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Abstract

Power flows within distribution networks are expected to become increasingly congested

with the proliferation of distributed generation (DG) from renewable energy resources. Con-

sequently, the size, energy penetration and ultimately the revenue stream of DG schemes

may be limited in the future. This research seeks to facilitate increased renewable energy

penetrations by utilising power system component thermal properties together with DG

power output control techniques. The real-time thermal rating of existing power system

components has the potential to unlock latent power transfer capacities. When integrated

with a DG power output control system, greater installed capacities of DG may be accom-

modated within the distribution network. Moreover, the secure operation of the network is

maintained through the constraint of DG power outputs to manage network power flows.

The research presented in this thesis forms part of a UK government funded project which

aims to develop and deploy an on-line power output control system for wind-based DG

schemes. This is based on the concept that high power flows resulting from wind genera-

tion at high wind speeds could be accommodated since the same wind speed has a positive

effect on component cooling mechanisms. The control system compares component real-

time thermal ratings with network power flows and produces set points that are fed back

to the DG for implementation. The control algorithm comprises: (i) An inference engine

(using rule-based artificial intelligence) that decides when DG control actions are required;

(ii) a DG set point calculator (utilising predetermined power flow sensitivity factors) that

computes updated DG power outputs to manage distribution network power flows; and

(iii) an on-line simulation tool that validates the control actions before dispatch. A section

of the UK power system has been selected by ScottishPower EnergyNetworks to form the

basis of field trials. Electrical and thermal datasets from the field are used in open loop to

validate the algorithms developed. The loop is then closed through simulation to automate

DG output control for increased renewable energy penetrations.
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Nomenclature

On occasions, context-specific symbols are used in the thesis. These symbols are not in-

cluded in the nomenclature below but are explained in context.

Symbol Definition Unit

A Conductor cross-sectional area (m2)

a Initial condition of analysis (no unit)

CE(ROC) Renewables obligation certificate sale price (£/Wh)

CE(wholesale) Wholesale electricity price (£/Wh)

CGi
Distributed generation installation cost (£/W)

CR(annual) Annual net revenue of distributed generation developer (£)

CR(control) Cost of distributed generation output control system (£)

CR(EY ) Annual income from active energy yield sales (£)

CR(inv) Total investment cost for each developer (£)

CR(loss) Annual cost of losses (£)

CR(OM) Cost of annual operations and maintenance (£)

CR(real−time) Cost of real-time thermal rating system (£)

CR(1,2,3) Variable costs for financial analyses (£)

CTh(s) Soil thermal capacitance (J/kgK)

c Component (no unit)

D External diameter of conductor (m)

Ea Annual energy yield (Wh)

Eloss Energy yield loss (Wh)

Continued on next page

vii



viii

Symbol Definition Unit

Gi Installed capacity of distributed generation (MW)

Gid Generator with identifier id (no unit)

GP,i Real power output of generator G at node i (W)

GP,m Real power output of generator G at node m (W)

′GP,m Real power output of generator G at node m (W)

before control actions take place

′′GP,m Real power output of generator G at node m (W)

after control actions have taken place

GQ,i Reactive power output of generator G at node i (VAr)

I Current (A)

Imax Maximum steady-state current carrying capacity (A)

of a conductor

Iph Phase current (A)

I0 Electric cable rated current (A)

i Index (no unit)

J Jacobian matrix (no unit)

KOM Operations and maintenance proportionality constant (no unit)

k Index (no unit)

LL Lower limit (no unit)

MLIFO Last-in first-off generator ranking matrix (no unit)

MPFSF Power flow sensitivity factor matrix (no unit)

MTMA Technically most appropriate generator ranking matrix (no unit)

m Index (no unit)

mT DG connection node with the highest index (no unit)

N − 1 First circuit outage in an electrical contingency (no unit)

NPV Net present value (£)

Nu Nusselt number (no unit)

n1,2 Number of stakeholder investors (no unit)

P Real power (W)

Pi Real power demand at node i (W)

Continued on next page
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Symbol Definition Unit

Pi,k Real power flow from node i to node k (W)

Ploss Real power loss (W)

Ploss,i,k,m Real power loss from node i to node k and (W)

apportioned to generator at node m

Ploss,i,k,total Total real power loss from node i to node k (W)

PFSF Power flow sensitivity factor (no unit)

PI Profitability index (no unit)

PV Present value (£)

Q Reactive power (VAr)

′Qi,k Initial reactive power flow from node i to node k (VAr)

before control actions take place

′′Qi,k Final reactive power flow from node i to node k (VAr)

after control actions have taken place

Qi Reactive power demand at node i (VAr)

qconv Heat loss by convection (W/m)

qrad Heat loss by radiation (W/m)

qsol Heat gain by solar radiation (W/m)

R Electrical resistance (Ω)

Rac Electrical resistance to alternating current (Ω)

at maximum operating temperature

RTh Thermal resistance (mK/W)

S Apparent power (VA)

Sbase Apparent power flow reference base (VA)

Sc
i,k Apparent power flow in component c from node i to k (VA)

′Si,k Initial apparent power flow in component from node i (VA)

to k before control actions take place

Slim Thermal limit (VA)

Sc
i,k(lim) Thermal limit of power transfer in component c (VA)

from node i to k

SSF c
i,k,m Apparent power flow sensitivity factor of component c (no unit)

Continued on next page
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Symbol Definition Unit

between node i and k to a real power injection at node m

Ta Ambient temperature (K)

Tc Conductor temperature (K)

Ts Soil temperature (K)

Ts(rated) Rated soil temperature (K)

TV F c
i,k,m Thermal vulnerability factor of component c (no unit)

between node i and k to a real power injection at node m

t Time (s)

U Component utilisation (no unit)

U c
i,k Utilisation of component c between nodes i and k (no unit)

UTar Utilisation target for power flow control (no unit)

V Voltage (V)

VL−L Line-to-line voltage (V)

Vph Phase voltage (V)

W Solar radiation (W/m2)

X Reactance (Ω)

x Integer (no unit)

y Integer (no unit)

Φ Egalitarian broadcast signal (%)

α Absorption coefficient (no unit)

ǫ Emission coefficient (no unit)

θi Voltage angle at node i (rad)

θk Voltage angle at node k (rad)

λ Air thermal conductivity (W/mK)

ξT Electric cable rating correction factor (1/K)

ξρ Electric cable thermal resistivity correction factor (W/mK)

ρTh(s) Soil thermal resistivity (mK/W)

ρTh(s,rated) Rated soil thermal resistivity (mK/W)

σSB Stefan-Boltzmann constant (W/m2K4)



Acronyms

Acronym Definition

AAAC All aluminium alloy conductor

AC Alternating current

ACSR Aluminium conductor steel reinforced

ADN Active distribution network

AGC Automatic generation control

ANM Active network management

B Busbar (identifier)

C Component (identifier)

CHP Combined heat and power

CI Customer interruption

CIGRÉ Conseil International des Grands Réseaux Électriques

International Council on Large Electric Systems

CML Customer minute lost

CSP Constraint satisfaction problem

DC Direct current

DER Distributed energy resource

DG Distributed generation

DIUS Department for Innovation, Universities and Skills

DNO Distribution network operator

DSO Distribution system operator

EHV Extra high voltage

ENA Energy Networks Association

Continued on next page
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Acronym Definition

ESQCR Electricity safety, quality and continuity regulations

ETR Engineering technical recommendation

FACTS Flexible AC transmission systems

GSF Generation shift factor

GSP Grid supply point

GUI Graphical user interface

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

L Load (identifier)

LIFO Last-in first-off

LTDS Long term development statement

NPV Net present value

OfGEM Office of the Gas and Electricity Markets

OPF Optimal power flow

pu per unit

PC Personal computer

PFSF Power flow sensitivity factor

PI Profitability index

PV Present value

ROC Renewables Obligation Certificate

RE Renewable energy

RTTR Real-time thermal rating

SCADA Supervisory control and data acquisition

SOA Service oriented architecture

T Transformer (identifier)

TMA Technically most appropriate

TVF Thermal vulnerability factor

UKGDS United Kingdom generic distribution system

WAsP Wind Atlas Analysis and Application Program
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Chapter 1

Introduction

1.1 Background

Growing concern regarding the carbon intensity of fossil fuel electricity generation prompted

the Kyoto Protocol to be created and, in an attempt to reduce carbon emissions, agree-

ments have been signed by countries across the globe. The impetus of governments, on

an international scale, to move towards low-carbon economy targets has brought about the

proliferation of distributed electricity generation, particularly from new and renewable en-

ergy (RE) resources [1,2]. In order for the UK to make the transition towards a low-carbon

economy, as set out in the government’s Energy White Paper [3] (sourcing 20% of the UK’s

electricity demand from renewable energy by 2020 and 60% by 2050) participation is re-

quired on many levels from policy makers and regulators within the political arena, through

electricity generators, power system equipment manufacturers and network operators, right

down to industrial, commercial and domestic energy consumers.

At present the UK distribution network tends to be operated as a passive entity with

bulk power generation at centralised locations being transmitted at voltage levels of 400kV

and 275kV in England and Wales (132kV in Scotland) to feed lower voltage load customers

through the distribution network. The power output of significant capacities of distributed

generation (DG), installed at sub-transmission network voltage levels (132kV and below)

may, at times, exceed local load demands and cause power flows to reverse within the

distribution network. This, coupled with increasing consumer energy demands, has caused

distribution network operators (DNOs) to seek methods of increasing the utilisation of their

existing power system assets. The increased utilisation of assets must be realised cautiously

such that the security of supply to customers is not reduced, particularly when the age of

distribution network assets is taken into account.

1



1.2. Active management of DG project 2

A developer that is seeking to connect DG of significant capacity may be offered a firm

connection by the DNO on the condition that an investment is made (by the developer) in

the necessary network reinforcements. However, the developer may not be able to justify

the expense of the required reinforcement and may negotiate a non-firm or ‘constrained’

connection agreement, whereby the DG scheme is tripped off or constrained back under

certain network operating conditions. Furthermore, difficulties may be encountered when

attempting to gain permission to build network infrastructure, in order to accommodate

new DG schemes, due to planning problems and environmental objections [4]. One potential

solution or means of deferring these problems is the adoption of real-time thermal rating

systems which have the potential, in certain circumstances, to be both less invasive and more

cost effective when compared to network reinforcement options. Non-firm DG connections

are expected to occur more frequently as network power flow congestion occurs. Therefore

the deployment of a power output control system, informed by real-time thermal ratings,

may be required to increase the energy yield of generation from new and RE resources.

1.2 Active management of DG project

1.2.1 Project overview

The research detailed in this thesis forms part of a UK government-sponsored project which

aims to develop and deploy an on-line power output control system for DG installations

through the exploitation of power system real-time thermal ratings [5]. The control system

compares component real-time thermal ratings with network power flows and produces

set points that are fed back to the DG scheme operator for implementation, as shown in

Figure 1.1.

Through the Technology Strategies Board, the UK Department for Innovation, Univer-

sities and Skills (DIUS) has part-sponsored research into the “Active management of dis-

tributed generators based on component thermal properties”, Project No: TP/4/EET/6/1/

22088. Throughout the thesis this is referred to as the “DIUS Project”. The DIUS Project

research consortium comprises AREVA T&D (the power systems equipment manufacturer),

Imass (an information technology consultancy firm), Parsons Brinckerhoff (the international

consultancy firm), Durham University (the UK research institution) and ScottishPower En-

ergyNetworks (the UK DNO).

The consortium provides the complete route to market for the control system (i.e. the

design, development, prototyping, testing and eventual commercialisation of the product)
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Figure 1.1: DG output control informed by component real-time thermal ratings

with ScottishPower EnergyNetworks acting as the customer, AREVA T&D as the product

supplier and Durham University, Imass and PB Power as the product development and

management team.

The deliverables of the project were: (i) The development power system component

thermal models; (ii) the identification of a site within ScottishPower EnergyNetworks’ dis-

tribution network that would be suitable for hosting field trials; (iii) the design of the

overall architecture of the DG output control system; (iv) the development of thermal state

estimation techniques whereby the rating of components, which are not directly monitored

within the power system, may be assessed; (v) the development of control algorithms such

that thermal state estimations may be used for the output control of DG; (vi) the develop-

ment of electro-thermal simulations to model the sections of the UK power system; (vii) the

integration of thermal state estimation and control algorithms within AREVA’s industrial
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hardware platform, thus creating a prototype control system; (viii) the commissioning and

installation of electrical and thermal monitoring equipment within the field trial network;

(ix) the assessment of prototyped DG output control system performance through open-

loop field trials; and (x) the closed-loop output control of a DG scheme based on component

thermal properties.

The time-bound nature of the DIUS Project meant that negotiations to operate a DG

scheme in closed loop were limited. Moreover, the DG scheme present within the field trial

network was not of sufficient size (in terms of installed capacity) to cause the violation of

thermal constraints within the power system. Therefore the closed-loop operation of the

prototype control system was demonstrated in the simulation environment.

The research presented in this thesis pertains to the the following specific phases of

the DIUS Project: (i) The architecture design; (ii) the control algorithm development;

(iii) the development of electro-thermal simulation tools; (iv) the field trial installation

and commissioning; (v) the open loop testing of the algorithms; and (vi) the closed loop

testing of the algorithms. The control algorithms and electro-thermal simulation tools were

extended beyond the practical limitations of the field trial implementation to develop both

control strategies and evaluation techniques for the coordinated output control of multiple

DG schemes based on component thermal properties.

1.2.2 Project perceived benefits

The development of a DG output control system based on component thermal properties

was perceived to facilitate the widespread and cost-effective connection of DG from RE

resources, thus allowing the associated environmental benefits to be captured. From the

original funding application, environmental and social impacts of the project expected to

be positive and included [6]:

1. The increase in utilisation of power system assets which will delay the need for network

reinforcement, also avoiding the unnecessary replacement of assets and requirements

for new wayleaves. Thus the environmental impact associated with new construction,

disposal and replacement of assets will be reduced;

2. The maintenance and potential improvement in the quality and security of supply to

consumers, particularly in remote parts of the network where enhanced automation

of the network equipment may assist “islanded” operation;
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3. The integration of distributed renewable generators into networks will reduce connec-

tion costs which may have a beneficial impact on electricity prices;

4. Increasing the annual energy yield from renewable generators will improve the revenue

and therefore cost effectiveness of these schemes. Thus the amount of energy delivered

to the UK power system from non-polluting sources will lead to reductions in carbon

emissions to the atmosphere;

5. The project will contribute to the transformation of the UK electricity industry into

a more sustainable one; and

6. This work will enhance the competitive position of a major UK manufacturer, UK

consultancy, IT company and University thus creating and preserving jobs.

1.3 Research scope

The scope of the research presented in this thesis is outlined below:

• Algorithms will be developed for the output control of single DG schemes and the

coordinated output control of multiple DG schemes, based on static, seasonal or real-

time thermal ratings of the power system components, in order to manage distribution

network power flows. The simulation of wind-based DG schemes is of particular

interest in the DIUS project;

• the algorithms developed for DG output control will be evaluated in simulation

through United Kingdom Generic Distribution Systems and the field trial network,

with single DG output control techniques implemented within the prototype control

system for evaluated in field trials;

• it is assumed that there will be full SCADA access to provide the electrical inputs to

the DG output control system. However, for development purposes, electrical state

estimation techniques may be used because full SCADA access is limited in the DIUS

Project.

• the DG output control system will be implemented as a stand-alone system and not

integrated within the SCADA system of the DNO;

• the DG output control system functions for a system intact topology. Therefore it is

assumed that there are no outages [planned or unplanned] present within the electrical

power system;
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• other methods of relieving thermal overloads such as load shedding, network reconfig-

uration, adjusting transformer tap positions1 are deemed beyond the thesis research

scope;

• since the primary aim of DG operators is to maximise the active energy yield of DG

schemes, as this directly affects the revenue stream of DG owners, it is assumed that

DG schemes are operated at, or close to, unity power factor. Therefore DG schemes

are controlled through the adjustment of real power outputs;

• the DG output control system functions with constrained (non-firm) DG connections

whereby DG schemes may have an installed capacity beyond the firm capacity of the

network;

• the DG output control system is reactive and triggered by a thermal violation. Any

voltage issues that occur and are not coincident with a thermal violation are assumed

to be dealt with outside the jurisdiction of the control system. The development of

a proactive DG output control system control system, utilising generation, load and

real-time thermal rating forecasts, is deemed to be beyond the scope of the thesis and

DIUS Project research; and

• the DG output control system is developed for real-time decision support in the oper-

ational control room of the DNO. Therefore the decision-making process in identifying

control actions must be transparent and should gracefully degrade if communications

signals are lost.

1.4 User and functional requirements

The key user requirements, relevant to the research in this thesis, were specified as:

1. Increase the thermal exploitation of the power system through the intelligent manage-

ment of constrained DG connections in non-contingent [electrical] situations without

violating:

(a) Voltage requirements; and

(b) equipment thermal ratings;

1For the same power transfer an increase in operating voltage reduces the operating current and may

mitigate the thermal overload
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2. Provide real power set points to DG schemes connected to the network under control;

3. Provide a method for selection of measured thermal quantities and locations;

4. Be cost effective with respect to network reinforcement and present constrained con-

nection techniques;

5. Provide easy integration of the control system with power system components and

SCADA, minimising interruptions to supply;

6. Utilise transparent decision making processes to facilitate performance evaluation;

7. Be tolerant of communication faults and degrade in a graceful manner; and

8. Ensure safe power system operation;

This led to the specification of functional requirements as outlined below:

1. Calculate real power output signals for single and multiple DG schemes;

2. Utilise power system static, seasonal or real-time thermal ratings (available to the

control system through the doctoral research of Andrea Michiorri, also participating

within the DIUS Project);

3. Utilise load flow routines based on electrical network models and a power systems

equipment database;

4. Obtain electrical measurements [such as voltage, current, power flow and circuit

breaker status], interfacing with SCADA [in the commercialised product];

5. Provide decision support for the DNO control room engineers;

6. Be self-diagnostic; and

7. Utilise an appropriate software architecture, allowing for modularity, flexibility, main-

tainability and openness;

1.5 Research objectives

Through the critical review of work in relevant areas (provided in Chapter 2), together with

the research scope and specifications outlined in Sections 1.3 and 1.4, a number of research

objectives were identified. The research objectives which are the focus of this thesis are:
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1. The proposal of a methodology for the development of DG output control systems;

2. The development of techniques for the on-line output control of single and multiple

DG schemes, based on power system static, seasonal and real-time thermal ratings;

3. The validation of the techniques and assessment of gains through simulation; and

4. The practical implementation of a prototype DG output control system.

1.6 Thesis overview

An overview of the thesis structure is provided in Figure 1.2 together with the author’s pub-

lished work, as relevant to each chapter, and listed in the preamble of the thesis. Published

journal papers are given in Appendix A.

The thesis is structured in the following way: Chapter 2 provides a review of present

literature which is relevant to, and informs, the research objectives of this thesis (as pre-

sented in Section 1.5). Chapter 3 describes preliminary analysis work which includes the

selection of case study networks to be used as test-beds for algorithm simulation and val-

idation throughout the thesis. Chapter 4 proposes a methodology for the development of

DG output control systems.

The first stage of the methodology requires an assessment of the location of thermally

vulnerable components within distribution networks. This is achieved through the off-line

calculation of thermal vulnerability factors that relate power flow sensitivity factors (the

change in network power flows that result from the change in DG power outputs) to power

system thermal limits. The theoretical background for this work is presented in Chapter 5

and applied to the case study networks in Chapter 6.

The identification of thermally vulnerable components within distribution networks di-

rectly informs stages two and three of the DG output control system development method-

ology. Namely, network thermal characterisation and the development of power system

real-time thermal rating systems. These topics are discussed in Chapter 7 and, whilst these

stages are integral to the proposed DG output control system development methodology,

the research presented in Chapter 7 was the primary research focus of the author’s PhD

colleague, Andrea Michiorri.

In the fourth and final stage of the methodology, as presented in Chapters 8 and 9,

control algorithms are developed for the active exploitation of power system thermal ratings

in order to inform and manage the power output of DG schemes.
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Figure 1.2: Thesis overview
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Techniques based on Engineering Technical Recommendation 124 are developed for the

output control of single DG schemes and the power flow sensitivity factors, derived in the

first stage of the control system development methodology, are incorporated into strategies

for the output control of multiple DG schemes. Chapter 9 also proposes a number of

parameters for the evaluation of the control algorithms developed. The next three chapters

focus on the off-line open loop simulation of the control algorithms, deployed with static,

seasonal and real-time thermal ratings systems. Chapter 10 considers the case of a single

DG scheme, the power output of which is controlled as a result of a single power flow-

constraining component. Chapter 11 considers the power output control of multiple DG

schemes as a result of a single power flow-constraining component within the distribution

network. Chapter 12 considers the case of multiple DG scheme control as a result of multiple

power flow-constraining components within the distribution network.

Chapter 13 describes the practical implementation of a prototype DG output control

system, installed within a section of ScottishPower EnergyNetworks’ distribution network

for field trial evaluation. The control algorithm described in Chapter 10 was developed for

use within an industrial hardware platform, manufactured by AREVA T&D and, informed

by the real-time thermal rating system, was used in open and closed loop trials for the

active management of DG based on component thermal properties. Chapter 14 evaluates

the conducted research against the research objectives. Chapter 15 concludes the thesis

with a summary of key findings and the avenues identified for further work.



Chapter 2

Literature Review

This chapter provides a detailed review of literature to date that informed the research

objectives summarised in Chapter 1. The review intends to provide a brief synopsis of the

literature, summarising key points that inform the current research. Where relevant, a crit-

ical analysis of the literature is presented to assess its limitations and identify openings for

innovative research areas. The research openings have been summarised at the end of this

chapter together with concluding remarks. In the literature review the following areas are

considered: Active distribution networks; component thermal rating systems; distributed

generation (DG) connection capacity assessments; DG output control research and devel-

opment projects; candidate DG output control techniques; the evaluation of techniques

against user and functional specifications; and regulatory incentives.

2.1 Active distribution networks

The proliferation of DG together with load growth, energy storage technology enhance-

ments and increased consumer expectations have significantly changed the approach to

planning [7–9] and operation of distribution networks. Around the globe, distribution com-

panies, equipment manufacturers, electrical engineering consultants, research institutions,

regulators and other stakeholders are dealing with the transition of distribution networks

from passive to active entities. Part of this new paradigm includes the possibility for dis-

tribution network operators (DNOs) / distribution system operators (DSOs) to control,

operate and thereby integrate distributed energy resources (DERs) into the network un-

der their responsibility. The CIGRÉ C6 Study Committee [10] is specifically focused on

the “development and operation of active distribution networks” and has produced the

following shared global definition of active distribution networks (ADNs) [11]:

11
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Active distribution networks are distribution networks that have systems in place to

control a combination of distributed energy resources such as generators, loads and storage.

Distribution System Operators have the possibility of managing the electricity flows using a

flexible network topology. Distributed Energy Resources take some degree of responsibility

for system support, which will depend on a suitable regulatory environment and connection

agreements.

The main UK-based active network management (ANM) research activities are sum-

marised in [12] as concentrating on voltage, power flow and fault level limitations. Interna-

tional projects relating to ANM are given in [13] which provides a comprehensive register

of research activities upto, and including, 2006.

A Long Term Development Statement (LTDS) [14] is prepared by ScottishPower Plc to

provide information regarding planned changes and operation of the distribution network.

The report summarises distribution code regulations within which the system is operated

and component-specific electrical data such as resistance and reactance parameters, and

component seasonal thermal ratings. In terms of frequency and voltage, the following

regulations are summarised as a direct distillation from the Electricity Safety, Quality and

Continuity Regulations [15]:

1. That system frequency should not deviate by more than ±1% of the declared value

of 50Hz;

2. At voltages of 132kV the deviation must be less than ±10%;

3. Between 132kV and 1kV voltages must be maintained between ±6% of nominal; and

4. Below 1kV voltages may deviate to the extent 10% above and 6% below the nominal

value.

The purpose of these regulations is to ensure that load customers have a quality of supply

that does not damage any electrical equipment connected to the distribution network.

2.2 Component thermal rating systems

Real-time thermal ratings are a hot topic of research for the following institutions: EPRI

in the USA for increased security and capacity of transmission networks [16], NUON in the

Netherlands for coping with load growth and delaying infrastructure investment [17], E.ON

and Central Networks in the UK to facilitate the non-firm (or constrained) connection
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of DG [18] and the Energy Networks Strategy Group within the UK, as a solution for

the accommodation of DG from the Distributed Generation Coordinating Group in Work

Stream 3 [19].

Significant research has been carried out at the transmission level for real-time thermal

rating applications. Research tends to focus on overhead lines which, due to their exposure

to the environment, exhibit the greatest rating variability. A description of the cost and

suitability of different uprating techniques for overhead lines is described in [20], taking into

account different operating conditions. This work shows how real-time thermal ratings can

be a more appropriate solution than network reinforcement when connecting new customers

to the network who are able to curtail their generation output or reduce their power demand

requirement at short notice. Similarly, experience regarding thermal uprating in the UK is

reported in [21] where it was suggested that real-time thermal ratings could give overhead

lines an average uprating of 5% for 50% of the year. An example of an real-time thermal

rating application for transmission overhead lines of Red Eléctrica de España is described

in [22] where a limited number of weather stations are used to gather real-time data. The

data is then processed using a meteorological model based on the Wind Atlas Analysis

and Application Program (WAsP) [23], taking into account the effect of obstacles and

ground roughness, and finally the rating is calculated. A similar system was developed in

the USA by EPRI in the late 1990s which considered overhead lines, power transformers,

electric cables and substation equipment. The system is described in [24] and preliminary

results of field tests are given in [25]. At the distribution level, a real-time thermal rating

project carried out by the Dutch companies NUON and KEMA is described in [17] which

demonstrates the operating temperature monitoring of overhead lines, electric cables and

power transformers.

The advantages of real-time thermal rating systems for the connection of DG, especially

wind power, are reported in various sources, each of which considers only single power sys-

tem components. It is demonstrated in [26] that the rating of transformers positioned at

the base of wind turbines may presently be oversized by up to 20%. Moreover, in [27] the

power flowing in an overhead line close to a wind farm is compared to the real-time thermal

rating using WAsP. In this research it was highlighted that high power flows resulting from

wind generation at high wind speeds could be accommodated since the same wind speed

has a positive effect on the line cooling. This observation makes the adoption of real-time

thermal rating systems relevant in applications where strong correlations exist between the

cooling effect of environmental conditions and electrical power flow transfers. The ther-
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mal models, used to estimate real-time thermal ratings for different types of power system

components, are fundamental to this research as the accuracy of the models influence the

accuracy of real-time thermal ratings obtained. Particular attention was given to industrial

standards because of their wide application and validation both in industry and academia.

For overhead lines, the model is described in [28,29] which has been developed into indus-

trial standards by the IEC [30], CIGRÉ [31] and IEEE [32]. Static seasonal ratings for

different standard conductors and for calculated risks are provided by the Energy Networks

Association (ENA) in [33]. Thermal model calculation methods for electric cable ratings

are described in [34] and developed into an industrial standard by the IEC [35]. The same

models are used by the IEEE in [36] and the ENA in [37] to produce tables of calculated rat-

ings for particular operating conditions. Power transformer thermal behaviour is described

in [38] with further models described in industrial standards by the IEC [39], IEEE [40]

and ENA [41].

A technique for identifying the thermally vulnerable span of an overhead line is given

by Berende et al. in [42]. The team from the Netherlands used imagery from helicopter

flights to record and time-stamp the sag of overhead lines. The power system operating

conditions corresponding to the time stamp of the sag images were identified and then,

together with an off-line algorithm, used to simulate the sag for other operating conditions.

The technique was appropriate for that particular application because the vulnerable section

of the network had been predetermined through operational experience.

2.3 DG connection capacity assessments

DG connection capacity assessments are the current research focus of numerous institutions

in order to determine the impact of voltage regulations, operational economics, fault lev-

els, losses and thermal limits as constraining parameters. Dinic et al. [43] consider voltage

limitations and installed DG capacity, relative to the system fault level, in 33kV networks

and conclude that capacitive compensation can allow capacity maximisation within oper-

ational limits. The economics of DG connections are considered by Currie et al. [44] with

a methodology that facilitates greater DG access for multiple generators by exploiting op-

erating margins with an active power flow management technique termed ‘trim then trip’.

Vovos et al. [45] develop an optimal power flow (OPF) technique along with an iterative

procedure to calculate DG allocations at nodes based on fault level limitations. Mendez

Quezada et al. examine the impact of increased DG penetration on electrical losses within
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the IEEE 34-node test network [46] and conclude that losses follow a U-shaped trajectory

when plotted as a function of DG installed capacity. Within [47] Harrison and Wallace

present an OPF formulation to determine the maximum connection capacity of DG based

on thermal limits and statutory voltage regulation. The ‘reverse load-ability’ methodology

coupled with OPF software modelled generators as loads with a fixed power factor and cre-

ated an analysis tool that could allow additional constraints (such as fault-level limitations)

to be incorporated into the formulation if necessary. It was also suggested that Lagrangian

relaxation of constraint coefficients may be developed to simulate changes in component

ratings although this was not demonstrated. It is acknowledged that technical barriers such

as voltage rise [48] and fault levels [49] may limit DG connection capacities. However, the

research presented in this thesis focuses on the connection capacities and operation of DG as

determined by power flow constraints. Therefore it is assumed that power system thermal

ratings are the limiting factor that is breached before voltage and fault level constraints.

2.4 DG output control research and development projects

In the UK, strategies for the power flow management of single DG schemes have been pro-

posed by the ENA [50] as a direct distillation of a report by the Distributed Generation

Coordinating Groups Technical Steering Group [19] that considers a spectrum of ANM

solutions. Four solutions are presented to facilitate the connection of increased DG ca-

pacities and the necessary power flow management requirements are illustrated. Network

availability assessments (i.e. how much power may be injected by DG into the network) are

made by considering the capacity of network assets under normal operation and following a

first circuit outage, the maximum and minimum load demand at the DG connection busbar

and the potential utilisation of short-term component thermal ratings. The power output of

generators is controlled through tripping (disconnection) and a demand-following technique

with auxiliary tripping. Additionally, Roberts [51] considers the feasibility of incorporating

the proposed solutions within a supervisory, control, and data acquisition (SCADA) system

for DNOs. The advantages of using SCADA were given as:

1. SCADA infrastructure is already installed throughout the distribution network for

monitoring and protection purposes;

2. SCADA systems have been developed and tested on robust hardware platforms;

3. Communication protocols are already established; and



2.4. DG output control research and development projects 16

4. SCADA software is logic-based and therefore the functionality could be adapted for

ANM purposes.

However, a number of disadvantages to adapting SCADA were given as:

1. Hardware limitations, in terms of methods of operation, speeds of operation, reliability

and robustness could occur if SCADA systems are adapted;

2. A resilient communications infrastructure, particularly in rural parts of the UK, is

presently lacking;

3. Reprogramming and maintaining the logic software could result in large overhead

costs; and

4. The culture change required by the DNO workforce to accept the movement to a

SCADA system with ANM functionality could take a number of years to propagate.

The commercial implications of adapting SCADA systems for ANM functionality were

not discussed. A key limitation of using SCADA was identified as utilising the system for

a purpose other than for which it was designed with the potential of leading to unforeseen

operational ramifications.

The design and commissioning of an active DG constraint system for an offshore wind

farm is presented by Liew and Moore [52]. In this application an intelligent control system

is developed to allow an offshore wind farm to utilise additional power transfer capacity

for system intact operation and to constrain the wind farm output during fault conditions.

This system avoids network reinforcement and provides the lowest cost solution to allow

the wind farm to export up to 76 MW of power. ‘Down turn’ signals are dispatched to the

wind farm to constrain the power output in discrete intervals of 25%.

Research by the University of Strathclyde in conjunction with the DNO Scottish Hydro

Electric Power Distribution Ltd [53] investigates the constrained connection of multiple DG

schemes on the island of Orkney. The resulting control strategy utilises a ‘trim and trip’

philosophy embedded in programmable logic control [54]. In this strategy DG is categorised

as firm generation, non-firm generation, and regulated non-firm generation. Firm generation

is able to operate freely at its maximum rated output under normal conditions and following

a first circuit outage. Non-firm generation is able to operate freely under normal conditions

but is tripped during first circuit outage conditions. Regulated non-firm generation is

trimmed and/or tripped depending on the prevailing network conditions. In order to reflect
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present operational practices in the UK, as embodied in commercial agreements between

the generator owners and the DNO, a last-in first-off strategy is adopted to define the order

in which regulated non-firm generators are controlled. Although it is suggested that an

extension to the work could be to incorporate short-term thermal ratings in the assessment

of trimming and tripping margins, this aspect of the work is not demonstrated.

A consortium of UK universities and DNOs is currently researching and developing an

autonomous regional active network management system (AuRA-NMS) to offer real-time

voltage, restoration, and thermal control solutions for distribution networks. As part of this

continuing project, Dolan et al. [55] present two techniques for the management of power

flows within static thermal constraints: an artificial intelligence technique which formu-

lates and ranks solutions to constraint satisfaction problems (CSPs), and a current-tracing

algorithm which allows DG curtailment to be apportioned according to the individual con-

tributions of generators towards a thermal violation. The techniques are illustrated through

the control of two DG schemes within an 11kV radial/ring distribution network and are

assessed in terms of algorithm computational times and impact on DG real power output

curtailments. It is shown for the particular case study that the current-tracing technique

marginally achieves the least DG real power curtailment but that the CSP technique is

more computationally efficient and allows contractual constraints to be considered.

Kabouris and Vournas [56] demonstrate the on-line development of interruptible wind

farm contracts in order to manage the power flow through a congested corridor of the

Hellenic Interconnected System in Greece. When security constraints are violated, the con-

trol of multiple generation schemes is achieved through the proportional reduction of the

generators’ power output or by distributing generator curtailments according to a continu-

ously updated priority list. Both proactive (pre-outage) and reactive (post-outage) control

concepts are developed and illustrated based on a static security assessment of the avail-

able transfer capacity through the congested corridor. It is shown that proactive control

has the potential to increase wind energy penetration by 206% from 125 GWh/annum to

383 GWh/annum in the case of wind farms with guaranteed contracts (firm connections)

and interruptible contracts (non-firm connections). If interruptible contracts are applied to

all generators and a proactive control approach is adopted this has the potential to unlock

a further 38 GWh/annum. Moreover, the potential for a 900 GWh/annum wind energy

penetration could be achieved through the reactive control of wind farms with interruptible

contracts. However, this strategy would require very reliable control equipment such as

telecommunications, protection devices and robust software as well as changes to the Greek
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Grid Code to allow for security assessment criteria violations.

The concept of a delegated dispatch control centre has been developed in Spain to act

as a mediator between the transmission system operator and a collection of wind farms

connected to the same injection node [57]. Using a proactive control approach based on

15-minute operational forecasts, the delegated dispatch responds to system operator con-

straints imposed on the injection node. An optimization problem is formulated that consid-

ers active and reactive power outputs of the generators, generator profit, busbar voltages,

and component thermal limits. In meeting the system operator constraints at the injection

bus, the objective function of the optimization problem aims to maximize the aggregated

profit of the generators.

Makarov et al. [58] investigate the operational impacts of increased wind generation

within the Californian power system. Case study scenarios are modeled for the years 2006

(with 2.6 GW installed capacity of wind generation) and 2010 (with anticipated 6.7 GW

installed capacity of wind generation). In particular, the paper focuses on the forecasted

difference between generation and load demand, and the required ramp rates of the genera-

tors to balance the power in real-time. Power flow congestion is managed using a proactive

control approach whereby hour-ahead and five-minute-ahead load and wind generation fore-

casts inform the California Independent System Operator Balancing Authority. This allows

the system operator to schedule and dispatch conventional generation to maximize the wind

generation penetration.

The incorporation of overhead line real-time thermal ratings for the power output control

of wind farm connections in the UK is presently being considered by Yip et al. [18]. In this

application the wind farm is sent a power output reduction signal if a power flow violation

beyond the real-time thermal rating occurs. With auxiliary functionality, the wind farm is

tripped to protect the overhead line if the power output is not reduced by the designated

amount within the designated time-frame.

A key aspect of the implementation of DG output control systems is the controllability

of generators to achieve the desired set points. The methods of control of various DG types

are given in [59] for wind power, photovoltaic power, hydro power, landfill gas schemes and

combined heat and power (CHP) plants. In general terms the most basic DG output control

implementation could be to trip-off the entire generation plant through the opening of the

connecting circuit breaker [50]. A slightly more sophisticated approach would be to curtail

the DG output in discrete intervals e.g. full output – 66% full output – 33% full output –

trip-off. This could be achieved through the switching off of individual turbines within the
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DG plant [51]. A disadvantage to tripping DG output control methods (whether they be all-

off or discrete interval) is that the DG output is not necessarily matched to the capability

of the network and thus the overall generation plant is potentially curtailed more than

necessary. This could impact on the annual energy yield of DG schemes and ultimately their

revenue streams. With the maturing of generation technologies it is becoming more common

for DG schemes to have the capability to limit maximum power outputs to specific MW set

points at times of DG output control. The work presented in this thesis particularly relates

to wind generation, where wind turbine technologies have matured over the past decade

and automatic generator control (AGC) techniques are now developed and operational [60].

The power output of a wind turbine is proportional to the cube of wind velocity since the

wind velocity affects the angular velocity of the blades [61]. Automatic generator control

methods can feather the turbine blades by altering their pitch angle and capturing different

proportions of the potential maximum power output. Thus an independence is achieved

between the wind speed and generator output with the turbines responding to dispatched

set point changes within a 5 s time frame [62]. Supplementary relevant work in given in [63]

for hydro turbines where the real power output of the generator is related to the water

velocity and valve position. The simulation and experimental validation of the penstock-

governed Francis turbine showed that an active power set point change from 6.4 MW to

4.8 MW could be achieved within 12 s.

2.5 Candidate DG output control techniques

From the review of DG output control research and development projects, a number of

candidate DG output control techniques were identified. In addition, a number of other

candidate DG output control techniques were identified in literature. These are explained

below and a summary of the candidate DG output control techniques is provided at the

end of this section.

