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Interactions and Collisions of Cold Molecules: Lithium + Lithium Dimer
Marko Tomislav Cvitas

Abstract

There is at present great interest in the properties of ultracold molecules. Molecules
are created in traps in excited rovibrational states and any vibrational relaxation re-
sults in the trap loss. This thesis provides a theoretical study of interactions and
collisions in the spin-polarized lithium + lithium dimer system at ultralow energies.

Potential energy surface of the electronic quartet ground state of lithium trimer is
generated ab initio using the CCSD(T) method and represented by an IMLS/Shepard
fit. Long-range nonadditive interactions are modelled using a symmetric global form
with coefficients taken from a fit to the atom-molecule dispersion coeflicients.

The surface allows barrierless atom-exchange reactions. It has a global minimum
of ~ 4000 cm™! at equilateral geometries with 7. = 3.1 A. The nonadditive interac-
tions are very strong near equilibrium. They increase the well depth by a factor of
4 and reduce the interatomic distance by &~ 1 A. Another surface of A’ symmetry in
C; meets the ground state surface at linear geometries at short range. Part of the
seam, near D, geometries, is in an energetically accessible region for cold collisions.
Inside the seam, the lowest A’ surface correlates with 4IT rather than *¥ state.

Inelastic and reactive collisions are investigated using a quantum mechanical cou-
pled channel method in hyperspherical coordinates. Bosonic and fermionic systems
in the spin-stretched states are considered. The inelastic rate coefficients from the
rovibrationally excited states of dimer at ultralow collision energies are large, often

above 10719 cm?s!

. The elastic cross sections are ~ 3 orders of magnitude lower at
1 nK. Atom-molecule mixtures, at the densities found in Bose-Einstein condensates
of alkali metal atoms that were recently produced, would last only a fraction of a
second. Classical Langevin model describes semi-quantitatively the energy depen-
dence of inelastic cross sections above =~ 50 mK. No systematic differences between
the bosonic and fermionic systems were found. Sensitivity of the results on potential
was investigated.

Reactions in isotopic mixtures of lithium may be exothermic even from the molec-

ular ground state. The reactive rate coefficients are 1 —2 orders of magnitude smaller

than those in systems involving an initially vibrationally excited dimer.
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Chapter 1

Introduction



1.1 Background

It was first recognized with the acceptance of the kinetic theory in 19th century
that intermolecular collisions are the underlying mechanism for all rate phenomena
involving gases and liquids. In kinetic theories individual particle motions are re-
placed with average quantities based on statistics. In this way it was possible to give
quantitative explanations for phenomena such as thermal conductivity, viscosity, dif-
fusion and also rates of chemical change. Understanding the dynamics of collisions

at molecular level is the key to interpretation of macroscopic phenomena.

The development of experimental techniques in the 20th century made it pos-
sible to study elementary collisional processes in laboratory. Detailed knowledge
on elementary chemical reactions may be obtained using the techniques of crossed
molecular beams and laser spectroscopy. In a molecular beam experiment, gas at
around 1 bar pressure is expanded into a vacuum through a nozzle of aperture of
around 50 gm. Under such conditions, almost all the thermal energy is converted
into translational motion of molecules, while the relative velocities of molecules in the
beam are low, corresponding to temperatures 1 — 10 K. In experiments with molec-
ular beams, one can control the energies of reagents, investigate the dependence of
reactivity on molecular orientation, explore the nature of reaction intermediates and

their subsequent decay, and identify reaction mechanisms [1]. Recent reviews are in

Ref. 2, 3.

Theoretical treatment of collisions of atoms and molecules usually relies on the
quantum mechanical calculation of interaction potential today (earlier calculations
used empirical potentials). The motion of nuclei of a system of atoms and molecules
is governed by the energetics of their electron clouds. Exact quantum mechani-
cal treatment of nuclear motion on ab initio potential energy surface has recently
demonstrated a remarkable agreement between theory and experiment for the sim-
plest triatomic reaction, H + Hy, [4]. Reaction mechanisms have been explored in
many small systems and results compared with experiment. A recent review is in
Ref. 5. With the development of modern computers, it has also become possible
to treat more complex systems accurately. Reactions involving metastable C, N, O,
and S atoms with hydrogen molecules proceed over a deep well via formation of a

collision complex [6]. Such reactions have also been well described by a recently-



developed statistical model [7]. The study of these systems finds its application in
astrophysical, atmospheric, and combustion chemistry. Reactions were studied at
energies of around 1000 K and above.

In the past decade, advances in the cooling and trapping of neutral atoms and
molecules opened the field of research on matter at ultralow temperatures. It is
possible now to slow down the translational motion of atoms to temperatures below
1 uK. At such ultracold temperatures the effects of quantum statistics become im-
portant and atoms can undergo a phase transition into a degenerate quantum gas.
Most of the experimental efforts in this field have so far concentrated on alkali atoms.
Applications of this research include high-resolution spectroscopy, exploration of fun-
damental symmetries in nature, new many-body physics [8], and novel possibilities
in manipulation of quantum information [9].

Collisions play an important role in cooling processes and properties of matter
at low temperatures. Atoms involved in such collisions interact for a long time
with one another and collisions depend on fine details of potential energy surface.
A lot of work has concentrated on atomic collisions in presence of external electric,
magnetic, and radiation fields [10]. Formation of molecules at ultracold temperatures
offers new possibilities including exploring chemical reactivity in this new regime of
ultracold temperatures [11]. The topic of this thesis is to extend the knowledge about
atom-diatom exchange collisions in the new regime of ultracold collision energies in

connection with the on-going efforts to create stable molecules at rest.

1.2 Cold atoms and molecules

Before defining the objectives of our research and the organization of the material
in this thesis, we briefly describe several cooling methods and some experimental
achievements in creation of cold atoms and molecules. Research activity in this field
has been so extensive that it is impossible to review all ideas and realizations here.
Instead, we bring up only the major achievements that stimulated our research in the
past years. Interactions and collisions prove to be of central importance in creating
and understanding cold matter.

The quest for reaching ever lower temperatures culminated in the creation of

a Bose-Einstein condensate (BEC) of 8”Rb atoms by Cornell et al. in 1995 [12]



and soon afterwards in "Li by Hulet et al. [13] and in 2*Na by Ketterle et al. [14].
BEC is a macroscopic quantum state where all atoms are in the ground level of the
trapping potential. Transition to BEC occurs at a critical temperature, typically
below 1 pK, where de Broglie wavelength reaches the interatomic separations and
indistinguishability of particles becomes important as a consequence of quantum
statistics. Formation of BEC is possible for bosons, which are entities of integer
composite spin (the sum of nuclear and electronic spin).

Creation of BEC is achieved by cooling a gas of atoms below the critical temper-
ature. Various cooling and trapping methods have been developed [9]. In Cornell’s
experiment atoms are stored in a combination of magnetic and radiation fields called
a magneto-optical trap (MOT). Radiation pressure arises from the transfer of photon
momentum to atoms and a weak inhomogeneous magnetic field in a MOT serves as
a spatially dependent control of this force. The method of laser cooling (and laser
sub-Doppler and side-band cooling [9]) is used to cool atoms to the kinetic energies
corresponding to a few times the one-photon recoil momentum (& 10 pK). Atoms
are bombarded with photons tuned just below the atomic resonance frequency. In
this way, the photon momentum is transferred selectively to the fast-moving atoms,
that will see the light Doppler shifted towards the resonance. Photons are then
spontaneously reemitted in random directions. Condensates were first achieved in
alkali atoms because their relatively simple energy level structure allows repeated
absorption and emission in cooling cycles. At the next stage, atoms are stored in a
magnetic bottle and evaporative cooling is used to cool atoms to BEC temperatures.
The principle is to change the spin state of the most energetic atoms with a radio-
frequency pulse, which expels them from the magnetic trap. The remaining atoms
rethermalize through elastic collisions thereby lowering the temperature.

Evaporative cooling technique has also been used to evaporatively cool 4°K to
ultracold temperatures to create a degenerate Fermi gas [15]. In a binary collision of
two identical fermions, s-wave collisions are prohibited by symmetry. Thermalisation
in the cooling process was achieved by simultaneously trapping of two different spin
states. The other component was selectively removed at the end.

It is important that a sufficient number of atoms is conserved in the cooling
process. Typical magnetic trap depths are = 1 K and below, so that various inelastic

processes may contribute to loss of atoms from trap or heating. Inelasticity in atom-



atom collisions and in the interaction of system with light has been extensively
studied [10]. The dominant trap-loss mechanism in BEC is the loss by three-body
recombination. Two atoms form a molecule giving up its binding energy to the
relative motion of molecule and the third atom, which results in the ejection from
condensate. This process has also been studied, e.g. in Ref. 16.

Interatomic interactions play an important role on the road to condensation and
influence the properties of BEC. In a dilute gas where the range of interactions is
much smaller than the interatomic separations, interactions may be modelled by
an effective contact potential described in terms of scattering length. A number
of mean-field and Hartree-Fock approaches have been developed [17] that use the
mean-field interaction term proportional to the scattering length and explain some
of the observed properties of condensates such as, for example, their stability and
shape.

Creating cold molecules by laser cooling is not possible because the spontaneous
emission that is crucial for cooling populates a range of rovibrational levels of the
molecular ground state destroying the cycle. We describe some of alternative cooling
methods designed for molecules below. Cold molecule formation has been reviewed
in Ref. 18.

One way to obtain cold molecules is to create them from cold atoms. Creat-
ing a molecule from two colliding atoms by a laser-driven free-bound transition is
called photoassociation [19, 20]. Heinzen and co-workers used stimulated Raman
transition to photoassociate atoms in the BEC of rubidium [21]. The atom pair is
electronically excited and brought back in a bound state on the electronic ground
surface. Molecules produced in this way are formed in a single rovibrational state.
Photon recoil is minimized by placing lasers in an arrangement in which the two
photon momenta cancel. The transition linewidth is very narrow because the ki-
netic energy spread of the colliding atoms is very low. This allows a very precise
measurement of the binding energy of molecule. An example is determination of
the v = 10 level in the triplet potential of lithium dimer [22]. One of the future
goals is to produce stable ultracold molecules by photoassociation. In Heinzen’s ex-
periment inelastic atom-molecule collisions destroyed the condensate and the first

measurement of the inelastic rate coefficient of atom-molecule collisions in a con-

densate provided the upper limit Kij,q < 8- 107! cm3s™!. It has been proposed



to create molecules in an optical lattice (Mott insulator) [23] to prevent destruc-
tive atom-molecule collisions. Photoassociation was recently employed to produce
first ultracold heteronuclear molecules Li"Li [24], ¥Rb3°K [25], 3Rb!¥Cs [26], and
BNal33Cs [27).

Magnetic fields can be used to change the scattering length and properties of
condensate. Wieman et al. [28] managed to tune the molecular and atomic states
in a resonance and create a quantum superposition of atomic and molecular states.
Later, Grimm et al. [29] managed to create a pure molecular gas by sweeping with a
magnetic field through a Feshbach resonance. Starting from the degenerate Fermi gas
of ®Li, Grimm et al. created Li, molecules in a weakly bound level by recombination
of atoms. Scattering length was tuned with a magnetic field to a large value, which
ensures stability against collisional decay in fermionic molecules [30]. Molecules were
cooled evaporatively to create the first molecular BEC [31]. Simultaneously, BECs
have been created in Li, by Ketterle et al. [32] and in “°K, by Jin et al. [33]. All
of them used fermionic atoms to build the molecules, since the molecules made of
weakly bound bosonic atoms quickly undergo inelastic transitions into deeply bound
states [29)].

Another way to produce cold atoms and molecules has been developed by Doyle
and co-workers [34]. An advantage of his scheme is that it applies to a wide range of
species, because it uses a cooling mechanism independent of the electronic energy-
level structure. The sample is vaporised by a laser in the presence of helium buffer
gas. The density of the buffer gas must be such that thermalisation occurs before
the species reaches the container wall where it would stick. This places a lower
limit on the temperature which is around few hundred mK. Molecules produced in
this way are translationally, vibrationally and rotationally cold. The whole process
takes place in a magnetic trap so it is applicable only to paramagnetic species (while
ground states of homonucelar diatomics are usually singlets). CaH molecule was
cooled in such an experiment to 400 mK. Atom-molecule collisions with the helium
buffer gas have been studied theoretically by Dalgarno and co-workers, e.g. in CO,
[35, 36), and Hy [37].

Another cooling technique, which has been developed by Meijer and co-workers,
is deceleration of molecular beams using time-varying electric fields {8]. The under-

lying principle is that molecules in an inhomogenous electric field lose their kinetic



energy by converting it to Stark-shift energy and not regaining it fully when the
field is switched off. Electrodes in the Stark decelerator are carefully arranged in
a linear array about 35 cm long and as molecules go through, time-varying electric
field effectively provides a travelling potential well that slowly decreases its veloc-
ity. Molecules usually go through ~ 50 — 100 electric field stages. The technique
applies to polar molecules, e.g. CO and NHj, and they can be slowed down to mK

temperatures in this way.

Other cooling and trapping methods are also being developed [38]. For example,
slowing of molecular beams by means of a rapidly rotating source was used to decel-
erate O, molecule to temperatures below 10 K [39]. Molecules at ~ 400 mK have also
been formed in collisions of Ar atoms with NO molecules in crossed molecular beams

experiment by Chandler et al. [40], but have not yet been successfully isolated.

Theoretical work on atom-molecule collisions at ultracold temperatures started
with the work of Balakrishnan et al. on vibrational quenching and threshold laws
in H + H, [41, 42|, and the complex scattering length and Feshbach resonances by
Forrey et al. [43]. The content of this work is described briefly in Chapter 7 of this
thesis. The first study of chemical reactivity at ultracold temperatures was also done
by Balakrishnan et al. [11] on F+H,. The work on atom-diatom collisions is reviewed

further in Chapter 8 of the thesis, when discussing our results.

1.3 Objectives

The aim of this theoretical project is to generate a potential energy surface for three
spin-polarized lithium atoms and study reactive and inelastic collisions at kinetic
energies below 1 K. In particular, the dependence of the inelastic rate coefficients on
the initial molecular state will be investigated to assess the possibility of trapping a
triplet Li, molecule, motivated by recent experiments that produce cold internally
excited molecules. Differences between the bosonic and fermionic systems will be

explored as well as the reactivity of isotopic mixtures at ultralow energies.



1.4 Qutline

The construction of the potential energy surface of lithium trimer is divided in four
chapters. Chapter 2 deals with the qualitative aspects of potential. Conical inter-
sections in the quartet potentials and the symmetry of states involved are discussed,
as well as the physical origin of the interactions and comparison with other systems.
Chapter 3 is involved with the technical details of obtaining accurate electronic en-
ergies of the quartet ground state potential. Chapter 4 deals with the fitting of the
potential energy surface. Chapter 5 is devoted to the long-range dispersion interac-
tions. Expressions for the nonadditive dispersion interaction for triatomic systems
coming from different orders in perturbation theory and many-body expansions are
rewritten in the atom-diatom limit. From here, asymptotic expression for the atom-
diatom dispersion coefficients is derived and a symmetric form used to represent
long-range interaction of lithium trimer.

The following two chapters are involved with the theory of scattering. Chapter
6 describes the theory of scattering in hyperspherical coordinates for atom-diatom
reactions. In Chapter 7 we introduce concepts important in the low-energy scattering
such as the Wigner laws, scattering length and resonances.

Reactive scattering calculations on the Li + Lis system at subkelvin collision en-
ergies are presented in Chapter 8. Inelastic cross sections for low-lying rovibrational
states have been studied in the pure bosonic system, pure fermionic system, and
isotopic mixtures. Results are compared with other atom-diatom systems studied
so far. The sensitivity of cross sections in the Wigner regime to the nonadditive

interactions is discussed in Chapter 9. The thesis ends with conclusions.



Chapter 2

Adiabatic quartet potential of

lithium trimer: a qualitative study
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2.1 Introduction

A prerequisite for doing dynamics calculations is knowledge of potential energy sur-
face. We are interested in atom-diatom collisions of three spin-aligned lithium atoms
in their ground state at low energies. The relevant surface for this study is that of
an S atom and the triplet state of dimer that goes to an S 4+ S limit. The energeti-
cally accessible region of this potential for cold atom-molecule collisions is below the
atomic S + S + S dissociation limit. However, the topology of this surface proved
to be more involved than if it was composed just of a single ground state Born-
Oppenheimer quartet potential. Conical intersections and topology of the quartet

potentials are therefore discussed in this chapter.

The first indication that a “Il state might be low compared to the S + S +
S dissociation limit comes from considering Liy triplet states. The first MCSCF
calculations on low-lying states of Li, were done by Konowalow et al. [44]. A more
accurate study was done later employing an open-shell coupled-cluster method [45].
Both studies show that the 327 and 3TI, states of Li; intersect at = 2.5 A. In this
chapter it is shown that this intersection leads to a seam that cuts into the ground
state T surface in all important region for the scattering on ground state quartet
potential. The most recent ab-initio calculations on Lis triplet ground state were

performed by Halls et al. [46].

Spectroscopic studies of the triplet states of Li, molecules have been carried
out in the laboratories of W. C. Stwalley and R. W. Field. A review by Li and
Lyyra [47] summarizes the experimental results. A set of low-lying vibrational levels
were spectroscopically studied in "Li, [48] and ®Li, [49] and an empirical (RKR)
potential has been constructed from the data. A full potential including the long-
range interactions was also constructed [50] and improved later [51]. The high-lying
vibrational levels have been studied using photoassociation spectroscopy in 6Li, and
"Liy by Hulet and co-workers [52, 53]. Binding energy of the uppermost level in the
triplet ground states of "Lis [22] and ®Li, [54] have been determined experimentally
and used with the RKR data to obtain the scattering lengths of "Li,, ®Li,, and
SLi"Li. Scattering lengths in the singlet ground state of homonucear lithium have
been determined experimentally [55]. The most recent potential of the triplet ground

state of Liy is by Colavecchia et al. [56]. It combines the RKR data with the data
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from photoassociation experiments. Photoassociation of heteronuclear lithium dimer
has been recently performed by Zimmermann et al. [24]. Experimental information
on the potential of lithium dimer has been ever increasing.

Lithium trimer is a much less studied system. Only the doublet ground state
surfaces had been studied experimentally and ab initio [57] before our work was
undertaken. Recently, Colavecchia et al. published an ab-initio ground state quartet
surface [56], but no conical intersection was reported and a topological study is still
missing in the literature.

In the next section we overview methods for calculating ab-initio electronic ener-
gies in the Born-Oppenheimer approximation. These methods were used in ab-initio
calculations in this and the following chapter. Our topological study begins with
symmetry considerations. A brief discussion of the conditions under which electron
states may intersect is given and applied to our system in the subsequent section.
Special attention is given to the analysis of the quartet ground state surface. This is
followed by a discussion on the importance of nonadditive interactions and electron-

correlation effects in the bonding of the trimer.

2.2 Brief survey of electronic structure methods

2.2.1 Born-Oppenheimer approximation

The total Hamilton operator of a system of nuclei and N electrons in the centre of
mass system of nuclei neglecting the relativistic effects [58] (and employing the usual

atomic units) is

Htot - Tn + He + Hmp: (21)
He = Te + Vne + Vee + Vnn: (22)

1 (&N
H, = - T (;m) : (2.3)

Here, H, is the electronic hamiltonian which depends on the position of nuclei,
through nuclei-electron, V,, and nuclei-nuclei, V,,, interactions. It does not depend
on nuclear momenta. Hp,, is called the mass-polarization and it is introduced by
our choice of coordinate system. In equation (2.3), M, is the total mass of nuclei

and the sum is over all the electrons. T . are kinetic energy operators of nuclei and
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electrons respectively and V,, represents all electron-electron interactions.
The solution of the time-independent Schréodinger equation may be expanded in
the eigenstates of the electronic hamiltonian. The full wavefunction of the system is

then
Wior(r,re) = Y Uy (r)Wi(r, 1e), (2.4)
=1

where r and r, are vectors of nuclear and electronic coordinates, respectively, and

U, are orthonormal basis functions defined by
He(r)re)qji(rare) = Ei(r)\]?i(r,re). (25)

When the ansatz in (2.4) is inserted in the full Schrédinger equation, we obtain a set
of differential equations for coefficients ¥,;, (T, = 3, —1/2M,V2 = V2, where a is
nuclear index)

vﬁ\llﬂj + Ej\Ijﬂj + Z{2<\Pj|vn|qli>(vn\llm') +

i=1

(‘IIJIVIQI,\IQ)\IIM + <\I’]|Hmp|\l’l>\I’m} = Etot\I[nj- (26)

The curly bracket in (2.6) contains terms that couple different electronic states.
The first two are called first-order and second-order non-adiabatic couplings. In
the Born-Oppenheimer approximation all terms in the curly brackets are neglected.
The assumption is that other electronic states are energetically sufficiently far away
that non-diagonal terms may be neglected. The diagonal terms are often neglected
because they are expected to be smaller than E; by a factor that is roughly equal to
the ratio of electron and nuclear masses. In the Born-Oppenheimer approximation,
nuclei move on a potential energy surface E;(r) which is determined by solving

electronic hamiltonian for a set of nuclear geometries.

2.2.2 Electronic structure methods

There has been an enormous progress in last few decades in numerical methods for
solving the electronic Schrodinger equation. Computer program packages with a set
of built-in methods for obtaining electronic energies are commercially available to-
day and have become a tool in chemistry for obtaining information on properties and
potential energy landscapes of molecules. This section is intended to provide infor-

mation on the electronic structure methods we employed for studying the potential
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energy surface of lithium trimer in its quartet ground state. This survey relies on
Ref. 59 and a recent review by Knowles et al. [60]. For more detailed information
on the methods, the reader is referred to Ref. 61 and the references cited below in
connection with the methods used in this work.

The usual starting point in reviews of electronic structure methods is Hartree-
Fock theory. Hartree-Fock (HF) is a mean field theory in which each electron has
its own wavefunction, an orbital, which obeys a one-particle Schrédinger equation.
The effective hamiltonian contains an average field of all the other electrons in the
system, where Coulomb and exchange interactions are included. The total electronic
wavefunction is an antisymmetrized product of orbitals, a Slater determinant. The
assumption lying behind HF theory is that the probability density for a given electron
is independent of the other electrons (ignoring the Pauli principle here). However,
in reality electrons interact with each other and their motion is correlated.

A well known example of the failure of HF to include electron correlation ef-
fects is the calculation of dissociation curves in singlet states of diatomic molecules
(for example Hy). If the restriction is made that each spatial orbital contains two
electrons, the so-called restricted Hartree-Fock (RHF) wavefunction will contain spu-
rious ionic terms. This is because at long internuclear separations in the mean field
approximation each electron has equal probability of being on both atoms. This does
not exclude the probability of both of them being on the same atom. Allowing the
spatial orbitals of electrons in different spin states be different solves this problem.
The method is then called the unrestricted Hartree-Fock (UHF). However, the UHF
wavefunction is not a spin eigenstate and this can cause a failure in more advanced
methods that build on UHF wavefunction. The correlation energy that arises from
long-range correlation effects is usually referred to as the non-dynamical correlation.

Another problem of HF theory is the inability of the HF wavefunction to describe
the so-called interelectronic cusp. This is the Coulomb hole connected with the sin-
gularity of repulsive Coloumb potential between two electrons. The HF wavefunction
overestimates the electron repulsion at short interelectronic separations. This prob-
lem is less pronounced in triplet diatomic states since the spatial wavefunction is then
antisymmetric and the probability of finding two electrons close together is small.
The short-range correlation effects are usually referred to as dynamical correlation.

The electron correlation energy is usually defined as the difference between the
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exact energy and the one obtained from HF calculation.

There are many methods that go beyond HF and the choice of which to use
depends on the purpose. The most commonly used methods for potential energy
surfaces are configuration interaction (CI), many-body perturbation theory (MBPT),
and coupled cluster (CC) methods.

In configuration interaction theories, the wavefunction is a mixture of several
Slater determinants or configuration state functions (linear combinations of Slater
determinants that are a spin eigenstate). The additional determinants, beyond HF,
are constructed by replacing occupied molecular orbitals in the HF wavefunction by
un-occupied ones. We may generate singly, doubly, triply, and other multiply excited
determinants relative to HF in this way. The coefficients in the linear combination
may be determined variationally. Because of the large number of configurations
usually involved, the lowest eigenvalues of the hamiltonian matrix in the basis of
the Slater determinants are found using iterative methods. The ground-state energy
determined in this way is an upper bound to the exact energy and the procedure
also allows approximate determination of electronically excited states. The dissoci-
ation problem is solved using CI theories, but the problem with the interelectronic
cusp is only partially solved because convergence to the exact wavefunction is slow.
Non-dynamical correlation in CI theories is recovered by a minimum CI expansion
that qualitatively correctly describes correlation effects. The dynamical correlation
is recovered by increasing the size of the CI expansion to include the remaining
correlation energy.

MBPT methods have also been developed in many forms. An important class
is Mgller-Plesset perturbation theory. In second and third order (MP2, MP3), only
doubly-excited determinants contribute to the energy calculations. In fourth order
(MP4), singly-, doubly-, triply-, and quadruply-excited determinants contribute. To
go beyond MP4 becomes prohibitively expensive. A drawback is also that the MP
series is not guaranteed convergence.

In CC theories all the corrections to energy from a given type of excited determi-
nants are included to infinite order in the MBPT sense. The coupled cluster wave-
function, obtained by including the single- and double-excitation operators in the
cluster operator, will encompass all the contributions from singly and doubly excited

determinants, and also some contributions from triply, quadruply, and other multi-
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ply excited determinants. The CCSDT method, which includes the triple-excitation
operator in the cluster operator, is too expensive at present, except for the smallest
systems. The most important contribution missing in CCSD wavefunction comes
from the so-called connected triples (simultaneous interaction of three electrons).
Several variants that include the contribution of the triples in a perturbative way
have been developed. The most widely used method is CCSD(T), where a term
describing the coupling between singles and triples is also included. CCSD(T) scales
as the seventh power with the number of basis functions used to describe the system
in the large basis set limit, which is same as MP4, but gives more accurate results.

Size extensivity is important in obtaining accurate energies. Since the interaction
energy is defined as the difference between the energy of the full molecule and of its
constituents, it is important that both are treated with the same accuracy. Size
extensivity means that the method scales properly with the size of the system. CI
theories are not size extensive. They recover less and less of the correlation energy
as the size of the system grows. Only in the limit of full CI, which includes all
the excited determinants, do CI theories become size extensive. MP (but not all
the MBPT theories) and CC theories are size extensive and that is an important
advantage of them. There have been efforts to include additional terms in the CI
theories that make them approximately size extensive. An example is Davidson’s
correction for quadruple excitations. Other examples include the averaged coupled-
pair functional (ACPF) and coupled electron pair approximation (CEPA), which
may be regarded as approximate versions of CCSD.

Electron correlation methods may be based either on a single-reference or on a
multi-reference wavefunction. Single-reference methods build on an HF wavefunc-
tion and are suitable for systems where non-dynamical correlation effects are small.
An important multi-reference method is the multi-configuration self-consistent field
method (MCSCF). It can be considered as a CI method where not only the co-
efficients in front of determinants, but also the molecular orbitals making up the
determinants are optimized. Orbital optimization does not recover a large part of
correlation energy (it recovers the non-dynamical correlation energy). A more effi-
cient way to recover the correlation is to keep the orbitals constant and include more
excited configurations. Multi-reference configuration interaction (MRCI) is a CI per-

formed on an MCSCF reference function (usually only single and double excitations
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are included, i.e., CISD). With inclusion of more configurations, the method quickly
becomes very computationally expensive.

Different approaches are often used in treating closed-shell and open-shell sys-
tems, the latter being usually more involved.

Many existing methods have been omitted in this brief survey. Some of the
promising methods are currently being developed. An important one is symmetry-
adapted perturbation theory (SAPT), which is close to reaching CCSD(T) accuracy,
but still more expensive. It is currently developed for closed-shell systems only.
Theories are being developed for treating excited states, such as the propagator
methods, involving Green’s functions theory. The R12 methods are being developed
in which interelectronic distance is included explicitly in the trial wavefunctions.
The advantage gained in this way is to achieve a faster convergence with the basis
set. These methods presently give accurate results only when large basis sets are
used. Density functional theory has enjoyed a lot of success in calculating molecular
properties at a relatively low computational cost.

In this work, electronic structure calculations have been performed using the
MOLPRO suite of ab-initio programs [62]. Natural atomic population analysis was
performed using Gaussian [63] on wavefunctions at the HF level. For qualitative
studies of ground and excited states we have used complete active space self consistent
field, [n, m]—-CASSCF as implemented in MOLPRO [64]. This is an MCSCF method
which includes all excitations of n electrons within the active space formed of m
molecular orbitals. A subsequent internally contracted MRCI [65] was employed if we
wanted to recover more correlation energy. For accurate calculations of the quartet
ground state of lithium trimer, the partially spin-restricted open-shell coupled cluster
method, RCCSD(T) [66], was used. Results were compared to the spin-unrestricted
UCCSD(T) method for a few arrangements of lithium atoms. The difference was
~ 1 cm™! at the global minimum of the quartet surface of lithium trimer.

All computational methods for electronic energies scale at least as M*, where M is
the size of the basis set used to expand the orbitals and represent the wavefunction.
The quality and size of the basis set is therefore crucial for accurate calculations.

This topic is considered in more detail in the next chapter.
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2.3 Symmetry considerations

Electronic structure of lithium atom in the ground state consists of an electron pair
in the 1s atomic orbital and an unpaired electron in the 2s orbital. The term symbol
is 2.

When two identical S-state atoms approach, the symmetry of the system is Deop.
Molecular orbitals may be formed that span the irreducible representations of the
symmetry group and in this way two diatomic electron terms are derived, 12; and
33, Atomic 2s orbitals may be combined in o, and o, molecular orbitals. The two

terms result then from (0,2s)? and (0,2s)(0,2s) configurations, respectively.
g g g

When we bring up a third lithium atom, forming an isosceles triangle geometry
with the pair, we label the symmetries of the individual terms as irreducible repre-
sentations of the Co, group. Placing the pair on y axis, the diatomic states of 1}3;
and 3¥F symmetry in the group Dy, become of 1A4; and 3B, symmetry in Cs,.
Atomic state is of 24, symmetry in C,,. Combining the multiplicities of atomic
state with that of the pair, we obtain 2A4;, 2B,, and B, terms from three ground
state lithium atoms at Cy, geometries. When the three atoms form an equilateral
triangle, the doublet states combine into a 2E’ degenerate representation of the Dsy
group and the quartet state becomes *A;, which is a spin symmetric and spatially
antisymmetric state. Both states span A’ irreducible representations in the Cy group.

The most stable configurations of the quartet state are of D3, symmetry.

The molecular orbitals of lithium trimer formed from the s and p atomic orbitals
and their corresponding symmetry species are given in Table 2.1. Lithium atoms are
placed in the yz plane. For D3, configurations of lithium trimer, we refer to labels in
Figure 2.1 a). Tangential and radial p;, orbitals are formed from linear combinations
of p, and p, orbitals. Two linear combinations of either p;,, or s orbitals of form
2py — p2 — p3 and py — p3, form an orthogonal basis for E representations, and
? + p2 + ps for A representations. When we move the atom along the z axis, we
produce Cs, configurations. The degeneracy of e orbitals is removed, ¢’ = a; +by and
€' = ay + b;. Inserting the atom on z axis between the two on the y axis brings the
system to Do, geometries. For the purpose of assigning the symmetry labels to the
orbitals we relabel the axes in the conventional way as in Figure 2.1 b), although the

results in Table 2.1 refer to the Figure 2.1 a) case. Now a, and b; orbitals consisting
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of atomic p orbitals become degenerate forming m, molecular orbitals. Similarly,

Ty = a2 + by. We also give the symmetry labels in Table 2.1 for orbitals in the Dy,

and the C5, group in which the principal axis is taken to be along the molecule in

its linear configurations. They are useful for specification of orbital symmetries of a

molecule in linear configurations, Dy, and Cy,, in input to the computer package

MOLPRO for ab-initio calculations, since MOLPRO works with finite groups only.

C; configurations describe the rest of the arrangements needed to describe the whole

reactive Liz potential energy surface.
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Figure 2.1: Geometrical arrangements of three lithium atoms: a) Cy, geometry, and

b) Deon, with the corresponding axis labels.
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Table 2.1: Symmetry species of molecular orbitals arising from 1s, 2s and 2p atomic

orbitals of three lithium atoms, placed in the yz plane, in different point groups.

The symmetry assignments we have just given are important to understand the

topology of lithium surface.
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2.4 Intersection of electronic states

Electronic states as functions of interatomic separations can cross. We analyze here
the conditions under which this can happen.

The energies of adiabatic electronic states, E, are eigenfunctions of the hamilto-
nian. We assume that the Hilbert space is spanned by two orthogonal functions, for
example a diabatic basis, see section 2.8. The adiabatic energies are obtained from
a secular determinant which, for a two-state problem, reads

Hyj(r) - FE Hiy(r)

Hyp(r)  Hy(r) - E =0, (27)

where H;;(r) are matrix elements of the hamiltonian in the diabatic basis and r
is a vector describing the nuclear configuration. From equation (2.7), we get two

adiabatic energies in form

Eyp= ‘;‘(Hu(l‘) + Hy(r)) %\/(Hu(r) — Hop(r))2 + 4 |Hia(r) . (2.8)

If the adiabatic energies are to become equal, the expression under the radical in

(2.8) must vanish. The two conditions to be met are
Hu(l‘) — HQQ(I') = O, and ng(r) =0. (29)

If we consider a diatomic molecule, the only free parameter to satisfy the above
conditions (2.9) is the interatomic distance. This means that two states of diatomic
molecule cannot intersect (except accidentally), unless Hj, vanishes identically be-
cause of symmetry. Thus only states that belong to different irreducible representa-
tions of the symmetry group of the hamiltonian of our system are allowed to cross.

In a polyatomic molecule consisting of N atoms, the number of free parameters is
Ny =3N —6. Any two states may intersect. If the states are of different symmetry,
one condition needs to be satisfied and intersection occurs in Ny — 1 dimensions. If
the states are of same symmetry, both conditions in (2.9) need to be satisfied and
intersection occurs in Ny — 2 dimensions.

For lithium trimer N = 3, so the number of parameters is Ny = 3, the three
interatomic distances. In the space of all possible geometries, the surfaces of interest
to us are of A’ symmetry. T'wo of them can intersect along a line (N; — 2 dimen-

sions). For some particular symmetry arrangements, for example linear, belonging
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to Coop group, or isosceles, belonging to Cy,, the matrix element H;, may vanish
due to additional symmetry operations that now distinguish the two A’ states. Then
the two states belong to different irreducible representations in these higher-order
groups. The condition to confine the geometrical arrangement into higher symmetry
reduces also the number of free parameters, in our examples by one to Ny = 2.
Intersection again occurs along a line at most (Ny — 1 dimensions), as it should, but
the reduced number of free parameters facilitates the process of locating the position

of intersection.

2.5 Topology of the quartet electronic states of Li;

In this section, we compute electronic energies of quartet states of lithium trimer in
certain high-symmetry arrangements to gain a qualitative picture of the potential
energy surface. We are interested in the states that asymptotically tend to three
S-state atoms or to two S-state and a P-state atom at long range.

In the atom-molecule limit of a quartet trimer potential, where one interatomic
distance is small and the other two are large, the molecule will be in one of the triplet
states that may be constructed from either the S+.S or S+ P atoms. We have calcu-
lated the triplet curves of Li, in a state-averaged [3,8]-CASSCF, where three valence
electrons where correlated and all orbitals optimized. The active space comprised
of all molecular orbitals made of atomic 2s and 2p orbitals of three atoms. Opti-
mization was simultaneously performed on all states in Figure 2.2. Subsequently, an
MRCI that included single and double excitations from the CASSCF wavefunction
was performed. Electrons in atomic 1s orbitals were frozen. The basis set we em-
ployed was aug-cc-pVTZ [67]. At = 2.7 A, the ®II, state of the dimer intersects the
ground triplet state 3L} at & 2800 cm~!. At distances larger than =~ 4.7 A, 3II,
crosses the 3%, state and the order of the four states correlating with the atomic
S + P limit does not change on longer distances anymore. The ground triplet state
has small amount of bonding present. The ro-vibrational states of this potential
energy curve will be the initial and final states in our dynamics investigations later.

In order to investigate the strong interaction region of lithium trimer, we per-
formed calculations of electronic energies in Cy, configurations. We have plotted the

dependence of electronic energies on the two equal distances at a fixed angle between
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Figure 2.2: Triplet potential energy curves of Li, from atomic S + S and S + P

dissociation limits.

them in Figure 2.3 for 180°, 170°, 150°, 120°, 90°, and 60°. The calculations on the
trimer were performed using [3,24]-CASSCF in connection with an aug-cc-pVTZ ba-
sis set. Active space was constructed from all molecular orbitals made of atomic 2s,
2p, 3s, and 3p orbitals. State-averaging included all states shown in the figures.

At 180°, states may be labelled by Dy, irreducible representations. The ¥}
state is derived from the atomic S + S + S limit, while six different states correlate
with the S + S + P limit, *II,, 4%, ‘I1,, 2'%,, 211, and 2*3,. The last three of
these interact strongly with states correlating with the asymptotic S + P + P and
S+ S+ 25 limits, at short range (less than 6 A in D,y). The II, state crosses the
ground state at ~ 3 A and a X, state at ~ 4.3 A. The ground state may be described
by the electron configuration in which three electrons sit in the three orbitals derived
from atomic 2s’s, o4, 0, and oy.

By bending the trimer to Cy, geometry at an angle slightly smaller than 180°,
the degeneracy of the II states is removed. The I, state breaks into A, + B, and
IL, into A; + B;. The ¥, and %, states become B, and A;, respectively. Now, the
above mentioned II, — 3, crossing remains because all three states involved are of
different symmetry in Cs,. At the II, — ¥, crossing, when the geometry is slightly
bent from 180°, the A, state does not change appreciably, but two B, states are not

allowed to cross and an avoided-crossing of the two curves may be observed in Figure
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2.3 extended over the angles 170° — 120°.

The B; state arising from the degenerate II, state at 180° interacts strongly with
a state from an upper asymptotic limit at short range. As the angle decreases, this
state moves downwards in energy and at 60°, this state forms a degenerate pair of
E" symmetry in Dj, group, with the A, state that was a II, at 180°. The B, state
derived from II,; at 180° forms a degenerate pair of E' symmetry with the A; state
that was ¥, at 180°. The two E symmetry states cross at ~ 4.9 A and are both
intersected by the A state that was an A, state arising from the degenerate I, at
180°. Intersections happen at &~ 4.0 A and 4.5 A with £’ and E”, respectively. It
may be seen from Figure 2.4, where the curves are shown for the angle fixed at 70°
and 55° on the two graphs, that the two states which are degenerate at 60° swap
places in energetic order at short distances (in the range of their minima).

In Cy,, the ground state is a state of By symmetry. There are three B; states,
three A, states, two A, states, and a B, state, that correlate with the atomic S+S+P
limit. In the C, group all the A, and B, states become of A’ symmetry, while A,
and B; become A”. This means that as soon as we deform the configuration out of
Cs, symmetry the terms of the same symmetry in C; that were crossing will avoided-
cross. For example, the A, state that was a £, at 180° crosses at a seam the state of
By symmetry derived from the degenerate II, at 180°. If one of the equal distances
in CYy, is slightly increased, the two states will avoided-cross.

In the Djj, group, the ground state is a product aj] x € x € = a} + [a}] + €,
as can be seen from Table 2.1 and direct product tables [68]. A quartet state is
a spin symmetric state and is therefore combined with a spatially antisymmetric
state giving the term symbol *A,. In the same manner as above, the states that
asymptotically correlate with the atomic S + S + P limit are two F’, an E”, an A},
an A}, and an Af. The non-degenerate terms of Dy, symmetry correlate with the Cy,
terms in the following way: A} = A,, A, = B,, A] = A,, and A} = By, and as stated
above E' = A; + B, and E" = A, + B;. For example, the lowest A] — E’ crossing
at 60° involves three states of A’ symmetry in Cs. This means they all avoided-cross
when an angle and an interatomic distance are displaced from Dj, symmetry to Cj.
Both A, surfaces cross the B; surface at a seam at Cy, configurations away from Dsj,
configurations, while the two A; surfaces touch at a point in the Dj, configuration.

After we have seen how quartet states of lithium trimer correlate with their
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Figure 2.4: CASSCF quartet potentials of Liz from atomic S+ 5+ S and S+ S5+ P
asymptotic limits at Cs, configurations. The two equal interatomic distances r are

varied and angle between them is fixed at 70° (left) and 55° (right).

three-body atomic limits at long range, it remains to be seen how they correlate
with their atom-diatom limits. The correlation diagram is shown in Figure 2.5. In
the first panel (leftmost), we extend one distance away from the D, geometry while
preserving linearity, with the other one fixed at 6 A. The geometries encompassed in
this diagram are away from the strong interaction region to avoid interaction with
states correlating with higher asymptotic limits. The preserved symmetry is Cy,, and
the term symbols (not shown) are same as in Dy, with g and u labels disposed. On
the second panel (middle), we extend two distances from Dj;, configuration, keeping
them equal in the process, with the third fixed at 6 A. The preserved symmetry is
Cy, in this case. Here further term crossings occur before the atom-diatom limit
is reached. In the third panel, the end configurations are D3, and De, and they
are connected by keeping two distances equal (6 A) and changing the angle between
them. Cy, symmetry is preserved in the process. This situation has already been

discussed above in the text pertaining to Figure 2.3.

2.6 Ground state quartet surface of Li;

The lowest adiabatic quartet state of lithium trimer of A’ symmetry in Cy group
has a derivative discontinuity at linear geometries. The *II state cuts through *%
as was shown in Figure 2.3 at 180°. It seems that the intersection occurs above the

three-body (S + S + S) dissociation limit, but CASSCF calculations underestimate
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Figure 2.5: Correlation diagram of quartet potentials of Lis from atomic S+ S + P
dissociation limit. The first panel connects the Dy terms with the atom-diatom
limit, with an interatomic distance fixed at 6 A and Cu, symmetry preserved. The
second panel connects the Dj, terms with the atom-diatom limit, with an interatomic
distance fixed at 6 A and Cb, symmetry preserved. The third panel connects Ds; and
Doop, terms. Here two interatomic distances are fixed at 6 A and the angle between

them, «, is varied.
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Figure 2.7: RCCSD(T) surfaces of *=} (left) and *II, (right) states of lithium trimer

at Coo, configurations. Electronic energies are in cm™!.

the grid points where electronic energy is evaluated ab initio and the methods of
interpolation used for visualization of the surface will be discussed in Chapter 4. In
ab initio calculations, the HF energy near and inside the avoided crossing jumps in
an uncontrollable fashion between the lowest A’ surfaces for different geometries. In
order to have an automated computation of a large number of energies for the whole
reactive surface, it was found useful to do an ionic Lii HF calculation beforehand to

obtain convergence on the lower eigenvalue.

The quality of single-reference-based methods, such as CCSD(T), in the vicinity
of conical intersections may be questioned. The T1 diagnostic is a measure that
determines where multireference effects become large and may compromise the re-
sults [69]. It is related to the norm of amplitudes of singly excited determinants in
configuration interaction theory. It has been stated [69] that if T1 is greater than
0.02, single-reference electron correlation methods are probably unreliable and will
not yield highly accurate results. CCSD has been tested on alkaline-earth metal
clusters [70] and it was shown that when 73 > 0.02 inclusion of perturbative triples
in CCSD is important and gives surprisingly good results. It was suggested that
CCSD(T) may be useful when MRCI calculations are impractically expensive. We
report T1 diagnostics in Figure 2.9. The dots in the figure indicate the positions
where T1 diagnostics were evaluated. The angle between the interatomic distances
71 and 74 on each graph corresponds to the one on the corresponding graph in Figiire

2.8. It can be seen that the electronic energies are less reliable at short distances
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lithium trimer. 7, and 7y are interatomic distances and the angle between them
is fixed on each graph at 180° (top left), 170° (top right), 150° (middle left), 120°
(middle right), 90° (bottom left), and 60° (bottom right). Electronic energies are in
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and at angles close to 60°. A part of the configuration space of low reliability is
outside the relevant region for low-energy scattering, below the three-body dissoci-
ation limit. The two lowest A’ states are of different character at 180° and away
from the crossing their character becomes mixed. Regions of high T1 at angles other
than 180° are at configurations where the two A’ surfaces avoided-cross. The energy
difference may be less than 1000 cm™! in high-T1 regions at 60°. The butterfly-like
wings extend towards the end of the seam correlating with the ¥ — II intersection in
the atom-diatom limit.

We have recalculated electronic energies using [3,12]-CASSCF, followed by an
MRCI including Davidson’s correction, for the same configurations. We show surface
slices at 60° and 90° in Figure 2.10 where T1 diagnostics yielded high numbers. There
are no visible qualitative differences. The MRCI surface is lower at all configurations.
The MRCI energies differ from RCCSD(T) (with 1s electrons frozen) at 715 = 3.8
A in Dy geometries by 16 cm™! or 1.66 %, while at = = 3.2 A in Ds;, by 64

L or 1.64 %. Towards the configurations at 60° with large T1 diagnostics, the

cm™
difference between the MRCI and RCCSD(T) energies increases, but the steepness of
the curves is increased proportionally. Another research group employed CCSD(T)
method near a conical intersection recently [71] (CIHCI potential) and found the
results satisfactory. We have checked that the T1 diagnostics, calculated here using

an aug-cc-pVTZ basis, do not change significantly when using larger basis sets.

2.7 Nonadditivity and nature of bonding of Li;
quartet ground state

Potential energy of a system of atoms may be written in a many-body expansion.

Specifically for three atoms, we may write
Vror(r1,72,73) = Va(r1) + Va(ra) + Va(rs) + Va(ri, 72, 73), (2.10)

where r; are interatomic distances, V; is dimer potential, and V3 is the nonadditive
part of potential.

Nonadditive interactions have been studied in rare-gas trimers and proved to be
small. The leading term of nonadditive dispersion interactions, the Axilrod-Teller

term [72], has proved to work remarkably well in simulations of rare-gas solids and



30

56- ° ° . ° ° . . ° . . 5.6-
e o © © & e s o°o o o
4.6- 4.6-
¢ e e o o ® & © s @
< <
o /e o \e ¢ o o 02
o
\3_57 % -@ s e \:mﬂ e
& Ly g
Y Q).
o5
c o [o e Yo
26- <
o e of o o o/ e
°o o o of o o
1.6 I T T
1.6 2.6 3.6 4.6 56

56- ° ° ° .
. - . ?$ °
4.6 X
< A <
~ 1O ~
3.6*/ < \of § . o o e X
° o .a:s/’% ;0" °o o
o
16 ; /T .
1.6 2.8 3.6 46 5.6

5.6-

PuH
NG
B

&/np\ o M2y

T

./ A
./ A

¥ T ?
3.6 4.6 5.6

./ A
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Figure 2.10: Angular slices of the CASSCF + MRCI surface of the lowest * A’ state
of lithium trimer. r; and ry are interatomic distances and the angle between them

is fixed at 90° (left) and 60° (right). Electronic energies are in cm™'.

liquids [73]. Its contribution is positive at equilateral geometries and negative at
linear. It was shown [74] that other nonadditive interaction terms are not negligible,

but cancel one another at the minimum and larger distances.

