are addressed with reference to the major primate 

divisions, although they traverse the "customary primate groupings" and are 

known to vary considerably between closelyrelated genera (Ashton and Oxnard, 

1964: 3). Chapter 2 introduces the early Miocene catarrhine genera relevant to the 

study, and provides a summary of previous analyses of the postcrania of these 

taxa. The final section in this chapter details the previous hypotheses that have 

been advocated for the locomotor behaviour of these early genera, and thus the 

initial locomotor adaptations of the hominoids on the whole. Chapter 3 examines 

previous literature about the wrist and ankle morphology in extant hominoids, 

lorisids, and the early Miocene forms, respectively (in a comparative context with 

arboreal cercopithecoids and ceboids). Chapter 4 presents the aims and objectives 

of this analysis. The methodology and materials used in the study are detailed in 

Chapter 5, and a full set of results is presented in Chapter 6. Finally, Chapter 7 

serves to summarise and discuss the results achieved in the analysis. 

PRIMATE LOCOMOTION: AN OVERVIEW OF CLASSIFICATION 

The order Primates is characterised by a remarkable range of diversity across the 

spectrum of its behaviours and associated morphology. Among the most well 
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studied behaviours are locomotor and postural patterns, and much of the structural 

variation of primate postcrania may be related to these activities (Fieagle, 1999). 

Locomotion, which can be viewed in its simplest form as displacement movement 

from one place to another (Fieagle, 1980), is more diverse among primates than in 

any other mammalian group (Fieagle, 1999). 

Throughout the history of primatology, theorists have attempted to classify 

patterns of locomotion within the order, by behavioural and morphological 

critetia, with a view to reconstructing aspects of both primate and human 

evolution (e.g. Erikson, 1963; Ashton and Oxnard, 1964; Napier and Napier; 

1967; Aiello, 1981). The extent of diversity, however, has proven problematic for 

reaching any solid consensus for classification. Indeed m~nx stud~es have found 

that most primates use a range of locomotor patterns, often context specific in 

terms of utility (travel/feeding), forest type, and forest level (Mittermeier and 

Fleagle, 1976; Mittermeier, 1978; Fleagle, 1980; Oxnard et al., 1990; Bergeson, 

· 1998; Dagosto and Gebo, 1998). It is important, however, to attain a precise 

classification of primate locomotor repertoires for the purpose of comparative 

morphological studies, as locomotor inference of fossil species is largely 

dependent upon relating particular morphological features with specific locomotor 

capabilities in extant forms. 

Primate body size ranges from lOOg to 200kg (Fieagle, 1980), and the observed 

locomotor repertoires include leapers, climbers, brachiators, knuckle-walkers and 

a variety of quadrupeds, both terrestrial and arboreal (Napier and Napier, 1967; 

Fleagle, 1999). Many primates can be seen as essentially arboreal quadrupeds, 

engaging in four-limbed running and walking on top of branches (Fleagle, 1980). 

These species are usually characterised by fore- and hindlimbs of equal lengths 

[intermembral index =approx. 100] (Fleagle, 1999). The limbs also tend to be 

short relative to body size, or habitually flexed, which has the effect of bringing 

the centre of gravity closer to the arboreal support for greater balance in this 

precarious environment (Schmitt, 1998; Fleagle, 1999). Arboreal quadrupeds 

often have a long tail, which acts as an additional balancing agent (Fleagle, 1999). 

Some primates, however, are specialised for more hindlimb or forelimb 

4 



dominated locomotion. Ve1tical clinging and leaping requires an emphasis on 

hindlimb propulsion, and thus the hindlimbs in these species are longer than the 

forelimbs (intermembral index <100 [Fleagle, 1999]). Primates that incorporate 

forelimb suspension in their locomotor repertoires (for example, the brachiating 

hylobatids) tend to have relatively longer forelimbs (intermembral index> 100) to 

reflect the greater reliance on the arms for propulsion (Zihlman, 1992; Fleagle, 

1999). Additionally, some plimates (e.g., Papio) have adapted to terrestrial living 

and tend to have relatively longer limbs and shorter phalanges than their arboreal 

counterparts, which may reflect selection for speed rather than balance (Fleagle, 

1999). 

Difficulties arise, however, where locomotor types are not clear-cut, and most 

theorists have recognised this as a weakness in their classifications (Erikson, 

1963; Ashton and Oxnard, 1967; Napier and Napier, 1967). Generally, categories 

such as quadrupedalism are not adequate to describe the wide range of gaits found 

among primate genera, and they say nothing of the secondary locomotor 

repertoires of such animals. Many primates have a range of locomotor 

capabilities, and utilise more than one specific locomotor type in their repe1toires, 

depending upon the structural context and the type of locomotion undertaken, 

such as travel/feeding (Fleagle, 1980). In these cases, it is sometimes difficult to 

recognise how morphological features relate to locomotor capabilities. 

What is clear from the different classificatory models is that primate locomotion is 

highly varied, more so than any other mammalian order (Fleagle, 1999), and 

attempts to categorise depend primarily on the criteria of the analyst (Oxnard et 

al., 1990). The different systems of locomotor classification have, in their time, 

offered useful insights into p1imate behaviour, and Napier and Napier's (1967) 

model is still frequently used today as a general overview (Table 1). The questions 

arise, however, as to whether or not these definitions should be based on 

behavioural or morphological criteria and correlations between anatomical 

features and locomotor behaviour. 
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Category Sub-type Activity Primate genera 

I. Vertical Clinging Leaping in trees and Avahi, Galago, Hapalemur. 

and Leaping hopping on the ground. Lepi/emur, Propithecus, 

lndri, Tarsius 

2. Quadrupedalism I. Slow climbing type. Cautious climbing - no Arctocebus, Loris, 

leaping or branch running. Nycticebus, Pemdicticus 

11. Branch running and Climbing, springing, branch Aotus, Cacajao, Cal/imico, 

walking type. running and jumping. Callithrir, Cebuella. Cebus, 

Cercopithecrts, 

Cheiroga/us, Chiropotes, 

Lemur, Leontideus, Plwner, 

Pithecia, Saguinus, Saimiri. 

Tupaia 

Ill. Ground running and Climbing, ground running. Macaca, Mandril/us, Papio, 

walking type. Theropithecus, 

El)•throcebus 

IV. New World semi- Arm-swinging with use of Alorwua, Ateles. 

brachiation type. prehensile tail; little Brachyteles. uzgothrix 

leaping. 

V. Old World semi- Arm-swinging and leaping. Colobus, Nasalis, Presbytis, 

brachiation type. Pygathrix, Rhinopithecus, 

Simia.1· 

3. Brachiation I. True brachiation. Gibbon type of brachiation. J-/ylobates, Sympha/angus 

11. Modified brachiation. Chimpanzee and orang-utan Gorilla, Pan, Pongo 

type of brachiation. 

4. 13ipedalism Striding. Homo 

Table 1: Locomotor classification [after Napier & Napier, 1967] 

All the behavioural categories used in classification can be somewhat misleading, 

in that the spectrum of locomotor patterns that each encompasses is so great. 

Important distinctions can effectively be submerged into overarching categories in 

classification, which can be somewhat ambiguous (Prost, 1965). The term 

quadrupedalism, for example, can invoke any number of diverse locomotor types, 

with different gaits, speeds and substrates used, and of course each subtle 

difference may necessitate fundamental changes in structural morphology 

(Fleagle, 1980; Rollinson and Martin, 1981; Cant, 1988; Walker, 1998). Similar 

ranges of behaviour can be encompassed within other locomotor categories: 

suspension, climbing and leaping (e.g. Prost, 1965). Walker (1998) suggests that 

broad cateogories of positional behaviour tell us little about biomechanics and 

body orientation during such activities, and thus terminology and classification 

need to be more clearly defined. In addition, these classifications give no 
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indication of the frequency and duration, the purpose, ancVor the circumstances of 

locomotor behaviours (Day, 1979). 

Certain morphological features are often interpreted to be functionally related to 

specific locomotor types, simply because some of the genera that exhibit the 

anatomical features utilise that form of behaviour within their repertoire. In these 

cases underlying basic functions can be disregarded, and little attention is paid to 

those taxa that exhibit the traits but not the behaviour. On the whole, correlates 

between morphology and behaviour must be quantitatively assessed in order to 

confidently interpret behaviours in fossil primates (Mittermeier, 1978; Dagosto 

and Gebo, 1998). 

LOCOMOTOR DIVERSITY ACROSS THE MAJOR PRIMATE DIVISIONS 

Lemuroidea 

There are seven families of living strepsirhines, five of which exist solely on the 

islandof Madagascar off the southeast coast of Africa: cheirogaleids, lemurids, 

lepilemurids (or megaladapids), indriids ,:md daubentoniids. The other two 

families are found on the mainland of the Old World: lorises in Africa and Asia, 

and galagids in Africa (Fleagle, 1999). In addition to the present day strepsirhines, 

there was also a huge radiation of sub-fossil lemurs on Madagascar whose 

relatively recent extinction may have been initiated by the arrival of human beings 

and the introduction of non-native mammals (Fleagle, 1999). The strepsirhines 

show enormous diversity in body size, morphology, and locomotor behaviour 

between genera and, in some cases, species (J ungers, 1979; Fleagle, 1999). 

Indeed, strepsirhines are observed to engage in vertical clinging and leaping, 

arboreal quadrupedalism, as well as deliberate climbing and suspensory 

behaviours (MacLatchy, 1998). 

The Malagasy forms show two types of locomotion: the cheirogaleids, lemurids 

and daubentoniid are primarily quadrupedal, whilst the indriids and lepilemurids 

are ve11ical clingers and leapers. These patterns, however, are by no means 

exclusive; some lemurs are capable of a combination of methods of travel and 
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nearly all are able to use a variety of postures when feeding or resting (Tattersall, 

1982). Godfrey ( 1988) suggests that most Malagasy strepsirhines are also adept 

vertical climbers, utilising a combination of both horizontal and vertical supports. 

The largest of the extant indriids, the tailless lndri indri is a highly specialised 

leaper, having very long propulsive hind limbs, relatively long, slender forelimbs 

and extremely long hands and feet. This species travels by leaping between 

vertical supports, usually in the lower strata of the forest where such supports are 

most abundant (Fieagle, 1999). Propithecus (sifaka) moves in a similar way and is 

known to travel by bipedal hopping when it occasionally comes to ground 

(Fleagle, 1999). Vertical climbing and bimanual suspension are also frequent 

forms of locomotion utilised by ind1iids (Gebo and Dagosto, 1988), and hindlimb 

postures are common during feeding (Tattersall, 1982). It is unusual to note that 

forelimb suspension is more common amongst the hindlimb dominated lemuroid 

genera than among quadrupeds (Tattersall, 1982). Hapalemur griseus (gentle 

lemur) is the most versatile of the Malagasy strepsirhines. Although typically 

clingers and leapers, they combine quadrupedal walking and running with leaping 

between both horizontal and vertical supports. Although they rarely come to 

ground, quadrupedal walking has been observed at this level (Tattersall, 1982; 

Fleagle, 1999). 

In contrast to the vertical clingers and leapers, the quadrupeds have shorter hind 

and forelimbs, flexed during movement and rest periods for stability and balance 

(Tattersall, 1982). The smallest of the lemurs, Microcebus, occupies a 'fine 

branch niche' in the undergrowth and lower levels of the forest strata, typically 

using a fast quadrupedal locomotion, scurrying along small twigs and branches, 

and frequently coming to ground (Tattersall, 1982; Fleagle, 1999). The larger 

Mirza coquereli (Coquerel's dwarf lemur) and Phaner furcifer (fork-marked 

lemur), however, combine running along horizontal branches with leaping 

between branch tips (Tattersall, 1982; Fleagle, 1999). The lemurids are primarily 

quadrupedal. Varecia variegata (ruffed lemur) is agile and adept at both 

quadrupedal running along horizontal or diagonal supports and climbing vettical 

trunks. They also leap among the fine branches at the edge of the forest canopy 

and use hindlimb suspension for feeding below branches (Tattersall, 1982; 
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Meldrum et al., 1997; Meldrum, 1998; Fleagle, 1999). Eulemur fulvus and Lemur 

catta are both quadrupedal forms, but occupy different strata: the former is 

predominantly arboreal, utilising running and leaping, whilst L. catta is semi­

teJTestrial (Tattersall, 1982; Fleagle, 1999). Of the quadrupedal lemurs, 

Daubentonia madagascariensis, or the aye-aye, is the slow climber, travelling 

along both vertical and horizontal supports, occasionally quadrumanously beneath 

the branches, and frequently descending to ground (Tattersall, 1982; Fleagle, 

1999). 

There seems to be a clear relationship between body size, vettical habitat and 

locomotor pattern: the larger species are restricted by body weight to more 

substantial supports higher up, whilst the smaller Microcebus is able to utilise tiny 

twigs and branches in the undergrowth (Tattersall, 1982). In addition, vertical 

clingers and leapers travel in the lower to intermediate strata, where vertical 

supports are less obscured by continuous vegetation. These species tend to be 

relatively small, and this type of locom0tion was probably an adaptation for 

smaller species, enabling them to travel continuously through lower levels of the 

forest without having to descend to ground. The larger quadrupedal species, 

however, are able to bridge across gaps between branch ends, and tend to inhabit 

the higher levels where they can move among the continuous forest canopy 

(Tattersall, 1982). 

The sub-fossil Malagasy strepsirhines include species of indriids, lemurids, 

lepilemurids and daubentoniids (Fleagle, 1999). These taxa were quite different 

from their modem counterparts: large bodied (Archaeoindris has been estimated 

to have been the size of a male gorilla) and probably diurnal (Fleagle, 1999). 

Postcranial remains showing long forelimbs (relative to hind limbs) and long 

curved phalanges, suggest that some species (e.g. Palaeopropithecus) were 

adapted to suspensory locomotion, possibly quadrumanous climbing beneath 

hmizontal supports, whilst others (e.g. Archaeolemur) were ptimarily adapted to 

tenestriallifestyles (Godfrey, 1988; Fleagle, 1999; Hamrick et al., 2000). The 

unusual Megaladapis, a species with similatities to the modem lepilemur, showed 

locomotor behaviour similar to the Australian koala, clinging and climbing on 

ve1tical supports (Godfrey, 1988; Fleagle, 1999; Hamrick et al., 2000). Godfrey 
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( 1988) proposed that climbing and slow quadrupedalism might have been 

important elements of the positional behaviour of many of the extinct lemurs, 

including Palaeopropithecus, Archaeoindris, Mesopropithecus, and Megladapis. 

Lorisoidea 

In comparison with the Malagasy strepsirhines, lorises and galagids are much less 

diverse in their adaptations, probably due to the greater competition with other 

primates and mammals. The family Lorisidae includes species from Africa and 

Asia: the potto (Perodicticus potto), the golden potto (Arctocebus calabarensis), 

the slender l01is (Loris tardigradus) and the slow !oris (Nycticebus coucang). All 

the lorisids are small, arboreal and solitary nocturnal foragers (Fleagle, 1999). The 

lorises are characterised by their slow, stealthy quadrupedal climbing, on a variety 

of arboreal supports (Walker, 1969; Jungers, 1979; Dykyj, 1980; Runestad, 1997) 

and minor locomotor differences can be att1ibuted to different supp011s used 

rather than differences in their positional repertoires (Jungers, 1979). They all 

possess elongated limbs, of similar lengths, flexible joints specialised for 

'bridging' across gaps between branches, and robust hands and feet with strong 

grasping capabilities in a wide variety of positions (Walker, 1969; Cmtmill and 

Milton, 1977; Grand, 1967). In all species, the tail is either short (P. potto) or 

absent. Although subtle differences in locomotion have been noted between the 

!oris species, the basic pattern is the same. Locomotion usually proceeds with 

three extremities grasping the support any one time, with the hands and feet 

laterally deviated in dorsiflexed wrist and ankle positions (Walker, 1969; Cmtmill 

and Milton, 1977; Grand, 1967). Below-branch quadrupedalism has also been 

noted in these species (Ashton and Oxnard, 1964; Cmtmill and Milton, 1977; 

Maclatchy, 1998) although Walker (1969) observes that this is primarily when 

moving from ve1tical to horizontal supp011s, rather than in habitual progression. 

Locomotion has also been observed on the ground, where the locomotor pattern is 

the same. 

Galagids are primarily agile vertical clingers and leapers with hugely elongated 

hindlimbs, although some species, for example Otolenzur crassicaudatus (thick­

tailed bushbaby), combine this with quadrupedal running and walking (Fieagle, 
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1999). All species leap between vertical supports in a frog-like fashion, using their 

hindlimbs as the initial propulsion, and Euoticus can travel up to 40 feet in a 

single leap (Napier and Walker, 1987). All species utilise a bipedal hopping gait, 

in combination with quadrupedalism, on the ground (Oxnard et al., 1990; 

MacLatchy, 1998). 

Ceboidea 

As with the strepsirrhines, the platyrrhines are diverse in terms of both their 

locomotor repertoires and their associated morphology. All, however, fall within a 

relatively conservative 70 to 100 range in their intermembral indices (Fleagle, 

1999). Many subfamilies may be identified within the grouping, although only six 

are recognised here: Callitrichinae, Cebinae, Aotinae, Callicebinae, Pitheciinae 

and Atelinae (after Fleagle, 1999). The callitrichines are the smallest of these 

primates and include the marmosets, tamarins and Goeldi 's monkey. All species 

within this subfamily are arboreal quadrupeds (walking and running) and some 

are adept leapers (Fleagle, 1999). In addition, some species (e.g.Callimico goeldii) 

habitually cling to, and leap between, vertical supports (Fle'agle, 1999). 

Aotus (owl monkey), the single genus in the aotine subfamily, is for the most part 

quadrupedal, but is also an adept leaper (Fleagle, 1999). The callicebines are 

similar morphologically to the aotines, and are also quadrupedal. Callicebus does, 

however, show variation in the frequency of leaping between species, and similar 

variation in ve11ical clinging habits (Fleagle, 1999). 

The pitheciines are an extraordinary grouping of three genera: Pithecia, 

Chiropotes and Cacajao. Within this group the locomotion of the genera varies 

hugely. Pithecia is the most saltatory of the New World monkeys, spending 

approximately 75% of moving time using this form of locomotion, whilst Cacajao 

and Chiropotes are primarily arboreal quadrupeds, frequently using hindlimb 

suspension (Walker and Ayres, 1996; Meldrum, 1998; Walker, 1998; Fleagle, 

1999)1
• Walker (1998) suggests that this high percentage of leaping in Pithecia is 

1 Walker ( 1998) suggests that Pithecia utilises leaping during about 40% of locomotor bouts, 
compared to Chiropotes leaping for only 25%. 
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reflected in its essentially prosimian-like postcrania, whilst Chiropotes does not 

exhibit these morphological specialisations. 

The cebines, Cebus and Saimiri, are both primarily arboreal quadrupeds but the 

two genera combine this form of locomotion with other specialisations. Cebus 

utilises its prehensile tail for additional support, whilst Saimiri is a much more 

versatile leaper (Fleagle, 1999). 

The New World subfamily Atelinae (Alouatta, Ateles, Brachyteles, and Lagothrix) 

is characterised by a large prehensile tail (Meldrum, 1998)2 and suspensory 

postural and locomotor repertoire. Erikson (1963) classified these species as 

brachiators. Ashton and Oxnard (1964) defined Alouatta as a slow quadruped 

aided by its prehensile tail that frequently used leaping and bridging to cross 

between trees in its arboreal environment. The remaining three genera, however, 

were classified as essentially quadrupedal walkers and runners, habitually using 

arm-swinging and their prehensile tails to aid climbing and in locomotion. Napier 

and Napier (1967) desctibed the atelines as quadrupeds of the New World semi­

brachiation sub-type. This latter model has been particularly c1iticised with 

reference to the 'semi-brachiator' subtype, which was deemed inadequate on two 

counts: that the group defined no single locomotor pattern, and that locomotor 

diversity was greater than similarities within the category (Mittermeier & Fleagle, 

1976). Cant (1986) states that Napier and Napier's semi-brachiating classification 

obscures important differences between the organism's postcrania and its use of 

its natural habitat. Ankel-Simons (1983) proposes that in the case of this 'semi­

brachiation' category, group cohesion is morphological in origin, rather than 

behavioural. Indeed, observational studies of ateline genera have shown a wide 

locomotor diversity within the group, with differences in both modes of 

locomotion used and time spent utilising each locomotor pattern (Grand, 1968; 

Richard, 1970; Mendel, 1976; Mittermeier, 1978; Fleagle & Mittermeier, 1980; 

Cant, 1986; Youlatos, 1996; Bergeson, 1998; Defier, 1999). 

2 The ateline prehensile tail can comprise up to 8% of body weight, which illustrates its importance 
in the positional behaviours of these taxa (Zihlman, 1992). 
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The atelines, however, do show elements of suspensory locomotor and postural 

behaviour that is unparalleled within the Old World monkeys. Indeed, their 

repertoires can be most closely related to that of the lesser apes, in their tendency 

towards under-branch suspensory behaviour. Cant et al. (200 1) suggest that whilst 

none of the cercopithecoids show intermediary adaptation towards suspensory 

behaviour, the atelines do, which implies that the cercopithecoids are quite 

derived from the primitive catarrhine morphology. In view of their inclination 

towards suspensory positional behaviour, the atelines have been proposed as good 

examples for the analysis of the evolution of the specialised behaviours of extant 

apes (see also Etikson, 1963) and some studies have noted parallels between the 

morphology of Miocene fossil primate postcrania and these extant below-branch 

feeding primates (e.g., Aiello, 1981; Feldesman, 1982; Rose, 1996). Alouatta has 

also been advocated as an ideal model to represent the basal anthropoid 

morphotype in terms of postcranial adaptations and locomotor behaviour (Schon 

Ybarra and Conroy, 1978). It has been suggested that this group may provide 

useful insights into the evolution of suspensory behaviour in the Hominoidea. 

Thus, this group has often been used as a model with which to compare early 

hominoid postcrania, in an attempt to establish the evolution of this element of 

behaviour in extant apes (e.g. Rose, 1996). 

Cercopithecoidea 

The cercopithecoids are relatively uniform in both their postcrania and locomotor 

behaviour (Rollinson and Martin, 1981) and can be divided into two subfamilies, 

cercopithecines and colobines. The Old World monkeys as a group, however, are 

quite derived in their locomotor adaptations (Strasser, 1988). These taxa all fall 

within a relatively conservative 1-30kg in body weight (Rollinson and Martin, 

1981) and most genera are predominantly quadrupedal, with some more 

ten·estrially adapted. Within the broad arboreal quadruped category, however, 

some species are inclined towards more saltatory locomotion while others are 

known to be more reliant on climbing and suspension (Fieagle, 1980; Rollinson 

and Martin, 1981; Fleagle, 1999; Gebo and Chapman, 2000). In general, the 

cercopithecines have equal length limbs, whilst the colobines have relatively 

longer hindlimbs, which is reflective of their differing locomotor tendancies 
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(Fieagle, 1999). In a study of the behaviours of Malayan macaques (Macaca 

fascicularis and M. nemestrina) and leaf monkeys (Presbytis melalophos and P. 

obscura), Fleagle (1980) found that all species were fundamentally quadrupedal, 

but each combine this basic pattern with other behaviours. Both of the leaf 

monkeys utilise leaping behaviours and vertical climbing, although they engage in 

vertical quadrupedal walking rather than the quadrumanal climbing seen in apes. 

Both species use quadrupedalism during feeding bouts, but P. melalophos tend to 

leap more in travel. Of the macaque species, M. fascicularis is predominantly 

arboreal, combining quadrupedal walking and running behaviours with climbing 

and leaping3
, whilst M. nemestrina is more terrestrially inclined and less skilful at 

climbing and leaping (Fleagle, 1980). 

Gebo and Chapman (2000) studied five sympatric African species: Cercopithecus 

ascanius, C. mitis, Lophocebus albigena, Colobus badius and C. guereza. Again, 

all were found to be predominantly arboreal quadrupeds, but they differed in the 

combinations of their locomotor activities. Cercopithecus ascanius undertakes 

frequent climbing, but neither of the Cercopithecus species engage in quadrupedal 

suspension, bridging, bimanualism, bipedalism or vertical bounding. L. albigena 

and both Colobus species combine quadrupedalism with frequent leaping. Within 

Colobus, C. badius is more inclined toward climbing, whilst C. guereza leaps 

more frequently. This study found that body-size differences could not account 

sufficiently for locomotor differences, although the smaller species engage in 

more climbing whilst the larger tend to leap, which is the reverse situation to that 

found in platynhine species (Gebo and Chapman, 2000; Fleagle and Mittermeier, 

1980). Additionally, the authors observed Colobus badius over several seasons 

and found that locomotor frequency showed seasonal variability (Gebo and 

Chapman, 2000). 

Whilst primates have an anatomical design and body dimensions that affect their 

movement possibilities, most species are ecologically flexible in their use of 

positional behaviour. Consequently, more attention needs to be committed to the 

3 Cant (1988) reported this species to engage in vertical climbing, and pronograde and vertical 
clambering, which he proposes as a reasonable model for an early stage of hominoid evolution 
before true orthogrady. 
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understanding of intraspecific variation in extant species, particularly with 

reference to the relationship between behaviour, ecology and anatomy, in order to 

apply this knowledge for a better understanding of fossil primates (Gebo and 

Chapman, 2000). 

Hominoidea 

The living hominoids vary considerably in their body size, from approximately 

5kg in Hylobates, to up to 200kg in male gorillas (Jungers, 1988). Superfamily 

Hominoidea is perhaps the most contentious of the primate groups in te1ms of 

locomotion. It has long been the trend to classify these genera within a 

'brachiating' locomotor category (e.g.Napier and Napier, 1967; Erikson, 

1963;Ashton and Oxnard, 1964), despite the fact that only the hylobatids 

habitually undertake this form of locomotion. Indeed, brachiation is rarely 

obse1:ved in the great apes4 (Fieagle et al., 1981). Kelley (1997: 175) states 

"brachiation is a much abused and often ill-defined term, embodying different sets 

of behaviour for different workers". This is, perhaps, an issue of semantics, rather 

than one of classification. Often, suspensory locomotor behaviour has been 

defined under an all-encompassing brachiation category, which has the effect of 

obscuring individual locomotor differences between suspensory species (Fieagle 

et al., 1981; Kelley, 1997). Hominoids as a group, however, use a wide range of 

locomotor behaviours including quadrupedalism, bipedalism, quadrumanous 

climbing, brachiation and leaping (Tuttle, 1986; Jungers, 1988; Satmiento, 1994). 

Hylobatids are renowned for their rapid mm-over-arm ricochetallocomotion, 

which is used here as the traditional definition of brachiation (e.g., Napier, 1963; 

Andrews and Groves, 1976; Fleagle, 1980). Fleagle (1980) noted four categories 

of locomotion among hylobatids, which varied in frequency between species: 

quadrumanal climbing, brachiation, bipedalism and leaping. In most species, 

brachiation is the most frequent form of locomotion during travel, whilst climbing 

is most commonly undertaken during feeding. There are also differences between 

gibbons and siamangs, which might be attributed to body size differences: the 

~It is important to note that whilst the author acknowledges humans to be part of a great ape 
grouping, references to the 'great apes' in this study refer only to Pongo, Gorilla and Pan. 
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smaller gibbon is more adept at ricochetal arm-swinging, whilst the larger 

siamang tends to climb more frequently (Fleagle, 1980; see also Tuttle, 1986). 

Locomotor type is also highly dependent on support use. Climbing is more viable 

on small supp01ts, for weight distribution over multiple supports in vatiable 

positions, whereas brachiation is utilised between larger supports (Fleagle, 1980). 

Pongo, whilst fundamentally suspensory when in an arboreal environment, is 

characterised by a slower, more versatile quadrumanous form of climbing 

locomotion. Its repertoire includes: climbing/clambering, bridging and 

transferring, vertical ascents and descents5
, hoisting, pedal assisted arm-swinging, 

quadrupedal suspension below branches and tree-swaying (Napier, 1963; Tuttle, 

1986; Gebo, 1996). Tuttle (1986: 40) suggests that orangutan suspension "lacks 

the speed and now of the specialised ricochetal brachiation of gibbons and 

siamangs". Adult males spend a considerable amount of time on the ground, 

unlike females, which might be attributed to their larger body size (Tuttle, 1986; 

Gebo, 1996), and during arboreal locomotion males utilise more branch swaying, 

whilst females engage in quadrumanous clambering (Zihlman, 1992). The 

orangutan is very unusual as a mammal of very large body size engaging in 

significant arboreal activity, and this might be attributed to their preference for 

swamp forest habitats, where the forest floor is flooded for long periods (Tuttle, 

1969). 

The African apes are generally far more terrestrial in their locomotor behaviour 

than the Asian species, and use a characteristic knuckle-walking form of 

quadrupedalism, where the main body weight is supported on the dorsal surface of 

the third and fourth digits of the flexed hand (Tuttle, 1967; Fleagle, 1999). The 

majority of the arboreal climbing component in their locomotor repertoires, 

however, is practised on vertical supports, as in Pongo (Gebo, 1996). 

Chimpanzees are more arboreal than gorillas, and are adept vertical climbers. Sub­

adults spend more time in trees than mature individuals, and move more easily in 

this environment. Adults become increasingly cautious in an arboreal context, 

5 Gebo (1996) reports that in Pongo, 61% of arboreal travel is spent utilising vertical support. 
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perhaps due to their body size (Tuttle, 1986). Reports differ conceming the 

frequencies of brachiation, jumping and leaping, and bridging behaviours, 

although this may well be due to intraspecific variation caused by environmental 

differences (Tuttle, 1986). Chimpanzees also undertake bipedal walking for short 

distances on the ground (Tuttle, 1986). 

The bonobo (Pan paniscus) is generally more arboreal in its locomotor behaviour 

than Pan troglodytes (Gebo, 1996), but also spends a considerable time on the 

ground using quadrupedal knuckle-walking, and occasional bipedalism. Arboreal 

behaviours include: arm-swinging, quadrumanous climbing, scrambling and 

transferring, and above-branch quadrupedalism, in either knuckle-walking or 

palmigrade hand postures depending on support size (Tuttle, 1986). 

The gorilla is predominantly terrestrial, spending between 80 and 97% of the time 

at this level (Tuttle, 1986). Most arboreal activity in adults is for feeding, and 

individuals tend to spend most of their time near the trunk and on large vertical 

boughs (Tuttle, 1986). Ricochetal arm-swinging is never observed, and forelimb 

suspension is rare (Fieagle et al., 1981). Most arboreal activity is quadrupedal 

climbing (Gebo, 1996). 
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CHAPTER2 

Locomotor adaptations in the eady Miocene hominoids 

l'HE EARLY MIOCENE HOMINOIDS: INTRODUCTION 

The earliest identified hominoid remains are dated to the beginning of the 

Miocene epoch, the period between 23.7 and 5.3 million years ago (Rae, 1993). 

The temperature at the early Miocene (23.7- 16 mya) was much warmer than the 

preceding Oligocene epoch, despite fluctuating temperatures, and Africa was 

becoming gradually more arid (Fleagle, 1999). This particular time period was 

charactetised by an enormous array of fossil hominoids, in terms of both diversity 

and abundance (Ward et al., 1997; Fleagle, 1999). Hominoid fossils are 

geographicaily restricted during the early parts of this time period to Kenya and 

Uganda in East Africa. During the middle and latter parts of the Miocene, 

however, hominoids became prolific in both Europe and Asia. 

The primitive hominoids of the early Miocene were first recognised by Hopwood 

(1933)6
, and are now acknowledged to include four species of Proconsul (P. 

africanus, P. heseloni, P. nyanzae and P. major), Afropithecus turkanensis, 

Afropithecus leakeyi, Turkanapithecus kalakolensis, Rangwapithecus gordoni, 

Limnopithecus legetet and Limnopithecus evansi, Dendropithecus macinnesi, 

Simiolus enjiessi, Simiolus leakeyorum, Micropithecus clarki, Kalepithecus 

songhorensis and Morotopithecus bishopi (described by Hopwood [1933]; 

Maclnnes [1943]; Le Gros Clark and Leakey [1951]; Andrews, [1974, 1978]; 

Fleagle and Si mons [ 1978]; Leakey and Leakey [ 1986a-b, 1987]; Walker et al. 

[1993]; Gebo et al. [1997]). These species derive from a cluster of localities in 

sub-Saharan Africa, most of which are associated with volcanic centres within the 

Great Rift Vaiiey (Rae, 1993). The Kenyan sites that have yielded remains include 

6 Hopwood (1933) first identified P. africanus, which was among the first named of the Miocene 
primates, found within a sample of fossils from the Koru locality in Kenya and dated to the Lower 
Miocene. Hopwood suggested that the new species approximated in size to Pan, and based on its 
dentition, although primitive in comparison to modern apes, he promoted it as ancestral to the 
chimpanzee. More recently, much of the P. aji-icanus material has been reassigned toP. heseloni 
(Walker et al., 1993; Walker, 1997, Pilbeam, 1997). 
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Rusinga Island, Songhor, Legetet, Chamtwara, Meswa Bridge, Koru, Mteitei 

Valley, Karungu, Mfangano Island, Buluk, and Kalodin. The Ugandan specimens 

were recovered at Napak and Moroto (Rae, 1993). 

The early Miocene sites were mainly forested locations, incorporating a variety of 

different habitats within this broad category (Langdon, 1985). The early 

Proconsul sites at Songhor and Koru were characterised by tropical rainforested, 

whilst the later Rusinga island sites were probably open deciduaous forests 

(Andrews et al., 1997) The fauna suggests, therefore, that arboreal behaviour was 

an important adaptation for the early Miocene hominoids (Langdon, 1985). 

