
Durham E-Theses

Multi-party authentication protocols for web services

Zhang, Dacheng

How to cite:

Zhang, Dacheng (2003) Multi-party authentication protocols for web services, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3082/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3082/
 http://etheses.dur.ac.uk/3082/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Multi-Party Authentication Protocols
for Web Services

Dacheng Zhang

A copyright of this thesis rests
with the author. No quotation
from it should be published
without his prior written consent
and information derived from it
should be acknowledged.

M.Sc. Thesis

Department of Computer Science,
University of Durham

UK

2003

a A
~

2 5 AUG 2004

Abstract

The Web service technology allows the dynamic composition of a workflow (or a business

flow) by composing a set of existing Web services scattered across the Internet. While a

given Web service may have multiple service instances taking part in several workflows

simultaneously, a workflow often involves a set of service instances that belong to different

Web services. In order to establish trust relationships amongst service instances, new security

protocols are urgently needed.

Hada and Maruyama [HAD02] presented a session-oriented, multi-party authentication

protocol to resolve this problem. Within a session the protocol provides a common session

secret shared by all the service instances, thereby distinguishing the instances from those of

other sessions. However, individual instances cannot be distinguished and identified by the

session secret. This leads to vulnerable session management and poor threat containment.

In this thesis, we present a new design for a multi-party authentication protocol. In this

protocol, each service instance is provided with a unique identifier. The Diffie-Hellman Key

Agreement scheme is employed to generate the trust relationship between service instances

within the same flow. The Coordinated Atomic Action scheme is exploited for achieving an

improved level of threat containment.

The new protocol was implemented in Java and evaluated by a combined use of experiments

and model-based analysis. The results show that the time consumption for multi-party

authentication increases linearly as the number of service instances that are introduced into a

session increases. Our solution is therefore potentially applicable for Web service flow with a

large number of participants. Various public key algorithms are also compared and evaluated

during the experiments in order to select the most suitable one for our new protocol.

Key words: Atomic actions, authentication, fault tolerance, Internet computing, key

exchange, security, Web services

1r AlffilLIE OJF CON1riEN1r§

Chapter 1

1.1

1.2

1.3

1.4

Chapter 2

2.1

2.1.1
2.1.2
2.1.3
2.1.4

lintroduction ... l

Background .. 1

The lProbBem ... 1

Main Results .. 2

Organization oJf the Thesis ... 2

Security Issues with Web Services oeoo u 4

Web Services ... 4

Service-Oriented Architecture (SOA) ... 4
Web Services ... 5
Web Service Architecture ... 5
Web Services Protocol Stack .. 7

2.1.4.1 Simple Object Access Protocol (SOAP) .. 7
2.1.4.2 Web Services Description Language (WSDL) .. 8
2.1.4.3 Universal Description Discovery and Integration (UDDI) I 0

2.1.5 Web Services versus Previous SOA Attempts ... 11

2.2 Web Service Security Challenges ... 11

2.2.1 Malicious Attacks ... 12
2.2.2 Fire walls .. 15
2.2.3 Message-Level Security ... 15
2.2.4 Exception Handling .. 15

2.3 XML Security Specifications .. 17

2.3.1 Canonical XML .. 17
2.3.2 XML Signature .. 18
2.3.3 XML Encryption .. 19
2.3.4 Web Services Security (WS-Security) .. 21
2.3.5 XML Key Management Specification (XKMS) 22

2.4 Multi-Party Authentication for Web Services 23

2.4.1 Web Services Flow Language ... 23
2.4.2 Multi-party Authentication for Web Services .. 25

2.4.2.1 Session Management in Kerberos ... 26
2.4.2.2 Group Key Generation Algorithms ... 28

2.5 Summary .. 30

Chapter 3 MuUi-lParty Authentication lProtocoBs for Web Services 32

3.1 Hada and Maruyama's Session Authentication lProtocoD.. 32

3.2 1Essentia~ lKnowiedge oil' the New Session Authentication System 3§

I

3.3

3.4

3.5

3.2.1
3.2.2

Key Exchanges of the Diffie-Hellman Algorithm 35
Coordinated Atomic (CA) Actions .. 36

[nstance ID Authenticator Protocon ... 37

3.3.1 Operations of Instance ID Authenticator Protocol 37
3.3.1.1 Introduction-of-New-Instance ... 38
3.3.1.2 Identifier-Query ... 38
3.3.1.3 Start-Communication ... 38
3.3.1.4 Validation .. 39

3.3.3 A Scenario ... 41
3.3.4 Security Analysis ... 43

3.4.1
3.4.2

Session Management Protocol ... 43

Overview ... 44
Management Operations of CA Actions44

3.4.2.1 Start-an-Original-CA-Action .. 45
3.4.2.2 Start-a-Nested-CA-Action .. 45
3.4.2.3 Inform-Enter-a-Nested-CA-Action ... 46
3.4.2.4 Enter-a-Nested-CA-Action ... 46
3.4.2.5 CA-Action-End .. 47

Summary .. 49

Chapter 4 System Evaluation and Formal Analysis SO

4.1 Description of the Experiment ... 50

4.1.1 Introduction of Programming Language and Tools 50
4.1.2 Structure of the Experiment .. 50

4.2 Experimental Evaluation ... 52

4.2.1 Standard Deviation of Experiment Results .. 52
4.2.2 System Scalability .. 54
4.2.3 Concurrency ... 54
4.2.4 Calculation Speed of Web Services .. 56

4.3 Model Analysis of the Session Authentication System 56

4.3.1 Notation ... 56
4.3.2 Time Consumption of Introducing a New Session Partner to the Session

Authority .. 57
4.3.3 Time Consumption of Initiating the Communication between Session

Partners .. 59
4.3.4 Comparison of the Results of the System and the Model.. 61
4.3.5 Proportion of Different Parts of Time Consumption 63

4.4 Decentralised Solution for Session Authentication Protocol 64

4.4.1 Description of the Decentralised Solution ... 64
4.4.2 Model Analysis of the Decentralised Solution ... 66
4.4.3 Comparison between the Centralised Solution and the Decentralised

Solution .. 69

ColTilcfiUll.sllon§ a.1md FMtu.nire Won-k ························•oo••oo••••••oo••·····uoo• 71l

II

5.1 Conclusions ... 71

5.2 Future Work ... 72

5.2.1 Searching for Potential Candidates of the Public-Key Algorithm 72
5.2.2 Semantic Issues of Session Management .. 73

5.3 Acknowledgements ... 74

ReferCDCeSoooaaoooaoooooooooooooaooooooeoooeooooooooooooooooooooooooo 7 5

III

LIST OF FIGURES

Figure 1 Web services roles, operations and artefacts [KREOl] 6

Figure 2 Anatomy of SOAP messages [BEQ02] .. 7

Figure 3 Example of SOAP messages (1) .. 8

Figure 4 Example of SOAP messages (2) .. 8

Figure 5 Structure of WSDL [BEQ02] ... 9

Figure 6 Web services security specifications [BEQ02] ... 21

Figure 7 Interaction between multiple Web service instances within a flow [LEYOI]

... 25

Figure 8 Summary ofKerberos version 4 message exchange [STA98] 27

Figure 9 Group Diffie-Hellman (GDH.2) [ATEOO] .. 29

Figure 10 Online Session Management [HAD02] .. 33

Figure 11 Offline Session Management [HAD02] ... 34

Figure 12 Example of a CA action [RAN99, XU99] .. 36

Figure 13 Example of the authentication process .. .42

Figure 14 Interactions between UI and NI .. .42

Figure 15 Example of interactions between UI and Nl2 .. .43

Figure 16 Invoking the Original CA action .. 48

Figure 17 Invoking new service instances within the Original CA action48

Figure 18 Invoking a nested CA action .. 49

Figure 19 Structure of the experiment. ... 51

Figure 20 Time consumed to generate private keys .. 53

Figure 21 Time consumed to generate key pairs .. 53

Figure 22 Time consumed to invoke services instances (1500) and generate the

comtnunication ... 53

Figure 23 Scalability of the session authentication system 54

Figure 24 Current performance of the system (experiment 1) 55

Figure 25 Current performance of the system (experiment 2) 55

Figure 26 Performance comparison of a Web service and normal a Java program 56

Figure 27 The process of registering a new instance to the session authority 58

Figure 28 The process of contacting other session partners 60

IV

Figure 29 Private key's length and the time consumption (millisecond) ofthe

experiment system .. 62

Figure 30 Comparison between analytical and experimental results 63

Figure 31 Time consumption of different operations in the system 64

Figure 32 The process of invoking new session partner in the decentralised solution

... 65

Figure 33 The process of initiating communication with other 66

Figure 34 Session structure (1) .. 67

Figure 35 Session structure (2) .. 68

Figure 36 Comparison between the Diffie-Hellman algorithm and the ECC algorithm

... 73

v

Chapter 1 Introduction

1.1 Background

Web services are self-contained, self-describing, modular applications that can be published,

located and invoked across the Web [VASOl]. Although this new technology was only

proposed several years ago, it has already created great interest within the Computer Science

community. The emergence of Web services is promoting the development of dynamic e

businesses such as virtual-corporation [BER02] and E-market [Y AN02]. Through the use of

protocols such as XML, SOAP, WSDL and UDDI, Web services can contact each other

dynamically over the Internet and enable users to build flexible business solutions.

Web services provide options for both suppliers and users. Web service suppliers can

dynamically cooperate with other suppliers to compose and provide larger Web services,

while users can select their desired Web services scattered across the network and organize

them together to accomplish their goals. For instance, a travel agency service may need to

contact both an airline service and a hotel service in order to book a client's holiday.

Understandably, the combination of Web services can be very complex in many cases. Thus,

a simple but structured means is required to describe such combinations of services. At the

moment, there are some specific languages, e.g., WSFL [LEYOl] and XLANG [THAOl],

proposed for describing workflows (Web service combinations). We use the term worliflow to

describe a business process that is automatically executed and managed by computer systems.

There exists also some work on Web services flow control (e.g., [KIMOO, YAN02]). However

it is the behavior of multiple parties participating in a workflow that introduces new security

challenges.

1.2 The Problem

Essentially, a session is a lasting interaction between system entities, often involving a user,

typified by the maintenance of some state of the interaction for the duration of the interaction

[HOD02]. In the traditional Client/Server model, a session generally only consists of two

partners (client and sever). In the peer-to-peer model of Web_~ervices, the conditions are quite

different. :~~~~cF~

1

\ ,~,,
\ t;
-~

A Web service is a static, long-lived entity with a unique identifier all over the world (e.g., its

URL address). When a Web service receives an initial request to participate in a business flow

(called a session), it will invoke a new instance to handle the requests that are pertinent to this

particular business flow [HAD02]. However, a Web service instance is a dynamic, transient

entity usually without a unique identifier. This is because a business flow may involve

multiple instances that belong to different systems and organizations, while a Web service

may have multiple instances that take part in different workflows simultaneously. So an

authentication mechanism is needed to make sure that an instance in one Web service

business flow is communicating with other instances that take part in the same business flow.

The authors of [HAD02] present an initial session authentication protocol for establishing a

trust relationship between instances of a business flow. But as the authors have stated in their

work, there are several related issues in the area of Web service session control that are as yet

unresolved, such as when and how to end a session. At the moment, this field has not been

fully explored.

1.3 Main Results

This research is concentrated on the analysis of the issues regarding session control of Web

services, as well as exploring different ways to design and develop a multiparty session

authentication system for Web services. Models for different solutions are generated

respectively to evaluate their performances. In the final solution, a trusted third party session

authority is leveraged to manage the session, and each instance in a session is associated with

a unique identifier. Furthermore, a session management protocol is designed and a CA

(Coordinated Atomic) action mechanism is employed to enhance its ability of attack

confinement.

In order to examine our idea in practice, a proto-type of the Instance ID authority system is

implemented in Java. Various asymmetric algorithms are employed in the experiment system

in order to compare their performances.

1.4 Organization of the Thesis

Chapter 1 introduces an overview of the research.

2

Chapter 2 gives an overview of Web service architecture and related security issues. First of

all, the Web service model and related specifications are introduced. After the introduction, a

discussion of the new security challenges that Web services must face is provided. Among

these challenges, the security requirements for session authentication are particularly

important. This new issue is related to strong flow ability of Web services. After discussing

the limitation of existing solutions in session management and related fields, we conclude that

a new session security management scheme for Web services is needed.

Chapter 3 introduces the structure of our new session authentication system. The chapter

describes the solution in [HAD02] and its drawbacks followed with the introduction of the

session authority and the CAA (CA action) manager.

Chapter 4 contains the results and analysis of the experiment performed as well as the

analysis of the model of the system. The results of the experiment will then be compared with

those generated by the model. Also, we present another decentralised plan of multi-party

authentication system for Web services, which was considered when we designed our

protocol. This plan does not rely on any trusted third party. Using formal analysis, we

compare this solution with the centralised system described in Chapter 3.

Chapter 5 gives the conclusion and discusses future work.

3

Since the introduction of Web services several years ago, the IT industry has realized that

Web services enable dynamic and flexible enterprise applications. A corporation can employ

numerous Web services from different providers, which are implemented with different

languages, and executed on different platforms to generate a single unified application.

Though few doubt the potential of Web services, the security issue is currently a major

obstacle preventing the adoption of this new technology. In this chapter, we will introduce the

situation surrounding Web service security.

2.]_ W elb §e.rvkes

2.1.1 Service-Oriented Architectmre (SOA)

In the traditional e-business way, a corporation that wants to accomplish a business goal has

to buy the related software, normally built as a standard product, from the supplier. Also,

corporations have to constantly maintain and update the software by themselves. So the way

that different corporations implement their e-business systems is ad hoc. Furthermore, it is

notoriously complex, costly, and time-consuming to integrate these heterogeneous business

information systems. Under the pressures of competition, corporations need a more effective

and flexible model to reduce their costs and improve their competitiveness. The concept of a

Service-Oriented Architecture is put forward under this background. A Service-Oriented

Architecture is essentially a collection of services that communicate with each other through a

standard means. The communication can involve either simple data passing or multiple

service coordination. In this model, an application can be wrapped within a well-defined

interface. In other words, this application is wrapped into a service. This interface hides all the

details of the application (e.g., language, operation system, database, etc.) The user can access

this application through the interface without knowing any details about its implementation.

Service-oriented architectures are not a new thing. Early attempts at SOA such as the

Distributed Component Object Model (DCOM) and Common Object Request Broker

Architecture (CORBA) led to the realization that the future business logic of an application is

not necessarily coupled with the present logic [BEQ02]. Corporations can select and change

their business partners dynamically as well as reduce software maintenance costs.

4

2.L2 Web Services

According to IBM, Web services are a form of Web applications that are self-contained, self

describing and modular. These Web applications can be published, located, and invoked

across the Web. Web services perform functions ranging from simple requests to complicated

business processes. Once a Web service is deployed, other applications (and other Web

services) can discover and access it dynamically [TIDOO]. A Web service is described using a

standard, formal XML notion, called the service description. It includes all the details

necessary for interacting with the service, including message format (that details the

operations), transport protocols, and location. The interface hides the implementation details

of the service, allowing it to be used independently of the hardware and software platform it is

executed in and the programming language it is implemented in. This allows and encourages

Web Services-based applications to be loosely coupled, component-oriented, cross

technology implementations. Web Services can fulfil a specific task or a set of tasks. They

can be used alone or with other Web Services to carry out a complex aggregation or a

business transaction [KREOI]. Currently, multiple major software companies have proposed

their own Web services plans: Microsoft's .Net, Sun's Sun ONE (Sun Open Net

Environment) and so on. These plans are based on several common technologies: UDDI

[GIBOl], WSDL [CHROl], SOAP [BOXOO] and XML [COW02].

Web service technology is independent of any transporting protocols. Although HTTP is the

de facto standard network protocol for Internet-available Web Services, other Internet

protocols such as SMTP and FfP can also be supported. In Intranet domains, different

reliable messaging and call infrastructures (e.g., MQSeries, CORBA) can also be employed.

