
Durham E-Theses

Multi-party authentication protocols for web services

Zhang, Dacheng

How to cite:

Zhang, Dacheng (2003) Multi-party authentication protocols for web services, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3082/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3082/
 http://etheses.dur.ac.uk/3082/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


------

Multi-Party Authentication Protocols 
for Web Services 

Dacheng Zhang 

A copyright of this thesis rests 
with the author. No quotation 
from it should be published 
without his prior written consent 
and information derived from it 
should be acknowledged. 

M.Sc. Thesis 

Department of Computer Science, 
University of Durham 

UK 

2003 

a A 
~ 

2 5 AUG 2004 



Abstract 

The Web service technology allows the dynamic composition of a workflow (or a business 

flow) by composing a set of existing Web services scattered across the Internet. While a 

given Web service may have multiple service instances taking part in several workflows 

simultaneously, a workflow often involves a set of service instances that belong to different 

Web services. In order to establish trust relationships amongst service instances, new security 

protocols are urgently needed. 

Hada and Maruyama [HAD02] presented a session-oriented, multi-party authentication 

protocol to resolve this problem. Within a session the protocol provides a common session 

secret shared by all the service instances, thereby distinguishing the instances from those of 

other sessions. However, individual instances cannot be distinguished and identified by the 

session secret. This leads to vulnerable session management and poor threat containment. 

In this thesis, we present a new design for a multi-party authentication protocol. In this 

protocol, each service instance is provided with a unique identifier. The Diffie-Hellman Key 

Agreement scheme is employed to generate the trust relationship between service instances 

within the same flow. The Coordinated Atomic Action scheme is exploited for achieving an 

improved level of threat containment. 

The new protocol was implemented in Java and evaluated by a combined use of experiments 

and model-based analysis. The results show that the time consumption for multi-party 

authentication increases linearly as the number of service instances that are introduced into a 

session increases. Our solution is therefore potentially applicable for Web service flow with a 

large number of participants. Various public key algorithms are also compared and evaluated 

during the experiments in order to select the most suitable one for our new protocol. 

Key words: Atomic actions, authentication, fault tolerance, Internet computing, key 

exchange, security, Web services 
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Chapter 1 Introduction 

1.1 Background 

Web services are self-contained, self-describing, modular applications that can be published, 

located and invoked across the Web [VASOl]. Although this new technology was only 

proposed several years ago, it has already created great interest within the Computer Science 

community. The emergence of Web services is promoting the development of dynamic e

businesses such as virtual-corporation [BER02] and E-market [Y AN02]. Through the use of 

protocols such as XML, SOAP, WSDL and UDDI, Web services can contact each other 

dynamically over the Internet and enable users to build flexible business solutions. 

Web services provide options for both suppliers and users. Web service suppliers can 

dynamically cooperate with other suppliers to compose and provide larger Web services, 

while users can select their desired Web services scattered across the network and organize 

them together to accomplish their goals. For instance, a travel agency service may need to 

contact both an airline service and a hotel service in order to book a client's holiday. 

Understandably, the combination of Web services can be very complex in many cases. Thus, 

a simple but structured means is required to describe such combinations of services. At the 

moment, there are some specific languages, e.g., WSFL [LEYOl] and XLANG [THAOl], 

proposed for describing workflows (Web service combinations). We use the term worliflow to 

describe a business process that is automatically executed and managed by computer systems. 

There exists also some work on Web services flow control (e.g., [KIMOO, YAN02]). However 

it is the behavior of multiple parties participating in a workflow that introduces new security 

challenges. 

1.2 The Problem 

Essentially, a session is a lasting interaction between system entities, often involving a user, 

typified by the maintenance of some state of the interaction for the duration of the interaction 

[HOD02]. In the traditional Client/Server model, a session generally only consists of two 

partners (client and sever). In the peer-to-peer model of Web_~ervices, the conditions are quite 

different. :~~~~cF~ 
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A Web service is a static, long-lived entity with a unique identifier all over the world (e.g., its 

URL address). When a Web service receives an initial request to participate in a business flow 

(called a session), it will invoke a new instance to handle the requests that are pertinent to this 

particular business flow [HAD02]. However, a Web service instance is a dynamic, transient 

entity usually without a unique identifier. This is because a business flow may involve 

multiple instances that belong to different systems and organizations, while a Web service 

may have multiple instances that take part in different workflows simultaneously. So an 

authentication mechanism is needed to make sure that an instance in one Web service 

business flow is communicating with other instances that take part in the same business flow. 

The authors of [HAD02] present an initial session authentication protocol for establishing a 

trust relationship between instances of a business flow. But as the authors have stated in their 

work, there are several related issues in the area of Web service session control that are as yet 

unresolved, such as when and how to end a session. At the moment, this field has not been 

fully explored. 

1.3 Main Results 

This research is concentrated on the analysis of the issues regarding session control of Web 

services, as well as exploring different ways to design and develop a multiparty session 

authentication system for Web services. Models for different solutions are generated 

respectively to evaluate their performances. In the final solution, a trusted third party session 

authority is leveraged to manage the session, and each instance in a session is associated with 

a unique identifier. Furthermore, a session management protocol is designed and a CA 

(Coordinated Atomic) action mechanism is employed to enhance its ability of attack 

confinement. 

In order to examine our idea in practice, a proto-type of the Instance ID authority system is 

implemented in Java. Various asymmetric algorithms are employed in the experiment system 

in order to compare their performances. 

1.4 Organization of the Thesis 

Chapter 1 introduces an overview of the research. 
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Chapter 2 gives an overview of Web service architecture and related security issues. First of 

all, the Web service model and related specifications are introduced. After the introduction, a 

discussion of the new security challenges that Web services must face is provided. Among 

these challenges, the security requirements for session authentication are particularly 

important. This new issue is related to strong flow ability of Web services. After discussing 

the limitation of existing solutions in session management and related fields, we conclude that 

a new session security management scheme for Web services is needed. 

Chapter 3 introduces the structure of our new session authentication system. The chapter 

describes the solution in [HAD02] and its drawbacks followed with the introduction of the 

session authority and the CAA (CA action) manager. 

Chapter 4 contains the results and analysis of the experiment performed as well as the 

analysis of the model of the system. The results of the experiment will then be compared with 

those generated by the model. Also, we present another decentralised plan of multi-party 

authentication system for Web services, which was considered when we designed our 

protocol. This plan does not rely on any trusted third party. Using formal analysis, we 

compare this solution with the centralised system described in Chapter 3. 

Chapter 5 gives the conclusion and discusses future work. 
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Since the introduction of Web services several years ago, the IT industry has realized that 

Web services enable dynamic and flexible enterprise applications. A corporation can employ 

numerous Web services from different providers, which are implemented with different 

languages, and executed on different platforms to generate a single unified application. 

Though few doubt the potential of Web services, the security issue is currently a major 

obstacle preventing the adoption of this new technology. In this chapter, we will introduce the 

situation surrounding Web service security. 

2. ]_ W elb §e.rvkes 

2.1.1 Service-Oriented Architectmre (SOA) 

In the traditional e-business way, a corporation that wants to accomplish a business goal has 

to buy the related software, normally built as a standard product, from the supplier. Also, 

corporations have to constantly maintain and update the software by themselves. So the way 

that different corporations implement their e-business systems is ad hoc. Furthermore, it is 

notoriously complex, costly, and time-consuming to integrate these heterogeneous business 

information systems. Under the pressures of competition, corporations need a more effective 

and flexible model to reduce their costs and improve their competitiveness. The concept of a 

Service-Oriented Architecture is put forward under this background. A Service-Oriented 

Architecture is essentially a collection of services that communicate with each other through a 

standard means. The communication can involve either simple data passing or multiple 

service coordination. In this model, an application can be wrapped within a well-defined 

interface. In other words, this application is wrapped into a service. This interface hides all the 

details of the application (e.g., language, operation system, database, etc.) The user can access 

this application through the interface without knowing any details about its implementation. 

Service-oriented architectures are not a new thing. Early attempts at SOA such as the 

Distributed Component Object Model (DCOM) and Common Object Request Broker 

Architecture (CORBA) led to the realization that the future business logic of an application is 

not necessarily coupled with the present logic [BEQ02]. Corporations can select and change 

their business partners dynamically as well as reduce software maintenance costs. 

4 



2.L2 Web Services 

According to IBM, Web services are a form of Web applications that are self-contained, self

describing and modular. These Web applications can be published, located, and invoked 

across the Web. Web services perform functions ranging from simple requests to complicated 

business processes. Once a Web service is deployed, other applications (and other Web 

services) can discover and access it dynamically [TIDOO]. A Web service is described using a 

standard, formal XML notion, called the service description. It includes all the details 

necessary for interacting with the service, including message format (that details the 

operations), transport protocols, and location. The interface hides the implementation details 

of the service, allowing it to be used independently of the hardware and software platform it is 

executed in and the programming language it is implemented in. This allows and encourages 

Web Services-based applications to be loosely coupled, component-oriented, cross

technology implementations. Web Services can fulfil a specific task or a set of tasks. They 

can be used alone or with other Web Services to carry out a complex aggregation or a 

business transaction [KREOI]. Currently, multiple major software companies have proposed 

their own Web services plans: Microsoft's .Net, Sun's Sun ONE (Sun Open Net 

Environment) and so on. These plans are based on several common technologies: UDDI 

[GIBOl], WSDL [CHROl], SOAP [BOXOO] and XML [COW02]. 

Web service technology is independent of any transporting protocols. Although HTTP is the 

de facto standard network protocol for Internet-available Web Services, other Internet 

protocols such as SMTP and FfP can also be supported. In Intranet domains, different 

reliable messaging and call infrastructures (e.g., MQSeries, CORBA) can also be employed. 

The network technology can be chosen based on various requirements including security, 

availability, performance, reliability and so on. 

2.1.3 Web Service Architecture 

According to [KREOl], there are three main roles in the Web Services architecture: service 

provider, service requestor and service registry. The service provider is the owner of the 

service as well as the platform that hosts access to the service. The service requestor is the 

entity that discovers and invokes required Web services. A service requestor can be a person 

or Web service. Lastly, the Web registry is a searchable registry of service descriptions where 

service providers publish their service descriptions. 
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The interaction between these three roles involves the operations publish, find and bind as 

follows: 

o Publish: To be accessible, a service description needs to be published so 

that a service requestor can find it. Where it is published can vary 

depending on the requirements of the application. 

o Find: In the find operation, the service requestor retrieves a service 

description directly or queries the service registry for the type of the service 

required. 

o Bind: Eventually, every service needs to be invoked. In the bind operation 

the service requestor can invoke a Web service statically (This means the 

service is contacted through the pte-defined code) or initiate an interaction 

with the service dynamically at runtime, that is, uses the binding details in 

the service description to locate, contact, and invoke the service(s). 

Figure 1 shows the overview of the Web Service architecture. 

Figure 1 Web services roles, operations and artefacts [KREO I] 

In the Web service architecture, there are two artefacts: Service and Service description 

(presented as ellipses in Figure 1) [KREO I]. 

o Service: A service is a software module deployed on network accessible 

platforms provided by the service provider. It exists to be invoked by or to 

interact with a service requestor. It can also function as a requestor, using 

other Web Services in its implementation. 
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o Service Description: The service description is a machine-processable 

specification of the Web service's interface [B0003]. It contains the useful 

information such as data types, operations, binding information, network 

location, categorization, and other meta-data which are necessary for 

service requestors to locate and utilize their favourite services. 

2.1.4 Web Services Protocol Stack 

2.1.4.1 Simple Object Access Protocol (SOAP) 

The Simple Object Access Protocol (SOAP) is a lightweight protocol for the exchange of 

information in a decentralized, distributed environment [BOXOO]. It is an XML based 

protocol and provides a mechanism for exchanging structured and typed information between 

peers . As with the illustration of Figure 2, a SOAP message consists of three parts: 

o Envelope, which is the root element of every SOAP message and marks the 

beginning and the end of a SOAP message. 

o Header, which is an optional element and can be used to describe attributes 

of the message or the operations that should be done to the message (e.g., 

the way that a recipient of a SOAP message should process it). 

o Body, which is required in every SOAP message and provides a simple 

mechanism for exchanging mandatory information intended for the 

ultimate recipient of the message [BOXOO]. 

SOAP Message 

Envelope 
<SOAP-ENV: Envelope> 

Header 
< SOAP-ENV: Header> 

<I SOAP-ENV: Header> 

Body 
< SOAP-ENV: Body> 

<J SOAP-ENV: Body> 

<J SOAP-ENV: Envelope> 

Figure 2 Anatomy of SOAP messages [BEQ02] 
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Figure 3 and Figure 4 present a simple conversation between a requestor and a Web service 

HelloWorld. Firstly, the requestor sends a message to HelloWorld. The SOAP message of 

this request is described in Figure 3. This message implements a RPC call to the sayHello( ) 

method of the Web service, and the parameter of this method is a string "Dacheng". 

<?xml version="I.O" encoding="UTF-8"?> 
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www. w3 .org/200 1/XMLSchema" xmlns:xsi= "http://www. w3 .org/200 1/XMLSchema
instance"> 
<soapenv:Body> 
<ns I: say Hello soapenv: encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" 

xmlns:nsl="urn:helloworld"> 
<argO xsi:type="xsd:string">Dacheng</argO> 

<Ins I :say Hello> 
<lsoapenv:Body> 

</soapenv:Envelope> 

Figure 3 Example of SOAP messages (1) 

The message presented in Figure 4 is the response from the Web service to the requestor. The 

<sa yHe 11 oRet urn> element includes the replied string, "Hello Dacheng !" 

<?xml version="I.O" encoding="UTF-8"?> 
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:xsd="http://www. w3 .org/200 1/XMLSchema" xmlns:xsi= "http://www. w3 .org/200 1/XMLSchema
instance"> 
<soapenv:Body> 
<nsl :sayHelloResponse soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encodingl" 

xmlns:nsl="urn:helloworld"> 
<sayHelloRetum xsi:type="xsd:string">Hello Dacheng!</sayHelloRetum> 

<Ins! :sayHelloResponse> 
<lsoapenv:Body> 

<lsoapenv :Envelope> 

Figure 4 Example of SOAP messages (2) 

2.1.4.2 Web Services Description Language (WSDL) 

WSDL is an XML format for describing network services as a set of endpoints operating on 

messages containing either document-oriented or procedure-oriented information [CHROI]. 