Species 

Family PROCONSULIDAE 

Proconsul 

P. africanus 

P. heseloni 

P. nyanzae 

P. major 

Rangwapitherus 

R. gordoni 

Limnopithecus 

L. legetet 

L. evansi 

Dendropithecus 

D. macinnesi 

Simiolus 

S. enjiessi 

S. leakeyonan 

Micropitherus 

M. darki 

Kalepithecus 

K songlwrensis 

Family lncertae sedis 

Afropithews 

A. turkanensis 

A. /eakeyi 

Morotopithecus 

M. bishopi 

TurknnapithecitS 

T. kalakolensis 

Epoch Location 

Early Miocene Africa 

Early Miocene Africa 

Early Miocene . Africa 

Early Miocene Africa 

Early to middle Miocene Africa 

Early Miocene Africa 

Early Miocene Africa 

Early to? middle Miocene Africa. Saudi Arabia 

Early Miocene Africa 

Early Miocene Africa 

Table 2:Early Miocene hominoids [after Fleagle, 1999] 

Estimated mass (g) 

27.400 

17.000 

28,000 

50.000 

15.000 

5,000 

6,000 

9.000 

7,000 

3,000 

5,000 

50,000 

40,000 

10,000 
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The early Miocene genera exhibit a large range of body size, from the 3.5kg 

Micropithecus to the 50kg Proconsul major and Afropithecus (Fleagle, 1999; 

Table 2). Postcrania, however, are only known for a few of the genera, and, 

unfortunately, much of this is fragmentary. Examination of the postcrania of these 

Miocene forms has revealed morphology unlike that seen in the modem genera. 

Locomotor repertoires were, contrary to predictions, very different from the more 

suspensory modes of extant hominoids, and indeed the first evidence of an 

emerging forelimb dominated locomotion was not apparent until the later 

Miocene (Ward, 1998). Perhaps the most unifying of locomotor behaviours 

among these early forms was that of powerful quadrupedal climbing, which 

appears to have been integral to the locomotor repe1toires of all of the earliest 

apes. 

PREVIOUS ANALYSES OF EARLY MIOCENE HOMINOID POST CRANIA 

The early Miocene hominoids, most particularly Proconsul, have been rigorously 

studied with respect to their postcraniallocomotor skeleton, yielding a number of 

different interpretations (e.g. Napier and Davis, 1959; Fleagle, 1983, 1986; 

McHenry and Corruccini, 1983; Lewis, 1971a, 1972a-b, 1974; Rose, 1983, 1992, 

1996, 1997; Walker & Pickford, 1983; Langdon, 1985, 1986; Leakey et al., 

1988a-b; Ward, 1993, 1997, 1998; Begun et al., 1994; MacLatchy & Bossert, 

1996). Due to the derived nature of the postcrania of extant hominoids toward 

forelimb dominated locomotion, early analysts expected to find similar 

adaptations in basal species. The assumption was that the hominoid lineage 

initially diverged into a below-branch niche, and was characterised by associated 

changes in postcrania. Many studies (e.g. Harrison, 1982, 1987; Ward, 1993a-b, 

1997, 1998; Sanders and Bodenbender, 1993), however, have found that the 

postcrania of early hominoids are more similar, in many respects, to those of 

extant arboreal, quadrupedal cercopithecoids than their extant ape counterparts, 

although the features found in the primitive genera differ in combination to those 

found in any living primate7
. The different views that have derived from the many 

7 This has somewhat hampered the reconstruction of the behaviour of these fossil primates, as 
comparative analyses can only be done with extant forms, and since no living primate bears the 
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analyses have depended largely upon the characters studied, as these early 

hominoids exhibit a mosaic of monkey-like, ape-like and unique features 

(Langdon, 1986). Much depends upon the school of thought of the author: the 

significance attached to a 'brachiation' model of hominoid origins (and probably 

also the other major hypotheses, for example knuckle-walking), and the various 

interpretations as to the best extant representatives (brachiators/suspensory, 

primitive arboreal quadrupeds, generalised climbers or more specific hominoid 

types) (Langdon, 1986). 

This literature overview will focus on the main genera of the time period, for 

which postcranial matetial has been recovered: Proconsul, Dendropithecus, 

Rangwapithecus, Limnopithecus, Kalepithecus, Simiolus, Micropithecus, 

Afropithecus, Turkanapithecus and Morotopithecus. 

One of the earliest dated of the Miocene genera is Proconsul. Postcranial remains 

are known for four species (P. nyanzae, P. heseloni, P. africanus and P. major) 

and Proconsul is perhaps the best represented, and thus most studied, of fossil 

hominoids from this time period (MacLatchy & Bossert, 1996). Another early 

Miocene hominoid, Afropithecus, is generally regarded to be similar to Proconsul 

in its postcrania (Leakey et al., 1988b; Rose, 1992; 1997; Andrews et al., 1997; 

Ward, 1997, 1998), and hence locomotor inferences for Proconsul have been 

equally be applied to this genus8
. Afropithecus probably most resembled P. 

nyanzae due to similarities of body size (Leakey et al., 1988b; Leakey and 

Walker, 1997). 

exact morphological features of the fossil forms, locomotor and postural inference must be 
tentative. 
8The difficulties with this assumption were highlighted by Sanders and Bodenbender (1993) in 
their analysis of the Moro to lumbar vertebra specimen (UP 67 -28). Although the specimen showed 
no overall similarities to any extant catarrhine, it is the earliest specimen that shows affinities to 
modern hominoids. If this specimen had been confidently assigned to Afropithecus (as the authors 
recommended), it would have called into question the assumed similarities in positional behaviour 
between Afropithecus and Proconsul. This specimen was originally assigned to P. major, which 
would have opened a similar debate about the assumed postcranial, and thus positional, similarities 
within Proconsul. It is now generally agreed that this specimen represents a unique genus, 
Morotopitlzecus (MacLatchy et al., 2000), but the previous literature regarding this specimen 
highlights the dangers of assuming overall postcranial similarity from incomplete fossil postcrania, 
and caution should be taken due to the mosaic nature of evolution (see also MacLatchy and 
Bossert [1996] in their study of the shoulder and hip of Proconsul and Afropithecus). 
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Proconsul species varied in body size from approximately 11kg for P. africanus 

to almost three times as much for the larger P. nyanzae, but despite size 

differences, the species show no apparent differences in overall morphology or 

shape (Walker & Pickford, 1983). In limb proportions, Proconsul was generally 

monkey-like, with an intermembral index estimated to 86.99
, equivalent to that of 

quadrupedal monkeys, and a brachial index closest to Pan 10
. Overall, Proconsul 

limbs were relatively short and anatomically robust for their body size, with 

relatively large articular surfaces (Walker & Pickford, 1983). The most likely 

form of locomotion undertaken by Afropithecus and Proconsul was slow-moving 

arboreal quadrupedalism (Leakey et al., 1988b). Afropithecus and Proconsul are 

assumed to share a postcranial morphology close to that of the primitive hominoid 

condition (Ward, 1998), which suggests that their locomotion may be a good 

representative for that of the ancestral hominoid. 

Analyses of the Proconsul forelimb have yielded differing results as to their 

modem affinities across various charactetistics. The shoulders of P. nyanzae and 

P. africanus exhibit characteristics of the scapula ·and proximal humerus 

indicative of considerable mobility including overhead forelimb positions: fairly 

oblique scapula spine, cranially directed glenoid fossa, laterally extended 

acromion, greater degree of medial torsion in the humeral head, expansion of the 

humeral head, lateral migration of the lesser tuberosity and reduction of both the 

lesser and greater tuberosities in comparison to earlier catarrhine species (Rose, 

1983, 1989; Walker and Pickford, 1983; Gebo et al., 1988). 

In contrast, other examinations of the humerus and glenohumeral joint of 

Proconsul (e.g. Ward, 1997; Larson, 1996) have found features consistent with 

quadrupedal pronogrady: retroflexion in the humeral shaft and ventrally directed 

humeral head. These features would be compatible with a laterally placed scapula, 

set in a parasagittal plane on the side of the thoracic cage, as seen in quadrupedal 

monkeys (Ward, 1997). The degree of humeral torsion noted for Proconsul 

9 Fleagle (1999) reports the intermembral index to be 89 in Proconsul heseloni. 
10 Rose (1988) estimated brachial index to be 96. 
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seemingly exceeds that of cercopithecoids, but is not as extensive as in extant 

apes, which would concur with the earlier observations. 

Studies of the humero-radial joint of P. africanus suggest that the Proconsul 

forelimb was capable of considerable flexion-extension, with a high degree of 

mediolateral stability throughout the range of movement, and a reasonably high 

range of supination/pronation (comparable to extant cebids) 11
. The elbow joint is 

thought to be most similar to that of extant hominoids, (Rose, 1983; see also Rose, 

1988, 1992; 1997; Walker and Pickford, 1983). Features of muscular insertion and 

the posterior direction of the olecranon process, also suggest a degree of 

terrestriality in the larger Proconsul species (Rose, 1983; Fleagle, 1983). 

Studies considering the wrist and hand of Proconsul, have reached varying 

conclusions: some equating the morphology with hominoids (Lewis, 197la, 

1972a-b, 1974) and other suggesting it to be more monkey-like (Napier and 

· Davis, 1959; Schon amd Ziemer, 1973; Morbeck, 1975; Corruccini et al., 1976; 

Fleagle, 1983; McHenry and Corruccini, 1983; Rose, 1983; Harrison, 1987). 

There is no evidence to suggest that these species were adapted to knuckle 

walking (McHenry and Corruccini, 1983) and most studies have agreed that 

Proconsul possessed powerful grasping capabilities in the hand (Rose, 1983, 

1992, 1996, 1997; Begun et al., 1994). 

With respect to the hindlimb in Proconsul, a mosaic of features is again evident. 

The hip joint is capable of a wide range of mobility, indicated by the low greater 

trochanter, high femoral neck and spherical femoral head (Fleagle, 1983; 

MacLatchy & Bossert, 1996), and the femoral head shows similarities to arboreal 

colobines (Ward, 1997)12
. The knee joint, on the other hand, is more similar to 

living hominoids and cebids, with flexibility of posture and adaptation to heavy 

loading (Ward, 1997). The morphology of the Proconsul patella is similar to 

11 These findings are contested by Harrison (1987), who suggests that Proconsul lacked the 
specialisations of the elbow consistent with increased potential for extension and rotation of the 
forelimb, as well as lacking adaptations towards increased mobility in the wrist, ankle, hip and 
knee joints. 
12 Ruff et al. (1989) suggest that Proconsul femora fall into two distinct categories: the smaller P. 
africanus specimens are most similar to cercopithecines in their size and proportions, whilst the 
larger P. nyanzae are more like Pan paniscus. 
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extant hominoids, and probably represents a primitive hominoid condition ill 

adapted to running or leaping (Ward et al., 1995). 

Analyses of the ankle and foot of Proconsul have generally agreed upon a high 

degree of mobility within the mid-tarsus, with a powerfully robust and divergent 

hallux (Fleagle, 1983; Begun et al., 1994; Ward, 1997). The robusticity of both 

the fibula and hallux are also suggestive of strong grasping and climbing 

capabilities (Fieagle, 1983; Walker and Pickford, 1983; Ward, 1997). 

The morphology of the hand and foot phalanges suggests that the hands and feet 

of Proconsul are very similar, capable of both powe1ful manual and pedal 

grasping (Rose, 1992; Begun et al., 1994). Although these specimens share 

derived characte1istics with modern apes, they lack the longitudinal curvature seen 

in the more suspensory primates (Begun et al., 1994). Overall, the hands and feet 

of these species are indicative of adaptation to slow vertical and sub-vertical 

climbing, and the features suggest grasping rather than palmigrade 

quadrupedalism (Begun et al., 1994). 

Overall, the appendicular skeleton of Proconsul (and by default Afropithecus) has 

been found to be considerably more primitive than that of modern hominoids, in 

many aspects adapted primarily for arboreal quadrupedalism (for example, 

relatively shmt forearm, features of the proximal humerus and an unreduced 

thumb). The limbs were robust overall, more like modern cercopithecoids, Pan 

and non ateline ceboids than Hylobates and atelines (Ruff et al., 1989). Analysts 

generally agree, however, that the quadrupedal gait of Proconsul was probably 

one of slow, deliberate progression, rather than the agile running and bounding 

behaviours of arboreal monkeys (e.g. Kelley and Pilbeam, 1986). 

Proconsul and Afropithecus may have differed fundamentally in their ranges of 

mobility at the shoulder and hip joints (MacLatchy and Bossert, 1996). Proconsul 

shows restricted mobility in the shoulder, but a very mobile hip, whilst 

Afropithecus has a shoulder and trunk more compatible with orthograde and 

suspensory postures, but only a moderately mobile hip (MacLatchy and Bossert, 
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1996). This mobility of the limbs is probably related to suspension, but is different 

to all extant anthropoids that exhibit patterns where both shoulder and hip are 

either mobile or not. In effect, therefore, these relationships are effectively 'de­

coupled' in these early species, which illustrates the mosaic nature of early 

hominoid postcranial evolution (MacLatchy and Bossert, 1996). These findings 

might support a model where both genera were fairly generalised arboreal 

quadrupeds, utilising deliberate climbing, and supplementing these behaviours 

with either hindlimb (Proconsul) or forelimb (Afropithecus) suspension. 

Most studies have indicated, however, that Proconsul was probably capable of a 

greater range of mobility within the limbs at all joints (seen most particularly in 

the distal humerus and elbow joint) than extant cercopithecoids, thus suggesting 

more variable locomotor and positional repertoires within an arboreal 

environment (Fleagle, 1983; Rose, 1983, 1989; Walker and Pickford, 1983; 

Kelley and Pilbeam, 1986; Gebo et al., 1988; MacLatchy & Bosset1, 1996). This 

mosaic of primitive and derived features, however, would accord with any 

expectations of a basal member of the Hominoidea. 

The relative shape and length of the torso of P. nyanzae (based on specimen 

KNM-MW 13142 vertebrae and hip bone) falls well within the range for arboreal, 

quadrupedal monkeys indicated by a long vertebral column, long torso cranio­

caudally, transversely narrow and dorso-ventrally deep thoracic cage, and 

powerful spinal musculature (Ward, 1993a-b; Ward et al., 1993). The almost 

complete hip bone of P. nyanzae is most reminiscent of pronograde arboreal 

quadrupeds, and shows no evidence of orthograde postures (Ward et al., 1993). 

These features are compatible with extensive flexion of the spine, implying 

pronograde, quadrupedal locomotion. Whilst Proconsul retains features of 

cercopithecoid-like dorsoventral flexion in the lower back, the evidence suggests 

that this is not to the same degree as extant monkeys (Sanders and Bodenbender, 

1993). Indeed, the characters of the Proconsul vertebrae, including the inferred 

musculature, indicate that these species were less capable of the leaping, bounding 
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and running behaviour characteristic of many extant cercopithecoids (Sanders and 

Bodenbender, 1993). 

Analysis of the sacral vertebrae in P. africanus has, however, provided evidence 

that this species did not have a tail (Ward et al., 1991). "The lack of tail in 

Proconsul suggests that tail loss in hominoids was not a consequence of forelimb 

dominated locomotor patterns. Rather, tail loss preceded these locomotor changes 

in the hominoid lineage" (Ward et al., 1995: 219). The reason for tail loss in this 

arboreal species remains unexplained, although some authorities have attributed 

this as an adaptation to orthogrady (e.g. Begun et al., 1994). It is reasonable to 

assume, however, that tail loss was integral to the evolution of hominoid 

specialisations. Kelley (1997) suggests that Proconsul developed powerful 

grasping hands and feet to compensate for its lack of tail and large body size in an 

arboreal environment. Increased limb mobility would be necessary in balance 

whilst grasping. Rose (1996: 11) appears to agree with this conclusion," it is 

.. possible that initially, derived hominoid features represented functional 

complexes that allowed relatively large-bodied but tail-less animals to manoeuvre 

successfully in an arboreal environment" 

Proconsul seemed to possess a mosaic of extant Old World monkey, New World 

monkey and ape features (Walker & Pickford, 1983), and probably had a quite 

varied positional repertoire incorporating a large element of slow climbing (Rose, 

1983; Walker and Pickford, 1983; Walker, 1997). This apparent slow, 

quadrupedal, climbing behaviour has been equated to that of the less agile New 

World ate lines (Aiello, 1981; Rose, 1996). Overall, the plethora of evidence 

suggests that Proconsul was a powerful, arboreal quadruped, with joint mobility 

that allowed an extensive range of movement in all four limbs, whilst retaining a 

more monkey-like bauplan of the axial skeleton. Its strong, grasping pedal and 

manual capabilities are indicative of adaptation to scansoriallocomotion, which 

would equate with the increased limb mobility (Begun et al., 1994; Rose, 1997). 

Postcrania for the other early Miocene Af1ican hominoids are less prolific, and 

thus locomotor inferences are much more speculative. Rangwapithecus was very 

similar to Proconsul in its hindlimbs, but with more derived hominoid features in 
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the ankle region, although Ward (1997: 107) suggests that this "may closely 

reflect individual variation rather than taxon-specific functional patterns". Few 

postcranial remains are known for Limnopithecus, and the isolated specimens 

indicate that the locomotor and positional capabilities of this genus may have been 

virtually identical to Proconsul (Langdon, 1986). 

Turkanapithecus is estimated to be similar in body size to the larger cebids (lOkg) 

and shows many similarities to Proconsul, but with several distinctive features 

(Leakey et al., 1988a). Overall, the same general combination of cercopithecoid, 

hominoid, and unique characteristics is evident. More recent studies, however, 

have suggested that elements of the forearm morphology in this species indicate a 

greater degree of vertical climbing and hoisting than in Proconsul and 

Afropithecus, with a combination of uniquely derived features and shared derived 

characteristics with extant hominoids (Rose, 1996; Ward, 1997). The 

Turkanapithecus ulnae, however, (as those of Proconsul) reflect a functional 

anatomy consistent with considerable climbing and habitual arboreal, quadrupedal 

behaviours (Richmond et al., 1998). The femur is more robust than in Proconsul, 

and has been equated with that of Alouatta (Rose; 1996; Ward, 1997). Whilst 

there is no evidence for hindlimb suspension in Turkanapithecus, from its 

similarity to Alouatta it might be inferred that this was pat1 of its positional 

repertoire (Rose, 1996). 

Dendropithecus macinnesi, with its long, slender limbs, is proposed as the most 

suspensory of the early Miocene hominoids (Andrews and Simons, 1977; Fleagle, 

1983, 1999) and was originally compared to hylobatids on the basis of overall 

limb proportions (Langdon, 1986) 13
• In many aspects of its forelimb morphology 

(most particularly humeral torsion of 108°, and mticular features of the distal 

humerus and proximal ulna) it resembles Ateles, and similarly Dendropithecus 

may have been a suspensory climber (Harrison, 1982; Fleagle, 1983; Langdon, 

1986). Dendropithecus appears to show, however, a mosaic of ceboid features 

with the forelimbs convergent on the suspensory atelines, and hindlimbs 

13 Although Harrison (1987) suggests that postcranial material from Dendropitlzecus, and probably 
Micropithecus and Limnopithecus as well, show none of the distinctive characteristics that are 
found in modern apes. 
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convergent on the Pithecinae (Chiropotes and Cacajao) (Rose, 1983). These latter 

genera frequently utilise hindlimb suspensory postural behaviours, but lack a 

prehensile tail. Although there is no direct evidence for pedal suspension in 

Dendropithecus, this convergence might indicate postural suspension involving 

both hind- and forelimbs (Rose, 1983). Retention of primitive anthropoid features 

throughout the skeleton indicates that quadrupedahsm and climbing were also 

primary modes of locomotion for this species. 

From the few postcrania that have been found for Kalepithecus, Limnopithecus, 

Micropithecus and Simiolus, it has been inferred that these genera have similar 

postcranial features to Proconsul (most particularly features of the humeroradial 

joint and the radial head consistent with quadrupedalism). They have also been 

found to share postcranial charcters with Dendropithecus, and thus similar 

locomotor patterns have been inferred for these species (Rose, 1996). These taxa 

have also been reported to be most similar to extant generalised platyrrhines 

utilising arboreal quadrupedalism, with perhaps elements of bridging and 

suspension within their positional repertoires (Rose et al., 1992; Rose, 1996). 

The Morotopithecus vertebra UMP 67.28 14
, on the other hand, is clearly more 

ape-like in its torso morphology (shorter cranio-caudally and broader medio­

laterally), showing greater adaptation to orthogrady, quadrumanous climbing and 

bridging, transferring and below-branch locomotor behaviours (Sanders and 

Bodenbender, 1993). Unfortunately, it is impossible to make sweeping inferences 

of lumbar vertebrae number and vertebral column length from this isolated 

specimen, but it does provide the oldest example of a hominoid-like vertebral 

organisation, possibly indicating new patterns of substrate utilization (Sanders and 

Bodenbender, 1993). 

What is most apparent from an examination of the early Miocene postcranial 

evidence is that the patterns of locomotion among the hominoids of this epoch 

were quite unlike those seen in hominoids today. The literature would suggest that 

14 Assigned initially toP. major [Walker and Rose, 1968], tentatively included in the Afropithicini 
by Sanders and Bodenbender [1993], and more recently renamed as Morotopithecus [MacLatchy 
et al., 2000]. 
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most species were predominantly arboreal quadrupeds, with the exception perhaps 

of Morotopithecus (Ward, 1998). This would account for the extraordinary 

combinations of features seen in these genera, unmatched by any extant primate 

species. The one trend that appears to be true for all the genera examined, 

however, is that of powerful climbing and grasping capabilities. This observation 

would accord with the hypothesis suggested by Fleagle (1976; Fleagle et al., 

1981) that the forelimb and torso morphology of the extant apes (and the 

convergent Atelinae) is more an expression of early adaptation to quadrumanous 

climbing, than specifically to brachiating, suspensory locomotion, although the 

concept of 'climbing' itself creates it own ambiguities. 

LOCOMOTOR HYPOTHESES 

Since the earliest analyses of Miocene hominoid postcrania, theorists have 

attempted to reconstruct the locomotor and postural behaviours of these genera, 

. with a view to understanding the evolution of both hominid bipedalism and the 

very specialized forms of locomotion exhibited by other hominoids today. Due to 

the derived nature of extant hominoid postcrania, it was a reasonable expectation 

that the early species might share some of these features, thereby uniting the 

superfamily based upon postcranial synapomorphies (Ward, 1998). This may also 

have shed some light upon the circumstances of the initial cercopithecoid­

hominoid split, perhaps with the invasion of different niches, and thus the reasons 

for the emergence of novel adaptations. 

All extant hominoids possess a suite of postcranial synapomorphies (in the 

forelimb, hindlimb, thorax, pelvis and vertebral column) that contribute to several 

functional complexes: increased ability for raising the forelimbs above the head, 

increased potential for extension of the forelimb at the elbow, greater overall 

rotation of the forelimb, more flexibility at the wrist, a tendency towards erect 

posture during locomotion, greater mobility at both the hip and ankle joints, and 

differential usage of the forelimb over the hindlimb (Harrison, 1987). These 

specialisations have generally been associated with changes in locomotor 

behaviour from generalised arboreal quadrupedalism, to more flexible forelimb 

dominated quadrupedal climbing, bridging and suspension (Harrison, 1987; 
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MacLatchy and Bossert, 1996; Ward, 1998). Unfortunately, as the literature 

suggests, the early Miocene fmms lacked many of the fundamental features 

characteristic of extant hominoids, although increased potential mobility at most 

joints of the appendicular skeleton was evident in many of the early species. 

Moreover, despite possessing similarities in their postcrania, the extant hominoids 

display fundamentally different postural and locomotor repertoires from one 

another, and thus constitute a poor comparative group for the inference of the 

locomotor capabilities of fossil forms. 

One of the biggest dangers in comparative analysis is that of assuming overall 

morphological (and thus behavioural) similarity of fossil taxa to both extant 

genera and other fossil forms, from isolated elements of postcrania (Morbeck, 

1983) 15
. The fossil record is by nature incomplete, and differential preservation 

means that complete specimens are rare (Ford, 1988). This is particularly relevant 

to the study of the Miocene forms, where countless studies have shown them to 

have no precise extant analogues (Rose, 1983; Walker & Pickford, 1983). Many 

fossils are distinct from extant forms in their combinations of primitive, detived 

and unique traits. This creates a "noise of traits" (Ford, 1988: 158) from which it 

is sometimes difficult to ascertain functional significance. Primitive traits may 

have become non-functional, or be adapted for different functional roles, and 

these features are not good indicators of behavioural capabilities. It is imp011ant, 

therefore, to identify derived traits, which are most crucial in elucidating 

behavioural capabilities in fossil forms (Ford, 1988; see also Ward et al., 1997). 

The only method by which studies of this nature can be adequately canied out is 

the examination of fossil species for which good comparative material is 

available, or by analysis of features that can be securely linked to a single 

locomotor type (Day; 1979; Morbeck, 1983). The latter has been an underlying 

problem in the study of hominoid postcrania, where analysts have continued to 

disagree on the adaptive significance of derived hominoid traits. As a 

consequence, comparative analyses have differed in their interpretations of 

15 Oxnard ( 1963) also warns of the dangers of making inferences from isolated characters that can 
be 'specially selected' for their similarities to extant groups and locomotor categories. 
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features seen in the Miocene forms. The main hypotheses that have variously been 

postulated for derived hominoid postcranial features are: brachiation (Lewis, 

1971a, 1972a-b, 1974), knuckle-walking (Conroy and Fleagle, 1972), vertical 

climbing (Fleagle et al., 1981; Fleagle, 1983; Rose, 1983; Langdon, 1986; 

Sarmiento; 1988; Begun et al., 1994; Gebo, 1996), and slow, deliberate 

quadrupedalism (Cartmill and Milton, 1977; Sarm:iento, 1998; Kelley, 1997). 

In an evaluation of the credibility of these hypotheses, a few fundamental criteria 

must be addressed. Firstly, if suites of characteristics are to be considered as 

synapomorphies of a group (for example, hominoids), then those features must be 

evident in all of the members of the group, but not in other groups. Secondly, for 

morphological characteristics to be functionally attributed to particular 

behaviours, the traits must show the same functional role, pertaining to that 

behaviour, in all of the taxa that exhibit them (Kay and Covert, 1984). 

Additionally, it should also follow that all of the taxa that include the behaviour 

within their locomotor repertoires should exhibit the adaptive characteristics 16
• 

Kay and Covert (1984) propose four criteria which need to be satisfied when 

attributing functional significance to traits in fossil taxa: there must be an extant 

analogue for that trait, the trait must have the same adaptive in role in all extant 

species that possess it, there must be no evidence to suggest that the trait evolved 

before the role for which is adaptive (see also Ford, 1988), and the trait must have 

a functional relationship to a particular adaptive role. 

Brachiation hypothesis 

Perhaps the most criticised of the different hypotheses is that which explains 

derived hominoid postcranial traits as adaptations to brachiation. Modifications of 

the hominoid wrist pettaining to ulna deviation were initially equated with the 

emergence of brachiation as a new locomotor pattern (Lewis, 1971a, l972a-b, 

16 The problem with this latter criterion is found where distantly related groups adapt in 
fundamentally different ways to similar behaviours. This is most evident among the suspensory 
primates of the New and Old Worlds, where the atelines have adapted to below-branch activities 
with the assistance of their prehensile tail. which has essentially become a 'fifth limb'. It could be 
argued, however, that the locomotion utilised by the atelines is fundamentally different from that 
of the suspensory hominoids, and it then becomes a matter of classification: whether suspensory 
behaviour is evaluated as an all encompassing group, or divided into more descriptive sub-groups. 
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1974). This adaptation facilitates the hand's rotation of the radius around the ulna, 

increasing the extent of supination/pronation of the forelimb. Lewis considered 

these features to be essential in adaptation to brachiating locomotion, particularly 

that of slow bimanual suspensory locomotion. These wrist specialisations are 

unique to the Hominoidea, which demonstrates the monophyletic character of the 

supetfamily, and is suppmted by the fact that there is no parallel in New World 

monkeys (Lewis, 1971b). 

The fundamental flaw in this hypothesis is the sweeping assumption that all 

hominoids are 'brachiators'. As has been noted in a previous chapter, the 

hominoids are all quite different in their locomotor repertoires, ranging from 'true 

brachiation' in the hylobatids to quadrumanous climbing and clambering in 

Pongo, terrestrial knuckle-walking in the African apes and bipedalism in humans. 

The ape taxa exhibit unique adaptations for their specific modes of locomotion, 

and the hylobatid wrist differs from those of the great apes. Thus, the brachiation 

hypothesis is questionable purely on.the basis that gibbons/siamangs and African 

apes use entirely different modes of locomotion from one another (Conroy and 

Fleagle, 1972; Fleagle et al., 1981). 

All of the apes (with the exception of humans), however, do incorporate an 

element of suspensory behaviour into their locomotor repertoires, and perhaps it 

has been an issue of semantics as to what constitutes 'brachiating' behaviour. But, 

the fact that the semi-brachiators (as described by Napier and Napier, 1967) 

possess none of the specific 'brachiator' wrist adaptations, and the fact that the 

hylobatids have the least derived morphology, somewhat negates the possibility 

that the unique traits are fundamental to suspensory behaviour. If ulna deviation is 

indeed a brachiating adaptation, it seems odd that the least brachiating taxa are 

best adapted, and vice versa (Conroy and Fleagle, 1972; Sarmiento, 1988). 

Furthermore, analysis of the fossil material has shown that the early apes do not 

exhibit the suite of features than one would expect of a suspensory animal, and 

more specifically of a brachiator (Fleagle, 1983; Rose, 1983, 1997; Begun et al., 

1994;). Thus, we can assume that, whilst the extant hominoids probably all 

possess features pettaining to suspensory locomotion (to different degrees), these 
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adaptations probably post-date the earliest hominoids and thus cannot be 

considered to be the initial hominoid postcranial adaptation. 

Knuckle-walking hypothesis 

Another hypothesis that has been promoted for the locomotor adaptations of early 

hominoids is that of knuckle-walking. Pan and Gorilla, as semi-erect quadrupeds, 

possess unique adaptations to their characteristic 'knuckle-walking' 

quadrupedalism. Among these, ulnar deviation facilitates adduction to the ulnar 

side of the wrist, necessary for this mode of locomotion (Conroy and Fleagle, 

1972). Although Lewis (1971a) claimed that the hominoid wrist is less well 

adapted for suppottive functions (due to ulnar deviation), this is clearly not the 

case, as African apes transmit most of their vast body weight through the wrist 

during knuckle-walking behaviour (Conroy and Fleagle, 1972). Reduction of the 

ulna styloid process, and the presence of a wrist meniscus, hence can be 

considered as morphological features allowing maximum flexibility at the joint, 

without reducing its ability to withstand compressive forces, which would thus be 

adaptive for knuckle-walking quadrupedalism (Conroy and Fleagle, 1972). 

Moreover, similarities of the D. (Proconsul) africanus wrist to extant hominoids 

are found in combination with quadrupedal and terrestrial features and therefore 

this early Miocene species might have been adapted for knuckle-walking (Conroy 

and Fleagle, 1972)17
. The gibbon, in contrast to both the great apes and the fossil 

species, is more monkey-like and thus more primitive, and a knuckle-walking 

hypothesis would explain this limited adaptation in hylobatids (Conroy and 

Fleagle, 1972). 

The knuckle-walking hypothesis has been strongly criticised (Morbeck, 1975; 

Jenkins and Fleagle, 1975; Fleagle et al., 1981; Fleagle, 1983; McHenry and 

Corruccini, 1983). Primarily, the proponents of this theory make the same 

fundamental error as those promoting the brachiation hypothesis. Gibbons do not 

17 Zwell and Conroy (1973) suggested that this species may have been an 'incipient' knuckle­
walker, utilising hand postures where weight was supported on the heel of the hand and the dorsal 
surfaces of the phalanx. 
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knuckle-walk, yet show evidence of change from the monkey type of wrist 

morphology towards an African ape wrist. If knuckle-walking was the function 

for which the unique wrist morphology was derived, then one would predict that 

gibbons should be incipient knuckle-walkers. This is clearly not the case. 

Furthermore, the early hominoids show none of the morphological specialisations 

that would be expected for knuckle-walking locomotion (Morbeck, 1975; Beard et 

al., 1986) 

In short, neither of the above hypotheses addresses the question of the initial 

adaptation, which should be common to all species that exhibit ulnar deviation 

and the associated features of the carpus. Evidently, the unique adaptations of the 

wrist are adaptive for both brachiation and knuckle-walking, and it may be 

reasonable to assume that both behaviours could have evolved from a similar 

adaptive base, perhaps a more primitive form of locomotion different from that of 

extant quadrupedal monkeys, from which both of these specialised forms of ape 

locomotion could easily have detived. 

Additionally, both brachiation and knuckle-walking are associated with changes 

in forelimb anatomy and thus may provide sufficient explanation for the evolution 

of forelimb traits, but they do not adequately address the adaptations towards 

enhanced mobility in the joints of the hindlimb. It would be reasonable to expect, 

therefore, that the locomotor behaviour of the basal hominoids would incorporate 

the use of all four limbs in a wide variety of postures, on irregularly placed 

substrates, to warrant the increased mobility seen in all of the joints of the 

appendicular skeleton. The phalanges of proconsulids suggest less difference 

between the grasping capabilities of the hands and feet in Proconsul than typically 

seen in the extant hominoids that utilise more forelimb dominated locomotion; 

early apes probably incorporated a significant amount of quadrupedal grasping 

into their locomotor repertoires, with the hindlimbs undertaking a powerful 

grasping, rather than propulsive, role (Begun et al., 1994). 