The network technology can be chosen based on various requirements including security,

availability, performance, reliability and so on.

2.1.3 Web Service Architecture

According to [KREOl], there are three main roles in the Web Services architecture: service

provider, service requestor and service registry. The service provider is the owner of the

service as well as the platform that hosts access to the service. The service requestor is the

entity that discovers and invokes required Web services. A service requestor can be a person

or Web service. Lastly, the Web registry is a searchable registry of service descriptions where

service providers publish their service descriptions.

5

The interaction between these three roles involves the operations publish, find and bind as

follows:

o Publish: To be accessible, a service description needs to be published so

that a service requestor can find it. Where it is published can vary

depending on the requirements of the application.

o Find: In the find operation, the service requestor retrieves a service

description directly or queries the service registry for the type of the service

required.

o Bind: Eventually, every service needs to be invoked. In the bind operation

the service requestor can invoke a Web service statically (This means the

service is contacted through the pte-defined code) or initiate an interaction

with the service dynamically at runtime, that is, uses the binding details in

the service description to locate, contact, and invoke the service(s).

Figure 1 shows the overview of the Web Service architecture.

Figure 1 Web services roles, operations and artefacts [KREO I]

In the Web service architecture, there are two artefacts: Service and Service description

(presented as ellipses in Figure 1) [KREO I].

o Service: A service is a software module deployed on network accessible

platforms provided by the service provider. It exists to be invoked by or to

interact with a service requestor. It can also function as a requestor, using

other Web Services in its implementation.

6

o Service Description: The service description is a machine-processable

specification of the Web service's interface [B0003]. It contains the useful

information such as data types, operations, binding information, network

location, categorization, and other meta-data which are necessary for

service requestors to locate and utilize their favourite services.

2.1.4 Web Services Protocol Stack

2.1.4.1 Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol (SOAP) is a lightweight protocol for the exchange of

information in a decentralized, distributed environment [BOXOO]. It is an XML based

protocol and provides a mechanism for exchanging structured and typed information between

peers . As with the illustration of Figure 2, a SOAP message consists of three parts:

o Envelope, which is the root element of every SOAP message and marks the

beginning and the end of a SOAP message.

o Header, which is an optional element and can be used to describe attributes

of the message or the operations that should be done to the message (e.g.,

the way that a recipient of a SOAP message should process it).

o Body, which is required in every SOAP message and provides a simple

mechanism for exchanging mandatory information intended for the

ultimate recipient of the message [BOXOO].

SOAP Message

Envelope
<SOAP-ENV: Envelope>

Header
< SOAP-ENV: Header>

<I SOAP-ENV: Header>

Body
< SOAP-ENV: Body>

<J SOAP-ENV: Body>

<J SOAP-ENV: Envelope>

Figure 2 Anatomy of SOAP messages [BEQ02]

7

Figure 3 and Figure 4 present a simple conversation between a requestor and a Web service

HelloWorld. Firstly, the requestor sends a message to HelloWorld. The SOAP message of

this request is described in Figure 3. This message implements a RPC call to the sayHello()

method of the Web service, and the parameter of this method is a string "Dacheng".

<?xml version="I.O" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www. w3 .org/200 1/XMLSchema" xmlns:xsi= "http://www. w3 .org/200 1/XMLSchema
instance">
<soapenv:Body>
<ns I: say Hello soapenv: encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:nsl="urn:helloworld">
<argO xsi:type="xsd:string">Dacheng</argO>

<Ins I :say Hello>
<lsoapenv:Body>

</soapenv:Envelope>

Figure 3 Example of SOAP messages (1)

The message presented in Figure 4 is the response from the Web service to the requestor. The

<sa yHe 11 oRet urn> element includes the replied string, "Hello Dacheng !"

<?xml version="I.O" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www. w3 .org/200 1/XMLSchema" xmlns:xsi= "http://www. w3 .org/200 1/XMLSchema
instance">
<soapenv:Body>
<nsl :sayHelloResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encodingl"

xmlns:nsl="urn:helloworld">
<sayHelloRetum xsi:type="xsd:string">Hello Dacheng!</sayHelloRetum>

<Ins! :sayHelloResponse>
<lsoapenv:Body>

<lsoapenv :Envelope>

Figure 4 Example of SOAP messages (2)

2.1.4.2 Web Services Description Language (WSDL)

WSDL is an XML format for describing network services as a set of endpoints operating on

messages containing either document-oriented or procedure-oriented information [CHROI].

The latest version of the WSDL specification was developed by Web Services Description

Working Group and was submitted to W3C as a suggestion in March 2001 [CER02]. As

Figure 5 illustrates, WSDL specifies a series of elements [CHROl]:

8

Wh at Data T ypes?

<message/> <ponType/>
What Do you Do?

<binding!> <operation/>

Interface Definiti on

<service/> <ponl>

Where?

Interface Implementation

Figure 5 Structure of WSDL [BEQ02]

o Port, which specifies the Web service's endpoint by combining a binding

and a network address.

o Port Type, which is an abstract set of operations supported by one or more

endpoints.

o Oper a ti on, which is an abstract description of an action supported by the

service. This element defines the name of the function and input/output

types.

o Me s sage , which is an abstract, typed definition of the data being

communicated.

o Type s , which is a container for data type definitions usmg some type

system such as XSD.

o Bindi n g , which is used to attach a specific protocol, data format or

structure to an abstract message, operation, or endpoint. It describes how to

transmit the operations defined in a <Port Type > element over the

network.

o Serv i ce , which is a collection of related endpoints and specifies where to

find the Web service.

9

2.1.4.3 Universal Description Discovery and Integration (UDDI)

Universal Description Discovery and Integration (UDDI) is a technical specification for

describing, discovering, and integrating Web services [CER02]. UDDI enables business

organizations to quickly and dynamically publish and discover Web services. It is a critical

part of the Web service protocol stack.

Microsoft, IBM, and Ariba announced the first version of UDDI: UDDI 1.0 in September

2000. Since the initial announcement, there are more than 280 companies taking part in the

UDDI initiative.

Generally, the UDDI technical architecture consists of three parts [CER02]:

o UDDI data model, which is an XML schema for describing Web services.

o UDDI API, which is a SOAP-based API for searching and publishing

UDDI date.

o UDDI cloud services, which are the operation sites that provide

implementations of the UDDI specification and synchronize all data on a

scheduled basis.

So the UDDI project not only provides a technical specification for building a distributed

directory of business and Web services, but also serves as a fully operational implementation

of this specification.

As described above, UDDI provides a schema to describe Web services and businesses. We

can divide the information captured within UDDI into three main categories [CER02]:

o White pages, which describe business information (e.g., business name,

business description, contact information).

o Yellow pages, which describe the general services information of the

business. Yellow pages may include information on industry, product, etc.

based on standard taxonomies.

10

o Green pages, which describe the technical information of the services. It is

notable that UDDI is not only restricted to describing Web services based

on SOAP, but can also describe other kinds of service (e.g., CORBA, Java

RMI services).

2.1.5 Web Services versus Previous §OA Attempts

Before the occurrence of Web services, there have been three major SOA attempts (J2EE,

CORBA and DCOM). Compared with these attempts, Web service has the following

advantages [T0003]:

o Web service provides a universal standard, WSDL, to describe the service.

No mater how the services were implemented, the user can access them

with WSDL. Before Web services, there were no universal standards used

for SOA. Different attempts came with their own standards. DCOM uses

Microsoft-IDL, CORBA uses CORBA-IDL, and J2EE uses Java.

Moreover, these standards are incompatible. This increases the difficulty of

user integration.

D Web service separates interfacing from programming. Before a developer

programs with J2EE, DCOM, or CORBA, he has to learn their

programming model and API sets respectively. On the contrary, a Web

service-oriented architecture does not define the way in which the interface

is implemented. Thus, there is no need to learn any particular API when

Web services integration is supported.

2.2 Web Service Security Challenges

Practically, Web services are loosely coupled, language-neutral, platform independent. And it

is well known that Web services have many advantages such as easy enterprise application

integration, distributed development, and Business-to-Business e-business implementation.

However, Web services also bring many great security risks, which have become the most

critical issues that must be addressed before Web services are widely employed in e-business

applications. In this section, we discuss some typical risks in this field.

11

2.2.1 Malicious Attacks

In order to generate a secure environment for Web services, developers have to counter many

potential attacks. Generally, there are two main kinds of attacks. One kind of attack utilizes

the loopholes and bugs of software to circumvent the access control of the system or force the

system to do something improper. Buffer overrun attack [GHOOl] and timing attack

[RA YOO] are representative of this kind of attack.

The other kind of attack compromises the security of the systems by leveraging the

algorithms' drawbacks or the security protocols' logic flaws. This kind of attack can be

further divided into two categories: passive attacks and active attacks. Passive attacks, also

known as eavesdropping attacks, are the simplest way to attack the security system. In this

type of attack, adversaries extract useful information from the private conversations of honest

entities by eavesdropping on their communication and then snatching the messages that are

transported through the network. Eavesdropping attacks are normally used for gathering

information for future active attacks. Since the eavesdroppers only monitor the conversations

of other entities, it is difficult for the partners of the communications to detect the attack and

act accordingly. In comparison with previous Web applications, Web services seem to be

more vulnerable to eavesdropping attacks. Since Web services transmit XML documents in

which data are well structured and easily understood, it is much easier to retrieve information

from these documents than from binary data.

In contrast to passtve attacks, active attacks compromise the security of systems by

additionally subverting the communications in many ways (i.e., injecting messages,

intercepting messages, replaying messages, altering messages) [BLA97]. We review four

common active attacks: dictionary attack, replay attack, man-in-the-middle attack, and

number theoretic attacks. In addition, we will discuss the potential threat of these attacks to

Web services.

I. Dictionary attack is also called guessing attack. In some security systems, users choose

the secrets (i.e. password) for authentication. Such secrets are sometimes selected from a

relatively small domain of secrets. We call this type of secrets poorly chosen secrets or

weakly shared secrets. With the use of a 'dictionary', an attacker can perform the attack

through iterative guessing and verification. Some experiments have proved that this type

of attack is surprisingly effective in compromising particular security systems [GON93,

WU99]. These attacks can be subdivided into two classes:

12

o Off-line guessing attacks: An adversary eavesdrops on protocol messages

and stores them locally for verification. There is no need for a server to

participate in verification, so it is nearly impossible to notice these attacks

[KW097].

o On-line guessing attacks: An adversary attempts to use a guessed password

iteratively on-line. The attack is performed by replaying eavesdropped

messages or impersonating other clients. Unless a protocol provides the

security server with sufficient information to detect authentication failures,

the server cannot notice the attack [KW097].

In Web service environment, Web services generally combine together to form a single

application. These Web services may be under the management of different security

systems. Thus, a Web service may have to cooperate with partners whose host security

systems use password that are vulnerable to dictionary attacks. So, the security of other

Web services will be threatened even if there is only one Web service whose host security

system is vulnerable to dictionary attack.

2. In most cases, attackers cannot get valuable information directly through eavesdropping

on the conversations protected by a security protocol over the network. Sometimes,

however, they can replay these messages later to get useful responds for other attacks or

impersonate a logical entity accessing security resources. We call this kind of attack as

replay attack.

According to different employments of the antique messages, there are two types of

replay attacks:

o Run external attacks: Attackers get messages from one protocol run and

replay them in another. The Denning-Sacco attack on the original

Needham-Schroeder key distribution protocol is a classic example of this

type of attack [SYV94, DEN81].

o Run internal attacks: Attackers get messages and replay them within the

current protocol run. An example of this type of attack is described in

[DEN81].

As we stated, Web services transmit messages in XML documents, and the data in XML

document are in well-defined structure. So it is much easier for an adversary to pick up

13

useful information from XML documents intercepted from Internet and re-organize them

to implement replay attacks.

3. Man-in-the-middle attack compromises the security of the systems by placing a computer

or another device in the middle of the communication chain to steal passwords, keys, or

eavesdrop on communications [BR002]. In this attack, the adversary intercepts some

messages of a conversation between two entities and replaces them with his carefully

designed messages [ABA97]. After these processes, the adversary generates the

communication channel with two entities, and these entities communicate with the

adversary respectively. Hence, the adversary can monitor and modify the messages

transmitted between the victims.

Web services work in the peer-to-peer environment. In many cases, the messages sent

from a Web service have to traverse through multiple Web services and may be modified

as required before it reaches its ultimate destination. Consequently, it is more difficult to

verify whether the message obtained is the original one.

4. Number theoretic attack compromises the security of the systems which make use of the

improper parameters [PAT97]. Unlike the attacks we mentioned above, which attempt to

find and make use of the logic drawbacks of the security protocol, number theoretic

attacks employ the knowledge of number theory to narrow the domain of the secret key

of the security system and make it easier to guess the secret key. In order to prevent this

kind of attack, the designer of the security protocol must be familiar with the features of

the security algorithms so that they can select the proper parameters.

When we discussed the potential threat of dictionary attack above, we mentioned that the

security of the integrated Web service application would be compromised even if there

were only one participant that is vulnerable to the dictionary attack. For the same reason,

the Web services may sometimes suffer from the number theoretic attacks when their

participants use improper parameters for their security systems.

Essentially, due to the structure of Web services, Web services have to expose their details to

the open network so that both potential users and malicious attackers can get useful

information easily. In addition, Web services are generally developed to achieve complex

functions. The interface of a Web service may be composed of a number of methods and can

be much more complex than previous Web applications. So it is much easier for adversaries

14

to find drawbacks from the interfaces and employ them to compromise the security of the

application.

In short, the threat of malicious attacks to Web services is much more serious than those to

previous Web applications. Much research is under way in this field. Due to their efforts,

some new security protocols have been proposed. We will introduce some of them in later

sections.

2.2.2 Firewalls

Web services break the boundary of organizations. In order to simplify the communication

among Web services provided by different vendors, Web services normally use port 80 and

port 443 to transport messages. The standard perimeter firewall will regard these messages as

standard Web traffic and let them pass unexamined - potentially passing malicious threads.

Moreover, Web services send their requests and data in standard XML format. Firewalls can

do a good job of port monitoring and recognizing brute force malicious attack but are not able

to view the content of these messages in order to detect and then prevent more sophisticated

security compromises [Y AN02 (1)].

2.2.3 Message-Level Security

Web service technology provides an effective way to realize B2B model. Different from

traditional B2C model, B2B business processes are more complex, and sometimes it may be

necessary for SOAP messages to traverse multiple hops before they get to the intended

destination. Traditionally, people employ transport layer security protocols (e.g., Secure

HTTP (HTTPS), Secure Sockets Layer (SSL) and Transport Layer Security (TLS)) to protect

the integrity and confidentiality of the information [GAR97]. These transport layer protocols

can only provide encryption and authentication between a pair of endpoints. Therefore, when

people try to use these protocols to transport SOAP messages between Web services, message

security may be compromised at the intermediate points. Thus, it is necessary to develop a set

of message-level security protocols for Web services.

2.2.4 Exception Handling

Web services can cooperate together to achieve a business goal. The combination of Web

services may involve some form of control flows that reflects causal relationships between the

invoked services [NAK02 (1)]. Sometimes this kind of service flows consists of large amount

15

of Web services and the relationship among the partners can be very complex. Since the Web

services involved within a service flow is normally provided by different vendors and

administrated by different organizations, how to handle the exceptions or errors occurred

during the process of the service flow is a big issue. For instance, some services within a

service flow may work incorrectly due to internal reasons, and some services may not be able

to continue their work due to network errors or malicious attacks. Moreover, before the

exceptions or attacks are noticed by other Web services within the flow, more Web services

may have already been invoked. Consequently, how to synchronize the Web services and roll

back the flow to a trusted state is an interesting topic.