Surprisingly large nonadditive interactions were found in small metal clusters.
In the doublet ground state of lithium trimer, it was found [75] that nonadditive
effects are destabilizing and large. Kaplan et al. [76] found that electron correlation
must be taken into account to determine the sign of nonadditive interactions in
small metal clusters. Lithium trimers are stabilized by pairwise interactions. In
the tetramers, two-body attraction is smaller than three-body repulsion and four-
body interactions are essential for their stabilization. There is an increase in the
equilibrium distances in the sequence Li,, Lis, and Li4, in order to reduce the repulsive
three-body interactions which diminish more sharply with the distance than the

pairwise interactions.

Alkaline-earth metal dimers and trimers are unstable at the Hartree-Fock level,
but electron correlation effects stabilize them [77]. Three-body interactions are at-
tractive and are the main contributors to bonding in the trimers. It was found [78]
that the mixing of ns and np orbitals leading to an sp hybridization is likely to be
the mechanism responsible for binding in alkaline-earth clusters.

In lithium trimer in the quartet state, three-body nonadditive interactions are

large and attractive at equilibrium. Pairwise additive and nonadditive contribu-
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tions at Djp, configurations are shown in Figure 2.11 at Hartree-Fock and CCSD(T)
level (in this section we use the cc-pV5Z basis set with non-contracted p functions,
see Chapter 3). Pairwise interactions are repulsive at the Hartree-Fock level at all
distances. Nonadditive interactions in the vicinity of the equilibrium are large and at-
tractive and lead to stabilization of trimers even at Hartree-Fock level with a binding
energy of &~ 1280 cm™! at 7 a2 3.09 A in the Dj;, configuration. Electron correlation
introduces lowering of the additive energy and contributes bonding. Nonadditive
interactions are less influenced by electron correlation. The nonadditive correlation
energy is positive at Djg), geometries and lowers the binding energy. Nonadditive dis-
persion interactions also make a positive contribution at Ds, geometries and are the
dominant nonadditive effect at large separations. Three-body interactions are larger
in magnitude than pairwise interactions at intermediate distances between 2.5 A and
4.1 A. They are responsible for the large well depth, four times the one suggested by
pairwise additivity. The well is shifted to 3.1 A from 4.2 A in the pairwise additive
model.
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Figure 2.11: Total (Vror), pairwise-additive (V3), and nonadditive (V3) interaction
potential of Lis in the quartet ground state at D3, geometries as a function of inter-

atomic distance in Hartree-Fock (left) and RCCSD(T) (right).

Additive and nonadditive interaction energy at the D configurations of lithium
trimer in the X} state on Hartree-Fock and CCSD(T) level are shown in Figure 2.12.
Interaction energy at Hartree-Fock level is positive for all distances. The pairwise-
additive interactions are positive and larger than attractive nonadditive interaction
at distances shown in the figure (r > 2 A). Electron correlation lowers the additive

and raises the nonadditive energy, with the net effect of bonding for distances larger
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than &~ 3.1 A. Here, the nonadditive interactions exhibit a minimum at —1100 ¢cm™!

at 2.5 A. The nonadditive dispersion contribution remains negative at long distances.
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Figure 2.12: Total (Vror), pairwise-additive (V3), and nonadditive (V3) interaction
potentials of Liz in the quartet ground state at Do, geometries as a function of

(smaller) interatomic distances in Hartree-Fock (left) and RCCSD(T) (right).

We summarize characteristics of lithium dimer and trimer spin-polarized poten-
tials together with those of other alkali metals obtained (by others) in our group
[79] in Table 2.2 and 2.3 for comparison. (At D, geometries in lithium trimer,
there is a second minimum, V = —760 cm™', at 2.80 A. ¥ and II states cross at
3.104 A and V = —96 cm™!.) The results for sodium agree well with those obtained
by Higgins et al. [80]. Discrepancy at the global minimum is less than 1.5%. The
equilibrium bond lengths in the quartet trimers are substantially shorter than those
of the triplet dimers, by an amount that decreases steadily down the series from 1.07
A in Li; to 0.59 A in Cs;. All alkali-metal trimers are predominantly bonded by
nonadditive interactions. The nonadditive contributions to the interaction energies
at the equilibrium vary between ~ 130 % for Li and =~ 50 % for Cs. For rare-gas
trimers these figures are in range 0.5—2.5 % [74, 81] and produce a weakening rather
than a strengthening of the binding. In alkaline-earth metal trimers, the figures are
more similar. They range from 100% for Bes to 60% for Caj [77].

The potential curves of quartet alkalis at D3, and D, configurations are shown
in Figures 2.13 and 2.14. Pairwise-additive and full potentials are shown to em-
phasize the importance of nonadditive interactions. The effects are smaller at Dy
configurations, but still substantial in all alkali trimers.

Nonadditive interactions at long range are dominated by dispersion forces, but



Dimer
Te / A | Vinin / cm™!
Li | 4.177 —328.922
Na | 5.214 —174.025
K | 5.786 —252.567
Rb | 6.208 —221.399
Cs | 6.581 —246.786

Table 2.2: Characteristics of CCSD(T) triplet potentials of alkali dimers.

Trimer Dy, Trimer Do,
e / A | Viin /em™ | V3 /em™ |75, /A | Vg /em™ | V3 / cm™?
Li [ 3.103 —-3970 —5224 3.79 —950 —344
Na | 4.428 —837 —663 5.10 —381 =27
K | 5.084 —1274 —831 5.67 —569 —-52
Rb | 5.596 —995 —513 6.13 —483 —-15
Cs | 5.992 —1139 —962 6.52 —536 -32

Table 2.3: Characteristics of CCSD(T) quartet potentials of alkali trimers.
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Figure 2.13: Total (left) and pairwise-additive (right) interaction potentials of alkali

trimers in the quartet ground state at Ds;, geometries as a function of the interatomic

distance.
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Figure 2.14: Total (left) and pairwise-additive (right) interaction potentials of alkali
trimers in the quartet ground state at D geometries as a function of (smaller)

interatomic distances.

the short range nonadditivity is present even at the Hartree-Fock level. Hartree-Fock
values for nonadditive potential at the minimum are ~ 110% for Li, ~ 90% for Na,
~ 100% for K and Rb, and ~ 120% for Cs of the CCSD(T) values.

The chemical bonding effect arises because in alkali-metal atoms there are vacant
np orbitals that lie relatively close to ns orbitals. The np orbitals form bonding
molecular orbitals of the same symmetry as those formed from ns orbitals. The ¢’
orbital is formed from p, orbitals and the a} from p, orbitals, see Table 2.1. The
sets of orbitals of the same symmetry interact, lowering the energy of the occupied
molecular orbitals and contributing to the bonding. This is the mechanism of sp
hybridization in chemical terms.

We have carried out natural atomic orbital population analysis [82] of the Hartree-
Fock wavefunction. The results, shown in Table 2.4, display significantly larger
populations of p-type functions than in the corresponding dimers. The effect is
largest in lithium where the s and p orbitals are closest. The interaction with p,

orbitals introduces a mixed character in the occupied orbitals of ¢’ symmetry.

2.8 Future work: comment on diabatization

The Born-Oppenheimer approximation breaks down in the vicinity of conical inter-
sections. The coupling between intersecting states is large and the states are mixed

in character. One way to describe the electronic states is to use the adiabatic basis,
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Trimer Dimer

ns np; npy ns np,
Li | 0.743 | 0.046 | 0.197 | 0.992 | 0.005
Na { 0.985 | 0.003 | 0.009 { 0.998 | 0.005
K |0.949 | 0.011 | 0.034 | 0.995 | 0.003
Rb | 0.975 | 0.006 | 0.014 | 0.996 | 0.003
Cs | 0.947 | 0.012 | 0.030 | 0.995 | 0.003

Table 2.4: Natural atomic orbital populations of quartet alkali trimers and dimers

at the corresponding global minima.

defined in equation (2.5). In this case, the dynamical equations involve non-adiabatic
coupling matrix elements, inside the curly brackets in equation (2.6), which involve
derivative operators and are rapidly varying near the intersections. They are there-
fore inconvenient to use in dynamical calculations. Alternatively, we may transform

to a diabatic basis, ®;, by an orthogonal transformation. In the case that two states

d, _ cosvy sinvy v,y (2.11)
b, —siny cos7y U, | '

The mixing angle v may be determined to make the non-adiabatic couplings as close

are involved, we have

to zero as possible. For a one-dimensional problem, this condition reads,

dy
<1IdQ|<I>2> ~40 (lIH! I‘Ifz>~0 (2.12)

where we have taken only the first-derivative non-adiabatic coupling matrix element
into account. The mixing angle is then obtained by integration of the non-adiabatic
matrix element. Corresponding integral in more than one dimension is in general
path dependent, leading to an arbitrariness in definition of diabatic basis [83, 84].
Diabatic basis simplifies the dynamical equations, but it does not diagonalize the
electronic hamiltonian. For the two-state case, matrix elements of the electronic

hamiltonian in diabatic basis are

Hy, = cos’ vE, +sin? yE,,
HQQ = SiIl2 ’}’El + COS2 ’)’Eg,
Hiy =sinycosy(Ey — Ey), (2.13)

where E; and E, are adiabatic energies, i.e. eigenvalues of electronic hamiltonian.
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We have used an adiabatic representation in the subsequent dynamical calcula-
tions in this work, neglecting all the non-adiabatic couplings. It would be interesting
to perform the full dynamical calculations on the coupled surfaces in the future once
it becomes feasible with increase in computer power. A comparative study of meth-
ods for constructing diabatic representations is given in Ref. 85. Direct evaluation
of the non-adiabatic coupling matrix elements is expensive and requires a dense grid
of geometries. Other methods analysed in Ref. 85 are either based on the analysis of
CI vectors or on diagonalization of a property matrix. Application of these methods
is not straight-forward in the case of three identical lithium atoms. For example,
using the transition angular momentum, the mixing angle is [71]

l(lelLy|A2)|] |

(2Ba|Ly| As)| (2.14)

¥ = arctan [

In Figure 2.15, we show the adiabatic and diabatic potentials involved in the conical
intersection in the quartet ground state at = 3.1 A, for Cy, arrangements and a =
170°. The molecule is in the yz plane and 2 axis bisects the obtuse angle . We
also show the mixing angle as a function of two equal interatomic distances r, for
different angles between them, a. For smaller angles, away from the intersection at
o = 180°, the method become less useful. This problem persists when using other
methods. The reason is that the character of states cannot be described as a ¥ or II
far away from linear geometries. Near r &~ 4 A at Cy, geometries, other states may

need to be included in the diabatization scheme.

90

8000

€000 -

4000

al?

Viem!

2 25 ki 35 4 45 5 2 4 6 8 10
riA A

Figure 2.15: CASSCF adiabatic and diabatic potentials for Liz at Cy, configurations
for o = 170° (left) and the mixing angle as a function of r for different angles o

(right).
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3.1 Introduction

Having discussed the qualitative aspects of the quartet potential energy surface of
lithium trimer in the last chapter, our next task is to try and be as accurate as possible
in calculation of electronic energies. Potential energy surfaces for reactive systems are
usually represented using electronic energies calculated at several hundred geometries
that cover all important regions of the system. The strategy is to find the optimum
method and basis set for producing the electronic energies in a reasonable time
by doing convergence and performance tests at a few important geometries of the
system.

Following the results given in the last chapter, we decided to use the RCCSD(T)
method. From widely used and tested methods, it is the best for our purpose in
terms of the compromise between the computer time and accuracy. In connection
with a method, a basis set must be chosen for representing the functional form of the
wavefunction. Theoretical CPU scaling of the CCSD(T) method with the basis set
size is ~ M7, in the large basis set limit, where M is the number of basis functions.
This sets a serious limit on the size that may be used. It is therefore important that
the quality of the basis set is high and that the finite size we can use describes the
system well.

The most common types of basis functions that are used to represent the atomic
orbitals are Slater type orbitals (STO) and Gaussian type orbitals (GTO). While the
former have more appealing physical behaviour at short and long range, the latter
are much more convenient for calculating electronic integrals. Usually three times
more GTOs than STOs are needed to achieve the same level of accuracy, but the
disadvantage is compensated by the efficiency of integral calculation so that GTOs

are now universally used. The GTOs are of the form
Xcnim (7,6, 9) = NYim (8, 0)r @720 =<, (3.1)

where Y}, is a spherical harmonic. The disadvantage of GTOs in comparison with
STOs is that the 72 dependence of the exponential produces a zero slope at the
nucleus, so GTOs have a problem describing the wavefunction at short range. GTOs
also have a difficulty describing the tail of the wavefunction because they fall off too

rapidly at long range. Linear combinations of the above primitive GTOs (3.1) with
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different zeta coefficients (¢) have been combined to form many different contracted
basis sets.

The basis sets used in this work are the correlation-consistent basis sets devel-
oped by T. H. Dunning and co-workers [86]. They are briefly described in the next
section. The rest of the chapter is concerned with the application of the basis sets
in calculation of the atomic, diatomic, and triatomic potential characteristics with

the aim of studying the convergence and accuracy of the interaction energies.

3.2 Correlation consistent basis sets

Correlation-consistent (cc) basis sets [86] are geared to recover the correlation en-
ergy of electrons in connection with an electron correlation method. It has been
recognized that individual basis functions fall into well-defined groups that recover
similar amounts of correlation energy. Correlation-consistent polarized valence basis
sets cc-pVXZ, where X is D, T, Q, or 5, for double, triple, quadruple, and quintuple,
respectively, have been designed by adding such groups of functions on the previous
basis set in the sequence. Another property of the cc basis sets is that the sp-basis
increases together with the polarization space, the higher angular momentum func-
tions, and the errors of incompleteness in the two spaces should be comparable. The
consistent nature of the increase in the basis set size enables accurate predictions of
errors and also extrapolation to infinite basis set size. The cc basis sets have become
popular and are a tested and reliable tool to use in the electronic energy calculations.

In a well balanced basis set, different functions may be given different physical
purposes. The sp-basis describes fundamental electron distribution in an atom. Po-
larization functions are important for directionality in the bonding and are essential
for correlated-electron treatments. The correlation can also be divided into radial
and angular correlation. The radial part is responsible for near- and far-from nucleus
correlation, while the angular part describes opposite parts of nucleus correlation.
Radial correlation is recovered by using basis functions of the same type with differ-
ent exponents. Angular correlation is recovered using functions of different angular
moimenta.

Properties such as the polarizability, which is important for the description of

the dispersion forces, originating from the correlated induced multipole moments
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interaction, depend on the tail of the wavefunction. The description of the tail
requires diffuse functions, those with small exponents. In Dunning’s terminology
addition of diffuse functions is called augmentation. The augmentation we have
used in this work is even-tempered, where the exponent of the added function of a
given type is determined by keeping the ratio of exponents constant and determined
from the two smallest exponents of functions of the same type. If there is only one
function of a type, ratio is taken to be 2.5.

The basis sets can also be augmented with additional tight functions with large
exponents for a better description of core-valence (simultaneous excitations from core
and valence orbitals included, in the CI terminology) and core-core (excitations of
core orbital electrons only) correlation. Basis sets optimized for treatments including
core correlation are called correlation-consistent polarized core-valence basis sets, cc-
pCVXZ, where X remains the same as above.

The convergence of energies in terms of angular momentum is slower for correlated
methods than for HF [59]. The correlation energy converges with an inverse power
law, ~ 1/(L + 1), for a basis set that is complete up to angular momentum L.
Convergence at the HF level is exponential, ~ exp(—L).

Lithium basis sets, cc-pVXZ and cc-pCVXZ, up to quintuple zeta have been de-
veloped by D. Feller [67] by optimizing the exponents in HF and CISD calculations
as described by Dunning in Ref. 86, 87. Basis sets are available from the EMLS
Library [67]. We have obtained the cc-pCV5Z basis set for lithium from K. A. Pe-
tersen. Recently, new cc-pCVXZ up to X = 5, have been published by J. M. L.
Martin and co-workers [88] for all alkali and alkaline-earth metals and are available
online (89]. Here the successive optimizations were performed using the CCSD(T)
energy. Basis sets from all these authors have been tested in this work. Results using
the cc-pCVXZ basis sets are shown only using the ones developed by Martin rather
than those by Feller and Petersen, but the differences between them are minor. The
composition of basis sets in terms of numbers of primitive and contracted basis func-

tions is shown in Table 3.1.



42

| basis ” uncontracted—[ contracted |

cc-pVDZ (9s, 4p, 1d) [3s, 2p, 1d]
cc-pVTZ (11s, 5p, 2d, 1f) [4s, 3p, 2d, 1f]
cc-pVQZ (12s, 6p, 3d, 2f, 1g) [Bs, 4p, 3d, 2f, 1g]
cc-pVSZ || (14s, 7p, 4d, 3f, 2g, 1f) | [6s, 5p, 4d, 3f, 2g, 1h]

cc-pCVDZ [cc-pVDZ] + [1s,1p]

cc-pCVTZ [cc-pVTZ] + [2s,2p,1d]

cc-pCVQZ [cc-pVQZ] + [3s, 3p, 2d, 1f]
cc-pCV5Z [cc-pVHZ] + [4s, 4p, 3d, 2f, 1g]

Table 3.1: Composition of the correlation-consistent polarized valence, cc-pVXZ,
and core-valence, cc-pCVXZ, basis sets in terms of primitive and contracted basis

functions.

3.3 Basis set convergence

The basis sets described in the previous section are employed in the RCCSD(T)
calculations below. We investigate atomic, diatomic, and triatomic properties. Con-
vergence was tested on chosen geometries in both short- and long-range regions of
the potential. Convergence was tested with respect to the basis-set size and the level
of augmentation. The effect of contraction was investigated and also the addition
of tight functions with large exponents, geared to describe the cusp at the nuclei
and recover core-valence and core-core correlation. We examine the applicability of
the frozen-core approximation in which the core electrons are not included in the

electron-correlation calculation and the size of the basis set superposition error.

3.3.1 Atomic properties

Electronic energies of atomic lithium in S and P states calculated using cc-pVXZ
and cc-pCVXZ basis sets, where X is T, Q, or 5, are listed in the Table 3.2 and 3.3.
The effect of uncontracting the s and p functions (denoted by nc in the tables) is also
shown. The RCCSD(T) energies were obtained by correlating all three electrons.
We first look at the results using cc-pVXZ basis sets. Energies at the HF level are

well converged. Differences between subsequent basis sets of S-state atom energies

1 1

are 4 em™* and 6 ecm™*. Contraction coeflicients are taken from the atomic HF

calculations so the RHF energies are the same irrespective of whether the basis set



| basis | Ewrur/Bn || Ercespery/En (nc) | Erocspery/En () |
T || —7.43267886 —7.47026503 —7.44606570
Q || —7.43269514 —7.47253409 —7.44982668
o || —7.43272264 —7.47343378 —7.45990753
CT || —7.43267887 —7.47535674 —7.47456905
CQ || —7.43269514 —7.47686218 —7.47673203
Ch || —7.43272264 L.D. —7.47744177
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Table 3.2: Basis set convergence of electronic energies of the atomic 2S state using

cc-pVXZ (X) and cc-pCVXZ (CX) basis sets in RHF and RCCSD(T) with (c) and

without (nc) contraction of s and p functions. (L.D. denotes failure due to the linear

dependency of the basis set.)

basis | Erur/En | Erccspr)/En (nc) | Ercespiry/En (c)
T || —7.36499072 —7.40220586 —7.37861542
Q || —7.36502972 —7.40457286 —7.38238935
o || —7.36505889 —7.40551388 —7.39231881
CT || —7.36499451 —7.40724654 —7.40656314
CQ || —7.36503198 —7.40891354 —7.40879123
Ch || —7.36506039 L.D. —7.40952285

Table 3.3: Basis set convergence of electronic energies of the atomic 2P state using

cc-pVXZ (X) and cc-pCVXZ (CX) basis sets in RHF and RCCSD(T) with (c) and

without (nc) contraction of s and p functions. (L.D. denotes failure due to the linear

dependency of the basis set.)
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is contracted or not. The RCCSD(T) energy of an S-state atom converges steadily
when non-contracted basis sets are used, the differences in the subsequent steps being
498.00 cm™! and 197.46 cm™!. The corresponding energy differences for a P-state
atom are only slightly larger, 519.50 cm~! and 206.53 cm~!. Convergence in the
contracted basis sets is not steady.

For cc-pCVXZ basis sets, the HF energies do not change significantly in com-
parison with the corresponding energies calculated using the cc-pVXZ basis sets.
Addition of the tight functions is geared towards recovering the correlation energy,
while the HF wavefunction is already well represented by functions in the cc-pVXZ
basis sets. The cc-pCV5Z basis set becomes linearly dependent (L.D.) if the s and p
functions are not contracted. The energy differences for the contracted CV basis sets
are steadily converging. The energy lowerings in sequential increases in the basis-set,
size are 474.72 cm~! and 155.77 cm™! for the S-state atom and 489.01 cm™! and
160.572 cm™! for the P-state atom.

The convergence of the correlation energy, the difference between the RCCSD(T)
and the RHF energies, is shown in Table 3.4. Contracted cc-pVXZ basis sets recover
a considerably smaller amount of correlation energy than their non-contracted cc-
pVXZ counterparts. They were designed and optimized for recovering the valence
correlation energy only, which is zero for an atom with one valence electron. At
the quintuple zeta level, the non-contracted cc-pV5Z recovers 91% of the correlation
energy obtained using the cc-pCV5Z basis set. The contracted cc-pV5Z recovers
only 61%. It may be noted that the correlation energy is similar for atoms in S and
P states at all levels. This means that the correlation energy is due to core-core
correlation and the cores of atoms in both states are similar.

Very accurate non-relativistic calculations assuming an infinite nuclear mass have
been performed by Yan et al. [90]. Their S- and P-state energies of lithium are
—7.47806032310(31) E;, and —7.4101565218(13) E}, respectively. The values ob-
tained using cc-pCV5Z basis sets are both within 0.0086%.

The differences between the electronic energies calculated using different basis sets
are high when compared with the chemical accuracy which we would like to achieve.
The hope is that in a well-balanced basis set errors will cancel when calculating
interaction energies. The transition energy from the 25 to 2P state of an atom

is shown in Table 3.5. The RHF value is 14850 cm™! using either the cc-pV5Z



S state P state
basis | Ecorr/En (n¢) | Ecorr/En (€) || Feorr/En (nc) | Ecorr/En ()
T | —0.03758617 | —0.01338684 || —0.03721514 | —0.01362470
Q | —0.03983895 | —0.01713154 || —0.03954314 | —0.01735963
5| —0.04071114 | —0.02718489 || —0.04045499 | —0.02725992
CT | —0.04267711 | —0.04189018 || —0.04223895 | —0.04156863
CQ | —0.04416685 | —0.04403689 || —0.04387785 | —0.04375925
Cb L.D. —0.04471913 L.D. —0.04446246

Table 3.4: The RCCSD(T) correlation energy of Li atom in 25 and 2P states using
cc-pVXZ (X) and cc-pCVXZ (CX) basis sets; contracted (c¢) and non-contracted

(nc).

or cc-pCV5Z, while X=T value is 5 em™! larger. The results obtained using the
non-contracted cc-pVXZ basis sets are now in closer agreement with the cc-pCVXZ
basis, particularly for X = 5. This means that the error in the remaining correlation
energy that was not recovered in atomic calculations is similar for both atomic states
and therefore cancels. The experimental value taken from Ref. 91 is 14903.66 cm™!
for the J = 1/2 state and 14904.00 cm™! for J = 3/2, which is close to the value

obtained by the largest basis sets.

Esp/cm™! (nc) | Esp/cm™! (c)
T 14937.26 14803.63
Q 14915.77 14800.78
) 14906.69 14834.01
CT 14948.46 14925.57
cQ 14913.00 14911.28
C5 L.D. 14906.48

Table 3.5: The 28 — 2P RCCSD(T) transition energy using cc-pVXZ (X) and cc-
pCVXZ (CX) basis sets; contracted (c) and non-contracted (nc).

Augmentation of the basis set made a negligible difference on the atomic energies.
We examined the influence of augmentation on the polarizability of lithium atom. A
good representation of polarizability may be important for accurate energies at long
range that are dominated by the dispersion interaction. Results are shown in Table

3.6. One level of augmentation proved to be sufficient to saturate the basis sets.



46

We found that the effect of augmentation is less pronounced for larger basis sets.
This is so because there are already sufficient diffuse functions in the non-augmented
basis sets needed for the description of electron-cloud deformation. The experimental
value taken from Ref. 92 is (164.0 + 3.4) a3, while the best calculated value from
Ref. 93 is 164.111(2) aj. These values are in close agreement with those obtained
here using the non-contracted cc-pVXZ basis sets and the contracted cc-pCVXZ in

correlated calculations.

contracted basis non-contracted basis

basis | arur/aj | arccsner)/ad | arur/ad | arcesper)/ad
T | 168.790 167.492 169.390 163.827
AT | 169.559 168.189 170.140 164.568
AAT | 169.533 168.147 170.111 164.548
AAAT | 169.518 168.128 170.096 164.536
Q | 169.837 166.572 169.946 164.342
AQ | 169.974 166.668 170.081 164.424
AAQ | 169.978 166.664 170.085 164.425
5 170.029 165.518 170.031 164.336
A5 | 170.097 165.549 170.100 164.375
CT | 169.210 164.288 169.469 163.507
ACT | 169.973 165.040 170.186 164.198
CQ | 169.939 164.225 169.971 164.140
ACQ | 170.075 164.303 170.097 164.220
C5 | 170.036 164.152 L.D. L.D.
AC5 | 170.104 164.189 L.D. L.D.

Table 3.6: Static dipole polarizabilities of lithium S-state atom in RHF and
RCCSD(T) using cc-pVXZ (X) and cc-pCVXZ (CX), contracted and non-contracted,

basis sets.

Lithium cation Li* is the core of a lithium atom. We performed the Li* energy
calculations and report them in Table 3.7. The non-contracted cc-pVXZ basis sets
display again a steady convergence in steps of 470.30 cm™! and 182.51 cm~!. The

I and

contracted cc-pCVXZ basis sets converge in slightly smaller steps 396.84 cm™
138.38 cm™!. The ionization energy is reported in Table 3.8. It converges towards
the experimental value of 43487.150 cm™! [91].

The correlation energy of the Lit ion is shown in Table 3.9. It is very similar to



| basis || Erur / En_|| Ercesnry / Bn (nc) | Ercosnery / B (c) |

T || —7.23638019 ~7.27244813 —7.24935339
Q || —7.23638442 —7.27459097 —7.25249283
5 || —7.23641110 —7.27542256 —7.26217708
CT || —7.23638009 —7.27740432 —7.27690241
CQ || —7.23638441 —7.27881046 —7.27871054
C5 |l —7.23641110 L.D. —7.27934105

Table 3.7: Basis set convergence of electronic energies of Li* ion using cc-pVXZ (X)
and cc-pCVXZ (CX) basis sets in RHF and RCCSD(T) with (¢) and without (nc)

contraction of s and p functions.

basis E}féléz&tj(fr) / em™! (nc) Eﬁ’é‘é@ﬁm / em™! (c) ]
T 43415.79 43173.36
Q 43443.49 43309.77
5 43458.44 43396.82
CT 43445.53 43382.81
CQ 43467.33 43460.69
Ch L.D. 43478.08

Table 3.8: Basis set convergence of the ionization energy of Li using cc-pVXZ (X)
and cc-pCVXZ (CX) basis sets in RHF and RCCSD(T) with (c) and without (nc)

contraction of s and p functions.
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the correlation energy reported for S- and P-state atoms in Table 3.4. This confirms

that the core-core correlation dominates the core-valence correlation in the atoms.

basis | Eeore/ Er (nc) J Ecore/Ep (c) I
T | —0.03606794 | —0.01297320
Q| —0.03820655 | —0.01610841
5 | —0.03901146 | —0.02576598
CT | —0.04102423 | —0.04052232
CQ | —0.04242605 | —0.04232613
Ch L.D. —0.04292995

Table 3.9: The RCCSD(T) correlation energy of Li* ion using cc-pVXZ (X) and
cc-pCVXZ (CX) basis sets; contracted (c) and non-contracted (nc).

We have seen here that uncontracting s and p functions enables recovery of the
core-core correlation energy in lithium. We have also tried uncontracting only s
functions and only p functions from the cc-pVXZ basis sets. When the basis set
is large, i.e. using cc-pV5Z, we have discovered that uncontracting only p functions
gives electron energies that are close to the non-contracted basis. Uncontracting s
functions only gives considerably poorer results, close to the fully contracted basis
sets. The RHF and RCCSD(T) energies of an S-state atom, using cc-pV5Z with
s functions contracted only, are —7.43272264 F,, and —7.47241840 F},, respectively.
They are —7.36505884 E}, and —7.40451252 E}, for a P-state atom, respectively. This

give the S — P transition wavenumber of 14903.6179 cm™!

in close agreement with
experiment. The polarizability of lithium, using s-contracted basis set, is 170.031 a3
in HF and 164.396 a} in RCCSD(T). The ionic energies are —7.23641104 E} in RHF
and —7.27442174 E, RCCSD(T). All the values agree closely with those obtained

by the non-contracted cc-pV5Z.

3.3.2 Diatomic properties

In this subsection, the triplet ground-state potential curves obtained using the RCCSD(T)
method with different correlation consistent basis sets will be compared to recent ex-
perimental data.

The basis sets used in calculations of interaction energies are centred on the two

nuclei. In this way, the basis set on one centre can help compensate for the basis
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set incompleteness on the other centre. This introduces a systematic error called
basis set superposition error (BSSE). BSSE can be approximately corrected using
the counterpoise correction (CC) by Boys and Bernardi [94]. The dimer interaction

energy is defined as

Vine(T) = Vaim(1) — 2Vi, (3.2)

where Vi is the total dimer energy with respect to all electrons and nuclei break-up
and Vj; is lithium atomic energy. The CC corrected interaction energy is obtained
using (3.2) with both the dimer and atomic energy calculated using the same two-
centre basis set. The atomic energy becomes dependent on the distance between the

centres and the BSSE per atom, using CC, is
VBSSE(T) = Vat — Va(t2) ('f') (33)

The superscript indicates the number of basis-set centres. All reported interaction
energies in this work are CC corrected.

We have calculated dimer interaction energies and BSSE using (3.2), for the 35}
state, using different correlation-consistent basis sets near equilibrium, at r = 4.2 A,
and at short range for r = 3.3 A. The results are shown in Table 3.10.

Contracted cc-pVXZ basis sets all have a large BSSE that is comparable to the
magnitude of the interaction energies. The BSSE is larger at smaller separations
and when basis sets are augmented with diffuse functions. Then the basis functions
from the other centre significantly overlap with the electronic density on the atom
and compensate for the inadequacies of the one-centre basis. This is inappropriate
and the basis sets that give large BSSE should not be used.

In the frozen core (FC) approximation, core electrons are excluded from the
correlation treatment and only two valence electrons are correlated. BSSE in the FC
approximation is very small for all basis sets. It is somewhat bigger, but still small,
for cc-pCVXZ basis sets, in all-electron calculations.

The cc-pCVXZ basis sets are constructed to include the functions that represent
the core-core correlation effects well. We have seen that core correlation effects
are not well represented by the contracted basis sets in atomic calculations in the
preceding subsection. We calculated the BSSE in HF and RCCSD(T) for an S-state
atom, a P-state atom and Li* ion using the contracted cc-pV5Z basis set. BSSE in

HF is plotted as a function of intercentre distance in Figure 3.1. It is small for all



r=424A r=33A4A
V /ecm™! ] Vassg /cm™! |V / em™! | Vpssg / em™?
T || —318.2808 23.7514 111.9954 56.6317
T unc p - - - -

T unc all || —310.0849 0.8436 106.1144 1.8205
FCT || —318.7930 0.3435 125.4594 0.4865

CT || —310.5019 2.7306 109.4956 5.3647

AT || —333.8039 59.7620 95.0010 110.3248

AT unc p - - - -

AT unc all | —322.7682 1.8562 95.5283 3.0113
FC AT || —334.0051 0.5975 110.1737 0.8160
ACT || —324.6038 0.6081 95.5952 10.8017

Q || —332.4916 33.5759 73.8057 125.6963

Q unc p || —325.4764 13.9910 81.1159 45.3722
Q unc all || —324.8495 0.6577 81.8652 2.2691
FC Q|| —334.8093 0.0523 103.4009 0.0755
CQ || —325.4004 0.5010 77.2602 1.4366

AQZ || —337.1347 98.0681 71.1426 248.4343

AQ unc p || —329.2576 44.6784 78.4953 98.5989
AQ unc all | —328.5029 1.4460 79.1350 3.5058
FC AQ || —339.1725 0.0622 99.9892 0.0772
ACQ || —329.0942 1.0490 74.4931 2.2991

5 || —333.8321 41.4517 67.4659 111.0671

5 unc p | —328.8170 2.5533 73.7552 9.6466

5 unc all | —328.6265 0.8015 74.0185 1.8544
FC 5 || —338.4712 0.0136 99.6626 0.0191

C5 || —328.8147 0.1386 70.4171 0.2998

A5 || —335.5736 85.4620 65.6835 186.0677

A5 unc p || —330.4757 8.7942 72.5456 16.2187
A5 unc all || —330.2446 1.4885 72.7985 3.0041
FC A5 || —340.2752 0.0201 98.3219 0.0245
ACS5 || —330.4193 0.2335 69.2717 0.4283

30

Table 3.10: The RCCSD(T) energy of 3%} state of Li, and the basis set superposition
error for an S-state atom in the two-centre basis set at r = 4.2 A and 3.3 A, using
different cc-pVXZ (X) and cc-pCVXZ (CX) basis sets; augmented (A), contracted,
non-contracted (unc all), and with s functions contracted only (unc p) and either

with all electrons correlated or with a frozen core (FC).



ol

three species. In CCSD(T), when correlation effects are included, BSSE is similar
and large for all three species and at all distances. For example, at r = 4.2 A it is
41.45 cm™! for an S-state atom, 40.61 cm™! for a P-state atom, and 40.41 cm™! for
the ion. This confirms that BSSE is mainly due to core-core correlation effects and
its origin is in an inadequate representation of these effects by a single-centre basis
set. We have also investigated how uncontracting s and p functions in the cc-pV5Z
basis set influences BSSE. In Figure 3.1, it can be seen that uncontracting only the
s functions in the set makes no significant difference to the magnitude of the BSSE.
Uncontracting only the p functions reduces BSSE significantly, from 41.45 cm™! to
2.55 cm™! at r = 4.2 A. But only the cc-pCV5Z basis sets eliminates the problem of
having a large BSSE.

0.1 v T v v - v T 100
5,
90 [
AN —— Li: S-state
™ . —— ce-pV3Z: contracted
0.08 N — Li; P-stato 1 80 _ u.»:vsz_- non—contractsd
N, R K\ - -~ to-pVSZ: non-contracted s space
\ Fry s — — cc-pV3Z non—contracted p space |

— -~ ec-poVSZ

=
Vassg / €M

Figure 3.1: Basis set superposition error of an atom in two-centre basis as a function
of intercentre distance in RHF (left) and RCCSD(T) (right) using cc-pV5Z basis set

and different contraction schemes.

Turning our attention back to Table 3.10, it may be noted that interaction en-
ergies calculated using the cc-pCVXZ basis sets are similar to those obtained using
the non-contracted cc-pVXZ at all levels X at r = 4.2 A, near equilibrium. The
agreement is poorer at short range, where the inadequacy of the basis set becomes
apparent in the BSSE as well (see Figure 3.1).

Ignoring the core-correlation effects does not seem to bring the desired accuracy.
In frozen core approximation, the interaction energies 7 = 4.2 A are underestimated
and at » = 3.3 A they are overestimated.

Convergence with the size of the basis set, increasing X, is established for all

types of basis sets considered, and is slower at short range.
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Augmentation lowers the interaction energies at both distances considered in
Table 3.10. It has a smaller effect for larger basis sets because more functions with
small exponents have already been included. We have also tried doubly augmenting
the basis, but it does not bring a significant further energy lowering. Augmenting the
non-contracted cc-pVQZ basis set lowers the energy at r = 4.2 A by 1.4%. Double
augmentation lowers it by further 0.1%.

Potential characteristics of curves calculated using different types and sizes of
correlation consistent basis sets are summarized in Table 3.11. Dissociation energy
measured from the bottom of potential well, D,, and position of the minimum, 7.,

have been calculated from Morse potential, of form
V(r) = De(l —e " ")? — D,, (3.4)

that interpolates the ab-initio energies calculated at r = 4.1 A, 4.2 A, and 4.3 A.
The position where the interaction energy crosses zero, oy, was calculated from Morse
potential (3.4) with D, taken from the above described calculation and two ab-initio
energies calculated at 7 = 3.3 A and 3.4 A. The error in oy and D, is in the last digit
shown in the table. The values for D, and r. may be compared with experiment.
The most recent RKR potential was published by Linton et al. [48] obtained from
perturbation facilitated optical-optical double resonance spectroscopy. They report
D, = (333.69 + 0.10) cm™" and r, = 4.173 A. Abraham et al. [54] obtained D, =
(333.78 £ 0.02) cm™!, analyzing the data from a photoassociation experiment. Halls
et al. [46] published QCISD(T) potential using cc-pV5Z and obtained D, = 334.145
cm~! and 7, = 4.169 A. This result is probably obtained using the contracted basis
set and it is in close agreement with our CCSD(T) value of 334.042 cm™! at the
same .. CCSD(T) and QCISD(T) should be similar methods, but CCSD(T) is
more complete [59].

Convergence of 7, and D, for the non-contracted cc-pVXZ and (contracted) cc-
pCVXZ basis sets is towards the experimental values. The contracted cc-pVXZ
basis sets converge towards an overestimated D.. The effect of the first level of
augmentation is significant even at the cc-pCV5Z level, deepening the well by 1.6
cm™!,

The potential curve in the frozen core approximation overestimates oy and r,.

The effect of the core-core correlation is to decrease the size of the system and also
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basis rao / A ” re | A | -D, / cm™! l
T 3.3886 || 4.196 —318.284

T unc p - - -
T unc all || 3.3860 || 4.192 —310.098
FCT 3.3982 || 4.216 —318.854

CT 3.3886 || 4.196 —310.505
AT 3.3740 || 4.195 —333.809
AT unc p - - -

AT unc all || 3.3765 || 4.198 —322.769
FC AT 3.3848 || 4.216 —334.068
ACT 3.3763 | 4.198 —324.202

Q 3.3586 || 4.176 —332.620

Q unc p 3.3653 || 4.182 —325.543
QZ unc all || 3.3658 || 4.183 —324.914

FC Q 3.3798 || 4.201 —334.809
CcQ 3.3623 || 4.179 —325.499
AQ 3.3561 }| 4.176 —337.260

AQ unc p | 3.3628 || 4.186 —329.299
AQ unc all || 3.3634 || 4.185 —328.551
FC AQ 3.3768 || 4.202 —-339.173
ACQ 3.3598 || 4.181 —329.173

3 3.3536 || 4.169 —334.042

d unc p 3.3592 || 4.178 —328.924
5 unc all || 3.3594 || 4.178 —328.732
FC 5Z 3.3766 | 4.199 —338.471

C5 3.3567 || 4.175 —328.952

A5 3.3521 || 4.170 —335.770
Abunc p || 3.3581 | 4.179 —330.573
A5 unc all || 3.3583 || 4.179 —330.339

FC A5 3.3754 || 4.200 —340.275
ACH 3.3557 )| 4.176 —330.545

Table 3.11: Well depth, D,, position of minimum, r., and position where potential
curve crosses zero energy (atomic S+ S limit), oy, for 3T} state of Li, in RCCSD(T)
using different cc-pVXZ (X) and ce-pCVXZ (CX) basis sets; augmented (A), con-
tracted, non-contracted (unc all), and with s functions contracted only (unc p) and

either with all electrons correlated or with a frozen core (FC).
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to lower the binding energy at the minimum by ~ 3%.

It is affordable to perform the CCSD(T) calculations for lithium dimer using the
largest basis set, aug-cc-pCV5Z, analyzed here. We have obtained potential curves
and calculated vibrational bound-state energies and the scattering lengths using
aug-cc-pCV5HZ basis set, the basis set extrapolated to the complete-basis-set (CBS)
limit from aug-cc-pCVQZ and aug-cc-pCV5Z, and also using the cc-pV5Z basis with
uncontracted p functions.

The potential was constructed by interpolation from electronic energies calcu-
lated on the mesh of 64 interatomic distances. Step of 0.2 A was applied between
1.6 A and 2.6 A, 0.1 A between 2.7 A and 6.0 A, 0.2 A between 6.2 A and 8.0 A,
0.5 A between 8.5 A and 10 A, and 1 A between 11 A and 20 A. The potential was
interpolated using reciprocal powers reproducing kernel Hilbert space interpolation
(RP-RKHS), described in the next chapter, with the predetermined dispersion co-
efficients Cs, Cs, and C1p to match those of Yan et al. [95]. Potential, represented
in this way, extrapolates to a pure dispersion interaction energy determined by the
three coefficients. The parameters of the interpolation, in the notation from Chapter
4,arem=2,n=3,r, =15 A, r(65) = 21.5 A, r(66) = 22.5 A, and 7(67) = 23.5
A. At 16 A, ab-initio electronic energies extrapolated to the CBS limit overestimate
the dispersion energy calculated using Cs, Cg, and Cjy from Ref. 95 by 0.5%. At
larger interatomic separations, ab-initio energies were replaced by the ones calcu-
lated from the dispersion energy expansion. At r = 16 A, the —Cg/r%, —Cs/r®, and
—Cho/r'° terms contribute 93.3%, 6.1%, and 0.6%, respectively, to the dispersion
energy approximated by first three leading contributions in the multipole expansion.
The dispersion energy is discussed further in Chapter 5.

Basis set extrapolation was performed using a two-parameter formula [59]

B
Ex=A+ >3 (3.5)

Only the correlation energy was extrapolated. The HF energy was taken from the
cc-pCV5Z calculation. It was not extrapolated because the steps in the convergence
did not fit well the exponential form. This may be due to slight deficiencies in
the sp basis at smaller basis size. We have checked first how extrapolation to the
‘CBS limit performs on the atomic energies. Extrapolating the cc-pCVQZ and cc-
pCV5Z energies delivered a value 0.001% off the best theoretical value [90], which
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is an improvement over the cc-pCV5Z energy (0.0086% off). We have repeated the
procedure for all the dimer electronic energies on the mesh using energies obtained
by the aug-cc-pCVQZ and aug-cc-pCV57Z basis sets.

Vibrational energies of the potential were obtained by variational expansion onto
a sine basis. The sine functions that we used are the eigenfunctions of the hard wall
potential delimited by 7, and .. The vibrational energies of the bound levels
needed to be converged with respect to the inner and outer limits, rp;, and 7qay,
the number of sine functions, and the number of integration steps in calculating
matrix elements of the diatomic hamiltonian between the sine functions. Integration
with sines was performed using fast fourier transform algorithm [96]. The method is
not particularly efficient for energy levels close to dissociation, but in most cases it
delivers all the bound-state energies by one diagonalization. The scattering length
was calculated from the wavefunction propagated at the zero energy as described
in Chapter 7. Such a zero-energy wavefunction and the wavefunction of v = 10
vibrational state for the potential extrapolated to the CBS limit are shown in Figure
3.2. The vibrational quantum number at dissociation is determined using the phase
integral calculated to obtain the scattering length and includes the shift of 1/8 with
respect to the number obtained in the near dissociation expansion, as discussed in

Ref. 97.

yIA"
$IA?

0 10 20 30 40 50 ) 10 20 30 40
r/A rrA

Figure 3.2: Wavefunction at zero energy (left) and of the vibrational level v = 10

(right) of lithium dimer.

Vibrational energies of “Li; and turning points of the bound levels are shown
in Table 3.12 for cc-pV5Z with uncontracted p functions, in Table 3.13 for aug-cc-
pCV5Z, and in Table 3.14 for the potential extrapolated to the CBS limit. The
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results may be compared to energy levels obtained by Linton et al. [48] using RKR
in Table 3.15. Dissociation energies, position of the minimum and scattering lengths

for "Li, using the same basis sets are reported in Table 3.16.

v | GW) /em™ | Ryin / A | Rmax / A
0 31.785 3.851 4.638
1 90.145 3.674 5.101
2 141.999 3.576 5.512
3 187.522 3.509 5.930
4 226.773 3.461 6.383
) 259.699 3.425 6.900
6 286.165 3.398 7.529
7 306.011 3.380 8.363
8 319.201 3.368 9.610
9 326.262 3.361 11.841
10 328.699 3.359 17.754

Table 3.12: Bound levels (with respect to potential minimum), G(v), and their
turning points, Ryin and Ryay, for the 3L} potential of “Li,. Potential calculated

with RCCSD(T) using cc-pV5Z basis set with s functions contracted only.

The scattering length for "Li; was determined by Abraham et al. [22] from the
combined information from the RKR data and the binding energy of the uppermost
vibrational level, a = (—27.6 & 0.5) ao. The vibrational energy spacings for all basis
sets underestimate the experimental results [48]. For the extrapolated potential, the
discrepancies with the experiment are smallest. Comparing the vibrational spacings
obtained by Halls et al. [46] to the RKR, it may be seen that they are smaller up to
v = 6, and larger for higher levels. The same is true for the CCSD(T) potential with
the contracted cc-pV5Z basis. This is deficiency of the contracted basis sets when
used in calculations where all electrons are being correlated. The shape of the well
is better represented when core-core correlation is taken into account. Extrapolated
potential has a deeper well, compared to the aug-cc-pCV5Z basis, the system is
slightly smaller in size, ., and the classical turning points of the bound levels, R,
and Ry, are all smaller. The binding energy of the last vibrational level, v = 10,
is 0.416 cm™!. This may be compared to 0.223 cm™!, 0.346 cm™!, and 0.374 cm™*,
for cc-pV5Z with non-contracted p space, aug-cc-pCV5Z, and the CBS extrapolated



v|G)/em™ | Rpin / A | Rmax / A
0 31.741 3.849 4.636
1 89.995 3.672 5.100
2 141.727 3.574 5.513
3 187.119 3.507 5.932
4 226.252 3.459 6.385
) 2569.124 3.423 6.901
6 285.672 3.397 7.523
7 305.822 3.378 8.330
8 319.580 3.365 9.502
9 327.305 3.358 11.534
10 330.202 3.356 16.561

o7

Table 3.13: Bound levels (with respect to potential minimum), G(v), and their

turning points, Rmin and Ryax, for the L} potential of "Li,. Potential calculated

with RCCSD(T) using aug-cc-pCV5Z basis set.

v | G) /em™ | Ryin / A | Ruax / A
0 31.825 3.845 4.631
1 90.238 3.668 5.094
2 142.105 3.570 5.507
3 187.612 3.504 5.925
4| 226.836 3.455 6.378
5 259.782 3.419 6.893
6 286.406 3.393 7.513
7| 306.661 3.374 8.314
8 320.567 3.361 9.471
9 328.435 3.354 11.469
10 331.428 3.352 16.347

Table 3.14: Bound levels (with respect to potential minimum), G(v), and their turn-

ing points, Rmin and Ry, for the 37 potential of "Li,. Potential calculated with

RCCSD(T) using the basis extrapolated from aug-cc-pCVQZ and aug-cc-pCV5Z to

the complete-basis-set limit.
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G() /em™ | Rin / A | Rumax / A

v
0 31.857 3.846 4.630
1 90.453 3.668 5.092
2 142.523 3.571 5.503
3 188.240 3.505 5.922
4 227.679 3.458 6.373
) 260.837 3.422 6.885
6 287.665 3.395 7.501
7 308.098 3.377 8.297
8 322.155 3.365 9.441
9 330.170 3.358 11.392

10 333.269 3.356 16.052

Table 3.15: The RKR bound levels (with respect to potential minimum), G(v), and

turning points, Rmin and Rmax, for the 3T} potential of “Liy, taken from Ref. 48.

basis | 7. /A | =D /em™ | a/ay | wp
S5unc p | 4.177 —328.922 12.54 | 10.67

AC5 | 4.176 —330.548 —8.95 | 10.79

CBS | 4.171 —331.802 —15.80 | 10.81

Table 3.16: Dissociation energy, D,, position of the minimum, r,, scattering length, a,
and vibrational quantum number at dissociation, vp, for “Li, molecule calculated us-
ing RCCSD(T) with cc-pV5Z basis with s functions contracted, with aug-cc-pCV5Z,

and core valence basis set extrapolated to the complete-basis-set limit.
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basis, respectively. The binding energy of the last level is connected to the value of
the scattering length. The scattering length obtained using cc-pV5Z basis set has
a wrong sign. The vibrational spacings are in good agreement with the RKR for
v < 6, but for v > 6 they are underestimated by larger amount. The binding energy
for this basis is the smallest from the basis sets considered, as is the dissociation
energy. The scattering lengths and dissociation energies of the other two basis sets
converge towards the value obtained by Abraham et al. [22]. At the CBS limit the
well is still not deep enough to reproduce the scattering length. The reasons for that
may be due to the deficiencies in the basis sets or the neglect of some of the triply
and quadruply excited configurations in the RCCSD(T) method.