Furthermore, knuckle-walking and brachiation are both highly specialised forms 

of locomotion, utilised by specific taxa: African apes and Hylobates, respectively 

(Langdon, 1986). It is argued that these behaviours are too specialised to 
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constitute reasonable models for the ancestor of bipedal hominids, and thus 

neither would represent a reasonable analogue for the primitive hominoid 

locomotor type, either (Langdon, 1986). A common hominoid ancestor would 

have to possess features that are shared by all the living genera, and which might 

pertain to a tendency to orthograde postures, and general arboreal vertical 

climbing (Langdon, 1986)18
, or to slow deliberate quadrupedalism (Kelley, 1997). 

Also the morphological traits exhibited by hominoids are convergent in other 

genera (for example lorises, and to a ce1tain extent atelines) that do not utilise 

such behaviours, and thus it would be logical to assume that the underlying 

locomotor function of such characteristics would be one undertaken by all of the 

genera possessing such features. 

The most likely locomotor types that have been advocated as providing a base for 

the evolution of all hominoid specialisations are vertical climbing or slow, 

deliberate quadrupedalism. The major problem in the analysis of such hypotheses 

is that many studies consider climbing behaviour in its entirety, rather than 

making the distinction between different forms of climbing and consequently, it is 

confusing when these two behaviours are treated as synonymous (Gebo, 1996). 

Both vertical climbing and slow, deliberate quadrupedalism could be incorporated 

within a 'climbing' classification and, ostensibly, both would demand similar 

levels of mobility in both the fore- and hindlimbs. Pronograde and orthograde 

behaviours, however, would require different modifications of the torso which 

should be apparent in genera that engage in these behaviours with relative 

frequency. 

For the purposes of this study, however, vertical climbing will be restricted to a 

definition that suggests orthograde postures, accompanied by forelimb 'hoisting' 

and hindlimb propulsion, whilst slow, cautious quadrupedalism will be defined as 

deliberate progression, primarily along horizontal or oblique supports, generally 

with three extremities contacting the support at any one time during movement. 

18 Langdon's reasoning would not necessarily exclude a slow-climbing hypothesis, which would 
also provide a more generalised form of locomotion from which specialisations could have 
derived, although this would entail less use of orthograde postures. 
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Verticall dimlbirng hypothesis 

The vertical climbing hypothesis claims that features of the ape forelimb anatomy 

that have often been designated as brachiating adaptations can just as well be 

explained as adaptations to vertical climbing (Fleagle et al., 1981). The forelimb 

musculature of atelines and apes is more active during climbing and hoisting 

behaviours than during brachiation, and bone strain tests on ulnae suggest 

brachiation and climbing show similar magnitudes of force (Fleagle et al., 1981). 

Additionally, Sarmiento (1988) argued that the midcarpal joint in early hominoids 

(as in Hylobates) lacks the ability to withstand forces from different directions 

within the palmar plane, and is therefore probably not often used when support 

points are below the centre of gravity (quadrupedal on horizontal supports), thus 

supporting the interpretation of more orthograde body postures in these genera. 

Furthermore, a human ancestor primarily adapted for climbing would show other 

elements of forelimb morphology comparable to that previously associated with 

brachiation, and a hindlimb morphology that would be both morphologically and 

functionally pre-adaptive for bipedalism (Fleagle et al., 1981). Thus, brachiation 

does not necessarily constitute a fundamental part of ape and human ancestry. 

This 'climbing hypothesis' would also account for the fact that 'brachiating 

adaptations' have been noted in non-brachiating primates, and explains the 

presence of these features in the great apes, which seldom utilise brachiating 

behaviour. 

In a recent study, Gebo (1996) considered the relative merits of the various 

hypotheses (vertical climbing, slow climbing, brachiation, and knuckle-walking 

models) postulated as explanations for the ape body plan, in an attempt to 

elucidate the origins of human bipedalism. In particular, he evaluated the 

frequency of climbing, and vertical climbing, locomotor behaviours across a wide 

spectrum of extant primates. 

Gebo (1996) negated the possibility that brachiation might be responsible for the 

unique ape characteristics. Whilst the atelines and apes, both of whom utilise 

frequent overhead arm positions, share similar morphological features of the 
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upper limb and thorax, ulnar deviation is limited in atelines, which would suggest 

that parallel evolution of the shared features probably occurred between these two 

groups 19
. The fact that lorises share some of the derived ape characteristics of the 

wrist also somewhat refutes the possibility that these features are functionally 

related to brachiation. On the other hand, lorises and African apes do not utilise 

bridging and transferring behaviours, which are a major component in the 

orangutan repertoire, and thus this too seems an unviable explanation for the 

unique characteristics (Gebo, 1996)20
. 

Only a few ptimates use vertical climbing with any great frequency; gorillas and 

chimpanzees utilise this form of locomotion infrequently (except Pan paniscus), 

orangutans and gibbons use it more so, although usually dming feeding. The only 

other primates that regularly climb vertical suppotts are Alouatta seniculus, Ateles 

and Cercopithecus ascanius, again during feeding activity. Although some Old 

World monkeys use verticalclimbing, they are not particularly 'well-adapted' due 

to their limited joint mobility throughout their appendicular skeleton (Gebo, 

1996). 

Although African apes are not noted to be frequent climbers, and therefore are 

seemingly bad models, the perceptions of this particular behaviour are 

fundamentally obscured by the large terrestrial component to African ape travel 

(probably associated with their large body size) (Gebo, 1996). When statistics are 

taken purely from their arboreal behaviour, African apes are found to be frequent 

climbers, particularly on vettical supports. Indeed, if only the arboreal component 

of locomotion is considered, gorillas, chimps, Macaca fascicularis and Papio 

anubis all engage in significant amounts of vertical climbing. In fact, Gorilla and 

Pan use this behaviour more than Pongo when in an arboreal environment (Gebo, 

1996). 

19 Atelines also possess their own derived characteristic, their prehensile tail, and consequently 
they have their own quite unique form of five-limbed suspensory locomotion. 
20 Gebo ( 1996) somewhat contradicts himself towards the end of his paper by suggesting that these 
behaviours might be a good arboreal model for an ancestral protohominid morphotype for 
locomotion during travel bouts. 
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The majority of studies, however, make no distinction between different forms of 

climbing (Gebo, 1996). Vertical climbing, in its essence, is only practised up and 

down vertical supports, and therefore cannot be a regular component of 

locomotion during travel. Most primates travel either quadrupedally or by leaping. 

Orangutans use quadrumanous scrambling, brachiation and tree-swaying, and a 

Pongo-like locomotor type might represent a good model for a basal hominoid 

utilising climbing within its locomotor repertoire (Gebo, 1996). 

In conclusion, Gebo (1996) recommends that climbing and the morphological 

adaptations to it were the most likely primitive hominoid adaptations, and that 

Proconsul and the other early Miocene genera were arboreal quadrupeds, but also 

adept vertical climbers/clamberers. He proposes, however, that vertical climbing 

itself probably post-dated the divergence of gibbons, due to its apparent 

infrequency in hylobatids, which somewhat contradicts the notion that it could be 

ancestral for hominoids. 

If it is reasonable to include the African apes within a 'vertical climbing' group, 

due to their high levels of this behaviour during their limited arboreal activity, 

then surely one would expect to see similar morphological adaptations in the other 

genera that utilise vet1ical climbing to similar degrees (i.e., Cercopithecus 

ascanius, Macacafascicularis and Papio anubis). This is not evident from the 

morphological literature reviewed. Additionally, Gebo's (1996) assumption about 

the adaptations post-dating Hylobates, due to the apparent infrequency of the 

behaviour in this genus, seems to be dubious, as the hylobatids utilise this 

behaviour to a greater extent overall than the African apes, but less so when the 

purely arboreallocomotor/postural component was examined. There is no reason 

to negate the possibility that all of the hominoids have derived from a common 

base. Even minor spells of a particular activity could be indicative of potential, 

and perhaps of a more frequent ancestral component. 

It seems that vertical climbing would be a good model for an ancestral hominoid, 

as all hominoids utilise a degree of this behaviour within their locomotor and 

postural repertoires. It would also form a reasonable basis for the derived 

locomotor types of hominoids today. The main criticism of this theory, however, 
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is that there is no anatomical evidence to support orthograde postures in the early 

Miocene genera (Ward et al., 1993; Kelley, 1997). This is most evident in the 

torso, which most resembles that of pronograde arboreal quadrupeds (Ward, 

1993). 

Cautious quadrupedlaD hypothesis 

Perhaps the most popular hypothesis among theorists today is that of an 

adaptation to cautious quadrupedalism among the earliest hominoids. This has 

been suppmted by countless postcranial studies of the Miocene apes (see above) 

that have shown that these early apes exhibit a quite primitive locomotor anatomy 

compared to the more specialised extant apes, combining large bodies with a 

monkey-like torso, increased overall mobility in the appendicular skeleton, and 

loss of tai I. 

Most authorities recognise the lack of brachiating (or indeed suspensory) 

characteristics in the early Miocene forms, and there is no evidence to support 

knuckle-walking in these genera. Although the early Miocene forms have been 

described as generalised pronograde quadrupeds, they (most particularly 

Proconsul) are known to share a number of postcranial features with extant 

hominoids, most of which pertained to increased joint mobility (or stability) over 

a greater range of motion, increased grasping ability in both hands and feet, and 

loss of tail (Kelley, 1997). Many postcranial studies have supported a view that 

the early Miocene genera were powerful, slow-climbing quadrupeds, possibly 

with an element of below-branch forelimb assisted climbing (Aiello, 1981; 

Conroy and Rose, 1983; Rose, 1983, 1996; Walker & Pickford, 1983; Langdon, 

1986; Leakey et al., 1988b; Begun et al., 1994). 

Analysis of the wrist morphology of !arises (Perodicitcus, Nycticebus, Loris and 

Arctocebus), has found that these taxa share a number of features with extant apes 

that have previously been described as hominoid synapomorphies related to 

brachiation (Cartmill & Milton, 1977). The convergence between these two very 

different primate groups implies a shared functional specialisation. Undoubtedly, 

this can be neither brachiation nor knuckle-walking since lorises do not include 
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either of these specialised behaviours within their repertoires. As discussed 

earlier, lorises are characterised by slow, deliberate quadrupedal locomotion, 

necessitating enhanced pedal and manual grasping capabilities and a large range 

of mobility in the limb joints, particularly mediolateral rotation of the feet and 

hands around the long axis of the limbs, in an accommodation to inclined supports 

(Grand, 1967; Walker, 1969; Cartmill and Milton, 1977). These features in 

hominoids can be credibly associated with slow, deliberate, quadrupedal 

locomotion (climbing and bridging) in ancestral apes, which would provide a 

morphological base for the evolution of the more specialised forms of locomotion 

seen in extant apes (Cartmill and Milton, 1977)21
. Brachiation or knuckle-walking 

adaptations, therefore, might have evolved from a cautiously moving quadrupedal 

ancestor, rather than one utilising a hylobatid type of suspension. 

This suggestion would accommodate all of the observed features in the early 

Miocene forms. Large body size and loss of tail would be disadvantageous for an 

arboreal animal in terms of retention of balance, and powerful grasping 

capabilities would compensate for this weakness. A well-developed grasping 

capability would necessitate a larger range of mobility in the limb joints, 

particularly at the ankle and wrist, but this would be at the expense of stability at 

these points. With reduced stability, joint surfaces would have to be robust to 

accommodate unpredictable stress orientation, and locomotion would be 

necessarily cautious. 

Kelley (1997) suggests that the main keys to Proconsul locomotion are the 

emergence of the evolutionary novelties: absence of tail and powerful opposable 

thumb. For a tailless and large bodied quadruped, in an arboreal environment, one 

of the biggest problems would have been one of balance. Powerful grasping, 

facilitated by increased joint and overall limb mobility, might therefore have 

21 Sarmiento (1988) also suggested the early hominoids to be similar to the lorisids, proposing the 
traits seen in these early genera to be associated with mid-carpal ulna deviation, loading of the 
mid-carpal joint in varying degrees of adducted and abducted postures, reduced emphasis on 
ulnocarpal loading and strong flexion of the flexed wrist. "As they pertain to locomotor 
behaviours, these functions in mammals are associated with cautious climbing" (Sarmiento, 1988: 
335). He concludes, however, that early hominoids were most likely vertical climbers, which is in 
a sense contradictory, as the lorisines are not definitively vertical climbers, but are characterised 
by slow quadrupedal progression. 
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evolved primarily to compensate for the loss of tail. Thus, the distinctive 

postcranial features of the early Miocene hominoids may represent nothing more 

than compensation for the loss of the tail 22
. In such a scenario, the first hominoids 

may have been no more than large "arboreally compromised" catarrhines (Kelly, 

1997). 

It is primarily this latter theory that is under scrutiny in this study, by means of a 

comparative analysis of the wrist and ankle joints of 'slow-climbing' lorisids and 

extant hominoids. These specific anatomical regions are fundamental to this 

particular locomotor type, in that they are necessary prerequisites for the ability to 

grasp in a wide range of orientations. This enhanced mobility is highly dependent 

upon the structure and congruency of these joints. The aim is to ascertain if these 

groups exhibit comparable structures of these joints, which then could be 

interpreted as underlying adaptations to slow-climbing locomotion. Although 

many detailed examinations of the wrists and ankles of these taxa have been 

conducted in the past, and a thorough comparative study was undertaken on the 

wrist by Cartmill and Milton (1977), previous analyses have taken each joint in 

isolation, rather than as a functional whole contributing to overall mobility for 

grasping in all four limbs. 

22 Although this suggestion is perhaps the most plausible reconstruction of early hominoid 
evolution, it says nothing about the order of acquisition of the different characteristics. It seems to 
imply that the first adaptation was that of tail loss, with the further derived features evolving to 
compensate. There is no explanation for why the tail was lost in the first place, which could be 
maladaptive for large bodied primates in a precarious arboreal habitat. 
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CHAPTER3 

Wrist and ankle morphology 

EXTANT HOMINOID WRIST MORPHOLOGY IN A COMPARATIVE CONTEXT 

Wrist morphology has emerged as an impottant component in the study of primate 

adaptations and evolution, most particularly in the study of the early emergence of 

hominoids (e.g. Lewis, 1971a, 1972a-b, 1974). It must be noted, however, that the 

complex structure of the wrist and the vast array of hand functions makes it 

difficult to interpret ptimate carpal structure in phylogenetic or adaptive contexts. 

Consequently, there is little agreement on how primate wrist anatomy impinges 

upon issues of systematics, evolution or function (Jenkins, 1981). 

Primates in general have a primitive mammalian wrist configuration, with the 

· retention of the contact between the ulna and the carpus, as the lower extremity of 

the ulna articulates directly with the pisiform andtriquetral (Lewis et al., 1970; 

Lewis, 1971a, 1972a-b, 1974). Among hominoids, however, the wrist joint is 

somewhat modified (Lewis, 1971a, 1972a-b, 1974; O'Connor, 1975). The ulna has 

become withdrawn from direct articulation with the carpus, and an intra-articular 

meniscus has developed in the interval between the distal ulna and the triquetrum 

and pisiform. In this manner, the ulna styloid process is, in varying degrees among 

the extant hominoids, almost completely excluded from direct participation in the 

wrist joint (Lewis, 1971a, 1972a-b, 1974). 

The cercopithecoids are uniform in showing habitual dorsiflexion of the wrist 

during locomotion, using either palmigrade or digitigrade substrate contact 

(O'Connor, 1975). In these taxa, like other ptimitive quadrupedal mammals, the 

ulna articulates directly with both the pisiform and the triquetral. The triquetra] in 

ceboids and cercopithecoids is large and block-like, articular on its anterior 

margin with the elongated pisiform, which in turn projects back to form the 'heel' 

of the hand in these quadrupedal taxa (Lewis, 1971a, 1972a-b, 1974). Both the 

triquetra) and the pisiform have clear, slightly concave facets on their proximal 

aspects for direct articulation with the ulna. Similarly, the ulna styloid process has 
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a large convex articular surface on its distal extremity, and facing the interior of 

the joint, with the opposite peripheral aspect, facing laterally in quadrupedal 

postures, non-articular (Lewis, 1971a, 1972a-b, 1974). Together, the contact 

between the pisiform and triquetra! forms a receptive, weight-bearing cup for the 

tip of the ulna styloid process, which abuts tightly against the side of the ulna 

styloid process, restricting mediolateral mobility in this position, and limiting 

ulnar deviation ((Lewis, 1971a, 1972a-b, 1974; O'Connor, 1975). This is 

accompanied by a tightening of the other carpals in relation to one another, as the 

scaphoid presses against the inside of the radial styloid process and the lunate 

becomes rigid between the scaphoid and the triquetrum. Thus, when the wrist 

tends towards maximum dorsiflexion, movement is limited to flexion, with 

mediolateral deviation and axial rotation becoming increasing more difficult 

(O'Connor, 1975). 

The articular facet on the ulna styloid process in Pan, however, is more peripheral 

in its ori~ntation (i.e., dorsally placed rather than towards the interior of the joint), 

for contact with the meniscus, with a more or less distinguishable facet at the tip 

for the triquetra!. Direct articulation of the styloid with tl:te carpus is thus restricted 

by the presence of the intra-articular meniscus. The distal extremity of the ulna 

styloid process is also somewhat flattened, but sometimes hook-like in shape. The 

triquetra] is reduced in size, taking the form of a triangular pyramid, and its 

concave palmar surface articulates with an enlarged convex facet on the dorsal 

aspect of the pisiform, which projects more distally into the palm (rather than 

back to form a 'heel'). The reorganisation of the carpus on the ulnar margin 

results in an opening out of the primitive articular cup formed by the adjoining 

triquetra! and pisiform, into a wider and more convex surface, articular ptimarily 

with the meniscus although the triquetra! retains a limited contact with the tip of 

the ulna styloid process (Lewis, 1971a, 1972a-b, 1974). 

The construction of the wrist in Gorilla is much the same as that found in Pan, but 

with a more significantly reduced ulna styloid process, lacking a hook-like form, 

and articular on the reduced distal extremity. Similarly in Pongo, the ulna styloid 

process is much reduced, forming a short conical distally orientated projection, 
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with a reduced convex facet on the distal extremity for articulation with the 

triquetra] (Lewis, 1972a-b, 1974 ). 

In Hylobates the ulna side of the wrist joint is somewhat intermediate between 

monkeys and the other hominoids: monkey-like in the carpus and great ape-like in 

the ulna styloid process (Lewis, 1971a, 1972a-b, 1974). The hylobatid ulnocarpal 

joint contains a meniscus, but the shape and orientation of the triquetra] and 

pisiform are more reminiscent of monkeys (although the pisiform is more distally 

directed as in the other hominoids, orientated down towards the palm). The ulna 

styloid process retains the primitive contact with the carpus, through the 

meniscus, and a small bony ossicle called the os Daubentonii is present within the 

meniscus, almost as an unattached extension to the pisifmm. The ulna styloid 

process is generally hook-like, and the articular facet for the carpus is orientated 

distally, but more towards the exterior of the joint (Lewis, 1971a, 1972a-b, 1974). 

Thus, all living apes have variations on this novel type of wrist joint, in contrast to 

the other primates: withdrawal of the ulna from its primitive articulation with the 

carpus (triquetra] and pisiform) with the ulna styloid process developing a 

neomorphic ulnar head (Lewis, 1971a, 1972a-b, 1974). Hylobates is somewhat 

intermediate between the great apes and cercopithecoids in this structure (Lewis, 

1971a, 1972a-b, 1974; Conroy and Fleagle, 1972). The hominoid ulna head is 

expanded into large evenly convex structure, semi-lunar in shape from the distal 

aspect. The pisiform has two articular surfaces: one for the triquetra], and a second 

for the meniscus. The triquetra! has two facets for the pisiform and the meniscus. 

The meniscal facets on both the pisiform and triquetra] are generally convex and 

poorly defined, and often absent (O'Connor, 1975). The reorganisation of the wrist 

results in a realignment of the hand into the long axis of the forelimb, from the 

primitive position of habitual dorsiflexion. The apes exhibit a "progressive 

sequence" of wrist joint specialisation, which Lewis (1972a) suggests may 

possibly represent surviving stages of a true phylogenetic sequence, rather than 

varying grades of parallel evolution, perhaps documenting the stages of change 

from palmigrade to forelimb suspension. 
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Cercopithecoids are fundamentally adapted for palmigrade or digitigrade 

quadrupedalism; they are relatively uniform in their wrist anatomy, with little 

capability for mediolateral excursion at the wrist joint during locomotion. 

O'Connor (1975) suggests, however, that the structure of the cercopithecoid wrist 

allows for a wide range of behavioural variations. Having lost the primitive 

ulnocarpal articulation, hominoids are not specifically adapted for palmigrade 

locomotion, although some do employ this posture in certain conditions. 

Cercopithecoids, on the other hand, are not adapted for brachiation due to their 

limited mobility in the wrist joint (O'Connor, 1975). 

Studies of New World semi-brachiating monkeys (Ateles and Lagothrix) have 

shown that these genera retain the primitive articulation of the wrist associated 

with quadrupedal locomotion, with both the pisiform and triquetra! articulating 

directly with the ulna styloid process (Lewis, 1971b, Conroy and Fleagle, 1972)23
. 

Lewis (1971 b) proposed that the derived hominoid wrist configuration is 

con-elated with an increased range of supination, suggesting that it may be 

indicative of evolutionary history of suspensory locomotor and feeding behaviour. 

Among non-hominoid primates, semi-brachiating monkeys are the most likely to 

exhibit parallel acquisition of these features, due similarities in their locomotor 

repertoire to suspensory extant apes, but this is not the case. Lack of flexibility of 

the wrist throughout suspensory locomotion among the atelines may well be 

compensated by the evolution of their prehensile tail (Lewis, 1971b). As Lewis' 

studies found no other group exhibiting similar features, he suggested the unique 

hominoid wrist complex to be monophyletic24
. 

Studies of other joints within the wrist, however, have revealed striking 

similarities between the New and Old World suspensory genera (Jenkins, 1981). 

In an analysis of the structure of the midcarpal joint in New and Old World 

anthropoids (Ateles, Lagothrix, Symphalangus, Hylobates and Macaca), Jenkins 

23 This is contested by Youlatos (1996) who reports Ateles and Alouatta to have certain wrist 
features in common with hominoids. Ateles in particular is said to possess a modified ulnocarpal 
joint where the ulna does not articulate with the pisiform. 
24 Lewis (1971 b) notes that previous authors had proposed brachiation to have evolved in parallel 
several times, on the basis of forelimb elongation, but in view of the lack of these particular wrist 
adaptations in the semi-brachiating monkeys of the New World, there is no evidence to support 
parallel evolution in this particular wrist adaptation. 
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(1981) found that the 'brachiators' differed from the quadrupedal genera in their 

configuration of the proximal articular facets of the capitate and hamate; the facets 

between the capitate and trapezoid; and the hamate facet for the triquetral. This 

suggests that parallel evolution of the structure of the midcarpal joint, towards 

increased rotatory capabilities at this joint, may have occurred between Old and 

New World brachiators. This, in turn, would support a functional role of 

midcarpal supination for suspensory behaviours. Pongo, which utilises significant 

amounts of below branch suspensory activities, exhibits similarities in the 

midcarpal joint to the brachiators, whilst Pan, predominantly a quadrupedal 

knuckle-walker, does not (Jenkins, 1981). 

The many detailed analyses of primate wrist morphology (e.g., Lewis et al., 1970; 

Lewis, 1971a, 1972a-b, 1974; Cartmill and Milton, 1977) have emphasised the 

distinct differences in the shape, organisation and articulations of the ulna and the 

proximal carpus in hominoids and monkeys. Lewis (197la, 1972a-b, 1974) 

proposed that the hominoid withdrawal of the ulna from the carpus, which results 

in limited (or absent) ulnocarpal articulation, a reduction in the ulna styloid 

process, and the presence of an intra-articular meniscus, constitutes a complete 

remodelling of the ulna side of the wrist. These changes are associated with 

increased capabilities for ulna deviation from the carpus, facilitating an increased 

range of pronation-supination of the forearm at this joint, where the radius and 

carpus rotate around the ulna to a greater degree (Lewis, 1971 a, 1972a-b, 197 4 ). 

All Hominoidea have an increased range of this movement (180°), compared to a 

more limited range in monkeys (90°) (Lewis, 1972b )25
. Lewis (1971 a, 1972a-b, 

1974) suggested that the retreat of the ulna was an essential prerequisite for an 

increased range of supination-pronation, where the radius and carpus rotate 

around the ulna head, as the ulna styloid process is freed from its restricting 

articulation with the triquetra} and pisiform. This new organisation of the 

25 O'Connor and Rarey (1979) also looked at the degree of pronation-supination possible in 
cercopithecoids, ceboids and hominoids through experimental studies. Their analysis found that 
ranges of radioulnar pronation and supination differed widely between hominoids and non­
hominoid anthropoids, reflecting both the different locomotor repertoires, and the structures of the 
radioulnar joints. Their study found, however, that the presumably least derived hominoid, 
Hylobates, had the greatest range of rotation of the forearm ( 163°). This study, however, did not 
include Pan or Gorilla. 
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ulnocarpal joint is accompanied by further changes within the midcarpal joint for 

stability throughout a range of positions (Lewis, 1971a, 1972a-b, 1974; O'Connor, 

1975). 

Sarmiento (1988) supports Lewis's argument that characters of the hominoid wrist 

are modified primarily to facilitate foreatm rotation, but suggests that the 

behavioural repertoires that were first associated with forearm rotation and the 

changes that led to specialisations of extant hominoids are unclear. Sarrniento 

( 1988) noted generic differences between the uses and postures of the wrist joint 

in hominoids, and proposed that the behavioural differences seen among extant 

hominoids probably resulted in different wrist specialisations. 

O'Connor (1975) proposed, however, that although the configuration of the wrist 

determined the degree of ulnar deviation at the ulnocarpal joint, it did not limit the 

range of pronation-supination, which was checked at the elbow joint. Although 

the suspensory locomotor repertoires of hominoids are often associated with an 

increased range of supination, and the changes in the wrist structure of hominoids 

may be advantageous for this, O'Connorfound no cause and effect relationship 

between presence or absence of ulnocarpal articulation and amount of possible 

supination at radioulnar joint (one Pan specimen had 160° supination, 40° more 

than any cercopithecoids, despite the retention of significant ulnotriquetral 

articulation). 
I 

The suite of changes in the wrist of hominoids was initially correlated with the 

capacity for brachiation in hominoids (Lewis, 1972a-b; O'Connor, 1975). Lewis 

(1972a) proposed that this 'evolutionary novelty' might have formed the 

foundations for the emergence of the diverse suspensory positional repettoires 

found in modem apes today. Brachiation, as an early feature of hominoid 

evolution, may indeed have been fundamental to the initial divergence between 

hominoids and the other catarrhines, as new ecological niches could potentially be 

exploited (thin flexible branches through weight distribution). 'There is a case for 

believing that improvement of a key morphological component, the wrist joint, 

opened up a whole new phase of primate evolution" (Lewis, 1972: 211). 
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Conroy and Fleagle (1972), however, disputed the proposition that the unique 

hominoid wrist joint was a brachiating adaptation, primarily because of the 

fundamental differences between the gibbon wrist and those of the African apes. 

The wrist of Hylobates is more monkey-like, which suggests that the wrists of 

Pan and Gorilla are not primarily adapted for brachiation. Ulna deviation cannot 

be primarily a brachiating adaptation, in view of the fact that the most frequent 

brachiator (Hylobates) is the least derived in its wrist complex (Conroy and 

Fleagle, 1972). 

Conroy and Fleagle (1972) also argued against Lewis' view that the derived 

hominoid wrist was less adapted for supportive functions, suggesting that during 

knuckle-walking the gorilla transmits most of its weight through the wrist. Indeed, 

differences between the triquetra) facet orientation on the hamate between 

monkeys and apes can be related to weight transmission at this joint (Spoor et al., 

1991 ). In Gorilla and the monkey genera, this facet is orientated to present a 

relatively large effective surface for weight transmission, whilst in the other apes 

it is orientated more proximodistally; less effective for weight transmission but 

allowing a wide range of deviation in the midcarpal joint. As a result, the potential 

for ulnar deviation at the midcarpal joint, as far as the hamate is concerned, 

depends on the length and orientation of triquetra! facet. A short facet with 

radioulnar orientation equates with limited deviation, and a distal concave end of 

the triquetra! facet prevents excessive ulnar deviation at the midcarpal joint 

(Spoor et al., 1991). 

From an evaluation of the literature it becomes clear that there are fundamental 

differences between the structures of the wrist of hominoids and cercopithecoids, 

with atelines showing a mosaic of Old World monkey and ape characteristics; a 

primitive morphology in the ulnocarpal joint but converging on the hominoids in 

the midcarpus. The difficulty arises in elucidating the functional significance of 

the vatiation. It is evident that the morphological differences are consistent with 

the locomotor and postural variation between these groups, but it seems that the 

discussion has been somewhat obscured by the fundamental differences of 

opinion as to the underlying locomotor adaptations of hominoid genera. This is 
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hindered by the rather extreme specialisations of hominoids, which make it 

difficult to determine the functional relevance of characters for the superfamily as 

a whole. 

EXTANT HOMINOID ANKLE MORPHOLOGY IN A COMPARATIVE CONTEXT 

The anatomy of the primate foot has been well studied, and, like the wrist, it has 

important implications for the understanding of both primate adaptation and the 

evolution of locomotion. The primate foot is adapted for multiple functions 

(weight-bearing, propulsion, suspension and prehension), and in primates the 

structure of the foot reflects the differential importance of these uses, as a result of 

the variation in positional and locomotor behaviours across the order (Langdon, 

1986). The foot has generally played a smaller role than the wrist in the debate 

about early hominoid locomotor adaptations, because much of the focus has been 

directed towards the role of forelimb dominated locomotor patterns such as 

knuckle-walking and brachiation. There has been considerable discussion, 

however, regarding the differences between the foot morphologies of palmigrade 

and more orthograde quadrupeds, in the inference of the locomotor precursor to 

bipedalism. Inevitably, hominoid movement capabilities of the foot have been 

central to these discussions. 

In his comparative analysis of the Miocene hominoid foot, Langdon (1986) 

looked at the anatomical structures in extant forms, with a view to creating a 

broad classification of foot morphology for the different positional categories. 

Langdon's study found several differences between the ankle joints of hominoids 

and monkeys, which fundamentally pertained to increased overall mobility in the 

ape foot, and limited mobility in monkeys (see also Strasser, 1988). The study 

also found similarities between the apes and atelines, however, which may reflect 

homoplasies between the more suspensory genera of the Old and New Worlds. 

The three main components of the primate ankle joint that pertain to differential 

mobility are the talocrural joint, the subtalar joint and elements of the midtarsal 

joint. The talocrural joint provides the articulation between the foot and the rest of 

the skeleton, and is formed by the talus secured within the mortise frame of the 
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malleoli of the distal tibia and fibula. The main direction of movement permitted 

at this joint is plantar/dorsiflexion, as the distal tibia and fibula travel over the 

joint from a posterior to an anterior position. The talar trochlea tilts medially 

towards the rear, resulting in lateral rotation and inversion of the foot in 

dorsiflexion. Further accessory motions (mediolateral rotation and 

inversion/eversion) are possible to varying degrees in different primates, 

dependent largely upon the shape of the talar trochlear, and its congruence with 

the tibial and fibular malleoli (Lewis, 1980a; Langdon, 1986). 

The subtalar joint comprises the two atticulations between the talus and the 

calcaneus: the anterior and posterior talocalcaneal contacts. The primary 

movement at this joint is that of inversion/eversion, with accessory 

abduction/adduction and plantar/dorsiflexion contingent principally upon the 

obliquity of the subtalar axis relative to the long axis of the foot. The action at this 

joint is of utmost importance in adaptation of the foot to irregularly orientated 

· substrates in an arboreal environment, and it would be expected that climbing and 

suspension would necessitate a greater degree of flexibility within this joint, 

indicated by a more oblique subtalar axis. Conversely, cursorial or saltatory 

genera would require more stability, which would be reflected by less obliquity of 

the axis at this point (Bamett, 1970; Langdon, 1986). 

The midtarsal joint involves the talonavicular and calcaneocuboid articulations, 

and movement occurs about two axes: the longitudinal axis is related to 

inversion/eversion of the anterior part of the foot, whilst the oblique axis allows 

mediolateral rotation and flexion/extension within the foot (Langdon, 1986). For 

the purpose of the present study, the most important element in this mticular 

complex is that of the talonavicular contact, and how the shape of the talar head 

may relate to overall mobility at this point. 

The talocrural joint is of remarkably uniform design in anthropoids, in terms of 

the general structure of the bones, the mediolateral orientation of the joint axis, 

the range of excursion and the packing of the bones (Lewis, 1980a; Langdon, 
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1986)26
• Despite this, minor differences in the shape of the trochlea (in particular 

the depth of the trochlea, the sharpness of the medial and lateral crests, and the 

obliquity of the tibial malleolar facet) allow for varying degrees of mediolateral 

rotation and inversion/eversion at this joint (Langdon, 1986). 

In cercopithecoids, the trochlea is high in relation to the rest of the talus, with 

highly curved arcs and a deep trochlear trough. These taxa also have a high degree 

of trochlea asymmetry, with the lateral crest substantially higher than the medial, 

most particularly in terrestrial forms, and a relatively high degree of 

anteroposterior trochlear wedging (Strasser, 1988). Overall, these features imply 

that the contact between the talus and the distal tibia and fibula is relatively close­

fitting, and thus secondary movements in a mediolateral plane are limited. The 

relatively high degree of trochlea wedging, however, suggests that the 

cercopithecoids have differential accessory mobility in dorsiflexed and 

plantarflexed postures. Stability is maintained during quadrupedal locomotion. 

however, as cercopithecoids use habitually dorsiflexed foot postures when 

engaging in this behaviour. This suite of talocrural features is consistent with what 

might be expected for quadrupedal runners and ]eapers, where mobility would be 

traded off for stability at speed. As a consequence, the joint components would be 

less robust with a greater predictability of force direction (Langdon, 1986; 

Strasser, 1988). 