Besides the issues we have described above, there are still many interesting subjects in this

field, such as how to generate communication between two organizations using different

security systems, how to work with an outside vendor that is insecure, how to Web-enable a

legacy application that was never designed to be exposed to the public Internet, and so on.

Since there are so many security issues associated with Web services, developing new

security protocols for Web services is necessary and urgent.

To generate a secure environment for Web services, several basic requirements must be first

addressed. We describe them as follows [NAK02]:

o Confidentiality guarantees that the exchanged information is protected

against eavesdroppers.

o Authentication guarantees that the access to e-business applications and

data is restricted to only those who can provide the appropriate proof of

identity.

o Integrity refers to assurance that the message was not modified accidentally

or deliberately in transit.

o Non-repudiation guarantees that the sender of the message cannot deny

having sent it.

o Authorization is the process to decide whether or not the entity can access

the particular resource.

16

In the following section, several current Web service security protocols are discussed in detail,

highlighting the implementation relationship between the main requirements mentioned above

and the protocols listed below.

2.3 XML Security Specifications

In this section we will introduce several security specifications to meet different XML

security aspects. These include:

o XML Digital Signature, which describes a means to generate and represent

digital signatures in XML.

D XML Encryption, which specifies a means of encrypting data and

presenting it in XML format.

o Web Services Security, which expends SOAP specification to enable

message integrity, message confidentiality, and single message

authentication.

D XML Key Management Specification, which integrates PKI with Web

service technology and specifies protocols for distributing and registering

public keys.

2.3.1 Canonical XML

Before we delve into the details of XML signature and XML encryption, we will first

introduce Canonical XML. If people leverage some kinds of security algorithms (e.g.,

Encryption algorithms, MAC algorithms, digital signature algorithms) to provide the

confidence of the integrity of a message, the slightest change to that message will result in

totally different values. It is fine to apply this feature of the security algorithms used to protect

the integrity of messages for normal use. But in the case of XML, the condition is a little more

complex.

In the context of XML documents, two documents in different textual representations may

still have the same content. Obviously, the syntax variants that do not cause any logical

17

change do not imply that the integrity of the XML document or the authentication of its

sender is suspicious.

Canonical XML specification describes a method for generating a physical representation, the

canonical form, of an XML document that accounts for the permissible changes [BOYOI]. In

both XML encryption and signature specifications, security functions work on the canonical

form directly. Therefore, the results are the same on two logically identical documents, even

though their physical structures may be different.

2.3.2 XML §ignunture

XML signature specifies XML syntax and processing rules for creating and presenting digital

signatures [BAROI]. The digital signature of a message can help the receiver ascertain the

identity of the originator. Furthermore, Digital signatures can guarantee the non-repudiation

and freshness of the messages.

XML signature can be applied to both binary data and octet data. It also provides various

ways to represent the signatures. The signature can be a part of the XML document or

detached from the data that is signed.

The XML signature specification makes use of the <Signature> element, which has the

following structure, to represent signatures in XML format [BEQ02].

<Signature ID>
<Signedinfo>

<CanonicalizationMethod/>
<SignatureMethod/>
<Reference URI >

<Transforms/>
<DigestMethod/>
<DigestValue/>

</Reference>
</Signedinfo>
<SignatureValue>

<Keyinfo>
<Object ID>

</Signature>

Among the elements within the <Signature> element, <CanonicalizationMethod>

element specifies the canonicalization algorithm used to canonicalize the XML document.

<SignatureMethod> element identifies the cryptographic functions used to generate the

signature. <DigestMethod> element defines thedigest algorithm (e.g., HMAC, SHA-1, etc.)

18

to be applied to the signed object. This kind of algorithms Is also called message

authentication codes (MACs), seals, integrity check values, or message integrity codes

(MICs). It can ensure of the integrity of the message received.

The code below present an instance of XML signature [BAROl].

<Signature Id="MyFirstSignature"
xmlns="http://www.w3.org/2000/09/xmldsig#">

<Signedinfo>
<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC

xml-cl4n-20010315"/>
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa

shal"/>
<Reference URI="http://www.w3.org/TR/2000/REC-xhtmll-20000126/">

<Transforms>
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-cl4n-

20010315"/>
</Transforms>
<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#shal"/>
<DigestValue>j6lwx3rvEP00vKtMup4NbeVu8nk=</DigestValue>

</Reference>
</Signedinfo>
<SignatureValue>MCOCFFrVLtRlk= ... </SignatureValue>
<Key Info>

<KeyValue>
<DSAKeyValue>

<P> ... </P><Q> ... </Q><G> ... </G><Y> ... </Y>
</DSAKeyValue>

</KeyValue>
</Keyinfo> </Signature>

2.3.3 XML Encryption

XML encryption is proposed by the W3C XML Encryption Working Group [IMA02]. This

specification defines the process for encrypting data and representing the result in XML.

Encryption functions normally serve to improve confidentiality, guaranteeing that the

exchanged information is protected against eavesdroppers. The encryption of the message

may also indicate the message's originator [GOL96]. There are two main types of encryption

algorithms: symmetric encryption algorithms (conventional encryption algorithms) and

asymmetric algorithms (public-key encryption algorithms). Conventional encryption

algorithms encipher and decipher the information with the same secret key while public-key

encryption algorithms use a pair of keys (one for enciphering and one for deciphering).

The encrypted data may be XML documents, XML elements, XML element contents, or any

arbitrary data. The encrypted information is enclosed within the <EncryptedData> element.

19

This element will be inserted to the XML document and take place the encrypted content

[BEQ02].

The basic structure of the <EncryptedData> element is presented as follows [IMA02,

BEQ02]:

<EncryptedData Id Type MimeType Encoding?>
<EncryptionMethod/>
<ds:Keyinfo>

<EncryptedKey>
<AgreementMethod>
<ds:KeyName>
<ds:RetrievalMethod>
<ds:*>

</ds:Keyinfo>
<CipherData>

<CipherValue>
<CipherReference URI?>

</CipherData>
<EncryptionProperties>

</EncryptedData>

The <Encrypt ionMethod> element indicates the security algorithm applied to encrypt the

data. The <CipherData> element indicates the encrypted data. And the <EncryptedKey>

element is used to transport encryption keys from the originator to a recipient. The key value

is always encrypted to the recipient [IMA02].

Following is an example [IMA02] of encrypting an element of a XML document.

<?xml version='l.O'?>
<Paymentinfo xmlns='http://example.org/paymentv2'>

<Name>John Smith</Name>
<CreditCard Limit='5,000' Currency='USD'>

<Number>4019 2445 0277 5567</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</Paymentinfo>

The XML document above illustrates the details of a credit card, which includes card number,

issuer, expiration data, etc. After encrypting the <Credi tCard> element, the message should

be as follows:

<?xml version='l.O'?>
<Paymentinfo xmlns='http://example.org/paymentv2'>

<Name>John Smith</Name>
<EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'

20

xmlns =' http://www . w3 . org/2001/04/xmlenc# ' >
<CipherData >

<C ipherValue >A23B45C56</CipherValue >
</C ipherData>

</ EncryptedData>
</Payment Info>

It is notable that <Cred i tCard> element is taken place by <EncryptedData > element.

2.3.4 Web Services Security (WS-Security)

To meet the various aspects of Web service security requirement, ffiM, Microsoft, and

Verisigin proposed a set of security specifications [BEQ02]. WS-Security specification is one

of them (see Figure 6). WS-Security describes enhancements to SOAP in providing quality of

protection through message integrity, message confidentiality, and single message

authentication. These mechanisms can be used to accommodate a wide variety of security

models and encryption technologies [ATK02].

,, ... :'~ .. !C. ~- "f '"~r~.'W@IIi § "' II WS-SecureConversation 1;!1 WS-Federation IU WS-Authorization I,
~

1"1 Ill WS~Pnv:cy
1

1 -" :I WS-Policy WS-Trust

" ~

I WS-Security I
I so~~ I ,

Figure 6 Web services security specifications [BEQ02]

These specifications include [BEQ02]:

D WS-Policy: describes the capabilities and constraints of the security (and

other business) policies on intermediaries and end points.

D WS-Trust: describes a framework for trust models that enables Web

services to interoperate security.

D WS-Privacy: will describe a model for how Web services and requesters

state privacy preferences and organizational privacy practice statements.

D WS-SecureConversation: describes how to manage and authenticate

message exchanges between parties including exchanging security context

21

and establishing and deriving session keys. The session mentioned here

only consists of two partners.

WS-Federation: describes how to manage and broker the trust relationships

in a heterogeneous federated environment including support for federated

identities.

WS-Authorization: will describe how to manage authorization data and

authorization policies.

WS-Security is the foundation to implement the specifications described above. It provides an

extensible mechanism to associate security tokens such as certificate of X.509 and ticket of

Kerberos with SOAP messages. Kerberos and X.509 [MEN95] are the most common

authentication systems and have been employed in many fields for a long time. Also, WS

Security leverages XML signature and XML encryption to confirm the integrity and

confidentiality of SOAP messages.

Overall, WS-Security is a message-level security protocol, and it provides the basic support to

integrate Web service technology with traditional authentication systems and generate various

security solutions for Web services.

2.3.5 XML Key Management Specification (XKMS)

The WS-Security protocol provides facilities to transport encoded binary security tokens and

makes the initial effort to integrate traditional authentication systems with Web service

technology. Furthermore, the XML Key Management specification provides an interface

between PKI and Web services in order to simplify PKI deployment and achieve seamless

integration between PKI and Web services.

XKMS consists of two parts: the XML Key Information Service Specification (X-KISS) and

the XML Key Registration Service Specification (X-KRSS). X-KISS allows a client to

delegate part or all of the tasks required to process XML Signature <ds: Key Info> elements

to an XKMS service, while X-KRSS is a protocol to support the registration of a key pair by a

key pair holder, with the intent that the key pair subsequently be usable in conjunction with

the XML Key Information Service Specification or a Public Key Infrastructure [HAL03].

One of the advantages of XKMS is that key management functions are achieved with Web

~"services. XKMS pr.o_vides aPKI trust service and remQves the need.for client support of PKI

22

features, so the complex certificate processing logic is abstracted from the applications and

becomes a server side component [NAK02].

The Web service security protocols that we described above are important in integrating

traditional cryptographic technologies and authentication systems with Web services. But

according to our research, we found that in some aspects, these traditional solutions are

insufficient to fulfil the security requirements of Web services. In this thesis, we discuss a

new security issue which is related to the strong workflow ability of Web services. In the next

section, we will provide an overview of this security issue and discuss the limitations of

traditional solutions in this case.

2.4 Multi~ Party Authentication for Web Services

One desirable feature of Web services is their strong workflow ability. However, more work

is needed to enhance the security of Web service flows. In this section, we will discuss this

topic. Before we discuss the security issues of Web service flows, we will first take a glance

at Web services flow language (WSFL), as it is a specification used to describe the complex

combinations of Web services in XML.

2.4.1 Web Services Flow Language

WSFL language, proposed by IDM recently, specifies a set of XML grammars to describe the

software workflow processes within the framework of Web service architecture. According to

different aspects of Web services compositions, WSFL provides two types of composition

models: Flow Models and Global Models [LEYOl]. In the Flow Models, a composition, also

known as a flow composition, describes how to use the functionality provided by the

collection of composed Web services. In the Global Models, the composition describes how

the Web services interact with each other rather than specifying the execution sequence.

WSFL supports recursive composition, that is, every Web service composition can be

regarded as a new Web service in a larger composition.

The schema syntax for the <flowModel> element is provided in the following code sample

[LEYOI]:

<complexType name="flowModelType">

23

<sequence>
<element name="flowSource"

type="wsfl:flowSourceType"
minOccurs="O"/>

<element name="flowSink"
type="wsfl:flowSinkType"
minOccurs="O"/>

<element name="serviceProvider"
type="wsfl:serviceProviderType"
minOccurs="O" maxOccurs="unbounded"/>

<group ref="wsfl:activityFlowGroup"/>
</sequence>
<attribute name="name" type="NCName" use="required"/>
<attribute name="serviceProviderType" type="Qname"/>

</complexType>
<group name="activityFlowGroup">

<sequence>
<element name="export" type="wsfl:exportType"

minOccurs="O" maxOccurs="unbounded"/>
<element name="activity" type="wsfl:activityType"

minOccurs="O" maxOccurs="unbounded"/>
<element name="controlLink" type="wsfl:controlLinkType"

minOccurs="O" maxOccurs="unbounded"/>
<element name="dataLink" type="wsfl:dataLinkType"

minOccurs="O" maxOccurs="unbounded"/>
</sequence>

</group>

As with the presentation of the code above, the flow model IS defined using six different

elements [LEYOl]:

The <flowSource> and <flowSink> elements define the input and

output of the flow model.

The <serviceProvider> elements represent the services participating in

the composition.

The <activity> elements represent the usage of individual operations of

a service provider inside the flow model.

D The <controlLink> and <dataLink> elements represent control and

data connections among activities in the model.

Therefore, the flow model is sufficient in describing the relationship among Web service

partners within a workflow. In a Web services composition such as the one presented in

Figure 7, multiple participants collaborate following some policy. These participants normally

do not contact with each other until it is necessary. Furthermore, these participants provided

by different vendors, developed in different languages, executed on different platforms, are

combined dynamically at run time. The ability of flexible and dynamic binding is one of the

24

great advantages of Web services. Nevertheless, it also puts forth new challenges in the form

of flow security management. Multi-party authentication issue for Web services is the major

one among them.

Figure 7 Interaction between multiple Web service instances within a flow [LEYOl]

2.4.2 Multi-party Authentication for Web Services

Since neither XML-RPC nor the SOAP specification provides a mechanism to keep the

session state, how to maintain the Web service session state based on a stateless protocol such

as HTTP is a problem that Web service developers have to face. In fact, this stateless issue is

a problem that has intrigued Web application developers for a long time. There have been a

number of clever means used to get around it (e.g., using HTTP cookies to preserve the state

of a series of requests, reposting application data with each request). Recently, work has been

done to use these measures in Web services and some progresses have been achieved in this

area. For instance, ASP.NET provides a System. Web. SessionState.

HttpSessionState class; the Apache implementation of SOAP (i.e., ApacheSOAP) in

combination with Java and a suitable application service (e.g., Apache Tomcat Server) can

use cookies to help every user find corresponding service instance. However, these measures

are not designed generally for managing session state in Web service applications, but rather

specifically for managing the session state in the applications following their specification

(e.g., ASP.NET applications). The worst part is that using them ties you to the HTTP

protocol. The SOAP protocol is designed to work independently of the transport protocols. So

tying your application to HTTP obviously limits your flexibility and may create additional

work if you want to provide Web services over any other transport protocol other than HTTP

(e.g., SMTP). Another drawback of these solutions is that they don not provide any

25

encryption protect to the session IDs. These IDs are transported over Internet in plaintext or

inserted into the URL address directly. Therefore, the system needs additional measures to

validate the identity of the service requestor.

Furthermore, in the traditional client-server model, there is usually more than one client

contacting the server at the same time. Therefore, the server needs to distinguish one client

from another. In this case, a "session" is a single client's conversation with a logical server.

But as e-business becomes more and more complex, especially with the advent of Web

service, it is normal that several organizations cooperate together to achieve a business goal.

In this case the traditionally session seems insufficient in expressing the complex

relationships among the partners within a business flow. Hada and Maruyama [HAD02]

describe the idea of multi-party session in their paper. They defined a session in the Web

service world as a series of operations executed by Web service instances that need to share a

common state, and listed some new issues in this field. As with their definition, a session is in

fact a Web service flow instance.

Based upon the above discussion, it is easy to see that a multi-party authentication mechanism

is needed to protect the security of Web service flows. With it, a participant within a session

can prove its legal identity as a session partner to other participants within the same session in

a secure way.

In the following sections, we will introduce the conventional session management within the

Kerberos authentication system and group key management algorithm for peer-to-peer group,

which is a potential solution for multi-party session authentication issue we discussed above.

