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Abstract

Pipeline robots, borehole robots or exploring robots that work in underground
environments can be classified as underground robots. When an underground robot
takes a task, tracing and mapping the track of the robot is very important. This project
addresses the development of a positioning technique for stepwise underground
robots, which have been developed in Durham University. This research is expected
to provide a general benefit to stepwise robotic positioning systems rather than a

particular robotic or other situation.

The initial period of this project was the most difficult. After a few months of
literature searching, no suitable positioning technique had been found. Existing
techniques are suitable for surface robots, undersea robots or airborne robots but are
far away from the application requirements for underground robots. Positioning
technology depends on sensor techniques and measurement technologies. The
underground environment restricts the use of absolute measurement technologies.
Consequently, underground robotic positioning systems heavily rely on relative
measurements, which can cause unbounded accumulation of the positioning errors.
Moreover, underground environments restrict the use of many high precision sensors
because of restricted space and other factors. Hence, the feasibility of developing

high, long-term, accuracy underground robotic positioning systems was problematic.

Since it was found that there was a lack of research on underground robotic
positioning, fundamental investigation became necessary. The fundamentals include
the dominant error and the characters of the accumulation of positioning errors. After
the investigation of the fundamentals the difficulty and feasibility of developing a
high long-term accuracy positioning system was understood more clearly and the key
factors to improve the accuracy of a positioning system were known. Based on these,
a novel parallel linkage mechanism based approach was proposed. This approach has
flexibility in terms of geometrical structure and provides the possibility to improve
long-term accuracy of a positioning system. Although parallel linkage mechanisms
have drawn a great deal of attention from researchers in passed years, this is the first
time a parallel linkage mechanism has been applied to a robotic positioning system.

Consequently, new problems were generated by this application of parallel linkage

it




mechanisms. In this project, a Principal Component Analysis (PCA) method is
applied to solve the positioning problems and a particular case has been used to show
how to solve these problems. Through this case, the advantages of this approach and
the feasibility to improve the positioning accuracy is presented. The methodology that
can be used to solve the problems for different particular cases can also be used to

carry out study for general situations, which have also been illustrated.

Many problems still need to be solved. At the end of this thesis, some further
problems are discussed. The author of this thesis believes that the proposed approach

can be applied to industrial projects in the near future.
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Notations

Step length of a stepwise robot
Number (n) of the travelled steps

Distance measurement error
Orientation measurement error
Angular measurement error around the x-axis

Angular measurement error around the y-axis

Angular measurement error around the z-axis

Angular measurement error caused by Eoz and Eoy is
denoted asE

Angular measurement error caused by E . (see page 38)

Positioning error caused by distance measurement error.

Positioning error caused by orientation measurement
error.

Positioning error in the travel direction caused by distance
measurement error.

Positioning error in the lateral direction caused by

distance measurement error.

Positioning error in the travel direction caused by
orientation measurement error.

Positioning error in the lateral direction caused by

orientation measurement error respectively.

Pull force on a spring (in Section 6.1 of this thesis)
Length of a spring (in Section 6.1 of this thesis)

The i-th(i=1, 2,..., n) sample value of the pull force (p)
(in Section 6.1 of this thesis)

1. the i-th(i=1, 2,..., n) sample value of the length (/) of
a spring (in Section 6.1 of this thesis)

2. Thei-th(i=1, 2,..., n) link in a parallel linkage
mechanism (in the rest of this thesis)

The joint between the i-th (i = 1, 2,..., n) link and the base
in a parallel linkage mechanism.

The joint between the i-th(f =1, 2,..., n) link and the top
platform in a parallel linkage mechanism.




(a,,a,,a,, a,, ay, Im) Positional variables of a Steward plat form (see the
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definition on page 61)

Positional variables of a Steward plat form (see the
definition on page 60)

Orthogonal rotation matrix

The orthogonal rotation matrix from the M-frame to the
B-frame

The rotation matrix from the T-frame to the M-frame,

Translation vector
Any given function

The inverse function of any given function F(.)

The kth (k= 1, 2,..., n) principal component
)4

1

Principal component vector Y =" * |;

Y

n

The ith (i =1, 2,..., m) sample value of the Ath (k= 1,
2,..., n) principal component

Thei-th(i=1,2,...,n) eigenvalues (1,24 ,2...2 4 )

The i-th (i=1, 2,..., n) eigenvectors corresponding to the
i-th eigenvalues A ;
Given data set for sampling. Here, m is the size of

samples.

Calculated data set corresponding to data set {Q, }.

Polar angle in a polar frame

Radius in a polar frame

Allowable errors of the positional variables («,, a,, a;,
a,, a,lm)

Upper value of the variable y

Inferior vale of the variable y
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Underground Robotic Positioning Techniques




Chapter 1

Introduction to Part 1

As in the case of other mobile robots, it is very important for an underground robot to
know its position. Because the working environments are different, some particular
problems in underground robotic positioning systems need to be identified. However,
until now there has been a lack of research on underground robotic positioning
systems. Therefore, some fundamentals need to be discussed before starting the

positioning system design process.
1.1 Objective

In this part, some fundamentals of underground robotic positioning techniques will be
discussed. Following that discussion, a parallel linkage mechanisms based approach
will be proposed. This approach is based on the understanding of the general
characteristic of positioning systems for underground robots, especially for stepwise

underground traction.

The task of a positioning system is to know the position and in order to provide
information for navigation and robotic control. So, a positioning system is crucially
important for a mobile robot. Positioning systems are based on sensors and
measurement techniques but the use of sensor signals is different from robot to robot.
Surface or undersea robots often need to take action based on the environment. Their
control or navigation task is often relative to the environment. So surface or undersea
mobile robots often need to use the information from the environment to compare
with the known knowledge of the environment in order to identify location.
Processing the environmental information needs complicated algorithms. In other
words, positioning systems for surface or undersea robots need and can obtain

extensive environmental information but the post-processing of the data is

complicated and difficult. Underground robots are different. Underground robots do




position relative to a known point or initial starting position. Such machines do not
need to collect environmental information to identify location. Comparing
underground robots with other mobile robots, their control and navigation are more
straightforward but the positioning systems rely more heavily on measurement
technologies. If measurement technologies cannot be improved, underground robotic
positioning systems will be difficult to improve. Positioning accuracy requirements
are also different between underground and other mobile robots. Comparing
underground robots with other robots brings out the need for higher long-term and
short-term positioning accuracy. Long-term positioning accuracy is more important
for underground robots. The definition of ‘long-term’ or ‘short-term’ depends on the
particular application. In industry, ‘long-term’ may be 500 meters or longer distances,
and ‘short-term’ may be 10 meters or shorter distances. In this project, the objective is
to investigate an improved positioning technique for stepwise underground robot
traction. Here, ‘long-term’ is defined as1000 steps or more, and ‘short-term’ is
defined as 100 steps or less. Between the long-term and short-term is defined as

‘medium-term’.
1.2 Positioning Techniques for Mobile Robots

Exact knowledge of the position of a mobile robot is a fundamental problem in mobile
robot applications. In researching a solution to determine the position of a robot,
researchers and engineers have developed a variety of systems, sensors, and
techniques. However, to date, there is no truly elegant solution for this problem. The
many partial solutions can roughly be categorised into two groups: relative and
absolute position measurement [J. Borenstein 1997]. Because of the lack of a single
good method, developers of mobile robots usually combine two methods, one from
each group. The two groups can be further divided into the following seven

categories:

Group 1. Absolute Position Measurements (also called Reference-Based Systems)
e Active Beacons
e Global Positioning Systems
e Landmark Navigation

e Model Matching



e Magnetic Compasses

Group 2. Relative Position Measurements (also called Dead-reckoning)
¢ Odometry
¢ Inertial Navigation

Absolute position measurement techniques normally have higher accuracy but need
longer time for sensing and computation. Relative position measurement techniques
are suitable for real time measurement but there is a problem with unbounded error
accumulation. Normally, relative position measurement needs assistance from
absolute position measurement after a robot was travelled a certain distance. A brief

introduction to these techniques is as follows.

Active Beacons

Active beacon navigation systems are the most common navigation and are used on
aeroplanes and ships, as well as on commercial mobile robot systems. There are two
different types of active beacon system: trilateration and triangulation. Active beacons
can be detected reliably and provide accurate positioning information and allow high
sampling rates and yield high reliability. However, accurate positioning requires
accurate mounting and maintenance of beacons.

Global Positioning Systems (GPS)

Global positioning systems comprise of satellites that transmit encoded RF signals.
Using advanced trilateration methods, ground-based receivers can compute their
position by measuring the travel time of the satellites’ RF signal. The use of this
technology is limited to outdoor navigation.

Landmark Navigation

In general, landmarks have a fixed and known position and can be recognised by robot
sensors. There are two types of landmarks: artificial and natural landmarks.

Map Matching Navigation

In this technique the robot uses its sensors to create a map of its local environment.
This local map is then compared to a global map previously stored in memory. If a
match is found, then the robot can compute its actual position and orientation in the
environment.

Magnetic Compasses



A magnetic compass provides a measure of absolute heading (direction). One
disadvantage of any magnetic compass, however, is that the earth’s magnetic field is
often distorted near power lines or steel structures. This makes the straightforward
use of geomagnetic sensors difficult for indoor applications.

Odometry

Odometry is a widely used navigation method for mobile robot positioning. It
provides distance travelled by the robot with good short-term accuracy, is inexpensive
and allows very high sampling rates. However, the fundamental idea of odometry is
the integration of incremental motion information over time, which leads inevitably to
the unbounded accumulation of errors. Additionally, orientation errors will cause large
lateral positional errors, which increase proportionally with the distance travelled.
Despite this limitation, odometry is often an important part of a robot navigation
system and the navigation will become simpler when used in conjunction with, for

example, accelerometers.

Normally odometers translate wheel revolutions into linear displacement relative to
the floor. However, many factors, such as wheel slippage, rough floors and unequal
wheel diameter or uncertainty of the length of wheel-base, will influence the accuracy

of odometry.

To improve odometry accuracy, there are two generally used methods; one is via
calibration experiments to get a centre of gravity of errors before putting the data into
use; the other one is via detailed analysis of error sources to obtain error compensation

functions.
Inertial Navigation System (INS)

Inertial navigation uses gyroscopes and accelerometers to measure rate of rotation and
acceleration respectively. Inertial sensors measure the inertial state of the mobile
robot. The associated inertial navigation algorithm is the process of calculating
position by integration of velocity and computing velocity by integration of total
acceleration. Total acceleration is calculated as the sum of gravitational acceleration,

plus the acceleration produced by applied forces.

Historically, inertial navigation systems have been used in aerospace vehicles, military
applications, such as ships, submarines and missiles. A few years ago the application

of inertial sensing was mainly limited to high-performance high-cost aerospace and




military applications. However, several recent contributions in non-military
applications have made use of low-cost inertial systems. In the last couple of years
there has been some addressing of the need for a low cost inertial measurement unit
based on the progress in the development of low cost gyroscopes. Low cost inertial
measurement unit (IMU) research is mainly focused on initial calibration and
alignment algorithms to correct for gyroscope errors. Although these methods have
greatly improved the accuracy of measurement in some particular applications, its

accuracy is still not satisfactory in many other situations.

Apart from gyroscopes and accelerometers, other methods have also been
investigated, such as ‘Gyroscope Free INS’ methods that use six or nine linear
accelerometers instead of the usual three gyros and three accelerometers. Although the
methods have been found capable of predicting theoretical values they still cannot be
put into real systems because they do not have sufficient accuracy and still present a
considerable cost.

A major advantage of inertial navigation is that it is nonradiating and nonjammable
and may be packaged and sealed from the environment. Its disadvantage is the
accumulation of error caused in the double integration processes.

Because of the error properties of inertial navigation systems, it is usually considered
necessary to use absolute information provided by external sensors to reinitialise INS
during long-term robot motion. Alternatively, mounting a test platform on the robot
can also be used to reinitialise INS if the robot is allowed to stop whilst carrying out
its task.

Tilt sensors

Tilt sensors are worth mentioning because they are often used to measure robot
attitude associated with other positioning techniques. A tilt sensor is a gravity-sensing
angle transducer that can measure small deviations of the robot platform from the
horizontal plane. Existing tilt sensors provide accurate information only in stationary

states because the sensors have a very low ability to deal with inertial disturbance.
1.3 Durham Stepwise Underground Robot

The first of the Durham stepwise underground robots was developed in 1995. It was
made for pipeline inspection, and developed in conjunction with British Gas and

others. Its general structure is shown in Figure 1-1.







In the first step, the
front cylinder expands.
This action leads the
first brush unit to move

forward.

In the second step, the
rear cylinder expands
and the front cylinder
contracts. This action
leads the second brush

unit to move forward.

In the third step, the
rear cylinder contracts.
This action leads the
third brush unit to move

forward.

Step One, the 1st brush unit moves

Cylinder shrinks Cylinder expends
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Figure 1-3




The length of the step depends on the size of the robot actuator (cylinder). Normally,

the length of the step is between one and two times of the radius of the brush unit.
1.4 Constraints for Underground Robotic Positioning

Because of the underground environment, the use of sensors and positioning

techniques is highly constrained.

.The main constraint is that the underground robot cannot use signals from the ground
or sky to determine the position of the robot. Also, underground robots cannot
transmit signals to receivers on the ground or in the sky to determine their position.
This is because signals cannot pass through the strata of the earth or rocks. Thus, the
signals will be blocked or greatly distorted especially if a robot is deep beneath the
surface of the earth. Consequently, positioning systems can only be mounted on
board, and only relative position measurement techniques are available for

underground robotic positioning systems.

Restricted space is also a practical constraint. Both pipeline robots and borehole
robots move along narrow tubes. The size of an on board positioning system is
constrained by the diameter of the tube. This constraint makes it difficult to choose
and mount sensors. Generally, the size of a high precision sensor is large. The

accuracy of the sensor mounting also affects the measurement accuracy.

There are also other constraints in different applications. For example, robots working
in oil exploration drilling often meet high temperature and pressure environments.

This also causes difficulty when choosing sensors.

Because of the constraints, only relative position measurement techniques are
available in the underground environment. Existing relative position measurement
techniques normally cannot provide sufficient positioning accuracy for most mobile
robots, especially long-term accuracy. However, underground robots often need to
move long distances (more than 1000 steps). Considering the constraint of restricted
space, the choice of sensors becomes narrower. Hence, whether the accuracy of
positioning systems for underground robots can meet application requirements

becomes problematic.

In order to give a base to judge the feasibility of improving the accuracy of

positioning systems, quantitative error analysis has been carried out and is as follows.




Chapter 2

Error Analysis and Error Model for Underground

Robotic Positioning

The error analysis in this section is based on the application of relative position
measurement techniques to stepwise robots. Because the key problem is unbounded
error accumulation, the error analysis emphasises error accumulation and the related

factors.
2.1 Two-dimensional Error Analysis

To simplify the problem, this discussion of error analysis starts with two-dimensional
cases. It is assumed that a point moves along the x-axis from the origin (0,0) of an x-y
plane. Also, the distance of every step is a constant, D. After n steps the point moves
to (nD,0). If there is measurement error of the step length or the angular orientation,
the positional result will not be (nD, 0). Thus positioning accuracy depends upon

measurement accuracy.

2.1.1 General Error Analysis

Consider four simple cases:

Case 1, If there is an initial error in step distance, say +E , in the first measurement,
the positional result is (nD+E ,, 0). In this situation, the positioning error is a constant

and equals +E .

Case 2, If there is a constant error in distance, say the error in distance is a constant
+E , in each step, the positional result is (nD+nE ,, 0). In this situation, the absolute
positioning error is +nE ,, which increases linearly with the number (n) of steps.

Case 3, If there is an initial error in orientation, say +Eo in the first measurement, the

positional result is (nDcos(+E ), nDsin(+E )), see Figure 2-1. In this situation, the

positioning error is nDJZ(l—cos(+Eo)) , which increases linearly with the number



(n) of steps. Also, for a small angle of error the major part of this error will still be in
the direction of y.

The measured final position
The measured position
at the end of first step

\
1
1
i\
\
1
i
1
1
1
1
Y
A\l
|
1
- 1
o \
L7 \‘
AV Ee \
P \
T
D

T >
nD x
The position at the end of first step The real final position

Figure 2-1

Case 4, If there is a constant error in orientation, say the error is a constant +E  in
each step, the positional result is (nD )’ cos(+E ), nD

i=1

Ysin(+iE, ))

4 The measured final position
’ {/ b
\\
Ii \\
. \\\
The measured position \\
at the end of first step N
N
\\
\\
\\
\\
\\
\\
\\\
\\
\\
D X
The position at the end of first step The real final position

Figure 2-2
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Obviously, the orientation error (+nE ) increases with the number (n) of the steps,

and the positional error is a second order increase with the number (n) of the steps.

Again, the major part of the positioning error is in the direction of'y.

Using the above case, error functions were obtained as follows. When a robot moves
along an x-axis from the origin, the positioning errors in the travel direction and

lateral direction caused by the angular measurement error can be expressed as

eox=nDzn:cos(iEo) (1-1)

e,,=nDY sin(E,) (1-2)

Here, D is the length of the robotic step; n is the number of the steps the robot has

travelled; and Eis the angular measurement error; e, and e, are the positioning

errors in the travel direction and lateral direction caused by angular measurement error

respectively.

The positioning errors in the travel direction and lateral direction caused by the

distance measurement error are
e ="k, (1-3)
€5=0 (1-4)
Here, D is the length of the robotic step; n is the number of the steps the robot has

travelled; and E ,is the distance measurement error; e, and e, are the positioning

errors in the travel direction and lateral direction caused by distance measurement

error respectively.

The estimated position should be in the shadow area shown in Figure 2-3 if there are
both angular and distant measurement errors and the range of the angular

measurement error is between -E_and +E ; the range of the distance measurement

error is between -E ; and +E .

11



1 Estimated position area

y

D ¥ sinGE, )

-nD ¥ sinGE, )

=t

Figure 2-3

In the above discussion, the positioning error was combined by two parts. One is the
positioning error caused by the angular measurement error and the other is that caused
by the step length measurement error. Normally, these two parts of positioning errors
can simply be summed as the total estimate, or the positioning error caused by the

step-length measurement error can be ignored.

Through the above figures, it was found that the angular measurement error is the
main source of positioning error; the greater the orientation error, the greater the
relative positional error. However, the figures only show the tendency, and the error
functions (1-1) and (1-2) are not convenience for estimating positional error. Hence,

further numerical analysis was required as follows.
2.1.2 Numerical Error Analysis

This numerical error analysis is based on the error functions (1-1), (1-2), (1-3) and (1-
4). Formulas (1-3) and (1-4) show the relationship between the positioning errors and
distance measurement error very clearly and simply. Hence, the numerical error
analysis only focuses on the relationship between the positioning errors and angular
measurement error. Obviously, if the orientation error, i.e. the accumulation of the
angular error, is greater than 1 radian, the positioning error will be very large. In this
situation the result of the positional estimate is unacceptable. Therefore, the numerical
analysis in this section emphasises the effect of angular measurement error in the

situation where orientation error is less than 1. The orientation error can be easily
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approximately a linear relationship.
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Figure 2-6

Based on this data, the regression function is obtained as (1-5)

IOOe—I")=49nE0 (1-5)
n

This is a relative error function. Consequently, the absolute error function is obtained

as (1-6)
2
e0=—49—n E,D (1-6)
100

Formulas (1-5) and (1-6) are the error model on the condition nE <1. This error

model is easy to use. The following are examples to show how to estimate positioning

€ITor.

Example 1

It is assumed that the positioning distance is 500 meters; the length of the robotic step

(D) is 0.15 meters and the angular measurement error (E ) is 1/1000 radians.

Firstly, calculating the number of steps by n = 500/0.15 ~3334

Secondly, calculating the accumulation of the orientation error by nE = 3.334 radians.

Because this orientation error is greater than 1 radian, this positioning error has
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already been taken to be unacceptable. Therefore it is not necessary to use (1-5) or (1-

6) to estimate the exact positioning error.
Example 2

It is assumed that the positioning distance is S00 meters; the length of the robotic step

(D) is 0.25 meter and the angular measurement error (E ) is 1/2000 radians.

Firstly, calculating the number of steps by n = 500/0.25 =2000

Secondly, calculating the accumulation of the orientation error by nE =1

The third step, calculating the relative lateral error by (1-5), i.e. 49x1(%)=49(%)

The third step, calculating the absolute lateral error by (1-6), i.e. 0.49x500=
245(meters)

Therefore, the positioning error is about 245 meters.

Formula (1-5) has been tested by the use of all of the data which was mentioned at the
start of Section 2.1.3. The error of the function (1-5) is |100;e5’5 - 45nE |. In different
situations the error of the function (1-5) is also different. In all test situations, the
maximum value of the relative error, 1100510—)— - 49nE |, was less than 0.375 e.g.

37.5% (see Table A.1 in Appendix A). This formula presents a very high estimated
accuracy. The form of the formula is also very simple to use. Approximately, the value

of the relative positioning error is half value of the orientation error.

Table A.2 (in Appendix A) shows that the lateral error (e, ) is a major part of the
positioning error (e,). The less the orientation error (E,), the greater the value
e, /e, . If orientation error (E, ) is less than 1 radian the value e, /e, is greater than
94.5%. Also, the error in the travel direction (e, ) is a small part of the positioning
error (e, ). The greater the orientation error (E,), the greater the value e /e . If
orientation error (E ) is less than 1 the value e _ /e is less than 33%.

Formula (1-6) gives a clear and simple form for understanding the relationships

between positioning error and other relative variables. It is very clear that:
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Fortunately, sensor errors are normally random values. After a long distance of travel,
the probability of high accumulation of angular error should be low. Therefore, it is
useful to propose a long-term statistical error model. A statistical model can give a
positioning error range with a certain confidence. Here, it should be noted that
statistical models are not useful for short-term (less than 100 steps). In particular,
statistical models are inappropriate for very short-term travel (less than 10 steps). For

short-term travel, exact error models (1-5) and (1-6) are needed.

2.1.3 Error Estimates Using Statistic Models

(a) The estimated 700
% 600 ]

—

trajectory when angular

measurement error is ~
> 400 -

1/4000 radians 300
200 -
100 4

0 200 400 600 800 1000
X (meters)

(b) The estimated
trajectories when angular

measurement error has

uniform distribution
between —1/4000 and
1/4000 radians

X (meters)

Figure 2-7 Estimated trajectories

Sensor errors are usually random errors. If the precision of an angular sensor is 1/4000

radians and the number (n) of steps of robot travel is very large, the accumulation of
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angular measurement error will probably be less than n/4000 radians. Figure 2-7
shows the case in which it is assumed that angular sensor precision is +1/4000 radians
and the length of the robotic step 0.1 meters. Figure 2-7 (a) shows the estimated track
by using (1-1) and (1-2). Figure 2-7 (b) shows the tracks, in which the angular

measurement error has uniform distribution between —1/4000 and 1/4000 radians.

Obviously, the positioning errors in Figure 2-7(b) are much less than that in Figure 10
(a), which is estimated by using (1-1) or (1-2). Therefore, it is useful to build up a

statistical error model for long-term positioning systems.

During the statistical analysis, the assumptions made were the same as those used for
building the exact models. That is, the angular measurement accuracy was +1/4000,
+1/2000 or £1/1000 radians, and the step length was 0.1, 0.2 or 0.4 meters. In
addition, it is assumed that the robot travelled from position (0,0) to (1000,0) in a x-y

plane.

In order to build up a statistical model, a data sample was required. Sample data was
generated by a digital simulation. Given angular measurement accuracy and step
length, the simulation was carried out 1000 times. Every time, one estimated
positioning track was obtained. There were 1000 tracks for each given situation.
Therefore, there were 9000 tracks for the nine given situations. The sample positions
were based on the travelled distance. After each 100-meters travelled, the position
result was recorded. That is, when the robot arrived at the positions (xi, 0) (xi = 100,
200, 300, 400, 500, 600, 700, 800, 900, 1000), the estimated positions were collected.
For each given situation, at each sample position, there are 1000 data. This data
distribution in the x-y plane illustrates the tendency of the error distribution (see
Figure 2-8). Consequently, a range of positional errors for each situation, at each
sample position, can be determined by using a statistical method. The statistical model
can give an estimated positioning error range for different situations. The following
paragraphs are discussions of the positional error in the travel direction and the lateral

direction respectively.
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D=0.1 meters & Fo=1/1000 radians

x (meter)

Figure 2-8 Scatter of the positional sample data

Error in lateral direction (y)

Considering for example, the step length is 0.1 and the angular measurement precision
is £1/1000 radians. In addition, the angular measurement error is assumed normally
distributed between —1/1000 and 1/1000 radians. After processing, the estimated
positions at every sample position were obtained. Figure 2-8 shows the 1000
simulated position results at every sample position. The area of the position results
corresponding to each sample position has been shown in Figure 2-8. Figure 2-9
shows the lateral-error frequency of the sample data at the sample positions n=5000,
i.e. the travelled distance nD=500 meters. The data distribution is similar to a normal

distribution.

Figure 2-10 is a normal Q-Q plot for the sample position n=5000. The Q-Q plot
displays a normal probability plot for this group of data. This plot graphically assesses
whether the sample data could come from a normal distribution. If the data are
normal, the plot will be linear. Other distributions will introduce curvature to the plot.

It is obvious that the lateral error distribution is a normal distribution.
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In the case being considered, sample position is at n=5000, the mean of ¢, is 0.34
and the standard deviation is 12.25. The mean of e, can be viewed as zero because it

is very small compared with the travel distance x, for the positioning. From Table B in
Appendix B, it is known that the values of a standard normal variable will be greater
than —3.3 and less than 3.3 for 99.9% confidence. Consequently, the lateral error will
be greater than -3.3x12.25 and less than 3.3x12.25 for 99.9% confidence, i.e. —
40.44<y <40.44. This value (40.44) is called the cntical value of y for 99.9%

confidence.

In this situation, at other sample positions, the lateral error distributions are similar.
Figure 2-11 shows the frequency histograms for all sample positions. This figure
indicates that the lateral error distributions at different sample positions are normal

distribution.

At different sample positions, the means are approximately zero but the deviations are
different. Consequently, the critical values of y for 99.9% confidence are different.
The values of the means and standard deviations of the lateral error (y) are given in

Table 1-2.

Critical value
n nD mean(y) |Std Dev (y)|(99.9% confidence)
0 0 0 0 0
1000 100, 0.0184801 1.087586 3.58903
2000 200 0.648104 3.13933 10.3597]
3000 300, 0.112391 5.71192 18.8493
4000 400  0.1937944) 8.781617 28.97933
5000 500,  0.3420512 12.25484 40.4409
6000 600  0.5125174 16.07913 53.0611
7000 7000  0.5950634 20.25855 66.8532
8000 800  0.6373955 24.78095 81.7771
9000 900  0.6751322 29.58305 97.6240
10000 1000  0.6801131 34.64108 114.3155
Table 1-2

Based on the critical values in the above table, two curves were obtained, between
which the lateral error will be in the enclosed area under 99.9% confidence. The

curves are shown in Figure 2-12.
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X (meter)
D=0.1meters & Eo=1/1000radians

Figure 2-12 Positional error range in two-dimensional space
When D and E_, are fixed, the error in the lateral direction is a function of the
travelled distance, y=*f{nD).

The data analyses were also carried out for different lengths of step and different
angular measurement accuracy. The means, standard deviations and corresponding
critical values of y for the different situations are listed in Table A.3 in Appendix A.

For different values of D and E , there are different curves similar to Figure 2-12.

Based on the critical values in Table A.3, the critical value regression function (1-7)

was obtained.

CV=E, [0.01625(nD)2 +23(nD)+ 0.0072n(nD)-15(nD)D] (1-7)

Here, nD equals the travelled distance. This function is used to estimate the boundary
of the lateral error under 99.9% confidence. Therefore, the error estimate function

under 99.9% confidence is

e, =+E, [0.01625(nD)2+23(nD)+ 0.0072n(nD)-15(nD)D] (1-8)

This function indicates that when the travelled distance (nD) and step length (D) are
fixed, the lateral error (e, ) is in proportion to the angular measurement error (E, ).
When travelled distance (nD) and angular measurement error (E_ ) are fixed, the

lateral error (e, ) will decrease with step length (D).
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It was found that if E, is doubled, ¢, will be doubled in both error functions (1-8)
and (1-6). However, it was found that if D is doubled, e, will not decrease less than

50% in error functions (1-8). This is different from the error function (1-6).
Considering this factor, improving angular measurement accuracy is more important

than extension of the step length for long-term positioning accuracy.

Formula (1-7) has been tested by using sample data. Table A.4 in Appendix A shows
the result of the estimated errors. In Table A 4, the critical values are the statistical
result and the estimated critical values were obtained by using (1-7). The values of

CV/nD are the estimated values of the relative error (e, /nD) by using statistical
results. The values of ECV/nD are the estimated values of the relative error (e, /nD)

by using (1-7). The difference between CV/nD and ECV/nD expresses the error of (1-
7). Its maximum value is less than 0.61% and the minimum value is greater than —

0.23%. This result is satisfactory.

Error in the travel direction

Similar to the error analysis in the lateral direction, the distribution of the positional
results (sample data) in the travel direction (x) in the situation D=0.1 meters and
Eo0=1/1000 radians are shown in Figure 2-13. In particular, at the sample position
n=5000 the distribution is shown in Figure 2-14. It was very clear that the error in
travel direction is small. Histograms for the sample position n=9000 and n= 10000 are

not shown in Figure 2-13. This is because the rate, e__/x, (x=nD), is too small to be

processed by the software, SPSS. The values of x in the sample data for n=9000 and
10000 is taken as constant 900 and 1000.
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For different situations, the statistical analysis results are similar; the error in the travel

direction can be ignored. Table 1-3 shows the maximum values of e /x, (x=nD) in

the sample data.

The Maximum Values of e _/x, (x=nD) in the Sample Data

Table 1-3

It was found that the positioning error in the travel direction relative to the travelled
distance caused by angular measurement error is less than 0.7%. the higher the

positioning accuracy, the lower the maximum value of e . /x. Compared with the error

in the lateral direction, this error can be ignored.

It should be noted that e, in (1-8) is an estimated maximum value of lateral error for

99.9% confidence. For a particular travel, since the angular measurement error is
random, the positional error in the lateral direction may be less than the maximum
error estimated by (1-8). Sometime, the lateral error is probably less than the error in
the travel direction. This is different from the situation where the angular
measurement error is a constant. However, if angular measurement error is random,
positional error range in the lateral direction is much greater than the positional error
range in the travel direction. Moreover, positional error in the travel direction can be

ignored if the angular measurement error is random.

2.1.4 Error estimate functions for the situation where the robotic trajectory is not a

straight line

The above discussion of the error functions, exact and statistical, is under the

condition that a robot moves along a straight line. If a robot moves along any curve,
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the error function might be more complicated. In this section, two cases are discussed,
which relate to an understanding of the effect of accumulation of angular
measurement error on positioning error in the situation where a robotic trajectory is
not a straight line. One case is that the robotic trajectory is a combination of a few

lines. The other case is that the robot moves with a constant rotational velocity.

A robotic trajectory is combination of a few lines

Now, considering the case that is shown in Figure 2-15, two robots (robot 1 and robot

2) move from O to A, then robot 1 moves from A to B and robot 2 moves from A to

B'. Here the distance AB = AB'.

Y F E
D
/ G
AN ,
0 G’ p B X
E)
B’
Figure 2-15

Because of angular measurement error, the positional result for robot 1 is the position

F rather than B and the positional result for robot 2 is the position F’ rather than B’.
For each robot, there are two segments of travel. From O to A, the positional result is
identical for the two robots. It is the position D. At this position, the positional error in

the lateral direction is DH and the positional error in the travel direction is AH .

When robot 1 moves from A to B, the positional result is the position F. At this
position, the second segment positioning error in the lateral direction is FG and the

second segment positioning error in the travel direction is AB-DG . When robot 2

moves from A to B’, the positional result is the position F’. At this position, the
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second segment positioning error in the lateral direction is F'G' and the second

segment positioning error in the travel direction is AB'-DG' .

For the positional result of the travel trajectory OAB, the positional error in the lateral
direction is FG +DH . The positional error in the travel direction is (E -DG )+ZH_.
For the positional result of the travel trajectory OAB', the positional error in the lateral

direction is F'G'-AH . The positional error in the travel direction is (AB'-

D'G')+Bﬁ. Because FG =F'G', DG=D'G' and Ea—e{ﬁ, the positional errors of
OAB' in the lateral and travel directions equal FG-AH and (AB-
DG ) DH respectively.

Based on the knowledge that the lateral error is the main part of the positional error

when a robot moves along a straight line, it is known that:
DH >AH (for the segment of the travel trajectory O4 ),

FG >AB-DG (for the segment of the travel trajectoryE );

F'G'>AB'-D'G' (for the segment of the travel trajectory E).

Here, FG=F'G', DG=D'G', AB=AB'

Hence,

FG +DH >FG - AH

(the lateral error for robot 1> the lateral error for robot 2),
(AB-DG Y+ AH < (4B -DG y+ DH

(the error in the travel direction for robot 1< the error in that for robot 2);

Hence, the lateral error of robot 1, FG+DH , is greater than the positional errors in

the lateral (FG - AH ) and travel ((AB - DG )+ DH ) directions of robot 2. In addition,
the sum of the positional errors in the lateral and travel directions of robot 2 is less
than that of robot 1. In other words, the maximum of the positional errors in the travel
and lateral directions of robot 2 is less than that of robot 1. Therefore, the positional

error of robot 2 is less than that of robot 1.
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If robot 2 turns to another direction as shown in Figure 2-16, the result is similar. The
maximum of the positional errors in the lateral and travel directions of robot 2 is less
than the lateral error of robot 1. The sum of the positional errors in the lateral and
travel directions of robot 2 is less than that of robot 1. Therefore, the positional error

of robot 2 is less than that of robot 1.