The latest version of the WSDL specification was developed by Web Services Description 

Working Group and was submitted to W3C as a suggestion in March 2001 [CER02]. As 

Figure 5 illustrates, WSDL specifies a series of elements [CHROl]: 
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Wh at Data T ypes? 

<message/> <ponType/> 
What Do you Do? 

<binding!> <operation/> 

Interface Definiti on 

<service/> <ponl> 

Where? 

Interface Implementation 

Figure 5 Structure of WSDL [BEQ02] 

o Port, which specifies the Web service's endpoint by combining a binding 

and a network address. 

o Port Type, which is an abstract set of operations supported by one or more 

endpoints. 

o Oper a ti on, which is an abstract description of an action supported by the 

service. This element defines the name of the function and input/output 

types. 

o Me s sage , which is an abstract, typed definition of the data being 

communicated. 

o Type s , which is a container for data type definitions usmg some type 

system such as XSD. 

o Bindi n g , which is used to attach a specific protocol, data format or 

structure to an abstract message, operation, or endpoint. It describes how to 

transmit the operations defined in a <Port Type > element over the 

network. 

o Serv i ce , which is a collection of related endpoints and specifies where to 

find the Web service. 
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2.1.4.3 Universal Description Discovery and Integration (UDDI) 

Universal Description Discovery and Integration (UDDI) is a technical specification for 

describing, discovering, and integrating Web services [CER02]. UDDI enables business 

organizations to quickly and dynamically publish and discover Web services. It is a critical 

part of the Web service protocol stack. 

Microsoft, IBM, and Ariba announced the first version of UDDI: UDDI 1.0 in September 

2000. Since the initial announcement, there are more than 280 companies taking part in the 

UDDI initiative. 

Generally, the UDDI technical architecture consists of three parts [CER02]: 

o UDDI data model, which is an XML schema for describing Web services. 

o UDDI API, which is a SOAP-based API for searching and publishing 

UDDI date. 

o UDDI cloud services, which are the operation sites that provide 

implementations of the UDDI specification and synchronize all data on a 

scheduled basis. 

So the UDDI project not only provides a technical specification for building a distributed 

directory of business and Web services, but also serves as a fully operational implementation 

of this specification. 

As described above, UDDI provides a schema to describe Web services and businesses. We 

can divide the information captured within UDDI into three main categories [CER02]: 

o White pages, which describe business information (e.g., business name, 

business description, contact information). 

o Yellow pages, which describe the general services information of the 

business. Yellow pages may include information on industry, product, etc. 

based on standard taxonomies. 
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o Green pages, which describe the technical information of the services. It is 

notable that UDDI is not only restricted to describing Web services based 

on SOAP, but can also describe other kinds of service (e.g., CORBA, Java 

RMI services). 

2.1.5 Web Services versus Previous §OA Attempts 

Before the occurrence of Web services, there have been three major SOA attempts (J2EE, 

CORBA and DCOM). Compared with these attempts, Web service has the following 

advantages [T0003]: 

o Web service provides a universal standard, WSDL, to describe the service. 

No mater how the services were implemented, the user can access them 

with WSDL. Before Web services, there were no universal standards used 

for SOA. Different attempts came with their own standards. DCOM uses 

Microsoft-IDL, CORBA uses CORBA-IDL, and J2EE uses Java. 

Moreover, these standards are incompatible. This increases the difficulty of 

user integration. 

D Web service separates interfacing from programming. Before a developer 

programs with J2EE, DCOM, or CORBA, he has to learn their 

programming model and API sets respectively. On the contrary, a Web 

service-oriented architecture does not define the way in which the interface 

is implemented. Thus, there is no need to learn any particular API when 

Web services integration is supported. 

2.2 Web Service Security Challenges 

Practically, Web services are loosely coupled, language-neutral, platform independent. And it 

is well known that Web services have many advantages such as easy enterprise application 

integration, distributed development, and Business-to-Business e-business implementation. 

However, Web services also bring many great security risks, which have become the most 

critical issues that must be addressed before Web services are widely employed in e-business 

applications. In this section, we discuss some typical risks in this field. 
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2.2.1 Malicious Attacks 

In order to generate a secure environment for Web services, developers have to counter many 

potential attacks. Generally, there are two main kinds of attacks. One kind of attack utilizes 

the loopholes and bugs of software to circumvent the access control of the system or force the 

system to do something improper. Buffer overrun attack [GHOOl] and timing attack 

[RA YOO] are representative of this kind of attack. 

The other kind of attack compromises the security of the systems by leveraging the 

algorithms' drawbacks or the security protocols' logic flaws. This kind of attack can be 

further divided into two categories: passive attacks and active attacks. Passive attacks, also 

known as eavesdropping attacks, are the simplest way to attack the security system. In this 

type of attack, adversaries extract useful information from the private conversations of honest 

entities by eavesdropping on their communication and then snatching the messages that are 

transported through the network. Eavesdropping attacks are normally used for gathering 

information for future active attacks. Since the eavesdroppers only monitor the conversations 

of other entities, it is difficult for the partners of the communications to detect the attack and 

act accordingly. In comparison with previous Web applications, Web services seem to be 

more vulnerable to eavesdropping attacks. Since Web services transmit XML documents in 

which data are well structured and easily understood, it is much easier to retrieve information 

from these documents than from binary data. 

In contrast to passtve attacks, active attacks compromise the security of systems by 

additionally subverting the communications in many ways (i.e., injecting messages, 

intercepting messages, replaying messages, altering messages) [BLA97]. We review four 

common active attacks: dictionary attack, replay attack, man-in-the-middle attack, and 

number theoretic attacks. In addition, we will discuss the potential threat of these attacks to 

Web services. 

I. Dictionary attack is also called guessing attack. In some security systems, users choose 

the secrets (i.e. password) for authentication. Such secrets are sometimes selected from a 

relatively small domain of secrets. We call this type of secrets poorly chosen secrets or 

weakly shared secrets. With the use of a 'dictionary', an attacker can perform the attack 

through iterative guessing and verification. Some experiments have proved that this type 

of attack is surprisingly effective in compromising particular security systems [GON93, 

WU99]. These attacks can be subdivided into two classes: 
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o Off-line guessing attacks: An adversary eavesdrops on protocol messages 

and stores them locally for verification. There is no need for a server to 

participate in verification, so it is nearly impossible to notice these attacks 

[KW097]. 

o On-line guessing attacks: An adversary attempts to use a guessed password 

iteratively on-line. The attack is performed by replaying eavesdropped 

messages or impersonating other clients. Unless a protocol provides the 

security server with sufficient information to detect authentication failures, 

the server cannot notice the attack [KW097]. 

In Web service environment, Web services generally combine together to form a single 

application. These Web services may be under the management of different security 

systems. Thus, a Web service may have to cooperate with partners whose host security 

systems use password that are vulnerable to dictionary attacks. So, the security of other 

Web services will be threatened even if there is only one Web service whose host security 

system is vulnerable to dictionary attack. 

2. In most cases, attackers cannot get valuable information directly through eavesdropping 

on the conversations protected by a security protocol over the network. Sometimes, 

however, they can replay these messages later to get useful responds for other attacks or 

impersonate a logical entity accessing security resources. We call this kind of attack as 

replay attack. 

According to different employments of the antique messages, there are two types of 

replay attacks: 

o Run external attacks: Attackers get messages from one protocol run and 

replay them in another. The Denning-Sacco attack on the original 

Needham-Schroeder key distribution protocol is a classic example of this 

type of attack [SYV94, DEN81]. 

o Run internal attacks: Attackers get messages and replay them within the 

current protocol run. An example of this type of attack is described in 

[DEN81]. 

As we stated, Web services transmit messages in XML documents, and the data in XML 

document are in well-defined structure. So it is much easier for an adversary to pick up 
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useful information from XML documents intercepted from Internet and re-organize them 

to implement replay attacks. 

3. Man-in-the-middle attack compromises the security of the systems by placing a computer 

or another device in the middle of the communication chain to steal passwords, keys, or 

eavesdrop on communications [BR002]. In this attack, the adversary intercepts some 

messages of a conversation between two entities and replaces them with his carefully 

designed messages [ABA97]. After these processes, the adversary generates the 

communication channel with two entities, and these entities communicate with the 

adversary respectively. Hence, the adversary can monitor and modify the messages 

transmitted between the victims. 

Web services work in the peer-to-peer environment. In many cases, the messages sent 

from a Web service have to traverse through multiple Web services and may be modified 

as required before it reaches its ultimate destination. Consequently, it is more difficult to 

verify whether the message obtained is the original one. 

4. Number theoretic attack compromises the security of the systems which make use of the 

improper parameters [PAT97]. Unlike the attacks we mentioned above, which attempt to 

find and make use of the logic drawbacks of the security protocol, number theoretic 

attacks employ the knowledge of number theory to narrow the domain of the secret key 

of the security system and make it easier to guess the secret key. In order to prevent this 

kind of attack, the designer of the security protocol must be familiar with the features of 

the security algorithms so that they can select the proper parameters. 

When we discussed the potential threat of dictionary attack above, we mentioned that the 

security of the integrated Web service application would be compromised even if there 

were only one participant that is vulnerable to the dictionary attack. For the same reason, 

the Web services may sometimes suffer from the number theoretic attacks when their 

participants use improper parameters for their security systems. 

Essentially, due to the structure of Web services, Web services have to expose their details to 

the open network so that both potential users and malicious attackers can get useful 

information easily. In addition, Web services are generally developed to achieve complex 

functions. The interface of a Web service may be composed of a number of methods and can 

be much more complex than previous Web applications. So it is much easier for adversaries 
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to find drawbacks from the interfaces and employ them to compromise the security of the 

application. 

In short, the threat of malicious attacks to Web services is much more serious than those to 

previous Web applications. Much research is under way in this field. Due to their efforts, 

some new security protocols have been proposed. We will introduce some of them in later 

sections. 

2.2.2 Firewalls 

Web services break the boundary of organizations. In order to simplify the communication 

among Web services provided by different vendors, Web services normally use port 80 and 

port 443 to transport messages. The standard perimeter firewall will regard these messages as 

standard Web traffic and let them pass unexamined - potentially passing malicious threads. 

Moreover, Web services send their requests and data in standard XML format. Firewalls can 

do a good job of port monitoring and recognizing brute force malicious attack but are not able 

to view the content of these messages in order to detect and then prevent more sophisticated 

security compromises [Y AN02 (1)]. 

2.2.3 Message-Level Security 

Web service technology provides an effective way to realize B2B model. Different from 

traditional B2C model, B2B business processes are more complex, and sometimes it may be 

necessary for SOAP messages to traverse multiple hops before they get to the intended 

destination. Traditionally, people employ transport layer security protocols (e.g., Secure 

HTTP (HTTPS), Secure Sockets Layer (SSL) and Transport Layer Security (TLS)) to protect 

the integrity and confidentiality of the information [GAR97]. These transport layer protocols 

can only provide encryption and authentication between a pair of endpoints. Therefore, when 

people try to use these protocols to transport SOAP messages between Web services, message 

security may be compromised at the intermediate points. Thus, it is necessary to develop a set 

of message-level security protocols for Web services. 

2.2.4 Exception Handling 

Web services can cooperate together to achieve a business goal. The combination of Web 

services may involve some form of control flows that reflects causal relationships between the 

invoked services [NAK02 (1)]. Sometimes this kind of service flows consists of large amount 
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of Web services and the relationship among the partners can be very complex. Since the Web 

services involved within a service flow is normally provided by different vendors and 

administrated by different organizations, how to handle the exceptions or errors occurred 

during the process of the service flow is a big issue. For instance, some services within a 

service flow may work incorrectly due to internal reasons, and some services may not be able 

to continue their work due to network errors or malicious attacks. Moreover, before the 

exceptions or attacks are noticed by other Web services within the flow, more Web services 

may have already been invoked. Consequently, how to synchronize the Web services and roll 

back the flow to a trusted state is an interesting topic. 

Besides the issues we have described above, there are still many interesting subjects in this 

field, such as how to generate communication between two organizations using different 

security systems, how to work with an outside vendor that is insecure, how to Web-enable a 

legacy application that was never designed to be exposed to the public Internet, and so on. 

Since there are so many security issues associated with Web services, developing new 

security protocols for Web services is necessary and urgent. 

To generate a secure environment for Web services, several basic requirements must be first 

addressed. We describe them as follows [NAK02]: 

o Confidentiality guarantees that the exchanged information is protected 

against eavesdroppers. 

o Authentication guarantees that the access to e-business applications and 

data is restricted to only those who can provide the appropriate proof of 

identity. 

o Integrity refers to assurance that the message was not modified accidentally 

or deliberately in transit. 

o Non-repudiation guarantees that the sender of the message cannot deny 

having sent it. 

o Authorization is the process to decide whether or not the entity can access 

the particular resource. 
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In the following section, several current Web service security protocols are discussed in detail, 

highlighting the implementation relationship between the main requirements mentioned above 

and the protocols listed below. 

2.3 XML Security Specifications 

In this section we will introduce several security specifications to meet different XML 

security aspects. These include: 

o XML Digital Signature, which describes a means to generate and represent 

digital signatures in XML. 

D XML Encryption, which specifies a means of encrypting data and 

presenting it in XML format. 

o Web Services Security, which expends SOAP specification to enable 

message integrity, message confidentiality, and single message 

authentication. 

D XML Key Management Specification, which integrates PKI with Web 

service technology and specifies protocols for distributing and registering 

public keys. 