2.4.2.1 Session Management in Kerberos

To facilitate the illustration of Kerberos, we introduce following notations firstly.

c
v
TGS

AS

Kx

Ka,b (KA, s)

EK[XIIY]

TS

A client principal

A service principal

A Ticket-Granting Server

An Authentication Server

Secure Key held by party X

Session Key for party A and party lB

Encrypted message of information A and information B with the key K

Time Stamp

26

Kerberos [KAU02] is a famous network authentication protocol developed by MIT. The

purpose of this protocol is to provide authentication for users and services. The Kerberos

system is based on trusted third-party security servers, the authentication server (AS) and the

ticket-granting server (TGS) [BEL91]. All information of the entities under their management

is stored in the database. In Kerberos, every principle (user or service) holds a key, which has

been registered with the AS. The users' keys are derived from their passwords, while the

services' keys are selected randomly. Furthermore, a kind of short time secret key - session

key is employ in Kerberos to secure the communications within the session.

As Figure 8 details, Kerberos assigns and distributes a session key for a particular session

with a six-step conversation among the client, security servers and the service.

(5) C ~V: Ticket,// Authenticator,
(6) V ~C: EK'·' ~~' [TS4+1] (for mutual authentication)

Figure 8 Summary of Kerberos version 4 message exchange [ST A98]

Assume C intends to access V, which is under the management by Kerberos. Firstly, C sends

a message to AS (see Step 1 in Figure 8). This message includes the identity of C, the identity

of TGS which C should contact in the future and a time stamp TS~. which allows AS

verifying that the clock of C is synchronized with AS [ST A98]. AS responds to C with a

message, which is encrypted with Kc (see Step 2). This message includes a key Kc. tgs. the

authentication information Ticket1gs for TGS, the time-stamp TS2 and some other additional

information (e.g., ID1gs , Lifetime2) . Such information proves that the Tickettgs is for TGS and

prevents replay attack. Since Kc is shared by AS and C secretly, this message cannot be

decrypted by any clients other than C.

After verifying the message received from AS, C contacts TGS asking for the key to access

K (Step 3). TGS decrypts Ticket1gs with the key that it shares with AS and extracts Kc. tgs from

Ticket1gs· Additionally, with other information in Ticket1gs (i .e., IDe, TS2) TGS can examine

27

the validity of this ticket. Afterwards, TGS uses Kc. tgs to decrypt Authenticatorc and compare

the information regarding user C in Authenticatorc with the related information in the

Ticket1gs· If all the examination is successful, TGS sends the reply back to C (see Step 4) and

this reply is encrypted with the session key Kc. tgs to protect the confidentiality of the message.

At this stage, C shares the session key Kc. v with V. Steps 5 and 6 achieve a mutual

authentication for C and V. After this process, C can ensure that V has gotten Kc. v. and vice

versa.

In brief, Kerberos is an authentication system designed for the Client/Server model, and the

session in Kerberos only consists of two session partners [HAD02]. So Kerberos cannot be

employed directly to provide the authentication for the session partners within a multi-party

session.

2.4.2.2 Group Key Generation Algorithms

Traditional authentication systems (e.g. Kerberos, SSL) are commonly based on the

Client/Server paradigm. They can help the two entities at both ends of the conversation to

generate some kind of trust relationship. On the other hand, many emerging network

applications (e.g., online games, distributed simulations, conferencing) require multiple

entities dynamically composing and working together. We call this kind of applications as

dynamic peer groups.

Group key generation algorithms can generate and distribute security keys for dynamic peer

groups. In a dynamic peer group, the group membership is not known in advance, that is, the

parties may join and leave the multicast group at any given time [BREOl]. In this case,

dynamic peer groups share identical feature with Web service flows. Therefore, it is

reasonable to take dynamic peer group authentication protocols into consideration as potential

candidates to improve the security of Web service flows. Normally, there are two main ways

to generate and manage a group secret:

o Centralized: the group key is entirely generated by a single party who then

distributes it to all other group members [MAIOO]. To implement a

centralised key management system, we can assign a Trusted Third Party

(TIP), which is something like the authority server in the Koreros system,

or fix a certain partner of the group to generate and distribute the group

secret. The session authentication system described in [HAD02] is a

28

centralised key management system, which relies on the TTP [MAIOO], and

we will discuss its drawbacks in the next chapter.

o Contributory: each group member makes an independent contribution to the

group key [STE98]. Furthermore, there are two kinds of Contributory key

management protocols, which have slightly different flavours [STE98].

);;> Partially Contributory: some operations are contributed to by each

member and others are centralized.

);;> Fully Contributory: all key agreement operations are contributed to

by each group member.

Let M={M1 , ••• , Mn) be a set of users wishing to share a key Sn. The GDH.2 protocol
executes in n rounds. In the first stage (n-1 rounds) contributions are collected from
individual group members and then, in the second stage (n-th round) the group keying
material is broadcast. The actual protocol is as follows:

Initialisation:

Let p be a prime and q a prime divisor of p-1. Let G be the unique cycle subgroup of Z*p
of order q, and let a be a generator of G.

Round i (0 < i < n):

I. M; selects r; E Z*q randomly.
2. M; ~ M;+t: { art... rnlri I i E [1, i] }, art... rn

Round n:

I. Mn selects rn E Z*q randomly.

2. Mn~ All M;: { a rl... mlri I i E [1, n[}

Figure 9 Group Diffie-Hellman (GDH.2) [ATEOO]

Figure 9 illustrates a classic group key generation algorithm - Group Diffie-Hellman, which

can be used to implement a fully contributory group key management protocol. The Group

Diffie-Hellman algorithm extends the Diffie-Hellman algorithm so that multiple entities can

use it to generate and distribute a secret key in a decentralised way.

The drawbacks of this algorithm are obvious (in fact, these drawbacks are common for this

kind of decentralised group key generation algorithms). It is easy to see that Mn plays an

important role in the key generation in GDH.2. It broadcasts the information to all the other

group partners and they use the information to generate the group key. That means it must be

a reliable and honest party. Otherwise, it can perform attacks without detection by other group

29

members, for example, partitioning the group into two [ATEOO]. However, in some case,

especially in peer groups, it is difficult to assign a fixed party to act as M 11 , unless a TIP is

assigned for the group.

Furthermore, huge recourse consumption is a fatal drawback of the Group Diffie-Hellman

algorithm. In order to generate a group key within a group with n group partners, all the

partners must process for n rounds and exchange 2(n-l) messages on the whole. Also, when

an entity takes party in or leaves a group, all the group partners must be informed and the

group key must be refreshed.

Therefore, this kind of decentralised group generation key algorithms is not suitable for a

group whose partners are scattered in a large area, and it is not suitable for the environment in

which the communication channel is not secure. Furthermore, the high overhead of message

transport makes this kind algorithm only suitable for a group only with limited partners.

2.5 Summary

Web services are new developments based on the idea of SOA. Compared to previous

technologies, Web services have many unique characteristics. These characteristics give new

challenges to the security systems. Before a new technology is accepted by the industry, the

security issues of it must be understood and resolved. In this chapter, we introduced the Web

service mechanism and the new security challenges associated with it. In addition, we

discussed the new security challenge in session authentication management for Web services,

which this paper is concerned with.

It is notable that WSFL only specifies the representation of the Web services which are

involved within the flow. WSFL does not describe how to represent the Web service instances

within a Web service flow instance since it is impossible to assign related Web services

instances before a Web service flow is executed. Nevertheless, when a Web service flow is

executed, the entities working within it are Web service instances rather Web services.

Therefore, when a Web service flow is in process, an additional mechanism is needed to

manage the Web service instances within the flow instance, as WSFL specification does not

provide this function.

Based upon the above discussions, we arrive at the conclusion that it is necessary to develop a

novel message-level multi-party authentication system for Web services that is independent of

30

transporting protocol. This system should provide unified identifiers to the Web service

instances within a session (i.e., session partners) and should enable them to ascertain that it

only communicates with the partners within the same session.

In the next chapter, we will first discuss a solution proposed by Hada and Maruyama. We will

then introduce our solution, which assigns every partner within the session a unique identifier,

and we will describe our efforts to employ CA action to enhance their solution with threat

confinement ability.

31

MllllltficJP>ar~y Auntlhlellll~iteal~ROIDI IPiro10te({])ll§ [{))Jr

Web §erviitee§

As stated in the previous chapters, a new session authentication protocol is needed to improve

the security of Web service flow. In this chapter, we will first introduce Hada and

Maruyama's solution, the first in this field [HAD02]. Next, we will discuss the drawbacks and

disadvantages of their solution. Finally, we will introduce our work on improving their

solution.

3.1 Hada and Maruyama's Session Aultlhtentncation Protocol

Hada and Maruyama [HAD02] proposed an approach in order to authenticate session

participants without prior knowledge of all parties participating in the session. In their

solution there is a TIP, Session Authority (SA), which takes charge of distributing session

authentication messages. An instance of SA is associated with a session. The SA instance

assigns a session key (i.e. a session secret) to a particular session and distributed it secretly to

the service instances of that session. If two instances hold the same session secret, they will be

regarded as the participants within the same session. Then, the instances participating in that

session can use this session secret to authenticate each other and distinguish them from the

service instances involved in other sessions.

The protocol consists of two parts: a message authentication protocol and a session

management protocol. The message authentication protocol transports authentication

information between session participants, while the session management protocol is in charge

of starting, running, and ending a particular session. These two protocols work together to

provide basic management of the session.

Figure 10 describes a case [HAD02] of the session management protocol: Online Session

Management.

32

8.Spawn Inslance

?.Message
over Session
Aulhenti calor

Figure 10 Online Session Management [HAD02]

Service
Inslance

First, a requester instance initiates a session by sending a <StartSession> message to the

SA (Step 1). The requester will receive a session secret from the SA (Step 2) and then send an

application message to a Web service, Service#l, over the session authenticator (Step 3). On

receiving the message, the service is given the session handle and asked to join the session.

Next, the service creates a new service instance and transfers control to the instance (Step 4).

The instance will send a <J o inSe ss i o n > message to the SA (Step 5) and receive later the

session secret from the SA (Step 6). It will then have the session secret so as to authenticate

any received message and obtain the payload. If the service instance needs to delegate its

operation to some other service, it can send a message to another Web service, Service#2,

using the session authenticator (Step 7). The same process happens in the second service

provider (Steps 8-10) and the service instance of the second service provider will then have

the session secret. This service instance can send a message to the original requester using the

session authenticator (with the same session secret) so that the requester knows that the

second service instance is a legitimate session participant.

The case described above needs extra communication for service instances to acquire the

session secret. There is an alternative that eliminates this extra communication: Offline

Session Management.

As presented in Figure 11, the Requester gets the session secret from the Session Authority,

and this secret is transmitted to the new session partners over the network directly. These

service instances then use this secret to prove their legal identities as session partners.

Compared to Online Session Management, Offline Session Management mechanism is more

33

effective. The drawback of this mechanism is the disability of providing session partners the

exact conditions about all the session.

6.Spawn Instance

5. Session
Secret

Figure 11 Offline Session Management [HAD02]

From our point of view, this session authentication protocol is not a complete solution. There

are still unsolved problems:

o As mentioned in [HAD02], Hada and Maruyama's solution only provides a common

session secret to all the participants within a given session rather than a unique

identifier for each of them. An attacker, who has compromised a Web service

instance and obtained the session secret, can use the secret to communicate with other

session participants to gain their trusts. The attacker will then have opportunities to

impersonate other session partners. It becomes difficult to confine the damage to a

small area, rather than the entire session, even after it was detected that a session

participant has been compromised.

o The SA in their protocol does not have a measure to validate the identity of the Web

service instance that applies to enter the session. Any Web service instance, as long as

it holds the session ID, can contact the SA and apply to enter the session. An

adversary may try to attack a session following this way.

34

3.2 Essential Knowledge of the New Session Authentication System

3.2.1 Key Exchanges of the Diffie-Hellman Algorithm

The Diffie-Hellman algorithm was firstly proposed by Diffie and Hellman in 1976 [STA98,

MEN96]. Their protocol enables two users to communicate over public communication

channels and safely exchange a key.

The Security of the Diffie-Hellman algorithm relies on the difficulty of computing discrete

logarithms.

Consider the equation y = t mod p.

Given g, x and p, we can easily calculate y. On the contrary, given y, g and p, it's difficult to

calculate x in general, especially when p is a large prime. As we know, the asymptotically

fastest known algorithm [ST A98] for taking discrete logarithms modulo a prime number is on

the order of

Obviously, it is especially difficult to get x from a given y when pis big number.

We now describe this algorithm:

Assume that there are two principles called Alice and Bob. They agree on a large prime p and

an element g (2 :S g :S p-2), which is a primitive root of p. That is, the numbers g mod p, i
mod p, i mod p, ... , g-1 mod pare some permutation of the distinct integers from 1 to p-1.

Suppose:

1. Alice chooses a random number x and Bob chooses a random number y

from the set { 1, ... , p-2}.

2. Alice keeps x private and sends t mod p to Bob.

3. Bob keeps y private and sends gY mod p to Alice.

4. Alice gets the Key = (g>}'' mod p = gX)' mod p

5. Bob gets the Key = (gx)y mod p = gxy mod p

35

6. Alice and Bob then share the same Key = gX}' mod p.

If Alice and Bob keep x andy secretly, the only information that an adversary can get are g, p,

gx mod p, and Ef' mod p. The adversary has to utilize discrete logarithm to calculate the key.

This is computationally difficult, particularly for large primes.

3.2.2 Coordinated Atomic (CA) Actions

A coordinated atomic (CA) action [XU95] is a mechanism for coordinating multi-thread

interactions and ensuring a consistent access to objects in the presence of competitive

concurrency and potential faults.

CA action

raised exception e
exce tion handler H I

return to nonnal

Thread I -f--.------T---'-"',;_pen'!_ed _:o~tro_l_flo_w___.""-if--_.
exception handler H2

exit with success
abnormal control flow

'accesses "' repairs
External Objects

start transaction commit transaction

Time

Figure 12 Example of a CA action [RAN99, XU99]

As shown in Figure 12, concurrent execution threads (e.g., Web service instance)

participating in a given CA action enter and leave the action synchronously. Within theCA

action, operations on objects can be performed cooperatively by roles executing in parallel.

To cooperate in a CA action a group of concurrent threads must come together and agree to

perform each role of the action, with each thread undertaking a different role. Inside a CA

action, some or all of its roles can be involved in further (nested) CA actions. If an error is

detected inside a CA action, appropriate forward and/or backward recovery measures must be

invoked cooperatively by all the roles in order to reach a mutually consistent conclusion. An

acceptance test can and should be provided in order to determine whether the outcome of the

CA action is successful. The external objects which are being competed for must behave

atomically with respect to other CA actions and threads so that they cannot be used as an

implicit mean of "smuggling" information into or out of a CA action.

36

3.3 Instance ID Authenticator Protocol

The following notations will be used in the rest of the paper.

n A big prime number suitable for the Diffile-Hellman protocol

G A primitive root of n

l The abbreviation of l mod n

Kx, y The security key shared by service instances X and Y

MACx,vCM) Message Authentication Code for message M under key Kxy

U (R, l) A service instance U whose private message is R and identifier is l

Similar to Hada and Maruyama's solution, we present a protocol based on some standard

Web services technologies such as SOAP, XML~Signature/Encryption, and WS-security.

These protocols can meet certain security requirements in terms of confidentiality, Integrity,

and Non-repudiation [NAK02], and we will thus not consider replay attacks and man-in-the

middle attacks in our design.

3.3.1 Operations of Instance ID Authenticator Protocol

In this Instance ID Authenticator protocol, a session manager is a Web service, and it

manages a given Web service session. The manager is composed of two parts: a Session

Authority (SA) and a CAA manager that manages atomic actions for sessions. The SA is

responsible for 1) storing and managing the identifiers of the session participants and 2)

providing trusted information for each session participant. With such information, a message

sender can specify the intended recipient, and so the message receiver can be sure that the

received message comes from a proper sender.