Through the use of Tellegen’s theorem Director and Rohrer developed generalised ex-

pressions for the sensitivity coefficients that relate nodal voltages and branch currents in

two adjoint networks [64]. This work was built upon by Ejebe and Wollenberg to give the

general form of relationships between perturbations in a base network and the changes seen

in an adjoint network for the automatic ranking and assessment of worst case network con-

tingencies [65]. As an adjustable variable is changed (e.g. a generator’s real power output)

it is assumed that the power system reacts so as to satisfy the complete set of power flow
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equations. Some sensitivity coefficients may change rapidly as the adjustment is made and

the power flow conditions are updated. This is because some system quantities (e.g. volt-

ages and MVAr flows) vary in a non-linear relationship with the adjustment and resolution

of the power flow equations. Sensitivities such as the variation of component real power

flows with respect to changes in generator real power outputs are linear across a wide range

of operating conditions. This resulted in the development of generation shift factors and

line outage distribution factors that relate changes in component power flows to changes in

generation or network configurations in DC approximations of AC networks [66]. Ng de-

veloped generalised generation distribution factors to replace generation shift factors. The

model relates component power flows with generator outputs for a given network topol-

ogy and is in integral form to allow the new flows in components to be calculated without

running a new load flow when total system generation changes [67]. Sensitivity coefficients

within power systems are used extensively to solve a variety of problems. Examples include

optimal power flow formulations for the economic dispatch of generators to solve congestion

management issues at the transmission level [68, 69] and flexible AC transmission systems

for power flow management [70] as well as more recent voltage rise issues at the distribu-

tion level [71, 72]. The work describing voltage rise issues is of particular relevance to the

research presented in this thesis as it is concerned with the control of multiple DG power

outputs as determined by voltage sensitivity factors.

OPF is a complex and difficult mathematical problem to solve since the goal is to find

an optimal solution to the complete set of non-linear power flow equations within many

(sometimes conflicting) power system and economic constraints. A large number of different

techniques have been employed to solve OPF problems, the classic approaches being linear

programming, interior point methods and Lagrangian relaxation [66]. With the increase in

available computational power has come the application of artificial intelligence techniques

such as genetic algorithms, artificial neural networks and ant colony search methods to solve

economic dispatch and generator scheduling for congestion management problems [73].

Much research was carried out in the 1990s to solve congestion management issues

in transmission networks through the development of flexible AC transmission systems

(FACTS) [70]. In this research, series components such as capacitors are used to alter com-

ponent power flows such that the transfer of real power is maximised and the rescheduling

of generation is not required.

Recent power system unbundling and deregulation has led to the solution of transmission

congestion management issues through the development of competitive electricity market
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models [74]. Two such models involve bilateral contracts between suppliers and consumers

and a bidding pool structure utilising a central pool operator. Bilateral models involve the

independent arrangement of power transactions between suppliers and consumers and com-

petition is encouraged by consumers trading with the cheapest generators. This does not

provide a mechanism for incorporating transmission system constraints within the model,

neither does it facilitate and attribution of system losses to generators or consumers, nor

does it provide a mechanism for ancillary services provided by the generator to secure

supplies to consumers. In the pool model a central pool operator receives bids from gen-

erators and through nodal spot pricing and a locational adjustment to account for losses

is able to supply consumers in the most efficient way whilst satisfying transmission system

constraints.

The candidate DG output control techniques to manage network power flows were iden-

tified as:

• Tripping (disconnection);

• demand-following;

• control in discrete intervals;

• trimming and tripping;

• formulation and solution of constraint satisfaction problems;

• current tracing;

• interruptible contracts [with a ranked DG curtailment list or proportional output

control];

• creation of a ‘delegated dispatch’;

• offsetting of conventional generation (economic dispatch);

• power flow sensitivity factors;

• optimal power flow formulation and solution;

• flexible AC transmission systems adapted for distribution network usage; and

• competitive market models at the distribution network level.



2.6. Evaluation of candidate DG output control techniques 22

2.6 Evaluation of candidate DG output control techniques

Given the candidate DG output control techniques identified in Section 2.5 this section eval-

uates the possible techniques against the DIUS Project user and functional specifications.

This facilitated the selection of appropriate techniques, to be taken forward for development,

in order to achieve the active management of DG based on component thermal properties.

DG output control through tripping (disconnection) is suggested in Engineering Tech-

nical Recommendation (ETR) 124 [50] as a technique to manage the power flows associated

with a single DG scheme, based on component static, seasonal or real-time thermal ratings.

It has also been implemented by AREVA T&D in the MiCOM protection relay cubicle [18].

Whilst the complete disconnection of DG at times of power flow management would be

expected to impact on the revenue stream of DG developers, the use of this technique could

provide the DG output control system auxiliary functionality if communications signals

are lost and sustained high currents could put the power system at risk of damage. This

would fulfil the user requirement of ScottishPower EnergyNetworks to ensure safe power

system operation, provide the DG output control system with credibility for commercial

exploitation by AREVA and provide a datum by which gains from alternative DG output

control techniques could be measured.

DG output control through a load demand-following technique is also suggested in ETR

124 as a technique to manage the power flows associated with a single DG scheme, based on

component static, seasonal or real-time thermal ratings. On the basis of ETR 124, the DG

output control system would have credibility for commercial exploitation by AREVA T&D,

particularly if this technique is coupled with the afore mentioned auxiliary DG tripping

technique discussed above. Whilst the demand-following technique is described in ETR

124 for a single DG scheme, it is suggested (although not demonstrated) that the technique

could be developed to provide demand-following capabilities for multiple DG schemes based

on local and, potentially, global network availabilities.

DG output control in discrete intervals represents the intermediate step between the

complete disconnection and demand-following techniques proposed in ETR 124. The tech-

nique has the potential to be deployed with power system static, seasonal or real-time

thermal ratings. This could provide an alternative datum against which other, more so-

phisticated, control techniques are evaluated.

The ‘trim and trip’ DG output control technique developed by the University of Strath-

clyde for the deployment on the Island of Orkney is a hard-wired and bespoke solution
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which might not, at present, be readily adapted for use in alternative locations. Although

it is suggested in [54] that an extension to the research could be to incorporate short-term

thermal ratings in the assessment of trimming and tripping margins, this aspect of the work

is not demonstrated.

The identification of solutions to CSPs requires the employment of artificial intelligence

techniques. Such techniques may be perceived by DNOs as ‘black box’ technology whereby

there is questionable transparency in the decision-making process. A key user and functional

requirement is that the control algorithms, for use in the DIUS Project, are developed with

transparent decision-making capabilities.

Current- and flow-tracing techniques have been developed to trace the flow of active

(and possibly reactive) power from generators (sources) to loads (sinks). For a particular

operating condition the algorithms give an approximation of the active (and reactive) power

flowing in network components that can be attributed to particular generators or load

customers. This may then be used, off-line, to assign losses to generators or load customers

for transparent market and charging mechanisms in unbundled power systems. Since power

flow-tracing and current-tracing algorithms were developed at transmission level for the

off-line allocation of losses (and to inform use-of-system charges) the real-time use of such

algorithms on distribution networks has not yet been extensively demonstrated.

The interruptible contract techniques described in [56] lead to a number of alternative

operational contracts for multiple wind-based generators, such as the distribution of power

reductions in a proportional manner to the generators’ present power outputs. Whilst the

interruptible contract techniques do not incorporate power system real-time thermal ratings

in the assessment of generator power output constraints, there is scope for the proposed

interruptible contract techniques to inform control algorithm development, particularly

related to multiple DG scheme control.

The creation of a ‘delegated dispatch’ is based on a pro-active control technique for

DG output control. The utilisation of such a technique in the DIUS Project would require

the forecast of power system real-time thermal ratings. In terms of incremental control

system development, and with concerns raised by the DIUS Project consortium regarding

the uncertainty associated with meteorological condition forecasts, it was agreed by the

research consortium that the control system should make use of monitored data to estimate

power system thermal ratings for the reactive control of DG power outputs.

The reduction in power output of centralised conventional generation power plants to

accommodate DG from renewable resources is feasible in vertically integrated power systems
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where the system operator is able to schedule and control all the generation schemes.

However, in the UK, where the field trial prototype control system is hosted, the power

system is unbundled and therefore generation is scheduled at transmission level to meet

UK load demands with DG tending to be unscheduled.

The solution to OPF problems is a trade-off between the speed, accuracy and robust-

ness of the algorithm. Therefore optimisation techniques lend themselves to planning tool

applications where the time taken for the algorithm to converge to a solution is not a crit-

ical feature and it is not critical if the tool, on occasions, fails to converge. However, in

a real-time decision-making environment the formulation and solution of the optimisation

problem may not be robust, particularly if the solution method is sensitive to input errors.

In addition (and as with CSPs), artificial intelligence techniques which are required to solve

complex constraint problems, are perceived by DNOs as ‘black box’ technology whereby

there is questionable transparency in the decision-making process.

Sensitivity factors provide the underlying control derivatives by which OPF problems

are solved. If used in a transparent manner, power flow sensitivity factors could be coupled

with power system thermal rating systems to achieve DG power output control. When

comparing the concept of flow-tracing to sensitivity factors it can be shown that, for a par-

ticular operating condition, the flow-tracing algorithm provides the assignation of flows to

generators whereas the sensitivity factors relate the change of flows to changes in generator

outputs. Thus, for sensitivity factor derivation the flow-tracing algorithms would require

two solutions: once with the present operational state and once with a perturbation of the

DG scheme(s). Thus by employing the flow-tracing algorithm, additional information is

gained (as to the approximate composition of power flows in lines) and this is of benefit for

loss allocation applications.

The installation of FACTS devices can cost millions of pounds, which may be economi-

cally viable at the transmission system level but not, presently, at distribution network level.

Furthermore, the maximisation of real power transfers requires the alteration of reactive

power transfers. This could be constrained by the thermal limit of the power system.

Whilst congestion management at the transmission level is well understood, the histori-

cal passive nature of distribution networks means that congestion management practices by

DNOs are rare [71] and competitive market-driven mechanisms for congestion management

have not been brought down to distribution network levels.

Based on the evaluation above, the following techniques were selected for development

to achieve the active management of DG based on component thermal properties:
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• Tripping (disconnection) [for single and multiple DG scheme control];

• demand-following [for single DG scheme control];

• discrete interval adjustments [for multiple DG scheme control];

• ranked lists to prioritise the constraint order of DG schemes [for multiple DG scheme

control];

• proportional adjustments [for multiple DG scheme control]; and

• power flow sensitivity factors [for multiple DG scheme control].

2.7 Regulatory incentives

The present regulatory incentives for DG developers and for DNOs to accommodate DG

developments are considered by Harrison et al. in [75]. Regulatory incentives are embodied

in connection agreements, electrical losses and network reinforcement deferral. In addition,

the strategic benefits of DG ownership for DNOs is discussed by Siano et al. in [76] and

the authors conclude that incentives need to be put in place to encourage DG deployment

for the benefit of the distribution network.

In the UK, loss targets are set by the regulator OfGEM to encourage DNOs to increase

the efficiency of their networks. Following the distribution price control of 2004, losses

were valued at £48/MWh with DNOs being rewarded for achieving losses below OfGEM’s

target and penalised for losses above. Whilst modest amounts of DG can be shown to reduce

network losses, significant penetrations of DG could lead to increased distribution network

losses with ensuing penalties for DNOs. The DNO is likely to assess the impact of DG on

losses at the planning stage and reflect any additional charges for losses in the connection

agreement. However, no formal mechanism exists at present to reward DG developers for

reducing network losses. A mechanism is in place in Spain [46] for DSOs to recover the

deficit in revenue caused by losses in their network. This is done by applying a ‘standard

loss coefficient’ to the consumer electricity sale price. If the network is then made more

efficient the DSO makes a profit, whereas if increased losses occur the DSO makes a loss.

This revenue deficit is then charged to the DG developer as a penalty by the DSO.

Current- and flow-tracing methodologies have been developed to trace the flow of active

(and possibly reactive) power from generators (sources) to loads (sinks) to assign losses to

generators or load customers for transparent market and charging mechanisms in unbundled
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power systems. Bialek proposed upstream-looking and downstream-looking algorithms for

the tracing of power flows back to respective generators and loads [77]. The proposed

power flow tracing methodology requires the assumption that the network is lossless or

the introduction of an additional node, for every component, to balance losses. This may

be feasible to implement in transmission networks with a limited number of power system

components. However, it could be non-trivial to implement in distribution networks with

complex topologies and large numbers of power system components. Kirschen and Strbac

developed techniques for tracing active and reactive power flows through real and imaginary

currents [78]. In this case the methodology may be readily implemented in radial networks

but not in meshed or looped networks which is the prevalent topology of ScottishPower

EnergyNetworks’ distribution system.

DNOs are obliged by law to report to the regulator OfGEM on an annual basis their

performance in maintaining the security, availability and quality of supply to customers [79].

The quality of service of a DNO is measured through customer interruptions (CIs), customer

minutes lost (CMLs) and the quality and speed of telephone response. On this basis, DNOs

are set quality of service targets and are rewarded or penalised by the regulator depending

on their performance against the targets.

Two regulatory mechanisms have been implemented in the UK to encourage the active

involvement of DNOs in research and development. These are the Innovation Funding

Initiative where turnover is made available to DNOs for research and Registered Power

Zones where DNOs may test new technologies on registered portions of their network outside

of normal regulatory limitations [80].

2.8 Conclusion

This literature review has surveyed research in the areas of active distribution networks,

component thermal rating systems, DG connection capacity assessments, DG output control

research and development projects, DG output control techniques and regulatory incentives.

A number of techniques were identified for the off-line assessment of DG connection

capacities. However, as DG proliferates there is an emerging requirement to manage non-

firm DG connections in an on-line manner. Therefore, the following techniques have been

selected for development to achieve the active management of DG based on component

thermal properties:

• Tripping (disconnection) [for single and multiple DG scheme control];



2.8. Conclusion 27

• demand-following [for single DG scheme control];

• discrete interval adjustments [for multiple DG scheme control];

• ranked lists to prioritise the constraint order of DG schemes [for multiple DG scheme

control];

• proportional adjustments [for multiple DG scheme control]; and

• power flow sensitivity factors [for multiple DG scheme control].

The advantages of a real-time thermal rating system for the connection of DG, especially

wind power, are reported in various sources. The real-time thermal rating of existing power

system components has the potential to unlock latent power transfer capacities. When

integrated with a DG power output control system, greater installed capacities of DG

may be accommodated within the distribution network. Moreover, the safe and secure

operation of the network is maintained through the constraint of DG power outputs to

manage distribution network power flows.

Considering the candidate DG output control techniques listed above, current practices

tend to trip off generators in order to protect power system assets and maintain the security

of supply to customers. A disadvantage of DG tripping methods (whether they be all-off or

discrete interval) is that the DG output is not necessarily matched to the capability of the

network and thus the overall generation plant is potentially curtailed more than necessary.

This impacts on the annual energy yield of generation schemes and ultimately their revenue

streams. With the maturing of generation technologies it is becoming more common for

DG schemes to have the capability to match power outputs to specific MW set points at

times of DG output control. Single DG output control techniques have been combined with

component real-time thermal ratings although very few projects are presently in existence

which actually implement these techniques. The techniques for controlling the output of

multiple DG schemes are based on static thermal limit assessments of single components.

Therefore development of techniques to control multiple DG schemes based on the thermal

properties of multiple power system components could be of benefit. Furthermore, the

process of coupling power system (multiple component) real-time thermal ratings with DG

output control techniques to comprise a DG output control system could be of even greater

benefit.



Chapter 3

Preliminary network analysis

3.1 Introduction

In this chapter the preliminary network analysis work, carried out in the early stages of the

doctoral research, is presented and discussed. The basis of the present power system ratings

used by DNOs for planning and operating distribution networks is presented in Section

3.2. The case study networks selected for analysis throughout the thesis are described

in Section 3.3. The aims of the preliminary network investigations are given in Section

3.4 and a first-pass methodology for identifying the location and hierarchy of thermally

vulnerable components within distribution networks is presented, and applied to the case

study networks, in Section 3.5. The preliminary methodology is discussed in Section 3.6

and improvements to the methodology are suggested.

3.2 The basis of present power system ratings

In a balanced three-phase power system the total power transferred between nodes is related

to the phase voltages and phase currents as in (3.1) [61]

S = 3VphIph (3.1)

where S is the apparent power flow, Vph is the phase voltage and Iph is current in a single

phase of the system. Since the nominal operating voltage of power system components is

often quoted as a line-to-line value, the relationship between phase voltages and line-to-line

voltages is given in (3.2)

VL−L =
√

3Vph (3.2)

28
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where VL−L represents the line-to-line voltage. Substituting (3.2) into (3.1) gives a

useful relationship for the maximum allowable apparent power through a component as a

function of the phase current and line-to-line operating voltage (3.3)

Slim =
√

3VL−LImax = |P + jQ|lim (3.3)

where Slim is the maximum allowable apparent flow or thermal limit of a component,

Imax is the steady-state current carrying capacity of the conductor and |P+jQ|lim represents

the real and reactive components of the maximum apparent power flow.

The Long-Term Development Statement of ScottishPower EnergyNetworks [14] pro-

vides three classes of seasonal ratings for summer, spring/autumn and winter operating

conditions. The ratings are sourced from UK-specific standards developed by the Energy

Networks Association for overhead lines [33], electric cables [37] and power transform-

ers [41]. In operational practice, difficulties associated with the maintenance of accurate

seasonal rating databases often result in summer static ratings being utilised throughout

the year [51].

3.3 Case study network selection

A key deliverable of the DIUS Project was to identify a site in which field trials of the pro-

totype DG output control system could be hosted. In parallel with this, a number of United

Kingdom generic distribution systems (UKGDSs) were selected to provide additional devel-

opment and evaluation test-beds for the thermal state estimation and control algorithms.

This was because the field trial network selected by ScottishPower EnergyNetworks was

expected to contain a subset of the thermal issues present within distribution networks.

Through the development of a simulation environment in which to analyse the case study

networks it was hoped that a wider variety of thermal issues would be identified. This was

achieved by selecting networks with different electrical component types, voltage levels and

topologies to those exhibited by the field trial network.

3.3.1 Field trial network

The distribution network selected for the DIUS Project field trials has a meshed topology,

with a prevalence of Lynx 175 mm2 overhead lines at the 132kV voltage level. Indoor and

outdoor transformers rated at 45 MVA, 60 MVA and 90 MVA convert the voltage between

132kV and 33kV levels. There are also four supergrid transformers at the grid supply
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Figure 3.1: Field trial network

points rated at 240 MVA. A schematic diagram of the network is shown in Figure 3.1. A

60 MW offshore wind farm is connected at B5 and a further 90 MW of DG is expected to be

connected at B3, teeing into a 132kV overhead line feeder. The power system static ratings

together with minimum and maximum network loading levels were supplied by Scottish-

Power EnergyNetworks from their Long Term Development Statement [14]. By analysis

of load duration curves, the minimum loading level was found to be 35% of the maximum

loading level. For preliminary investigations the network was simplified by reducing sub-

stations to a single node with power flows and nodal voltages validated against those in the

original model. A full list of network parameters may be found in Appendix B.

3.3.2 United Kingdom generic distribution systems

UKGDS ‘EHV3’ [81] was selected and divided into three case study networks for analysis

purposes. Figure 3.2 displays UKGDS A which has a predominantly meshed topology. Fig-

ures 3.3 and 3.4 respectively represent UKGDS B and UKGDS C, which are predominantly

radial in topology. The network diagram representations have been kept in their original

format with busbars symbolised by circles containing the node identification number. For

simulation purposes the tie-lines between the sub-networks were modelled using the IPSA

load flow package with a load-equivalent to the power flow seen in the line during the full

network simulation. The interconnector in UKGDS A was modelled by maintaining the

voltage at node 345 at 1pu. The electrical parameters for the UKGDS case studies, includ-

ing component ratings and maximum and minimum loading conditions, are given in [81].

A full list of network parameters may be found in Appendix C.



3.3. Case study network selection 31

Figure 3.2: UKGDS A Network
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Figure 3.3: Topological representation of UKGDS B
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Figure 3.4: Topological representation of UKGDS C
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3.4 Preliminary investigation of network behaviour

Preliminary investigations were conducted using the IPSA load flow simulation environ-

ment in order to gain an understanding of the electrical and thermal behaviour of the case

study networks. In particular, the focus at this stage was to (i) understand the impact of

DG on network power flows; (ii) identify the hierarchy and location of thermally vulnera-

ble components within the distribution networks as a result of DG real power injections;

and (iii) to identify the particular operating conditions (i.e. DG output and load demand

combinations) that would lead to components becoming thermally vulnerable with no elec-

trical outages present. As DG outputs were increased, busbar voltages were monitored

through the capability of IPSA to colour-code the voltage levels. This gave an indication

of when voltage limits were exceeded before thermal limits. The preliminary investigations

were purely technical power flow studies and did not take into account limitations on DG

connection capacities such as fault levels and economic considerations.

3.5 Thermally vulnerable component identification through

numerical analysis

A summary of the initial analysis methodology, employed to investigate the case study

networks, is outlined below:

1. The base case scenario was set up to provide a datum against which the thermal

vulnerability of components could be measured;

2. The initial conditions for the particular operating condition were set up;

3. The DG power output was stepped-up in 2MW intervals (reflecting the additional

peak export resulting from the connection of an additional turbine within the DG

scheme);

4. The IPSA load flow package was run in AC mode to simulate the real and reactive

power flows, and busbar voltages within the distribution network; and

5. A rating violation summary table was automatically generated by IPSA and this was

analysed to assess thermal and voltage violations brought about by operating the

distribution network in the simulated condition.
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Initially, the impact of increasing each DG scheme separately was simulated for both

maximum and minimum network loading conditions. This was then extended to analyse

the thermally vulnerable components resulting from multiple DG scheme interactions.

3.5.1 Numerical analysis applied to UKGDSs

The hierarchy of thermally vulnerable components resulting from the numerical analysis of

UKGDS A is given in Figure 3.5. Node 316 (33kV) was selected to accommodate DG due to

the large number of components attached to it. Component C15 was identified as the first

thermally vulnerable component for DG power outputs in excess of 34 MW. Component

C18 was identified as the second thermally vulnerable component for DG power outputs

in excess of 60 MW. No further components became thermally stressed for increased DG

outputs at node 316 before the load flow algorithm failed to converge.

Figure 3.5: Hierarchy of thermally vulnerable components in UKGDS A due to DG con-

nected at node 316
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The hierarchy of thermally vulnerable components resulting from increased DG installed

capacities at node 348 (33kV) within UKGDS B is given in Figure 3.6 and were found to

be:

1. Component T4 (132/33kV transformer) with GP,348 = 124 MW.

2. Component T3 (132/33kV transformer) with GP,348 = 126 MW.

3. Component C5 (132kV line) with GP,348 = 224 MW.

4. Component C3 (132kV line) with GP,348 = 232 MW.

The hierarchy of thermally vulnerable components resulting from increased DG installed

capacities at node 115 (132kV) within UKGDS B is given in Figure 3.7 and found to be:

1. Component C2 (132kV line) with GP,115 = 154 MW.

2. Component C6 (132kV line) with GP,115 = 230 MW.

In this case it was of interest to note that the first component to become thermally

vulnerable was not directly attached to the DG connection busbar. The behaviour was

attributed to the relative magnitudes of the component thermal ratings: C2 has a static

rating of 100 MVA whereas C6 has a static rating of 190 MVA.

Since two separate nodes were selected in an attempt to tease out thermal issues in

UKGDS B, the interaction of the two DG schemes was investigated. This was done by (a)

setting GP,348 to the maximum power output before the first thermal overload occurred

(in the single DG scheme investigations detailed above) and increasing the power output

of GP,115 until a thermal violation occurred; and (b) repeating the procedure by setting

GP,115 to the maximum power output before first thermal overload occurred and increasing

the power output of GP,348 until a thermal violation occurred. The results are presented in

Figure 3.8. Considering the superposition of power flows it was found that only 60 MW of

GP,115 could be accommodated at node 115 with GP,348 set to 124 MW before component

C2 became thermally overloaded. It was of note that the thermal violation occurred in the

same network location as with the individual investigation of GP,115 above. Setting GP,115

to 154 MW and increasing the output of GP,348 led to the first thermal violation occurrence

in component T3 (for GP,348 = 126 MW). This was attributed to a net reduction in power

flow through T4 as power outputs from GP,348 interact with power outputs from GP,115

through components C6 and C5 and power is pushed into T3.
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Figure 3.6: Hierarchy of thermally vulnerable components in UKGDS B due to DG con-

nected at node 348
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Figure 3.7: Hierarchy of thermally vulnerable components in UKGDS B due to DG con-

nected at node 115
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Figure 3.8: Hierarchy of thermally vulnerable components in UKGDS B due to DG inter-

actions
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The hierarchy of thermally vulnerable components resulting from increased DG connec-

tion capacities at node 338 (33kV) within UKGDS C is given in Figure 3.9 and were found

to be:

1. Components T3 and T4 (132/33kV transformers) with GP,338 = 268 MW.

2. Component T5 (132/33kV transformer) with GP,338 = 272 MW.

3. Component C2 (132kV line) with GP,338 = 284 MW.

Figure 3.9: Hierarchy of thermally vulnerable components in UKGDS C due to DG con-

nected at node 338

3.5.2 Numerical analysis applied to field trial network

The application of the numerical analysis methodology for identifying thermally vulnerable

components within the field trial network is summarised in Figure 3.10 for single DG scheme

impacts and Figure 3.11 for multiple DG impacts.
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Figure 3.10: Application of numerical analysis to identify thermally vulnerable components

within field trial network due to single DG schemes

Figure 3.11: Application of numerical analysis to identify thermally vulnerable components

within field trial network due to multiple DG schemes
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The hierarchy of thermally vulnerable components resulting from increased DG con-

nection capacities at node B5 within the field trial network is given in Figure 3.12. It was

found that increasing the output of GP,B5 caused the 132kV overhead line feeder, C4, to be-

come thermally vulnerable under maximum and minimum loading conditions for connection

capacities of 116 MW and 108 MW respectively. No other components became thermally

vulnerable before the load flow algorithm failed to converge (beyond an installed capacity

of 170 MW).

The hierarchy of thermally vulnerable components resulting from increased DG connec-

tion capacities at node B3 is given in Figure 3.13. For maximum network loading conditions

it was found that the 132kV overhead line component C3 became thermally vulnerable for

GP,B3 power outputs beyond 118 MW. No further components were identified as being

thermally vulnerable before the load flow algorithm failed to converge at DG connection

capacities beyond 188 MW. For minimum network loading conditions it was found that

DG connection capacities beyond 112 MW caused C3 to become thermally vulnerable, DG

connection capacities beyond 186 MW caused the 132kV overhead line component C5 to

become thermally vulnerable and DG connection capacities beyond 188 MW caused 132kV

overhead line component C7 to become thermally vulnerable. Beyond 188 MW, in the

minimum loading condition, the load flow algorithm failed to converge.

Figure 3.14 summarises the effect of DG power output interactions considering compo-

nents C3 and C4 which represented the first components to become thermally vulnerable in

the single DG scheme investigations. The area in which the DG may export power without

causing a thermal overload within the field trial network is given for both maximum and

minimum loading conditions. It is interesting to note the counter-flow relationship that

means that export capacity of GP,B3 can be unlocked by increasing the export of GP,B5.

This is a particular feature of meshed network topologies and arises due to voltage gradients

and the impedance of power flows to local loads. An increase in GP,B5 causes more of the

local load to be met in that vicinity of the network and less power is needed from GP,B3 to

meet this loading condition. As a result the power exported from GP,B3 along feeder C3 is

reduced and the thermal limit is mitigated.
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Figure 3.12: Hierarchy of thermally vulnerable components in field trial network due to DG

connected at node B5

Figure 3.13: Hierarchy of thermally vulnerable components in field trial network due to DG

connected at node B3
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Figure 3.14: Thermal limit solution space in the field trial network

3.5.3 Discussion of numerical analysis applied to case study networks

The aim of the numerical analysis methodology was to identify the hierarchy of thermally

vulnerable components as increased capacities of DG were connected within the case study

distribution networks. The application of the methodology to UKGDSs aimed to tease out

a wider set of thermally vulnerable components to those identified within the field trial

network. The set of thermally vulnerable components identified through the case study

analyses is given in Table 3.1.

In teasing out thermal issues relating to a variety of components and nominal voltage

levels, it was found that the majority of the selected nodes in the UKGDSs could accom-

modate significant levels of DG relative to nominal voltage level of connection. This was

because the selected nodes had a large number of components connected to them, provid-

ing many different power flow paths for the DG real power injection. The theoretical DG

connection capacities at these nodes are likely to be limited before the first thermal limit

of the power system is reached by other factors such as (i) security of supply compliance;

(ii) economics for connecting DG at different voltage levels; and (iii) requisite planning

permission.
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Table 3.1: Thermally vulnerable component types resulting from case study analyses

Case study network DG connection node Subset of thermally

vulnerable components

Field trial network B5 132kV overhead line

Field trial network B3 132kV overhead line

UKGDS A 316 33kV electric cables

UKGDS B 348 132/33kV transformers

132kV overhead line

UKGDS B 115 132kV overhead lines

UKGDS C 338 132/33kV transfomers

132kV overhead line

3.6 Discussion

At this preliminary stage, and without automating the analysis, the methodology was ap-

plied empirically. Thus it was found to be time-intensive, particularly when the incremental

size of the DG capacity was small relative to the technical connection capacity which could

be accommodated. However, the methodology resulted in a good indication of the max-

imum technical DG connection capacity that could be accommodated within distribution

networks before thermal overloads occurred and was effective in identifying the hierarchy

of thermally vulnerable components.

In order to reduce the analysis time required in applying the numerical methodology

the ‘bisection’ numerical method [82] was utilised as follows:

1. Initial lower (aGi(LL)) and upper (aGi(UL)) bounds for the DG capacity search space

were specified, where Gi corresponds to the size of the DG installed capacity, LL

corresponds to the lower limit of the solution space (initially specified as 0MW), UL

corresponds to the upper limit of the solution space and a = 0 represents the initial

conditions of the analysis.

2. A load flow solution was run and any thermal violations present within the distribution

network were identified through the exception-reporting capabilities of IPSA.

3. If a thermal violation was detected the solution space was narrowed by specifying

a+1Gi(LL) = aGi(LL) and a+1Gi(UL) =
aGi(LL) + aGi(UL)

2 . This halved the size of the

solution search space.
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4. If no thermal violations were detected the bounds of the solution space were adjusted

by specifying a+1Gi(LL) = aGi(UL) and a+1Gi(UL) =
a−1Gi(UL) + aGi(UL)

2 , where, under

initial conditions, a−1Gi(UL) = 2× aGi(UL) to expand the solution space until thermal

violations were encountered.

5. Steps 2–4 were repeated until the DG connection capacity was found to a specified

degree of accuracy (2 MW in the initial analysis and 0.1 MW in the validation analysis

in Chapter 6).

Whilst the numerical methodologies outlined above are effective in identifying the loca-

tion and hierarchy of thermally vulnerable components, the iterative nature of techniques,

requiring multiple load flow runs, could potentially be time-intensive when compared to

possible analytical techniques, utilising the underlying Jacobian matrix of the load flow so-

lution. Moreover, the numerical techniques do not lend themselves, readily, to adaptation

for the control of DG power outputs. Furthermore, the incorporation of updated component

thermal ratings (resulting from up-ratings delivered by a real-time thermal rating system)

would require completely new analysis to be carried out. Therefore an analytical method-

ology for identifying thermally vulnerable components within distribution networks, which

has the potential to overcome the drawbacks associated with numerical analysis, is likely

to be more attractive to DNOs or DG developers. A proposed analytical methodology for

identifying thermally vulnerable components within distribution networks was developed

and is presented in Chapter 5.

3.7 Conclusion

In this chapter the preliminary network analysis work, carried out in the early stages of

the doctoral research, was presented and discussed. The basis of the present power system

ratings used by DNOs for planning and operating distribution networks was presented and

the case study networks selected for analysis throughout the thesis were described. The aims

of the preliminary network investigations were to understand the electrical behaviour of the

case study networks and identify thermal vulnerable components. A first-pass methodology

for achieving the preliminary aims was presented and applied to the case study networks.

The preliminary methodology was discussed and improvements to the methodology were

suggested.



Chapter 4

Proposed methodology for DG output

control system development

4.1 Introduction

This chapter proposes a methodology for the development of DG output control systems

based on component thermal properties, as published by the author in [83]. In particular

the role of power flow sensitivity factors within the proposed methodology is highlighted.

power flow sensitivity factors are derived from a full AC load flow solution and define

the mathematical relationship between changes in network component power flows due to

changes in DG power outputs. This provides the direct mathematical link to the power flows

in any component of the distribution network (not just the components electrically local

to the DG scheme) and the DG scheme itself. The power flow sensitivity factors may be

combined with power system thermal limits to identify, analytically, thermally vulnerable

components within the distribution network. In addition, the derived power flow sensitivity

factors may be utilised for the power output control of DG schemes. The main development

stages in the DG output control system methodology are summarised below:

• Stage 1: Conduct an off-line assessment to identify areas of the distribution network

that are thermally vulnerable to the penetration of DG. This may be achieved through

the calculation of component thermal vulnerability factors by aggregating power flow

sensitivity factors and component thermal ratings.

• Stage 2: Thermally characterise the vulnerable sections of the distribution network to

quantify headroom gains that may be exploited through the use of a real-time thermal

rating system. This may be achieved by the off-line analysis of directly monitored

47
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conductor operating temperatures or by monitoring meteorological conditions that

are then used to populate component steady-state thermal models.

• Stage 3: In situations where it is assessed to be viable, a system needs to be developed

to allow the real-time exploitation of component thermal ratings.

• Stage 4: The component real-time thermal rating system could then be used to inform

the power output control of DG for network power flow management. One means of

achieving this is through the use of power flow sensitivity factors.

To reflect the key aspects of the proposed methodology, this chapter is structured in the

following way: Section 4.2 discusses methods for the identification of thermally vulnerable

components within distribution networks. Section 4.3 discusses the thermal characterisa-

tion of distribution networks (in light of the identified thermally vulnerable components).

Section 4.4 outlines the development of real-time thermal rating systems through (i) the

population of component steady-state thermal models with monitored meteorological con-

ditions and (ii) the use of more sophisticated thermal state estimation techniques whereby

a limited number of meteorological station installations may be used to assess the thermal

status of wide areas of the distribution network. Section 4.5 describes DG output control

for network power flow management based on component thermal properties. In addition,

Section 4.6 describes the service oriented architecture (SOA) adopted (by recommendation

of the consultancy firm, Imass) for the software architecture of the DG output control

system.

4.2 Identification of thermally vulnerable components

The proposed first stage, in developing a DG output control system for network power

flow management, is to identify the location of thermally vulnerable components within

the distribution network. It is assumed that thermal violations will be relieved through

the power output constraint of the DG scheme(s) causing components to become thermally

vulnerable. By quantifying the severity of thermal vulnerability, a hierarchy of components

can be identified, allowing the targeted development of component thermal models and

informing network instrumentation investment decisions.

A preliminary set of off-line network analyses were conducted, to understand the be-

haviour of the distribution network, which involved the incremental increase in DG power

outputs to cause component thermal violations and identify a hierarchy of thermally vul-
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nerable components. The techniques adopted at this stage may be categorised as numerical

methods and were described and discussed in Chapter 3.

In Chapter 5 an analytical methodology is proposed for the off-line calculation and

assessment of thermal vulnerability factors [83]. Thermal vulnerability factors relate com-

ponent power flow sensitivity factors (which can be derived from the Jacobian matrix in

a full AC load flow solution) to component thermal limits. Thermal vulnerability factors

are a measure of the change in component utilisations for a given injection of real power

from a DG scheme. Thermal vulnerability factor assessments are not confined to a specific

topology type and may be used to identify the thermal impacts of planned individual DG

schemes, or in a more strategic way, to assess longer term and more widespread DG growth

scenarios.

The identification of thermally vulnerable components within distribution networks may

directly inform investment decisions regarding the installation of thermal monitoring equip-

ment and/or for network reinforcement. If the monitoring equipment installation approach

is adopted, the distribution network may be thermally characterised to assess the poten-

tial gains in developing a real-time thermal rating system for the thermally vulnerable

component(s).

4.3 Network thermal characterisation

In the second stage of the DG output control system development methodology, distribution

networks are thermally characterised by modelling the vulnerable sections of the power

system identified in the previous methodology stage. This work was carried out at Durham

University by a research colleague, Andrea Michiorri, also contributing towards the DIUS

Project.

4.3.1 Component thermal models

In order to assess, in a consistent manner, power system real-time thermal ratings due

to the influence of environmental conditions, thermal models were developed at Durham

University based on IEC standards for overhead lines [30], electric cables [35] and power

transformers [39]. Steady-state models were selected in preference to dynamic models since

this would provide a maximum allowable rating for long term power system operation.

Moreover, the estimation of final steady-state component temperatures after a transient

has occurred is influenced by the initial conditions which must also be estimated. With the
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resolution of data available (comprising hourly averaged environmental conditions) it would

be extremely difficult to obtain an acceptable precision for dynamic models, particularly

for overhead lines with time constants of less than an hour. The IEC component thermal

models are described in detail in Chapter 7.