2.3.1 Canonical XML 

Before we delve into the details of XML signature and XML encryption, we will first 

introduce Canonical XML. If people leverage some kinds of security algorithms (e.g., 

Encryption algorithms, MAC algorithms, digital signature algorithms) to provide the 

confidence of the integrity of a message, the slightest change to that message will result in 

totally different values. It is fine to apply this feature of the security algorithms used to protect 

the integrity of messages for normal use. But in the case of XML, the condition is a little more 

complex. 

In the context of XML documents, two documents in different textual representations may 

still have the same content. Obviously, the syntax variants that do not cause any logical 
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change do not imply that the integrity of the XML document or the authentication of its 

sender is suspicious. 

Canonical XML specification describes a method for generating a physical representation, the 

canonical form, of an XML document that accounts for the permissible changes [BOYOI]. In 

both XML encryption and signature specifications, security functions work on the canonical 

form directly. Therefore, the results are the same on two logically identical documents, even 

though their physical structures may be different. 

2.3.2 XML §ignunture 

XML signature specifies XML syntax and processing rules for creating and presenting digital 

signatures [BAROI]. The digital signature of a message can help the receiver ascertain the 

identity of the originator. Furthermore, Digital signatures can guarantee the non-repudiation 

and freshness of the messages. 

XML signature can be applied to both binary data and octet data. It also provides various 

ways to represent the signatures. The signature can be a part of the XML document or 

detached from the data that is signed. 

The XML signature specification makes use of the <Signature> element, which has the 

following structure, to represent signatures in XML format [BEQ02]. 

<Signature ID> 
<Signedinfo> 

<CanonicalizationMethod/> 
<SignatureMethod/> 
<Reference URI > 

<Transforms/> 
<DigestMethod/> 
<DigestValue/> 

</Reference> 
</Signedinfo> 
<SignatureValue> 

<Keyinfo> 
<Object ID> 

</Signature> 

Among the elements within the <Signature> element, <CanonicalizationMethod> 

element specifies the canonicalization algorithm used to canonicalize the XML document. 

<SignatureMethod> element identifies the cryptographic functions used to generate the 

signature. <DigestMethod> element defines thedigest algorithm (e.g., HMAC, SHA-1, etc.) 
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to be applied to the signed object. This kind of algorithms Is also called message 

authentication codes (MACs), seals, integrity check values, or message integrity codes 

(MICs). It can ensure of the integrity of the message received. 

The code below present an instance of XML signature [BAROl]. 

<Signature Id="MyFirstSignature" 
xmlns="http://www.w3.org/2000/09/xmldsig#"> 

<Signedinfo> 
<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC

xml-cl4n-20010315"/> 
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa

shal"/> 
<Reference URI="http://www.w3.org/TR/2000/REC-xhtmll-20000126/"> 

<Transforms> 
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-cl4n-

20010315"/> 
</Transforms> 
<DigestMethod 

Algorithm="http://www.w3.org/2000/09/xmldsig#shal"/> 
<DigestValue>j6lwx3rvEP00vKtMup4NbeVu8nk=</DigestValue> 

</Reference> 
</Signedinfo> 
<SignatureValue>MCOCFFrVLtRlk= ... </SignatureValue> 
<Key Info> 

<KeyValue> 
<DSAKeyValue> 

<P> ... </P><Q> ... </Q><G> ... </G><Y> ... </Y> 
</DSAKeyValue> 

</KeyValue> 
</Keyinfo> </Signature> 

2.3.3 XML Encryption 

XML encryption is proposed by the W3C XML Encryption Working Group [IMA02]. This 

specification defines the process for encrypting data and representing the result in XML. 

Encryption functions normally serve to improve confidentiality, guaranteeing that the 

exchanged information is protected against eavesdroppers. The encryption of the message 

may also indicate the message's originator [GOL96]. There are two main types of encryption 

algorithms: symmetric encryption algorithms (conventional encryption algorithms) and 

asymmetric algorithms (public-key encryption algorithms). Conventional encryption 

algorithms encipher and decipher the information with the same secret key while public-key 

encryption algorithms use a pair of keys (one for enciphering and one for deciphering). 

The encrypted data may be XML documents, XML elements, XML element contents, or any 

arbitrary data. The encrypted information is enclosed within the <EncryptedData> element. 
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This element will be inserted to the XML document and take place the encrypted content 

[BEQ02]. 

The basic structure of the <EncryptedData> element is presented as follows [IMA02, 

BEQ02]: 

<EncryptedData Id Type MimeType Encoding?> 
<EncryptionMethod/> 
<ds:Keyinfo> 

<EncryptedKey> 
<AgreementMethod> 
<ds:KeyName> 
<ds:RetrievalMethod> 
<ds:*> 

</ds:Keyinfo> 
<CipherData> 

<CipherValue> 
<CipherReference URI?> 

</CipherData> 
<EncryptionProperties> 

</EncryptedData> 

The <Encrypt ionMethod> element indicates the security algorithm applied to encrypt the 

data. The <CipherData> element indicates the encrypted data. And the <EncryptedKey> 

element is used to transport encryption keys from the originator to a recipient. The key value 

is always encrypted to the recipient [IMA02]. 

Following is an example [IMA02] of encrypting an element of a XML document. 

<?xml version='l.O'?> 
<Paymentinfo xmlns='http://example.org/paymentv2'> 

<Name>John Smith</Name> 
<CreditCard Limit='5,000' Currency='USD'> 

<Number>4019 2445 0277 5567</Number> 
<Issuer>Example Bank</Issuer> 
<Expiration>04/02</Expiration> 

</CreditCard> 
</Paymentinfo> 

The XML document above illustrates the details of a credit card, which includes card number, 

issuer, expiration data, etc. After encrypting the <Credi tCard> element, the message should 

be as follows: 

<?xml version='l.O'?> 
<Paymentinfo xmlns='http://example.org/paymentv2'> 

<Name>John Smith</Name> 
<EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element' 
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xmlns =' http://www . w3 . org/2001/04/xmlenc# ' > 
<CipherData > 

<C ipherValue >A23B45C56</CipherValue > 
</C ipherData> 

</ EncryptedData> 
</Payment Info> 

It is notable that <Cred i tCard> element is taken place by <EncryptedData > element. 

2.3.4 Web Services Security (WS-Security) 

To meet the various aspects of Web service security requirement, ffiM, Microsoft, and 

Verisigin proposed a set of security specifications [BEQ02]. WS-Security specification is one 

of them (see Figure 6). WS-Security describes enhancements to SOAP in providing quality of 

protection through message integrity, message confidentiality, and single message 

authentication. These mechanisms can be used to accommodate a wide variety of security 

models and encryption technologies [ATK02]. 

,, ... :'~ .. !C. ~- "f '"~r~.'W@IIi § "' II WS-SecureConversation 1;!1 WS-Federation IU WS-Authorization I, 
~ 

1"1 Ill WS~Pnv:cy
1 
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" ~ 

I WS-Security I 
I so~~ I , .... 

Figure 6 Web services security specifications [BEQ02] 

These specifications include [BEQ02]: 

D WS-Policy: describes the capabilities and constraints of the security (and 

other business) policies on intermediaries and end points. 

D WS-Trust: describes a framework for trust models that enables Web 

services to interoperate security. 

D WS-Privacy: will describe a model for how Web services and requesters 

state privacy preferences and organizational privacy practice statements. 

D WS-SecureConversation: describes how to manage and authenticate 

message exchanges between parties including exchanging security context 
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and establishing and deriving session keys. The session mentioned here 

only consists of two partners. 

WS-Federation: describes how to manage and broker the trust relationships 

in a heterogeneous federated environment including support for federated 

identities. 

WS-Authorization: will describe how to manage authorization data and 

authorization policies. 

WS-Security is the foundation to implement the specifications described above. It provides an 

extensible mechanism to associate security tokens such as certificate of X.509 and ticket of 

Kerberos with SOAP messages. Kerberos and X.509 [MEN95] are the most common 

authentication systems and have been employed in many fields for a long time. Also, WS

Security leverages XML signature and XML encryption to confirm the integrity and 

confidentiality of SOAP messages. 

Overall, WS-Security is a message-level security protocol, and it provides the basic support to 

integrate Web service technology with traditional authentication systems and generate various 

security solutions for Web services. 

2.3.5 XML Key Management Specification (XKMS) 

The WS-Security protocol provides facilities to transport encoded binary security tokens and 

makes the initial effort to integrate traditional authentication systems with Web service 

technology. Furthermore, the XML Key Management specification provides an interface 

between PKI and Web services in order to simplify PKI deployment and achieve seamless

integration between PKI and Web services. 

XKMS consists of two parts: the XML Key Information Service Specification (X-KISS) and 

the XML Key Registration Service Specification (X-KRSS). X-KISS allows a client to 

delegate part or all of the tasks required to process XML Signature <ds: Key Info> elements 

to an XKMS service, while X-KRSS is a protocol to support the registration of a key pair by a 

key pair holder, with the intent that the key pair subsequently be usable in conjunction with 

the XML Key Information Service Specification or a Public Key Infrastructure [HAL03]. 

One of the advantages of XKMS is that key management functions are achieved with Web 

~"services. XKMS pr.o_vides aPKI trust service and remQves the need.for client support of PKI 
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features, so the complex certificate processing logic is abstracted from the applications and 

becomes a server side component [NAK02]. 

The Web service security protocols that we described above are important in integrating 

traditional cryptographic technologies and authentication systems with Web services. But 

according to our research, we found that in some aspects, these traditional solutions are 

insufficient to fulfil the security requirements of Web services. In this thesis, we discuss a 

new security issue which is related to the strong workflow ability of Web services. In the next 

section, we will provide an overview of this security issue and discuss the limitations of 

traditional solutions in this case. 

2.4 Multi~ Party Authentication for Web Services 

One desirable feature of Web services is their strong workflow ability. However, more work 

is needed to enhance the security of Web service flows. In this section, we will discuss this 

topic. Before we discuss the security issues of Web service flows, we will first take a glance 

at Web services flow language (WSFL), as it is a specification used to describe the complex 

combinations of Web services in XML. 

2.4.1 Web Services Flow Language 

WSFL language, proposed by IDM recently, specifies a set of XML grammars to describe the 

software workflow processes within the framework of Web service architecture. According to 

different aspects of Web services compositions, WSFL provides two types of composition 

models: Flow Models and Global Models [LEYOl]. In the Flow Models, a composition, also 

known as a flow composition, describes how to use the functionality provided by the 

collection of composed Web services. In the Global Models, the composition describes how 

the Web services interact with each other rather than specifying the execution sequence. 

WSFL supports recursive composition, that is, every Web service composition can be 

regarded as a new Web service in a larger composition. 

The schema syntax for the <flowModel> element is provided in the following code sample 

[LEYOI]: 

<complexType name="flowModelType"> 
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<sequence> 
<element name="flowSource" 

type="wsfl:flowSourceType" 
minOccurs="O"/> 

<element name="flowSink" 
type="wsfl:flowSinkType" 
minOccurs="O"/> 

<element name="serviceProvider" 
type="wsfl:serviceProviderType" 
minOccurs="O" maxOccurs="unbounded"/> 

<group ref="wsfl:activityFlowGroup"/> 
</sequence> 
<attribute name="name" type="NCName" use="required"/> 
<attribute name="serviceProviderType" type="Qname"/> 

</complexType> 
<group name="activityFlowGroup"> 

<sequence> 
<element name="export" type="wsfl:exportType" 

minOccurs="O" maxOccurs="unbounded"/> 
<element name="activity" type="wsfl:activityType" 

minOccurs="O" maxOccurs="unbounded"/> 
<element name="controlLink" type="wsfl:controlLinkType" 

minOccurs="O" maxOccurs="unbounded"/> 
<element name="dataLink" type="wsfl:dataLinkType" 

minOccurs="O" maxOccurs="unbounded"/> 
</sequence> 

</group> 

As with the presentation of the code above, the flow model IS defined using six different 

elements [LEYOl]: 

The <flowSource> and <flowSink> elements define the input and 

output of the flow model. 

The <serviceProvider> elements represent the services participating in 

the composition. 

The <activity> elements represent the usage of individual operations of 

a service provider inside the flow model. 

D The <controlLink> and <dataLink> elements represent control and 

data connections among activities in the model. 

Therefore, the flow model is sufficient in describing the relationship among Web service 

partners within a workflow. In a Web services composition such as the one presented in 

Figure 7, multiple participants collaborate following some policy. These participants normally 

do not contact with each other until it is necessary. Furthermore, these participants provided 

by different vendors, developed in different languages, executed on different platforms, are 

combined dynamically at run time. The ability of flexible and dynamic binding is one of the 
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great advantages of Web services. Nevertheless, it also puts forth new challenges in the form 

of flow security management. Multi-party authentication issue for Web services is the major 

one among them. 

Figure 7 Interaction between multiple Web service instances within a flow [LEYOl] 

2.4.2 Multi-party Authentication for Web Services 

Since neither XML-RPC nor the SOAP specification provides a mechanism to keep the 

session state, how to maintain the Web service session state based on a stateless protocol such 

as HTTP is a problem that Web service developers have to face. In fact, this stateless issue is 

a problem that has intrigued Web application developers for a long time. There have been a 

number of clever means used to get around it (e.g., using HTTP cookies to preserve the state 

of a series of requests, reposting application data with each request). Recently, work has been 

done to use these measures in Web services and some progresses have been achieved in this 

area. For instance, ASP.NET provides a System. Web. SessionState. 

HttpSessionState class; the Apache implementation of SOAP (i.e., ApacheSOAP) in 

combination with Java and a suitable application service (e.g., Apache Tomcat Server) can 

use cookies to help every user find corresponding service instance. However, these measures 

are not designed generally for managing session state in Web service applications, but rather 

specifically for managing the session state in the applications following their specification 

(e.g., ASP.NET applications). The worst part is that using them ties you to the HTTP 

protocol. The SOAP protocol is designed to work independently of the transport protocols. So 

tying your application to HTTP obviously limits your flexibility and may create additional 

work if you want to provide Web services over any other transport protocol other than HTTP 

(e.g., SMTP). Another drawback of these solutions is that they don not provide any 
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encryption protect to the session IDs. These IDs are transported over Internet in plaintext or 

inserted into the URL address directly. Therefore, the system needs additional measures to 

validate the identity of the service requestor. 