We assume in our protocol that

D According to the Diffie-Hellman algorithm, each service instance of a given

session selects a private secret number R randomly, and uses the public key

gR as its identifier. The manager instance of the session guarantees that

every identifier is unique within that session.

D The manager instance's identifier is equal to the identifier of the session,

and it must be different from those of other manager instances that belong

to other sessions.

37

We present here essential operations for the instance ID Authenticator protocol. Session

participants can use them to verify each other's identities. The messages of all the operations

in our protocol should be appended with the authenticators that validate the originator and the

integrity of the messages unless mentioned otherwise. Details of the authenticator will be

described in section 3.3.2.

3.3.1.1 Introduction-of-New-Instance

A session participant can send the "Introduction-of-New-Instance" message to its manager

instance to recommend a new service instance:

<Introduction-of-New-Instance>
<New-Instance type="uri" value="URI
<NIID>ID of the new instance</NIID>

</Introduction-of-New-Instance>

of the new instance"/>

The <NI ID> element within the message contains the identifier of the recommended service

instance.

3.3.1.2 Identifier-Query

A service instance sends the "Identifier-Query" message to the manager instance to check

the identifier of another session partner:

<Identifier-Query>
<Instance-under-query type="uri" value=" URI of the instance whose
identifier the initiator instance want to know"/>

</Identifier-Query>

The reply from the manager instance is:

<Identifier-Query-Result>
<Instance-under-query-ID>

ID of the checked instance
</Instance-under-query-ID>
<Instance-under-query type="uri" value="URI of the checked instance
"I>

</Identifier-Query-Result>

3.3.1.3 Start-Communication

If a service instance wants to start a communication with another instance of the session

which it never contacted before, it should send the "Start-Communication" message to the

intended instance:

38

<Start-Communication>
<SessionHandle>

<SA type="uri" value="URI of the SA"/>
<ID>

Session ID
</ID>

</SessionHandle>
<SendingiD>

ID of the sending service instance
</SendingiD>

<Sending-Instance type="uri" value="URI of the sending instance"/>

</Start-Communication>

Within the message, the initiator should provide the details of self so that the recipient

instance can examine its identity when it is necessary. Mter the recipient receives and verifies

this message, it will send the result back:

<Start-Communication-Result>
<Accept>true</Accept>

</Start-Communication-Result>

If the value of <Accept> element is true, that means the initiator has received the permission

to start the communication.

3.3.1.4 Validation

When the recipient instance obtains the "Start-Communication" message from the initiating

instance, the recipient instance should send the "Validation" message to the manager instance

in order to verify the identifier of the initiating instance:

<Validation>
<Initiator type="uri" value="URI of the initiator instance"/>
<Initiator-ID>ID of the initiator service instance</Initiator-ID>

</Validation>

Mter receiving this message, the SA instance will check the relative information and sends

the result back:

<Validation-Result>
<Result>true</Result>

</Validation-Result>

39

3.3.2 Generating amll Appemllmg the Autllnentlicator to Messages

We now describe the details of how to append the identifiers of session participants and other

security information to SOAP messages passed between Web service instances with SOAP:

Step 1: A Web service instance prepares a SOAP envelope in order to send a message to

participants of a given session.

Step 2: The instance inserts the authentication information (e.g., session handle, the identifier

of the sending instance, etc.) into the header of the envelope. An example of the code is as

follows:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<SOAP-ENV:Header>
<Session-Authentication:Authentication

xmlns:Session-Authentication="http://www.durham.com/">
<Session-Authentication:SessionHandle>
<Session-Authentication: Manager type="uri" value="URI of the SM"/>
<Session-Authentication:SessioniD>

Session ID
</Session-Authentication:SessioniD>
</Session-Authentication:SessionHandle>
<Session-Authentication:SendingiD> The ID of the sending instance
</Session-Authentication:SendingiD>
<Session-Authentication:ReceivingiD>

The ID of the receiving instance
</Session-Authentication:ReceivingiD>
</Session-Authentication:Authentication>

</SOAP-ENV:Header>
<SOAP-ENV:Body>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Step 3: The sending instance makes use of the Diffie-Hellman algorithm to calculate a secret

key with its private message and the identifier of the intended receiver. It will then utilise

XML Signature to apply the Message Authentication Code (MAC), generated with the secret

key, to the SOAP message. A code example is given as follows:

<?xml version="l.O" encoding="utf-8"?>
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<S:Header>

............ Other information about this SOAP message
<wsse:Security

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">

<ds:Signature>
<ds:Signedinfo>

40

<ds:CanonicalizationMethod Algorithm=
"http://www.w3.org/2001/10/xml-exc-c14n#"/>

<ds:SignatureMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#hmac-shal"/>

<ds:Reference URI="#MsgBody">
<ds:DigestMethod Algorithm=

"http://www.w3.org/2000/09/xmldsig#shal"/>
<ds:DigestValue>LyLsDDPi4wPU ... </ds:DigestValue>

</ds:Reference>
</ds:Signedinfo>

<ds:SignatureValue>DJbwhmSgK ... </ds:SignatureValue>
<ds:Keyinfo>

<wsse:SecurityTokenReference>
<wsse:Reference URI="#MyiD"/>
</wsse:SecurityTokenReference>

</ds:Keyinfo>
</ds:Signature>

</wsse:Security>
... same as the message in step 2

</S:Header>
<S:Body Id="MsgBody">

</S:Body>
</S:Envelope>

Step 4: The sending instance sends the SOAP message to the receiving instance.

Step 5: After the receiver receives the message, it uses its own private key and the identifier of

the sender to re-generate the secret key. The receiving instance will then generate the MAC

using the secret key. By comparing the newly generated MAC with the MAC appended to the

message, the receiver can verify the identity of the sender.

3.3.3 A Scenario

We use in this section a scenario to illustrate the operations of the instance ID Authenticator

protocol. Consider a user service instance (UI(X, gx)) and a session manager service.

First, Ul contacts the session manager to initiate a session and the session manager invokes a

manager instance (MI(Y, gr)) to handle UI's request. After MI and UI exchange their

identifiers, gx and gr, a session (Se(MI)) is initiated (see Figure 13).

41

Figure 13 Example of the authentication process

Suppose that UI wants to contact Service 1. And a new service instance (NI(Z,l)) is invoked

by Service 1 to manage UI' s request. UI and NI exchange their identifiers, gx and l. and

some related information (e.g., URL of MI, l). UI then needs to send an "Introduction-of

New-Instance" message to MI before MI accepts NI as a participant of the session (see

Figure 14).

Figure 14 Interactions between UI and NI

Assume that another service instance (NI2(N, gN)) is invoked and recommended to MI (see

Steps 1, 2 and 3 of Figure 15). Since NI2 does not know UI's identifier, it sends MI an

"Identifier-Query" message to check UI's identity in order to communicate with UI. After

getting UI' s identifier from MI, NI2 will send a "Start-Communication" message to UI.

After receiving a message from NI2, UI needs to contact MI to verify the identity of NI2

since it has not communicated with NI2 before. If the reply from MI is True, Ul will then

verify the MAC appended with the message and send a reply back to NI2 (see Step 4).

42

3.Ul verifies
gNfrom Ml

NI contacts Service 2 to invokes NI2 and imroduces it to the session

Figure 15 Example of interactions between UI and NI2

3.3.4 Security Analysis

In our protocol, each service instance of a session has a private secret and a public identifier.

The public identifier will be transported over the Internet while the private secrets are kept by

the instances securely. The attacker cannot get the key shared by the instances participating in

the communications from the plaintext and the MAC code [SCH96, STAOO]. If the

participants can keep their private information secretly, it will be computationally difficult for

an attacker to derive the key from the public information and thus impersonate one or more

participants of the session. Moreover, a service instance that attempts to join a session must

be "recommended" by a session participant to the session authority first. If a malicious

instance outside of the session tries to communicate with any instance inside the session, it

will be detected by the manager instance of that session. This further improves the security

level of the system.

3.4 Session Management Protocol

The instance ID Authenticator protocol provides dependable authentication operations for

participants of a given session and helps them authenticate each other. It works well in the

case of simple business flows. We will now consider the following, more complicated, cases:

o A participating service instance of a given session may have local

operations, which are not supposed to be known by other participants. For

instance, the participant may attempt to initiate a sub-workflow and does

not want other participants to know any details of it. The protocol should

43

provide a mechanism for enclosing local details and secrets of session

participants.

o When an attacker has compromised a session participant, the instance ID

Authenticator protocol has difficulty in confining the threat to a small area

of the session. The attacker may recommend more malicious service

instances into the session.

In order to resolve these problems we introduce a session management protocol which uses

the CA action mechanism to manage sessions so as to achieve a better level of attack

confinement.

3.4.1 Overview

In the session management protocol, we use nested CA actions to structure a workflow.

Nested actions could be pre-defined and invoked dynamically as required. A service instance

or role in a CA action is only permitted to communicate with other roles in the same action.

What happens in a nested CA action is completely transparent to the enclosing action. This

provides a protection mechanism for the roles within the CA action. Any service instance

invoked by a role of a CA action must be terminated at the point in time when that CA action

ends. In addition, the CA action support mechanism is responsible for monitoring the state of

roles. CAA manager must ensure that there are no errors or exceptions unresolved (including

the possibility of signalling an exception to the enclosing action) when the CA action ends. If

an attacker or a malicious service instance is found in a CA action, the thread and damage

must be limited to that CA action. While a transaction model may offer some similar features,

we select CA action scheme for the reason that CA action scheme has a powerful ability to

handle concurrent exceptions [RAN99, XU99]. In a given session, multiple instances may be

running concurrently, and an error may involve more than one instance. In order to resolve

this type of errors, the instances involved should take actions collectively. CA actions provide

an appropriate mechanism for handling such concurrent exceptions.

3.4.2 Management Operations of CA Actions

We define five basic protocol operations that provide functions for manage a set of nested CA

actions.

44

3.4.2.1 §tart-an-OriginaB-CA-Action

A user can send the "Start-an-Originai-CA-Action" to its session manager to initiate a new

session. Since the user has not exchanged the identifiers with the session manager instance,

this message is not appended with the authenticator.

<Start-an-Original-CA-Action >
<SendingiD> The ID of the sending instance
</SendingiD>
............ some other information (e.g. the details of the original CA

action)
</Start-an-Original-CA-Action >

The session manager invokes a new manager instance, including an SA instance and a CAA

manager instance, and the manager instance sends the following message back:

<Start-an-Original-CA-Action-Result>
<SessionHandle>

<Manager type="uri" value="URI of Manager"/>
<ID>

Session ID
</ID>

</SessionHandle>
</Start-an-Original-CA-Action-Result>

From now on, the session is under the management of the original CA action.

3.4.2.2 Start-a-Nested-CA-Action

If a service instance tries to invoke a nested CA action, it should send this message to its

present CAA manager, which is a part of the session manager instance:

<Start-a-Nested-CA-Action>
<CAHandle>

<CA type="uri" value="URI of the CA"/>
<ID>CAA manager ID</ID>

</CAHandle>
<NCAHandle>

<NCA type="uri" value="URI of the NCA"/>
<Policy>

Policy about the nested CA action and other relative information
about the roles
</Policy>

</NCAHandle>
<SendingiD> The ID of the sending instance
</SendingiD>

............ some other information
</Start-a-Nested-CA-Action>

45

If CAA manager accepts this application, it invokes a new nested CAA manager instance and

sends the nested manager instance's related information back:

<Start-a-Nested-CA-Action-Result>
<accept>true</accept>
<NCAHandle>

<NCA type="uri" value="URI of the NCA"/>
<NCAID>Nested CAA manager instance's ID </NCAID>

</NCAHandle>
</Start-a-Nested-CA-Action-Result>

3.4.2.3 Inform-Enter-a-Nested-CA-Action

After a new nested CAA manager instance is invoked, the nesting CAA manager instance

sends the "Inform-Enter-a-Nested-CA-Action" message to all the service instances which

are expected to act as roles of that nested CA action and inform them to enter that nested CA

action:

<Inform-Enter-a-Nested-CA-Action>
<CAHandle>

<CA type="uri" value="URI of the CA"/>
<ID>CAA manager's ID</ID>

</CAHandle>
<NCAHandle>

<NCA type="uri" value="URI of the NCA"/>
<NCAID>Nested CAA manager instance's ID </NCAID>
<Role> </Role>

</NCAHandle>
<SendingiD> The ID of the sending instance
</SendingiD>
............ some other information

</Inform-Enter-a-Nested-CA-Action>-

3.4.2.4 Enter-a-Nested-CA-Action

With the permission of entering a nested action, a service instance may decide not to enter

that action immediately. After finishing its present job, the instance sends the "Enter-a

Nested-CA-Action" message to the nested CAA manager, informing the manager that this

instance is ready to enter the nested CA action and is under the control of the manager from

now on:

<Enter-a-Nested-CA-Action>
<NCAHandle>

<NCA type="uri" value="URI of the NCA"/>
<NCAID>Nested CAA manager instance's ID
</NCAID>
<Role> </Role>

</NCAHandle>
<SendingiD> The ID of the sending instance
</SendingiD>

46

</Enter-a-Nested-CA-Action>

After the nested CAA manager obtains this message and verifies the MAC appended with the

message, it sends a reply back to the sending instance:

<Enter-a-Nested-CA-Action-Result>
<accept>true</accept>
<NCAHandle>

<NCA type="uri" value="URI of the NCA"/>
<NCAID> nested CAA manager instance's ID
</NCAID>
<Role> </Role>

</NCAHandle>
</Enter-a-Nested-CA-Action-Result>

3.4.2.5 CA-Action-End

When the original (outermost) CA action ends, all the session ends. When a CA action

finishes, the CAA manager sends the "CA-Action-End" message to all the roles of that CA

action. This message includes information about the state of the CA action at the point of

termination:

<CA-Action-End>
<Result>Success</Result>
<CAHandle>

<CA type="uri" value="URI of the CA"/>
<CAID>ID of CAA manager instance</CAID>

</CAHandle>
</CA-Action-End>

From the "CA-Action-End" message, the roles are informed that the CA action has ended

successfully. After having received the replies from all the roles, the CAA manager

terminates the CA action.

3.4.3 A Scenario

In this section, we use the previous scenario described in Section 3.3.3 again to illustrate how

the session management protocol works with the instance ID Authenticator protocol.

As shown in Figure 16, suppose that UI first sends a "Start-an-Original-CA-Action"

message to the session manager in order to start a new session. An instance of session

manager MI (including a SA instance and an original CAA manager instance) is created and

invoked.

47

MI

Figure 16 Invoking the Original CA action

UI then invokes the service instance NI and NI invokes the service instance Nl2. Once these

service instances have been accepted as participants of the session, the CAA manager instance

will regard them as instances invoked in the Original CA action (see Figure 17).

UI

UI

I.UI
invokes
NI

Nl

MI
(OCAm)

3.NI
invokes NI2
NI2

Figure 17 Invoking new service instances within the

Original CA action

In order to enclose the operations between NI2 and UI into a nested CA action, NI2 needs to

send a "Start-a-Nested-CA-Action" message to MI and applies for the creation of a new

nested CA action. After MI invokes a new nested session manager instance (CI(C, gc)), it

sends an "lnform-Enter-a-Nested-CA-Action" message to UI and NI2, permitting them to

enter that nested CA action. When UI and NI2 are ready, they send an "Enter-a-Nested-CA

Action" message to the nested CAA manager instance separately. UI also has to use Ku1,CI =
gxc to authenticate itself to the nested CAA manager and then enter the nested action.

Similarly, NI2 uses gNc to identify itself. After UI and NI2 have entered the nested CA action,

they are all under the control of the nested CAA manager (see Figure 18).