4.3.2 Instrumentation location selection

In order to select appropriate locations for network instrumentation a set of generic and

field trial network-specific measurement requirements were developed. Measurements were

categorised as electrical, thermal and meteorological and pertained to those needed for the

DG output control system to function as well as verification measurements. Verification

measurements were not input directly to the control system but used with an off-line tool

to verify the accuracy of the algorithms within the DG output control system. This en-

tailed the over-instrumentation of the field trial network for characterisation and prototype

testing purposes. As a general rule the measurement equipment was to be placed at the

most vulnerable and thermally sensitive points where it is difficult to estimate the thermal

behaviour of the power system and failure to accurately predict the thermal limit would

have severe consequences. Details of the network instrumentation process are provided in

Chapters 7 and 13.

4.4 Real-time thermal rating system development

In the third stage of the methodology, real-time thermal rating systems are developed to

exploit the potential headroom available in component power transfers, based on envi-

ronmental conditions. This work was also carried out at Durham University by Andrea

Michiorri. Real-time thermal rating systems, based on the direct population of component

thermal models with environmental conditions and thermal state estimation techniques,

are outlined below and described in detail in Chapter 7.

4.4.1 Direct population of thermal models with environmental conditions

In [84] research is presented which seeks to assist distribution network operators (DNOs) in

the adoption of real-time thermal rating systems. The exploitation of power system rating

variations is challenging due to the complex nature of environmental conditions such as

wind speed. The adoption of a real-time thermal rating system may overcome this chal-

lenge and offers perceived benefits such as increased DG accommodation and avoidance of
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component damage or premature ageing. Simulations, using lumped parameter component

models, were used to investigate the influence of environmental conditions on overhead line,

electric cable and power transformer ratings. Key findings showed that the average rating

of overhead lines, electric cables and power transformers ranged from 1.70 to 2.53, 1.00

to 1.06 and 1.06 to 1.10 times the static rating, respectively. Since overhead lines were

found to have the greatest potential for rating exploitation, the influence of environmental

conditions on four overhead line types was investigated and it was shown that the value

of a real-time thermal rating system is location dependent. Furthermore, the additional

annual energy yield from DG that could be accommodated through a real-time thermal

rating system deployment was quantified for a specific case and found to be 54%.

4.4.2 Thermal state estimation

In order to reduce network instrumentation requirements, deal with communication signal

losses and in an attempt to make real-time thermal rating system deployments financially

viable, research is presented in [85] which aims to realise a real-time thermal rating system

for power system components based on thermal state estimation techniques. The solution

developed by Andrea Michiorri at Durham University involves the use of a limited number of

meteorological stations and a series of analytical models for estimating component ratings.

The effect of data uncertainty is taken into account by an estimation algorithm based on the

Monte Carlo method. Estimations of conductor temperature and environmental conditions

were validated against measured data in five different network locations within the field

trial network. Average errors of -2.2 ◦C, -1.9 ◦C, -1.2 ◦C, -1.9 ◦C and 1.4 ◦C were found for

the five different network locations over a period of 71 days when comparing estimates to

measured results. Results analysis identified that the IEC models used were the main source

of error. The estimation of wind direction and solar radiation were the most sensitive to

errors in the models.

4.5 DG output control using component thermal properties

The fourth stage of the methodology is the on-line (real-time) control of DG schemes based

on component thermal properties. This entails the development of techniques for the control

of single DG schemes and also the development of strategies for the control of multiple DG

schemes based on power system static thermal ratings, seasonal thermal ratings or real-time

thermal ratings.
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As identified in Chapter 2, the control techniques documented in Engineering Technical

Recommendation (ETR) 124 [50] could be implemented to fulfil the requirement of manag-

ing the power output of single DG schemes based on component thermal properties. Due

to the wide acceptance of ETR 124 within the electrical power systems community, the

implementation of the proposed techniques could provide credibility the DG output control

system as it is developed into a commercialised product. The main drawback of ETR 124

is that it considers only single DG schemes and deals with the specific case of thermally

vulnerable components local to the DG connection busbar.

The limitations of the techniques proposed in ETR 124 may be overcome through the

development of control strategies for the output control of multiple DG schemes based on

power flow sensitivity factors. In this case DG schemes may be controlled based on local

and non-local thermal constraints where the power flows would be non-trivial to model

algebraically. Since no techniques were identified in literature, at the time of conducting

research, that adequately fulfilled the requirements for the output control of multiple DG

schemes based on real-time thermal ratings, the theory of power flow sensitivity factors was

extended to meet this need. The identified methods of DG output control, which are the

focus of research presented in this thesis, are outlined in Sections 4.5.1 and 4.5.2 below.

4.5.1 Single DG scheme control using ETR 124 techniques

Based on ETR 124, the techniques for controlling the power output of a single DG scheme

to manage network power flows include (i) the tripping of the DG scheme based on a static

assessment of network availability; (ii) the tripping of the DG scheme based on seasonal

thermal ratings; (iii) the demand-following output control of the DG scheme based on a

static thermal rating; and (iv) the demand-following output control of the DG scheme

based on real-time thermal ratings. The time-series simulation of these control techniques

is described in detail in Chapter 10 and compared to the unconstrained connection of the

DG scheme through network reinforcement.

4.5.2 Multiple DG scheme control using power flow sensitivity factors

Three candidate strategies for the output control of multiple DG schemes are investi-

gated: (i) Last-in first-off (reflecting present contractual obligation practices); (ii) egali-

tarian (whereby a single percentage reduction signal is broadcast to all DG schemes); and

(iii) technically most appropriate (whereby the most appropriate DG scheme to manage

network power flows is selected to do so). In the author’s publications, [86–88], the above
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mentioned candidate strategies for the coordinated output control of multiple DG schemes

are presented. The proposed strategies are underpinned by power flow sensitivity factors

and allow real-time knowledge of power system thermal ratings to be utilised. This could be

of value in situations where distribution network power flows require management as a re-

sult of DG proliferation. Through off-line open-loop time-series simulations, using historical

data from a section of the UK distribution network, the candidate strategies are evaluated

against a benchmark DG tripping control solution in terms of annual energy yields, com-

ponent losses and voltages. Furthermore, the individual DG scheme annual energy yields

and DG-apportioned losses are used to assess the net present values of candidate control

strategies to DG scheme developers. These analyses are described in detail in Chapter

11 for the output control of multiple DG schemes arising from a single thermal constraint

within the distribution network and in Chapter 12 for the control of multiple DG schemes

in light of multiple thermal constraints within the distribution network.

4.6 Control system software architecture

Drawing on the expertise of consultants at Imass, the DG output control system was de-

veloped using a SOA [5] that can be implemented using web services [89]. A SOA is an

information technology approach in which software applications make use of services avail-

able within a network (such as the world wide web). Each service may provide a single

function or multiple functions to a client (another software application). An application is

exposed to other applications as a service which means that it has a standard interface and

data is passed between services using standard protocols. This allows the implementation

of the service to be independent (in terms of language and/or platform) from other services

within the network. Web services are an implementation of the SOA approach which allow

the services to be geographically dispersed in terms of hardware platforms. This also allows

the services to be accessed by remote graphical user interfaces (a feature which was deemed

to be particularly beneficial in the DIUS Project since ScottishPower EnergyNetworks are

based in the North-West of England, Parsons Brinckerhoff, Imass and Durham University

in the North-East of England and AREVA in The Midlands). The specific benefits arising

from the adoption of a SOA are [89]:

1. Re-usability of applications which run on different operating systems, are coded in

different languages and use different programming interfaces and protocols;

2. Interoperability of applications through standard communication protocols that facil-
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Figure 4.1: Service oriented architecture of controller software

itate cross-platform and/or cross-language interactions;

3. Scalability of the entire software architecture as new services are identified, developed

and implemented;

4. Flexibility of the architecture to allow services to evolve without having to change

the interface requirements; and

5. Cost efficiency through the integration of legacy systems and new software applica-

tions where the development of multiple application interfaces is prohibitively expen-

sive in the long term.

The SOA of the DG output control system is outlined in Figure 4.1. A description of

the services is given below and comprise the network management system interface service,

a data storage service, an external parameter processing service, a thermal state estimation

service, a DG output control service, an on-line simulation tool service, a DG connection

manager service and a control system orchestration service.

4.6.1 Network management system

The network management system service is responsible for extracting the required electri-

cal and thermal monitoring data from the distribution network and passing it to the data

storage service. In the algorithm development phase of the research the electrical moni-

toring of the distribution network was provided through historical SCADA data, acquired

by querying the DNO’s PI database and extracting the required information as a series

of Microsoft Excel spreadsheets. The data for characterising the network thermally was

provided by (i) the MetOffice in the form of Microsoft Access database reports and (ii) the
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data polled from FMCTech installations (described in Chapter 7) and available to down-

load from a web browser as Microsoft Excel spreadsheets. In the field trial implementation

phase of the research the electrical and thermal parameters were monitored using a series of

AREVA’s MiCOM relays. Since the relays have been developed to provide real-time protec-

tion functionality the software has been implemented using the C programming language.

The harvested data is then polled back to a MySQL database.

4.6.2 Data storage

The data storage service is responsible for providing the control algorithm and on-line

simulation tool services with electrical data, and the external parameter processor and

thermal state estimation services with meteorological data. In the development phase of

the research electrical data was stored as tab delimited text files to remove unnecessary data

formatting associated with Microsoft Excel spreadsheets for memory efficiency. The thermal

data was stored in a Microsoft Access database. In the field trial implementation phase

of the research both the electrical and meteorological datasets were stored in a MySQL

database.

4.6.3 External parameter processor

As a client the external parameter processor requests the meteorological information from

the data storage service. As a service the external parameter processor is responsible for

interpolating environmental conditions (such as wind speed, wind direction, air and soil

temperatures and solar radiation) harvested from a limited number of meteorological mea-

surement units. The adopted approach allows environmental conditions to be estimated,

corrected and interpolated to represent more accurately the actual environmental oper-

ating conditions in areas of the distribution network. The inverse distance interpolation

technique [90] allows environmental conditions to be determined over a wide geographical

area using a reduced set of inputs. This is attractive for situations where a large amount of

installed measurements may be financially unattractive to the distribution network oper-

ator (DNO) or DG scheme developer. The technique is also computationally efficient and

allows the input locations to be readily adapted. The external parameter processor service

was developed and implemented using the Visual Basic programming language.
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4.6.4 Thermal state estimation

As a client the thermal state estimation service requests meteorological interpolations from

the external parameter processor service. As a service the thermal state estimator is re-

sponsible for assessing the rating of components which are not directly monitored within

the power system. Thermal state estimations facilitate the precise and reliable assessment

of environmental conditions whereby a limited number of meteorological monitoring instal-

lations facilitate the computation of component thermal ratings within a wide area. This

may then be validated through the carefully selected monitoring of component operating

temperatures. The algorithm provides a reliable estimation of power system component

thermal ratings described by an appropriate cumulative probability function. A state es-

timation technique based on the Monte Carlo method is used, giving a more complete

description of the possible states of the system. The minimum, maximum, average and

standard deviation of component ratings may be calculated according to the local meteo-

rological conditions. As necessary for overhead lines and electric cables, each component

is divided into sections to take into account different thermal operating conditions such as

overhead line orientations and changes in electric cable installation conditions. The section

resulting in the lowest rating values is then used to provide a rating for the entire compo-

nent. Furthermore, the deployment of a real-time thermal rating system underpinned by

thermal state estimation techniques has the potential to reduce the necessity of auxiliary

communications infrastructure whilst simultaneously increasing the reliability of the system

if measurement or communication failures occur. The thermal state estimation service was

developed and implemented in Visual Basic for the field trial prototype control system.

4.6.5 Control algorithm

As a client the control algorithm requests electrical data from the data storage service and

power system thermal ratings from the thermal state estimation service. As a service the

control algorithm calculates DG output adjustments for network power flow management.

As appropriate the updated DG output set points are passed to the on-line simulation tool

service for validation. The control algorithm is described in more detail in Chapter 8. In

the algorithm development phase of the research the control algorithm was developed using

the Python programming language due to its rapid prototyping benefits and capability

to automatically run the IPSA load flow package. For the field trial implementation the

control algorithm was developed in the Java programming language due to its web-service
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benefits, robustness and the software support available for this language from Imass.

4.6.6 On-line simulation tool

As a client the on-line simulation tool requests electrical information from the data storage

service and updated DG output set points from the control algorithm. As a service the

on-line simulation tool aids in validating the integrity of the control actions by running

load flows with the present electrical information and the updated DG set points. The

service returns updated component power flows and updated busbar voltages to the control

algorithm. This then verifies that all power flows are within thermal limits and no voltage

violations are present in the network (resulting from the control actions). If, through the

on-line simulation tool, the control algorithm detects a thermal violation is still present in

the network the DG is constrained further until no thermal violations are present. The on-

line simulation tool was developed and implemented using IPSA with a Python ‘wrapper’

(or scripted interface)1.

4.6.7 Connection manager

As a client the connection manager requests updated DG output set points from the control

algorithm, which have been validated through the on-line simulation tool. As a service the

connection manager is responsible for dispatching the updated real power set points to

various DG operators within the jurisdiction of the DG output control system. This will be

done, initially, through the decision support of control engineers within the DNO control

room. However, as confidence in the control system grows, it is possible that closed-loop

automatic active generation control could be achieved [60].

4.6.8 Control system orchestrator

As a client the control system orchestrator is triggered by an updated signal from a real-time

system clock. As a service the control system orchestrator is responsible for coordinating

the other services [89] to achieve the overall objectives of the DG output control system

(i.e. DG output control for network power flow management based on component thermal

properties).

1In the commercialised solution it is possible that the DG output control system could be installed

without the on-line simulation tool if the DNO or DG developer is satisfied with the integrity of the control

system without this feature.
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4.7 Conclusions

This chapter has outlined a proposed methodology for DG output control system develop-

ment in order to manage power flows within distribution networks. The first stage requires

an assessment of the location of thermally vulnerable components within the distribution

network. This is achieved through the off-line calculation of thermal vulnerability factors

that relate component power flow sensitivity factors to component thermal limits. This

directly informs Stage 2 – the targeted development of component thermal models and

investment in equipment monitoring installations for network thermal characterisation. In

Stage 3, steady-state component thermal models are populated with real-time environ-

mental information from the meteorological stations to generate power system real-time

thermal ratings. In Stage 4, the power flow sensitivity factors calculated in Stage 1 are

embedded within a network power flow management system which, together with the com-

ponent real-time thermal ratings calculated in Stage 3, is used to control the power output

of DG schemes.

Whilst the role of power flow sensitivity factors is highlighted, particularly, since the

factors may be used in Stages 1 and 4 of the methodology, clearly the methodology could be

implemented with totally different techniques. For example optimal power flow (OPF) tools

could be used to identify thermally vulnerable components within distribution networks,

thermal imagery cameras could be used to inform instrumentation investment decisions,

the thermal rating system could be based on numerical (not analytical) component thermal

models and DG output control could be achieved through a ‘trim and trip’ approach. If

different techniques are used to implement the stages in the methodology to those proposed

in this thesis, this would demonstrate the potential flexibility (and hence value) of the

methodology in providing a framework for the development of DG output control systems.

A description of the software services within the SOA were given and comprise the

network management system interface service, a data storage service, an external param-

eter processing service, a thermal state estimation service, a DG output control service,

an on-line simulation tool service, a DG connection manager service and a control system

orchestration service. Adopting an SOA for the DG output control system allows algo-

rithm implementation in different programming languages and across a number of hardware

platforms in a fully centralised, fully decentralised or partially centralised / decentralised

manner.



Chapter 5

Identification of thermally vulnerable

components within distribution networks:

Theory

5.1 Introduction

This chapter describes the analytical theory of power flow sensitivity factors, the formula-

tion of thermal vulnerability factors and an empirical procedure for assessing power flow

sensitivity factors and thermal vulnerability factors. The research presented in this chapter

was published by the author in [83]. In addition, the off-line use of power flow sensitivity

factors for sizing the installed capacity of non-firm distributed generation (DG) connec-

tions and preliminary investigations into the on-line use of power flow sensitivity factors

for real-time DG output control are also described. Power flow sensitivity factors are in-

tegral to the work presented in this thesis and are related to the governing power flow

equations for AC electrical networks in Section 5.2. Power flow sensitivity factors facilitate

the identification of thermally vulnerable components by combination with power system

steady-state thermal limits to formulate thermal vulnerability factors (as described in Sec-

tion 5.3). Moreover, power flow sensitivity factors may be incorporated within strategies for

the power output control of multiple DG schemes to manage power flows within distribu-

tion networks. An empirical procedure for the assessment of power flow sensitivity factors

and thermal vulnerability factors is given in Section 5.4. The use of power flow sensitivity

factors together with component thermal limits for the sizing of non-firm DG connections

is described in Section 5.5. The preliminary use of power flow sensitivity factors together

with component thermal ratings for real-time DG output control is described in Section

59
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5.6. In Chapter 6, the analytical techniques presented in this chapter are applied to the

case study networks that were detailed in Chapter 3.

5.2 Power flow sensitivity factors

The work presented in this thesis uses the Newton-Raphson method for solving power

system load flows [66]. Changes in real and reactive power flows are related to the change

nodal voltage magnitudes and voltage angles, as given in (5.1)
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(5.1)

where θi and θk represent voltage angles at nodes i and k respectively, |Vi| and |Vk|
represent nodal voltages, Pi and Pk represent real power injections at nodes i and k respec-

tively, Qi and Qk represent reactive power injections at nodes i and k respectively and J

is the Jacobian matrix, as given in (5.2).
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(5.2)

Once the inverse Jacobian has been evaluated in the full AC power flow solution, per-

turbations about a given set of system conditions may be calculated as in (5.3). This gives

the changes expected in bus voltage angles and voltage magnitudes due to injections of real

or reactive power.
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(5.3)

The work presented in this thesis is specifically concerned with calculating the effect of

a perturbation of ∆Pm that is an injection of power at unity power factor (real power) into

node m. Since the generation shifts, the reference (slack) bus compensates for the increase

in power. The ∆θ and ∆|V |/|V | values in (5.4) are thus equal to the derivative of the bus

angles and voltage magnitudes with respect to a change in power at bus m.
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(5.4)

Thus the sensitivity factors for a real power injection at node m are given in (5.5)-(5.8)

f(θ) :
dP c

i,k

dGP,m
=

(

∂P

∂θ

)

i,k
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dθk
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(5.5)
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 (5.8)

where f(θ) and f(|V |) represent functions of voltage angles and voltage magnitudes re-

spectively, (∂P/∂θ)i,k, (∂P/∂|V |)i,k, (∂Q/∂θ)i,k and (∂Q/∂|V |)i,k represent elements within

the Jacobian matrix and dθi/dGP,m, d|Vi|/|Vi|, dθk/dGP,m and d|Vk|/|Vk| represent elements

corresponding to the vector (5.9) evaluated in (5.4).
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This gives an overall (apparent) power flow sensitivity (SSF c
i,k,m) of component c, from

node i to node k, due to an injection of real power, at node m, as in 5.10.

SSF c
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(5.10)

Simplified versions of the power flow sensitivity factor theory (focusing on the P −
θ sensitivity) are used at the transmission level for real power flow sensitivity analyses.

The generation shift factor (GSF) technique proposed by Wood and Wollenburg [66] is

acceptable for use in DC representations of AC systems where the network behaviour is

approximated by neglecting MVAr flow and assuming voltage to be constant. However, in

distribution networks those assumptions do not always hold since, in some cases, the ratio

of X
R

≃ 1 and reactive power flow may contribute to a significant portion of the resultant

power flowing in components. Thus it is important that both real and reactive power

flows are considered when assessing the locations of thermally vulnerable components and

developing techniques for the on-line power output control of DG.

The phenomenon of bi-directional power flow is becoming increasingly more common in

distribution networks. Particularly, in situations when DG power outputs meet local load

demands and power is exported in the opposite direction through feeders or back through

transformers into higher voltage levels. Thus it is important to be aware of the reverse

power flow capability of transformers [91]. Since the connection of DG may cause power

flows to reverse through components under certain load-generation patterns, a frame of

reference must be established whereby power flow sensitivities can be related to power flow

directions and directional limits. Only by doing this is it possible to assess whether the

power flow sensitivities of components to concurrent nodal injections will cause power flows

to aggregate through the components or oppose one another, creating counter-flows and

finding different impedance routes through the network. Pantos and Gubina describe this

phenomenon in a simple diagram that displays the four possible power flow combinations

of real and reactive power flow flowing to and from nodes in the same reference frame [92].
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5.3 Thermal vulnerability factors

Equation (5.10) may be combined with power system thermal limits (3.3), as detailed

in Chapters 3 and 7, and the resulting thermal vulnerability factor, as seen in (5.11), is

standardised by conversion to a per unit term on the base MVA

TV F c
i,k,m =

SSF c
i,k,m

Sc
i,k(lim)

on Sbase (5.11)

where TV F c
i,k,m represents the thermal vulnerability factor of component c, from node

i to node k due to a real power injection at node m, SSF c
i,k,m represents the overall (or

apparent) power flow sensitivity factor of component c, from node i to node k, due to a

real power injection at node m, Sc
i,k(lim) represents the thermal limit of component c from

node i to node k and Sbase is a predefined MVA base.

This gives a consistent measure of component thermal vulnerabilities, relative to one

another and accounts for different nodal real power injections, for a particular network

operating condition. It can also be seen in (5.12) that the apparent power flow sensitiv-

ity factor relative to the component rating is equivalent to the change in utilisation of a

particular component c from node i to node k, due to an injection of real power at node m

SSF c
i,k,m

Sc
i,k(lim)

=
∆Sc

i,k

∆GP,m × Sc
i,k(lim)

≡
∆U c

i,k

∆GP,m
(5.12)

where SSF c
i,k,m represents the apparent power flow sensitivity factor of component c,

from node i to node k, due to a real power injection at node m, Sc
i,k(lim) represents the

thermal limit of component c from node i to node k, ∆Sc
i,k represents the change in apparent

power flow in component c from node i to node k, ∆GP,m represents the change in real power

injection at node m and ∆U c
i,k represents the change in capacity utilisation of component

c from node i to node k.

Power flow sensitivity factors indicate the extent to which power flow changes within

components due to nodal power injections. However, a large change in power flow, indicated

by high sensitivity, does not necessarily mean a component is thermally vulnerable unless its

rating is taken into account. A large power flow change in a component with a large thermal

rating (Sc
i,k(lim)) could be less critical than a small power flow change in a component with

a small rating. By calculating the apparent power sensitivity relative to rating for each

component, the thermally vulnerable components are identified and can be ranked for

single nodal power injections or accumulated for multiple injections.
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The physical meaning of the thermal vulnerability factor has been described in 5.12

as the change in a component capacity utilisation due to a per unit DG injection at a

particular node. Depending on the status of the original power flow before DG is connected,

an excursion relative to rating of 100% (or TV F c
i,k,m = 1), does not necessarily mean a

component is thermally overloaded. By definition the maximum possible TV F c
i,k,m without

overload occurring could be just below 200%, recognising that a power flow utilising almost

100% of thermal capacity in one direction may be reversed by a DG injection to become

100% utilisation with power flowing in the opposite direction.

5.4 Power flow sensitivity factor and thermal vulnerability

factor assessments

The procedure used to assess power flow sensitivity factors and generate lists of thermally

vulnerable components for different network topologies is shown in Figure 5.1.

Initially a ‘base case’ AC load flow was run in the power system simulation package,

IPSA [93], to establish initial real, reactive and apparent power flows for each component.

The procedure iterated by injecting 1 pu of real power (in this case on 100 MVA base)

at each node of interest and recording the new component power flows. In the United

Kingdom generic distribution systems, new DG connections have been assumed at existing

nodes in the network. However, in the field trial application the two nodes selected for

thermal vulnerability assessments (and resulting DG power output control) correspond to

existing DG connection points where DG may be replanted with larger installed capacities

due to future planning applications. The initial flow, final flow and thermal rating of each

component were used to relate component power flow sensitivity factors to nodal injec-

tions and ratings. The resulting power flow sensitivity factors and thermal vulnerability

factors were efficiently stored in matrix form and, with the thermal vulnerability factors

represented graphically, a visual identification of the most thermally vulnerable compo-

nents was given. This also allowed negligible thermal vulnerability factors to be filtered

out by inspection. Assessments were made at maximum generation-maximum loading and

maximum generation-minimum loading conditions to identify the worst-case operating sce-

nario for the critical components. Voltage limits in accordance with [15] and [94] were not

directly formulated as constraints within the assessments but were constantly monitored

in simulation runs through the functionality in IPSA to colour-code the network diagram

according to voltage excursions.
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Figure 5.1: Flow chart for the assessment of power flow sensitivity factors and thermal

vulnerability factors
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The thermal vulnerability factor assessments presented in this thesis complement net-

work characterisation, such as that carried out in [42] by first identifying the type (overhead

line, underground cable, power transformer) and geographical location of thermally vulner-

able components. The assessments may be used to give a holistic network view of the

impact of multiple DG schemes in concurrent operation on accumulated power flows and

hence vulnerable component locations.

5.5 Sizing the potential capacity of non-firm DG connections

through power flow sensitivity factors

In order to identify thermally vulnerable components within distribution networks, the con-

nection capacity of DG schemes was increased and the DG technical connection capacity

was assessed at the first thermal limit of the power system. In Chapter 3, the technical

connection capacity of DG schemes was assessed through a numerical method by incremen-

tal increases in DG power output. This method could have been adapted for single and

multiple DG scheme power output control by developing an algorithm that incrementally

ramped up or ramped down DG scheme outputs depending on network availability or power

flow constraints. However, depending on the increment size and the magnitude of the DG

constraint or constraint relaxation, and given the real-time control application to which

this research was contributing, this technique (at the time of consideration) was deemed to

be computationally-intensive and time-intensive.

By utilising the real component of the power flow sensitivity factors (already derived

through the thermal vulnerability factor assessment applications), the analytical equation

given in (5.13) may be used to linearise the power flow problem and predict DG technical

connection capacities, at nodes of interest within the distribution network, as the first

thermal limit of the power system (corresponding to a DG real power injection at the

relevant node) is reached.

GP,m(max) =

√

(Sc
i,k(lim))

2 − (′Qi,k)2 − ′Pi,k

dPi,k

dGP,m

(5.13)

Where GP,m(max) is the maximum technical connection capacity of a DG scheme at

node m, assuming real power export at unity power factor, Sc
i,k(lim) is the thermal limit

of the component between nodes i and k which is most thermally vulnerable component

to DG real power injections at node m (as identified through thermal vulnerability factor
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assessments), ′Qi,k is the reactive power flow in the most thermally vulnerable component,

′Pi,k is the real power flow in the most thermally vulnerable component and
dPi,k

dGP,m
is the

power flow sensitivity factor that relates the change in nodal real power injection at node

m with the change in real power flowing from node i to node k.

5.6 Single DG scheme control using power flow sensitivity

factors

At times of power flow management within the distribution network, the amount an indi-

vidual DG scheme is required to be constrained may be calculated (5.14)-(5.15) based on

power flow sensitivity factors

∆GP,m =
∆Pi,k

dPi,k

dGP,m

(5.14)

where ∆GP,m is the required change in real power output of the DG scheme at node

m;
dPi,k

dGP,m
is the power flow sensitivity factor that relates the change in nodal real power

injection at m with the change in real power flowing from node i to node k; and ∆Pi,k is

the required change in real power flowing from node i to node k in order to manage network

power flows, as evaluated in (5.15)

∆Pi,k =
√

(UTar × Sc
i,k(lim))

2 − (′′Qi,k)2

−
√

(′Si,k)2 − (′Qi,k)2
(5.15)

where UTar is the target utilisation of the thermally vulnerable component after control

actions have been implemented; Sc
i,k(lim) is the thermal limit of the thermally vulnerable

component; ′Si,k is the apparent power flowing from node i to node k before control actions

are implemented and, ′Qi,k and ′′Qi,k respectively represent the reactive power flowing from

node i to node k before and after the control actions have been implemented. The theory

leading to these equations is explained in Appendix D.
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5.7 Conclusion

This chapter has outlined the analytical theory of power flow sensitivity factors, the for-

mulation of thermal vulnerability factors, an empirical procedure for assessing power flow

sensitivity factors and thermal vulnerability factors, the use of power flow sensitivity fac-

tors for sizing the installed capacity of non-firm DG connections and the preliminary use of

power flow sensitivity factors for real-time DG output control. Power flow sensitivity factors

are integral to the work presented in this thesis and it was demonstrated how the factors

are related to the governing power flow equations for AC electrical networks. The power

flow sensitivity factors facilitate the off-line identification of thermally vulnerable compo-

nents by combination with power system steady-state thermal limits to formulate thermal

vulnerability factors. Furthermore, power flow sensitivity factors may also be incorporated

within techniques for the on-line power output control of DG to manage power flows within

distribution networks. An empirical procedure for the assessment of power flow sensitivity

factors and thermal vulnerability factors was suggested and the use of power flow sensitivity

factors together with component thermal limits for the sizing of non-firm DG connections

was also described.



Chapter 6

Identification of thermally vulnerable

components within distribution networks:

Application

6.1 Introduction

This chapter describes the application of the first stage of the distributed generation (DG)

output control system development methodology (described in Chapter 4) to a number of

case study networks, as published by the author in [83]. In order to assess the impacts

of DG schemes on the location and thermal vulnerability of components within a range of

distribution network topologies, the following assessments were conducted:

• Single DG schemes in a radial topology;

• single DG schemes in a meshed topology;

• multiple DG schemes in a radial topology; and

• multiple DG schemes in a meshed topology.

The results of the thermal vulnerability factor assessments are presented and discussed

in Section 6.2. In Section 6.3 the application of assessments for sizing the installed capacity

of non-firm DG connections is presented and discussed. In Section 6.4 preliminary DG

output control investigations are conducted to assess the feasibility of using power flow

sensitivity factors for the on-line control of DG outputs. This section also forms the link

between thermal vulnerability factor assessments for the off-line identification of thermally

vulnerable components, power flow sensitivity factors for the installed capacity-sizing of

69
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Table 6.1: Application of TVF assessments to case study networks

Single DG scheme Multiple DG schemes

Radial UKGDS C UKGDS B

Meshed UKGDS A Field trial

non-firm DG connections in light of real-time thermal ratings and power flow sensitivity

factors for the on-line (i.e. real-time) output control of DG schemes.

As a direct result of the thermal vulnerability factor assessments presented, and with

validation from ScottishPower EnergyNetworks’ engineers, instrumentation investment de-

cisions were made to characterise the field trial network, both electrically and thermally.

This work is described in Chapter 7.

6.2 Application of thermal vulnerability factor assessment

to case study networks

In Chapter 3, nodes were selected intuitively to tease out thermal issues in the United

Kingdom generic distribution systems (UKGDSs). In this chapter, the thermal vulnerability

factor assessment, described in Chapter 5, was strategically applied to each 33kV node in

UKGDS A, UKGDS B, UKGDS C and the 132kV nodes of interest in the field trial network.

This led to the identification of thermally vulnerable component locations for both meshed

and radial network topologies due to single-nodal and multiple-nodal real power injections.

In validating the assessments, a full AC power flow simulation also yielded the DG capacity

that could be connected before thermal issues arose. In each case it was found that the first

technical limit met was a thermal constraint, with voltages close to nominal and within the

regulations prescribed in [15] (±10% at 132kV and ±6% at 33kV). Table 6.1 summarises

the selection of test networks in order to analyse the different topology and DG scheme

combinations. A 100 MVA base was used in each thermal vulnerability factor assessment.

6.2.1 Thermal vulnerability factor assessment with single DG schemes in

a radial network topology

The thermal vulnerability factor assessment was applied to UKGDS C and used to establish

the relationship between single DG real power injections and the location of thermally

vulnerable components within a radial distribution network. The network topology for

UKGDS C is given in Figure 3.4 of Chapter 3. Illustrative vulnerability correlations are
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Figure 6.1: Vulnerable component identification for single DG injections in a radial distri-

bution network (UKGDS C in Figure 3.4)

shown in Figure 6.1 and the simulated DG connection capacities at these nodes have been

summarised in Table 6.2.

Figure 6.1 is interpreted by relating the magnitude of component thermal vulnerability

factors to nodal locations via the network diagram in Figure 3.4. The DG connection

capacities given in Table 6.2 correspond to a summer minimum loading condition when

components C4–C14 would be most thermally at risk for large DG power outputs. This is

because for a given quantity of DG, for example at node 305, the power exported through

feeder C4 to the rest of the network would be greatest in summer when, typically, demand

through T6 is at a minimum. Inspecting the results, it can be seen that single DG injections

at each of the nodes listed in Table 6.1 have a vulnerable component local to the point of

injection. This is a fairly intuitive finding as there is only one power flow path for DG

outputs after local load demands have been met.

6.2.2 Thermal vulnerability factor assessment with single DG schemes in

a meshed network topology

The thermal vulnerability factor assessment was applied to UKGDS A and used to establish

the relationship between single DG real power injections and the location of thermally
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Table 6.2: Vulnerable component hierarchies at different nodes in UKGDS C (All values

are given in pu on 100 MVA base)

DG Simulated DG Thermally

injection connection capacity at vulnerable Standard

node unity power factor component rating

305 0.268 C4 0.2

306 0.270 C5 0.2

330 0.355 C6 0.3

331 0.355 C7 0.3

339 0.283 C8 0.2

340 0.283 C9 0.2

341 0.335 C10 0.2

346 0.265 C11 0.2

347 0.265 C12 0.2

360 0.288 C13 0.2

361 0.288 C14 0.2

vulnerable components within a meshed distribution network. Illustrative vulnerability

correlations are shown in Figure 6.2 and the simulated DG connection capacities at these

nodes have been summarised in Table 6.3.

Figure 6.2 is interpreted by relating the magnitude of component thermal vulnerability

factors to nodal locations via the network diagram in Figure 3.2 (Chapter 3). The DG

connection capacities given in Table 6.3 correspond to a summer minimum loading condition

when components C13–C18 would be most thermally at risk for large DG power outputs.

This is because for a given quantity of DG, for example at node 317, the power exported

through feeder C13 to the rest of the network would be greater in summer when demand

through T13 is at a minimum.



6.2. Application of TVF assessment to case study networks 73

Figure 6.2: Vulnerable component identification for single DG injections in a meshed dis-

tribution network (UKGDS A in Figure 3.2)

Table 6.3: Vulnerable component hierarchies at different nodes in UKGDS A (All values

are given in pu on 100 MVA base)

DG Simulated DG Thermally

injection connection capacity at vulnerable Standard

node unity power factor component rating

314 0.511 C15 0.2

0.567 C18 0.2

317 0.236 C13 0.2

318 0.236 C14 0.2

352 0.226 C17 0.2

0.390 C15 0.2

0.414 C18 0.2

354 0.228 C16 0.2

0.466 C15 0.2

0.501 C18 0.2
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Inspecting the results, it can be seen that single DG injections at nodes 317, 318, 352

and 354 each have a vulnerable component local to the point of injection. Topologically,

these nodes are in a more radial portion of the network. However, power injection at the

meshed node, 314, causes components C15 and then C18 to become thermally vulnerable,

which are non-local to the point of DG injection.

6.2.3 Cumulative thermal vulnerability factor assessment with multiple

DG schemes in a radial network topology

The thermal vulnerability factor assessment was applied to UKGDS B to identify accumu-

lated power flows due to the wide-spread injection of real power from DG schemes in a

radial distribution network. The network diagram in Figure 3.3 (Chapter 3) together with

the graph in Figure 6.3 show that, whilst strong local-overload correlations do exist for

some nodes, if small contributions from nodes 324, 327, 328, 329 and 348 are accumulated

then transformers T3 and T4 could potentially be at risk.

Figure 6.3: Assessing the location of vulnerable components through cumulative TVFs in

radial distribution network (UKGDS B in Figure 3.3)

Table 6.4 illustrates six cases with a DG scheme switched out in turn (Cases 1-5) and

all the DG schemes switched in (Case 6). In the last case, transformer T4 is thermally

vulnerable from the accumulation of power flows.
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Table 6.4: Accumulation of DG injections producing an overload in UKGDS B (All values

are given in pu on 100 MVA base)

T4 T4

GP,324 GP,327 GP,328 GP,329 GP,348 GP,Total rating power flow

Case 1 - 0.15 0.25 0.25 0.20 0.85 0.45 0.26

Case 2 0.40 - 0.25 0.25 0.20 1.10 0.45 0.37

Case 3 0.40 0.15 - 0.25 0.20 1.00 0.45 0.33

Case 4 0.40 0.15 0.25 - 0.20 1.00 0.45 0.33

Case 5 0.40 0.15 0.25 0.25 - 1.05 0.45 0.36

Case 6 0.40 0.15 0.25 0.25 0.20 1.25 0.45 0.47

6.2.4 Cumulative thermal vulnerability factor assessment with multiple

DG schemes in the meshed field trial network topology

The thermal vulnerability factor assessments were applied to the field trial network given

in Figure 3.1 of Chapter 3 at nodes B3 and B5. The purpose of examining the thermal

vulnerability factors for node B5 was to assess the implications of the DG being re-planted

with a greater installed capacity in the future. It can be seen in Figure 6.4 that circuit

C4 is the most thermally vulnerable to a DG injection at node B5 whilst component C3

is the most thermally vulnerable to a DG injection into node B3. The assessment also

revealed a counter-flow sensitivity relationship in component C3 where real power injection

at node B5 caused a power flow increase from B4 to B3 and real power injection at node

B3 caused a power flow increase from B3 to B4. The net effect is that in certain situations,

DG injected at B5 could be used to allow greater power export from the DG scheme at B3

through component C3. In this particular case the phenomenon exists because injection at

B5 meets more of the local demand in the ‘right-hand’ portion of the network and thus the

power from B3 is diverted into component C2.

In conjunction with ScottishPower EnergyNetworks, a series of full AC power flow sim-

ulations demonstrated that potentially up to 115 MW of generation, at unity power factor,

could be accepted at node B5 in the wintertime, reducing to 100 MW in the summertime.