In the African apes, the trochlea is narrow and anteroposteriorly wedged, the most 

extreme wedging found in Gorilla. This wedging changes the relationship 

between the trochlea and mortise formed by the tibial and fibular malleolar facets 

during the excursion of joint. As a result, the joint retains a close-packed stability 

during dorsiflexion, but becomes looser and thus more mobile in plantarflexion. 

The degree of mobility in this latter position is proportional to the extent of 

wedging, or the difference in breadth of the anterior and posterior extremities of 

the trochlea. A high degree of wedging was also apparent in the atelines, but not 

in the other New World monkeys (Langdon, 1986; Strasser, 1988). 

26 Lewis ( l980a) found distinctly derived talocrural morphology in Homo sapiens, compared to the 
universal, primitive pattern exhibited by the other primates. 
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The African ape trochlea is relatively shallow with rounded, less well-defined 

crests, and a low medial arc. The medial malleolar facet in these hominoid genera 

is also set quite obliquely in relation to the superior surface of the trochlea (rather 

than the more vettical facets found in monkey genera). All of these features 

contribute to a less restrictive articulation at the talocrural joint, and thus a greater 

range of accessory motion. These features would correspond to the increased 

demands for mobility of the foot in scansorial or suspensory genera, at the 

expense of both stability and speed. The forces incurred by different orientations 

of the foot in an unpredictable arboreal environment would be multi-directional, 

and thus this would necessitate a talus that was robust overall (Langdon, 1986). 

In Pongo, the trochlea is relatively wide, with an oblique malleolar facet, but is 

moderately less wedged, with a deeper trough, than in the other great apes. This 

greater depth of the trochlea is paralleled in the suspensory atelines, which 

perhaps does not concur with the expectations for taxa that require a significant 

amount of accessory abduction/ adduction in the ankle joint during four-limbed 

suspensory behaviours. Langdon (1986) suggests, however, that trochlear depth 

would be largely irrelevant during traction, having minimal effect on the overall 

flexibility of the joint in these postures, but it would offer increased stability in 

more weight-bearing positions. 

The trochlea of Hylobates is intermediate in its characteristics between the 

cercopithecoid and African ape types. The trochlea is relatively very narrow, 

showing high arcs and low wedging, in combination with shallow depth of the 

trochlear trough and obliquely set malleolar facet (Langdon, 1986). 

Overall, the cercopithecoids exhibit both a higher degree of wedging and greater 

asymmetry than both Hylobates and non-ateline New World monkeys (Harrison, 

1982; Strasser, 1988). Platyrrhines are proposed as most representative of the 

primitive condition, with cercopithecoids (along with atelids and great apes) being 

more derived. The great apes and atelids show greatest wedging and moderate 

asymmetry, whilst cercopithecoids have moderate wedging and marked 

asymmetry (Strasser, 1988). Both of these characters are suggested to be adaptive 
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for increased abduction during dorsiflexion. The taxa exhibiting a more primitive 

pattem are also characterised by locomotor repertoires that necessitate a 

considerable mobility in the ankle (pmticularly the pithecines who frequently 

utilise pedal suspension, and the hylobatids) and it seems likely that a high degree 

of flexibility, although possibly achieved in different ways, would constitute the 

primitive condition, and the increased stability of the cercopithecoids would 

consequently be derived. 

The subtalar joint is relatively constant in form and function across primates, 

despite variation in the prominence of different characteristics (Lewis, 1980b). 

The most notable differences are between the New and Old World anthropoids, 

predominantly in the orientation of the subtalar axis, formed by the direction of 

curvature of the two talocalcaneal articulations, and thus the type of movement 

facilitated (Langdon, 1986). Evidently, increased flexibility of this joint has been 

achieved in contrasting ways by the more suspensory taxa of the different 

continental radiations. More subtle differences were apparent, however, between 

the cercopithecoids and the hominoids, pertaining chiefly to the degree of 

secondary mobility (Langdon, 1986). 

The concave posterior calcaneal articulation of the cercopithecoid talus shows the 

shortest relative facet length among anthropoids, in combination with the greatest 

depth of curvature (Langdon, 1986; Strasser, 1988). This suggests retention of 

joint stability and a restricted range of motion. The anterior facet is split into 

proximal and distal parts on either sides of the underside of the neck. These two 

anterior facets are set acutely to one another, with opposing orientations, 

particularly in the more terrestrial species, thus restricting movement capabilities 

(Langdon, 1986; Strasser, 1988)27
. In the more arboreal colobines, however, the 

opposition of these facets is less marked. The axis of curvature of the subtalar 

joint in the cercopithecoids verges on perpendicular to the long axis of the foot, 

limiting auxiliary motion dming inversion/eversion. This overall morphology is 

much as would be expected for palmigrade arboreal quadrupeds, where a narrow 

27 Lewis (1981) and Strasser (1988) both hold the separated anterior talocalcaneal articulation to 
be a derived trait, adaptive for maintenance of stability during locomotion. It is also found in some 
New World monkeys, but with less opposition of orientation. 
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range of inversion/eversion would be necessary. It must be noted, however, that 

all primates utilise a degree of arboreal activity, which implies that all possess the 

ability to place the feet at irregular positions on substrates to a certain extent 

(Langdon, 1986). 

In contrast, the postetior calcaneal facet is relatively longest and widest in the 

great apes, perhaps correlating to the increased stresses incmred by their greater 

body size. The facet is also significantly shallower, creating a larger range of 

excursion in inversion/eversion. The axis of curvature lies more obliquely to the 

long axis of the foot in all of the great apes, facilitating lateral rotation of the foot 

in inverted postures. The anterior facet on the talus is retained as a smoothly 

curved single facet in hominoids. Flexibility at the subtalar joint is especially 

critical for the prehensile role of the foot in climbing genera as they manoeuvre 

between inclined substrates, although they need to retain a certain amount of 

stability, and thus joint robusticity, across a range of pedal positions (Lewis, 

1980c; Gomberg, 1985; Langdon, 1986; Strasser, 1988)28 
.. 

Again, the hylobatid subtalar articulations exhibits a combination of 

cercopithecoid and great ape features, with a more perpendicular axis of curvature 

and more sharply curved facets than the great apes, but retention of the single 

anterior articulation (Langdon, 1986). Lewis (1980b) interprets the hylobatid 

subtalar joint as representative of a primitive form, which suggests both the 

cercopithecoid and great ape morphologies to be derived towards stability and 

mobility respectively. 

In the atelines, the curvature of the posterior articulation lies in a more 

perpendicular plane, but mobility is retained through anteromedial movement of 

the calcaneus during inversion. Consequently, these New World monkeys have a 

large range of plantar/dorsiflexion at this joint, which would be adaptive for the 

prehensile function of the foot in these genera. This condition is also seen, to a 

certain extent, in Pongo (Langdon, 1986). 

28 Although many studies regard great apes as fairly consistent in their subtalar morphology, 
Oxnard and Lisowski (1980) propose that the talocalcaneal articulations differ significantly 
between Pongo and the African apes. 
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In the aspects of the talar head and neck pertaining to mobility in the midtarsal 

joint, several features are distinct between monkeys and apes. Again, these 

features relate to their varying locomotor repertoires, although Pongo showed a 

certain amount of convergence on the condition found in atelines (Langdon, 

1986). The hominoids, with the notable exception of Pongo, show a short overall 

talar head and neck length, probably reflecting robusticity for the accommodation 

of stresses incuned by large body size during climbing (Langdon, 1986). The 

neck is more medially orientated than in the other groups, which would be the 

most likely direction for forces throughout this type of locomotion. The longer, 

more gracile talar necks of Pongo, and indeed the atelines, are probably the result 

of the minimised stresses incurred on the neck during pedal suspension, and might 

increase excursion capabilities at this joint during pronation/supination (Langdon, 

1986). 

Conversely, the cercopithecoid talar neck is orientated more into the longitudinal 

axis of the foot, which reflects the primary direction of stress during quadrupedal 

running and leaping. Gebo (1992) proposes that a talar head and neck orientated 

approximately in line with the talar body (in combination with other features of 

the talocrural, subtalar and transverse tarsal joints) would be adaptive for 

increased mobility in primates using heel-elevated, semi-plantigrade foot 

postures29
. 

The shape of the talar head is quite varied across taxa, although Langdon (1986) 

argues that this may not be hugely important in ascettaining joint mobility. The 

29 Gebo ( 1992) argues that the fundamental differences between the tarsus of African apes and the 
other primate genera (except Pongo, which is unique) are due to the differing foot postures utilised 
during locomotor and postural behaviours. Pan and Gorilla habitually use plantigrade positions, 
where the heel strikes the substrate at the end of the swing phase of hind limb movement. The 
primitive condition seen in all other primates is one of semi-plantigrade heel-elevated foot 
postures. The author hypothesises that this adaptation in African apes is an adaptation for long­
armed quadrupeds to a more terrestrial lifestyle, and is fundamental to the origins of hominid 
bipedalism. This argument is strongly contested by Meldrum (1993; and also Schmitt and Larson, 
1995), who suggests that plantigrady is seen in many primates and other mammals that frequently 
use slow, deliberate quadrupedalism, both on the ground and in an arboreal environment, whilst 
heel-elevated postures are most frequent during rapid running and leaping. Most interestingly, 
Meldrum suggests that this posture is used by atelines, suggesting that this could be a posture 
linked to climbing or suspensory behaviour, convergent in hominoids and atelines. 
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congmency of this aspect of the midtarsal joint is contingent on the shape of both 

the talar head, and the calcaneal and navicular mticulations, as the talar head 

effectively locks into a socket f01med by the facets on these two bones. 

Consequently it becomes difficult to determine the joint mobility without 

regarding all of the components simultaneously. In general, however, the 

hominoids, excepting Pongo, display a broad head, and the overall close-fitting of 

the joint is markedly less among hominoids than all other non-human anthropoids, 

resulting in a greater range of mobility at this joint than in the other taxa 

(Langdon, 1986). 

In conclusion, there are only a small number of functional aspects of the talocrural 

joint that differ between hominoids and the other primates, other than those details 

of trochlear shape indicative of greater mobility and a less restrictive joint 

articulation (Langdon, 1986). It might be proposed that these are, however, 

fundamental in themselves due to the different requirements of the varying 

locomotor types for flexibility at this point. The subtalar joint, on the other hand, 

shqws basic differences that pettain to both joint mobility and orientation, 

primarily in the structure of the facets and their angles of curvature. In the 

midtarsal joint, the primary differences can be related to the direction and 

magnitude of stresses during locomotion (Langdon, 1986). 

The different specialisations observed in the extant taxa (Table 3) appear to be 

functionally related to role of the foot in their widely varying locomotor 

repertoires. In cercopithecoids, the foot is utilised predominantly for propulsion 

and balance, requiring overall stability within a conservative range of mobility, 

chiefly that of plantar and dorsiflexion. On the other hand, the more suspensory or 

climbing taxa regularly use their feet for suppott ancVor hanging, and thus require 

greater capacity for strength in the feet, and greater grasping capabilities over a 

wide range of orientations. Hylobates, although perhaps the most specialised 

suspensory primate, is somewhat intermediate in its adaptations, combining 

derived hominoid traits with those of quadrupedal monkeys. Indeed, much of the 

evidence suggests that Hylobates retains a comparatively primitive morphology of 

the foot with respect to those seen in cercopithecoids and great apes. This is 
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probably due to the limited specialised pedal component in the locomotion of this 

genus. 

Atelines Cercopithecoids Hylobatids Pongo African Homo 

apes 

Talocrural joint 

Trochlear 

Breadth wider wide narrowest wider narrow widest 

Arch height lowest high high high flattens low 

medially 

Arc angle less greater greater less less less 

Asymmetry low high low moderate moderate low 

Wedging high low low low moderate low 

to high 

Depth variable deep shallow deep shallow shallow 

Subtalar joint 

Posterior facet 

Shape long, short, wide moderate long, long, long, broad 

narrow length, broad broad 

broad 

Depth shallow deep shallow shallowest shallow shallow 

Orientation a-p oblique oblique Qbliq11e oblique most oblique 

Anterior facet les~ extreme some less least most 

curvature 

Joint congruency poor moderate . good least moderate moderate 

Motion mostly a- slight rotation in rotation, rotation, rotation, mostly 

p,no place, slight slight screw screw inversion/eversion, 

screw screw action screw action action slight screw action 

action action 

Talar positioning centred on medial. little tilt medial, most most most centred 

calcaneus little tilt medial, medial, 

much tilt much tilt 

Mid tarsal joint 

Talar neck angle slightly slightly less slightly slightly slightly slightly less 

greater greater greater greater 

Talar neck length long moderate short long short short 

Talar head size small moderate large small large large 

Table 3: Summary of osteological variation of the talar joints among extant anthropoids 

[after Langdon, 1986] 

The African apes are quite primitive in their tarsal morphology, in contrast to the 

highly specialised Pongo, which is unique among the great apes in many aspects 

of its tarsal structure (Langdon, 1986). This may be attributed to the 'unique 

niche' occupied by this genus, incorporating a high degree of arboreal 

quadrumanous suspension despite large body size (Langdon, 1986). Indeed, 
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Meldrum (1993) proposes that Pongo has undergone a reversal from a terrestrial 

great ape ancestry, towards extreme arboreal behaviour (see also Smith and 

Pilbeam, 1980). 

THE LORISID WRIST AND ANKLE JOINTS 

In an analysis of the ulnocarpal articulations of Galagidae and Lorisidae, Cartmill 

and Milton (1977) observed fundamental differences between the two lorisoid 

families pertaining to joint mobility. Firstly, the galagid pisiform is of the 

primitive mammalian configuration, elongated and projecting back to form the 

'heel' of the hand, with a clear facet for direct articulation with the ulna. The loris 

pisiform, on the other hand, is relatively small, distally displaced and separated 

from the ulna by radiolucent tissues. Secondly, the galagid ulnotriquetral joint 

shows clear direct articulation with the pisiform and triquetra! forming a cup-like 

socket for reception of the short, stout distal ulna. In lorises, the triquetrum and 

ulna are separated by a considerable gap. The ulna styloid process is a relatively 

slender projection, with a somewhat small articular surface on its distal extremity. 

Finally, the galagid distal radioulnar articulation is relatively small and flat, 

compared to that of the lorises. The atticular portion of the !oris distal radius 

extends across towards the ulna styloid process, inserting itself between the ulna 

shaft and the carpus. On the whole, the !oris radioulnar articulation is 

characterised by expansion of the articular surfaces on both the radius and ulna, 

suggesting a greater range of excursion of the radius around the ulna. 

Overall, the galagid ulnocarpal joint is uniformly observed to be of the primitive 

mammalian type, with the large distal end of the ulna styloid process articulating 

directly with the receptive cup formed by the triquetra! and pisiform. In contrast, 

the lorisids show various degrees of ulna withdrawal from the carpus, across the 

three genera examined. In Loris, the ulnocarpal joint is much reduced, with the 

distally displaced pisiform articulating solely with the t1iquetrum. The ulna 

exhibits a slender styloid process with a small articular surface at its terminus, 

which only contacts the triquetrum during ulna deviation and dorsiflexion of the 

hand. Cartmill and Milton (1977) suggest that this contact does not appear to 

restrict ulnar deviation of the hand. The radioulnar joint is fully diarthrodial. 
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Perodicticus is slightly more advanced in the withdrawal of the ulna from the 

carpus. Like Loris, a fibrous ridge intercedes between the triquetrum and ulna 

styloid process, although limited stylotriquetral contact is retained. Again, no 

articulation is evident between the pisiform and the ulna styloid process. Although 

these fundamental features are similarly observed in Nycticebus, this genus shows 

great variation in its degree of ulnottiquetral contact across specimens, ranging 

from direct contact between the ulna and triquetra! to complete exclusion of the 

triquetra! from the ulna by the presence of intra-articular fatty pad. 

On the whole, the two lorisoid families are observed to have very different 

structures of the ulnocarpal joint from one another, which probably reflects the 

demands presented by their widely contrasting locomotor and postural repertoires. 

The galagid wrist resembles the ptimitive arrangement seen in other mammals, 

and thus we can assume that it is the lorises that have become derived in this 

element of their anatomy. Evidently the lorises have acquired these features in 

response to the adaptive pressures of their environment and habits. Cat1mill and 

Milton (1977: 260) note that these detivations of the loris wrist were essentially of 

the same nature as those documented by Lewis (1971a, 1972a-b, 1974) in his 

many papers on the hominoid wrist: "The observations presented here show that 

the wrist of lorisines (and of some Nycticebus in particular) is not typically 

mammalian, but has undergone a transformation as radical as, and in many 

respects parallel to, that seen in the extant Hominoidea". 

Furthermore, lorisids exhibit other characters of the postcrania that might be seen 

as convergent on hominoid locomotor anatomy, including relatively high 

intermembral indices, features of the shoulder joint pertaining to increased overall 

mobility (moderate cranial orientation of the glenoid fossa, elongated of scapula 

vertebral border), features of the torso (transverse breadth of the thoracic cage 

exceeds dorso-ventral breadth), and a reduced tail (Cartmill and Milton, 1977; see 

also Runestad, 1997 for features pet1aining to limb mobility). It is not 

unreasonable to suppose that these similarities indicate a comparable functional 

role. These features, however, have traditionally been associated with brachiating 

locomotion, and their presence in the non-brachiating lorisids poses a challenge to 

that inference. 
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The lorisid wrist modifications can be functionally attributed to their characteristic 

locomotor pattern, which incorporates slow climbing, cautious quadrupedalism, 

hindlimb suspension, quadrumanous below-branch activity and bridging 

behaviours, and necessitates a high degree of postcranial flexibility for reaching 

and hauling the body (Cat1mill and Milton, 1977). The ulna retreat from the 

carpus facilitates increased excursion of the wrist in the rotation of the hand about 

the longitudinal and dorsoventral axes, for pronation/supination and 

abduction/adduction respectively. As a result, lorisids are well equipped for 

gripping substrates in a variety of postures. Similar wrist adaptations have also 

been noted in the two-toed sloth, which engages in comparable postural and 

locomotor activities (Cartmill and Milton, 1977). 

Thus, parallel adaptations seen in the hominoids and lorisids might imply that the 

apes experienced a phase of cautious quadrupedalism before the emergence of the 

locomotor specialisations seen in. apes today (Cartmill and Milton, 1977). Large 

arboreal animals are less likely to employ leaping or jumping behaviours, due to 

their considerable body weight, and thus might utilize hoisting, reaching and 

bridging to negotiate between arboreal supports. These taxa would also have a 

greater need to evenly distribute their weight across supports, which would be 

assisted by grasping ability throughout a range of postures. Additionally, genera 

engaging in this cautious form of locomotion would have less need of a tail, as the 

tail is effectively a balancing agent for many arboreal species, and may be used to 

radiate the excess heat energy incmTed though rapid arboreal activity (Cartmill 

and Milton, 1977). 

Analyses of the ankle and foot of lorisids have also observed osteological features 

that fundamentally pertain to the increased prehensile function of the foot in these 

taxa during their extraordinary 'sloth-like' climbing behaviour (Grand, 1967). In 

his study of four lorisid genera (Nycticebus, Loris, Perodicticus, and Arctocebus), 

Grand (1967) observed that the prehensile function of the foot played a far more 

important role than the propulsive function during lorisid locomotion. This 

increased prehensility is facilitated by a three joint action in the ankle, whereby 

plantarflexion, inversion and flexion are carried out simultaneously at the 
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talocrural, subtalar and midtarsal joints respectively. During climbing the 

talocrural joint is predominantly engaged in plantarflexion, and the subtalar joint 

inverted, with additional flexion noted at the midtarsal joint for extra grasping 

(Grand, 1967). 

The lorisid talocrural joint, like that of other primates, comprises the mticulation 

of the talus with the distal extremities of the lower leg bones, whereby the talus is 

securely locked beneath the tibia and fibula dming inversion/ eversion; contact is 

maintained between the medial, lateral and superior aspects of the tal us and the 

tibial and fibular malleoli. The hinge like mechanism of the joint permits 

plantar/dorsiflexion across a range of about 100° of motion. The ligaments of the 

joint assist in retaining the single plane of motion in this joint (Grand, 1967). 

The subtalar joint consists of two articular facets, jointly contributing to a single 

axis ofmovement. As the talus is tightly bound, allowing restricted mediolateral 

excursion, the calcaneus, navicular and distal foot move relative to the tal us, at the 

subtalar joint, to contribute to the range of mobility. These movements take place 

at the posterior and anterior talocalcaneal articulations, and at the transverse tarsal 

joint. The primary direction of motion at these points·is inversion/eversion. The 

navicular articulates mediolaterally with the anterior surface of the flattened talar 

head, facilitating inversion/eversion across a range of approximately 60-70° 

(Grand, 1967). Additional inversion and flexion also occurs at the metatarsals and 

digits. This inverted posture of the foot, accompanied by plantarflexion at the 

talocrural joint, is documented as the natural position of the tarsus and digits 

relative to the ankle (Grand, 1967). 

Overall, the lorisids have an exceptionally prehensile foot, which appears 

functionally adapted to their distinctive locomotor pattern. These adaptations have 

occurred at the talocrural, subtalar and midtarsal joints, to provide a pivot for the 

foot to grasp in a multitude of orientations. Although Grand's (1967) paper does 

not address the relationship directly, it can be infen·ed that the structure of the 

lorisid ankle is somewhat different from that seen in extant hominoids, given that 

the hominoid tal us is less rigidly secured at the talocrural joint, offering a greater 
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range of mediolateral mobility (Langdon, 1986). It might be deduced that the talar 

trochlea exhibits limited wedging in lorises, as there is little accessory motion 

across the range of postures. The report, however, does imply similar extent of 

mobility at the subtalar joint, contributing to the overall movement capabilities of 

the foot. This may be evident in similarities of structure that are not examined in 

the article, although the paper (Grand, 1967) does suggest a hominoid 

resemblance in the shape of the talar head. 

In view of the implied morphological similarities between the lorisid and 

hominoid wtist, and their implications for potential underlying posturalllocomotor 

repertoires (Cartmill and Milton, 1977), and the comparable movement 

capabilities evident in certain aspects of the ankle in these taxa, it might be logical 

to expect certain parallelisms in aspects of ankle morphology as well. 

THE EARLY MIOCENE HOMINOID WRIST 

Studies of the proconsulid wrist joint have varied considerably in their results, and 

subsequent interpretations of early Miocene ape locomotion. In the earliest 

literature Dryopithecus (Proconsul) africanus (now assigned to Proconsul 

heseloni [Walker et al., 1993]) was widely accepted to possess primitive wrist 

morphology, consistent with that of an arboreal quadruped (Napier and Davis, 

1959), although Lewis (1972a) argued that these fossil descriptions were 

generally carried out before the knowledge of unique hominoid wrist adaptations. 

There has been much debate as to the significance of features observed in the ulna 

and carpus of the early Miocene taxa, and indeed the different analyses have been 

somewhat contradictory in their descriptions of the same specimen. Some 

analyses have described incipient hominoid features of the wrist (Lewis, 197la; 

Beard et al., 1986; Odhiambo Nengo and Rae, 1992), and others have noted more 

monkey-like characteristics (Schon and Ziemer, 1973; Corruccini et al., 1976; 

Morbeck, 1975; HatTison, 1982). 
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The ulna styloid process in the P. heseloni (KNM-RU 203630
) specimen is 

relatively longer than all extant anthropoids, verging on the morphology found in 

strepsirhines (Harrison, 1982), and has variously been described as hook-like 

(Lewis, 1971a, 1972a-b) or robust (probably weight-bearing) and not hook-like 

(Morbeck, 1975). Harrison (1982) suggests, however, that the reported length of 

this specimen might be attributed to either its juvenile status, or measuring 

difficulties encountered due to fossil damage. This specimen has well-defined 

articular surfaces on the distal and peripheral aspects, dorsolaterally placed rather 

than on the carpal aspect as found in extant monkeys (Lewis, 1971a; Morbeck, 

1975). This articulation, however, comprises a distinct oval facet for the triquetra!, 

with a less clear elongated depression on the periphery for the pisiform (Morbeck, 

1975). This would suggest that the ulna styloid process of this specimen retained a 

significant articulation with the carpus, unlike the hominoids where this contact is 

reduced. In addition, the distal radioulnar and radiocarpal mticulations suggest 

limited pronation-supination and radial-ulnar deviation (Morbeck, 1975). On the 

other hand, the orientation of the carpal facets is reflective of a hominoid-like 

. reorganisation of the joint (Lewis, 1971 b). 

Analyses of other specimens from the early Miocene have found that some of the 

fossils (KNM SO 1012 and KNM CA 575, assigned to Dendropithecus macinnesi 

and Kalepithecus songhorensii1
, respectively) most closely resemble 

cercopithecoid monkeys in the structure of the distal ulna (Harrison, 1982) whilst 

a specimen assigned toP. major is more hominoid-like (Odhiambo Nengo and 

Rae, 1992). The Dendropithecus and Kalepithecus specimens possess relatively 

long ulna styloid processes, comparable to non-hominoid anthropoids, with clear 

facets for the pisiform and triquetra!. They also exhibit an anteroposteriorly long 

and narrow head, and a radial articulation suggestive of limited excursion 

(Harrison, 1982). This is in contrast to specimen KNM-SO 22734, a distal 

fragment of an ulna, which is tentatively assigned toP. major on the basis of size 

(Odhiambo Nengo and Rae, 1992). The specimen, consisting of the ulna head and 

30 One of the difficulties with the analysis of this particular specimen is that it is a juvenile, and 
any study must take into consideration the ontologenetic differences that might be apparent 
between this and adult specimens (see Harrison, 1982). 
31 Originally referred to Micropithecus songhorensis (Harrison, 1982), but assigned to 
Kalepithecus songhorensis by Harrison ( 1988). 
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a tiny portion of the styloid process, is most similar to living hominoids in the 

morphology of the ulna head, but different toP. africanus. "The large atticular 

facet suggests an animal capable of a range of wrist mobility similar to that of Pan 

troglodytes" (Odhiambo Nengo and Rae, 1992: 427). 

The long ulna styloid processes observed in some of the above specimens, in 

combination with the other characters, imply limited wrist mobility (particularly 

abduction-adduction) reminiscent of that seen in cercopithecoids (Hartison, 1982, 

1987). It seems that P. heseloni, D. macinnesi and K. songhorensis retain features 

of the ulna more consistent with the primitive catarrhine pattern (large and well­

developed ulna styloid process, direct contact between the ulna styloid process 

and the carpus, no intra-articular meniscus, restricted radioulnar articulation, and 

anterior-posteriorly long and narrow distal ulna), differing from extant hominoids 

. in these aspects. The wrist of these specimens is thus not similar in its articular 

surfaces and reconstmction of movement capabilities to extant hominoids, but 

more like palmigrade, quadrupedal cercopithecoids (Morbeck, 1975; Hartison, 

1982, 1987). In contrast, P. major shows features of the radioulnar articulation 

reminiscent of greater mediolateral excursion and thus greater potential for 

· mobility of the wrist (Odhiambo Nengo and Rae, 1992) 

Morbeck (1975) suggests that the size and shape of the pisifmm, and the 

placement of the articular facets on the ulna, triquetra! and pisiform are most 

consistent with habitual palmigrade locomotor behaviour, and infers the range of 

motion to be most similar to palmi grade quadrupeds32
• Several analyses of the 

wrist of P. heseloni and P. nyanzae have, however, shown that the carpal anatomy 

of Proconsul shows structural similarities to extant hominoids, but in combination 

with characteristics similar to cercopithecoids (Lewis, 197la; Beard et al., 1986). 

The pisiform and triquetrum of both fossil species show clear articular facets for 

the ulna styloid process, like extant monkeys, but the orientation of the articular 

32 Morbeck ( 1975), however, recognises the speculative nature of interpretation/reconstruction of 
locomotor/positional behaviour in view of the fragmentary/damaged nature of much of the 
material and the limited samples available for many of the species. In addition, she highlights the 
problems of working with cast material, where subtle details of the anatomy of joint surfaces may 
be obscured (see also Ford, 1988 for problems of reconstructing the behaviour of fossil taxa from 
comparative analyses with extant forms). 
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surlaces differs from cercopithecoids, suggesting different movement capabilities 

to extant taxa (Lewis, 1971a; Beard et al., 1986). The triquetra] has the appearance 

of a triangular pyramid, the palmar surface of which has a large, shallowly 

concave facet for pisiform (Lewis, 1971a). The pisiform has a large dorsal facet 

for the triquetra], and a smaller meniscal facet on its proximal aspect, with some 

evidence for the division of the articular area (articular at the tip for the tliquetral, 

and the periphery area for the meniscus) (Lewis, 1971 a). This suite of characters 

is suggestive of a meniscus-containing joint, and the subsequent orientation of the 

triquetra! and pisiform indicates a more hominoid-like organisation of the 

ulnocarpal joint (Lewis, 1971 a). 

The presence of ulnocarpal articulation restricts the degree of ulnar deviation 

characteristic of extant hominoids, and therefore supination of the forearm must 

have been more limited in Proconsul. But the extent and orientation of ulnocarpal 

articulation was different from that of cercopithecoids (Beard et al., 1986). 

Despite articulation with the carpus the Proconsul ulna styloid process would 

have had a greater extent of distomedial displacement on the pisiform and 

triquetra! than extant monkeys. Also, the proximodistal (rather than mediolateral) 

orientation of the spiral facet on the hamate would have facilitated ulna deviation 

further. Proconsul, therefore, shows derived characters for catarrhines, but is not 

equivalent to modem hominoids (Beard et al., 1986). In this sense, Proconsul is 

unique, and is not matched by extant species. "The wrist of Proconsul may have 

been subjected to some of the same selective forces which eventually brought 

about the reorganisation of the modem hominoid wrist" (Beard et al; 1986: 117), 

which is consistent with this genus constituting a basal member of the hominoid 

group. 

Overall there has been a significant amount of disagreement with regard to the 

interpretation of features of the proconsulid distal ulna and carpus. Analyses have 

identified characters reminiscent of both extant hominoids and cercopithecoids, 

and it seems likely, as has been shown with the rest of the early hominoid 

postcrania, that these taxa possessed a suite of characteristics unmatched by extant 

taxa. There is no evidence to support the suggestion proposed by Conroy and 

Fleagle (1972) and Zwell and Conroy (1973) that the wrist of Proconsul shows 
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adaptations to the specialised knuckle-walking form of locomotion characteristic 

of modern African apes (based on Tuttle' s 1967 list of characters) (M or beck, 

1975; Beard et al., 1986). The presence of these features pertaining to increased 

supination has been interpreted as suggestive of adaptations towards suspensory 

locomotion and posture being already well established in the early Miocene 

Hominoidea (Lewis, 1971a; 1972a-b, 1974). Although increased supination can 

be related to brachiating capabilities, the relationship is not exclusive, and 

authorities agree that the ulna and carpus of the early Miocene taxa were not 

adapted to specialised brachiating locomotion (Beard et al., 1986). Accordingly, 

the locomotor patterns utilised by these genera were probably rather different 

from those seen in any of the modern anthropoids. The configuration of the wrist 

allowed a greater range of mobility than seen in extant cercopithecoids, but in 

combination with a greater degree of stability than hominoids, as might be 

expected for a pronograde quadruped engaging in four-limbed grasping 

quadrupedalism. 

THE EARLY MIOCENE HOMINOID ANKLE 

A great many studies have been undertaken to compare fossil tali with those of 

extant genera, because of the crucial position of this bone in connecting the foot to 

the ankle and thus its importance in determining the function of the foot as a 

whole. In addition, there are a significant number of tali preserved in the fossil 

record from this period, from a wide range of early Miocene genera (Lisowski et 

al., 1974). 

In a similar way to studies of the wtist, comparisons of the morphological features 

of the ankle (talocmral and subtalar joints) in early Miocene forms have yielded a 

wide range of results, finding affinities of the different genera with hylobatids 

(Lisowski et al., 1976), Pongo (Lisowski et al., 1974, 1976), modern great apes 

(Day and Wood, 1969; Pilbeam, 1969), Old and/or New World monkeys 

(Corruccini et al., 1976; Le Gros Clark, 1952; Le Gros Clark and Leakey, 1951; 

Preuschoft, 1973; Wood, 1973, Harrison, 1982), or, most recently, a combination 

of monkey- and ape-like characteristics (Langdon, 1985, 1986; Ward, 1997). 
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Specimens of Proconsul and Rangwapithecus have revealed remarkable similarity 

in their features, despite size differences (Harrison, 1982), although the smaller 

Proconsul africanus (including material now assigned toP. heseloni) and 

Rangwapithecus gordoni show sharper trochlear curvature (deep and 

asymmetrical), than the larger P. nyanzae and P. major (Langdon, 1986). 

At the talocrural joint, Proconsul and Rangwapithecus are similar in their shape 

and curvature to African apes, but resemble monkeys in specific features 

suggesting restricted mediolateral mobility (Langdon, 1985; 1986). All of the 

specimens have relatively deeply grooved trochlea smfaces, and slight 

anteroposterior wedging, equivalent to or less than that seen in extant cebids and 

cercopithecines. The fossil tali also exhibit steep malleolar facets, and well­

defined medial and lateral crests, with moderate asymmetry comparable with 

Asian apes and colobine monkeys (Harrison, 1982; Langdon, 1986). These 

features contrast with the condition found in African apes (a shallow trochlea with 

ill-defined crests) that allows greater accessory movement at this joint (Harrison, 

1982). In summary, mobility at the talocrural joint in the fossil taxa is fairly 

restricted (Langdon, 1986), and most like cercopithecoids in features pertaining to 

the stability of talocrural joint (deep trochlea groove, angular crests,), but in 

aspects of the medial and lateral tubercles, trochlear wedging and degree of 

asymmetry, they correspond most closely to arboreal non-catarrhine primates 

(Harrison, 1982). Ward (1997) suggests that these fossil taxa have a primitive 

talocrural joint, indicative of palmigrade quadrupedalism. 