48

OCAm
2.Create NCAm

NCAm

Ul

Figure 18 Invoking a nested CA action

3.5 Summary

In this chapter we have presented the design of our multi-party authentication protocols for

Web Services and used the XML notation to specify the corresponding operations. Our

protocol is designed for complex Web services applications running over the Internet. Since

Web services may belong to different organizations and under the control of different security

systems, our protocol is intentionally designed to be independent of any particular security

systems. We have used the Diffie-Hellman scheme to exchange the authentication

information and CA actions to structure nested business flow. Compared to Hada and

Maruyama's scheme [HAD02], our protocol is improved in authenticating service instances

for complex sessions and defending against a variety of attacks. The following chapter

introduces the model analysis of our system and the results obtained from the experiment.

49

Chapter 4 System Evaluation and Formal Analysis

We have developed an experiment to evaluate the performance of our protocols. We also

design an analytic model to further support the conclusions of the experiment, as the

experiment can only partly simulate real life environments.

4.1 Description of the Experiment

4.1.1 Introduction of Programming Language and Tools

In the experiment, we employ Java to implement the experiment system. Java is an object

oriented language developed by Sun Microsystems to provide a programming language that

can be used on a variety of platforms. Because of its platform-independence, Java has been

widely used in e-business application development and has been accepted by the industry.

Furthermore, it provides a very good exception mechanism.

In addition, we make use of GLUE toolkits to generate experimental Web services, which

communicate based on the SOAP protocol. GLUE is a complete Web service platform

provided by The Mind Electric. The platform itself provides extensive support for SOAP,

WSDL, and UDDI. It is easy to use and fast at creating and deploying applications with Web

services.

4.1.2 Structure of the Experiment

Our session multi-party authentication system is designed for large scale, with a large

mumber of users, and should work in a distributed environment. Normally, operations in a

distributed system may be executed simultaneously and the performance of the system is

sometimes difficult to evaluate. Therefore, in the experiment, we try to simulate the worst

case, where all the operations of the system are executed consequentially. Thus, we

implement the experiment in the following way (see Figure 19).

A Web service is developed as the session authenticator and three Web services (Web service

1, Web service 2, and Web service 3 in Figure 19) are developed to spawn the Web service

instances that act as session partners in the experiment. Web services 1, 2 and 3 invoke each

50

other in the sequence shown in Figure 19 repeatedly until they have spawned a particular

amount of services instances and introduced them into the session. The amount of the session

partners within a particular session is managed by the first Web service instance generated by

Web service 1. The function of this service instance is to contact the session manager to

initiate a session as well as end it at the proper time. In this service instance, a pre-set counter

is used to specify the amount of session partners.

For an example, in order to establish a session with six partners and record the time consumed

to accomplish this session, the counter should be set as two and then Web service 1 generates

a new instance to start a new session. When the service instance spawned by Web service 3

in the first turn contacts Web service 1, Web service 1 will check the counter in the first

generated instance. If the counter is bigger than one, Web service 1 will then reduce the

counter by one and contact Web service 2 to start another turn. Else, Web service 1 will

inform the session authority to end the session and calculate the time consumption of this

sessiOn.

Session
Manager

Web service 3

Figure 19 Structure of the experiment

After the instances invoked by these three Web services have finished their jobs, they will be

disposed of to release the resources. Therefore, in one session there are only two or three

session partners occupying the memory simultaneously even when this system is simulating a

session with large number of partners. This design avoids the case that the system consumes

so many resources that the precision of the experiment result is affected.

51

Since all the operations in this experiment should be executed sequentially, it would be

reasonable to execute the experiment on a computer with one CPU. However, in order to

make the experiment more convincing, we have done this experiment both on a single

computer and in a LAN environment. The results getting from the two cases have the same

tendencies.

41.2.1 Standard! Deviation oft' ExperimeJrnt Resu.nnts

To our certain knowledge, there are several factors which may influence the performance of

the experiment:

o Java shields the garbage collection from developers. The Java virtual

machine (JVM) can free the resources no longer needed by the program

automatically. This mechanism benefits the software development.

However, the unpredictable overhead of the garbage collection mechanism

also affects the performance of the Java program and makes it relatively

less stable.

o The operation system used in the experiment is Windows 2000. And the

API System. currentTimeMillis () is used to get the system time at

the begin and the end of the experiment. The subtraction of the two times is

regarded as the time consumption of the experiment. However, the

operation of the experiment process may be interrupted by the operation

system backend management mechanism unpredictably. Therefore, the

result from the experiment may be longer than the time that the experiment

has really consumed.

o The private key of each Web service instance in the experiment is randomly

selected. Therefore, the time consumption of generating public keys and

secret keys based on these random numbers varies in different runs of the

experiment, although in theory the average result should approach to a limit

when large numbers of the private keys are used.

52

It is therefore necessary to investigate how much variation these factors will cause. In order to

evaluate the impact of these factors, we repeated the data collection process of each different

operation fifteen times (see Figures 20, 21 and 22).

Time overhead to generate 1500 private keys

250

VI 200 --120 bits (143 rriliseconds) ,
--' =-= c

150
....... ~

--240 bits (153 rrilliseconds) 0 __....,...
~
~ 100 480 bis (170 rrilliseconds)

·e 50 --960 bits (208 rrilliseconds)

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Times of experimentations

Figure 20 Time consumed to generate private keys

Time consumed to generate 1500 Diffie-Hellman key pairs

20000

VI ,
c
0
0

~
·e

VI ,
c
0

~
·e

15000

10000

5000

0

--- --" -=----

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Times of experimentations

--120 bits (4179
milliseconds)

- - 240 bits (8006
milliseconds)

480 bits (15374
milliseconds)

Figure 21 Time consumed to generate key pairs

Time consumed to invoke services instances (1500) and generate
the communication

15000

10000 -
5000

0
2 3 4 5 6 7 8 9 10 11 12 13 14

times of experimentations

15

Figure 22 Time consumed to invoke services instances (1500) and generate the
communication

53

As what Figures 20, 21 and 22 illustrate, the standard deviation of the results from different

runs of the experimentation is relatively small, and so the influence of the factors described

above is generally negligible.

4.2.2 System Scalability

In the experiment shown in Figure 23, different sessions with the number of partners ranging

from 300 to 1500 were generated to evaluate the scalability of the system. The curves from

the experiment indicate that the time consumed in accepting new service instances into a

session is proportional to the number of session partners, wruch is an acceptable result.

120000

100000

(/1
80000 '0 c:

0
(,) 60000 Q)

.!!?

·e 40000

20000

0
300 450 600 750 900 1050 1200 1350 1500

instances

--O-bit private key

--40-bit private key

120-bit private key

--240-bit private key

--360-bit private key

--480-bit private key

--512-bit private key

Figure 23 Scalability of the session authentication system

4.2.3 Concurrency

In order to evaluate the actual performance of the session authentication system when

concurrency is allowed, two experiments have been conducted. In the first experiment (see

Figure 24), we established seven kinds of sessions whose number of partners varied from

three to ten and collected the data of the performance load of a maximum of ten simultaneous

sessions. It is noted that the curves of the sessions' time consumptions are approximately

linear.

However, it may be possible that these curves in Figure 24 do not reflect the real feature of

the system concurrent performance because the number of simultaneous sessions is not large

enough.

54

Ui'
"0
c:
0
u
Q)

Jg

!
Q)

E
i=

6000

5000

4000

3000

2000

1000

0

Current performance of the system

2 3 4 5 6 7 8 9 10
Current sessions

~ 3 instance within a
session

--4 instance within a
session

5 instance within a
session

--*- 6 instance within a
session

__._7 instance within a
session

-+-a instance within a
session

--1-9 instance within a
session

Figure 24 Current performance of the system (experiment 1)

So, more sessions are executed concurrently in the second experiment. It is obvious that the

increasing speed of the time consumed for achieving a session reduces gradually as more

sessions are involved into the experiment (see Figure 25).

However when more than 50 sessions are executed concurrently, some messages transported

between service instances are denied due to the limits on the amount of simultaneous

messages that a Web server can handle. The system will become unstable in that condition.

Thus, the curve in Figure 25 is only reliable up to fifty concurrent sessions. However, from

that part of the curve, we can obtain the same result that we mentioned above.

Concurrent Performance

Ill 1 3000 +------~.-:;;_ _________ -1

~ 2000+---~~--------------------------1
:i

0 1 0 20 30 40 50 60 70 80 90 1 00 11 0

Concurrent Sessions

Figure 25 Current performance of the system (experiment 2)

55

4.2.4 Calculation Speed of Web Services

Normally, when we execute a Java program on the same computer more than once, the

performance of different experimentations is similar. However, the performance of Web

services seems to be different. Figure 26 compares the different performance of a Web service

and a normal Java program to generate 1500 120-bit private keys on the same computer.

Time consumed to generate 1500 120-bit private keys

Ul 6000 .. - - - - - --g 5000
\ 0 g 4000
\,._Web service

~ 3000

I 2ooo \
Ill

1000 \ -Normal Java program
E \. ;::

0
1 2 3 4 5 6 7 8 9 10 11 12

Test

Figure 26 Performance comparison of a Web service and normal a Java program

The time consumption of the normal Java program is similar each time while that of the Web

service becomes much faster after the first time. From the second time onwards, the Web

service' s performance becomes stable. Thus in the experiment, we always collect the data

after the Web service's performance stabilizes and use these data to evaluate the Web

service's time consumption. We explain this phenomenon as follows. When the user invokes

a Web service for the first time, the object of the service will be generated and kept in

memory. If the user contacts it later, the Web service will invoke the object from the memory

directly rather than instantiate it again.

4.3 Model Analysis of the Session Authentication System

Since the experiments can only partially simulate the Web service sessions with a limited

number of session partners, we also create an analytical model to further analyse these

experimental results .

4.3.1 Notation

We frrstly introduce the following notations to facilitate subsequent discussions.

56

T;nst,I

Tkey-pair(j, i)

Service instance which is the i-th instance introduced into the session

The time consumed of spawning a new service instance PI

The time consumed to generate the j-th private key and public key in

the process of introducing PI into the session

The time consumed to generate the j-th secret key in the process of

introducing PI into the session

The time consumed to generate and transport the j-th message

between two Web service instances in the process of introducing PI

into the session

4.3.2 Time Consumption of Introducing a New Session Partner to the Session
Authority

In our model, a user instance first contacts a session authority to initiate a session and the

session authority then assigns a SA instance to manage this session. The user is regarded as

the first session partner of the session. From then on, a new service instance must be

recommended to the session authority before it is accepted as a session partner. Normally, this

task is performed by the session partner, which invoked this new service instance (see the

Session partner in Figure 27).

As with the presentation of Figure 27, when a partner of a session attempts to recommend a

newly generated Web service instance to the session authority of the session, at least five

messages should be sent over the network. Firstly, the session partner sends a request to

access a Web service (see Step 1). Besides the request, other useful information such as the

identity of the session partner is also sent. After the Web service receives the message, it

spawns a new service instance to manage the request. The new service instance selects its

private key randomly from the key space, calculates its public key and sends the public key as

its identifier back to the session partner (see Step 2). After receiving the reply from the new

instance, the session partner forwards the new instance's identifier to the session authority

instance, which holds all the information of the session partners within that session. If the

session authority realizes that the identifier of the new instance has already been adopted by

another session partner, the session authority will inform the recommender that the register

has been refused. In this case, the recommender should inform the new service instance to

select a new private key (see Step 6). Steps 2, 3 and 4 are repeated until the session partner

gets confirmation from the session authority that the new instance has been accepted. After

receiving the confirmation, the session partner sends a message (message 5) to inform the

new service instance to start working.

57

Transported messages:

Session
Authority

0 : Invoke a new Web service instance

Web service

8 : Send the Identifier of the new instance back
C): Recommend the new instance to the session authority
0: Confrrm that the new instance has been registered
0: Inform the new instance to start running.
0: Inform the new instance to select another new private key

Generated secret keys:

New Service Instance

0 Secret key agreed with by the session partner and the new service instance
0 Secret key agreed with by the session authority and the new service instance

Figure 27 The process of registering a new instance to the session authority

Let us now consider a session partner that attempts to introduce a newly spawned Web

service instance P1 to the session authority, and this process achieves after x; identity

selections. The total time consumption of this process T total. I is as follows:

41;-fl ... J;.l(-fl)

T total, I ~ L (Tmu. o)+ L (Tkey-pairlj, o) + L (Tsecu.o) + T;nst, I (1)
j-4 j=t j-4

with equality when all the operations of the system are processed sequentially.

Therefore, in one session where n service instances are accepted into the session, the total

time consumption of this process T n-totai could be expressed in the following way:

n

T tr-total = L T,ota/, 1

i=l

n 4x1 +1 x1 2(x1 +1)

~ L (L (T,.(j, i)) + L (l'key-pair(j, i)) + L (Tsec(j, i)) + T;nst , I)

i=l j=l j=l j=l

2[(x1 + x2 + .. + xn) + n](Tsecret) + nT;nstant

58

(2)

11 4x;+l

L(L(1~n(j,i)))
where Tmessage = i=l j=l

11 2x;+l

L (L (T<ec(j, i)))
i=l j=l --"------- and T instant

II

L(2xi +1)
i=l

Tkey-pair =

II

L ('F;nst,l)
= ...!Ci=::!l __ _

n

n xi

L <:L (Tkey-pair(j, i)))
i=l j=l

Tsecret =

i=l

Given a random variable that is an integer with uniform distribution between I and n and a

selection of k instances (k :S n) of random variable, the probability, P(n, k), that there is at

least one duplicate is [STA98]:

n!
P(n, k) = 1- k

(n-k)!n

If the Key space of the security system is large enough, the probability that two partners

within the same session will select the same private key is extremely small. Thus, for every i

in { 1,2, .. . ,n }, X; z 1. Thus the value of (~ + x2 + .. + xn) in equation (2) is approximately n.

Therefore, when all the operations execute sequentially:

T n-toral z 5n(T message) + n(T key-pair) + 4n(T secret) + nT instance (3)

= n[5(Tmessage) + T key-pair+ 4T secret+ Tinstance]

Equation (3) implies that, in order to accept n service instances into a session, there will be

about 5n messages transported, n key pairs, 4n secret keys, and n new service instances

generated. That is, in the worst case the time consumption of introducing service instances

into one session increases linearly with the amount of the session partners.

4.3.3 Time Consumption of Initiating the Communication between Session
Partners

We also generated an analytic model of our security system for generating the communication

between session partners.

Figure 28 illustrates the conversation between two session partners, Initiator and Responder,

which tried to initiate a communication between each other. Since these two session partners

59

never communicated before, each of them has to ask the session authority instance to examine

the other's identity. Generally, there are six messages that have to be sent through the network.

Initiator will agree on a secret key with Responder.

Let T8cc;,1) be the time consumption of the process for two partners, P1 and P;, to agree on the

secret key. And

2 6

Tgc(i,J) :::; LT:·ecret(i,j) ,u + LT,nessage(i , j) ,u (4)
u=l u=l

In the above inequality we refer to the time consumption of generating the u-th secret key in

this process as T.ecret(i, n.u and the time consumption of generating and transporting the u-th

message in this process as T,nessage(i, i) ,u. Equality is achieved when all the operations in the

process are executed sequentially.

From inequality (4), we can say that the resources consumed to authenticate a session partner

do not vary as the change of the membership of the session or the relationship among the

session partners. If Initiator and Responder have contacted before, then there is no

additional operation needed. They should have generated the secret key and can use it directly

to prove their identities. Of course, the session partners can contact the session authority

instance to verify each other again for security purposes.