Similarly, 113 MW of generation, at unity power factor, could potentially be accepted at

node B3, reducing to 100 MW during the summer months. These results are summarised

in Table 6.5.
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Figure 6.4: TVF analysis of the field trial network (in Figure 3.1)

Table 6.5: Simulated DG connection capacities in the field trial network (All values are

given in per unit form on 100 MVA)

Simulated DG

Loading connection capacity

Node Component Condition
dP c

i,k

dGP,m

dQc
i,k

dGP,m
|∂P
∂Q

| (at unity power factor)

B5 C4 Winter peak 0.947 -0.001 ≫ 100 1.155

B5 C4 Summer min. 0.954 0.003 ≫ 100 1.005

B3 C3 Winter peak 0.778 -0.018 52.3 1.134

B3 C3 Summer min. 0.778 0.003 ≫ 100 1.001

6.2.5 Discussion of thermal vulnerability factor assessment applied to

case study distribution networks

By analysing thermal vulnerability factors for single and multiple DG power injections,

strategic locations for meteorological stations and conductor temperature monitoring equip-

ment may be chosen. In the case of single DG injections at radial nodes it was found that

components local to the point of DG injection may become thermally vulnerable. However,

in the case of a single DG injection at a meshed node it was found that components non-

local to the point of injection may become thermally vulnerable. In the case of multiple DG

injections it was observed that wide-spread power injections may lead to an accumulation
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of power flows, causing thermal problems on a more global scale.

Considering the field trial network with both DG schemes exporting power concurrently,

the net result of vulnerability factors in C3 is lower when DG at B5 is exporting than when

it is not. This result is based on counter-flow power flow sensitivity factors that show a

greater amount of power could be exported from DG at B3 when DG at B5 is exporting.

The thermal vulnerability factor assessment effectively identified components C3 and C4

as potentially being the power flow constraining components in the field trial network in

the future. These results informed an instrumentation meeting with ScottishPower Energ-

yNetworks’ engineers and resulted in the decision to thermally instrument components C3

and C4 to provide more detailed thermal characterisation, as suggested in Stages 2 and 3

of the DG power output control system development methodology.

Through the constant monitoring of maximum nodal voltage excursions, the analysed

networks were found to reach thermal limits before voltage constraints for both meshed and

radial topologies when considering static thermal ratings.

6.3 Assessment of non-firm DG connection capacities through

power flow sensitivity factors

DG technical connection capacities were assessed (5.13) within the case study networks

at the same nodes that were used to illustrate the nodal-component thermal vulnerability

correlations. The results are presented in Table 6.6. The technical DG connection capacities

were validated through full AC load flow simulations using the bisection numerical method

described in Chapter 4.

Considering Table 6.6, the DG technical connection capacity assessments provide a good

prediction of the DG technical capacity that can be connected to nodes before components

become thermally vulnerable. The maximum error between predicted and simulated con-

nection capacities was found to be 0.864% at node 352 in UKGDS A (corresponding to

an under-prediction by the tool of 0.2 MW in real terms). The maximum error between

predicted and simulated connection capacities was found to be -1.263% at node 331 in

UKGDS C (corresponding to an over-prediction by the tool of 0.45 MW in real terms). In

these cases the changes in real power injections at the particular node influence changes in

reactive power flows and the linearity assumption must be applied with caution.
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Table 6.6: Prediction and validation of DG technical connection capacities

Component Predicted DG Simulated DG

causing connection connection

power flow Rating capacity (MW at capacity (MW at

Network Node constraint (MVA)
dP c

i,k

dGP,m

dQc
i,k

dGP,m
|∂P
∂Q

| unity power factor) unity power factor) % Error

UKGDSA 317 C13 20.0 0.997 -0.007 143.1 23.56 23.60 0.190

318 C14 20.0 0.998 -0.007 147.7 23.55 23.60 0.200

352 C17 20.0 0.978 -0.059 16.7 22.60 22.80 0.864

354 C16 20.0 0.982 -0.039 25.2 22.81 22.80 -0.043

UKGDSC 305 C4 20.0 0.955 0.079 12.0 27.01 26.80 -0.793

306 C5 20.0 0.947 0.093 10.2 27.20 27.00 -0.725

330 C6 30.0 0.939 0.127 7.4 35.73 35.40 -0.927

331 C7 30.0 0.933 0.137 6.8 35.95 35.50 -1.263

339 C8 20.0 0.999 0.001 ≫ 100 28.26 28.30 0.127

340 C9 20.0 0.999 0.001 ≫ 100 28.26 28.30 0.149

341 C10 20.0 0.959 0.065 14.7 33.84 33.50 -1.002

346 C11 20.0 0.991 0.021 46.3 26.48 26.50 0.064

347 C12 20.0 0.992 0.061 16.3 26.47 26.50 0.115

360 C13 20.0 0.981 0.044 22.2 28.78 28.80 0.058

361 C14 20.0 0.983 0.057 17.3 28.75 28.80 0.189
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6.3.1 Limitations of technical connection capacity assessment

The DG technical connection capacity assessments exhibiting the greatest error between

predicted and simulated values were analysed further to understand the sources of error.

In order to do this the DG technical connection capacity assessment equation, as given in

(5.13), was inverted to predict the apparent power flow as a function of the DG connection

capacity.

Figure 6.5 displays the variation of real, reactive and apparent power flows in component

C17 (between node 352 and 353) due to increasing real power injections at node 352 in

UKGDS A. Whilst the variation of real power flow (Pi,k) is linear with the real power

injection, the reactive power flow (Qi,k) reduces in magnitude from node 352 to 353 and

reverses direction in a non-linear manner as the real power injection increases. This leads

to a non-linear variation of the apparent power flow (Si,k) resulting from the real power

injection. The simulated apparent power flow and predicted apparent power flow (from

the DG technical connection capacity assessment tool) were plotted as functions of the DG

technical connection capacity in Figure 6.6. Considering Figure 6.6, where the predicted

and apparent power flows reach the thermal limit of the component, it can be seen that,

by not accounting for the reverse in direction of the reactive power flow, the DG technical

connection capacity assessment overestimates the apparent flow (compared to the simulated

flow) and therefore slightly underestimates the DG technical connection capacity.

Figure 6.7 displays the variation of real, reactive and apparent power flows in component

C7 (between node 331 and 338) due to increasing real power injections at node 331 in

UKGDS C. Whilst the variation of real power flow (Pi,k) is linear with the real power

injection, the reactive power flow (Qi,k) increases in magnitude from node 338 to 331 in a

non-linear manner as the real power injection increases. This leads to a non-linear variation

of the apparent power flow (Si,k) resulting from the real power injection. The simulated

apparent power flow and predicted apparent power flow (from the DG technical connection

capacity assessment tool) were plotted as functions of the DG technical connection capacity

in Figure 6.8. Considering Figure 6.8, where the predicted and apparent power flows reach

the thermal limit of the component, it can be seen that, by not accounting for the increase in

reactive power flow, the DG technical connection capacity assessment tool underestimates

the apparent flow (compared to the simulated flow) and therefore slightly overestimates the

DG technical connection capacity.
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Figure 6.5: Variation of power flows from node 352 to node 353 due to real power injection

at node 352 in UKGDS A

Figure 6.6: Predicted and simulated power flows from node 352 to node 353 due to real

power injection at node 352 in UKGDS A
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Figure 6.7: Variation of power flows from node 331 to node 338 due to real power injection

at node 331 in UKGDS C

Figure 6.8: Predicted and simulated power flows from node 331 to node 338 due to real

power injection at node 331 in UKGDS C
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6.4 Preliminary DG output control investigations

This section provides the link between thermal vulnerability factor assessments for the off-

line identification of thermally vulnerable components, the use of power flow sensitivity

factors for the off-line assessment of DG technical connection capacities and the on-line use

of power flow sensitivity factors for the real-time output control of DG schemes.

6.4.1 DG output control in a generic distribution system

Through a full AC power flow simulation an assessment was made of the maximum con-

nection capacity of DG that could be individually accommodated at each 33kV node in

UKGDS C with summer (minimum) load demand and static thermal rating operating con-

ditions. These values are given in Table 6.6. DG capacities in excess of these thermal

limits (but still within voltage and fault-level limits) were installed to emulate the manage-

ment of non-firm DG connections. It was assumed that the circuits in the network were

overhead lines with the potential to be up-rated by at least 50% - this is not unreasonable

given Aeolian (wind) cooling of the line could produce increased capacities from 20% to as

much as 100% [27]. With components up-rated individually (representing an incremental

investment in meteorological station installations) and with target utilisation of 100% (i.e.

Utar = 1), the maximum possible adjustment in DG real power output was calculated, at

each node, using (5.14)–(5.15) in Chapter 5 and validated with a full AC power flow simu-

lation. A comparison was made of the increased DG output that could be achieved due to

the increased component rating and a summary of these findings is given in Table 6.7.

From the full AC load flow assessments of technical DG connection capacities in UKGDS

C, (as shown in Table 6.7) it can be seen that the greatest DG capacity could be accommo-

dated at nodes 331 and 330. Furthermore, the components that thermally limit DG power

output at these nodes (C7 and C6 respectively) would also facilitate the greatest increase

in DG power output for a 50% uprating of the lines. A comparison of increased line rating

versus increased DG power output shows that a 50% increase in rating will not necessar-

ily allow a 50% increase in DG power output to be achieved. This is a topology-specific

conclusion and relates to the magnitude of power flow sensitivity factors.



6
.4

.
P

re
lim

in
a
ry

D
G

o
u
tp

u
t

c
o
n
tro

l
in

v
e
stig

a
tio

n
s

8
3

Table 6.7: Application of DG output control system to UKGDS C (All values are given in per unit form on 100 MVA)

Component Simulated DG ∆DG output ∆DG output

causing connection through power through full ac

power flow capacity (at unity output control load flow

Node constraint Rating
dP c

i,k

dGP,m

dQc
i,k

dGP,m
|∂P
∂Q

| power factor) system, % simulation, %

361 C14 0.20 0.983 0.057 17.3 0.288 35.4 35.4

360 C13 0.20 0.981 0.044 22.2 0.288 35.5 35.5

347 C12 0.20 0.992 0.061 16.3 0.265 38.2 38.2

346 C11 0.20 0.991 0.021 46.3 0.265 38.3 38.3

340 C9 0.20 0.999 0.001 ≫ 100 0.283 36.0 36.0

339 C8 0.20 0.999 0.001 ≫ 100 0.283 36.1 36.1

331 C7 0.30 0.933 0.137 6.8 0.355 45.1 44.6

330 C6 0.30 0.939 0.127 7.4 0.355 45.1 44.8

341 C10 0.20 0.959 0.065 14.7 0.335 31.8 31.5

306 C5 0.20 0.947 0.093 10.2 0.270 39.1 38.8

305 C4 0.20 0.955 0.079 12.0 0.268 38.6 38.2
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Table 6.8: Application of DG power output control system to the field trial network (Where

relevant, values are given in pu on 100 MVA base)

Component Simulated DG ∆ DG output ∆ DG output

causing connection through power through full AC

power flow capacity (at output control load flow

Node constraint Rating unity power factor) system, % simulation, %

B5 C4 0.89 1.155 40.9 41.0

B3 C3 0.89 1.134 50.7 50.8

6.4.2 DG output control in the field trial network

To illustrate the application of the DG power output control system in the field trial net-

work, it was assumed that DG was installed in excess of the winter values, simulated in Table

6.5, in order to emulate non-firm DG connections. As before, (5.14)–(5.15) were used to

predict potential DG power output adjustments for a 50% increase in the real-time thermal

rating of the power flow-constraining components [84]. In conjunction with ScottishPower

EnergyNetworks, the predicted power output adjustments were validated through a full AC

power flow and a comparison of the results is given in Table 6.8. In this case the control

system slightly under-predicted the potential power output adjustments. This is attributed

to a negative
dQc

i,k

dGP,m
that means an increase in real power injection reduces the MVAr flow.

6.4.3 Discussion

Through the constant monitoring of maximum nodal voltage excursions, the analysed net-

works were found to reach thermal limits before voltage constraints for both meshed and

radial topologies when considering static thermal ratings and, in the illustration of the DG

power output control system, with the assets up-rated by 50%. The DG power output

control system makes use of an on-line simulation tool that has the capability of validating

operational voltages against operational voltage limits. If voltage limits were to become a

constraining factor this would currently need to be dealt with outside of the jurisdiction of

the DG power output control system using active voltage measures such as demonstrated

in [95]. Alternatively, the functionality of the control system could be extended to make

use of voltage sensitivity factors [71,72].

In making the assumption that
dP c

i,k

dGP,m
≫ dQc

i,k

dGP,m
and the simplification in Equation (5.15)

that ′′Qc
i,k ≃ ′Qc

i,k, the largest % error between the DG power output adjustment from the
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control system and the full ac load flow power output adjustment for validation was 1.12%

at node 331. In this case |∂P
∂Q

| = 6.8. The slight discrepancies between adjustments will

be accommodated in the control system by designing an error margin into the utilisation

target limit, Utar.

6.5 Conclusion

The identification of thermally vulnerable components within distribution networks was

illustrated through the use of UKGDSs and the field trial network being considered in the

DIUS Project. Through system simulations, in conjunction with ScottishPower EnergyNet-

works, the components identified through the assessment of thermal vulnerability factors

were validated. This formed the basis for instrumentation investment decisions that char-

acterised the electrical and thermal behaviour of the field trial network (stage two of the

DG output control system development methodology) and provided basis for the develop-

ment of a real-time thermal rating system (stage three of the DG output control system

development methodology). These two stages are described in Chapter 7.

The purpose of the thermal vulnerability factor assessment was to identify thermally

vulnerable components within distribution networks. As demonstrated through the UKGDS

applications, the thermal vulnerability factor assessment is not confined to a specific topol-

ogy type. It can be applied to predominantly radial, predominantly meshed or mixed

topologies with equally valid results. It has been shown that the thermal vulnerability

factor assessment is appropriate for use in identifying the thermal impacts of planned indi-

vidual DG schemes or, in a more strategic way, to assess longer term and more wide-spread

DG growth scenarios. Therefore the thermal vulnerability factor assessment procedure

would be valuable for DNOs looking to develop long-term DG accommodation strategies

for areas of their network. The results of the thermal vulnerability factor assessments could

be used to inform instrumentation investment decisions for the installation of monitoring

equipment in thermally vulnerable sections of the network. The thermal vulnerability fac-

tor assessment identifies those components that would most benefit from being thermally

monitored to unlock latent power flow capacity through a real-time thermal rating system,

the off-line analysis of which may be used for sizing the installed capacity of non-firm DG

connections. Alternatively, the thermal vulnerability factor assessment could be used to

locate sections of the distribution network that would benefit from strategic reinforcement

to accommodate planned future DG scheme connections.



Chapter 7

Network thermal characterisation and real-

time thermal rating system development

7.1 Introduction

The work presented in this chapter relates to Stages 2 and 3 of the distributed generation

(DG) output control system development methodology as described in Chapter 4. This

was the primary research focus of Andrea Michiorri, a colleague at Durham University

employed as a doctoral researcher within the DIUS Project. This chapter focuses on the

thermal characterisation of the distribution network and development of power system real-

time thermal rating systems. Network thermal characterisation involves the development

of component thermal models and environmental condition interpolation techniques which

can be used together with meteorological information for the off-line simulation of real-time

thermal ratings. The off-line analysis of the simulation results allows the potential benefits

of power system real-time thermal rating systems to be quantified. In situations where it

is assessed to be viable, a system may then be developed to exploit power system real-time

thermal ratings for on-line operational usage.

Section 7.2 discusses component thermal models and failure modes. In Section 7.3,

methods to estimate power system environmental operating conditions are presented. In

Section 7.4, off-line simulations are used to assess the potential benefits of real-time thermal

rating system adoption. Section 7.5 focuses on network instrumentation for the DG output

control system. Sections 7.6 and 7.7 consider the development of on-line real-time thermal

rating systems through direct-population and thermal state estimation techniques.

86
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7.2 Power system component thermal models

Due to the variability and unpredictability of meteorological conditions, fixed seasonal

assumptions are used to determine power system ratings which can be a conservative repre-

sentation of the actual operating conditions [84]. This potentially results in a conservative

constraints on power flows. Difficulties associated with the maintenance of accurate sea-

sonal rating databases often result in the use of summer static rating throughout the year

for power system operation [51]. Moreover, the seasonal rating approach bears the latent

risk of an anomalous ‘hot day’ where the prevailing meteorological conditions mean that

power system components may be rated higher than they should be.

For the purposes of the research presented in this thesis, real-time thermal ratings

are defined as a time-variant rating which can be practically exploited without damaging

components or reducing their lifetime. It is assumed that actual environmental parameter

measurements are available and can be used as the input to the steady-state thermal models.

Short term transients, taking into account the thermal capacitance of power system assets,

are not included within the real-time thermal rating assessment since this was not expected

to affect, materially, the MWh/annum throughput of energy within the electrical power

system.

In order to assess, in a consistent manner, component real-time thermal ratings due

to the influence of environmental conditions, thermal models were developed at Durham

University based on IEC standards for overhead lines [30], electric cables [35] and power

transformers [39]. Where necessary, refinements were made to the models using [31] and [37].

Steady-state models have been used in preference to dynamic models since this would

provide a maximum allowable rating for long term power system operation. The thermal

models, used for real-time thermal rating calculations, are presented in detail in the paper

“Investigation into the influence of environmental conditions on power system ratings” in

Appendix A.

For calculating the conductor operating temperature of an overhead line at a given

current, or the maximum current for a given operating temperature, it is necessary to solve

the energy balance between the heat dissipated in the conductor by the current, and the

thermal exchange on its surface, as given in (7.1)

Imax =

√

qrad + qconv + qsol

Rac
(7.1)

where Imax is the steady state current carrying capacity, qrad is the heat loss by radiation
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of the conductor, qconv is the convective heat loss through wind cooling, qsol is the solar

heat gain by the conductor surface and Rac is the AC electrical resistance of the conductor

at its maximum operating temperature. The proposed formulae in [30] were used for the

calculation of the contribution of solar radiation, radiative heat exchange and convective

heat exchange as given in (7.2)–(7.4) respectively

qsol = αDW (7.2)

qrad = ǫσSB

(

T 4
c − T 4

a

)

πD (7.3)

qconv = πNuλ (Tc − Ta) (7.4)

where α represents the absorption coefficient, D represents the diameter of the conduc-

tor and W represents solar radiation, ǫ represents the emission coefficient, σSB represents

the Stefan-Boltzmann constant and Tc and Ta represent the respective conductor and am-

bient temperatures, Nu represents the Nusselt number and λ represents the air thermal

conductivity.

The conductor temperature of an electric cable in steady-state conditions is modelled

to account for the heat balance between the power dissipated in the conductor by the Joule

effect, I2Rac, and the heat dissipated in the environment through the thermal resistance,

RTh of the insulation and the soil, due to the temperature difference ∆T as shown in (7.5).

I2Rac =
∆T

RTh

(7.5)

The electrical current rating, I, may then be calculated (7.6) [35].

I =

√

∆T

RacRTh
(7.6)

The model given in (7.6) requires detailed knowledge of the electric cable installation

in order to calculate RTh. However, this information may not always be available and

therefore it is difficult to make practical use of the model. In these circumstances an

alternative model may be used (7.7) [37]. The rated current of electric cables, I0, is given

in tables depending on the nominal voltage level, V , the standardised cable cross-sectional

area, A, and laying conditions (trefoil, flat formation; in air, in ducts or directly buried).

The dependence of the cable ampacity on the actual soil temperature, Ts, away from the

rated soil temperature, Ts(rated), as well as the actual soil thermal resistivity, ρTh(s), away
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from the rated soil thermal resistivity, ρTh(s,rated), is made linear through the coefficients

ξT and ξρ respectively.

I = I0(A,V, laying) ×
[

ξT (Ts − Ts(rated))
]

×
[

ξρ(ρTh(s) − ρTh(s,rated))
]

(7.7)

The thermal model for power transformers is given in the paper “Investigation into the

influence of environmental conditions on power system ratings” in Appendix A.

The following component-specific failure modes exist that can cause dangerous electrical

faults to occur. Severe penalties may ensue, in terms of human fatalities and fines issued

by the regulator, OfGEM, due to the loss of supply to customers:

1. Overhead lines: The first failure mode is the sag of the line. Overhead lines are

tensioned to operate at a maximum temperature (for example 50 ◦C in the case of the

Lynx 132kV lines in the field trial network). If the current carried by a line causes

heating in excess of its maximum operating temperature the line could sag below

statutory limits. If this happens over a road, and a vehicle collides with the line, the

result may be the loss of human life. The second mode of failure can occur when the

overhead line reaches a temperature high enough to melt lubricating grease contained

within the strands of the line. It is possible that this grease could drip from the

line causing injury to humans and the anticipated performance life of the line to be

reduced. Thirdly, if the line reaches temperatures of 110 ◦C, and has aluminium or

aluminium alloy construction, the mechanical properties of the line will change from

elastic to plastic deformation. Therefore the line will be elongated from its original

length upon cooling.

2. Electric cables: The primary thermal limitation of cables is the rate of ageing that

could eventually lead to a breakdown in the electrical insulation around the conductor

core. When the insulation breaks down or melts as a result of the core conductor

temperature, the current being carried is discharged and a line-to-ground fault occurs.

It is unlikely that this type of fault will endanger human life but it is likely that the

supply to customers will be interrupted and this could contribute to financial penalties

resulting from customer minutes lost (CMLs).

3. Power transformers: In terms of failure modes, the ageing of the paper insulation

in the transformer construction is the limiting factor. Secondly, as the temperature

of the transformer increases a hotspot may occur that causes the formation of air
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bubbles in the oil. These air bubbles have a lower electrical resistance than the oil

and sparking may occur that ignites the oil and causes the transformer to explode.

7.3 Environmental conditions

This section describes, in brief, the approach adopted to estimate, correct and interpolate

environmental conditions to represent, more accurately, the actual environmental operating

conditions in the vicinity of power system components. A more in-depth description of

environmental condition estimation techniques is given in the paper “Investigation into the

influence of environmental conditions on power system ratings” in Appendix A.

The inverse distance interpolation technique [90] allows environmental conditions to be

determined over a wide geographical area using a reduced set of inputs. This is attractive for

situations where a large amount of installed measurements may be financially unattractive

to the DNO. The technique is also computationally efficient and allows the input locations

to be readily adapted. Wind direction, air temperature and solar radiation values (which

influence the thermal rating of overhead lines) were directly interpolated and did not require

the application of a correction factor. Wind speeds (which influence the convective heat

exchange of overhead lines) and the soil temperature and thermal resistivity values (which

influence the thermal rating of electric cables) were corrected. For example, in the case of

wind speed correction the wind power profile law was used.

7.4 Off-line analysis of real-time thermal rating potential

In [84] research is presented which seeks to assist distribution network operators (DNOs) in

the adoption of real-time thermal rating systems. The exploitation of power system rating

variations is challenging due to the complex nature of environmental conditions such as wind

speed. The adoption of a real-time thermal rating system may overcome this challenge and

offers perceived benefits such as increased DG accommodation and avoidance of component

damage or premature ageing.

In order to quantify the influence of environmental conditions on power system ratings,

simulations were carried out using the UK generic distribution systems and field trial net-

work as described in Chapter 3. Each distribution network was subjected to a range of UK

climatic conditions based on Met Office datasets. For each scenario the minimum, maxi-

mum and average thermal rating values were calculated. Key findings showed: The average

rating of overhead lines ranged from 1.70 to 2.53 times the static rating, with minimum and
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maximum ratings of 0.88 and 4.23 respectively; the average rating of electric cables ranged

from 1.00 to 1.06 times the static rating, with minimum and maximum value of 0.88 and

1.23 respectively; and the average rating of power transformers ranged from 1.06 to 1.10

times the static rating, with minimum and maximum ratings of 0.92 and 1.22 respectively.

7.5 Network instrumentation

The instrumentation of the field trial network within the DIUS Project took place in the

following phases:

1. The development of an electrical and thermal measurement requirements list for the

DG output control system;

2. The specification of instrumentation requirements within the field trial network for

network characterisation;

3. The commissioning of the instrumentation (through FMC-Tech) for network charac-

terisation;

4. The specification of instrumentation requirements for the prototype control system;

and

5. The commissioning of instrumentation (through AREVA) for the prototype DG out-

put control system.

This section of the thesis focuses on network instrumentation phases 1–3 which are

related to the network characterisation aspects of the DG output control system develop-

ment. The network instrumentation phases relating to the installation of the prototype DG

output control system are described in Chapter 13.

7.5.1 Control system measurement requirements list

This phase initiated the development of generic and site-specific measurement requirements

list for DG output control system. Measurements pertain to those needed for the DG output

control system to function as well as verification measurements (not input directly to the

control system) but used with an off-line tool to verify the accuracy of the algorithms

within the DG output control system. This entailed the over-instrumentation of the field

network trial network for characterisation and prototype testing purposes. Measurements
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were categorised as either ‘essential’ or ‘desirable’ and at this stage no attempt was made

to determine the actual transducers to be used to collect this data and the frequency at

which the data needed harvesting. As a general rule the measurement equipment was to be

placed at the most vulnerable and thermally sensitive point where it is difficult to accurately

estimate the thermal behaviour and failure to accurately predict the thermal limit would

have severe consequences.

The generic parameters for electrical, thermal and meteorological monitoring were listed

as follows:

1. Electrical measurements

(a) Overhead line: Real and reactive power flow, voltage and current;

(b) electric cable: Real and reactive power flow, voltage and current;

(c) power transformer: Real and reactive power flow, primary voltage and secondary

voltage;

(d) DG: Real and reactive power output.

(e) grid supply points: Real and reactive power flow and voltage;

(f) loads: Real and reactive power demand; and

(g) circuit breakers: Operational status.

2. Thermal measurements

(a) Overhead line: Core operating temperature and surface operating temperature;

(b) electric cable: Core operating temperature and surface operating temperature;

and

(c) power transformer: Hotspot temperature, top oil temperature and bottom oil

temperature;

3. Meteorological measurements

(a) Overhead line: Wind speed, wind direction, ambient temperature and solar ra-

diation;

(b) electric cable: Ground temperature, ambient temperature, ground thermal re-

sistivity and rainfall; and

(c) power transformer: Ambient temperature, wind speed*, wind direction* and

solar radiation*.

*If transformer is located outside.
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7.5.2 Field trial network instrumentation requirements

After the development of the instrumentation requirements wish list, the instrumentation

requirements for the field trial network electrical and thermal characterisation took place.

The purpose of this phase was to recommend electrical, thermal and meteorological in-

strumentation locations for the characterisation of the field trial network. A requirements

specification was written to encapsulate the measurement requirements in order that the

network behaviour could be understood both electrically and thermally. This was an essen-

tial process before decisions could be made about reducing the measurement set to prove

the validity of the DG output control system. A key output of the network characterisation

was to understand the best placement for a reduced instrumentation set in order to achieve

adequate network thermal visibility. An attempt was made to ensure that the thermal and

electrical measurements were at similar, if not the same, locations in the power system to

assist with correlation between electrical and thermal behaviour. This was also expected

to reduce the time required to install the measurement equipment on site and minimise

any interruptions to supply. General guidelines were produced for the instrumentation

installations which included:

1. Time stamping for measurement synchronisation–this allowed the temporal alignment

of electrical, meteorological and thermal data;

2. Meteorological stations needed to be near some thermal measurements for correlation

between the two;

3. All measurements should be polled with a frequency of 60 s, 30 s would be ideal. This

is because the sample frequency for characterisation can then be reduced if necessary

(but if a polling time of 30 minutes is used it is impossible to know the data variation

in between time instants);

4. Measurements near DG would be of great interest to this project;

5. Enough instrumentation needed to be installed to provide clear information for net-

work characterisation (That is enough electrical measurements to be able to run a

load flow, and enough thermal and meteorological instrumentation of the same area

to run thermal models); and

6. There needed to be regions where electrical, thermal and meteorological measurements

all exist to validate the algorithms used.
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Guidelines for electrical instrumentation were developed to be able to emulate the elec-

trical data from the DNO’s network management system and to validate the methodology

used for simulating the power flows using IPSA. This led to the specification of measure-

ments for full network characterisation and for control algorithm validation. Guidelines and

instrumentation specifications were also developed for the thermal characterisation of the

network through the monitoring of component operating temperatures and the monitoring

of meteorological conditions. In order to use meteorological measurements to validate the

meteorological models, redundancy of meteorological weather stations was required. This

allowed the state of meteorological conditions to be estimated at a particular meteorological

station location, based on meteorological measurements at other meteorological stations,

and validated using the meteorological conditions measured at the particular meteorologi-

cal station location by the meteorological station itself [85]. A maximum distance of 10km

between weather stations was specified. All instrumentation requirements were categorised

into ‘required’ or ‘desired’. This led to the commissioning of monitoring equipment of the

field trial network characterisation.

7.5.3 Network instrumentation commissioning

Figure 7.1 summarises the instrumentation locations for the field trial network characteri-

sation. The instrumented components correspond to those identified through the thermal

vulnerability factor assessment in Figure 6.4. Electrical measurements for network charac-

terisation, as specified above, were provided as off-line datasets from the historical electrical

data logged by ScottishPower EnergyNetworks’ SCADA system. Only electrical current

validation measurements were commissioned in this phase.

7.6 Population of models with environmental conditions

One potential means by which power system real-time thermal ratings could be exploited

is the direct population of component thermal models with monitored environmental con-

ditions. Since industrial standards exist for the thermal modelling of components, systems

developed to exploit real-time thermal ratings, based on these standards, would be ex-

pected to have integrity. Uncertainties in the accuracy of monitored data could be dealt

with by creating a rating probability distribution and selecting the minimum rating for

a particular operating condition [84]. However, there would be onerous instrumentation

requirements to allow the exploitation of power system real-time thermal ratings in wide
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Figure 7.1: Location of monitoring equipment for network characterisation

areas of the distribution network. Furthermore, the real-time thermal rating system would

require robust communications links to ensure thermal visibility at all times. Therefore this

approach lends itself to situations where limited areas of the distribution network would

require the real-time thermal rating to be exploited. This approach may also be used in

protection relays to provide real-time thermal ratings for auxiliary power system security

requirements [18].

7.7 Thermal state estimation

In this section the algorithm responsible for thermal state estimation is described [85]. The

primary aim of the thermal state estimation algorithm is to allow the rating of compo-

nents, which are not directly monitored within the power system, to be assessed. Thermal

state estimations facilitate the precise and reliable assessment of environmental conditions

whereby a minimal amount of meteorological monitoring installations facilitate the as-

sessment of component thermal ratings within a wide area. This may then be validated

through the carefully selected monitoring of component operating temperatures. The algo-

rithm provides a reliable estimation of power system component thermal ratings described

by an appropriate cumulative probability function. A state estimation technique based on

the Monte Carlo method is used, giving a more complete description of the possible states

of the system.

The Monte Carlo method consists of an iterative evaluation of results of deterministic
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models relative to randomly selected input values. These inputs are randomly generated

from probability density functions (PDF) describing parameter probabilistic structure. The

results generated by the deterministic model in different trials can be represented in turn

by probability distributions.

The minimum, maximum, average and standard deviation of component ratings may

be calculated according to the variability of weather conditions. As necessary for overhead

lines and electric cables, each component is divided into sections to take into account differ-

ent thermal operating conditions such as overhead line orientations and changes in electric

cable installation conditions. The section resulting in the lowest rating values is then used

to provide a rating for the entire component. Furthermore, the deployment of a real-time

thermal rating system which makes use of thermal state estimation techniques has the

potential to reduce the necessity of auxiliary communications infrastructure whilst simul-

taneously increasing the reliability of the system if measurement or communication failures

occur. This aids in fulfilling the functional requirement of the DG output control system

to degrade, gracefully, in the presence of communications failures and data uncertainty.

7.8 Conclusion

This chapter described power system thermal limits and steady-state component thermal

models, together with the use of meteorological information to populate component thermal

models to provide component real-time thermal ratings. In addition, the use of thermal state

estimation techniques whereby limited meteorological monitoring may provide power system

real-time thermal ratings for wide areas of the distribution network were also described.

The control techniques that are described in Chapters 8 and 9 have been developed to

utilise component thermal properties in making control decisions. Those thermal properties

could be based on fixed meteorological assumptions or could be supplied by more sophis-

ticated real-time thermal rating systems where they are available. Therefore the control

techniques within the DG output control system may be deployed, equally applicably, with

power system static thermal ratings, seasonal thermal ratings or real-time thermal ratings.



Chapter 8

DG output control algorithm development

8.1 Introduction

This chapter relates to the fourth and final stage of the distributed generation (DG) out-

put control system development methodology as described in Chapter 4. In this chapter

the control algorithm development is presented such that component thermal properties

may be incorporated into on-line output control of DG schemes for network power flow

management. Section 8.2 provides an overview of the control algorithm, including a func-

tional specification for the control algorithm development. Section 8.3 provides details of

the inference engine that allows the control algorithm to decide when DG output control

is necessary for the management of network power flows. Section 8.4 describes techniques

for DG set point calculation, the theory of which is presented in greater detail in Chapter

9. Section 8.5 describes the selection of a load flow package and its adaptation into a sim-

ulation tool for the off-line and on-line validation of control actions. Section 8.6 describes

the data flow within the three control algorithm components (the inference engine, the DG

set point calculator and the on-line simulation tool). Section 8.7 describes the evolutionary

stages of the control algorithms and Section 8.8 discusses the functionality of the control

algorithm to deal with partial data and data errors as inputs, as well as network topology

changes.

8.2 Overview of control algorithm components

A decision flow chart was drawn up, as shown in Figure 8.1, to identify the specific functions

of the control algorithm and simulation tool. This led to the following detailed functional

specifications for the control algorithm and simulation tool development:

97
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1. Establish the present topology of the network: As detailed in the scope of this research

(Chapter 1) the DG output control system is designed to function with a ‘system

intact’ network topology. Therefore the control system requires the functionality to

be able to detect deviations in the network topology away from predetermined states.

This information is provided by the status of circuit breakers within the distribution

network;

2. Detect if there is a thermal problem in the network: The fundamental objective of

this research is to develop a system to control the output of DG based on component

thermal properties. Therefore the control system must be designed to detect the

occurrence of thermal violations within the distribution network. This then acts as a

trigger for the constraint of DG outputs in order to manage network power flows;

3. Identify DG constraint solutions to solve thermal problems: Candidate techniques for

DG output control (as identified in Chapter 2) will be developed and assessed against

present industry practices and network reinforcement options;

4. Relax DG constraints if capacity headroom becomes available: In the closed loop con-

trol system there needs to be functionality to relax DG constraints when power trans-

fer headroom within the network becomes available;

5. Validate solutions and refine as appropriate: This may be achieved through a simu-

lation tool which models the electrical behaviour of the distribution network; and

6. Gracefully degrade in light of communication failures: In order to fulfil this function

the control system must be able to detect communication failures. A series of prede-

termined conservative default values may then be defined within the control algorithm

to provide operational integrity in light of communication failures. It is envisaged that

the DG output control system will behave in an increasingly conservative manner as

an increasing number of communications signals are lost, defaulting eventually to the

present industry practice of disconnecting DG schemes based on a static assessment

of the network availability.

The six functional requirements detailed above were encapsulated within three software

components: (i) an inference engine; (ii) a DG set point calculator; and (iii) an on-line

simulation tool.
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Figure 8.1: Control decision flow chart

The inference engine is deigned to emulate decision-making processes with artificial in-

telligence techniques. Therefore the functional requirements pertaining to decision-making

(i.e. ‘Is the system intact?’, ‘Is there a thermal problem?’, ‘Should DG be constrained or

DG constraints be relaxed?, ‘Is the control action valid?’ and ‘Are there any communica-
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tions failures?’) were assigned to this component. Whereas the inference engine is designed

to establish if DG set point adjustments are required, the DG set point calculator com-

pliments the inference engine by calculating the magnitude of the DG constraint or DG

constraint relaxation. The on-line simulation tool is responsible for calculating updated

network power flows and voltages based on the DG set point adjustments established by

the DG set point calculator. This information is then passed back to the inference engine

where the validation of power flow and voltage parameters can take place against thermal

ratings and voltage limits. The development of the control algorithm and on-line simula-

tion tool took place in two phases as seen in Figure 8.2. The third phase in this diagram

relates to the integration of the control algorithm, the service orchestrator and connection

manager within the service oriented architecture (as detailed in Chapter 4 for the practical

implementation of the prototype DG output control system).

8.3 Inference engine

The fundamental purpose of the inference engine is to assess the operating state of the

power system and make a control decision as appropriate. This may be done through

rule-based decision-making with ‘crisp’ expected and actual operating states or through

fuzzy decision-making in order to convert uncertainties in the actual operating state to

‘crisp’ values. Both of these techniques may be defined as ‘artificial intelligence’ techniques

according to [96]. Some parameters within the system have ‘crisp’ states which means there

is limited uncertainty about the actual operating state. For example, the status of a circuit

breaker can be either opened or closed - it is not possible (in terms of electrical connectivity)

to have a circuit breaker that is ‘half’ open or ‘half’ closed. Some parameters within an

electrical network have uncertainty associated with them. For example the standard-based

thermal rating of an overhead line is modelled based on a number of variables, such as

wind speed, wind direction, ambient temperature and solar radiation, which are measured

through monitoring equipment that may be non-local to the component. The accuracy

of the calculated thermal rating is dependent on the accuracy of the model and also the

monitoring equipment. Therefore, there is uncertainty regarding the extent to which the

calculated thermal rating is representative of the ‘actual’ thermal rating. Moreover, since

there is uncertainty associated with the thermal rating of a component this propagates to

uncertainty regarding the extent to which a particular component is ‘overloaded’. In this

case the development of a fuzzy control system could help to deal with the uncertainties.
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The network topology is defined by the status of circuit breakers which have two ‘crisp’

boolean states - either opened or closed. Therefore, establishing the present network topol-

ogy lends itself to rule-based decision making since a crisp set of expected circuit breaker

states may be directly compared with the crisp set of actual circuit breaker states. Uncer-

tainties may arise through loss of communications which may result in the actual status of

a circuit breaker position being unknown. However, this could be dealt with by assuming

worst case operating conditions (i.e. the actual circuit breaker status is in the opposite

state to that which is ‘expected’) and taking control actions as appropriate.