We have also calculated the vibrational energies of 6Li, and ®Li"Li using the best
potential, the one extrapolated to the CBS limit. The results are shown in Tables
3.17 and 3.18. The vibrational energies of ®Li, have been published by Linton et
al. [49]. This results are old and the discrepancies between ab initio and RKR are
larger. Vibrational spacings are again somewhat smaller for the ab-initio potential.
The binding energy of the last vibrational level, v = 9, is determined by Abraham et
al. [54] to be 0.815 cm™!. The ab-initio potential gives 0.751 cm~!. The scattering
length and vibrational quantum number at dissociation are a = —266.95 a¢ and
vp = 9.97. There is a virtual level lying slightly above the dissociation limit as a large
negative scattering length indicates. The scattering length obtained by Abraham et
al. [54], using RKR data [48] and experimentally determined binding energy of the
last vibrational level in ®Li; and in "Liy, is (—21604250) ay. The discrepancy between
the ab-initio and value by Abraham et al. [54] is large, but the scattering length
changes rapidly (passes through a pole) when a level is near the dissociation limit.
The calculated scattering length and vibrational quantum number at dissociation for
Li"Li system are a = 44.11 ag and vp = 10.37. The scattering length by Abraham et
al. [54] is 40.9+£0.2 ag, in very good agreement. The binding energy of the uppermost
vibrational level has not been published to our knowledge and it is —0.0535 cm™!
for v = 10, determined from our ab-initio calculations.

An interesting possibility for future work would be to try to scale these potentials
in some way to obtain a better agreement with the experimental data [98]. An
alternative way forward might be fitting the electronic energies to an analytic form -

and subsequently fitting to experimental data with some parameters set to predicate
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v | G)/em™ | Ryin / A | Rmax / A
0 34.303 3.834 4.653
1 96.812 3.654 5.145
2 151.718 3.555 5.589
3 199.230 3.489 6.048
4 239.424 3.441 6.555
) 272.280 3.407 7.150
6 297.737 3.382 7.900
7 315.760 3.366 8.946
8 326.529 3.356 10.679
9 331.051 3.352 14.592

Table 3.17: Bound levels (with respect to potential minimum), G(v), and their turn-
ing points, Ruin and Ry, for the 3T+ potential of 5Li;. Potential calculated with
RCCSD(T) using the basis extrapolated from aug-cc-pCVQZ and aug-cc-pCV5Z to

the complete-basis-set limit.

v | G)/em ™ | Rpin / A | Rmax / A
0 33.089 3.839 4.642
1 93.600 3.660 5.120
2 147.036 3.562 5.548
3 193.594 3.496 5.987
4 233.353 3.448 6.467
) 266.305 3.413 7.021
6 292.396 3.387 7.703
7 311.583 3.369 8.617
8 323.943 3.358 10.024
9 330.072 3.353 12.757
10 331.749 3.352 22.504

Table 3.18: Bound levels (with respect to potential minimum), G(v), and their turn-
ing points, Ruin and Ryay, for the 353 potential of °Li"Li. Potential calculated with
RCCSD(T) using the basis extrapolated from aug-cc-pCVQZ and aug-cc-pCV5Z to

the complete-basis-set limit.
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values from the fit to ab initio. One analytic form that might be used is the modified
Lennard-Jones potential [99).

It should be noted that the presented potentials are smooth and predict the
correct number of vibrational bound levels. It was noticed that the second derivative

of the RKR potential by Linton et al. [48] wiggles between 3.5 A and 3.7 A.

3.3.3 Triatomic properties

The aim of the analysis in this chapter is to determine the best basis set to be used
in calculation of electronic energies of the quartet ground state of lithium trimer. We
have tested the basis sets on atomic and diatomic systems so far and compared the
results with the available experimental data. This chapter will be concluded with a
report on the performance of the basis sets on calculating trimer energies and the
magnitude of the BSSE that is an indicator of inadequacies of the one-centre basis
sets. No experimental information is available to our knowledge on this system,
so comparisons cannot be made. The choice of the basis set that will be used to
calculate electronic energies on the entire grid for representing the reactive potential
energy surface of the trimer will be made.

Interaction energies of the trimer are calculated using the counterpoise correction
procedure [94],

3
Vint(ﬁ, T2, 7‘3) = Vtrim(T'l,Tz, 7’3) - Zvalt(rl; T2, Ts), (3-6)

i=1
where Vi is the total trimer energy with respect to all electrons and nuclei break-

up and VJ; are lithium atomic energies calculated in the same three-centre basis of

the trimer. The nonadditive interaction energy, V3, is

3
Va(r1,7m2,73) = Vine(r1,m2,73) — Y V32 (11,72, 73), (3.7)
i<j
where
Vzij(T'l,Tz,Ts) = ‘/:ji{m(ThTZ)T3) - %it(hﬂ“zﬂs) - Va];;(ﬁ,rz,Ta)- (3-8)

All energies are calculated in the three-centre basis.
The BSSE for the total interaction energy of the trimer (3.6) is the sum of the
BSSE’s for each atom,

Vgggrg (Tlv T2, T3) = ‘/a(tl) - Va(tg) (T1>T2> 7'3)- (39)
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The superscripts indicate the number of basis-set centres used for calculation of
electronic energies. For C, geometries all three atoms may be non-equivalent and
energy Va(tg) must be calculated for each atom of the trimer. The BSSE of the

nonadditive part of the potential includes also BSSE for dimers,

Vo () 1, 75) = Vioh(r1,79,73) — Vaea(Ts), (3.10)

with superscripts having the same meaning as above. There are, generally (C), three
dimers, denoted by k in (3.10), in a trimer and energy must be calculated for each
in the CC procedure. The two sources of BSSE in the nonadditive part, (3.9) and
(3.10), have opposite signs, positive and negative, respectively, and partially cancel
in the expression for nonadditive interaction energy, (3.7) and (3.8) combined.
Convergence of the total and the nonadditive part of the trimer interaction energy
with the basis set near stationary points at D3, and Dy, geometries is shown in Table
3.19. The magnitude of each source of BSSE for different basis sets is reported in
Table 3.20 for Dj;, geometry where all three atoms and three dimers are equivalent.
The discussion of the convergence of the interaction energies of the dimer may be
extended here without modification. Although the two sources of the BSSE in the
case of the nonadditive interaction energies cancel quite well near the D3, minimum,
they reveal any inadequacies in the basis sets and those with a large BSSE should
preferably not be used. Potential characteristics at D, configurations, obtained in
an analogous manner to those of the dimer potential, are summarized in Table 3.21.
Only the largest basis sets are reported between which the final choice must be made.
It is obvious that using the largest basis set considered here, aug-cc-pCV5Z, would
yield the most reliable electronic energies, but our computational resources do not
allow its use for the trimer. Some computational aspects are summarized in Table
3.22. The real and CPU times and the requirements on the hard-disc space are for
the full counterpoise-corrected interaction energies at a Dz, geometry near equilib-
rium, calculated internally in C,, symmetry. For a good representation of reactive
surface we will need to evaluate points at C; configurations, which is more demanding
computationally. Calculation of the total counterpoise-corrected interaction energy
at C, with the cc-pV5Z basis where the p space is uncontracted takes 331 minutes
of real time, 264 minutes of CPU time, and requires 11.10 GB of hard-disc memory.

If no contraction is applied, it takes 630 minutes of real time, 339 of CPU time, and



Dy 7=324A Doop: 7= 3.8 A
Vi /em™ | Vs /em™ | Vi /em™ | V3 / cm™!
T || —3866.0931 | —4673.0110 | —925.4766 | —338.3250
T unc p - - - -
T unc all || —3798.4158 | —4579.6808 | —898.4560 | —325.8667
FC T || —3821.9008 | —4680.7072 | —919.9465 | —338.1248
CT || —3799.5980 | —4590.1752 | —899.3395 | —327.1310
AT || —3920.4770 | —4679.7190 | —964.7496 | —348.5394
AT unc p - - - -
AT unc all || —3839.6856 | —4592.1618 | —928.6071 | —335.2552
FC AT || —3875.4137 | —4693.0558 | —958.0661 | —348.8676
ACT || —3848.5997 | —4599.7928 | —933.3482 | —336.8339
Q || —3978.4500 | —4663.7270 | —966.1009 | —345.6122
Q unc p || —3897.3487 | —4602.2331 | —940.1817 | —336.4626
Q unc all | —3889.9222 | —4596.7614 | —938.0014 | —335.6772
FC Q || —3903.9343 | —4700.6994 | —960.0338 | —348.2622
CQ || —3905.5957 | —4595.7503 | —941.4993 | —336.0035
AQ || —3986.7604 | —4666.6682 | —976.4040 | —347.3362
AQ unc p || —3909.4182 | —4607.8409 | —948.3457 | —338.1951
AQ unc all | —3902.6682 | —4602.3592 | —945.6116 | —337.4086
FC AQ || —3918.1494 | —4706.9432 | —969.5392 | —350.4303
ACQ || —3918.0605 | —4601.1397 | —949.1473 | —337.7004
5 || —3974.8684 | —4693.0734 | —967.9229 | —343.0650
5 unc p || —3922.8694 | —4604.1593 | —949.4090 | —337.4908
5 unc all || —3920.4546 | —4602.3998 | —948.6674 | —337.2356
FC 5 || —3918.8787 | —4706.7396 | —968.0262 | —349.4856
Ch || —3930.3763 | —4599.2264 | —950.4851 | —337.1051
A5 || —3980.1350 | —4640.7190 | —970.9248 | —343.8426
Ab5 unc p || —3929.1772 | —4607.3136 | —953.0212 | —338.4696
Ab unc all || —3926.7383 | —4605.5290 | —952.1752 | —338.2087
FC A5 || —3925.0081 | —4709.7208 | —971.9110 | —350.6064
ACS - - - -
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Table 3.19: Total and nonadditive energy of the quartet ground state of Liz at two
different nuclear configurations calculated with RCCSD(T) using different cc-pVXZ
(X) and cc-pCVXZ (CX) basis sets; augmented (A), contracted, non-contracted
(unc all), and with s functions contracted only (unc p) and either with all electrons

correlated or with a frozen core (FC).



Dy 7 =32 A
Vel / om™ | Vg™ /om™!
T —109.6671 98.2983
T unc p - -
T unc all —-3.8540 6.4218
FCT —0.8603 4.5936
CT —11.3776 14.1693
AT —204.8927 176.6837
AT unc p - -
AT unc all —5.8753 7.0759
FC AT —1.2422 3.0748
ACT —20.8259 20.9884
Q —278.4277 264.1531
Q unc p —93.1692 76.3860
Q unc all —4.8548 5.5527
FC Q —0.2063 1.2071
CcQ —2.9695 3.6674
AQ —447.6865 343.7719
AQ unc p —145.4919 68.8733
AQ unc all —6.8432 6.6281
FC AQ —-0.1317 0.6628
ACQ —4.2161 4.0230
) —225.8723 207.6998
5 unc p —16.7657 12.5312
5 unc all —4.0208 4.4553
FC 5 —0.0307 0.5004
Ch —0.6123 0.9811
A5 —316.1137 233.8480
A5 unc p —21.9365 13.1268
A5 unc all —5.9324 5.6800
FC A5 —0.0395 0.2568
AC5H - -
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Table 3.20: Basis set superposition error of an S-state Li atom and of a 3%} Li,
dimer in the three-centre basis at Ds, configuration with r = 3.2 A. Calculated with
RCCSD(T) using different cc-pVXZ (X) and cc-pCVXZ (CX) basis sets; augmented
(A), contracted, non-contracted (unc all), and with s functions contracted only (unc

p) and either with all electrons correlated or with a frozen core (FC).
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basis I[O'o/AI re/AlDe/cm_1 |
5 2.4621 || 3.102 | —4021.49
S5unc p || 2.4641 || 3.102 | —3969.77
5unc all || 2.4641 || 3.102 | —3967.40
FC 5 2.4911 | 3.137 | —3937.51
Ch 2.4611 || 3.098 | —3980.59

Table 3.21: Well depth, D,, position of minimum, r,., and position where Dj; poten-
tial crosses zero energy (atomic S+S+S limit), g, for 4 A, state of Liz in RCCSD(T)
using cc-pV5Z (5) and cc-pCV5Z (C5H) basis sets; contracted, non-contracted (unc
all), and with s functions contracted only (unc p) and either with all electrons cor-

related or with a frozen core (FC).

requires 13.64 GB of hard disc. Use of the cc-pCVQZ basis set would be even more
demanding, as can be seen in the table. Therefore computational demands limit us
to the triple zeta level in the core valence basis sets, cc-pCV'TZ, which are optimized
to deal with the core-correlation effects. The frozen core approximation allows the
use of the non-augmented cc-pV5Z basis set, but the non-contracted cc-pV5Z basis
set provides a better description of the potential characteristics, as can be seen in
Table 3.21, and is in closer agreement with the results obtained by the largest basis
set, cc-pCV5Z, than the cc-pCVTZ. Contracting the s functions provides an impor-
tant time saving without a significant loss in accuracy, so the decision was made to
use this basis set for the calculation of electronic energies for the full potential energy

surface of lithium trimer. This task is undertaken in the next chapter.
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basis | REAL / min | CPU / min | DISC / GB |
FC 5 27 17 4.42
FC A5 166 105 16.67
5 68 53 4.42
5 unc p 78 67 4.80
5 unc all 126 96 7.15
A5 428 236 17.00
A5 unc p 497 286 19.96
A5 unc all 686 394 23.83
CcQ 42 36 2.12
ACQ 144 118 7.06
C5 546 354 23.39

Table 3.22: Real and CPU times and usage of hard disc for evaluation of the
counterpoise-corrected total and nonadditive interaction energy of lithium trimer
on a Sun Fire machine (UltraSPARC-III Cu processor of 1200 MHz) using different
correlation consistent basis sets; X = cc-pVXZ, CX = cc-pCVXZ, A = aug, FC =

frozen core, unc p = non-contracted p functions, unc all = non-contracted basis set.



Chapter 4

Interpolation and fitting of

potential energy surfaces
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4.1 Introduction

Quantum chemical calculations of potential energy surfaces of high accuracy are
demanding on computer resources. Dynamical studies of the motion of nuclei usu-
ally require evaluation of potential energy at a great number of nuclear geometries.
Therefore it is desirable to have a way of representing potential energy surfaces
based on a relatively small number of ab-initio determined electronic energies. This
is commonly achieved by either fitting of analytical forms on ab-initio energies or by

interpolating them.

Our particular problem is finding a representation of potential energy surface for
reactive scattering calculations of three identical atoms. In the Born-Oppenheimer
approximation the potential is symmetric under exchange of nuclei. To avoid any
artificial phenomena in collision dynamics this symmetry must be built into the po-
tential representation. The accuracy of the potential for our problem is particularly
important in the strong interaction region and in the asymptotic reactant and prod-
uct arrangements. The analytic representation of the long-range interactions will be
developed in the next chapter and fitted on available data for lithium quartet system.
This chapter is concerned with fitting to electronic energies in the strong interaction
region. The two regions must be smoothly matched into a global representation of

potential.

The potential energy surface that correlates with the quartet ground state of three
lithium atoms intersects an excited quartet surface at a seam at linear configurations.
The seam passes below the three-body dissociation limit in the strong interaction
region. An accurate solution of the nuclear Schrédinger equation for three nuclei
would require two diabatic potentials and the non-adiabatic coupling between them.
This is currently too expensive to do computationally for this system. We made
an approximation and ignored the higher surface and coupling between the two to
make the dynamics calculations feasible. In this way, we were able to calculate
the lower surface with greater precision using cheaper single-reference methods with
a large basis set. This was addressed in the previous chapter. Drawback of this
approach is that the lowest adiabatic surface has a derivative discontinuity at the
seam, which cannot be easily incorporated in any interpolation or fitting methods

available for potential energy surfaces. There are two apparent ways around this
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problem. One is to fit or interpolate both diabatic surfaces and the coupling between
them and perform calculations on the lower eigenvalue. The other is to sacrifice the
quality of the fit in the vicinity of conical intersection. The latter approach was
taken here. Near a conical intersection, the Born-Oppenheimer approximation is
invalid and dynamics influenced by that region of the potential energy surface is
not accurate in any case. We believe that most of the conclusions that we will
draw from the scattering calculations will hold even in the presence of the excited
surface. The sensitivity of the dynamics to the potential is also explored in the limit
of zero collision energy in Chapter 9. But the influence of the excited surface on the

dynamics will not be known until the calculations on both surfaces can be performed.

Some techniques for representing potential energy surfaces are described in a
review by Schatz [100] and references therein. New methods are still being devel-
oped. From a vast choice, we present three methods that we have implemented and
comment on their applicability in representing the surface of lithium trimer. The
IMLS/Shepard fit is finally described in most detail. The global representation of
the potential energy surface is postponed until the next chapter, where the analytic

long-range form will be incorporated in our fit.

4.2 Interpolation and fitting of potential energy

surfaces of triatomic systems

4.2.1 Reproducing Kernel Hilbert Space interpolation

The reproducing kernel Hilbert space (RKHS) interpolation method is a global
method specifically formulated for potential energy surfaces [101]. The potential
energy as a function of one coordinate is defined in terms of the reproducing kernel
functions ¢(z,z'). The reproducing kernel functions were designed to have desir-
able properties for interpolation such as smoothness and well-behaved extrapolation
properties [102].

A reciprocal power RKHS has been constructed [101] for interpolating in distance-
like coordinates in the range [0,00). The one-dimensional interpolant for N, data

points at (i) with potential energies V (r(i)) is expressed as a linear combination of
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kernel functions,
Ny
V[n,m](r) _ Z agn,m]q[n,m](r, T(i)), (4.1)
1=1
where

n,m nmx
g"m(z,2) = m+125[ < (4.2)
<

is a reproducing kernel, z. = min(z,z ), £» = max(z,z ), and the coefficients ﬂ,[cn’m]

(n,m)]

are constants given in Ref. 101. The coeflicients «; ' are found by solving the linear

system
S [
7)) = 2o g (r(3), (7)) (4.3)
=1
It can be seen that the RKHS potential extrapolates to a series in inverse powers of
r at long range. The leading power of the asymptotic expansion is 7~(™*1 and n is
the number of asymptotic terms,

[n ™ Ez 1051”’17"(2')1C
Tm+1+lc

yirmly = — Z

k=0

(4.4)

For a long-range dispersion interaction between two S-state atoms, interpolation
is best performed in the variable r? to prevent odd-order terms contaminating the
expansion [103]. The choice m = 2 and n = 3 gives the correct first three terms in
the r~! expansion of dispersion interaction.

The set of chosen dispersion coefficients Cy may be built into the interpolation
procedure [104] by extending the linear system (4.3) with n additional equations.

[n,mn]

For this purpose n additional o; coefficients and distances r(i) are introduced.

The new system reads

Qu=V, (4.5)
where
d»™(r(5),r() for i=1,...,Ng j=1,...,Ny
Qi = 0 for ¢=Ng+1,....,Ng+mn,j=1,....,Ng | (4.6)
[nm],. s .
ﬂm—ﬂg— for j=Ny+1+k k=0,...,n—1
and

ij{ V(r(j)) for j=1,..., Ny (4.7)

*%TH% for j=Ng+1+k k=0,...,n-1

The largest 7(2) delimits the asymptotic region, and r, should be a distance at which

different dispersion terms in the sum (4.4) are comparable in magnitude.
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The short range extrapolation of the RKHS potential results in a polynomial of
order n—1. A sufficient number of ab-initio points must be included on the repulsive
wall to ensure the accuracy of the interpolated potential there [103].

Reproducing kernels in more than one dimension can be constructed as a product
of one-dimensional reproducing kernels in each of the coordinates [102]. They have
been used for interpolation of the nonadditive part of interaction potential of the
quartet ground state potential of sodium trimer [80]. A three-dimensional reproduc-
ing kernel,

QM (r(3),r) = ¢ (2, 2" )g" ™y, v )g™ ™ (2, ), (4.8)
was symmetrized and the potential expressed as
p 1 ,
Vi)=Y o {5 2 me}Q["’m](ri,r)}, (4.9)
i=1 * {123}
where z, y, and z represent interatomic distances scaled by a constant in such a way
that «a coefficients remain small. P23y is the permutation operator of the indices 1,
2, and 3. The summation is over all possible permutations. The correct powers of
the leading term of the nonadditive dispersion interaction at long range, the Axilrod-
Teller term, were obtained by choosing n = 2, and m = 2. However, this potential
does not reproduce the correct angular dependence of Axilrod-Teller term and the
next order terms at long range are incorrect. Dispersion coeflicient Cy was not fixed
to a predetermined value, as described above.
Other reproducing kernel functions have also been developed [102]. An expo-

nentially decaying reproducing kernel over an interval [0, 00) [102] may be defined

as
' n—1 _ 9 _ !
B = et T R B, — e, p50. ()
=0 K.

This may be useful for interpolating potentials where a long-range potential is added

on the interpolant in an analytic form.

4.2.2 Fitting of polynomials in symmetric coordinates

An attractive way to fit triatomic potentials with identical atoms is an expansion in
an analytic function of symmetric coordinates [105]. Appropriate symmetry coordi-

nates can be defined as

Q1 = T1 + 19 +7T3),

2
73



72

Q = %m —ry),
1
QS - %

It can be shown [105] that any function, symmetric under exchange of any two

(2ry —re — 73). (4.11)

indices, may be written as sums and products of these three variables,

Q1 Q3 +Q3 Q3 —3QsQ3. (4.12)

Murrell and co-workers used this fact to fit nonadditive potentials of beryllium [106]

and helium trimer [107] to a 15-parameter form,

V = exp(—a@Q:i){co+ Q1 + CzQ% + (3 + caQr + CsQ%)(Q% + Qg)
+ (cs+ Qi+ CBQ%)(Qg - 3Q3Q§) + (co + c10Q1 + CuQ?)(Q% + Q%)Z
+ (c12 + c13Q1 + ca@QD)(QF + Q3)(Q3 — 3Q3Q3)}- (4.13)

The evaluation of such a potential is very fast. The only non-linear parameter is o,

while the coefficients ¢; may be determined by solving a linear system for each c.

4.2.3 Interpolant moving least squares / Shepard interpola-
tion

The interpolant-moving least squares (IMLS) method represents the interpolated
value at a point in terms of linearly independent basis functions. The coefficients in
this expansion are determined by the least-squares method. In the IMLS/Shepard
method proposed by Ishida et al. [108], the IMLS interpolant is used only at the data
points to evaluate approximate gradients and Hessians of the interpolating function.
These numbers together with the functional values at data points are stored (ten
values per data point) and used in a Taylor series expansion about each data point.
The interpolating function is evaluated at an arbitrary point in the configuration
space as a weighted sum of the Taylor expansions about all data points in the set.
The final interpolant is a modified version of the Shepard method introduced by
Ischtwan et al. [109].

In the IMLS method the interpolated value v at a point Z is represented as a

linear combination of basis functions b,(Z),

W(Z) = iaj(Z)bj(Z) = aT(Z)b(Z). (4.14)
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Here n is the number of basis functions and matrix notation is introduced so that a
is a coeflicient vector. We take the basis functions to be polynomials up to second
order as in Ref. 108. Then the number of functions for a system with /N degrees
of freedom is n = (N; + 1)(Ny + 2)/2. For a system of three particles, Ny = 3 and
n = 10. The functions are: 1, Zy, Zs, Z3, Z2%, Z2, Z2, Z\ 25, Z,Z3, and ZyZ3. The
coordinates in which interpolation is performed were chosen to be inverse internuclear
distances, Z = 1/r. This is more efficient than internuclear distances themselves for
representing potential energy functions. We also require the second-order derivatives
for evaluating the Taylor series, as mentioned above (which vanish if internuclear
distances are used).

We denote the coordinates and energy values of the points we are interpolating
by Z(i) and f(i) and the number of them N;. The coefficients a; are determined
at any point Z in the configuration space by minimizing the weighted sum of the

squared deviations at the data points,

S w(@u(z() - F6), (1.15)

where w;(Z) are the weights. The requirement that the functional (4.15) be sta-
tionary with respect to variation in the parameters a;(Z) leads to a linear system of

equations written in matrix form as
BW(Z)BTa(Z) = BW(Z)f. (4.16)

Here, W is a diagonal matrix with weights w; on the diagonal and B is composed of

the basis functions evaluated at data points,

b(Z() b(ZQ) - bi(Em)
5o | BED) BEZE) - @) )
n(Z(1) Ba(B(2) - ba(Z(0)

The dependence of the coefficients, a, on coordinates is introduced through weight
functions w;. This approach can be applied to fitting potential energy functions
directly and this has recently been done [110]. In this approach, the linear system
(4.16) needs to be set up and solved for each configuration and the function evaluated
using (4.14). This is computationally expensive.

The weight function may be defined as in Ref. 108, 109, by
v; k

N )
Ej:dl Vj
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and
1

(1Z = Z(@)|]* + e)P
Here p is a parameter that determines the shape of the weight function and the range

(4.19)

Vi =

in which data points contribute to the interpolant at a point. The parameter € is
present to smooth out the singularities of the interpolant at data points. In fact with
the introduction of a finite €, u is not strictly an interpolant, but a fitting function.
Previous applications involved p = 3, 6, and 9, while € was kept small [108, 110—112].
If € is infinitesimal, w;(Z(j)) = d;; and 0 < w;(Z) < 1. From the definition (4.18) it
follows that
Ny
> wi(Z) =1, (4.20)
i=1
for all Z.
In the next step, we derive the gradients and Hessians at the data points. Using

(4.14) and (4.16) with the weights defined in (4.18,4.19), we get the gradients
us(Z) = a”(Z)b,(Z). (4.21)

The derivatives of coefficients at data points, a;(Z) are zero when ¢ is infinitesimal.

The Hessian is

ust(Z) = a%4(Z)b(Z) + a” (Z)by(Z). (4.22)
Using (4.16), a,, may be found by solving a linear system,
BW(Z)BTay(Z) = BW(2)[f — BTa(Z)). (4.23)

In practical applications, the gradients and Hessians of the weight functions (4.18,4.19)
are evaluated analytically. This procedure involves calculation with large numbers,
so care must be taken that multiplications and divisions are carried out in a proper
order to avoid a numerical overflow. The linear systems in (4.16) and (4.23) may be
ill-conditioned. They are solved using the singular value decomposition method [96].

Shepard interpolation is an IMLS method where basis functions of zeroth order
are adopted, b(Z) = 1. In this case the coefficient a is equal to the interpolant u and

for a normalized weight function (4.20) it is

Ny
u(Z) = 3 w(2)) (4.24)

This method suffers from the so-called flat-spot phenomenon, meaning that the in-

terpolant has zero gradient at all data points.
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Ischtwan et al. [109] have solved the flat-spot problem by using Taylor series
expansions instead of the energy values at data points in (4.24). Expansion up to the
second order was shown to be necessary and sufficient for generating well-behaved
potential energy functions [113]. In the IMLS/Shepard method, the potential is

evaluated at an arbitrary point as

_ ﬁ_ijzm(zx (4.25)

where T;(Z) is a Taylor series expansion about Z(i) evaluated at Z up to the sec-
ond order using potential value V(Z(i)), gradients, and Hessians, precalculated as

described above and stored,

L av
T.(Z2) = V(Z())+ ;[Zk—zk( i) o A "
1 N Ny 92V
3 kleZl[Zk - Al - 2 gz (4.26)

The weights in (4.25) and (4.15) need not be the same. The only parameters of the
method are € and p.

The IMLS/Shepard method is easily extendable to more degrees of freedom. It
can also be used with arbitrarily scattered data points. The interpolant may be sym-
metrized by symmetrizing the data points. The disadvantages are that the method
becomes more expensive with inclusion of more data points and that asymptoti-
cally the interpolant tends to a constant. Therefore an alternative representation is
needed at long range and switching or damping functions are needed to eliminate

the influence of the interpolant there.

4.3 Choosing coordinates, grid, and method

Diatomic potentials are much easier to represent than triatomic potentials, either
by a simple analytical form or by interpolation. It is sometimes useful to represent
a potential energy surface of the triatomic system as a sum of the additive and
nonadditive parts of the interaction potential. This is especially convenient when
additivity is a good approximation and when the magnitude of the additive potential
excludes from interest the configuration space where nonadditive interactions are

large. In the case of the quartet ground state of lithium trimer, the total interaction
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potential near equilibrium and at shorter distances is a result of cancellation of a
large and attractive nonadditive part and a large and repulsive additive part of
potential (see Chapter 2). Fitting or interpolating the parts separately could results
in magnification of the relative errors in the representation of the resultant potential.
We have therefore tried to interpolate the total interaction potential.

Choice of the coordinate system, grid of ab-initio points, and the method for
interpolation or fitting are all intricately connected. It is therefore hard to give any
independent statements on those three subjects. In spite of that, we explain here
our logic behind these choices.

Generally, a systematic set of grid points should cover the regions of physical
interest. If interpolation is performed in an independent set of coordinates, the scan
in each of them with the others fixed should not pass through violent changes in the
potential. If there are such violent changes, the interpolant is likely to oscillate in
other regions of the potential.

The hyperspherical coordinate system is the coordinate system which we will use
in the scattering calculations. It maps all the possible nuclear arrangements of the
three atoms uniquely in the upper half of the three-dimensional coordinate system
(2 > 0). The origin corresponds to all the nuclei together at the same position.
The plane z = 0 corresponds to collinear arrangements of nuclei, and the three rays
at ¢ = 30° 150°, and 270° (p is the azimuthal angle) correspond to two nuclei
at the same position. Backward extensions of these rays map to Dy geometries.
The z-axis corresponds to Dj, arrangements. The high-energy regions concentrated
along the three rays are difficult to avoid if hyperspherical coordinates are used
for interpolation. At long range, the physically interesting part of the surface is
concentrated in the narrow arrangement valleys while the potential in the remainder
of the space is zero. The space, parametrized in this way, seems to be an inefficient
and bad choice for interpolation.

Elliptical coordinates (a generalization of Jacobi coordinates) have been used
successfully for interpolation in two dimensions [114]. The angular dependence was
expanded in Legendre polynomials and the coefficients of the expansion interpolated
using the RKHS method for the distance-like variables. A three-dimensional scan
would require the distance between the foci of the ellipse as a variable parameter too.

For each arrangement of the nuclei we can define three elliptic coordinate systems
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with focuses on the line defined with each nuclear pair. The space excluded from
the interpolation within the ellipse of smallest size for a given focal distance can
be covered by another elliptic system. But interpolation through different elliptic
systems would result in an overlap of the same regions in the nuclear configuration
space or an un-natural coverage.

Internuclear distances were previously used as coordinates to interpolate the quar-
tet potential of the sodium trimer using the RKHS method in Ref. 80. We use them
here to fit the lithium surface.

We formed a three-dimensional grid of internuclear distances, (ry,rs,73), from
the following set of values in Angstroms: 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2,
6.0, 6.8, 8.4, 10.0. The grid at nonlinear geometries was constructed from all 315
possible combinations of ry, 75, and 73, taken from the above set of distances. We
have added additional points to the grid in such a way that for r; and ry from the
set, the grid in r3 included all distances larger than 10 A in steps of 1.6 A, which
satisfy the triangle inequality, r3 < r1 + ry. This produced another 56 points, such
as, for example, (6.0,6.0,11.6). A grid of 120 linear configurations was formed by
taking all possible combinations of r; and r, from the set that additionally included
the distance 5.6 A. Ab-initio electronic energies of the quartet ground-state potential
of lithium trimer were evaluated using RCCSD(T) with the cc-pV5Z basis set with
un-contracted p functions. Electronic energies at two grid points, (2.4,4.4,4.8) and
(2.0,6.0,6.8) in Angstroms, failed to converge. The whole grid was based on 489
different electronic energies.

The RKHS method has proven to work well with a small number of grid points
on a number of systems [102]. Initially, we tried to interpolate the angular slices
of the lithium trimer potential using RKHS. The upper four panels in Figure 2.8
are the result of the reciprocal powers RKHS interpolation. The two-dimensional
rectangular grid in the internuclear distances 7, and r5 included the points shown on
the left panel in Figure 4.1 as well as the horizontal and vertical rows at distances of
1.6 A, 8.4 A, and 10 A, not shown in the figure. On the right panel in Figure 4.1 is
the RP-RKHS interpolant at D, configurations. The surface is well-behaved. The
derivative discontinuity at the seam did not cause difficulties in the interpolation.
‘On the other hand, the RP-RKHS interpolant for angular slices with the angle be-

tween the internuclear distances r; and 7, fixed at 60° and 90° was not well-behaved.
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Figure 4.2 shows wiggles around the minimum for 60°. The kernel functions could
not accommodate the functional form of the potential at short range. Interpolating
the expression log(E/cm™! + 5000) — log(5000), where E are electronic energies on
the grid, removed the wiggles from the surface, shown in Figure 4.2, but unphys-
ical features are still present on the repulsive wall. We have tried fitting with the
exponential RKHS and got similar results. Extending the RKHS interpolation to
fitting three-dimensional surfaces brings additional problems. The interpolant of the
quartet ground state of the sodium trimer by Higgins et al. [80] was based on the
Cy, geometries only. When one includes C, points in the grid, the quality of the
interpolant becomes more difficult to control. Inclusion of closely spaced points, to
remove any wiggles in the surface, renders the RKHS method unstable, because the
algebraic problem becomes ill-conditioned. Since representing the surface of lithium
trimer is expected to be difficult anyway because of the presence of a seam at linear
geometries and since we encountered complications in the two-dimensional RKHS

interpolation of angular slices at 60° and 90°, we abandoned this approach.
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Figure 4.1: The grid of ab-initio points used in the interpolation of angular slices
of the potential energy surface of lithium trimer in Figure 2.8 (left). RP-RKHS
interpolant of the quartet ground state of lithium trimer at D geometries (right).

Electronic energies are in cm™!.

The well-behaved surfaces in the bottom row in Figure 2.8 are obtained using
two-dimensional cubic splines method [96]. However, three-dimensional cubic splines
would require a large rectangular grid.

Fitting the potential with the symmetric polynomials of Murrell et al. (4.13) is
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Figure 4.2: RP-RKHS interpolant of the quartet ground-state potential of lithium
trimer at a fixed angle of 60° between the internuclear distances r; and ry. Electronic
energies, E, are interpolated on the left panel, log(E/cm™! + 5000) — log(5000) are

interpolated on the right panel. Electronic energies are in cm™!.

simple and attractive when the desired accuracy is achieved by small number of
terms. However, large number of polynomial terms renders the fit highly correlated.

A potential energy surface of lithium trimer in the quartet ground state has
recently been published by Colavecchia et al. [56]. The nonadditive part of potential
was represented using the multiquadratic interpolation method described by Salazar

[115]. The interpolated energies of N; data points can be represented as

Vir) = éci\/ﬂr TN (4.27)

where the parameters ¢; are determined by requiring that the energies are exactly
reproduced at the grid points. A is a free parameter determined by minimizing the
first differences in the interpolated higher-order derivatives as described by Salazar
et al. [116]. The authors used ab-initio energies of lower quality than us, evaluated
at 1122 configurations. The interpolant was used at short range. At intermediate
distances wiggles in the potential corrupted the surface. Therefore, the authors
switched to a fitted symmetric polynomial, similar to that in (4.13), at intermediate
distances (the value of the switching function was 1/2, where r;+ro+r3 =~ 14.2 A). We
applied this method using our grid. The resulting interpolant wiggled everywhere.
The density of points in our grid is too low.

We have found that IMLS/Shepard method gives the most satisfactory results.

The fit is described below in more detail.
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4.4 IMLS/Shepard fit

In the IMLS/Shepard method, the potential energy surface is constructed from
weighted quadratics. There are two parameters at our disposal, p and ¢, which
control the quality of the fit once the grid is chosen. The parameter p determines
how quickly the weight function drops off, while € removes the singularity in weights

and smooths out the potential near the grid points.

Ishida and Schatz [111] found that for the Hs potential, p = 6 and ¢ = 0.03 A~!
give the best results for randomly scattered data. Their conclusion was based on
examining the convergence of classical trajectories, and the root-mean-square devi-
ations of energies and gradients from a previously known potential energy surface.
They found that if ¢ < 0.03, precision in gradients is lost near the grid points, because

of the divergence in unnormalized weight functions.

We have initially interpolated potential of lithium trimer using p = 6 and € = 0.03
A-1. The interpolated potential is shown in Figure 4.3 for D, geometries. Because
of the scarcity of grid points near the seam, Taylor expansions about adjacent grid
points have very different behaviour. The unphysical gradients in the figure are
caused by a rapid switching between the contributions from different data points as
we move on the surface. Since ¢ > 0, the IMLS/Shepard interpolant is, in fact, a
fit. The root-mean-square (rms) error at the grid points is 1.47 cm™!. The largest
contributions to this error come from the points on the repulsive wall, at short range,
and near the conical intersection. The most important part of potential for low-
energy collisions is that which lies below zero, defined as the three-body dissociation
limit. The rms error at the points where the potential is negative is 0.39 cm™!, with

the maximum absolute deviation of 4.91 cm™! at (2.8, 3.6, 6), close to the seam.

To obtain a smooth potential, we have tried increasing the value of € in steps of
0.01 A-!. Increasing € increases the average number of grid points that significantly
contribute to the fitted potential at a point. In this way, the potential value is
influenced significantly by other grid points even at grid points and the quality of fit
deteriorates where potential varies rapidly. A smooth fit was obtained using € = 0.05
A~1 and is shown in Figure 4.6. The rms error at all points on the grid has increased
t0 9.72 ecm™!. The rms error at points below zero is now 4.33 cm™! with the maximum

absolute deviation of 45.53 cm™! at coordinates (2.8, 3.6, 6).
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Figure 4.3: IMLS/Shepard interpolant of the quartet ground state of lithium trimer.

Parameter of interpolation p = 6 and € = 0.03 A~!. Electronic energies are in cm™!.

We evaluate the quality of the fit in more detail. There are 67 grid points at
which the relative error in the fitted potential is greater than 1%. At 46 of them,
the potential is negative. In the next chapter the global fit will be constructed
from the IMLS/Shepard fit at short range and an analytic form at long range. The
two regions will be matched by a switching function. We may divide the whole
configuration space into an inner region and an outer region, where the dividing line
is defined by the switching function being equal to 1/2 (r; + 75 + 13 = 20 A). Of the
46 points at negative energies, where the error is greater than 1%, 21 are in the inner
region and 25 are in the outer region. Of all the grid points, 323 are in the inner
region and 166 are in the outer region. Of 323 points in the inner region, 201 are at
negative energies, which means that the relative error is greater than 1% at ~ 10%
of the points in the important region. At 5 points at negative energies the relative
error is higher than 10%. At 3 of them, the large relative error is due to a small
value of the potential at the point, and 2 of them lie near the conical intersection,
(3.2,3.2,6.4) and (2.8,3.6,6.0). There are another two points, at (2.8,3.6,6.4) and
(2.8,3.6,6.4), where the relative error is greater than 10% (=~ 20%) and the potential
is positive.

The fitted potential, the ab-initio points, and the potential of Colavecchia et
al. [56] are shown in Figures 4.4 and 4.5 at D3, and Dy, geometries, respectively,
~ for comparison. Near the global minimum, at 7 = 3.2 A in Dy, the error of the fit is

3.06 cm™! or 0.08%, well within the error of the ab-initio energies. It can be seen in
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Figure 4.5 that gradients have more physical appeal for the IMLS/Shepard fit with
e = 0.05 A~! than with ¢ = 0.03 AL,

600 ® ab-initic points
—— IML§ / Shepard (¢=0.05)
-~ Colavecchia st o,

/A

Figure 4.4: IMLS/Shepard fit, e = 0.05 A™', and ab-initio energies of the quartet

ground state of Lig at D3, geometries.
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Figure 4.5: IMLS/Shepard fit, ¢ = 0.05 A~! and 0.03 A~!, and ab-initio energies of

the quartet ground state of Liz at Dy, geometries.

The IMLS/Shepard fit is shown in Figure 4.6. We regard this fit as a satisfactory
representation of a surface with a discontinuity at a seam. A better representation
using this method could be achieved by increasing the density of points. At each
panel, the angle between two internuclear distances is fixed. The interpolant may
be compared to Figure 2.8 obtained with lower quality ab-initio energies, but more
points. The potential of Colavecchia et al. [56] is shown in Figure 4.7 for comparison.

The large number of points (25) with a relative error greater than 1% at long
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Figure 4.6: The quartet ground-state potential of lithium trimer fitted using the
IMLS/Shepard method with p = 6 and € = 0.05 A-1. The angle between the inter-
nuclear distances, r; and 7y, is fixed at 180° (top left), 170° (top right), 150° (middle
left), 120° (middle right), 90° (bottom left), and 60° (bottom right). Electronic

energies are in cm™1.
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Figure 4.7: The quartet ground-state potential of lithium trimer of Colavecchia et
al. [66]. The angle between the internuclear distances, r; and ry, is fixed at 180° (top
left), 170° (top right), 150° (middle left), 120° (middle right), 90° (bottom left), and

60° (bottom right). Electronic energies are in cm™?.
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range exists because the measure of proximity between the points is in the coordinate
system of inverse distances. All long-range points lie close to the origin in that coor-
dinate system. The high value of € results in averaging of the potential contributions
coming from nearby points. In this averaging, points that come from very different
nuclear configurations and lie far apart in physical space participate. Apart from
this drawback, the limiting value of the interpolant at infinity is easily seen to be
a constant. These facts demonstrate that switching to a more appropriate form at
long range is necessary. (

A symmetric potential in all three internuclear distances is obtained by sym-
metrizing the 489 points. The total number of symmetrized points at which Taylor
expansions need to be evaluated is 2398. The potential constructed in this way is
expensive to evaluate. The time for evaluation may be reduced by introducing a

cut-off distance and redefining the weights in (4.19),

— 1 _ 1 — )
= =z ~ @ygrer oF 12— 20 < dewos (4.28)

v =0 for llZ - Z(Z)ll > deut—off-

1%

Small discontinuities in the gradients are introduced in this way. When the cut-off
distance is set to d2,,_,z = 0.025 A~2? the root-mean-square deviation from the
surface with original weights in (4.19) at the grid points is 0.0476 cm™! and the
maximum deviation is 0.27 cm™! near the global minimum. The average number of
points about which the Taylor expansions need to be evaluated is 616.8 for points
on the grid, which is 3.9 times less than originally. The factor of decrease would be

even larger for surfaces interpolated with a smaller € value.



Chapter 5

Fitting long-range interactions

86



87

5.1 Introduction

Properties of cold dilute molecular systems and of weakly bound complexes are very
sensitive to long-range interactions [117]. The wavefunction is such that molecules
spend long time at large separations. For calculations of cross sections or bound-state
energies near dissociation, the accurate representation of long-range interactions is
therefore important.

The intermolecular potential may be partitioned in the form [118]

yint — /SCF | yyintra | y/disp. (5.1)

In this expression, VSCF

is the interaction energy evaluated in the mean self-consistent-
field approximation, V"' is the intramolecular correlation energy of the monomers,
and V4P is the dispersion interaction energy of the monomers.

The dispersion energy has its origin in the interaction of the correlated motion of
fluctuating multipoles of monomers. It is the dominant contribution to the potential
of two neutral S-state atoms at long range where overlap and exchange interaction are
negligible. The dispersion interaction is relatively weak and it is common to describe
it using perturbation theory. Formal expressions of the long-range interaction terms
of an arbitrary number of molecules have been given in three orders of perturbation
treatment in Ref. 119, 120. Several lower-order contributions have been evaluated in
analytic form and for the case of three equal S-state atoms they will be given below.

The dispersion interaction of two neutral S-state atoms may be written in the

form

ydise(py = 28 _ 28 210 _ . (5.2)

Cs, Cg, and C1q are dispersion coeflicients and r is the distance between the atoms.
The coefficients come from instantaneous dipole-dipole, dipole-quadrupole, and quadrupole-
quadrupole and dipole-octupole interactions, respectively, and may be expressed as
integrals over products of dynamic polarizabilities at imaginary frequencies [121]. A
considerable effort has been made in the last decades in ab-initio determination of
the dispersion coefficients. In particular, for two lithium atoms, Cg, Cg, and Cyy have
been published in Ref. 93 and also higher order coefficients in [122]. The most recent
calculations of the Cq coefficient for lithium [93, 122, 123] all agree within 2%. They

are tabulated in Table 5.1. At large distances, the interactions cannot be regarded
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as instantaneous because they propagate with the finite speed of light. The effect of
the retardation has also been studied and retardation function that multiplies the
Cs coeflicient in (5.2) calculated for two lithium atoms [95]. The magnitude of the
effect grows with the distance and amounts to a reduction of the first term in (5.2)
by 0.5% at 250 ag, 1.67% at 500 ag, ~ 10% at 1500 ag, and = 60% at 10 000 aq. Its

effect will be neglected in our analysis, but may easily be incorporated when known.

| reference Ce/Enal | Cs/Enad | Cio/Enal? |
Yan et al. [93] 1393.39 | 83425.8 7372100
Patil, Tang [122] 1388 81830 7289000
Rérat, Bussery [123] | 1419 76142 -

Table 5.1: Cg, Cs, and C' dispersion coeflicients for two lithium atoms from recent

ab-initio calculations.