Furthermore, in the traditional client-server model, there is usually more than one client 

contacting the server at the same time. Therefore, the server needs to distinguish one client 

from another. In this case, a "session" is a single client's conversation with a logical server. 

But as e-business becomes more and more complex, especially with the advent of Web 

service, it is normal that several organizations cooperate together to achieve a business goal. 

In this case the traditionally session seems insufficient in expressing the complex 

relationships among the partners within a business flow. Hada and Maruyama [HAD02] 

describe the idea of multi-party session in their paper. They defined a session in the Web 

service world as a series of operations executed by Web service instances that need to share a 

common state, and listed some new issues in this field. As with their definition, a session is in 

fact a Web service flow instance. 

Based upon the above discussion, it is easy to see that a multi-party authentication mechanism 

is needed to protect the security of Web service flows. With it, a participant within a session 

can prove its legal identity as a session partner to other participants within the same session in 

a secure way. 

In the following sections, we will introduce the conventional session management within the 

Kerberos authentication system and group key management algorithm for peer-to-peer group, 

which is a potential solution for multi-party session authentication issue we discussed above. 

2.4.2.1 Session Management in Kerberos 

To facilitate the illustration of Kerberos, we introduce following notations firstly. 

c 
v 
TGS 

AS 

Kx 

Ka,b (KA, s) 

EK[XIIY] 

TS 

A client principal 

A service principal 

A Ticket-Granting Server 

An Authentication Server 

Secure Key held by party X 

Session Key for party A and party lB 

Encrypted message of information A and information B with the key K 

Time Stamp 
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Kerberos [KAU02] is a famous network authentication protocol developed by MIT. The 

purpose of this protocol is to provide authentication for users and services. The Kerberos 

system is based on trusted third-party security servers, the authentication server (AS) and the 

ticket-granting server (TGS) [BEL91]. All information of the entities under their management 

is stored in the database. In Kerberos, every principle (user or service) holds a key, which has 

been registered with the AS. The users' keys are derived from their passwords, while the 

services' keys are selected randomly. Furthermore, a kind of short time secret key - session 

key is employ in Kerberos to secure the communications within the session. 

As Figure 8 details, Kerberos assigns and distributes a session key for a particular session 

with a six-step conversation among the client, security servers and the service. 

(5) C ~V: Ticket,// Authenticator, 
(6) V ~C: EK'·' ~~' [TS4+1] (for mutual authentication) 

Figure 8 Summary of Kerberos version 4 message exchange [ST A98] 

Assume C intends to access V, which is under the management by Kerberos. Firstly, C sends 

a message to AS (see Step 1 in Figure 8). This message includes the identity of C, the identity 

of TGS which C should contact in the future and a time stamp TS~. which allows AS 

verifying that the clock of C is synchronized with AS [ST A98]. AS responds to C with a 

message, which is encrypted with Kc (see Step 2). This message includes a key Kc. tgs. the 

authentication information Ticket1gs for TGS, the time-stamp TS2 and some other additional 

information (e.g., ID1gs , Lifetime2) . Such information proves that the Tickettgs is for TGS and 

prevents replay attack. Since Kc is shared by AS and C secretly, this message cannot be 

decrypted by any clients other than C. 

After verifying the message received from AS, C contacts TGS asking for the key to access 

K (Step 3). TGS decrypts Ticket1gs with the key that it shares with AS and extracts Kc. tgs from 

Ticket1gs· Additionally, with other information in Ticket1gs (i .e., IDe, TS2) TGS can examine 
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the validity of this ticket. Afterwards, TGS uses Kc. tgs to decrypt Authenticatorc and compare 

the information regarding user C in Authenticatorc with the related information in the 

Ticket1gs· If all the examination is successful, TGS sends the reply back to C (see Step 4) and 

this reply is encrypted with the session key Kc. tgs to protect the confidentiality of the message. 

At this stage, C shares the session key Kc. v with V. Steps 5 and 6 achieve a mutual 

authentication for C and V. After this process, C can ensure that V has gotten Kc. v. and vice 

versa. 

In brief, Kerberos is an authentication system designed for the Client/Server model, and the 

session in Kerberos only consists of two session partners [HAD02]. So Kerberos cannot be 

employed directly to provide the authentication for the session partners within a multi-party 

session. 

2.4.2.2 Group Key Generation Algorithms 

Traditional authentication systems (e.g. Kerberos, SSL) are commonly based on the 

Client/Server paradigm. They can help the two entities at both ends of the conversation to 

generate some kind of trust relationship. On the other hand, many emerging network 

applications (e.g., online games, distributed simulations, conferencing) require multiple 

entities dynamically composing and working together. We call this kind of applications as 

dynamic peer groups. 

Group key generation algorithms can generate and distribute security keys for dynamic peer 

groups. In a dynamic peer group, the group membership is not known in advance, that is, the 

parties may join and leave the multicast group at any given time [BREOl]. In this case, 

dynamic peer groups share identical feature with Web service flows. Therefore, it is 

reasonable to take dynamic peer group authentication protocols into consideration as potential 

candidates to improve the security of Web service flows. Normally, there are two main ways 

to generate and manage a group secret: 

o Centralized: the group key is entirely generated by a single party who then 

distributes it to all other group members [MAIOO]. To implement a 

centralised key management system, we can assign a Trusted Third Party 

(TIP), which is something like the authority server in the Koreros system, 

or fix a certain partner of the group to generate and distribute the group 

secret. The session authentication system described in [HAD02] is a 
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centralised key management system, which relies on the TTP [MAIOO], and 

we will discuss its drawbacks in the next chapter. 

o Contributory: each group member makes an independent contribution to the 

group key [STE98]. Furthermore, there are two kinds of Contributory key 

management protocols, which have slightly different flavours [STE98]. 

);;> Partially Contributory: some operations are contributed to by each 

member and others are centralized. 

);;> Fully Contributory: all key agreement operations are contributed to 

by each group member. 

Let M={M1 , ••• , Mn) be a set of users wishing to share a key Sn. The GDH.2 protocol 
executes in n rounds. In the first stage (n-1 rounds) contributions are collected from 
individual group members and then, in the second stage (n-th round) the group keying 
material is broadcast. The actual protocol is as follows: 

Initialisation: 

Let p be a prime and q a prime divisor of p-1. Let G be the unique cycle subgroup of Z*p 
of order q, and let a be a generator of G. 

Round i ( 0 < i < n): 

I. M; selects r; E Z*q randomly. 
2. M; ~ M;+t: { art... rnlri I i E [1, i] }, art... rn 

Round n: 

I. Mn selects rn E Z*q randomly. 

2. Mn~ All M;: { a rl... mlri I i E [1, n[} 

Figure 9 Group Diffie-Hellman (GDH.2) [ATEOO] 

Figure 9 illustrates a classic group key generation algorithm - Group Diffie-Hellman, which 

can be used to implement a fully contributory group key management protocol. The Group 

Diffie-Hellman algorithm extends the Diffie-Hellman algorithm so that multiple entities can 

use it to generate and distribute a secret key in a decentralised way. 

The drawbacks of this algorithm are obvious (in fact, these drawbacks are common for this 

kind of decentralised group key generation algorithms). It is easy to see that Mn plays an 

important role in the key generation in GDH.2. It broadcasts the information to all the other 

group partners and they use the information to generate the group key. That means it must be 

a reliable and honest party. Otherwise, it can perform attacks without detection by other group 
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members, for example, partitioning the group into two [ATEOO]. However, in some case, 

especially in peer groups, it is difficult to assign a fixed party to act as M 11 , unless a TIP is 

assigned for the group. 

Furthermore, huge recourse consumption is a fatal drawback of the Group Diffie-Hellman 

algorithm. In order to generate a group key within a group with n group partners, all the 

partners must process for n rounds and exchange 2(n-l) messages on the whole. Also, when 

an entity takes party in or leaves a group, all the group partners must be informed and the 

group key must be refreshed. 

Therefore, this kind of decentralised group generation key algorithms is not suitable for a 

group whose partners are scattered in a large area, and it is not suitable for the environment in 

which the communication channel is not secure. Furthermore, the high overhead of message 

transport makes this kind algorithm only suitable for a group only with limited partners. 

2.5 Summary 

Web services are new developments based on the idea of SOA. Compared to previous 

technologies, Web services have many unique characteristics. These characteristics give new 

challenges to the security systems. Before a new technology is accepted by the industry, the 

security issues of it must be understood and resolved. In this chapter, we introduced the Web 

service mechanism and the new security challenges associated with it. In addition, we 

discussed the new security challenge in session authentication management for Web services, 

which this paper is concerned with. 

It is notable that WSFL only specifies the representation of the Web services which are 

involved within the flow. WSFL does not describe how to represent the Web service instances 

within a Web service flow instance since it is impossible to assign related Web services 

instances before a Web service flow is executed. Nevertheless, when a Web service flow is 

executed, the entities working within it are Web service instances rather Web services. 

Therefore, when a Web service flow is in process, an additional mechanism is needed to 

manage the Web service instances within the flow instance, as WSFL specification does not 

provide this function. 

Based upon the above discussions, we arrive at the conclusion that it is necessary to develop a 

novel message-level multi-party authentication system for Web services that is independent of 
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transporting protocol. This system should provide unified identifiers to the Web service 

instances within a session (i.e., session partners) and should enable them to ascertain that it 

only communicates with the partners within the same session. 

In the next chapter, we will first discuss a solution proposed by Hada and Maruyama. We will 

then introduce our solution, which assigns every partner within the session a unique identifier, 

and we will describe our efforts to employ CA action to enhance their solution with threat 

confinement ability. 
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As stated in the previous chapters, a new session authentication protocol is needed to improve 

the security of Web service flow. In this chapter, we will first introduce Hada and 

Maruyama's solution, the first in this field [HAD02]. Next, we will discuss the drawbacks and 

disadvantages of their solution. Finally, we will introduce our work on improving their 

solution. 

3.1 Hada and Maruyama's Session Aultlhtentncation Protocol 

Hada and Maruyama [HAD02] proposed an approach in order to authenticate session 

participants without prior knowledge of all parties participating in the session. In their 

solution there is a TIP, Session Authority (SA), which takes charge of distributing session 

authentication messages. An instance of SA is associated with a session. The SA instance 

assigns a session key (i.e. a session secret) to a particular session and distributed it secretly to 

the service instances of that session. If two instances hold the same session secret, they will be 

regarded as the participants within the same session. Then, the instances participating in that 

session can use this session secret to authenticate each other and distinguish them from the 

service instances involved in other sessions. 

The protocol consists of two parts: a message authentication protocol and a session 

management protocol. The message authentication protocol transports authentication 

information between session participants, while the session management protocol is in charge 

of starting, running, and ending a particular session. These two protocols work together to 

provide basic management of the session. 

Figure 10 describes a case [HAD02] of the session management protocol: Online Session 

Management. 
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Figure 10 Online Session Management [HAD02] 
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First, a requester instance initiates a session by sending a <StartSession> message to the 

SA (Step 1 ). The requester will receive a session secret from the SA (Step 2) and then send an 

application message to a Web service, Service#l, over the session authenticator (Step 3). On 

receiving the message, the service is given the session handle and asked to join the session. 

Next, the service creates a new service instance and transfers control to the instance (Step 4). 

The instance will send a <J o inSe ss i o n > message to the SA (Step 5) and receive later the 

session secret from the SA (Step 6). It will then have the session secret so as to authenticate 

any received message and obtain the payload. If the service instance needs to delegate its 

operation to some other service, it can send a message to another Web service, Service#2, 

using the session authenticator (Step 7). The same process happens in the second service 

provider (Steps 8-10) and the service instance of the second service provider will then have 

the session secret. This service instance can send a message to the original requester using the 

session authenticator (with the same session secret) so that the requester knows that the 

second service instance is a legitimate session participant. 

The case described above needs extra communication for service instances to acquire the 

session secret. There is an alternative that eliminates this extra communication: Offline 

Session Management. 

As presented in Figure 11, the Requester gets the session secret from the Session Authority, 

and this secret is transmitted to the new session partners over the network directly. These 

service instances then use this secret to prove their legal identities as session partners. 

Compared to Online Session Management, Offline Session Management mechanism is more 
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effective. The drawback of this mechanism is the disability of providing session partners the 

exact conditions about all the session. 

6.Spawn Instance 

5. Session 
Secret 

Figure 11 Offline Session Management [HAD02] 

From our point of view, this session authentication protocol is not a complete solution. There 

are still unsolved problems: 

o As mentioned in [HAD02], Hada and Maruyama's solution only provides a common 

session secret to all the participants within a given session rather than a unique 

identifier for each of them. An attacker, who has compromised a Web service 

instance and obtained the session secret, can use the secret to communicate with other 

session participants to gain their trusts. The attacker will then have opportunities to 

impersonate other session partners. It becomes difficult to confine the damage to a 

small area, rather than the entire session, even after it was detected that a session 

participant has been compromised. 

o The SA in their protocol does not have a measure to validate the identity of the Web 

service instance that applies to enter the session. Any Web service instance, as long as 

it holds the session ID, can contact the SA and apply to enter the session. An 

adversary may try to attack a session following this way. 
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3.2 Essential Knowledge of the New Session Authentication System 

3.2.1 Key Exchanges of the Diffie-Hellman Algorithm 

The Diffie-Hellman algorithm was firstly proposed by Diffie and Hellman in 1976 [STA98, 

MEN96]. Their protocol enables two users to communicate over public communication 

channels and safely exchange a key. 

The Security of the Diffie-Hellman algorithm relies on the difficulty of computing discrete 

logarithms. 

Consider the equation y = t mod p. 

Given g, x and p, we can easily calculate y. On the contrary, given y, g and p, it's difficult to 

calculate x in general, especially when p is a large prime. As we know, the asymptotically 

fastest known algorithm [ST A98] for taking discrete logarithms modulo a prime number is on 

the order of 

Obviously, it is especially difficult to get x from a given y when pis big number. 