Conversely, the subtalar and midtarsal joints are more similar to great apes, with 

enlarged talocalcaneal atticular smfaces (expanded anteromedially) offering a 

wider range of mobility at this point (Langdon, 1986)33
, although Harrison (1982) 

disputes this in recommending the total subtalar structure to be reflective of 

arboreal quadrupedalism. Ward (1997) noted that the orientation and structure of 

the talar articular facets on the calcaneus are more comparable to extant colobines, 

resulting in an intermediate range of mobility at the subtalar joint. 

33 This is similar to the observations documented in Grand ( 1967) on the structure of the lorisid 
ankle, with restricted talocrural morphology, and enhanced mobility at the subtalar and midtarsal 
joints. 
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The fossil tali have short necks and well rounded heads, similar to the great apes34 

(Langdon, 1986), and in the orientation of the head and neck, and the inclination 

of the subtalar joints, the structure suggest a prehensile and opposable hallux 

(Harrison, 1982). Moreover, the midtarsal joints and tarsal lengths are most like 

those of extant hominoids (Ward, 1997). Harrison (1982: 416) concludes that 

overall analysis shows the fossil apes to be arboreal quadrupeds, but states "the 

combination of morphological features seen in the fossils distinguishes them from 

all extant catanhines, and probably represents a structurally less specialised grade 

of development associated with generalised arboreal activities". 

Both Proconsul and Rangwapithecus possess features of the tal us, calcaneus, and 

the proximal anterior tarsal joints that indicate ape-like slow-climbing, positional 

and locomotor capabilities, but with restricted mediolateral displacement at the 

talocrural joint. Langdon (1986: 173) states, "The Proconsul foot appears to be 

· capable of both vertical climbing, postures and limited monkey-like progression." 

The talus of Dendropithecus reveals no characteristics that would indicate 

different positional repertoires from those of Proconsul, but the calcaneus shows 

greater similarity to great apes and atelines, with overall gracility indicating more 

suspensory functions (Langdon, 1986). Micropithecus, Kalepithecus, and (to a 

lesser extent) Limnopithecus legetet, have longer talar necks than the other 

species, comparable with those of the suspensory atelines, but most elements of 

the talocrural and subtalar joints are functionally indistinguishable from 

Proconsul (Harrison, 1982; Langdon, 1986). 

Overall, the ankle and foot morphology of Miocene apes is quite generalised in 

comparison to extant forms (Ward, 1997). The fossil taxa reveal a mosaic of traits 

unlike living primates, with features indicative of quadrupedalism forming the 

primary mode of locomotion (stability at the talocrural joint, restricted to 

plantar/dorsiflexion, and gracile, and elongated, anterior tarsal skeleton) 

34 A short talar neck and head is identified as a hominoid synapomorphy by some authors (e.g., 
Rae, 1999), although Langdon (1986) argues that Pongo is an exception to this, having an 
elongated narrow neck similar to that found in the atelines. 
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(Harrison, 1982; Langdon, 1986; Ward, 1997). In combination with this, these 

early species possess features functionally correlated with increased climbing: 

increased subtalar and midtarsal mobility, and a strongly developed grasping 

hallux. These species, and particularly the best-known Proconsul, probably 

incorporated both climbing and quadrupedalism in their locomotor repertoires, 

although most likely at slower speeds than extant monkeys, due to the robusticity 

of their postcranial skeletons (Langdon, 1985, 1986). 
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CHAPTER4 

Aims and Objectives 

There is little doubt, from the review of the previous literature documenting the 

postcrania of early hominoids, that the early Miocene genera were very different 

from the extant hominoids in both their morphology and inferred locomotor 

repertoires. These taxa were fundamentally monkey-like in their axial skeleton, 

and thus primarily adapted for pronograde arboreal quadrupedalism (Ward, 

1993a-b). Nevertheless, the high range of mobility in most of the joints of the 

appendicular skeleton suggests a greater range of movement than modem 

monkeys (e.g., Fleagle, 1983; Rose, 1983; MacLatchy and Bossert, 1996). Indeed 

most authorities agree that the postcranial evidence supports a view that these 

genera were rather slow, but powerful, arboreal climbers, utilising strong pedal 

and manual grasping (e.g., Begun et al., 1994; Rose, 1997). 

If we accept the proconsulids as hominoids; three of the previous hypotheses 

postulated for the ancestral hominoid locomotor pattern (brachiation, 

knucklewalking and vertical climbing) can more or less be falsified on the basis of 

the fossil data, in combination with observations from extant forms. The early 

Miocene hominoids show none of the specialisations indicative of brachiating 

behaviours, and the extant great apes do not use this type of behaviour frequently 

(Fieagle et al., 1981). Indeed only the hylobatids regularly use ricochetal arm­

swinging locomotion, and they are characterised by the least derived morphology 

in the traits usually associated with brachiation (Conroy and Fleagle, 1972). 

Similarly the Miocene fmms show none of the specialisations expected for 

knucklewalking (Morbeck, 1975; McHenry and Corruccini, 1983), and it is only 

the African apes that use this form of quadrupedalism. It is probably realistic, 

however, to agree that both of these aforementioned locomotor types are derived 

specialisations from a common ancestral base (Langdon, 1986). With reference to 

the vertical climbing hypothesis, whilst the Miocene forms seem well adapted in 

their appendicular skeleton to this type of locomotion, the primitive nature of the 
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axial skeleton suggests that these forms were fundamentally pronograde (Ward, 

1993a). Additionally, extant taxa do not show frequent vettical climbing 

behaviour, and this form of locomotion would have to include other behaviours as 

well, as vertical climbing is only practised 'up and down' (Gebo, 1996). 

This leaves us with the cautious quadrupedalism hypothesis. The suggested 

resemblances between the hominoid and lorisid wrist joint (Cartmill and Milton, 

1977) imply a similar functional adaptation. The lorisids are characterised by their 

slow, deliberate quadrupedal progression, which requires a considerable range of 

mobility of the limbs, most particularly the hands and feet, to accommodate 

grasping irregular arboreal supports in a multitude of otientations (Walker, 1969; 

Cartmill and Milton, 1977; Grand, 1967). A loris locomotor type would account 

for all of the features found in the early Miocene genera; monkey-like axial 

skeleton, enhanced mobility in the limbs, powerful grasping capabilities, and loss 

of tail (Kelley, 1997). Furthermore, this form of locomotion would provide a 

reasonable base from which the more specialised extant hominoid locomotor 

patterns could have evolved (Kelley, 1997). 

Unfortunately, apart from the study by Cartmill and Milton (1977), which 

suggested similarities between the wrists of lorisids and hominoids, there is 

limited comparative data on these taxa, and more particularly with the fossil taxa. 

It is therefore necessary to test whether these groups share any other postcranial 

features that might fmther support this hypothesis. One of the fundamental 

adaptations to this form of locomotion would be greater mobility of the ankle 

joint, and the hominoids are known to possess derived ankle morphology 

(Langdon, 1986). If the lorisids are shown to have similar adaptations in this 

anatomical region to the hominoids, as well as in the wrist, it would support the 

hypothesis of the original hominoid postcranial adaptation being one of loris-like 

locomotor capabilities. Thus, this study is a continuation from that of Cmtmill and 

Milton (1977) in that it conducts a direct comparison of wrist and ankle features 

of lorisids, hominoids and proconsulids across a range of characters. 

The aim of this study, therefore, is to examine features of the talocrural, subtalar 

and midtarsal ankle joints and the ulnocarpal and radioulnar joints in the wrist that 
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relate to the range of mobility in these structures. The characters reviewed in this 

study are ulna styloid process length, extent of ulnocarpal articulation, ulna head 

shape, shape and extent of the radioulnar articulation, talar trochlear depth, extent 

of anteropostetior trochlear wedging, depth of curvature of the posterior calcaneal 

facet, obliquity of the subtalar axis, talar head breadth, and length and orientation 

of the talar head and neck. These characters are studied across a spectrum of 

primates, chosen to reflect a range of arboreal quadrupeds and suspensory forms, 

to provide adequate comparative material with which to test hypotheses of the 

relationship of form to function. The view is to compare the anatomy of lorisid 

and hominoid taxa within a context of other, tailed, arboreal quadrupeds. This 

study predicts that the lorisids are similar to the hominoids in these features, from 

which it may be inferred that the traits reflect similar functional adaptations. The 

data will then be compared with the same features in the Miocene taxa to test 

hypotheses of ancestral hominoid patterns. 
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CHAPTERS 

Methods and Materials 

NEONTOLOGICAL SPECIMENS 

The data are derived from miginal observations and measurements of primate 

specimens from the collections at the American Museum of Natural History in 

New York (AMNH) and the National Museum of Natural History at the 

Smithsonian Institute in Washington DC (NMNH). A total of two hundred and 

twenty-nine specimens were analysed, representing fourteen genera: Arctocebus, 

Nycticebus, Loris, Perodicticus, Varecia, Alouatta, Saimiri, Chiropotes, 

Cercopithecus, Macaca, Hylobates, Pongo, Pan and Gorilla (Table 4). The 

ptimary focus of the study was analysis of the hominoids and lorises, and thus 

data sets were collected for all genera within these groups. The remaining taxa 

were chosen to reflect arboreal quadrupeds of varied body size across the 

spectrum of taxonomic groupings. 

Where possible, data for 20 specimens from each of the taxa was obtained; the 

samples studied for some of the genera (Arctocebus, Loris, Nycticebus, Varecia, 

and Chiropotes) were restricted by the numbers of specimens within the museum 

collections. All specimens were adult, wildshot, with no apparent deformities 

through illness or injury. Every effort was made to collect equal numbers of males 

and females. In some cases, however, sex was indeterminate and in others the 

limitations of the collections did not allow for such choice. 

FOSSIL SPECIMENS 

The fossil data used in this study derived from previous studies of the ulna and 

tal us of Miocene hominoids (Table 5). Only a few of the wrist measurements 

could be achieved from the literature, and these were taken from Harrison (1982). 

As a result, the only indices that could be meaningfully compared with the extant 

data for the wrist were those of ulna styloid process length and ulna head shape. 
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The distal ulna specimens for which data were available represented two species: 

Proconsul heseloni and Kalepithecus songhorensis. 

Genus 

Lorisidae 

Arctocebus 

Loris 

Nyrticebus 

Perodicticus 

Lemuridae 

Varecia 

Atelidae 

Alouatta 

Chiropotes 

Cebidac 

Saimiri 

Cercopithecidae 

Cercopithecus 

Macaca 

Hylobatidae 

Hylobates 

Great apes 

Gorilla 

Pa11 

Po11go 

Males 

3 

3 

11 

2 

9 

2 

8 

11 

11 

8 

10 

7 

6 

Females 

0 

3 

8 

5 

11 

5 

13 

8 

8 

9 

4 

7 

9 

Table 4: Summary of osteological samples 

Indeterminate 

2 

8 

3 

2 

5 

0 

2 

3 

11 

6 

5 

Total 

3 

5 

14 

22 

9 

25 

7 

23 

20 

20 

20 

25 

20 

20 

The data for the Miocene tali were available for most of the measurements used in 

this study, and for a larger sample of species than those of the wrist. These figures 

were derived from the original data used by Langdon (1984), conveyed by 

personal communication, and from Han·ison (1982). The sample included: P. 

africanus, P. major, P. nyanzae, P. heseloni, D. macinnesi, R. gordoni, K. 

songhorensis, L. evansi, and L. legetet. 
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Number Specimen Locality Species 

Ulna 

KNM-RU 2036 L distal ulna Rusinga P. heseloni 

KNM-CA 575 R distalulna Chamtwara K. songlwrensis 

KNM-SO 1012 L distal ulna Songhor K. songhorensis 

Tal us 

KNM-RU 4347 R talus Rusinga P. africanus 

KNM-RU 1744 L talus Rusinga P. africanus 

KNM-RU 1745 R talus Rusinga P. a.fhcanus 

KNM-50 1402 R talus Songhor P. a.fi-icanus 

KNM-50389 R talus Songhor P. major 

KNM-SO 1705 L tal us Songhor P. major 

KNM-RU 1743 L talus Rusinga P. nyanzae 

KNM-RU 1896 L tal us Rusinga P. nyanzae 

KNM-RU 3105 R talus Rusinga P.nyanzae 

KNM-RU 2036 L talus (juvenile) Rusinga P. hesehmi 

KNM-RU 1748 L talus Rusinga D. macinnesi 

KNM-RU 1663 R talus Rusinga D. macinnesi 

KNM-SO 966 L tal us Songhor R. gordom 

KNM-50 968 R talus Songhor R. gordrmi 

BM(NH)-M 26309 R talus Songhor? R. gordmzi 

KNM-50478 L tal us 5onghor K. songhorensis 

KNM-S0967 L tal us 5onghor K. .wmglzorensis 

KNM-CA 1305 L tal us Chamtwara K. srmglzorensis 

KNM-50 392 L talus 5onghor L. evansi 

KNM-LG621 L tal us Legetet L. legetet 

Table 5: Miocene hominoids included in this analysis 

MEASUREMENTS 

In the present analysis of the wrist and ankle, measurements were taken from the 

talus and distal ulna, with additional comparative measurements from the ulna 

shaft. In some cases, the condition of the specimens did not allow for a complete 

data set and thus some statistics were derived from fewer individuals. Wherever 

possible measurements were taken from the right-hand side to ensure consistency. 
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A total of twenty-seven measurements were taken (Table 6). Linear measurements 

were taken using digital callipers (Mitutoyo 'Absolute Digimatic') in mm, to two 

decimal places, and angles were measured with a protractor to the nearest degree. 

The measurements of the ulna were calculated to provide relative length of the 

ulna styloid process, relative size of the ulnar triquetra) facet, relative extent of the 

ulnar radial facet, ulnar head shape, and distal ulna shape. The measurements of 

the talus were calculated to discern relative depth of the talar trochlea, index of 

talar trochlea wedging, relative depth of the posterior calcaneal facet, the angle of 

the subtalar axis from the lateral crest, relative talar head breadth; and relative 

talar head and neck length. These results were then compared between the 

taxonomic groups. The angle of the talar head and neck projection was compared 

directly between the groups studied. 

Ulnocarpal joint 

The length of the ulna styloid process (USPL) was measured as the maximum 

projection of the process beyond the ulna head. This was measured with the depth 

gauge on the callipers from the distal tip of the process to the highest point on the 

ulna head. In some cases (most particularly in the hominoids), a distinct groove 

was present between the ulna styloid process and the pmt of the head bearing the 

articular facet for the radius. In these specimens two measurements were taken 

from which the ulna styloid projection was derived: the depth of the ulna styloid 

process from the base of the groove (USPD), and the height of the radial 

articulation on the head (UHD). UHD was then subtracted from USPD to 

calculate USPL. 

The dimensions of the carpal facet on the ulna styloid process (UCF-ML and 

UCF-AP) were measured as a maximum mediolateral width and a transverse axis 

(orientated anteroposteriorly, proximodistally, or obliquely between these 

extremes). 
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Measurement 

Ulna 

Ulnocarpal joim 

USPL 

USPD 

UHD 

UCF-ML 

UCF-AP 

UCFA 

Ulna mid-shafi 

UMS-AP 

UMS-ML 

UMSA 

RadioulnarjoiiH 

UH-AP 

UH-ML 

UHA 

URF-ML 

URF-PD 

Tal us 

TL 

Tai;H.,.ural Joim 

TTD 

TTB 

TTL 

TTAB 

TTPB 

Subtalar joiiH 

TPCFD 

TPCFL 

ACPCF-LC 

Talar head and 

neck 

THB 

THD 

THNL 

ATH-LC 

Description 

Ulna styloid process length 

Ulna styloid process depth 

Ulna head depth 

Ulnocarpal facet mediolateral breadth 

Ulnocarpal facet anteroposterior length 

Ulnocarpal facet area 

Ulna mid-shaft anteroposterior breadth 

Ulna mid-shaft mediolateral breadth 

Ulna mid-shaft cross-sectional area 

Ulna head anteroposterior length 

Ulna head mediolateral breadth 

Ulna head cross-sectional area 

Ulnoradial facet mediolateral breadth 

Ulnoradial facet proximodistal height 

Talus length 

Talar trochlea depth 

Talar trochlea breadth 

Talar trochlea length 

Talar trochlea anterior breadth 

Talar trochlea posterior breadth 

Talar posterior calcaneal facet depth 

Talar posterior calcaneal facet length 

Angle of curvature of posterior calcaneal facet to lateral crest 

Talar head breadth 

Talar head depth 

Talar head and neck length 

Talar head angle from lateral crest 

Table 6: Measurements used in analysis 

Calculation 

USPD- UHD 

UCF-ML. UCF-AP 

UMS-AP. UMS-ML 

UH-AP. UH-ML 

TL-TTL 
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1Uina mid-shaft 

These measurements were calculated by ascertaining the length of the ulna, and 

taking both the mediolateral (UMS-ML) and anteroposterior (UMS-AP) diameters 

at the mid-point. 

Radioulnar joint 

The dimensions of the ulna head were obtained in both anteroposterior (UH-AP) 

and mediolateral (UH-ML) directions, from the maximum points. The extent of 

the radial articular facet on the ulna head was taken primarily mediolaterally 

(URF-ML), but also proximodistally (URF-PD) to illustrate the shape of the facet. 

In cases where the facet extended around the ulna head, the index may not reflect 

the true range of radial excursion, as the measurement was linear. 

Talocrural joint 

The depth of the talar trochlea (TTD) was measured with the depth gauge on the 

callipers from the mid-point of the line connecting the most superior points on the 

medial and lateral crests. In the larger taxa (Pongo, Pan and Gorilla) this was 

achieved by placing a piece of wire across the two crests, measuring the depth and 

subtracting the diameter of the wire. The breadth of the trochlea (TTB) was 

measured across this line connecting the highest crest points. The anterior breadth 

(TT AB) was measured across the most direct line connecting the forward most 

points of the medial and lateral crests, and the posterior breadth (TTPB) was 

similarly taken across the most dorsal points of the crests. The length of the talar 

trochlea (TTL) was measured between the most dorsal and ventral points on the 

trochlea, along the longitudinal axis of the trochlea. 

Subtalar joint 

The depth of the posterior calcaneal facet (TPCFD) was measured with the depth 

gauge on the callipers, from the highest point of the extremities of the maximum 

length of the facet. Again, with the larger taxa, a strip of wire was placed across 

the length in order to measure the depth, and the wire diameter was subtracted for 

the result. The length of the facet (TPCFL) was taken as the maximum distance 
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between the facet extremities, parallel to the axis of curvature. The angle of 

curvature of the posterior calcaneal facet (ACTPCF) was taken by positioning the 

talar head on its superior aspect (trochlea facing down), with the lateral crest to 

the horizontal, and drawing the direction of curvature in relation to the horizontal. 

The angle was then measured from the diagrams using a protractor. 

Talar head and neck 

The breadth of the talar head (THB) was taken in a mediolateral plane, to achieve 

a maximum breadth, and the talar head depth (THD) was taken as the maximum 

distance between the inferior and superior aspects. The talar head and neck length 

(THNL) was derived by measuring the length of the talus (TL) from the most 

ventral point of the talar head to the dorsal point of the trochlea, in line with the 

direction of the talar head and neck, and subtracting the length of the talar trochlea 

(TTL). Similarly to the method used for ascertaining the angle for the curvature of 

the posterior calcaneal facet, the angle of direction of the talar head (ATH-LC) 

was derived by placing the talus on the trochlea, with the lateral crest in a 

horizontal plane, and drawing the direction of projection of the head and neck. 

The angle was then measured from the diagrams using a protractor. This 

measurement was slightly different to the measure used by Langdon (1986) from 

which the fossil data derives. Langdon, however, used lines of measurement that 

approximate the perpendicular to the lines used here (long axis of the 

talonavicular facet and the line of the trochlea breadth are perpendicular to the 

talar head and neck projection and lateral crest, respectively), and therefore the 

resulting angle is the same and can be meaningfully compared between the fossil 

and extant genera. 
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---- - - - -------

Figure l:Ulna measurements top to bottom, distal ulna lateral and distal views (1. ulna 
styloid process length, 2. carpal articular facet mediolateral breadth, 3. carpal articular facet 
anteroposterior breadth, 4. ulna head mediolateral breadth, 5. ulna head anteroposterior 
breadth, 6. radial facet mediolateral breadth, 7. radial facet proximodistal height) 
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Figure 2: Talus measurements (after Strasser, 1988) clockwise from top left, proximal, 
dorsal, plantar and lateral views, (1. talus length, 2. talar trochlea depth, 3. breadth of the 
talar trochlea between the most superior points of the medial and lateral crests, 4. talar 
trochlear length, 5. talar trochlear anterior breadth, 6. talar trochlea posterior breadth, 7. 
posterior calcaneal facet depth, 8. posterior calcaneal facet length, 9. talar head breadth, 10. 
talar head depth, A. angle of curvature of posterior calcaneal facet to the lateral crest, B. 
angle of projection of talar head and neck from lateral crest) 
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DERIVED MEASUREMENTS 

Wrist indlices 

The wrist indices used in this study were devised primarily as a measurement of 

ulna deviation from the carpus, which has been proposed as a derived hominoid 

characteristic pertaining to locomotor differences from the ancestral catarrhine. 

Measurement 

mna 

Ulnorarpal joint 

IUSPL 

IUSPL2 

IUCA 

Radioulnarjoint 

IUHS 

IRUA 

IRUAFS 

Tal us 

Talocrural joint 

ITD 

IAPTWI 

IAPTW2 

Subtalarjoint 

IPCFD 

ASTA-LC 

Talar head and neck 

ITHBI 

ITHB2 

ITHNL 

ATH-LC 

Description 

Index of ulna styloid process length 

Index of ulna styloid process length 2 

Index of ulnocarpal articulation 

Index of ulna head shape 

Index of radioulnar articulation 

Index of radioulnar articular facet shape 

Index of talar trochlea depth 

Index of anteroposterior trochlea wedging I 

Index of anteroposterior trochlea wedging 2 

Index of posterior calcaneal facet depth of curvature 

Angle of subtalar axis to lateral crest 

Index of talar head breadth I 

Index of talar head breadth 2 

Index of talar head and neck length 

Angle of talar head projection to lateral crest 

Table 7: Derived measurements 

Calculation 

100. (USPLI UMSA) 

100. (USPLI UHA) 

100. (UCFA I UMSA) 

100. (UH-MLI UH-AP) 

100. (URF-ML I UI!-AP) 

URFMLI URF-PD 

100. (TTD I TTB) 

100. (TTAB I TTPB) 

100. (TTAB- TTPB) I TTL 

I 00. (TPCFD I TPCFL) 

90°- ACPCF-LC 

100. (THB I TTB) 

100. (THB I THD) 

I 00. THNLI TTL) 
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Ulnocarpan joint 

IUSPL. 100. (USPL I UMSA) 

This first index describes the withdrawal of the ulna styloid process from 

articulation with the carpus, and a lower index would be indicative of a relatively 

shorter ulna styloid process, and thus less contact with the carpus. This study 

initially used a mid-shaft cross-sectional area measurement to calculate the indices 

and eliminate body size variables, rather than a single ulna head diameter 

measurement as used in other studies (Larson, 1998). This was due to the 

variation in ulna head shape found among primates (most particularly the 

hominoid distal ulna differs in shape from that of cercopithecoids in being 

anteroposteriorly short and broad). The current measurement was therefore 

devised to eliminate any confounding variables. 

IUSPL2. ·100. (USPLIUMSA) 

This second index of ulna styloid process length was devised primarily to offer a 

comparison between the fossil and extant genera, due to the lack of mid-shaft and 

distal ulna data from individual specimens. Again, in order to eliminate distortion 

of results that might be caused by variability in head shape, a cross-sectional area 

measurement was used rather than a single breadth measurement. 

IUCA. 100. (UCFA I UHA) 

This index quantifies the area of the articular facet on the ulna styloid process for 

the triquetra! and pisiform, to gauge the extent of ulnocarpal articulation. A lower 

value would be indicative of reduced articulation between the ulna and the carpus. 

This may be complicated by the presence of an intra-articular meniscus in 

hominoids, and the difficulties associated with distinguishing articulation with the 

carpus from that with the meniscus. 
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Radioulnar joint 

IlJHS. 100. (UH-ML I UH-AP) 

This index provides an estimate of ulna head shape, and is derived from the 

mediolateral and anteroposterior diameters of the ulna head. Higher values 

suggest an ulna head that is mediolaterally broad, and anteroposteriorly shallow. 

IRUA. 100. (URF-ML I UH-AP) 

This is an index of the extent of the radial facet on the ulna head relative to the 

anteroposterior breadth of the ulna head. This reflects of the amount of rotation of 

the ulna head in relation to the radius, and thus the degree of ulna deviation 

facilitating pronation-supination. Higher values would be expected where ulna 

deviation is more significant. 

IRUAFS. URF-ML I URF-PD 

This index is describes the shape of the radial facet on the ulna head, and is 

derived from the mediolaterallength and the maximum transverse breadth 

(orientated proximodistally, anteroposteriorly, or obliquely between these 

extremes) of the articular surface. 

Ankle indices 

The trochlear indices pertain to the talocrural joint, and those of the posterior 

calcaneal facet to the subtalar joint. The head shape and orientation, and the head 

and neck length are relevant for both the subtalar and midtarsal joints. The 

primary motion at the talocrural joint is plantarflexion/dorsiflexion, with medio­

lateral rotation. In the subtalar joint, however, motion is predominantly inversion/ 

eversion. This latter is of patticular interest for cautious quadrupedal climbing, in 

the foot's accommodation to inclined surfaces. The other ranges of motion are 

also impmtant for the general mobility at the ankle, essential for grasping 

quadrupedal/climbing postures. 
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Talocrural joint 

ITD. 100. (TTD I TTB) 

This index of trochlear depth is derived from the depth of the talar trochlear 

trough relative to trochlear breadth. The relative depth is significant as it pertains 

to the congruency of the joint, and thus the range of accessory motion possible at 

the talocrural joint. A shallow relative depth indicates a less closely packed joint 

and thus a greater degree of mobility. 

IAPTW 1. 100. (TT AB I TTPB) 

Both this index, and the next, quantify the shape of the talar trochlea, from a 

superior aspect, and are measurements of the anteropostetior 'wedging' of the 

trochlea. Wedging occurs when the lateral and medial trochlear crests diverge 

from one another towards their anterior margins, and converge at their posterior 

limits. Trochlear wedging allows different degrees of accessory movement at the 

talocrural joint in dorsiflexed and plantarflexed positions, with the latter having a 

greater degree of mediolateral mobility, and the former being more closely 

packed. This first index is a ratio of the anterior and posterior breadths, and a 

higher value represents a larger difference between these measurements and thus 

increased wedging. 

IAPTW2. 100. (TTAB- TTPB)/TTL 

This second index of trochlear wedging is again a measure of the difference 

between the anterior and posterior breadths of the trochlea, but also incorporates 

the anteroposterior length of the trochlea to give a better indication of the degree 

of wedging in relation to the overall trochlea size. Once more, a higher value 

denotes greater range of mobility in plantarflexed postures. 
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§ubtalmr joint 

IPCFD. 100. (TPCFD I TPCFL) 

This index is a gauge of the relative depth of the posterior calcaneal facet in 

relation to the maximum length of the facet along the axis of curvature. A deeply 

curved trochlear would indicate greater rigidity of the subtalar joint, as the 

opposite calcaneal articular surface is more tightly wrapped. Conversely, extra 

mobility is offered by the less congruent joint indicated by a relatively shallower 

facet. 

ASTA-LC 90°- ACPCF-LC 

The direction of curvature of the posterior calcaneal facet is perpendicular to the 

axis of movement at this point (subtalar axis), and thus the angle of the subtalar 

axis from the lateral cresrwas calculated by subtracting the original angle from 

90. The angle of this axis from the lateral crest (where the anteroposterior 

mientation of the lateral crest is taken to denote the longitudinal axis of the foot) 

is related to the amount of mediolateral rotation and plantar/dorsiflexion that takes 

place at the subtalar joint during the joint's primary movement of 

inversion/eversion. If the subtalar axis were parallel to the longitudinal axis (i.e., 

angle = 0°), then the main movement possible would be inversion/eversion, whilst 

with a perpendicular axis (i.e., angle= 90°) the primary movement becomes 

plantar/dorsiflexion. Both of these scenarios would allow little accessory 

movement. In general, however, primates exhibit neither of these extremes. With 

greater obliquity of the subtalar axis from the longitudinal axis, the foot attains 

mediolateral mobility, becoming laterally rotated in inversion, and medially 

rotated in eversion. As the axis approximates the perpendicular, however, 

inversion/eversion and mediolateral rotation become limited, as the primary 

motion is brought into the longitudinal plane. 
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'faBar headl and! neck 

ITHB 1. 100. (THB I TTB) 

Both this and the next index are measures of talar head breadth. The first index 

quantifies the talar head breadth in comparison to the talar trochlear breadth, and 

thus gives an indication of the robusticity of the head in relation to other structures 

of the talus, and the extent of the talonavicular articulation. Hence the relative size 

of this aspect of the tal us is important for discerning the degree of mobility at the 

talonavicular joint. A high value suggests a mediolaterally broad head relative to 

the mediolateral breadth of the trochlea. 

ITHB2. 100. (THB I THD) 

This second breadth index is a ratio of talar head breadth to talar head depth, and 

thus gives an indication of the overall talar head shape from an anterior view. As a 

result, higher values suggest a broad head relative to its craniocaudal height. 

Again, this is impmtant for the talonavicular mticulation, in that a broader head 

suggests .greater excursion at this point. 

ITHNL. 100. (THNL I TTL) 

The index of talar head and neck length is derived from the talar head and neck 

length and the overall trochlea length, and provides information as to the relative 

proportions of the talus. A relatively short neck and head suggests greater 

robustici ty. 

ATH-LC. 

The angle of talar head and neck projection is related to the direction of forces 

incurred during locomotion. A medially orientated head and neck, relative to the 

longitudinal axis of the foot (represented here by the lateral crest) means that 

stresses during activity are orientated medially, which might be related to the 

grasping function of the hallux, and the weight bearing function of the medial side 

of the foot. If the talar head and neck are orientated more into the longitudinal axis 
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of foot, the major stresses at this point will be focused towards the direction of 

forward motion. 

STATISTICAL ANALYSIS 

Calculations, analyses of results and graphs were all derived using SPSS for 

Windows 9.0. The results for each index were illustrated by box and whisker 

plots. A solid black line within the 'box' illustrates the mean values for each taxon 

and the extremes of the 'whiskers' illustrate the range of values observed (with 

the exception of extreme outliers, which are represented by numbered symbols). 

One-way ANOVA multiple comparison tests were also conducted, at the family 

level, although the great apes were futher divided into African apes and Pongo 

due to the huge differences between these taxa. For the test of homogeneity of 

variance all of the indices and angles were significant at p< 0.05, so the non­

parametric Games-Howell multiple comparison test for heterogeneous subsets 

'was applied. These results are illustrated in tables to show the primate divisions 

th~t did not differ significantly from one another for each variable. 
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ULNOCARPAl. JOINT 

:Lorisidae 

CHAPTER6 

lResunts 

The ulna styloid process in Nycticebus is long and more or less hook-like. A 

smooth, convex articular surface is present on the tip of the ulna styloid process 

for m1iculation with the carpus, the bulk of which faces the interior of the joint. In 

Arctocebus, the ulna styloid process is again hook-like, but flattened distally. The 

articular facet for the carpus is situated on the medial/interior sides of the flattened 

tip. The Loris ulna styloid process is mediolaterally thin and hook-like, and 

flattened on its distal aspect. The facet for the carpus is situated on this flattened 

tip and is orientated medially or more towards the interior of the joint. The ulna 

styloid process in Perodicticus is very long, and more or less hook-like. The 

carpal facet on the ulna styloid process is small and orientated anterodistally. 

Despite variation both between and within genera, all of the Jorises possess a long, 

thin hook-like ulna styloid process, to a greater or lesser degree, with flattened or 

convex articular surfaces orientated predominantly towards the interior of the 

ulnocarpal joint. 

Lemuridae 

The ulna styloid process in Varecia is quite short and stubby, with a large, almost 

'ball-like' carpal facet covering all distal and peripheral aspects of the tip, 

although limited towards the dorsal side. 

Cebidae 

Saimiri ulna styloid processes are small and robust, articular for the carpus on its 

distal and interior aspects. In some specimens, the carpal facet covers the whole of 
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the distal aspect of the ulna styloid process, verging to the medial and lateral 

sides, the interior, and slightly onto the posterior surface. 

Atelidae 

The ulna styloid process of Chiropotes is variable, with some slightly hook-like, 

and some not. The styloid is articular on its distal extremity. The carpal facet in 

some specimens extends to the medial and lateral sides of the ulna styloid process, 

less so ventrally and not markedly dorsally. In Alouatta, the carpal facet on the 

ulna styloid process covers the whole of the distal aspect, extending to the 

interior, medial and lateral sides, and in some specimens, articular on the outside 

of the joint. The ulna styloid process is quite short and stubby. 

Ce~copithecidae 

The ulna styloid process of Cercopithecus is often not very long, but in some 

specimens very hooked, curving over the radial facet. It is articular predominantly 

on its inte1ior and distal aspects, extending medially and laterally in some 

specimens. The Macaca ulna styloid process is long, and hook-like (to varying 

degrees). The large carpal facet is situated on its distal end, extending round all 

aspects as a conical articulation, and is especially prominent on the dorsal slope of 

the ulna styloid process. The specimens showed very clear articulations for both 

the carpus and the radius. 