Initiator Responder

Transported messages

0: Request the identifier of Responder from the session authority
8: Return the identifier of Responder back to Initiator
0: Send request to Responder
8: Check the identity oflnitiator to the session authority
0 : Send the validation result back to Responder
0: Send the reply to Initiator according the validation result

Figure 28 The process of contacting other session partners

60

Assuming there is a session, in which there are n partners never communicate with each other

before. The time it takes every partner to form original connections with all the other session

partners Tgac should be:

n j-1

Tgac = L L (Tgc(i, J))

j=2 i=l

n j-1 2 6

~L:L: (LT,·ecret(i,j),u + LT,11essage(i,j),11

n j-2 2

j=2 i=l u=l u=l

n(n -1) -
---(2Tsecret +6Tmessage)

2

n j-2 6

L L (L T.ecret(i, j),u) L L (L T,nessage(i, j), u)

Wh T
j=3 i=l u=l j=3 i=l u=l

ere secret = -'-----,----:j-c-2=---- and T secret = -'----"----'" --:-j_-::2----

LL2 L::L6
j=3 i=l j=3 i=l

The time complexity of above inequality equation is O[n2
].

(5)

In the above discussion, we have described the process of our security system for two session

partners initiating communication. In Section 4.4, we will compare this model with the model

of another decentralised solution.

4.3.4 Comparison of the Results of the System and the Model

In the experiment, the transporting channel is stable. Therefore, the time consumption of

transporting a message between two instances and spawning a service instance is stable.

Every session partner spawned by the same service in the experiment has the same calculating

ability since all these instances are executed on the same computer.

In addition, it is impossible to anticipate the time consumption of generating a public key or a

secret key precisely in the experiment. However, we can predicate that:

As we described in Chapter 3, in the Diffie-Hellman algorithm, time consumption of

generating a public key or a secret key is determined by the length of the private key. And the

private key used in this system is a random number picked from the set {0, 1, ... , 2" -1}

where n is selected by the system according to the requirement of the security strength. When

the system employs Diffie-Hellman to agree with the secret keys, n is normally twice as the

length of the session keys that are derived from the security keys.

61

If i integers are selected randomly from the set {0, 1, ... , 2" -1 }, the average length of these

random numbers is a limit when i is large enough.

Therefore, when the number of session partners is large, as it is in our experiment, the value

of the arguments in the right of the equation (3) should not have a large variation in different

experimentations. Hence, we can record the time consumption of different operations such as

transporting messages, generating private keys, public keys, and spawning service instances

separately. Then, we can add them together to evaluate the performance of the system.

In Figure 29, we include the time consumptions of achieving various sessions. These sessions

consist of different numbers of session partners. The lengths of the private keys employed

within the sessions are different from one column to another. Specially, the column "0 bit" in

Figure 29 indicates the session that does not do the operations of generating the key pairs and

validating secret keys, that is, it only records the time consumed to generate the service

instance and the time consumed to generate and transport the messages.

~ 0 bit 40 bits 120 bits 240 bits 360 bits 480 bits 512 bits

300 1906 4768 7775 11516 15969 18016 20703
450 2938 6562 11812 16688 22422 27640 32297
600 3921 8079 15532 21579 29266 35609 39985
750 4875 10042 19435 26891 36047 48609 48765
900 5937 11750 22328 31532 43950 53453 60438
1050 6953 13956 26016 36813 51078 67844 69047
1200 8005 15344 29235 41453 68040 72812 80141
1350 9328 16704 33500 47016 72219 81703 92781
1500 11422 19375 36187 51812 76312 90172 100203

Figure 29 Private key's length and the time consumption (millisecond) of the experiment

system

In addition, from the observation of the Diffie-Hellman protocol we can tell that the average

time consumed to generate a public key is computationally close to a secret key. Let T pri be

the average time consumed in generating a private key and T pub be that of a public key,

equation (3) becomes

T11-totat = n[5(Tmessage) + T key-pair+ 4T secret + T;tlstance] (6)

::::: n[5(T message) + T pri + 5T pub + T in.>taiiCe]

62

Iii
"0 c
0
u
Q)

~ g
Q)

E
i=

Time consumed togenerate a 1500-instance session (512-bit key
space)

100000
80000
60000 Results from Model
40000
20000

0
120 240 480

Length of the private key (bits)

Figure 30 Comparison between analytical and experimental results

Based on the data collected from experiments (as what shown in Figures 20, 21 and 22), we

use equation (6) to generate analytical results . Figure 30 shows that the analytical sum of time

spent by different parts illustrated in Figures 20, 21 and 22 matches the experimental results

presented in Figure 29.

It is notable that the experimental results are always a little larger than the analytical results

derived from equation (6) . This phenomenon may be explained as follows:

The data shown in Figures 20 and 21 , used for the analytical model, is based on an

implementation in which the keys are generated by a single Web service instance, one at a

time. However, the experimental results, illustrated by Figure 29, are based on the fact that

the keys generated by multiple service instances in total. The operations in the experimental

system are therefore more possibly disturbed by the OS background management mechanism.

Consequently, time consumption of the experimental system should be longer than that of the

analytical model, especially when the system execution time is long.

4.3.5 Proportion of Different Parts of Time Consumption

Figure 31 shows the proportion of time consumed by different operations within the security

system. The time consumption of generating private keys is less than 1 %, negligible

compared with other operations. The time consumed in generating public keys and secret keys

takes the most part of the system time consumption. However, we anticipate that the

proportion of time consumed by transporting messages will increase when the system

executes in a large-scale distributed system. In extreme conditions, the time consumption of

transporting messages will determine the performance of the sy tern.

63

Time consumed to introduce 1500 instance into a session (480-bit
private key, 512-bit public key)

0% 13%

87%

C Time conusmed to generate
private keys

• Time conusmed to generate
service instances and transport
messages

0 Time conusmed to generate public
keys and secret keys

Figure 31 Time consumption of different operations in the system

4.4 Decentralised Solution for Session Authentication Protocol

Before choosing the solution described in Chapter 3 as our solution of the session

authentication protocol, we had considered another decentralised mechanism, which does not

rely on any third party to manage the identities of the session partners (see Figure 32).

4.4.1 Description of the Decentralised Solution

Like the centralised solution we described previously, this decentralised solution leverages

the Diffie-Hellman algorithm to distribute secret keys among session partners. Session

partners will use these secret key to authenticate each other in the conversations. In the

decentralised solution, in order to invoke a new service instance, there are three messages

necessary to be sent. Figure 32 illustrates a scenario of this process.

Suppose a session partner InstantO is a service instance involved within a session, and it

attempts to assess a Web service, Web service 1. Firstly, InstantO selects a pair of keys for

itself and then sends its request to Web service 1 (see Step 1 in Figure 32). Apart from the

request, InstanceO also sends its public key as its identifier to Web service 1. After receiving

the message from InstanceO, Web service 1 invokes a new instance, lnstance1 to manage

this request. Instance1 selects a private key from the key space and sends the associated

public key as its identifier back to Session Partner (see Step 2 in Figure 32). After Steps 1 and

2, InstanceO and lnstance1 have achieved the public key exchange so that they can agree on

a secret key using the Diffie-Hellman algorithm. In th third step of Figure 32, lnstantO

64

informs Instance! to start working after receiving the reply from Instance!. Same as our

multi-party authentication system discussed in Chapter 3, the messages in Steps 2 and 3 are

attached with MAC information calculated with the secret key that is shared by the InstanceO

and Instancel so that these two service instances can verify the originators of the messages.

After these three Steps conversation, each of them can make sure that the other instance has

agreed on the secret key. Instance! can now be regarded as a session partner.

Step I (0)

c:>r---s_t...:.ep_2...:..C
8.....:....) ___ ---.Jj Web service I ~--

---~S~te-p~3~(~~)~-~~
Session Partner
(Instant 0)

Transported messages:

Instance 2

0: Invoke a new Web service instance
8: Send the Identifier of the new instance back
~: Inform the new instance to start running.

Figure 32 The process of invoking new session partner in the decentralised solution

Assume Instancel tries to access another Web service, Web service 2. Following the same

way, Instance! contacts Web service 2 and generates the communication with lnstance2

which is invoked by Web service 2 to manage the request of Instance! (Steps 4, 5 and 6 in

Figure 32).

After lnstance2 has finished its job, it is required to send the result back to InstanceO

directly (see Figure 33). Since at this stage lnstanceO and lnstance2 have both generated

trust relationships with Instance!, lnstance2 can send its identifier to InstanceO through

Instantl (Steps 1 and 2 in Figure 33), and InstanceO can send its identifier back to

lnstance2 through Instancel as well (Steps 3 and 4).

65

lnstance2

Transported messages:

0: Send Instance2's identifier to Instancel and ask Instancel forward it to InstanceO
8: Send the Identifier to lnstanceO
C): InstanceO sends its identifier back
G: Instance! forwards InstanceO's identifier to Instance2
0: Contact InstanceO
CD : Return the validation result back to lnstance2

Figure 33 The process of initiating communication with other

session partners in the decentralised solution

After Steps 3 and 4, Instance2 agrees on a secret key with InstanceO using the Diffie

Hellman algorithm. Thus, lnstance2 can contact lnstanceO directly and use the newly

generated secret key to prove its identity.

4.4.2 Model Analysis of the Decentralised Solution

Let us now consider partner within a session that invokes a service instance P1 and accept it to

the session. A triple-message conversation is needed to invoke and generate the trust

relationship with P1 over the network. Moreover, P1 should select a private key and the

relevant public key for itself. We refer to the time consumption of this process as Tkey-pair, I· In

addition, the two parties of the conversation should generate the secret key respectively. So,

the time consumption of accepting P1 into the session T rowl, 1 is:

3 2

T total, I L Tm(j, o+ Tkey-poir, I + L TsecG, i) + T;nsl , I ,

j=l j=l

In the discussion, we neglect the condition that two parties select the same private key

accidentally, since the possibility is extremely small. Therefore, when accepting new session

partners, the time consumption of this decentralised solution is a little less than that of the

centralised solution discussed in Chapter 3.

66

It is a little complex to assess the time consumption of initiating communication between two

session partners that have never contact before. Since two session partners that never

communicate before may have to exchange their identifiers via other session partners, this

time consumption depends on how many session partners are involved within the process of

exchanging the identifiers. Figure 34 details a structure of a session, within which a session

partner Partnerl invokes all the other session partners (Partner2 to Partnern). Thus,

Partnerl has the trust from all other session partners. Assume two session partners P1 and P"

where I, J E { 2,3, .. , n} , attempt to generate a secret key and start communication. So, in the

worst case, the time consumption Tgc(i,J) should be:

2 6

Tgc(i, j) ~ L T.ecret(i , j),u + LTmessage(i, j), u
u=l ll=l

The time it takes for every partner in this session to form original connections with all the

other session partners Tgac should be:

n j-1

~'L'L

n j - 1

Tgac = L L (Tgc{i,J))
j=3 i=2

2 6

(LTsecret(i , j), u + L T,,.essage(i, j), u)
j=3 i=2 ll=l ll=l

-- (n -l)(n- 2) (2 -Tsecret

2
+6 T message)

n j-1 2 11 j-1 6

L L (LI'.ecret(i,j),ll) L L (L T,nessage(i,j),u)
j=3 i=2 ll=l j=3 i=2 u=l Where T secret = -'------,.-j---:1 --- and T secret = -'--:....:.....::...._:....:....n--:-j_-:1----

LL2 'L'L 6
j=3 i=2 j=3 i=2

c:=J
PartnerS

Partner!

Figure 34 Session structure (1)

67

It is notable that the order of growth of above equality is O[n2
] , the same as that of the

inequality (5) in Section 4.3.

Consider a session, which is presented within Figure 35. In this session, each P1 is invoked by

P1.t. where i E {2,3, .. , n} . So to initiate a communication for two strange session partners P1

and P1. where 1 $ i $ j $ n, the time consumption T gc(i,J) should be:

2 2(j-i)+2

T gc(i, j) $ LTsecret(i, j), tt + L T,nessage(i, j),tt
u=l tt=l

For every partner in the session to generate trust relationship with each other, the time

consumption Tgac should be:

n j-2

Tgac = LLTgc(i ,j)
j=3 i=l

II j -2 2 2(j-i)+2

$ L L (L T.ecret(i, j), u + L T,nessage(i, j), 11)
j=3 i= l u=l u=l

From the above equality, we can see that in the worst case the order of growth of initiating

the communication among session partners is O[n3
] , which is higher than that of the

centralised solution (O[n2
]).

Partner! Partner2

Partner)~
, , , , , , , , ,

0 Partnern

Figure 35 Session structure (2)

68

4.4.3 Comparison lbetween the Centralised §oBution and the Decentralised
Solution

Both the centralised solution and the decentralised solution have their own advantages. The

decentralised solution does not rely on any third party to manage the key distribution.

Therefore, the decentralised solution avoids the inherent drawbacks of protocols that rely on a

third party. This is a great advantage. Nevertheless, it also has some inevitable drawbacks.

Here, we list some of them as follows:

o In the decentralised solution, session partners lack effective ways to get the

real-time information of the session (e.g., the change in the number of

session partners, the information of newly accepted session partners).

o In the decentralised solution, it is difficult to examine whether the identity

of a session partner is unique in the session.

o In the decentralised solution, the session partners also have the

responsibility to help other related session partners to initiate

communication. Consequently, the Web services involved in the session

have to keep the session information until the end of the session, even when

they have finished their job.

o In the decentralised solution, the security of the session is dependent upon

the security of every session partner. The strength of a chain is determined

by the weakest link. Therefore, when a session partner crashes or becomes

compromised, it maybe be fatal tothe entire session.

Overall, the decentralised solution traverses the identifiers through session partners and its

security is generated on the assumption that all the session partners are secure and trustable.

If a session partner is compromised, the security of all the session may be easily

compromised in many cases. Compared with the centralised solution, its fatal drawback is its

inability of providing session partners real-time session information. After evaluating these

two solutions, we finally select the centralised one.

69

4.6 Sll.llmmall."y

In this chapter, we introduced the implementation of our experiment. The main part of the

experiment is concentrated on proving the linear increase of time consumption when

introducing Web service instances into the session. Since it is very difficult to generate a large

number of Web services executed on different computers respectively, we develop an

experiment to simulate the working environment of our protocols. In order to make our

solution more convincing, we use an analytic model to further prove the experimental results.

Furthermore, we describe a decentralised solution and compare it with the solution described

in Chapter 3. In the next chapter, we will discuss the conclusion from the research and

mention future work.

70

§.1 CondusioJrnS

Web service is a new technology that emerged several years ago. People believe that this

technology is able to help corporations generate e-business solutions which are more effective

and dynamic than ever. Unfortunately, the lack of proper solutions to secure Web services is a

major obstacle to large-scale commercial usage of the approach. The main goal of this

research is to explore multi-party authentication issues for Web services and to develop a

multi-party authentication system for Web services capable of providing reliable session

security service and management to a Web service business.

Up until now, the prototype system has been generated and the results obtained from the

experiment show that the session authentication system could provide trustable session key

management:

o A Web service instance within one particular session can select some

unique identifier among the session partners, and with this identifier, it will

not be confused with others.

o The public key algorithm is involved so that the identifiers cannot be forged.

Supplementary to this, a measure is provided for the session partners to

validate the identity of the object who it is communicating with.

o The mistake of sending the messages to the service instance within different

session is avoided. In the experiment, some errors were deliberately

inserted into the experiment system, for instance, changing the identifiers

of the session partners and changing the private keys of the session partners.

These errors were detected successfully.

The experiment system employs Session Authority, which is a fixed, highly secure trusted

third party, to manage all the secure information of the session partners and so it is a

centralised management mechanism. Therefore, our system inevitably suffers from the single

point failure and single point attack.

71

On the contrary, the distributed management mechanism requires all the group numbers take

part in the management to overcome the shortcomings mentioned above. However, the

distributed management is notoriously complex and computationally heavy [AMIOO].

Currently, some algorithms (decentralised group key algorithms) are mentioned for the

distributed key management in the peer-to-peer groups in some paper [AMIOO, KIMOO (1)],

and we have introduced them briefly in the previous chapter. Essentially, these algorithms are

only suitable for relatively small groups [KIMOO (1)]. Furthermore, they only can generate a

general key for all the group partners. Therefore, they are not suitable to resolve the multi

party session authentication issue we discussed above.