We now describe this algorithm: 

Assume that there are two principles called Alice and Bob. They agree on a large prime p and 

an element g (2 :S g :S p-2), which is a primitive root of p. That is, the numbers g mod p, i 
mod p, i mod p, ... , g-1 mod pare some permutation of the distinct integers from 1 to p-1. 

Suppose: 

1. Alice chooses a random number x and Bob chooses a random number y 

from the set { 1, ... , p-2}. 

2. Alice keeps x private and sends t mod p to Bob. 

3. Bob keeps y private and sends gY mod p to Alice. 

4. Alice gets the Key = (g>}'' mod p = gX)' mod p 

5. Bob gets the Key = (gx)y mod p = gxy mod p 
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6. Alice and Bob then share the same Key = gX}' mod p. 

If Alice and Bob keep x andy secretly, the only information that an adversary can get are g, p, 

gx mod p, and Ef' mod p. The adversary has to utilize discrete logarithm to calculate the key. 

This is computationally difficult, particularly for large primes. 

3.2.2 Coordinated Atomic (CA) Actions 

A coordinated atomic (CA) action [XU95] is a mechanism for coordinating multi-thread 

interactions and ensuring a consistent access to objects in the presence of competitive 

concurrency and potential faults. 

CA action 

raised exception e 
exce tion handler H I 

return to nonnal 

Thread I -f--.------T---'-"',;_pen'!_ed _:o~tro_l_flo_w___.""-if--_. 
exception handler H2 

exit with success 
abnormal control flow 

'accesses "' repairs 
External Objects 

start transaction commit transaction 

Time 

Figure 12 Example of a CA action [RAN99, XU99] 

As shown in Figure 12, concurrent execution threads (e.g., Web service instance) 

participating in a given CA action enter and leave the action synchronously. Within theCA 

action, operations on objects can be performed cooperatively by roles executing in parallel. 

To cooperate in a CA action a group of concurrent threads must come together and agree to 

perform each role of the action, with each thread undertaking a different role. Inside a CA 

action, some or all of its roles can be involved in further (nested) CA actions. If an error is 

detected inside a CA action, appropriate forward and/or backward recovery measures must be 

invoked cooperatively by all the roles in order to reach a mutually consistent conclusion. An 

acceptance test can and should be provided in order to determine whether the outcome of the 

CA action is successful. The external objects which are being competed for must behave 

atomically with respect to other CA actions and threads so that they cannot be used as an 

implicit mean of "smuggling" information into or out of a CA action. 
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3.3 Instance ID Authenticator Protocol 

The following notations will be used in the rest of the paper. 

n A big prime number suitable for the Diffile-Hellman protocol 

G A primitive root of n 

l The abbreviation of l mod n 

Kx, y The security key shared by service instances X and Y 

MACx,vCM) Message Authentication Code for message M under key Kxy 

U (R, l) A service instance U whose private message is R and identifier is l 

Similar to Hada and Maruyama's solution, we present a protocol based on some standard 

Web services technologies such as SOAP, XML~Signature/Encryption, and WS-security. 

These protocols can meet certain security requirements in terms of confidentiality, Integrity, 

and Non-repudiation [NAK02], and we will thus not consider replay attacks and man-in-the

middle attacks in our design. 

3.3.1 Operations of Instance ID Authenticator Protocol 

In this Instance ID Authenticator protocol, a session manager is a Web service, and it 

manages a given Web service session. The manager is composed of two parts: a Session 

Authority (SA) and a CAA manager that manages atomic actions for sessions. The SA is 

responsible for 1) storing and managing the identifiers of the session participants and 2) 

providing trusted information for each session participant. With such information, a message 

sender can specify the intended recipient, and so the message receiver can be sure that the 

received message comes from a proper sender. 

We assume in our protocol that 

D According to the Diffie-Hellman algorithm, each service instance of a given 

session selects a private secret number R randomly, and uses the public key 

gR as its identifier. The manager instance of the session guarantees that 

every identifier is unique within that session. 

D The manager instance's identifier is equal to the identifier of the session, 

and it must be different from those of other manager instances that belong 

to other sessions. 
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We present here essential operations for the instance ID Authenticator protocol. Session 

participants can use them to verify each other's identities. The messages of all the operations 

in our protocol should be appended with the authenticators that validate the originator and the 

integrity of the messages unless mentioned otherwise. Details of the authenticator will be 

described in section 3.3.2. 

3.3.1.1 Introduction-of-New-Instance 

A session participant can send the "Introduction-of-New-Instance" message to its manager 

instance to recommend a new service instance: 

<Introduction-of-New-Instance> 
<New-Instance type="uri" value="URI 
<NIID>ID of the new instance</NIID> 

</Introduction-of-New-Instance> 

of the new instance"/> 

The <NI ID> element within the message contains the identifier of the recommended service 

instance. 

3.3.1.2 Identifier-Query 

A service instance sends the "Identifier-Query" message to the manager instance to check 

the identifier of another session partner: 

<Identifier-Query> 
<Instance-under-query type="uri" value=" URI of the instance whose 
identifier the initiator instance want to know"/> 

</Identifier-Query> 

The reply from the manager instance is: 

<Identifier-Query-Result> 
<Instance-under-query-ID> 

ID of the checked instance 
</Instance-under-query-ID> 
<Instance-under-query type="uri" value="URI of the checked instance 
"I> 

</Identifier-Query-Result> 

3.3.1.3 Start-Communication 

If a service instance wants to start a communication with another instance of the session 

which it never contacted before, it should send the "Start-Communication" message to the 

intended instance: 
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<Start-Communication> 
<SessionHandle> 

<SA type="uri" value="URI of the SA"/> 
<ID> 

Session ID 
</ID> 

</SessionHandle> 
<SendingiD> 

ID of the sending service instance 
</SendingiD> 

<Sending-Instance type="uri" value="URI of the sending instance"/> 

</Start-Communication> 

Within the message, the initiator should provide the details of self so that the recipient 

instance can examine its identity when it is necessary. Mter the recipient receives and verifies 

this message, it will send the result back: 

<Start-Communication-Result> 
<Accept>true</Accept> 

</Start-Communication-Result> 

If the value of <Accept> element is true, that means the initiator has received the permission 

to start the communication. 

3.3.1.4 Validation 

When the recipient instance obtains the "Start-Communication" message from the initiating 

instance, the recipient instance should send the "Validation" message to the manager instance 

in order to verify the identifier of the initiating instance: 

<Validation> 
<Initiator type="uri" value="URI of the initiator instance"/> 
<Initiator-ID>ID of the initiator service instance</Initiator-ID> 

</Validation> 

Mter receiving this message, the SA instance will check the relative information and sends 

the result back: 

<Validation-Result> 
<Result>true</Result> 

</Validation-Result> 
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3.3.2 Generating amll Appemllmg the Autllnentlicator to Messages 

We now describe the details of how to append the identifiers of session participants and other 

security information to SOAP messages passed between Web service instances with SOAP: 

Step 1: A Web service instance prepares a SOAP envelope in order to send a message to 

participants of a given session. 

Step 2: The instance inserts the authentication information (e.g., session handle, the identifier 

of the sending instance, etc.) into the header of the envelope. An example of the code is as 

follows: 

<SOAP-ENV:Envelope 
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" 
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 

<SOAP-ENV:Header> 
<Session-Authentication:Authentication 

xmlns:Session-Authentication="http://www.durham.com/"> 
<Session-Authentication:SessionHandle> 
<Session-Authentication: Manager type="uri" value="URI of the SM"/> 
<Session-Authentication:SessioniD> 

Session ID 
</Session-Authentication:SessioniD> 
</Session-Authentication:SessionHandle> 
<Session-Authentication:SendingiD> The ID of the sending instance 
</Session-Authentication:SendingiD> 
<Session-Authentication:ReceivingiD> 

The ID of the receiving instance 
</Session-Authentication:ReceivingiD> 
</Session-Authentication:Authentication> 

</SOAP-ENV:Header> 
<SOAP-ENV:Body> 

</SOAP-ENV:Body> 
</SOAP-ENV:Envelope> 

Step 3: The sending instance makes use of the Diffie-Hellman algorithm to calculate a secret 

key with its private message and the identifier of the intended receiver. It will then utilise 

XML Signature to apply the Message Authentication Code (MAC), generated with the secret 

key, to the SOAP message. A code example is given as follows: 

<?xml version="l.O" encoding="utf-8"?> 
<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope" 

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"> 
<S:Header> 

............ Other information about this SOAP message 
<wsse:Security 

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"> 

<ds:Signature> 
<ds:Signedinfo> 
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<ds:CanonicalizationMethod Algorithm= 
"http://www.w3.org/2001/10/xml-exc-c14n#"/> 

<ds:SignatureMethod Algorithm= 
"http://www.w3.org/2000/09/xmldsig#hmac-shal"/> 

<ds:Reference URI="#MsgBody"> 
<ds:DigestMethod Algorithm= 

"http://www.w3.org/2000/09/xmldsig#shal"/> 
<ds:DigestValue>LyLsDDPi4wPU ... </ds:DigestValue> 

</ds:Reference> 
</ds:Signedinfo> 

<ds:SignatureValue>DJbwhmSgK ... </ds:SignatureValue> 
<ds:Keyinfo> 

<wsse:SecurityTokenReference> 
<wsse:Reference URI="#MyiD"/> 
</wsse:SecurityTokenReference> 

</ds:Keyinfo> 
</ds:Signature> 

</wsse:Security> 
... same as the message in step 2 

</S:Header> 
<S:Body Id="MsgBody"> 

</S:Body> 
</S:Envelope> 

Step 4: The sending instance sends the SOAP message to the receiving instance. 

Step 5: After the receiver receives the message, it uses its own private key and the identifier of 

the sender to re-generate the secret key. The receiving instance will then generate the MAC 

using the secret key. By comparing the newly generated MAC with the MAC appended to the 

message, the receiver can verify the identity of the sender. 

3.3.3 A Scenario 

We use in this section a scenario to illustrate the operations of the instance ID Authenticator 

protocol. Consider a user service instance (UI(X, gx)) and a session manager service. 

First, Ul contacts the session manager to initiate a session and the session manager invokes a 

manager instance (MI(Y, gr)) to handle UI's request. After MI and UI exchange their 

identifiers, gx and gr, a session (Se(MI)) is initiated (see Figure 13). 
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Figure 13 Example of the authentication process 

Suppose that UI wants to contact Service 1. And a new service instance (NI(Z,l)) is invoked 

by Service 1 to manage UI' s request. UI and NI exchange their identifiers, gx and l. and 

some related information (e.g., URL of MI, l). UI then needs to send an "Introduction-of

New-Instance" message to MI before MI accepts NI as a participant of the session (see 

Figure 14). 

Figure 14 Interactions between UI and NI 

Assume that another service instance (NI2(N, gN)) is invoked and recommended to MI (see 

Steps 1, 2 and 3 of Figure 15). Since NI2 does not know UI's identifier, it sends MI an 

"Identifier-Query" message to check UI's identity in order to communicate with UI. After 

getting UI' s identifier from MI, NI2 will send a "Start-Communication" message to UI. 

After receiving a message from NI2, UI needs to contact MI to verify the identity of NI2 

since it has not communicated with NI2 before. If the reply from MI is True, Ul will then 

verify the MAC appended with the message and send a reply back to NI2 (see Step 4). 
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Figure 15 Example of interactions between UI and NI2 

3.3.4 Security Analysis 

In our protocol, each service instance of a session has a private secret and a public identifier. 

The public identifier will be transported over the Internet while the private secrets are kept by 

the instances securely. The attacker cannot get the key shared by the instances participating in 

the communications from the plaintext and the MAC code [SCH96, STAOO]. If the 

participants can keep their private information secretly, it will be computationally difficult for 

an attacker to derive the key from the public information and thus impersonate one or more 

participants of the session. Moreover, a service instance that attempts to join a session must 

be "recommended" by a session participant to the session authority first. If a malicious 

instance outside of the session tries to communicate with any instance inside the session, it 

will be detected by the manager instance of that session. This further improves the security 

level of the system. 

3.4 Session Management Protocol 

The instance ID Authenticator protocol provides dependable authentication operations for 

participants of a given session and helps them authenticate each other. It works well in the 

case of simple business flows. We will now consider the following, more complicated, cases: 

o A participating service instance of a given session may have local 

operations, which are not supposed to be known by other participants. For 

instance, the participant may attempt to initiate a sub-workflow and does 

not want other participants to know any details of it. The protocol should 
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provide a mechanism for enclosing local details and secrets of session 

participants. 

o When an attacker has compromised a session participant, the instance ID 

Authenticator protocol has difficulty in confining the threat to a small area 

of the session. The attacker may recommend more malicious service 

instances into the session. 

In order to resolve these problems we introduce a session management protocol which uses 

the CA action mechanism to manage sessions so as to achieve a better level of attack 

confinement. 

3.4.1 Overview 

In the session management protocol, we use nested CA actions to structure a workflow. 

Nested actions could be pre-defined and invoked dynamically as required. A service instance 

or role in a CA action is only permitted to communicate with other roles in the same action. 

What happens in a nested CA action is completely transparent to the enclosing action. This 

provides a protection mechanism for the roles within the CA action. Any service instance 

invoked by a role of a CA action must be terminated at the point in time when that CA action 

ends. In addition, the CA action support mechanism is responsible for monitoring the state of 

roles. CAA manager must ensure that there are no errors or exceptions unresolved (including 

the possibility of signalling an exception to the enclosing action) when the CA action ends. If 

an attacker or a malicious service instance is found in a CA action, the thread and damage 

must be limited to that CA action. While a transaction model may offer some similar features, 

we select CA action scheme for the reason that CA action scheme has a powerful ability to 

handle concurrent exceptions [RAN99, XU99]. In a given session, multiple instances may be 

running concurrently, and an error may involve more than one instance. In order to resolve 

this type of errors, the instances involved should take actions collectively. CA actions provide 

an appropriate mechanism for handling such concurrent exceptions. 