In a similar way, uncertainties resulting from other communication failures may be

dealt with using rule-based control techniques. For example any communication failures in

the electrical parameters needed to operate the control system could result in conservative

default values being used.

At this point it is necessary to define the utilisation of a power system component since

this facilitates the control decision-making in terms of assessing the extent to which a com-

ponent is ‘over’-utilised or ‘under’-utilised. Therefore DG constraints may be established

when a component is assessed to be ‘overloaded’ and the relaxation of DG constraints may

be established if component power transfer capacity headroom exists.

The utilisation of a particular power system component may be calculated as in (8.1)

U c
i,k =

Sc
i,k

Sc
i,k(lim)

(8.1)

where U c
i,k represents utilisation of component c between nodes i and k, Sc

i,k represents

the apparent power flow in component c from node i to node k and Sc
i,k(lim) represents the

thermal limit of component c.

Initially, although errors of ±5% exist within the monitoring of SCADA equipment [9]

(this is discussed in Chapter 13), the monitored values recorded by the network manage-

ment system were assumed to be representative of the ‘actual’ operating values. Real-time

thermal ratings from the thermal state estimation algorithm are represented as a probabil-

ity density function and the rating corresponding to the minimum probability was used to

represent the real-time thermal rating of a particular power system component. Therefore,

for the purposes of the research presented in this thesis, the component power flows and

power system thermal ratings were assumed to have ‘crisp’ values. The ‘crisp’ component

utilisation value can be used in rule-based inference as illustrated in Figure 8.3. In this

diagram three utilisation values are specified: an upper utilisation limit (U-Constrain), a

target utilisation limit (U-Target) and a lower utilisation limit (U-Relax). The variable util-
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Figure 8.3: Three-rule inference engine

isation (illustrated by the unbroken line) represents the utilisation variation of a particular

component with time. When a component utilisation occurs that is greater than (or equal

to) the upper utilisation limit (denoted by region A) the resulting action is to constrain the

output of the DG to achieve the target utilisation limit in order to protect the component

from a sustained thermal overload. When a component utilisation occurs that is less than

the lower utilisation target (denoted by region B) this triggers the control system to relax

DG constraints back to the target utilisation limit. In the region between the upper and

lower utilisation limits no control action is necessary.

8.4 DG set point calculator

Whilst the rule-based inference engine is responsible for determining whether or not a

control action is necessary, the DG set point calculator is responsible for determining DG

constraints or DG constraint relaxations that lead to the specified target utilisations of

thermally vulnerable components. As detailed in the scope of this research, the primary

aim of DG operators is to maximise the active energy yield of DG schemes and therefore

wind farms tend to be operated at, or close to, unity power factor. Due to this driver the

DG set point calculator determines updated real power outputs for the DG scheme(s) when

control actions are necessary.

The DG set point calculator aims to reduce output constraints placed on DG schemes

and hence increase annual active energy yield productions when compared to present oper-

ational practices. A number of candidate control techniques have been developed for both
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single and multiple DG schemes and are described in detail in Chapter 9. The candidate

control techniques for single DG schemes build on Engineering Technical Recommendation

(ETR) 124 [50]. The multiple DG control strategies reflect (i) present last-in first-off con-

tractual operating procedures; (ii) an egalitarian constraint strategy; and (iii) the most

appropriate technical solution, based on power flow sensitivity factors. In addition, power

output set points are established for multiple DG schemes in order to manage power flows

in single and, if necessary, multiple components of the distribution network.

8.5 On-line simulation tool

ScottishPower EnergyNetworks own and operate a meshed electrical distribution network

and, in all but the simplest of cases, a topological model combined with a load flow software

package is required in order to solve component power flows and busbar voltages for the

time-variant operation of the network. The top-level functionality of the on-line simulation

tool is to produce updated component power flows and busbar voltages (based on updated

outputs coming from the DG set point calculator) and pass these values back to the in-

ference engine for validation against power flow and voltage limits. In order to select the

most appropriate load flow package a number of sub-functions and user requirements were

specified as follows:

1. Reliable and robust in terms of solution convergence for potential field application;

2. Efficient in terms of time taken to compute the load flow solution and computational

memory requirements;

3. Accurate - allowing the user to specify the tolerance band of the convergence error;

4. Ease of building the electrical network in the simulation package and scalability for

future network extensions;

5. Allow simulation inputs to be varied in real-time;

6. Allow inputs from SCADA to be readily incorporated;

7. Allow automation of simulations;

8. Return power flows and voltages in a format that facilitates comparison with operating

limits;

9. Cost effective as a solution; and
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10. Patent compatible.

An initial survey showed that a large number of commercially available load flow pack-

ages exist which offer a variety of functions. A short list of three packages was established,

based on commercial exploitation, the availability of expert support for assessing the suit-

ability of the load flow package against the criteria above, and the ease of integrating the

load flow package into the service oriented architecture detailed in Section 4.6 of Chapter

4. The research findings are summarised below:

8.5.1 ScottishPower EnergyNetworks’ network management system

The network management system installed in the control centre of ScottishPower Energ-

yNetworks contains an electrical state estimation algorithm and load flow algorithm for

processing SCADA information monitored within the distribution network. However, the

integration of these functions into the DG output control system was perceived by experts

at ScottishPower EnergyNetworks to be prohibitively complex due to data access through

security encryptions and the possible risk of network management system disruption.

8.5.2 AREVA’s eterradistribution application

AREVA T&D have developed a suite of software tools for electrical network manage-

ment system applications under the collective title of eterracontrol. Within this suite

eterradistribution was identified as having the potential functionality required for the DG

output control system. However, the load flow algorithm within the eterradistribution

package could not easily be decoupled from large amounts of additional software which

were superfluous to this particular application. Therefore, for the prototype control system

development this option was disregarded.

8.5.3 IPSA

The assessment of the IPSA load flow package against the functional specifications showed

that it could be adapted for incorporation in the DG output control system by the develop-

ment of a scripting interface in the Python programming language. In the live multi-million

pound AuRA-NMS project, involving seven top UK research institutions, IPSA was iden-

tified for use as an on-line simulation tool for validating control solutions. Therefore it

was felt that there could be functionality overlap and scope for collaborative research in

automating the operation of IPSA.
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IPSA is a well-established steady-state load flow package within the electrical industry,

being used by distribution network operators (DNOs), equipment manufacturers and con-

sultants such as PB Power. The software tool was originally developed by researchers at

the University of Manchester: Institution of Science and Technology (now the University of

Manchester) with sponsorship from ScottishPower EnergyNetworks. Software development

support was available through experts at TNEI with the provision of guidance and support

in extending the functionality of IPSA to meet the requirements specified above.

Python is an open-source programming language that may be used for rapid prototyp-

ing applications. Many of the software fields and functions that are normally accessible to

the user through IPSA’s graphical user interface are mapped to software objects and soft-

ware methods (in Python) within IPSA’s scripted interface. Listed below are the principal

advantages of using IPSA with a scripted interface:

• The development of Python scripts allows the functionality of the IPSA load flow

package to be user-defined;

• load flows can be automated which means that a series of snapshots can be used to

represent the steady-state operation of the network in real-time; and

• repetitive computations with minor network changes can be efficiently performed.

Four specific applications of scripted IPSA were developed in this project three of which

were off-line and one of which was on-line:

1. Off-line simulation for parameter estimation at the ‘front end’ of the control system;

2. Off-line determination of power flow sensitivity factors;

3. Off-line simulation tool to validate updated DG set points; and

4. On-line simulation tool to validate updated DG set points.

Front end parameter estimation

As defined in the scope of this research (Section 1.3) the commercialised DG output con-

trol system will be integrated to receive electrical signals directly from SCADA monitor-

ing equipment through the DNO’s network management system. This decision has been

taken since instrumentation and state estimation techniques for monitoring the electrical

behaviour of power systems are already well-established. However, in developing the pro-

totype DG output control system access to component power flow monitoring information
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and circuit breaker status information was limited. For planning purposes ScottishPower

EnergyNetworks have a complete model of their distribution network in the load flow pack-

age IPSA [93]. With the functionality provided by ‘scripting’ IPSA through the Python

programming language [97] (whereby electrical datasets from ScottishPower EnergyNet-

works’ historical PI database can be input to the package, load flows automatically carried

out and electrical dataset reports automatically generated) the operation of the distribution

network (in terms of power flows and voltages) was able to be modelled by knowing the

network topology, the generation into the system, the load demand from the system and

voltage reference values at the grid supply points. This is illustrated in Figure 8.4.

Power flow sensitivity factor calculation

The functionality of scripted IPSA for the off-line calculation of power flow sensitivity

factors is shown in Figure 8.5. Theory of power flow sensitivity factors is given in Chapter 4.

Off-line / on-line simulation tool

This application has the same functionality and is therefore a replication of the front-

end parameter estimation application. The difference being that the front-end parameter

estimation application represents the present network operating condition whereas the sim-

ulation tools use updated DG set points within the load flow algorithm in order to establish

updated component power flows and busbar voltages as a result of control actions. The off-

line simulation tool utilises off-line data whereas the on-line simulation tool utilises on-line

data. These differences are shown in Figure 8.6.

8.6 Component inputs and outputs

Figure 8.7 displays the data flows within the DG output control system which specifically

relate to the control algorithm and on-line simulation tool services developed and presented

in this thesis.



8
.6

.
C

o
m

p
o
n
e
n
t

in
p
u
ts

a
n
d

o
u
tp

u
ts

1
0
8Figure 8.4: ‘Front end’ IPSA scripting for parameter estimation



8
.6

.
C

o
m

p
o
n
e
n
t

in
p
u
ts

a
n
d

o
u
tp

u
ts

1
0
9

Figure 8.5: IPSA scripting for power flow sensitivity factor calculation
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Figure 8.7: Data flow within the DG output control system
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8.7 Control algorithm evolution

The control algorithm within the DG output control system evolved in the following four

stages:

1. Open-loop control with off-line data inputs;

2. Closed-loop control with off-line data inputs;

3. Open-loop control with on-line data inputs; and

4. Closed-loop control with on-line data inputs.

8.7.1 Off-line control loops

The off-line open and closed control loops, for the time-series analysis of the control sys-

tem, are shown in Figure 8.8. In the open loop, normalised historical generation and load

datasets are multiplied by peak scaling values which are fed into the network power flow

emulation tool to produce a complete set of network power flows. The peak scaling fac-

tor(s) of the generation real power output profile(s) equal the installed capacity of the

DG scheme(s). The inference engine utilises a rule-base with two rules to decide if ‘DG

constraint’ or ‘no action’ is necessary. After the control algorithm has computed the nec-

essary control actions and the DG set points have been validated, the new DG set points,

busbar voltages, component utilisations and component losses are logged in a database for

further off-line analysis. In the closed loop (represented in Figure 8.8 by the dotted line)

the updated DG real power set point replaces the peak scaling factor (installed capacity)

of the normalised historical generation profile. Therefore a third rule is introduced to the

inference engine to relax DG constraints when the headroom in power transfer capacity

leads to an ‘under-utilisation’ of the component. As before, DG set points, busbar voltages,

component utilisations and component losses are logged in a database for further off-line

analysis.

8.7.2 On-line control loops

The on-line open and closed control loops are shown in Figure 8.9. The network power

flow emulation tool is replaced by electrical measurements which come directly from the

distribution network. In the open loop, the DG real power output is multiplied by a scaling

factor to represent a constrained connection and, as with the off-line open-loop control
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Figure 8.8: Off-line control in open and closed loops

system, the inference engine utilises a two-rule rule-base to decide if ‘DG constraint’ or

‘no action’ is necessary. After the control algorithm has computed the necessary control

actions and the DG set points have been validated, the new DG set points, busbar voltages,

component utilisations and component losses are logged in a database for further off-line

analysis. In the closed loop, represented in Figure 8.9 by the dotted line leading to the

decision support graphical user interface (GUI) in the DNO control room, the updated DG

real power set points are dispatched to the DG scheme via the DNO control room. In

this project this step was carried out in the simulation environment. As with the off-line

closed-loop control system, a third rule is introduced to the inference engine to relax DG

constraints when the headroom in power transfer capacity leads to an ‘under-utilisation’ of

the component and DG set points, busbar voltages, component utilisations and component

losses are logged in a database for further off-line analysis.
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Figure 8.9: On-line control in open and closed loops

8.8 Data errors and network topology changes

This section proposes methods for dealing with input data errors and network topology

changes. Data errors may arise (i) from partial datasets as a result of communications

failures; and/or (ii) from the accuracy of monitoring equipment. Network topology changes

could result from temporary electrical faults, scheduled maintenance work, as a result of a

network reconfiguration action, network extensions or from new DG connections.

8.8.1 Dealing with partial data and data errors

In the event of communication failures, and in absence of auxiliary communication systems,

the control algorithm may, at times, receive a partial dataset of input parameters. It is

anticipated that the DG output control system, if deployed commercially, will receive inputs

from the SCADA system which is likely to have electrical state estimation functionality

and therefore be able to provide a complete electrical signal set to the DG output control

system. As a back-up, a set of default values may be programmed into the ‘front end’

of the control algorithm. These default values represent conservative operating conditions

and are selected to populate the missing parameter values if a partial dataset is input

to the control algorithm. Thus the DG output control system is provided with graceful
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degradation functionality. This is illustrated in Section 10.9 of Chapter 10.

Data errors may arise from the accuracy of monitoring equipment, installed to provide

inputs to the control algorithm. In order to deal with data errors, assessments of the

possible sources and magnitudes of errors are required and inputs to the control algorithm

need to modified to account for the errors. Data errors and their impact on the DG output

control system are discussed in detail in Section 13.5 of Chapter 13.

8.8.2 Dealing with network topology changes

Distribution network topology changes have the potential to impact on the continued op-

eration of the DG output control system particularly, in the case of multiple DG scheme

control, if the magnitude of power flow sensitivity factors is affected. This could require the

adaptation of the control algorithm and on-line simulation tool within the control system

to deal with the topology change. The cause of network topology changes may be broadly

categorised as follows, each of which would require the control algorithm and simulation

tool to be adapted in a slightly different manner:

• As a result of a temporary electrical fault in the network;

• as a result of network reconfiguration;

• as a result of scheduled maintenance in the network;

• as a result of network extensions; and

• as a result of new DG connections.

The potential ways in which the control system could be adapted to deal with network

topology changes are outlined:

Electrical faults

Electrical faults could be detected through the unexpected opening or closing of circuit

breakers i.e. circuit breakers that are not related to network reconfiguration actions. This

could be achieved through the constant comparison of monitored circuit breaker signals

with default values embedded within the control algorithm. It is outside the scope of

this research to develop a DG output control system to function in electrical contingency

scenarios and it is likely that the DG scheme will automatically be disconnected through

control actions of the DNO’s protection system.
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Network reconfiguration

In the case of multiple DG scheme output control, the derived power flow sensitivity factors

are network configuration-specific and assume that the network configuration will not be

frequently changing. It is feasible, however, to develop an on-line control system that makes

use of alternative sets of the above mentioned predetermined power flow sensitivity factors

based on network switch status information.

Scheduled maintenance, network extensions and new DG connections

Scheduled maintenance of the distribution network, network extensions and new DG con-

nections are planned by the DNO many months in advance of the event occurrence. During

scheduled maintenance it is likely that the DG scheme(s) will be disconnected or required

to operate at a reduced peak output based on the available network capacity.

The methodology framework required to adapt the DG output control system to deal

with scheduled maintenance, network extensions and new DG connections is provided in

Chapter 4. An overview of the required DG control system adaptation steps is provided

below:

1. Modify the topology of the network as appropriate in the analysis and on-line simu-

lation tool models;

2. Conduct an updated off-line study to identify any new thermally vulnerable compo-

nents within the distribution network that may result from the topology change;

3. Develop as appropriate a new real-time thermal rating system to incorporate any new

power system components that have become thermally vulnerable as a result of the

topology change; and

4. Specifically related to the control algorithm, the particular control strategy / strate-

gies need to be updated to incorporate the network topology change:

(a) Conduct a new off-line analysis to determine power flow sensitivity factors;

(b) modify rule-bases in the inference engine as necessary to achieve the desired

control functions;

(c) incorporate additional terms in the DG set point calculator equations to account

for the control of the new network topology; and
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(d) update the on-line simulation tool model and simulation algorithm to incorpo-

rate and validate the power flows and voltages resulting from the new network

topology.

It should be noted that some scheduled maintenance work, network extensions and

new DG connections may have a negligible impact on the power flow sensitivity factors of

thermally vulnerable components to DG schemes and therefore control system modifica-

tions may not be strictly necessary. In addition, the anticipated length of the scheduled

maintenance period is likely to impact on the decision to update the control system.

8.9 Conclusion

In this chapter the development of the control algorithm within the DG output control sys-

tem was presented. Rule-based decision-making was proposed for use within an inference

engine to determine the need for control actions which may constrain DG outputs, take no

action or relax DG output constraints. The magnitude of DG output constraints or DG

output constraint relaxations are determined by a DG set point calculator which incorpo-

rates candidate strategies for single or multiple DG scheme output control. Control actions

are validated through an on-line simulation tool. It was decided that the development of

strategies for the coordinated output control of DG schemes could be of more benefit to

DG scheme developers than the development of a fuzzy inference techniques (the latter

also had the potential to reduce the transparency of the DG output control system for

users not familiar with fuzzy control techniques). Therefore DG output control techniques

were investigated in greater depth than rule-based and fuzzy logic-based decision-making

techniques and form the basis for the research presented in Chapters 9–13.



Chapter 9

Techniques for DG output control

and evaluation

9.1 Introduction

This chapter describes the techniques which may be utilised for the output control of

single DG schemes and the proposal of strategies for the coordinated output control of

multiple DG schemes. The research presented in this chapter was published by the author

in [86, 88, 98]. Engineering Technical Recommendation (ETR) 124-based techniques are

adapted for the output control of single DG schemes and are described in Section 9.2.

Section 9.3 recaps the theory regarding DG output control based on power flow sensitivity

factors. Section 9.4 extends this theory to propose three strategies for the output control of

multiple DG schemes. These are: (i) A last-in first-off (LIFO) strategy (reflecting present

DG contractual agreements) [54]; (ii) an egalitarian strategy (whereby the power output

of multiple DG schemes is adjusted by an equal percentage of their current output using a

single broadcast signal) [56]; and (iii) a technically most appropriate (TMA) DG constraint

strategy (whereby the DG scheme with the best technical ability to manage network power

flows is selected to be adjusted) [72]. In Section 9.5, parameters are proposed to evaluate

the control algorithms in order to quantify potential DG output control system benefits.

The techniques used to quantify the evaluation parameters are given in generic forms and

include: Numerical integration to calculate annual energy yields and annual energy losses;

a loss apportioning technique to attribute energy losses to particular DG schemes; the

financial quantification of DG development net present values (NPVs) and profitability

indices (PIs); and the summarising of component power transfers and busbar voltages

through duration curves.
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9.2 Single DG scheme control using ETR 124 techniques

For the management of power flows associated with the connection of a single DG scheme,

the following techniques are proposed, based on ETR 124 [50]:

1. DG tripping based on a static assessment of network availability;

2. DG tripping based on component seasonal thermal ratings;

3. Demand-following DG output control based on component static thermal ratings; and

4. Demand-following DG output control based on component real-time thermal ratings.

Schematic diagrams for the DG tripping and demand-following DG output control tech-

niques are respectively provided in Figures 10.3 and 10.4 of Chapter 10. The DG tripping

technique is implemented using the algorithm given in (9.1).

If : Current > Rating

Then : Trip DG to Rating + Base load
(9.1)

When this algorithm is implemented with the static assessment of network availability,

the DG output will be tripped to the static rating plus the base load if the power flow

in the thermally vulnerable component exceeds the static rating. This corresponds to the

implementation of Technique 1 in the list above. Similarly, in a seasonal rating implemen-

tation [51], such as Technique 2, the DG output will be tripped to the seasonal rating plus

the base load if component power flow exceeds the seasonal rating. These techniques do

not account for the variable nature of the load and thus they trip off individual generating

units, rather than constraining them back.

Demand-following DG output control is implemented using the algorithm in (9.2) based

on static, seasonal or real-time thermal ratings and monitoring of the variable load demand.

If : Current > Rating

Then : Control DG output to Rating + Load demand
(9.2)

The control algorithm given in (9.2) is implemented with static ratings to realise Tech-

nique 3 and real-time thermal ratings to realise Technique 4. The demand-following DG

output control techniques are more sophisticated than the DG tripping techniques and have

the potential to offer energy yield gains by taking into account the variable nature of power

system thermal ratings and the load demand. To ensure the safe and secure operation of
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the network assets, demand-following DG output control techniques require an auxiliary

trip system, which utilises the same ratings as the control algorithm, to act as a backup in

the case of control system operational failure.

ETR 124 describes techniques for the output control of single DG schemes and, al-

though it is suggested that the proposed techniques may be extended to control multiple

DG schemes, this aspect is not demonstrated. Due to the simple algebraic power flow al-

gorithms given in ETR 123, the proposed techniques are appropriate for situations where

the power output from a single DG scheme is being controlled as a result of a local ther-

mal constraint. If power output control of the DG scheme is required to solve power flow

constraint issues deeper into the network then the algebraic formulations provided in ETR

124 are not adequate. In this situation power flow constraints may be solved through the

use of power flow sensitivity factors that relate changes in the output of DG schemes to

changes in distribution network power flows. These concepts are described in Section 9.3

and in Appendix D.

9.3 Proposed techniques for DG control using power flow

sensitivity factors

For a given operating condition the evaluated power flow sensitivity factors may be stored

efficiently in matrix form (9.3).

MPFSF =
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(9.3)

When network power flow management is required, the amount an individual DG scheme

is constrained may be calculated (9.4) using values from the power flow sensitivity factor

matrix, MPFSF , (9.3)
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∆GP,m =
∆Pi,k

(

dPi,k

dGP,m

) (9.4)

where ∆GP,m is the required change in real power output of the DG scheme connected

at node m;
dPi,k

dGP,m
is the power flow sensitivity factor that relates the change in nodal real

power injection at m with the change in real power flowing from node i to node k; and

∆Pi,k is the required change in real power flowing from node i to node k in order to manage

network power flows, as evaluated in (9.5)

∆Pi,k =
√

(UTar × Sc
i,k(lim))

2 − (′′Qi,k)2

−
√

(′Si,k)2 − (′Qi,k)2
(9.5)

where UTar is the target utilisation of the congested component after control actions

have been implemented; Sc
i,k(lim) is the thermal limit of the congested component; ′Si,k is

the apparent power flowing from node i to node k before control actions are implemented

and, ′Qi,k and ′′Qi,k respectively represent the reactive power flowing from node i to node k

before and after the control actions have been implemented. Thus the updated DG scheme

output is evaluated using (9.6)

′′GP,m = ′GP,m + ∆GP,m (9.6)

where ′GP,m and ′′GP,m represent the respective real power outputs of the DG scheme

connected at node m before and after control actions have been implemented.

9.4 Proposed strategies for multiple DG scheme control

This section presents the candidate strategies for power output control of multiple DG

schemes and extends the theory for the control of individual DG schemes based on power

flow sensitivity factors. The proposed strategies are:

• LIFO PFSF-based DG output control;

• DG output control using an egalitarian broadcast signal whereby DG schemes adjust

their power output by the same percentage of their present power output; and

• DG output control by selecting the TMA DG scheme to adjust.

The LIFO PFSF-based strategy represents current operational practices with the addi-

tion of power flow sensitivity factor benefits i.e. matching DG power output adjustments to
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the network availability. The egalitarian broadcast signal strategy was of particular inter-

est to ScottishPower EnergyNetworks due to the anticipated ease of implementation. The

TMA strategy represents the best technical option if contracts are in place to deal with

arising commercial and regulatory issues. The strategies are outlined in greater detail in

the sections that follow.

9.4.1 LIFO PFSF-based

DG power outputs are curtailed in a LIFO contractual order, defined within the matrix

MLIFO (9.7)

MLIFO =
[

xGid

1 xGid

2 · · · xGid
mT

]

(9.7)

where the integer x, represents the ranked order of curtailment for the DG scheme,

G, with a unique identifier (id), at nodes 1, 2, up to mT respectively (mT being the DG

connection node with the highest index). The unique identifier aids clarity and is necessary

for situations where multiple DG schemes have the same connection point to the distribution

network but separate operating contracts. The generic form of this strategy is given in

(9.8)–(9.11). A set point change is dispatched to relevant DG operators that match DG

power outputs to the capability of the network. If, by implementing the required reduction,

as calculated in (9.8), the signal is driven negative (9.9) the DG is tripped (9.10) and the

next DG scheme, contractually, to be constrained is apportioned the required power output

reduction (9.11). By adopting this approach, ‘last-in’ DG schemes are penalised if power

flow excursions occur, even if they are not making a significant power output contribution

at that time. Moreover, as DG proliferates there is an increased implementation complexity

for DNOs in terms of dispatching the constraint signals to a series of DG scheme operators.

x∆GP,m =
x∆Pi,k

x

(

dPi,k

dGP,m

) (9.8)

If:

xGP,m + x∆GP,m < 0 (9.9)

Then:

xGP,m = 0 (9.10)

and

x+1∆Pi,k = x∆Pi,k − xGP,m × x

(

dPi,k

dGP,m

)

(9.11)
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9.4.2 Egalitarian broadcast signal

The complexity of dispatch signals, associated with a LIFO control strategy could be over-

come through an egalitarian percentage constraint signal that is simultaneously broadcast

to all DG schemes. In this strategy a reduction signal, Φ, as calculated in (9.12)–(9.13),

is broadcast to all the relevant DG schemes. When an assessment of the reduction signal

is calculated, not only does this take into account the power output magnitudes of each

DG scheme, it also considers the power flow sensitivity factors. The constraints required

to manage the network power flows are shared by each DG scheme and those DG schemes

making a significant power output contribution are constrained more, in terms of the abso-

lute power output reduction (∆GP ) than those DG schemes making a small contribution.

The derivation of the egalitarian broadcast signal is given in Appendix D.

∆GP,m = GP,m × Φ (9.12)

Φ =
∆Pi,k

m=mT
∑

m=1

(

GP,m ×
(

dPi,k

dGP,m

)) (9.13)

9.4.3 Technically most appropriate

The DG scheme are ranked for power output adjustment, in a technical priority order, by

the relative magnitude of power flow sensitivity factors given in matrix MTMA (9.14)

MTMA =
[

xGid

1 xGid

2 · · · xGid
mT

]

(9.14)

where the integer x, represents the ranked order of DG curtailment for the DG scheme,

G, with a unique identifier (id) at nodes 1, 2, up to mT respectively, based on the relative

magnitudes of power flow sensitivity factors given in (9.3). The generic form of this strategy

implementation, as with the LIFO strategy, is given in (9.8)-(9.11). In this case the DG

scheme with the best technical ability to manage network power flows is selected.

9.5 Proposed DG output control evaluation parameters

This section proposes a number of parameters for the time-series evaluation of DG output

control techniques and suggests techniques that may be used to quantify the evaluation

parameters. These include: (i) Numerical integration to calculate annual energy yields
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and annual energy losses; (ii) a loss apportioning technique to attribute energy losses to

particular DG schemes; (iii) the financial quantification of DG development NPVs and

PIs; and (iv) the summarising of component power transfers and busbar voltages through

duration curves. In the sections that follow the techniques used to quantify the evaluation

parameters are given in generic forms.

9.5.1 Annual energy yields

The numerical technique used to integrate DG power outputs and hence quantify DG annual

energy yields is given in (9.15)

Ea = t ×
(

0GP + yGP

2
+

x=y−1
∑

x=1

xGP

)

(9.15)

where Ea represents the annual energy yield of the DG scheme, t represents the time-

step of the integration, and 0,x,yGP represents the real power output of the DG scheme, G,

at the initial (0), intermediate (x), and final (y) time-steps.

9.5.2 Loss apportioning

The technique used to apportion energy losses to individual DG schemes in a proportional

manner, through a component connecting multiple DG schemes to the distribution network,

is given in (9.16)-(9.17).

Ploss,i,k,m = Ploss,i,k,total ×
GP,m
∑

GP,m
(9.16)

where Ploss,i,k,m represents the real power lost in the component between node i and

node k and apportioned to a particular DG scheme at node m; Ploss,i,k,total represents the

total real power lost as heat in the component between node i and node k due to the Joule

effect (I2Rac); GP,m represents an individual DG scheme real power injection at node m;
∑

GP,m represents the total real power injection at node m from multiple DG schemes and

Eloss = t ×
(

0Ploss + yPloss

2
+

x=y−1
∑

x=1

xPloss

)

(9.17)

where Eloss represents the apportioned annual energy loss, and Ploss, t, x and y retain

their definitions as above. More complex loss apportioning techniques, looking deeper into

the power system, are described by Bialek [77] for power flow tracing and by Kirschen and

Strbac [78] for current tracing.
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9.5.3 Economic assessment

The economic assessments focus, in particular, on wind farms as this was of most interest

in the DIUS Project. Building on the work of Payyala and Green [99], the methodology

used to evaluate the NPV of the wind farm investment to each DG developer, and therefore

the PI, is presented. The total investment cost for each developer, CR(inv), is modelled as

a sum of three variable costs, CR(1−3) (9.18)–(9.21)

CR(inv) = CR(1)(Gi) + CR(2)(n1) + CR(3)(n2) (9.18)

where

CR(1)(Gi) = GiCGi
(9.19)

and Gi represents the installed capacity of the DG scheme and CGi
represents the

total wind farm installation costs including wind turbine generators, foundations, electrical

infrastructure, and planning and development costs;

CR(2)(n1) = CR(control)/n1 (9.20)

where the cost of the control system, CR(control), including development costs, installa-

tion costs, necessary communications links and the auxiliary trip system is shared amongst

the number of stakeholder investors (n1) and

CR(3)(n2) = CR(real−time)/n2 (9.21)

where the cost of the real-time thermal rating system, CR(real−time), including develop-

ment costs, thermal instrumentation costs, and the cost of necessary communications links

is shared amongst the number of stakeholder investors, n2.

The cost of the annual operations and maintenance, CR(OM), is modelled as a propor-

tion, KOM , of the wind farm installation cost (9.22)

CR(OM) = KOMGiCGi
(9.22)

The annual net revenue, CR(annual), of each wind farm developer is modelled in (9.23)–

(9.25) by subtracting the cost of losses, CR(loss), from the revenue generated through the

metered active energy yield, CR(EY )
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CR(annual) = CR(EY ) − CR(loss) (9.23)

CR(EY ) = Ea

(

CE(wholesale) + CE(ROC)

)

(9.24)

CR(loss) = Eloss × CE(wholesale) (9.25)

where Ea is the metered active annual energy yield of the wind farm development,

Eloss is the active annual energy losses apportioned to each DG developer, CE(wholesale)

represents the wholesale electricity price, and CE(ROC) is the sale price of Renewables

Obligation Certificates (ROCs).

The NPV of each wind farm investment is quantified in (9.26) by assessing the present

value (PV) of the annuity (CR(annual) −CR(OM)), discounted over the project lifetime, and

subtracting the cost of the original investment.

NPV = PV
(

CR(annual) − CR(OM)

)

− CR(inv) (9.26)

The PI for each wind farm development is defined as the ratio of the NPV to the initial

investment (9.27) [99].

PI =
NPV

CR(inv)
(9.27)

Clearly the results of financial evaluations are sensitive to wind farm installation costs,

discount rates, project lifetimes, wholesale electricity prices and the sale price of ROCs.

In addition, and particularly for financial analyses related to multiple DG schemes, the

connection charging mechanism plays an important role [100]. If a deep charging mechanism

is assumed then the DG developer pays for all the costs incurred within the distribution

network that can be attributed to the DG scheme connection and operation. For example,

the cost of the local circuit and any necessary uprating to switchgear equipment. This

charging mechanism is presently applied to connections at the distribution network level.

An alternative shallow charging mechanism is applied at transmission network level. In

applying this charging mechanism the DG developer would pay directly only for the part

of the power system which is solely used by the DG scheme. Other reinforcement costs

are recovered through use-of-system charges. However, the development of a use-of-system

charging mechanism at the distribution network is more complex than the use-of-system
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charging mechanism at the transmission network level since the users are expected to change

more frequently at the distribution network level.

9.5.4 Power transfers and busbar voltages

Load duration curves [14] are a planning tool used to summarise and analyse the power

demand at supply points in the power system. The same technique was adapted to pro-

duce the power transfer curves of components and evaluate the performance of DG control

strategies in utilising power system assets more effectively. Moreover, busbar voltage dura-

tion curves were produced to summarise and analyse the impact of candidate DG control

strategies on busbar voltages across the year.

9.6 Conclusion

This chapter described techniques which may be utilised for the output control of single

and multiple DG schemes. ETR 124-based techniques are adapted for the output control of

single DG schemes. The theory of power flow sensitivity factors was developed to propose

three strategies for the coordinated output control of multiple DG schemes. These included:

(i) A LIFO strategy (reflecting present DG contractual agreements); (ii) an egalitarian

strategy (whereby multiple DG schemes are adjusted by an equal percentage of their current

output using a single broadcast signal); and (iii) a TMA strategy (whereby the DG scheme

with the best technical ability to manage network power flows is selected to be adjusted).

In order to quantify DG output control system benefits, techniques and parameters were

proposed to evaluate the control algorithms. These included: Numerical integration to

calculate annual energy yields and annual energy losses; a loss apportioning technique

to attribute energy losses to particular DG schemes; the financial quantification of DG

development NPVs and PIs; and the summarising of component power transfers and busbar

voltages through duration curves. The proposed techniques and evaluation parameters

may provide a comprehensive framework which facilitates the quantification of DG output

control system benefits for DNOs and DG scheme developers.



Chapter 10

Case study 1: Output control of a single

DG scheme based on a single thermal

constraint

10.1 Introduction

This chapter describes the simulation of Engineering Technical Recommendation (ETR)

124-based control techniques in order to manage the power output of a single distributed

generation (DG) scheme based on component thermal properties. The research presented

in this chapter was published by the author in [98, 101]. The technical considerations and

economics of a number of techniques that would allow a greater installed capacity of DG

to be connected to, and operated within, the distribution network are presented. The

techniques include: (i) The tripping-off of the DG scheme based on a static assessment

of component ratings and minimum load demand at the DG connection busbar; (ii) the

tripping-off of DG based on seasonal thermal ratings and minimum load demand at the DG

connection busbar; (iii) the load demand-following output control of DG schemes based

on a static thermal ratings; (iv) the load demand-following output control of DG schemes

based on real-time thermal ratings (RTTRs); and (v) the provision of an unconstrained DG

connection through network reinforcement.

The chapter is structured in the following way: Section 10.2 describes the case study

network, Section 10.3 describes the real-time thermal rating assessment of the thermally

vulnerable overhead line, Section 10.4 describes the power flow management techniques,

Section 10.5 describes the time-series electro-thermal simulation approach, Section 10.6

describes the quantification methodology for the evaluation of the DG output control tech-
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Table 10.1: Summary of ratings utilised

Conductor Rating Rating Rating

type condition (A) (MVA)

LYNX Static / summer seasonal 390 89

LYNX Spring/autumn seasonal 450 103

LYNX Winter seasonal 485 111

LYNX Real-time (average daily minimum) 695 159

UPAS Static / summer seasonal 770 176

niques, Section 10.7 presents the simulated real-time changes in DG power outputs, Section

10.8 presents and discusses the results of the evaluation parameter quantification method-

ology and Section 10.9 demonstrates the graceful degradation of the control algorithm due

to partial dataset inputs.

10.2 Case study description

The case study network shown in Figure 10.1 is derived from the section of ScottishPower

EnergyNetworks’ distribution network given in Figure 3.1 and formed the basis for the

prototype DG output control system field trials in the DIUS Project. Considering Figure

10.1 in the context of Figure 3.1, B5 represents the DG connection busbar and B4 represents

the slack busbar with static, seasonal and real-time thermal ratings applied to component

C4. Although it is not displayed in Figure 10.1, Engineering Recommendation P2/6 [8]

security of supply requirements are met for the connected load through an underlying

meshed 33kV infrastructure. An installed wind capacity of 150 MW was selected to create

a constrained connection.

10.3 Real-time thermal rating assessment

Table 10.1 displays the ratings used in the energy yield quantification analyses. The static

and seasonal ratings were based on the SP Manweb Long Term Development Statement [14].

The average simulated daily minimum real-time thermal rating is also given in Table 10.1.

Off-line analysis showed that a thermal constraint would be met in this section of the

network before voltage or fault-level limitations.

In the first series of control algorithm simulations [98], a modest Aeolian up-rating of
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Figure 10.1: Field trial network with single DG connection

30% above the static thermal rating was used for the real-time thermal rating analysis [27].

This assumption was deemed appropriate as the up-rated line is geographically close to the

wind farm site and thus at times of maximum power output from the DG scheme there

would also be a maximum wind-cooling effect on the line.

In the second series of control algorithm simulations [101], the daily minimum real-time

thermal ratings were calculated using the steady-state thermal model of the overhead line

conductor populated with historical meteorological data for the relevant region of the UK

(as described in Chapter 7). In addition, a more in-depth analysis of the various techniques

was carried out by quantifying the losses introduced by the DG scheme and using these

values to modify the financial evaluations.

The simulated daily real-time thermal rating of the Lynx conductor is given in Figure

10.2 for the calendar year 2005. The simulation used the overhead line model described by

(7.1)–(7.4) in Section 7.2 and historical meteorological data for the ‘Valley’ area of Wales,

UK [102]. As a comparison, the seasonal ratings for the conductor are also plotted in

Figure 10.2. On occasions it can be seen that the real-time thermal rating drops below the
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Figure 10.2: Rating variation of LYNX overhead line

seasonal thermal rating. This is due to the fixed meteorological assumptions that are used

to calculate seasonal thermal ratings that may not be an accurate reflection of prevailing

meteorological conditions.