Y
E’ F E
B’
M
F\
D
G
H\LA \ ,

0 B X

Figure 2-16

If at the position A robot 2 makes a turn which is not 90 degrees, say, the line AB' is
perpendicular to the line DA as shown in Figure 2-17. In this situation, the positional

error in the lateral direction (F'G' +T)Z) of robot 2 is greater than that (ﬁ +DH ) of

robot 1. Hence, there is possibility that the positional error of robot 2 is greater than
that of robot 1. However, DA is only slightly greater than DH . Based on the
discussion in Section 2.1.3, the value DH /DA is greater than 0.95. Moreover, the
positional error in the travel direction (ZF-D—G') of robot 2 is less than that (;IE -

DG Y+ AH of robot 1. Therefore, if the positional error of robot 2 is greater than that

of robot 1, the difference between positional errors of robot 1 and 2 is small.
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Figure 2-17

In general, if at the position A robot 2 makes a turn which is in any angle, the final
positioning error in the lateral direction is the second positioning error in the lateral
direction plus or minus the projection of DA in the lateral direction of the second
travel segment. At the same time, the final positioning error in the travel direction is
the second positioning error in the travel direction plus or minus the projection of DA
in the travel direction of the second travel segment. For the same reason, if the
positional error of robot 2 is greater than that of robot 1, the difference between them
is small. Therefore, if a robot makes few turns during the travel, the error functions (1-

6) and (1-8) are still useful.

Because of making turns, the positional errors in the travel and lateral directions will
be different from that in the situation where the robot moves along a straight line. For

this general situation, the formula (1-8) can be changed to (1-9).

e,=E_ [0.01625(nD) 2 +23(nD)+ 0.0072n(nD)-15(nD)D] (1-9)

A robot moves with a constant orientation velocity.

Although the positional error is changed very little after the robot makes the turn, if
this small change can be accumulated, this accumulation will also affect the final

positional result. Considering the case that a robot moves along the x-axis from O to A
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as shown in Figure 2-18, because of the angular measurement error E1, (E1,>0), the

positional result is the position E1 rather than A. If the angular measurement error is

E’l, (E’1,= - E1,), the positional result is the position E’l. If the angular
measurement error is E2, (E2,>E1 ), the positiohal result is the position E2. Now,
if the robot moves with a constant change (E1_) in the orientation, the robot will

move along the curve from O to E1. In this situation, if the angular measurement error

AEl ,equals E2 - E1, the positional result will be E2. For the same reason, if the

robot moves along the curve from O to E1 and the angular measurement error is -

E’1 , the positional result will be A. According to the discussion of the formula (1-6),

if E2<1 and AE1 =El, i.e. E2 =2E1, it was known that;
E24/(E1,+AE1 )=EIA/E1,
so, E2A/(2E1,)=E14/El,

so, EF2A=2 E14

but E14A+E2FE1>E24

SO, E2E1>E14

7'
y
E2
El
O —
A X
E’l
E’2

Figure 2-18
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This indicates that if the angular measurement error is E1 , the positional error for the

situation where the robot moves along the curve from O to El is greater than the

positional error for the situation where the robot moves along the x-axis from O to A.

However, the difference between El14+E2Eland E2Ais small if AE1_+El, is

small.

E2

El

Figure 2-19

N\

Following the above case, if the angular measurement error AE1, equals —E1 instead

of E1, when the robot moves along the curve from O to El, the positional result is the
position A. Therefore, the positional error for the situation where the robot moves
along the curve From O to E1 equals the positional error for the situation where the

robot moves along the x-axis from O to A, see Figure 2-19.

Moreover, if the angular measurement error AE1, equals —E2 instead of E1 or -E1,

when the robot moves along the curve from O to El, the positional result is the
position E’1. Therefore the positional error for the situation where the robot moves
along the curve From O to E1 is less than the positional error for the situation where

the robot moves along the x-axis from O to A, see Figure 2-19.
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In general, considering the situation where a robot makes turns with a constant angle

velocity r (radians per step) during travelling and the angular measurement error is

E ,, the conclusion obtained was as follows,

If r, xE > 0, then the positional error will be greater than that in the situation where
,=0. This difference between these two positional errors is small, if the accumulation

of r, [+|E, | is small.

Ifr,xE,< 0 and |r,[>|E,|, then the positional error will be greater than that in the
situation where r =0. This difference between these two positional errors is small, if

the accumulation of |r | |HE | is small.

Ifr,xE_ <0, |r,|<[E,| and the accumulation of |r, |HE | is small, then the positional

error will be less than or equal that in the situation where r  =0;

Based on the above analysis, it is shown that if the sum of the accumulation of the
change of the robotic orientation and the accumulation of the angular measurement
error is not more than 1 radian, the error functions are valid. Sometimes, the ideal
trajectory of the robot is a straight line or a few segments of lines, but because of the
uncertain environmental factors, the real trajectory of the robot is near the lines. In this

situation, the error functions discussed in this section remain valid.

2.1.5 Summary of the discussion of the two-dimensional error models (exact and

statistical)

The above discussion of the two-dimensional error models (exact and statistical) can

be summarised as follows.

e There are two sources of positioning error, angular measurement error and step

length measurement error.

e Angular measurement error is the dominant error in the two sources of positioning

€rror.

e A positioning error model is a tool to estimate the maximum positioning error

based on relative factors. In this project, the relative factors are the angular
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measurement error (E ), the step length measurement error (E,), length of the

step (D) and the number (n) of the travelled steps.

The estimate of the positioning error can be carried out by two separate parts. One
is the estimate of the positioning error caused by the angular measurement error
and the other is that caused by the step length measurement error. Normally, these
two positioning errors can simply be summed as the total estimate, or the

positioning error caused by the step length measurement error can be ignored.

The positioning error caused by step length measurement error can be estimated

by formula (1-3)

e,=+nE , (1-3)
The positioning error caused by angular measurement error can be estimated by
formula (1-6) or (1-9)

2
e =—n ED 1-6
= oo™ B (1-6)

e,=E, [O.Ol625(nD)2+23(nD)+ 0.0072n(nD)-15(nD)D]  (1-9)

Here, the formula (1-6) is called the exact model which is a theoretical maximum
error estimate function. The formula (1-9) is called the statistical model for 99.9%
confidence. The exact model can be viewed as a statistical model for 100%

confidence.

The exact model is for estimating short-term positioning error and the statistical
model is for estimating long-term positioning error. Here, the statistical model is
under the condition that the angular measurement error is a random error and its
possible distribution is a uniform distribution. In fact, if the distribution is a
normal distribution, the positioning error will be less than that estimated by (1-10).
Hence, this statistical model can still be used if the angular measurement error is a
normal distribution error. However, if the mean of the angular measurement error

is not zero, this statistical model is not appropriate.

Based on the exact model, it was found that if the travelled distance (nD) and step

length (D) are fixed, the positional error (e,) is in proportion to the angular
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measurement error (E_ ). If the travelled distance (nD) and the angular
measurement error (E ) are fixed, the positional error (e, ) is in proportion to the
reciprocal of the step length (D). The exact model indicates that if E  is doubled,
e, will also be doubled. Also, if D is doubled, e, will be reduced by 50%.

Therefore, based on the exact model, improving angular measurement accuracy is
of the same importance as the extension of the step length, for positioning

accuracy.

Based on the estimate models, it was found that if the travelled distance (nD) and
step length (D) are fixed, the positional error (e, ) is in proportion to the angular
measurement error (E ). If the travelled distance (nD) and angular measurement
error (E,) are fixed, the positional error (e,) will decrease with step length (D).
The error functions (1-9) and (1-6) indicates that if E  is doubled, e, will be

doubled in both statistical and exact model. However, It was found that if D is
doubled, e, will not decrease by less than 50% in the statistical model, see error
function (1-9). This is different from the error function (1-6). Considering this
factor, improving angular measurement accuracy is more important than extension

of the step length for long-term positioning accuracy.

2.2 Three-dimensional Error Analysis

The error analysis results for the two-dimensional case can be extended to situations

of three dimensions. In this section, it is assumed that a robot moves from the origin

of a frame x-y-z along the x-axis. The angular measurement error around the x-axis is

denoted as Eox . The angular measurement error around the y-axis is denoted as Eoy .

The angular measurement error around the z-axis is denoted as Eoz. The

measurement error of the step length is denoted as E ,. If Eoz does not equal zero and

both Eox and Eoy equal zero, the estimated trajectory remains in the x-axis. In this

situation, there is no lateral estimate error. If E oz equals zero and one value of Eox or

Eoy is zero, the situation is a two-dimensional case, which has been discussed in
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Section 2.1. The following discussions start with the case that Eox equals zero and

both Eoz and Ey are not zero. Thus, the case for E . not equal zero is as follows.
2.2.1 The case for Eox equals zero and both Eoz and Eoy are not zero

Figure 2-20 shows a simple three-dimensional case which is extended from the two-
dimensional case. In this case, the robot moves from O to A. Because of the angular

measurement errors around the y-axis and the z-axis, +Eoy and +Eoz, the positioning
result is not the position A. If Eoz=0 and +E,y is a constant, the positioning result is B
and the error in the lateral direction is eoz and the error in the travel direction is e, .

Adding the effect of +Eoz, the positioning result is C and the curve OC is in the
plane OAC.

Error Area

Figure 2-20 Positional error range in three-dimensional space

In fact, this is still a two-dimensional problem. In this case, the key factor for the
positioning accuracy is the angular error in the plane OAC caused by Eoz and Eoy.
The angle between the x-y plane and the plane OAC is not affected by the absolute
value of the positioning error | AC|. If the angular measurement errors around the y-

axis and the z-axis vary in the range (-Eoy, Eoy) and (-Eoz Eoz) respectively, the

positional error will not be greater than the error AC .
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Considering the plane OAC, the angular measurement error caused by Eoz and E oy is

denoted as E , as shown in Figure 2-21. The angular measurement error between the

x-y plane and the plane OAC is denoted as E , as shown in Figure 2-21. IfE , is a
constant, the above case can be viewed as a two-dimensional case. In this situation,
the value of E , does not affect the absolute value of the positional error. IfE , is not
a constant, the above case is a three-dimensional case. The worst positional result of
the three-dimensional case is the situation where E ,is a constant. Therefore, two-
dimensional error functions can be used to estimate the positional error of the above

three-dimensional cases where the angular measurement error E __ is zero.

Figure 2-21

2.2.2 The case for E ,_ does not equal zero

The case for E . not equal to zero can be viewed as that based on the above case, for
which a value of angle E _ is added to E , . If there is only an initial value of E _, the
situation is equivalent to the case where E , is added to a constant value E . If there

is a constant value of E , the situation is equivalent to the case, in which E ,

ox ?

increases by a value E _ during each step. Hence, E , only affects the value of E ;.

For the investigation of three-dimensional cases, the measurement error can be viewed
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as three factors E_,, E_;, and E ,. If the sensors measure the rotations around the x-

axis, y-axis and z-axis, the measurement errors, E ., Eoy and Eoz, can be transformed

ox 3

toE_,E, and E,. In a similar manner to the two-dimensional case, the key factor
for positioning accuracy is the angular measurement error E_ . The effect of the
distance measurement error E , on the positional results can be estimated separately or
may be ignored. The effect of the angular measurement error E , on the positional

results can be ignored if the accumulation of E_, is not very large. The following

figures (Figure 2-22, 1-26, 1-27, 1-28 and 1-29) illustrate geometrically the positional
results caused by the effect of angular measurement errors E_, and E , . In the cases

shown in the following figures, the step length is 1 meter and the travelled distance is

1000 meters.

Figure 2-22 shows the situation where there is a constant error E _,=0.0005 radians

and an initial error E , = 0.1 radians

This figure illustrates that the trajectory is in a plane. This can be seen in the y-z
plane. In this case, the value of E,, can only determine the angle between the
projection line of the trajectory on the y-z plane and the y-axis. Only E_, can

determine the absolute value of the positional error in the lateral direction.

Figure 2-23 shows the situation where there are constant errors E _ = 0.0005 radians

and E , = 0.001 radians

This figure illustrates the trajectory is not in a plane. The projection of the trajectory in
the y-z plane is a curve. Compared with the case shown in Figure 2-22, the trajectory
is in a surface that can be viewed as the plane of trajectory in Figure 2-22 but where
the plane of the trajectory is self-curved. Therefore, the positional error in the lateral

direction in Figure 2-23 is less than that in Figure 2-22. If the accumulation of E , is

not large, the difference in the positional error in the lateral direction between the
cases in Figure 2-22 and Figure 2-23 is not large. In Figure 2-23 the accumulation of

E_, is 1 radian, that is 0.001(radians)x1000. The difference of the positional error in

the lateral direction between the cases in Figure 2-22 and Figure 2-23 is not

significant.
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Figure 2-24 shows the situation where there are constant errors E  =0.0005 radians

and E , = 0.0025 radians.

This figure illustrates the tendency of the robotic trajectory when E |, becomes greater
than that in Figurel-26. Because the accumulation of E_, is larger, that is

0.0025%1000=2.5 radians. The plane of the trajectory is curved more. However, the

accumulation of E , is not very large, that is 0.0005x1000=0.5 radians. Consequently,

the positional error in the lateral direction is less.

Figure 2-25 shows the situation where there are constant errors E  =0.0025 radians

and E , = 0.005 radians

In this case, the accumulation of the angular measurement error E | is 5 radians, that

is 0.005(radians)x1000. In the x-y plane, the error between the estimated orientation
and the actual orientation is more than 180 degrees. In this situation, the positional

error is too large to use the error functions to estimate the positional error.

Figure 2-26 shows the situation where there are constant errors E,_ =0.01 radians and

E ,,=0.01 radians.

This figure illustrates the tendency of the actual trajectory when E | and E , become
large. In this situation, the accumulation of angular measurement error E , is 10

radians, that is 0.01(radians)*1000. In this situation, the estimated trajectory becomes
more complex and the estimated position will be far from the actual position. Hence,
the error functions cannot be applied to estimate the positional error.

Through the above figures, it was found that the key factor for the positional accuracy
is E . The accumulation of E , is not very important. As long as the accumulation of
E_, is not large, say less than 1, the positional error of the three-dimensional

positioning system can be estimated by the error functions for two-dimensional case.
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Figure 2-23 Estimated trajectory for the situation where there are constant errors

E,, = 0.0005 radians and E ,,= 0.001radians












2.2.3 Summary of the Three-Dimensional Error Analysis
Based on the above analysis the following conclusions were obtained.

® For three-dimensional cases, the measurement errors, which determine the

positional errors, can be viewed as three measurement errorsE ,E _, andE ,.

® The situation where E , equals zero or only has an initial value is, in fact, a two-

dimensional case.

® The positional error in the situation where E , equals a nonzero constant is less
than that in the situation where E , equals zero or only has one nonzero initial
value.

® The error analysis results for two-dimensional cases can be directly extended to
application to three-dimensional cases error estimates. In this situation, E _, can
be ignored. E , and E , can be used in the error functions for the two-dimensional
case. All conclusions for the two-dimensional cases are suitable for application to

three-dimensional cases.

Based on the above discussion, a proposal to improve long-term positioning accuracy

for a stepwise underground robot is discussed in the following chapter.
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Chapter 3

Proposed Positioning Technique

3.1 Key Factors and Problems

Through the above error analysis, it is known that there are two possibilities to
improve long-term positional accuracy. One is to improve angular measurement
accuracy. The other is to expand the length of each step of the robot. Considering the
factor that measurement errors are normally random errors, improvement of angular

measurement accuracy is more important than to expand the step length of a robot.

The step length of a stepwise robot depends upon the robot design. This is beyond the
scope of this research. The proposed approach here is to improve angular

measurement accuracy.

To improve angular measurement accuracy, high accuracy sensors must be used.
However, unfortunately, for existing angular sensors it is difficult to significantly
improve their accuracy. In addition, the limited space for mounting sensors has to be

considered. Therefore, a parallel linkage mechanisms based approach is proposed.

3.2 Parallel Linkage Mechanism Based Approach for a Positioning
System for an Underground Robot

In this section, the proposed parallel linkage mechanism and its application for a
positioning system for a stepwise underground robot are described. Then, the

advantage and problems of the proposed approach are discussed.
3.2.1 The Structure of the Parallel Linkage Mechanism

To illustrate the basic idéa of the parallel linkage mechanism approach, a two-
dimensional case is shown in Figure 3-1. In this case, there are two bars. One is called
the base bar which is fixed. The other bar is called the top bar. Between the centre
points of the two bars, there is a middle bar. One end of the middle bar is fixed to the
centre point of the base bar and the other end is jointed at the centre point of the top
bar so that the top bar can only change its orientation. This is a one-degree of freedom

movement. Hence, one link between the two bars can be used to determine the
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It should be noted that although the case shown in Figure 3-1 is a 1D case, there may
be multiple solutions for a given link length. Figure 3-2 illustrates that the two
solutions are mirrored by the line AB. Here, the position A is at the centre of the top

bar, and the position B is the joint B.

Following the above case, but there is no middle-bar to fix the centre point of the top
bar as shown in Figure 3-3, this case is still in two-dimensional space but becomes a
three-degrees of freedom movement case. In this case, at least three sensors are
needed to determine the position and orientation of the top bar. Similar to the previous

case in Figure 3-1, different assembly configurations will cause different accuracy of

b1 '. ............................................................................. b2

Figure 3-3 Parallel linkage mechanism for two-dimension, 3D, case

the positional result of the top bar. If the joints of link 2 and 3 on the top bar are at the
centre point of the top bar, the position of the top bar can be determined by link 2 and
3. When the centre point of the top bar is known, link 1 can determine the orientation
of the top bar. In this situation, if the joint of link1 on the top bar is closer to the centre
point of the top bar, the accuracy of the estimated orientation of the top bar will be
lower. If the lengths of the base bar and the top bar are known, for different link joints
on the two bars, the different accuracies of the positioning system can be determined.
Consequently, good assembly configuration for high accuracy positioning should be
chosen. Since an underground robot has limited space for mounting sensors, the
parallel linkage structure provides important flexibility. In the limited space, good

joint positions for high accuracy positioning can be chosen.
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Since an underground robot has limited space for mounting sensors, the parallel
linkage structure presents advantages in terms of the flexibility for different particular

robots.

Because high sensitivity of displacement will lead to high positioning accuracy, when
discussing sensitivity of displacement for parallel linkage mechanisms, ‘accuracy’ will

be used instead of ‘sensitivity’.

3.2.2 Application of the Structure of the Parallel Linkage to an Underground Robot

Positioning System

The structure shown in Figure 3-4 can only estimate the position and orientation of the
top platform relative to the base by measuring the lengths of links. For a stepwise
underground robot, during the time when the robot moves forward one step, different
parts of the robot move forward in turn. Therefore, the parallel links can be mounted
to connect a pair of contiguous parts. When the robot moves, the two connected parts
can be viewed as the base and the top platform in turn. This procedure is shown in

Figure 3-5. Before the front disk moves forward, the front disk is viewed as the top

The front disk Origi Base \Top platform
riginal
moves s
forward position
The rear disk Top platform/_|
moves
forward Original
position
\ Top platfo Base
New position

Figure 3-5 Use of parallel linkage mechanism for robot positioning systems

platform and the rear disk is viewed as the base. After the front disk moves forward,

the position of the front disk relative to the original position of the rear disk can be
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determined. After the front disk moves forward and before the rear disk moves
forward, the front disk is viewed as the base and the rear disk is viewed as the top
platform. After the rear disk moves forward, the new position of the rear disk relative
to the front disk can be determined. Consequently, the new position of the rear disk

relative to its original position can be determined.
3.2.3 Advantages and Problems of the Structure of the Parallel Linkage

One of the advantages is that the parallel linkage mechanism can provide flexibility to

Pneumatic Cylinders

ANNNRNNN
expanding expanding
brush unit 1 brush unit 3
4
5D Joints
One parallel linkage

structure is used

Figure 3-6 One parallel linkage mechanism is used

mount sensors. Figure 3-6 shows the situation where one parallel linkage structure is
used. Figure 3-7 shows the situation where it is difficult to mount one parallel linkage
structure, because one of the disks occupies the space. Instead, two parallel linkage
structures are applied. One is mounted on the 5D joint, which is mainly used to
measure the orientation of the robot. The other one is mounted on the expanding

cylinder, which is mainly used to measure the step length of the robot.

The flexibility in terms of mounting sensors not only provides the convenience to
install the sensors based on a particular structure of a robot but also provides the

possibility to improve the positional accuracy. To improve the positioning accuracy,
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there are two measures. One is by choosing good joint points of the links if the

number of the links is given. The other is by using redundant sensors.

The size of the disk
1s too big to install
one parallel linkage | Pneumatic Cylinders

structure. N\

SOV SO
expanding expanding expanding
brush unit 1 brush unit 2 brush unit 3
/17777 /777777
5D Joints
Two parallel linkage

structures are used

Figure 3-7 Two parallel linkage mechanisms are used

As stated in the previous section, if the accuracy of a parallel linkage mechanism for
different joint positions b, and t, are known, good joint positions for high
measurement accuracy can be chosen. For a six links structure, the joint positions can
be chosen as shown in Figure 3-4 and Figure 3-8. However, the choice is subject to

the particular structure of the robot.

The use of redundant sensors is the other means to improve positioning accuracy. In
three-dimensional space, to determine the position and orientation of the top platform,
at least six links are needed. Based on measurement technical knowledge, the use of
more Sensors can improve measurement accuracy. Figure 3-9 shows an eight links

structure.
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measure the position and orientation of a robot, there is wider choice for the linear
sensors than for rotary sensors. Normally, high-accuracy rotary sensors are more

expensive than linear sensors.

In fact, the proposed approach is to improve the measurement accuracy by choosing
the particular structure of the parallel linkage mechanism. However, because of the
complexity of the parallel linkage mechanism in three-dimensional space, it is difficult
to investigate the measurement accuracy for a particular parallel linkage mechanism.

This is a disadvantage of the proposed approach.

In the past years, parallel linkage mechanisms have drawn a great deal of attention
from many researchers. In this application of the parallel linkage mechanism, some
problems have been raised. One problem is how to investigate the measurement
accuracy for a particular parallel linkage mechanism. The other problem is how to
build an algorithm to compute the position and orientation of the top platform, which

has the high performance required to carry out a real-time positioning task.

To solve these problems, a Principal Component Analysis (PCA) based approach is
presented in Part II of this thesis.
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Chapter 4

Summary of Part I

In Part I, some fundamentals of underground robotic positioning techniques have been

discussed. These characteristics can be summarised as follows.

» Underground robot positioning systems heavily rely on relative positional
measurement techniques. For general cases, only relative positioning techniques

are available.

* Because of relying heavily on relative position measurement techniques, long-
term positional accuracy is the most important problem for an underground robot

positioning system.

* Limited space strongly restricts the choice and installation of a positioning
system and their sensors for an underground robot. This causes a difficult

constraint in any attempt to improve the accuracy of a positioning system.

* The dominant measurement error for a positioning system is the angle between
the actual orientation of the robot and the estimated orientation. This
measurement error and the step length measurement error can be used to estimate
the three-dimensional positioning error by using the two-dimensional error

functions (1-6) and (1-9).

* Considering the exact error estimate function (1-6), existing positional techniques
and sensors cannot absolutely guarantee to meet a long-term accuracy
requirement for an underground robot. However, using the statistical error
function (1-9), the long-term positional error estimated is lower than that
estimated by (1-6). This is a very important characteristic for underground robot
positioning systems. Because of this characteristic, the improvement of long-
term positioning for an underground robot becomes possible. Statistical error
estimate functions cannot guarantee 100% to meet a long-term accuracy but can
meet the accuracy under a given confidence. The confidence of the statistical

error estimate function (1-9) is 99.9%. This means that there is 99.9% possibility
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to ensure that the positional error is in the range estimated by using the function
(1-9). Ifthe confidence of a statistical error estimate function is less than 99.9%,
the estimated positional error will be lees than that estimated by using the

function (1-9).

» Based on the exact error function (1-6), improving the angular measurement
accuracy and enlarging the step length of a stepwise robot are significant for
improving positioning accuracy. If the accuracy of the angular measurement is
doubled, the positional accuracy will be doubled for a fixed travelled distance of
a robot. If the step length is doubled, the positional accuracy will also be doubled
for a fixed travelled distance of a robot. However, it should be noted that the
exact error function (1-6) is mainly for short-term positioning. Based on the
statistical error function (1-9), improving the angular measurement accuracy is
more important than enlarging the step length of a stepwise robot. If the accuracy
of the angular measurement accuracy is doubled, the positional accuracy will be
doubled for a fixed travelled distance of a robot. If the step length is doubled, the
positional accuracy will be higher but less than double for a fixed travelled
distance of a robot. Therefore, the first important factor for improving long-term
positional accuracy is to improve the angular measurement accuracy, especially,
the accuracy of measuring the angle between the actual orientation of the robot
and the estimated orientation. The second important factor for improving long-

term positional accuracy is to enlarge the step length of the robot.

Based on the characteristics of underground robot positioning systems, a parallel
linkage mechanism based approach is proposed. This approach has many advantages
for matching the characteristics of a positioning system for an underground robot. It
should be noted that this approach only gives a direction to improve angular
measurement accuracy. Different parallel linkage mechanisms may have different
measurement accuracy. The analysis of the measurement accuracy of a parallel
linkage mechanism is very important. The improvement of the performance of an
algorithm to carry out a real-time positioning task is also important. Some preparatory
work in this area is presented in Part II of this thesis. A particular parallel linkage
mechanism used to improve positional accuracy for underground robots is also

presented in Part II.
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PART 11

The PCA Based Approach for
Forward Displacement Measurement of

the Stewart Platform



Chapter S

Introduction to Part I1

In past years, parallel linkage mechanisms have drawn a great deal of attention from
many researchers. This popularity results from the fact that parallel mechanisms have
attractive characteristics for robotic applications. The research of the displacement
kinematic problem for parallel mechanisms is one of the important branches of
parallel linkage mechanism research. The inverse displacement kinematic problem for
parallel mechanisms, as found in robot control, is straightforward. However, the
forward displacement kinematic problem is a more challenging task. Hence, in past
year, many published papers addressed this problem. As mentioned in Part I, the use
of a parallel linkage mechanism can provide many technical advantages to an
underground robotic positioning system. To establish a parallel mechanism based
positioning system requires the solution of the forward displacement kinematic
problem. In addition, the accuracy of the solution for the forward displacement
kinematic problem in a given solution range needs analysis. A Principal Component
Analysis (PCA) based approach for the analysis of relationships between the linkage
and the positional variables of the platform of a parallel mechanism was proposed in
this research. Thus, as a consequence, the PCA based approach was used for the
relationship analysis and accuracy analysis for a particular forward displacement
measurement. Based on the results of the PCA based analysis, a PCA based numerical

algorithm for forward displacement measurement was also developed.
5.1 Displacement Kinematic Problems for Parallel Mechanisms

The very basic kinematic problem for parallel mechanisms can be roughly divided
into two categories: direct displacement analysis (forward kinematics) and inverse
kinematics. The direct displacement kinematic problem is to compute the position and

orientation of the top platform relative to the base when the link lengths are given. On
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the other hand, the inverse kinematic problem can be expressed as ‘given the position

and orientation of the top platform, calculate the link lengths’ [J.J. Craig, 1986].

Geometrically, the forward displacement problem is equivalent to the problem of
placing a rigid body such that n of its given points lie on n given spheres. Denoting

the i-th base point by b, and the i-th top platform point by t,, it is required to solve

the kinematic equations

2
|v+Rt, —b, || =] for i=1,...,n (1)

for the translation vector v and the orthogonal rotation matrix R, where the link

lengths I, (i=1,..., n) are given.

When n equals six, the parallel mechanism is known as a Stewart Platform, which
was introduced by Stewart [D. Stewart, 1965]. A special structure with I and m
distinct joint-points at the base and at the platform was referred to as an I-m Stewart
Platform, the simplest being the 3-3 case (the octahedral structure) and the general
structure being the 6-6 Stewart Platform. During the late 1980°s and early 1990s, the
forward displacement problem enjoyed a central status in the research on the Stewart
Platform [B. Dasgupta, 2000]. In this project, the purpose of studying the forward
displacement problem is not only to get a good solution for a particular mechanism,
but also, more importantly, to obtain the properties of the solutions in a certain range

for designing a good positioning system.
5.2 Geometrical Model of the 6-6 Stewart Platform

In Eq (1) the orientation of the platform is represented by the orthogonal direction
cosine matrix. Since, in this project, the geometrical properties of the Stewart

Platform need to be analysed, the geometrical model is introduced as follow.

5.2.1 General Model

A geometrical model of the 6-6 Stewart Platform is illustrated in Figure 5-1. This is a
general model, in which two disks are connected by six linear links. The bottom disk
is called the base and the top disk is called the platform or top platform. There are also
two coordinate frames on the two disks. One frame is on the base and called the base

frame. The other one is on the top platform and is called the top frame. The origin of
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the base frame is at the centre of the base disk. The x-y plane of the base frame is in
the plane of the base and the direction of the z-axis of the base frame is upward. The
origin of the top frame is at the centre of the platform disk. The x-y plane of the top
frame is in the plane of the platform and the direction of the z-axis of the top frame is
upward. In Figure 5-1, (X,,¥,,Z,) are the coordinate values of the centre of the top
platform in the base frame coordinate system, and the variables o, f and y are the
rotational angles of the top frame relative to the base frame. Corresponding to Eq (1),

the position vector (x,,y,,Z,) 1s the vector (v) in Eq (1) and the rotational angles

a, [,y determine the rotation matrix R in Eq (1).

Platform Coordinate Frame
¥ (Top Frame)

(Xo,y o,Zo) ﬂ

Base Coordinate Frame
(Base Frame)

(0,0,0)

Figure 5-1 Basic Geometrical model of Stewart platform

5.2.2 Equivalent Model

In this research, the Principal Component Analysis (PCA) method is used to find the
relationship between the six link-lengths and the position and orientation of the
platform. To carry out the analysis more easily and to illustrate the relationship more
clearly, an equivalent model is used. In this model, an extensible virtual bar has been
added between the two disk centres. This bar is denoted as the M-bar (see Figure 5-2).
Consequently, another coordinate frame, the M-frame, is also introduced. The origin
of the M-frame is at the bottom of the M-bar and the z-axis is in the centreline of the

\
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M-bar. The T-frame and B-frame are the same as Top Frame and Base Frame,

respectively in the general model shown in Figure 5-2.

T-frame

{4

Figure 5-2 Equivalent geometrical model of Stewart platform

Here, a set of variables («,, a,, a,, a,, a,, Im) is chosen as the positional variables

to express the position and orientation of the platform relative to the base instead of

the variable set (x,,y,,z,, @, £, 7). These new variables are defined as follows:

Im: Length of the M-bar. z

M- frame Q(az B-frame
a,: Angle 1 is the angle between the z- N2

axis of the M-frame and the z-axis of the

B-frame.

a, : Angle 2 is the angle between the X-Z

plane of the B-frame and the plane
constructed by the z-axis of the M-frame

and the z-axis of the B-frame.
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a,: Angle 3 is the angle between the z- z

: o M-fram,
axis of the M’-frame and the z-axis of the T-frame Q( ‘
T-frame. ——

a,: Angle 4 is the angle between the X-Z

plane of the M’-frame and the plane

constructed by the z-axis of the T-frame

and the z-axis of the M’-frame,

a,: Angle 5 is the platform’s rotation
Note: The M’-frame is transformed from the M-

angle around z-axis of the T-frame, which | . ¢ by moving the origin of the M-frame to the
is defined by the difference of two angles. | origin of the T-frame.

One is the angle between the axis of the
T-frame and the intersection line that is
constructed by the x-y plane of the T-
frame and the x-y plane of the M’-frame.
The other one is the angle between the x-
axis of the M’-frame and the intersection
line that is constructed by the x-y plane of

the T-frame and the x-y plane of the M’-

frame.

In this model, it is assumed that the M-bar cannot roll around the z-axis of the M-

frame.

Since the three coordinate frames are applied, Eq (1) can be transformed to the
equivalent equations (2) as follows.
2

IR, ,w+R_ R, t, b, || =/ for i=1,...,6 ()

Here, w = ( 0, 0, /m ) is the coordinate of the centre of the top platform in the M-
frame. Comparing Eq (2) with the vector v and the rotation matrix R from the T-frame

to B-frame in Eq(1),
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v=R,, * wand
the rotation matrix R=R , R .

Here R,, is the rotation matrix from the M-frame to the B-frame, which is
determined by the angles 1 and 2. Also R, is the rotation matrix from the T-frame to

the M-frame, which is determined by the angles 3, 4 and 5.

5.3 Approaches for the Forward Displacement Problem of a Stewart
Platform

As the complete solution of the forward displacement problem for a Stewart Platform
was quite challenging, numerous approaches were made by various researchers,

which fall into the following categories.