3.4.2 Management Operations of CA Actions 

We define five basic protocol operations that provide functions for manage a set of nested CA 

actions. 
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3.4.2.1 §tart-an-OriginaB-CA-Action 

A user can send the "Start-an-Originai-CA-Action" to its session manager to initiate a new 

session. Since the user has not exchanged the identifiers with the session manager instance, 

this message is not appended with the authenticator. 

<Start-an-Original-CA-Action > 
<SendingiD> The ID of the sending instance 
</SendingiD> 
............ some other information (e.g. the details of the original CA 

action) 
</Start-an-Original-CA-Action > 

The session manager invokes a new manager instance, including an SA instance and a CAA 

manager instance, and the manager instance sends the following message back: 

<Start-an-Original-CA-Action-Result> 
<SessionHandle> 

<Manager type="uri" value="URI of Manager"/> 
<ID> 

Session ID 
</ID> 

</SessionHandle> 
</Start-an-Original-CA-Action-Result> 

From now on, the session is under the management of the original CA action. 

3.4.2.2 Start-a-Nested-CA-Action 

If a service instance tries to invoke a nested CA action, it should send this message to its 

present CAA manager, which is a part of the session manager instance: 

<Start-a-Nested-CA-Action> 
<CAHandle> 

<CA type="uri" value="URI of the CA"/> 
<ID>CAA manager ID</ID> 

</CAHandle> 
<NCAHandle> 

<NCA type="uri" value="URI of the NCA"/> 
<Policy> 

Policy about the nested CA action and other relative information 
about the roles 
</Policy> 

</NCAHandle> 
<SendingiD> The ID of the sending instance 
</SendingiD> 

............ some other information 
</Start-a-Nested-CA-Action> 
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If CAA manager accepts this application, it invokes a new nested CAA manager instance and 

sends the nested manager instance's related information back: 

<Start-a-Nested-CA-Action-Result> 
<accept>true</accept> 
<NCAHandle> 

<NCA type="uri" value="URI of the NCA"/> 
<NCAID>Nested CAA manager instance's ID </NCAID> 

</NCAHandle> 
</Start-a-Nested-CA-Action-Result> 

3.4.2.3 Inform-Enter-a-Nested-CA-Action 

After a new nested CAA manager instance is invoked, the nesting CAA manager instance 

sends the "Inform-Enter-a-Nested-CA-Action" message to all the service instances which 

are expected to act as roles of that nested CA action and inform them to enter that nested CA 

action: 

<Inform-Enter-a-Nested-CA-Action> 
<CAHandle> 

<CA type="uri" value="URI of the CA"/> 
<ID>CAA manager's ID</ID> 

</CAHandle> 
<NCAHandle> 

<NCA type="uri" value="URI of the NCA"/> 
<NCAID>Nested CAA manager instance's ID </NCAID> 
<Role> .......... </Role> 

</NCAHandle> 
<SendingiD> The ID of the sending instance 
</SendingiD> 
............ some other information 

</Inform-Enter-a-Nested-CA-Action>-

3.4.2.4 Enter-a-Nested-CA-Action 

With the permission of entering a nested action, a service instance may decide not to enter 

that action immediately. After finishing its present job, the instance sends the "Enter-a

Nested-CA-Action" message to the nested CAA manager, informing the manager that this 

instance is ready to enter the nested CA action and is under the control of the manager from 

now on: 

<Enter-a-Nested-CA-Action> 
<NCAHandle> 

<NCA type="uri" value="URI of the NCA"/> 
<NCAID>Nested CAA manager instance's ID 
</NCAID> 
<Role> ........ </Role> 

</NCAHandle> 
<SendingiD> The ID of the sending instance 
</SendingiD> 
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</Enter-a-Nested-CA-Action> 

After the nested CAA manager obtains this message and verifies the MAC appended with the 

message, it sends a reply back to the sending instance: 

<Enter-a-Nested-CA-Action-Result> 
<accept>true</accept> 
<NCAHandle> 

<NCA type="uri" value="URI of the NCA"/> 
<NCAID> nested CAA manager instance's ID 
</NCAID> 
<Role> ........ </Role> 

</NCAHandle> 
</Enter-a-Nested-CA-Action-Result> 

3.4.2.5 CA-Action-End 

When the original (outermost) CA action ends, all the session ends. When a CA action 

finishes, the CAA manager sends the "CA-Action-End" message to all the roles of that CA 

action. This message includes information about the state of the CA action at the point of 

termination: 

<CA-Action-End> 
<Result>Success</Result> 
<CAHandle> 

<CA type="uri" value="URI of the CA"/> 
<CAID>ID of CAA manager instance</CAID> 

</CAHandle> 
</CA-Action-End> 

From the "CA-Action-End" message, the roles are informed that the CA action has ended 

successfully. After having received the replies from all the roles, the CAA manager 

terminates the CA action. 

3.4.3 A Scenario 

In this section, we use the previous scenario described in Section 3.3.3 again to illustrate how 

the session management protocol works with the instance ID Authenticator protocol. 

As shown in Figure 16, suppose that UI first sends a "Start-an-Original-CA-Action" 

message to the session manager in order to start a new session. An instance of session 

manager MI (including a SA instance and an original CAA manager instance) is created and 

invoked. 
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MI 

Figure 16 Invoking the Original CA action 

UI then invokes the service instance NI and NI invokes the service instance Nl2. Once these 

service instances have been accepted as participants of the session, the CAA manager instance 

will regard them as instances invoked in the Original CA action (see Figure 17). 

UI 

UI 

I.UI 
invokes 
NI 

Nl 

MI 
(OCAm) 

3.NI 
invokes NI2 
NI2 

Figure 17 Invoking new service instances within the 

Original CA action 

In order to enclose the operations between NI2 and UI into a nested CA action, NI2 needs to 

send a "Start-a-Nested-CA-Action" message to MI and applies for the creation of a new 

nested CA action. After MI invokes a new nested session manager instance (CI(C, gc)), it 

sends an "lnform-Enter-a-Nested-CA-Action" message to UI and NI2, permitting them to 

enter that nested CA action. When UI and NI2 are ready, they send an "Enter-a-Nested-CA

Action" message to the nested CAA manager instance separately. UI also has to use Ku1,CI = 
gxc to authenticate itself to the nested CAA manager and then enter the nested action. 

Similarly, NI2 uses gNc to identify itself. After UI and NI2 have entered the nested CA action, 

they are all under the control of the nested CAA manager (see Figure 18). 
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Figure 18 Invoking a nested CA action 

3.5 Summary 

In this chapter we have presented the design of our multi-party authentication protocols for 

Web Services and used the XML notation to specify the corresponding operations. Our 

protocol is designed for complex Web services applications running over the Internet. Since 

Web services may belong to different organizations and under the control of different security 

systems, our protocol is intentionally designed to be independent of any particular security 

systems. We have used the Diffie-Hellman scheme to exchange the authentication 

information and CA actions to structure nested business flow. Compared to Hada and 

Maruyama's scheme [HAD02], our protocol is improved in authenticating service instances 

for complex sessions and defending against a variety of attacks. The following chapter 

introduces the model analysis of our system and the results obtained from the experiment. 
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Chapter 4 System Evaluation and Formal Analysis 

We have developed an experiment to evaluate the performance of our protocols. We also 

design an analytic model to further support the conclusions of the experiment, as the 

experiment can only partly simulate real life environments. 

4.1 Description of the Experiment 

4.1.1 Introduction of Programming Language and Tools 

In the experiment, we employ Java to implement the experiment system. Java is an object

oriented language developed by Sun Microsystems to provide a programming language that 

can be used on a variety of platforms. Because of its platform-independence, Java has been 

widely used in e-business application development and has been accepted by the industry. 

Furthermore, it provides a very good exception mechanism. 

In addition, we make use of GLUE toolkits to generate experimental Web services, which 

communicate based on the SOAP protocol. GLUE is a complete Web service platform 

provided by The Mind Electric. The platform itself provides extensive support for SOAP, 

WSDL, and UDDI. It is easy to use and fast at creating and deploying applications with Web 

services. 

4.1.2 Structure of the Experiment 

Our session multi-party authentication system is designed for large scale, with a large 

mumber of users, and should work in a distributed environment. Normally, operations in a 

distributed system may be executed simultaneously and the performance of the system is 

sometimes difficult to evaluate. Therefore, in the experiment, we try to simulate the worst 

case, where all the operations of the system are executed consequentially. Thus, we 

implement the experiment in the following way (see Figure 19). 

A Web service is developed as the session authenticator and three Web services (Web service 

1, Web service 2, and Web service 3 in Figure 19) are developed to spawn the Web service 

instances that act as session partners in the experiment. Web services 1, 2 and 3 invoke each 
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other in the sequence shown in Figure 19 repeatedly until they have spawned a particular 

amount of services instances and introduced them into the session. The amount of the session 

partners within a particular session is managed by the first Web service instance generated by 

Web service 1. The function of this service instance is to contact the session manager to 

initiate a session as well as end it at the proper time. In this service instance, a pre-set counter 

is used to specify the amount of session partners. 

For an example, in order to establish a session with six partners and record the time consumed 

to accomplish this session, the counter should be set as two and then Web service 1 generates 

a new instance to start a new session. When the service instance spawned by Web service 3 

in the first turn contacts Web service 1, Web service 1 will check the counter in the first 

generated instance. If the counter is bigger than one, Web service 1 will then reduce the 

counter by one and contact Web service 2 to start another turn. Else, Web service 1 will 

inform the session authority to end the session and calculate the time consumption of this 

sessiOn. 

Session 
Manager 

Web service 3 

Figure 19 Structure of the experiment 

After the instances invoked by these three Web services have finished their jobs, they will be 

disposed of to release the resources. Therefore, in one session there are only two or three 

session partners occupying the memory simultaneously even when this system is simulating a 

session with large number of partners. This design avoids the case that the system consumes 

so many resources that the precision of the experiment result is affected. 
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Since all the operations in this experiment should be executed sequentially, it would be 

reasonable to execute the experiment on a computer with one CPU. However, in order to 

make the experiment more convincing, we have done this experiment both on a single 

computer and in a LAN environment. The results getting from the two cases have the same 

tendencies. 

41.2.1 Standard! Deviation oft' ExperimeJrnt Resu.nnts 

To our certain knowledge, there are several factors which may influence the performance of 

the experiment: 

o Java shields the garbage collection from developers. The Java virtual 

machine (JVM) can free the resources no longer needed by the program 

automatically. This mechanism benefits the software development. 

However, the unpredictable overhead of the garbage collection mechanism 

also affects the performance of the Java program and makes it relatively 

less stable. 

o The operation system used in the experiment is Windows 2000. And the 

API System. currentTimeMillis () is used to get the system time at 

the begin and the end of the experiment. The subtraction of the two times is 

regarded as the time consumption of the experiment. However, the 

operation of the experiment process may be interrupted by the operation 

system backend management mechanism unpredictably. Therefore, the 

result from the experiment may be longer than the time that the experiment 

has really consumed. 

o The private key of each Web service instance in the experiment is randomly 

selected. Therefore, the time consumption of generating public keys and 

secret keys based on these random numbers varies in different runs of the 

experiment, although in theory the average result should approach to a limit 

when large numbers of the private keys are used. 
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It is therefore necessary to investigate how much variation these factors will cause. In order to 

evaluate the impact of these factors, we repeated the data collection process of each different 

operation fifteen times (see Figures 20, 21 and 22). 

Time overhead to generate 1500 private keys 

250 

VI 200 --120 bits (143 rriliseconds) , 
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Figure 20 Time consumed to generate private keys 

Time consumed to generate 1500 Diffie-Hellman key pairs 
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Figure 21 Time consumed to generate key pairs 

Time consumed to invoke services instances (1500) and generate 
the communication 
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Figure 22 Time consumed to invoke services instances (1500) and generate the 
communication 
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As what Figures 20, 21 and 22 illustrate, the standard deviation of the results from different 

runs of the experimentation is relatively small, and so the influence of the factors described 

above is generally negligible. 

4.2.2 System Scalability 

In the experiment shown in Figure 23, different sessions with the number of partners ranging 

from 300 to 1500 were generated to evaluate the scalability of the system. The curves from 

the experiment indicate that the time consumed in accepting new service instances into a 

session is proportional to the number of session partners, wruch is an acceptable result. 

120000 
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(/1 
80000 '0 c: 

0 
(,) 60000 Q) 

.!!? 

·e 40000 

20000 

0 
300 450 600 750 900 1050 1200 1350 1500 

instances 

--O-bit private key 

--40-bit private key 

120-bit private key 

--240-bit private key 

--360-bit private key 

--480-bit private key 

--512-bit private key 

Figure 23 Scalability of the session authentication system 

4.2.3 Concurrency 

In order to evaluate the actual performance of the session authentication system when 

concurrency is allowed, two experiments have been conducted. In the first experiment (see 

Figure 24), we established seven kinds of sessions whose number of partners varied from 

three to ten and collected the data of the performance load of a maximum of ten simultaneous 

sessions. It is noted that the curves of the sessions' time consumptions are approximately 

linear. 

However, it may be possible that these curves in Figure 24 do not reflect the real feature of 

the system concurrent performance because the number of simultaneous sessions is not large 

enough. 
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Figure 24 Current performance of the system (experiment 1) 

So, more sessions are executed concurrently in the second experiment. It is obvious that the 

increasing speed of the time consumed for achieving a session reduces gradually as more 

sessions are involved into the experiment (see Figure 25). 

However when more than 50 sessions are executed concurrently, some messages transported 

between service instances are denied due to the limits on the amount of simultaneous 

messages that a Web server can handle. The system will become unstable in that condition. 

Thus, the curve in Figure 25 is only reliable up to fifty concurrent sessions. However, from 

that part of the curve, we can obtain the same result that we mentioned above. 
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Figure 25 Current performance of the system (experiment 2) 
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4.2.4 Calculation Speed of Web Services 

Normally, when we execute a Java program on the same computer more than once, the 

performance of different experimentations is similar. However, the performance of Web 

services seems to be different. Figure 26 compares the different performance of a Web service 

and a normal Java program to generate 1500 120-bit private keys on the same computer. 