10.4 Power flow management techniques

For the single DG connection within the field trial network the following techniques were

simulated to manage power flows within the DG connection feeder:

1. DG tripping based on a static assessment of network availability;

2. DG tripping based on component seasonal thermal ratings;

3. Demand-following DG output control based on component static thermal ratings;

4. Demand-following DG output control based on component real-time thermal ratings

(RTTRs); and

5. Network reinforcement to provide an unconstrained DG connection.

Each section below assesses the strengths and weaknesses of the particular power flow

management technique. Where appropriate, the algorithm used to manage the DG connec-

tion is given, together with an approximate cost of the technique implementation.
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10.4.1 DG tripping

The DG tripping schematic is shown in Figure 10.3 and implements the algorithm given in

(10.1).

If : Current > Rating

Then : Trip DG to Rating + Base load
(10.1)

When this algorithm is implemented with the static rating of 390 A, the DG output will

be tripped to 434 A at unity power factor (390 A rating + 44 A base load) if the current

flow in the line exceeds 390 A. This corresponds to the implementation of Technique 1.

Similarly, with incorporation of a seasonal rating system [51], such as Technique 2, the

DG output will be tripped back to the seasonal rating plus the base load if line flow exceeds

the seasonal rating. These techniques are conservative as they do not account for the

dynamic nature of the load and thus they trip-off generators rather than constraining them

back. Furthermore, the seasonal rating approach bears the latent risk of an anomalous ‘hot

day’ where the prevailing meteorological conditions may mean that assets are rated higher

than they should be.

The cost of implementation of these techniques was estimated by considering software

and hardware costs, communication link costs and labour costs. The DG tripping software

was estimated to cost £1k, the relay hardware (based on an industrial PC) was estimated

to cost £1k, a single communication link from the relay to the DG scheme to coordinate the

opening of generator circuit breakers was estimated to cost £1k, labour costs were divided

into system set-up and system maintenance costs with system set-up costs totalling £1k

(based on 5h SCADA access set-up, 10 h software installation and testing and 5 h relay

installation, each costing £50/h) and system maintenance costing £1k. This produced a

total of £5k which was doubled to £10k to account for cost estimation deviations and a

profit margin.

10.4.2 Demand-following DG output control techniques

Figure 10.4 shows the schematic that allows the algorithm in (10.2) to be implemented to

control the DG output based on static, seasonal or real-time network availabilities and a

variable load demand at the DG connection busbar.

If : Current > Rating

Then : Control DG output to Rating + Load demand
(10.2)
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Figure 10.3: DG tripping with component static or seasonal thermal ratings

Control algorithm (10.2), implemented with a static rating of 390 A, corresponds to

Technique 3. The DG output control techniques are more sophisticated than the DG

tripping techniques and have the potential to offer energy yield gains by taking into account

the dynamic nature of the load demand. Additional power flow monitoring equipment is

required to facilitate demand-following DG output control.

In the case of the control system informed by component real-time thermal ratings

(Technique 4), additional thermal and meteorological monitoring is also required. To ensure

the safe and secure operation of the network assets, each demand-following DG output

control technique requires an auxiliary trip system, which calculates the same ratings as

the control system, to act as a backup in the case of control system operational failure.

The estimated cost of the demand-following DG output control technique deployed with

component static / seasonal thermal ratings was £50k. This comprised £5k for the relay

system described above, £5k for the DG output control software, £3k for an industrial PC

hardware platform to host the DG output control software, £11k for two additional relay

cubicles to provide stand-alone capability for the control system and monitor the electrical
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Figure 10.4: DG output control with static, seasonal or real-time thermal ratings

parameters (DG real and reactive power outputs and the real and reactive power load

demands) with an additional communication link to control the DG power output, and an

additional labour cost of £1k. The total cost (£25k) was doubled to account for estimation

deviations and a profit margin.

The cost of the demand-following DG output control technique deployed with compo-

nent real-time thermal ratings was estimated to be £100k. This comprised £5k for the

real-time thermal rating software, £6k for two meteorological stations to monitor wind

speed, wind direction, ambient temperature and solar radiation in the vicinity of the over-

head line, £2k to provide the communication link between the meteorological stations and

the relay cubicles and £37k for DG output control system described above with the modi-

fication to the system to integrate real-time thermal ratings into the host PC platform and

relay cubicle. The total cost (£50k) was doubled to account for estimation deviations and

a profit margin.
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10.4.3 Network reinforcement

The network reinforcement option (Technique 5) would require a replacement 132kV over-

head line to be constructed and the existing overhead line to be de-commissioned. It is

assumed that the replacement line conductor is Upas 300 mm2 AAAC. If this conductor

is tensioned to maintain statutory ground clearances [15] at an operational temperature

of 75 ◦C, the rating would be sufficient to provide an unconstrained annual energy yield

from the DG scheme. However, it requires the largest capital investment [103] and could

take several years to be installed due to the lengthy environmental assessments, planning

permission, commissioning and building processes. The estimated cost of the network re-

inforcement option, to install an up-rated 7 km 132kV line, was quoted by ScottishPower

EnergyNetworks planning engineers as £2M.

10.5 Simulation approach

The constrained connection configurations were simulated through an off-line time-series

analysis using the half-hourly regional loading and wind farm power output profiles for the

complete calendar year 2005. Weather data from Valley (Wales, UK) was used to estimate

weather parameter values along the length of the overhead line. These, in conjunction with

the model described in Section 7.2, were used to calculate a series of daily thermal ratings

for the studied line. Control algorithms (10.1) and (10.2) were applied to the case study

network (with the relevant component thermal rating system) and the necessary constraints

were implemented off-line.

10.6 Evaluation parameter quantification methodology

The annual energy yield at the DG connection busbar was calculated for each technique, by

integrating the real power output of the DG scheme across the year in 30 minute intervals.

The per unit electrical losses (I2Rac) resulting from the simulation of each technique were

calculated using the current flowing in the overhead line with per unit resistances of 0.0070

and 0.0041 for the Lynx and Upas conductors respectively. These were then summated

across the year on a half-hourly basis to produce annual energy loss figures. For each

technique, the net annual revenue was calculated by multiplying the annual energy yield at

the DG connection bus by £101.43/MWh (£52.15/MWh wholesale electricity price [104] +

£49.28/MWh Renewables Obligation Certificate sale price [105]) and making an adjustment
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for the cost of the losses incurred by transferring this energy to the slack busbar (calculated

as the annual energy losses multiplied by the wholesale electricity price).

The basic tripping scheme based on summer static ratings (Technique 1) was taken

as the datum technique with a capital cost of £10k and net annual revenue of £42.35M

(based an energy yield at the DG connection busbar of 418.1 GWh and 1.3 MWh lost

through power transfer to the slack bus). The estimated marginal costs (due to additional

network costs), predicted marginal revenues (due to additional energy yield) and marginal

losses (resulting from electrical power transfer to the slack busbar and changes in electrical

resistance of the line) were compared to this technique. This allowed a basic net present

value (NPV) comparison of the alternative techniques, based on their relative marginal costs

and marginal revenues. A 10% discount rate and 20 year economic life was assumed [106].

The capital cost of the wind farm itself was neglected as this would be constant for each

technique. Furthermore, because the wind farm is connected to the distribution network

via a single overhead line, any faults or scheduled maintenance on this line will cause it to

shut down. Since such events have an equal constraint on the energy yield of each technique

this effect was neglected. All the costs within the financial evaluations were estimates of

equipment costs, provided by AREVA T&D based on the most appropriate data available

at the time of consideration.

10.7 Real-time changes in DG power output

The real-time change in DG power outputs resulting from the various technique simulations

are demonstrated in Figures 10.5–10.7 by the selection of illustrative days to represent

summer, spring/autumn and winter operating conditions respectively. Considering Figure

10.5, the graph demonstrates the operation of the different control techniques for a 24-hour

period during the illustrative time period in July. Techniques 1 and 2 result in the same

real-time DG power output since the component seasonal rating in the summer months

is equivalent to the component static thermal rating. For the time period considered,

Techniques 1 and 2 produce the greatest constraint in the DG power output when compared

to the other techniques. At times of constraint the DG scheme is tripped back to the static

thermal rating of the overhead line plus the base load demand at the DG connection busbar.

By taking into account the real-time variation of the load demand at the DG connection

busbar, DG output control based on component static thermal ratings (Technique 3) leads

to a greater DG power output during this time period than the DG tripping techniques.
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Figure 10.5: Illustration of real-time changes in DG output for summer operating conditions

This is because the DG power output is matched to the static thermal rating of the overhead

line plus the time-varying load demand at the DG connection busbar. An additional power

output from the DG scheme may be accommodated by the adoption of the demand-following

DG output control technique deployed with component real-time thermal ratings. In this

case the DG power output is matched to the time-varying thermal rating of the overhead

line combined with the time-varying load demand at the DG connection busbar. For the

time period selected it may also be seen that the unconstrained (and thus greatest) DG

power output is facilitated by network reinforcement.

Considering Figure 10.6, two periods of DG constraint exist from 00:00 on 28/9 to

07:00 on 28/9 and from 10:30 on 28/9 to 15:30 on 29/9. Regarding the second DG output

constraint period, and in comparison to Figure 10.5, it is possible to distinguish between

the DG tripping technique based on component static thermal rating and the DG tripping

technique based on the spring/autumn thermal rating since the latter results in a greater DG

power output. Moreover, the demand-following nature of the DG output control technique

based on the static thermal rating is apparent as the DG output follows a typical UK load

demand profile. From 12:00 on 28/9 the load demand grows to a peak demand during the

evening-time (reflected by the peak DG output for this technique during the time period

considered). The load demand then reduces during the night-time hours from 00:00 on 29/9

to 06:00 on 29/9 (reflected by a reduction in the DG power output during the corresponding

time period) and rises steadily through the morning from 06:00 on 29/9 to 08:30 on 29/9
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Figure 10.6: Illustration of real-time changes in DG output for autumn operating conditions

to reach a plateau during the day-time (as reflected by the DG power output). During the

time period considered, the greatest DG power output is facilitated by the demand-following

DG output control technique deployed with component real-time thermal ratings. The also

corresponds to the unconstrained DG power output resulting from network reinforcement

for the time period considered.

Figure 10.7 illustrates real-time changes in the power output of the DG scheme for

the different control techniques applied in wintertime. Periods of DG constraint occur

for different durations during the time period considered and it is possible to observe the

impact of the thermal rating system and the method of DG power output constraint. DG

tripping based on a static assessment of the component thermal rating and load demand

produces the greatest constraint in the power output of the DG scheme. During the time

period considered DG output control based on the component static thermal rating and

variable load demand produces a greater constraint on the power output of the DG scheme

than DG tripping based on the seasonal winter rating. During the time period considered,

the greatest DG power output is facilitated by the demand-following DG output control

technique deployed with component real-time thermal ratings. The also corresponds to the

unconstrained DG power output resulting from network reinforcement. A period of DG

constraint exists between 03:00 and 04:00 on 22/12 where the DG power output resulting

from DG tripping based on seasonal thermal ratings is greater than DG output control based

on component real-time thermal ratings. This highlights a situation where a potentially

dangerous situation could arise due to anomalous weather conditions that produce a latent
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Figure 10.7: Illustration of real-time changes in DG output for winter operating conditions

risk of component thermal overloads. During this one-hour interval the overhead line is

rated higher than it should be, based on assumed winter meteorological conditions. This

detracts from the use of seasonal thermal ratings without adequate thermal monitoring

systems to give the DNO control room visibility of the distribution network actual thermal

operating conditions.

10.8 Evaluation parameters: Results and discussion

The results from the quantification methodology are summarised in Table 10.2. For this case

study, it appears that controlling DG output to follow load demand based on the summer

static rating (Technique 3) yields greater revenue for the DG developer than switching

ratings on a seasonal basis and tripping DG as a result (Technique 2). DG tripping based

on seasonal thermal ratings (Technique 2) requires a lower initial investment. However, the

risk on the part of the DNO is greater if seasonal ratings are utilised. This is to due the

possibility of an anomalous ‘hot day’ occurring when ratings have been relaxed. This risk

may be mitigated by investment in a real-time thermal rating system to provide accurate

knowledge of the current thermal status of the network.
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Table 10.2: Quantification methodology results

Marginal annual Marginal Marginal Marginal

Marginal energy yield at annual net 20 Year NPV

cost DG connection bus energy losses annual revenue @ 10% discount factor

Technique (£k) (%) (%) (£M) (£M)

1: DG tripping based on a static 0 0.00 0.00 0.00 0.00

assessment of network availability

2: DG tripping based on 0 4.93 18.41 2.08 17.71

seasonal thermal ratings

3: Demand-following DG output 40 5.24 18.99 2.21 18.76

control using static thermal ratings

4: Demand-following DG output 90 10.75 43.39 4.53 38.46

control using RTTRs

5: Network reinforcement to provide 1990 10.76 -16.31 4.58 36.97

an unconstrained connection
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Economically, the most attractive technique to the developer is the DG output control

based on component real-time thermal ratings and load demand (Technique 4). The an-

nual revenue of the project is increased by £4.53M and shows the highest marginal NPV

at £38.46M. For this case study, this technique appears to be more attractive than the al-

ternative reinforcement option (Technique 5). This provides an unconstrained energy yield

(and hence maximum annual revenue) but would require an extra capital investment of

£1.99M to upgrade the overhead line. Network reinforcement (Technique 5) would reduce

network losses relative to the other techniques since the larger cross-sectional area of the

conductor would reduce the electrical resistance to power flow. However, despite increasing

electrical losses through implementing a demand-following DG output control technique,

the cost of capital for the DG developer is likely to make the active network management

solutions, with lower upfront costs, a more attractive investment.

10.9 Graceful degradation

Rather than tripping-off the DG scheme if communications failures occur, the ‘front-end’

of the DG output control algorithm is configured with default values to allow continued

operation of the control system, and graceful degradation, in the event of communication

signal losses. The real power output of the DG scheme defaults to its maximum output

(installed capacity value) if this signal is lost or corrupted. The reactive power output of the

DG scheme is assumed to be negligible for the normal operating mode at unity power factor.

Local load demands at the DG connection busbar default to zero and component real-time

thermal ratings default to the standard static summer rating values. These values are

selected to represent the worse case operating conditions if a communication failure occurs

and are summarised in Table 10.3.

A methodology was employed to test the graceful degradation of the control algorithm

as follows:

1. Initially, the DG power output was simulated for the condition with full communica-

tions visibility;

2. Considering the inputs to the control algorithm given in Table 10.3, each communi-

cation signal, in turn, was set to the default value whilst the other signals remained

unchanged. This represented the loss of the particular communications signal and

the replacement of the lost signal with the default value. For each contingency the

simulation was re-run and the updated DG power output profile was recorded;
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Table 10.3: Control algorithm default values

Input Default

parameter value

DG real power output (MW) Gi

DG reactive power output (MVAr) 0

Real power load demand (MW) 0

Reactive power load demand (MVAr) 0

Component rating (MVA) Summer static rating, Slim

3. As a comparison of ‘full visibility’ and ‘no visibility’ behaviour the simulation was

also run with complete signal losses as inputs to the control algorithm to establish

the DG power output profile; and

4. The DG power outputs were plotted to understand the ranked order in severity of

communication signals lost.

The governing equations for the updated DG power output, in the context of Figure 3.1

and as a function of the variables listed in Table 10.3 are given in (10.3) and (10.4)

′′GP,B5 = ′GP,B5 + ∆GP,B5 (10.3)

where ′′GP,B5 is the real power output of the DG scheme in the event of loss of commu-

nication signals; ′GP,B5 is the DG output before the loss of communication signals occurred;

and ∆GP,B5 is the calculated change in DG output as a result of communication signals

lost;

∆GP,B5 =
√

(SC4
B5,B4(lim))

2 − (GQ,B5 − QB5)2 − (GP,B5 − PB5) (10.4)

where SC4
B5,B4(lim) is the static, seasonal or real-time thermal limit of component C4;

GP,B5 and GQ,B5 represent the respective real and reactive power flows from the DG scheme;

and PB5 and QB5 represent the real and reactive load demands at node B5. It should be

noted that the terms given in (10.4) are replaced by the default values given in Table 10.3

in the event that the particular signal is lost. The graceful degradation of the control

algorithm is illustrated in Figure 10.8 through the selection of a day in July to demonstrate

the different DG power output profiles for different communication signals lost. The DG
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Figure 10.8: Graceful degradation of the control algorithm

installed capacity, as previously in this chapter, was set to 150 MW to create a constrained

connection. As the severity of the communication signal lost increases, and/or number of

communication signals lost increases, the DG output control algorithm makes increasingly

conservative calculations regarding the maximum power output of the DG scheme.

The initial DG output, load demand and real-time thermal rating values (corresponding

to the unconstrained DG scheme operation at 06:00 on 6/7/2006) are given in (10.5)–(10.7)

respectively.

GP,B5 + jGQ,B5 = 136.8MW − j0.1MVAr (10.5)

PB5 + jQB5 = 17.3MW + j2.4MVAr (10.6)

SC4
B5,B4,lim = 110MVA (10.7)

These figures may be substituted directly into (10.3)–(10.4) to calculate the constrained

DG output with full communication signal visibility as ′′GP,B5 equal to 127.3 MW. If the

DG real power output signal is lost, GP,B5 is set to 150 MW (note that ′GP,B5 is still equal to

136.8 MW). Therefore ∆GP,B5 (10.4) is calculated to be −22.7 MW and thus ′′GP,B5 (10.3)

is equal to 114.1 MW. If the real power load demand signal is lost, PB5 is set to 0 MW

(this represents the complete real power output of the DG scheme flowing directly into

component C4). Therefore ∆GP,B5 (10.4) is calculated to be −26.8 MW and thus ′′GP,B5
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(10.3) is equal to 110.0 MW. If the real-time thermal rating signal is lost, SC4
B5,B4(lim) is set

to 89 MVA. Therefore ∆GP,B5 (10.4) is calculated to be −30.5 MW and thus ′′GP,B5 (10.3)

is equal to 106.3 MW. For this particular illustration it was found that the loss of reactive

power signals made negligible impact on the calculation of ′′GP,B5. Clearly combinations of

the above mentioned signals could be lost simultaneously. This would result in increasing

conservatism from the DG power output control system. The most severe case would be

the complete loss of communication signals which are input to the control algorithm. In

this case ∆GP,B5 (10.4) is calculated to be −61.0 MW and thus ′′GP,B5 (10.3) is equal to

75.8 MW. Assuming that signal dispatches to the DG scheme are not lost too, this would

represent value to the DG developer in terms of the DG scheme not being tripped off.

10.10 Conclusion

This chapter described the simulation of ETR 124-based control techniques in order to man-

age the power output of a single DG scheme. The technical considerations and economics of

a number of techniques that would allow a greater installed capacity of DG to be connected

to, and operated within, the distribution network were presented. The techniques included

(i) the tripping of the DG scheme based on a static thermal rating; (ii) the tripping of

the DG scheme based on seasonal thermal ratings; (iii) the demand-following output con-

trol of the DG scheme based on a static thermal rating; (iv) the demand-following output

control of the DG scheme based on real-time thermal ratings; and (v) the provision of an

unconstrained DG scheme connection through network reinforcement.

The demand-following DG output control technique with real-time thermal ratings re-

sulted in a marginal annual energy yield gain of 10.75% when compared to 418.1 GWh/annum

resulting from a present industry practice of DG tripping based on static thermal ratings.

Despite increasing electrical losses (which were quantified and charged back to the DG de-

veloper), the demand-following DG output control technique was found to have a marginal

net present value to the DG developer of £38.46M, compared to £36.97M resulting from a

network reinforcement option. The cost of capital for the DG developer is likely to make

DG output control systems, with lower upfront costs, a more attractive investment.



Chapter 11

Case study 2: Output control of multiple

DG schemes based on a single thermal

constraint

11.1 Introduction

This chapter describes the simulated use of power flow sensitivity factors to control the

power output of multiple DG schemes, based on a single thermal constraint, within United

Kingdom Generic Distribution System (UKGDS) A. The research presented in this chapter

was published by the author in [86, 87]. The case study network and description of DG

schemes is given in Section 11.2, the thermal vulnerability factor assessment for the installed

DG schemes is presented in Section 11.3, the real-time thermal rating assessment for the

thermally vulnerable component, identified in Section 11.3, is described in Section 11.4,

power flow sensitivity factor-based DG output control strategies are illustrated in Section

11.5 and the time series electro-thermal simulation approach is described in Section 11.6.

As a result of the electro-thermal simulations, the real-time changes in DG power outputs

are presented in Section 11.7 and the DG annual energy yields, quantified to assess the DG

output control system benefits, are presented and discussed in Section 11.8.

Last-in first-off (LIFO) control strategies for multiple DG schemes have developed in

the current regulatory framework of the UK. However, as the power transfer capacity of

distribution networks becomes saturated, there is an economic disadvantage to ‘last-in’ DG

schemes. This is because they are the first DG schemes to be disconnected or have their

power output constrained in order to manage network power flows. The resulting annual

energy yield of such schemes may be significantly curtailed and, based on the anticipated

145
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Table 11.1: DG scheme properties

Generator Generator Installed Last-in first-off

node, m type capacity (MW) constraint order dP353,357/dGP,m

352 Hydro 18 2 0.475

353 CHP 40 3 0.477

354 CHP 30 1 0.327

net present value of the investment, the DG development may not be economically viable.

The candidate control strategies move away from piecemeal DG scheme control systems to

coordinate the power outputs of multiple DG schemes in order to achieve aggregated bene-

fits for power system stakeholders. Under certain conditions the proposed strategies (LIFO

PFSF-based, egalitarian and technically most appropriate (TMA)) have the potential to

facilitate improved individual and aggregated annual energy yields for separately owned DG

schemes [86], when compared to a benchmark LIFO discrete interval DG control strategy.

In such circumstances the coordinated output control of DG schemes could enhance the

revenue streams of ‘last-in’ DG developers to an extent that the investment in the installa-

tion is economically viable. Moreover, cross-payments could be set-up between DG scheme

developers to ensure that those developers that constrain the power output of their DG

scheme to allow an aggregated annual energy yield gain are remunerated. However, there is

no regulatory mechanism in the UK, at present, to encourage and support this operational

framework.

11.2 Network description

The case study network, shown in Figure 11.1 was derived from a section of the UKGDS

‘EHV3’ network [81]. The network was modified for the output control of multiple DG by

connecting a hydro generator and two combined heat and power (CHP) generators to the

network at 33kV nodes. A summary of the DG scheme properties is given in Table 11.1.

11.3 Thermal vulnerability factor assessment

The most thermally vulnerable components within the case study network were identified

using a thermal vulnerability factor assessment as given in Figure 11.2. From this assess-

ment it may be seen that a DG real power injection at node 352 increases the thermal
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Figure 11.1: UKGDS A case study network with DG

vulnerability of the components between nodes 352 and 353, and between nodes 353 and

357 but reduces the thermal vulnerability of the component between nodes 316 and 353.

Moreover, a DG real power injection at node 353 increases the thermal vulnerability of

the component between nodes 353 and 357 but reduces the thermal vulnerability of the

component between nodes 316 and 353. Furthermore, a DG real power injection at node

354 increases the thermal vulnerability of the components between nodes 316 and 353, 354

and 316, and 353 and 357. However, this injection has little impact on the thermal vul-

nerability of the component between nodes 352 and 353. In this particular case, multiple

DG injections cause the thermal vulnerability factors to accumulate for the electric cable

between nodes 353 and 357, making it the most thermally vulnerable component. Having

identified this component as being a potential thermal pinch-point and requiring power flow

management within the network, the targeted development of a real-time thermal rating

system was informed.

11.4 Component real-time thermal rating assessment

A summary of the characteristics of the thermally vulnerable electric cable are given in Table

11.2. The ‘Valley’ UK MetOffice dataset [102] for the calendar year 2006 was used with

the thermal state estimation technique described in Chapter 7 to estimate environmental

operating conditions local to the electric cable [87]. This information was used by Andrea
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Figure 11.2: Cumulative TVF assessment of UKGDS A (in Figure 11.1)

Table 11.2: Electric cable characteristics

Electric cable characteristic Value / category

Total resistance, Rac 0.01489 pu

Total reactance, X 0.01296 pu

Cross-sectional area 150 mm2

Standard rating, S353,357,lim 30 MVA

Nominal line-to-line voltage 33kV

Standardised phase current rating 525 A

Installation conditions Flat formation, buried in a duct

Michiorri to populate the electric cable steady-state thermal model described by (7.7) in

Chapter 7. The resulting real-time thermal rating for the electric cable, together with the

static rating, is given in Figure 11.3. It was found that the average uprating for the electric

cable, based on minimum daily ratings was 6.0% across the year.

11.5 DG output control strategy illustrations

In implementing the DG set points, calculated using the different control strategies outlined

below, it was assumed that CHP plants had the capability to regulate the real power injected

into the distribution network. In addition it was assumed that the hydro scheme had the

capability to regulate real power injections in a similar manner to the technique described

in [63].
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Figure 11.3: Electric cable static and real-time thermal rating variation

In the power flow sensitivity factor-based control strategies that are illustrated in Sec-

tions 11.5.2-11.5.4, the required real power reduction in the electric cable, ∆P353,357 in order

to bring the resultant power flow back within the desired thermal limit was calculated using

(11.1) with UTar = 0.99.

∆Pi,k =
√

(UTar × Sc
i,k,lim)2 − (′′Qi,k)2

−
√

(′Si,k)2 − (′Qi,k)2
(11.1)

11.5.1 LIFO discrete interval

In order to manage network power flows and reflect present operational practices, the

power output of the DG schemes was reduced in discrete intervals of 33% according to the

contractual priority order given in Table 11.1. Thus, when a thermal violation was detected,

the power output of the DG scheme at node 354 was reduced by 33%, then 66%, followed

by complete disconnection. If the thermal violation was still present after the complete

disconnection of the DG scheme at node 354, the output of DG scheme at node 352 was

reduced by 33%.
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11.5.2 LIFO PFSF-based

The required power output reduction of the first DG scheme (contractually) to be con-

strained, ∆GP,354, was calculated using (11.2) for GP,354 − ∆GP,354 > 0 and the output

from GP,352 and GP,353 was unconstrained. On occasions when the required constraint of

the DG scheme at node 354 would result in GP,354 −∆GP,354 < 0, the DG scheme was dis-

connected and the necessary power flows were managed by the next DG scheme (at node

352) to be contractually constrained.

∆GP,354 =
∆P353,357

0.327
(11.2)

11.5.3 Egalitarian

The equal percentage reduction signal, Φ, broadcast to all DG schemes in order to manage

network power flows was calculated and simulated using (11.3)-(11.6).

Φ =
∆P353,357

(0.475 × GP,352) + (0.477 × GP,353) + (0.327 × GP,354)
(11.3)

∆GP,352 = GP,352 × Φ (11.4)

∆GP,353 = GP,353 × Φ (11.5)

∆GP,354 = GP,354 × Φ (11.6)

11.5.4 Technically most appropriate

Since, in this case, the DG scheme at node 353 has the greatest technical ability to manage

network power flows (as assessed by the comparative magnitude of power flow sensitivity

factors in Table 11.1), Equation (11.7) was implemented to reduce the aggregated DG

scheme constraint and thus increase the aggregated annual energy yield of the DG schemes.

On occasions when the required constraint of the DG scheme at node 353 would result in

GP,353 − ∆GP,353 < 0, the DG scheme was disconnected and the necessary network power

flows were managed by the DG scheme with the next-greatest power flow sensitivity factor

(in this case at node 352).
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∆GP,353 =
∆P353,357

0.477
(11.7)

11.6 Electro-thermal simulation approach

This section describes the off-line time series electro-thermal simulation that was used to

quantify the individual and aggregated DG scheme annual energy yields for the multiple

DG scheme control strategies. A flow chart of the simulation procedure is given in Figure

11.4. UKGDS half-hour loading and generation profiles were utilised with the scripted

IPSA load flow software tool to simulate network power flows and busbar voltages for a

complete operational year. The open-loop control system compared network power flows

to component static and real-time thermal limits for each half-hour interval within the

simulated year. When power flow management was required (signified in this case by an

electric cable utilisation, U353,357 ≥ 1) each DG output control strategy was implemented

and the updated individual DG scheme real power outputs were recorded. A validating load

flow simulation was conducted as part of the control algorithm to ensure that the updated

DG power outputs managed the power flows effectively and did not breach busbar voltage

limits (set to ±6% of nominal) [15]. The individual and aggregated DG power outputs were

integrated across the simulated year in order to estimate the annual energy yields resulting

from the candidate multiple DG control strategies. Each control strategy was simulated

with static and then real-time thermal rating systems.

11.7 Real-time changes in DG power outputs

The real-time change in DG power outputs resulting from the various strategy deployments

with component static thermal ratings were analysed. Figures 11.5, 11.6, 11.7 and 11.8

represent the respective outputs of GP,352, GP,353, GP,354 and the aggregated DG scheme

outputs for an illustrative week of operation during May.

Considering Figure 11.5, GP,352 is predominantly unconstrained for the time period

considered for the LIFO and TMA control strategies. This is because the DG scheme at

node 352 is, contractually, the second DG scheme to be constrained at times of network

power flow management and therefore, if the first-off DG scheme (at node 354) manages the

required network power flow constraint then GP,352 is unconstrained. Considering Table

11.1, GP,352 has the second-highest power flow sensitivity factor and is, technically, the

second DG scheme to be constrained at times of network power flow management when
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the TMA strategy is adopted. Therefore if the required network power flow constraint is

managed by the TMA DG scheme at node 353, then GP,352 is unconstrained. Considering

the egalitarian control strategy, the output of GP,352 is constrained.

Figure 11.4: Simulation flow chart
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Figure 11.5: Illustration of real-time changes in DG output of GP,352

Figure 11.6: Illustration of real-time changes in DG output of GP,353
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Figure 11.7: Illustration of real-time changes in DG output of GP,354

Figure 11.8: Illustration of real-time changes in the aggregated DG output of GP,352, GP,353

and GP,354
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This is because, for this particular strategy, all DG schemes participate in the manage-

ment of network power flows. The period of negligible power output could be attributed to

a lack of rainfall to power the hydro scheme or a period of scheduled maintenance.

Considering Figure 11.6, technically GP,353 is the most appropriate DG scheme to con-

strain at times of DG output control since it has the highest power flow sensitivity factor

(as seen in Table 11.1) and therefore has the greatest technical ability to manage network

power flows. As a result, GP,353 for the TMA strategy implementation is the lowest when

compared to the other strategies. At times of power output constraint, GP,353 tracks the

available power transfer capacity which varies as a result of the continuously changing load

demand in the network. As illustrated in (11.3)-(11.6), the egalitarian strategy requires

participation by all DG schemes in order to manage network power flows. Therefore the

output of GP,353 is also constrained under this operating regime. In this case, all the DG

schemes are tracking the variation in available power transfer capacity as a result of the

continuously changing load demand in the network. Therefore the power output of GP,353

follows the same general profile, but is less constrained than that of the TMA strategy. The

LIFO strategies both produce the same (unconstrained) DG output.

Considering Figure 11.7, the impact of each control strategy on the power output of

GP,354 may be observed. Since GP,354 is the first-off DG scheme (as given in Table 11.1), the

LIFO discrete-interval control strategy leads to the greatest constraint of the DG output

when compared to the other strategies. Illustrative time periods such as 02:00 to 12:00

on 12/05 and 09:30 to 15:00 on 15/05 represent the DG power output at 0.666 and 0.333

of maximum capacity respectively. The LIFO PFSF-based control strategy leads to an

increase of GP,354, relative to the LIFO discrete interval strategy, since the power output

is matched to the available transfer capacity between nodes 353 and 357. The egalitarian

control strategy employs all the DG schemes in the management of power outputs and

therefore an additional increase in GP,354 is facilitated. As discussed previously, GP,353 is

technically the most appropriate DG scheme to constrain in order to manage power flows in

this case study network. Therefore GP,354 is unconstrained for the TMA control strategy.

The aggregated DG power outputs are presented in Figure 11.8. This demonstrates

that the TMA strategy facilitates the greatest aggregated DG output gains, followed by the

egalitarian strategy, followed by the LIFO PFSF-based control strategies, when compared

to the LIFO discrete interval control strategy.
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Table 11.3: DG marginal annual energy yields (%) with component static thermal ratings

Marginal Annual Energy Yield (%)

DG Control Strategy GP,352 GP,353 GP,354 GP,aggregated

LIFO 0.0 0.0 0.0 0.0

(discrete intervals)

LIFO 1.1 0.0 16.8 4.1

(PFSF-based)

Egalitarian percentage -9.7 -10.0 66.6 7.7

reduction of output

Technically 1.7 -19.2 85.1 9.0

most appropriate

11.8 Annual energy yield results and discussion

The marginal annual energy yields resulting from the control strategies simulated with static

and real-time thermal ratings are summarised in Tables 11.3 and 11.4 respectively. The

LIFO discrete interval strategy deployed with static component ratings was used as a datum

with annual energy yields of 106.38 GWh, 298.26 GWh, 120.84 GWh and 525.48 GWh for

GP,352, GP,353, GP,354 and GP,aggregated respectively.

11.8.1 Results with static thermal ratings

Considering Table 11.3, for the case study network it can be seen that power flow sensitivity

factor-based approaches have the potential to unlock gains in the aggregated annual energy

yield contribution of multiple DG schemes. Moving from a LIFO discrete interval to a

LIFO PFSF-based control strategy has the potential to unlock an extra 4.1%. Moreover, a

further 4.9% annual energy yield gain may be achieved by utilising the TMA DG scheme

to reduce aggregated DG constraints. For the egalitarian control strategy, it can be seen

that the relative annual energy yields of GP,353 and GP,352 are reduced in order to achieve

an aggregated DG annual energy yield gain. This phenomenon is even more pronounced in

the TMA strategy where annual energy yield gains of 1.7% and 85.1% for GP,352 and GP,354

respectively are facilitated by the 19.2% reduction in the annual energy yield of GP,353.
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Table 11.4: DG marginal annual energy yields (%) with component real-time thermal

ratings

Marginal Annual Energy Yield (%)

DG Control Strategy GP,352 GP,353 GP,354 GP,aggregated

LIFO 1.7 0.0 25.8 6.3

(discrete intervals)

LIFO 1.7 0.0 41.9 10.0

(PFSF-based)

Egalitarian percentage -5.5 -6.2 73.6 12.3

reduction of output

Technically 1.7 -12.0 85.1 13.1

most appropriate

11.8.2 Results with real-time thermal ratings

Considering Table 11.4, for the case study network it can be seen that the adoption of both

real-time thermal rating systems and power flow sensitivity factor-based control strategies

have the potential to unlock gains in the aggregated annual energy yield contribution of

multiple DG schemes. Moving from a static thermal rating system to a real-time thermal

rating system has the potential to unlock an extra 6.3% aggregated annual energy yield for

the LIFO discrete interval control strategy. If a LIFO contractual priority is retained but

a power flow sensitivity factor-based control strategy is adopted this has the potential to

unlock an extra 3.7% marginal aggregated annual energy yield. Moreover, a further 3.1%

annual energy yield gain may be achieved by adopting the TMA strategy that reduces

aggregated DG scheme constraints. In simulating the egalitarian control strategy, it can

be seen that the relative annual energy yields of GP,352 and GP,353 are reduced in order to

achieve an aggregated DG scheme annual energy yield gain. This phenomenon is even more

pronounced in the TMA strategy where annual energy yield gains of 1.7% and 85.1% for

GP,352 and GP,354 respectively are facilitated by the 12.0% reduction in the annual energy

yield of GP,353.

In this particular scenario, as seen by inspecting Table 11.1, each DG scheme has a

similar power flow sensitivity factor for the thermally vulnerable component (dP/dGP,352

= 0.475, dP/dGP,353 = 0.477, dP/dGP,354 = 0.327) and thus the aggregated annual energy

yields resulting from the different power flow sensitivity factor-based control strategies are
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of a similar magnitude. For new DG scheme developments, this is likely to favour the

adoption of the egalitarian control strategy on the basis of operational simplicity (of DG

set point dispatch) relative to the LIFO and TMA strategies. The risk of DG scheme non-

compliance, in terms of achieving output constraints, is also distributed across a number

of schemes, rather than a single DG scheme bearing sole responsibility for network power

flow management. For existing DG scheme operation, there may be inertia to change from

a LIFO control strategy to egalitarian or TMA strategies if the aggregated annual energy

yields resulting from the different power flow sensitivity factor-based control strategies are

of a similar magnitude.

In situations where the power flow sensitivity factors of DG schemes exhibit a significant

variation relative to one another, and are not of a similar magnitude, it is possible that

the TMA strategy would be favoured since the additional aggregated annual energy yield

gains, and hence DG revenue stream enhancements, could warrant the adoption of a more

operationally complex control system.

In order to embrace the multiple DG control strategies presented in this chapter, there

clearly needs to be contractual mechanisms in place that give incentives to separately owned

DG schemes to have their power output reduced in order to increase the overall DG annual

energy yield contribution. One such mechanism could be to set up cross-payments between

DG schemes whereby those DG schemes that are constrained to increase the aggregated

energy yield are rewarded by payments from the other DG schemes.

11.9 Conclusion

This chapter has presented the simulated use of power flow sensitivity factors to control

the power output of multiple DG schemes, based on a single thermal constraint, within

UKGDS A.

The DG output control system development methodology, as described in Chapter 4

was demonstrated in simulation for multiple DG scheme control. This included (i) the

identification of a thermally vulnerable component through a thermal vulnerability factor

assessment that related DG power flow sensitivity factors to component thermal limits; (ii)

the targeted development of an electric cable thermal model to allow latent capacity in the

network asset to be unlocked through a real-time thermal rating system, (iii) the population

of the electric cable steady-state thermal model with historical data from meteorological

monitoring equipment to produce real-time thermal ratings; and (iv) the use of component
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static and real-time thermal ratings together with power flow sensitivity factors to control

the power output of multiple DG schemes.