5.3.1 Closed-form solutions of special cases

It was known that coalescence of some of the joint-points at the platform or the base
or both simplifies the closed-form solution of the problem and reduces the maximum
number of possible solutions. In this way, there are three sorts of approaches. One of
the approaches [M. Griffis, 1989] [W. lin, 1992, 1994] is based on the use of the
input-output equations of spherical four-bar mechanisms to solve the 3-3 case and
extend it to more difficult (6-3, 4-4, 4-5) cases. In another approach [C. Innocenti,
1990,1995], [P. Nanua, 1990}, [V. Murthy, 1992], [J.-P. Merlet, 1992], [N.-X.
Chen,1994], [Q. Liao, 1995], the platform is first removed, then the loci of the
coalesced platform are imposed to derive the equations for further simplification. In a
third approach [C. Innocenti, 1992, 1993(*1), [M.Husain, 1994], [K. Wohlhart,
1994], used approach which is slightly different from the second one, as a part of the
entire structure is reduced to an equivalent serial mechanism and constraints on its
joint angles are imposed by the constraints of the remaining parts to obtain the
equations. Apart from coalescence of joint-points, other geometrical conditions like
collinearity of some joint-points or similarity of the base and platform polygons also
facilitate the solution of the problem in closed form, as demonstrated by various
authors[C-de Zhang, 1991], [W. Guozhen, 1992], [J.P. Yin, 1994], [S.V. Sreenivasan,
1994].
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5.3.2 Numerical schemes

The numerical approach [H. McCallion, 1979], [G. Deshmukh, 1990], [C.C. Nguyen,
1991], [L.-C.T. Wang, 1993] that directly resorts to nonlinear-equation-solving
algorithms has computational advantages. This is true in most practical situations
where only one real solution is required and a good starting point is available in the
form of a neighbouring solution. However, the approach is not suitable for a
theoretical investigation aimed at determining all the possible solutions. For finding
all real solutions, approaches [C. Innocenti, 1991(*1)], [M. Ait-Ahmed, 1993] are
employed to reduce the problem by geometrical or algebraic methods to that of
solving a system of three equations the solutions of which can be trapped by a three-
dimensional search. A unidimensional search algorithm for finding all real solutions
was. developed [C. Innocenti, 1993(*2)].. This_algorithm temporarily replaces one of
the legs of a general 6-6 Stewart Platform by a fictitious leg of variable length to
convert it into a 5-5 Stewart. Platform. The approach then solves the modified
structures by a specialised method and re-imposed the constraint due to the original
removed leg. A predictor-corrector algorithm [B. Dasgupta, 1996] used an efficient
3D search strategy for trapping the real solutions purely from .geome\trical
considerations. For finding all solutions in the complex domain, an algorithm was also
developed [M. Raghavan, 1993].

8.3.3 Analytical approaches

If the orientation of the platform_is_represented by_the orthogonal directioncosine
matrix (rather than a presentation like Euler angles etc.), the six kinematic equations
obtained from Eq. (1) are_all quadratic and the quadratic terms appear only. in a few
groups thus facilitating linearisation of some of those equations. A number of
analytical approaches [S. V. Srinivasan, 1992}, [A. Dhingra, 1992], [C.-de_Zhang,
1994], [B. Dasgupta, 1994] to the forward displacement problem exploited this fact to
reduce the total degree of the resulting polynomial system.

5.3.4 Approaches for on-line operations L

Eor purposes of on-line operation, it is essential that (1) out of all possible_solutiqns, a
particular one (the actual one) is determined unambiguously and (2) the solution is

fast enough for real-time implementation. To meet these two ends, redundant sensing




has been proposed and analysed [L. Baron, 1994(*1), 1994(*2), 1995(*1)], [K. Han
1996], [V. Parenti, 1999] for resolving ambiguity on one hand and decoupling and

linearising the problem on the other, leading to fast computation.
5.3.5 Other approaches

There is. also other work,. such as neural network solutions [Z. Geng, 1991],
polynomial network solutions [R. Boudreau,1998], [V. Parenti-Castelli, 1992}, [C.
Gosselin, 1992]. The use of a camera for obtaining extra_information_has also been
suggested [L. Baron, 1995(*2)]. B

For the. application of parallel mechanisms in this project, the solution for forward
displacement problem is required to meet the purposes of on-line operation. However,
as a part of the foundational research for underground robotic positioning_sy_stems, no
particular redundant sensing approach was considered in this research. Instead, good
understanding of parallel mechanisms for positioning system is desired, so. that more

information for designing a positioning system using redundant sensors can be

obta{ned.
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Chapter 6
The Methodology

For the application of parallel mechanisms to a stepwise robotic positioning system, a
PCA based approach to solve the forward displacement problem and analyse its
accuracy was applied. The PCA method is a multivariate statistical . To
illustrate the principle of the PCA based approach, the introduction starts by a general
outline of statistical methods to find such relationships. After that, the principle of
PCA and its particular application for analysis of mechanical relationships: are

introduced.

—~

6.1 Statistic Method for Relationship Analysis

Statistical methods are often used for data analysis in research.In the present r ch,
statistical principles are applied for analysis to find the relationship between; two
important sets of variables. This procedure of statistical analysis is similaL.tQ_dL?t of
experimental analysis. ,«

Experimental methods. are often used in science.and engineering research. The
objective of an experiment is to find the relationship between two or more objects or
variables When an experiment is being carried out, test data is n_some
simple cases, the relationship can be directly illustrated by the experimental data.

However, most application cases need some data processing of the gzgpgrime;g;q],\data
before a relationship is obtained.

Statistical methods are often used to process experimental data. In these situations, the
whole procedure of an experiment can be viewed as a statistical analysis procedure.
The following is a simple example. The purpose of the experiment is to discover the
relationship between the length (/) of a spring and the pull force (p) acting on it. Here
the variable p is a function of the variable / and the experiment needs to find the
function p = F(/). The procedure is as follows: 3

1. Decide a set.of test values, say, the pull-forcep,,p,, ..., p,
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2. Get-the test values, say, the spring length /,, /,, ... [,, corresponding to

PPy s P
3. Analyse the relationship between the variables / andptaﬁgg;th&_ﬁmctim\l p=
F(). '

This can be expressed diagrammatically as shown in Figure 6-1
The region in the left ellipse represents the whole variable spacé'o‘f p and the elements

Dy.P,, - P ,are the decided test values. The region in the right ellipse represents the
whole variable space of / and the elements./,,/,, ..., [, are the. measured values. The
arrows present the-one to one map in the sample space,p,tol,, ,p,tol ......, p,to

/. This map is established through the second step in each of the tests. The arrow p =

F(J) is the usnal way of expressing this relationship. The arrow [ = G(g);'s_mjn%/erse

function of the function p = F(J), which uses the spring length to determine the force.

Figure 6-1

Continuing with the spring example, this experiment can. h&.vvicwed_,as_a.staligical
analysis. Step 1 is deciding the sample method, step 2 is doing the sample and step 3
is data processing. .When the function is not known, the experiment provides a
l

measure to bridge the two variables in the sample space. The result of the analysis
based on the sample space can then be extended to the whole variable space.

Comparing experimental analysis with statistical analysis, they are similar\in terms of
basic procedure and their functions. Statistical analysis. is based on the_sample data.
When statistical analysis is used to find a relationship between two variables,; the
function of the sample is to obtain a ma;Lianample.spacc_This,i&thgsamul\s the

function of the “test” in an experiment. Before taking a sample, the sample method
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needs to be decided. This is also similar to deciding a set of test point in an
experiment. The following table compares the tasks between expﬁnmema\ and

statistical analysis on a step-by-step basis.

‘ Experiment Statistics
L. Deciding a set of fest points” ~ | I Deciding sampte nretirod——
{ Task: - Tas-k-

_Z,Decidingthe valuerange of the L Decldmg:thaxaluetan.ge.oﬁthuzanahleﬂ
, Vari,a,ble_g_.a_nd_tested_poj_n_tsg_b_pz_r‘, 2. Deciding sample method (random, cqyal §

. P, | intervalor offier sample methods), ™ ~
| TB‘Etrt‘lmg “How many samphmg-pommts==- -
2. Carrying-out experiment—— - —2—Sam-phngrr ' .

Task: 1-Testing; - p-Task. 1 Collecting the sample data,.

' 2. Recording the results. "~ 2_Recording the sample data.. :
j 3. Experimental data process jSSﬁtfs“tiéar data analysis :

Task: Discovering thé refationship— [T’ask‘BTscovenng covering the retationship— ~ - -

Table 2-1 Comparisons between experiment and statistics

Here, Step 1 of an experiment is. appﬁaal_ign@f;sl_aﬂslics_.\Test

points in an experiment have been decided before the test starts. In Step 2, testing can

be_viewed as collecimg_the_sample_dala_m‘SLeQ__L_expgnmcntaLdam_mai be
the

processed by various sorts of methods and statistical analysis is only one o
methodsaszail‘able.

Although.experiments might provide a_measure_to dis_gover__a.relationshigtﬂsqm_e;\imes
it is difficulty to carry out an experiment in theoretical research. The problem
becomes how to complete the task of step 2 in the above table. When _the_invesliiated
object is an unknown function F(.) and the inverse function G(.) is computable; the
mmmmmmmmmﬁmmw_b\ndge
the two variables in the sample space. In this situation, it is a non-experimental
method but is similar to an experiment. Therefore, it is a necessary condition that
there is a known and computable inverse function G(.) in order to use statistical
analysis to find the relationship of a function F(.). A very simple . examglals_sthn as
follows:

The problem is calculation of the function y = F(x), in the area 0<=x<=1.
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Now, the function is F(x)=,/, and the inverse function x = G(y) is-known as-G(y) =

y* . In practice it is difficult to compute Jx but much less difficult to compute y :
Thus, in this situation, the inverse function. G(.) can be used to.bridge the two
variables in the sample space, say y = 0.00, 0.10, ..., 1.00. '

Thus, Table 2-2 is:-
- y | B TR
/ 000 | > | 000
CE TR il SR 2 S
020~ > e
0.30 > T o000
040~ > Ohe s
1.00 I )
Table 2-2 The map from y to x
Further data analysis can be carried out | is table.

In this example, if the inverse function were unknown or too difficult to compute, it
would be difficult to establish the map. Consequently, the data_analysis could not be

1

carried out.

Rﬁgardnglhﬁ.kpmhhmoﬂmc_&ewa@m&mmm&splmgmr@Lqum}alent
to solving the equations (1). The inverse problem can be easily solved by resolving
the inverse equations (1), so it meets the necessary condition to use statistical analysis
methods. That is, if the lengths of the six links are known it is difficult to determine
mﬂndmﬂQcmespQMmgmMjniomthammmm&ﬂome the
positions and orientations of the platforms are known the computation of the lengths

of the links is merely a matter of geometry.

It should be noted that the data generated by experiments or numerical calculation in
Step 2 would normally involve errors. Consequently, the analysis result based on the
experimental data also has an error range. Therefore, the impact of the testing error or
sampling error should. be_considered. Sometimes_an approximate_closed form result,
that meets certain accuracy, in a certain range of the variables, can be obtained. Also,

sometimes, the analysis result is not_a closed form result_but_it_can Qrpyidg:enﬁugh
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information to establish a numerical solution of function F(.) In this research, a
statistical analysis method is used_to.provide information to build .up.a_numerical

solution for the Stewart platform forward displacement problem.

It is obvious that multiple-variable_analysis . is more complex_than_sin glg;ya_%iable
analysis. The complexity mainly appears in Step 3, the data analysis. There are many
methods_available for_different data_ analysis_applications. The Stewart platform

forward displacement problem has six known variables (/,, /,, .. [;), and six
unknown positional variables (a,. a,, a,, . a,, a,, Im) _To solve this complex

problem, the Principal Component Analysis (PCA) method has been introduced.

6.2 Principal Component Analysis (PCA) Method

The PCA, as a multivariate statistical method, is. widely_applied.in many,___dit%erent
fields, such as business, science and engineering research. It is often applied to
mﬂasune_a_chaxacteristic_oﬁan_,ohj,chhyiusin&_gtg[gggtqﬁ.mqa,sugemﬁm_vadablﬁ}s. In
this situation, the characteristic of the object can be viewed as a function of the
measurement variables. Sometimes a_group of measurement variables can. a.ls}o be
used to measure several different characteristics of an object. Therefore, in' this
situation, several functions of the group of variables need. to. be_found. ,Unde{ the

model in Figure 5-2, the values of the variables «, , a,, a;, a,, a; and Im can be
determined by the lengths of the six links. This means that ., a,, a,, a,,.a, and
Im are functions of the group of the measurement variables /,, /,, ... /,. However,

these functions are difficult to_express in general closed-form. Even if there were
general closed-form expressions of the functions, they would be too complex t"o be
used”. Using the PCA, the measurement variables /, , /,, ... [, can be transformed to
another six variables, called principal components, which are the linear combinations

of the measurement variables /, , /,, ... ;. These six principal components are used

to approximately express the positional variables «,, a,,. a,, _ oz,d___ozij Im

respectively. The basic principle of the PCA is introduced as follows:

" Thie author used Maple to:find 4 gene
every expression for a-single posifi
a real-time system. T
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6.2.1 Mathematical Definition of the PCA

Considering an n-dimensional set of data, the data are modelled as usual by a swarm
of m points in n-dimensions, each axis corresponding o a measurement variable. A

line OY ,, in this space such can be found, such that the spread of the m points when

projected.on this line is a maximum. This operation defines a derived variable of the
n 2 '
formY, =a,X, +a,X, +..a,X,, with coefficients a,satisfying > a, =1, and

i=1
determined. -by the. requirement that the variance. of° Y, be maximised. Having
obtained OY ,, consider the (#-1) dimensional subspace orthogonal to OY,, and look
for the line OY , in this subspace such that the spread of points when projected on to
this line is a maximum. Having obtained OY ,, then consider the (1-2) dimens‘ional
subspace orthogonal to. both. OY, and OY, . Thus, look for a line. OY ,. which is at
right angles to both OY, and OY,, such that the spread- of points when they are
projected-on to QY , is as large as possible after the spreads on OY, and OY-,- have

been taken into account. This process can be continued until » mutually orthogonal

lines QY , (= 1, ..., n)_bave been_obtained. Each of these lines defines a de)rived
variable Y,=a, X,,+a,X, +..a, X (=1, ...,n). TheY, thus obtained are called

the (sample) principal components of the system, and_the process of ;ob.taining%hem

is called principal component analysis.

Figure 6-2

Through the above definition of principal components, it is shown_that the principal

components Y,( 7 = 1,2, ... n) are variables, which are derived from the original
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variables X, (7= 1,2, ... n). Geometrically, the distribution of the sample points in the

n-dimension variable space can.be viewed as a hyper-ellipsoid area, and the lines

OY,, (i= 1,2, ... n) are the axes of the ellipsoid. The- direction:of the. first principal
component (Y,) is in the longest axis and the direction of the second principal
component (Y,) is in the second longest axis. In general, the direction of the kth
principal component (Y, ) is in the Ath longest axis. By way of example, Figure 6-2 is
a 2-dimensional case. The measurement variables are X, and X, . The direction of the
first. principal component (Y,) is the longer axis and- the direction. of the. second

principal component (Y, ) is the shorter axis.

6.2.2 Procedure for Obtaining the Principal Components of a_System

After giving the definition of principal components, the consequenf ‘p'roblem is how to

obtain_principal components of a system. Many textbooks [W.]. Krzanowski. 1988]

have described and proved this method. Here is a brief summary of the processing

steps of the PCA.

Step 1: Data Samnﬁng;AccmdingiiLLpaﬂiculgLamicationrr@mlimmemﬁa_s\et of
sample data, say p,= (X,, X,5, ..., X;,) » when i =12, ... m (m>n), is

eeﬂe\cted.

The sample data can be expressed in the form of a matrix

Every row in the data matrix P corresponds to a sample and every column
corresponds to a data set of one variable in different samples.
Step 2: The scatter matrix: The scatter matrix S is set by the sampléT data matrix as

below:

1L X1 Xa
: X2 X

Where P’ is the diagonal rotation of the matrix P.
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Step 3: Obtaining the principal components of the system
In fact, this step is a procedure of computing the eigenvalues and the
eigenvectors of the scatter matrix S. The eigenvalues are denoted

asA,>A4,2...2 A ,, and the correspondent eigenvectors.are denoted as a,,

a,,...a,, and
,a’k = (‘alk'l b ak] g voeres arkn,)’-kA=> 1’:2.’ AR h

Then, the kth principal component (Y , ) of the system is:-
Y,=a, X,+ta,, X, +...+a, X, k=12 .. ,n (2.2-2)

It should be noted that the principal component. corresponding to the greatest
eigenvalue is the first principal component. Its direction is in the longest elliptic:axis
of the data distribution_In_ sponding to the Ath

o ' i
greatest eigenvalue is the Ath principal component. For more details, [W.J.

Krzanowski 1988] can. he;refenewnced.

If the principal component vector is.denoted-as Y =

Then the formula (2.2-2) can be expressed in matrix form as follow:

Y = AX_ G\M)

Where Y,, Y ,, ... Y , are principal components and X ,, X ,, ... X, are

measurement variables.

6.2.3 Understanding‘ the PCA applied to geometry
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Understanding the PCA applied geometry is very helpful to apply the PCA to the
analysis for mechanical relationships. Since the eigenvectors are orthogonal unit
vectors and the matrix A is an orthogonal matrix, the transformation from X to Y is an

orthogonal transformation. The distance between any two points in the X space is the

same_as the distance between the two_points in the Y space, which are transformed
from the same two points in the X space. Therefore, this transformation can be viewed
as_a_coordinate. frame _transformation. from. the_original _frame_to the. principal
component frame. This new coordinate frame i.e. principal component coor:i\inate
frame, provides a_different view_of_the sample point_distribution from the original
frame. Sometimes, a distribution of points transformed to a different frame will
produce a more easily identified envelope shape and orientation. These different
envelope surfaces may indicate different characteristics of a system. Therefore, in the
new frame, characteristics of a system can be interpreted as a function of the new

coordinate variables. For example, consider a 3-dimension system as in Figure 6-3(a),
in.which there are 3. links from the three fixed. points (b,, b,, b,) to the movable
point P. When the point P is moved, the three link-lengths (/,,/,,/,) will change.
D&mmmmmmmMMmmmg¢QM%link-
lengths (/,,7,,1,). Consequently, different positions of the point P in the natural 3D
space (Figure 6-3(a)) correspond to different positions in the 3D frame /,-/,-/,
(Figure 6-3(b)). When the point P moves along a circle in a horizontal plane shoxlrn in

Figure 6-3(a), the circle corresponds to_another circle in the 3D frame / -/, -/ 3, The

different circles in the natural 3D space (Figure 6-3(a)) correspond to different circles

in the 3D frame /,-/, -/, (Figure 6-3(b)). Moreover, when the circles form a tube,
there is. also a shape.similar to a tube in the frame /,-/,-/;(see Figure 6-3-(b)). If

sample data comes from the situation shown in Figure 6-3 and the length of this tube
in Figure 6-3(a) &signiﬁcanl@grgalmthmthudiametmoﬂthtgigdeAhg first

principal component (Y,) will be in-the. direction. of the. centre. line. of the. tube in
Figure.6-3(b). Consequently, the plane.(Y,-Y) formed.by the second:(Y ,.) and the
third (Y ;) principal components. is -perpendicular to Y,. Obviously, any. single
variable ,, [, or /; cannot express the length of the tube in Figure.6-3(b). However,

the first principal component Y, can directly express the length of the tube. Because
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(a) ®)

Figure 6-3 PCA can be used to analyse mechanical relationship

the length of the tube shown in Figure 6-3(b) relates to the length of the tube shown in
Figure 6-3(a), as long as the relationship between the lengths of these two tubes is
identified, the first principal component. Y, can be used to express the. lcngt_h___qf the
tube. For the same reason, any one or two of the variables (/,, /,. /,) cannot express a
position in the top circle of the tube in Figure 6-3(b), but the combination of Yz) and
Y, can directly express. any -position in the top circle of the tube. Because the top
circle of the tube shown in Figure 6-3(a) relates to the top circle shown_ in Figure 6-
3(b), as long as the relationship between the position in the top circle in Figure%%a)
and_me_mmespondmmmnjmme_mp_dmmjigmL&KhListcnﬁﬁedﬂ the

combination of Y, and Y, can be used to express any position in the top circle in

Figure 6-3(a). In summary, the length of the tube in Figure 6-3(b) can be expressed by

Y, more easily than by the three variables (/,, /,. /,). For the same reason, the point

in_the top circle_of the tube in Figure 6-3(b) can_be expressed by the combination of
Y, and Y, more easily than by the three variables (/,, /,. /;). To identify the

relationship between. Y, and the length of the tube in Figure 6-3(b) and to-identify
the relationship between the combination of Y', and- Y; and the point in the top
circle of the tube in Figure 6-3(b), the principal_component frame. p_rpyides_pgtter
views than-using the frame /,-/,-/,: This is because a circle in-Figure 6-3(a)
corresponds to-a circle in:the plane Y, -Y,, but corresponds to-an ellipse in the plane

l,-1,, plane /, -1, orplane /,- /.
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This is somewhat similar to the use of views in mechanical design drawing.
Sometime, three.views are used to_illustrate the geometrical characteristics of an

object.

Through the example shown in Figure 6-3, it is also clear that the data sample is very
important for a successful application of the PCA. If the range of the movement m the
vetticaLdif_ection, is_very small, i.e._the length of the tube in Figure 6-3(a)_is very
short, the length of the corresponding tube in Figure 6-3(b) will be very silort.

According to the definition_in Section.6.2.1, the first principal component.Y ;~would

not be in the direction of the centre line of the tube shown in Figure 6-3(b). In this

si.tualian,_th&ahomdjsmusions_a.te_mitrue.

6.3 PCA Based.Relationship. Analysis

As discussed earlier, the use of the PCA method to analyse relationships is a statistical
approach. Since this particular multivariate statistical application is a comblex
application, the  particular_ procedure_of . this_ method and. the. analysis skills are

discussed as follows.
6.3.1 Procedure of Using PCA to Analyse a Relationship

The discussions in this section are not restricted in the PCA application to relationship
analysis for parallel mechanisms. The procedure of using PCA _to analyse a
relationship, discussed here, is a general procedure. This procedure can be applied to

any mechanical relationship analysis using the PCA approach.

It is supposed that an n-dimensional vector function y = F( x ) is unknown. The n-

dimensional independent variable x = (x,, X,, ..., X ) is_ measurable. The inverse

-1
function x = - ( y_)is known and"computable” Retating” this general TUnCiom.to the
Stewart platform problem, the independent variable x s link lengths

(4 1,.5.1,.15,15) and the positional variable y is platform position i.e: the variables
(a,,a,,a;,a,,as, Im) which have been. defined: in_Section-2.1.3.2. The general
function F() corresponds.m_thmfonyand_displagemsanmblem_and_mLmyerse
function F " (.) corresponds to the inverse displacement problem. The Stewart platform

forward displacement problem is the one needs to be solved. The inverse

displacement is easy to compute. Therefore, the Stewart platform problem meets the
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-1
initial supposition, y = F(_x ) is unknown, and the inverse function x = F (Ty ) is

known and computable. Under this supposition, the problem is how to use the PCA to

-determine the value of the positional variable y = (y,, y,, ..., ¥, ) when the value of

the independent variable x is given. An application of the PCA is to use the principal

components Y, (i =1,2,_ . _n) instead. of the measurement variables to._solve the
problem. Here the measurement. variables are the independent variables.x, (i =1,2,
...,n) and the principal components Y, are derived from the independent x,.

Therefore the problem becomes how to determine the value of the positional. vagiable

y=(,,Y2,---» ¥, ) when the value of the principal component vector Y = (Y,, Y,,
Y ) is given and how to obtain the principal components Y = (Y, Y, ... Y, ).
The following are the steps to solve this problem.

Step 1. Data sampling: As in other statistical applications, the first step of using the

PCA to analyse relationships is data sampling. Since the investigated relationship is
between the positional variables {y,, y,, ...,.y, } of the function F(.) (correspondin

to the Stewart platform forward displacement problem in Figure 5-2, the positional

variables are { a, .a,,;.a,.a;, Im}) and the principal components {Y,, Y,, ...,
Y , }, the data sampling starts with a given data set of the positional variables {y,, y,,

.-» ¥, }- This data set.is denoted.as {Q,} ={y,, ¥;, ... ¥, }il=L2,...m} ={(y,,
Yiz> - Y )l £ =12, ... ;m}. Here, m is the size-of samples. This number. m.should at
least equal or be greater than two times_of the number of dimension (ZXHLT!}iS is
because every positional variable should at least have two different given values.
Normally it should have three or more different given values to show the relationships
with the independent variables. Generally speaking, the greater the sample nurr\lber,

thcﬁasiBLiLis_tQHMStmteihgmlaﬁQnSMp&Ho_wwerriﬁthQsampleiZQis_tQ(Lbi%, the

data processing will require more time and computer memory. Therefore, the sample

size and every point in the data set_{Q, } should be determined based upon the need of

a particular application. For example, in the case of the spring test used earlier, the

force values {p,} are used to determine the test points. These test points should be

chosen based on the range of applied force in a particular application and the

requirement of the accuracy before the test is_carried_out. Since the inverse function x
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=

=F (y)is known and computable, then, the given dafa set {Q J is used to carty out

the -calculation to obtain. the corresponding sample data set of the variables{x;, x,,

..., X, }. This calculated sample data set is denoted as {P,}= {x,, x,, ..,

X, bilmL2, m = Xy, Xy, ., X,,) }E =12, . m} corresponding to data set
- {Q, }: Relating the general approach to what is done on -the Stewart platform, the

platform. is set to_ LSﬁnﬁs_oLdlﬂIeanﬁstﬁmns,_Le_dleerem_va.hLe% of

(a,,a,,a;,a,,a,, Im) then using formula (2) to compute the corresponding values
of link lengths (/.,l,.1,,1,,l5,15). To complete this step, a data sample table as

follows is used.

) ;‘:?(l;) | . GivenData{Q, } | Calculated Data{P.} | Principal Components {Y,}
- T¥a Y [ [ Y 'XT_XE:_—""‘_X_m IRE 'VYi2 Bhibing ‘l—’\‘m
I —'yrl' Y, e Ly Lxy 1oxy, | ‘.'—'Xln S I I

T o [y [ o D o o G [

- ~

S T i & Y[R R ’X;r;n R S e i .

Table 2.2-3 An example of data sampling table
This table consists of three parts; given data {Q;:{y,, v,, ..., ¥, }:[i=1,2,...,m},
calculated data. {P,:{x,, x,, ..., X, };/=1,2,...,m .}, and the principal components

{Y,{Y,,Y,, ..., Y, },;li=12 .. .m} Thedataset {Q,} is given before carrying out
the sample. The calculated. data set {P-} is obtained during the sampling, and the

carresponding principal component values will. be_calculated after. o,b_tainin% the

formula of the principal components of the system. . , /
StepLleainingth&foLmlda_oﬁthipﬁmipaLcompnncmoﬁthgjys@
This is a standard procedure of the PCA, which has been described in Section_6.2.2.
The task of this stepi&taobiaimth@constanlsiQLQ\LeQLpﬁncipaLcomp%nent.

Y, =a,x,ta,x,+...+ta, x,,(k=12,..,n) _
Step 3. Calculating the principal component values for every point in {Q,} and filling
i

the above table. The value of the ith sample’s Ath principal component (Y, )is .

H

Y, =a,x,ta,x,t..+a,_ x, fork=1,2, ...,n i=12 .. m
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Step 4. Analysing the relationships between {Y,} and {Q, }in the sample space. The

result of this step can be directly extended to the whole component variable space and

positional variable space. The tools and skills of this step are discussed in the

following section.

Relationships
i between {Q:} and {Yi}
(=12 ...n)

&
»@Q Data set {Q:}
&
N
4.ng
=
alues of Principa

ts .
2\Obtaini qmponents { Y
incipal
comyponents .. o
Principal J \*&
o
%-

components of o
the system

Using the PCA to analyse relationships

Figure 6-4 Procedure of using PCA to analyse relationship

The whole procedure of using the PCA to analyse relationships can be illustrated by

Figure 6-4.

6.3.2 Analysis of the Relationship between Principal Components and Positional

Variables

The discussions in this section address mechanical relationship analyses rather than
analysis for a general relationship as an abstract function F(.) shown in Section 6.3.1.

Corresponding to the general discussion in the previous section, data set {Q, } is the
sample data set of the positional variables; the data set {P, } is the sample data set of
the measurement variables; and the data set {Y} is the data set of the principal
components corresponding to the sample data.

The purpose of the analysis of the relationship between the principal component data

set {Y,} and the data set {Q,} of the positional variables is to provide sufficient

information to build up an algorithm. This algorithm can be used to compute the
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values of the positional variables using principal component values. Through a

relationship analysis, the following results should be obtained:

(1) Every positional variable can be determined by a function in which the
independent variables_are principal components only. At least, this is true when other
N

positional variables are given.

(2) If a positional variable can be determined by a function in _which_the.indegg:%dent

variables are principal components only, when other positional variables vary.in a

certain range, the change of the characteristics of this function with the change of the
!

values of the other positional variables can also be identified.

To._obtain the above two results, the relationship analysis starts by use of one;_tgﬁ-one
relationship analysis. That is to try to find the relationship between every. one
positional variable and_every principal component. If every positional variable cgn be
determined by one principal component, the result (1) has been obtained. However,
normally, some. positional. variables_are_difficult to determine by a singlue____p,_rj%cipal
component. After a part of positional variables is identified by some one-to-one
relationships, the remained part of positional variables cannot be determined by single
principal component. In this situation, pair-to-pair relationship analysis is required.
Tmmmanmmmm&vmmm@mmu@mmmm%vem
every pair of positional variables and every pair of principal components. Sometime, a
pair-to-pair relationship can be transformed_to two. Qne;to,-na_ir_r"elal;,iQnshi@L_J_“h\at is,
one positional variable can be expressed by a pair of principal components, which will
be discussed later in this section. For most situations, the relationship analysis can be
based on these two sorts of analyses, one-to-one and pair-to-pair relationship analyses.
Following this, to_ kmmthe_effem_omeycry_obtamﬂmlaimshlp:oﬂothmgosn)lonal

variables, further analyses are also required.

The tools used for the relationship analysis are 2-dimensional graphs. For one-to-one
relationship analysis, one coordinate axis is one of the positional variables anc‘i the
omeLaxisi&onQoﬁthipﬁncipamepnnemLEunhedemﬂ&amgjymlaler_Eorwpair-
to-pair relationship analysis, the two coordinate axes are two of the principal
componenl&and,,once_againrdemiLdiscussiQn_i&in_a_lateLsecIion_TheLdaLajnﬂile 2-
dimensional graph is taken from the sample data table, Table 2.2-3. . o

During the dcvelopmﬂnLothLRCAbaSﬁd_apmoachﬁsgme_typiggLsimatiqnsﬁhave
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been considered. Studying these typical cases should be helpful for relationship

analyses for other mechanisms. The following is a brief discussion.

6.3.2.1 Onﬁ-to—oneRelalionshi;LAnalysi\s

After filling up Table 2.2-3, the data analysis normally should start by looking for
one-to-one relationships -between the positional variables y, and the principal
components Y, (=1, 2, ..., n). During this period, 2-dimensional coordinate-graphs,
which consist_of one_positional. variable_axis and_one principal component_axis, are
used. In such a graph, the data of the positional variable is from one column of the
data {Q,} in Table 2.2-3 ,andﬂthe‘data_of,,thacorr,espgndingﬁpgiggjg@lfpomggnsnt is
from one column of the principal component {Y, } in the same table. If all the sample
data from Table 2.2-3 forms_one increase or decrease curve_ or line_(see Figure 6-5), it
means that this principal component can directly express this positional variablé and
this_relationship is_not_affected by other positional variables._That is, for any_given
value of the principal component, there is only a single value of the corresponding
positional variable, no matter what the values of the other positional variables. Figure
6-5 (a) and (b) are examples-in which the positional variable is y, and the pn'r%cipal

componentis Y .

Yi. ) - | SREIE — -

(a) (b)

Figure 6-5 Unambiguous one-to-one relationships

Here, it should be explained that each given value of a positional variable corresponds

to. several_rows in. Table 2.2-3._That is, each gjven.value of a_positional v_a{\iable



corresponds to several different values of other positional variables. Sometimes, the
given. positional variable with the different values of other. positional . variables
correspond only one value of the related principal component. In this situatior:, the
tdalbnshipgraphisumzlicumqm.zlmu_&.mwmmEm;@;i:T_hi,s_mﬁan§ that
other positional variables do not affect this relationship. However, in most situations,
any given value of a positional variable with different values of other positional
variables correspond to different values of the principal components and show
different points in the 2-dimensional graph, as_shown in Figure 6-6. In. thi&situz\l.tion,
the relationship graph will be several curves. Every one of the curves corresponds to
given values of other positional variables. The difference from curve to cur.ve;i\s the

effect on the relationship by other positional variables.

ﬂ/ ’EfTedbyotha'":F. -
/> positional ™ - -1

(a) (b)
Figure 6-6 one-to-one relationships with effect by other positional variables

To find what positional variable affects the invested relationship, the same coordinate
system is used but the data shown in the graph needs to be filtered. For examglebif the
relationship between the positional variable y, and the principal component Y, is
being,.invesﬁgaledanith:;gnaphoﬁth&mlaﬁonshi@&&shqwmmﬂggg@ﬁbthe\task
is to find what positional variables affect this relationship. In the first step, every

positional variable from y, toy, is fixed so that the sample points in the g;ggh,{orm

a single curve or line similar to Figure 6-5. Then, these fixed variables fromy, toy,

are in turn given different sample values to show what differences are caused. When

one of these positional variables, say y ,, is given different values and every value of

the positional variable y, corresponds to-one value of the principal component Y, it
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means that this positional variable y, does not affect this relationship. When one of
these positional variables, say y,, is given different values- and- every value .of the
positional variable y, corresponds to different values of the principal component Y,,
it means that this positional variable.y , affects this relationship. After analysing the
effect of the positional variable y,, then the effect of-another one of the positional

variables, say vy ,, should be analysed. This processing does not stop until it is known

-

whether -every one of the positional variables from y, toy, affects this relationship

or not.