An analytic expression for the nonadditive dispersion interactions of three neutral
S-state atoms, in third-order perturbation theory applied to three interacting dipoles,

was obtained by Axilrod and Teller [72]. The well-known formula is

1 + 3 cos ¢ cos s cos
V(DDD); = Zi1;3 DL 2 OB (5.3)

TiTaT3

r1, T9, and 73 are distances between atoms and ¢, ¢,, and 3 are internal angles
at atoms and opposite the respective distances. The expression (5.3) has been ex-
tensively used in the past to account for the nonadditive dispersion interaction at
long range. It is quantitatively good only if all three distances are large enough
that any overlap and exchange interactions are negligible. The dispersion coefficient
Cq = 37111 1s often used in the literature.

Further terms coming from the third-order perturbation theory including the
interactions of higher order multipoles have been derived by Bell [124] and Zucker et
al. [125]. They apply to interactions of three identical S-state atoms. The expressions

are

V(DDQ)s = Z11sW (DDQ)s, (5.4)
V(DQQ)s = Z122W(DQQ)s, (5.5)
V(DDO); = Z,13W(DDO)s, (5.6)
V(QQQ)s = Z22W(QQQ)s, (5.7)
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where the geometric factors W are

W123 (DDQ);J,

W*(DQQ)s

W'3(DDO),

W(QQQ)s

..l_

+ o+ o+

W[(Q cos 3 — 25 ¢os 3ip3) + 6 cos(py — )
17273

(3 + 5 cos 2¢3)], (5.8)

15
G157 13(cos 1 + 5 cos 3py) + 20 cos(pa — s)
17273

(1 — 3cos2¢p;) + 70cos 2(pg — p3) COS 1], (5.9)

327”—?7‘5’7‘?[9 + 8 cos 2Q03 — 49 cos 4(,03

6 cos(yp1 — p2)(9cos s + 7 cos 3yp3)], (5.10)
15

To87575,5 L 27 + 220 cos 1 cos g, cos gy
17273

490 cos 2¢; cos 2, cos 2(3
175[cos 2(p1 — pa) + cos 2(py — p3)

cos 2(p3 — ¢1)]}- (56.11)

The origin of each term is in the interaction of three multipoles denoted in the above

expressions by D, Q, and O for dipole, quadrupole, and octupole, respectively. The

terms must be symmetric in the indices of three atoms (1, 2, 3). The full geometric

factor for DDQ, DQQ, and DDO interactions includes also the terms generated by

cyclic permutations of the atom indices in the expressions (5.8), (5.9), and (5.10),

W =w'2 4 wal L w3z, (5.12)

Three-body dispersion coeflicients to be used with (5.3-5.7) were calculated for alkali

atoms by Patil and Tang [122]. The coefficients for lithium are tabulated in Table

0.2.

Z111/Eha8 5.63 - 104
5.6865 - 10* [93]
5.90 - 10¢ [123]

leg/Eha(l)l 5.81 - 105

Zlgg/Ehaé‘o’ 6.41 - 106

Z113/Eha(1)3 1.70 - 107

ZQQQ/Eh(Iés 7.86 - 107

Table 5.2: Three-body dispersion coefficients for lithium, taken from Ref. 122 if not

indicated otherwise.
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The leading fourth-order term for interaction of three atoms through dipolar

forces was derived within the Drude model by Bade [126],

45 [1+cos’; 1+4costey 1+ cos?ps
V(DDDD), = —Z%,, —
( )a Hil gy r§r$ r$r§ rér$

(5.13)

An ab-initio value of the Z},,, coefficient for lithium has not been published to our
knowledge.

Recently, dispersion coefficients for alkali atom-diatom and diatom-diatom sys-
tems were calculated for S-state monomers and *T dimers [123, 127]. The formulae
are expressed in Jacobi coordinates. The diatom bond length is denoted by r, the
atom-diatom centre-of-mass separation R, and the angle between the two vectors is
6. The angular dependence of the interaction is expanded as a series in Legendre

polynomials

V4sP(R, @) ZZ RS ', (cos 0). (5.14)

For the interaction of two dipoles there are two non-zero coefficients C§ and C? that
were evaluated as a function of the diatomic distance. The values are given below in
Table 5.3. The four coefficients resulting from a dipole-quadrupole interaction Cg,

CZ, Cg were evaluated at the diatomic equilibrium distance. The authors say that

r/A | CY/Eyal | V5C2/Epal
3.6 3304 2549
4.2 3148 1875
4.8 3020 1309
5.6 2919 801
6.4 2871 505
7.0 2852 371
8.2 2839 225
10 2832 121
15 2830 36

Table 5.3: Atom-diatom Cg and CZ dispersion coefficients as a function of diatom

distance taken from Ref. 123.

no asymptotic form of the atom-diatom Cjy coefficients exists, and both isotropic and

anisotropic coefficients were fitted to the form

F(r) = A + Aexp(—bz) +f3(b,r>j—§ +f6(b,r)j—§, (5.15)
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with z = (r —rg) /7. fn are Tang-Toennies damping functions [129] (see eq. (5.43)),
7o is a constant and the other parameters in (5.15) are determined by fitting.

The above form (5.14) for atom-molecule dispersion is valid when the atom-
diatom distance R is much bigger than the diatomic separation r. On the other hand,
the three-body dispersion expressions (5.3-5.7) are valid when all three distances are
large.

As one distance gets shorter, with the other two remaining large, more and more
terms in the three-body multipole expansion start to contribute to the atom-molecule
interaction. Finally when overlap between two atoms is significant there will be ex-
ponential terms that contribute in turn to the diatomic charge distribution, diatomic
polarizability and finally to the atom-molecule dispersion interaction described by
expression (5.14). Our aim was to develop a form for fitting atom-diatom disper-
sion coeflicients in terms of three-body interactions that is lacking in the literature
according to Ref. 123 and to the best of our knowledge. We were also aiming to de-
velop a symmetric analytical form for fitting the long-range nonadditive interactions
of triatomic systems for use in scattering calculations that would also be valid when
one distance of the three is near equilibrium. Many published potential energy sur-
faces have not properly accounted for the long-range interactions. In particular the
ground-state quartet potential of three lithium atoms of Colavecchia et al. includes
only the Axilrod-Teller term for the nonadditive part, which, as will be seen below,
does not accurately describe the atom-molecule anisotropy. The ground-state quartet
potential for three sodium atoms by Higgins et al. [80] resulting from extrapolation of
the RKHS-RP method does not account properly for the anisotropy contained in the
Axilrod-Teller term and also contains terms ~ r;3r;%r;* which do not emerge in the
perturbation theory of multipole interactions. Accurate global forms are therefore
of interest in developing potential energy surfaces for use in scattering calculations.
Finally, the aim is also to obtain a symmetric long-range potential for lithium and
incorporate it in the ground-state quartet potential fit obtained in the last chapter

for subsequent use in scattering calculations.
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5.2 Atom-molecule dispersion interaction formu-

las

In this section, we will cast the atom-atom additive (5.2) and triatomic nonadditive
(5.3-5.13) dispersion interaction formulas in the form of the atom-molecule dispersion
formula in (5.14). This is done by changing coordinates in the formulae (5.2) and
(5.3-5.13) from interatomic distances to Jacobi coordinates and performing a series
expansion in the limit r < R. The full dispersion interaction potential is the sum of
all these contributions.

A word about notation is in order here. The atom-molecule dispersion coefficients
CAM and C#M are defined as the complete functions multiplying R~® and R78,
respectively, in the expression for the dispersion energy (5.14). The summation over

s in equation (5.14) is performed and we get

CsM(r,0) = Cg(r) + C5(r)Pa(cos ),

CiMM(r,0) = C2(r) + CE(r)Py(cos8) + Cg(r)Py(cos 6). (5.16)
Additive and nonadditive interactions of three atoms in different orders of pertur-
bation treatment give separate contributions to C&M and C#M and higher-order
coefficients. The full CAM coefficients are the sum of these contributions. We will
introduce a symbol < with the meaning that everything on the right side of it is a

contribution to the quantity on the left. A summary of all the contributions analyzed

will be given in tables at the end of the discussion.

5.2.1 Additive contribution to atom-molecule dispersion in-

teraction

The total additive dispersion interaction is
VdiSp (Tl, Ta, 7‘3) = VdiSp (7’1) + VdiSp(TQ) -+ VdisP(Tg), (517)

where each of the three terms on the right-hand side is of form (5.2). The total

additive interaction may also be written in form

VEP(R, 1, 0) = VIP(R, 0) + VP (r), (5.18)
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where we have used Jacobi coordinates. The first term on the right-hand side may be
associated with the atom-molecule potential, and the second with the intramolecular
potential that depends on the separation of the two atoms in the molecule. If we
associate one distance in the valence coordinates, say r3, with the diatomic distance
in Jacobi coordinates, 7, the first two terms in (5.17) are associated with the atom-
molecule potential and the third with the intramolecular potential. Now, we express

r1 and 74 in terms of R and 6,

T2
rr =4/ R?+ i + Rrcosd,

2
Ty = \/R2 + TZ — Rrcosé. (5.19)

When the atom-molecule distance is large, R > r, we factorize R in the distances
(5.19) and expand the atom-molecule dispersion potential in powers of r/R. For
example, the contribution to atom-molecule dispersion potential that comes from

the leading terms in the atom-atom dispersion potentials is

Cs 1 1

" R6 +
et 13 (5)] [ o ()

b (5.20)

which can easily be expanded in powers of r/R. Only even powers survive in this
expansion and, by comparison to (5.14), one can extract the contribution of atom-
atom dispersion coefficients to atom-molecule dispersion coefficients. The series is

infinite and we list the terms up to R~'0,

CMM g 2Cs, (5.21)
CaM g G (—g + 12 cos? 9) r2, (5.22)
CaM a4 C (% — 15cos? 6 + 30 cos* 9) . (5.23)

We see here that terms depending on the diatomic distance, r, appear. When we
contract the diatomic distance, ever more terms start to contribute in expansion
(5.2), but as a part of last term of the right-hand side of expressions (5.17) and (5.18)
which is not a part of atom-molecule potential. Additive dispersion interactions
do not account for Cg anisotropy, but do account for a part of the anisotropy in -

higher-order coefficients. The angular dependence in (5.14) is contained in Legendre
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polynomials of even order which are functions of cos? 8,
Py(cosl) = 1,
1
Py(cosf) = 5(3 cos? @ — 1),

Py(cosf) = é(35 cos® @ — 30 cos? 0 + 3). (5.24)

It is convenient to have the expressions (5.21-5.23) written in terms of Legendre

polynomials. In order to do that, one must invert (5.24). We obtain contributions

CAMM g 2Cs, (5.25)

CIM 4 G (g + 8P2> r? (5.26)
7 4

CAM g Cq (Z + ?PQ + 78P4) 4, (5.27)

This is done in order to be able to separate the terms that contribute to Cg and
C? since the two are calculated separately in ab-initio calculations, and for the same
reason for higher-order atom-molecule dispersion coefficients. It may be noticed that
the angular dependence does not exceed P, in C&M, Py in Ci, as must be the
case because of angular momentum couplings in the multipole expansions of the two
interacting species.

The same algebra may be performed for the dipole-quadrupole interactions. We
find the contribution of pairwise interactions to atom-molecule interactions and ex-

press the atom-molecule C&M in terms of the atom-atom dispersion coefficient Csg,

CiM g 2Cs, (5.28)
CAM @ Cs(~2+20cos?6) 72, (5.29)

The angular dependence may be expressed in terms of Legendre polynomials. Then

(5.28,5.29) become

CaM g 2Cs, (5.30)

14 4
CMM « G4 (?+§0P2> r2, (5.31)

This procedure may be extended to higher-order interactions, but we keep the present
analysis limited to the atom-molecule C4M and Cy*M coefficients.

We have derived terms of different powers in the diatomic distance r that con-
tribute to atom-molecule dispersion interaction, from pairwise additive atom-atom

interactions. These are summarized in Table 5.4.
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origin powers in A-M dispersion

(DD), 7"0;—;% 2 (P%g’z) T4(Po,}§126134)

(DQ)z 08 | 2
(QQ:DO)Q TO%%

Table 5.4: Summary of terms that appear in the atom-molecule dispersion potential

and originate from pairwise additive atom-atom interactions.

5.2.2 Nonadditive contribution to atom-molecule dispersion

interaction

The nonadditive interaction of three atoms does not make a contribution to the
intramolecular interaction (since the latter is a pairwise interaction) in (5.18), but
only to the atom-molecule interaction. One distance in the nonadditive potentials
(5.3-5.13) is again associated with the diatomic distance and the other two expressed
in terms of Jacobi coordinates using (5.19). Additionally, we need to express the
internal angles in terms of interatomic distances using formulae such as

2 2 2

cos ) = (5.32)

21913

The cosines of sums and differences between the angles are expanded as trigono-
metric functions of individual angles, sines are expressed in terms of cosines, and
the substitutions (5.32) again performed. The resulting expressions are expanded in
powers of r/R.

When this strategy is applied to the Axilrod-Teller term (5.3), the geometric
factor is

W (DDD); =

3% [(1 = Bcos?0) ks + (60520 — L cos* 6) L] + O () - (5.33)

The expansion contains even powers of r/R and the angular dependencies can be
expressed in even powers of cosf. We kept only the terms ~ R=® and R® in the
analysis.
We proceed to do the same with the (DDQ)3 geometric factor (5.4),
W(DDQ)s =
3 x [(48 — 384 cos? 0 + 400 cos” 0) L= + (32 — 96 cos? ())ﬁlR—g] + (5.34)
+0 (o) -
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All three cyclic permutations in (5.12), W% W21 and W32 in the (DDQ); geo-
metric factor (5.4) contribute to the above expression (5.34). The first parentheses
in the square brackets in (5.34) contain terms that arise from the expansion of the
sum of the two W#¥* that are ~ r~*R~7 when expressed in Jacobi coordinates. This
expansion contains only odd powers in r/R. The second parentheses in the square
brackets in (5.34) comes from the remaining geometric factor ~ r~3R~%. Same pow-
ers of r and R appear in the expansion of this geometric factor as in the expansion
of the sum of the other two.

The geometric factor of the (DQQ)s interactions (5.5) again contains three terms,
Wik connected by cyclic permutation of atom indices. Only one of them contributes
to the 7R~8 term below, while all of them contribute to the next term in the

expansion, which is ~ r3R710,

15 . iy 1 1
W(DQQ)s = o x (48 — 480cos’ 6 + 560 cos* ) 5 + O (W) . (5.35)

From the three geometric factors of the (DDO); interactions, the combination

of two contributes to 7 °R~% term below and all contribute in the next order of

expansion ~ r3R™10,

_5 2 4 1 1
W (DDO); = - (—96 -+ 960 cos® @ — 1120 cos” §) s TRAY <W) . (5.36)

Since the contributions coming from the (DQQ); and (DDO)3 nonadditive inter-
actions have the same powers in 7 and R they may be grouped together. Contribu-
tions coming from higher multipole interactions in the third order of perturbation
theory do not contribute to CAM and C atom-molecule dispersion coefficients.
They start with terms ~ R0,

Next, we consider the terms that come from fourth-order perturbation theory.
The (DDDD), interaction has a geometric factor made up of three terms connected
by cyclic permutations of indices. Two of the terms contribute with r ¢ R=6 leading
powers and each subsequent contribution is obtained by multiplying the previous one
by (r/R)?. The leading power of the third term is 7%/ R'%2. Keeping only the terms
that contribute to C&M and Ci*M coefficients, we obtain

wW(DDDD), =
-8 x [(2 + 2 cos? ) % + (=1 + 2 cos? § + 20 cos* §)
+0 (7w ) -

]+ (5.37)
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Geometric factors for the higher multipole nonadditive interactions in fourth or-
der have not been derived. They would contribute to higher inverse powers of r in
both CAM and C&M atom-molecule dispersion coefficients. The powers in the expan-
sion may be determined by noting that the DD interactions are ~ 773, the DQ are
~ r~%, and the QQ and DO are ~ 7~>. Contributions of fourth order in perturbation
treatment contain a sum of the products of matrix elements of four pairwise multi-
pole interactions and the summation is over three intermediate states. The powers
in interatomic distances may be derived by examining for which combinations of
multipole interactions the product of the matrix elements may be non-vanishing.

The next term of fourth order comes from DQ and DD interactions and it will
contain terms ~ %% where r; are interatomic distances. This means that

higher-order terms in the asymptotic form of the atom-molecule C{™ and C&M co-

8 6

efficients are ~ r7° and ~ r~°, respectively. The fifth-order dipolar interaction

9,.—3

contains terms such as ~ r1°r;3r;3 and therefore contributes with r~2 and =7 to
C&M and C{M, respectively. The results are summarized in Table 5.5.

All the above expressions (5.33-5.37) have an angular dependence which is a
function of cos? 6. Using (5.24) they can be expressed in terms of even-order Legendre

polynomials. Namely,

oP, l-2p,_12p
W(DDD); = 3 x <_r3}226 + 2 773%8 7 4) .. (5.38)
3 —12p, + 8p,  _64P,
W(DDQ)g = E X ( 318 + -3 R8 cey (539)
15 [128P,
WD), = = x (r5R8)+ (5.40)
5  (—256P,
= 2 N 41
W(DDO) = o x ( s ) , (5.41)
5 (S+3P 3+ + 2P
W(DDDD), = —51 % (BTGI%SQ 3 2;4}38 7 4)+ L, (5.42)

where the grouping of terms of different origin has been retained from (5.33-5.37).
It is clear from this that the Axilrod-Teller term accounts for a part of the
anisotropy coming from dispersion interactions described by C&M and CAM coef-
ficients. The importance of the expressions (5.38-5.42) is that the asymptotic forms
for atom-molecule dispersion coefficients may now be extracted and expressed in
terms of atomic two-body and three-body dispersion coefficients. In fact, the atomic

two-body and three-body dispersion coefficients can be treated as fitting parameters
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of atom-molecule dispersion coeflicients at large r. Instead of writing more formulae,
we collect all the powers of r that contribute to atom-molecule dispersion coefficients
Cg and C? in Table 5.6, and CY, CZ, and Cy in Table 5.7. The atomic dispersion
coefficients are defined by the relations (5.2) and (5.3-5.13).

origin powers in A-M dispersion
1 1 3
(DDD)S 3R6 8 T o
3R TR R R
1 1 T
(DDQ)S 73R8 rRI10 RIZ
1 1 1
(DQQ)B 78R8 73 R10 rRI2
1 1 1
(DDO)B r5R8 | 73RI0 rRI2
(DDDD) L L L L
4 r6R6 | +4R8 | r2RIO RI12
1 1 1 1
(DDDQ)4 8 R6 6 P8 410 2 piz
r8R R r‘R R
1 1
(DDDDD)S r9R8 | 77RB | 7BRIO 73 R12

Table 5.5: Summary of terms that appear in the atom-molecule dispersion potential

and have origin in the nonadditive three-body interactions.

Cs C
rd 2Cs -
r=3 - 62111
r* %Zﬁu %Zillll
r—8 (DDDQ)4
r=9 (DDDDD)s

Table 5.6: Asymptotic r-dependence of atom-molecule CAM dispersion coefficients

in terms of atomic additive and nonadditive dispersion coefficients.

We are now able to give a physical interpretation of each term in the form (5.15)
used by Rérat and Bussery [123] to fit C§ and C? atom-molecule dispersion coeffi-
cients. Their asymptotic form is correct. The constant term in the isotropic coeffi-
cient comes from DD interaction between the atoms and is zero in the anisotropic
coefficient. The r~3 term is zero in the expression for C?, and is connected to the
Axilrod-Teller Z;;; coefficient in the C? expression. This was already discussed by
the original authors [123]. The origin of the anisotropy in the 7=% term is in non-
additive dipolar interactions of fourth order; a constraint should be applied on the
fitting parameter in C§ and C? and the fit of both performed simultaneously. This

has not been done before and is described below. The exponential term in (5.15)
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cy cz ci

r? %C’G 8Cs -

70 2Cs - -

r! —%an %Zm %lel

r—° - %le —12702112

rt | i | T Zhn 5Zhn

r° - - —30Z192 + 4072113
0 (DDDQ)4

r7 (DDDDD);

Table 5.7: Asymptotic 7-dependence of atom-molecule C& dispersion coefficients

in terms of atomic additive and nonadditive dispersion coefficients.

comes from exchange and overlap contributions to the diatomic polarizability.
It may be noted in Table 5.7 that even if C§ was a known function of r, it would

not be possible to determine Z199 and Z;;13 separately from its asymptotic form.

5.3 Analytic form for long-range interactions

Our objective is to devise an analytic function that accurately represents the po-
tential at geometries when all distances are large, and also when one interatomic
distance is short and the others large. The latter geometries are particularly impor-
tant for atom-diatom collisions. The potential in the region where all atoms are far
apart is important for processes such as collision-induced dissociation and three-body
recombination which have recently been studied quantum-mechanically [128].

The form representing the long-range interactions of three identical S-state atoms
must be symmetric in the atom indices. An obvious choice is to separate the pairwise-
additive contribution, the sum of diatomic potentials, and to use the symmetric
expressions (5.3-5.13) for the nonadditive part of the potential. If the diatomic po-
tential has the correct asymptotic behaviour (5.2) built in, once we add the damping
functions to dispersion terms the only term missing in the leading atom-molecule
dispersion term of form (5.15) is the exponential.

The dispersion tail (5.2) can readily be built into the diatomic potential by one
of the following methods. 'When the diatomic potential curve is known on a grid of

points at short range, either from ab-initio calculations or from an RKR. procedure or
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some other source, a fit or interpolation can be performed on the difference between
the potential and the damped dispersion energy evaluated at the grid points, and the
analytic expression of the dispersion energy then added back to the fit or interpolant.
There are also interpolation methods available that extrapolate to the desired long-
range form. One of them has been described in the last chapter (RKHS). Or a fit
can instead be performed onto a function which has the desired long-range tail built
in by construction.

Damping functions represent the influence of charge overlap on the multipolar
dispersion energy in (5.2). Considerable effort has been devoted to determining the
best way to damp the atom-atom dispersion energy. The most popular approach is

to use Tang-Toennies damping functions [129],

(bR
k,) , (5.43)

fs(b,R) =1—¢*F Z

k=0

Each term of the dispersion energy (5.2) proportional to R~* is multiplied by the
corresponding damping function f;. The same b is used for all. It is much less known
how the nonadditive dispersion energy should be damped. Several prescriptions have
been given [130]. We choose to associate a damping function with every multipolar
two-body interaction term appearing in the expression for the energy in the pertur-
bative treatment. The dimer damping functions f, are recovered if the square root of

each, \/f, is used in connection with the associated interaction terms, R*/2

, when
the second-order perturbation energies are considered. When this recipe is applied
to third- and fourth-order terms (5.3-5.13), damped equivalents are obtained by the

following replacements in geometric factors

L VFs(6,71) fa(b,72) fo (b, 75)

rir3rd rirdrs ’
1 \/fs(b, 1) fa (b 72) fo (b, 73)
4.3 4,.4,3 J
T3 TToT3
1 \/fw(b, r1) fa(b, m2) fs (b, 73)
544 5.4,.4 1o
TiToT3 TiTaT3
1 b, b,
— 5 ] “gfg( ) (5.44)
TiTy TiT9

When damping is introduced in this way, the atom-molecule dispersion interaction
~ R~% is damped by = fg(b, R). But in the fitting form (5.15) for C%, term ~ 7=3 is
damped with /fs instead of f3.
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Symmetric expression that accounts for the exponential term in (5.15) was chosen

to be

Vool DD) = Va8 + Vi 4 V32

exc

_cnzra /fo(b,72) fo(b,7s)

rir3

V% = _[A+ BPy(cos)e

exc

(5.45)

When all three distances are large, this term (5.45) disappears due to exponentials
which then vanish. When one distance gets short, two terms disappear, while an
exponential remains in the diatomic distance that contributes to C§ and Cg. The
same exponent was chosen for both components. The reason for this will be explained
below. The dependence on the large distance R™° is damped by fs(b, R), which
prevents divergence when all distances are small. The argument of the Legendre
polynomial in (5.45) is the cosine of the Jacobi angle. It can be expressed in terms

of the distances or in terms of a symmetric expression of internal angles,
1
Py(cos ;) ~ —5(1 + 3 cos 1 COS Y3 COS P3). (5.46)

The advantage of the latter is that the expression (5.46) does not require any ex-
tra computational effort since it is already evaluated for the V(DDD)3 term. This
symmetric expression introduces additional terms in C&M and higher coefficients, see

(5.33). This could be avoided by using Jacobi coordinates

2 _ .2)2
20 — (T3 _ 7‘2) 47
O = g ) 40
and 1/RS instead of 1/r3r3 in (5.45), where

4

The coefficients A, B, and C in equation (5.45) may be determined for lithium by
fitting to the data in Table 5.3.

The sum of the additive potential and long-range nonadditive terms (5.3-5.13),
damped by the substitutions in (5.44) and including the symmetric exponential term
(5.45), represent a global potential. It represents the potential energy surface accu-
rately when two distances are large and should be matched at short range to a

potential that accurately accounts for short-range nonadditivity.
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5.4 Fitting atom-molecule dispersion coefficients
in lithium

We have refitted the parameters of the form used by Rérat and Bussery(5.15) using
the data in Table 5.3. The exponent parameter b is set to the same value as the
damping parameter in f3 and fg, and r; = 7 A. We replaced the damping function
f3 in (5.15) by /fs, according to the arguments given above. The fitting was per-
formed using NAG subroutines E0O4YCF and E04FCF. The fitted parameters are
summarized in Table 5.8 and the dependence of C? and Cg on the diatomic distance

r is plotted in Figure 5.1. Both fits give excellent agreement with the data. The

Aoo/Enal | A/Eral | b/A™1 | c3/Epa ce/ Enal?
Cg 2831.34 28.250 | 7.012 - —3.756 - 107
062 - 29.703 | 6.688 | 3.520-10° | —7.370 - 107

Table 5.8: Parameters of the fit to equation (5.15) for C¢ and CZ for lithium to data
from Ref. 123, listed in Table 5.3.

root-mean-square (rms) error of the fit for C? is 0.800 Eja$ and for C? is 1.839 Exab.
However, several observations can be made. The coefficient Zj,,; is equal to Va*
in the Drude model [126], where V is a characteristic dispersion energy of molecules

and « is the atomic polarizability. Within the same model [131], we have

Ce = gVCYQ, (5.49)
3
Z111 = —1—6Va3. (550)

These two expressions, (5.49) and (5.50), can be combined to give an estimate of

4
lella

Zhn = 64 (Zu)" (5.51)

The value for lithium is Z{,,; = 4.9508 - 107 Ej,a}? with Cs and Z;;; in (5.51) taken
from Ref. 93. The number is positive, while the fitted parameters suggest it is
negative. The ratio of parameters ¢ from the fit of C§ and C? is 0.510, while theory
predicts it is 2, see Table 5.6. Moreover, since 77 is the leading term in C? at long
range coming from the nonadditive dispersion interaction of three atoms, one would

expect that it is the long range that determines the value of Z3;,;, or equivalently
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Figure 5.1: Dependence of Cg and CZ for lithium on the diatomic distance: dots are

data from Ref. 123, curve is best fit on form (5.15).
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cg in the fit of CJ. The fact that C§ is decreasing towards its asymptotic value from
above suggests a positive value for Z},;;. There is a dramatic decrease in the value
of both Cf and C% at short range just inside the last data point which is governed by
the 7=% dependence in both fits. So it is actually the exponential that describes the
increase of Cy at long range in the fits. The last observation is that the b parameter
in the damping functions is 7.012 and 6.688 from C§ and C? fits, respectively. This
is very different from what was determined in ab-initio studies of dispersion damping
in lithium [132]. If we assume that atom-molecule dipolar interaction is damped in
a similar way, i.e. that damping amounts to &~ 45 % at the minimum of the diatomic

(r ~ 4.2 A) then b~ 1.5 A~! (fs = 0.442).

We tried to refit the atom-molecule dispersion coefficients using physical insight.
The fitting is performed sequentially. If an integer inverse-power law is assumed for
the long-range dependence of C? and C?, it is found that 7~® and 72 are indeed
the leading terms at long range, respectively, by inspection of the data in Table
5.3. Therefore, we first tried to determine the Z7;; coefficient from the long-range
behaviour of C{ as a function of 7. We performed a fit of Ay + fs(b,7)cs/78 to
the last 2, 3, 4, and 5 data points in Table 5.3. Initially, we fixed the value of b
to 1.5 A~1, and obtained 10.068 - 107, 13.582 - 107, 13.443 - 107, and 15.191 - 107,
for cs/E,ai?, respectively. The ab-initio values do not lie on an entirely smooth
curve and the accuracy of printed digits in Table 5.3 is not very high, which renders
the value of c¢s not very accurate. Next, we floated the damping in the fits to 4
and to 5 points. It did not affect much the results for 4 points, b = 1.514 A~
ce/Enad? = 13.365 - 107, An/Eral = 2829.50. But it did so for 5, raising b to 3.619
A-1. We also tried fitting all points by putting large weights at long range. We
chose the weights at each point f(r) to be max{1,10000[2825 — f(r)]~?}?. The best
fit gives parameters b = 1.713 A~1, ¢5/Epal? = 11.896 - 107, Ay/Enpal = 2829.71,
and an rms error of 22.51 E,ab. If the damping parameter is not floated and is set
to b = 1.5 A=, we obtain cg/Exa}® = 13.474 - 107, Aoo/Enal = 2829.60, with an
rms error of 39.58 Ejal. The comparison of fits to all points and with the values
of b = 1.5 A~! and ¢4 obtained from the Drude model are plotted in Figure 5.2.
It can be seen that the Drude model and the fit with b = 1.5 A~! underestimate
the ab-initio values at short range. The difference is fitted to an exponential. If

all parameters are left floating, the fit becomes strongly correlated. Therefore we
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Figure 5.2: Best fit of Ay, + fg(b,7)cs/r5, with b set to 1.5 A~! and b floated, to C9
data from Ref. 123. Comparison to the function where b = 1.5 A~! and ¢g obtained

from the Drude model.

fix the values b = 1.5 A~ ¢5/Eral? = 13.4- 107, and Ay/Eral = 2829.6, and fit
Aexp(—Cz), with £ = (r — r9)/ro and 79 = 7 A, all points weighted equally. We
obtain A = (10.7+4.8) Eya§, C = 4.284+1.05, with an rms error of 10.98 Exa. If we
refit with cg/Eral? = 9.283 - 107 as estimated from the Drude model, the properties
of the fit are better, A = (17.5 + 3.8) Ejaf, C = 5.08 + 0.49, with an rms error
of 10.11 Eja§. The value of the parameter C is substantially different from b. We
therefore relax the constraint of them being set equal as was done in (5.15).

We have made a similar analysis of the C? coefficient with the data from Ref. 123
listed in Table 5.3. A fit based on physical grounds is obtained by fixing the value of
cg to one obtained from Cf fit divided by 2, ¢z from the best ab-initio calculations
(c3 = 6Z111) (93], and b = 1.5A~1. The difference is then fitted to an exponential
Bexp(—Cz). We tried fitting with the Drude value for cg and the value obtained
from the C? fit with similar results (the fit was slightly better when using cg from
the Drude model). We obtained B = (35.2 + 5.6) Ejab and C = 5.13 £+ 0.13, with
an rms error of 15.15 Ea§. The value for C obtained from fitting the C? and the
C? are very similar when cg in both models is evaluated using Z},,, from the Drude
model. Therefore, we fixed C to have the same value in the forms for the C§ and the

C? and fitted all the parameters simultaneously (actually the final fit was to v/5 x C?
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because the data [123] are reported for this quantity) to obtain our final estimates of
A, B, and C in (5.45). The values obtained in this way are A = (17.17 £ 2.6) EjaS,
B = (35.2+ 3.9) Epaf, and C = 5.13 £ 0.25, with an rms error of 25.00 Eza§. The
fitted curves are plotted in Figure 5.4. The whole set of coefficients is summarized

in Table 5.9.

Y C?
A/Eya§ 17.17 -
B/Ea8 - 35.21
C 5.13
Aw/Erad -
b/A-1 1.5
c3/Enal - 3.412 - 10°
ce/Enal? | 9.283-107 | 4.642 - 107

Table 5.9: Parameters of the final fit of atom-molecule dispersion coefficients Cf and
C? for lithium to data from Ref. 123. A, B, and C are fitted, other parameters set

to values explained in the text.

It is easily seen that the fit in Figure 5.4 is not nearly as good as the one in
Figure 5.1. It is likely that higher-order nonadditive terms contribute significantly
at distances between 5 A and 10 A. With the inclusion of the higher inverse powers
in the fit, the fit becomes highly correlated and accurate determination of the fit
parameters is hard. It is desirable therefore to do the ab-initio determination of the
fourth-order coefficients. Inclusion of such higher terms would probably change the
values of the parameters A, B, and C fitted here, but the prescription for determining
them would stay the same. Ab-initio three-body dispersion coefficients can be used
in order to have an accurate representation of the dispersion when three atoms are
far apart. Higher order terms become important as one distance is shortened and
an exponential term is added with parameters fitted to describe the atom-molecule
dispersion accurately. The present values, determined above, are an improvement

over long-range potentials used previously [56].
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Figure 5.3: Dependence of C§ and CZ for lithium on the diatomic distance: dots are

data from Ref. 123, the curve is our best fit. See text for details.
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5.5 Global fit of the quartet ground state of lithium
trimer

The potential energy surface for an accurate description of atom-diatom scattering
at low energies must be accurate at both short and long atom-diatom separations.
In order to obtain an accurate global representation, we join the IMLS fit developed
in Chapter 4, which suffers from inaccuracy at long range, with the long-range form
developed in this chapter.

We adopt a long-range form composed of the nonadditive V(DDD); (Axilrod-
Teller) (5.3), V(DDD)4 (5.13) and V(DDQ); (5.4) terms, in the notation introduced
at the beginning of this chapter, the exponential term in (5.45), and the additive
lithium potential published by Colavecchia et al. [56]. The dispersion coefficients
Z111 and Zq10 were taken from Ref. 93 and 122, respectively, and other parameters
from Table 5.9 obtained by fitting to the atom-molecule dispersion coefficients as
a function of intermolecular distance [123]. The diatomic potential of Colavecchia
et al. is composed of the RKR points [48] in the well region, ab nitio points on
the repulsive wall, and a three-term analytic dispersion potential (5.2), smoothly
interpolated and joined together. The advantage of this potential over the ab initio
potentials is that it accurately reproduces experimental energies of the low-lying
vibrational states. It uses the dispersion coefficients from Ref. 93. Colavecchia’s
potential also includes a correction term that is geared to reproduce the experimental
value of the atom-atom ("Li-“Li) scattering length [54].

We used a switching function, S, to join the long-range form, Vig, with the

IMLS/Shepard fit, Vimis,
V =SVimus + (1 — S)Wr. (5.52)
The switching function was taken to be
S(ri,7re,73) = %tanh[l —s1(ry +ro + 135 — 82))]. (5.53)

The values of the parameters s, and s, in (5.53) were determined in such a way that
the switching is in the region where both potential forms give reasonably accurate
electronic energies. The size of the switching region should preferably be large and

its upper limit determined so that the above requirement is satisfied. We have found
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that s, = 0.7 A~ and s, = 20 A satisfy the above criteria. A graphical comparison
of different atom-molecule potentials, used to construct the global representation,
with the ab-initio electronic energies is shown in Figure 5.5. A smooth switching is
easier to perform at linear than at T-shape geometries, because contributions other
than the pure atom-molecule dispersion are significant there. The switching function
is plotted in Figure 5.6 and the short-range, long-range, and global representations
of potential are shown together in Figure 5.5 for specific nuclear arrangements as
described in the captions. For the final potential to be used in scattering calculations
below we have omitted some points to speed up the potential evaluation (we omitted
distances 5.2 A, 6.8 A, and 8.4 A, and added 7.6 A in the set from which we formed
the grid as described in Chapter 4).

The nonadditive part of the long-range form we use here is an improvement
over using just the Axilrod-Teller term, as has often been done in the past (e.g. [56]),
although the exponential term (5.45) contaminates the potential at intermediate dis-
tances at equilateral arrangements where the Axilrod-Teller term alone reproduces
the ab-initio energies better. Whether this can be corrected by changing the param-
eters in (5.45) or the form itself must be changed remains to be seen. This region of
potential does not significantly affect the atom-diatom collisions we intend to study.

In Figure 5.7, our global representation is compared with Colavecchia’s potential
at the Jacobi angle § = 90°. The figure illustrates that Li 4+ Li, can undergo an
insertion reaction, as the collinear Li; is at lower energy than the Li + Li; reactants.
The global representation described in this subsection is used through the remainder

of this work.
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Figure 5.5: Long-range lithium trimer potential, described in the text (top row), the
IMLS fit of lithium trimer potential (middle row), and global potential of lithium
trimer (bottom row) as a function of internuclear distances r; and r, with the angle
between them fixed at 60° (left column) and 180° (right column). Electronic energies

are in cm™!.
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Figure 5.6: Switching function used to join the IMLS fit and long-range form, de-
scribed in the text, into a global representation of the quartet ground state potential
energy surface of lithium trimer at linear geometries as a function of internuclear

distances (left) and at T-shape geometries in Jacobi coordinates (6 = 90°) (right).

ARENN n"»«“’t"\
O
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Figure 5.7: The quartet ground state potential of lithium trimer in Jacobi coordinates

4

2

with § = 90° as constructed by us (left) and by Colavecchia et al. [56] (right).

Electronic energies are in cm™!.
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6.1 Introduction

An accurate treatment of the nuclear dynamics in chemical reactions and inelastic
collisions that allows for the rearrangement of identical particles is founded on the
quantum scattering theory. It involves solving the Schrédinger equation for the
motion of nuclei in the Born-Oppenheimer potential of electrons. First converged
calculations in a realistic system were performed on H + H, by Kupperman and
Schatz [133] in 1975. Numerous methods for solving the Schrodinger equation have
been developed since [134]). They can be divided into the time-dependent and time-
independent methods, depending on whether we are propagating an initial wave
packet through time or solving the time-independent equation subject to certain
boundary conditions.

Time-dependent methods are very inefficient in the limit of very small kinetic
energies. The long wave-length and long duration of collision require enormous grids
and therefore have not been successfully employed in this regime to our knowledge.

Time-independent methods are usually divided in the algebraic and coupled-

channel methods.

In algebraic methods, the wavefunction is expanded in a basis set in all degrees
of freedom and the expansion is substituted in the Schrédinger equation. This leads
to linear algebraic equations for the expansion coefficients. The coeflicients may also
be determined variationally.

In coupled-channel methods, the wavefunction is expanded into a basis set in all
degrees of freedom but one. This reduces the size of the basis set significantly. The
solution in the remaining coordinate is obtained by propagating a set of independent
solutions of the coupled ordinary differential equations resulting from the substitution
of the expansion in the Schrodinger equation. The particular solution describing
the process of interest is obtained by matching to the boundary conditions. These
methods are most commonly used today.

This chapter reviews the theory of atom-diatom scattering in hyperspherical co-
ordinates by a coupled-channel method.

Hyperspherical coordinates have been introduced to deal with the problem of
describing different arrangements of the products of -a rcactive process-on an equal

footing. The hyperspherical coordinate system is described in the next section. The
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hyperspherical radius describes the size of the system and is used as a propagation
coordinate. When it is large, the products are far apart and asymptotic matching
can be performed to obtain the S matrix which contains all information of interest
on the scattering process. Dependence of the wavefunction on other, hyperangular,
coordinates is described by an expansion in a carefully chosen basis set. The following
sections describe the hamiltonian in hyperspherical coordinates of Parker et al. [135],
the basis of pseudohyperspherical harmonics introduced by Launay and LeDourneuf
[136], and the resulting coupled equations. This is followed by a description of the
method of partial waves and the procedure of matching solutions in the asymptotic
region, in order to make a connection between the coupled-channel solution and the
observables. Propagation methods are briefly described at the end of the chapter.

The theory of scattering in hyperspherical coordinates that we use was developed
by Parker and Pack [137] and completed in the form used throughout this work by
Launay and LeDourneuf [136, 138]. The chapter heavily relies on these references in
theory and detail of numerical implementation.

Another method that differs from our approach in the choice of the hyperspherical
coordinate system and basis functions [139] has already been employed in the descrip-
tion of reactive collisions at ultracold temperatures by Balakrishnan et al. [11]. It
used diatomic rovibrational wavefunctions as the basis set everywhere and therefore
is not suitable for description of collisions where bond lengths are significantly short-
ened at the transition state, as in the alkali atom-diatom systems in their quartet

ground states (see Chapter 2).

6.2 Hyperspherical coordinate system
In the following subsections, we introduce the hyperspherical coordinate system in a

stepwise fashion.

6.2.1 Mass-scaled Jacobi coordinates

A quantum-mechanical description of the chemical reaction

A + BC(m) — AB(n) + C, (6.1)
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where m and n denote internal states of the reactant and product diatomics respec-

tively, is obtained by solving the time-independent Schrodinger equation
HU = EV. (6.2)

The nuclear wavefunction depends on three vectors describing the positions of the
nuclei. The centre of mass motion can be separated due to the translational invari-
ance of the physical system and the remaining vectors may be chosen as the two

Jacobi vectors,

R - My y1Xrp1 + MygoXry2
r = Xy )
Mry1 + Mryg
rr = Xry2 — Xr41, (63)

where 7 = A B, or C, and 7, 7 + 1, and 7 + 2 are cyclic permutations of A, B, and
C. x, are the position vectors of atoms, r, describes the vibrational motion of the
molecule and R, describes the translational motion of the atom 7 relative to the
molecule.

The hamiltonian describing three nuclei in a potential in the Jacobi coordinates

is

1
Lor o1 v v, (6.4)

H=- —
204r fer 20741742

where the reduced masses are given by

my (m‘r+1 + m7'+2)

= ; 6.5
He my + Mr41 + My ( )
and
MMy
= — 6.6
Hr,741 F—— (6.6)

This hamiltonian may be simplified in form and made isomorphic to the hamiltonian

of one particle by scaling the coordinates,
S, =d.R,, s,=d'r,, (6.7)

and requiring a common numerical factor multiplying the differential operators in
the kinetic-energy part of the hamiltonian (6.4). From there we get three-particle

reduced mass
mamasmc 1/2
- (Pamame” o

M
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where M is the total mass of the three atoms, and the scaling factor

o= 2 (1- 5] (69

The hamiltonian in the new mass-scaled Jacobi coordinates (MSJ) [140] becomes

H=-Ly2 —ivi + V(S;, s,). (6.10)
2u 7T 2 7

Equation (6.10) shows that the motion of three particles is equivalent to the motion
of one particle in a six-dimensional space. The scaling factors are usually of the order
of unity and, specifically, for the equal-mass system dy = dg = dc = 1.07457. The
kinetic energy operator is symmetric under the transformations of group O(6) of all
6 x 6 orthogonal matrices. Three different sets of mass-scaled Jacobi coordinates,
each particularly suitable for description of one final arrangement, are connected by
an orthogonal transformation belonging to the group O(2),
( Sr41 ) _ ( cos(dr41,7)1  sin(@ry1,0)1 ) ( S, ) , (6.11)
Sri1 —sin(@r41,,)1 cos(@ry1,)1 Sy
with the kinematic angle
Pri1,, = arctan(m o/ p) (6.12)
lying in the interval [m, 37/2].
Transformation between the space-fixed coordinate system and a suitable molec-

ular frame, the body-fixed system, is achieved by spatial rotations belonging to the

STSF R 0 STBF

where R is a 3 x 3 orthogonal matrix which connects the Cartesian coordinates of a

group O(3),

three-component vector in two coordinate systems. Relative orientations of the two

systems are usually expressed with three Euler angles [141],

cosacos fcosy —sinasiny  sinacosfcos7y+ cosasiny —sinfsiny
R= | —cosacosfsiny —sinacosy —sinacosfsiny+ cosacosy sin/gsinvy
cos asin 8 sin asin 3 cos f3
(6.14)

The direct product of the above O(2) (6.11) and O(3) (6.13) groups is commutative
and forms a subgroup of the group O(6) of the full symmetry of the system.

An inversion in the space-fixed axes can be achieved either through an inversion
in the group O(3), taking R'= —I in (6:13), or by a rotation in the O(2) through

the kinematic angle +, as can be seen from (6.11).
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6.2.2 APH coordinates

We are now ready to define three body-fixed (BF) systems of axes requiring the BF
z axis to point in the S, direction. The arrangement index 7 is also used to label the
three respective BF systems. Transformation from the space-fixed (SF) to the (BF),
system is achieved by rotation through the Euler angles a, = ¢g, and 3, = 0s_,
where ¢g, and fg_ are spherical polar angles of S,. The Euler angle +, is chosen to
make s, lie in the (BF), zz plane with a non-negative z component. The mass-scaled

Jacobi vectors have the following components in the so-defined BF systems,

0 S;8In O,
S:=1| 0 and s, = 0 , (6.15)
S, S, cos O,

where O, is the angle between S, and s,. In this way the BF y axis is perpendicular
to the plane of the three particles and common to all three BF systems.

In the next stage we define another BF system as the instantaneous principal
axis system. First we extend the definition of the kinematic rotation angle to be the

continuous variable defined as to maximize the magnitude of Q defined through the

( @ ) ~ T(¢,) ( > ) , (6.16)
q s,

where the T matrix is the kinematic transformation matrix in (6.11). The variable

relation

¢, is taken to have its origin in the initial arrangement 7, so the definition for the
other arrangements differs only in the translation through the kinematic angle in

(6.12). @ is maximum if

. . 25,8,
W0 = {2+ (28,07 (17
and
(S7 —s2)
) =i+ 28,97 (019
giving /
1/2
Q={5(2+)+3 (82— 27 +(25,5,7] ") (6.19)
and /2
1
0= {5052+ =3 [(87 - )+ (28,8, "} (6.20)

Véctors Q and q defined in this way are automatically orthogonal, Qq = 0, and their

magnitudes are independent of the arrangement. The choice of angle ¢, in (6.17)
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and (6.18) also minimizes q. The range of ¢, is taken in the interval [0, 27], although
its definition is not unique there through the above equations. Other choices can
lead into difficulties when quantizing angular momenta [137].

The (BF)g system can now be defined as the one whose z and z axes coincide
with Q and q. Substituting the angle ¢, from equations (6.17) and (6.18) and S,
and s, from (6.15) in the upper row of the matrix identity (6.16), we can find the
rotation angle 8o around the common BF y axis which brings the (BF), z axis into
coincidence with Q,

S, sin @, sin ©.,
t = . 6.21
an fa, S, cos ¢, + s; sin ¢, cos O, ( )

q is then automatically aligned to the new z axis.

Components of the inertia tensor in the (BF)g system are
L =pQ* I,=p¢*, and I,=1,+1,. (6.22)

Axes of the (BF)q system are aligned to the principal axes of inertia of the three
particles. It is valid that I, < I, < I, so that the z axis is the axis of least inertia.

Asymptotically, when S, > s,, Q aligns parallel to S, in each arrangement,
as can be seen from (6.17) and (6.18), but q does not align parallel to s, since it
is always orthogonal to Q. Therefore, these coordinates become impractical in the
asymptotic region.