Based on a datum value of 525.48 GWh/annum (corresponding to LIFO discrete-interval

DG output control with static thermal ratings), non-LIFO-based control strategies led to

DG aggregated annual energy yield gains of 7.7% and 9.0%. In addition, gains of 12.3% and

13.1% resulted from non-LIFO-based control strategies with component real-time thermal

ratings.

In order to embrace the multiple DG control strategies presented in this chapter there

clearly needs to be suitable connection agreements and contractual mechanisms in place

that give an incentive to DG developers to have the power output of their DG scheme

reduced in order to increase the aggregated energy yield penetration from new and RE

resources.



Chapter 12

Case study 3: Output control of multiple

DG schemes based on multiple thermal

constraints

12.1 Introduction

This chapter describes the off-line simulation of the multiple DG scheme control strategies,

implemented to manage power flows within multiple components of the field trial network,

based on power flow sensitivity factors. The research presented in this chapter builds on

previous work which described the methodology for DG output control system development

(Chapter 4), the identification of thermally vulnerable components within the field trial

network (Chapter 6), the thermal characterisation of the field trial network and development

of a real-time thermal rating system (Chapter 7) and the control algorithm to exploit

component thermal properties for the active management of multiple DG schemes (Chapters

8, 9 and 11). The research presented in this chapter was published by the author in [86–88].

In situations where it is assessed to be viable, power flows may be managed through

the deployment of a DG power output control system coupled with power system real-time

thermal ratings. The adoption of real-time thermal rating systems is particularly relevant

in applications where strong correlations exist between the cooling effect of environmental

conditions and electrical power flow transfers. For example where high power flows resulting

from wind generation at high wind speeds can be accommodated since the same wind speed

has a positive effect on overhead line or power transformer cooling [26,27,84].

The chapter is structured in the following way: Section 12.2 describes the field trial

network and the location of thermally vulnerable components due to the planned installation

160
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of additional DG schemes; Section 12.3 describes the approach adopted to control the

output of the DG schemes in order to manage power flows within multiple components

of the field trial network; Section 12.4 describes the approach adopted for the off-line

time series simulation of the candidate control strategies; Section 12.5 describes the real-

time changes in DG power outputs resulting from the simulation of the candidate control

strategies; Section 12.6 presents the evaluation of the candidate control strategies (where

appropriate, the results are expressed as marginal values based on a datum control strategy

corresponding to a last-in first-off (LIFO) DG tripping approach deployed with component

static ratings); and, in light of the findings as discussed in Section 12.7, recommendations

are made regarding the suitability of the control strategies for deployment with different

component thermal rating systems.

12.2 Network description

A section of the distribution network of ScottishPower EnergyNetworks, selected for field

trials in the DIUS Project, is given in Figure 12.1 [14]. Additional generation was introduced

at nodes B4 and B9 representing planned future DG connections [107]. A summary of DG

types and installed capacities is given in Table 12.1, together with datum DG annual energy

yield values which correspond to the benchmark LIFO DG tripping strategy deployed with

component static ratings. An underlying meshed 33kV network was included in the network

model for simulations but for simplicity is not presented. Through an off-line analysis of the

network (which entailed the simulation of the DG with unconstrained outputs throughout

the year), power flow management was required for components C3, C5, C6, C7, C8 and C9.

These components have been highlighted in Figure 12.1. Meteorological station locations

for the real-time thermal rating system have been represented with the symbol M.

12.3 Control Approach

Rule-based decision making (inference) may be described as an artificial intelligence tech-

nique [96] which has the potential to facilitate the automated control of systems in a trans-

parent manner. In this case the rule-based inference engine has been designed to support

the control decisions of distribution network operators (DNOs). For the field trial network

operating in normal conditions, the power flow sensitivity factor matrix, MPFSF (9.3),

was found to be of the form (12.1). From left to right across the rows the elements in each

column correspond to components C3, C5, C6, C7, C8 and C9 respectively. From top to
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Figure 12.1: Field trial network topology

bottom the elements in each row correspond to DG7, DG8, DG1, DG2, DG3, DG4, DG5

and DG6 respectively.

MPFSF was populated as given in (12.2) [83], corresponding to the lower of the power

flow sensitivity factors assessed at maximum generation–maximum loading and maximum

generation–minimum loading conditions. Furthermore, the LIFO DG constraint matrix

(MLIFO) and the technically most appropriate (TMA) DG constraint matrix (MTMA)

were found to be of the form (12.3). MLIFO is given in (12.4), based on (9.7) and DG

contractual mechanisms. In addition, MTMA is given in (12.5), based on (9.14) and (12.2).

A series of ‘If-Then’ rules were created to establish the relationship between the ther-

mally vulnerable components and the DG schemes that it would be necessary to constrain

in order to manage network power flows.
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Table 12.1: DG scheme details

Installed LIFO Datum

capacity constraint energy yield

Gid DG type (MW) order (GWh/annum)

DG1 Onshore wind 24 1st 30.9

DG2 Onshore wind 30 2nd 46.7

DG3 Onshore wind 39 3rd 71.5

DG4 Onshore wind 40 4th 87.9

DG5 Onshore wind 56 5th 114.6

DG6 Onshore wind 45 6th 113.9

DG7 Offshore wind 90 7th 205.5

DG8 Offshore wind 120 8th 272.2

MPFSF =
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MPFSF =











































−0.99 0 0.46 0.46 0.47 0

0 −0.95 0.46 0.47 0.47 0

0 0 0.41 0.41 0.42 −0.91

0 0 0.42 0.43 0.43 −0.92

0 0 0.42 0.42 0.43 −0.92
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MLIFO,TMA =
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MLIFO =
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MTMA =
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(12.5)

Considering (12.2), the zero terms in the matrix represent a negligible power flow sen-

sitivity factor and indicate that the power output of a DG scheme has negligible impact on

the power flows in that particular component. By inspection of this matrix it is possible

to see that the power flows in components C3 and C5 are affected only by DG at nodes

B4 and B6 respectively. This agrees with intuition as these components are the feeder

connections for the relevant DG schemes. Moreover, the power flow in component C9 is

sensitive only to the DG connected at node B9. Considering components C6, C7 and C8 it

can be seen from Figure 12.1 that this is where power flows from all the DG schemes accu-

mulate. Therefore the power flows in these components are sensitive to outputs from each

DG scheme connected. Having identified these relationships the necessary rule-bases were

created for the candidate control strategies. An example rule-base is given in (12.6)–(12.9)

for the implementation of the egalitarian control strategy.

If : UC6
B5,B7 ≥ 1

Then : Constrain DG1 − DG8
(12.6)

If : UC7
B7,B8 ≥ 1

Then : Constrain DG1 − DG8
(12.7)

If : UC8
B5,B8 ≥ 1

Then : Constrain DG1 − DG8
(12.8)

If : UC9
B9,B5 ≥ 1

Then : Constrain DG1 − DG6
(12.9)

where U c
i,k represents the utilisation of a particular component and is defined in (8.1)

as the ratio of apparent power flow to the thermal limit (Sc
i,k/S

c
i,k(lim)). It should be noted
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that Sc
i,k(lim) could be the component static, seasonal or real-time thermal rating.

12.4 Simulation Approach

As a step towards the on-line control of multiple DG schemes, an off-line time series analysis

was conducted in order to quantify the impact of the candidate control strategies on the

evaluation parameters described in Chapter 9 for a complete operational year. The control

system simulation, as shown in Figure 12.2, functions in the following manner:

1. Grid supply point (GSP) reference voltages and power flows are input to the ‘distri-

bution network simulator’ and ‘off-line simulation tool’ both of which are load flow

algorithms (a).

2. Normalised historical load demand and generation power output profiles are scaled

through multiplication by peak values (b)–(c) respectively, which are also input to

the ‘distribution network simulator’ and ‘off-line simulation tool’ (d)–(e).

3. Component static, seasonal and real-time thermal ratings are fed into the ‘rule-based

inference engine’ (f) together with a full set of component power flows which have

been computed by the ‘distribution network simulator’ (g). Based on the ranked

magnitude of component utilisations together with embedded knowledge of the ability

of DG to manage network power flows (signified by non-zero values in MPFSF ), the

‘rule-based inference engine’ decides if a control action is necessary and which DG

scheme(s) should be constrained. If a control action is required then the ∆Pi,k value,

as calculated in (9.5), is passed to the ‘DG set point calculator’ (h). If no action

is required then the ‘off-line analysis tool’ records the present DG power outputs,

component losses, component utilisations and busbar voltages (k) and the control

system reads in data for the next half hour interval.

4. The ‘DG set point calculator’ receives information from the ‘rule-based inference

engine’ regarding the necessary real power flow reduction as well as an indication of

which DG schemes have the ability to manage network power flows. Using a look-

up table of predetermined power flow sensitivity factors (MPFSF ), updated DG set

points are calculated depending on the candidate control strategy selected.

5. New DG set point values are passed to the ‘off-line simulation tool’ (i) and together

with GSP reference voltages, reference power flows and load demands, an updated

load flow is computed.
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Figure 12.2: Power flow control block diagram
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6. The updated sets of complete power flows and busbar voltages are passed back to

the inference engine (j). This validates that all power flows and voltages are within

designated limits. Steps 3–6 are repeated with the updated DG set point values to

manage power flows within all the necessary components of the network.

In the simulated deployment of the candidate control strategies within the field trial

network, the topology and DG installed capacities were assumed to be constants of the

system. The component types and ratings used are summarised in Table 12.2 together with

datum component energy losses corresponding to the benchmark LIFO DG tripping control

strategy. Component real-time thermal ratings were computed with a half-hourly data

resolution for the calendar year 2006 using the thermal models described in Chapter 7 [84]

and historical meteorological data for the ‘Valley’ area of Wales, UK [102]. Simulations

were conducted with a target utilisation, UTar = 0.95.

12.4.1 Limitation of the ‘TMA’ strategy

On certain occasions it was found that the simulation of the TMA strategy produced an

aggregated energy yield result that was lower than the egalitarian and LIFO strategies. This

apparently anomalous behaviour was investigated further and the following discovery was

made which led to a refinement of the rule-base for the TMA strategy. Figure 12.3 shows a

generic situation where multiple overloads occur in multiple components of the distribution

network. Supposing Ui,k > Um,i and
dPi,k

dGP,n
>

dPi,k

dGP,m
this would lead to a constraint of the

DG scheme at node n in order to solve the most significant overload which, in this case,

happens to occur between nodes i and k. However, the constraint of the DG scheme at

node n does not solve the power flow issue between nodes m and i. Therefore the DG

scheme at node m is required to be constrained and, in doing so, causes the power flow

from node i to node k to reduce further. The inference rule-base was refined to select

distributed generators to be constrained based on locality to the overloaded component

when situations, described above, arose.
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Table 12.2: Component thermal ratings

Spring/ Average

Summer autumn Winter real-time Energy

rating rating rating rating Component loss

Component (MVA) (MVA) (MVA) (MVA) properties (GWh/annum)

C1 89 103 111 n/a Lynx 175mm2 50◦C 3.17

C2 89 103 111 n/a Lynx 175mm2 50◦C 1.48

C3 89 103 111 136.9 Lynx 175mm2 50◦C 0.41

C4 89 103 111 n/a Lynx 175mm2 50◦C 0.48

C5 89 103 111 141.6 Lynx 175mm2 50◦C 0.12

C6 89 103 111 129.9 Lynx 175mm2 50◦C 3.30

C7 89 103 111 128.3 Lynx 175mm2 50◦C 2.58

C8 89 103 111 126.5 Lynx 175mm2 50◦C 4.75

C9 120 130 136 177.9 Poplar 200mm2 75◦C 4.66

C10 89 103 111 n/a Lynx 175mm2 50◦C 1.98

C11 89 103 111 n/a Lynx 175mm2 50◦C 2.88
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Figure 12.3: Limitation of the TMA strategy

12.5 Real-time changes in DG power outputs

For the case study network considered, it was found that the variation of DG outputs (and

hence annual energy yields) resulting from the candidate control strategies deployed with

component static thermal ratings was significantly greater than the variation of DG outputs

resulting from control strategies deployed with component real-time thermal ratings. This

was because the use of component real-time thermal ratings increased the power flow trans-

fer capacity of thermally vulnerable components and reduced the necessity for DG output

control in order to manage power flows. Therefore, illustrative graphs have been plotted to

demonstrate the real-time changes in DG power outputs as a result of the candidate control

strategy simulated with component static thermal ratings.

The real-time changes in DG power outputs resulting from the control strategy sim-

ulations are given in Figures 12.4, 12.5, 12.6 and 12.7 for DG1, DG6, DG7 and DG8

respectively. Since DG2, DG3 and DG4 displayed the same general trends as DG1, and

DG5 displayed the same general trends as DG6, these power output profiles are provided in

Appendix E.1. During the illustrative time period there were three extended periods when

power flow management was required in component C9. These were 04:30 to 08:00, 10:30

to 13:00 and 18:30 to 22:00. There were also two periods when power flow management in

component C6 was required. These were 01:30 to 04:00 and 09:30 to 10:30.

Considering Figure 12.4, DG1 is the first-off DG scheme (being the last to connect,

historically). Therefore, the power output of DG1 is completely constrained for extended
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periods of the day for the LIFO control strategy simulations. This affects the revenue

stream of DG1 and leads to an undesirable power output profile because the DG scheme is

continuously disconnected and reconnected. The maximum power output (12 MW) occurs

at 09:30 which represents half of the installed capacity. The egalitarian broadcast signal

strategy facilitates increased power outputs for DG1 since all the DG schemes participate in

managing power flows and therefore DG1 is no longer ‘first-off’. The TMA control strategy

leads to greatest power output for DG1 since the scheme is not required to be constrained

to manage power flows.

Considering Figure 12.5, the LIFO strategies, as expected, facilitate the highest power

output since DG6 is the last-off DG scheme (having historically connected to the distribu-

tion network at node B9 first). The egalitarian strategy produces the least variable output

with the DG output capped for periods of the day. The TMA strategy requires constraint of

DG6 to manage power flows in component C9. Therefore for periods of the day when power

flow management of component C9 is required, the DG scheme is completely constrained.

Considering Figure 12.6, DG7 is unconstrained for extended periods and therefore the

LIFO and TMA strategies all produce the same simulated power output. From 01:30

to 04:00 and 09:30 to 10:30 power flow management in component C6 is required. When

simulating the egalitarian control strategy, as given in (12.6), this requires the participation

of all DG schemes to manage network power flows. Therefore, the power output of DG7

is reduced for the egalitarian strategy simulation when compared to the LIFO and TMA

strategies.

Considering Figure 12.7, DG output constraints occur from 01:30 to 04:00 and 09:30

to 10:30 when power flow management in component C6 is required. In this case DG8

is the TMA DG scheme to constrain in order to manage power flows in C6. Therefore

the output of DG8 is constrained the most when compared to the other power output

control strategies. The egalitarian control strategy requires the output control of all the

DG schemes to manage power flows in component C6. Since the power flow constraint is

shared amongst all the distributed generators, the power output DG8 is constrained less

than when the TMA strategy is simulated. For the LIFO strategy simulations, DG8 has an

unconstrained power output during the time period considered. This is because DG8 was

the first DG scheme to connect to the distribution network and is therefore the last DG

scheme to be constrained when power flow management is required as a result of multiple

DG scheme power flow accumulations.
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Figure 12.4: Illustration of real-time changes in DG1 output for candidate control strategy

simulations

Figure 12.5: Illustration of real-time changes in DG6 output for candidate control strategy

simulations
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Figure 12.6: Illustration of real-time changes in DG7 output for candidate control strategy

simulations

Figure 12.7: Illustration of real-time changes in DG8 output for candidate control strategy

simulations
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12.6 Evaluation parameters: Results and discussion

This section presents and discusses the quantification results of the control strategy eval-

uation parameters given in Chapter 9. In order to conduct a comprehensive evaluation of

the proposed power flow sensitivity factor-based control strategies, each control strategy

and thermal rating deployment was analysed by considering the impact on DG annual en-

ergy yields, DG apportioned losses, investment net present values (NPVs) and profitability

indices (PIs), component power transfers and busbar voltages.

The simulation of the control strategies with seasonal thermal ratings represents an

intermediate step between control system deployments with static and real-time thermal

rating systems. Therefore the results analysis pertaining to an individual DG scheme focuses

on static and real-time thermal rating system simulations. Supplementary results analyses,

considering the impact of seasonal thermal rating systems on individual DG schemes, are

provided in Appendix E.2.

The datum values of individual DG annual energy yields and individual component

annual energy losses are presented in Tables 12.1 and 12.2 respectively. These values were

obtained by simulating the LIFO DG tripping strategy with component static rating sys-

tems in the field trial network. This strategy was used to benchmark the performance of

the candidate power flow sensitivity factor-based control strategies.

In quantifying the NPVs and PIs a discount factor of 10% was assumed for a 20-year

operational lifetime of the wind farm [106], the wholesale electricity price was assumed to

be £52.15/MWh [104], and the trading price of renewables obligation certificates (ROCs)

was assumed to be £49.28/MWh [105]. The cost of the offshore wind farm installation

was assumed to be £1000/kW and the costs of the onshore wind farm installations were

assumed to be £800/kW [108]. Wind farm annual operations and maintenance costs were

assumed to be 5% of the wind farm installation cost [109] and the value of the power flow

control system was assumed to be £200k with the incorporation of component thermal

monitoring equipment and £100k without.

12.6.1 Annual energy yields

Based on the datum values in Table 12.1, the marginal annual energy yields for each wind

farm development resulting from the control strategy simulations with static thermal ratings

and real-time thermal ratings are given in Figures 12.8 and 12.9 respectively. Considering

Figures 12.8 and 12.9, the adoption of egalitarian and TMA control strategies is particularly
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favourable for ‘last-in’ DG schemes DG1–4 in terms of increased annual energy yields and

hence revenue stream enhancement.

Figure 12.8: Individual DG marginal annual energy yields resulting from candidate control

strategy deployments with component static thermal ratings

Figure 12.9: Individual DG marginal annual energy yields resulting from candidate control

strategy deployments with component real-time thermal ratings



12.6. Evaluation parameters: Results and discussion 176

Table 12.3: Marginal aggregated DG annual energy yields (%)

Control strategy Static Seasonal Real-time

LIFO Trip 0.0 12.1 20.1

LIFO PFSF-based 6.5 13.6 20.5

Egalitarian 7.1 13.9 20.5

TMA 11.0 15.8 21.0

Considering Figure 12.8, the egalitarian control strategy deployed with component

static ratings facilitates increased annual energy yields for DG1–4 by 25.8 GWh, 21.3 GWh,

16.9 GWh and 12.0 GWh respectively, through the reduction in annual energy yields of DG5

and DG6 by 8.4 GWh and 11.9 GWh respectively. The TMA control strategy facilitates in-

creased annual energy yields for DG1–4 by 36.0 GWh, 33.6 GWh, 32.8 GWh and 27.5 GWh

respectively, through the reduction in annual energy yields of DG5 and DG6 by 20.6 GWh

and 33.6 GWh respectively.

Considering Figure 12.9, with the exception of the annual energy yield of DG6 resulting

from the TMA control strategy (110.2 GWh in absolute terms), every DG scheme sees an

energy yield gain and hence revenue stream enhancement. As seen in (12.2), DG5 and DG6

have higher power flow sensitivity factors, relative to DG1, DG2, DG3 and DG4, therefore

they are, technically, the most appropriate generators to constrain in order to manage power

flows within C9.

The marginal aggregated DG annual energy yields are summarised in Table 12.3. Con-

sidering Table 12.3, based on the datum value of 943.8 GWh/annum, by inspection of the

data in each column it is possible to observe the aggregated annual energy yield gains

that may be achieved by the adoption of more sophisticated candidate power flow sensitiv-

ity factor-based control strategies, deployed with the specified component thermal rating

system. Similarly, by inspection of each row it is possible to observe the aggregated an-

nual energy yield gains that may be achieved by adopting a more sophisticated component

thermal rating system, deployed with the specified control strategy.

Respective aggregated annual energy yield gains of 6.5%, 7.1%, and 11.0% may be

achieved by adoption of LIFO PFSF-based, egalitarian and TMA control strategies deployed

with component static thermal ratings. The latter control system deployment represents

an increased aggregated energy yield of 104.2 GWh/annum. The impact that coordinated

power output control approaches have on individual DG scheme revenue streams could

mean that, even if the ‘first-in’ DG schemes are remunerated for curtailing their power
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output at certain times of the year, there is an overall revenue gain for all the DG schemes.

Respective aggregated annual energy yield gains of 12.1% and 20.1% may be achieved by

the adoption of a basic DG tripping control strategy deployed with component seasonal and

real-time thermal ratings. The latter deployment represents an increased aggregated en-

ergy yield of 190.1 GWh/annum. Combining the TMA control strategy with a sophisticated

component real-time thermal rating system, results in an aggregated annual energy yield

gain of 21.0%. This represents an increase of 198 GWh/annum beyond the datum value.

As the component thermal rating system becomes more sophisticated the distinction be-

tween aggregated energy yields for the different candidate control strategies becomes less

pronounced. However, the increased power transfer capacity that may be unlocked through

component real-time thermal rating systems could lead to the accommodation of larger DG

installed capacities [84]. Therefore the adoption of coordinated DG power output control

strategies could allow a greater percentage of the additional power transfer headroom to be

realised.

12.6.2 Losses

The energy losses in C3 were apportioned directly to DG7, the losses in C5 were apportioned

directly to DG8, and the losses in C9 can be apportioned directly to DG1–DG6, based on

(9.16)–(9.17) in Chapter 9. This is because these components are the feeder connections

for the wind farms as seen in Figure 12.1.

Considering Figure 12.10, DG1–4 are apportioned additional annual energy losses of

291 MWh, 252 MWh, 219 MWh and 177 MWh respectively when the egalitarian control

strategy is adopted. Additional annual energy losses of 421 MWh, 409 MWh, 423 MWh

and 380 MWh are attributed to DG1–4 respectively in deploying the TMA control strategy.

Inspection of Figure 12.11 shows that further additional annual energy losses are appor-

tioned to all the DG schemes in deploying the candidate control strategies with component

real-time thermal ratings. The increase in losses resulting from coordinated control strate-

gies are a direct result of increased power transfers and hence increased energy yields of the

DG schemes.
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Figure 12.10: DG apportioned annual energy losses resulting from candidate control strat-

egy deployments with component static thermal ratings

Figure 12.11: DG apportioned annual energy losses resulting from candidate control strat-

egy deployments with component real-time thermal ratings
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12.6.3 Financial performance

Tables 12.4 and 12.5 summarise DG investment NPVs and PIs for the candidate control

strategies deployed with component static and real-time thermal ratings respectively. An

NPV ≤ 0 indicates an investment is not financially viable. Moreover, in evaluating the

impact of candidate control strategies on the financial performance of the DG developments,

a PI ≥ 1 could be specified as the investment criterion. This indicates that the investor

will recover at least double the cost of the initial investment over the project lifetime.

Considering the results presented in Table 12.4 for the LIFO DG tripping control strat-

egy, it can be seen that if this approach is adopted then the investment would not be viable

for DG1 since the NPV of the development is £-0.9M. This is because DG1 represents

the last DG scheme to connect to the network and therefore the first DG scheme to be

disconnected to manage network power flows. The resulting impact on the annual energy

yield of the DG scheme means that insufficient revenue is earned over the project lifetime to

justify the initial investment cost. In general, the power flow sensitivity factor-based con-

trol strategies facilitate improved financial benefits for all the DG developers. The LIFO

PFSF-based approach is most preferable for DG5–8, in terms of revenue stream enhance-

ment (with respective NPV gains of £34.4M, £33.8M, £105.8M and £151.6M), since they

are the ‘first-in’ generators. The egalitarian strategy enhances the revenue streams and

hence increases the profitability indices of DG1–4 and DG7. The respective NPV gains for

these DG schemes are £41.4M, £42.3M, £45.7M, £42.3M and £112.2M. The TMA con-

trol strategy resulted in the greatest enhancement to the revenue streams of DG1–4 (with

respective NPVs of £49.2M, £58.6M, £76.2M and £85.5M), due to the coordinated power

output control of DG5–8 at times of power flow management.

Considering Table 12.5, it can be observed that the candidate control strategies deployed

with component real-time thermal ratings all display a similar financial performance (the

largest NPV difference being £8.6M for DG6 without remuneration). The LIFO PFSF-

based strategy is marginally favourable for DG5–8 (with respective profitability indices of

1.9, 2.4, 1.8 and 1.8) and the TMA strategy is marginally favourable for DG1–4 (with

respective PIs of 2.4, 2.3, 2.4 and 2.6).

12.6.4 Power transfers

The impact of the control strategy deployments with component static ratings on power

transfers through component C9 are given in Figure 12.12.
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Table 12.4: Wind farm financial evaluation (static thermal ratings)

Parameter Control strategy DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8

NPV LIFO Trip -0.9 5.9 16.9 29.9 34.6 46.5 49.0 64.4

(£M) LIFO PFSF-based 19.8 30.2 48.9 67.2 79.0 80.3 154.8 216.0

Egalitarian 40.5 48.2 62.6 72.2 72.1 72.3 161.2 190.4

TMA 49.2 58.6 76.2 85.5 61.7 53.6 150.9 187.4

PI LIFO Trip - 0.2 0.5 0.9 0.8 1.3 0.5 0.5

LIFO PFSF-based 1.0 1.2 1.5 2.0 1.7 2.2 1.7 1.8

Egalitarian 2.0 1.9 1.9 2.2 1.6 2.0 1.8 1.6

TMA 2.4 2.3 2.4 2.6 1.3 1.4 1.7 1.6
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Table 12.5: Wind farm financial evaluation (real-time thermal ratings)

Parameter Control strategy DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8

NPV LIFO Trip 22.0 28.9 41.2 52.9 43.3 51.8 72.4 96.7

(£M) LIFO PFSF-based 41.8 53.0 72.7 85.8 88.0 87.8 162.6 217.0

Egalitarian 47.6 56.7 73.8 84.2 84.8 85.1 162.2 215.5

TMA 49.2 58.6 76.2 87.2 84.6 79.2 161.5 215.9

PI LIFO Trip 1.1 1.2 1.3 1.6 0.9 1.4 0.8 0.8

LIFO PFSF-based 2.1 2.1 2.3 2.6 1.9 2.4 1.8 1.8

Egalitarian 2.4 2.3 2.3 2.5 1.9 2.3 1.8 1.8

TMA 2.4 2.3 2.4 2.6 1.8 2.1 1.8 1.8
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The clear distinction between power transfers through component C9 due to the simu-

lation of the different candidate control strategies may be observed. The LIFO trip strat-

egy allows the least amount of power to be transferred (465.5 GWh/annum) and therefore

utilises the capacity of component C9 the least. The candidate power flow sensitivity

factor-based control strategies improve the utilisation of the component and thus allow

more power to be transferred. The TMA strategy facilitates the greatest power transfer

(541.1 GWh/annum), followed by the egalitarian strategy (521.2 GWh/annum), and fol-

lowed by the LIFO PFSF-based strategy (471.7 GWh/annum). The control of DG scheme

power outputs and hence the control of power flows through the component is apparent due

to the capping of the profiles for the candidate power flow sensitivity factor-based strate-

gies. The flat parts of the curves in the region of 3–20% of the year represent the constraint

of power flows through the component to match the desired utilisation target of 95% of the

component rating.

Considering Figure 12.13, three discrete capping intervals occur in the profiles of the

candidate power flow sensitivity factor-based strategies in the region of 0–20% of the years

duration. These represent the regions of power flow control in order to achieve a 95% utili-

sation target of the respective seasonal ratings. The overall utilisation of the component, in

terms of power transfers, is improved since the peak power flow has increased from 120 MVA

to 136 MVA. The respective power transfers are 525.5 GWh/annum, 529.9 GWh/annum,

553.3 GWh/annum, and 561.5 GWh/annum for the LIFO DG tripping, LIFO PFSF-based,

egalitarian, and TMA control strategies.

Considering Figure 12.14, the peak power flow is increased to 242.6 MVA and the power

transfer is increased to 591.0 GWh/annum, 593.3 GWh/annum, 596.9 GWh/annum and

600.0 GWh/annum for the LIFO DG tripping, LIFO PFSF-based, egalitarian and TMA

control strategies respectively. Since there is an increase in the overall power transfer

this demonstrates that the component is being utilised more effectively. However, there

is a minimal distinction (1.5%) between the candidate power output control strategies in

terms of power transfers and hence DG constraint. For this particular case study it can

be concluded that the sophistication of the control system, in terms of the implementation

of power flow sensitivity factor-based control strategies, in less beneficial when real-time

thermal ratings are deployed. This is attributed to the strong correlation between the

power output of wind-based generators and the positive cooling effect that the wind has on

overhead lines, thus unlocking power flow transfer capacity. However, in situations where

the generation is not wind-sourced and there is not a strong correlation between the output
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of DG schemes and the transfer capacity of components, there are potential advantages to

the deployment of the candidate power flow sensitivity factor-based control strategies.

Figure 12.12: Power transfer through component C9 due to candidate strategy deployments

with component static thermal rating.

Figure 12.13: Power transfer through component C9 due to candidate strategy deployments

with component seasonal thermal rating.
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Figure 12.14: Power transfer through component C9 due to candidate strategy deployments

with component real-time thermal rating.

12.6.5 Busbar voltages

This section quantifies the impact of the candidate control strategies deployed with the

different component thermal rating systems on busbar voltages. In all cases the busbar

voltages conformed to the statutory UK requirements specified in [15]. Furthermore, the

voltage profiles of the busbars at the GSPs represented the extremities of voltage excursions

and all other busbar voltages lay within these bounds. Due to the variation in powers trans-

ferred through component C9, the most significant variation in busbar voltages occurred

at node B9. The impact of the candidate control strategies with static thermal ratings

is shown in Figure 12.15, with an enlargement in Figure 12.16. The impact of the TMA

control strategy with different thermal rating systems is shown in Figure 12.17, with an

enlargement in Figure 12.18.

Considering Figures 12.15 and 12.16, the increased power transfer through component

C9, as a result of the candidate power flow sensitivity factor-based control strategies, leads to

a marginal increase in the voltage at B9. The maximum per unit voltage difference between

the LIFO DG tripping approach and the TMA strategy was found to be 0.4%. This was

attributed to a voltage rise effect along the feeder [48]. As seen in Figures 12.17 and 12.18,

the voltage rise effect is more pronounced due to the increased power transfers resulting

from the deployment of the TMA control strategy with different component thermal rating

systems. A maximum per unit voltage difference between control system deployments with

component static and real-time thermal ratings was found to be 0.9%.
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Figure 12.15: Busbar voltages due to candidate strategy deployments with component static

thermal ratings

Figure 12.16: Zoomed-in representation of busbar voltage at B9 due to candidate strategy

deployments with component static thermal ratings



12.6. Evaluation parameters: Results and discussion 186

Figure 12.17: Busbar voltages due to TMA DG control with component static, seasonal

and real-time thermal ratings

Figure 12.18: Zoomed-in representation of busbar voltages due to TMA DG control deploy-

ment with different component thermal ratings systems
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12.7 Discussion

The LIFO DG output control strategy represents the present UK practice whereby ‘last-in’

DG schemes bear responsibility for managing network power flow issues. If network power

flow management requirements become more widespread ‘last-in’ DG schemes may not be,

technically, the most appropriate to constrain. Moreover, there is an increased complexity

for DNOs in terms of dispatching constraint signals. The egalitarian broadcast strategy

overcomes signal dispatching complexities. All technically relevant DG schemes bear the

responsibility for managing network power flows which has the potential to facilitate aggre-

gated annual energy gains. The TMA strategy utilises DG schemes with the best technical

ability to manage network power flows. This has the potential to lead to the greatest

aggregated annual energy yield gains of the proposed power flow sensitivity factor-based

strategies. However, there is an associated signal dispatching complexity as DG proliferates

and network power flow management requirements become more widespread.

Clearly, it can be seen from (9.4)–(9.5) that the control action, ∆GP,m, and ultimately

the annual energy yields resulting from the control strategy implementations are a function

of a number of factors: The utilisation target, UTar, the thermal limits of the power system,

Slim, the apparent power flowing in the thermally vulnerable components as a result of DG

installed capacities, DG types and reactive power flow, and the magnitude of power flow

sensitivity factors.

It is anticipated that the utilisation target, UTar, would be defined by the DG developer

or DNO to represent the factor of safety, or risk, that the DNO is prepared to accommodate

in terms of operating the relevant power system component. With particular reference

to Figure 12.12 it follows that, as the utilisation target tends to 1, the capped power

transfer limit will tend to the actual capacity limit of the component (in the particular

case highlighted this would be 120 MVA). As a result, the aggregated annual energy yield

of the DG schemes would be marginally increased. In order to reduce the risk of power

flow excursions beyond the transfer capacity of components, and thus to ensure the safe

and secure operation of the distribution network, it is expected that the candidate control

strategies would be deployed with an auxiliary trip system [50]. With the functionality to

incorporate the same component rating systems as the primary control system, the auxiliary

system acts as a backup in the case of control system operation failure, communications

failures or the failure of DG schemes to match the updated set points within the required

time frame.
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The adoption of sophisticated component thermal rating systems within the proposed

candidate control strategies is application specific. Clearly there are advantages in deploying

DG power output control systems with real-time thermal ratings for the connection of

wind farms to the power system through overhead lines. This is because high power flows

resulting from wind generation at high wind speeds could be accommodated since the same

wind speed has a positive effect on component cooling mechanisms. As the rating tends

towards its theoretical maximum value, the annual energy yield of multiple DG schemes

is increased. Since the frequency of control actions reduces, the distinction between the

control strategies in terms of their marginal aggregated annual energy yields diminishes.

The apparent power flow through thermally vulnerable components is a function of the

installed capacity of the DG and the intermittency of the generation. As DG proliferates and

the capacity of networks to accept new DG connections reduces, the energy yield (and hence

economic viability of new DG connections) reduces if LIFO constraint regimes continue to

be adopted. However, in situations where generation is highly intermittent, there is capacity

to accept new DG connections with the adoption of alternative DG output control strategies

such as egalitarian or TMA approaches. DG schemes with highly intermittent outputs, such

as wind farms, would be expected to have lower energy yields than CHP plants for the same

installed capacity. Therefore the un-utilised power transfer capacity of components would

be significantly greater.

The magnitude of power flow sensitivity factors affects the extent to which DG schemes

are constrained in order to manage network power flows. Power flow sensitivity factors

are a function of the complex impedances of components within the electrical network as

embodied in the Jacobian matrix. The connection of DG to electrically ‘strong’ distribution

networks with low impedance paths lead to high power flow sensitivity factors. In ‘weaker’

electrical networks, such as those found in rural parts of the UK, the long electrical feeders

result in high electrical impedances. As a result there are greater electrical losses and lower

power flow sensitivity factors. In situations where the power flow sensitivity factors are of

similar magnitude there is little merit in applying the TMA control strategy. However, the

egalitarian strategy has the potential to allow increased installed capacities of intermittent

DG thereby impacting on both individual and aggregated annual energy yields. The de-

rived power flow sensitivity factors are network topology and operating condition specific

and, in simulating the proposed control strategies it was assumed that the network topol-

ogy was constant. It is feasible, however, to develop power flow sensitivity factor-based

control strategies that make use of alternative sets of the above-mentioned predetermined
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power flow sensitivity factors, based on network switch information. Alternatively, power

flow sensitivity factors could be calculated in real-time, to account for operating condition

changes, and used to update the values in MPFSF (12.2).

12.8 Conclusions

This chapter quantified the potential benefits in adopting candidate power flow sensitivity

factor-based strategies for the future coordinated output control of multiple DG schemes.

The impact that the proposed strategies have on individual DG scheme revenue streams

could mean that, even if the first-in DG schemes are remunerated for curtailing their power

output at certain times of the year, there is an overall revenue gain for all the DG scheme

developers.

Based on a datum value of 943.8 GWh/annum (corresponding to LIFO DG tripping with

component static ratings), non-LIFO-based control strategies led to DG aggregated annual

energy yield gains of 7.1% and 11.0%. In addition, gains of 20.5% and 21.0% resulted from

non-LIFO-based control strategies deployed with power system real-time thermal ratings.

The increased transparency of distribution network usage, arising from the off-line power

transfer analyses, could be used to inform shallow connection charging mechanisms if such

mechanisms were to be introduced to UK power systems, at the distribution network level,

in the future.

Although the case study presented is UK-based, the strategies, simulation approach

and research outcomes are transferable to networks internationally. Whilst, in the UK no

mechanisms exist at present to encourage and reward an increase in aggregated energy yield

contributions from separately owned DG schemes, there are examples in Europe where this

concept is recognized [56,57].

In light of the results and discussions presented in this chapter, it is recommended that

any DNO or DG developer looking to adopt the proposed power flow sensitivity factor-

based strategies should conduct an off-line analysis to assess the value of output control of

multiple DG schemes. This is because the control strategy implementations are a function

of a number of site-specific control variables and therefore the economic value in each case

is different.



Chapter 13

Practical implementation of the prototype

DG output control system

13.1 Introduction

This chapter describes the practical implementation of the prototype DG output control

system, installed within the field trial network. This represents a key deliverable and

research outcome from the DIUS Project and was published by the research consortium

in [110,111]. Section 13.2 describes the hardware implementation of the prototype control

system. Section 13.3 describes the installation of measurement equipment to provide the

minimum signal for the prototype control system to function in open and closed loop trials.

Section 13.4 describes the thermal state estimation and control algorithm integration which,

together with data harvested from the field trial, can be used for control system open

and closed loop performance analyses. Section 13.5 describes the validation of the on-

line simulation tool with monitored data from the previous FMC-Tech installation (which

over-instrumented the field trial network to provide additional validation measurements)

and Section 13.6 describes the simulation of the closed-loop control algorithm and the

implementation set points dispatched to the wind farm.