Hylobatidae 

Hylobates has a fairly long, thin and hook-like ulna styloid process, leaning well 

over the radial facet, with an articular facet for the carpus on the convex distal 

aspect that extends over to the dorsal aspect of the ulna styloid process. In some 

specimens, a more or less distinguishable point was found on the tip of the 

articular facet, perhaps indicating a different type of articular contact. 

Great apes 

The ulna styloid process in Gorilla is markedly reduced, almost the same size as 

the radial facet portion of the head, and although hook-like in some specimens, it 
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is very short. The ulna styloid process is sometimes large and flat on its distal 

extremity, and other times tapers more to a smaller flattened end, but is always 

convex to greater or lesser degree. 

In some Pan specimens, the ulna styloid process is quite hook-like, although 

others are rather long and straight, perhaps bulging dorsally, but with no evidence 

of a hook. It is quite difficult to distinguish the articular facet on the end of the 

ulna styloid process in some specimens, but a flattened surface, which seems 

articular (possibly with a meniscus), is generally apparent in these specimens. 

There is no obvious evidence of a distinct facet for the triquetra! in most of the 

specimens, although some specimens have a slight point on the end. One 

particular specimen appeared to have two well-defined facets, one within the 

other, which may reflect the tip articulating with the triquetra], and the periphery 

with the meniscus. Another specimen appears to possess two connected facets, the 

second situated to the rear of the first, trailing down the back of the ulna styloid 

process. The shape and Oiientation of the facet varied, depending upon the shape 

of the ulna styloid process. Generally, however, the carpal facet is directed 

distomedially or distodorsally, sometimes taking the f01m of a conical tip, but 

often on the flattened distal extremity of the process. 

The Pongo ulna styloid process is highly varied, sometimes short, and very 

straight, and in other specimens very long and slightly hook-like. In one specimen 

the short ulna styloid process shows a considerable dorsal 'lean' away from the 

ulna head. The articular surface for the carpus is generally orientated distally and 

towards the interior of the joint, although one is more dorsally placed. The shape 

of the facet varies too; sometimes short and flat, and in other cases taking the form 

of a conical mticular tip. 

The great ape ulna styloid processes show huge variation, both within and 

between genera, in terms of all aspects of the size, shape and orientation of both 

the ulna styloid process itself and its articular facets. It is hence quite difficult to 

summarise a 'typical' morphology purely on the basis of these observations. 
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HJ§JPJL 

Pan, Pongo and Gorilla all display very low means for this first index of ulna 

styloid process length, indicating a much reduced ulna styloid process, and very 

small ranges of variation (Table 8). These results are considerably lower than any 

other taxa studied. The lorises, on the other hand exhibit very high index of ulna 

styloid process length, at the other extreme within the range of primates 

considered, suggesting the ulna styloid process to be comparatively long. 

Arctocebus has by far the longest ulna styloid process, with a mean of 69.714. 

Interestingly, Hylobates is more similar to Alouatta and the cercopithecoids than 

to the other hominoids. 

Genus Number Mean Range 

Gorilla 22 0.555 0.215 - 1.094 

Pongo 20 1.128 0.224- 1.807 

Pan 20 2.354 I .311 - 4.07 5 

Hylobates 20 9.426 5.404- 11.797 

A/ouatta 17 9.474 6.235- i6.720 

Macaca 20 10.210 6.488 - 16.779 

Cercopithecus 20 11.699 6.807 - 17.235 

Chimpotes 5 13.377 10.969-18.111 

Varecia 9 15.855 7.016-23.492 

Saimiri 22 19.775 13.294- 26.756 

Nycticebus 14 35.505 23.700-53.748 

Perodicticus 21 36.945 23.263 - 70.525 

Loris 5 56.363 42.869-76.441 

Arctocebus 3 69.714 53.981 -77.791 

Table 8: IUSPL means and ranges 

The plot clearly shows the relationships between the taxa; lorises exhibit a 

distinctly different morphology from the other primates, with much larger ranges 

of variation (Figure 3). The diagram also shows that the great apes are quite 

different from the other taxa, with a consistently very low index of ulna styloid 

process length, and limited variability. 

The multiple compatisons test highlights the above observations most clearly 

(Figure 5). The great apes (African apes and Pongo) and Lorisidae, at opposite 

extremes of the primate range, both exhibit unique morphologies, with their 

means differing from all the other families at the 95% confidence level. The 
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Hylobatidae, although converging towards the great ape character state, are 

closely aligned with the atelines and cercopithecoids in this character, showing no 

significant mean difference from these two groups. 

IUSPL2 

This second index of ulna styloid process length shows very much the same sort 

of pattern as the previous index, with only minor variations in the mean values of 

some of the monkey and lorisid taxa (Table 9). In this analysis, however, it was 

possible to incorporate proconsulids, and both Kalepithecus and Proconsul 

showed values between those of Hylobates and the monkeys. This is further 

illustrated on the plot for this index (Figure 4 ). 

Genus Number Mean Range 

Gorilla 22 0.313 0.110-0.610 

Pnngo 20 0.574 0.110. 1.020 

Pan 20 1.183 0.690- 1.950 

Hylobates 20 5.170 2420-8.580 

* Kalepithecus 5.310 

*Proconsul 6.210 

Macaca 20 6.336 4.500- 8.900 

Alouatta 17 6.612 4.610- !1.650 

Cercopithecus 20 7.835 4.570- I 0.430 

Varecia 9 10.913 8.720- 13.240 

Chiropores 5 12.937 I LI30-14.840 

Saimiri 22 14.879 11.320- 21.640 

Nycticebus 14 22.494 15.380-31.340 

Perodicticus 21 22.691 13.500- 34.620 

Arctocebus 3 30.087 24.720-36.510 

Loris 5 43.491 31.330- 68.900 

Table 9: IUSPL2 means and ranges (fossils indicated by*) 
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Taxonomic 

grouping 

Pongo African apes Hylobatidae Atelidac Cercopithecidae Lemuridae 
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Figure 5: IUSPL multiple comparison between taxonomic groups (x denotes no significant mean difference, p<O.OS) 
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Figure 6: IUSPL2 multiple comparison between taxonomic groups (x denotes no significant mean difference, p<O.OS) 
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The multiple comparison test for this second index of ulna styloid process length 

demonstrates the intermediate nature of this characteristic in the proconsulids, 

between Hylobates and the cercopithecoids but, due to the few numbers of fossil 

specimens, this cannot necessarily be taken as an accurate representation, and the 

analysis also suggests no mean difference (at p<0.05) from the results obtained for 

the great apes. 

IUCA 

For the index of ulnocarpal articulation the great apes show significantly lower 

values than all other taxa, indicating a reduction in direct ulnocarpal contact in 

these genera (Table 10). Nycticebus and Perodicticus have the next lowest mean 

values. The ulnocarpal index of Hylobates is most similar to those of Alouatta, 

Chiropotes, Cercopithecus, Macaca, and Loris; means for all of these genera fall 

between 33 and 42. It is interesting to note that three of the four lorisids genera 

fall within the range of means exhibited by the hominoids. Again, the mean value 

for Arctocebus, and to a lesser extent that of Loris, is slightly higher than that of 

the other lorisids. The genera exhibiting the highest ulnocarpal mticulation are 

Varecia and Saimiri. 

Genus Number Mean Range 

Pmtgo 20 I 1.998 8. I 00- 18.898 

Gorilla 22 I4.926 5.474- 29.754 

Pan 20 I6.444 8.68 I - 29.485 

Perodicticus I9 23.506 9.628- 89.506 

Nyr:ticebus II 23.7I5 9.678 - 33.364 

Loris 3 33.4I9 22.823 - 4 I .578 

Hylobates 20 35.060 2 I. I 54- 53.659 

Chiropote.1· 5 35.704 25.379 - 51.735 

Cercopithecus 20 40.I27 21.55 I - 69.332 

Alouatta I7 4I.556 23.382 - 60.694 

Macaca 20 42.328 30.842 - 79.389 

Arctocebus 2 42.963 37.067-48.859 

Saimiri 22 48.6IO 27.399- 83.475 

Varecia 9 77.I48 3 I. I 84 - 94.403 

Table 10: IUCA means and ranges 
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The plot (Figure 7) suggests again that the great apes are a cohesive group in this 

index, with uniformly low mean ulnocarpal values. Hylobates, however, exhibits 

ulnocarpal articulation apparently more consistent with New and Old World 

monkeys and some of the lorisids. It is quite difficult to determine the relationship 

of the lorises from this diagram, as the different genera vary in their means and 

ranges. 

The multiple comparisons test for this index gives a better indication for the 

position of the lorises within the primate range, finding them to be intermediate 

between the great apes and hylobatids in this character, with no significant 

difference between the Lorisidae and Hylobatidae means at the 95% confidence 

level (Figure 9). The great ape ulnocarpal articulation is significantly different to 

all of the other groups at this level, with Pongo exhibiting the most extreme 

articular facet reduction. Hylobatids also show similarities to both cercopithecids 

and atelids. 

RADIO ULNAR JOINT 

Lorisidae 

The radial facet in Nycticebus is large, and situated on the distal aspect of the ulna 

head, and although it does not extend round the ulna head and is more square in 

shape. It is, however, still fairly extensive. In Arctocebus, the articular surface for 

the radius is distally orientated and extends around the ulna head. In Loris, the 

m1icular surface on the ulna head for the radius extends round the head. The very 

large radial facet of Perodicticus is orientated distally on the ulna head, but is 

square rather than extending round the head. 

Lemuridae 

The Varecia radial articulation is very small, and borne on a shm1 projection on 

the head, facing the interior of the joint. 
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Cebidae 

The radial facet in Saimiri is limited in its extent, projecting slightly from the head 

and orientated both distally and towards the interior of the joint. In some 

specimens the radial facet is virtually indiscernible. 

Atelidae 

The ulna head in Chiropotes shows limited radial articulation and in Alouatta the 

radial facet is very small, on a small stubby projection, and is almost 

indistinguishable from the rest of the head. 

Cercopithecidae 

In Cercopithecus, the radial facet, borne on a small stub-like projection, faces 

distally. Although the radial facet is small, it extends medially and laterally, but 

not to the same extent as in hominoids. The radial articulation on the ulna head in 

Macaca is separated from the ulna styloid process by quite a wide groove. The 

radial facet is orientated towards the interior of the joint, but extends round 

slightly medially and laterally in some specimens, and is small and square in 

others. 

Hylobatidae 

In Hylobates, the radial facet is longer mediolaterally than in the cercopithecids, 

but not to the same extent as seen in the great apes, and orientated towards the 

interior of the joint, and on the distal aspect. The radial articulation was separated 

from the ulna styloid process by a shallow but fairly wide groove. 

Great apes 

In Gorilla, a huge groove is evident between the radial facet-bearing portion of 

the head and the ulna styloid process. The former projects, forming a large curved 

extremity around the ulna styloid process. The radial facet is very large, extending 

around the head on its distal and anterior aspects. In Pan, the radial facet curves 

around the extent of the ulna head, in a similar way to that of Gorilla. The 
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enormous Pongo radial facet extends all the way around the head and contacts the 

base of the ulna styloid process on the medial side. The radial facet is orientated 

towards the distal aspect in some specimens, and towards the interior of the joint 

in others. 

The radial facet in the great apes is comparatively large and extends around the 

ulna head to form a long, smooth and relatively thin convex band for articulation 

with a mobile radius. 

IUHS 

For the index of ulna head shape (Table 11) the hominoid genera on the whole 

show the highest means, with the great apes (and especially Pongo) exhibiting the 

greatest extreme. An ulna head shape index approximating 100 would suggest an 

ulna head that has equal mediolateral and anteroposterior breadths, whilst a 

mediolaterally narrow ulna head would be represented by a much lower index. 

Although all of the great apes have high indices, with ranges exceeding 100, the 

means all fall below this value. Gorilla, however, has a huge range of variation 

for this index, with a highest value of almost 140. Varecia also exhibits a 

relatively high index, exceeding that of Hylobates. These genera are closely 

followed by the loris taxa. The hominoids, on the whole, show more similarity to 

the strepsirhines than to any other primates. 

It was possible to look at two fossil specimens for this index. Kalepithecus has a 

low index of ulna head shape, falling well within the range shown for the monkey 

taxa, whilst Proconsul is more similar to the lorisids. 

The plot (Figure 8) for this index illustrates well the different ulna head shape 

seen in the great apes, and to a lesser extent Varecia, with Hylobates and the 

lorisids exhibiting a more moderate form of this morphology, essentially 

intermediate between monkeys and the great apes. The remaining taxa are all 

fairly similar to one another, clustering between 70 and 80 in this feature. The 

fossil specimens are evidently most similar to the monkey genera in this feature. 
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Genus Number Mean Range 

Maraca 20 72.780 61.803- 83.784 

Alouatta 17 72.788 63.296- 83.529 

*Kalepithecus 73.080 

Saimiri 22 73.297 58.597 - 88.209 

Cercopithecus 20 74.864 65.948- 86.902 

Chiropotes 5 74.937 60.955- 85.841 

Perodicticu.1· 21 75.337 62.069 - 90.642 

Loris 4 76.477 70.805-84.615 

*Proconsul 78.330 

Nvcticebus 14 79.532 63.594-94.715 

Arctocebus 3 81.646 77.186 - 85.276 

Hylobates 20 82.015 72.593 - 93.168 

Varel'ia 9 88.073 77.290- I 08.511 

Pan 20 91.549 78.448- 104.723 

Gorilla 22 94.302 80.000- 139.771 

Pongo 20 96.377 84.971- 105.511 

Table 11: IUHS means and ranges (fossils indicated by *) 

The multiple comparison test finds no significant mean difference between the 

great apes and Varecw at the 95% confidence level, and Varecia is also not 

significantly different to the hylobatids and lorisids (Figure 10). The monkey 

genera, at the opposite extreme from the hominoids, also show no significant 

difference from the lorisids, which reiterates the intermediate nature of the !oris 

morphology. The fossil ulnae show no significant mean differences to any other 

taxa, probably due to the limited numbers of specimens available, but the structure 

of these specimens indicates a morphology somewhere between that seen in 

lorises and cercopithecoids. 

IRUA 

For the index of radioulnar articulation the hominoids show a much larger mean 

value than other genera, most closely matched by Loris and Arctocebus, and to a 

lesser extent Nycticebus (Table 12). Pongo exhibits the most extreme mean value 

overall. This high value is indicative of a relatively extended radial mticulation on 

the ulna, and thus increase potential excursion of the radius around the ulnar head. 
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Figure 8: IUHS boxplot showing means and ranges by genus 
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Taxonomic 

grouping 
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Figure 9: IUCA multiple comparison between taxonomic groups (x denotes no significant mean difference, p<O.OS) 

Taxonomic I Atelidae Cebidae Cercopithecidae Proconsuhdae Lorisidae Hylobatidae 

grouping 

Ateliclae X X X X X 

Cebidae X X X X X 

Cercopitheciclae X X X X X 

Proconsulidae X X X X X X 

Lorisidae X X X X X X 

Hylobatidae X X X 

Lemuridae X X X 

African apes X 

Pongo X 

Figure 10: IUHS multiple comparison between taxonomic groups (x denotes no significant mean difference, p<O.OS) 
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The New World genera and Varecia show the lowest values for this index, 

indicative of a relatively restricted radioulnar articulation, whilst the 

cercopithecids exhibit values that are somewhat intermediate in the primate range 

and comparable to Perodicticus. 

Genus Number Mean Range 

Chiropotes 5 34.560 29.830- 39.580 

Varecia 9 41.309 30.720-54.550 

Saimiri 21 42.315 26.700-55.000 

Alouatta 17 46.794 36.170- 62.820 

Cercopithecus 20 55.260 40.490-71.970 

PerodicTiClls 21 57.149 36.950- 69.960 

Macaca 20 59.016 46.260 70.040 

Nycticebus 14 63.354 48.300- 86.680 

Arctvcebus 3 67.268 64.610- 71.860 

L.oris 4 72.944 67.450 - 78.630 

Hylobares 20 80.867. 72.100 - 90.220 

Gorilla 22 89.150 78.970- 96.650 

Pan 20 89.635" 78.390- 95.890 

Pongo 20 94.212· 78.520- 114.840 

Table 12: IRUA means and ranges 

These results are illustrated on the plot, which clearly shows the high values found 

in the ape genera, and the apparent convergent morphology seen in some of the 

lorisids (Figure 11). The Iemurids, cebids and atelids are visibly at the opposite 

extreme to the hominoids in this index, and the cercopithecids somewhat in­

between. The multiple comparison test reveals no significant mean difference 

within the great apes, but the hylobatids are found to be different to all other taxa, 

despite having a morphology between that of the other apes and the lmisids 

(Figure 13). The lorisids are somewhat intermediate between the extreme 

groupings, showing no mean difference to the cercopithecids at the 95% 

confidence level. The New World families and Varecia are clearly very similar in 

this aspect of their morphology, exhibiting no significant mean difference at 95% 

confidence. These taxa are at the opposite extreme of the primate range to the 

hominoids. 
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IRUAFS 

For index of radioulnar articular facet shape, the hominoids all show uniformly 

high means in comparison to the other taxa, indicating a mediolaterally long 

radioulnar articular facet in these genera, and thus greater potential excursion of 

the radius around the ulna (Table 13). The closest genera to the apes are Loris, 

Arctocebus and Nycticebus, but Perodicticus is more similar in its range and mean 

to Alouatta, Cercopithecus, Macaca and Saimiri. The lowest values are seen in 

Varecia and Chiropotes, which, with values of <100, suggest an articular surface 

longer anteroposteriorly than mediolaterally. 

Genus Number Mean Range 

Varecia 9 81.631 59.045 - 94.022 

Chiropotes 5 94.142 72.376 - 120.231 

Saimiri 21 128.127 72.170 - 200.000 

Perodicticus 21 139.917 79.026 - 183.333 

Cercopithents 20 146.587 I 02.381 - 207.985 

Alouatta 17 157.086 97.313-240.164 

Macaca 20 167.130 94.216-268.718 

Nycticebus 14 171.206 101.914-250.413 

Arctocebus 3 193.523 181.731 - 200.943 

Loris 4 195.602 141.429 - 266.667 

Gorilla 22 217.539 179.563-266.162 

Hylobates 20 219.601 139.035-307.850 

Pmrgo 20 237.916 166.607 - 337.423 

Pan 20 247.348 196.429- 307.715 

Table 13: IRUAFS means and ranges 

The plot highlights the uniformly high index of radioulnar articular facet shape in 

the hominoids, and shows the close affinities of some of the !oris genera to this 

character state in their means and ranges (Figure 12). As the diagram is somewhat 

clustered for many of the other taxa, and the ranges are fairly varied, it is quite 

difficult to elucidate any definite relationships among the remaining taxa. 

The multiple comparison test for the shape of the radioulnar mticulation (Figure 

14) shows the lorises to occupy an intermediate position between the hominoids 

and the other genera, remaining more similar to the hylobatids and great apes than 

any other taxa, although the fanner are different to all the hominoid divisions at 

the 95% significance level. 
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Figure 13: IRUA multiple comparison between taxonomic groups (x denotes no significant mean difference, p<0.05) 
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Figure 14: IRUAFS multiple comparison between taxonomic groups (x denotes no significant mean difference, p<0.05) 
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The lorises, however, show no mean difference from the cercopithecoids and 

atelids at this level. The hominoid families exhibit no significant mean difference 

from one another. 

T ALOCRURAL JOINT 

Lorisidae 

The talar trochlea of Nycticebus has well defined lateral and medial crests, a 

sloping fibular malleolar facet, a steep tibial malleolar facet, and a variably 

defined groove for the tibia, sometimes fairly deep, in other specimens less deep. 

The medial crest curves round towards the talar head, suggesting a degree of 

wedging. These findings are mirrored in Arctocebus, although the few specimens 

studied reveal a more consistently well-defined trochlea groove. The talus of Loris 

has a more flattened trochlear groove, but is otherwise similar to other lorisid 

genera, with a high lateral crest and lower medial crest. The talus of Perodicticus 

is again like the other lorises, with very pronounced crests, a deep groove, and 

sloping fibular facet. 

Lemuridae 

The talus of Varecia has fairly well defined crests, with a steep medial facet, 

sloping fibular facet, and a very deeply and sharply grooved trochlea. The trochlea 

shows little obvious anteroposterior wedging. 

Cebidae 

The talus of Saimiri has very steep sided tibial and fibular facets with well­

defined crests. A very pronounced groove is evident on the trochlea in some 

specimens, but a fairly shallow trochlea is seen in others. The trochlea also shows 

signs of slight wedging. 
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Atelidae 

In Chiropotes, the talus has steep-sided tibial and fibular facets, quite marked 

wedging, and a relatively shallow groove on the trochlea. In Alouatta, the talus 

also has fairly steep malleolar facets, although in some specimens these become 

more sloping towards the anterior end of both crests. The trochlea has a relatively 

shallow groove, with substantial wedging in some specimens, and less in others. 

Cercopithecidae 

The talus of Cercopithecus has very high and distinct crests, with the lateral crest 

higher than the medial. A well-defined groove is evident on the trochlea. The 

medial crest veers out towards the talar head, suggesting a degree of wedging. The 

lateral malleolar facet is at an acute angle (converging underneath the trochlea) 

and the medial facet slightly sloping but generally steep. In Macaca, the talus 

again has very distinct crests, especially on the lateral side, and the lateral crest is 

markedly higher than the medial. The malleolar facets are almost vertical, with the 

lateral facet sometimes at an extremely acute angle like Cercopithecus. The talus 

has a very deep and sharply grooved trochlea, sometimes 'V' shaped. 

Hylobatidae 

Hylobates, like the cercopithecids, has steep sided malleolar facets on the talus 

(although less so on the medial side), sometimes retreating underneath the 

trochlea to form an acute angle on the lateral side, with extremely well defined 

crests on the trochlea. The trochlea is rather flattened, despite the pronounced 

crests and steep sides. The medial crest diverges out towards head, resulting in 

fairly pronounced wedging. The trochlear crests do not diverge gradually, 

however, but remain parallel or very slightly diverge, and then the medial crest 

diverges rapidly out toward the talar head. 

Great apes 

The Gorilla talus has a very steep lateral facet, and a sloping medial facet. Both 

facets become more sloping towards the neck and head. The trochlea is very flat, 

with poorly defined crests, although a couple of specimens have a quite distinct 
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lateral crest. The medial facet diverge out towards the head to form significant 

wedging. In Pan, the talus has a very well defined lateral crest, and a less 

prominent medial crest, with an acute angle formed between the lateral facet and 

the top of the trochlea. The trochlea groove is sometimes quite distinct, but curved 

rather than sheer. Other specimens are almost flat. In Pongo, the tal us has well­

defined crests, steep facets, and a fairly well defined groove. The lateral crest is 

particularly high compared to the medial side. The medial crest does not curve 

round towards head, but runs straight in to the line of the head and neck. 

ITD 

For the depth of the talar trochlea, the lorises again exhibit the highest mean 

values, suggesting a relatively deep talar trochlea (Table 14). Loris shows a 

distinctly higher value than any of the others, while the other lorisid genera show 

depths more comparable with the cercopithecids. The closest genera to the lorises 

are Cercopithecus, Macaca, and Varecia. Gorilla, Pan and Hylobates show the 

lowest values, indicative of a comparatively sh_allow trochlea, although all three 

genera show high degrees of variability. The New World monkey genera most 

closely resemble these hominoids. Pongo is apparently unique among the 

hominoids in exhibiting a deeper trochlear trough. 

Most of the fossil taxa (Dendropithecus, Limnopithecus, Proconsul and 

Rangwapithecus) show means for this index that are greater than those of Gorilla, 

Pan and Hylobates, but less than Pongo, which would suggest they possess 

moderately shallow trochlea troughs. These taxa are overall intermediate between 

the ceboids and Pongo. Kalepithecus, however, is more like the cercopithecids in 

this feature, with a mean value falling in between Macaca and Cercopithecus. 

The plot for this index clearly shows the high values attained for Loris, Nycticebus 

and Arctocebus in this index, although Perodicticus can barely be distinguished 

from the other taxa (Figure 15). Again, Gorilla, Pan and Hylobates represent the 

opposite extreme within the primate range to the lorisids, but Pongo is different 

from the other hominoids in this character. From the plot it is not easy to discern 
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the character states of the fossils from the other genera, as they are pat1 of a 

cluster of taxa exhibiting an index of approximately 10. 

Genus Number Mean Range 

Gorilla 20 5.011 0.858 - 8.092 

Pan 20 5.669 1.048 - I 0.459 

Hylobates 20 5.860 1.634 - I 0.434 

Alouatta 17 6.277 3.444- 8.615 

Saimiri 20 6.907 4.521 - I 0.573 

Chiropntes 7 6.938 4.839 - 8.964 

*DendropitheCIIS 2 7.392 6.860- 7.920 

*Limnopithecus 2 7.696 7.060-8.330 

*Proconsul 9 8.991 6.060- 11.730 

*Rangll'apithecus 2 9.441 8.700- 10.190 

Pongo 20 9.671 5.975- 12.935 

Varecia 9 10.061 6.349 - 12.596 

Cercopithems 20 10.232 8.061 - 12.205 

*Kalepithecu.1 3 10.405 8.510- 12.500 

Macaca 20 10.666 6.285 - 13.851 

Perodicticus 19 11.117 5.814- 16.067 

Arctocebus 3 13.086 9.148- 17.288 

Nycticebus 11 13.464 7.823- 18.792 

Loris 4 .19.250 13.281 -23.1?,3 

Table 14: ITD means and ranges (fossils indicated by*) 

The multiple comparison test for this index places the !arises at the opposite 

extreme of the primate range from the hominoids and the atelines, differing from 

these families at the 95% confidence level, but showing no apparent difference 

from the lemurids and cercopithecoids (Figure 17). The hylobatids are 

intermediate in their morphology between New World monkeys and the African 

apes, and the means between apes and New World primates exhibit no differences 

at the 95% confidence level. As suggested by the table of means and ranges, the 

fossil genera are intermediate between the New World monkeys and Pongo, but 

show no mean difference to Pongo, the lemurids and the cercopithecids, as well as 

to the cebids. 
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IAPTWl 

For this index of trochlear wedging, the anterior and posterior breadths of the talar 

trochlea are compared directly, without taking into account the size of the 

trochlea. The lorises and Varecia show the lowest mean values, indicating less 

anteroposterior wedging of the talar trochlea, whilst the hominoids (most 

particularly Gorilla, Pan and Hylobates) show the highest mean values (Table 

15). Gorilla is most extreme in its range of variation, with a maximum value of 

approximately 296. Alouatta, Cercopithecus and Chiropotes, however, are not 

much lower than Pan and Hylobates, and the maximum in the range of Alouatta is 

higher than that of Pan. Pongo is significantly lower than the other hominoids, 

comparable to Saimiri and Macaca. 

Genus Number Mean Range 

Loris 4 I 07.204 80.157- 123.684 

Arctncebus 3 111.493 IOI.ll5- 128.030 

Nycticebus 11 113.294 82.033- 137.857 

Varecia 9 113.558 103.799- 122.543 

Perodirticus 19 115.812 81.408 - 134.505 

Pm1go 20 124.493 100.659- 159.194 

Saimiri 20 127.982 113.198-162.245 

Macaca 20 129.432 I 00.787 - 161.463 

Cercopithecus 20 141.598 120.448- 166.271 

Chiropotes 7 143.429 123.479- 163.097 

Alouatta 17 143.989 111.653 - 189.264 

Pan 20 149.612 125.111-169.810 

*Ka/epithecus 157.303 

Hylobates 20 158.009 132.805 - 182.465 

*Dendropithecus 164.516 

*Proconsul 5 170.587 162.960-179.630 

Gorilla 20 198.935 142.452- 295.822 

Table 15: IAPTWl means and ranges (fossils indicated by *) 

The fossil taxa exhibit fairly high values for this index, certainly falling within the 

range exhibited for the African apes and Hylobates. As single specimens, 

however, Kalepithecus and Dendropithecus are well within the range of many of 

the observed taxa. Proconsul shows a particularly high index, closer to Gorilla 

than any of the other extant hominoids. 
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The plot for this index clearly shows that Gorilla, Hylobates, Pan and the fossil 

taxa have higher means than all other taxa, with Gorilla showing the most 

extreme value and a very large range of variation (Figure 16). The diagram also 

shows, however, that Hylobates, Pan and the fossils fall within the range of 

variation for Alouatta, despite higher mean values. Interestingly, Pongo exhibits a 

mean lower than all of the New and Old World monkey taxa, verging on the 

results achieved for the strepsirhines. The lorises and Varecia clearly represent the 

opposite extreme from the African apes and Hylobates, uniformly showing means 

closer to 100, which signifies little difference between the anterior and posterior 

breadths of the trochlea. Indeed, three of the !oris taxa (Loris, Nycticebus and 

Perodicticus) have range minimums that fall below 100, which would indicate 

very slight wedging in the opposite direction. 

In the multiple comparison test the means for the fossil and extant apes, with the 

notable exception of Pongo, and lorises again fall at either ends of the primate 

range (Figure 18). The !oris mean is no different from that of the lemurids at the 

95% significance level, whilst the African apes are not dissimilar from those of 

the proconsulids and hylobatids. Pongo is intermediate between the monkeys and 

the strepsirhines in this index, showing no significant difference to the lemurids, 

cebids and cercopithecids. Both the lmises and the Aftican apes differ 

considerably from the cercopithecoids and ceboids, but in different ways. 

IAPTW2 

This second index of trochlea wedging is derived from the difference between the 

anterior and posterior trochlear breadths, and divided by the length of the trochlea 

to give an estimate of wedging across the length of the trochlea. When calculated 

like this, Gorilla again has the highest mean value for this index, suggesting a 

comparatively high degree of anteroposterior trochlear wedging across its length, 

with Hylobates as the next highest. 
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Figure 17: ITD multiple comparison between taxonomic groups (x denotes no significant mean difference, p<0.05) 
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Figure 18: IAPTW1 multiple comparison between taxonomic groups (x denotes no significant mean difference, p<O.OS) 
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Pan, Cercopithecus, Chiropotes and Alouatta exhibit similar values, moderately 

less than that seen in Hylobates (Table 16). The lorises and Varecia are distinctly 

lower, at the opposite extreme to Gorilla. Pongo shows a very low value for this 

index, intetmediate between the lorisids and Saimiri. 

The fossil taxa all exhibit very high mean values for the second index of trochlear 

wedging, comparable to (or exceeding that of) Gorilla. This would suggest that 

they all have significant wedging relative to overall trochlea length. It may be the 

case, however, that these results are distorted by extreme individuals, as may be 

seen in the two Kalepithecus specimens, which vary considerably in their values 

(32.900 and 94.580). 

Genus Number Mean Range 

Loris 4 3.117 -17.195- 15.222 

Nycticebus 11 6.530 -12.925- 18.772 

Arctocebus 3 6.948 0.714- 16.629 

Vareda 9 7:144 2.066- 12.450 

Perodicticus 19 7.780 -13.239- 15.953 

Pongo 20 12.948 0.374- 31.711 

Saimiri 20 14.634 7.222 - 26.483 

Macaca 20 15.162 0.524 - 26.843 

CercopitheC!is 20 21.898 13.309- 33.031 

Pan 20 22.080 12.951 - 28.399 

Alouarra 17 23.919 7.446-42.143 

Chiropotes 7 24.926 15.366- 34.913 

Hylobares 20 26.159 17.190-35.101 

*Dendropithems 38.217 

*Proconsul 5 38.682 33.330- 42.370 

Gorilla 20 38.838 20.403 - 56.800 

*Kalepithecus 2 63 741 32.900- 94.580 

*Rangwapithecus 86.705 

Table 16: IAPTW2 means and ranges (fossils indicated by *) 

The plot for this index again shows that lorises have a low degree of 

anteroposterior wedging, with the negative figures indicating the element of 

posterioantetior wedging found in these specimens (Figure 19). It is only Gorilla 

of the extant genera, and to a lesser extent Hylobates, however, that shows any 

distinct difference from the remaining taxa, with Pan falling more within the 

monkey range than its hominoid counterparts in this feature. Pongo again has a 
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relatively low mean value for this index, which may also be skewed by the 

presence of an apparent outlier. The fossils are visibly high in this index; 

Kalepithecus and Rangwapithecus in particular are very extreme compared to the 

extant forms. 

This index of trochlear wedging is comparable in its results to the previous index 

in the multiple comparison test, with the African apes exhibiting similar character 

states to both the atelids and the hylobatids at the 95% confidence level (Figure 

21). This patticular analysis, however, did indicate a comparative difference 

between the New World families. As with the previous analysis, the strepsirhines 

form a group that was significantly different to all of the other divisions at 95% 

confidence, with the exception of Pongo, which cannot be distinguished from the 

lemurids. The fossil genera are most extreme, at the opposite end of the character 

range from the lorisids, but overlap with the African apes, hylobatids and atelids 

at the 95% confidence level. 

SUBTALAR JOINT 

Lorisidae 

The posterior calcaneal facet in all of the lorises is short and relatively shallow, 

but well defined, and thus the depth of curvature of the facet is expected to be 

fairly low. The major difficulty experienced with these smaller taxa is with the 

depth callipers, where the end of the gauge is wider than the maximum depth 

point of the talus. The depth in these specimens was estimated. The mientation of 

the posterior calcaneal facet is highly varied in these genera, ranging from almost 

parallel to the lateral crest (particularly in some of the Perodicticus specimens) to 

fairly oblique. 