Adiabatically adjusting principal axes hyperspherical (APH) coordinates are now
defined [135] with three internal and three external coordinates. The three external
coordinates are taken to be three Euler angles ag, B, and g of the (BF)g system
with respect to a space-fixed system. The internal coordinates describe the shape of

the three-particle system and they are taken to be ¢,,

p=1/Q%+ ¢, (6.23)

and

= 2arctanq/Q. (6.24)

The above relations, together with the equations (6.17), (6.18), (6.19), and (6.20)
define the internal APH coordinates in terms of the mass-scaled Jacobi coordinates.

It is worth noting that the hyperradius is the same as in the other hyperspherical

p=1/S%+ s2 (6.25)

systems in literature [142)
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and is independent of the arrangement 7. The way to transform back is through the

following relations, that define Cartesian components of S, and s,

Z, = pcos(8/2)cos ¢y, (6.26)
X, = —psin(4/2)sin¢,, (6.27)
2 = pcos(6/2)sin ¢y, (6.28)
z, = psin(8/2)cos ¢, (6.29)

From (6.29) we can also obtain compact expression for S;, s,, and the angle ©,

between them,

Sy = —% {1+ cosf@cos(2¢,)}/?, (6.30)
sy = —\% {1 — cosfcos(2¢,)}"/?, (6.31)
05O, — cos 0sin(2¢,) (6.32)

[1 —cos26 cos2(2qST)]1/2 .

The domains of the APH internal coordinates are p € [0,00), 6 € [0,7/2], and
¢, € [0,27). ¢, is the only variable dependent on the arrangement. The range of
¢, covers six arrangements, the usual three and the ones connected to them by an
inversion. Only internal coordinates are needed for the evaluation of the potential
through (6.32). All degrees of freedom but the hyperradius have a finite range and
are therefore suitable for expansion into a basis set.

The moments of inertia can easily be evaluated using (6.22) with Q = pcos(8/2)
and g = psin(#/2). Symmetric top configurations are obtained for # = /2. Collinear

configurations are at # = 0.

6.3 Hamiltonian

Hamiltonian in the APH coordinates can be obtained by the procedure of Podolsky
as described in detail in Ref. 143.

1 0,0 A?
2up®Op” Op  2up?

+V(p,8,9), (6.33)

where Vis the interaction potential and A? is the square of grand angular momentum

[144],

(6.34)
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with
4 0 %} 1 08
2 _ —sin20— — ——— .
07 "5in2000 """ "800 T cos? 6 9¢2 (6.35)
2 __ 72 J2 Pt
Jp = y 2isindJ, 0 (6.36)

 cos26/2 + cos?  cos?f O
Here J;, Jy, and J, are angular momentum operators in the principal axes frame
(BF)g. The first term in the hamiltonian in (6.33) is the kinetic energy, A2 repre-
sents the deformation terms, and the last term in (6.36) is the Coriolis coupling that
is coupling vibrational and rotational degrees of freedom. The remaining terms in
A? are rotational terms of a fluid rotor [137]. The terms in R are small for linear
configurations (# = 0) and large for symmetric top (# = 7/2) configurations. In
fact, the singularity at § = /2 in the terms containing J, and Js may cause prob-
lems in the convergence depending on the particular basis set used for the angular
coordinates. It is called the Eckart singularity.
The procedure used to derive the hamiltonian also provides the volume element
for integration over space in the APH coordinates. The integral of a function F over

the full space is

00 s /2
/ FdS,ds, = — / Pdp / do, / sin 20d6
16 Jo _— 0
2 2

x | daq [ sinfgdf [ diqF. (6.37)
0 0 0

6.4 Basis functions

In order to solve the Schrodinger equation (6.2) with the hamiltonian (6.33), we
expand all the degrees of freedom but the hyperradius in a basis set. The p-dependent

basis functions are taken in the form

®ia 7 (00, b, @, B,7) = @il M (0; 0, )N (@, B, 7). (6.38)

Subscripts on Euler angles and ¢ denoting the (BF)g system and arrangement 7
have been suppressed. The functions on the right-hand-side of (6.38) are described
below.

NoMet (@, B,7) is a symmetric top wavefunction of the definite parity e;. The
wavefunction of the rotationally invariant hamiltonian can be written as a linear

combination of Wigner rotation matrices. The Wigner rotation matrix is a (2J +
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1)-dimensional irreducible representation of the rotation operator in the angular

momentum basis. Using the active rotation conventions from Zare [141], we have

Dio(R) = (JMle Ve iPem27] Q)
e Mgl o (B), (6.39)
where
dya(B) = (JMe | JQ). (6.40)

Using (6.39), the rotated wavefunction is

me (o, B,77) ZDMQ leM(a B,7)- (6-41)

Now, the rotated wavefunction at a particular point in space assumes the value of
the original wavefunction evaluated at the coordinates that are brought to that point
by the rotation. Choosing the rotation angles to be the same as the argument of the
original wavefunction and inverting (6.41) using unitarity of D;q(R), we arrive to
the wavefunction of an asymmetric top as a linear combination of complex-conjugated

rotation matrices,

M (e, B,7) = Y Dizale, 8,7)%7%(0,0,0). (6.42)
Q

If the body has an axis of symmetry, an arbitrary rotation around that axis can
change the wavefunction only up to a phase factor, so that only one term survives

in the sum (6.42) and the symmetric top wavefuntion is just a normalized Wigner

7
\/28*;10 (o 8,7). (6.43)

M is the projection of the angular momentum on the space-fixed z axis (rotation

rotation matrix [141]

through o) and € on the body-fixed axis (rotation through 7), which can be seen by
applying the appropriate angular momentum operators on the explicit form of the
rotation matrices in (6.39) [141]. When Q = 0, the wavefunction of the symmetric
top is reduced to a spherical harmonic and describes a linear rigid rotator.

The operation of inversion, Il, as mentioned earlier, can be achieved by either a
kinematic rotation through 4, in the group O(2), or through a reflection in the zz
plane followed by a rotation through 7 about the y axis, in the group-O(3). The

reflection has no effect on the Q and q vector, which determine the orientation of
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the BF system, because the particles lie in the zz plane. The effect of the rotation
follows from

R(0, 7, 0)R(e, 8,7) =R(a+m,m — B, m — 7). (6.44)

Using the properties of the Wigner rotation matrices [141],
HD]\/[Q(aa :87 7) = D%/;Q(a + T,T— ﬂ) T = 7) = (_1)J+QDK/;—Q(O") ﬁ; 7) (645)

Parity-adapted functions, having the definite parity eigenvalue ¢;, are obtained
from any function Fas F'+¢;I1F. Therefore, the normalized parity-adapted symmet-
ric top wavefunctions suitable for expansion of the rotational part of the wavefunction

are

2J +1
NéMGI (a,ﬁ),),) — \/W-:,(SQO) [DX}Q(Q,,B,V) + EI(_I)J-FQD]{/;—Q(Q;IBa'Y)] .
(6.46)

Functions ¢5°%(p; 8, ¢) in (6.38) are eigenfunctions of the two-dimensional ”hy-

persurface” Schrodinger equation at a fixed hyperradius p,

HYp)pi! "% (0; 0, 9) = €703 (0,6, 8). (6.47)

The subscript £ labels the eigenfunctions and the hypersurface hamiltonian is

Q 1 , 402
H (p)=2up2 Ayt 35 +V(p; 0, 9). (6.48)

H? depends on p and  and equation (6.47) is solved in each symmetry block
{e1,0,9}, where o labels the irreducible representations of the molecular permutation
symmetry group (S3), by a variational expansion over the eigenfunctions, ), of
Aj + 255, Y are called pseudohyperspherical harmonics [136] (as opposed to the
hyperspherlcal harmonics which are the eigenfunctions of the full grand angular
momentum operator A?). The equation (6.47) with V = 0 is separable in § and ¢

and results in two one-dimensional equations,

4 d d V2 402
—sin 2 — | ¢24(0) = K(K + 4)¢"(0 4
( sin 26 d sin 9d9+c0820+sin29> gic (6) (K +4)gic () (6.49)

and ,
d p
d¢2 hEP((b) = I/2h‘ (¢)i (650)

solutions of which are combined into the pseudohyperspherical harmonics,

Vi (0, 0) = g (0)he (¢). (6.51)
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The parity and permutation symmetry have been implied by the indices in the above
equations.

In the case of the two identical atoms B and C in (6.1), permutation symmetry is
achieved by the simultaneous transformations, ¢ — —¢ and the rotation through =
about the BF z axis. Applying this transformation to the parity-adapted symmetric
top wavefunctions in (6.46) results in the eigenvalue (—1). This factor is cancelled
by an equal factor when the transformation is applied to h¢?, if they are taken to be
trigonometric functions A (v¢ — Qm/2). Changing the sign of ¢ makes the difference
in phase of Q. Trigonometric solution hA®? is a cos function, if ep = +1 (symmetric
under exchange of B and C), and a sin function, if ep = —1 (antisymmetric).

Inversion amounts to the transformation ¢ — ¢ + #. The non-negative integer v
must be even for ¢; = +1 and odd for ¢, = —1 solutions.

When dealing with three different atoms both sets of solutions for ep = £1 must
be taken into the basis, since permutation operator does not commute with the
potential.

In case all three atoms are indistinguishable the additional symmetry of the
system is the cyclic permutation, which is achieved by the transformation ¢ —
¢ + 27/3 taking effect on the basis functions h. The index labelling the symmetry
block is now 0 = (ep, o), where op picks whether we are dealing with the symmetric
representation when ep = +1 and antisymmetric representation when ep = —1 or
with the doubly degenerate representation (E) of the permutation group Ss. In the
case of the symmetric or antisymmetric representations, v = 0,6, 12, ..., if ¢, = +1,
and v = 3,9,15, ..., if ¢, = —1. These are the v values that leave the basis functions
h unchanged under a cyclic permutation. The A functions with the remaining v
values span the doubly degenerate representation: v = 2,4,8,10,..., if ¢, = +1,
and v =1,5,7,11,..., if ¢ = —1.

The solution for the ¢%¥(#) in equation (6.49) is known analytically and may
be expressed in terms of the Jacobi polynomials of the variable sin?f, with K =
v+ 2() +4n, where n is a non-negative integer. Numerically, it is convenient to solve
it by determining the coefficients ¢ in the expansion

[K/4]

gK Z b (0) s, (6.52)

variationally [136]. [z] in (6.52) denotes the integer part of z. In the place of b (6),
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cos 2k is used if [v/2] is even and cos(2k + 1)@ if [v/2] is odd, when Q is even. On
the other hand when € is odd, sin(2k + 1)8 is used in place of b (6) if [v/2] is even
and sin(2k + 2)0 if [v/2] is odd. The function a,(6) is 1 when v is even and v/cos@
when v is odd.

The basis of pseudohyperspherical harmonics (6.51) is orthogonal. Its size is
limited in practical calculations by the maximum value for K, K.,. Calculation
of the matrix elements of the potential V' in the ) basis involves two-dimensional
quadratures with trigonometric functions and can be made very efficient using simple
trigonometric rules. Integrals may be evaluated using Gauss-composite integration.
Outside the fragmentation limit, K., sufficient to converge a given number of
hypersurface states in (6.47), increases linearly with p. The basis set size for a

given K, is proportional to K2 . As the arrangement valleys become increasingly

max-
narrow, the wavefunction concentrates in the small region of the configuration space
and this basis becomes inefficient. To reduce the problems with the basis set size at
large p, it was suggested [138] to reduce its size according to the following algorithm.
1/ cos® 8 is diagonalized in the basis of ) and only those linear combinations are kept

that have the eigenvalues close to one. They correspond to the functions localized

near # = 0, i.e. linear configurations.

6.5 Coupled equations

Solution of the Schrédinger equation (6.2) for the total mechanical angular momen-
tum quantum number J and its projection on a SF axis M may be expanded in terms
of the basis functions (6.38) described above. Basis functions evaluated at p,, are
used to represent a solution within the sector [pm_1/2, pm+1 /2] that is centered at pp,

in form

M (p,0, 6,0, 8,7) 5/2 Z@JM”" (pm3 0, ¢, B, ) fi'” (pmi p)- - (6.53)

We substitute the above expansion of ¥/M¢7 (6.53) and the hamiltonian (6.33) into
the Schrodinger equation (6.2), multiply from the left by a basis function (6.38)
and integrate using their orthogonality. We arrive to a set of coupled differential
equatlons valid w1th1n a sect01

1 42 15 y o
4 —E eIJ m; 610’Q : qua ;
( R ) (p Z (oms ) " (Pms P)
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= 2 Ridlia (o) S (omi p) = 0, (6:54)
k'Y

with coupling matrix elements given by
Hg? (omip) = (07" (530 ¢)|3’ﬂe;z”” +
+ Vi(p,0,9) — Z—?V(pm,f) New(0;8,0)) 09  (6.55)

and

R o (pm) = (L (s 0, &, @, B, V) IRI®iay " (pmi 0, 6, 0, B, 7)) (6,8,0,8,m)-
(6.56)

Matrix elements in (6.55) are calculated at the middle of each sector, where
they are diagonal in k£ and €2, and at the boundaries, where the small off-diagonal
elements in k arise due to the variation of the potential within a sector. At other
positions within a sector they are evaluated using the Lagrange interpolation formula.
Quadratures involve # and ¢ and they are independent of J.

Matrix elements in (6.56) couple states with AQ = 0,+1,+2 and are computed
by expressing J, and J, in terms of the raising and lowering operators (J) and
regarding them as the quantum-mechanical operators obeying inverse commutation
relations, since they operate in the BF frame [141]. They are evaluated only at the
middle of each sector. Quadratures involving # and ¢ are independent of J.

Basis set (6.38) is independent of p within a sector and is therefore termed di-
abatic. Coupled equations (6.54) are in a diabatic representation, resulting from
an expansion in the p-independent basis. They are easier to solve than the cou-
pled equations that would result from working in an adiabatic representation, with
a p-dependent basis. In the adiabatic representation, the coupling matrix elements
involve the first and second derivatives of the basis functions with respect to p. These
are rapidly varying functions of p, so that the use of an adiabatic basis requires a

denser grid on which the basis functions need to be evaluated and is therefore nu-

merically more difficult.
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6.6 Partial wave expansion and boundary condi-
tions

It would be computationally too expensive to solve the Schrodinger equation for three
atoms directly by discretization in all six degrees of freedom. A way to simplify the
problem is to make use of the constants of motion and expand the wavefunction in
the eigenfunctions of J% and J,, which in the absence of external fields commute with
the hamiltonian (6.33),

+) S ATMGIM, (6.57)
M

The hamiltonian does not couple different components of J and M, so we have effec-
tively reduced the dimensionality of the problem by two. The additional symmetries
that reduce the size of the computational effort are parity and permutation, in case
we are dealing with identical particles.

A scattering event can be described by the stationary solution of the Schrodinger

equation (6.2) at energy FE that tends to its asymptotic form

gt—:);ﬂvjm = eikTUjSTCTUJ'm(ST)
ellevl],S !
+ Z S, fT‘U]m—)T v'i'm ( TUg) )CT "v'j m’(ST’) (658)
.T-/U/j/ml

as S; — 0o. The first term on the right-hand side is a plane wave describing relative
motion of an atom and a diatomic molecule in the initial rovibrational state (;yjm.
The second term is an outgoing spherical wave in the final rovibrational state of the
molecule (i multiplied by the scattering amplitude f™) that depends on the
initial momentum and the scattering direction. If €,,; is the internal rovibrational

energy of the molecule, the energy conservation implies

——/c2 + €5 = E. (6.59)

T’U]

Differential cross section is related to the scattering amplitude through

<d0’ ) 7- "yl gt
df2 Tvym—7'v' ' m/! k”’]

Arthurs and Dalgarno [145] derived how scattering boundary conditions are im-

2

f(+) (k‘rvj; S'T’)

Tvjm—7'v' j'm’

(6.60)

posed to the eigenfunctions of J and J, and how to combine them together to obtain

the eigenfunctions of relative momentum and hamiltonian of the diatomic molecule.
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The plane wave is a solution of the Schrodinger equation in free space and as such
it can be expressed as the linear combination of the spherical Bessel functions 7, and
spherical harmonics Y},,,,. The coefficients can be found in textbooks, e.g. [146], and

the relation is

tkrojSr — 47rZz Ji(kry;Sr) lml( -)Kml(.é'T). (6.61)

lm,

Equation (6.61) represents the connection between the spherical-wave and plane-

wave formalisms. Using the asymptotic form of the spherical Bessel functions,

i) ~ sin(z —im/2) 4

- =3 [e—i(z—lﬂ/Q) _ ei(z~l7r/2)] ’ (6.62)
xz

and the rovibrational diatomic wavefunction in form

1
Crvjm(sr) = S_X'rvj(s'r))/jmj (57): (663)

the first term of the right-hand side of equation (6.58) can be rewritten as

TU]STC‘rv]m(ST ~ 2m1 ZZ }/l:n, ];'rv]) [ #kroj Sr—tn/2) _ gilkrosSr -IW/Q)]
lml

1 1 ) )
><m;ij(sT)Y}mj(sT)Yzm,(ST). (6.64)

Spherical harmonics in §, and S, in this equation can be coupled using Clebsch-

Gordan coefficients into the eigenfunction of J? and J,,

YiiM(3:,8:) = 3 (gmylmil IM)Yjm,; (37) Yim, (S5)- (6.65)
mjimy

Inverting this equation, using the orthogonality of Clebsch-Gordan coefficients, and
substituting it in (6.64), we arrive to

L 2mi *
eszWSTCﬂzjm(ST) ~ 21/2 Z }/lmz (]lm}ml|JM>
ruj lmid M

1 —1 iSr—Im i i Sy —lm a
X;”TS [e (krojSr—lm/2) _ qilkrojSe—1 /2)] &M (s, ), (6.66)
TV} T
where
» 1 A
(I)if;\;[l( S) s XT’Uj(ST)Y ( S) (667)

T

The last row of equation (6.66) is a superposition of spherical incoming and outgoing

waves. Functions ®/  defined in (6.67), can be used as a basis to expand the

Tugly

wavefunction in the mass-scaled Jacobi coordinates, as is usually done in the inelastic

scattering problems,

T‘U_']l TUjl

PS5 = T A = L2 (s, 8072875, (6.68)

Tujl
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The boundary conditions applied to the functions f¢/7(S,) are

Tujl
Jero S ) ~ 1 —i(k:ijST—hr/2)6 EY |
froji (Sr) =~ We /700055001
TUJ
1 )
_ +Z(k.rl /-/S-,-—lﬂ’/?) J
—k1/2 € v ST’v'j’l’ijl' (669)
T/,Uljl

Now, combining the wavefunctions in (6.68) in their asymptotic forms, having sub-
stituted fs from (6.69), with the coefficients in (6.57) chosen in such a way to make
the incoming part of the spherical wave match the incoming part of the plane wave

in (6.66), we obtain

W 2T Sy

ko yjTUjm 1/2 Imy
TV] lmyJM

(jlmgmy| I MYTTMero(S g ). (6.70)

From there, we subtract the plane wave part (6.66) of the asymptotic form in (6.58)
and compare the terms to extract the scattering amplitude defined now in terms of

the S matrices. The result is

A

(+) . _
fT’Ujm]‘ —)T’v’j’mg (kTUj’ ST') -

2m ’
-1 J
§ : {7' (577'511”'6jj/5l” - ST’v’j’l’ijl)

. ,Y1/2
(i) it

X Vi, (Bir) (Gl J M) Yo (Sp) (5'Umymy] T M) Y. (6.71)

1
14

Once S matrices are determined for each J from the coupled equations, the above
relation (6.71) provides the link to determine the cross sections (6.60).

The theory of atom-diatom scattering has also been developed in the molecular
frame [58, 147]. Expressions for differential and integral cross sections are more

conveniently expressed using the T matrix of molecular frame [148],

Ty iyemjn = 98 (GIQ = QUITIOVT st (7 TL0)F TR — ), (6.72)
124
where
T7.']’v’j’l"rvjl = 61-7-'61,”/6]']‘/6”/ - S,fl,ulj/l/Tvﬂ. (673)

Differential cross section, averaged over initial m; and summed over final states m;,

reads

do 1 : 2
IR ot POCLRR R () BN L
(dQ>TUj_yrlvlj/ 4(2] + 1)](13,”] J%{%’ J VU TuiQHON ( )
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where 9 is the scattering angle in the centre-of-mass frame, with respect to the
initial approach direction. Integral cross section is obtained by integrating the above
expression and making use of the orthogonality of the Wigner d functions [141],

™

TUi TI,UI‘I:—__ 2J+].
’ ” ’ (2] + 1)k3vj J%(:)’( )

(6.75)

2
TJ
T VT

6.7 Asymptotic matching

Coupled equations are typically solved by integrating a set of independent solu-
tions outwards, starting from a small hyperradius in the classically forbidden region.
At long range the solutions that energetically lie below the three-body dissociation
threshold concentrate into the arrangement valleys and anisotropy of the poten-
tial becomes low. Linearly independent solutions in the APH coordinates must be
matched onto the analytic solutions in the mass-scaled Jacobi coordinates of the re-
maining potential. Fock coordinates [149] are a convenient intermediate step in the
matching procedure that is described below.

The body-fixed Fock coordinates consist of a hyperradius, defined in (6.25), angles
w, and 7, defined with

w, = arctans,/S, and 7, = arccosS,s;, (6.76)

and three Euler angles of the (BF), system.
The potential in the asymptotic region is independent of the bending angle n,
and equation (6.47) becomes separable. The parenthesis in equation (6.48) can be

rewritten in the Fock coordinate system as

402 1 0 0
A2 _ = - P2 2 .
ot sin? @ sin? 2w, Ow, S W Ow,
4 1 0 0 O?
- in7n, — + — ) 6.77
sin? 2w, < sin 7, O, S on, * 77,) (6.77)

Hypersurface states at long range, p — oo, converge to the Fock rovibrational states

(30, 8) = 3 xraj (P wr) Pra(nr) e, (6.78)

where Pjq(n) are the associated Legendre functions which represent rotation, and

Xrv; are solutions of the one-dimensional equation

[ ! ( L9 ntow, 2 +4](]+1))~+ Vr(p;wf)} x

2up® \ sin? 2w, Ow, Ow,  sin? 2w,

XXTU]' (P, w‘r) = Ervj(p)X'rvj (,0, wT)’ (679)
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6109

and represent vibration of the molecule. ¢2”** coefficients in (6.78) are obtained by a
two-dimensional integration in 7 and w with p fixed at the middle of the last sector
in propagation.
Transformation from the body-fixed frame of the principal axes of inertia to the
space-fixed frame, where we apply the boundary conditions is performed in two steps.
The first step is reorientation of the quantization axis z along S,. It is ac-

complished by rotation about the common y axis by Bg, defined in (6.21). The

transformation matrix is defined with

UrJv Y v, <er’j’Pj’Q’, 'dé’rnf (IBQ)|XijPjQT>wT1IT7 (6-80)

where €2, and 2. are projections of the total angular momentum J on S; and on the
axis of least inertia. dj, _is the rotation matrix (6.40) about the y axis.
The second step is the standard transformation from the body-fixed frame wave-
function of form
oM = E Ni{iw(a,5,’Y)Pjnf(UT)ij(wT)Frujnf(P) (6.81)
T30
to the space-fixed frame wavefunction of form
UM = 3 VIM(S,, 80) Xros (wr) Froi(p).- (6.82)
v,
Transformation matrix between the SF and BF representations may be derived by
evaluating the coupled angular momentum functions in equation (6.65) in the BF
frame,

Yi%5,8,) = Y_(imilQ — mj|JQ)Yjm, (1, 0)Yia—m,(0,0)

mj

) 1 20+ 1
= ij(ijlQ - mj|JQ>\/—2—7Tij,-(TI)V yp ———0am;

. [2l + 1
= (jQ10]JQ) YN Pja(n), (6.83)

and proceeding with the same line of arguments that led from equation (6.41) to
(6.42). We obtain
YiM(8:8,) ZO“YJM (a, B, 7;m), (6.84)

where the BF angular momentum elgenfunctlons are defined as

Vi (@,8,%5m) = || 24 Dol 8,7) Pl (6.85)
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and the transformation matrix is

Cof = ( 2k )1/2 (GOUO|IQ) = (—1)77(QT — Q]i0). (6.86)
2J+1

Inserting (6.46) in (6.81) provides a functional form ready to be transformed to (6.82)

using (6.84). Boundary conditions (6.68) and (6.69) can be applied directly to the

form obtained in (6.82) using coordinate relationships (6.76). Asymptotic functions

need to be projected on the vibrational basis of the last sector in propagation,

F it = 850 (Xrwr 3 (0) [ Xrug (51 )REEL () (6.87)

and matching of Fy,; from (6.82) to F®) from (6.87) permits extraction of the §

matrix.

6.8 Solution of coupled equations

There is a wide array of methods described in the literature for solving coupled

differential equations of form

d’F
T = WRF(R). (6.88)

A review with applications in solving bound-state problems is given in Ref. 150.
The same methods apply to scattering problems and in particular to the coupled
equations in (6.54). Methods that are commonly used today are the renormalized
Numerov method [151], the R matrix method [152], and the log-derivative methods
[153]. The renormalized Numerov method was improved recently and its new variant,
the enhanced Numerov [154], is likely to become the method of choice in the future.
The log-derivative method has more natural formulation for initial conditions of the
type F(0) = 0 than the R matrix method. Moreover R matrix becomes undefined
when W = 0 [155]. Log-derivative method was used in the present work.

Log-derivative matrix, Y, is defined by
F(R)=Y(R)F(R). (6.89)

Differentiating (6.89) with respect to R and using (6.88), we obtain the differential
equation for Y, - . -

Y (R) = W(R) — Y(R)?, (6.90)
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known as Riccati equation. It can be solved by a form of invariant imbedding tech-
nique. We divide the whole integration range in intervals and, within each of the

intervals [a, b], define the log-derivative propagator ) by
F’(a) _ yl(a, b) yg(a, b) —F(CL) ' (691)
F'(b) Vi(a,b) Yala,b) F(b)
The propagators are used to propagate the log-derivative matrix Y over the interval,
Y(b) = Vi(a,b) — Vs(a,b)[Y (a) + Vi(a,b)] ' Vala,b). (6.92)

The coupling matrix can be approximated in an interval by the sum W = Wy 4+ W,.
For Wy, we choose the part of W to be treated exactly by solving the boundary value
problem (6.91) for the propagator, and for Wi, the part to be treated perturbatively.
To do a perturbative correction on the propagator, an integral needs to be solved
using, usually, either the trapezium or modified Simpson’s quadrature rule. By
choosing different reference potentials with different quadrature rules, the whole
range of different methods can be constructed. A thorough discussion can be found
in Ref. 155.

Coupled equations in (6.54) may be solved using the diabatic-by-sector method.
Deep in the classically forbidden region, we assume that we have a linearly inde-
pendent set of wavefunctions which is infinitesimally small in each of the channels.
We assign them arbitrarily small derivatives and keep the linear independence valid.

Looking back at (6.89), we conclude that
Y (0) = ool (6.93)

where [ is the unit matrix. Dimension of the log-derivative matrix is N x N, where
N is the number of hypersurface functions, i.e. channels, needed to converge the S
matrix elements. Using the initial condition (6.93), a set of N independent solutions
is propagated outwards to a point where the couplings due to potential become
negligible or have a known analytic form. At that point the independent solutions are
linearly combined to give the desired asymptotic form. Propagation within a sector is
done using relations (6.91) and (6.92). In each sector different basis functions (6.53)
are used and-a matrix transformation to change the basis must be applied each time

the boundary of a sector is reached . The matrix elements of the transformation are
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overlap integrals between the basis functions in different sectors. From the final log-
derivative matrix one usually obtains a K matrix using real matrix algebra, which
is connected to the S matrix (see (7.80)). Real and symmetric coupling matrix
W results in a real and symmetric Y matrix, and the latter produces a real and
symmetric K matrix, which guarantees the unitarity of the S matrix. Application

of boundary conditions is discussed in more detail in Ref. 137.

6.9 Computer codes

The theory presented in this chapter was implemented into a suite of codes by Launay
and LeDourneuf [136, 138]. These codes were used by us to obtain the scattering
results in Chapter 8 and 9.

TB program generates the basis by solving the eigenvalue problem (6.47), the
rovibrational functions by solving (6.79), and also the coupling matrix elements in
(6.55). It is independent of the total angular momentum J and energy F.

TJ program generates the J-dependent couplings in (6.56) and transformation
from the SF to BF frame. It is independent of F.

TK solves coupled equations in (6.54) for a set of energies F and obtains the K
matrices.

TS transforms K matrices to S matrices and computes the cross sections.




Chapter 7

Topics of collision theory
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7.1 Introduction

This chapter is intended to provide a background for understanding and analysis of
the scattering results presented in the next chapter. The intention is to make trans-
parent the origin of the principles and phenomenology rather than being rigorous in
all mathematical detail.

Potential scattering is presented first because it will be used later to illustrate
the points and to emphasize the generality of some results. The energy dependence
of cross sections for slow scattering and a way to parametrize them in terms of scat-
tering length are presented next. A method for detection and analysis of scattering
resonances is described. The chapter is ended with a classical model for reaction

cross sections.

7.2 Potential scattering

Potential scattering is the non-relativistic scattering of two particles interacting
through a potential, V(r), that depends only on their distance. Every solution of the
Schrédinger equation can then be written as a linear combination of the products of

spherical functions and radial functions that satisfy

1d{,dR o l{l+1) _
e (r . ) + [k . 2mV (r)| R = 0, (7.1)

with £ = V2mE, where m is the two-body reduced mass. A particular solution

describing a scattering event can be specified by the boundary condition

,(/) ~ eikz + @eikr. (72)

The first term in (7.2) describes a free particle moving in the positive z direction
while the second term is a divergent spherical wave. The function f is called a
scattering amplitude and is dependent on the scattering angle 6 (polar angle). The

differential scattering cross section is

do 9
o=l (73

Now, the asymptotic form of the functions R; is (when V (r) falls off faster than 1/r

in the limit r — oo [156])

1. I |
Ry ~ ~sin (kr -5t 51) . (7.4)
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The scattering amplitude may be written in terms of the phase shifts §,. The general
solution is an expansion in R;(r)P(cos6), where P, are Legendre polynomials. The
expansion coefficients are chosen to eliminate the convergent spherical wave from
1) — e 50 that the asymptotic form of the solution satisfies the boundary condition

(7.2). Using (6.61) and (6.62), the asymptotic form of the solution becomes
Z (21 + 1) P/(cos ) [( 1)letr — Sle“"] , (7.5)
1=0

with

S, = e, (7.6)

The scattering amplitude is

£(6) = Y(21 + 1) feos), &
l
where
1 1 e L
fr= g0 = g (- = s *9)

The total cross section in terms of the phase shifts is
41 &, )
0=13 Z;(Zl + 1) sin® 6. (7.9)

This series is convergent when the potential V(r) falls off faster than 1/r% [157].

Scattering amplitude (7.7) is infinite for § = 0 when V(r) ~ 1/r? and slower [157].
The phase shift, §;, is not unique as defined in (7.6). The ambiguity (modulo )

may be removed if we define the phase shift in the high-energy limit as limy_, o, §;(k) =

0, and assume the continuity in k. The low-energy limit is then

lim §,(k) = nym, (7.10)

k—0

where n; is the number of bound levels of the potential with angular momentum

[ > 0. When there is a level just at the threshold, ny assumes half-integer values for
= 0. This result, (7.10), is very general (it assumes that [;° r*|V(r)|dr is finite for

s = 1,2) and is called the Levinson’s theorem [156].

7.3 Wigner threshold laws

The dynamics of two particlés at very low collision energies follow threshold laws.

The first derivation of analytical expressions governing the energy dependence of the
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cross sections in the short-range potentials was given by Wigner [158]. A line of
arguments leading to the description of the behaviour of the cross sections can be
simply demonstrated in the one channel case. The wavefunction outside the range

of the potential at zero kinetic energy can be written as
R(E =0) = Ayrt + Agr= (D), (7.11)

A,/ A; being independent of energy. At a slightly positive energy the solution in the

potential-free zone is a linear combination of spherical Bessel and Neumann functions
RZ(E) = ]1(/67‘) + tan (SITLI(k’/‘), (7‘12)

where £ is the wavevector, n,; is the solution that is irregular at the origin, and ¢,
is the phase shift introduced by the presence of the potential at short range. When
kr < 1, equation (7.12) is

Ri(E) = (kr)" + tan §(kr)~ (D (7.13)
to first order in kr. Smooth matching of the two forms (7.11) and (7.13) requires:
tan &, = (Ay/A)k**!  RY(E) = k'R/(E = 0). (7.14)

The formulas in (7.14), defining the cross sections, can be generalized for multichan-
nel case within multichannel quantum defect theory [159]. T' matrix elements at very
low energies follow

A Le+1/2
Ty ~ kiR, (7.15)

7

The subscripts ¢ and f denote incident and final channel of the collision. The origin
of the factor 1/2 in the exponents is the reduction in the phase space available for
slow particles, while the origin of I's is the hindrance due to the tunneling through
the centrifugal barrier [160].

In an elastic collision at low energy, the incoming and outgoing momenta k; and
ks are equal and they are small quantities. Angular momentum quantum numbers

can differ. It follows from (6.75) and (7.15) that
0nl,——>nlf ~ leH_zlf- (716)

Here n denotes all quantum numbers, but /. In an inelastic collision at low energy

only the initial momentum £; is small, so relation (7.15) gives (m # n)

Uﬂ.li—)ml'f ~ k;izli-l‘ (717)
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The Wigner threshold laws do not hold in the presence of long-range forces. The
above derivation rests on the assumption that for large r the second term in the
brackets in equation (7.1) times the smallest contribution we have kept in (7.11),
1/7**1 is still bigger than the third term in the square brackets times the bigger
term from (7.11), r'. For long-range potential of the form ~ r~* this means that
s > 2] + 3. The long-range interaction gives an additional contribution to the phase

shift [157]. In the one-channel case, it is [159]
tan d; ~ constk® ? 4 constk? L. (7.18)

This results in the modification of the threshold laws for elastic scattering. Inelas-
tic processes remain governed by the Wigner threshold laws in the presence of the
dispersion potential.

In the ultracold temperature regime, the dominant contribution to the cross sec-
tions comes from the /=0 partial wave. The elastic cross section tends to a constant
while the inelastic one diverges. The rate coeflicient for the elastic process is zero

and those for inelastic processes are constant (independent of energy).

7.4 Scattering length

The expression for the scattering amplitude in equation (7.8) can be rewritten in

form
1

T g —ik’

i (7.19)

where the function g, is real for £ > 0. From the analytical properties of the
scattering amplitude for exponentially decaying potentials it follows that f; is real
for E < 0[157]. This means that g, permits expansion in powers of E or, equivalently,
even powers of k. In particular at low energies from (7.8) f; ~ 8§;/k ~ k% so that
g ~ k™%, Long-range interactions introduce anomalies in the expansion of the
function f;. It follows from the arguments above that for a potential of form ~ r—°
there is a term proportional to £°~3 in f,.

Now, we restrict the analysis to s-wave scattering, [ = 0. For a long-range r=°
potential (and smaller potentials), it is justified to keep the first two terms in Taylor

“expansion of gg,

go(k) = ——+ ~rok?. (7.20)
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Here, a is called the scattering length and 7y is the effective range. We want to
examine the significance of these parameters in more detail following Ref. 161.

By making a substitution u(r) = rRo(r) in equation (7.1) for | = 0, we arrive at

3271: + [k? = 2mV (r)]u(r) = 0. (7.21)

Let uy(r) and uy(r) be solutions for the energies £? and k2 which vanish at the origin,

u1 2(0) = 0, and are asymptotically normalized as

’u,l(’r‘) ~ sin(klr + 61),

sin d;

Ua(r) A — —sin(kyr + ). (7.22)

Sin 09

In the next step we multiply equation (7.21) for u; by u, and the one for uy by u,
subtract one from another and integrate the whole expression. After integrating by

parts the term involving second derivative, we arrive at

R R
’U,Q—T — U _7‘]0 = (k% - k%)/o 'U,l’l,LQdT. (723)

Now, let v; and vy be free-particle solutions (V(r) = 0) defined with

1
vi(r) = S, sin(kyr + 1),

1
'UQ(T') = sin 52 Sln(k)QT + 52) (724)

They satisfy equation (7.23) too. Subtracting equation (7.23) from the analogous

one, where u’s are replaced by v’s, and letting R — oo, we get
(k2 — k%)/ (v1vg — uyug)dr = kg cot 8y — ky cot 4. (7.25)
0
The scattering length is defined with ( see (7.20))
L lim{k cot (k)] (7.26)
— = limlkco . .

Letting k; — 0 and k = k,, equation (7.25) becomes

- 4= 9
k cot d a+2k‘ (7.27)

with

b=2 /Oo(vov — ugu)dr. (7.28)
0
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The wavefunctions v and v are very different where V(r) is appreciable and if
2m|V (r)] > k2%, u(r) will not depend on energy. At low energy we replace, therefore,
u and v by ug and vy

baryg=2 /oo(vg — u?)dr. (7.29)
0

The integral in (7.29) vanishes outside the range of the potential. The zero-energy

wavefunction ug(r) has the asymptotic form

up(r) = vo(r) = llci_r’rtl)(cos kr 4+ cot§sinkr) =1 — 2. (7.30)
Thus, a and 7y are insensitive to the exact form of the potential, but they depend
on some integrated property of V (r).

At low energies only s-waves scatter. Using (7.19) and (7.20) with (7.3), a useful
approximation for cross sections at low energy may be derived. The zero-energy limit
is 0 = 4ma?.

Expression (7.30) may be used for numerical determination of the scattering
length of diatomic potentials. For a given diatomic potential a wavefunction ¢ may
be integrated outwards at zero energy to large r and matched onto the function in
(7.30), namely ' /¢ = —1/a. It turns out that for a realistic diatomic ground state
potential the propagation needs to be extended far into the long-range interaction
region where the analytic solutions for V(r) = —C,r~* dispersion potentials accu-
rately describe the wavefunction. Therefore, to avoid integration to large distances
and reduce the error build-up in the propagation, it is desirable to match onto the

two independent solutions of
" Y .
x"'(r) + —<x(r) =0, (7.31)

with
v = 1/2mC. (7.32)

The general solution of equation (7.31) [157] is

. 2’)’ _s;? . 2’)/ _%)]
x() = vr Al (S5 ) - BN (S5 7)), 8y

where J 1 (z) and N L (z) are Bessel and Neumann functions and A and B are
constants. The ratio A/B is determined from the propagated wavefunction. By

expanding the Bessel and Neumann function for large r (small argument), we recover
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linear behaviour in (7.30) and get an expression for the scattering length [162]

m 7y %F(i—:—g)[ A T
= - — . 7.34
¢ Cos(s—z)(s—2) reely |1 Bt T (7.34)

Our implementation took advantage of (7.34) while the wavefunction was propagated
using the log-derivative method with zero reference potential and modified Simpson’s
quadrature rule (see section 6.8). In Ref. 162, the ratio A/B was also derived in the

semiclassical approximation, leading to a useful expression

a = a[l—tansztan (@—%2)”, (7.35)
o) ()

o(=1)
o= / ~ J2m=V (r)dr, (7.37)

0

N
—

(7.36)

@ |w»

where

and og is the classical turning point of the potential at zero energy. The mean
scattering length, @, depends only on the reduced mass of the scattering particle and
the long-range dispersion coefficient. It is a slowly varying function of the parameters
of the potential. The factor in the brackets in equation (7.35) is a rapidly varying
function of the potential that goes to infinity whenever there is a bound state of the
potential at exactly zero energy.

The effective range expansion (7.20) may also be characterized by the bound state

closest to the dissociation limit. Let its energy be E = —?/(2m). It satisfies
d®u, 9
Tz [k 4+ 2mV (r)]uk(r) =0 (7.38)

with u,(0) = 0 and is asymptotically normalized as
ue(r) ~ e ™, (7.39)

We also choose the following free-particle solutions

_ sin(kr +0)

sin ¢ (7.40)

ve(r) =e™™,  wue(r)

of equations (7.38) and (7.21) respectively. Following the same procedure which led
us to (7.25) and (7.27) and applying it to u’s and v’s, we obtain

(k* + k?) /Ooo veUpdr = kcotd + & (7.41)
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and, using the orthogonality between u,(r) and u(r),
1
kcotd = —k + 5(/{2 + k)¢, (7.42)

where
(=2 /Oo(v,ivk — uug)dr. (7.43)
0

If x? and k? are small compared with the depth of V(r), we may expand kcotd in

k? + k? and retain the first two terms. vi(r) may be expanded as
v(r) = cve(r) + (K2 + E2) f(r) + ..., (7.44)

with the constant ¢ to be determined. If k is replaced by —ix in the equation (7.40),

v, is identical to v, when cotd = —i. Therefore ¢ = 1 and (7.42) and (7.43) become
1
kcotd = —I€+§(l€2+k2)p+... (7.45)

and
p=2 / (02 — u2)dr. (7.46)
0
Neglecting higher order terms in (7.45) and equating it with (7.27) and using (7.29)
and a similar approximation for p in (7.46), we arrive to

1 2
K= —+E—K——, Ty = p. (7.47)
a 2

We have thus expressed the scattering length in terms of the bound-state parameters.
Using this connection it is easy to derive expressions for the scattering cross section
in terms of the parameters in (7.47), see Ref. 161.

When inelastic scattering is possible, the depletion of flux from elastic channel
may be described by a complex phase shift. In slow collisions, the elastic channel
in the S matrix (see (7.6)) may be expanded and the complex phase shift for [ =0

expressed in terms of a complex scattering length, a = o — i(3, using (7.26),

The imaginary part of the scattering length must be negative, 8 > 0, to ensure
that 3, [Si#|? < 1. The expressions for multichannel elastic and total inelastic cross

sections
T
Oelas = ﬁll—SﬁIQ, | (7.49)

Oinel = 7;2 > 1Sw]* = % [1 - |Sii|2] ) (7.50)

i<
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using (7.48) become

Oeas = 4r|al® = 4m(a® + B?), (7.51)
i i
Oinel = —?Im(a) = —kﬁ. (7.52)

These expressions were introduced in atom-molecule collisions by Balakrishnan et
al. [42]. It is evident that the expressions (7.51) and (7.52) are consistent with
the Wigner threshold laws and will be valid parametrizations of the cross sections
wherever the Wigner laws apply for [ = 0. Since in numerical applications either the
S or T =1— S matrix is usually calculated, the complex scattering length may be
extracted from the entrance-channel matrix element by taking the limits

Im(T};) .. Re(T3)
—o5 0 PeElim— (7.53)

o= fn
Using the connection between the scattering length and the bound states presented
above, Forrey et al. [43] have derived expressions (valid when 8 < «) for the energy
and width of levels lying close to dissociation limit in the entrance channel in terms of
the complex scattering length and effective range. Neglecting the effective range and

expressing the scattering length in terms of its modulus and phase, ¢ = arctan(8/«),

we obtain [42], using (7.47),

1 .. 1
—W(COS 2¢ + 2 81n 2¢) = Em — EI‘m, (754)

as the energy of the uppermost level in the entrance channel. The energy is com-
plex, meaning that the level is either quasibound or unbound and will decay to lower
levels with a lifetime 7, = 1/T,. T, is called the width of state. The more ac-
curate formula involving the effective range proved to work well for predicting the

predissociation lifetimes of He + H, [43].

7.5 Resonant behaviour and eigenphase sum

Quasistationary states of a system are those that spend a considerable amount of
time inside the system, but have a finite lifetime. The boundary condition at infinity

of such a state is a diverging spherical wave and its energy is a complex quantity. The

time dependent factor in the wavefunction of such a state is e *£*. By substituting

(7.54) in that expression, it may be seen that the probability density inside the

Tt in time.

system is attenuated by a factor e™
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When particles are scattered at an energy close to one such quasistationary state,
the phase shift and cross section exhibit a resonant behaviour. The origin of the
resonant form will be described here following Ref. 157. The asymptotic form of the

radial part of the wavefunction at large distances for £ < 0 can be written in form
1
R, = . [Al(E) exp (—\/—2mE) + Bi(FE) exp (\/—ZmE)} . (7.55)

A; and B, are function of the complex variable E. For real E > 0,
1 . .
R = = [A(E)e* + Bi(E)e "], (7.56)
T

where A/(E) = Bf(E) and k = v2mE. Here Bi(FE) was taken on the upper edge of
the cut on the physical sheet. The physical sheet is defined with Re(v/—F) > 0 and
the cut is along the right half of the real axis. The condition that determines the

quasistationary energy levels is

B, (Em - %“) — 0. (7.57)
The wavefunction of the quasistationary states with the condition (7.57) originates
from the outgoing wave in the asymptotic form (7.56). Therefore, B;(F) can be
expanded in a series in F — (E,, — i[',,/2) for E > 0 and small I",,. The first non-
vanishing term is B)(E) = (E— E;,+il',/2)b;. Inserting it into (7.56) and comparing
to the equation (7.5), we can extract the phase shift

3B = B — il

26 _ o2
E—En+ il

e

(7.58)

Here df is the value of the phase shift far from the resonance, i.e. where |E — E,,,| >

[y The formula (7.58) can be rearranged to give

L
(5[ = (521 -+ arctan m (759)

When the energy is varied from £ < E,, to E > E,,, the phase shift increases by
7. Neglecting the direct scattering, that is not involving the resonance, the phase

shift in (7.59) leads to the Breit-Wigner formula,

4m(20 +1) r2
g =

k2 4(E - En)?+12, (7.60)

In the above analysis it was assumed that the resonant region is not close to £ = 0.

The E =0 is a branching point of the function B;(F) and an alternative expansion

must be employed. For further analysis see Ref. 157.
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The analysis of potential scattering resonances may be generalized to multichan-
nel scattering resonances. The S matrix in the neighborhood of a resonance [163]

denoted m is
B igm(E) gm(E)
FE—E,.(E)+ %iFm(E)'

Sq¢(F) is a complex unitary n x n matrix representing scattering that does not involve

S(E) = S4(E) (7.61)

the metastable state, g,,(F) is a complex column vector of order n and E,,,(F) and
[, (F) are the energy and width of resonance. The vector g,,(E) is related to I'(E)
by
Co(B) = ¥ Ti(E) = X o (B (7.62)
i i
where [ (E) = |gmi(F)|? is the partial width of channel 5. The sum over i runs over
all n open channels. The expression is derived in formal scattering theory within the
isolated narrow resonance approximation, where it is assumed that E,,(E), [',,(F),
and g,,(FE) are constant parameters characterizing resonance.
Having stated this result, we want to work backwards to prove that the formula
(7.61) implies a Breit-Wigner form in eigenphase sum. Eigenphases, A; and )¢, are

defined through the relations

S(E) = B(E)A*E)BT,
Sa(E) = Bu(E)AYE)B], (7.63)

where B(E) and B,(FE) are orthogonal matrices that diagonalize S(E) and Sy(F)

respectively, and

Aij(E) = Jijexp(i)\i), (764)
[Adly; (B) = diexp(iXy), (7.65)

are diagonal matrices. The eigenphase sums are

S(E) = Y. M(E), (7.66)
(E) = Y. N(E). (7.67

Now we perform a series of transformations following Ref. 163 in order to prove that

Lm(B) )
2[Em(E) - E])

(7.68)

§(E) = ¢(F) + arctan (
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follows from (7.61). The rapid variations are contained in the second term of the

generalized Breit-Wigner formula (7.68) within the isolated narrow resonance ap-

proximation.