It should be notedthairsince_the_data_shawmm.thc_gtaphi&ﬁom:me_sampigd%ta in

Table 2.2-3, rather than from the whole data range, the curves or lines shown in
Figure 6-5 or 6-6 ﬁmmihﬁwvmmdmmdmm&mﬁo%ines.
Some knowledge of the particular application background can be used to judge
whether the curve or line is increasing or decreasing among the sample data. In_ most
mechanical application situations, if the sample data shows an increase along a curve
in_a graph as shown_in Figure 6-5, the actual curve corresponding to the sample data
should be an increasing curve. Sometimes if the points shown in the graph are not
suﬂicienﬂadﬂennin&@Meascmdeueas&oﬂMm&a&showmmEi@%e 6-7,

some new sample points should be inserted into Table 2.2-3 and appear in the
carresponding 2-dimensional relationship graph.

~
The procedure of exploring one-to-one relation;}{ips ‘does not stop until. every
positional variable has been compared with every principal component. This process
of comparison needs to be carried out n(the number of positional variables)x n(the
number. ofprinczpaLcomponenm)_tim\es.
However, sometimes 2-dimensional graphs used to show one-to-one relationships are

mmmcomplexmamhe_simpl&maeasmmdecmasc_mmmhmdiscussgdms, In
this situation, one given principal component value may correspond to several values
of the different. Mnﬂ_vmabh_ThﬂemLme_mndmuommnm_c?not
determine the positional variable. Moreover, the curve of the investigated one-toone

relationship, sometimes, is significantly affected by another positional variah%e as

shown in Figure 6-7. This situation was met in the Stewart platform analysis. For

example, as the positional variable a, of the Stewart platform shown in Fig_;;,_r% 5-2
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changes from 0 to 2w, the values of the measurement variables (!, ,/,,/,;1,,15,l) are
changed from their initial values to other values and then change back to the initial
values. Therefore, the corresponding points in the measurement variable space
,.1,1,1,.15,l5), and - consequently, in the ‘principal component /space
I, ¥%,.¥, Y, YY), form a closed curve. Moreover, the diameter of. the -closed
curve significantly depends on the value of @, . If @, equals zero, this closed curve
becomes one point. If «, becomes bigger, the diameter of the closed curve will

become bigger. Hence, any graph which consists_of one of the principle component

axes and the axis of the positional variable «, will show a curve including increase
and decrease segments in the value range of @, between 0 and 2x as shown in Figure

6-7. In this situation, pair-to-pair relationship analysis is needed.

| Y2 |

Figure 6-7

6.3.2.2 Pair-to-Pair Relationship Analysis

During pair-to-pair relationship analysis, the two. coordinate axes. in the. ggagl;\s are
two of the principal components (say ¥, and Y, ), and the data is from two columns
of the principal components {Y } in Table 2.2-3 (say. ¥ ,,~Y ,,and ¥ ~Y ,*L_TQ, find
which two positional variables correspond to these two principal components, ;e'very
two of the positional variables are in turn chosen for investigation. To show the
relationships more clearly, all of the positional variables, with the exception of the

two. investigated positional variables, should_be_fixed duringk_the_‘pair:tc%-pair

relationship analysis. Normally, this graph shows two families of curves, which
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mainly correspond to two of the positional variables. Through the analysis of the type
and array of the curves, it can be found whether this pair of principal components can
express the chosen pair of positional variables and their relationships. After obtaining
the_pair-to-pair relationships, the effects of the other positional variables.should also

be investigated. The following are some typical types of curve families in 2-

dimemensional pl:imipa.lmmponenj_sp@

Type 1. The two families of curves are two families of parallel lines and these two
families of lines are perpendicular to each other. One family of lines. is arrayed by the
increment of one of the positional variables and the other family of lines is arrayéd by

the increment of the other positional variable.

,YI‘ N Y’?‘
° ? o * & " ° 3 : o
e : | e § e o

: v £ [ B

N 2 ° [ 3 L]
¢ s =t S
. . o R °
. Increment of y; L. Incrementofy— —

(a) ®r
Eigur.&ﬁ:S.,Tygl

Figure 6-8 shows examples, in which, the two axes are Y, and Y, and the lines are

arrayed by the increment of the positional variables y, and y, respectively.

In fact, this kind of relationship can also be found through one-to-one analysis. In

Figure 6-8 (a), the relationship between y, and. Y, or between y, and. Y ,_is a linear
relationship as shown in Figure 6-6(a). In Figure 6-8(b), the relationship between Y,
and Y, or between.y, and Y, is a non-linear relationship as.shown in Figure 6-6(b).
In the situation as shown in Figure 6-8(a)-or (b); the relationship between y, and Y,
is not affected by y,; and the relationship between y., and Y, is-not affected.by y,.
In Figure 6-8(c), the relationship between y, and Y, or betweeny, and Y, is a non-
linear relationship as shown in Figure 6-8(b). The relationship between y, and.Y, is
affected by-y,, and the relationship between y, and Y., is affected by y,. It sﬁould

be noted that in the situation, as shown in Figure 6-8(c), the principal components’

directions can be changed_via_a_cnmdinale_notalion,to_the_same_dinemion_a§ the
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increment of -positional variable y, ory,. After the coordinate rotation, the situation,
as shown in Figure 6-8(c) will be changed to the situation as shown.in Figure 6-8(a)
or (b). |

Type 2: The two m&famﬂiesmﬂm&famiﬁz&oﬂgqnﬂaLngmes_Ihgcum\es in
each family do not cross each other. The sample points in principal component s;)ace
are arrayed in two_families of curves rather than lines seen in Type 1. One_family of
curves is arrayed by the increment of one of the positional variables. The other family
of curves is arrayed by the increment of the other positional_variable. Figure 6-9 is an
example, in which the two axes-are Y, and Y, and the curves are arrayed by the

increment of the positional variables y, and y, respectively.

=

3

Inicfment of y
"\
SN

®
F AN
. H” ‘

&
2
=

~
(e
~—

Figure 6-9 Type 2
There are two simalionsinﬁgumﬁzilmthejixuaimmminﬂgum@%a)anﬁi (b),
the positional variable y, mainly relates to the principal component Y, and the
positional variable y., mainly relates to the principal component Y. ;.. Therefore, the
principal component Y, can be used to express the positional variable y, and the

principal component Y ," can be used to express the positional variable y, .- In fact,

this kind of relationship can also be found through one-to-one analysis but the figures

used in pair-to-pair analysis show the relationships more clearly. The situation shown
in Figure 6-9(c) is when Y, or Y,_is given a value, and there may be. mor&thag one
corresponding point in a curve. Therefore, Y, and Y, cannot express y; or
y , respectively. However, after giving a rotation of the coordinate frame Y, -Y,, the
situation can be changed to be the same as Figure 6-9(a) or (b). Hence, y, can be
expressed by R,, and y, can be expressed by R, in the new frame RFR}.\\ This

means that y, and y, can be expressed by the different linear combinations of Y, and
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Y, respectively.

Type 3: The sample points in principal component space are arrayed in a family of
closed concentric curves, which cross with a family of curves from a centre point,
radiating outward (see Figure 6-10). Around the closed curves, the clockwise or anti-
clockwise direction is the increment of one of the positional variables and the relldius
of the closed curve increases with the increment of the other positional varjable.

Figure 6-10 is-an example,-in which the two axes-are Y, and Y, and the curves are

arrayed by the increment of the positional variables y, and y, respectively.

ST SR

(@) : (b) (c)
Eigm:e.ﬁ:l!llype\3

This situation can easily be transformed to the distribution of Type 1 or Type 2 but
where. thcucoordinateg_axe&ane_pglar_angle_and__radiusbinsmasLoﬁor_tthQnaLprin\cipal

components (see Figure 6-11). -

(2) (b) {c)

Figure 6-11 Type 3 can be transformed to Type 1___or_T3'pe 2
Therefore, the positional variable y;, can be expressed by the radius g=,[¥f_ij\ in
Figure 6-11 and the positional variable y, can be expressed by the polar angle

0= atan(Y ,/Y ). Since the transformation from the principal components Y, and Y,

to the polar- angle and. the radius- (£ , € ) is a trigonometric transformation, the
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positional variables y, and -y, can be expressed by two different functions of the
principal components Y, and. Y, respectively. It also means that the positional
variables y, and y, can be expressed by the principal components Y, and Y, .

Type 4: The sample points in principal component space are arrayed in two f@r{lilies

¥
of curves, but some curves in one of the two families cross each other (see Figure 6-

12).

Increment-of v =

@-. .. : ' (b)

Figure 6-12 the situation is difficult to directly analyse the relationship

The situation shown in_Figure 6-12. i&_mgrep_\diﬂlmlt,_to.‘,analyse__Normally,_ix{ this

situation, the positional variables (y,, y,) are inappropriate to be expressed by the

principal ,component&(_Y_,,,\Y 5 )
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Chapter 7

PCA Based Relationship- Analysis for a 6-6
Stewart Platform

This section shows how to use the PCA approach to obtain the PCA based

measurement solution using a real case.
7.1 The Assembly Configuration of the 6-6 Stewart Platform

This real case is a 6-6 Stewart platform, which has already been shown in Figure 2.1-
1. That is a structure, which consists of two disks and six links. Additionally, the
dimensions of the disks and the positions of the link joint points on the disks are given

in Figure 7-1.

- {20044

Base - Top platform

B-frame.- F-frawe-

Figure 7-1 the positions of the joint points of the links

The diameters of the two disks are 200 mm. The joint points on the base are fixed
relative to the base coordinate frame system the B-frame. The joint points on the top
platform are fixed relative to the top platform coordinate system, the T-frame. Hence,
the coordinate values of the joints on the base in the B-frame and the coordinate
values of the joints on the top platform in the T-frame coordinai&..system§ are

constant. These coordinated values are listed as follows: -
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Joint points b . of links on the base (in B-frame) are

b, =(160, 0, 0);

b, = ( 100.cos(n/6).,.100 sin(/6), 0);
b, = 100 cos(m4/6)., 100. sin(w4/6), 0);
b, = ( 100.cos(r5/6),.100.sin(r5/6), 0);

b= ( 100 cos(n8/6), 100 sin(n8/6), 0);

b= (100 cos(n9/6) , 100 sin(n9/6), 0).

Joint.points t, of links on the top platform ( in T-frame) are
t, = ( 100 cos(r11/6)., 100 sin(n11/6), 0);

t, = ( 100-cos(n2/6)., 100 sin(n2/6), 0);

t, = (100 cos(r3/6) , 100Q sin(x3/6), 0);

t, = (100 cos(m6/6) , 100 sin(n6/_6), 0);

t,= (100 cos(n7/6) ,.100 sin(n7/6), 0);

ts=( 100 cos(w10/6) , 100 sin(r10/6), 0).

Initial position

In the /above configuration, the relative position of the top platform is to.be measured.
This initial position is defined such that the corresponding axes and the origin.of the
T-frame and the B-frame are coincident. At this initial position, all of the positional
variables (¢, , a,, a;, a,, a,, Im) are zero. At this initial position the joint p/oint’s
(t, ) coordinate values.in the B-frame are

t, = (100 cos(w11/6)., 100 sin(x11/6), 0);

t, = ( 100 cos(n2/6) , 100 sin(r2/6), 0);

t, = (100 cos(n3/6) ,.100 sin(n3/6), 0);

t, = (100 cos(n6/6) , 100 sin(n6/6), 0),

t.=( 100 cos(n7/6) , 100 sin(n.7_/,6,),\0);

t = ( 100 cos(r10/6) , 100 sin(n10/6), 0).
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They are the same as the coordinate values in the T-frame because the T-frame and

the B-frame are coincident.

7.2 The PCA Based Forward Displacement Measurement Solution

Jf—m—m T T e T |
I |
1 : The PCA Based Solution :
T+ I
IN I
; : Principal. - " Numerical :
1y Components. | > Algorithm |
N 'l‘(Yl;Yz,'Ys,"Y(Ys,—' Yo T |
EN y . |
11 ! |
I I
[ | !
"1 | Eink Lengths-|- v >: - Bosi'tional
T dedsil s Is)- |- Other Solutions | ~ Variables:
| The difference between the PCA based salution and other solutions

Figure 7-2 The difference between the PCA based solution and other solutions

The PCA based solution makes use of the principal components of the system as a
bridge to solve the problem. When the link lengths of the Stewart platform are given,
the values. of the link lengthLaLe.ﬁLsLtransfomed-.tQ..thmyaJue&-oﬁ.tbﬂ_pﬁn\cipal
components. Then a numerical algorithm completes the calculation of the positional
variables using the principal component values. These. positional variables are a set of
variables representing the position and orientation of the Stewart platform, which
have been defined in Chapter 5. The numerical algorithm in the PCA based solution is
based on the relationship between the principal components and the positional
variables. The above. procedure, which progresses from gjiven link lengths to pﬁngipal
component values and then to the positional variables, is called the PCA .based
forward displacement. measurement solution. In Figure 7-2_the process is. 'md%cated

by the arrows. S
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The PCA based solution consists of two parts; calculation of the principal components
of the system and the numerical algorithm for computing the positional variables. A
Stewart platform with different assembly configurations has different principal
components and numerical algorithms. The technical key to the PCA based solution is
the transformation from six link-lengths to six principal components. If the
transformation is successful, the relationship between the principal components and
the positional variables can be identified. Consequently, a numerical algorithm can be
established, based on the identified relationship. The methodology to develop the
PCA based forward displacement solutions for different assembly configurations is
called the PCA based forward displacement measurement method. Every PCA based
solution is for a particular case with a particular assembly configuration. The PCA
based method can be used to develop different solutions for different assembly

configurations.

The PCA based forward displacement measurement solution is an on-line procedure.
It has high accuracy and computational efficiency. The PCA based forward
displacement measurement method is an off-line procedure. It is a methodology for
obtaining PCA based solutions. The following sections show a real case in which the
PCA based forward displacement measurement method was applied to obtain a
solution for a 6-6 Stewart platform. The assembly configuration of this particular

Stewart platform has been described in Section 5.1.

7.3 Principal Component Analysis
The principal component analysis is a standard procedure. However, some particular
application background factors need to be considered.

7.3.1 Data Sample

As mentioned in Chapter 6, the first task of sample is to give several particular values
of the positional variables. This operation is called determining the sample condition.

The sample condition values correspond to the data set {Q,} in Table 2.2-3. In this

case, the following factors were considered before determining the sample conditions:

Factor 1: The data sample should cover as much of the value range of the positional

variables. The requirement of this application is that the robot can make turning in any
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direction but the degree of the turning is not more than n/4 during one step of
movement. The length of the step is between 150 and 200mm. During the robot
moves, there is only very little roll. Therefore, the value range of the positional
variables in this application is given as: a, :€ [0, n/4);, a, € [0, 2n), a,€ [0, n/4),

a, <€ [0, 2n), a,€[-n/6, n/6], Im €[150, 200]. There is a constraint that is: a, +

a, <mn/2.

Factor 2: Every positional variable should have at least two different values so that it
is probable to show the relationships between the positional variables and the
principal components. Normally, every positional variable should have at least 3
different values, so that it is able to show the linearity or non-linearity of the
relationships between the positional variable and principal components. Some circular

variables”, such as «, and «,, should have at least 4 different values, so that it is able

to show the change of the data distribution in the principal component space.

Factor 3: Some variable values such as a,, a, and a, can be chosen to show the
symmetry of the top platform the positions. The variables «,, @, and a; should be

chosen by geometry symmetrical points, so that it is able to show the symmetry of the
distribution of sample points in a principal component subspace. This symmetry

information is also helpful in the stage of relationship analysis.

Based on the above considering, the given values of the positional variables are:

Angle 1 (a,): 0, /6, n/12, n/6, n/4

Angle 2 (a,): 0, t/4, n/2, ©x3/4, &, Tx5/4, ©x6/4 ©x7/4,

Angle 3 (a,): 0, n/6, n/12, /6, 7/4

Angle 4 (a,): 0, m/4, n/2, mx3/4, &, nx5/4, ©x6/4 ©x7/4;

Angle 5 (ay): -n/12, -n/24, 0, n/24, 7/12,

Length of M-bar (Im): 150,200

Therefore, the sample size is determined. That is, the sample covers the number of all
possible combinations of the above values of the positional variables, which gave

different positions and orientations of the Stewart platform. Corresponding to Table

2.2-3 in Chapter 6, the values of {Q, } were given. Then, for each given position and

orientation of the Stewart platform, the corresponding lengths of the linkages were

* Here, the circular variable means the value of the variable varies in a circle, e.g. between 0 and 2.
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calculated. Corresponding to Table 2.2-3 in Chapter 6, the values of {P,} were

obtained. Then the computation of the principal components of the system was

required for calculating the corresponding values of {Y, }.

7.3.2 Computation of the Principal Components of the System

This procedure has been introduced in Chapter 6. According to Eq (2 2-1), the scatter

matrix can be obtained and then the eigenvalues and the corresponding eigenvectors
of the scatter maiﬂ&camh&abiainﬂﬂn&eigem@he_wmcormspgndmggigagﬁctor

corresponds to one principal component. Every scale value of the eigenvectors

corresponds to. a factor of the principal component formula (2.2-2) Aﬂe§ the

computation, the following eigenvalues and eigenvectors were obtained. )

Eigenvalues. .. _ . ... Eigenvectors

A, =1281077815 a,={0.40825_0.40825, 040825 0.40825 0.40825, 0.40835}

A, =41040737 a, = {0.28868, 0.57735, 0.28868, -0.28868,~-0.57735, -0.28868}

A, =41038068 a, = {0-5.,__0,_-,0.5,.:_0.5,(1,\ 0.5}

A, =3242860 a,= {-0.28868, 0.57735, 20.28868, -0.28868,.0.57735, -0.28868}

A, =3240898 a;=1{05,0,05,-05,0, 0.5}

A =495051.4 a, = {-0.40825, 0.40825, -40825, -0.40825, -0.40825, 0.40825}

So, the principal components of the system are: )

Y, =0.40825 1, + 0.40825 [, + 40825 {,+ 0.40825 /, + 0.40825 I+ 0.40825 [
@2.3-1)

Y ,=0.28868/, +0.57735/,+0.28868 /, -0.28868 /,-0.57735 /,-0.28868/ (2l'.3-2)
Y,=0517,-05/,,-051, +Q5l, . . . 2.3-3)
Y ,=-0.28868/, +0.57735/,-0.28868 /,--0.28868 /, +0.57735 1,-0.28868/ v(—2’.3.-4)
Y,=05/,+05/,,-05/,+050, .. .. . N @2.3-5)
Y ,=--0.40825[,+0.40825 [, -40825 /,+0.40825 [, -0.40825 /,+0.40825 /, (2!.3-6)
According_to the above formulas, the corresponding principal component values
{Y, (Y, Y, Y, Y, Y, Y¢),li=1 2, .., m } (here, m is the sample size) .were
calculated Then, analysis for identifying the relationships between the positional

variables and the principal components was carried out. This analysis. was. base}i on

the sample data; the positional variable values {Q, : (a,, a, k,a_},_a*,_a}klmljli =],
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2, ..., m } and the principal component values {Y,:(Y, ¥,.,Y,,Y,,V,Y¢),li=1, 2, ..,
m}.

It should be noted that in the symmetries. in the eigenvectars represent symmetries in
4

the assembly configuration” . The repeated eigenvalues (A,,A;,A,,A ) represent the

symmetries in the assembly

give a complete physical explanation of the eigenvalues and the eigenvectors for a

particular application In this case, some physical explanation will be discussed in the

following sections but the complete physical explanation is till an open question. )

It is very difficult to

7.3.3 Analysis of the Relationship between the Principal Components and the

Positional Variables

The procedure of the analysis of the relationship between the principal components

and the positional variables has been introduced in Section 6.3.2. The relatiolship

analysis starts by the one-to-one relationship analysis If one-to-one ignship

analysis cannot obtain satisfactory results, pair-to pair relationship analysis will be

carried out During this analysis, two one-to-ane relati 1 identi hose

are the relationship between the first principal component (Y,) and the length :)1‘ the

M-bar (/m) and the_Lelatmnshlpbeiweﬁn_the.mxﬂLpnnmpal_QQmponan(Y&)) and
- Angle 5 (o). However, the relationship between (Y,, Y,, Y,; Y,) and ('a1', a,,

a,, a,) is very complex. Hence, pair-to-pair relationships were identified. Then, the

combinations of the pair-to-pair relationships were also identified These identified

relationships are discussed as follows. y
73.3lﬁlnecm:QnQRﬁlmiQnSMp_Analysi\s

After comparing every principal componéﬁf“’with each positional variable,. two
relationshins 1 ] dentified_One is the relationshi _ rincipal

component Y, and the length of the M-bar /m. The other is the relationship between

the sixth principal component (Y .) and the angle 5 (a5 ).

<

? The author used non-§ymme(ry assembty Confrgurations; whictr feaed T momrsymynetry

eigénivectors.
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7.3.3.1.1 The relationship between the 1% principal component and the length of the
M-Bar

According to the formula (2.3-1) of the first principal component,

Y, =0.40825 I, + 0.40825 [, + 40825 1,+ 0.40825 I, + 0.40825 1.+ 0.40825 ,
=0.40825 (I, + 1+ I,+ 1, +1,+1,)

=2.4495 (I, + 1, + 1+ 1,+1,+1,)/6

(@) The relationship
between Y, and Im B0 =04134¥1- 42645

220 - R?=1

=180 -
140 -
100
300

(b) The error of the

—_

regression function

o
wn
L

oS
o o
[

the érror of the
regression function

[
—_
Il

RN
(&)

Figure 7-3 The relationship between Y, and /m

In fact, the first principal component is an arithmetic average of the six link lengths
with a constant factor. It is obvious that the first principal component value increases
with the length of the M-bar (/m). Normally, the arithmetic average of the six link
lengths is greater than the length of the M-bar. But, when the length of the M-bar
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approaches infinite, the difference between the arithmetic average of the six link
lengths and the length of the M-bar approaches zero. Figure 7-3(a) illustrates the
relationship between Y, and /m using all of the sample data. To show the relationship
more clearly, more sample data (for Im= 125, 150, 175, 200 and 225) was inserted in

the figure. Also, the regression line is added.
The regression function is:

Im=0.4134Y |, — 4.2645 2.3-7)

When the other positional variables («,, «,, a,, @,, as) are given, there is an
increasing function /m=f(Y ). When the other positional variables have different
values, the corresponding functions Im=fY )' may be different. However, these
differences are very small. This can be illustrated by Figure 7-3. Figure 7-3(b) is a
scatter figure in which every difference between every sample datum value and the
value calculated by the regression function (2.3-7) is shown using all of the sample
data. To give a closed form expression to the function /m=f(Y | ) with the parameters
(a,, a,, a,, a,, a;), Im={[Y,, (¢, a,, a;, a,, a;)], is very difficult. However,
the properties of the functions /m=f(Y ) have been identified. They are increasing
functions, hence, the value of Im can be obtained by using a numerical algorithm, if
the principal component Y, and position variables «,, a,, a;, a,, a; are known.
Also, the regression function (2.3-7) can be used to set the initial value of /m in the
computing algorithm. Figure 7-3(b) shows that if /m varies between 150 and 200, the
error of the regression function is less than £1mm. The relative error is less than 0.5%
when a,, a,, a;, a,, a; vary in the value range described in 2.3.3.1. Therefore, the
initial value given by the regression function has high accuracy. It is also known
through Figure 7-3(b), that the position variable /m has only small variance (less than
+1%) when «a,, a,, a;, a,, a, have different values. Therefore, the value of /m can
be determined by the value of Y, only using the regression function for some
applications, in which accuracy requirement is less than +1%. Considering the fact
that the errors of the regression function shown in Figure 7-3(b) include all of the

sample data, it is known that for different values of the positional variables (@,, «,,

a,, a,, a), the quantity relationship between /m and Y, has only very small
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change. In other words, the positional variables (a,, «,, a;, a,, a;) only have a

very small effect on the relationship between /m and Y, .
Conclusions for the relationship between Y, and Im :

e The first principal component is mainly relative to the positional variable /m. The

first principal component increases with the increase of the variable /m.
e If the other positional variables (a,, a,, a,, a,, «,) are given, there is an

increasing function /m=fY ;).

o [fthe other positional variables have different values, the corresponding functions

Im=f(Y ;) may be different, but this difference is very small. In the range

125<=Im <= 225, there is a regression function:
Im=0.4134Y | — 4.2645

The error of this regression function in the given value range of /m is less than

+1%.

This fact indicates that the positional variables «,, a,, a;, a,, a; only have

very small effects on the relationship between /mand Y, -

7.3.3.1.2 The Relationship between the 6™ principal component (Y . ) and the angle 5
(as)

The formula (2.3-6) of the 6th principal component is:

Y, =-0.40825 7, + 0.40825 [, - 40825 I, + 0.40825 [, - 0.40825 [+ 0.40825 I,
= 0.40825(-1,+ 1, - I+ 1,-1,+1,)
=1.22475[ (1, - 1,)+ (- 15) + - 1,))3

In fact, the sixth principal component is an arithmetic average of the three differences,
(,-1,),(,-1,)and (/- 1), with a constant coefficient. Figure 7-4(a) and (b) are

the top view and 3D view of the Stewart platform respectively. If a increases, that
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Figure 7-4

is, the top platform rotates in an anti-clockwise direction, the lengths of /,, /.. /7, will
increase and the lengths of /, , /.. /. will decrease. If a. decreases, the lengths of /.
l,, 1, will decrease and the lengths of /, . /., /. will increase. Therefore, the average
of the three differences, (/, - /,), (/.- /;) and (/,- /). can be used to express the
rotational angle @, . Consequently_ the sixth principal component (Y , ) can be used to

express . .

Figure 7-5 illustrates the relationship between the 6" principal component (Y, ) and
the positional variable @, when @, is between —/12 and n/12. Figure 7-5(a) shows
the situation when «,, @., a,, a, are zero and Im equals 150. The regression
function corresponding to the sample data shown in Figure 7-5(a) is:-

Y,=76383a,.

- 20— -

Ys = 76.383x «
Ri=1

©
43 02 QO

(a) " (b)

Figure 7-5 The relationship between Y , and a.
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Here, the intercept is zero and the slope is 76.383. When a,, «,, a,, a, and /m are

given different values, the relationship between Y and «; is still an approximate

linear relationship but the corresponding regression linear function for ituation
has different intercepts and slopes. Each individual regression function for every
ndividual situati 1 he di | | 2 li ion function for all

situations is given in Figure 7-5(b). Figure 7-5(b) is a scatter figure showing the

relationship between Y . and «, using all of sample data. For any_given value of a,
there are many different values of Y, corresponding to the same given «/ but
different values of (a,, a,, a,, a,, Im). For example, when a equals 0, the values

of Y, are between -7 anLLZ,_.whigtLQoLLesmeLto_differenLyahms_Qf_thﬂjother
positional variables «,, @,, «,, a, and Im. These differences of the values of Y,
are effects on mg_nelalianship_hetween_Y‘kamLa?_QauMhy_thc_otheLpnsj%ional
variables (a,, «,, a;, a,, Im). The linear regression function for all of the/vsample

data is

Y.= 63_8_§1a5.

This function can be used to estimate the approximate value of a %.buLthe_eTor is -

relative large. !

Conclusions for the relationship between Y and_ a;:
e The sixth principal component is mainly related to the positioi{al variable a .

e The sixth principal component increases with the positional variable & 5

\\

e The relationship between Y , and a is an approximately linear relationship vé?hen

the other po mﬂnnalxamable&ax&ﬁxcd.lhﬁimﬁ&uegmsmn.ﬁmﬂnn_fomﬁ case
is : ‘

3

Y, =63.851a,
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e Impact of other positional variables: When the values of |, «,, a;, a, and im
vary in the range given in Section 7.3.2, the quantity relationship between Y  and
o has relatively large change. However, the quality relationship between Y, and
o is still the same no matter the values of (¢,, «,, a,, a,, Im). That is when

a, increases, Y , will increase.

7.3.3.2 Pair-to-Pair Relationship Analysis

During the one-to-one relationship analysis, the relationships between the ond 3rd g4th

and 5" principal components (Y,, Y,, Y,, Y.) and positional variables
(a,,a,,a;,a,) are still difficult to identify. Hence, pair-to-pair relationship analyses

were carried out. Through the pair-to-pair analyses, it is clear that both of the two pair

variables (a,,a,) and (a;,a,) significantly affect both of the pairs of the principal

components (Y,, Y,)and (Y,, Y;).

7.3.3.2.1 The pair-to-pair relationships (Y,, Y,)-to-( a,.a,) and (Y,, Y,)-to-
(a;.a,)

According to the formula (2.3-2) and (2.3-3), the 2™ and 3™ principal components are:
Y, =0.28868/, +0.57735/,+0.28868 [, -0.28868 I, -0.57735 I, -0.28868I

Y, =0.517,-0.51,, -0.5 , +0.5,

Because the relationships (Y,,Y;)-to( a,,a,) and (Y,,Y,)to-(a;,a,) are

difficult to directly identify, analysis was carried out in two steps. The first step is to

analyse two pair-to-pair relationships, (Y,,Y;)-to-(,,a,) and (Y,,Y,)-to-
( a;,a,), based on a special condition. The second step is a synthetic analysis to

combine these two pair-to-pair relationships. This process is discussed as follows.

The basic relationship of (Y,,Y,)-to-(c,, a,)

To show the relationship more clearly, it is assumed that a,= 0, a,= 0, a;= 0, and

Im = 150. The relationship (Y,,Y,)-to-(a,, a,) based on this assumption is called
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basic relationship of (Y,,Y;)-to-(@,, «,). The Figure 7-6 shows the basic

relationship of (Y ,,Y ;)-to-(a,, @, ) using the sample data.

(a) The sample data 150 :
distribution in the =Q 400"~ Increment of o
: ) AT on=nf4
principal component / / A4 g
plane Y,-Y, E 2 -
190 200
/"’
Y2
(b) The sample data
distribution in the :
0,, —p,; coordinate ;g
L5
® o
plane 3 -
€ ;
Polarangle @ ,,
(¢) The relationship
between p,, and 5 ol 0.0067})
@,.shown by using 06 | R?=0.9942

the sample data
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(d) The relationship

6 ,
between 6 ,, and «, N .
5 -
shown by using the ¢
»
sample data ~ o 3]
3 .
2 -
L]
11 °
f T —b T T8 ]

Polar angle ¢ ,,

(e) The relationship -
between 6., and .
z : 02=1001g+39282 51 /

R?=09999 4

~ 3

S 2]

14
0

| R 1p— 2

Polarangle ¢ ,;

Figure 7-6 The relationship between (Y ,,Y,) and (¢, @,)

Figure 7-6(a) shows the sample data distribution corresponding to all of the sample

values of a, and «, . This type of distribution is Type 3 of which has been discussed
in Section 6.3.2.2. The sample points in principal component plane Y,-Y, are

"arrayed in a family of closed concentric curves, which cross with a family of curves

from a centre point, radiating outward. Around the closed curves (6.,;), the anti-

clockwise direction is the increment of the variables ., and the radius of the closed
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curve (p,; ) increases with the increment of the variable «,. Here, 0,, = atan(Y,/Y,)

2 2
andp,, = VY, tY, .

As mentioned in Section 6.3.2.2, Type 3 can be transformed to Type 1 or Type 2.

Figure 7-6(b) shows the sample data distribution in the 6,, —p,, coordinate plane.

This type of the sample data distribution is Type 2 which has been discussed in

Section 6.3.2.2. It obviously illustrates that p,, increases with @, and 0 ,, increases
with «, . For the same value of «,, the value of p,, is a wave. This means that the
data points corresponding to the same value of «,, in the plane Y,-Y, is not in an
exact circle.

Figure 7-6(c) shows the relationship between p ,; and «, using the sample data. This

has a linear regression function,

2 2
@, =0.0067p, =0.00671Y, +Y,

Figure 7-6(d) shows the relationship between the 6,, and &, when 0 ,; is between [-
n, ] and «, between [0, 2r]. There is a jump at the point a,=2n and a,=0. Since
the variables @, and 6, are circular variables, ©,, can be in the value range [-57/4,

3w/4] instead of [-m, m]. Therefore, Figure 7-6(e) shows the linear relationship

between 0 and «, . This linear regression function is
a, =1.001 0, +3.9282
~0, +51/4
=atan(Y,/Y, )+ Sn/4

When the variables a, and /m varies, the sample data distribution in the plane Y ,-Y,

is almost the same as Figure 7-6. Therefore, the above analysis result is still suitable

for different values of o and Im.
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The basic relationship of (Y,,Y;)-to(a,, a,)

To show the relationship more clearly, it is assumed that ;= 0, «,= 0, a;= 0, and

Im = 150. The relationship (Y ,,Y;)-to-(a;, a,) based on this assumption is called

basic relationship of (Y,,Y,)-to-(«;, «,). The Figure 7-7 shows the basic

relationship of (Y,,Y;)-to-(a;, «,) using the sample data. It is interesting that the

sample data distribution in the principal component plane Y ,-Y, is almost the same

as that in the Figure 7-6.

(a) The sample
data distribution
in the principal
component plane

Y,-Y,

(b) The
relationship
between p,; and
a, shown by

using the sample

data

Increment of o

100 150

Radius P o
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(c) The
relationship g

between the 0, oid = 0.99820+ 3.9249

and ¢, shown . R?= 09998
by using the | 3
sample data | » ‘ 0 -

-2

Polarangle § ,;

Figure2.3-7 The relationship of (Y,,Y,) and (e, a,)

Figure 7-7(a) shows the data distribution corresponding to all values of «, and «, .