The centralised management mechanism has its irreplaceable advantages, simplicity and

effectiveness. Nowadays, nearly all the most popular security systems (e.g., Kerberos, PKl

[GER98, HOU02], Kryptoknight, etc.) make use of some kind of trusted third party to

manage the secure information. Thus after analysing the models of the centralised solution

and the distributed solution separately, the centralised system proves to be the choice that is

more sensible.

5.2 Future Work

The session management of Web services is still a new field in the area of Web service

security. The system developed has great potential to be improved, and it will act as the

foundation for the future search.

5.2.1 Searching for Potential Candidates of the Public-Key Algorithm

In the experiment, the Diffie-Hellman algorithm is used to generate the secret key among the

session partners. The Diffie-Hellman algorithm is a very famous key agreement algorithm and

is wildly employed by existing security systems. However, it still makes sense to attempt to

employ other key agreement algorithms to our security system and compare their

performances, so that the optimum one may be selected.

Up until the present, the performance of the ECC (Elliptic Curve Cryptography) algorithm

[STI02] is checked in the experiment and its performance has been compared with the Diffie

Hellman algorithm (see Figure 36).

72

Performance of two algorithms with the same security strength

'iii 100000 -t--------"'--'-------,--~H ,
1:
0 80000 +-----------~F-----1

J 60000 +-------..,...-::~'---------~
g
Ql 40000 -t----:::-.:z: ... ""---------- ---1
E
i= 20000 +--IF----------------1

Instance within the session

-+- DH (512-bit private key ,512-
bit key space)

- ECC (112-bit private key,
112-bit key space)

Figure 36 Comparison between the Diffie-Hellman algorithm and the ECC algorithm

In the experiment, the ECC algorithm does not show any speed advantage in the competition

with the Diffie-Hellman algorithm. Nevertheless, this does not mean that the Diffie-Hellman

algorithm is better than the ECC algorithm. In practice, several optimisations for the ECC

algorithm can be employed to reduce the computational consumption. In the future, the

optimised measures for the ECC algorithm will be implemented and other asymmetric

security algorithms will continue to be explored in order to improve the performance of the

system.

5.2.2 Semantic Issues of Session Management

In the session management system, theCA action model is leveraged to manage Web service

sessions. CA actions have a good mechanism to handle the exceptions that occur in a

distributed system. However, before it is integrated into a Web service environment, many

semantic issues must be explored. For instance, the system comprised of Web services is loss

coupled. Different Web services may be developed and maintained by different organizations.

It is normal that they select different ways to express exceptions and handle them. Therefore,

it is necessary to find an efficient way to help the CAA manager understand the meanings of

the exceptions thrown by different roles so that it can effectively organize the roles to handle

these exceptions.

Beside the work cited above, there are still many things left to do. For instance, new security

protocols for Web service are continually emerging. Some of these protocols can be

integrated into our solutions. When the authentication system was designed, there was no

73

security protocol for Web service specifying how to generate the secure conversation between

two Web service instances. Therefore, we define the conversation messages in our solution by

ourselves. Moreover, in our design, the MAC (message authentication code) tehcnique is

necessary to prove the origin of the message and it should be attached to the SOAP message

with WS-Security protocol. Until the experiment is finished, Sun Corporation has not

provided the APis for this protocol. So the present experiment is aimed at evaluating the

scalability of the instance ID Authenticator protocol, and the secret keys were transported in

plain text. In the future, theWS-Security and other new emerged security protocols (e.g., WS

SecureConversation) will be integrated into the experiment system, and performance of the

system will be further evaluated.

In brief, there is great potential for future work on our solution. In our opinion, at moment the

most pressing need is for an effective and optimized mechanism to distribute and manage the

identifiers for session partners.

In the field of web service session management, there is still much to explore.

5.3 Acknowledgements

My thanks to my supervisor Jie Xu, and my father and mother for all their support.

74

References

[ABA97]

[AMIOO]

[ATEOO]

[ATK02]

[BAROl]

[BEL91]

[BEQ02]

Martin Abadi, "Explicit Communication Revisited: Two New Attacks on

Authentication Protocols," IEEE Transactions on Software Engineering Vo/.23, No.

3, pp.l85-186, Mar. 1997.

Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. Schlossnagle, J. Schultz,

J. Stanton, and G. Tsudik, "Secure Group Communication in Asynchronous

Networks with Failures: Integration and experiments," Pro c. the 20th IEEE

International Conference on Distributed Computing Systems, pp. 330-343, Apr.

2000.

Giuseppe Ateniese, Michael Steiner, and Gene Tsudik, "New Multiparty

Authentication Services and Key Agreement Protocols," IEEE Journal on Selected

Areas in Communication, 2000.

Bob Atkinson, Giovanni Della-Libera, Satoshi Hada, Maryann Hondo, Phillip

Hallam-Baker, Johannes Klein, Brian LaMacchia, Paul Leach, John Manferdelli,

Hiroshi Maruyama, Anthony Nadalin, Nataraj Nagaratnam, Hemma Prafullchandra,

John Shewchuk, and Dan Simon, "Web Service Security (WS-Security),"

http://www-l 06.ibm.com/developerworks/webservices/library/ws-secure/, Apr.

2002.

Mark Bartel, John Boyer, Barb Fox, Brian LaMacchia, and Ed Simon,

"XML-Signature Syntax and Processing," http://www.w3.org/TR/2001/

PR-xmldsig-core-200 10820/, Aug. 2001.

Steven Bellovin, "Limitations of the Kerberos Authentication System," Pro c. Winter

1991 Usenix Conference, pp. 253-267, Jan. 1991.

Henry Bequet, Meeraj Moidoo Kunnmpurath, Sean Rhody, and Andre Tost,

"Beginning Java Web Services," Wrox press ltd, 2002.

75

[BER02]

[BLA97]

[B0003]

[BOXOO]

[BOYOl]

[BREOl]

[BR002]

[CER02]

[CHROl]

A. Berfield, P.K. Chrysanthis, I. Tsamardinos, S. Banetjee, and M.E. Pollack, "A

Scheme for Integrating E-Services in Establishing Virtual Enterprises," Proc. 12th

International Workshop on Research Issues in Data Engineering: Engineering

e-Commerce/ e-Business System, pp. 134-142, Feb. 2002.

Simon Blake-Wilson, Don Johnson, and Alfred Menezes, "Key Agreement Protocols

and their Security Analysis," Proc. 61
" IMA International Conference on

Cryptography and Coding, val. 1355 of LNCS, pp. 30-45, Sep. 1997.

David Booth, Michael Champion, Chris Ferris, Francis McCabe, Eric Newcomer,

and David Orchard, "Web Services Architecture,"

http://www.w3.org/TR/2003/WD-ws-arch-20030514/, 2003.

Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn,

Henrik Frystyk Nielsn, Satish Thatte, and Dave Winer, "Simple Object Access

Protocol (SOAP) l.l," http://www.w3.org/TR/SOAP/, May 2000.

John Boyer, "Canonical XML Version 1.0,"

http://www.w3.org/TR/2001/REC-xml-cl4n-20010315, Mar. 2001.

Emmanuel Bresson, Olivier Chevassut, David Pointcheval, and Jean-Jacques

Quisquater, "Provably Authenticated Group Diffie-Hellman Key Exchange," Eighth

ACM Conference on Computer and Communication Security, pp. 255-264, Nov.

2001.

David K. Broberg, "Man-In-The-Middle or Middleman,"

http://www.digitaltelevision.com/2002/may/expert broberg.shtml, May 2002.

Ethan Cerami, "Web Services Essentials," O'Reilly, Feb. 2002.

Eiik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana,

"Web Services Description Language (WSDL) 1.1 ," http://www.w3.org/TR/wsdl,

Mar. 2001.

76

[COW02] John Cowan and Reuters, "Extensible Markup Language (XML) 1.1,"

http://www.w3.org/XML/, Oct. 2002.

[DEN81] Dorothy E. Denning and Giovanni Maria Sacco, "Timestamps in Key Distribution

Protocols," Communications of the ACM, 24(8), pp. 533-536, Aug. 1981.

[GAR97] Simson Garfinkel and Gene Spafford, "Web Security & Commerce," O'Reilly, Jun.

1997.

[GER98] Ed Gerck, "Overview of Certification Systems: X.509, CA, PGP and SKIP,"

http:/ /www.iks-jena.de/mitarb/lutz/certification/mc/cert.htm, Apr. 1997.

[GIBOl]

[GOL96]

Andy Gibbs, "What is UDDI," http://www.nwfusion.com/

newsletters/techexec/2001/0093245l.html, Jun. 2001.

D. Gollmann, "What Do We Mean by Entity Authentication," Proc. 1996 IEEE

Symposium on Security and Privacy, pp. 46-54, May 1996.

[GON93] Li Gong, T. Mark A. Lomas, Roger M. Needham, and Jerome H. Saltzer, "Protecting

Poorly Chosen Secrets from Guessing Attacks," IEEE Journal on Selected Areas in

Communications, Vol.ll, Issue 5, pp. 648-656, Jun. 1993.

[HAD02] S. Hada and H. Maruyama, "Session Authentication Protocol for Web Services,"

Proc. 2002 Symposium on Application and the Internet Workshops, pp. 158-165, Jan.

2002.

[HAL03] Phillip Hallam-Baker, "XML Key Management Specification (XKMS) Version 2.0,"

http://www.w3.org/TR/xkms2/, Apr. 2003.

[HOD02] Jeff Hodges and Eve Maler, "Glossary for the OASIS Security Assertion Markup

Language (SAML)," http://www .oasis-open.org/committees/security/

docs/cs-sstc-glossary-0 l.pdf, May 2002.

[HOU02] R. Housley, W. Polk, W. Ford, and D. Solo, "Internet X.509 Public Key

77

[IMA02]

[KAU02]

[KIMOO]

Infrastructure Certificate and Certificate Revocation List (CRL) Profile,"

http://www.ipa.go.jp/security/rfc/RFC3280-00EN.html, Apr. 2002.

Takeshi Imamura, Blair Dillaway, and Ed Simon, "XML Encryption Syntax and

Processing," http://www. w3 .org/TR/2002/REC-x mlenc-core-2002121 0/, Dec. 2002.

Charlie Kaufman, Radia Perlman, and Mike Speciner, "Network Security Private

Communication in a Public World," Prentice Hall, Apr. 2002.

Y. Kim, S. Kang, D. Kim, J. Bae, and K. ju, "WW-FLOW: Web-Based Workflow

Management with Runtime Encapsulation," IEEE Internet Computing, vol. 4, no. 3,

pp. 55-64, 2000.

[KIMOO (1)] Y. Kim, A. Perrig, and G. Tsudik, "Simple and Fault-Tolerant Key Agreement for

Dynamic Collaborative Groups," Proc. ACM CCS-7, pp. 235-244, 2000.

[KRE01] Heather Kreger, "Web Services Conceptual Architecture (WSCA 1.0),"

http://www-306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf, May

2001.

[KW097] Taekyoung Kwon, Myeong Kang, and Jooseok Song, "An Adaptable and Reliable

Authentication Protocol for Communication Networks," Proc. Sixteenth Annual

Joint Conference of the IEEE Computer and Communications Societies. Driving the

Information Revolution, pp. 737-744, Apr. 1997.

[LEY01] F. Leymann, "Web Services Flow Language (WSFL 1.0),"

http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, May 2001.

[MEN95] S. Mendes and C. Huitema, "A New Approach to the X.509 Framework: Allowing a

Global Authentication Infrastructure without a Global Trust Model," Proc. 1995

Internet Society Symposium on Network and Distributed System Security, pp.

172-190, Feb. 1995.

[MEN96] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, "Handbook of

78

[NAK02]

Applied Cryptography," CRC Press, Oct. 1996.

Y. Nakamur, S. Hada, and R. Neyama, "Towards the Integration of Web Services

Security on Enterprise Environments," Proc. 2002 Symposium on Applications and

the Intemet Workshops, pp. 166-177, Jan. 2002.

[NAK02 (l)] S. Nakajima, "On Verifying Web Service Flows," Proc. 2002 Symposium on

Applications and the Internet Workshops, pp. 223-224, Jan. 2002.

[PAT97]

[RAN99]

[RAYOO]

[SCH96]

[STA98]

[STAOO]

[STE98]

Sarvar Patel, "Number Theoretic Attacks on Secure Password Schemes," Pro c. IEEE

Computer Society Symposium on Research in Security and Privacy, pp. 236-247,

1997.

Brian Rrandell, "Fault Tolerance in Decentralized Systems," Proc. 4th International

Symposium on Autonomous Decentralized Systems, pp. 174-181, Mar. 1999.

Jean-Fran~ois Raymond and Anton Stiglic, "Security Issues in the Diffie-Hellman

Key Agreement Protocol," bttp://citeseer.nj.nec.com/cache/papers/cs/22803/

http:zSzzSzwww.geocities.comzSzj f raymondzSzmesarticleszSzdhshort.pdf/secur

ity-issues-in-the.pdf, Dec. 2000.

Bruce Schneier, "Applied Cryptography (Second Edition)," John Wiley & Sons,

1996.

W. Stallings, "Cryptography and Network Security, Principles and Practice (second

Edition)," Prentice Hall, 1998.

William Stallings, "Network Security Essentials: Applications and Standards,"

Prentice Hall, 2000.

M. Steiner, G. Tsudik, and M. Waidner, "CLIQUES: A New Approach to Group Key

Agreement," The I8111 International Conference on Distributed Computing Systems,

pp. 380-387, May 1998.

79

[STI02]

[SYV94]

[THAOl]

[TIDOO]

[T0003]

[V AS01]

[WU99]

[XU95]

[XU99]

[YAN02]

Douglas R. Stinson, "Cryptography Theory and Practice," Chapman & Hall I CRC,

2002.

Paul Syverson, "A Taxonomy of Replay Attacks," Proc. 7th IEEE Computer Security

Foundations Workshop, pp. 187-191, 1994.

S. Thatte, "XLANG-Web Services for Business Process Design,"

http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm, May 2001.

Doug Tidwell, "Web Services the Web's Next Revolution,"

http://www-! 06.ibm.com/cleveloperworks/webservices/edu/ws-dw-wsbasics-i.html,

Nov. 2000.

Annraf O'Toole, "Web service-Oriented Architecture: The Best Solution to Business

Integration," http://www .ctoupdate.com/ctoupdate-65-20030815 W ebServiceOriente

dArchitectureTheBestSolutiontoBusinesslntegration.html, 2003.

V. Vasudevan, "A Web Services Primer,"

04/04/Webservices/, Apr. 2001.

http://www.xml.com/pub/a/2001/

Thomas Wu, "A Real-World Analysis of Kerberos Password Security," Proc. I999

Internet Society Network and Distlibuted System Security Symposium, Feb. 1999.

J. Xu, B. Randell, A. Romanvosky, C. Rubira, R.J. Stroud, and Z. Wu, "Fault

Tolerance in Concurrent Object-Oriented Software through Coordinated Error

Recovery," Proc. 25th Int'l Symp. Fault-Tolerant Computing, pp. 499-508, Jun.

1995.

J. Xu, B. Randell, A. Romanvosky, R.J. Stroud, A.F. Zorzo, E. Canver, and F.V.

Henke, "Rigorous Development of a Safety-Critical System Based on Coordinated

Atomic Actions," Proc. 29th Annual International Symposium on Fault-Tolerant

Computing, pp. 68-75, Jun. 1999.

J. Yang, M.P. Papazoglou, and W.V.D. Heuvel, "Tackling the Challenges of Service

80

Composition in E-marketplaces," Proc. 12th International Workshop on Research

issues in Data Engineering: Engineering e-Commerce! e-Business System,

pp.125-133, Feb. 2002.

[YAN02 (I)] Andrew Yang, "XML Web Services Security Issues," http://www.xwss.org/

mticlesThread.jsp ?forum=34&thread=648, Apr. 2002.

81