Equation (7.61) may be rewritten in form

S = X435, Xy,
where
X, = ByABY,
S, = 1- irmwmwff ,
E-F,+ §’er

and w,, is a column vector

Wy = F,_,LI/ZXC‘;gm.

Now, relation (7.62) implies

T

Wn,

Wy = 1,

(7.69)

(7.70)
(7.71)

(7.72)

(7.73)

X4 1s symmetric and unitary and the condition of unitarity of S implies that S, must

also be unitary, which together with (7.73) leads to the conclusion that w,, is real.

This means that S, may be written in form

S, = B.A’BT

with B, orthogonal and
[Arli; (E) = &ijexp(iA]) = dijci,

where

L exp |2 arct L
- =eX arctan —————
E—Ep+ 4, P |"ME, —B)]

01:1

Ci£1 = 1.
Putting together equations (7.69), (7.71), and (7.74), we get
BA2B” = (B,A}BY)(B,A2BY)(B,ABY),

from where, by taking determinants of both sides, it follows that

|A%] = [AGlIAL].

(7.74)

(7.75)

(7.76)
(7.77)

(7.78)

(7.79)
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Using the definitions of the matrix elements, (7.65) and (7.77), we arrive to the gen-
eralized Breit-Wigner formula (7.68). Since the eigenphase sum increases by © when
sweeping the energy through a resonance, plotting ¢(E) against E is a convenient
tool for locating resonances. Eigenphase sum is determined modulo 7 so that a fine
mesh is needed to locate narrow resonances. We extracted the eigenphases from the
diagonalized K matrix, which we obtained from the scattering calculations. The K

matrix is related to the S matrix through

K(E) =1l - S(E)][1 + S(E)] ™, (7.80)
and its eigenvalues are tangents of eigenphases,

K(E) = B(E)[tan A(E)|BT(E). (7.81)

The lifetime of a resonance, 7, = 1/T',,, may be determined by taking a derivative

of (7.68) with respect to E. Then we obtain
o<

=2 == : 7.82

==*(a)..,. w2

7.6 Langevin model

In this concluding section we derive a simple model due to Langevin, Gioumousis,
and Stevenson [164] for reaction cross sections for reactions without a barrier. If the
probability of a reactive encounter is one for all incident impact parameters b < bpayx

and zero for b > b,,.x, the reaction cross section is

Oreac = b2 T (7.83)

max”® *

For the initial kinetic energy Ex = mv?/2, the energy conservation implies

1, I?

+ Vi(r), (7.84)

where L is the orbital angular momentum L = muwb and the motion is reduced to one
dimension with an effective potential. It is assumed that there is no energy barrier
for reaction, so the only barrier that needs to be surmounted is that due to the

combined effect of the long-range centrifugal potential and the long-range attractive

potential,

(7.85)
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At the maximum of the effective potential, r,,,,, there must be enough kinetic energy
left that reaction takes place. This condition determines the maximum value of the

impact parameter,

[Ex — Vi), =0. (7.86)

Tmax

Combining (7.85), (7.86), and (7.83), we obtain

s 2 \% Cs :
areaC(EK) - 71—5 (S _ 2) <EK> : (787)

The model predicts a decrease of reaction cross section with collision energy for
reactions without a barrier.

For reactions proceeding over a barrier, V(r) in the combined equations (7.85)
and (7.86) may be replaced by the threshold energy F,, at a separation d. This
leads to zero reaction cross section below the threshold and an increasing energy
dependence above, s (Fx) = md?(1 — Ey/Ex).

The relevance of the Langevin model to cold collisions will be established in the

next chapter.
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8.1 Introduction

In this chapter we investigate the atom-diatom collisions in lithium at ultralow col-
lision energies. We are interested in particular in the stability of molecules in the
excited rovibrational states. Motivation for this work originates in the recent exper-
imental efforts of creating stable ultracold molecular systems and molecular Bose-

Einstein condensates.

Cold molecules have so far been produced from cold gases of atoms either by
photoassociation or making use of magnetically tunable Feshbach resonances. Much
of work has been concentrated on alkali atoms, so that lithium [52, 165], sodium
[166, 167], potassium [168, 169], rubidium [170, 171], and cesium [29, 172] molecules
have all been produced in both ways. First cold heteronuclear molecules were created
in lithium by photoassociation [24]. Recently, molecular Bose-Einstein condensates
have been created from degenerate Fermi gases of lithium [31, 32] and potassium
[33]. In each of the above experiments, molecules have been created in rovibrational
states close to dissociation. The crucial breakthrough that allowed creation of molec-
ular condensates using fermionic isotopes was the finding that atom-molecule and
molecule-molecule inelastic collisions are strongly suppressed in this case when the
atom-atom scattering length is large and positive [165, 173, 174, 175]. It was ex-
plained in terms of Fermi statistics of the atoms [30] and the long-range nature of
molecules. By contrast, weakly bound bosonic dimers have been found to be unstable
against the decay into lower rovibrational states [21, 29, 171, 176, 177|. The energy
released in the vibrationally and rotationally inelastic collisions is usually larger than
the depth of traps used to store the atoms. For example, the depth of an optical trap
in which the lithium molecules were produced from an atomic Fermi gas by Hulet and
co-workers [173] was ~ 7uK. In this experiment atoms were converted to molecules
with an efficiency of ~ 50%, and it was assumed that the inelastic atom-molecule
collisions are the main trap-loss mechanism. The inelastic rate coefficient was found
to be 2 — 3 orders of magnitude smaller than the one found in bosonic species, e.g.
for Rby [21] and Nay [177)], kine =~ 1071 cm3s™!.

The possibility to create and trap state-selected molecules opens new prospects
to perform collision and chemical reaction-experiments at -ultralow kinetic energies.

Theoretical studies of such processes have so far been made on the following systems:
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He +1, [178], H + Hy [41, 42], He + H, [37, 43, 179, 180], He + CO [35, 36, 181, 182],
He + O, [183, 184], Ar + H, [185], He + HF [186], He + F, [187], He + N, [188], and
F + H, [11, 189—-193], and also in ionic systems He + He; and Ne + NeJ [194]. All
above systems, except ionic, proceed on a relatively weak potential. Calculations on
these systems established the range of validity of Wigner threshold laws and provided
first estimates of the magnitude of inelastic rate coeflicients in the zero-energy limit.
It was found that the the inelasticity is strongly dependent on the initial state of
the molecule. Vibrational relaxation by a single quantum is generally more probable
than double or triple de-excitations. Rotationally inelastic cross sections were found
larger than the rovibrational ones and the product rotational distributions are peaked
at lower j levels for low initial rotational states. For example, in the H+ Hy collisions
[41], the Wigner threshold behaviour sets in at ~ 10 mK and at even higher energies
for vibrationally excited states. Inelastic rate coefficients vary as much as six orders
of magnitude for different initial vibrational states of the molecule, between 107
cm?®s7! for v; = 1 and 1071 cm3s~! for v; = 14. Rotational levels were ignored
in these calculations. Inelastic rate coefficients were found to be lower for heavier
molecules and the onset of threshold behaviour usually between 0.1 mK and 10 mK.
Rotational inelasticity was found to be as high as 107° ¢m3s~! for CO in the v; = 0,
ji = 1 state. High inelastic rates were also found in the collisions starting from
specific highly excited rotational states in Hy [179] and O, [184] with helium, but

3

they could also be as low as 10717 cm3s~!. The highly state-specific energy transfer in

these super-rotors was discussed in a series of papers [179, 180, 182, 184, 185, 195].

High rotationally inelastic rate coefficients, 10~° cm3s~*

, were also predicted for
ionic systems [194], which do however proceed over the deep and highly anisotropic

potential energy surfaces.

Chemical reactivity at ultralow energies has first been explored on the H + HF
reaction by Balakrishnan et al. [11] and later on its isotopically substituted systems.
These reactions proceed over a potential barrier and their efficiency is attributed to
the quantum-mechanical tunneling process that becomes significant at low energies
due to the long duration of the collision. The reactive rate coefficient was predicted
to be 1.25 - 107!2 cm®s~! [11] for »; = 0, j; = 0 at temperatures below 10 mK. The
reaction of F with HD and D, gave lower rate coefficients because the efficiency of

tunneling is lower in heavier systems [189—191].
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The first study of an alkali atom-molecule system was made in the spin-polarized
bosonic sodium, 2*Na + 23Nay [196]. The potential energy surface [80] has a global
minimum of —849 cm™! at Ds), geometry with the bond distance of 4.406 A. There
is no barrier for atom exchange. Sodium potential is compared with other spin-
polarized alkali trimers in Ref. 79. The cross sections were calculated for the J =0
partial wave that is dominant at ultralow energies. Wigner laws govern the energy
dependence below 107 K and the inelastic cross sections are larger than elastic below
10~* — 10~3 K. The zero-energy limit of inelastic rate coefficient is 5.2-107°cm3s~1.

This chapter represents an extension of this work to another alkali system of
experimental interest. Lithium is the lightest of alkalis which facilitates the compu-
tational cost of calculations. It comes in two isotopes with different nuclear spins
which enables one to compare collisions in bosonic and fermionic systems. Collisions
are investigated for the spin-stretched states of the lithium trimer, where the total
spin of the system and its projection on a quantization axis acquire their maximum
value. Atoms in such states can be magnetically trapped, although the present cal-
culations do not assume the presence of external fields. The potential energy surface
for lithium trimer is described in Chapter 2, 3, 4, and 5. We neglect the influence
of the non-adiabatic couplings which are significant near the conical intersection at
linear geometries. All the processes are studied with the aid of the reactive scatter-
ing code written by Launay and LeDourneuf [136, 138], which solves the Schrodinger
equation for nuclei by the coupled channel method in hyperspherical coordinates, as
described in Chapter 6.

We start by discussing the symmetry requirements following from the Pauli prin-
ciple depending on the type of collision particles, fermions or bosons, involved. The
other sections are each devoted to different processes: collisions in the bosonic and
fermionic systems, and collisions in isotopic mixtures. We report on the convergence
of our calculations, the vibrational and rotational relaxation cross sections for J = 0,
and, in the case of three identical nuclei, the higher partial wave contributions and
differential cross sections. With inclusion of 11 partial waves, cross sections are
converged for collision energies below 500 mK. Finally, a simple classical Langevin
model is used to make the semi-quantitative predictions of inelastic rate coeflicients

in other-alkali systems.

Although the temperature is a thermodynamic quantity and the present chapter
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deals with the individual state-to-state processes, the collision energies and the level
separations are reported in Kelvins defined as the energy with respect to a reference
energy divided by the Boltzmann constant. This convention is adopted widely in the

cold-molecule literature.

8.2 Symmetry considerations

Working within the Born-Oppenheimer approximation, we have effectively separated
the motion of electrons from the motion of nuclei so that their wavefunctions ap-
pear separately with the overall wavefunction in the form of a product. Here we
consider the effect of the exchange of identical nuclei on the nuclear wavefunction
and determine all the permitted states in the asymptotic region. An eigenstate of
the nucleus-exchange operator in the asymptotic region will preserve the symme-
try everywhere since the nuclear hamiltonian commutes with the nucleus-exchange
operator.

All inelasticity of the collision is contained in the internal degrees of freedom of
the molecule. Having the above in mind, the wavefunction of the diatomic molecule

in the asymptotic region can be written as

wtotal = welectronic X T/)Vibrational X wrotational X wnuclear spin: (81)

We consider the symmetry under exchange of identical nuclei of each term in this
product state separately.

In this work, we limit ourselves to the investigation of spin-stretched states,
meaning that the total spin, the sum of the nuclear and electronic spins, and its
projection on the quantization axis acquire their maximum value, F = Fy,, = I+ 8
and |[Mp| = F. For alkali + alkali dimer systems, such collisions occur entirely
on the electronic quartet surfaces with no contribution from doublet surfaces. This
assumption determines the symmetry of the nuclear spin wavefunction to be even
under exchange of identical nuclei regardless of the type of the nuclei in question.

The electronic wavefunction of the quartet ground state of three lithium atoms
correlates with a 25 state of the atom and a *E} state of the molecule in its asymp-

totic limit. In the full nuclear permutation-inversion group of the molecule, the
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operation of the exchange of two nuclei can be described as
(12) = (12)* x E*, (8.2)

where the operation E* is the inversion of all particles, nuclei and electrons, through
the molecular centre of mass. The action of the operator (12)* on the electronic
wavefunction of the diatomic molecule is determined by the g or u character in the
term symbol of the state (D group), while the action of E* is determined by the
sign (+/—) in the term symbol [197]. The combined action therefore changes the
sign of the electronic wavefunction of the 3% state.

The exchange of identical nuclei does not induce any changes to the vibrational
wavefunction. The rotational part of nuclear wavefunction transforms to (—1)? times
the original, where j is the rotational quantum number. This can be seen by looking
at the transformation of spherical harmonics under r — —r. The overall wavefunc-
tion transforms to the original times (—1)7+1.

In the case of Hund’s coupling case (b), which applies to the triplet state of
lithium dimer, the total mechanical rotation is a good quantum number. The de-
viations from the case (b) level pattern caused by the electronic orbital angular
momenta are neglected. Fine and hyperfine structure of the rotational levels are also
neglected. They have been experimentally measured in the 3L} state of Na, [198].
The dominant splittings come from electronic spin-spin (experimental value of the
coupling constant for Nay is A = 4.34 - 1072 cm™!) and spin-rotation interactions
(experimental value of the coupling constant for Nagy is vy = 1.42-1073 em™!). Linton
and co-workers have not been able to resolve the fine structure in the 3%} state of
Liy with their experimental linewidths of &~ 1 cm™! [48]. The errors due to that are
therefore expected to be small. It should also be noted here that the conventional
spectroscopic symbols for different angular momenta are not the same as those used
in this work.

Lithium appears in nature in two different isotopes. °Li (7.59%) has mass
10964.8974 m, and nuclear spin 1. Integer nuclear spin means the ®Li nucleus is
a boson. In a cold dilute gas, where the probability of finding two atoms within the
range of the interaction is low and therefore the electronic degrees of freedom are
frozen out, the ®Li atom is usually regarded as a composite fermion since its-total

spin, the sum of electronic and nuclear spin, is half-integer. The total wavefunction
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of the dimer (8.1) must be symmetric under exchange of two identical bosons, mean-
ing that only odd j levels can be populated in ®Li, in its spin-stretched state and 32}
electronic state. The change of sign in electronic part of the wavefunction is compen-
sated by a change of sign in the nuclear wavefunction when two identical nuclei are
exchanged. The nuclear wavefunction of lithium trimer %Liz must be antisymmetric
under exchange of two 8Li nuclei everywhere, because the determined symmetry in
the asymptotic region is a constant of motion as discussed in the beginning of this

section.

"Li (92.41%) has mass 12789.3934 m, and nuclear spin 3/2. Its nucleus is therefore
a fermion, although when viewed with the electrons (spin 1/2) as a whole, as is often
done in the cold dilute gases, the atom is a composite boson. Following the same
arguments as above, "Liy can occupy only even j quantum states and the nuclear
part of the wavefunction of lithium trimer must therefore be symmetric under the

exchange of two Li nuclei everywhere.

In the coupled channel calculations, restrictions on the symmetry of the wavefunc-
tion under the exchange of identical nuclei are implemented by employing a properly
symmetrized set of basis functions. The basis functions that we use are expressed in
terms of the pseudohyperspherical harmonics (6.51). In fact, as discussed in Chapter
6, it is the A functions (6.50) that determine the symmetry under exchange. The
interchange of identical particles is accomplished by a reflection in the ¢ = (0 plane,
as is shown on a diagram in Figure 8.1, followed by a rotation around the body-fixed

z axis by 7. Namely,

e Interchange BC : ¢ — —¢

e Interchange AB : ¢ — 47/3 — ¢

e Interchange AC: ¢ - 8n/3 — ¢

e Cyclic permutation CAB : ¢ — 27/3 + ¢
e Cyclic permutation BAC : ¢ — 47/3 + ¢.

For the reactions in isotopic mixtures,

SLi+ "Lip — "Li + °Li"Li, (8.3)
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Figure 8.1: Diagram showing arrangements of three identical nuclei for a fixed
in hyperspherical coordinate system. The in-plane azimuthal angle is ¢ and radial

coordinate is the hyperradius p.

and

"Li+ °Liy — ®Li 4 ®Li"Li, (8.4)

the wavefunction must have the appropriate symmetry with respect to the exchange
of nuclei in the molecule BC in the incident arrangement of reaction (6.1). This
is accomplished by choosing the basis functions with ep = +1 (h = cos) for the
reaction (8.3) and basis functions with ep = —1 (h = sin) for the reaction (8.4). The
amplitudes for the reverse reactions of those in (8.3) and (8.4) can be extracted from
the same S matrix by making use of the principle of microscopic reversibility [148].

For collisions involving three identical nuclei,
"Li + "Li; — "Li + "Li,, (8.5)

and
Li + ®Liy — SLi + SLiy, (8.6)

the appropriate symmetry with respect to interchange of any two nuclei is set by
requiring ep = +1, if the wavefunction is to be symmetric under exchange, or ep =
—1, if the wavefunction is to be antisymmetric, and by simultaneously requiring the
basis functions to be symmetric under a cyclic permutation. ep = +1 is required
for the reaction in (8.5), while ep = —1 applies to the reaction (8.6). These results

aré summarized below (Q27/2 in the argument of trigonometric functions has been

omitted for clarity).
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[¢]

Three identical fermions: BF wavefunction is fully antisymmetric

— 8in3¢,sin9¢, ... with e; = —1, ep = —1

— sin6¢,sin12¢,... with ¢, = +1, ep = —1

(o]

Three identical bosons: BE wavefunction is fully symmetric

— c0s3¢,co89¢, ... with ¢, = —1, ep = +1

— cos0¢,cos6¢,... with ¢, = +1, ep = +1

One boson and two fermions:

®

— sinlg¢,sin3¢,... with ¢, = —1, ep = —1

— sin 2¢,sin4¢g, ... with ¢; = +1, ep = —1

One fermion and two bosons:

— cosl@,cos3p,... with e, = —1, ep = +1

— cos2¢,cos4e,... with e = +1, ep = +1

It is interesting to note that the convergence problem that might arise due to
the Eckart singularity at the symmetric top geometries is never present when deal-
ing with three identical fermions. The problem arises because the coupling matrix
elements (6.56) of R (6.36) in the coupled equations (6.54) diverge for symmetric
top configurations (§ = m/2). The leading power in the expansion of g% for small
deviations around 6 = 7/2 is v/2, as can be seen by inserting the leading power term
in the differential equation (6.49) and keeping first-order terms in power expansions
about /2 — 6. There is a term in the expression for R (6.36) that is proportional
to 1/ cos? 8, which is singular. The contribution of this term to the coupling matrix
element (6.56) behaves then as (7/2 — 6)?/2+¥/2=2 for @ near 7/2. From this result,
it is clear that the divergence problems cannot occur when v > 2. As we have seen,
the symmetry under exchange requires v > 3 for three identical fermions.

The problem with the Eckart singularity never occurs in the J = 0 partial wave
since J,, in (6.36) couples only different projections Q2 of J. In some types of reactions,
the region where it could occur is inaccessible due to repulsiveness of the interaction

potential. This is not the case in the quartet ground state surfaces of alkalis.
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We adopt the notation J™ for partial waves, where J is the total mechanical
angular momentum of nuclei and II is parity. J is equal to the sum of the orbital,
[, and rotational, 7, angular momenta. [ and j are good quantum numbers in the
asymptotic region. When molecule is initially in the rotational state j, the states
with orbital angular momentum quantum number [ satisfying the triangle inequality,
|J—j| <1< J+j, couple with j into the partial wave of the total angular momentum
J. The parity of initial state is ¢; = (—1)’*! and it is conserved in course of collision.
Tables 8.1 and 8.2 summarize the allowed [ values for the scattering of three identical
fermions from an initial 7 = 1 and for the scattering of three identical bosons from
an initial j = 0 rotational level of the dimer. It is also indicated which values of 2
must be included in the basis set for each partial wave. Blocks of partial waves listed
in the first row in Table 8.1 satisfy €;(—1)” = +1 and we call them parity favoured
blocks. Parity blocks of partial waves in the second row satisfy ¢;(—1)’ = —1 and
we call them parity unfavoured. Parity favoured blocks include the basis functions
with {2 = 0, as can be seen from the form of the dependence of the wavefunction on
the external hyperspherical coordinates (6.46), and as a consequence they include
more basis functions than parity unfavoured blocks for a given partial wave J and

accuracy.

FERMIONS: partial waves JU
ot 1~ 2+ 3-
=1, 1=1 | j=1, 1=02 | j=1, 1=1,3 | j=1, 1=2.4
0=0 | 0=01 | Q=012|0=0123
1t 2- 3+
=1, 1=1 | j=1, 1=2 | j=1, 1=3
Q=1 | 9=1,2 | Q=1,2,3

Table 8.1: Partial wave analysis of the atom-diatom wavefunction of the fermionic
system: initial rotational quantum number is j = 1; initial orbital angular momen-

tum / and 2 quantum numbers included in the basis set are given.

The convergence parameter in the partial wave expansion is the orbital angular
momentum /max, as can be confirmed with the actual calculations reported later in
this chapter. The dominant contribution at ultracold temperatures is the one that

comes from the partial wave containing { = 0, where the amplitudes are not hin-
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BOSONS: partial waves J!
0t 1~ 2+ 3-
=0, 1=0 | j=1, I=1 | j=0, I=2 | j=0, 1=3
0=0 | 0=01[0=012]|0=01,23

Table 8.2: Partial wave analysis of the atom-diatom wavefunction of the bosonic sys-
tem: initial rotational quantum number is j = 0; initial orbital angular momentum

[ and §2 quantum numbers included in the basis set are given.

dered by tunneling through the centrifugal barrier. For ultracold collisions involving
three bosons, the partial wave 0% gives the dominant contribution. In case of three
ultracold fermions, the partial wave 1~ contributes dominantly. It is evident from
Table 8.1 and 8.2 that up to a given value of {,;,,, more partial waves, J, need to
be included in the partial wave expansion for a fermionic system than for a bosonic
system. This means that, for a given accuracy, calculations on fermionic systems are

more computationally demanding.

8.3 Collisions in bosonic system

In this section we report the results of scattering calculations for the atom-exchange

collision process

"Li + "Liy = “Li + "Li,, (8.7)

involving three bosonic "Li nuclei at collision energies between 1 nK and 1 K.

Convergence parameters for the dominant J = 0 contribution to the cross sections
are discussed in the next subsection. Vibrational relaxation cross sections for J = 0
and different initial states of the molecule are discussed in the subsequent subsection.
This is followed by the partial wave convergence for J = 0 — 10. Product vibrational
and rotational distributions and differential cross sections are reported for collision
energies of 116 mK and 580 mK. Converged inelastic cross sections are compared with
the classical Langevin model. Collisions involving an initially rotationally excited

molecule are considered at the end of the section.
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8.3.1 Convergence of cross sections: J =0

Numerical solution of the Schrodinger equation for each partial wave must be con-
verged with respect to the number of basis functions in the expansions and discretiza-
tion steps in the integrations. The convergence parameters for the J = 0 partial wave

are reported below.

The convergence of cross sections for the total angular momentum J = 0 with
respect to the number of basis functions in equation (6.53) and the propagation dis-
tance in the hyperradial coordinate, ppnax, is studied by comparing the cross sections
obtained using four different basis sets. The largest basis set consists of N = 97 basis
functions which are asymptotically matched at pnha.x = 45 ag onto the rovibrational
wavefunctions in Jacobi coordinates with v =0, 1, 2, 3, 4, 5, 6, and 7, and with all
the rotational levels up to jmax = 32, 30, 28, 24, 22, 18, 14, and 10, for each vibra-
tional manifold respectively. In this way, we included basis functions that correlate
with all rovibrational states lying below the v = 8, 5 = 0 state in energy. Extend-
ing the basis set further would demand a corresponding increase in the propagation
distance to ensure accurate projections (max. error for all states is 2 parts in 1000)
between hyperspherical and Fock wavefunctions (6.78). The basis sets of N = 84
and N = 70 basis functions consist of all the hypersurface eigenfunctions matched
onto the rovibrational levels up to and not including v = 7 (jmax = 32, 28, 26, 22, 20,
16, 10) and v = 6 (jmax = 30, 28, 24, 20, 16, 10) vibrational manifolds respectively.

Minimum propagation distance for a given basis set can be determined by setting
a requirement for a good overlap at the matching distance between the wavefunctions
in Fock and in hyperspherical coordinates (6.78). Projections improve with the
propagation distance. With a slight compromise of the projections in the matching
sector, the propagation distance can be reduced to pmax = 40 ao for the basis set
N = 84.

Elastic and inelastic cross sections calculated using the basis sets described above
are reported in Table 8.3. They converge monotonically with the basis set size.
We believe that all the cross sections in the range of collision energies studied are
converged to better than 10%, except in the regions of rapid variations with the

collision energy.

The elastic and total inelastic cross sections for collisions with the molecule that
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(vi,vy) N =170 N =84 N =84, pmax = 40aq N =97
(0,0) 12.937-107'2 | 3.356-107*2 3.264 - 10712 3.392 - 10712
(1,1) |3.395-10712 | 1.581- 1072 1.649 - 10712 1.370 - 10712
(1,0) | 4.865-107° | 3.327-107° 3.397-107° 3.094-107°
(2,2) |2.982-1071% | 4.503- 10713 4.214-10713 5.168 - 10713
(2,1) |2.927-107%0 | 1.783 - 10710 1.801- 10710 1.642 - 10710
(2,0) | 5.683-1071% | 3.293-1071° 3.301-1071° 3.132-1071°
(3,3) |9.193-1071% | 9.762- 10713 1.076 - 10712 9.294 - 1071
(3,2) | 7.958-107%0 | 3.577-1071° 3.688-10710 2.555- 10710
(3,1) |3.340-107%° | 3.640-1071° 3.739- 10710 2.505 - 10710
(3,0) | 1.088-107° | 3.594-107° 3.685 - 107° 3.511-107°

Table 8.3: Convergence of vibrationally resolved cross sections, >-; o(viji = vyjr)
for j; = 0 in cm?, for “Li + “Li, at the collision energy of 0.928 nK. pmax = 45 ag for

all bases unless otherwise indicated.

is initially in the v; = 1 and j; = 0 state are shown in Figure 8.2 against the collision
energy between 1 nK and 1 K for the three bases, N = 70, 84, and 97, matched at
Pmax = 45 ag. The profile of the energy dependence does not change significantly for
the three basis sets and the error decreases with increasing collision energy which

provides additional confidence in the results.

The rotationally resolved cross sections (state-to-state) from (v, j) = (1,0) to
(0, 5¢) are shown in Figure 8.3 at the collision energy of 0.928 nK. The cross sections
converge for all rotational levels. The results obtained using the smallest basis,

N =70, are in a significant disagreement with others for higher rotational levels.

The hyperradial coordinate was divided into sectors 0.1 ag wide with their centres
extending from 5 ag up to pmax. The log-derivative matrix is propagated within each
sector in 8 steps per half the local WKB wavelength. The set of pseudohyperspherical
harmonics used to evaluate the basis functions is limited by K., = 239 (1240
harmonics) in all sectors up to 30 ay. Outside 30 ag, Knax is linearly increased
with the distance up to Kp.x = 359 (2136 harmonics), at pmax = 45 ag, in order to
converge the hypersurface energies. Propagation outside 45 ag becomes expensive as
pseudohyperspherical harmonics provide an increasingly inefficient basis. At ppay,
the channels close to threshold are matched onto the wavefunction propagated from a

large distance inwards in the isotropic atom-molecule potential, (V' (# = 0) +2V (8 =
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1,7i = 0). N is the number of channels in the basis.

15

/10" em?

5 6 7 8 9 10 11 12 13 14 15
j; (rotational guantum number)

Figure 8.3: Convergence of inelastic state-to-state cross sections for "Li + "Lis(v;
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i =

1, j; = 0) and vy = 0 at the collision energy of 0.928 mK. NN is the number of channels

in the basis.
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7/2))/3. The step-size in the one-channel backward propagation must be small. We
took 40 steps per half the local WKB wavelength. The starting distance was chosen
to be at the point where the isotropic potential is 10~° times smaller than the centre

of mass collision energy. This amounts to the distance of ~ 10000 a4 at 1 nK.

The adiabatic hypersurface energies corresponding to 97 channels employed in
our calculations are plotted in Figure 8.4. They exhibit a deep minimum at 4.1
A, which corresponds to the global minimum of the potential energy surface. The
curves are smooth with numerous avoided crossings. At long range, they tend to the
lithium rovibrational diatomic energies. The maximum of the hypersurface energies
just below 6 A is due to the curve crossing at linear geometries, while the saddle

point at 7 A corresponds to the minimum at linear configurations.

The integrations in 6 € [0,7/2] and ¢ € [0, 7/3] were performed by the four-point
Gaussian-composite rules on the 300 x 200 grid. The range in ¢ is reduced because of
the symmetry. There are three evaluations of coupling matrices (6.55, 6.56) within

each sector which amounts to 180 000 potential evaluations per sector.

The asymptotic wavefunctions in Fock coordinates were expanded onto the ba-
sis of 80 primitives (sines). The quadratures in Fock angles used 200 points per

corresponding range.

The matching at pna.c = 45 ay corresponds to the atom-diatom distance of R =
21.86 A when the diatom is at its equilibrium distance of 2 4.2 A. The intermolecular
potential is still substantially anisotropic at these distances. For § = 0 it is —0.2155
cm~! while for § = 7/2 it is —0.1525 cm™!. It is assumed that this anisotropy of
0.063 cm ™! does not induce substantial rotational transitions at larger distances since
the rotational spacing is greater than 1.25 cm™! for all transitions involved in the

reported results for "Li, and 0.44 cm™! for "LiLi.

The largest basis set we have used here presents a limit in the size manageable
with a reasonable computational effort. Any extension would increase the propa-
gation distance, the number of harmonics (quadratic with p), and the number of
integration points (i.e. potential evaluations), and would substantially increase the
computer time. This basis (N = 97) was used in all the results reported in the

subsequent sections.
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Figure 8.4: Eigenvalues (N = 97) of the hypersurface hamiltonian (6.47) for three

"Li nuclei in the electronic quartet ground state.
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8.3.2 Vibrational relaxation cross sections and rate coeffi-

cients: J =0

In this subsection, we calculate the cross sections for atom-diatom collisions involv-
ing three “Li nuclei starting from a rotationless initial state, j; = 0, and different
initial vibrational levels. The dominant contribution to the cross sections at ultralow
energies comes from the J = 0% partial wave since the approach is not suppressed

by the centrifugal barrier. From J = j+ 1, it follows that [;=0.

The elastic and total inelastic cross sections of the J = 0 partial wave have been
calculated at more than 150 collision energies between 1 nK and 1 K for v; = 0,
1, 2, and 3. The results are plotted in Figures 8.5, 8.7, 8.9, and 8.10. The energy
dependence of elastic cross sections is a constant at low collision energies, consistent
with the Wigner law for elastic collisions (7.16) with [; ; = 0. The energy dependence
of inelastic cross sections for v; = 1, 2, and 3, is linear on the logarithmic scale with
a slope of —1/2 (I; — 1/2), as predicted by the Wigner laws (7.17). In this regime
the elastic and inelastic cross sections can be parametrized by a complex scattering
length, see (7.51) and (7.52). The convergence of the scattering length is shown in
the insets of the figures. The plotted quantities are the right-hand sides of equations
(7.53).

If the molecule is initially in its lowest rovibrational state, Figure 8.5, only elastic
scattering is possible at energies below the v = 0,5 = 2 threshold at 2.3 K. The
threshold behaviour described by Wigner laws is reached in the mK region of collision
energies. At higher energies, the cross section oscillates, dropping to zero at 37 mK

and 300 mK, and exhibits a resonance profile at around 750 mK.

Scattering from the v; = 0, j; = 0 state is a process with one open channel which can
be characterized by a phase shift, similar to potential scattering. We extracted the
phase §; from the K matrix (1 x 1) element being tan(dp), see (7.81), and plotted
it in Figure 8.6. It is clear from this plot that the cross section in Figure 8.5 drops
to zero when the phase shift § passes through a multiple of 7 (-, —2#). The
profile at & 750 mK is associated with a rise of phase by &~ 7 against the background
and is therefore a resonance. A sharp drop in the region of the resonance may be
associated with the phase rising through the valueof —27. The profile of the energy

dependence of cross sections when the phase is close to a multiple of 7 is ~ sin?(&),
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Figure 8.5: Energy dependence of elastic cross sections for "Li + "Liz(v; = 0, j; = 0).

Convergence of scattering length shown in the inset.

as opposed to the lorentzian describing a resonant profile. The drop in cross sections

is not expected to be measurable since higher partial waves will contribute at these

energies. The position and the height of the centrifugal barrier for [ = 1, as estimated

from the isotropic dispersion and centrifugal potentials, —Cgs/R® +1(l+1)/2pR?, are

R =~ 94.3 ay, which is the distance at which isotropic dispersion interaction dominates

thus confirming our assumption, and V., =~ 2.78 mK. This means that above this

energy higher partial waves will contribute significantly with the effect of washing

out the features in the J = 0 cross sections.

Figure 8.6: Ehéréy dependence of éigehphaée for "Li + "Li, (vi =0,j; = 0).
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The elastic cross sections for collisions involving the molecule in the v; = 1, 7, =0
state, in the same interval of collision energies, exhibit similar behaviour. The oscil-
lations at the higher energy end in Figure 8.7 are analysed in terms of the individual
eigenphases shown in Figure 8.8. There are nine open channels corresponding to
even j levels from 0 to 14 of the v = 0 manifold and the elastic channel. The K ma-
trix is diagonalized to obtain the tangents of the eigenphases on the diagonal (7.81).
Each of the three minima in the elastic cross sections in Figure 8.7, at =~ 13 mK,
175 mK, and 650 mK, can be associated with a zero of an eigenphase in Figure 8.8.
Due to the coupling between channels, the features are not so pronounced and their
positions are slightly displaced from the zeros of eigenphases. The eigenphase sum
exhibits no sudden increase, but its first derivative oscillates indicating that there

might be broad resonances lying under the background variations.

10 T T T T T T T

100 F ey —— elastic: v=1, =0 { Re(a) ] ]
N — — inelastic: v=0 [ ~im(a) ]

Re (a), -tm(a) / nm

s _
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10" 10°
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Figure 8.7: Energy dependence of elastic and inelastic cross sections for "Li+Liy(v; =

1, j; = 0). Convergence of complex scattering length shown in the inset.

The elastic cross sections for the initial rovibrational molecular states v; = 2, 7; =
0 and v; = 3, j; = 0, shown in Figure 8.9 and 8.10, exhibit again similar oscillatory
behaviour outside the Wigner regime. The eigenphase sum (not shown) remains
entirely smooth, below 1 K, with no evidence of resonances.

The cnergy-dependence of inelastic cross sections for all initial molecular vibra-

tional levels studied, v; = 1, 2, and 3, changes at mK collisional energies from the
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—1/2 power law, predicted by the Wigner law, to the —1 power law. The —1 power
of the energy dependence comes from the kinematic factor in the expression for the
cross section (6.75). The probability of inelastic transitions, oinek? /7, and oask? /7
are shown in Figure 8.11 for v; = 1 and 2. The probability increases with the col-
lision energy according to the Wigner law until it saturates below unity, where the
kinematic factor starts to dominate the energy dependence of inelastic cross sec-

tions. The elastic matrix element is less steady and it oscillates around the inelastic

probability outside the Wigner regime, as is reflected in the cross sections.
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Figure 8.11: Energy dependence of elastic and the sum of inelastic matrix elements,

ok?/m, for TLi + "Lig(v;, j; = 0) for v; = 1 (left) and v; = 2 (right).
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There is no systematic dependence of the magnitude of cross sections on the
initial vibrational level. The values of the elastic cross section at 1 nK are all within

an order of magnitude and are &~ 107!2 ¢cm?

The inelastic cross sections are all
~ 1079 cm? at 1 nK. The onset of threshold behaviour is at millikelvin temperatures
for all initial states and the energy dependence of the cross sections is described by
the Wigner laws (7.16, 7.17) at lower energies.

Vibrational distributions of the final molecular states vy < v; are shown in Figure
8.9 and 8.10. The vy = 0 state is the most probable outcome of the collision in each
case. The partial cross sections for different final vibrational states do not change
relative to each other over almost the entire range of collision energies studied here,
although the individual cross sections vary over more than five orders of magnitude.
This is also true for the ratios of the individual state-to-state cross sections. To
demonstrate it, the product rotational distribution for v; = 1 is plotted at 1 nK in
Figure 8.12 and at ~ 100 mK in Figure 8.13. The qualitative changes are small. The
reason is that the energy dependence of inelastic cross sections in the studied range
is dominated by the kinematic factor, 1/k?, and the energy normalisation resulting
in the Wigner threshold laws. These factors influence all the partial cross sections
equally.

Rotational distributions for J = 0, Figure 8.12, are irregular and oscillatory. Sim-
ilar behaviour has been found earlier in the studies of Na+ Na, collisions at ultracold
temperatures [196], in the insertion reaction C(* D) + Hy — CH + H [199] for J =0
at higher collision energies, and also in vibrational predissociation of Van der Waals
complexes (Ar—H,) [200]. A possible explanation is that the oscillatory behaviour
arises from a rotational rainbow effect {201]. The energy released in the vibrationally
inelastic process is partly converted to the translational motion and partly in the ro-
tation of Li, molecule. Angular momentum transferred to the molecule is zero in the
head-on collision and at T-shape geometries and large at § = 45°. In this model, the
oscillations arise from the interference between the classical trajectories from either
side of the maximum.

Elastic rate coefficients, kK = owv, vanish in the zero-energy limit, while inelastic
rate coefficients tend to a constant, ~ 1071% cm3s~! for v = 1 — 3, see Appendix
B. The ratio-of inclastic and clastic rates at ultralow cnergies decreases with the

collision energy, according to Wigner laws, until it reaches ~ 1 in the millikelvin
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range. At higher collision energies, elastic and inelastic rates remain comparable.

Sympathetic and evaporative cooling of atoms and molecules depends on the ra-
tio of elastic and inelastic rate coefficients which should preferably be large (> 100).
Loss rates obtained in the experiments on ultracold bosonic molecules, cited in the in-
troduction of the chapter, are consistent with the values obtained for bosonic lithium
in this section, ~ 107!% cm3s~!. It must be emphasised that the reported rates in
experiments are measured for high-lying rovibrational states on electronic doublet
surfaces and in magnetic fields with samples confined in a trapping potential. In this
view the agreement between the theoretical results of this chapter and experiments
is satisfactory.

In comparison with the atom-exchange collision Na + Na, [196], elastic and in-
elastic cross sections at threshold, obtained here for lithium, differ by less than an
order of magnitude. The dependence of cross sections on collision energy is qualita-
tively similar. The frequency of oscillations in the elastic cross section of sodium is
higher, i.e. the phases evolve more rapidly, and threshold behaviour sets in at lower
energies. This is a consequence of a lower de Broglie wavelength in sodium for a
given collision energy due to the larger mass. Qualitative similarity of the results
in the spin-polarized lithium and sodium systems suggests that an efficient cooling
and trapping of atom-molecule mixtures is probably not possible even in other alkali
systems. Formation rates in photoassociation experiments are currently ~ 10~
cm3s~!. Atomic and molecular clouds should quickly be separated after formation
in order to prevent collisional losses.

In comparison with other ultracold processes, reviewed in the introduction of this
chapter, the zero-energy limit of the inelastic rate coefficient for vibrationally excited

molecules is high. There is no systematic dependence of the rate coefficients on the

initial excitation of the molecule, unlike the above mentioned systems.

8.3.3 Vibrational relaxation cross sections and rate coeffi-
cients: J >0
Accurate cross sections obtained from the coupled-channel equations in the total

angular momentum basis must be converged with respect to the number of terms

retained in the sum over J in (6.75) at a given collision energy. For the initial




174

molecular states having 7 = 0, the total angular momentum is J = [ and the parity
is therefore ¢; = (—1)”7.

We calculated the basis (eigenfunctions of the hypersurface hamiltonian (6.47))
for partial waves 07, 1=, 2%, ..., 10*7. The convergence parameters for J > 0 were
kept same as for J = 0. For {2 > 0 we included all the basis functions that converge
in the same set of rovibrational states that were included for 2 = 0, in the J =0
calculations. This strategy repeatedly proved to yield converged results in the past
(136, 138, 199, 202—204). Since j > 2, the number of basis functions included for
each {2 decreases. For €2 going from 0 to 10, it is 97, 89, 89, 81, 81, 73, 73, 65, 65,
57, and 57, respectively. Keeping K., the same as for J = 0 for all sectors, the
basis sets were calculated for both parities. The number of pseudohyperspherical
harmonics for evaluating the basis functions varies in different sectors from 1220
(e = —1) to 2178 (e = +1) for 2 = 0 and from 1045 to 1884 for 2 = 10.

Coupled equations were propagated with the parameters set to the values already
determined for J = 0. The number of channels for each partial wave J can easily be
determined by summing the number of basis function for all Q < J. There are 827
channels for J = 10.

In order to examine the convergence of cross sections with respect to J, we show
the elastic matrix elements and total inelastic probabilities, defined as ck?/m, as a
function of J for several collision energies, and the initial dimer states v; = 1 and
3, in Figure 8.14 and 8.15. The convergence does not depend significantly on the
initial vibrational level. It is slower for elastic matrix elements compared to the total
inelastic probabilities for higher collisional energies. At around 100 mK and below
situation is reversed. The elastic cross sections decay faster than inelastic for J < 4
as the collision energy is lowered in the region where threshold laws are valid. The
J = 10 partial wave contributes with 2.35% and 2.88% to the total elastic cross
section at the collision energy of 580 mK for v; = 1 and v; = 3, respectively. The
contribution of the J = 10 partial wave to the total inelastic cross section at 580 mK
is substantially smaller, 0.0655% and 0.0558% for v; = 1 and v; = 3, respectively.
This proves that the partial wave expansion is converged with respect to J for collision
energies below 580 mK. The cut-off in J of the partial wave expansion for a given
cnergy can casily be-estimated from Figure 8.14 and 8.15.

Converged elastic and total inelastic cross sections for collisions involving a molecule
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that is initially in the v = 1, j = 0 state are shown as a function of collision energy in
the interval between 10 4K and 580 mK, in Figures 8.16 and 8.17. Contributions of
all partial waves have been plotted separately. We can test now the range of collision
energies for which the J = 0 cross sections give converged results. Contribution of
other partial waves, but J = 0, make up 0.026% and 4.3% of the elastic cross section
and 2% and 26.5% of the total inelastic cross section, at collision energies of 0.1 mK
and 1 mK, respectively. This analysis indicates the magnitude of inaccuracy in the

J = 0 cross sections, discussed in the last subsection.

107" Y v — — T

Figure 8.16: Energy dependence of elastic cross sections for “Li+ "Lig(v; = 1, j; = 0):

partial waves J = 0 — 10 and total.

Elastic cross sections for J > 0 show a linear rise in the dependence on collision
energy on the log-log scale until a maximum is reached. When energies are further
increased, they generally decrease in the oscillatory fashion, as has already been
seen in the J = 0 calculations. The slope of the linear rise can be understood in
terms of the Wigner laws (7.16). For J = 0 and 1, it is 2/, where [ is the orbital
angular momentum, and [ = J for initially rotationless states. For J > 2 the slope
should be 3, as was discussed in the previous chapter. Our calculations do follow
the predictions for all J, except J = 2 and 3 have slopes between 2 and 3, but are
bending towards 3 as the-energy is-being lowered. -

Total inelastic cross section displays even simpler behaviour than the one seen for
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Figure 8.17: Energy dependence of inelastic cross sections for "Li + "Liy(v; = 1, 7; =

0): partial waves J = 0 — 10 and total.

the elastic cross sections. The linear rise on the log-log scale with the slope of [ —1/2
(I = J), as the Wigner laws predict (7.17), until a maximum is reached, followed
by a linear decrease (on the log-log scale) with the slope —1. It can be seen on the
graphs of the inelastic probabilities, Figure 8.14 and 8.15, that the probabilities as
a function of collision energy rise and then saturate attaining values close to unity,
for all partial waves. The slope is then a result of the kinematic factor 1/k% in the
expression for the cross section (6.75). This was already discussed for the J = 0
results.

The cross sections for partial waves J > 0 at the energy at which they assume
their maximum value contribute significantly to the overall cross sections. The posi-
tions of maxima can be associated with the heights of the barriers arising from the
centrifugal potential in each partial wave. The positions and heights of the barriers
can be estimated by maximizing the sum of centrifugal and the leading term of the

dispersion potential, —C,,/R™ + I(l + 1)/2uR?. The estimates are then given by

2 23
pn-2(nC,)7=2 2 n
nCop \ ™7
Rmax = 321771 . 1\ . .
(h?l(z + 1)) : .(8, 9)

Taking n = 6, Cs = 3085.54 Enal, and u = 2/3my,;, we obtain results in Table 8.4.
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Positions of the barrier maxima are in the range where interactions are dominated by
dispersion forces, thus confirming the validity of the assumption. Barrier heights are
drawn as vertical lines in Figure 8.16 and 8.17 and are in accord with the positions
of maxima in cross sections for J > 0. Threshold laws in each partial wave J > 0

set in at the collision energies just below the corresponding centrifugal barriers.

Il Viax/K | Rmax/ao
2.78-1073 | 94.25
1.44-1072 | 71.62
4.08-1072 | 60.22
8.79-1072 | 53.00
1.61-1071 | 47.89
2.67-1071 | 44.02
4.11-107' | 40.97

~N O O W N =

Table 8.4: Estimates of the positions Ry., and heights V.. of centrifugal barriers

for the “Li + "Liy collision.

High total inelastic probabilities for all partial waves at energies above the barrier
heights suggest applicability of the Langevin model, described in Chapter 7. An
assumption of the Langevin model is that all the collisions at energies above the
barrier result in a reaction, i.e. inelasticity as we have considered it here. With

n = 6, equation (7.87) reads

31 70\ /3
ainel(E)zm(f‘*) . (8.10)

Total inelastic cross sections for “Li + “Lig(v; = 1,; = 0) are compared to the
predictions by the Langevin model for this reaction, with the atom-diatom Cy taken
same as above, and shown in Figure 8.18. The agreement is excellent above 30 mK.
At this energy over 98% of the fully converged inelastic cross section is accounted
for by partial waves J = 0 — 3 and 99.99% with the further inclusion of the J = 4
partial wave. This means that only three partial waves are needed for an agreement
with a classical model. It is worth emphasising that the Langevin prediction is not
dependent on the reduced mass of the system and depends solely on the isotropic
long-range interactions of the collision partners.

To test that the agreecment between our results and the model is not fortuitous;

we have performed the full scattering calculations starting from the v; = 1,5, = 0
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state of the dimer with another three potentials. Potential ACVTZ is calculated and
constructed in the exactly same manner as the potential we have used so far (5Zuncp),
but with the ab-initio energies calculated using the aug-cc-pCVTZ basis set, see
Chapter 3. This basis set is substantially smaller and less accurate. Long range
forms of both potentials, 5Zuncp and ACVTZ, are identical. We have also employed
the potential of Colavecchia et al. [56] (COLA) and the pairwise-additive potential.
Pairwise-additive parts of all potentials are identical. The energy dependence of
elastic and total inelastic cross sections, with all partial wave contributions, for the
three potentials are plotted in Figure 8.20. They are compared with the predictions
of the Langevin model, using the appropriate Cg coeflicients, in Figure 8.18 and 8.19.