This type of distribution is Type 3 of which has been discussed in Section 6.3.2.2.
Similar to the discussion on Figure 7-6, Figure 7-7(b) shows the relationship between

p,; and a,. This has a linear regression function:

2 2
a,= 0.007p,, =0.OO7\/Y2 +Y,

Figure 7-7(c) shows the linear relationship between 6,, and «,. This has a linear

regression function,
a, =0.99820 +3.9249 ~0,, +5n/4 =atan(Y,/Y,) + 5n/4

When the variables o, and /m vary, the data distribution is almost the same as the

sample data distribution in Figure 7-7. Therefore the above analysis result is still

suitable for different values of a and Im.

Synthetic analysis

Relationship between (Y ,,Y,) and (o, a,, a;, a,)

The (Y,,Y,)to-(a,, a,) relationship under the condition ;= 0 and a,=0 is
called (Y,,Y,)to-(a,, a,) basic relationship. The (Y,,Y,)to-(a;, a,)

relationship under the condition @, =0 and a,=0 is called (Y,,Y,)to-(a;, a,)
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basic relationship. It was found that when both of («,, a,) and (a,, a,) are not
(0,0), the relationship between (Y,,Y,) and («,, @,, a5, a,) can be expressed by

the combination of these two basic relationships.

Figure 7-8 shows the combination of the basic relationships, (Y,,Y;)to-(¢,, a,)
and (Y,,Y;)-to-(a,, «,), using the sample data. The sample data in Figure 7-8

includes three data sets:-

{(a,, a,, a;, a,, a;,Im)| a,=0, a,=0, a;=0, Im=150},

{(a,, a,, a;, a,, as, Im)| a,=1/4, a,=0, a;= /12, a;= 0, Im=150}},
{(a,, a,, a;, a,, a;,Im)| a;=1/4, a,=1/4, a,= /12, a;= 0, Im = 150}.

If a ;= m/4, the centre of the circle corresponding to a, = ©/12 has been moved on the

circle corresponding to &, = /4, instead of being at the origin of the Y, -Y; plane.

* Increment of ou

Increment

_4/'

:
i

Figure 7-8 The combination of the basic relationships

(Y,.Y;)to«(a,, a,)and (Y,,Y,)to-(a,, a,)shown by using the sample data
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Figure 7-9 illustrates the combination of the basic relationships using vectors. If the

values of (a,, a,) are given, the value of (Y,, Y,) can be determined by the basic
relationship (Y,, Y, )-to-(e,, @,). The value of (Y,, Y,) can be expressed by a
vector. This vector is denoted as v ,,,,, (@,, @,). Also if the values of (a;, a,) is
given, the value of (Y ,, Y,) can be determined by the basic relationship (Y,, Y,)-
to-(a;, a,). The value of (Y,, Y ;) can also be expressed by a vector. This vector is
denoted as v ,, .., (5, @,). Therefore, the relationship between (Y,, Y,) and (a,,

a,, a,, a,) can be approximately expressed by

(Y,.Y)=vy (a,, a,, a;, a,) =Y 23,812 (a,,a,)+ V(23534 (a;, a,)

Here, v, (a,, a,, a,, a,) is a vector expression of the values of (Y,, Y,) which is

determined by (,, @, a3, @,).
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Figure 7-9 The combined relationship shown using vectors

It should be noted that the above vector expression is an approximate expression
which results from the sample data analysis. However, the accuracy of the expression
is not given. In this project, the accuracy of the expression is not very important. The

important result of the analysis is that the qualitative relationship between (Y,,Y;)
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and (a,, a,, a,, a,)is identified. That is, there are two closed curve families in the
plane Y ,-Y ., which are Type 3 curves discussed in Section 6.3.2.2. If the values of
(a,, a,, a,, a,) are given, the values of (Y,,Y ;) can be determined by the cross
point of the two curves in the plane Y,-Y,, from the two curve families. This

important characteristic can be used to build up a numerical algorithm to search the

value of (a,, a,, a,, a,), which will be discussed in the next chapter. In the

algorithm, the approximate vector expression of the relationship can be used to set

initial values.

If the positional variables @, and Im are fixed, it is known that any given values of
(a,, a,, a;, a,) can determine the values of (Y,,Y;). However, given values of
(Y,,Y,) cannot determine values of (¢, , «,, a;, «,). In other words, given vector
v,(a,, a,, a,, a,) corresponds to a set of values of (a,, a,, a;, a,).
Geometrically, this set of values of (a,, @,, a,, a,) corresponds to a set of

geometrical statuses of the top platform. Based on the above analysis for the
combined relationship, these geometrical statuses can be approximately viewed as a

set of statuses of the platform that have the same tilt direction and degree of the top

2 2
platform relative to the base. The length of the vector v,, (p,=[|v;l=VY, tY; )

corresponds to the tilt degree of the top platform relative to the base. The polar angle

of the vector v,, (0.,,=atan(Y,/Y,) corresponds to the tilt direction of the top

platform relative to the base. In summary, any given vector v,, (a,, a,, a;, a,)

expresses a set of statuses of the top platform, which have the same tilt direction and
degree relative to the base. Here, some special situations are as follows:

Firstly, if v, (a,, @,, a;, a,) =0, eg (Y,,Y;) = (0,0), the top platform is parallel
with the base (see Figure 7-10(a)). It is known that if @, = @; and @, =a,, V54, (
@y, O )Y g0y (@5, @,). Tt is also known that v ;45 (@), @, 3=V 354, (@),
a,). Hence, if @, = a, and a, =a,=x, then v 4, (@), @)= V(a5 ),
and then v,,= v, (@), @,)F V(s @,)= 0. This indicates the fact, if

v,=0 and a, = a, then a, = a,*n. This means that the M-bar and the top platform
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The situation where v, (a,, a,, a;, @,) is given a non-zero value but @, equals a

constant will not be discussed, but the corresponding geometrical statuses are shown
in Figure 7-10 (c) and (d). In this set of the statuses of the platform, there is one status
corresponding to a, =a,, or @, =a,*n, which is the green platform in Figure 7-10
(c) and (d). Other statuses of the platform in this status set of the platform are
approximately parallel to this status with a small angular difference forward to this

green platform.

Conclusions for the relationship between (Y ,,Y,) and (a,, a,, a;, a,):

¢ Generally, the principal component pair (Y,,Y,) mainly relates to the positional
variable pairs (o, a,) and (a;, a,).

e The geometrical meaning of a vector in the principal component plane Y, -Y, can
be interpreted as:

a) The direction of the vector expresses the tilt direction of the top platform;

b) The length of the vector expresses the tilt degree of the top platform

e Any given vector v,, in the principal component plane Y ,-Y, can be viewed as a
combination of other two vectors v ;1) (@, @,) and v 5, .5, (a5, @, ). That is,
V=V (A, @) Ve (as, @,). Here, the two vectors v ;5 (@, @;)
and v, ,,,,(@;, a,) are determined by the basic relationships between the pair

(Y,,Y ;) and one of the positional variable pairs (a,, @, ) and (a;, a,).

7.3.3.2.2 The pair-to-pair relationships (Y ,,Y)-to-(a,, @,) and (Y,,Y;)-to~(a;,
a,)

The formula (2.3-4) and (2.3-5) for the 4™ and 5™ principal components are:
Y, =0.28868/, +0.57735,-0.28868 I, -0.28868 [, +0.57735 [,-0.28868/,

Y, =-0.50+0.5l,,-0.51, +0.5,

The procedure of the analysis for identifying the relationship the relationships

((Y,,Y)to(a,, @,) and (Y,,Y)-to-(a;, a,) is the same as in the discussions in
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the previous section (Section 7.3.3.2.1). However, the results are slightly different

from the previous section. The detailed discussions are as follows.

The basic relationship of (Y ,,Y;)-to-(a,, a,)

To show the relationship more clearly, it is assumed that a;= 0, a,= 0, a;= 0, and
Im = 150. The relationship (Y ,,Y)-to-(«,, @,) based on this assumption is called
the basic relationship of (Y,,Y)-to-(a,, a,). The Figure 7-11 shows the basic

relationship of (Y ,,Y ;)-to-(,, @, ) using the sample data.

(a) The sample data

distribution in the
principal component.

plane Y ,-Y;

(b) The sample data
distribution in the-
6., —p,; coordinate-

plane

Increment of o

Polar angle 4,5
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_(c) The relationship

between p, and @, | 1.
Pas 1

shown by using the

sample data

(d) The relationship- |~~~

between 0, and a; |2 =09924 -07586
R'=08979

shown by using the

sample data- I - 2

Polar angle 0 45

Figure 7-11 the relationship between (Y ,,Y ;) and (a,, a, )

In the principal components plane Y ,-Y., the sample data distribution (Figure 7-
11(a)) s similar to Figure 7-6(a) which has been discussed in the previous section.

The sample points in the principal component plane Y, -Y , are arrayed in a family of

closed concentric curves, which cross with a family of curves from a centre point,

radiating outward. Around the closed curves (6, ), the anti-clockwise direction is the
increment of the variable «, and the radius of the closed curve (p,,) increases with

the increment of the variable «,. However, the closed curves in Figure 7-6(a) are

more like circle. Here, in Figure 7-11(a), the outside closed cure is more similar to a

triangle.
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Figure 7-11(b) shows the sample data distribution in the 8, —p,s coordinate plane. It
illustrates that the increment of @, is mainly in the direction of the p, axis. The

increment of @, is mainly in the direction of the 6 ,; axis. Here, 6 ,; = atan(Y,/Y,)

and p, = \/_Yj +Y52 For any given value of ¢, the value p,; is a wave. This
means that the sample data points corresponding to the same value of @, in the plane
Y ,-Y, are not on an exact circle. Also, the sample data points corresponding to the
same value of «a,, in the plane Y,-Y, do not have the same polar angle 6 ;.
Compared with Figure 7-6(b), the waves of the curves in Figure 7-11(b) are higher.

Figure 7-11(c) shows the relationship between p ,, and a, using the sample data. A

linear regression function was obtained.

a, =0.0242p,
Figure 7-11(d) shows the relationship between 0 ,; and «, using the sample data. A
linear regression function was obtained,

a, =0.9924 0, —0.7586

~0, - /4

Figure 7-12 the effect o on the relationship of (Y ,,Y ;)-to-(a,, @, )
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When the variable /m varies, the sample data distribution in plane Y ,-Y  is almost

the same as the distribution in Figure 7-11. This fact indicates that the results of the

above analysis are suitable for different values of /m.

However, when the variable « is given a nonzero value, the sample data distribution

in the plane Y ,-Y, is obviously changed. Compared with Figure 7-11, the closed

corves have a rotation (see Figure 7-12). The angle of the rotation is approximately

the given value of a,. This change is the effect of @, on the relationship of
(Y,.Y,)to(a,, a,). Figure 7-12 shows the sample data distribution in which a; is
given different values (-n/12, -n/24, 0, /24, ©/12). This figure shows that when «;

increases, the closed curves formed by the sample points in the plane Y ,-Y ; rotate in

the anti-clockwise direction.

The basic relationship of (Y ,,Y ;)-to(a;, a,)

To show the relationship more clearly, it is assumed that a,= 0, a,= 0, a;= 0, and
Im = 150. The relationship (Y ,,Y ;)-to-(a,, a,) based on this assumption is called
the basic relationship of (Y,,Y;)-to-(a,, a,). The Figure 7-13 shows the basic

relationship of (Y ,,Y ;)-to-(a;, a,) using the sample data.

(a) The sample data

distribution in the
principal component

plane Y ,-Y,
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~ (b) The relationship
between p,; and «, 1 4
shown by using the 084 =002 42p

a 061  RP=09697

sample data

3 044
0.2
0 ;
0 10 20 30 40
Pss

_(c¢) The relationship
between 6., and @, e B
hown by using - (.=1.00160+2.355
t
shown by using the R1=00978 41
sample data v
=3
l T —
4 2 0 2 4

045

Figure 7-13 the relationship between (Y ,,Y ;) and (a;, a,)

Figure 7-13(a) is the sample data distribution in the plane Y ,-Y,. It is similar to
Figure 7-11(a), but if a,= 0, the corresponding polar angle is -37/4 instead of n/4.

The difference between -37/4 and ©/4 is .

Figure 7-13(b) shows the relationship between p ,; and a, using the sample data. A

linear regression function was obtained,

a, =0.0242p
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Figure 7-13(c) shows the relationship between 6 ,, and a, using the sample data. A

linear regression function was also obtained,
a, =1.0016 0, +2.3556
~0, +3n/4
Comparing the situation shown in Figure 7-13 with that shown in Figure 7-11, it was
found that the relationship «,-to-p,; is almost the same as «,-to-p,,, but between
the relationships a,-t0-0,; and a,-to-6,, there is phase difference (approximate
).

When the variable /m varies, the sample data distribution in plane Y ,-Y, is almost

the same as that in Figure 7-13(a). This fact indicates that the above analysis is

suitable for different values of /m.

However, when the variable ¢, is given a nonzero value, the sample data distribution
in the plane Y ,-Y  is similar to Figure 7-13, but the closed curves have a rotation. In
aspect, it is similar to the discussion on Figure 7-12 and, hence, will not be repeated.
Synthetic analysis

The (Y,, Y,)-to-(a,, a,) relationship under the condition a,= 0 and a,=0 is
called the (Y,, Y,)-to-(a,, a,) basic relationship. The (Y,, Y;)-to-(a;, a,)
relationship under the condition a, =0 and a,=0 is called the (Y,, Y;)-to(a;, a,)
basic relationship. It was found that when both of (a,, a,) and (a;, a,) are not
(0,0), the relationship between (Y,, Y;) and (¢,, ,, a,, a,) can be expressed by
the combination of these two basic relationships.

To show the relationship more clearly, Figure 7-14 shows the sample data distribution
in the plane Y, -Y ;. This sample data includes three data sets:-

(a,, a,, a;, a,, as,Im)| a;=0, «,=0, a;=0, Im =150},

{(a,, a,, a;, a,, a5, Im)| a,=1/4, a,=0, a, = /12, a;= 0, Im = 150} };

{(a,, a,, a,, a,, as,Im)| a;=1/4, a,=n/4, a,=1/12, a;=0, Im=150}.
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If ay= n/4, the centre of the circle corresponding to @, = n/12is moved on to the

circle corresponding to « = m/4, instead of being at the origin of the Y ,-Y ;plane. It
should be noted that there is slight a difference between the two small closed curves

corresponding to ;= n/4 and a, = n/12 in Figure 7-14. However, these two closed

curves are approximately the same as the small curve corresponding to a;= 0 and
a,=n/12 in Figure 7-13(a). Hence, the relationship between (Y, Y;) and (a,, @,,
a,, a,) can be approximately expressed by the combination of these two basic

relationships.

Figure 7-14 The combination of the basic relationships

Y, Y,)to(a,, a,)and (Y,,Y)to-(a;, a,) shown by the sample data

Figure 7-15 illustrates the combination of the basic relationships using vectors. If the

values of (a,, a,) are given, the values of (Y,,Y) can be determined by the basic
relationship (Y,,Y)-to-(a,, a,). The values of (Y,,Y) can be expressed by a
vector. This vector is denoted as v ., (@, , @, ). Also, if the values of (a;, a,) are
given, the values of (Y ,,Y,) can be determined by the basic relationship (Y,,Y)-

to(a;, @, ). The values of (Y ,,Y ) can also be expressed by a vector. This vector is
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denoted as v 5,3, (a5, @,). Therefore, the relationship between (Y,,Y;) and (a,,

a,, a,, a,) can be approximately expressed by
XY,.Y)=v,(a,a,, a; a,)= v(45,b12)( a, )tV (as, a,)

Here, v (a,, a,, a,, a,) is a vector expression of the values of (Y,,Y ) which is

determined by («,, @,, a;, a,).

Ys
Visspi ( a.a: )

7 Vi (asa)

Y

Vs ( a.a: aa,ad

Figure 7-15 the vector expression of the combination of the two basic relationships

It should be noted that the above vector expression is an approximate expression
which results from the sample data analysis. However, the accuracy of the expression
is not given. In this project, the accuracy of the expression is not very important. The

important result of the analysis is that the qualitative relationship between (Y ,,Y)
and (a,, a,, a;, a,) is identified. That is, there are two closed curve families in the
plane Y ,-Y , which are Type 3 curves discussed in Section 6.3.2.2. If the values of
(a,, a,, a;, a,) are given, the values of (Y,,Y ) can be determined by the cross
point of the two curves in the plane Y,-Y,, from the two curve families. This

important characteristic can be used to build up a numerical algorithm to search the

value of (a,, @,, a,, «,), which will be discussed in the next chapter. In the
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algorithm, the approximate vector expression of the relationship can be used to set

initial values.

If the positional variables a5 and Im are fixed, it is known that any given values of
(a,, a,, a,;, a,) can determine the values of (Y,,Y ). However, given values of
(Y,,Y) cannot determine values of (, , ,, a;, a,). In other words, a given vector
vs(a,, a,, a;, a,) corresponds to a set of values of (a,, a,, a,, a,).
Geometrically, this set of values of («,, a,, a,;, a,) corresponds to a set of

geometrical statuses of the top platform. The following discussions are an

approximate geometrical explanations for given values of (Y,,Y ) in some particular

situation.

Situation 1, [v ,, (a,, a,, a;, a,) =0,e.g (Y,,Y,) =(0,0)]

In Situation 1, if (a;, a,)=(0, 0), it is known that (a;, a,) = (0, 0). Geometrically,
this corresponds to the status that the M-bar is perpendicular to the platform and the

base.

In Situation 1, but («,, a,)#0, 0), the discussion is as follows.

* According to the basic relationship (Y,,Y;)-to-(a,, @,), it is known that if
a, A, say, a,; = a,, there is a nonzero vector v ,,,, (@,, @, ) in the plane Y , -
Y, (see Figure 7-16(a’)). Geometrically, this corresponds to the status that there

is an angle between the M-bar and the z-axis of the Base frame (see Figure 7-
16(a)).

* In addition, according to the basic relationship (Y ,,Y,)-to-( a;, a,), it is
known that if @, #0 say a,=a,, there is a nonzero vector v ., (@;, @,) in

the plane Y,-Y (see Figure 7-16(b’)). Geometrically, this corresponds to the

status that there is an angle between the z-axis of the Platform frame and the M-

bar (see Figure 7-16(b)).
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In Situation 2, if (a,, a,) = (0, 0), it is known that @, # 0. According to the basic
relationship (Y ,,Y)-to-(a,, «@,), it is known that there is a nonzero vector
Vs (@), @, )=1_1 s -n.the plane Y ,-Y (see Figure 7-16(2’)). Geometrically, this

corresponds to the status that the M-bar is perpendicular to the platform but there is an
angle between the z-axis of the Base frame and the M-bar (see Figure 7-17(a)). The
status of the platform correspondingto v,s (@,, @,, a;, a,) = v s and (a,, a,) =

(0, 0) is called the centre status of v, (a,, a,, a;, a,) =V ,.

For the situation v,, (a,, a,, @,, @,) = v, # 0 and (a;, a,) = (0, 0), the
discussions are based on the centre status of v, (@, @,, @5, @,) = v ;. Here, the

situation based on the centre status where «, is fixed and «,is changed will be

discussed.

Based on the centre status of v,; (¢, @,, a;, a@,) = v, if a, is fixed and «a,is
changed, it is known that the length of the vector v ,5,,,, (@, , @,) in the plane Y ,-Y ;

will be changed, but the direction of the vector v, ,,, (e, , @,) will not be changed.

If a, increases (Ac,), then v, (@, , @,) will become v 5T Vs (A, @)
(see Figure 7-17(b’)). According to the combination of the basic relationships
(Y, Y;)to(a,, a,) and (Y,,Y;)to-(a;, a,), it is known that if a,=Aa, and
a,= a,,then v 4, (a;, @,) 2V 5,0, (Aa,, a,). Thatis, if a;=Aa, and @, = a,,
then v s (@, @,, @3, @) EVspny (A1, @)t Vispa0 (a5, @)Z V45

Geometrically, this corresponds to the statuses of the platform, in which the angle
between the actual M-bar and the M-bar of the centre status equals the angle between
the z-axis of the Platform frame and the M-bar. Also, the plane formed by the actual

M-bar and the M-bar of the centre status and the plane formed by the z-axis of the
Platform frame and the M-bar are in one plane (see Figure 7-17(c)).

Generally, given v (@,, @,, @5, @,) = v 5, the corresponding geometrical status of

the platform can be approximately viewed as that the platform tilts from the centre
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status of v, = v ,; outward with the same angle as the angle between the actual M-

bar and the M-bar of the centre status. Although much further discussion is possible,
this section has its purpose to approximately illustrate the relationship between the

values of (Y,, Y,) and the corresponding geometrical statuses. Although further

discussion is possible this section has now served its purpose to illustrate two of the

important structures

Conclusions for the relationship between (Y ,, Y) and (a,, ,, a;, a,):

e Generally, the principal component pair (Y,, Y,) mainly relates to the position

variable pair (o, a,) and (a,, a,).

e Any given vector v, in the principal component plane Y ,-Y . can be viewed as a

combination of two other vectors v s ,,,,and v .5, that is,
Y, Y)=v,(a,, a,, a,, a,)= V(45,b12)( Q,, a,)+ V (45 b34) (a,, a,)

Here, the vector, v ,,,,,( @, @,), is determined by the basic relationship(Y ,,
Y,)-to-(a,, a,) and the vector v ,,,.,, is determined by the basic relationship

(Y4: Ys)'to' (a3’ a, )

e The geometrical meaning of a vector in the principal component plane Y ,-Y ; can

be approximately interpreted as a set of platform statuses. Every vector value
corresponds to one set of statuses. Every one set of statuses has one centre status.

Around this centre status, the platforms tilt from the centre status outward.

7.3.3.2.3 The relationship between the relative change of (a,, a,) and the relative

change of (Y,.,Y5)

It is known that the position of the M-bar can be determined by the variables (a, «, ).
It is also known that the basic relationship between (@, «,) and (Y,,Y,) can be

expressed by a closed-curve family as shown in Figure 7-11(a). However, if the

position of the M-bar is changed, the positional change of the M-bar relative to its

previous position will cause a change of (Y ,,Y ). Because of the requirement of the
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If the M-bar moves from (@, =0, a,=0) to (a,= «,,,, @, = a,, ) (see Figure 7-18 (a)),
there is a vector v, in the Y ,-Y; plane corresponding to the new position of (a,=
a,,, a,= a,,) (see Figure 7-18 (b)). If the M-bar moves from (a,= ¢,,,, @,= @,,,)
to (¢,= «a,,, a,= a,,), there is a vector v, in the Y ,-Y plane corresponding to
the new position a,= «,,, a,= a,,. Based on the basic relationship (Y ,,Y ;)-to-(e,
a, ), the values of vectors v, and v, can be determined by the values (a,,,, @,,,)
and (a,,, «,,) respectively. However, the relationship between the positional
difference (a,,, @,,) -(@,,, @,,) and the vector difference v ;.= v ;5. - V 45, has not
yet been discussed. Here, a new frame and new variables, which are used to measure

the positional difference, introduced as follows.

Once again, referring to Figure 7-18(a), the M -Frame is defined by the M-Frame in

which the M-bar is at the position ,= ,,,, @,= «,,,.

The variable a , is defined as the angle between the M-bar and the z-axis of the M -
Frame.
The variable . , is defined as the angle between the x-z plane of the M -Frame and

the plane formed by the z-axis of M-bar and the z-axis of the M -Frame.

Here the definition of the new variables a, and a , is similar to the definition of the
variables &, and «,, but the reference frame is the M -Frame instead of the usual B-
Frame. Therefore, the variables a, and 5_2 express the M-bar position relative the

M -Frame and the variables a, and «, express the M-bar position relative the B-
Frame.

Obviously, if @,,=0and a,,= 0 the relationship (Y,,Y)-to-(a ,, a ,)is the same
as the basic relationship(Y ,,Y)-to-(a, a,). In fact, if a,,# O the relationship
Y,Y 5)-to-(a . a ,) can be viewed as the combination of the relationship(Y,,Y)-

to-(a,,,» @,,) and the relationship (Y ,,Y )-to-(a I a , )- Because the discussion of

this combination is similar to the discussion of the combination of the basic

relationships (Y ,, Y;)-to-(,, @,) and (Y,, Y;)-to-(a;, a,), the details will not be
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repeated. Thus, here only the results of the analysis are given. If the differences Y, -

Y,,andY,,-Y,, aredenotedasY,, =Y, -Y,,and Y,, =Y, -Y,, respectively,

Sme

the relationship between (Y ,,,, Y5, ) and (a . a , ) can be expressed as follows.

Sme

_ _ 2 2
a,=00242p . =0.0067yY,. +Ys.

2 2
= 0.0067 \/(Y% -Y, ) +(Y,.-Y,,)

a,=09924 6,  —0.7586
~0 asme ~ T/4

=atan(Y s, /Y 4,. ) - /4

4me

YSe_YSm
=atan( ¥,,-Y,, )-n/4
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Chapter 8

The PCA Based Numerical Algorithm for a 6-6

Stewart Platform

Through the PCA based analysis, the relationships between the principal components
and the positional variables have been identified. Based on the relationships, the
principal components can be used to determine the values of the positional variables.
The PCA based numerical algorithm is an algorithm which searches the positional
variable values using given principal component values. Because every principal
component is a linear combination of the lengths of the six links, the PCA based
numerical algorithm is a numerical approach to obtain the values of the positional
variables using the lengths of the six links. For different assembly configurations, the
relationships between the principal components and the positional variables may be
different. Consequently, the numerical algorithms must also be different. The

following is a numerical algorithm for the case discussed in the last section.
8.1 The Top-level Framework of the Numerical Algorithm

Through the PCA based analysis, two one-to-one relationships have been identified.
Those are the relationship between the length of the M-bar (/m) and the first principal

component (Y, ) and the relationship between the angle 5 (&) and the sixth principal
component (Y ¢ ). By using these two one-to-one relationships, /m and «, can be
determined using the first or the sixth principal components (Y, or Y ¢ ) respectively,

if the other five of the six positional variables are known. Also, it is known that the

values of the positional variables a,, a,, a; and a,can be determined by the
principal components Y,, Y;, Y,, Y, if the variables /m and a are known.
However, any one of the positional variables «,, a,, a, and a, cannot be

determined by only one of the principal components Y,, Y,, Y,, Y,. Thus, the

numerical algorithm consists of three search blocks. These three blocks are; the block

for searching for the value of the variable /m, the block for searching for the value of
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[ START
v

[ Initialize the positional variables ]

Search for the value of the /m «—

v

Search for the values of the variable as

v

Search for the values of a1.a2,a3,a4

v

The errors <
Critical values?

+Y
END

Chart 2-1

the variable a, and the block for searching for the values of the variables «,, «,, a,

and «a,(see Chart 2-1). At the beginning of the search, every positional variable is
given an initial value. There is no special requirement for the initial values in this
algorithm, as long as the given initial values are in the range in which the
relationships are identified. During the computing simulation, the initial values were
given by a,= a,= a,= a,=a,= 0 and Im =150. After initialising the positional
variables, the corresponding initial principal component values can be obtained.
Therefore, the algorithm decides its searching directions based on the difference of the
principal components between the initial values and the given values. In this
algorithm, three searching blocks work in turn until the errors of all the positional

variables a,, @,, a,, a,, a, and Im are less than previously given critical values. In

this algorithm, the critical values of the errors are based on the principal component

values. That is, if one of the differences between the given values of the principal
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components and the obtained principal component values is greater than the

corresponding critical value, the obtained values of variables a,, «,, a,, a,, a, and

Im become the new initial values for the next search loop. In fact, every searching
block has its own critical value or values. When a block stops searching, the searched
result output will meet the accuracy requirement. However, after the next search
block output a new result, the principal component value corresponding to the
positional variable output by the previous block, may be changed. So when the main

search program checks the critical value, the positional variables «,, a,, a,, a,
meet their critical values, but a, or /m may not meet its critical value. If this is the

case, the main search program will continue searching. It should be noted that this
algorithm is for application to a stepwise robotic positioning system. Hence, the
critical value setting should be based on the accuracy requirement of the measurement
and the relationships between the principal components and the positional variables.
In this case, critical values of every bottom level sub-algorithm are directly based on
the positional variable. This is because, during the search in a bottom level sub-
algorithm, the values of the positional variable in different steps of the search can
directly be used. This will be clearer after discussing the details of the sub-algorithm
in the next sections. However, at the main output of the algorithm, the critical values
are based on the principal components. According to the relationships between the
principal components and the positional variables, the measurement accuracy
requirement can be transformed to critical values of principal components. Here, it is

supposed that the allowable errors of the positional variables (a,, a,, a,, a,, a;,
Im) are (g,,¢,,8;,8,,€5, €,,). Also, the given principal component values are Y,
Y,,Y,,, Y, , Y, , Y,  According to the regression functions which has been

20 30>

described in Chapter 7, the critical values are given as follows:

Y1,-Y, [<e

Im?

Y 6,-Y | <76,

2 2 2 2
|\/Y20+Y30 -\Y, +7Y, [<149¢,

latan(Y ,,/Y ,, ) - atan(Y ;/Y , )I<e,
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2 2 2 2
|\/Y4o +¥s, '\/Y4 +Y; [<4e,
latan(Y 5, /Y ,, ) - atan(Y 5/Y , )I<€,
The two one-to-one relationships have the property such that if the principal

component (Y, or Y, ) increases, the corresponding positional variable (Im or a,)

increase. Therefore, an algorithm for searching the value of a single-variable

increasing function can be used to search the values of the variables /m and a;
respectively. However, to search the values of the positional variables («,, a,, a;,
a, ), a special algorithm needs to be given. The next two sections are the details of the
above algorithms.

8.2 An Algorithm for Searching for the Value of a Single-variable

Increasing Continuous Function

It is generally assumed that a single-variable, increasing, continuous function is y =

f(x). Here, y is a dependent variable corresponding to the positional variable /m or a

(Positional variables Im or as)
y 4
L/ y=H(x)
Yupper
(yupper +yinf)/ 2
yo
Yinf |
>
Xinf X0 Xmedium Xupper X
(Principal components Y: or Ys)

Figure 8-1 A single-variable, increasing and continuous function

in this case, and x is an independent variable corresponding to the principal

132



component Y, or ¥ in this case. It is also assumed that the inverse function x =

-1
f (y) is computable. When the independent variable x is given a value x,, the

dependent variable y should have a corresponding value y,= f{x,). The problem is

how to obtain the approximate value of y,, when x, is given

In this algorithm, a closed interval [y ., y,,... ] along the y-axis is applied (see Figure
8-1).

Y€ [Yirs Yupper 1 1€ Yig £ Vo <Y ypper » the closed interval [y -, v, ] can be split
into two closed intervals [y, (Vir  Yupper V2] a0d [V i Y ipper /2, Y upper | The
value y , must be in one of these two closed interval, say v, <y, <Y ¥ Y upper J/2-
Then this closed interval is denoted as a new [y, ¥,,,.. |- This process cuts off half
of the closed interval [y, ¥,,. ], and y, is always in the remaining new closed

interval [y ., J. This process will continue until the valuey ., -y, 1s less than

Yy upper

the given allowable error. The details of the algorithm are as follows.

Firstly, the dependent variable y is given two different initial values y,<vy,,,,, then

the two corresponding values x ., X, (X,r <X, ) can be calculated by using the

-1
inverse function x=f (y). At this moment, there are three possible situations (case

1,2,3).

o Case 1: One of the values of x ., x equals the value x,, say x, = x,. The

upper
corresponding value y, = f{x ;) is the solution, i.e. y, = y,. In this situation,

the algorithm stops the search and outputs the search resuit.

e Case 2: The values of x,, and x do not equal the value x,, and x, ¢ [x,

upper

X ypper ] (L€ X e <X <X OF X< X, <x,. ). Correspondingly, the value of y is
YO ¢ [me 3 yupper] (le me <y upper <YO or y0<yinf <y upper ) In thlS Situation) the
interval [y, ¥,,. ] should be expanded, so that y, can be finally in a new

interval [y ., ¥, ] In this algorithm, the length of the interval is doubled each

time' If X inf <x upper <X 0 then y inf (new) 6y inf a‘nd y upper (new) 6y upper +(y upper -y inf )
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If X 0 <x,inf <x upper * then y upper (new) 6y upper a‘nd me (new) ey inf -(y upper _yinf ) Then
Yinr (newy 15 denoted asy . andy,, .. .., is denoted asy, . . Then, the algorithm

loops to the start point to calculate the values x, . and x,,,,, .

e Case 3: The values of x,; and x do not equal the value x,, but x, e [x,;,

upper

X uoper ] (1€ Xie <x<x,..). Correspondingly, the values of y are y, e [y,

upper

Y upper 1 (L€ Y iie <Y 0 <Y upper )- In this situation, the new value of y is given by

Y tnew) =C Yint T ¥ upper /2 and the corresponding value of x, x,,,, is computed by

-1
X ey = (Y (newy ) I X (o) <X, then y .., is denoted as y . If x,,,,>X,, then
Y (newy 18 denoted asy, . Then, the algorithm loops to the start point to calculate

the values x,; andx, ., .

After an initial interval [y, ] is given, the above process will continue until the

Yupper
value y, .. -Y.is less than a critical value. There is no special requirement for

setting the initial interval. As long as, the initial interval is in a range, in which the
relationship analysis has been carried out, the algorithm will be convergent.
Therefore, the initial interval can be chosen randomly. In this case, the regression
functions that have been obtained during the relationship analysis can be used to set

the initial interval, so that the initial values y, . andy,,,. are likely to be closer to the

solution y, than that which was randomly selected. It should be noted that the

regression function that has been obtained during the relationship analysis is

approximately true for all positional variable values (a,, «,, «,, a,, as, Im).
However, it is not exactly true for particular values of the positional variables (a,,
a,, a,, a,, asIm). For example, during the data analysis, the relationship between
the positional variable /m and the principal component Y, has been analysed. The

regression function obtained was (Chapter 7)

Im=0.4134Y |, — 4.2645

It approximately expresses the relationship between /m and Y, for all values of «,,

a,, a;, a,, a,. However, for different values of «,, «,, a,, a,, as, the actual
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relationships between Im and Y, are different (see Figure 8-2). The regression

function is an approximate expression of the relationship between the variable /m and

the principal component Y,. Therefore, the regression function cannot directly

determine the actual value of /m, but it can be used to give an approximate value of /m
as an initial value. Because the algorithm needs an initial interval, it needs two initial
values. The following shows how to use the regression function to set the initial

interval of /m. If the principal component Y, is given a value, say Y, . The estimated
value Im = 0.4134Y | ,— 4.2645 can be obtained. Normally, this value Im , is not the
solution /m , because the regression function is only an approximate function that has

an estimating error (see Figure 8-2).