Lemuridae 

The posterior calcaneal facet of Varecia is also short, but comparatively deep, 

forming a well defined receptive cup for the facet on the calcaneus. The 

orientation of the long axis of curvature is generally moderately oblique. 
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Cebidae 

The Saimiri posterior calcaneal facet is generally fairly short, well curved and 

relatively deep. The orientation is often close to parallel with the lateral crest, 

indicating a sub-talar axis more perpendicular to the long axis of the foot, but this 

is highly varied. 

Atelidae 

The posterior calcaneal facet of the atelids is relatively shallow, and widely 

curving. As with Saimiri, the orientation varied greatly, ranging from almost 

parallel with the lateral crest to quite oblique. 

Cercopithecidae 

The posterior calcaneal facet in both Cercopithecus and Macaca is relatively short 

and deep, and more steeply curved than the other taxa, forming a well defined 

receptive socket for the opposite convex facet on the calcaneus. In most 

specimens this facet adjoins the neighbouring anterior facet. Again the orientation 

varies considerably, but generally lies oblique to the long axis of the foot. 

Hylobatidae 

The Hylobates posterior calcaneal facet is also seemingly tightly curved, 

representing a fairly deep articulation. This facet is orientated in an oblique axis to 

the long axis of the foot. 

African apes 

In the African apes, the posterior calcaneal facet is long, broad, and widely 

curving, although this varies across genera, and especially within Pongo. It is also 

completely isolated from the other calcaneal facets. The obliquity of the facet is 

extremely variable, but mainly positioned at an angle to the lateral crest. 
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IPCFD 

For the index of depth of the posterior calcaneal facet, the highest values are 

found in Cercopithecus and Macaca, indicating a steeply curved facet (Table 17). 

Varecia and Pan show very similar mean values to each other for this feature, 

which (surprisingly) are only moderately less than the cercopithecids. The lowest 

values are seen in Nycticebus, Alouatta, Loris and Perodicticus, suggesting 

relatively wide and shallow curvature in these genera. Pongo, Gorilla and 

Hylobates fall in the middle of the primate range, comparable to Saimiri. The 

fossil genera vary in this characteristic; Limnopithecus and Rangwapithecus have 

a relatively shallowly curved articulation and, at the other end of the spectrum, 

Proconsul and Kalepithecus exhibit a facet that is relatively deeper. 

Dendropithecus is intermediate in this feature, falling in the middle of the primate 

range of vatiation. 

Genus Number Mean Range 

Nycticebus 11 11.622 6.143- 15.730 

Alouatta 17 13.824 I 0.345 - I 8.065 

Loris 4 14.285 . 10.933- 15.842 

Perodicticus 17 15.575 9.548- 24.011 

*Lim11opithecus 16.346 

Chiropotes 7 16.412 ! 4.475 - 19.241 

*Ra11gwapithecus 16.418 

Arctocebus 3 16.591 11.069-22.101 

*De11dropithecus 2 17.170 16.950-17.390 

Po11go 20 17.933 9.716-24.521 

Hy/obates 20 19.004 10.035- 24.074 

Saimiri 20 19.026 13.036 - 25.845 

*Proco/lsu/ 7 19.565 14.890-23.790 

Gorilla 20 20.672 16.508- 29.229 

*Kalepithecus 2 20.769 17.090- 24.440 

Pa11 20 22.302 16.043 - 28. 171 

Varecia 9 22.743 18.543 - 25.383 

Macaca 20 25.864 18.266- 32.892 

CercopitheClls 20 26.500 21.598 - 32.024 

Table 17: IPCFD means and ranges (fossils indicated by*) 

The plot illustrates these findings (Figure 20). The results for this variable show 

few discernable patterns between the lorises and hominoids, in terms of similarity 

or extreme difference, although the lorisids tend to be at the lower end of the 
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primate range for this index and the hominoids vary considerably, but generally 

towards the higher index value. What is particularly evident from the plot is the 

huge variability across all of the genera 

The multiple comparison test results for this index illustrate the variable nature of 

this characteristic (Figure 22). The lorisids and atelines show no significant 

difference to one another at the lower end of the scale, but differ from all other 

genera at the 95% confidence level. At the opposite extreme, the cercopithecids 

are unique in their uniformly high index. The other taxa overlap considerably with 

each other, and the hominoids show no apparent uniformity. The African apes are 

towards the cercopithecid end of the range, Pongo is more !oris-like, and 

Hylobates occupies an intermediate position. The proconsulids show no 

significant difference to any of the intermediate taxa. 

ASTA-LC 

Among the extant genera, the angle of the subtalar axis did not reveal any 

dramatic grouping, as the results show a steady gradient of means within a range 

of 62°-78.5° (Table 18). The lowest mean values are obtained for Nycticebus and 

· the African apes, indicating an oblique subtalar axis relative to the lateral crest 

and the long axis of the foot. Relatively low values are also seen in the 

cercopithecids, Loris, Pongo and Hylobates. The highest means and upper range 

limits are found among the ceboids, Arctocebus, Perodicticus and Varecia, 

suggesting subtalar axes approximating perpendicular to the longitudinal axis of 

the foot in these genera. Although the results suggest particular character states 

for the African apes, ceboids and cercopithecids, the lorisids are quite varied in 

this feature within their family grouping, representing both the lowest and second 

highest values. 

The fossil genera are fairly uniform in this particular character, falling at the lower 

end of the p1imate range, similar to the African apes. This would suggest that 

these genera possess a comparatively oblique subtalar axis, indicative of enhanced 

accessory movement at this point. 
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Genus Number Mean Range 

*Rangwapitlrer·11S 56.000 

Nycticebu.1· 11 62.000 51.000-83.000 

*Proconsul 9 63.667 55.000-69.000 

Pan 20 64.000 56.000 - 73.000 

*Kalepitlrecus 2 64.500 63.000- 66.000 

*Limnopithecus 65.000 

*DendropitheClls 2 65.500 62.000-69.000 

Gorilla 20 66.850 56.000- 79.000 

Macaca 20 67.950 59.000- 77.000 

Loris 4 68.250 64.000- 77.000 

Cercopitlrems 20 68.800 53.000 - 78.000 

Pongo 20 69.150 57.000- 81.000 

Hylobates 20 70.632 59.000- 86.000 

Varecia 9 71.444 62.000- 88.000 

Clriropotes 7 72.714 69.000 - 77.000 

Arctocebus 3 73.333 68.000- 82.000 

Saimiri 20 75.526 70.000 - 84.000 

Perodicticll.\' 17 76.444 62.000- 87.000 

Alouatta 17 78.357 71.000- 88.000 

Table 18: ASTA-LC means and ranges (fossils indicated by*) 

The plot (Figure 23) shows the large ranges exhibited by many of the genera, and 

·the particularly high upper limits (approaching 90°) of Alouatta, Hylobates, 

Perodicitcus and Varecia. This indicates a subtalar axis perpendicular to the 

longitudinal axis of the foot. All of the fossil genera are clearly seen to have 

means and ranges at the lower end of the primate range for this index. 

The multiple comparison test (Figure 24) illustrates the huge amount of overlap 

between the groups studied, probably due to the extensive ranges seen in many 

taxa, and identifies two different groups of ptimates in this characteristic. The 

atelids and cebids have a clearly different morphology from the great apes, 

cercopithecoids and proconsulids, with subtalar axes approaching 90°. The latter 

three families have more oblique subtalar axes. There is, however, a certain 

amount of overlap between these two extremes, seen in the strepsirhine genera 

and Hylobates. 
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Figure 21: IAPTW2 multiple comparison between taxonomic groups (x denotes no significant mean difference, p<O.OS) 
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Figure 22: IPCFD multiple comparison between taxonomic groups (x denotes no significant mean difference, p<O.OS) 
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Taxonomic I Proconsulidae African apes Cercopi thecidae Pongo Hylobatidae Lorisoidae Lemuridae Cebidae Atelidae 

grouping 

Proconsulidae I X X X X X X X 

African apes X X X X X X X 

Cercopithecidae X X X X X X X 

Pongo X X X X X X X 

Hylobatidae X X X X X X X X X 

Lorisidae X X X X X X X X X 

Lemuridae X X X X X X X X X 

Cebidae X X X X X 

Atelidae I x· X X X X 

Figure 24: ASTA-LC multiple comparison between taxonomic groups (x denotes no significant mean difference, p<O.OS) 
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1' AlLAR HEAD AND NECK 

Lorisidae 

Lorises are quite similar in their talar head and neck characteristics, but highly 

variable within genera. The have relatively long and slender talar necks, most 

particularly Loris and Arctocebus, and a seemingly very flat head. The medial 

crest of the trochlea curves round into the line of the head and neck. 

Lemuridae 

Similarly, Varecia has a long talar neck in comparison to the trochlea, but the 

neck is more cylindrical than in the lorisid talus, and the head more ball-like. 

Cebidae 

Saimiri has a distinctly long talar neck, with a spherical head, but the neck is less 

robust than in the strepsirhines. The shaft tapers towards the body of the tal us. 

Atelidae 

The talar neck of Chiropotes is also relatively thin and very long, with a spherical 

head. In contrast, Alouatta has a talus that seems altogether very flat and wide, 

and this is reflected in the features of the neck and head. The talar neck is also 

comparatively shorter in some specimens, and the talar head is more in line with 

the trochlea. 

Cercopithecidae 

The Cercopithecus specimens seem fairly conservative in their talar neck length, 

and the head is quite large and 'ball-like'. Similarly, Macaca has a medium length 

talar neck, although the neck is found to be particularly wide relative to the head. 

The head is also flatter than that of Cercopithecus. 
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Hylobatidae 

The Hylobates talus neck is comparatively shmt and flat, but is combined with a 

rather spherical head. 

Great apes 

The great apes are divided in their talar head and neck features, with the African 

apes showing very different features to Pongo. The talus of Gorilla is 

characterised by a short, stubby talar neck, with a large, and sometimes quite flat, 

head. In some specimens, the neck is so short that the head ostensibly extends 

from the body of the talus. In Pan, the talar neck is also short and the head large, 

but to a lesser extent than in Gorilla. In contrast, Pongo has a fairly long talar 

neck, and a smaller more spherical head (although a couple of the specimens have 

distinctly flattened heads). 

ITHBl 

For the first index of talar head breadth, the mediolateral breadth of the head is 

measured relative to the breadth of the trochlea. A high index reflects a broad talar 

head relative to the overall structure of the body of the talus. The highest mean 

value for this index is found in Nycticebus with the next highest values in 

Perodicticus, Gorilla, Pan, Loris and Hylobates (Table 19). The mean value for 

Arctocebus is much lower than for the other lorises, and Pongo has the second 

lowest mean value overall. 

On the whole there seems to be a distinct division between the extant forms in this 

characteristic, with no intermediary forms. The strepsirhine and hominoid 

grouping (to the exclusion of Pongo) all have mean indices above 127, indicating 

a large area for excursion at the talonavicular articulation, whilst the remaining 

genera all fall below 114. It must be noted, however, that most of the taxa have 

very large ranges of variation. 

The fossil genera, to a certain extent, bridge the gap between the two 

morphologies. At the lower end of the range, Dendropithecus and Kalepithecus 
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exhibit talar head breadths equivalent to Saimiri at the higher end of this grouping. 

Limnopithecus, on the other hand, falls towards the bottom end of the higher 

range, with a similar index value to Arctocebus. The other fossil genera 

(Rangwapithecus and Proconsul) show mean indices between these two extremes, 

but ranges that overlap both. 

Genus Number Mean Range 

Chiropntes 7 104.529 94.187- 109.221 

Pan go 20 104.961 89.948- 128.595 

Alouatta 17 108.550 97.333- 123.725 

Cercopithecm 20 110.775 97.530 - 124.623 

Macaca 20 111.486 95.846- 136.706 

*Dendropithems 112.745 

Saimiri 20 113.137 96.796- 127.390 

*Kalepithecus 113.542 

*Rangwapithectts 3 118.753 114.820-120.79 

*Proconsul 9 121.174 102.330- 155.460 

Arctocebus 3 127.033 117.035- 145.421 

*Linmopithecus 2 127.467 118.820-136.110 

Varecia 9 133.445 117.537- 147.735 

Hylobates 20 137.359 104.207- 171.736 

Loris 4 138.447 129.969- 145.675 

Pan 20 138.928 125.955- 164.221 

Gorilla 20 143.671 67.518- 179.449 

Perodicticus 18 143.784 116.129- 180.556 

Nycticebus 11 156.793 133.030-200.678 

Table 19: ITHBl means and ranges (fossils indicated by *) 

The plot for this variable clearly shows the different morphology of the hominoid 

and !oris genera (with the exclusion of Pongo). A Gorilla outlier, however, may 

have reduced its overall mean considerably, as the high outlying value of 

Nycticebus may radically skew its mean (Figure 25). The closest taxon to this 

group is Varecia. Pongo is apparently more like the New and Old World monkeys 

in this feature, exhibiting a comparatively narrow talar head. 

The multiple comparison test shows the lemurids, lorisids, hylobatids and African 

apes to have means that were not different to one another at the 95% confidence 

level, with the lemmid sample overlapping with the Cebidae and Cercopithecidae 

(Figure 27). The Lorisidae have the highest extreme in this talar breadth index. 

127 



The remaining families of the Old and New world monkeys, and Pongo, differ 

from the Lorisidae and the other hominoids at the 95% confidence level, but are 

indistinguishable from one another. Pongo and the atelids are at the lower extreme 

in this index. The proconsulids, as revealed above, occupy an intermediate 

position, and show no significant mean difference from the cercopithecids, cebids 

and lemurids at the 95% confidence level. They do not, however, show similarity 

to the groups on either extreme. 

ITHB2 

This second measure of talar head breadth is achieved by comparing the breadth 

and height of the head. A high index suggests a more flattened talar head in 

comparison to the relatively spherical nature of those represented by lower 

indices. The means for the hominoids and the lorises are all higher than those 

found in the remaining genera, indicating a mediolaterally broad and flat talar 

head in the Hominoidea and Lorisoidea (Table 20). The lorises exhibit the flattest 

talar head comparatively. 

Most of the the fossil genera are relatively uniform in this index, with Proconsul, 

Rangwapithecus, Kalepithecus and Dendropithecus showing indices comparable 

to Cercopithecus and Saimiri at the lower end of the primate range. 

Limnopithecus, on the other hand falls within the hominoid range with a higher 

index than the other fossil genera, and thus a flatter talar head. As a single 

specimen, however, the value does fall within the range for Cercopithecus, and 

thus cannot ultimately be considered different from the other fossils in this 

respect. 

The plot highlights the unif01mly high mean values for the lorises very well, and 

to a lesser extent those of the hominoids (Figure 26). Again, the outlying value of 

Gorilla may have skewed the diagram to a certain extent, and it is evident that a 

huge range of variation is found within this genus. The fossil genera clearly fall 

within the more conservative ranges of the monkey genera, with only 

Limnopithecus exhibiting a value close to the hominoids. 
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Figure 26: ITHB2 boxplot showing means and ranges by genus 
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Figure 27: ITHBI multiple comparison between taxonomic groups (x denotes no significant mean difference, p<0.05) 
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Figure 28: ITHB2 multiple comparison between taxonomic groups (x denotes no significant mean difference, p<0.05) 
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Genus 

Chiropotes 

Macaca 

Saimiri 

*Proconsul 

*Rangwapithec11s 

*Kalepithecus 

Cercopithecus 

*Dendropithecus 

Alouatta 

Varecia 

Hylobates 

*Limnopithecus 

Pongo 

Gorilla 

Pan 

Perodictims 

Arctocebus 

Nycticebus 

Loris 

Number 

7 

20 

20 

6 

20 

17 

9 

20 

20 

20 

20 

18 

3 

11 

4 

Mean 

111.358 

114.823 

120.100 

120.310 

121.569 

122.472 

122.697 

123.656 

125.852 

125.883 

128.746 

134.667 

138.991 

141.103 

143.154 

161.025 

165.842 

179.904 

182.660 

Table 20: ITHB2 means and ranges (fossils indicated by *) 

Range 

107.634- 118 058 

I 02.206- 128.488 

109.701-132.172 

116.400-124.110 

112.233- 135.101 

105.752- 136.340 

111.404- 136.210 

I 17.930 - 151.267 

114.185- 165.264 

104.264- 175.533 

116.196-151.580 

136.275 - 189.024 

154.185- 175.829 

155.667- 202.622 

168.651- 192.147 

In the multiple comparison test, the Lorisidae differ from all of the other families 

at the 95% confidence level, but are most similar to the African apes, Pongo and 

Hylobatidae, at the opposite end of the primate range to the Old and New World 

monkeys (Figure 28). The great apes show no mean difference from the 

hylobatids at 95% confidence, but differ from all other taxa. The hylobatids 

occupy a fairly intetmediate position in this analysis, also exhibiting no mean 

difference from the cebids, atelids and lemurids at this level. 

The fossil genera have a morphology most consistent with the cercopithecids, 

cebids, atelids and lemurids in this analysis, revealing no significant mean 

difference to these families, as well as to Hylobates at the 95% confidence level. 

ITHNL 

The lowest mean values for this index, indicating a relatively short talar head and 

neck in relation to the talar body, are found in Pan and Gorilla (Table 21), but 

interestingly all of the hominoids and lorises show lower values than the other 

taxa. The cercopithecids and Varecia appear intermediate in this characteristic, 
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whilst the New World genera all exhibit a comparatively high index for this 

feature. 

The fossil genera exhibit quite varied values for this index. The Proconsul mean 

value falls within the range of means of the extant hominoids, most similar to 

Hylobates, whilst the values for Kalepithecus are more consistent with the New 

World forms. The Dendropithecus specimen is more intermediate in this index, 

but consistant with the values achieved for Loris and Arctocebus. This would 

suggest that the Proconsul specimens has relatively short talar head and neck 

structures, similar to the extant hominoids in this feature. Kalepithecus, on the 

other hand, is characterised by elongation of this structure. The few specimens 

examined for Kalepithecus and Dendropithecus, however, fall within the limits of 

all of the extant taxa except the African apes. 

Genus Number Mean Range 

Gorilla 20 39.074 29.522 - 48.798 

Pan 20 42.699 33.726 - 51.698 

Perodicticus 18 50.254 38.689 - 79.050 

*Proconsul 5 52.558 39.570- 63.330 

Hylobates 20 53.319 42.697-75.175 

Nycticebus 11 54.903 38.663 - 83.000 

Pongo 20 56.211 44.142-67.888 

Arctocebus 3 57.704 53.333 - 61.573 

*Dendropithecus 60.510 

Loris 4 61.243 49.35 I - 72.304 

Macaca 20 62.021 49.973- 81.526 

Varecia 9 63.659 43.043 - 73.424 

Cercopithecus 20 66.224 50.578-83.218 

Alouatta 17 69.082 51.977 - 90.923 

*Kalepithecus 2 72.639 71.080- 74.190 

Saimiri 20 74.016 59.889 - 99.248 

Chiropotes 7 74.174 56.210-89.082 

Table 21: ITHNL means and ranges (fossils indicated by*) 

The apparently grouped nature of the hominoids and lorises in this feature is less 

evident on the plot (Figure 29), where Loris appears comparable to Macaca, 

although the more extreme characteristics of Gorilla and Pan are clearly shown. 

The Proconsul affinity with the African apes and lorises in this index is very 

clear, and the lower limits of the sample for this genus are visibly below those of 
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any of the monkey genera. Kalepithecus is also clearly seen to be within the 

ranges of the New and Old World monkeys, whilst the single Dendropithecus 

specimen shows no apparent specialisation. 

The multiple comparison test shows two quite well-defined groups in this 

characteristic, with the hominoids and lorises at the lower extreme and the 

monkeys at the opposite end (Figure 31). The lemurids exhibit a somewhat 

intermediate status. The African apes are different to all other groups at the 95% 

confidence level. The hylobatids, however, exhibit similatities to both of the 

strepsirhine groups and Pongo at this level. The lorises fall within the hominoid 

group overall, showing no mean difference to the hylobatids and Pongo at the 

95% confidence level. 

The fossil genera are clearly shown to be intermediate in this index, showing no 

difference to any of the extant taxa at the 95% confidence level. This diagram, 

however, does not illustrate the apparent differences among the fossil genera and 

their respective similarities with the extant divisions. 

ATH-LC 

For the angle of the talar head to the lateral crest, the extant genera again seem to 

be divided into two distinct groups for their means; the lorises, hominoids, 

Chiropotes and Saimiri all fall above 35, whilst the other genera have means 

below 31 (Table 22). It must be noted, however, that a huge amount of variation is 

evident in most genera. The highest mean values are seen in Nycticebus, Gorilla, 

Pan and Perodicticus, indicating a much higher medial deviation of the talar head 

and neck from the direction of forward motion, which in turn would have 

implications for the mid-tarsal articulation. Hylobates, and more particularly 

Pongo, are somewhat lower than the other hominoids in their mean values for this 

feature, and Loris shows a value similar to Hylobates. Unfortunately, a value for 

Arctocebus was not obtained for this character. The angle found in Cercopithecus 

is comparatively much lower than all of the other taxa, although the angle 

suggests that the tal us is still orientated medially from the long axis of the foot. 
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Genus Number Mean Range 

*Kalepithecus 2 18.500 I 0.000- 27.000 

Cercopithecus 20 23.350 16.000-32.000 

*Rangwapithecus 3 25.333 16000-35.000 

*Proconsul 9 27.667 20.000- 36.000 

A/ouatta 17 30.143 16.000-43.000 

Varecia 9 30.667 25.000- 38.000 

Macaca 20 31.000 18.000 - 42.000 

*LilflllOpithel"IIS 31.000 

Po11go 20 35.150 25.000-47.000 

Chiropotes 7 35.286 30.000- 43.000 

Loris 4 36.000 36.000 - 36.000 

Hylobates 20 36.105 14.000-53.000 

Saimiri 20 36.316 29.000- 43.000 

Perodicticus 18 37.444 20.000- 50.000 

Pa11 20 41.600 26.000 - 54.000 

*De11dropithecus 44.000 

Gorilla 20 44.100 17.000-58.000 

Nycticebus 11 45.000 36.000 - 60.000 

Table 22: ATH-LC means and ranges (fossils indicated by *) 

The fossil taxa generally fall within the primate group that exhibits more moderate 

medial torsion of the talar head and neck, with the exception of Dendropithecus, 

which is comparable with Gorilla in this character. Kalepithecus, Rangwapithecus 

and Proconsul (in pmticular) show talar head projection angles at the lower end of 

the primate range, comparable with (or more extreme than) that seen in 

Cercopithecus. 

The plot highlights the large angle between the talar head and the lateral crest in 

Gorilla, Pan and Nycticebus, and the comparatively high index of the 

Dendropithecus specimen (Figure 30). Cercopithecus is different to all of the 

other extant taxa in its comparatively low angle between the orientations of these 

two talar features, matched only by the fossil forms. What is clear from this plot is 

that many of the genera have very large ranges of variation. 

The multiple comparison test illustrates the huge amount of overlap between the 

families in this characteristic (Figure 32). The only real distinctions can be made 

between the cercopithecids and African apes, which are at opposite extremes in 
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this feature. The closest to the African apes are the lorisids, and the other apes are 

somewhat intermediate in this character. The fossil genera are most similar to the 

cercopithecoids, although they show no mean difference to the lemurids, atelids, 

Pongo amd hylobatids. 
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Taxonomic I African apes Hylobatidae Lorisidae Pongo Proconsulidae Lemuridae Cercopithecidae 

grouping 

African apes X 

Hylobatidae 

Lorisidae 

Pmzgo 

Proconsulidae X 

Lemuridae 

Cercopithecidae 

Atelidae 

Ccbidac 

X X 

X X 

X X 

X X 

X X 

X 

X X 

X X 

X X 

X X 

X X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

Figure 31: ITHNL multiple comparison between taxonomic groups (x denotes no significant mean difference, p<0.05) 

Taxonomic I Cercopithecidae Proconsulidae 

grouping 

Cercopithecidae I X X 

Proconsulidae X X 

Lcmuridae X X 

Atelidae X X 

Pongo X 

Hylobatidae X 

Cebidae 

Lorisidae 

African apes 

Lemuridae AtelidaP. 

X X 

X X 

X X 
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X 

Hylobatidae 

X 
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X 

X 

X 

X 

X 

X 

Cebidae 

Figure 32: ATH-LC multiple comparison between taxonomic groups (x denotes no significant mean difference, p<0.05) 
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CHAPTER 7 

Discussion and conclusions 

The results of the present analysis raise several important issues that need to be 

addressed: morphological differences within the hominoids, variation within the 

lorisids, similarities and differences in the wrist and ankle structures between the 

lorisids and hominoids, and, finally, the proconsulids in a comparative context. 

One of the most immediate observations noted in the course of this study is that 

there is huge variability within the hominoid group in their features of the wrist 

and ankle. This is most notable where elements of the Pongo ankle show 

considerable structural deviation from the pattern found in the other hominoids. 

Additionally, although Hylobates shows similarities to the African apes in many 

of the characters examined, differences are often apparent in the degree of the 

expression of certain features. The latter is evident among the lorisid genera also, 

which differ greatly in the degree of many characters despite superficial 

uniformity. Consequently, as any analysis based upon the premise that the 

hominoids are a uniform and cohesive group in terms of the characteristics in 

question would be fundamentally flawed, this .analysis separates superfamily 

Hominoidea into smaller divisions for the purpose of examination. 

HOMINOID CHARACTERISTICS 

This analysis shows that Hominoidea can generally be divided into three main 

groups in the structure of their wrists and ankles: the African apes, Pongo and the 

hylobatids. These divisions are also apparent in the locomotor repertoires of the 

hominoids (knuckle-walking, quadrumanous climbing and bridging, and bimanual 

suspension, respectively), and these differences may reflect contrasting 

morphological adaptations to the variation in locomotor activities. Although the 

above is true for the overall construction of these two joints, certain individual 

features, however, are remarkably uniform within the hominoid group. 
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African apes Pongo Hylobatidae Cercopithecidae Atelidae Cebidae Lemuridac Lorisidae Proconsulidae 

IUSPL short short moderately short moderately short moderately short moderately long moderately long long 

IUSPL2 short short moderately short moderately short moderately short moderately long moderately long long moderately short 

IUCA I restricted restricted moderately Moderately Moderately extensive extensive Restricted-

restricted extended extended moderately 

restricted 

IUHS I Almost square Almost square Slightly narrower Considerably Considerably Considerably Slightly narrower Slightly- Slightly-

mediolaterally narrower narrower narrower mediolaterally considerably considerably 

mediolaterally mediolaterally mediolaterally narrower narrower 

mediolaterally mediolaterally 
IRUA I Very extended Very extended extended moderate short short short Moderately 

extended 

IRUAFS ML long ML long ML long ML moderate ML short ML moderate M L very short ML moderate to 

mpderate long 

Table 23: Summary of wrist indices across the genera studied 
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African apes Pongo Hylobatidae Cercopithecidae Atelidae Cebidae Lemuridae Lorisidae Proconsulidae 

ITD I shallow Moderately shallow Moderately deep shallow shallow Moderately deep deep Moderately 

shallow shallow to 

moderately deep 

IAPTWl I Very wedged Not very wedged Very wedged Moderately Very wedged Moderately Almost parallel Almost parallel, Very wedged 

wedged wedged sometimes wedged 

other way 

IAPTW2 I Very wedged Not very wedged Very wedged Moderately Very wedged Not very wedged Almost parallel Almost parallel Very wedged 

wedged 

IPCFD Moderately deep moderate moderate Very deep shallow moderate Very deep Very shallow Moderately 

shallow-

moderately deep 

ASTA- I Very oblique 64/66 69 70 67/68 72/78 75 71 Varied 62/68/73/76 62/64/65 

LC 

Table 24: Summary of talocrural and subtalar indices and angles across the genera studied 
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African apes Pongo Hylobatidae Cercopithecidae Atelidae Cebidac Lemuridac 

ITHBl Very broad Very narrow Moderately broad Very narrow Very nan·ow Moderately narrow Moderately broad 

ITHB2 I Very flat Fairly flat Moderately Very rounded Moderately Very rounded Moderately 

rounded rounded rounded 

ITHNL Very short Moderately short Moderate moderate long long moderate 

ATH-LC Very oblique Moderately oblique Moderately oblique Less oblique Moderately oblique Moderately oblique Moderately oblique 

Table 25: Summary of talar head and neck indices and angles across the gem·a studied 

Lorisidae 

Moderately to very 

broad 

Very flat 

Very short­

moderate 

Moderately - very 

oblique 

Proconsulidac 

Moderately narrow 

to moderately 

broad 

Moderately 

rounded 

Very long 

Moderately- less 

oblique (except 

dend very oblique) 
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Pan and Gorilla are similar in most of the indices, either exclusively or within 

hominoids generally. This is expected, due to fundamental similarities in the 

locomotor repe1toires of these genera. The only index where the African apes 

differ from one another is the index of anterioposterior talar wedging derived from 

the trochlea maximum and minimum breadths relative to the trochlea length. In 

this measurement, Gorilla shows comparatively extreme wedging, whilst Pan is 

intermediate between the cercopithecids and the atelids. Due to the overall 

similarities between the locomotor patterns of Gorilla and Pan, it is difficult to 

imagine the functional significance for this difference, as the talus in both genera 

is subject to the same kind of stresses, unless it can be attributed to body size 

differences for this particular mode of locomotion, or perhaps to increased 

terrestrialism in Gorilla. The Gorilla talar trochlea is relatively very short and 

broad. This apparently extreme morphology probably provides a robust structure 

for the transmission of the considerable forces incurred at this point by the 

gorilla's huge body weight during quadrupedal postures. The large surface area of 

the trochlea would also be adaptive for the relatively unpredictable direction of 

forces during limited arboreal activity, and a solid support during terrestrial 

activity. It is probably the extreme reduction in length of the Gorilla trochlea that 

contributes to the difference within the African apes. 

Pongo, whilst fundamentally very similar to the African apes in its wrist 

morphology, differs from them in several indices pe1taining to the shape of the 

talus and the orientation of its parts. The talar trochlea is relatively deeper in 

Pongo than in the other hominoids, and deeper than in the platynhine genera, as 

well; it is most comparable to that of Varecia. Additionally, in the two indices of 

trochlea wedging, Pongo differs from all of the other hominoids, showing mean 

values intermediate between the strepsirhines and monkeys in both. These results 

agree with those of Langdon (1986) but are surprising, as the depth and shape of 

the trochlea would effectively regulate mediolateral rotation, and thus flexibility, 

at the talocrural joint. Pongo habitually uses hindlimb assisted suspensory 

postures and locomotion, and it is reasonable to assume that this would require a 

large amount of flexibility at this joint, as the foot extends to grasp i1Tegular 

substrates from an infinite number of positions. It must be noted, however, that 

Varecia, Chiropotes and Alouatta are also known to utilise hindlimb suspensory 
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positional behaviour (Tattersall, 1982; Meldrum et al., 1997; Meldrum, 1998; 

Fleagle, 1999), so within this context Pongo does not seem such an anomaly. It 

might be the case that increased flexibility of the hindlimb in these genera is 

maintained through different mechanisms. Langdon (1986) suggests that the 

congruency of the talocrural joint is largely irrelevant in traction, as it would have 

minimal affect on mobility, whilst in supportive posture it would be essential for 

stability. This is perhaps a reflection of the frequent suspensory and reaching 

function of the hindlimb in Pongo. 

In the angle of the subtalar axis to the lateral crest, both Pongo and Hylobates 

show higher mean and maximum values than the African apes and the 

cercopithecoids. The Old World genera are, however, quite spread out in this 

index, with very large overlapping ranges, and thus show no particular patteming 

that might have implications for locomotor function, although the means for the 

African apes are slightly lower than those of the cercopithecids. The main 

difference, as also noted by Langdon (1986), lies between the Old and New World 

taxa, with the former showing more obliquity at this point, and thus greater 

accessory motion, and the latter having a remodelled subtalar articulation with the 

subtalar axis more perpendicular to the longitudinal axis of the foot. 

Pongo is also quite different from the other hominoids in the first index of talar 

head breadth (derived from the mediolateral head breadth relative to trochlear 

breadth), and moderately different in the index of talar head and neck length (in 

relation to overall talus length). This study, therefore, concurs with Langdon's 

(1986), where he suggests that talar head breadth is different in Pongo, convergent 

with ~he atelids, but would disagree that similar convergence is apparent in talar 

head and neck elongation. This latter characteristic is found to be considerably 

shm1er in Pongo than in any of the extant monkeys, despite elongation compared 

to the African apes. The short, robust African ape talar head and neck is probably 

related to the stresses incurred at this point, as a reflection of the magnitude and 

unpredictability of these forces. The more gracile nature of the Pongo and atelid 

talonavicular articulation, and the moderately elongated talar head and neck in 

Pongo, almost ce11ainly reflects the reduced stresses sustained dming inverted 
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postures, and may contribute to increased excursion of the joint in these positions 

(Langdon, 1986). 

The final index in which Pongo differs from the African apes is that of the angle 

of the talar head to the lateral crest. Pongo, and to a lesser extent Hylobates, 

shows a comparatively lower angle than those of the African apes. This angle is 

related to the primary direction of forces during postural behaviour, and has also 

been associated with the extent of hallucal grasping (Langdon, 1986). A more 

medially orientated talar head and neck is generally seen in genera that utilise 

powerful hindlimb grasping. Despite the important hindlimb grasping component 

in its postural repertoire, Pongo has a reduced hallux in compatison to the other 

hominoids, which is probably less fundamental during postural behaviour 

(Fleagle, 1999). It is maybe for this reason that the talar head exhibits less medial 

torsion, and is more in line with the longitudinal axis of the foot. Hylobates, on 

the other hand, has a long muscular hallux (Fleagle, 1999) and thus the reasons for 

the moderate talar head torsion are not as evident. It could be infen·ed, however, 

that Hylobates does not incorporate a significant amount of powerful hindlimb 

grasping in its positional repertoire. 