-9 —— elastic: v=1, =0
10 3 —— Inelaslc: v=0 E

. — — Inelastic - Langevin model
N
1 07|0 N ~ ~ \‘-,_'\\ A
. \‘-;_-\*
S
o~ "\\ ",
£ -1 \ ~
L2100 ¥ PN N i
© ACVTZ RN -
.._.\ ~ ~ ~

Figure 8.18: Elastic and total inelastic cross sections for "Li+ "Liz(v; = 1, j; = 0) on
the 5Zuncp and ACVTZ potentials (see text for description) and the inelastic cross

sections in the Langevin model.

The agreement between the total inelastic cross sections calculated using the ACVTZ
potential and the predictions by the Langevin model is again excellent above 30 mK.
The agreement of the cross sections obtained by the COLA and pairwise-additive
potentials with the Langevin model is poorer. The COLA results do seem to follow
the E~'/3 law above 5 mK, but the Langevin model overestimates the cross sections
by & 30%. Results obtained using the additive potential disagree more substantially

with the model. It is possible that the agreement would be better at slightly higher
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Figure 8.19: Elastic and total inelastic cross sections for "Li+ "Liy(v; = 1, 5; = 0) on
the COLA and pairwise-additive potentials (see text for description) and the inelastic

cross sections in the Langevin model.

energies than those converged in this study. The additive potential is shallower and
differs substantially from the other potentials. Although the cross sections obtained
in all four ways agree, within a factor of &~ 1.5 above 10 mK, the differences in the
ultracold limit can be larger than a factor of 10. The sensitivity of the cross sections

in the zero-energy limit is addressed in more detail in Chapter 9.

The ratio of elastic and inelastic cross sections for J = 0 was discussed above
in relation to the cooling dynamics of atom-molecule mixtures. Calculations predict
that the elastic cross sections become larger than the inelastic outside the Wigner
regime, for all potentials considered. This happens above 129 mK for 5Zuncp, 14.8
mK for ACVTZ, and 8 mK for COLA potential. The ratio ge,s/0inel can be as big
as ~ 1.6 for 5Zuncp and slightly over 2 for other potentials. When the inelastic
probability is close to unity, which is an assumption in the Langevin model, the
elastic probability must be close to zero. This means that the elastic cross sections
will never be drastically different than the inelastic, where the Langevin model is

valid.

Converged elastic and vibrationally resolved inelastic cross sections for the dimer

that is initially in the v; = 2, j; = 0 state, with all partial wave contributions, are
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Figure 8.20: Energy dependence of elastic (left) and inelastic (right) cross sections

for “Li + "Liy(v; =

1,7 = 0) on the ACVTZ (top row), COLA (middle row), and

pairwise-additive (PA) potentials (bottom row): partial waves J = 0 — 10 and total.
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plotted in Figure 8.21. Elastic and inelastic cross sections for the v; = 2,5, = 0
and v; = 3, j; = 0 are shown together with the Langevin predictions in Figure 8.22.
The agreement with the model is excellent from 1 mK and 5 mK onwards for the
v; = 2 and v; = 3 initial dimer states, respectively. The Langevin model relies on
the high inelasticity which is also a valid assumption for collisions with molecules
in the vibrationally excited states. Elastic cross sections for the v; = 2,j; = 0 are
larger than the total inelastic ones above &~ 15 mK by as much as factor of 2. For
v; = 3,7; = 0, the elastic cross sections are never significantly larger than the total

inelastic, but are comparable above ~ 10 mK.
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Figure 8.21: Energy dependence of elastic (left) and vibrationally resolved inelastic
(right) cross sections for "Li + "Lis(v; = 2,j; = 0): partial waves J = 0 — 10 and
total.
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Figure 8.22: Elastic and inelastic (vibrationally resolved and total) cross sections for
"Li+ "Lia(v;, Ji = 0), for v; = 2 (left) and 3 (right), and the inelastic cross sections

in the Langevin model.
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Discrepancies between the Langevin model and the fully converged quantum
calculations come from the fact that the probability of inelasticity is not constant as
a function of collision energy above the centrifugal barrier and it is not exactly zero
below. The high inelasticity above the barrier is provided by the large interstate
couplings at short range. The decay of inelastic probabilities for J > 0 below the
barrier, is fast only for higher partial waves. Resonances and other quantum effects,
such as tunneling and quantum reflection, may be important at particular collision

energies and could result in the deviations from the model.

8.3.4 Comparison with some insertion reactions

The reaction “Li + "Li, has no barrier for either linear or perpendicular approach.
The potential energy surface involves a deep well and indicates a possible insertion
reaction mechanism proceeding via complex formation. It is therefore interesting to
compare the scattering results obtained above with some other insertion reactions
that have been studied earlier at ordinary temperatures (~ 100 meV).

Using the same coupled channel method in hyperspherical coordinates, the fol-
lowing insertion reactions have been studied previously: N(2D)+H, — NH+H [202],
O('D)+H, — OH+H [203, 204], and S(?D)-+H, — SH+H [205]. These reactions are
characterized by the high inelastic and reactive probabilities. The lowest vibrational
level is the most populated and integral cross sections decrease with increasing vy.
The rotational product distributions are peaked at a high rotational quantum num-
ber for each v;. The differential cross sections display a forward-backward symmetry.
The above observations can be explained by formation of a collision complex whose
decay is statistical [164]. This means that the probability of any decay mode of the
complex is independent of the mode of its formation. It has recently been shown that
the exact quantum results cited above are in excellent agreement with the results
based on a quantum statistical theory [7]. If we assume that all product states are
equally probable, the distribution of final states in vibrational and rotational levels
would be proportional to the density of available states, which is proportional to the
rotational degeneracy and density of translational states. Therefore, the density of

quantum states for the total energy E in the system is

p(vg, dg) ~ (245 + )\ E = Ey ;. (8.11)
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The normalized statistical probability distribution for “Li+ 7Li, at ultracold energies

is shown in Figure 8.23.
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0.06 F

Ptv)

0.02 +

1.
a0

8 10 12 14 18 18 20 22 24
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Figure 8.23: Vibrational (left) and rotational (right) prior distributions for "Li +

"Lig(v; = 3, j; = 0), at ultralow energies.

We have already seen that the rotational distributions at ultralow energies in
Figure 8.12 sharply contrast with the statistical distribution in Figure 8.23. The
rotational distributions and differential cross sections at 116 mK and 580 mK are
shown in Figure 8.24 and 8.25, respectively, for v; = 1, 2, and 3. Rotational distri-
butions show that lower j values are more probable, unlike statistical predictions.
The differential cross sections are forward-backward peaked with a preference for the
forward direction. The ratio of the cross sections for forward and backward scatter-
ing is between 1 and 2. Sideways scattering is less probable than the scattering at
the poles by a factor ranging between 2.3 and 3.8. Strong asymmetry is evident for
collisions involving dimers in the v; = 1, j; = 0 state at 580 mK, where backward
and sideways scattering are two times smaller than the forward peak. The symmetry
in forward-backward scattering is usually explained in terms of the formation of a
complex whose lifetime is determined by the width of the resonance at the particular
energy. There is usually a sea of such resonances for reactions proceeding over a
deep well in the potential. Angular distribution of products is governed by a par-
ticular partial wave J involved in the resonance. Cross terms involving different J,
which break the symmetry in the direct reactions, in equation (6.74) vanish due to
phase cancellations [7]. Only a few partial waves make a significant contribution at
ultralow energies so that the statistical averaging over J does not work well. At 116

mK, partial waves J = 3 and 4 predominantly (2/3) contribute to the cross sections
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for v; = 1, with some contribution (1/3) also coming from J = 1 and 2. At 580 mK,
the number of contributing partial waves is larger. The asymmetry in differential
cross sections in the collision involving the dimer in the v; = 1, j; = 0 state at 580
mK is probably an effect of insufficient averaging of the J terms in (6.74). It should
also be emphasised that all the insertion reactions cited above have a barrier for
linear approach. In the case of the Li + Li; reaction, the insertion and abstraction
mechanisms are both energetically possible and the two mechanisms may interfere.

We believe that at higher collision energies, the reaction mechanism will give
evidence of complex formation and that it is likely that the vibrational and rota-
tional distributions and differential cross sections assume features predicted by the

statistical models.

8.3.5 Collisions involving rotationally excited states

It was found that collisions between atoms and rotationally excited diatoms can cause
unusually efficient and specific energy transfer when the collision time is longer than
the rotational period [206]. The general rule for this quasiresonant energy transfer
is that the single transition dominates which approximately conserves the internal
energy and satisfies n,Av + n;Aj = 0, where n, and n; are small integers. It was
explained in terms of the adiabatic invariance theory [207] with the assumption that
the coupling between the degrees of freedom is not strong. This phenomenon was
also shown to be present at ultralow collision energies [179, 180, 182, 184, 185, 195].
The inelastic rates for hydrogen molecules in the specific highly excited rotational
states are dramatically suppressed for the energies below threshold of a quasiresonant
transition [180]. It was predicted that helium may be used as a buffer gas to cool such
rotationally excited molecules and that molecules can additionally be cooled by the
evaporative cooling. Prospects for cooling oxygen molecules in the high rotational
levels have also been investigated [195] and it was found that while the inelastic
cross sections decrease with the initial rotational quantum number, pure rotational
inelasticity is very efficient at all values of j [184]. High inelastic rate coefficients have
also been found in other systems at ultralow collision energies [181, 190] and pure

rotational transitions found to be more efficient than the rovibrational transitions.

It was suggested that quasiresonant energy transfer should be general feature
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Figure 8.24: Final rotational distributions (left panels) and differential cross sections
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at collision energy of 116 mK. Differential cross sections are integrated through the

azimuthal angle and summed over the final states in each vibrational manifold and

overall (solid line).
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Figure 8.25: Final rotational distributions (left panels) and differential cross sections

(right panels) for "Li + "Liy(v;, j; = 0) and v; = 1 (top), 2 (middle), and 3 (bottom)

at collision energy of 580 mK. Differential cross sections are integrated through the

azimuthal angle and summed over the final states in each vibrational manifold and

overall (solid line).
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independent of the system [179], although it was predicted that quasiresonant rota-
tional levels for lithium dimer in the electronic singlet state are above the dissociation
limit [195]. We report here the calculations of the elastic and inelastic cross sections
for atom-diatom collisions on the electronic quartet surface of lithium involving ro-
tationally excited dimers. Only the dominant partial wave, that contains the l; = 0
contribution, has been calculated in each case. For a molecule that is initially in
the rotational level j;, it was sufficient to use J = j; and the parity block (—1)% to
estimate the cross sections in the Wigner regime.

We first investigate collisions with the dimer in the v; = 0, j; = 2. The energy
dependence of elastic and inelastic cross sections is shown in Figure 8.26. There
are four open channels in the partial wave J = 2%: three elastic channels with
| = 0, 2, and 4, and one inelastic channel 7 = 0, [ = 2. The eigenphases and
eigenphase sum are shown in Figure 8.27. The minimum in the elastic cross sections
at ~ 10 mK corresponds to a zero of an eigenphase and the peak at ~ 90 mK is
a resonance. The region between 0.6 K and 1.2 K of low inelastic cross sections is
probably a combined effect of two overlapping broad resonances and an eigenphase
being small and having two zeros in this energy interval. The ratio of inelastic and
elastic cross sections for v; = 0, j; = 2 is smaller by an order of magnitude in
comparison with collisions involving other rotationally excited molecules, see Table
8.5. This is probably a consequence of smaller amount of available phase space for
inelasticity. The ultracold limit of the elastic cross section is high in this case. As
will be discussed in the next chapter, cross sections are very sensitive to variations
in the potential and variations in magnitude are larger for collisions involving fewer
inelastic channels.

Product rotational distributions for collisions with the dimer in v; = 0 and j; = 4,
6, 8, and 10 are shown in Figure 8.28. We have calculated the product distributions
for a range of initial states and found that the oscillatory structure present in the
rovibrational transitions for the J = 0 partial wave persists (see the text pertaining
to Figure 8.12). When the molecule is initially in a higher rotational level j;, the
higher j; levels of the products tend to be more populated, like in the statistical
models. A typical product-state distribution for a rovibrationally excited state is
shown in Figure 8.29.

Elastic and total inelastic cross sections and rate coeflicients for the collision
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"Li + "Lig(vy, 5;) at 0.928 nK, for a range of initial states of the dimer, are reported
in Table 8.5, and the complex scattering lengths are given in Table 8.6. We have
found no evidence of the quasiresonant behaviour in inelastic cross sections. There
is no systematic dependence of the total inelastic cross sections on initial quantum
numbers v; and j;. Pure rotational transitions are equally efficient as other rovibra-
tional transitions, unlike the results cited above. This is, comparatively, a strong
coupling case, where pure rotational and rovibrational transitions compete and the

total inelastic probability is large (= 1) outside the Wigner regime.

Uiy Ji | Oelas [€M?] | Oiner [cm?] | Ketas [cm3s™!] | Kiner [cm®s™!] | Ginel/Telas
0,0 |3.39.10712 - 6.16 - 10~12 - -
0,2 |487-10712|6.56-10"10 | 8.85-10"13 | 1.19.107'° 135
0,4 [3.90-10"13|9.55-10"1° | 7.09-107 | 1.73.10°1 2450
0,6 |7.72-10"13|9.42-10"1° | 1.40-10"8 | 1.71-10°'° 1220
0,8 | 1.57-10712 | 2.04-10° | 2.85-10"3 | 3.71-107° 1300
0,10 | 9.26-10"13 | 2.55-10° | 1.68-10"1% | 4.63-10"1° 2750
1,0 | 1.37-107'2 | 3.09-1079 | 2.49 10" | 5.61-1071° 2260
1,2 |2.05-107!2| 3.00-107° | 3.72-10"13 | 5.45.10710 1460
1,4 | 800-1071 | 1.14-107% | 1.45-10"% | 2.07-1071° 1425
1,6 | 8.46-10713 | 1.43-107° 1.54-10"13 2.60- 10710 1690
1,8 | 1.74-107'2 | 1.96-10° | 3.16-10"13 | 3.56-1071 1130
1,10 | 1.38-10712 | 1.53-10"% | 2.51-10"1% | 2.78-10"10 1110
2,0 | 5.17-10713 | 4.77-107° | 9.39.10"4 | 8.67 10" 920
2,2 [1.02-10712| 1.96-10° | 1.85-10"13 | 3.56-10"% 1920
2,4 [ 1.25-10712| 1.56-107° | 2.27-10"13 | 2.83.10"10 1250
2,6 | 88310713 | 1.48-107° | 1.60-107'3 | 2.69-1071° 1680
2,8 [9.85-10"13| 1.87-10=° | 1.79-10"'® | 3.40-10-'° 1900
2,10 | 1.32-10712 | 1.95-10° | 2.40-10"'® | 3.54.10"!° 1480
3,0 [9.29-10"13 | 8.57-10"1° | 1.69-10"1® | 1.56-10"° 920
3,2 [1.06-10712 | 1.43-10=° | 1.93-107'* | 2.60-10"1° 1350
3,4 [1.16-10712 | 2.42-10° | 2.11-107'% | 4.40-1071° 2090
3,6 |1.77-10712 | 2.61-10° | 3.22.10713 | 4.74.107%0 1470
3,8 [255-10712 | 3.85-10"° | 4.63-10"13 | 6.99.10~10 1510
3,10 [ 1.27-10712 | 1.96-10° | 2.31-10"13 | 3.56.10~10 1540

Table 8.5: Elastic and total inelastic cross sections and rate coeflicients for
"Li + "Lig(v;, 7;) at the collision energy of 0.928 nK for different initial states of

the molecule.



vi, Ji | Re(a) [nm] | =Im(a) [nm] | —Im(a)/Re(a)
0,0 5.20 - -
0, 2 —6.18 0.704 —0.114
0, 4 1.44 1.02 0.708
0,6 2.27 1.00 0.441
0,8 2.78 2.18 0.784
0, 10 0.0635 2.71 42.7
1,0 —0.199 3.30 —16.6
1, 2 2.47 3.19 1.29
1,4 2.21 1.22 0.552
1,6 2.10 1.52 0.724
1,8 3.08 2.09 0.679
1, 10 2.89 1.63 0.564
2,0 1.96 0.509 0.260
2,2 1.95 2.08 1.07
2,4 2.68 1.67 0.623
2,6 2.13 1.58 0.742
2,8 1.96 1.99 1.02
2,10 2.48 2.08 0.839
3,0 2.56 0.914 0.357
3, 2 2.47 1.53 0.619
3, 4 1.62 2.58 1.59
3,6 2.52 2.78 1.10
3,8 1.87 4.10 2.19
3,10 2.41 2.07 0.859
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Table 8.6: Complex scattering lengths for "Li + "Liy(v;, j;) for different initial states

of the molecule.
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8.4 Collisions in fermionic system

This section deals with the fermionic analogue of the atom-exchange collision studied

in the previous section,

®Li + °Liy — °Li + ®Li,. (8.12)

The process involves three fermionic ®Li nuclei and we study atom-molecule collisions
at energies between 1 nK and 1 K.

The results are presented in the similar order to that of the bosonic system.
Calculations cover the elastic and inelastic cross sections for partial waves J = 0% —

11~.

8.4.1 Convergence of cross sections: J =1~

The dominant contribution at ultracold collision energies in the atom-molecule colli-
sions involving three fermions comes from the orbital angular momentum [ = 0, when
approach of the atom and molecule is not suppressed by the centrifugal barrier. We
are primarily interested in the vibrational and rotational relaxation of the lithium
dimer in collisions ®Li + ®Li,. Here we test the convergence of the cross sections for
the initial molecular states v; = 1, 2, and 3 and the lowest rotational level j; = 1.
The dominant contribution is contained in the partial wave J = 17, as can be seen
from Table 8.1.

Convergence parameters for bosonic and fermionic systems are similar, but the
J = 17 partial wave makes the calculations on the fermionic system substantially
more time-consuming than in the bosonic, where J = 0% contains the dominant
contribution. The surface hamiltonian (6.47) needs to be diagonalized twice in each
sector, for 2 = 0 and 1, and the coupled equations contain functions of both 2, so
the size of the matrix propagated for each collision energy is larger.

Positions of the levels in ®Liy are changed in comparison with “Li; due to the
difference in masses of the nuclei and the quantum numbers allowed are different
due to symmetry. We, therefore, test the convergence of cross sections with respect
to the number of basis functions NV, for 2 = 0 and 1, and the propagation distance in

hyperspherical coordinates, pmax. Other convergence parameters are kept unchanged

from bosonic system.
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The largest basis set employed here and limited by the requirement for good
matching (one part in 1000) at the matching radius pmax = 45 a¢ contains N = 85
basis functions for 2 = 0 and 85 basis functions for 2 = 1. Asymptotically, they
match onto the bound levels of the dimer with v = 0, 1, 2, 3, 4, 5, 6, and 7, and
the rotational levels up to jnax = 31, 27, 25, 23, 19, 17, 13, and 7, respectively. The
cut-off in energy is just below the v = 8, 7 = 0 level of the dimer. The calculation of
this basis set, keeping K., same as for bosons, results in two diagonalisations per
sector of the matrices that vary in size between 1220 and 2162 for €2 = 0 and 1220
and 2154 for 2 = 1. The other two basis sets comprise of N = 74 and N = 64 basis
functions, for both €2 values, and match onto the bound states of dimer below the
v="7,5 =0 level (Jmax = 29, 27, 25, 21, 17, 13, 9) and below the v = 6,5 = 0 level
(jmax = 29, 25, 23, 19, 15, 11), respectively.

Vibrationally resolved elastic and total inelastic cross sections are reported in
Table 8.7. Variations of the cross sections with the basis set are smaller in comparison
to the bosonic system, see Table 8.3, except for the elastic cross sections for v = 0,
j = 1. The largest deviation of cross sections calculated using the N = 85 basis
from those using the N = 74 basis is & 13.3%. The propagation distance in the
basis set using N = 74 channels can be reduced to pm.y = 40 ap without losing
substantially in the accuracy of the projections onto the Fock coordinates at that
distance. The differences in the calculated cross sections extracted at pma, = 40 ag
are within 10% of those obtained from matching at py.x = 45 ag. Rotational spacing
is larger in the dimer made of fermionic atoms compared to that of bosonic atoms,
so neglecting rotational transitions at larger distances than the matching radius is a
better approximation than in the bosonic system.

Individual inelastic state-to-state cross sections for the three basis sets and the
dimer in the v; = 1, j; = 1 state are shown in Figure 8.30. We believe that all cross
sections are converged to better than 10% except in the regions of rapid variation of
cross sections with collision energy. The convergence slightly improves with increase
in collision energy, outside the threshold region.

The adiabatic energies of the hypersurface hamiltonian (6.47) for Q = 1 are
plotted as a function of hyperradius in Figure 8.31. They are raised in the energy
compared to {2 — 0. They vary smoothly with numerous avoided crossings.

The largest basis, N = 85, is employed in all the subsequent calculations.
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(vs, v5) N = 64 N=74 | N =74, pmax = 40 aq N =85
(0,0) |2.338-107'! | 2.883- 10712 2.570 - 10712 2.204 - 10712
(1,1) |6.426-1071% | 6.198-10713 5.957 - 10712 6.087 - 10713
(1,0) | 1.384-107° | 1.383.107° 1.347 - 107° 1.397-107°
(2,2) |1.618-10712 | 1.577-10712 1.578 - 10712 1.667 - 10712
(2,1) |8.202-1071° | 855310710 8.679 - 10710 8.823-10710
(2,0) | 1.435-107% | 1.351-107° 1.398 - 10710 1.373-107°
(3,3) |1.021-1072 | 1.391-107'2 1.522-10712 1.462 - 107!2
(3,2) |3.391-107'° | 6.413-1071° 6.670 - 10710 7.088 - 10710
(3,1) | 5.290-1071% | 7.995.10-10 8.486 - 10710 7.553 - 10710
(3,0) |8.714-1071° | 1.125-107° 1.233-107° 1.298-107°

Table 8.7: Convergence of vibrationally resolved cross sections, 3_; o(vifi — vsir)
for j; = 1 in cm?, for SLi+ ®Li, at the collision energy of 0.928 nK. puax = 45 ag for

all bases unless otherwise indicated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
j, (rotational quantum number)

Figure 8.30: Convergence of inelastic state-to-state cross sections for ®Li + ®Li,(v; =
1, j; = 1) and vy = 0 at the collision energy of 0.928 mK. NV is the number of channels

in the basis.
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Figure 8.31: Eigenvalues (N = 85) of the hypersurface hamiltonian (6.47) for @ =1

for three ®Li nuclei in the electronic quartet ground state.

8.4.2 Vibrational relaxation cross sections and rate coeffi-

cients: J =1

In this subsection we report the results of scattering calculations for atom-diatom
collisions involving three identical ®Li nuclei for the J = 1~ partial wave. As dis-
cussed earlier, see Table 8.1, it contains contributions of the initial orbital angular
momenta [; = 0 and 2, when dimer is initially in the rotational ground state j; = 1.
There is no symmetry that would suppress the s-wave scattering, as in the scattering
of two identical fermionic atoms.

We have calculated the elastic and inelastic cross sections for collisions involving
the dimer in »; = 0, 1, 2, and 3 and j; = 1, in the collision energy interval from 1
nK to 1K at more than 150 energies. The energy dependence of the cross sections is
plotted in Figure 8.32, 8.34, 8.35, and 8.36.

When the molecule is initially in the lowest bound state, v; = 0, j; = 1, only
elastic scattering is possible in the collision energy range studied. The v =0, j =3
threshold is at 4.46 K. Elastic cross section in the zero-energy limit is similar to the
corresponding one in the bosonic system. Threshold regime sets in at millikelvin
energies. At higher energies the cross section exhibits several minima, but does not

drop down to zero as in the bosonic system. The difference is that there are two open
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channels in this case, corresponding to the initial and final orbital angular momenta
[ =0 and 2. In the same figure are shown partial cross sections for scattering from
and to individual open channels. The cross section o(l; = 0 — Iy = 0) dominates in
the ultracold limit. The scattering length is defined in terms of the matrix element
involved in this transition, 7}, ;» using equation (7.53). Its convergence is shown in
the inset in Figure 8.32. The o(l; = 0 — Iy = 2) (same as o(l; =2 — I; = 0) due to
the principle of microscopic reversibility and identical energy) and o(l; = 2 — Iy = 2)
enter threshold regime below 10 mK with the energy dependence following the E? and
E? laws, respectively. The cross sections, o(l; =0 = I; = 2) and o(l; =2 = I; = 2),
exhibit minima at =~ 200 mK and 650 mK. At each of these energies, an eigenphase
passes through a multiple of 7 and the eigenphase sum increases, giving evidence of
a resonance strongly modified by the variations of the background. They are shown
in Figure 8.33. The other minimum, at =~ 70 mK, may also be associated with a
zero of an eigenphase, although the overall correspondence is weaker than in the
bosonic system where only one channel is open for elastic scattering from the lowest

rovibrational state.
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Figure 8.32: Energy dependence of cross sections for ®Li + ®Liy(v; = 0,5 = 1).

Convergence of scattering length shown in the inset.

Energy dependence of elastic and inclastic cross sections for vibrationally excited

dimers v; = 1 — 3, shown in Figure 8.34, 8.35, and 8.36, follows Wigner laws below
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Figure 8.33: Energy dependence of eigenphases (left) and eigenphase sum (right) for
6L1 + GLiQ(’Ui = O,ji = 1)

millikelvin energies. At 1 nK, elastic cross sections are slightly lower than 10712 cm?.

Total inelastic cross sections are about three orders of magnitude larger. At higher
energies, outside the threshold regime, elastic cross sections for the partial wave
J = 17 oscillate about the total inelastic ones. Undulations are less pronounced
in comparison with the bosonic system because two, instead of one, open channels
are involved. The | = 2 component starts contributing at energies above 10 mK.
Inelastic probabilities saturate and energy dependence becomes dominated by the
kinematic factor 1/k? from the expression for cross section (6.75), as in the bosonic
system. Convergence of the complex scattering lengths is shown in the insets on the
figures. They are extracted from the elastic 7' matrix element with [, y = 0, using
equation (7.53).

Vibrationally resolved cross sections for v; = 2 and 3 favour lower vibrational lev-
els with the constant relative magnitude below 10 mK. Final rotational distributions
at 0.928 nK for v; = 1, 2, and 3 are plotted in Figure 8.37. They all show oscillatory
patterns already discussed above. The relative magnitudes do not change below the
[ = 2 threshold.

Elastic and inelastic cross sections for atom-molecule collisions involving three
fermions are in the similar range as in the bosonic system, differing by less than
an order of magnitude. Energy dependence is qualitatively similar and discussions
of last section apply also to the fermionic system. As stated in the introduction of
this chapter, it was observed that fermionic molecules in weakly bound states with

a large positive atom-atom scattering length have long lifetimes [165, 173—175],
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while, for example, in an experiment involving fermionic atoms, *°K, with a smaller
atom-atom scattering length collisional decay is rapid [169]. Our calculations for
low-lying bound states contrast with the above results for weakly bound dimers.
They do not depend on the atom-atom scattering length. Atom-atom scattering
length is completely determined only if the long-range part of the diatomic potential
is included in the system. Atoms interact with their long-range interactions near
the three-body dissociation limit where the wavefunction for collisions in the deeply-
bound states is negligible. That the inelastic rate coeflicient never changes by several
orders of magnitude for the fermionic atom-diatom systems, where the diatom is in
a low-lying rovibrational level, will be evident from the potential sensitivity results

in the next chapter.

8.4.3 Vibrational relaxation cross sections and rate coeffi-

cients: J # 1~

We have seen in the study of the bosonic system that the maximum orbital angular
momentum quantum number determines the convergence in the partial wave expan-
sion of the wavefunction. For an initial rotational state of the molecule j; = 1, there

are three values of orbital angular momentum, J — 1, J, and J + 1, in each partial
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wave J > 0. They divide according to parity into two blocks, | = J — 1 and J + 1
belong to the so-called parity favoured block of J and [ = J to the parity unfavoured
block of J. We have included all the partial waves that include contributions from
| <10, namely: 0%,17,2% 37, ..., 11 (parity favoured series) and 1*,2~,3%, ..., 10~
(parity unfavoured series). For each € value, we included all the basis functions that
asymptotically converge in the same set of rovibrational states of the dimer that
were included for 2 = 0 and 1 earlier. The number of basis functions for 2 = 0 to
11 is: 85, 85, 77, 77, 69, 69, 61, 61, 53, 53, 46, and 46. The basis sets have been
calculated for both parities which resulted in diagonalisation of matrices with the
dimensions ranging from 1180 to 2162 for 2 = 0 and from 1027 to 1863 for €2 = 11.
The size of the log-derivative matrix that is propagated to solve the system of cou-
pled equations for each partial wave at each collision energy varies between 85 for
J = 0" to 782 for J = 11~ in the parity favoured series and from 85 for J = 17" to
651 for J = 107 in the parity unfavoured series of partial wave blocks. The other
convergence parameters were kept same as in the J = 17 calculations.

Elastic matrix elements and the total inelastic probabilities, k?c /7, for the molecule
initially in v = 1 and v = 3 states are plotted as a function of J in Figure 8.38 and
8.39. Contributions of both parity blocks were added together for each partial wave
J. Elastic cross sections for J = 10 and 11 partial waves at 580 mK contribute 3.06%
and 0.863% to the overall elastic cross section for v; = 1, and 1.67% and 0.457% for
v; = 3. The total inelastic cross sections at 580 mK are better converged. Cross
sections for J = 10 and 11 partial waves contribute 0.0756% and 0.00268% for v; = 1
and 0.242% and 0.00566% for v; = 3 to the overall total inelastic cross section. Due
to the different threshold laws, the situation reverses at ultracold temperatures and
inelastic cross sections converge faster with J. Partial cross sections for each [ drop
off according to Wigner laws for collision energies below the centrifugal barriers for
corresponding I’s. Since fermions have lower mass than bosons in lithium, the barrier
heights are higher at a given energy and the cross sections for fermions are, therefore,
better converged here for a given [.,.

Elastic and inelastic cross sections for a molecule initially in the v; = 1, j; =1
state are shown in Figure 8.40 as a function of collision energy in the interval between
10 pK and-580 mK. Contributions of all partial waves are plotted separately. The

range of the applicability of threshold laws are related to the positions of centrifugal
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barriers for [ > 0. The barrier maxima are plotted in the figure as vertical bars, as
estimated using equation (8.9). They are 26% higher than the corresponding barriers

in the bosonic system, given in Table 8.4.

all parity favoured J blocks

w0 L | 10 b all parity unfavoured J biocks

o
all parity favoured J blocks 1 10 r 1

Figure 8.40: Energy dependence of elastic (top row) and inelastic (bottom row) cross

sections for ®Li + ®Liy(v; = 1, j; = 1): partial waves J = 0% — 11~ and total.

The energy dependence of inelastic cross sections in each partial wave J > 1 is
again simply described by the threshold law E%*1/2 below the centrifugal barrier
and [; = J — 1, and the E~! law above the barrier for [; = J + 1. The origin of the
laws is described in the bosonic system. The contributions of different initial orbital
angular momenta for J = 0%,17,2% are plotted in Figure 8.41.

The probabilities for inelastic transitions for J > 0 are very high, &~ 90%, below
the cut-off in J and above 100 mK, see Figure 8.38 and 8.39. This suggests the appli-
cability of the classical Langevin model. Elastic and vibrationally resolved and total
inelastic cross sections are plotted together with the Langevin model predictions in
Figure 8.42. The agreement between the model and the total inelastic cross sections

is excellent already at millikelvin energies. Since the Langevin model depends on
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the dispersion coeflicient Cg only, the difference between masses of lithium bosons
and fermions and different level structure in the dimers makes little difference to the

total inelastic rates at these collision energies.
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Figure 8.42: Elastic and total inelastic cross sections for ®Li + ®Liy(v; = 1,7 = 1),

and the inelastic cross sections in the Langevin model.

We check the accuracy of the J = 1~ cross sections at 1 mK and 0.1 mK here.
At 1 mK, contribution of all partial waves other than the J = 1~ to the overall cross
sections is 6.06% for elastic and 40.9% for inelastic. At 0.1 mK;, the contributions

are 0.0536% and 4.86% for the elastic and total inelastic cross sections, respectively.
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In Figure 8.43, we show the partial wave contributions of elastic and inelastic
cross sections for collisions with the dimer in the v; = 2, j; = 1 state. The energy
dependence of inelastic cross section proves to be qualitatively simple again (see the
discussion given above for v; = 1). It may be noticed that the molecules do not

preferentially scatter to the lowest vibrational state for all partial waves.
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Figure 8.43: Energy dependence of elastic (top row) and inelastic (bottom row) cross

sections for SLi + SLiy(v; = 2, j; = 1): partial waves J = 0t — 11~ and total.

The elastic and vibrationally resolved and total inelastic cross sections for col-
lisions with the dimer in its v; = 2, j; = 1 and v; = 3, j; = 1 states are shown in
Figure 8.44. The agreement with the Langevin model is excellent for both initial
dimer states above 10 mK. Elastic cross section becomes slightly larger than the
inelastic at ~ 60 mK, 290 mK, and 310 mK for the initial v = 1, 2, and 3 states,
respectively. Since the inelastic probability is close to 1 when the Langevin model is
valid, elastic probability must be close to zero, which lcaves little room for differences,

see equations (6.73) and (6.75).
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Figure 8.44: Elastic and inelastic (vibrationally resolved and total) cross sections for
8Li + %Lig(v;, j; = 1), for v; = 2 (left) and 3 (right), and the inelastic cross sections

in the Langevin model.

8.4.4 Comparison with some insertion reactions

The observations made in the comparison of the scattering results for the bosonic
system with some insertion reactions in subsection 8.3.4 apply for the fermionic

system as well.

Final vibrational and rotational distributions, shown in Figure 8.45 and 8.46
at 116 mK and 580 mK respectively, for different initial dimer excitations v;, are
non-statistical. The lowest vibrational level is the most populated one. Oscillations
observed in the rotational distributions in each partial wave are washed out in the
sum over partial waves at higher collision energies, but distributions are not peaked

at high j’s, as one would expect using statistical arguments.

The only qualitative difference between the bosonic and fermionic systems is
noticeable in the differential cross sections, shown in Figure 8.45 and 8.46 at 116
mK and 580 mK, for different initial dimer states v;. The forward and backward
peaks are less pronounced. The ratio of the differential cross sections at the poles
and for the sideways scattering at 90° is in case of the bosonic system between 2.3
and 3.8, and it is between 1.5 and 2.1 for the fermionic system. That the forward
and backward peak become wider and smaller with increasing j; was already noticed
in the O(*D) + Hy — OH + H reaction [6]. Differential cross sections in the figures
show a slight preference for the forward scattering for most of the initial dimer

states studied here. Ratio of forward and backward peaks ranges between 0.7 and
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2.1. Again the asymmetry may result from the insufficient number of partial waves

for the J averaging in equation (6.74) to be complete.

8.4.5 Collisions involving rotationally excited states

We have found no evidence of quasiresonant transitions in the bosonic system and
we found the pure rotational and rovibrational state-to-state transitions equally effi-
cient. The same is true in the fermionic system. Product rotational distributions for
collisions of atoms and rotationally excited dimers are shown in Figure 8.47. There
is again a slight preference for higher j; levels, on top of the oscillatory behaviour
discussed earlier (in connection with Figure 8.12). A typical product state distribu-
tion for collisions involving a rotationally and vibrationally excited dimer is shown
in Figure 8.48.

Finally, we present the elastic and total inelastic cross sections and rate coeffi-
cients for collisions SLi + %Liy(v;, 5;), for a range of initial states of the dimer, at the
collision energy of 0.928 nK in Table 8.8. Complex scattering lengths are given in
Table 8.9. For all initial dimer states, we found the inelastic cross sections to be
about three orders of magnitude larger than elastic at 1 nK. There is no system-
atic dependence of the inelastic cross sections on initial quantum number v; and j;.
Molecules of bosonic and fermionic lithium atoms in excited rovibrational states have

comparable stability against collisional decay with an identical atom.
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Ui, Ji | Oetas [cm?] | Oinet [cm?] | kelas [cm3s™] | Kinel [cm®s™!] | Oinet/Telas
0,1 |220 10712 - 4,32 10713 - -
0,3 | 1.11-107'2|2.62-10719| 21810713 | 5.14.1071 236
0,5 {9.27-107% | 2.17-107° | 1.82-1071 | 4.26-1071° 2340
0,7 [1.32-107'® | 89010719 | 2.59.10" | 1.75-1071° 6740
0,9 | 1.07-107*2 | 1.81-107° | 2.10-10"1 | 3.55.1071° 1690
0,11 1.77-107'2 | 2.37-107° | 3.47-10713 | 4.65-1071 1340
1,1 [6.09-10° | 1.40-10"° | 1.19-107'% | 2.75.1071° 2300
1,3 |1.21-1072| 1.21-107° | 2.37-107"® | 2.37-107% 1000
;5 [193-10712 | 2.59-107° | 3.79-10"1 | 5.08-1071° 1340
1,7 | 1.43-107'2| 2.02-107° | 2.81-107% | 3.96.-1071° 1410
1,9 [ 1.74-107'2 | 1.96-107° | 3.41-107'® | 3.85-1071 1130
1,11 | 1.27-10712 | 2.31-107° | 2.49-10"1% | 4.53.10710 1820
2,1 [1.67-10712 | 2.26-107°% | 3.28.10713 | 4.43-10710 1350
2,3 [ 1.14-107'2 | 2.23-1079 | 2.24-1071 | 4.38-.10710 1960
2,5 [2.04-10712 | 2.80-107° | 4.00-10"1 | 5.49.10710 1370
2,7 | 1.00-10712 | 2.52-107° | 1.96-1071% | 4.94.10710 2520
2,9 |1.46-10712 | 3.20-107° | 2.86-10713 | 6.28.10710 2190
2,11 |7.72-10713 | 1.77-107° | 1.51-1071 | 3.47-107% 2290
3,1 [1.46-10712| 2.76-107° | 2.86-10713 | 5.42.1071° 1890
3,3 1262-10712| 257-107° | 5.14.-10° | 5.04.1071° 981
3,5 (1.87-10712| 2.71-107° | 3.67-1071 | 5.32.10710 1450
3,7 |1.31-1072 | 2.77-107° | 2.57-107% | 5.43.1071° 2110
3,9 | 1.17-10712 | 2.10-107° | 2.30-1071 | 4.12.10710 1790
3,11 | 6.92-1071% | 2.00-107% | 1.36-1071 | 3.92.10710 2890

Table 8.8: Elastic and total inelastic cross sections and rate coefficients for

8Li + ®Lis(vy, j;) at the collision energy of 0.928 nK for different initial states of

the molecule.




vi, 7 | Re(a) [nm] | =Im(a) [nm] | —Im(a)/Re(a)
0, 1 419 _ _
0,3 2.96 0.260 0.0878
0,5 1.68 2.14 1.27
0,7 0.532 0.877 1.65
0,9 2.31 1.78 0.772
0, 11 2.94 2.34 0.797
1,1 1.72 1.38 0.803
1,3 2.86 1.19 0.415
1,5 2.98 2.55 0.856
1,7 2.73 2.00 0.733
1,9 2.21 2.28 1.03
1,11 2.06 1.41 0.687
2,1 2.88 2.22 0.772
2,3 1.88 2.35 1.25
2,5 9.94 9.76 0.940
2,7 1.34 2.48 1.85
2,9 1.30 3.15 2.43
2,11 1.76 1.74 0.991
3,1 2.05 2.72 1.33
3, 3 3.80 2.54 0.668
3,5 2.78 2.67 0.961
3,7 1.74 2.73 1.57
3,9 2.23 2.07 0.929
3, 11 1.27 1.97 1.55
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Table 8.9: Complex scattering lengths for 8Li + %Liy(v;, 7;) for different initial states

of the molecule.
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8.5 Collisions in isotopic mixtures

In this section, we study the reactive atom-diatom collisions in isotopic mixtures of
lithium at collision energies below 1 K. There are four reactive collision systems that

can be constructed from two lithium isotopes:

Li + SLi"Li, (8.13)
SLi+ "Li,, (8.14)
Li + SLi"Li, (8.15)
Li + %Li,. (8.16)

The novel feature in these systems is the possibility of a chemical reaction. The
outcome of a collision can result in the formation of two different molecules. We call
the process reactive when the products are different from the reactants, and we call
it inelastic or elastic when the products and reactants are the same species. The
ratio of cross sections for each of the outcomes is called the branching ratio.

Reactive processes in the systems (8.13) and (8.16) are exothermic because of the
difference in zero-point energy of the reactant and product molecules (see the level
diagram in Appendix A). From the viewpoint of formation of cold molecular systems
from atoms or in the presence of atoms, it is interesting to note that a reaction is
possible even from the molecular ground state and is likely to result in trap loss.

In this section we present the elastic, inelastic and reactive cross sections for the
above systems, (8.13)—(8.16), where the dimer is in a low-lying rovibrational state.
We are particularly interested in the sum of all transitions that lead to a kinetic
energy release. The sum of all inelastic and reactive cross sections, we call, in this
section, the loss cross section.

The symmetry under exchange of identical nuclei and how to implement it has
already been discussed at the beginning of this chapter. First two systems, (8.13)
and (8.14), consist of two bosons and a fermion and they share a common basis for
use in the scattering calculations. Transition probabilities of the two processes at a
given energy are related by the principle of microscopic reversibility [148]. The same

is valid for the systems of two fermions and one boson, (8.15) and (8.16).
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8.5.1 Convergence of cross sections

Convergence has not been studied separately for the isotopically mixed systems. We
adopt discretization parameters and the cut-off in the basis set size from bosonic and
fermionic systems with small modifications. The range of ¢ € [0, 7] is now full, so the
grid size for integrations in # and ¢ is taken to be 300 x 600. Matching is performed
onto the states of two different arrangements at 45 ag. The cut-off in energy was
again somewhat below the v = 8, 7 = 0 level in each product diatomic as it gave
converged results in scattering calculations in bosonic and fermionic systems. The

sector size and step size were taken the same.

We have computed scattering cross sections for the J = 0% and 1~ partial waves

for both systems and they are presented in the following subsections.

For the system of two bosons and a fermion, we included in our basis the hyper-
surface states that match onto the rovibrational states of the *Li’Li molecule up to
Jmax = 32, 29, 26, 23, 20, 17, 13, and 7, and the states of the "Li; molecule up to
Jmax = 32, 30, 28, 24, 22, 18, 14, and 10, for v = 0 — 7, respectively. This leads to
272 channels for €2 = 0, see Figure 8.49, and 256 for {1 = 1. The evaluation of the
basis functions was performed with the cut-off K., in each sector taken from our
earlier calculations. The size of the basis of pseudo-hyperspherical harmonics varied

between 3660 and 6488.

For the system of two fermions and a boson, we included states that asymptot-
ically match onto the rovibrational states of SLi"Li up to jmax = 32, 29, 27, 24, 21,
17, 14, and 9 for v = 0 — 7, respectively, and the states of 5Liy up to jmsx = 31, 27,
25, 21, 19, 15, 11, and 7, in the same notation. This leads to 263 channels for 2 =0
and 255 for {2 = 1. Evaluation in the pseudohyperspherical harmonics basis ranged

in the diagonalization of matrices whose size varied again between 3660 and 6488.
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Figure 8.49: Eigenvalues (N = 272) of the hypersurface hamiltonian (6.47) for Q =0

for the system of two bosonic and one fermionic nuclei in the electronic quartet

ground state.

8.5.2 Vibrational relaxation cross sections and rate coeffi-
cients: "Li+ SLi'Li

We start by analysing the collision of bosonic lithium atom with a heteronuclear

molecule,

7Li%—GIA7IA(vf,jf)

8.17
GIA +—7IA2(vf,jf) ( )

"Li + °Li"Li(vs, 7)) — {

Two different product molecules are possible. Heteronuclear lithium can have even
and odd j rotational levels populated, while molecules from bosonic atoms populate
only even 7 levels.

When the molecule is initially in the v = 0, 7 = 0 state and the collision energy
is below 2.485 K (v = 0, j = 2 threshold), the accessible states in a non-reactive
collision are the v =0, 7 = 0 and j = 1, the latter being 0.825 K above the ground
state of 8Li"Li. In a reactive collision, the ground state of "Liy, v = 0, j = 0, and the
v =0, j = 2 state, are accessible, the former being 1.822 K below the ground state
of SLi"Li, and the latter 0.477 K above. The level diagram is shown in Appendix A.

The energy dependence of state-to-state cross sections for partial wave J = 0

are shown on the log-log and lin-log scales in Figure 8.50. Reactive cross sections in
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the Wigner regime are particularly low in comparison with the inelastic in bosonic
and fermionic systems. This is also reflected in the imaginary part of the scattering
length that is much smaller than its real part, see Table 8.13, unlike the bosonic
and fermionic lithium systems, but similar to the weakly coupled systems studied by
Dalgarno and co-workers, cited in the introduction of this chapter. The imaginary
part of the scattering length was found to be smaller than the real part in all cases
where the number of inelastic (loss) channels was small, e.g. in the collisions involving
the dimer in v = 0, j = 2 state in the bosonic system, and v = 0, j = 3 in the
fermionic system. Inelastic and reactive cross sections at higher collision energies,

when both events are possible, are comparable in magnitude.

10 - o o ~— 10
—— slastic: v=0, |0
— — inalastic: v=0, =1
10 \\ —— roactive: v0, |=0 1
~. — - - reactive: v;=0, |=2 107
10} 1
-
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Figure 8.50: Energy dependence of elastic, inelastic and reactive cross sections for

"Li+ SLi"Li(v; = 0, 7; = 0) on the log-log scale (left) and lin-log scale (right).

Elastic and reactive cross sections are plotted on the linear scales in Figure 8.51.
The structure in the energy dependence is analysed in terms of the individual eigen-
phases and eigenphase sum, shown in Figure 8.52. At 225 mK, there is a clear
isolated Feshbach resonance. There is another resonance at ~ 470 mK just below
the threshold for the v = 0, j = 2 state, and there are two overlapping resonances
at =~ 630 mK and 725 mK. The cusp in the eigenphase sum at 825 mK corresponds
to the opening of the v = 0, j = 1 channel in the reactant arrangement. The first
minimum in the elastic cross section can evidently be associated with the zero of an
eigenphase and is not a resonance.

Next, we examine the effect of initial rotation of dimer. Partial wave J = 1~
contains the dominant contribution for the collisions involving dimer in the j = 1

rotational level. Product rotational distributions of collision involving dimers in the
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Figure 8.51: Energy dependence of elastic (left) and reactive (right) cross sections

for "Li + SLi"Li(v; = 0, 5; = 0).
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Figure 8.52: Energy dependence of eigenphase sum (left) and individual eigenphases

(right) for "Li+ 8Li’Li(v; = 0, ; = 0).
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4; = 0 and j; = 1 level are compared for v; = 1 and v; = 2 at 0.928 nK in Figure
8.53. Distributions are oscillatory in each case. The shape is strongly dependent on
the initial level. Rotational excitation in the initial dimer state v; = 1 produces an
increase in the elastic, inelastic and reactive cross sections, while for the v; = 2 level,
it produces a decrease in the magnitude of cross sections. Results are summarized

in Table 8.10 and 8.11.