Actual functions
Im1 for different Regression function
. IMupp =IMini values of a:-as , /
Yiuop =Yiini *, » Actual function
Jupp \X‘ 7 _for particular
Yieg= Y1ini=Y1o = ™, P
minile — — — — — — aras
Imo EPFm———m— e — =
‘lminf
I
| I
R
, .
| I I
7 | I
I .
| I |
.
| I
l ! I 5
(Yiini=Y10) Yio Yiini Y:

Figure 8-2 the functions for different values of (o, @,, a;, a,, a;)

It is known that if the positional variables (Im, «a,, «,, a,, a,, o) are known,

the principal components can be obtained easily. Hence, after obtaining /m_, the
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principal component value Y, can be easily computed. If Y,,.> Y, , it means that

Im . >Im . Inthis situation, /m is given the value of Im ., i.e.

upper

and Im_; is given by
Im . =0.4134[Y ,,+(Y,, - Y,,,)] — 4.2645

fy, <Y

lini lo>

it means that /m,, <Im_ . In this situation, Im_, is given the value of

Im_ie.

ini?

lmmf=lm

ini

and Im ,,, is given by

Im, . =04134[Y, +(Y,, -Y, )]-42645

upper
Summarising the above two cases, the initial interval can be set by

0.4134[Y,, +(Y,, - Y, )]} —4.2645

lo>

Im . = min{0.4134Y

Im, ,=max{0.4134Y 0.4134[Y +(Y,,-Y,. )]} - 42645

upper

The following is the flow diagram of the algorithm for searching the value of a single-

variable, increasing and continuous function.

Start

Initialisation of the interval of y: [y ¢, ¥, ]
Loop

-1 -1
Calculation of the value of X, =f (y ), x,,=f (V¥,,)

Case 1 (- X )Xo~ X, )=0
Ifx,=x, ., theny, €y,
Ifx,=x
End

Case 2 (X~ X ¢ (X~ X, 0

Ifx0<xinf’ thenYinfeyinf_(yupp-yinf)

theny, € Y unp

upp >
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Ifx0>xupp’ then)’upp-6 Yupp+(Yupp-Yinf)
Case 3 (x- x ;¢ )(X,- X, )<0

Ifx0<(xmf+xw)/2, thenyupp(- (ymf+yw)/2

Else Yfo(-(me+Yupp)/2

Ifly,, -Vl <¢, theny, € (y,+vy,, )2 End

ElseYinf 6 (me+YMpp)/2

End Loop
End

Here, € is a critical value. The variable x corresponds to the principal component (Y,

or Y,). The variable y corresponds to the positional variable (/m or a;). Function

-1
f () corresponds to the calculation for the inverse problem solution. The symbol,

‘€’ means ‘is given a value’

8.3 Algorithm for Searching for the Values of the Positional Variable
a, a,, a, and a,

Searching for the values of the variables a,, a,, a, and a by using the values of the
principal components Y,, Y,, Y, and Y, needs to make use of the relationships
between (@,, a,, a,, a,) and (Y,, Y;, Y,, Y,), which have been discussed in
Chapter 7. It is known that the relationship between (@,, «,, a;, @,)and (Y,, Y,,
Y,, Y,) can be expressed by two sub-relationships. These are the relationship
between (Y ,, Y,)and (a,, «,, a;, a,) and the relationship between (Y ,, Y;) and
(a,, a,, a;, a,). The value of (a,, a,, a;, a,) cannot be determined by use of
only one of these two sub-relationships. To determine the value of (,, a,, a,, a,),

these two relationships need to be conjunct. Here, two, two-dimension planes (the

planes of Y,-Y,, and Y,-Y), in which the two relationships can be expressed

graphically, are used to explain the search algorithm.

8.3.1 The Framework of the Algorithm for Searching for the Values of the

Positional variable a,, a,, a, and a,
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If the principal components (Y,,Y,, Y,, Y,) are given any constant values (I_’ -
Y., Y ., Y ) respectively, the vector variable v, in the planes of Y,-Y, and the
vector variable v ,; in the plane Y, -Y ; respectively are known (see Figure 8-3 (al)

(a2)),1.e.v,, =y 5, Vas=V .. Here, v ,, and v ,; are known values of the vectors vy
and v, . The vectors v ,, = (Y - Y ,)and V= 4,1_’ ;). Here, the vector v,, =v ,;

in the plane of Y,-Y, can be viewed as a combination of two vectors v n =
Vipiny (@1, @) TV 05450 (as, @) (see Figure 8-3 (b1)). The vector v ;5 (@, @,)
is determined by values (a,, @, ) based on the basic relationship between (Y ,, Y,)-
to-(a,, a,), which have been discussed in Chapter 7. Also, the vectors v ,, ., (a3,
a,) is determined by (a,, @,) based on the basic relationship between (Y ,, Y, )-to-
(a;, a,), which have been discussed in Chapter 7. There are many different values of

(a,, a,, a;, a,) that satisfy the equation v ,; = v ;15 (@), @;) T V35 (@5, ).

Geometrically, the vector v, =y ,;» approximately corresponds to a status set of the

platform (see Figure 8-3 (c1)), which have the same orientation but different centre

positions of the platform. The vector v, =v, in the plane of Y,-Y can also be
viewed as a combination of two vectors v a5 = Vs (A1, @) T Vs (as, a,)
(see Figure 8-3 (b2)). The vector v 45,1, (@;, @,) is determined by values (a,, a,)
based on the basic relationships (Y ,, Y;)-to-(@,, «,), which have been discussed in
Chapter 7. Also, the vector v, 3 (@5, @,) is determined by values (a;, a,) based
on the basic relationships (Y,, Y;)-to-(a;, a,), which have been discussed in
Chapter 7. There are also many different values of (a,, a,, a,, a,) that satisfy the
equation; s = Vs (@, @) T Vs (a;, a,). Geometrically, the vector
v 45=\_) +s approximately corresponds to a status set of the platform (see Figure 8-3
(c2)), which have different orientations and different centre positions of the platform.

The problem is how to find a value (a’,, a’,, a’;, a’,) of the variable (¢, ,, a;,

a, ) to satisfy the equations simultaneously,
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Vo3 T Vs (@,,a,)+ v(23,b34)(a s, a’y) (2.4-1)

(2.4-2)

Vs =Vaussiny @), @'0) T Vs (@’ a’y)

Here, v ,; and v, are any given constant vectors v = (Y ,,Y ;) and v ,=

Y ., Y.
Y. YA oo
’ 1/ @
Pas
/ Vs =;’45
Y. \\\ O
Y.
@2)v,=v,
paN Y
e \‘\\ -~
~ ~
b T \vmiady
\ - " s
/ \‘\ - Vs =Vhs . \
\ AR \
{ ) / ] !
| | //' N\ /'
Y: - \ /
\ / / VaspialQaz) /
,\/ ;" S~ "‘.//
VAN ; i
/ | P
! \ /
‘\ \\ /’I
A \
\ /
N y
e o ///
I I

Base

(c1) status set of v, =v ,, (c2) status set of v, =

Figure 8-3 The situation where the principal components (Y ,,Y,, Y,, Y.) are given
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Geometrically, this problem is equivalent to finding a status that belongs to the two
sets of the status of the platform in Figure 8-3 (c1) and (c2).

Corresponding to equations (2.4-1) and (2.4-2), the vectors v ,,, (@, a’,),
Vs (@, a’,) and v x are shown in Figure 8-4(al) and the vectors v 4., (a’),
a’,y), Vs (@'s,a’y) and v «-are shown in Figure 8-4 (a2). The basic idea of this
algorithm is as follows.

Firstly, it gives a value of (@, @,, a;, @,) as an initial value to meet equation (2.4-
2) but may not meet equation (2.4-1). Correspondingly, the initial value of v ., is v,
but the initial value of v.,, may not be ;23 , (See Figure 8-4 (al) (a2)),

It then finds a different value of (a,, a,, @, a,) but the value still meets equation
(2.4-2) and is nearer to meeting the equation (2.4-1). Correspondingly, the new value

of v, is still v,, (see Figure 8-4 (b2)), and the new value of v.,, is closer to ;723 than

the previous value (see Figure 8-4 (b1)). This procedure repeats until the value of

(a,, a,, a;, a,) is ‘very close’ to satisfying equations (2.4-1) and (2.4-2).
Correspondingly, the values of v, are always {)45 , and the new values of v,, are

closer and closer tov ,; (see Figure 8-4 (¢)).

Y, v
l wsso(a’sa’s)
Initial value of V:z‘!l Vess(a'sa’s
\E v«s.uz)(a na ) //
| ﬂ ,/‘/ Vs
Y. Y
wssig(a’s,a’s) Initial value of Ves(=Ves)
Var
Solution
(al) (a2)
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To continue the search, the vectors v,, corresponding to the centre status of v ,,=v

is denoted as v, v,,.= (Y ,,,Y ;. ) (see Figure 8-5 (b1)). Also, the relative positional
variables a |, a,, a ;and a .» which were introduced in Chapter 7 are applied.
Here, the relative position is the position relative to the centre status of v ,=v .. It is
known that if the tilt angle (5 , ) of the M-bar relative to the M-bar of the centre status
of v45=; « is fixed and the tilt direction (a ,) of the M-bar relative to the centre
status varies (see Figure 8-5 (a)), the end of the vector v ,,,,, (@, , @,) will be in a
circle (see Figure 8-5 (b2)). To keep v, = v ,;, the vector Vaseaay (@3, @) should be
from the end of the vector v, ,,,, (@, @,) to v 45, that is, from a point on the circle
to the end of the vectorv ,, . In this situation, the vector Vspiny (@), @,) obviously
equals v st v(45,b12)(c_1 ' a 2), and v (@;, a,) equals v 4,0, (a 3 a 2 )-
Similarly, when a, is fixed.and a , varies, the vector v,, in the Y,-Y, plane will
also be changed. In this situation, v,; = v, + ¥ 5,5 (a,, a,+ v(mw)(a s, a,),
Vasey (X1, @3) =Vt "(230,1712)(5 1 a,)and Y epsny (& 5, @ 4) = v(zze,b34)(‘_7 3>

a .), (seeFigure 8-5(b1)).

The searching procedure is as follows. Firstly, -a . is fixed, and a , is given different
values. For any given value of a ,, there is one pair of values (a 3s a . ), which meet
the equation v =v . For different given values of a ,, there are different
corresponding pairs of values (@ 3 a . ), which satisfy the equation v , =y 4 but have
different values of v,,. The value of ( a - a 2,5 3 a ) corresponding to the vector
v, that is the closest to v 5, , is the result of the first step of the search. In the second
step, a , is fixed, and a , is given different values. For any given value of a | » there
is one pair of values (a ,, a ), which satisfies the equation v, =v . For different
given values of a ., there are different corresponding pairs of values (a 3 a 4 )s

which satisfy the equation v =v ,; but may not satisfy the equation v,,=v,,. The
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value of (a s a ) ,a 35 a . ) corresponding to the vector v, that is the closest to v ”

is the result of the second step of the search. Then, a , and a , are in turn fixed in the

following search steps until a solution is obtained.

B-Frame

M-bar of the Centre Status

z

M-Frame of the centre status

7

(a)
Yit Ys T Viaseasol @, as)
l/ 4'/‘(“\ - -
| \ Nassz( @1, d2)
The vector corresponding to {} The vectar corresponding to \ ,
the centre status of Vas=Vas the centre status of Vas=Vas Vis -
\ S~ («sgm(a:, az)
"~
Y.
V(Be.bsa)(al, az) —
o V=V
//-_
/ Vo _ Y.
! Vs (Y.Y2)
(\Yz:’.Yzc) T V(&,az«)(a_z,zd)
v Veseo(a, @)
®D (b2)
Figure 8-S

The following is the flow diagram of the main program for searching for the values

a,,a,, a,, and

a,.

Start

Calculating the values («,, a,, a;, a,) corresponding to the centre status of

Vs =v ., and then calculating the value of v e

If v,, = v ,; then End

Endif

Initialising the variables a , and a ,, and searching for the value a;,a o
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corresponding to v , =y 45» and at the same time obtaining the value of v,
Loop

Searching a , (a , is fixed)
Searching a . (c_z , 1s fixed)

If the value of A v, is less than the critical value then End

Endif
Endloop

End

In the above diagram the task of ‘Searching a , is taken by a sub-program. During
the process of ‘Searching a ,’, every step search needs to call a sub-sub-program
once. This sub-sub-program is for searching for the value of (a ;, a . ) corresponding
to v, =V s, and at the same time the value of v,, is updated. The process of

‘Searching a ,’ 1s similar.

- This sub-sub-program for searching for the value of (a5, a ., ) corresponding to
v,s=V 4 will be discussed in Section 8.3.5.

Through the above flow diagram, the framework of the algorithm for searching for the

values of the variables (a,,a,,a;,a,) has been constructed. In detail, two problems
still remain. The first problem is how to obtain the value of (a,,a,,a;,a,)
corresponding to the centre status of v =v 5, and at the same time, how to obtain the
vector v,, corresponding to the centre status of v =v .. The second problem is how
to search for the values of a, and a, if the vector v,, corresponding to the centre
status of v, =v ,, does not equal v ,;- The second problem can be split into two sub-
problems. One is how to initialise the variables a , and a , to start the search around

the centre status of v =y 15 - The other is how to search for the values of a , and a )

in the two sub-programs. The following sections discuss these problems.
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8.3.2 Searching for the value (a,,a,,a,,a,) corresponding to the centre status

of v =V

It is known that &, = 0 and a,=0 according to the definition of the centre status of
Vs =v ,, . Hence, the task becomes a search for the values, (a,,a,), corresponding to

the centre status of v,;=v ;. Based on the basic relationship between (Y ,,Y,) and

(a,,a,), it is known that the variable «, increases with the length (p ,; ) of the vector

2 2
v, inthe Y,-Y, plane. Here, p.,, = \IYZ +7Y, . Also, the variable a, increases with
the polar angle (0 ;) of the vector v,; in the Y,-Y; plane. Here, 0,, =atan(Y,/Y>).
Similar to the discussion in Section 8.2, the values of «, and a, can be obtained by

using the algorithm for searching for the value of a single-variable increasing

continuous function. The programs for searching for the values of @, and @, will run

in turn until both the results for ¢, and a, have sufficient accuracy.

8.3.3.Initialisation of the relative positional variables a s a,,a 5 and a 4

After obtaining the value of (a,,a,,a;,a,) corresponding to the centre status of
V.=V .., the corresponding vector v, inthe Y,-Y, plane can also be obtained at
the same time. If v, £v,, the search will continue. Setting a good initial value of
(5 - a ) ,a 3 a . ) to enhance the performance of the search program is very helpful.
This work is based on the difference between v, and v .3, and is also based on the

knowledge of the relationship between (a ., a,, a5, a,)and (Y,, Y5, Y,, Y,)

that was obtained in Chapter 7,

Itis knownthatif a ,= a, and a ,= a ,, then,
VY (230,512) (a,,a,)=~ V (23¢.034) (a;,a,)

Y (45¢,612) (@, a,)~Vyspn(a,, a, )-
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Hence, if given v .41, (@, a,)=Av, /2and a,=a, and a ,= a ,, then the

VECLOr ¥ 3, + V(ysapiny (A1, @5) t Viyepaay (a3, @)~ vV 5 (see Figure 8-7)
Vit v(450,b12)‘('a 1> dy)t v(45c,b34)'(a 3, @4) ® Vs (seeFigure 8-6)

Here, Avy, = v 55- vy,

According to the basic relationship between (Y,, Y,) and the relative positional
variables (a ,,a ,) to let the value V 30p12) (a - a,)~A v.,./2, initial values of

a and a ,can be given an. approximate value by using the regression functions,

which were obtained in Chapter 7

a, =0.0067p ,,,/2

= 0_00335\/&2 -YZC)Z +(Y3 —Y3c)2
a, =1.001 6 ,, +3.9282

&0, +5n/4

=atan(Y , /Y ,,) + 5/4

?3 —Y3c
=atan( Ya-1,, )+ 5n/4

Here, p »5. 18 the length of A v, and 6 ,,, is the polar angle of A Ve Y ,and Y 3

are given values of Y, and Y, respectively. Y,  and Y, are the values of Y, and

Y , corresponding to the centre status of v =v ,, (see Figure 8-6).

After giving the initial value of (a . .a ,), a program for searching for the value of
(a, ,a . ) needs to be called. At this time, an initial value of (a,,a,)is required by

the search program. According to the basic relationship between (Y,, Y ;) and the
relative positional variables (a 3,5 . ), the initial values of a ;and a ,can be given

by.
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After running the program for searching for the value of (a ,,a . ), the value of v, is

also obtained. The difference between v, and v ,, is used to determine whether the

program for searching the value of (¢,, @,, a;, a,) should stop.

8.3.4 The sub-algorithm for searching for the value of a , and a 52

In the main program for searching the values of a,, «,, a, and a,, there are two
sub-programs. These are the programs for searching for the value of E, and for

searching for the value of a ,. There is a slight difference between these two
algorithms when initialising the searched values and outputting the search result. The
following is a detailed explanation of the algorithm for searching for the value of a )

and the flow diagrams of these algorithms.
The sub-algorithm for searching for the value of a , :

When a, is fixed and a , varies, geometrically, the M-bar has a constant angle
relative to the M-bar of the centre status of v ,, = v +s- Inthe Y,-Y, plane, the polar
angle of the corresponding vector, v ;5 (a,,a , ), varies and the length is fixed.
The objective of this search is to find the value of a , that lets the || [v - Vel -
[V 23012 (a,, a,)+ Y (23063) (a,, a,)]| value become the minimum. Now, the
polar angle of the vector sum, ¥ ,;_ 5, (a ' a,)+ Y 23¢.634) (a;, a,),is denoted as

0 and the length is denoted as p ,,, (see Figure 8-7). In this algorithm, if the

Bep

|0 5,—0 1., | value is less than a critical value, it stops the search. Since there is a

constraint v ,, = v .5 » based on the relationship between (Y ,,Y ) and (5 - a as a 3
a + ), it is known through Figure 8-5 that if the value of a , increases, the polar angle
Of ¥ 4scp12) (a,, a,) will increase, and consequently the polar angle of v(45c,b34)(5 3
a . ) and the value of a , will also increase. Consequently, based on the relationship
between (Y,,Y,) and (a - a - a 35 a . ), it is known through Figure 8-6 that the

value of 6 ,,,, will increase with the value of a , . Hence, the search algorithm for a
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single-variable increasing continuous function that has been discussed in Section 8.2
can be applied for searching the value of a ,. The flow diagram of the algorithm is

given as follows:

Start
Initialisation of the interval of @ ,: [a 5, @ 1, ]
Loop
Computation of the values 6 .o =F (@ 0}, 0 pay=F (@ a0y)
Case 1 (0 15,0 5, N0 3.6 35, )0
If 523C= € ome, then a , €& a pint
If 6 2= 0 5ap, then a , €& a 2upp
End
Case2 (0 ;.0 1,0 N0 1,0 5,,,)>0
6 ,<6,,.,, then a,, € a,. .- (a,,,-a,.)
If 6 136> @ Boupp> then a 2upp € a 2upp T (5 2upp - a pint )
Case 3 (0 5,0 3,0 X0 15,6 50,,)<0
X 6 ,,,<(6 ys+0 5epp)/2, thena, € (a,. .+a,,, )2
Else a, € (a, +ta,,)?
If|a 2upp a,.|<e, thena,€ (a,, +a 2upp /2, End Loop
Else a , € (a, +a 2upp )2
End Loop
Output Result
End

-1 _
Here f () is a function of a , for computing of the value of & ,,_,. There are three

steps in this computation: searching for the value of @ , and a , to keep v,, = v 55
transforming the relative positional variables (a,, a,, a;a,) to positional
variables (a,, a,, a,, a,), and calculating the link lengths and the principal

components by using (o, @, . a,, a,).
The sub-algorithm for searching for the value of a , :

The sub-algorithm for searching for the value of @, is almost the same as the

algorithm for searching for the value of a ,. The difference is at the initial value and
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the critical value setting, which is discussed in this section. The following is the flow

diagram.

Start

Initialisation of the interval ofa | : [a |, @ upp )

Loop
-1 _ -1 _
Computation of the values 6 ,, ;. =f (@ ), 0 5.,=f (a,,)

Case 1 (; Be™ P 2cinf )(; 8¢~ P Beupp )=0
If;230= P 20> then a, € ;ll'mf
p,=p Bapp> then a,€a

2upp

End

Case 2 (P 13~ £ ot P 2367 P 30O
If;23c< P yoinf s thena,mf(- ZIM-(E IW-Z]M)
If ; 130> P Beupp then a 1W(— a ugp+ (E tugp ™ a tin )

Case 3 (; 2¢™ P 2cinf )(; B¢~ P Boupp )<0
I 0 50.< (0 ot ™ P 5oy thena € (a . +a,,. )2
Else a, €(a, +a,,)?
If|a lupp ™ a,.|<e, thena, € (a, +ta 1upp /2, End Loop

Else a , € (a,, +a )2

End Loop
Output Result
End

1

Here f () is a function of a , for computing of the value of @ ,,_ . Once again, there

23¢p
are three steps in this computation: ‘searching for the value of a , and a, tokeep v,
=y .5 » transforming the relative positional variables @, a, a 3 a,) to positional
variables (a,, a,., ;. a,); and calculating the link lengths and the principal

components by using (o, , @, , a;, a,).

8.3.5 Searching for the values of a , and a . tokeepv, = v .;

If a and a, are given, there is a vector v s ., (a,, a,). At this moment, v, +

Vseriny (@), a,) does not equal v, . The difference, Av, ;= v - (vt
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v, 458’,,12)_(5 o a ,)), can be obtained see Figure 8-6. Then, based on the polar angle of
A v, , the variable a . can be determined and based on the length of Av,, the
variable a , can be determined. The variables @ , and a ,are in turn searched until
the errors of the variables a , and a , are less than critical values. The algorithm used

for searching for the values of a , and .a., is the same as the algorithm for a single-
variable increasing continuous function that has been discussed in Section 8.2. The

initial values of a ; and a , are given as

a,=a,

4 — 4,

Q|

in the search program.
8.4 Simulation and the Results

Simulation was carried out to prove the-feasibility of the algorithm given above. The

results of the simulation also present many advantages for robotic positioning.
8.4.1 Simulation

The computer hardware platform of the simulation is a PC (Pentium(r) II, 64.0M
RAM). The computer software platform of the simulation is MATLAB 5.3 with
Microsoft Windows 98. The parallel mechanism applied in this simulation is the 6-6
Stewart platform used through out this thesis (see Section 5.3.2). The simulations are
divided into two groups. One is used to prove the PCA based algorithm. The other
one is used to test the sensitivity of the positional variables to the link lengths. The

results of the simulation are as follows.
8.4.2 The results of the simulation
Result 1: Forward displacement

In this simulation, a set of given data for different values of (o, ,«,, a;, a,, a;, Im)
was used. The corresponding lengths of the links (/, /,,/;,1,,/,,1;) were directly
calculated using the different values of (a,,a,, a,, a,, a,, Im). The lengths of the

links (1, 1,,1,,1,,15,1¢) were used as the input data of the program for the forward
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displacement problem. The following table presents a part of the simulation results.
The cases in the table generally cover all situations, which were discussed in the

previous sections.

Table 2.4-1 Computational results of the PCA based algorithm

for the forward displacement problem.

Given | Lengths of the | Computational | Computational
positional links results of the errors of the
variables ‘positional positional

variables variables
1 Casel | a,=0 [, =158.6805 | a,=0.0000 e, = 0.0000
a,=0 1, =158.6805 a, = 0.0000 e, = 0.0000
a,=0 1,=158.6805 | ,=0.0000 e, = 0.0000
a,=0 1,=158.6805 | o, =0.0000 e, = 0.0000
a;=0 145=158.6805 a; ="0.0000 e, = 0.0000
Im= 150 1,=158.6805 | Im=150.0000 e, =0.0000
1 Case 2 a, = /8 7"11 =118.1035 | @,=0.3927 e, =-1.4466¢-005
| a,=0 1,=131.1300 a, = 0.0001 e, =0.0001
a,=0 1,=172.8063 | a,=0.0000 | e5=0.0000
a, - (—194.6343 | o, - 48793 e, = 4.8793
ca,=n/24 | 1s=1742601 | g =0.1309 es=1.0126e-005
| =150 | 1,=163.1960 | Im=149.9980 e, = 0.0020
{Case3 |a,=m4  |1,=950755 | @, =0.7854 e, =5.6663e-006
a,= | 1,-96.6688. | o, =0.0001 | e, =10.0001
a,= -1,=189.1721 a,=0.0001 e,=0.0001
a,= 11,=220.5079 | o, = 1.8002 .= 1.8002
as;=0 11,=1957616 | q.=-0.0000 | es= 0.0000
| tm=150 15=158.6805 | Im=150.0047 e, =0.0047
Case 4 a; = 1, =121.7470 o, =0.0002 { e, =0.0002
a,= ,=1508114 | g, =3.0588 e, =3.0588
a,= /8 1,=160.0633 | o, =0.3925 e ;= 1.5796¢-004
a,= l,=198.2987 a,= 62830 e, = 1.6976e-004
as=mn/24 [=183.6693 a;=0.1309 e =3.3740e-006
Im= 150 1 16=140:1572 | Im=149.9973 e, =0.0027
Case S a,=7/8 1, =127.4624 a, =0:3927 e, =3.1331e-005
a,= [,=173.0679 a, =0.0005 | e, =0.005
a,=T7/8 {1,=230.3368 | o,=0.3929 e,=-1.5765e-004
a,= 1,=280.7140 | o, =62831 e, =1.1614e-004
a,=mn/12 | 15,=247.4473 a,=0.2618 e =2.6292e-005
Im= 200 I4=187.1736 | Im=199.9988 e, =0.0013
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Case 6 a, = 1/8 ; =140.1036 | a, =0.3927 e, =3.8401e-005
a,=T1/2 1,=177.4804 a,=1.5706 e, =2.0764e-004
a,=m1/8 1,=159.5691 a,=0.3927 e, =3.6016e-005
a,=m 1,=139.2630 | @, = 3.1420 e ,=-3.9550e-004
a, = n/24 /,=164.2435 a;=0.1309 e =-1.0643e-005
Im=150 | 1¢=170:3095 | im=150.0013 e, =0.0013

The above table shows that the PCA based algorithm has a high accuracy. In this
simulation, the computational accuracy required that the angular errors are less than
0.001 radians and the error of the M-bar length is less 0.0lmm. All computational

results achieved the required accuracy. It should be noted that the error e, in Case 2

and Case3 is very large. This is because in Case 2 and Case 3, a, equals 0. In this
situation, ¢, is uncertain and normally can be defined as zero, so the computational

results of &, also satisfy the accuracy requirement.

Result 2: Impact of the errors of the links for the computation of the forward

displacement

The impact of the errors of the link lengths for the computation of the forward
displacement is very important for a positioning system. The following table only lists
the situations relative to Case 1 and Case 6 in Table 2.4-1. In these cases, it is
assumed that there are errors during the sensor measurement of the link lengths. Case
1-1 in Table 2.4-2 is similar to Case 1 in Table 2.4-1, but the measured length /, is 1
mm longer than the actual length. Case 6-1 in Table 2.4-2 is similar to Case 6 in Table

2.4-1, but the measured length /, is 1 mm longer than the actual length. Case 1-2 is

similar to Case 1, but the measured lengths /, and /, are 1 mm longer than the actual

lengths.
Table 2.4-2 The impact of the errors of the links
Link lengths Errors of the | Computational | Errors of the
| (actual lengths) | link lengths | results positional
variables
Case 1-1 | [, =122.5456 [, +1 a,=0.0071 e, =0.0071
/,=126.0806 a,=4.1752 e,=4.1752
[,=175.8401 a,=0.0071 e,=0.0071
1,=190.8935 a,=3.6901 e,=3.6901
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1,=177.7047 a,=-0.0053 e.=-0.0053
1,=158.6805 Im=150.1758 e, =01758

Case1-2 |/, =122.5456 |1, +1 a,=0.0099 e, =0.0071
, =126.0806 1,+1 | @, =3.4038 e,=4.1752
/,=175.8401 a,=0.0037 e,=0.0071
/,=190.8935 a,=3.1400 e,=3.6901
,=177.7047 { g =-0.0000 e, =-0.0053
1,=158.6805 Im=150.3527 e,,=0.1758

Case 1-3 | [, =122.5456 /, +1 a, = 0.0037 e, =0.0071
1,=126.0806 |[,+1 a,=3.9575 e,=4.1752
1,=175.8401 1,+1 a,=0.0037 e,=0.0071
/,=190.8935 | a, = 6.2686 e,=3.6901
1 1,=177.7047 | a3=-0.0053 | e,=-0.0053
| 16=158.6805 Im=150.5281 e, =0.1758

| Case 1-4 | [, =122.5456 [, +1 a,=0.0100 e, = 0.0071
l,=126.0806 [,+1 a,=4.4388 e,=4.1752
[,=175.8401 |{[,+1 a, = 0.0037 e, =0.0071
/,=190.8935 1,+1 | a,=3.1860 e,=3.6901
1,=177.7047 |-a; =0.0000 e,=-0.0053
| 15=158.6805 Im=150.7052  |e, = 0.1758

Case 1-5 | [, =122.5456 I, +1 a, = 0.0070 e, = 0.0070
| 1,=126.0806 1,+1 a, = 3.6551 e, =3.6551
1,=175.8401 | 1,+1 a, =0.0070 e,=0.0070

| 1,=190.8935 1,+1 a, = 26340 | e,=2:6340
1,=177.7047 Li+1 a,=-0.0053 e, =-0.0053
14=158.6805 Im=150.8807 e, =0.1758

Case 1-6 | [, =122.5456 I, +1 a, = 0.0000 e, =0.0071
/,=126.0806 l,+1 | a,=54978 e,=154978
[,=175.8401 | [,+1 a, = 0.0000 e, = 0.0000
/,=190.8935 1,+1 a, = 0.0000 .= 0.0000
[,=177.7047 |I;+1 a = 0.0000 e = 0.0000
1s=158.6805  |[4+1 Im=151.0575 e,,=01758

Case 6-1 |/, =140.1036 |/, +1 a, = 0.3863 e, = 0.0064
| £,=177.4804 | a,=1.5787 e,=0.0079
1,=159.5691 a,=0.3855 e,=0.0072
/,=139.2630 a, = 3.1260 e,= 00156
5=164.2435 a,=0.1250 e, = 0.0059
1,=170.3095 Im=150.1916 e,,= 0.1916

Case 6-2 | [, =140.1036 I/, +1 a,=0.3903 e, = 0.0024
[,=177.4804 /,+1 a, =1.5966 { e,=0.0258
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/,=159.5691 a,= 03918 e, = 8.7320e-004
[,=139.2630 a,=3.1265 e,=0.0151
| 1,=164.2435 a,=0.1310 e, = 8.8654¢-005
1¢=170.3095 Im=150.3448 e,, =0.1916
Case 6-3 |/, =140.1036 [, +1 «, = 0.3895 e, =0.0032
[,=177.4804 |1,+1 a,=1.5780 e,=-0.0072
1,=159.5691 [,+1 a, = 0.3959 e,=-0.0032
4 —139.2630 a,=3.1248 e,=0.0168
[,=164.2435 a,=0.1255 es=0.0054
14=170.3095 Im=150.5616 e,,=0.5616
Case 6-4 | [, =140.1036 l, +1 a, = 03825 e, =0.0102
l,=177.4804 [,+1 a,=15782 e,=-0.0072
1,=159.5691 1,+1 a,= 03894 €,=0.0033
/,=139.2630 l,+1 a,=3.1364 e, = 0.0052
1,=164.2435 a,=0.1311 e, =-1.7745e-004
15=170.3095 Im=150.6817 | e,, = 0.6817
Case 6-5 | [, =140.1036 |, +1 a, = 03888 e, = 0.0039
1,=177.4804 /,+1 a,=1.5876 e,=-0.0168
1,=159.5691 1 1;,+1 | @,=03918 e, = 8.6050e-004
/,=139.2630 /,+1 a,=3.1394 e,=0.0022
1,=164.2435 [+1 as=0.1257 e,=0.0052
14=170.3095 Im=150.9054 e,, = 0.9054
.| Case 6-6 | [, =140.1036 l, +1 -a;=03924 e, = 2.6414e-004
1,=177.4804 [,+1 a,=1.5705 e,=3.3873e-004
,=159.5691 14,41 | a,=03924 e, = 2.6400e-004
1,=139.2630 l,+1 a,=3.1429 e,=-0.0013
1,=164.2435 1 1s+1 a,=0.1318 e,=-8.5193e-004
14=170.3095 l¢+1 Im=151.0458 e,,= 1.0458

The above table shows that if the link lengths have errors of 1 mm, the errors of the

positional variables (a,,a,, a;, a,, as) will be less than 0.02 radians and in most
situation will be less than 0.005 radians. These angular errors are still very small. If
filter techniques are applied in a real system, the angular errors will become even.