The apparent uniformity of the great ape wrist suggests underlying functional 

parallels, which would essentially negate a knuckle-walking hypothesis for the 

evolution of these features. Conversely, it is clear that the African apes and Pongo 

differ considerably in the structures of their tali, and this is probably related to the 

fundamental contrasts in the function of the foot. Evidently, the tal us of the 

African apes is an essential weight-bearing structure, whilst maintaining a high 

degree of flexibility at this point. Conversely, the Pongo foot, like the atelids, 

fulfils a more suspensory function, maintaining mobility during traction and 

becoming more stable in uptight postures. Consequently, the talus incurs 

minimum stresses during inverted postures, and stability dming quadrupedal 

behaviour reduces the need for a robust structure, as forces become more 

predictably orientated. 

The hylobatids are dissimilar to the other hominoids in several characters (in 

addition to those aforementioned), and are often found to be intermediate between 
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the monkey- and ape-like character states. In these cases, hylobatids show 

different affinities with the two groups across the range of characters. The indices 

in which the hylobatids differ most evidently from the great apes relate to the 

shape of the ulna styloid process, its carpal facet, the shape of the ulna head, and 

elements of the talar head and neck. 

In both indices of ulna styloid process length, Hylobates grouped with the other 

hominoids in the table of mean values, but shows a value that is more similar to 

the New and Old World monkeys than the great apes. Indeed, the great apes all 

show extremely low values for this index(< 2.5) whilst the closest affinity for 

Hylobates is found with Alouatta and to a slightly lesser extent, the two 

cercopithecid genera. This is illustrated in the multiple comparison test, where the 

great apes are evidently dissimilar from all other groups, but the mean value for 

Hylobatidae is no different to those of the Atelidae and Cercopithecidae at the 

95% confidence level. This relatively intermediate nature of the hylobatid ulna 

styloid process agrees with Lewis (197la, 1972a-b, 1974), as does the observation 

that the articular surface for the hylobatid carpus is more distally and dorsally 

orientated, compared to the cercopithecid mticulation orientated more towards the 

interior of the joint. 

In the index of ulnocarpal articulation Hylobates is intermediate between the New 

and Old World monkeys and the hominoids, showing a mean value closer to that 

of the monkeys, and consistent with some of the lorisid genera. This, again, was 

highlighted by Lewis (1971a, 1972a-b, 1974) in his observations that the 

Hylobates wrist was very 'monkey-like' in its configuration retaining 

considerable ulnocarpal contact through a meniscus, but showing a change in 

shape of the ulna styloid process. It must be noted, however, that the Hylobates 

wrist is unique among primates in the presence of an extra bony ossicle, the os 

Daubentonii. 

In the index of ulna head shape, the hylobatids are again grouped with the other 

hominoids (and Varecia), inte1mediate between the great apes and lorises, but 

show more similarity to the lorisids, in terms of mean values. In this instance, 

however, the lorises and hominoids are quite different to the monkey genera. 
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In the second measure of talar head breadth (comparison of mediolateral breadth 

against craniocaudal depth), Hylobates is again grouped with the great apes, but 

shows mean values closer to those of Varecia and Alouatta, and to a lesser extent 

Cercopithecus. This is again illustrated in the multiple comparisons test, where, 

although the hylobatids show no significant difference to the great apes, they also 

show no significant mean difference to the atelids and lemurids. 

In the index of talar head and neck length, both Pongo and Hylobates fall within 

the lorisid range, rather than that of the African apes, and differ quite evidently 

from the latter in this feature, despite an apparent grouping of hominoids and 

lorisids in this character. The multiple comparison test results clearly show the 

variability within the hominoids, finding no significant difference between the 

hylobatids, Pongo, lorisids and Varecia at the 95% confidence level, but showing 

the African apes to be significantly different to the other taxa at the lower extreme 

of the range. 

Overall, the differences between the hylobatids and African apes are not as blatant 

as those seen in Pongo, and can be best described as differences in degree of 

characters rather than structural variation. The findings of this study, in this 

respect, wholeheartedly support the view proposed by previous analyses that the 

Hylobatidae represent a somewhat intermediate phase of adaptation between the 

cercopithecids and African apes: a moderately reduced ulna styloid process and 

ulnocarpal articulation, reorganisation of the articular facets for the carpus and 

radius, low talar trochlea wedging but shallow trough, and reorganisation of the 

talar head and neck (Lewis, 1971a, 1972a, 1972b, 1974; Conroy and Fleagle, 

1972; Langdon, 1986). 

In several indices, mostly of the distal ulna but with one measure of talar head 

breadth, either the great apes, or all of the hominoids, are grouped together, 

although some of these groupings may be fairly loosely defined due the more 

intermediate character states of the hylobatids between the great apes and the 

other genera (as discussed above). Most particularly, the hominoids are quite 

uniform in ulna styloid process length, radial facet shape and talar head breadth 
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relative to craniocaudal height, and the great apes are closely grouped in the 

extent of ulnocarpal articulation and ulna head shape. These indices, which may 

indicate shared derived hominoicl/great ape morphologies, could be the best 

sample for comparison with other taxa to look for patterns of convergence or 

homoplasy. 

LORISOID CHARACTERISTICS 

Although alllorises are similar in the morphological structures of their wrists and 

ankles, they show a certain amount of variation in the extent of characters among 

the four genera in some of the indices analysed. In the first index of ulna styloid 

process length the four !oris genera form a clear group, unique compared to all 

other taxa in their comparatively long styloid process. Arctocebus, and to a lesser 

extent Loris, however, are far more extreme in this index than the other genera. It 

might be the case that the few samples used for these two genera are not 

representative of the taxa, but the specimens used for Arctocebus are uniformly 

high, falling either at the upper limit, or outside the range, of the other genera. In 

the second index of ulna styloid process length, however, it is Loris that seems to 

be more extreme, with Arctocebus to a lesser extent. The different results 

achieved for the two indices would suggest that variation is evident in the 

characters used as denominators for the indices, but the uniformly high indices for 

both genera in the two measures of ulna styloid process length do seem to confirm 

that Arctocebus and Loris are generally more extreme in this characteristic. 

Similarly, Arctocebus seems to be rather different to the other taxa in the index of 

ulnocarpal articulation. This is more immediately evident as the other lorisids 

form a group within the hominoid range, whilst Arctocebus is more monkey-like 

in its larger ulnocarpal articulation. This enlarged mticulation might be coiTelated 

with the fact that the styloid process is elongated in this genus, but this does not 

seem an adequate explanation in view of the fact that all the other lorises have 

comparatively long styloid processes, but reduced carpal facets. Cartmill and 

Milton (1977) note that the different lorisids show varying degrees of withdrawal 

of the ulna from the carpus both between and within genera, but they do not 
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include Arctocebus, they note, however, that Perodicticus is more advanced in 

this characteristic, and their Nycticebus sample included a specimen where the 

ulna was completely withdrawn from the primitive carpal articulation. As these 

two genera show the lowest indices for both ulna styloid process length and 

ulnocarpal articulation, it may therefore be inferred that the lower values for these 

characteristics may represent retraction of the ulna from direct participation in this 

joint. This does not, however, explain the relatively extreme nature of ulna styloid 

process length in a wider comparative context. 

In the index of radioulnar articular facet shape, it is Perodicticus that appears to be 

different to the other lorises. It exhibits a relatively low mean value, intermediate 

between Cercopithecus and Saimiri, suggesting a mediolaterally short radial facet 

on the ulna. The remaining !oris genera, whilst clearly grouped together, show 

affinities in their mean values to the hominoids. The mean values for Arctocebus 

and Loris within this group are again considerably higher than Nycticebus. 

The results for characters of the wrist are very illuminating. Despite apparent 

grouping of the four genera among the lorisids, Loris and Arctocebus tend to 

differ from the others in the extent of expression of ce1tain features. What is 

unusual, however, is the combination of features observed in these two genera: a 

relatively longer ulna styloid process, with a larger ulnocarpal articulation than 

seen in the other genera, and yet a mediolaterally longer radial facet on the ulna. 

These results are somewhat contradictory, in that the first two features may be 

seen as limiting for ulna deviation, whilst the third is representative of greater 

excursion of the radius around the ulna. Cartmill and Milton (1977) noted that 

Loris is slightly less advanced in characters of the ulnocarpal joint than 

Perodicticus. They maintain that the Loris ulna styloid process retains a small, 

distally placed mticular facet, which only articulates directly with the carpus 

during dorsiflexion and ulna deviation. The authors suggest that this contact does 

not affect the degree of ulna deviation possible at the wrist. Unfortunately, their 

examination did not include the dissection of an Arctocebus specimen, but it is 

reasonable to assume that the same conclusions can be applied to this genus. 
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At the talocrural joint, the lorises .are again grouped together for the depth of 

trochlea and the wedging indices, at the higher end of the primate range. Once 

again, however, Loris is the most extreme in all of these measures, with a 

comparatively deep trochlea and the lowest indices of wedging. This suggests that 

Loris possesses the most rigid talocrural joint, with a hinge-like movement 

restricted to the sagittal plane. It is clear that all of the lorisids are very different to 

the hominoids in the suite of features pertaining to this joint. In fact, lorisids are 

characterised by very limited mobility at the talocrural joint (Grand, 1967). 

In the angle of the subtalar axis to the longitudinal axis of the foot, the lorisids are 

very spread out in their mean values. Perodicticus and Arctocebus are similar to 

the New World primates, both exhibiting very high mean values, whilst at the 

opposite extreme, the mean angle for the subtalar axis of Nycticebus is the lowest 

among extant primates, most similar to Pan and Gorilla. Loris is relatively 

intermediate in this angle, like the cercopithecids. The main division in the 

orientation of this angle is between the New and Old World primates, with 

convergence on the platyrrhine condition found in isolated Old World genera (i.e., 

Pongo; Langdon, 1986). New World taxa have a more perpendicular subtalar axis, 

compared to the more oblique axis found in the other genera, and these features 

are functionally related (Langdon, 1986; Strasser, 1988). It is interesting, 

therefore, to note such differences between the lorisids, although the huge ranges 

for all of the taxa studied suggests that a large amount of variability exists in all 

genera, and thus the New and Old World differences may not be quite so clear 

cut. 

The lorisids, although uniformly high in both indices of talar head breadth, also 

exhibit a degree of variability in these measures. The ranges for each genus are, 

however, considerable in both indices, which makes it difficult to uncover any 

clear morphological patterns. All of the genera are grouped with the hominoids 

(except Pongo in the first index). This suggests, in accordance with both the 

observational data and previous studies (Grand, 1967), that the lmisids have 

relatively broad, flat talar heads. 
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COMPARISON BE'll'WJEEN THE lHOMINOWS AND LORISIDS 

Across the range of characters examined, hominoids and lorisids (or divisions of 

them, in the case of the hominoids) either exhibit remarkably similar, or 

absolutely different morphology. What is apparent, however, is that the lorisids 

are very different from Varecia in many of the features considered. Additionally, 

the features in which an apparent convergence has taken place between the lorisid 

and hominoid genera are spread across both the wrist and ankle joints, and thus in 

both structures a combination of characteristics is observed in the lorisid genera. 

In the two indices of ulna styloid process length the lorisids are at the opposite 

extreme from the hominoid group, and most pmticularly the great apes, in their 

considerable elongation of this structure. Indeed, the lorisid styloid process is 

shown to be markedly longer than any other taxa, whilst the hominoids exhibit the 

shortest relative lengths. Conversely, in the index of ulnocarpal articulation, the 

genera from both of these groups (with the exception of Arctocebus) show 

remarkable convergence, with the lorisids exhibiting greater reduction of this facet 

than any non-hominoid genus. Observations suggest, however, that the orientation 

of this facet is more consistent with a monkey-like pattem, distally placed but 

verging towards the interior of the joint. It is somewhat difficult to reconcile these 

results, as it might be expected that ulnar withdrawal from the carpus would be 

contingent on ulna styloid process reduction. It must be noted, however, that size, 

positioning and orientation of the carpus (most particularly the triquetra) and 

pisiform) may have a fundamental bearing on the overall mobility of this joint. 

In the index of ulna head shape, the lmisids (and Varecia) again show similarities 

to the hominoids, being intetmediate between the great apes and monkeys in this 

aspect, and comparable with Hylobates. This suggests that these genera exhibit a 

less mediolaterally nanow ulna head, compatible with an extended radioulnar 

contact, as suggested by Harrison (1982). This is reiterated by the two measures 

of the radioulnar articulation, which suggests that the ulna side of this contact is 

both comparably large and extended mediolaterally. Both of these indices, whilst 

not different from cercopithecids at the 95% confidence level, show similarity to 

the character state of the hominoids. It might be infetTed from these results that 
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the lorisids exhibit significant radial excursion around the ulna, which would 

contribute to overall mobility at the ulnocarpal joint (Cartmill and Milton, 1977). 

Overall, therefore, the lorisid wrist joint shows a mosaic of characteristics at the 

ulnocarpal joint, with evident similarity to the hominoids in certain features. As 

Cartmill and Milton (1977) have suggested, the ulnocarpal contact is greatly 

reduced, and elements of the radioulnar articulation suggest a considerable degree 

of ulnar deviation. These features are, however, found in combination with an 

extraordinarily long and slender ulna styloid process, and an interiorly orientated 

ulnocarpal facet. The significance of ulna styloid process reduction has been 

emphasised in the many studies of the derived hominoid wrist as contributing to 

overall mobility (Lewis, 1971a, 1972a-b, 1974; O'Connor, 1975) and it seems that 

the lorisids have achieved similar movement capabilities, albeit perhaps to 

different degrees, without necessitating the diminution of this feature. As 

previously stated, it is difficult to achieve a good overall picture of the joint from 

isolated elements, and a more comprehensive study would need to take into 

. account the structure and orientation of the carp~s. Additionally, it would be 

beneficial to study the overall congruency of the articulated joint by dissection or 

radiograph to achieve a better understanding of how the elements interact as a 

whole. 

In the indices pertaining to ankle mobility, the lorisids show different degrees of 

likeness to hominoids across the various joints, with the most evident similarities 

in the shape and orientation of the talar head and neck. At the talocrural joint, in 

the index of talar trochlea depth and both indices of trochlear wedging, the lorisids 

are uniformly opposite in extreme to the African apes and Hylobates. They do, 

however, show close affinities to Pongo in the wedging indices. These three 

indices can be directly related to the congruency, and consequently the degree of 

accessory movement, at this joint. The p1imate talar trochlea is secured between 

the mmtise-like structure formed by the tibial and fibular malleolar facets, which 

effectively limits the range of motion at this joint to plantar/dorsiflexion. In the 

lorisids, where the trochlea has a relatively deep trough and is anteroposteriorly 

parallel sided, the mortise retains its secure hold throughout the range of motion, 

and movement is limited to a single plane. On the other hand, the African apes 
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and hylobatids show significant wedging, and a relatively shallowly curved 

trochlea trough, which would petmit a greater degree of mediolateral rotation at 

the talocrural joint, particularly in dorsiflexed postures. The results of this study 

therefore suggest that the lorisids are different from these hominoids at the 

talocrural joint, and that the lorisid joint is fundamentally a hinge-like mechanism, 

with movement restricted to the sagittal plane (Grand, 1967). 

At the subtalar joint, in the index of posterior calcaneal facet depth, the lorisids 

again show marked differences to the African apes, but slightly closer similarity 

to Pongo and Hylobates. With the atelids, the lorisids exhibit the lowest mean 

values for this index, representing a relatively shallow posterior calcaneal facet, 

and these two groups show no mean difference to one another at 95% confidence. 

The hominoids, in contrast, are more intermediate in this aspect, with the African 

apes verging towards the more extreme condition seen in cercopithecids, and the 

Asian apes showing closer affinities with the lorisids. The depth of curvature of 

this facet is important in that it dictates the range of excursion in 

inversion/eversion. A shallow facet facilitates a greater potential for these 

movements, whilst a deeply curved facet is more restrictive, as the opposite facet 

on the calcaneus is held more rigidly. Thus, the results of this study support a 

view that both the lorises and atelids have greater potential excursion than the 

hominoids at the subtalar joint, although hominoids exhibit more mobility than the 

cercopithecids (Langdon, 1986; Strasser, 1988). Grand (1967) noted the range of 

inversion/eversion in lorisids to be approximately 60-70°, which would be crucial 

in accommodation to inclined supports for these slow moving primates. Varecia, 

in this aspect, show morphology more consistent with that of the cercopithecids. 

In features of the talar head and neck, the lorisids and African apes show 

remarkable similarity. In indices of talar head breadth, the results suggest that the 

lorisids, African apes and Hylobates all have mediolaterally broad and 

craniocaudally flattened talar heads, which indicates that the talonavicular 

articulations in these taxa are extensive, facilitating a wide range of mediolateral 

excursion at this point. The relative breadths of the talar head in these taxa also 

suggest that the radius of curvature is high, contributing to a fairly loose fitting 
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joint overall, and thus increased accessory mobility (Langdon, 1986). In talar head 

breadth, Pongo is more convergent with the atelids, as discussed above. 

The talar head and neck in the hominoids and lorisids is also relatively short and 

more medially orientated (with the exception of Pongo) in comparison to the other 

primates. The short relative length and robusticity of these structures suggests that 

they are adapted to withstanding a significant degree of stress during everyday 

activities. The medial orientation indicates the primary direction of these stresses, 

perhaps as a response to enhanced grasping capabilities in the hallux (Langdon, 

1986). 

Overall, the ankle joints of the African apes, hylobatids and lorisids appear 

adapted to increased mobility, albeit with variable movement capabilities at the 

three articulations examined in this study. Hominoids have a large range of 

accessory motion at the talocruraljoint, with moderate stability at the subtalar 

articulation, whilst lorisids have a particularly rigid talocrural joint, but increased 

subtalar mobility. The infetTed 01ieritation and degree of stress incutTed at the 

talonavicular articulation appear remarkably similarin these taxa, which would 

suggest functional similarities at this point. 

PROCONSULIDS IN A COMPARATIVE CONTEXT 

Due to the limited fossil material it is impossible to attain a full data set for the 

proconsulid wrist indices; those included are derived from single specimens. 

Additionally, the specimen used for Proconsul heseloni (KNM-RU 2036) is a 

juvenile, and the results for this species must therefore be treated with further 

caution. Conversely, numerous tali from this period are preserved in good 

condition. Thus, comparable talar measurements were available across the range 

of indices, and for a variety of taxa. 

The only wrist indices for which a meaningful analysis could be conducted 

between the fossil and extant genera are the second index of ulna styloid process 

length and the index of ulna head shape. In the former, single specimens from 
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Kalepithecus and Proconsul are available. Both genera show indices that fall 

between the mean values for Hylobates and the monkey genera, and well within 

the ranges of Hylobates, Macaca, Alouatta and Cercopithecus. In view of the 

intermediate nature of the Hylobates distal ulna, this suggests a broadly monkey­

like ulna styloid process (Morbeck, 1975; Harrison, 1982, 1987). On the basis of 

these results, the suggestion that the proconsulid ulna styloid process is more 

advanced than Hylobates (Lewis, 1971a, 1972a, 1972b, 1974) is falsified. Again, 

analysis on the basis of single specimens and isolated elements is at best 

speculative, and it may be, as seen with the lorisid wrist joint, that this particular 

index may not be as fundamental in determining locomotor capabilities as has 

previously been thought. Indications from previous studies suggest that the 

proconsulid carpus and ulnocarpal articulations exhibit significant reorganisation 

towards a more great-ape-like morphology (Lewis 1971a; Beard et al., 1986) and 

this cannot be discounted by the current analysis. A combination of long styloid 

process, reorganised carpus and reduced ulnocarpal facet is, after all, 

characteristic of the lorisids who exhibit significant ulnar deviation (Cartmill and 

Milton, 1977). 

In the index of ulna head shape, the single Kalepithecus specimen has a shape 

comparable to the Old and New World monkeys (mediolaterally narrow), whilst 

the Proconsul individual is within the range of means exhibited by the lorisids 

(slightly broader mediolaterally). Both fossils, however, fall within the ranges 

found in all of the extant genera except the great apes, and thus neither can be 

considered to be particularly ape-like in this index. A mediolaterally broader ulna 

head suggests an extended radial facet, and thus the greater excursion of the radius 

around the ulna characteristic of ulna deviation. This is not overwhelmingly 

apparent in the fossil taxa, despite the relatively high index in Proconsul. 

It is difficult to come to any concrete conclusions about the wrist morphology of 

these Miocene genera from the limited data set derived from isolated specimens. 

Overall, these fossils do not show any obvious similmities to the derived 

hominoid morphology, and inference can only be tentative without a more 

detailed analysis of the specimens in question and other elements of the wrist. 
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Even so, a much richer fossil record in this aspect of postcrania would be 

necessary before any more concrete assertions could be made. 

For the talar indices, measurements of fossils were available for Proconsul (10), 

Dendropithecus (2), Rangwapithecus (3), Kalepithecus (3) and Limnopithecus (2), 

although data sets were not complete for all specimens due to variable 

preservation. With relation to the talocrural joint, the proconsulids show moderate 

talar trochlea depth, with means intermediate between those of the New World 

genera and Pongo; the exception is Kalepithecus, which is more consistent with 

the cercopithecids. The multiple comparison test shows that the proconsulids 

differ significantly (p<0.05) from the hylobatids and African apes in this index. In 

both indices of trochlear wedging, however, all of the fossils show values within, 

or above, the mean range for the African apes and Hylobates. In both of the 

wedging indices, the mean values for the fossil taxa are no different to those of the 

atelids, hylobatids and African apes at the 95% confidence level. At this level, 

however, they differ significantly from the cercopithecids. 

These results are somewhat at odds with previous studies, which have suggested 

that the proconsulids exhibit limited wedging and relatively deep talar trochleas 

(Harrison, 1982; Langdon, 1986). It is recognised, however, that these earlier 

analyses were limited to an evaluation of the proconsulids in a comparative 

context with cercopithecids and hominoids, and this study has found that it is 

actually the lorisids that show the extreme trochlear depth and most limited 

wedging. Cercopithecids in this study, however, are more intermediate in these 

characters, rather than at the opposite extreme to the hominoids. Nevertheless, the 

wedging index results are certainly different enough from those of earlier studies 

to warrant further investigation. If these results are shown to be accurate, it 

suggests that the range of accessory motion at this joint in the fossil genera is 

equivalent to the hominoids across the range of dorsi/plantarflexion. The 

relatively moderate depth of the talar trochlea also suggests a degree of mobility 

at this joint, although this is somewhat equivocal. 

In the index of posterior calcaneal facet depth, the fossils are relatively spread out 

across the extant ptimate range of means, but the specimens for Limnopithecus, 

155 



Rangwapithecus and Dendropithecus visibly fall towards the lower end of the 

range, most comparable with the lorisids and atelids. The means for these genera 

all fall outside the range of variation seen in the cercopithecids. Proconsul and 

Kalepithecus, however, are most similar to the African apes, and have upper range 

limits that overlap those of the cercopithecids, but are below their mean values. 

The subtalar axes of all of the fossils are consistent with an Old World pattern of 

significant obliquity. 

These results indicate that the subtalar joint, in at least some of the fossil taxa, is 

considerably more mobile than the Old World monkey genera, and perhaps more 

mobile than the African apes, converging towards the apparent extreme mobility 

seen in the lorisids and atelids. This is evident in the multiple comparison test, 

where the cercopithecids seem unique in their extreme depth of curvature of this 

feature, whilst the proconsulids show no significant mean difference to the 

hominoids, and with Pongo are verging towards the lorisid and atelid character 

state in this feature. These results are simi Jar to those found by Langdon (1986) in 

this aspect of proconsulid morphology, but they are contrary to those reported by 

Harrison (1982), who suggests that the subtalar morphology of the fossil taxa is 

most reflective of generalised arboreal quadrupedalism. 

In the indices of talar head breadth, the proconsulids are somewhat intermediate 

between the means of the monkeys and the African ape/hylobatid/lorisid 

grouping. In the first index, the means for the extant taxa fall into two distinct 

groupings: the Old and New World monkeys and Pongo all have means below 

113, whilst the other hominoids and the strepsirhines have mean values above 127 

(although the ranges for each genus are fairly widespread). To a certain extent, the 

fossil taxa bridge the gap between these groups, although they are more similar to 

the monkeys at the 95% confidence level in the multiple comparison of means. In 

the second index of talar head shape, the proconsulids are most comparable to the 

monkeys and Varecia, exhibiting a more rounded talar head very different to that 

of the great apes and lorisids. This is evident in both the means and ranges of the 

taxa for which multiple specimens were examined, and the individual results. The 

highest fossil value is seen in Limnopithecus, which marginally exceeds the mean 

for Hylobates, but on the basis of a single specimen it is very difficult to make 
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sweeping statements about the extant affinities of a fossil genus. This is especially 

true since this value fall within the upper limits for Cercopithecus, Varecia and 

Alouatta. 

In the index of talar head and neck length and angle of talar head torsion, the 

proconsulids are quite varied, with the genera examined showing widely different 

character states from one another. The Proconsul sample, derived from five 

specimens, is remarkably similar to the hominoid genera in the index of talar head 

and neck length, falling well within the apparent hominoid/lorisid grouping. The 

Proconsul range is also very similar to those seen in Perodicticus and Nycticebus, 

and almost comparable to Hylobates. Some specimens fall within the upper limits 

of the African ape ranges. In the angle of the talar head and neck from the lateral 

crest, however, Proconsul shows limited torsion, more consistent with that of the 

monkeys. These results would support a view that the Proconsul talar head and 

neck is short and robust, probably in accommodation to considerable stresses, but 

the angle of torsion suggests, however, that these stresses were more 

longitudinally orientated, rather than medially as seen the African apes. 

Kalepithecus is at the other end of the primate range in talar head and neck length, 

with mean value most comparable to the ceboids, indicating a more elongated 

talar neck. The two individuals used to represent this genus, however, also fall 

within the upper limits of Nycticebus, Perodicticus and Hylobates, but not 

Proconsul. This suggests, therefore, that the two fossil genera are fundamentally 

different from one another in this characteristic. Kalepithecus also exhibits the 

lowest angle of talar head torsion across the whole extant and fossil range, and 

therefore the lowest mean. These results suggest that Kalepithecus is similar in 

aspects of talar neck shape and orientation to the atelids. 

The single specimen for Dendropithecus is inte1mediate in the index of talar head 

and neck length, with a value that is within all of the non-African ape primate 

ranges. The talar head and neck, however, shows considerable medial orientation; 

comparable to Gorilla. This value is within the ranges seen in all of the 

hominoids, Nycticebus and Perodicticus. Thus, few reliable inferences can be 

made about the talar head and neck of this genus in its relation to the extant taxa, 
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although the angle of talar head torsion suggests certain similarities with the 

hominoid and lmisid genera. 

Overall these results are in accord with those found by Langdon (1986); he 

suggested that the specimens now attributed to Kalepithecus show parallel 

features of the talar head and neck to the atelines, perhaps indicating a degree of 

suspensory locomotion within their repertoires. Proconsul, on the other hand, is 

characterised by a short head and neck, more similar to the extant hominoids. 

Langdon (1986: 173) is also cautious in his inferences about Dendropithecus, 

suggesting that the limited material could not warrant "behavioural conclusions". 

Overall the proconsulid ankle represents a mosaic of features across the three talar 

joints examined here, and shows similarities to the cercopithecids, hominoids, and 

lorisids to different degrees in various features. At the talocrural joint, it seems 

that the early Miocene fossils have high anteroposterior wedging, which would 

suggest that this joint would allow a high degree of accessory mobility in 

dorsiflexed postures, most particularly inversion/eversion. On the other hand, the 

moderate depth of the trochlear trough suggests that the foot retains a reasonable 

degree of congruency, and probably more restricted mediolateral rotation than 

seen in African apes and Hylobates. This also suggests greater stability in 

plantarflexed positions. 

The subtalar joint, in contrast, is more like that of the extant hominoids, and may 

well be considerably more mobile. The results for the depth of the posterior 

calcaneal facet show the fossil genera converging towards the lorisids and atelines 

in this feature, with movement capabilities at least equal to the hominoids, and 

considerably more mobile than the cercopithecids. 

The talar breadths relative to the trochlea in these genera are somewhat 

intermediate between the monkey and African ape!Hylobatesllorisid grouping, but 

are much more rounded than seen in lorises and hominoids. The talar head and 

neck length is varied, with Proconsul showing close comparison to the African 

apes and Hylobates, despite reduced torsion, whilst Kalepithecus resembles 

atelids in both length and orientation of this structure. 
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EVALUATION 

The findings described here do not falsify the hypothesis that the evolution of 

hominoid locomotion may have derived from a slow, deliberate arboreal 

quadruped. Elements of the wrist of the lorisids and hominoids show several 

similarities (reduction of the ulnocarpal contact, mediolateral expansion of the 

radial head and the radioulnar facet). Additionally, although these groups differ in 

characters previously thought suggestive of substantial contact between the ulna 

and the carpus (orientation of the carpal facet and length of the styloid process), 

the significance of these features in determining the relationship of this joint must 

be seriously questioned in the light of the combined results of the present analysis 

and that of Cartmill and Milton (1977). It is clear that the elongation of the styloid 

process has little bearing on joint congruency in the lorisids, and thus cannot be 

used as a reliable indicator in the analysis of fossilforms. The relative position of 

the proconsulids in this index, therefore, is virtually meaningless with this 

knowledge. It has been suggested, however, that the carpal anatomy of Proconsul 

shows some structural similarities to the extant hominoids (Beard et al., 1986) 

and, therefore, there is no reason to assume that the early Miocene taxa did not 

have a similar ulnocarpal joint to lorisids. It is possible that reduction of the 

styloid process was a response to its relative redundancy, although the contact 

maintained (albeit limited) between the shortened ulna styloid process and the 

carpus in Pan suggests that this is not the case. Full understanding of the 

relationship of the joint as a whole cannot be achieved without examination of the 

carpus, and analysis of the articulated joint. 

In ulna head and radial facet shape, hominoids and lorisids show clear similarities, 

but the fossil material is again inconclusive. It is possible that these taxa may have 

shown equivalent ranges of ulna deviation to the lorises, and thus locomotor 

similarities, due to their results for the ulna head shape falling well within the 

ranges of these extant taxa. Again, this concurs with Odhiambo Nengo and Rae 

(1992) who suggest that the morphology of the Proconsul major ulna head 

resembles that of extant hominoids, but is contrary to Harrison (1982, 1987). 
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In the talus, again, elements show distinct similarity between the lorisids and 

hominoids; notably features of the talar head and neck. The two groups differed in 

the other joints, however, with the lorises showing more mobility in the subtalar 

joint, and the hominoids having greater accessory motion at the talocrural joint 

(Grand, 1967; Langdon, 1986). Proconsulids show similarities to the hominoids in 

certain features of the trochlea, and thus are quite different to the lorises, but at the 

subtalar joint most of the taxa were closer in their morphology to lorisids. The 

talar head and neck in most of the fossil taxa is intermediate between the monkeys 

and the African ape/Hylobates/lorisid grouping. Again these results do not falsify 

the hypothesis examined, as the fossil taxa appear to have some development of 

the shared lorisid and hominoid features, and similarities to either the hominoids 

or lorises across the range of other characters. What is evident, however, is that 

the proconsulids do seem to exhibit different character states to one another in 

some of the features, with Kalepithecus, like Pongo, converging on an ateline 

condition in features of the head and neck, in contrast to the more hominoid 

condition seen in the other specimens. This would certainly call into question the 

supposition that the early Miocene hominoids were relatively uniform in their 

postcrania, and thus adapted for similar locomotor behaviours (Rose, 1996). It is 

possible that these genera were, like many of the extant taxa, similar in their main 

locomotor pattern but combining this with differential use of supplementary 

behaviours. 

Unfortunately, inference has to be relatively cautious on the basis of isolated 

postcranial parts (Sanders and Bodenbender, 1993). Additionally, this study has 

shown that all primates show a large range of variation for many of the characters 

studied; where a single individual represents a whole genus, it is very hard to 

establish exact relationships of the fossil taxa within an extant framework. 

This study has raised some points for further research, pmticularly with reference 

to the postcranial similarities of the lorisids and hominoids. These taxa show 

similarities in features of both the ankle and wtist joints that relate to hand and 

foot orientation and increased mobility, and it would be worthwhile examining 

other parts of the postcrania of these groups to find out if these similarities can be 
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seen, and, again, compared with the early Miocene forms. In addition, further 

studies need to address the particular characters examined here in combination 

with the other components of the joints, perhaps also looking at the articulated 

joints through dissection or radiographs, to gain a more detailed picture of how 

the joints manoeuvre as a whole. 

The biggest problem encountered in this and other studies is the limitations of the 

fossil material for particular postcranial parts, and the small sample sizes of some 

fossil genera. Unfortunately, whilst analyses can become more rigorous with the 

development of new techniques, the fossil record will always be fragmentary and 

thus, inference can only be tentative. 

CONCLUSIONS 

The hypothesis that hominoid locomotion evolved from a lorisid-like deliberate 

quadrupedalism was tested. Several features of the ankle and wrist morphology 

were measured in lorisids and hominoids, with a comparative group of other 

arboreal quadrupeds from across the order Primates. The measurements were 

converted into indices for the purpose of statistical analysis. These were further 

compared with previous data of the early Miocene hominoid genera. 

The results suggest that the lorisids and hominoids share some features of their 

postcrania, although they are also remarkably different in others. Furthermore, the 

results indicate that the proconsulids share features with both the lorisids and 

hominoids, to different degrees in the various features. Although the results 

cannot conclusively confirm the ancestral locomotor pattern to be lorisid-like, 

they support a notion that shared characteristics are functionally related and thus a 

basal hominoid had movement capabilities in cettain joints not dissimilar to extant 

l01isids. 
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