25 25
2 REAGTIVE REACTIVE vzl =t Z o
Ve, )=0 ! Vo 2
vai
g 15
]
‘o
9
T
05
[
0 1 2 3 4 5 6 7 8 9 10 if 12 13 14 15 0 1 2 3 4 5 8 7 B 9 10 11 12 13 14 15
25 25
INELABTIC INELABTIC
2 vl =0 2 vat, =t
E1s E 15
B =2
o ‘°
1 .
© ©
05 0.5
o ¢
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 o 1 2 3 4 5 6 7 8 8 10 1 12 13 14 15
§ (rotatlonal quantum number) J, (rotational quantum number)
REACTIVE ved REACTIVE i v~
2 i vt 1 vl
va2 4] va2
. V=2, |=0 RS V=g =1
b N
I <
© ©
[} 0
01 23 456 7 8 9 101112131415 1617 18 18 20 2% 01 23 456 7 8 9 1011 1213141518 17 18 18 20 21
2 INELASTIC INELASTIC
‘ ve2,1=0
- a !
1 a b
o i ‘o
pl 2
[ 5
1
. - - n | | k&
o o -|

o Be B LB NN LN § i -4l -8 -8 R EIFA ARA SN
01 23 458 7 8 810111213 141516 17 18 1920 21 01 23 4587 8 910111213141561617 18192021
j, (rotational quantum number) j, (rotational guantum number)

Figure 8.53: Final rotational distributions for "Li + SLi’Li(v;, j;) at 1 nK for v; = 1,
Ji = 0 (top left) and v; = 1, j; = 1 (top right), v; = 2, j; = 0 (bottom left) and
v; = 2, j; = 1 (bottom right).

Vibrational distributions for the initial state v; = 2, j; = 0 and j; = 1 are
compared in Figure 8.54. Lower vibrational levels in the inelastic and reactive ar-
rangements tend to be more populated. This means that oscillatory patterns on
average give similar contributions in each vibrational manifold and the number of
available states does give a rough estimate of vibrational distributions.

Statistical predictions for branching ratios predict that the heteronuclear dimer

is a more likely outcome in the collisions (8.17). Using relationship (8.11), dinel/Oreac







Viy Ji | Kelas [cm3s™] | Kioss [cm®s™!]
0,0 | 3.26-107* | 4.05-107'2
1,0 | 243-10713 | 2.09-10710
2,0 | 243-10718 | 4.40-1071°
3,0 | 2.01-107 | 4.00-1071°
0,1 | 885-1071 | 5.06-1071°
1,1 | 2.80-1071 | 5.14-1071°
2,1 | 1.67-10"18 | 2.93.10°1°
3,1 | 1.75-107%3 | 4.23.10710

221

Table 8.11: Elastic and loss rate coefficients for “Li + ®Li"Li(v;, ;) at 0.928 nK.

is 1.752, 1.742, and 1.574, for v; = 1, 2, and 3, respectively, for the dimer that is
initially in 5; = 0 at 1 nK. These branching ratios may be compared with the values
in Table 8.12. The preference for the heteronuclear dimer is present in all above
cases, but the values depart strongly from those of the statistical model. For the
case v; = 0, 5; = 1, the statistical model also predicts preferential formation of the

dimer composed of bosonic atoms, Gine/0reac = 0.199 at ultralow energies.

The loss cross sections are about three orders of magnitude higher than the elas-
tic cross sections for vibrationally excited heteronuclear dimers. The consequences
of that in ultracold atom-molecule mixtures were discussed earlier in the bosonic
and fermionic systems. Complex scattering lengths for the collisions studied in this

subsection are summarized in Table 8.13.

Vs, Ji | Oinel/Oreac | Oloss/Tetas
0,0 - 124
1,0 3.43 860
2,0 1.34 1810
3,0 1.49 1990
0,1 0.185 072
11| 195 1840
21| 258 1750
3,1 2.66 2420

Table 8.12: Branching ratios and ratios of loss and elastic cross sections for "Li +

SLi"Li(v;, 7;) at 0.928 nK.
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v;, 7; | Re(a) [nm] | —Im(a) [nm]
0,0 1.19 0.0233
1,0 3.01 1.19
2,0 2.04 2.52
3,0 1.86 2.29
0,1 5.46 2.90
1,1 1.85 9.94
2,1 2.10 1.68
3,1 1.71 9.15

Table 8.13: Complex scattering lengths for “Li + 8Li"Li(v;, 7).

8.5.3 Vibrational relaxation cross sections and rate coeffi-
cients: °Li+ “Li,

We proceed by studying the collisions of the dimer made of bosonic lithium atoms

with a fermionic atom,

5Ti + 7Li2(vf, jf)

8.18
"Li + SLi"Li(vy, jf) (8.18)

SLi + "Lia(vy, 55) — {
This collision includes the reverse process to the reaction in (8.17). Product molecules
of the collisions (8.17) and (8.18) are same. Initial energetics is different. It is
interesting to see the differences this implies.

The collision with the dimer that is initially in' the v = 0, 5 = 0 state does not
lead to a reaction below 1.822 K. For collisions with the vibrationally excited dimers,
we report the cross sections and rate coeflicients in Table 8.14. The magnitudes are
similar to the other vibrationally excited systems studied in this chapter, with no
systematic dependence on the initial v quantum number. Complex scattering lengths
are given for comparison in Table 8.16.

We compare the product rotational and vibrational distributions for the collision
(8.18), shown in Figure 8.55, with the ones for the collision (8.17), shown in Figure
8.53 and 8.54, for v; = 2, j; = 0. The oscillatory patterns are qualitatively different.
The initial level v = 2, j = 0 of the "Li, is 3.35% lower than the same level in 6Li"Li,
which amounts to 7.12 K. Oscillatory patterns are also different to those for the
collision of the same molecule but with the different isotope, shown in Figure 8:12.

There is no strong preference for even or odd final rotational levels in the product
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Vi, Ji | Oreac/Tinel | Oloss/Telas l
0,0 - -

1,0 | 155 1090
2,0 0.990 2410
3.0 | 142 1600

Table 8.15: Branching ratios and ratios of loss and elastic cross sections for ®Li +

7Li2(’0i,ji) at 0.928 nK.

vi, 7 | Re(a) [nm] | —Im(a) [nm)]
0,0 3.20 ]

1,0 2.90 1.47
2,0 1.16 2.79
3,0 2.45 2.45

Table 8.16: Complex scattering lengths for SLi + "Liy(v;, j;).

Heteronuclear lithium can populate even and odd j rotational levels, while fermionic
molecule populates only odd levels. The ground state heteronuclear molecules are
stable against such collisions up to the collision energy of 0.825 K, where the v = 0,
J =1 level of the heteronuclear dimer becomes energetically accessible.

We show the product rotational and vibrational distributions for collisions with
the dimer in the v; = 2 state and in j; = 0 and j5; = 1 rotational levels in Fig-
ure 8.56 and 8.57. The shape of the inelastic rotational distributions is different
from the one in Figure 8.53, that involved the same dimer in collision with a dif-
ferent (bosonic) lithium isotope. Vibrational distributions show preference for lower
vibrational quantum numbers.

Elastic, inelastic and reactive cross sections and rate coefficients are reported in
Table 8.17 and 8.18. Again, there is little new that can be said in an attempt to
compare them with the values in Table 8.10, for the collision of the same molecule
with a bosonic atom. The effect of the rotational excitation is such that the patterns
in rotational distributions drastically change, see Figure 8.56. Cross sections for
pure rotational transitions are comparable to other state-to-state transitions and the
values of cross sections in the zero-energy limit unpredictably change, but stay within
an order of magnitude, as in all the above vibrationally excited systems we studied.

Complex scattering lengths are reported in Table 8.20.
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Figure 8.56: Final rotational distributions for 8Li + ¢Li"Li(v; = 2, 5;) at 0.928 nK for
ji = 0 (left) and j; = 1 (right).
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Figure 8.57: Final vibrational distribution for ®Li+ SLi"Li(v; = 2, ;) at 0.928 nK for
Ji = 0 (top) and j; = 1 (bottom).




Uiy Ji | etas [cm?] | o8 [cm?] | ofoh [em®] | Oveac [em’]
0,0 |4.71-107'2 - - -

1,0 [6.43-1071%| 1.15-107° - 2.12 10710
2,0 {1.12-107'2 | 1.39-107° - 4.37-10710
3,0 | 1.54-1072 | 1.34-107° - 9.49 - 10710
0,1 |274-10712 - 5.84 10710 -

1,1 [756-10713 | 1.88-107% |1.60-1071°|2.72-1071°
21 (1.19-1072| 1.90-10° |1.67-10710 | 7.21-1071%0
3,1 |1.27-1072 ) 1.47-107° |8.30-107% | 7.76-10710

Table 8.17:

SLi+ SLi’Li(v;, ;) at 0.928 nK.

Table 8.18: Elastic and loss rate coefficients for Li + Li"Li(v;, 5;) at 0.928 nK.

Elastic, inelastic (pure rotational and rovibrational) cross sections for

Vi, Ji | kelas [cm3s™1] | Kioss [cm3sT!]
0,0 | 9.12-10718 -

1,0 | 1.25-1071 | 2.64.10710
2,0 | 2.17-107*® | 3.53-10710
3,0 | 2.98-1071% | 4.43.10°10
0,1 | 531-1071 | 1.13-107'°
1,1 | 1.46-107% | 4.48-1071°
2,1 | 230-1071 | 5.40-1071°
3,1 | 2.46-1071 | 4.51-10710
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Branching ratios and ratios of loss and elastic cross sections are given in Table
8.19. Branching ratios predicted by the statistical model, using 8.11, are 2.182, 2.285,
and 2.017, for v; = 1, 2, and 3, and j; = 0, respectively. Quantitative departures from
the statistical model are large, but the heteronuclear dimer is preferentially formed
in the reaction in each case studied. Loss cross sections are about three orders of
magnitude larger than elastic, except in case of the collision involving dimer initially

in the v = 0, 7 = 1 state, with one available inelastic channel.

Vi, Ji | Oinel/Oreac | Tloss/Telas
0,0 - -
1,0 5.42 2110
2,0 3.18 1630
3,0 1.41 1490
0, 1 - 213
1,1 7.50 3070
2,1 2.87 2350
3,1 2.00 1830

Table 8.19: Branching ratios and ratios of loss and elastic cross sections for ®Li +

SLi’Li(v;, j;) at 0.928 nK.

vi, Ji | Re(a) [nm] | —Im(a) [nm]
0, 0 6.12 -

1,0 1.81 1.36
2,0 2.36 1.82
3,0 2.66 2.29
0,1 4.64 0.586
1,1 0.828 2.31
2,1 1.32 2.79
3,1 2.16 2.33

Table 8.20: Complex scattering lengths for °Li + SLi’Li(v;, j;).
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8.5.5 Vibrational relaxation cross sections and rate coeffi-
cients: "Li+ SLi

Finally, we look at the collision of a dimer composed of fermionic atoms with a

bosonic atom,

7Li + SLiQ(Uf, ]f)

8.20
Li + GLi7Li(7)f, ]f) ( )

"Li + ®Lig(vy, 5;) — {

This collision includes the reverse process to the reaction in (8.19). Due to the
differences of zero-point energies, the collision of atom with the ground-state dimer
(8.20) may result in an exothermic reaction.

The accessible states for the collision involving a ground state dimer below the
collision energy of 2.322 K (threshold for the v = 0, j = 3 state of SLi’Li) are the
states of the heteronuclear dimer v = 0, 7 = 0, 1, and 2. They are 2.643 K, 1.818
K, and 0.1573 K below the ground state of the reactant molecule respectively. The
level diagram is shown in Appendix A.

The energy dependence of the elastic and reactive cross sections for partial wave
J = 17 are shown in Figure 8.58. We again find that the reactive cross sections
in the zero-energy limit are about an order of magnitude lower in comparison with
cases where more inelastic channels are available, see Table 8.21. The imaginary
part of the scattering length is also small in comparison with the collisions involving

vibrationally excited dimers, see Table 8.23.

eigenphase sum /%

10t 10 10t 1wt 1 o 0.5 1
E/K E/K

Figure 8.58: Energy dependence of elastic and reactive cross sections (left) and

eigenphase sum (right) for "Li + °Liy(v; = 0,7, = 1).

The energy dependence of the eigenphase sum in Figure 8.58 gives evidence of
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resonances at collision energies of ~ 200 mK, 370 mK and 570 mK. They may be

associated with the features in the reactive cross sections, shown in Figure 8.59 on

the linear scales.

—— reactive: v,=0, =0
=~ reactive: v=0, =1
— — reactive: v=0, =2

2
[} 05
E/K

"
05 1
E/K

Figure 8.59: Energy dependence of elastic (left) and reactive (right) cross sections

for "Li + ®Liy(v; = 0, 7; = 1) (linear scales).

Collisions involving vibrationally excited dimers usually have a high inelastic

rate coefficient as in the collisions involving other isotopic combinations, see Table

8.21. We again show an example of the oscillatory product rotational distributions

in Figure 8.60 for the case of the v = 2, j = 1 initial dimer state.

Vibrational

distribution in Figure 8.60 shows that lower vibrational levels are more likely to be

populated in collisions at ultralow energies.
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Figure 8.60: Final rotational (left) and
GLig(’Ui = 2;ji = 1) at 0.928 nK.
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vibrational (right) distributions for "Li +

Branching ratios for different initial states of the dimer at collision energy of

0.928 nK are given in Table 8.22. The values depart from the statistical predictions
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Vi, Ji | Oelas [€M2] | Oinet [cm?] | Oreac [cm?] | Ketas [cm3s™Y] | kioss [cm®s™!]
0,1 |1.17-10712 - 2.34.10719| 2.18.10"1% | 4.37.10°!
1,1 {1.62-1072| 1.00-107° | 1.76-107° | 3.02-107* | 5.15.1071°
2,1 166110713 |266-107| 1.12-107° | 1.23-107* | 2.58-1071°
3,1 |805-10713 |529-10"1 | 1.07-10"° | 1.50-107** | 2.98.1071°

Table 8.21: Flastic, inelastic, and reactive cross sections and rate coefficients for

7Ll + ﬁLiQ(’l)i,ji) at 0.928 nK.

of 2.220, 2.184, and 1.984, but show preference for the formation of heteronuclear

dimer with more available states. Loss rates are about three orders of magnitude

more efficient than the elastic rates.

Vi, Ji | Oreac/Tinel | Oloss/Telas
0,1 - 200
1,1 1.76 1710
2,1 4.20 2100
3,1 2.02 1990

Table 8.22: Branching ratios and ratios of loss and elastic cross sections for "Li +

SLig(vs, J;) at 0.928 nK.

8.6 Other atom-diatom alkali collisions

v; | Re(a) [nm] | —Im(a) [nm]
0,1 3.04 0.244
1,1 2.17 2.86
2,1 1.41 1.81
3,1 191 1.66

Table 8.23: Complex scattering lengths for “Li + 8Liy(v;, 7;).

We conclude this chapter by making estimates on the inelastic rate coefficients for

other atom-diatom alkali systems in the clectronic quartet states. We found that the

classical Langevin model gives semi-quantitatively good description of the inelastic
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rate coefficients outside the Wigner regime,

_3_7r_C’é/3 1/6

- : (8.21)
21/6 'u1/2

where Cj is the atom-molecule dispersion coefficient and g is the atom-molecule
reduced mass. The inelastic rate coefficients for different systems will then be pro-
portional to Co/3/u1/2. The resulting inelastic rate coefficients for 2Na, “°K, 87Rb
and *3Cs are lower than that for lithium by factors of 1.81, 1.75, 2.43, and 2.65,
respectively, using Cy coefficients equal to twice the atomic dispersion coefficients
from [208]. The lower bound of applicability of the model may be estimated from
the centrifugal barrier heights for | = 3, which are 6.86 mK, 1.89 mK, 0.537 mK,
and 0.235 mK, for Na, ..., Cs, respectively. The applicability of the model relies on
the assumption that the inelastic probability is high. This implies that the elastic
rate coefficient will not differ by a large factor from the inelastic. Alkali molecules in
low rovibrational states, whether made of bosonic or fermionic atoms, must quickly
be removed from the presence of atoms to prevent collisional loss.

The zero-energy limits of elastic cross sections and inelastic rate coefficients will

be discussed in more detail in the next chapter.




Chapter 9

Potential sensitivity analysis:

Li+ Liy
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9.1 Introduction

The cross sections for elastic atom-atom collisions in the limit of zero collision en-
ergy are determined in terms of a single parameter, the scattering length. Scattering
length is very sensitive to the details of the interaction potential and its properties
and dependence on potential are well established [162]. Only with the best avail-
able ab-initio potentials and the lightest diatomic systems, a theoretical prediction
of the scattering length is within reach today [209]. Otherwise, one must build some
experimental information in the potential or adjust the potential to reproduce the ex-
perimentally determined value of the scattering length in order to obtain a potential
that describes accurately low-energy phenomena.

Atom-molecule collisions in the zero collision-energy limit may be parametrized
by a complex scattering length, whose imaginary part is proportional to the inelastic
probability current density. The dependence of cross sections and scattering length
for ultracold atom-molecule collisions on the potential energy surface has been re-
cently reported for the Na + Nay system [210]. Our aim in this chapter is to explore
the sensitivity of cross sections in the bosonic and fermionic lithium systems at ul-
tracold energies on changes in the potential. This will provide an insight in how good
the potential energy surface needs to be to give us quantitatively accurate results.
It is also desirable to estimate how much one can rely on the quantitative aspects of
the results of the previous chapter.

A simple model that describes the behaviour of the complex scattering length at

low collision energies was given [185] by a radially symmetric complex square well

potential:
- 18
U(r) = 2uV (r) :{ (Ui +il), r<a (9.1)
0, r>a
The phase shift &y (for { = 0) is determined to be
k
dp = —ka + arctan (; tan /~ca> , (9.2)
with
K)2 = k)z -+ U1 + iUQ, (93)

by matching the logarithmic derivatives of the intcrior solution, j;(kr) valid for r < a,

and the general potential-free exterior solution, 7;(kr) —tan(d;)n,(kr) valid for r > a,
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at r = a [156]. From the complex phase shift (9.2), the complex scattering length,
a — i3, is obtained by equating the real and imaginary components in (7.48):

A1 tan(Aa)sech®(Aga) + Ay tanh(Aga) sec? (A a)
B (A2 + A2)(1 + tan?(\ @) tanh®(\ga)]
A tanh(M\a) sec?(Aa) — Ag tan()a)sech?(Nqa)
(A2 + A2)[1 + tan®(A;a) tanh?(\qa)]

/\:)\1+Z)\2: \/U1+'LU2 (96)

When U, < Uy, A\ = VU, and \y = Uy/2\/TU,. The relations (9.4) and (9.5) are

(9.4)

9.5)

where

plotted in Figure 9.1 for different Asa.

3 T T T T T 3

H

Re(a), -Im(a)/ a

Re(a), -Im(a) / a

Aalm Maln

Figure 9.1: Dependence of the complex scattering length for a complex square well

potential of range a on the potential through A\; + ¢thy = /U; + tUs.

In the case A;a = 0, the imaginary part of the scattering length is zero and
the real part has familiar behaviour (7.35) with poles at zero-energy resonances. In
the case of a weak coupling the poles in the real part are removed and the ratio of
imaginary and real part is fairly constant except at the positions of resonances, as
noted in Ref. 185. When the imaginary part of the potential is further increased and
system is more coupled, the sharp tangent-like profiles of the real part become more
blunt.

Having these results in mind, we analyzed the sensitivity of clastic and inelastic

cross sections for the collisions Li + Lia(v;, j; = 0) — Li + Liy(vy, jf), for v; = 0,
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1, 2, and 3, at the collision energy of 0.928 nK to small changes in the potential.
We studied the case of three identical “Li and ®Li nuclei in the next two sections,
respectively. The study of mixed reactions in this manner is prohibitively expensive
in terms of computer time at present.

The problem is set once we decided in what way we make the changes in potential
energy surface and how to parametrize them. The additive part of the three-body
potential energy surface can be quite well determined from the experimental data
by procedures like RKR, as was done for the lithium molecule by Linton et al. [48]
and is built into our potential. The most relevant part of the potential for atom-
molecule collisions with the molecule in low-lying vibrational states is the bottom
of the diatomic potential. This part is accurately determined by an RKR potential
reproducing the energies of low-lying bound states. The ab-initio determination
of the two-body potential is also more accurate than the nonadditive part of the
three-body potential since less nuclei and electrons are involved. Therefore, the
least-known part of the potential is the nonadditive contribution. We decided to
change the lithium three-body potential by multiplying the nonadditive part by a

scaling factor A,
Viot(r1,72,73) = Va(r1) + Va(re) 4+ Va(rs) + AVa(ri, 72, 73). (9.7)

Changes in the well depth and position of the minima at D3, and D, geometries
for several values of parameter A are displayed in Table 9.1. The changes in the
parameter that are considered are small since the nonadditive part is extremely

large at Ds, geometries (see Chapter 2 and 3).

D3y, Deon
A Pmin / A | Vinin / cm™ | 7in / A | Vigin / cm™!
1.01 3.1045 | —4010.1452 | 3.7596 —950.8434
1 3.1111 —3958.4507 | 3.7624 —947.3968
0.9999 | 3.1115 | —3957.9360 | 3.7624 —947.3624
0.999 3.1117 | —3953.3049 | 3.7627 —947.0530
0.99 3.1176 | —3907.1844 | 3.7653 —943.9666

Table 9.1: Dependence of the potential minimum and its position at Dz, and Dy

geometries on the scaling factor ) of the nonadditive part of the potential.
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9.2 Bosonic system

We first performed scattering calculations at collision energy of 0.928 nK on three
identical "Li nuclei on a number of potentials. The scaling parameter A of the
nonadditive part of potential was varied in the range A € [0.98,1.02]. We took 70
steps in range [0.995,1.005], and slightly longer steps outside this region. The total
number of potentials studied was 111.

The dependence of the elastic cross sections, for a molecule that is initially in its
ground state, on the scaling factor A at the collision energy of 0.928 nK is shown
in Figure 9.2. The corresponding scattering length is plotted in Figure 9.3. It is
characterized by the familiar tangent profiles around a mean (7.35). Only the range
[0.995,1.005] is shown, because the chosen grid is not dense enough outside it to

capture the detail of the dependence.

107 T T

1 Il 1
0.995 0.9975 1 1.0025 1.005
A

Figure 9.2: Dependence of the elastic cross sections for “Li + "Liz(v; = 0, j; = 0) on

the scaling factor A of the nonadditive part of the potential.

We estimated the mean scattering length using (7.36) and obtained @ = 2.154 nm
using the isotropic atom-molecule dispersion coefficient Cg = 3085.54 Ej,a$, evaluated
at the diatomic equilibrium distance =~ 4.2 A from the fit discussed in Chapter 5.
The mean, estimated as the zero of the tangent curves, is slightly dependent on the
potential as can be seen in Figure 9.3 and is ~ 3.5 nm in the vicinity of A = 1. The
anisotropy of the potential is neglected in formula (7.36) and it only gives the correct

order of magnitude. The poles may be interpreted as zero-energy resonances [162].
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Figure 9.3: Dependence of the scattering length for “Li + "Liy(v; = 0, j; = 0) on the

scaling factor A of the nonadditive part of the potential.

The profiles of the dependence of scattering length on potential correspond to the
case Aa = 0 in Figure 9.1, i.e. where the imaginary potential is zero and only the

elastic channel open.

The frequency of oscillations of elastic cross section with A varies significantly over
the short range of A values on which the calculations were performed. A relatively
flat region between the poles can be only as wide as a step of 0.0001 in A which
corresponds to 0.5 cm~! at the global minimum of the potential, i.e., as little as one
part in 10 000. This means that ab-initio calculations cannot at present give us any
quantitative information about the magnitude of the elastic cross sections of atom
and molecule in its ground state for this system at ultralow collision energies where

the Wigner threshold laws apply.

The elastic and total inelastic cross sections for collisions of an atom with a
molecule which is initially vibrationally excited are shown in Figures 9.4 and 9.5,
respectively. The variation of cross sections over the range is again oscillatory. The
amplitude and frequency are both reduced compared to the case where the molecule
was in its ground state and the results become less sensitive to the potential with
increasing initial vibrational excitation. The overall behaviour is similar to that in
sodium trimer [210], although the nonadditive part of potential is much stronger in

lithium and results in higher sensitivity.
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The maximum relative deviation of elastic cross sections of scaled potentials
relative to the elastic cross section of the non-scaled potential (A = 1) in the whole set
of the studied potentials is 191%, 110%, and 38.0%, for v; = 1,2, and 3, respectively.
The maximum relative deviation of the inelastic cross sections is 67.9%, 219%, and
57.9%, respective to the same set of initial vibrational levels. The ranges over which
the cross sections vary in the set of studied potentials, reported in Table 9.2, decrease
in a monotonic fashion for all initial levels, except the relative range of inelastic cross

sections for v; = 2. The frequency of oscillations with A is monotonically decreasing

with v;.

Vi | ACeias [cm?] | o304 [cm?] | AGelas/omid

1 |3.844-10712 | 2.063- 10712 1.863

217.329.-1071 | 7.192.10713 1.019

3 16.201-10713|9.723-10713 0.638
Adina [cm?] | ol [em®] | Adina/0fpe

1| 4.186-107° | 3.088-107° 1.356

2| 1.250-107° | 8.982.1071° 1.392

3 |7.251-1071°|9.910.10710 0.732

Table 9.2: Range of variation of elastic and inelastic cross sections Ao, centred on
o™4 for "Li + “Liy(v;, i = 0). Scaling factor of the nonadditive part of potential
A €[0.98,1.02].

Next, we would like to give a quantitative measure of local sensitivity of cross
sections. If we were able to determine the potential with such great accuracy that
the cross section variation on a smooth change in the potential, from ours to the
exact, falls within one oscillatory cycle, the accuracy of the calculations could be
estimated from the maximum slope of the dependence of cross sections on the pa-
rameter characterizing the change. For example, if we were interested in the elastic
and total inelastic cross sections from the v; = 1 state of lithium dimer, the above
condition would roughly imply the determination of the scaling factor to within 0.004
(= 10 oscillations within the studied range), which corresponds to determination of
the global minimum with an error of ~ 20 cm™! or 0.5%. We calculated crudely the
maximum modulus of the slope in the dependence of cross sections on the scaling

factor of the nonadditive part of potential, Ac/AM\, and also relative change of the
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Figure 9.4: Dependence of the elastic cross sections for ‘Li + "Lia(v;, j; = 0) on the

scaling factor A of the nonadditive part of the potential.
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Figure 9.5: Dependence of the total inelastic cross sections for “Li + "Liy(v;, 5; = 0)

on the scaling factor A of the nonadditive part of the potential.
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cross sections with respect to a step in A, (Ac/AX)/o. We report it in Table 9.3.
The dependence of cross sections on the potential monotonically flattens as initial
excitation is increased. Global minimum of the potential V., varies with the scaling
factor as AVpin/AMX ~ 5150 cm™! over the range studied. This means that an error
of 1 cm™ in the well depth could result in errors as high as 62%, 11%, and 2.4%

in elastic, or 44%, 14%, and 2.6% in inelastic cross sections for v; = 1,2, and 3,

respectively.
V; | AGelas/ AN [cm?] | Adine/AN [cm?] | (AGeras/AN) /0 | (AGina/AN) /0
6.125- 1077 5.702-10°° 3203 2245
2 3.656 - 10710 7.063 - 1077 547 698
1.346 - 1071 1.462- 1077 124 135

Table 9.3: Maximum absolute and relative change of elastic and inelastic cross sec-
tions for “Li + "Liy(v;, j; = 0) per step in the scaling factor of the nonadditive part

of potential, A € [0.98,1.02].

We have also tested the dependence of the collision cross section on the potential
by employing potentials that are significantly different at short range. The ACVTZ
potential was constructed in the same manner as our original potential used until now
and described in Chapters 3, 4, and 5, with the only difference that the RCCSD(T)
energies were calculated using aug-cc-pCV'TZ basis set. We used the same long range
part of potential. The COLA potential is the potential obtained by Colavecchia et
al. [56]. We also performed calculations on the pairwise additive potential, obtained
by setting A = 0. Potential characteristics at the minima in Dj; and D, are

summarized in Table 9.4.

Dsp, Doon
potentials | Tmin / A | Viin / em™ | rmin / A | Vigin / cm™t
ACVTZ 3.1250 | —3873.3724 | 3.7801 —930.2916
COLA 3.1016 | —4112.4633 | 3.7423 | —1005.4543
additive 4.1727 | —1001.1000 | 4.1322 —692.8993

Table 9.4: Potential minima and their positions at D3, and Dy, geometries for the

Liz potentials described in the text.

The elastic and inelastic cross sections for the three different potentials at 0.928



241

nK are listed in Table 9.5, together with the relative deviations from the values
obtained using our original potential. The relative changes in elastic and inelastic
cross sections always bear the same sign, but are substantial. This result is not
surprising since the potentials are quite different. The cross sections for v; = 3
have the most consistent values for the different potentials. The ratio giue/elas fOr
ACVTZ potential is the most similar to the values obtained by original potential.
It is interesting to note that the purely additive potential, although it is vastly
different from others, does not give entirely different results compared to the results
with other potentials. This could be rationalized by noting that the long-range parts
of all potentials considered here are very similar and that it is the long range which
predominantly determines the mean value of the scattering length in atom-atom
scattering. If a similar statement is true for atom-molecule scattering, the mean
should not be very different for considered potentials. In the Van der Waals systems,
the exact value oscillates depending on the binding energy and lifetime of virtual
states close to dissociation limit and is sensitive to the potential [42, 43]. These
resonant structures in the zero-energy limit are washed out, in our system, as the
initial excitation of molecule is increased and more inelastic channels open. This
enables a more precise determination of cross sections for higher vibrational levels

and makes them less dependent on the potential energy surface.

The loss of flux from elastic to inelastic channels is described by the imaginary
part of potential in the complex square well potential model described above. The
scattering lengths, extracted from the diagonal T' matrix element at 0.928 nK, are
plotted Figure 9.6. When the molecule is initially in the v; = 1 state, the real part
of the scattering length is predominantly lower than its imaginary part, opposed to
what the complex-square-well model predicts, see Figure 9.1. The maxima in the
imaginary part of the scattering length do still follow the sharp variations in its real
part and can be associated with virtual states appearing near the dissociation limit as
the potential is varied. When the molecule is initially in the v; = 2 and 3 states, the
scattering length recovers the behaviour obtained in the complex-square-well model
with Asa ~ 1. The real part of the scattering length is consistently larger than its
imaginary part and the ratio is fairly constant as is shown in the Figure 9.7. The
ratio of the imaginary and real parts of the scattering length for the three additional

potentials described above is reported in Table 9.6. The results obtained using the




ACVTZ
Vi | Oelas [¢m?] | Oinel [cm?] | Ginet/Telas | Aelas (%] | Avinel [%)]
1]1.29-10713|3.85-10710 2980 —90.6 —87.5
211.03-1072¢ 1.51-107° 1470 99.9 216
31138-10712| 1.36-10* 985 48.4 58.8
COLA
Ui | Oelas [€?] | Oinet [cM?] | Ginet/Tetas | ATelas (%] | ACine [%]
1]435-10713 | 1.64.1071° 377 —68.2 —94.7
413-107'2 | 2.67-107° 646 699 461
9.82-10"13 | 1.87-107° 1900 5.73 118
additive
U; | Oelas [€M?] | Cinet [cM?] | Ginel/Oelas | Aetas (%] | AGiner [%)]
111.31-107'2 ] 4.11-10710 311 —4.15 —86.7
2 |1.67-1071% | 2.42.1071° 14500 —96.8 —49.3
311.96-10712|9.59.10°10 489 111 11.9
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Table 9.5: Elastic and total inelastic cross sections for "Li + "Liy(v;, 7; = 0) using

ACVTZ, COLA, and additive potentials, with comparison to potential described in

Chapter 5. See text for details.

ACVTZ
v; | Re(a) / nm | —Im(a) / nm | —Im(a)/ Re(a)
1 0.926 0.411 0.443
2 2.37 1.61 0.679
2.98 1.45 0.487
COLA
v; | Re(a) / nm | —Im(a) / nm | —Im(e)/ Re(a)
1 1.85 0.175 0.0947
2 4.97 2.85 0.573
3 1.96 1.99 1.013
additive
v; | Re(a) / nm | —Im(a) / nm | —Im(a)/ Re(a)
1 3.20 0.439 0.137
2 2.58 2.57 0.999
3 3.81 1.02 0.269

Table 9.6: Complex scattering lengths for “Li+"Liy(v;, 7; = 0) using ACVTZ, COLA,

and additive potentials, described in the text.
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ACVTZ potential are the most similar to those obtained using our original potential,

as is expected based on the similarity of potentials.

o N A O
T T

Re(a), ~Im(a) / nm

0.98 0}99 1I 1 .2)1 1.02
Figure 9.6: Dependence of the complex scattering length for "Li + "Liy(v;, j; = 0),
with v; = 1, 2, and 3, on the scaling factor A of the nonadditive part of the potential.

The elastic and inelastic cross sections, shown in Figures 9.4 and 9.5, have a
remarkably similar dependence on the potential. The ratio of inelastic to elastic cross
sections is therefore expected to be more stable with respect to potential variation.
As inelastic collisions represent a trap loss mechanism, and elastic ones are important
for efficiency of evaporative cooling, the ratio should preferably be small (<« 1). It
is plotted in Figure 9.8. The oscillatory behaviour is diminished, but is still spread
over an order of magnitude. At the maxima of elastic and inelastic cross sections,
the ratio is at a minimum. This means that, if we had means to tune the potential,
at the maxima of elastic cross sections, the ratio would be more favourable. But the
ratio is consistently large and extremely unfavourable for cooling and storage of such
atom-molecule mixtures.

Finally, we briefly report on the partial and state-to-state cross sections. Vibra-
tionally resolved cross sections for the “Li +7Lig(v;, 0) collisions for v; = 2 and 3 are
plotted in Figure 9.9. Partial cross sections vary more than the total inelastic cross
sections since the latter is a sum and the summation averages out the undulations.

It is clear that over the plotted range the single, double, and triple de-excitations
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Figure 9.7: Dependence of —Im(a)/Re(a) on the scaling factor A of the nonadditive
part of the potential, where a is complex scattering for “Li + "Lis(v;, ; = 0), with

v; = 1 (left), 2, and 3 (right).
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Figure 9.8: Dependence of the ratio of total inelastic and elastic cross sections for
"Li+ "Liy(vs, j; = 0), with v; = 1, 2, and 3, on the scaling factor )\ of the nonadditive
part of the potential.
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compete and the potential must be determined very accurately to be able to order

them in magnitude.

10° - 10"
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Figure 9.9: Dependence of vibrationally resolved cross sections for "Li+ "Lig(v;, 7; =
0) — "Li+ "Lis(vy, all j5) for v; = 2 (left) and 3 (right), and all accessible vy’s, on
the scaling factor A of the nonadditive part of the potential.

Rotational distributions for several scaling factors A are shown in Figures 9.11 and
9.12, for the v; = 1 and 3 states of the molecule, respectively. They are very sensitive
to potential. The relative populations and interference patterns are changed for both
initial states of molecule with a small change in A. The variations of several state-to-
state cross sections with A are shown in Figure 9.10. The underlying structure of the
summed cross sections is smoothly and rapidly varying and the more we sum, the
more these undulations are statistically averaged out and the calculated quantities

becoming more certain, i.e. less potential dependent.

9.3 Fermionic system

In this section, we calculate the cross sections at 0.928 nK in the fermionic system
on a number of scaled potentials and perform a sensitivity analysis in an analogous
manner to the bosonic system in the last section. We took 90 steps in the scaling
factor A of the nonadditive part of the potential with A € [0.98,1.02], with more
steps in the central part of the range.

Since the chosen grid was not as dense, the detail of the A-dependence of elastic
cross sections for collisions of an atom and a molecule in its ground state was not

fully captured and is not shown here. The results do not differ significantly from
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Figure 9.10: Dependence of state-to-state cross sections for “Li + "Lig(v;, j; = 0) —

"Li + "Lis(vy, j;) on the scaling factor A of the nonadditive part of the potential.
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Figure 9.11: Rotational distribution of final states for "Li + "Liy(v; = 1,j; = 0) —

"Li+"Lig(vs = 0, j;) for several values of the scaling factor A of the nonadditive part

of the potential.
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Figure 9.12: Rotational distribution of final states for "Li + "Liy(v; = 3,j; = 0) —
"Li+ "Liy(vy, j5) for several values of the scaling factor A of the nonadditive part of

the potential.

bosonic system qualitatively. The mean scattering length, from formula (7.36), is
~ 4% smaller than in the bosonic system which is not visible on a logarithmic
scale, see Figure 9.2. It is visible from our results that Gribakin’s formula (7.36)

underestimates the scattering length extracted from our calculations.

The dependence of elastic and inelastic cross sections on A, for v; = 1, 2, and
3, are shown in Figures 9.13 and 9.14. The frequency and amplitude of oscillations
are generally decreasing with initial molecular excitation. We proceed by giving the
quantitative measures of potential sensitivity introduced in the previous section. The
maximum deviation of elastic cross sections from that of the non-scaled potential,
in the set of potentials studied, is 288%, 86.4%, and 40.6%, for v; = 1, 2, and 3,
respectively. For the total inelastic cross sections the maximum deviation is 161%,
54.4%, and 38.0%, for the same set of initial molecular states. The ranges in which
the cross sections vary and the widths relative to the cross sections in the centre
of the range are tabulated in Table 9.7. Most of reported numbers decrease with
the initial molecular excitation as in the bosonic system. The highest absolute and
relative change in cross sections per step in A is given in Table 9.8. This can be

used with AVpi/AX ~ 5150 cm™! to estimate how much the cross sections can
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change when the change in the potential results in &~ 1 cm™" at the global minimum.
The estimated relative changes of elastic cross sections are 65%, 8.3%, and 5.4%, for
v; = 1, 2, and 3, respectively. The corresponding set of numbers for inelastic cross
sections is 56%, 6.4%, and 3.6%. Comparison to the bosonic system does not reveal

significant qualitative differences.

Vi | AOqas [cm?] | oM [em?] | Aogas/omd
2.050-10712 | 1.339 - 1012 1.531
1.693-107'? | 2.260- 10713 0.749
1.129 10712 | 1.492.10°13 0.756
Aine [cm?] Uirxr:(ie(li [cm?] | Aoina/ Uirgcie?
3.149-107% | 3.088-107° 1.553

21 2180-107? | 2.119-107° 1.029
1.423-107° | 2.425.107° 0.587

Table 9.7: Range of variation of elastic and inelastic cross sections Ao, centred on
o™ for SLi +5Lis(v;, 5; = 1). Scaling factor of the nonadditive part of potential

A € [0.98,1.02.

Vi | AGelas/ AN [cm?] | Aoipne/AX [em?] | (AGeras/AN) /0 | (AGine/AN) /o
1 5.402 - 1079 6.283-107° 3357 2900
2 1.013-107° 6.934 - 1077 430 332
3 4.965 - 10710 4.310- 1077 280 184

Table 9.8: The maximum absolute and relative change of elastic and inelastic cross
sections for ®Li+5Liy(v;, j; = 1) per step in the scaling factor of the nonadditive part

of potential, A € [0.98,1.02].

The dependence of the scattering length, extracted from the 7" matrix at 0.928
nK, on A is plotted in Figure 9.15. The real part of scattering length is mainly
greater than the imaginary part for all initial levels we studied. In comparison with
the results obtained in the bosonic system in the last section, the imaginary part of
the scattering length is higher. The ratio —Im(a)/Re(a), shown in Figure 9.16, is
therefore also higher. This quantity is expected to be less dependent on the potential
except at the positions of resonances {185).

The ratio of inelastic and elastic cross sections is shown in Figure 9.17 as a
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Figure 9.13: Dependence of the elastic cross sections for ®Li + ®Lis(v;, j; = 1) on the

scaling factor A of the nonadditive part of the potential.
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Figure 9.14: Dependence of the total inelastic cross sections for SLi+ %Liy(v;, 7; = 1)

on the scaling factor A of the nonadditive part of the potential.
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Figure 9.15: Dependence of the complex scattering length for ®Li + °Liy(v;, j; = 1),
with v; = 1, 2, and 3, on the scaling factor A of the nonadditive part of the potential.
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Figure 9.16: Dependence of —Im(a)/Re(a) on the scaling factor A of the nonadditive
part of the potential, where a is complex scattering for ®Li + ®Liy(v;, j; = 1), with

v; =1, 2, and 3.
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function of the scaling factor A\. The importance of this quantity was emphasized
above. Our calculations deliver the value of ~ 1000 with a reasonable certainty,

which is unfavourable for storage and cooling of such atom-molecule mixtures.
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Figure 9.17: Dependence of the ratio of total inelastic and elastic cross sections for
SLi+SLiy(v;, j; = 1), with v; = 1, 2, and 3, on the scaling factor A of the nonadditive
part of the potential.

The dependence of the vibrationally resolved cross section on A is plotted in
Figure 9.18. The total inelastic cross section is dominated by transitions to the
ground vibrational state of the molecule. The partial cross sections exhibit a stronger
dependence on the potential. The same was observed in the bosonic system. The
weaker dependence of the summed quantities on potential results from statistical

averaging of the underlying structure.
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Figure 9.18: Dependence of vibrationally resolved cross sections for $Li+%Liy(v;, j; =
1) — OLi + ®Lis(vy, all j) for v; = 2 (left) and 3 (right), and all accessible v;’s, on

the scaling factor A of the nonadditive part of the potential.
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We have generated the potential energy surface of lithium trimer in the electronic
quartet ground state. The surface allows barrierless atom-exchange reactions. It has
a deep global minimum of =~ 4000 cm~! at equilateral geometries and a saddle point
at linear geometry. The nonadditive forces are found to be large, especially near the
equilibrium geometries. They increase the three-atom potential well depth by a factor
of 4 and reduce the equilibrium interatomic distance by 1.07 A. The nonadditive
forces originate principally from chemical bonding arising from sp mixing effects.

Another surface of A’ symmetry in C, meets the ground state surface at linear
geometries at short range. Part of the seam, near D, geometries with r; = ry =
r3 = 3.1 A, is in an energetically accessible region for cold collisions. Inside the seam,
the lowest A’ surface correlates with *II rather than % state.

We established the relationship between the non-additive dispersion coefficients,
that arise in the perturbation expansion of nonadditive dispersion interactions be-
tween three identical S-state atoms, and the coeflicients in the asymptotic expansion
of atom-molecule dispersion coefficients in powers of bond length. The results are
summarized in Table 5.6 and 5.7. Using this connection we propose a model to
represent the long-range dispersion interactions in a symmetric form for scattering
calculations on reactive triatomic systems. The form describes accurately the atom-
diatom potential at long range and it takes as input the atom-molecule dispersion
coefficients as a function of distance.

Scattering calculations on the Li + "Li, and SLi 4 ®Li, systems indicate that
the inelastic rate coeflicients at limitingly low temperatures are large, often above
1071 cm®s~!. The elastic rate coefficients are three orders of magnitude lower than
inelastic at the collision energy of 1 nK. Atom-molecule mixtures, at the densities
found in Bose-Einstein condensates of alkalis that were recently produced, would last
only a fraction of a second. No systematic dependence of cross sections on the initial
molecular states was found. The energy dependence of cross sections follows Wigner
laws in mK regime. Cross sections in the Wigner regime are extremely sensitive to
the details of potential energy surface. The range of variations is less than an order
of magnitude for small changes in the potential and is reduced for the higher initial
vibrational levels of molecule. The results are qualitatively similar for bosonic and
fermionic systems.

The partial wave expansion at collision energy of 500 mK converges at J = 10.
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The distributions of product states are not statistical and the forward-backward
symmetry in differential cross sections is broken at some collision energies. The
fermionic system has a flatter angular dependence of cross sections, possibly due to
its rotational excitation. The classical Langevin model describes semi-quantitatively
the energy-dependence of inelastic cross sections above =~ 50 mK. The only parameter
in the model is the atom-molecule Cg coefficient. At these energies elastic cross
sections are of same order of magnitude as inelastic cross sections.

Reactions in isotopic mixtures of lithium may be exothermic even from the molec-
ular ground state. The sum of inelastic and reactive rate coefficients is 1 —2 orders of
magnitude smaller than those in systems involving an initially vibrationally excited
dimer. Reactivity at ultralow collision energies in this system is as efficient as inelas-
ticity, depending roughly on the number of available states, although the departures
from a simple statistical model are large.

The work on collisions in lithium contrasts with that of Balakrishnan et al. on the
F + H; system [11] and van der Waals systems in that the Liz system is barrierless
and involves a deep well. Our results may also be contrasted with those of Petrov
et al. [30] on inelastic rate coefficients in fermionic atom-diatom systems for weakly
bound dimer states. This work is an extension of the research on insertion reactions
[6] previously undertaken only at high collision energies.

The research leaves many open ends. We mention some of the possible future
directions below. An interesting thing to do in the future would be the diabatization
of the quartet potential energy surfaces and the coupled dynamics calculations on
diabatic surfaces. This would reveal how much influence the conical intersection has
on the dynamics. With an increase of computer power, it would be instructive to
see whether the system becomes statistical at higher temperatures with inclusion
of more partial waves. Including external fields in the dynamics calculations would
enable a more realistic modelling of the low-temperature experiments and possibly

bring novel phenomena to light.
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Figure A.1: Rovibrational energy levels of all isotopic variants of Li;. Numbers in

the graph indicate the beginning of corresponding vibrational manifolds.
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Figure B.1: Energy dependence of elastic and inelastic rate coeflicients for Li +
Lig(v;, J;) in bosonic (left column) and fermionic (right column) systems and the

Langevin model predictions. (Initial dimer state v;,j; is: v; = row number, j; =

column number — 1).
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C.2 Conferences, workshops, summer schools

Aug 15 — Aug 25, 2001: Charles Coulson Summer School on the Quantum Dynamics
of Molecular Systems, University of Oxford (University College), Oxford

Dec 6 2000: Theoretical Chemistry Day, University College London, London

Mar 28 2001: Spectroscopy in Action: Molecular Dynamics and Structure, University
of Oxford, Oxford

Mar 28 — Apr 1 2001: EU Network Meeting on Reaction Dynamics University of
Oxford, Oxford

Apr 9 — Apr 12 2001: CCP6 Workshop on Time-Dependent Quantum Dynamics,
University of Bristol, Bristol

Apr 18 — Apr 20 2001: Faraday Discussion 118: Cluster Dynamics, University of

Durham, Durham

Mar 3 — Mar 8 2002: Cold Molecules 2002 : Ultra-Cold Molecules and Bose-Einstein

Condensation, Les Houches, France

Sep 19 — Sep 22 2002: CCP6 Workshop: Interactions of Cold Atoms and Molecules

University of Durham, Durham

Jul 9 2003: ANUMOCP XIII (Annual Northern Universities Meeting on Chemical
Physics), University of Durham, Durham

Mar 30 — Apr 3 2004: Bose-Einstein Condensation: from Atoms to Molecules,

University of Durham, Durham
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