Conclusions for the simulations:

The results of the simulation show the feasibility and advantages of the application of
the parallel mechanism and the PCA based algorithm. Result 1 shows the feasibility
and accuracy of the algorithm. The PCA based algorithm provides satisfactory

accuracy for a positioning system. In addition, Result 2 shows the advantage of the
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Parallel mechanism in terms of measurement accuracy. Normally, it is not difficult to
ensure the measurement error of the link lengths is less than Imm. Under this
accuracy, the angular errors of the 6-6 Stewart platform are less 0.02 radians and, in
most situations, the angular errors are less than 0.005 radians. Considering impact of
the accumulation of the angular error for a long-term positioning system, the angular

accuracy presented in this simulation is very important.

Although, much further discussion is necessary the results of this simulation have
illustrated the feasibility and advantage of the parallel mechanism based approach for

a positioning system for a stepwise robot.
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Chapter 9

Further Discussions

In Chapter 7, a particular parallel linkage mechanism has been analysed by using the
PCA approach. The analytical result was used in Chapter 8 to build up a numerical
algorithm to compute the position and orientation of the platform. This particular
parallel mechanism presents high measurement accuracy for the forward displacement
problem through a computation simulation. However, the results presented in Chapter
7 and 8 are only for a particular parallel linkage mechanism for a particular range of
the position and orientation of the platform. If the range of the position and
orientation of the platform is extended, the forward displacement problem will
become more complex than that discussed in Chapter 7 and 8. If the assembly
configuration of the parallel linkage mechanism is changed, the measurement
accuracy of the position and orientation of the platform may be different. To know
the change of the solutions caused by the extension of the range of the position and
orientation of the platform or by the change of the assembly configuration is very
important for the research of the application of parallel linkage mechanisms to
underground robot positioning system. In this section, a further discussion on these

problems is given.

9.1 The Solutions in the Whole Range of the Positional Variables

It is known that the forward displacement problem has at most 40 non-singular
solutions in the complex domain. However, the question of maximum number of real
solutions still remains. In this context, 16 real solutions for a particular mechanism
have been found. In the particular case discussed in Chapter 7 and 8, it is assumed that
there is a unique solution for any given set of link lengths in the given range of the
position and orientation of the platform. In the simulations used in this work, more
than two hundred examples were tested only single solution for a given set of link
lengths was found. The following discussions illustrate that there will be multiple
solutions for one given set of link lengths if the range of the position and orientation

of the platform is extended. It is obvious that if the range of the angle «, is extended
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from [0, n/2] to [0, x], the number of the solutions will be doubled. Geometrically,
any position and orientation of platform that is above the base has a mirrored position
and orientation of platform that is below the base, in which the link lengths of the

mirrored platform are the same as that of the original platform (see Figure 9-1).

Platform

(041

Platform

Figure 9-1

Therefore, when the angle «, is extended from [0, /2] to [0, ], it corresponds to the

fact that the movement range of the platform is extended from the platform above the
base to the platform both above and below the base. Hence, the following discussion

is only for the range of the angle «, is in the range [0, n/2]. The ranges of the

positional variables are assumed as follows.

The angle , is in the range [0, ©/2].

The angle &, is in the range [0, n];

The angle «; is in the range [-7t, 7],

The angles a, and ¢, are in the range [0, 2x];

The length of the m-bar /m is in the range [150, 200].
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In the discussion in Chapter 7, it was shown that the one-to-one relationship between

the sixth principal component Y, and the positional variable a, is a single value
function if the values of the other positional variables «,, a,, @, a, and Im are

given.

However, if the value range of « is extended to [-m, ], a given value of Y,
normally corresponds to two different values of a,. Figure 9-2 illustrates the
relationship between the sixth principal component Y, and the positional variable .
Figure 9-2 (a) is the situation where the other positional variables (a,, «,, «;, a,,

Im) are given particular values. That is, the values of the positional variables a,, «,,

(a) At the initial

‘position of - the

platform, a,=0 [ido=0
[s-1s=0

and Y ;=0.

¢ Is-Is=0

At the
initial
position

(b) The situation

where a,=n and

YSZO. h-l=0
[3-1s=0
Is-ls=0
After the
rotation
with 7t

Figure 9-3 An example where to different values of «,

correspond to one value of Y ;=0
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a;, a, are zero and Im equals 150. Figure 9-2 (a) shows that only when the principal
component Y, gets to its maximum or minimum values, does Y, correspond to a
unique value of a,. Normally, a given value of Y, corresponds to two different
values of a;. This is a property of the relationship between Y, and a4 after the range
of a, is extended. Although for different particular values of the positional variables
(a,, a,, a,, a,, Im) there are different particular relationship between Y, and a;,

this property of the relationship is true for all situations. Figure 9-2 (b), shows a few

particular relationships for different particular values of the positional variables («,,
a,, a,, a,,lm).
Figure 9-3 shows an example where two different values of a; correspond to one

valueof Y.
The relationship between (Y ,,Y,) and (a,, a,, a,, a,)

If the value range of , is extended from [0, 7/4] to [0, n/2] and the value range of o,
is extended from [0, /4] to [0, =], the relationship between (Y ,,Y;) and (a,, a,,
a,, a,) in the extension range of o, and &, may be different from that in the range

discussed in Chapter 7.

As mentioned in Chapter 7, the values of the principal components Y, and Y, are
mainly related to the values of (a,, @,, a,, a,). If the values of (a,, a,) are given,
the values of the principal components Y, and Y, are mainly related to the values of
( a;, a,). Especially, if (a,, a,) are given values (0,0), the relationship between
(Y,, Y,;)and ( a;, a,) is called the basic pair-to-pair relationship of (Y,,Y ;)-to-
(a;, a,) Similarly, if ( a,, a,) are given values (0,0), the relationship between (Y ,,
Y,)and (0(1, @, ) is called the basic pair-to-pair relationship of (Y,,Y ;)-to-(z,, @, ).
The relationship between (Y ,,Y,) and (,, a,, a;, a,) can be viewed as the linear
combination of the basic relationship of (Y,,Y;)to-(a,, a,) and the basic

relationship of (Y,,Y;)-to-(a;, «,). The analysis for the relationship between
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(Y,.Y,) and (a,, a,, a,, a,) will start by the analysis for these two basic

relationships. Then, the combination of the basic relationships will be discussed.

-The basic pair-to-pair relationship of (Y,,Y,)-to-(a,, a,)

Figure 9-4 illustrates the basic relationship of (Y,,Y ,)-to-(e,, &, ) using the sample
data which corresponds to «,, a,, a, given the value zero and /m equals 150. In
Figure 9-4, different value pairs of (@,, «,) correspond to different points in the
plane Y,-Y, and the dash curves illustrate the track of the point movement as the
values of («,, a,) are varying. Compared with the discussion in Chapter 7, it was

found that the characteristics of the basic relationship are not changed after the value

range of a, is extended from [0, /4] to [0, n/2].

BT i : e

Figure 9-4 the basic relationship of (Y ,,Y ; to~(a,, @,)

As mentioned in Chapter 7, there is a vector (v, ) from the origin of the plane Y, -Y,

to any given point corresponding to a given values of (a,, «,). The length of the

vector (P, =jv ;= 1 'Y22 + Y32 ) corresponds to the value of a, and the angle of the
vector to the Y, axis ( 0,;=atan(Y,/Y,) corresponds to the value of «,. Thus, the
length of the vector (p ,; ) can be mainly used to estimate the value of «, and the polar
angle of the vector (0,,) can be mainly used to estimate the value of a, . Compared

with the situation discussed in Section2.3, the relationship between p ,, and a, for the
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value range, 0<a,<n/2, can be viewed as a linear extension of that for the value
range, O<a,<m/4. The relationship between 6, and «a, for the value range,

0<a, <n/2, is almost not different from that for the value range, 0<a, <n/4.
-The basic pair-to-pair relationship of (Y ,,Y,)-to-(a,, a,)

To show the relationship in the value range of a, [0,x] more clearly, Figure 9-5

A50 4+ 150
=12 e e
& 160 3
\; .. 6 =T4/6; /\/ P . :
>-" ok B L=r5/6 A N x &
o SN N\
B=R — \/\‘ )’\ sk
PO iy = AN -
- —=

-5 )\ %/ 1 50w 0 O\ )\ 1/ 15
’ ‘\ -\ . Eﬁq» ﬁ’\l’ ¥,

/ / / Imrement of ou / / Increment of ow;
bt 50D e [l e Ll 150 / :

(a) a,1s in the range [0,7/2] (b) a,is in the range [n/2, ©]

Figure 9-5 the basic relationship of (Y,,Y ; )-to(a;, a,)

shows the basic relationship of (Y ,,Y,)-to-(a;, «,) in the ranges of «,, [0,/2] (see

Figure 9-5 (a)) and [w/2, =] (see Figure 9-5 (b)). Figure 9-5 illustrates the basic

relationship of (Y,,Y;)-to-(a;, a,) using the sample data which corresponds to «,,
a,, a, given the value zero and Im equals 150. In Figure 9-5, different value pairs of
(a;, a,) correspond to different points in the plane Y,-Y, and the dash curves
illustrate the track of the point movement' as the values of («;, a,) vary. If the value
range of a, is only extend from the range [0,7/4] to [0,7/2], the situation is similar to
the previous discussion for the relationship between (Y,,Y ;) and (e, a,). The basic
relationship of (Y,,Y,)-to-(a;, «,) is not changed if the value range of &, is only

extended to the range [0,7/2]. In a manner similar to the previous discussion, there is a

vector (v,,) from the origin of the plane Y,-Y, to any point corresponding to a
given pair of values (@,, a,). The length of the vector (p ,; =[v ,; |) can be mainly used

to estimate the value of «, and the polar angle of the vector (8 ,; ) can be mainly used
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to estimate the value of «,. Figure 9-5(b) shows the situation where @, is in the

range [n/2, n]. The positions of the points and the dash curves in Figure 9-5(b) are
similar to that in Figure 9-5(a). The same analysis was also carried out in the situation

shown in Figure 9-5(b). However, any given same point in the plane Y ,-Y; in Figure
9-5(a) and Figure 9-5(b) correspond to different values of («;, a,) respectively. This
indicates that for any given pair of values (Y,,Y ), there are two pairs of different
values (a;, «,), which come from different value ranges of «, shown in Figure 9-

5(a) and (b) respectively. Considering the situations shown in Figure 9-5(a) and (b)

together, it was found that if «, is fixed and «a, varies, the corresponding point will

move along an approximate circle. The counter clockwise direction along the circle is

the direction of increment of a,. If «, is fixed and a, varies, the corresponding

point will moves along an approximate line which passes through the origin of the

plane Y ,-Y,. If the value of ; is less than n/2, the outward direction along the line
is the direction of increment of &, (see Figure 9-5(a)). However, if the value of a, is

greater than 7/2, the direction along the line from the outside to the origin of the plane

Y ,-Y, is the direction of increment of &, (see Figure 9-5(b)) !. This is an important
property of the basic relationship of (Y,,Y;)-to-(a;, a,) in the range a, € [0, n].
This indicates that if «, #n/2, there are two pairs of different values (a,, a,) for any
given pair of values (Y,,Y,). These two different values of (a,, a,) geometrically

correspond to two different orientations of the platform, which are mirrored each by

the plane of the platform where «,=n/2. Figure 9-6 shows the positions and

orientations of these two solutions corresponding to one pair of given values

(Y,.,Y,). Figure 9-6 (a) is the situation where «, is less than n/2, in which the top
side of the platform is facing up. Figure 9-6 (b) is the situation where «, is greater

than 7t/2, in which the top side of the platform is facing down.

T Here, n/2 is the result of the analysis based on the sample data. To obtain higher accuracy value, more
sample data around n/2 should be collected.
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Figure 9-7 The combination of the two basic relationships

It was found through Figure 9-7 that the combination of the two basic relationships is

no difference from the discussion in Chapter 7. If one of (,, @,) and (a,, a,) is
(0,0), the values of (Y,,Y;) can be determined by one of these two basic
relationships. If both of (a,, @,) and (;, a,) are not (0,0), the values of (Y,,Y;)

can be determined by the linear combination of the two basic relationships.

The relationship between (Y ,,Y;) and (a,, a,, a;, a,)

If the value range of «, is extended from [0, 7/4] to [0, n/2] and the value range of a,
is extended from [0, n/4] to [0, =], the relationship between (Y ,,Y) and (a,, a,,
a,, a,) in the extension range of &, and «, may be different from that in the range

discussed in Chapter 7.

Similar to the discussion for the relationship between (Y,,Y ;) and (2,, ,, a;, a,),
the relationship between (Y,,Y,) and («,, @,, «,, a,) can be viewed as the linear
combination of the basic relationship of (Y,,Y;)-to-(a,, @,) and the basic
relationship of (Y,,Y;)-to-(a;, a,). The analysis for the relationship between
(Y,,Y;) and (@,, @,, a;, a,) started by the analysis for these two basic

relationships. Then, the combination of the basic relationships was analysed. Because
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the procedure of the analysis is the same as the analysis for the relationship between

(Y,.Y;) and (a,, ,, a;, a,), the following section only gives the discussion for

the issues that are different from the previous discussion and their conclusions.

-The basic pair-to-pair relationship of (Y ,,Y,)-to-(a;,, a,)

As discussed in Chapter 7, if a,<n/4, the property of the basic relationship of
(Y,.Y;)to(a,, a,) is similar to the basic relationship of (Y,,Y,)-to-(a,, a,).
That is, if the positional variable «, is fixed and a, varies in the range [0,27], the
corresponding points (Y ,,Y ;) in the plane Y ,-Y, form a closed curve which is an
approximate circle. When a, increases, the diameter of the closed curve will increase.
However, if «, is greater than /4 the closed curve in the plane Y ,-Y is not like a
circle. If a; 1s greater than m/2 the closed curve in the plane Y ,-Y, becomes more
complex. This is different from the discussion for the basic relationship of (Y,,Y,)-
to-(a;,a,), in which, if @, is greater than n/2 the closed curves are still similar to
that where a, is less than n/2 . Figure 9-8 shows the basic relationship of (Y ,,Y;)-
to-(a;, a,) using the sample data in the situation where a. equals zero and Im
equals 150. The points 1 to 8 in Figure 9-8 correspond to the values of «,, (0, n/4,

n/2, n3/4, &, n5/4, ©6/4, 77/4) respectively.

(a) the situation
where «, is ©/6,

Ys
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(b) The situation
where «, is 12/6

(¢) The situation
where a, is ©3/6

(d) The situation
where a, is n4/6

Ys

Ys

Ys
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(e) The situation
where o, is 15/6

Ys

(f) The situation
where o, is

Y

20 40- 3020 -
N

Figure 9-8 The basic relationship of (Y ,,Y ;)-to-(a;, a,)

Figure 9-8 (a) shows the situation where @, is /6, which is in the range [0, m/4].
Figure 9-8 (b) shows the situation where «, is ©/3 which is out of the range [0, n/4].
In this situation, the closed curve is not like a circle. Figure 9-8 (c) (d) (e) (f) show
the change of the closed curve as «, increases.

Since the basic relationship of (Y ,,Y ;)-to-(a,, &, ) in the value range a, €[n/2, 1] is
very different from that in the value range a, €[0, n/2], it is difficult to find which
condition one pair of values(Y ,,Y ) correspond to two or more pairs of values (a,,

a, ). However, it was found that some pairs of values (Y,,Y) correspond to two
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pairs of values (a;, «,). As an example, Point 8 in Figure 9-8 (b), (c), (d), (e), (f)
corresponds to a, given n7/4 and «, given different values n2/6, n3/6, 14/6, n5/6, w.
It was found that Point 8 moves on the Y, -axis from left hand side to right hand side
as «a, increase. However, in the situation where «, is less than n/4, which was
discussed in Chapter 7 (see Figure 2.3-26), the left half Y , -axis corresponds to «,
given 17/4 and «, given different values, where a, is less than /4. The right half
Y , -axis corresponds to «, given n3/4 and «, given different values, where a, is
less than n/4. From Figure 2.3-26, it was known that any given value (Y ,,Y;) on
Y , -axis where -25<Y , <35 corresponds to a pair of value (&;, a,) where o, is less
than n/4. From Figure 9-8, it is known that any given value (Y,,Y.) on Y, -axis
where -25<Y , <35 corresponds to a pair of value (&, a,) where «, is greater than
n/3. Considering these two situations together, if —25<Y , <35, any given values
(Y,,Y;)onY,-axis correspond to two pairs of values (a,, a,) that come from two
different value ranges of a,, [0, ©/4] and [n/3, ©t] respectively. In addition, even if «,
is fixed, one pair of values (Y,,Y,) may correspond to two different values of «, .
As an example, in Figure 9-8 (f) points 1 and 5 correspond to one pair of values
(Y,,Y,). That is, the pairs of values (a;, a,) = (%, 0) [point 1] and (a,, a,) =
(m, 7) [point 5] correspond to one pair of values (Y,,Y,) = (-5.2237,-85.9018).

Similarly, it is not difficult to find other pairs of points corresponding to one pair of

values (Y,,Y5).
-The basic pair-to-pair relationship of (Y ,,Y ;)-to-(a,, )

As in the previous discussion for the basic relationship of (Y ,,Y; )-to-(a,, a,), the
basic relationship of (Y ,,Y;)-to-(a,, «,) is not changed if the value range of a, is

extended from [0, ©/4] to [0, ®/2].

-The combination of the basic relationship between (Y,,Y,)--to-(a,, a,) and the

basic relationship between (Y, ,Y;)-to-( a;, a,)
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As in the previous discussion for the relationship between (Y,,Y;) and (|, a,, a;,
a,), the relationship between (Y ,,Y,) and (,, «,, a;, a,), can be viewed as the
linear combination of the basic relationship of (Y,,Y)to(a,, a,) and the basic

relationship of (Y ,,Y ;)-to-(e;, ;).
The relationship between Y, and Im

The property of the relationship between Y, and /m is not changed if the ranges of the
positional variables are extended. The first principal component and the length of the

m-bar maintain an approximate linear relationship if the values of 2|, «,, a;, a,and
a are given.

Multiple solutions for the forward displacement of the Stewart Platform in the

whole solution range

Based on the above discussion, some conclusions of the multiple solutions for the
particular parallel mechanism discussed in Chapter 7 were obtained. Because the
discussion of the problem of the multiple solutions is not the main task of this project,
some problems still remain. The following discussions give some conclusions and the

remaining problems.

Generally, there are multiple solutions with in the whole of the solution range for any
given six link-lengths. Between these solutions corresponding to given six link-

lengths, there are some inter-relationships.

e For any given solution for «, , if «, is less than n/2 there must be at least one

other solution where «, is greater than n/2.

e For any given solution for «,, if a is less than n/2 there must be at least one

other solution where «, is greater than /2.

e For any given solution for «,, if «, is less than /2 there may be at least one

other solution where «, is greater than m/2.

Therefore, the whole value range of the positional variables (o, , ,, a;, a, a;, Im)

can be divided into eight solution sub-ranges as shown in Table 5.2.1.
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Table 5.2.1 The sub-ranges of the solutions

[-m, -7/2] & [®/2, ®]

All : 3

[-m, -n/2] & [n/2, =] All 4

[r/2, ] All 5
[r/2, ] {-n, -n/2] & {7/2,%] 7 All 6
[n/2, m] [n/2, ] All 7
n/2, w] | /2, ] [-®, -7/2] & [®/2, 7] All 8

Here, the sub-ranges of the solutions are categorised by the value of the positional
variables (@,, @,, a,, a,, a,, Im). Through the above analysis, it is shown that for
the whole range for any given six link-lengths there may be eight solutions.

Through the above discussion, it was found that if an actual solution is near to a
boundary of two sub-ranges of solutions, the numerical approach for the forward
displacement problem needs a good starting point to find one actual solution and
cannot guarantee that the computing result is the actual solution. For example, if an

actual solution of the problem where «,is greater than but near m/2, it cannot
guarantee that the starting point of @, is greater than 7/2. If the starting point of a, is
less than 7/2, the computing result should be that &, is less than /2. Therefore, if it
cannot be guaranteed that the computed result is the actual solution of the problem,

more sensors are necessary.

In the particular positional variable range discussed in Chapter 7, no multiple
solutions have been found but it is still not proved that there is only one solution in

the particular range. The number of the solutions in a given range of the positional
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variables remains unknown. Hence, if the parallel mechanism discussed in Chapter 7
is applied to a real positioning system, it is suggested that one or more redundant

sensors may be needed.

9.2 Comparing Measurement Accuracy for Different Parallel

Mechanisms

Comparing measurement accuracy for different parallel mechanisms is another
important problem for positioning system design. Since the PCA based analysis is
carried out based on figures, in which the relationships between the principal
components and the position and orientation of the top platform are illustrated using
sample data, the measurement accuracy for different mechanisms can be compared

using the corresponding figures.

Case 6-6(D) |

Figure 9-10 Different cases used to compare measurement accuracy

Normally, if a small change in link lengths leads to a big change in the positional
variables, the accuracy of this positioning system will be low. If a big change in the
link lengths only leads to a small change in the positional variables, the accuracy of
this positioning system will be high. Measurement accuracy of every positional

variable of a parallel mechanism cannot be evaluated by every linkage. Instead,
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measurement accuracy of every positional variable of a parallel mechanism should be
evaluated by a group of linkages. The PCA based approach can be used to evaluate
the measurement accuracy for a particular mechanism. The following discussions are
comparison analyses of the case discussed in Chapter 7, with another three given
cases, as shown in Figure 9-10. Since the comparison analysis in the whole solution
range is very complex, the following discussions are only to some special ranges.
However, the general procedure and results of analysis will be illustrated as

preparatory work.

Here, the case discussed in Chapter 7 and Chapter 8 is denoted as Case 6-6. The other
cases are denoted as Case 6-6 (D), Case 3-3 and Case 8-8 respectively, which have

different assembly configurations as follows.

Case 6-6 (D): This case is similar to the 6-6 case discussed in Chapter 7, but the
diameter of the base and the platform is doubled. The joints on the base and on the

platform are b= {b_b b} and t= {t t ¢t } respectively as follows.

1((»
400 2y
mm e t
ts / t:
£
v X
Top platform
B-frame T-frame

Figure 9-11 The positions of the joint points of the links in Case 6-6(D)

bx= (b be’bx3’bx45bx5’bx6)

x 1>
=200cos (0,n/6, m*4/6, n*5/6, ®=*8/6, ®*9/6)
by= (byl’by 2’by37by 47by S’by 6)

=200sin(0,n/6, n*4/6, n*5/6, n*8/6, n*9/6)
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b= (b,;,b,,,b,5,b,,,b,5,b,)
=200(0,0, 0, 0,0, 0)
t, = (txl’txZ’tx37tx4’tx5’tx6)
=200cos (-®n/6, n*2/6, ®=*3/6, n*6/6, =*7/6, n*10/6)
t, =t 0ttt st )
=200sin(-n/6, n*2/6, °n*3/6, n*6/6, ®=*7/6, ©*10/6)
t,= (ot ot st ot st )

=(0,0, OI 0/ 0/ 0)

Here, b, , is for example the x coordinate of the second joint point b,, which is
200cos(n/6). Similar, b,, (i=1,2,3,4,5,6) is the x coordinate of the 7th joint point

b,; b, is the y coordinate of the ith joint point b;; b, ; is the z coordinate of the ith

join point b,. The definitions of t ., t ..t . (i=1,2,3,4,5,6) are similar.

z1i? "yi’ “z

Case 3-3: This case is similar to the 6-6 case discussed in Chapter 7, but there are
only three joints on the base and three joints on the platform rather than six. The link

joint positions on the base and on the platform are given as follows.

t:fts

23 (" 273

ts/ tl / t/ts

v X
Top platform

T-frame

Figure 9-12 The positions of the joint points of the links in Case 3-3

IDx= (bxlibx Z’bx 3’bx 4’bx S’bx6)

=100cos (0,0, ®*2/3, =*2/3, n*4/3, n*4/3)
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b,= (b,,,b,,,b,;,b,,,b,5,b,,)

y2>2Ty3>Tya

=100sin (0,0, ®*2/3, ®*2/3, n*4/3, ®w*4/3)
b= (b,,,b,,,b,;5,b,.,b,5b,)
=(0,0,0,0,0,0)
te = Mottt s tes, tos)
=100cos (-n/3, ®/3, ®/3, ®, ®, - w/3)
t, = (Ut 0t 5t )
=100sin(-=n/3, =/3, =/3, ®, ®, - T/ 3)
t= Lttt Lt st g)

=(0,0, Or 0/ 01 0)

b ,,b,.t .t ., t .(=1,23,4,5,6) are the same as the

zi “zid "yi’ vzi

Here the definitions of b, ;, b .,

previous case.

Case 8-8: This is an 8-8 parallel mechanism, in which the link joint positions on the

base and on the platform are given as follows.

v X
Base Top platform
B-frame T-frame

Figure 9-13 The positions of the joint points of the links in Case 8-8

bx= (bxl)bx21bxS’bx4)bx5’bx67bx7’bx8) '
=100cos (0, n/8, =*4/8, ®*5/8, =*8/8, n*9/8, =*12/8, n*13/8)

by= (bylﬂb b by4>by59by6’by7’by8)

y 2 y 3>
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=100sin (0, /8, ®*4/8, n*5/8, 7*8/8, ®*9/8, ®*12/8, n*13/8)
b,= (bzlﬂb22>bz3’bz47bz5’b26 bz7>bzs)

=(0,0, 0/ OI OI 0,0,0)
tx = (txlﬂtx23tx3=tx4’tx57tx6tx77tx8))

=100cos(-=n/8, n*2/8, n*3/8, n*6/8, n*7/8, =*10/8, ©n*11/8, =*14/8)

t,v = (tyl’tyZ’ty3’ty4’ty5’ty6ty7’ty8)

=100sin(-=/8, n*2/8, =*3/8, ®=*6/8, n*7/8, n*10/8, =*11/8, ®*14/8)
tz= (tzlﬂtz29t23’t24’tz53t26’tz7’t28)

=(0,0,0,0,0,0,0,0)

The eigenvalues and eigenvectors for the different case are as follows

Case 6-6 (D):

Eigenvalues

Eigenvectors

A, =1715207278
A, =107547545
A, =107475243

A, =13271868

A5 =13263309

a, = {0.40825, 0.40825, 40825, 0.40825, 0.40825, 0.40825}
a, = {-0.28878, -0.5773, -0.28867, 0.28867, -0.5773, 0.28878}
a, = {0.50003, -0.000058743, -0.49997, -0.49997, -0.000058743,

0.50003}

a, = {0.50003, -0.000058743, -0.49997, -0.49997, -0.000058743,
0.50003}

a, = {-0.28869, 0.57735, -0.28873, -0.28873, 0.57735, 0.28862}

Ag =7746475 a, = {-0.40826, 0.40826, -40824, 0.40824, -0.40824, 0.40824}
Case 3-3:
Eigenvalues Eigenvectors

A, =1527871656
A, =27359239
A, —27356025

a, = {0.40825, 0.40825, 40825, 0.40825, 0.40825, 0.40825}
a, = {-0.28866, 0.28866, 0.57735, 0.28866, -0.28868, -0.57735}
a, = {0.49999, 0.49999, 0.000013144, -0.50001,
0.50001,0.000013144}

A, =9831822 a,={0.5, -0.5, -0.000019732, 0.5, -0.5, 0.000019733}
A =9831386 a, = §0.28869, 0.28869,-0.57735, 0.28866, 0.28866, -0.57735}
A =1185659 a, = {0.40826, -0.40826, 40824, -0.40824, 0.40824, -0.40824}
Case 8-8

Eigenvalues Eigenvectors

A, =1655283236

A, =58346685

a, = {0.35355, 0.35355, 0.35355, 0.35355, 0.35355, 0.35355,

0.35355, 0.35355}
a, = {0.43654, 0.13633,-0.24375, -0.48107,-0.43654,-

0.13633,0.24375, 0.48107}
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A, =58346685 a, = {0.24375, 0.48107, 0.43654, 0.13633,-0.24375, -0.48107,-
0.43654, -0.13633}

A, =2521346 a, = {0.46741, -0.45607, 0.17762, 0.2049, -0.46741, 0.45607, -
0.17762, -0.2049}

A, =2521346 a, = {-0.17762, -0.2049, 0.46741, -0.45607, 0.17762, 0.2049, -
0.46741, 0.45607}

A, =400481.9 a, = {-0.35355, 0.35355, -0.35355, 0.35355, -0.35355, 0.35355, -

0.35355, 0.35355}
A, =130269.6 a, = {-0.00459, 0.49998, 0.00459, -0.49998, -0.00459, 0.49998,

0.00459, -0.49998}
A, =129786.5 a, = {-0.49998, -0.00459, 0.49998, 0.00459, -0.49998, -0.00459,

0.49998, 0.00459}

The PCA based analysis was applied to the above three cases (Case 6-6 (D), Case 3-3
and Case 8-8). It was found that the general relationships between the principal
components and the positional variables are similar to the case discussed in Chapter 7.

That is, the first principal component (Y, ) mainly relates to the positional variable
Im. The sixth principal component (Y ) mainly relates to the positional variable .
The principal components (Y,, Y,, Y,, Y;) mainly relate to the positional variables

(a,, a,, a;, a,).

The accuracy for the measurement of Im

The first principal components (Y, ) in these four cases are similar to each other,
which are the average of the six, or eight in Case 8-8, link lengths with a scale factor.
Case 6-6: Y, =0.40825 (I, +1,+1,+1,+1,+1)

Case 6-6(D): Y, =0.40825 (I, +1,+1,+1,+1,+1,)

Case 3-3: Y, =0.40825 (I, +1,+1,+1,+1,+1)

Case 8-8: Y, =0.35355(1, + 1, +1,+1,+1 +1,+1,+1,)

Figure 9-14 shows the relationships between Y, and Im when o, «,, a,, a, ,and

a, equal zero in the different cases.
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The relationships between Y, and a will be changed if the values of (a,, «,, a,,
a,, Im) are changed. Generally, the conclusions for accuracy comparison analysis are

the same as the above situation where the values of (@, «,, @,, «,, Im) are zero.
The accuracy for the measurement of ¢,, a,, a;, a,

In the discussion in Chapter 8, it was known that the measurements of (a,, «,, a;,
a,) are dependent upon the relationship between (Y,, Y,, Y,, Y,) and (@, a,,
a,, a,). Because the relationship between (Y,, Y,, Y,, Y,) and (,, ,, a;, a,)
is very complex, during computing the values (¢,, @,, a;, a,), the basic
relationships between (Y ,, Y,, Y,, Y,) and (,, ,, a,, a,) are used. Because of
the complexity of the relationship between (Y,, Y,, Y,, Y;5) and (@, a,, a;, a,),
the problem of accuracy analysis for the measurement of (a,, a,, a;, a,) for

different cases remains. However, in some particular situations the comparison
analyses were carried out as a preparatory discussion. The following discussion shows

the measurement accuracy for @, and a, using the basic relationships between (Y ,,
Y;, Y, Y)(a;, a,) Here, the basic relationship (Y,, Y;, Y,, Y;)-( a;, a,)
means the basic relationships of (Y,, Y,)-to(a,, «,) and (Y,, Y,)-to~(a,, a,)
defined in Chapter 7. As mentioned in Chapter 7, the basic relationships of (Y ,, Y,)-
to-(a,, @,) and (Y,, Y,)-to-(e;, a,) are the pair-to-pair relationships (Y, Y,)-
(a;, a,)and (Y,, Y;)-(a;, a,) in the situation where o, and «a, are zero. Hence,
the following accuracy analysis for the measurements of @, and «, is based on the
situation where @, and «,are zero. The same analysis can be carried out for the
measurement accuracy of &, and «, . Since the procedure and results of the accuracy
analysis for the measurements of «, and a, are similar to that for the measurements
accuracy of a, and «,, the accuracy analysis for the measurements of «, and «,

will not be discussed in this thesis.
Accuracy analysis for the measurements of a, and a, using the basic relationship

Of(YZ, Y3)-t0-(a_3, a4)
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Figure 9-16 shows different values of («;, a,) corresponding to different values of
(Y,., Y;) where a,, @, and a equal zero, and /m equal 200. As mentioned in
Chapter 7, there is a vector (v,;) from the origin of the plane Y,-Y, to any given
point corresponding to given values of (a;, «,). The length of the vector

2 2
(Ps=vxl= VY, +Y, ) corresponds to the value of @, and the angle of the vector

to the Y, axis (0, = atan(Y ,/Y,) corresponds to the value of a,. Thus, the length
of the vector (p ,; ) can be mainly used to estimate the value of &, and the polar angle
of the vector (8, ) can be mainly used to estimate the value of «, However, the
relationships between p,, and «, are different for the different cases. The
relationships between 0., and a, are also different for the different cases. These can

illustrate the difference of the measurement accuracy between the different cases.

Ols=Tt/4

ecase 66
Acase 6-6(D)
ocase 33
ecase 88

200 ; L N

Figure 9-16 Different values («,, a,) correspond to different values (Y ,, Y,)

Figure 9-17 shows the relationships between p,;, and «, in the different cases in the
situation where @,, @, and a;equal zero; Im equal 200 and «,=0. It was found
through Figure 9-17 that Case 6-6(D) has the highest measurement accuracy of a;.

Case 8-8 has the second highest measurement accuracy of a,. Case 3-3 has the lowest
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Because the values of (&;, a,) not only depend on the values of (Y,,Y,) but also
depend-on-the-values-of (Y ,, Y), accuracy analysis for the measurements-of ¢, and
o, by using the basic relationship (Y ,, Y )-(a;, a,) is necessary.

Figure 9-19 shows different values of (a,, a,) corresponding to different values of
(Y,, Y,) where «,, @, and asequal zero, and Im equal 200.