Time consumed to generate 1500 120-bit private keys 

Ul 6000 .. - - - - - --g 5000 
\ 0 g 4000 
\ .....,._Web service 

~ 3000 

I 2ooo \ 
Ill 

1000 \ -Normal Java program 
E \. ;:: 

0 
1 2 3 4 5 6 7 8 9 10 11 12 

Test 

Figure 26 Performance comparison of a Web service and normal a Java program 

The time consumption of the normal Java program is similar each time while that of the Web 

service becomes much faster after the first time. From the second time onwards, the Web 

service' s performance becomes stable. Thus in the experiment, we always collect the data 

after the Web service's performance stabilizes and use these data to evaluate the Web 

service's time consumption. We explain this phenomenon as follows. When the user invokes 

a Web service for the first time, the object of the service will be generated and kept in 

memory. If the user contacts it later, the Web service will invoke the object from the memory 

directly rather than instantiate it again. 

4.3 Model Analysis of the Session Authentication System 

Since the experiments can only partially simulate the Web service sessions with a limited 

number of session partners, we also create an analytical model to further analyse these 

experimental results . 

4.3.1 Notation 

We frrstly introduce the following notations to facilitate subsequent discussions. 
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T;nst,I 

Tkey-pair(j, i) 

Service instance which is the i-th instance introduced into the session 

The time consumed of spawning a new service instance PI 

The time consumed to generate the j-th private key and public key in 

the process of introducing PI into the session 

The time consumed to generate the j-th secret key in the process of 

introducing PI into the session 

The time consumed to generate and transport the j-th message 

between two Web service instances in the process of introducing PI 

into the session 

4.3.2 Time Consumption of Introducing a New Session Partner to the Session 
Authority 

In our model, a user instance first contacts a session authority to initiate a session and the 

session authority then assigns a SA instance to manage this session. The user is regarded as 

the first session partner of the session. From then on, a new service instance must be 

recommended to the session authority before it is accepted as a session partner. Normally, this 

task is performed by the session partner, which invoked this new service instance (see the 

Session partner in Figure 27). 

As with the presentation of Figure 27, when a partner of a session attempts to recommend a 

newly generated Web service instance to the session authority of the session, at least five 

messages should be sent over the network. Firstly, the session partner sends a request to 

access a Web service (see Step 1). Besides the request, other useful information such as the 

identity of the session partner is also sent. After the Web service receives the message, it 

spawns a new service instance to manage the request. The new service instance selects its 

private key randomly from the key space, calculates its public key and sends the public key as 

its identifier back to the session partner (see Step 2). After receiving the reply from the new 

instance, the session partner forwards the new instance's identifier to the session authority 

instance, which holds all the information of the session partners within that session. If the 

session authority realizes that the identifier of the new instance has already been adopted by 

another session partner, the session authority will inform the recommender that the register 

has been refused. In this case, the recommender should inform the new service instance to 

select a new private key (see Step 6). Steps 2, 3 and 4 are repeated until the session partner 

gets confirmation from the session authority that the new instance has been accepted. After 

receiving the confirmation, the session partner sends a message (message 5) to inform the 

new service instance to start working. 
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Transported messages: 

Session 
Authority 

0 : Invoke a new Web service instance 

Web service 

8 : Send the Identifier of the new instance back 
C): Recommend the new instance to the session authority 
0: Confrrm that the new instance has been registered 
0: Inform the new instance to start running. 
0: Inform the new instance to select another new private key 

Generated secret keys: 

New Service Instance 

0 Secret key agreed with by the session partner and the new service instance 
0 Secret key agreed with by the session authority and the new service instance 

Figure 27 The process of registering a new instance to the session authority 

Let us now consider a session partner that attempts to introduce a newly spawned Web 

service instance P1 to the session authority, and this process achieves after x; identity 

selections. The total time consumption of this process T total. I is as follows: 

41;-fl ... J;.l(-fl) 

T total, I ~ L (Tmu. o)+ L ( Tkey-pairlj, o) + L (Tsecu.o) + T;nst, I (1) 
j-4 j=t j-4 

with equality when all the operations of the system are processed sequentially. 

Therefore, in one session where n service instances are accepted into the session, the total 

time consumption of this process T n-totai could be expressed in the following way: 

n 

T tr-total = L T,ota/, 1 

i=l 

n 4x1 +1 x1 2(x1 +1) 

~ L ( L (T,.( j, i)) + L (l'key-pair(j, i)) + L (Tsec(j, i)) + T;nst , I ) 

i=l j=l j=l j=l 

2[(x1 + x2 + .. + xn) + n](Tsecret ) + nT;nstant 
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11 4x;+l 

L( L(1~n(j,i))) 
where Tmessage = i=l j=l 

11 2x;+l 

L ( L (T<ec(j, i))) 
i=l j=l --"------- and T instant 

II 

L(2xi +1) 
i=l 

Tkey-pair = 

II 

L ('F;nst,l) 
= ...!Ci=::!l __ _ 

n 

n xi 

L <:L (Tkey-pair(j, i))) 
i=l j=l 

Tsecret = 

i=l 

Given a random variable that is an integer with uniform distribution between I and n and a 

selection of k instances (k :S n) of random variable, the probability, P(n, k), that there is at 

least one duplicate is [STA98]: 

n! 
P(n, k) = 1- k 

(n-k)!n 

If the Key space of the security system is large enough, the probability that two partners 

within the same session will select the same private key is extremely small. Thus, for every i 

in { 1,2, .. . ,n }, X; z 1. Thus the value of ( ~ + x2 + .. + xn) in equation (2) is approximately n. 

Therefore, when all the operations execute sequentially: 

T n-toral z 5n(T message) + n(T key-pair) + 4n(T secret) + nT instance (3) 

= n[5(Tmessage) + T key-pair+ 4T secret+ Tinstance] 

Equation (3) implies that, in order to accept n service instances into a session, there will be 

about 5n messages transported, n key pairs, 4n secret keys, and n new service instances 

generated. That is, in the worst case the time consumption of introducing service instances 

into one session increases linearly with the amount of the session partners. 

4.3.3 Time Consumption of Initiating the Communication between Session 
Partners 

We also generated an analytic model of our security system for generating the communication 

between session partners. 

Figure 28 illustrates the conversation between two session partners, Initiator and Responder, 

which tried to initiate a communication between each other. Since these two session partners 
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never communicated before, each of them has to ask the session authority instance to examine 

the other's identity. Generally, there are six messages that have to be sent through the network. 

Initiator will agree on a secret key with Responder. 

Let T8cc;,1) be the time consumption of the process for two partners, P1 and P;, to agree on the 

secret key. And 

2 6 

Tgc(i,J) :::; LT:·ecret(i,j) ,u + LT,nessage(i , j) ,u (4) 
u=l u=l 

In the above inequality we refer to the time consumption of generating the u-th secret key in 

this process as T.ecret(i, n.u and the time consumption of generating and transporting the u-th 

message in this process as T,nessage(i, i) ,u. Equality is achieved when all the operations in the 

process are executed sequentially. 

From inequality (4), we can say that the resources consumed to authenticate a session partner 

do not vary as the change of the membership of the session or the relationship among the 

session partners. If Initiator and Responder have contacted before, then there is no 

additional operation needed. They should have generated the secret key and can use it directly 

to prove their identities. Of course, the session partners can contact the session authority 

instance to verify each other again for security purposes. 

Initiator Responder 

Transported messages 

0: Request the identifier of Responder from the session authority 
8: Return the identifier of Responder back to Initiator 
0: Send request to Responder 
8: Check the identity oflnitiator to the session authority 
0 : Send the validation result back to Responder 
0: Send the reply to Initiator according the validation result 

Figure 28 The process of contacting other session partners 

60 



Assuming there is a session, in which there are n partners never communicate with each other 

before. The time it takes every partner to form original connections with all the other session 

partners Tgac should be: 

n j-1 

Tgac = L L (Tgc(i, J)) 

j=2 i=l 

n j-1 2 6 

~L:L: (LT,·ecret(i,j),u + LT,11essage(i,j),11 

n j-2 2 

j=2 i=l u=l u=l 

n(n -1) -
---(2Tsecret +6Tmessage) 

2 

n j-2 6 

L L (L T.ecret(i, j),u) L L (L T,nessage(i, j), u) 

Wh T 
j=3 i=l u=l j=3 i=l u=l 

ere secret = -'-----,----:j-c-2=---- and T secret = -'----"----'" --:-j_-::2----

LL2 L::L6 
j=3 i=l j=3 i=l 

The time complexity of above inequality equation is O[n2
]. 

(5) 

In the above discussion, we have described the process of our security system for two session 

partners initiating communication. In Section 4.4, we will compare this model with the model 

of another decentralised solution. 

4.3.4 Comparison of the Results of the System and the Model 

In the experiment, the transporting channel is stable. Therefore, the time consumption of 

transporting a message between two instances and spawning a service instance is stable. 

Every session partner spawned by the same service in the experiment has the same calculating 

ability since all these instances are executed on the same computer. 

In addition, it is impossible to anticipate the time consumption of generating a public key or a 

secret key precisely in the experiment. However, we can predicate that: 

As we described in Chapter 3, in the Diffie-Hellman algorithm, time consumption of 

generating a public key or a secret key is determined by the length of the private key. And the 

private key used in this system is a random number picked from the set {0, 1, ... , 2" -1} 

where n is selected by the system according to the requirement of the security strength. When 

the system employs Diffie-Hellman to agree with the secret keys, n is normally twice as the 

length of the session keys that are derived from the security keys. 
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If i integers are selected randomly from the set {0, 1, ... , 2" -1 }, the average length of these 

random numbers is a limit when i is large enough. 

Therefore, when the number of session partners is large, as it is in our experiment, the value 

of the arguments in the right of the equation (3) should not have a large variation in different 

experimentations. Hence, we can record the time consumption of different operations such as 

transporting messages, generating private keys, public keys, and spawning service instances 

separately. Then, we can add them together to evaluate the performance of the system. 

In Figure 29, we include the time consumptions of achieving various sessions. These sessions 

consist of different numbers of session partners. The lengths of the private keys employed 

within the sessions are different from one column to another. Specially, the column "0 bit" in 

Figure 29 indicates the session that does not do the operations of generating the key pairs and 

validating secret keys, that is, it only records the time consumed to generate the service 

instance and the time consumed to generate and transport the messages. 

~ 0 bit 40 bits 120 bits 240 bits 360 bits 480 bits 512 bits 

300 1906 4768 7775 11516 15969 18016 20703 
450 2938 6562 11812 16688 22422 27640 32297 
600 3921 8079 15532 21579 29266 35609 39985 
750 4875 10042 19435 26891 36047 48609 48765 
900 5937 11750 22328 31532 43950 53453 60438 
1050 6953 13956 26016 36813 51078 67844 69047 
1200 8005 15344 29235 41453 68040 72812 80141 
1350 9328 16704 33500 47016 72219 81703 92781 
1500 11422 19375 36187 51812 76312 90172 100203 

Figure 29 Private key's length and the time consumption (millisecond) of the experiment 

system 

In addition, from the observation of the Diffie-Hellman protocol we can tell that the average 

time consumed to generate a public key is computationally close to a secret key. Let T pri be 

the average time consumed in generating a private key and T pub be that of a public key, 

equation (3) becomes 

T11-totat = n[5(Tmessage) + T key-pair+ 4T secret + T;tlstance] (6) 

::::: n[ 5(T message) + T pri + 5T pub + T in.>taiiCe] 
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Figure 30 Comparison between analytical and experimental results 

Based on the data collected from experiments (as what shown in Figures 20, 21 and 22), we 

use equation (6) to generate analytical results . Figure 30 shows that the analytical sum of time 

spent by different parts illustrated in Figures 20, 21 and 22 matches the experimental results 

presented in Figure 29. 

It is notable that the experimental results are always a little larger than the analytical results 

derived from equation (6) . This phenomenon may be explained as follows: 

The data shown in Figures 20 and 21 , used for the analytical model, is based on an 

implementation in which the keys are generated by a single Web service instance, one at a 

time. However, the experimental results, illustrated by Figure 29, are based on the fact that 

the keys generated by multiple service instances in total. The operations in the experimental 

system are therefore more possibly disturbed by the OS background management mechanism. 

Consequently, time consumption of the experimental system should be longer than that of the 

analytical model, especially when the system execution time is long. 

4.3.5 Proportion of Different Parts of Time Consumption 

Figure 31 shows the proportion of time consumed by different operations within the security 

system. The time consumption of generating private keys is less than 1 %, negligible 

compared with other operations. The time consumed in generating public keys and secret keys 

takes the most part of the system time consumption. However, we anticipate that the 

proportion of time consumed by transporting messages will increase when the system 

executes in a large-scale distributed system. In extreme conditions, the time consumption of 

transporting messages will determine the performance of the sy tern. 
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Time consumed to introduce 1500 instance into a session (480-bit 
private key, 512-bit public key) 

0% 13% 

87% 

C Time conusmed to generate 
private keys 

• Time conusmed to generate 
service instances and transport 
messages 

0 Time conusmed to generate public 
keys and secret keys 

Figure 31 Time consumption of different operations in the system 

4.4 Decentralised Solution for Session Authentication Protocol 

Before choosing the solution described in Chapter 3 as our solution of the session 

authentication protocol, we had considered another decentralised mechanism, which does not 

rely on any third party to manage the identities of the session partners (see Figure 32). 

4.4.1 Description of the Decentralised Solution 

Like the centralised solution we described previously, this decentralised solution leverages 

the Diffie-Hellman algorithm to distribute secret keys among session partners. Session 

partners will use these secret key to authenticate each other in the conversations. In the 

decentralised solution, in order to invoke a new service instance, there are three messages 

necessary to be sent. Figure 32 illustrates a scenario of this process. 