As in the previous discussion for the basic relationship of (Y ,, Y ;)-to-(a;, a,) there
is a vector (v, ) from the origin of the plane Y, -Y, to any given point corresponding
to given values of (a3‘, @,). The length of the vector (p,=|v,|=4 Y2+Y2)
corresponds to the value of «, and the angle of the vector to the Y, axis

(0, =atan(Y /Y ,)-corresponds to the value of «,. Thus length of the vector (p,;)

can be mainly used to estimate the value of a, and the polar angle of the vector (8 ;)

the situation where ({40 i the situation whers g4=52
08 N . b o8
— 7 T
=041 // / ~s—case84D; Y / / P | s cmesep)
3" // : o-ome3 ] |l B / / - Pl eome33
021/ —ormedd | 2 / : ' —a-rase$d
0 : 11 9 : . : :
g 20 4% & 80 €11 - ' R B N
pds pis
(2) (b)

Figure 9-20 the relationships between p ,; and o, indifferent cases
can be mainly used to estimate the value of «, However, the relationships between
p, and a, are different for the different cases. The relationships between 6 ;- and
a, are also different for the different cases. These can illustrate the difference-of the
measurement accuracy between the different cases.
Figure 9-20 shows the relationships between p ,, and «, in the different cases, in the
situation where a,, @, and a,equal zero; /m equal 200. Figure 9-20(a) is for the

situation a,=0. Figure 9-20(b) is for the situation a,=n/2. It was found that for
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different values of «,, the measurement accuracy of «, in -different cases are
different. When a,=0, the rank of the measurement accuracy of a,-from high to low
is Case6-6(D), Case3-3, -Case6-6 and Case8-8. When a,= 7/2;, the rank -of the
measurement accuracy of o, from high to low is Case3-3, Case6-6(D), Case6-6 and
Case8-8.

Figure 9-21 shows the relationships between 6 ,, and &, in the different cases in the
situation where @, @, and a;equal zero; /m equals 200. Figure 9-21(a) is for the
situation a,= /4. Figure 9-20(b) is for the situation a,= n/12. It should be noteq that
if a, has a-change-of 27, 0 ;5 will also have a change of 2x. Hence, if the wave of the
relationship curve in Figure 9-21-is smaller, the measurement accuracy of @, in the
whole value range of o, are more even. Consequently, the minimum -measurement

accuracy in the whole range will be higher. Therefore, two conclusions were obtained.

e The highest measurement accuracy of «, is Case8-8. The lowest

the-situation where-g 3=x/4 o - -the situation where i =112
; 81 ; 5 -
"f\ SRR /s /‘ : N5 2R
\ p /' ’ —4—C3seB8 TN _,/ o .__ﬂ_,_ —o—cas266
- Nl ~4-cxseB40) I hY 3 ‘/"/ /e
S ) /)/ i —o—oase33 | B \)4/ / I B S
"""""""""" F e vae88 ] ‘ ?’ r's Pl |—ecmess
4 -'\ % p o T
5432401234567 o 543214012334 567
Bas I 4

Figure 9-21 the relationships between 0 ,, and a, indifferent cases
measurement accuracy of a, is Case6-6(D). Case6-6 and Case3-3 are located

in the middle.
e When «, becomes smaller, the measurement accuracy of «, for the different
cases will approach the same value.

Through the above analysis, it was shown that the measurement accuracy is different
for the different cases and different situations. Therefore, during the period of

designing a parallel mechanism for a positioning system, identification of the
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application situations and analysis for the corresponding measurement accuracy are

required.
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Chapter 10

Summary of Part I

The forward displacement problem for a 6-6 parallel mechanism was discussed in Part
Il. The target of this project is to improve accuracy of a positioning system, for
stepwise robots, using parallel mechanisms, Not only a solution for the forward
displacement problem is needed but also the accuracy of the solution needs to be
determined. In Part II, the PCA based approach was introduced to analyse the
relationship between the six link-lengths and the position and orientation of the top
platform. Consequently, a numerical algorithm based on the result of the relationship
analysis was given. The results of the computing simulation showed that the

proposed system has very high accuracy.

The technical key to the PCA based approach is the transformation from the six link-
lengths to the six principal components. This transformation directly comes from the
result of PCA, which depends upon sample data. Because of the complexity of the
parallel mechanism, any one or two linkages cannot express any part of the position
and orientation of the platform. However, if the transformation from the six link-
lengths to the six principal components is successful, every principal component can
more easily express one part of the position and orientation of the platform. In this
project, the transformation is successful, so that the relationship between the principal
components and the position variables of the platform was identified. The success of
this transformation not only makes the analysis for the particular parallel mechanism
discussed in Section 2.3 possible but also benefits the same analysis for different
mechanisms. In Section 9.2, for example, the transformations from the link-lengths to
the principal components for different mechanisms were successfully obtained, by

simply following the set procedures and sample rules.

The PCA based approach is a statistical approach. The results of the PCA based
analysis depend on the sample data. Hence, the relationship identified by the PCA
based approach is true in a certain range in which the sample data is valid.- The
discussions in Section 2.3 showed that when one of the six position variables varies

and the other five are fixed, the varied variable can be determined by one or two
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principal components. For example, /m can be determined by Y . Also, @ can be
determined by (Y , Y )Yor (Y , Y ). In this situation, the quantity relationships
between the position variables and the principal components can be determined.
Based on this situation, if the five fixed variables are changed, the quantity
relationship between the varied variable and the principal or principals will be
changed. However, if the five fixed position variables are changed in the range
discussed in Section 2.3, the quality relationship between the varied variable and the
principal or principals will not be changed. That is, if the quantity relationship is
viewed as a function, the properties of the function will not be changed. That is, the
function is a Single-variable, Increasing and Continuous function in any situation. It
should be noted that if the five fixed position variables are changed in the whole
solution range discussed in Section 9.1, the quality relationship between the varied

variable and the principal or principals will also be changed.

The PCA based approach can be used to investigate the different properties of the
relationship between the linkages and the position variables in different solution
ranges. This is one of the advantages of this approach. Because of this advantage, the
searching paths in the numerical algorithm for the forward displacement problem can
be optimised in a certain solution range. The measurement accuracy for any given
position variable of the parallel mechanism can also be analysed in a certain solution
range. Consequently, the assembly configuration of a parallel mechanism can be
optimised, and/or what sensors are needed to improve the accuracy of the positioning

system can be identified.

The numerical algorithm given in Chapter 8 is based- on~the quality relationship
between the linkage and the position variables. The simulation results of the
numerical algorithm given in Chapter 8 showed the advantages of parallel mechanism
based approach for positioning systems. The algorithm is still not optimised, but the
computing performance was very good. This shows the potential for industrial
application of this positioning technique. Since the PCA based numerical algorithm is
based on the result of the relationship analysis for a particular parallel mechanism, the
numerical algorithm can be significantly optimised after the further analyses and

assembly configuration optimisation for the parallel mechanism.
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The parallel mechanism based positioning approach with the PCA based analysis
methodology takes shape of a new positioning technique for stepwise robots. This
technique is based on the signals of the lengths of the linkages but does not exclude
uses of other signals from other sensors in a real industrial application. Any sensor
may be added into the parallel mechanism based positioning system, as long as the
results of the PCA based analysis show the use of the added sensor can improve the
accuracy. In summary, a new positioning technique has been proposed and shows its

advantages, but in this area, further work is also needed.
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‘Chapter 11

Conclusions and Further Research Problems

11.1 Conclusions

In this thesis, positioning technology for stepwise underground robots was discussed.
This is a theoretical preparatory work for industrial application of underground
robotic positioning systems. During the research, Durham University stepwise robots

were used as real case study.

Because of lack of research on underground robotic positioning, some fundamental
issues were discussed in the first chapters of this thesis. Underground environment
highly constrains the use of existing position measurement technologies. The main
constraint is that only relative position measurement techniques are available for
underground robot. Consequently, whether the accuracy of positioning systems for
underground robots can meet application requirements becomes problematic. To
answer this question, two-dimensional error model, exact and statistical models, were
given in this thesis, which are also suitable for three-dimensional cases. These models

show that:-

e Angular measurement errors are the dominant error sources for the positioning
system. Comparing with the dominant error, Step-length measurement errors can

be ignored.

e Theoretically, existing sensors and measurement technologies cannot ensure
satisfactory long-term (1000 meters or longer travel distance) positioning
accuracy for industrial applications because of the accumulation of the orientation
errors. However, if the angular measurement errors are random error and the
means of the errors are zero, under very high confidence, such as 99.9%,
positioning systems can provide high long-term accuracy. This makes
improvement of long-term positioning accuracy for industrial applications

possible. The exact and estimate error models given tin this thesis are very
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helpful to judge the feasibility of a particular accuracy requirement for a

positioning system.

Based on the fundamental discussions, it was known that improvement of angular
measurement accuracy is the most important for improving long-term positioning
accuracy. Consequently, parallel linkage mechanism based approach for a positioning
system was proposed. The aim of this proposal is to improve angular measurement
accuracy. In fact, this proposal is an approach to improve the measurement accuracy
by choosing an assembly configuration of parallel linkage mechanism. This approach
is suitable for underground robots working in narrow space. The simulation of a real
case study shown that the combination of six linear sensors, which have normal
measurement accuracy (errors < 1lmm), can provide very high angular measurement
accuracy (<0.006 radians) in most situations and normal accuracy (<0.01 radians) in
very few situations. Considering the accumulation of orientation error, which was
discussed in this thesis, this property of the parallel linkage mechanism can be used to

improve long-term positioning accuracy.

To design and improve a parallel linkage mechanism based positioning system,
investigating the accuracy for different assembly configurations is also very
important. The PCA based analysis method was shown its advantage in this aspect.
The PCA based analysis method can also be used. to investigate the characteristics of
the solution, such as multiple-solutions. Therefore, the methodology in this thesis
provides a new approach to investigate parallel linkage mechanisms. The procedure
and the results of the PCA based analysis shown in this thesis can be referred by other

researchers of parallel linkage mechanism.
11.2 Further Research Problems

In this research, a parallel mechanism based approach to improve accuracy of a
positioning system for stepwise robots has been proposed. In addition, the PCA based
approach to solve the problems of forward displacement has been proposed and shows
its advantages in terms of accuracy analysis and the computational performance. The
result of this research has shown to be of potential commercial value for industrial
applications. However, some further research is required before applying this study to

real industrial applications, which are listed as follows:
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Experiment based research for the parallel mechanism based approach is
required to compare with the theoretical analysis. In this research, computer
simulation has shown very good results for the proposed approach.. The
simulation results need to be verified by experimental results. Experimental
research may find new problems in manufacture and operation. This is: very
important for industrial application. Experimental results may also provide

further problems for future theoretical research.

Analysis for the relationship between the linkages and the position and
orientation of the platform is required.to extend to the whole solution range. In
this project, the solution range for the forward displacement problem of the 6-6
parallel mechanism was identified, based on. a particular. robotic application.
The extension analysis can enhance the understanding of the properties of the
parallel mechanism. It will not only benefit the.further research_for the
positioning system using parallel mechanisms but also benefit other research on
parallel mechanisms. Some preparatory work was done.in_Section 9.1, in this
thesis.

Comparison analysis of measurement accuracy for different assembly
configurations of parallel mechanisms is very important for the design.of a
parallel mechanism based positioning system This comparison analysig can
provide the accuracy for using different mechanisms and in different solution
ranges. Because the parallel mechanism. based approach is an. approach to

improve the accuracy by improving structure rather than improving precision of

individual sensors, a comparison analysis technique is of a_criﬁcaLimportange in

this approach. . R

The PCA based numerical algorithm has great potential to be improved. If the
PCA based analysis can identify the relationships between the linkages and the
position and the orientation of the platform in more detail, the solution

searching paths can be significantly improved. =~ . .. = -

The parallel mechanism based solution for positioning system provides more
space for the use of redundant sensors. This can improve_the measurement

accuracy not only by choosing a good assembly configuration in some situation
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(see Section 9.2), but also by data fusion. Much work in this area remains to be

done.

* The software development for the PCA based analysis for a parallel mechanism
is also valuable for further research and industrial applications. The PCA based
analysis needs further work on data comparison. In addition,. this work needs
knowledge from the PCA approach. If computer software was available‘; for
assisting analysis for the PCA analy&s,thc.performance;oﬂthe_teseam}% and

system design will be significantly improved. o _ o

All above further research problems can follow_the methodology and results of this

research project. Their potential value is also significant. _ C e
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Appendix A

T A.l
Test Result of the ErrorEstimate Function (1-5)_ . ,

D: E, | ™ nD | nE_ | 49nE, |(e, /nD)%| 49nE_-100
0:1 0.00025} 1000{- 100{ -0.25  12.25| 12.49077] -0.24077
0.1 0.00025 2000 200|. 0.5 24.5| 24.83917| -0.33917
0.1 0.00025}. 3000 .. 300l ..0Q75/ . 36.75 3692982l = .-0.17982

01| 0.00025]  4608] - 486 - 1| - 40| 48.6383%] - -0-361694
-0:44 - 0.0005] . 10007 ~—— 1007 05— 245 248515687  —=0:35456
0.1 - 0.0005} - 2000 200 T[T 49| 4865071 T0.349893

01| 0001  1000] _ 100] 1| 49| 48.67371]  0.326291
0.2| 0.00025{ 1000). _ 100l 0.125|_. 6125 6259744 -013?74
0.2|  0.00025{ ~ 2000} - 200}- 0250 ~12.25{ 12.49077} --0.24Q77

-0.2| - 0.00025| - 3060 — 3061 6:37517—18.375| 18:68926 - —0:31426

0.2] 0.00025{ 40001~ 400 05 245 248392 -073392
0.2 0.00025} -5000{ 500[ 0.625] 30.625| 30.92461]  -0.29961
-0:2[° 0.00025| -6000F 600} _0.75| . 36.75] 36.92983| -0.17983
0:2[ -0.00025| 7000].. .. . 700l. 0.875| . 42.875] 4283942| __0.035579
0.2| . 0.00025( 8008r - 800 — 49| 4863828 - -0:36106
0.2 0.0005] 10007 1007~ — 0257 - 12.25| 12503257 ~=0:25325
0.2 0.0005 2000 2001 OB 245 Z&.85T5T . -0.35151
0.2 0.0005f 3000 300} 0.75 36.75| - 36.94193( -0.19193

- 0.2 -0.0005 4000( - 400( 10 49; 48.65011( 0.349893
0.2  0.001 10004 - - 1001 --05L... 245 24.87614} -0.37614
0.2  0.001 2000F 200 -t 49| 48.67376} 0326244
0.4] 0.00025) 10007 - 1007 0.0625] 3.0625| 3137184 ~-0.07468
0.4/ 0.00025 2000 200} 0.125] 6.125| 6.259794|  -0.13479
0.4|- 0.00025] - 3000( 300 0.1875| 9.1875| 9.37833 -0.19083
0.4/ 0.00025 4000! . . 400/ 0250 .~ 1225 1249077 .. -0.24077
‘0.4]  0.00025 5000 - - 508 0:3125[—15.3125 155851 - -@2@26
0.4, 0.00025 60007~ 6007 - 03757 -18.375| 18:689281 ——=0:31428
0.4 0.00025(- 7000{ ~ 7000 . 04375 21.4375, 217713 ~ -0.3338

0.4 000025 8000 800[ - 05 245 24.8392 -0.3302
0.4 -0.00025 9000} 900/ 0.5625| '27.5625| 27.89096| -0.32846
0.4 0.00025| " 10000, - 1000.  0.625[ 30.625 30.924611 - -0.20961
0.4 0.0005| 1000} - - 1661~ 04251 6.125| 6:272266r —-0-14727
04 0.0005 - 2000f — Z007 T028T 7 12.25) 12503217 - -0.25321
0.4 0.0005 3000 300 0.375[ 18.375| 18.70169| -0.32869
0.4 0.0005(" 4000 - 400( - 0.5 - 24.5| 24.85152| -0.35152
0.4 0.0005| 5000] ‘5001 0625 .30.625] 30.93684] ..-0.31184

" 0.4, 0.0005| 6000 - -600+ -0-75]--— 36.75] 36:94194; - -0-19194
0.4 0.0005 70001 - TFOOT- 08757 42.875| 42.:851391 —0:623611
0.4, 0.0005; 8000;. 800[ A 1 49| 48.65017T1] 0.349893
0.4 0.001 1008} 100 - 025~ 12.25 12.52813 -0.27813
0.4] 0.001 2000/ 200| -0.5]. © 24,5 248762 -0.3762
-0.4 0.001| 3000 3004 075! - -36.75| 36.96618 -0.21618
04| 0.001 4000f 4061 -~ 41—~ 49| 4867376  0.326244

B .Max|  0.367706
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TABLE A.2
TheRate e, /e -and e, /e, -in Different Situation

D E, n | nD: “nE, X y e, e le, |e_le,
0.1] 0.00025] 1000| 100 ©:25; - 98:96{ 12:4474-12.49077—-0-996528:-0-083261
0.1| 0.00025| 2000 2001 0.5[ 1917641 48:99091 49.678357 ~0:988162 0-165184
~ 0:1] 0.00025| 3000| 300, 0.75] 272.6427| 107.3585] 110.7894) (0.969032| 0.248936
".0:1{.0.00025| 4000| 400 1]-336.5654| 183.9212| 194.5532| -0.945352| 0.326053
0:1] 0.0005| 1000| 100] 0.5 . 95.879] 24.5075| 24.85156| 0.986155|.0.165825
_ 0.1 0.0005] 2000{ 200( - 1| 168.27142| 91.9816[97.30021| -0.9453381-0.326092
- 0.1, 0.001 1000| to6; 1841241 - 46:01187-48.67371| —0-9453+1- 6:32617
- 0.2 0.00025| 1000| 100" 0:125[ 99739 ~ 6.2543] 6.259744| —0:99913[ 07041695
- 0.2| 0.00025| 2000{ 200} 0.25| 197.9201| 24.8948| 24.98153| 0.996528] 0.083257
0.2| 0.00025| 3000/ 300| 0.375] 293.0111| 55.6305| 56.06779| 0.992201| 0.124651
0.2| 0.00025| 4000| 400[. 0.5{.383.5282[ 97.9819] 99.3568| _0.986162| 0 165784
1 0.2] 0.00025] 5000{ 5001 ©:6251-468-6580 -15+.288-154.6231| - 0.078434,-0-:208574
| 0.2 0.00025| 6000] 600| 0.75 545.2842 21474717~ 221.579| 0969032 0-246036
- 0.2) 0.00025| 7000| 700, 0.875| 613.9989] 287.2793] = 299.876| (0.957994] 0.280¥89
[ 0.2| 0.00025 8000| 800} 1] 673.1308| 367.8423| 389.1063| 0.945352| 0.326053
0.2 0:0005] 1000{ 100 -0.25| .98.9585| 12.4598| 12.50325|  0.996525| 0.083298
0.2| 0.0005| 2000} 200f-.---0.5[-191.758] ..49.0149 49.70303| -0.986155[ 0.165825
1 02| 0.0005| 3000 300| ©.751-272.6287; 167:39261110.8258| -6-9690221-0:246Q76
- 0.2) 0.0005 4000). 4007 ~ = ~1.336.54247 18379632 194.6004| ~079#33387.0.326Q92
-~ 0.2 0.001 1000{ 100 0.5] 95.8729] 24.5374] 24.87614| .0.9867T42[ 0.165906
0.2/ 0:001] 2000/ 200| 1] 168.2482 92.0237| 97.34751| 0.945311 0.32617
_0:4| 0.00025{ 1000, 100]0.0625/ 999345] 31365/ 3.137184] 0.999782| 0.020879
_ 0.4; 0.00025| 2000[ 200{—-0-125;——199-478-—12.5087-12.51959| —0.98843,-0:041695
1 0.4{ 0.00025| 30001 3007 0:18751 29824181 —28:08728.13499 09988451 0-662492
|- 0.4| 0.00025| 4000|. 400 0.25] 395.8407| 49.7896] 49.96308| ~0"996525[ 0.083259
[ 0:4{ 0.00025 5000 500|-0-3125 491.8919 77.5528] 77.9755| 0.994579| 0.103983
0:4] .0.00025| 6000{ 600[ 0.375| 586.0221| 111.2611| 112.1357| 0.992201| 0.124652
- 0.4| 0.00025| 7000| 7060{0.4375/.677.8632{150,7828({152:3991| -0.889394! 0.145255
0:4{-0.00025| 8000f -800— 6.5 7670564 -196:96381-198.7136| -0-9864620-+66784
. 0.4{ "0:00025| 9000 9007 0.5625[ 853.2535 246.6275251.0186| ~0:9825676-186227
- 0:4] 0.00025|10000[ 1000 0.625| 936.1178] 302.576] 309.2461| 0.97843T| 0.208%74
~0:4] 0.0005] 1000/ 100] 0.125] 99.7382] 6.2668| 6.272266| -0.999129] 0.041739
0.4, 0.0005| .2000{. 200[ ..0.25 1979169 249195 25.00641| .0.996524| 0.083303
-0.4} -0.0005| 3000 300} -0-375[-293:0041--55.6672-56.10508| -0-902105.0-124693
-0.4[" 0.0005| 4000{ 400[ 0:5 383:5159] ~98.0298]89.40607| -0-9861551-0:165826
| 0.4| 0.0005| 5000| 500] 0.625[ "468.04[. 157.3465[ 154.6842] 0.978422[ 07208614
| 0.4/ 0:0005[ 6000{ 600/ 0.75] 545.2573| 214.7852| 221.6516| 0.969022|-0:246976
" 04| .0.0005| 7000| 700 0.875| 613.963| 287.356|.299.9597| .0.957982| 0.286829
-0.4{ 0.0005/ 8000/ 800 1 673.0848| 367.9264] 389.2009| 0.945338! 0.326092
 0.4] 0001 1000{ 1601  0.25[ 98:9554; - 12.48451-12.52813| 0-:996518—0-08338
- 0.4 0.001] 2000]. 200] - 0.5[ 191.7457] 49.0629] 49.7524| 0.980141] 0-105208
[ 0.4/ 0.001] 3000[ 300 0.75] 272.6018| 107.4608| 110.8985| 0.969001] 0.247056
0.4/ 0.001] 4000 400 1| 336:4964| 184.0474{ 194.695| 0.945311| 0.32617
) ' Max| 0.999782| 0.32617
Min| -0.945341,-0.020879
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TABLE A3
Descriptions and Critical Values

Critical value

D- n | nD | mean(y) | StdDev(y)J | (99.9% cont:
0] - 000025 N 0. -0 > B
0.1 0.00025 1000 100, . 0.0046201] .0.27192459]  0.897351147
01 0.00025- 2000 200 0.162046 0.7849972) 2.59049076
0.1-_0.00025 30000 . _300 . . 0.0281082 1428437, . 47138421
0.1] 0.00025 4000 - --—-400 - 0.0484784 ~ 2196338 - ....7.2479154
0.1 0.00025 . 5000} 5000  0.0855699 3.065313 10.1155329
0.1  0.00025! 6000 600 0.1282263 4.022257] 13.2734481
0.1 0.00025| 70000 - 700 0.1488998 _ 5.068258 . 16.725251
0.1 0.00025| -8000l  ...800l ' 0.1595488, 6.200332, . 204610956
0.1 0.00025 . 9006  — 900 — 016306761 7.402640—-24.4286427
0:1 - 0.00025- 10000 . 1000/ 0.170381 . 8:669147 ~.28.6081851
04 00005 0 o o 1 - 0
0.1, 0.0005 10000 100~ 0.0092397]  0.54383748  _1.79466368
- 01 0.0005 2000, . ...—200 .- ;0324086 . 1.569928, .. 5180762
0.1 0.0005 3000 - 300 0.0562144] 2.856682—— . 9-4270836
. 0.1 .0.0005 40000 - 400 .0.969453] 4.3923 14.49459
0.1 0.0005) 5000, 500 0.1711188 - 6.129985  20.2289505
0.1 -0.0005) 6000, - 600 0.2564143 - °~ 8.043523] = 26.5436259
0:1 0.0005 ~ 7000l . .. ‘700 ..0;2977423 10.13507 __ 33.445731
01 0.0005 8066 ——- 8066 0-3190479— 12.398638——  40-9315479
0.1t 0.0005 . 9000,. . 900 0.3380218 14.80249) 48.848217
0.1 0.0005 10000 .1000 0.3406196]  17.33474 57.204642
"""" 6.001 B N e : B N -~ 0
~.100, 00184801 1.087586, .. _3.5890338
200 0.648104/—- . 3.13933-—  19:359789
- 300 0.112391 571192/ 18849336
- 400 0.1937944] 8.781617]  28.9793361
5000 - 0.3420512] © - 12.25484] _ 40.440972
600l . 05125174, 16.07913 - 53.081129
7000 . 0.5950634 = - - 20.2585 66.853215
0. 800, - 0.6373955 24.78095 81.777135
0.1/ . .900. . 06751322 " 29.58305] 97.6240695
A 1000 -~ 0.6801131]  34.64108 . -114.31556
ie SR - . B -0
0.2 0.0002 500 ~ 100 0.0079628 0.18129945 - 0.598288185
0.2l 0.00025 1000 200! 0.0131417 0.52535013 1.733655429
0.2l 0.00025 1500, . .3000 . 0.0288099 _ _0.98068668, . ___3.23626604
0.2l 0.00025 2000] 400, -..0.0368944! . -1.516123] ____. 5.0032059
0:2 0.00025 2500 500 - 00355848 - 2:120233%— - 7-0264689
0:2° 0.00025- . 3000 600  .0.0275424] 2.812428; 9.281012
0:2- . 0.00025" 3500 7000 - 0.0234714 3.547285 11.7060405
0.2] 0:000257 4000/ 800l 0.0215808 = .4.330353]_ = 14.2901649
0.2 -0.00025 4500, 900 -- . 0.27459_ ... 5168052 . - 17.0545716
0.2l -0.00025 50000 1000 — 0.0379768- — 6060675 200002275
0.2 500 100 0.0159259 0.3625952 1.19656416
0.2 1000/ 200, 0.0262838 . 1.050679.  __  3.4672407
0.2 1500 300L- 0.0576185 - ~ 1.961314 . . 6.4723362




2000 4000  0.0737897 3.032123 10:0060059

25000 500 0.0711696} 4.258247] 14.0522151

3000 600, 0Q.550871. 5.624504]  ~  18.560863

3500[- 700 0.0469423/ 7.094058 23.410391

4000/ - 800 0.0431522 - 8.659998 28.5779934)

45000 . 900 0.0548964 _ 10.33517]__  34.106061

50001000~ .0.0759232} ~ 1212014 . 39.995462

o — o— - - g T —. 0

500 100,  .0.0318513]  0.72516199  2:393034567]

1000 200 0.0525714 2101184 6.9339072

15000 3000 __ 0.1152375 . 3.922147]  12.9430851

2000, . 400 0.1475728. .~  6.063250 . _20.0087547]

2500 500, - 0.1423426| 8.514741 -28.0986453

3000 6000  0.1101581 11.2462 37.11246

35000 . 700 0.0938457, _ 1418404, 46.807332

4000 . 800 - 0.086211] ~  17.31438 .._52,131388

4500 ——000—— D-1096186—  20.66284-—— 68-187372

5000 -1000F 0.1515682 24.23056 79.960848

0.00025 O o o o -0
0.00025| 250 100l -0.0028494 0.1372351 . 0.45287583
0.00025 5000 . _.200  -0.0074349 0. __1.278062346

- 0.00025/— - - --750- - ——300—-0-00620261——-0-74 2347400649

- 0.00025 1000] 400/ - -0.0000456, 1.080263 3.5648679
0.00025  1250] 5000  0.0119584] 1.500478 4.951577

- 0.00025. . 1500, 600 ‘0.0203678 . 1.968074] . 6.4946442

| 0.00025. . 17 700 004125120 2485471 _ 8.2020543

- 0.00025— - 2000 80 0-0805874 —-3.04284——— —10-041273

- 0.00025° 2250 900 0:1319978| .3.632001 11:9856033
ooooz5f 2500] 1000 .0.1756502’ 4242228  13.999352

, 0.00025 I N e e
0.4. . 0. 00025___. 250 " 100.-__ -0.005698! 0.27446881 0 qnqulon
0.4 0.00025- 500 ——200—-0-0148693 0. 77457658 ——2.556 402747
0.4 0.00025 750 -~ 300 - -0.0124045[ - 1.422646 4:694731
0:4] 0.00025 1000 400,  -0.0000905 © 2160488  7.129610
0.4 000025 1250 _ 5000 _ 0.0239154 _ 3.000882] _ _ 9.9029106
0.4 0.00025.. 1500, 600 - - 0.0407392 ... 3.936034 12,9889122
0.4 0.00025- 1750 -700/ - 0.0825054;- - 4970772 16.4035476
0.4- 0.00025 - 2000 800 0.1611684 6.085385 20.0817705
0.4 000025 2250 900l .0.2639887| = 7.263687] _ ' 23.9701671
0.4/. 0.00025. . 2500 .. 1000, - .0.3512863 . ...8.484048 __ 27997358
04 B g — G- — G— - B N
0.4 0.00025 2500 © - 1000 -0.0113962] - 0.54892605 1.811455965
0.4 0.00025 500 200  -0.0297359 1.54909 5.111997]
0.4 0.00025 7500 3000 -0.0248018 _  2.845123] _  9.3889059
0.4 0.00025 1000 400l -0.0001707 - .- 4.320643 __._14.2581219
0.4 0.00025 1250 - 500 0.0478444 - 6001194 19-8030402
0.4~ 0.00025 1500} ‘600, - 0.0814995| .7-871162 25.9748346
0.4/ 0.00025 1750 700 0.1650262, 9.940206, 32.8026798
0.4 0.00025. - 2000 800 0.3223227 12.16889 . . 40.157337]
0.4 0.00025. 2250 - .__.900- 0.5279128 .. -.14.52484 __ _47.931972
0.4 0.00025 2500 100 0.7 - - -16.06485—— 55084005
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TABLE A.4
Test Result of the Estimate Model

- - Eo n nD- | Critical Values. ‘Estimated | 100x(CV-
(99:9% confi] | Critical Values | EVCJnD
] i I R SR (%1 (ECV) [~ "~
0:1- 0.00025} S o~~~ 0 B o -0
0.1] 0.00025]  1000] @~ 100/  0.897351147 0.757841]  0.13951
0.1] 0.00025|. 2000{ _ ~200{ = _ 259049076 _1.956364| 0.317063
0.1 0.00025{ - 3000 300 . 4.7138421 —3.595569] 0.372758
0:1 0.000257—- 400074007 -—-7-2479154 —5:6754561-0:-393115
0.1} 0.00025[ 50007 500~ 101155329 T 8TTe8028] 0.383902
0.1}. 0:00025 6000] ~ 600  13.2734481 ~11.15728[  0.352695
0.1 0.00025[ .7000] 700 .. 16.7252514 14.55921] 0.309435
0.1 0.00025;. 8000; __ 800 . _204610956 . __0.25@09
0.1 0.00025}- 9066+ — 900 — —24-4286427 ~— 22685421 MQQZZS
0.t 0.000257~ 10600 1000 — —28:6081851 "—'27—4ﬂ9+* 6118909
“0.1{  0:0005| o w°of ~—— 0 T a o>
0.1{ 0.0005 1000] 100  1.794663684 1.515682| 0.278982
0.1, 0.0005|. 2000{ . 200]_ _ -5.1807624 3.912728|. 0.634017
0.1 0.0005{- 3000 - 3004 ... —9.4270836 —7.191138;.0.745315
0.1 0.00051 40001 — 4601 — —14:49459 —+1-35691—0-786919
0.1 0.0005[" 5000 5007 —~ ~~20:2289505 167392057 0776138
0.1  0.0005( 6000  600] ~  26.5436259 © 22.31455] 0.704846
0.17  0.0005| 7000 - 700 33.445731 © 29.11842| - 0.618188
0.1/ 0.0005[.. 8000l . 800l _ . 40915479 .—36.80365] _ 0.513979
84 0.0085 90001 ——— 9001 —--——48.-848217— —45:370241—0.3864442
0.t 0.0005[ -~ 10000 — 1000757204642 — 5481827 —0:238644
g.1] o.eof1 oo T o T
0 0001 1000y - - 100] -  3.5890338] ~~ 3.031364] 0.55767
0.1] 0.001|. 2000 _ . 200/ 10359789 7.825456| . 1267167
01 0.00H4--- 3000f . 300{ .. 18.849336{ 14.38228, _1.48902
0.1} 0.001}~ - 40066 —-400——28:9793364+— 22-70182—1-569378
0.1} 0.001] - 5000 500 404409721 327784t 1531374
0.1 0.001) 6000 T600] 53.061129] 44.629T[ 1.405338
0.1 0.001]  7000] 700] - 66.853215 --58.23684| 1.230911
01 0001l.. 8000l . 800| . 81777135} 736073 102123
01 0.004 - 9000 900{ - 97.624065{ - 080.74048. 0.764842
0.t 0.00t— 100660 10001 43155641 109:6364 0467916
0.2 0.00025[ -~ O — O — T o T~ oo
0.2] 0.00025| 500{  100]  0.598288185 - 0.630202] -0.03191
0.2| - 0.00025( 1000{. . 200 1.733655429 1.520806{ _0.106425
0.2{ -0.00025{ 1500( . 300{. = 3.236266044! _. . .2,61.18147_;0.188\151
0.2/ '0.00025; 2000 — 4061 - —5.0032059r——  —4-083224—-0:220995
0.2{ -0.00025] 25007 5007 T 7.0264689] " — 57550381 0:254286
0.2/ 0.00025; 3000f - 600 1 9.2810124|  7.687254] (0.265626
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Appendix B

TABLE B

‘Areas Under the Normal Curve
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