Suppose a session partner InstantO is a service instance involved within a session, and it 

attempts to assess a Web service, Web service 1. Firstly, InstantO selects a pair of keys for 

itself and then sends its request to Web service 1 (see Step 1 in Figure 32). Apart from the 

request, InstanceO also sends its public key as its identifier to Web service 1. After receiving 

the message from InstanceO, Web service 1 invokes a new instance, lnstance1 to manage 

this request. Instance1 selects a private key from the key space and sends the associated 

public key as its identifier back to Session Partner (see Step 2 in Figure 32). After Steps 1 and 

2, InstanceO and lnstance1 have achieved the public key exchange so that they can agree on 

a secret key using the Diffie-Hellman algorithm. In th third step of Figure 32, lnstantO 
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informs Instance! to start working after receiving the reply from Instance!. Same as our 

multi-party authentication system discussed in Chapter 3, the messages in Steps 2 and 3 are 

attached with MAC information calculated with the secret key that is shared by the InstanceO 

and Instancel so that these two service instances can verify the originators of the messages. 

After these three Steps conversation, each of them can make sure that the other instance has 

agreed on the secret key. Instance! can now be regarded as a session partner. 

Step I (0) 

c:>r---s_t...:.ep_2...:..C
8.....:....) ___ ---.Jj Web service I ~--

---~S~te-p~3~(~~)~-~~ 
Session Partner 
(Instant 0) 

Transported messages: 

Instance 2 

0: Invoke a new Web service instance 
8: Send the Identifier of the new instance back 
~: Inform the new instance to start running. 

Figure 32 The process of invoking new session partner in the decentralised solution 

Assume Instancel tries to access another Web service, Web service 2. Following the same 

way, Instance! contacts Web service 2 and generates the communication with lnstance2 

which is invoked by Web service 2 to manage the request of Instance! (Steps 4, 5 and 6 in 

Figure 32). 

After lnstance2 has finished its job, it is required to send the result back to InstanceO 

directly (see Figure 33). Since at this stage lnstanceO and lnstance2 have both generated 

trust relationships with Instance!, lnstance2 can send its identifier to InstanceO through 

Instantl (Steps 1 and 2 in Figure 33), and InstanceO can send its identifier back to 

lnstance2 through Instancel as well (Steps 3 and 4 ). 
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lnstance2 

Transported messages: 

0: Send Instance2's identifier to Instancel and ask Instancel forward it to InstanceO 
8: Send the Identifier to lnstanceO 
C): InstanceO sends its identifier back 
G: Instance! forwards InstanceO's identifier to Instance2 
0: Contact InstanceO 
CD : Return the validation result back to lnstance2 

Figure 33 The process of initiating communication with other 

session partners in the decentralised solution 

After Steps 3 and 4, Instance2 agrees on a secret key with InstanceO using the Diffie

Hellman algorithm. Thus, lnstance2 can contact lnstanceO directly and use the newly 

generated secret key to prove its identity. 

4.4.2 Model Analysis of the Decentralised Solution 

Let us now consider partner within a session that invokes a service instance P1 and accept it to 

the session. A triple-message conversation is needed to invoke and generate the trust 

relationship with P1 over the network. Moreover, P1 should select a private key and the 

relevant public key for itself. We refer to the time consumption of this process as Tkey-pair, I· In 

addition, the two parties of the conversation should generate the secret key respectively. So, 

the time consumption of accepting P1 into the session T rowl, 1 is: 

3 2 

T total, I L Tm(j, o+ Tkey-poir, I + L TsecG, i) + T;nsl , I , 

j=l j=l 

In the discussion, we neglect the condition that two parties select the same private key 

accidentally, since the possibility is extremely small. Therefore, when accepting new session 

partners, the time consumption of this decentralised solution is a little less than that of the 

centralised solution discussed in Chapter 3. 
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It is a little complex to assess the time consumption of initiating communication between two 

session partners that have never contact before. Since two session partners that never 

communicate before may have to exchange their identifiers via other session partners, this 

time consumption depends on how many session partners are involved within the process of 

exchanging the identifiers. Figure 34 details a structure of a session, within which a session 

partner Partnerl invokes all the other session partners (Partner2 to Partnern). Thus, 

Partnerl has the trust from all other session partners. Assume two session partners P1 and P" 

where I, J E { 2,3, .. , n} , attempt to generate a secret key and start communication. So, in the 

worst case, the time consumption Tgc(i,J) should be: 

2 6 

Tgc(i, j) ~ L T.ecret(i , j),u + LTmessage(i, j), u 
u=l ll=l 

The time it takes for every partner in this session to form original connections with all the 

other session partners Tgac should be: 

n j-1 

~'L'L 

n j - 1 

Tgac = L L (Tgc{i,J)) 
j=3 i=2 

2 6 

( LTsecret(i , j ), u + L T,,.essage(i, j), u ) 
j=3 i=2 ll=l ll=l 

-- (n -l)(n- 2) (2 -Tsecret 

2 
+6 T message ) 

n j-1 2 11 j-1 6 

L L (LI'.ecret(i,j),ll) L L (L T,nessage(i,j),u) 
j=3 i=2 ll=l j=3 i=2 u=l Where T secret = -'------,.-j---:1 --- and T secret = -'--:....:.....::...._:....:....n--:-j_-:1----

LL2 'L'L 6 
j=3 i=2 j=3 i=2 

c:=J 
PartnerS 

Partner! 

Figure 34 Session structure (1) 
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It is notable that the order of growth of above equality is O[n2
] , the same as that of the 

inequality (5) in Section 4.3. 

Consider a session, which is presented within Figure 35. In this session, each P1 is invoked by 

P1.t. where i E {2,3, .. , n} . So to initiate a communication for two strange session partners P1 

and P1. where 1 $ i $ j $ n, the time consumption T gc(i,J) should be: 

2 2(j-i)+2 

T gc(i, j) $ LTsecret(i, j), tt + L T,nessage(i, j),tt 
u=l tt=l 

For every partner in the session to generate trust relationship with each other, the time 

consumption Tgac should be: 

n j-2 

Tgac = LLTgc(i ,j) 
j=3 i=l 

II j -2 2 2(j-i)+2 

$ L L (L T.ecret(i, j), u + L T,nessage(i, j), 11) 
j=3 i= l u=l u=l 

From the above equality, we can see that in the worst case the order of growth of initiating 

the communication among session partners is O[n3
] , which is higher than that of the 

centralised solution ( O[n2
] ). 

Partner! Partner2 

Partner)~ 
, , , , , , , , , 

0 Partnern 

Figure 35 Session structure (2) 

68 



4.4.3 Comparison lbetween the Centralised §oBution and the Decentralised 
Solution 

Both the centralised solution and the decentralised solution have their own advantages. The 

decentralised solution does not rely on any third party to manage the key distribution. 

Therefore, the decentralised solution avoids the inherent drawbacks of protocols that rely on a 

third party. This is a great advantage. Nevertheless, it also has some inevitable drawbacks. 

Here, we list some of them as follows: 

o In the decentralised solution, session partners lack effective ways to get the 

real-time information of the session (e.g., the change in the number of 

session partners, the information of newly accepted session partners). 

o In the decentralised solution, it is difficult to examine whether the identity 

of a session partner is unique in the session. 

o In the decentralised solution, the session partners also have the 

responsibility to help other related session partners to initiate 

communication. Consequently, the Web services involved in the session 

have to keep the session information until the end of the session, even when 

they have finished their job. 

o In the decentralised solution, the security of the session is dependent upon 

the security of every session partner. The strength of a chain is determined 

by the weakest link. Therefore, when a session partner crashes or becomes 

compromised, it maybe be fatal tothe entire session. 

Overall, the decentralised solution traverses the identifiers through session partners and its 

security is generated on the assumption that all the session partners are secure and trustable. 

If a session partner is compromised, the security of all the session may be easily 

compromised in many cases. Compared with the centralised solution, its fatal drawback is its 

inability of providing session partners real-time session information. After evaluating these 

two solutions, we finally select the centralised one. 
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4.6 Sll.llmmall."y 

In this chapter, we introduced the implementation of our experiment. The main part of the 

experiment is concentrated on proving the linear increase of time consumption when 

introducing Web service instances into the session. Since it is very difficult to generate a large 

number of Web services executed on different computers respectively, we develop an 

experiment to simulate the working environment of our protocols. In order to make our 

solution more convincing, we use an analytic model to further prove the experimental results. 

Furthermore, we describe a decentralised solution and compare it with the solution described 

in Chapter 3. In the next chapter, we will discuss the conclusion from the research and 

mention future work. 
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§.1 CondusioJrnS 

Web service is a new technology that emerged several years ago. People believe that this 

technology is able to help corporations generate e-business solutions which are more effective 

and dynamic than ever. Unfortunately, the lack of proper solutions to secure Web services is a 

major obstacle to large-scale commercial usage of the approach. The main goal of this 

research is to explore multi-party authentication issues for Web services and to develop a 

multi-party authentication system for Web services capable of providing reliable session 

security service and management to a Web service business. 

Up until now, the prototype system has been generated and the results obtained from the 

experiment show that the session authentication system could provide trustable session key 

management: 

o A Web service instance within one particular session can select some 

unique identifier among the session partners, and with this identifier, it will 

not be confused with others. 

o The public key algorithm is involved so that the identifiers cannot be forged. 

Supplementary to this, a measure is provided for the session partners to 

validate the identity of the object who it is communicating with. 

o The mistake of sending the messages to the service instance within different 

session is avoided. In the experiment, some errors were deliberately 

inserted into the experiment system, for instance, changing the identifiers 

of the session partners and changing the private keys of the session partners. 

These errors were detected successfully. 

The experiment system employs Session Authority, which is a fixed, highly secure trusted 

third party, to manage all the secure information of the session partners and so it is a 

centralised management mechanism. Therefore, our system inevitably suffers from the single 

point failure and single point attack. 
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On the contrary, the distributed management mechanism requires all the group numbers take 

part in the management to overcome the shortcomings mentioned above. However, the 

distributed management is notoriously complex and computationally heavy [AMIOO]. 

Currently, some algorithms (decentralised group key algorithms) are mentioned for the 

distributed key management in the peer-to-peer groups in some paper [AMIOO, KIMOO (1)], 

and we have introduced them briefly in the previous chapter. Essentially, these algorithms are 

only suitable for relatively small groups [KIMOO (1)]. Furthermore, they only can generate a 

general key for all the group partners. Therefore, they are not suitable to resolve the multi

party session authentication issue we discussed above. 

The centralised management mechanism has its irreplaceable advantages, simplicity and 

effectiveness. Nowadays, nearly all the most popular security systems (e.g., Kerberos, PKl 

[GER98, HOU02], Kryptoknight, etc.) make use of some kind of trusted third party to 

manage the secure information. Thus after analysing the models of the centralised solution 

and the distributed solution separately, the centralised system proves to be the choice that is 

more sensible. 

5.2 Future Work 

The session management of Web services is still a new field in the area of Web service 

security. The system developed has great potential to be improved, and it will act as the 

foundation for the future search. 

5.2.1 Searching for Potential Candidates of the Public-Key Algorithm 

In the experiment, the Diffie-Hellman algorithm is used to generate the secret key among the 

session partners. The Diffie-Hellman algorithm is a very famous key agreement algorithm and 

is wildly employed by existing security systems. However, it still makes sense to attempt to 

employ other key agreement algorithms to our security system and compare their 

performances, so that the optimum one may be selected. 

Up until the present, the performance of the ECC (Elliptic Curve Cryptography) algorithm 

[STI02] is checked in the experiment and its performance has been compared with the Diffie

Hellman algorithm (see Figure 36). 
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Performance of two algorithms with the same security strength 

'iii 100000 -t--------"'--'-------,--~H , 
1: 
0 80000 +-----------~F-----1 

J 60000 +-------..,...-::~'---------~ 
g 
Ql 40000 -t----:::-.:z: ... ""---------- ---1 
E 
i= 20000 +--IF----------------1 

Instance within the session 

-+- DH (512-bit private key ,512-
bit key space) 

- ECC (112-bit private key, 
112-bit key space) 

Figure 36 Comparison between the Diffie-Hellman algorithm and the ECC algorithm 

In the experiment, the ECC algorithm does not show any speed advantage in the competition 

with the Diffie-Hellman algorithm. Nevertheless, this does not mean that the Diffie-Hellman 

algorithm is better than the ECC algorithm. In practice, several optimisations for the ECC 

algorithm can be employed to reduce the computational consumption. In the future, the 

optimised measures for the ECC algorithm will be implemented and other asymmetric 

security algorithms will continue to be explored in order to improve the performance of the 

system. 

5.2.2 Semantic Issues of Session Management 

In the session management system, theCA action model is leveraged to manage Web service 

sessions. CA actions have a good mechanism to handle the exceptions that occur in a 

distributed system. However, before it is integrated into a Web service environment, many 

semantic issues must be explored. For instance, the system comprised of Web services is loss

coupled. Different Web services may be developed and maintained by different organizations. 

It is normal that they select different ways to express exceptions and handle them. Therefore, 

it is necessary to find an efficient way to help the CAA manager understand the meanings of 

the exceptions thrown by different roles so that it can effectively organize the roles to handle 

these exceptions. 

Beside the work cited above, there are still many things left to do. For instance, new security 

protocols for Web service are continually emerging. Some of these protocols can be 

integrated into our solutions. When the authentication system was designed, there was no 
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security protocol for Web service specifying how to generate the secure conversation between 

two Web service instances. Therefore, we define the conversation messages in our solution by 

ourselves. Moreover, in our design, the MAC (message authentication code) tehcnique is 

necessary to prove the origin of the message and it should be attached to the SOAP message 

with WS-Security protocol. Until the experiment is finished, Sun Corporation has not 

provided the APis for this protocol. So the present experiment is aimed at evaluating the 

scalability of the instance ID Authenticator protocol, and the secret keys were transported in 

plain text. In the future, theWS-Security and other new emerged security protocols (e.g., WS

SecureConversation) will be integrated into the experiment system, and performance of the 

system will be further evaluated. 

In brief, there is great potential for future work on our solution. In our opinion, at moment the 

most pressing need is for an effective and optimized mechanism to distribute and manage the 

identifiers for session partners. 

In the field of web service session management, there is still much to explore. 
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