13.2 Hardware implementation

The degree to which a control system is decentralised across an electrical network is driven

by the control function and communication constraints. Ultimately, the DG output control

system could be integrated within the DNO’s network management system. However, the

prototype control system has been developed as a stand-alone system, being hosted on a

separate platform to that of the network management system for decision support purposes.
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In electrical power systems, certain functions require centralised control (for example

global voltage control and the coordination of load shedding sequences or multiple genera-

tion scheme outputs). ScottishPower EnergyNetworks operate the ‘Manweb’ area of their

distribution network from a centralised location at Prenton, Birkenhead. This gives global

visibility of the network and allows the coordinated control of the system to take place at

times of network faults which have the potential to have widespread electrical effects. Cen-

tralised systems not only provide global control functions but also allow the maintenance

and configuration of hardware, software and database facilities to take place in one loca-

tion. However, a reliable communications infrastructure needs to exist between the central

SCADA host and substations where elements of network control take place. Testing of the

centralised control system may prove difficult due to physical distances involved and there

is the risk of a single point of failure affecting the entire control system [51].

Protection and monitoring systems are decentralised across the network since these

functions are related to local component states. Protection relays and inter-tripping equip-

ment monitor local component states and are designed to isolate faults with the minimum

amount of disruption to other components in the system. A hierarchical architecture is

needed to coordinate this distributed system otherwise a cascading failure may result. The

advantages of adopting a decentralised control approach are documented as reducing op-

erational complexity, increasing flexibility in terms of allowing for network changes and

increasing the reliability and integrity of the control (or protection) system [112]. However,

the drawbacks could be that the decentralised system requires additional software mainte-

nance skills to those needed for a centralised system as well as field visits for decentralised

software maintenance and additional staff to facilitate these visits. In both centralised and

decentralised systems the response time, in terms of controlling the network, is limited

by the speed of the communications infrastructure. The communications infrastructure

between substations and SCADA host network management systems are low bandwidth

(based on historical development of the network).

The adoption of a service oriented architecture with the associated platform indepen-

dence benefits, as described in Chapter 4, allows the DG output control system services

to be located on one hardware platform or distributed across a number of hardware plat-

forms. Therefore it was decided that control functions relating to individual components

of the network would be decentralised and located on AREVA’s MiCOM relay platforms.

This included individual component thermal modelling, component monitoring and compo-

nent protection functions. However, it was perceived that a fully decentralised architecture
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in this project would not facilitate the global coordination of multiple DG schemes since

distributed controllers would only be able to control local DG outputs based on local condi-

tions. As a consequence the controller would not be able to monitor the effect of power set

point dispatches on the wider network which is of critical importance in meshed topologies,

such as ScottishPower EnergyNetworks’ distribution network, when power flows cannot be

intuitively predicted. Furthermore, it was anticipated that the topology of the 132kV and

33kV infrastructure was not likely to undergo vast rapid change in the lifetime of this re-

search project. Therefore the decision was taken to locate the thermal state estimation and

control algorithms on a more centralised hardware platform for coordinated DG output

control.

The DG output control system will produce a small number of recommended actions

which will be communicated back to the network management system. The prototype

control system layout is shown in Figure 13.1. The relays will convert the readings to

digital format and communicate with the DG output control system host using the IEC

61850 protocol [113]. Under normal operation, the DG output control system and the

relay will run the same algorithm predicting the thermal limits of the component. If, for

some reason, the network management system and DG output control system fail to stop

power flows violating power system thermal limits, the relay will trip circuit breakers, thus

protecting power system components. It will be possible for the network management

system to inhibit this function of the relay in circumstances where it is not required.

13.3 Network instrumentation for prototype control system

This section explains the minimum set of measurements, required as inputs to the prototype

DG output control system installed within the field trial network. The instrumentation for

the prototype control system was categorised into ‘electrical’, ‘environmental condition’ and

‘weather station’ requirements.

Electrical requirements:

(i) Real and reactive power (directional) at Transformer T1 at Rhyl substation; (ii) real

and reactive power (directional) at Transformer T2 at Rhyl substation; and (iii) voltage

magnitude at St Asaph substation (132kV side).
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Environmental condition requirements:

(i) Soil thermal resistivity surrounding cable from North Hoyle customer (wind farm) sub-

station to ScottishPower EnergyNetworks’ substation at Rhyl; and (ii) soil temperature

surrounding cable from North Hoyle customer (wind farm) substation to ScottishPower

EnergyNetworks’ substation at Rhyl.

Weather station requirements:

(i) At St Asaph substation; and (ii) at Rhyl substation. Each weather station measures the

following parameters: (i) Wind speed; (ii) wind direction; (iii) ambient temperature; and

(iv) solar radiation.

Based on the network instrumentation requirements specified by Durham University,

ScottishPower EnergyNetworks commissioned AREVA T&D to install the necessary moni-

toring equipment. Figure 13.2 displays the meteorological condition monitoring equipment

installed on the side of a building in the Rhyl substation compound. Figure 13.3 displays

the MiCOM relay cubicle in the substation panel at St Asaph. Figure 13.4 shows the

communication links from the monitoring equipment into the back of the MiCOM relay

cubicle.

Figure 13.2: Meteorological sensors installed in the Rhyl substation compound
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Figure 13.3: MiCOM relay installed in the panel of St Asaph substation

Figure 13.4: Communication links into the back of the MiCOM relay cubicle
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13.4 Algorithm integration within the DG output control

system

This section describes the software integration of the algorithms. This occurred in two

stages. Firstly, the thermal state estimation and control algorithm services were integrated

together. Secondly, the thermal state estimation and control algorithms were integrated

with a MySQL database (used to store the monitored data, harvested from the field trial net-

work). For developmental and testing purposes the ETR 124-based load demand-following

control algorithm, as described in Chapters 8–10, was adopted for implementation within

the prototype control system. Practical aspects of the control algorithm were refined as the

end-to-end commissioning of the DG output control system took place, such as methods to

deal with input measurement uncertainties. The source code and software support docu-

mentation for the control algorithm was delivered to the DIUS Project consortium for the

prototype DG output control system installation.

Since the thermal state estimation algorithm was written in the Visual Basic program-

ming language and the control algorithm was written in Java, it was necessary to make the

thermal state estimation algorithm available as a service to the control algorithm. Using

web-based protocols the control algorithm could then pass a time-stamp and component

name to the thermal state estimation algorithm and the real-time thermal rating corre-

sponding to that particular time-stamp was then returned.

Harvested electrical and thermal data from the monitoring equipment, installed for the

prototype control system, was written into a MySQL database. Rather than developing

two separate interfaces for the thermal state estimation algorithm and control algorithm

to query the database, one interface was written between Visual Basic and MySQL, and

a second web service was created in Visual Basic to allow the control algorithm to access

the necessary electrical data. It was then necessary to map the MySQL fields to the

corresponding variables within the thermal state estimation and control algorithms.

13.5 Validation of on-line simulation tool and dealing with

monitored data errors

Throughout the off-line open-loop simulations of the DG output control system (as pre-

sented in Chapters 10–12, a simulation tool has been employed to validate the control

actions and ensure the safe and secure operation of the distribution network. This section
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investigates the validity of the simulation tool against monitored data, by comparing mod-

elled and monitored electrical currents. In order to conduct the investigation a time period

was selected (1/6/09 − 8/6/09) when both SCADA datasets and FMC-Tech monitoring

datasets were available for direct comparison. The monitored datasets from SCADA were

used together with IPSA to simulate power flows in the overhead line that is the compo-

nent of most interest to the research consortium in the prototype DG output control system

installation. This allowed the electrical current in the overhead line to be modelled and com-

pared with monitored data from the FMC-Tech installation for network characterisation.

The modelled and monitored currents are plotted in Figure 13.5.

Considering Figure 13.5, the possible sources of error between the modelled and moni-

tored currents were identified as:

• The time-stamping difference between the data monitored by SCADA and the data

monitored by the FMC-Tech equipment;

• the accuracy of the SCADA monitoring equipment;

• the accuracy of the FMC-Tech monitoring equipment; and

• assumptions made by the IPSA package in solving the load flow algorithm.

These sources of error were investigated further in an attempt to quantify the errors

and understand the extent to which the simulation tool is a valid representation of power

system.

Errors related to time-stamps could result from (i) the propagation delay between the

signal being monitored and time taken for the signal to be logged in the relevant database;

(ii) a mismatch of timestamps resulting from Greenwich Mean Time and British Summer

Time zone assumptions; and (iii) whether the signal recorded by SCADA represents an

instantaneous sampling of power flows or power flows averaged over the previous 30 minutes

of power system operation. Based on these potential sources of error, and by inspection

of Figure 13.5, the apparent 1-hour misalignment of the data (resulting from time zone

timestamps) was corrected and the updated data plots are given in Figure 13.6. This

produced an average error between the modelled and monitored currents of 6A, with the

model generally under-predicting the current with respect to the monitored data.
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Figure 13.5: Validation of simulation tool model

Figure 13.6: Validation of simulation tool model, accounting for monitored data timestamps
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Regarding errors associated with SCADA measurements, a typical ±5% deviation in

monitored values is quoted in [9]. On this basis the inputs to the simulation tool were

corrected in the following manner, and used to re-simulated the electrical current flow: If

the monitored output of the DG scheme is overestimated by 5% and the monitored load

demands are underestimated by 5%, overall this would lead to the greatest overestimation

of power flows in the line, relative to the actual flow. If the monitored output of the DG

scheme is underestimated by 5% and the monitored load demands are overestimated by 5%,

overall this would lead to the greatest underestimation of power flows in the line, relative

to the actual flow. These error bands were plotted together with the monitored current as

in Figure 13.7.

Considering Figure 13.7 it can be seen that the monitored current generally lies within

the bands of the potential monitoing errors of SCADA, introduced into the IPSA model.

Exceptions to this occur, for example, during 08:30-11:30 on 6/6/09 and 16:30–19:30 on

6/6/09. In the former of the mentioned time periods the greatest difference between mea-

sured and monitored currents is 5A. In the latter of the mentioned time periods the greatest

deviation in current is 10 A. Since the accuracy of the monitored current was quoted by

FMC-Tech as being ±1% of the readings, this error band was plotted together with the

modelled error band as in Figure 13.8.

Considering Figure 13.8, and neglecting short-term current spikes, the monitored cur-

rent tolerances lie within the modelled tolerances for significant periods of the simulated

week. There is a cumulative 10 hour period during the entire week of simulation when the

monitored current lies outside the tolerance bands of the modelled current. This means

that for 94.1% of the simulated time period the modelled and monitored currents are in

agreement, when possible measurement errors are taken into account. This suggests that

the IPSA model provides an acceptable basis for power flow validation and that the ma-

jority of errors between monitored and modelled currents could be attributed to the errors

in monitoring equipment rather than the model itself. Clearly errors are also likely to exist

between the monitored and modelled currents based on assumptions that are embedded

within IPSA, such as a balanced three-phase power system for load flow solutions. It is

likely that these errors are minimal relative to the errors introduced by the monitoring

equipment but could account for the cumulative 10-hour period of errors.
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Figure 13.7: Validation of simulation tool model, accounting for monitored data errors from

SCADA

Figure 13.8: Validation of simulation tool model, accounting for monitored data errors from

SCADA and FMC-Tech
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In practice it is better for the model to over-predict currents relative to monitored

operational currents as this would lead to a more conservative operation of the DG output

control system, in terms of dispatching set points to the DG scheme(s), than if the model

under-predicts the currents. Correction factors for the errors in monitored data could be

taken into account at the ‘front end’ of the control algorithm by introducing error margins

into the monitored SCADA data to ensure that the worst case (i.e. highest) distribution

network power flow scenarios are reflected.

13.6 Closed loop control and DG set point implementation

This section discusses the off-line time-series closed loop simulation of the control algorithm

with historical data and the potential methods of implementing the DG set points, identified

by the control algorithm to be dispatch to the DG scheme(s).

13.6.1 Closed loop control

Figure 13.9 represents the unconstrained output of a DG scheme, with a non-firm connection

and installed capacity of 120 MW. The output of the DG scheme has been simulated in the

field trial network with static thermal ratings for an illustrative 24-hour period. With no

power output control there are two extended periods (from time step 6 to time step 10 and

from time step 18 to time step 25) when the line utilisation exceeds the upper utilisation

limit. Closed-loop demand-following DG output control was simulated, as given in Figure

13.10, with an upper utilisation limit of 1, a target utilisation of 0.9 and a lower utilisation

limit of 0.7. (This relates to the inference engine described in Figure 8.3, Chapter 8.) When

the line utilisation exceeds the upper utilisation limit, the DG output is constrained (by

adjusting the peak capacity output of the DG scheme) in order to reduce the line utilisation

and bring power flows back within limits. This action occurs at time steps 5, 17 and 41.

Reflecting the closed-loop control of the DG scheme, the DG peak capacity remains at a

reduced level (since the line utilisation lies between the upper and lower utilisation bounds)

until the power output of the DG scheme reduces (or the load demand at the DG connection

bus increases) and, as a result, the line utilisation drops below the lower utilisation target.

At this point the constraint on the DG scheme is relaxed to allow a potential 90% capacity

utilisation of the overhead line. The introduction of real-time thermal ratings would result

in utilisation bounds that also vary in real-time, rather than remaining static according to

a component static thermal rating.
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Figure 13.9: Unconstrained DG output violating utilisation limits

Figure 13.10: Off-line closed loop DG output control
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13.6.2 Set point implementation

The Wind Energy Handbook [100] provides detailed descriptions of the methods that may

be used in order to regulate the power output of wind-based DG to achieve dispatched set

points. Active pitch control systems adjust (or feather) the wind turbine blades in order

to capture a desired amount of energy from the wind. Power limitation above rated wind

speeds is achieved by rotating each turbine blade about its axis and hence reducing the

angle of attack of the wind. Pitch systems are designed to act rapidly (e.g. changes of

5 ◦/s) such that the power output is limited as a result of sudden gusts of wind. A variety

of pitch actuation systems exists and can be broadly categorised in those where each blade

has its own actuator and those where a single actuator pitches all three blades. Software-

based closed loop control systems allow the DG power output to be regulated in order to

achieve a desired operational performance.

13.7 Conclusion

This chapter described the practical implementation of the prototype DG output control

system for field trials within the DIUS Project. The control algorithm used in the prototype

control system was discussed along with the network instrumentation phases. A description

of the integration of the control system services within the host platform and data harvesting

from the field trial network was given and the results of open and closed loop system

testing were presented which led to the validation of the on-line simulation tool within

DG output control system. The adoption of a service-oriented architecture with web-

service interfaces and the associated platform independence benefits allow the DG output

control system services to be located on one hardware platform or distributed across a

number of hardware platforms. Therefore it was decided that control system functions

relating to individual components of the network would be decentralised and located on

AREVA’s MiCOM relay platforms. However, it was perceived that a fully decentralised

architecture in this project would not facilitate the global coordination of multiple DG

schemes since distributed controllers would only be able to control local DG outputs based

on local conditions. Therefore the thermal state estimation and control algorithms were

located on a more centralised ‘host’ hardware platform.

During December 2009 the thermal state estimation and control algorithms were in-

stalled on an industrial PC at AREVA T&D in preparation for DG output control in open

and closed loops, with the data harvested from field trial network.
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Research evaluation

14.1 DG output control system evaluation against user and

functional requirements

This section evaluates the DG output control system against the user and functional re-

quirements which were identified in Chapter 1 as being specific to the research presented in

this thesis. Where the control system functionality fulfils a number of user and functional

requirements, these requirements have been combined together.

• Increase the thermal exploitation of the power system through the intelligent manage-

ment of constrained DG connections in non-contingent [electrical] situations without

violating voltage requirements and equipment thermal ratings: As proposed in Chap-

ters 8 and 9, the thermal exploitation of the power system was increased through

the implementation of a demand-following output control technique for a single DG

scheme based on Engineering Technical Recommendation (ETR) 124 and the devel-

opment of candidate strategies for the coordinated output control of multiple DG

schemes based on power flow sensitivity factors. The control system was designed to

utilise an on-line simulation tool to validate the integrity of control actions (in not

violating voltage requirements and equipment thermal ratings) before dispatch to the

DG scheme(s).

• Provide decision support for the DNO control room engineers in determining real

power set points for single and multiple DG schemes connected to the network under

control: As above, the control algorithms within the DG output control system were

developed to recommend real power set points for dispatch to the DG schemes (as

proposed in Chapters 8 and 9).

204
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• Provide a method for selection of measured thermal quantities and locations: A DG

output control system development methodology was proposed in Chapter 4, the

first stage of which is the identification of thermally vulnerable component locations

within distribution networks (as outlined in Chapter 5). Once the thermally vulner-

able component locations have been identified, the thermal quantities relevant to the

particular component type and required for measurement may be assessed, as detailed

in Chapter 7.

• Be cost effective with respect to network reinforcement and present constrained con-

nection techniques: A framework for the quantification of DG development net present

values and profitability indices was proposed in Chapter 9. Through time-series

electro-thermal simulations (detailed in Chapters 10 and 12) the DG output con-

trol system was found to be cost effective with respect to network reinforcement and

present constrained connection techniques for the case study networks considered.

• Obtain electrical measurements through the integration of the control system with

power system components and SCADA, minimising interruptions to supply: The

control algorithms presented in this thesis were developed to make use of existing

electrical signals from SCADA and thus limit the number of additional electrical

measurements required. This served to facilitate the integration of the DG output

control system with power system components by limiting the required circuit outages

in order to install additional monitoring equipment.

• Utilise transparent decision making processes to facilitate performance evaluation:

The control algorithms developed for use within the DG output control system utilised

transparent rule-based decision-making techniques coupled with recognised DG out-

put control techniques emerging from the literature review in Chapter 2.

• Be self-diagnostic and tolerant of communication faults, degrading in a graceful man-

ner: Rather than tripping-off the DG scheme(s) if communications failures occur, the

‘front-end’ of the control algorithm within the DG output control system is config-

ured with default values to allow continued operation, and graceful degradation, in

the event of communication signal losses. If a partial dataset is input to the control

system, the control algorithm makes a diagnosis and uses default parameters to allow

continued operation. This was demonstrated in Chapter 10.



14.1. DG output control system evaluation 206

• Ensure safe power system operation: In order to ensure the safe and secure operation

of the power system, the DG output system is designed with an auxiliary trip system,

which calculates the same ratings as the DG output control system, to act as a backup

in the case of control system operation failure. This was discussed in Chapters 10

and 13.

• Utilise power system static, seasonal or real-time thermal ratings: The control tech-

niques that are described in Chapters 8 and 9 have been developed to utilise compo-

nent thermal properties in making control decisions. Those thermal properties could

be based on fixed meteorological assumptions or could be supplied by more sophisti-

cated real-time thermal rating systems where they are available. Therefore the control

techniques within the DG output control system may be deployed, equally applicably,

with power system static, seasonal or real-time thermal ratings.

• Utilise load flow routines based on electrical network models and a power systems

equipment database: As demonstrated in Chapter 8, the DG output control system

makes use of the IPSA load flow package for three specific purposes: (i) For ‘front

end’ parameter estimation whereby limited real and reactive power flow measurements

from SCADA can be used to establish a complete set of network power flows; (ii) for

the off-line calculation of power flow sensitivity factors; and (iii) as an off-line and

on-line simulation tool to validate control actions of the DG output control system.

The IPSA network model contains the power systems equipment database.

• Utilise an appropriate software architecture, allowing for modularity, flexibility, main-

tainability and openness: The overall DG output control system, as detailed in Chap-

ter 4, was designed with a service oriented architecture and implemented using web

service protocols. This provided modularity and flexibility in terms of DG output

control system components, as well as hardware platform independence. The lan-

guages selected for control algorithm development (Java and Python) are both open

source, platform independent, mature and well-documented programming languages.

By developing the control algorithm with modular components, this facilitated the

maintainability of the software code.
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14.2 Evaluation of research against original objectives

The original research objectives, as given in Chapter 1 were:

1. The proposal of a methodology for the development of DG output control systems;

2. The development of techniques for the on-line output control of single and multiple

DG schemes, based on power system static, seasonal and real-time thermal ratings;

3. The validation of the techniques and assessment of gains through simulation; and

4. The development of control algorithms for use in field trials of a prototype DG output

control system.

The research which aimed to fulfil each of the research objectives is outlined below:

1. The proposal of a methodology for the development of DG output control systems:

A methodology was proposed in Chapter 4 for the development of DG output control

systems, the off-line aspects of which may be used for the planning of distribution

networks and on-line aspects of which may be used for the operation of DG based on

component thermal properties.

It is anticipated that distribution networks will see a proliferation of DG in coming

years. In some cases, this will result in network power flow management requirements

with thermally vulnerable components restricting the connection capacity and annual

energy yield of DG. Therefore a system that can be developed for the management

of power flows within distribution networks, through the power output control of

DG schemes, could be of great benefit. The development stages of such a system

were illustrated using UKGDSs and applied to a field trial network in the UK. These

included: (i) the identification of thermally vulnerable components through an as-

sessment of thermal vulnerability factors that relate power flow sensitivity factors to

component thermal limits; (ii) the strategic investment in thermal monitoring equip-

ment and the targeted development of component thermal models for the thermal

characterisation of the distribution network (informed by the assessment in the pre-

vious stage); (iii) the development of a real-time thermal rating system that would

allow component steady-state thermal models to be populated with real-time data

from thermal monitoring equipment installed in the previous phase; and (iv) the use

of real-time thermal ratings together with DG output control techniques (such as the
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power flow sensitivity factors assessed in the first stage of the methodology) for the

on-line management of network power flows.

The first stage of the methodology was validated through simulation of the field trial

network and resulted in the strategic investment of thermal monitoring equipment

for the thermal characterisation of that section of the UK power system. The power

flow sensitivity factors have the potential to be embedded within an on-line control

system with a view to managing the power output of multiple DG schemes, based

on the real-time knowledge of the thermal and electrical status of the distribution

network.

As discussed in Chapter 8, the proposed methodology provides a framework for ac-

commodating network topology changes (such as network reconfiguration, network

extensions and new DG connections) in the development of DG output control sys-

tems. In the case of network extensions and new DG connections, it is anticipated

that these changes to the distribution network topology will be planned by the DNO

many months in advance which would allow time for the DG output control system

to be adapted.

Whilst power flow sensitivity factors may be used to fulfil stages (i) and (iv) of the

proposed methodology, clearly the methodology could be implemented with totally

different techniques. If different techniques are used to implement the stages in the

methodology to those proposed in this thesis, this would demonstrate the potential

flexibility (and hence value) of the methodology in providing a framework for the

development of DG output control systems.

2. The development of techniques for the on-line output control of single and multiple

DG schemes, based on power system static, seasonal and real-time thermal ratings:

Techniques for the on-line operational control of single and multiple DG schemes were

proposed in Chapters 8 and 9 as a means of managing distribution network power

flows. This required the development of control algorithms which have the capability

of utilising real-time information about the thermal status of the network and, in

reaching a control decision, guarantee that the secure operation of the distribution

network is maintained. Techniques based on concepts given in ETR 124 were devel-

oped for the control of single DG schemes. Strategies based on power flow sensitivity

factors were proposed for the coordinated output control of multiple DG schemes

informed by power system static, seasonal or real-time thermal ratings.
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The candidate multiple DG scheme control strategies were developed to manage power

flows in single and multiple components of the power system. This is of relevance in

situations where individual DG schemes may cause power flow congestion in individual

components but of particular relevance where the aggregation of power flows from

multiple DG schemes may cause more widespread power flow management issues.

Therefore, with the expected proliferation of DG the resulting power flows are likely

to affect many components and it is important to take a holistic view of power flow

congestion within the power system. Last-in first-off (LIFO) control strategies for

multiple DG schemes were developed to reflect the present regulatory framework of

the UK. Two additional strategies were developed for the coordinated output control

of multiple DG schemes: (i) an egalitarian strategy where a single broadcast signal is

dispatched to all the relevant DG scheme operators to adjust the outputs of the DG

schemes as an equal percentage proportion of the present power output; and (ii) a

technically most appropriate strategy whereby the DG scheme with the best technical

ability to manage power flows is selected to be constrained first. In such circumstances

the coordinated output control of DG schemes could enhance the revenue streams of

last-in’ DG schemes to an extent that the investment in the installation is economically

viable. Moreover, cross-payments could be set-up between DG schemes to ensure that

those DG schemes that constrain their power output to manage network power flows,

facilitating an aggregated annual energy yield gain, are remunerated.

The rapid processing time, reduced memory requirements and robustness associated

with embedding predetermined power flow sensitivity factors in a DG power output

control system make it attractive for substation installations and on-line decision-

making applications for DNOs. This is strengthened further by the ability of the DG

power output control system to readily integrate component real-time thermal ratings

in the management of network power flows. The control system described in this thesis

has been developed with algorithms that may give a sub-optimal solution in the real-

time decision-making environment but are robust to errors in data input. For this

particular industrial application these features are preferable to an optimal solution

which may not be reached within the required time-frame and may, on occasion, not

converge to a solution.
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3. The validation of the techniques and assessment of gains through simulation:

In Chapter 9, a number of techniques were proposed to evaluate the control algo-

rithms and quantify the benefits of DG output control system development. The

proposed evaluation parameters and techniques for assessment included: (i) numeri-

cal integration to calculate annual energy yields and annual energy losses; (ii) a loss

apportioning technique to attribute energy losses to particular DG schemes; (iii) the

financial quantification of DG development net present values and profitability in-

dices; and (iv) the summarising of component power transfers and busbar voltages

through duration curves.

Through time-series electro-thermal simulations, the evaluation parameters were quan-

tified for the single DG scheme and multiple DG control algorithms deployed with

power system static, seasonal and real-time thermal ratings. The validity of the con-

trol algorithms was assessed through the off-line analysis of evaluation parameters,

as quantified through the electro-thermal simulations. The electro-thermal simula-

tion tools were developed to return exception reports to capture any thermal limit

and voltage violations after the simulated implementation of the candidate control

strategies. The simulations were described in Chapters 10, 11 and 12.

Considering single DG scheme output control, the technical considerations and eco-

nomics of a number of solutions that would allow a greater installed capacity of DG

to be connected to, and managed within, the distribution network were presented

and compared. The simulation of alternative solutions, reflecting current practices,

included (i) the disconnection of the DG scheme; and (ii) the reinforcement of the

network to relieve power flow congestion. These solutions were compared to the DG

output control system deployed with component static, seasonal and real-time ther-

mal ratings. Disconnecting the DG scheme at times of thermal overloads was shown

to impact, significantly, on the annual energy yield and hence revenue stream of the

DG developer. The reinforcement option had the potential to allow the DG scheme

to operate without constraints through a ‘fit and forget’ DG connection policy. How-

ever, the energy yield from the DG output control system deployed with component

real-time thermal ratings was found to be only slightly lower than the network re-

inforcement option, for the case study network considered. The DG output control

system option is likely to have significantly lower capital cost than the network re-

inforcement option and avoids other drawbacks such as lengthy planning delays and
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environmental objections.

The benefits in adopting the candidate power flow sensitivity factor-based strate-

gies for the future coordinated output control of multiple distributed generators were

quantified. It was shown that, in certain circumstances, there are significant bene-

fits to individual DG schemes in terms of energy yields and hence revenue streams

by moving away from ‘last-in first-off’ control strategies. As a result the aggregated

annual energy yield of separately owned DG schemes is considerably improved. The

impact that coordinated power output control approaches have on individual DG

scheme revenue streams could mean that, even if the ‘first-in’ DG schemes are re-

munerated for curtailing their power output at certain times of the year, there is an

overall revenue gain for all the DG schemes. In addition, the increased transparency

of distribution network usage, arising from the off-line power transfer analyses, could

be used to inform shallow connection charging mechanisms if such mechanisms were

to be introduced to UK power systems, at the distribution network level, in the future.

4. The practical implementation of a prototype DG output control system:

In Chapter 13 the practical implementation of a prototype DG output control sys-

tem within a section of the UK power system was described. The control algorithm

described in Chapters 8 and 9, and simulated, evaluated and validated in Chapter 10

was delivered to the research consortium of the DIUS Project. Practical aspects of

the algorithm, such as methods to deal with communications failures and data mea-

surement errors were discussed, as well as the validation of the on-line simulation tool

with monitored data. The algorithms display graceful degradation in terms of dealing

with communications failures whereby the behaviour of the control system becomes

increasingly conservative as an increasing number of signal failures occur. The con-

trol algorithm delivered to the research consortium was integrated with a real-time

thermal rating system for the open and closed loop control of a DG scheme.

14.3 Generality of the research

Considering the spectrum of electrical voltage levels, this research is generally applicable

to transmission and sub-transmission systems where electrical monitoring equipment has

matured, is widely installed across the power system and is in operation for network man-

agement systems. In addition, the power flow sensitivity factors of generators are likely to

exhibit a greater variation (as a result of a meshed power system topology or high impedance
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radial lines, as found in rural parts of the UK) and the network topology is not frequently

evolving.

At lower voltage levels, for example 11kV and below, the frequency of the distribution

network topology evolution has the potential to impact on the continued operation of the

DG output control system particularly if the magnitude of power flow sensitivity factors is

affected. The network management system of DNOs in the UK extends down only as far as

the 33/11kV transformers. Therefore the applicability of this research to voltage levels at

the 11kV and below is, at present, limited since the implementation of the control system

would require the (costly) investment in electrical monitoring equipment.

The derived sensitivity factors are network topology and network configuration specific

and, in simulating the proposed control strategies in the case study networks considered

in this thesis, it was assumed that the network topology was constant. It is feasible,

however, to develop PFSF-based control strategies that make use of alternative sets of the

above-mentioned predetermined PFSFs, based on network switch information. For each

configuration a new offline analysis would be required to determine the sensitivity factors.

Alternatively, PFSFs could be calculated in real-time and used to update values within the

control matrix MPFSF .

At the transmission and sub-transmission voltage level, network extensions and new

generation connections are planned by the power system operator many months in advance.

The offline methodology required to adapt the DG output control system to deal with these

network topology changes is provided in Chapter 4.

An overview of the required control system modification is outlined below:

1. Modify the topology of the network, as appropriate, in the off-line analysis software

and on-line simulation tool;

2. Conduct an new off-line study to identify any new thermally vulnerable components

within the distribution network

3. Develop, as appropriate, a new real-time thermal rating system to incorporate new

thermally vulnerable components

4. Specifically related to the control algorithm, each control strategy would require up-

dating in the following manner:

(a) Determining updated power flow sensitivity factors
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(b) Modifying the rule-base in the inference engine to achieve desired control func-

tions

(c) Incorporate additional terms in the DG set point calculator equations

(d) Update the on-line simulation tool to maintain the integrity of the power flow

and voltage validation tasks.

It should be noted that some network topology changes may have a negligible impact

on the magnitude of the sensitivity factors and therefore control system modifications may

not be necessary.

Regarding the communications necessary for DNOs to implement the proposed strate-

gies for controlling distributed generation, the control system uses the DNO’s SCADA sig-

nals for electrical monitoring and DG output control. Therefore, moving from LIFO-based

to non-LIFO-based control strategies has no added communication requirements when de-

ployed with static thermal ratings. The step which would entail extra communication links

is the implementation of RTTR systems. In research, also carried out Durham University as

part of this project, thermal state estimation techniques have been developed and validated

to estimate RTTRs in wide areas of the distribution network based on limited monitoring

equipment and communication link installations [85].

Clearly, the figures relating to financial assessments vary with time and location. Varia-

tions in wind farm installation and operating costs would impact on the net present values

and profitability indices of the DG scheme developments, and hence the investment deci-

sion. If these values were to differ from the costs used in this thesis, the principle of the

analysis would still remain valid. The proposed methodology may be used with figures that

are most appropriate to the particular situation being considered.



Chapter 15

Conclusions and further work

15.1 Conclusions

In conclusion, the following key outcomes resulted from this research:

• It is anticipated that distribution networks will see a proliferation of distributed gen-

eration (DG) in coming years. In some cases this will result in power flow congestion

with thermally vulnerable components restricting the connection capacity and annual

active energy yield of DG. Therefore a system that can be developed for the manage-

ment of power flows within distribution networks, through the power output control

of DG schemes, could be of great benefit. The development stages of such a system

were proposed using a novel methodology which entailed the following stages:

1. The identification of thermally vulnerable components within distribution net-

works.

2. The installation of monitoring equipment and thermal modelling of components

for the off-line assessment of power system rating gains.

3. The development of a real-time thermal rating systems for the on-line exploita-

tion of power system ratings.

4. The use of real-time ratings together with control techniques for DG output

control to manage distribution network power flows.

• The first stage of the methodology was realised in an innovative manner by calculat-

ing thermal vulnerability factors which combined power flow sensitivity factors with

component thermal ratings. The thermal vulnerability factor assessments presented

in this thesis were designed to complement previous network characterisation prac-

tices by first identifying the type (overhead line, electric cable, power transformer)

214
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and geographical location of thermally vulnerable components. In addition, the as-

sessments add to the state of knowledge in this area since they may be used to give

a holistic network view of the impact of multiple DG schemes in concurrent oper-

ation on accumulated power flows and hence vulnerable component locations. The

thermal vulnerability factor assessment was applied to UKGDSs and a section of the

UK power system selected for prototype DG output control system field trials. The

perceived benefits are summarised below:

– It was demonstrated that the thermal vulnerability factor assessment was not

confined to a specific topology type and could be used by distribution network

operators (DNOs) and DG developers to identify the thermal impacts of planned

individual DG schemes or, in a more strategic way, to assess longer term and

more widespread DG growth scenarios;

– The thermal vulnerability factor assessment was used to inform instrumentation

investment decisions for the installation of monitoring equipment in thermally

vulnerable sections of the field trial network. This led to the development and

testing of a real-time thermal rating system; and

– The power flow sensitivity factors that have been derived off-line for thermally

vulnerable component identification may be used in an on-line manner for the

coordinated output control of multiple DG schemes.

• Through a comprehensive literature review and evaluation against user and func-

tional requirements, candidate techniques for DG output control based on component

thermal properties were identified as:

– Tripping (disconnection) [for single and multiple DG scheme control];

– demand-following [for single DG scheme control];

– discrete interval adjustments [for multiple DG scheme control];

– ranked lists to prioritise the constraint order of DG schemes [for multiple DG

scheme control];

– proportional adjustments [for multiple DG scheme control]; and

– power flow sensitivity factors [for multiple DG scheme control].

For the first time, the above mentioned techniques were combined with a rule-based

inference engine and an on-line simulation tool. This allowed DG output control to be



15.1. Conclusions 216

achieved that was not only based on static thermal ratings (as is the present industry

practice) but that also allowed seasonal and real-time thermal ratings to be utilised,

in a safe manner, in future on-line power system operation applications.

• Rather than approximating the behaviour of the power system at the generation and

loading extremes, the candidate techniques were simulated, in a rigorous manner

using a time-series analysis (for an entire operational year with a half-hourly data

resolution), to manage the power output of a single DG scheme within the field trial

network. The demand-following DG output control technique with real-time thermal

ratings resulted in a marginal annual energy yield gain of 10.75% when compared to

418.1 GWh/annum resulting from a present industry practice of DG tripping based on

static thermal ratings. Despite increasing electrical losses, the demand-following DG

output control technique was found to have a marginal net present value to the DG

developer of £38.46M, compared to £36.97M resulting from a network reinforcement

option. The cost of capital for the DG developer is likely to make DG output control

systems, with lower upfront costs, a more attractive investment.

• Three candidate strategies were proposed for multiple DG scheme output control us-

ing power flow sensitivity factors, which added to the prior art of DG output control:

(i) Last-in first-off; (ii) egalitarian; and (iii) technically most appropriate. This is of

relevance in situations where individual generators may cause power flow excursions

in individual components but of particular relevance in situations where the aggrega-

tion of power flows from multiple generators may cause more widespread power flow

management issues. Therefore, with the expected proliferation of DG the resulting

power flows are likely to affect many components within the distribution network and

it is important to take a holistic view of power flow management. Using a UKGDS

and the field trial network it was demonstrated through simulation that the DG out-

put control strategies could be combined with static, seasonal or real-time thermal

ratings to manage power flows resulting from a single thermal constraint or multiple

thermal constraints within distribution networks.

• Using a time-series analysis for an entire operational year with a half-hourly data

resolution, the following parameters were quantified to evaluate the potential benefits

of the DG output control system: (i) DG scheme individual and aggregated annual

energy yields; (ii) DG-apportioned losses; (iii) DG development net present values

and profitability indices; (iv) component power transfers; and (v) busbar voltages. In
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addition, an on-line simulation tool was developed to validate the control actions of

the DG output control system and, for the first time, to calculate specific values and

figures of merit for a variety of DG control strategies. It was found that:

– In the UKGDS, based on a datum value of 525.48 GWh/annum (corresponding

to LIFO discrete-interval DG output control with static thermal ratings), non-

LIFO-based control strategies led to DG aggregated annual energy yield gains of

7.7% and 9.0%. In addition, gains of 12.3% and 13.1% resulted from non-LIFO-

based control strategies with component real-time thermal ratings.

– In the field trial network, based on a datum value of 943.8 GWh/annum (corre-

sponding to LIFO DG tripping with component static ratings), non-LIFO-based

control strategies led to DG aggregated annual energy yield gains of 7.1% and

11.0%. In addition, gains of 20.5% and 21.0% resulted from non-LIFO-based

control strategies deployed with power system real-time thermal ratings.

• Although the case studies presented in this thesis are UK-based, the control tech-

niques, simulation approach and research outcomes are transferable to distribution

networks internationally. It is recommended that any DNO or DG developer looking

to adopt the proposed strategies should conduct an off-line analysis to assess the value

of the DG output control system. This is because the control strategy implementa-

tions are a function of a number of site-specific variables and therefore the economic

value in each case is different.

• The impact that the proposed strategies have on individual DG revenue streams could

allow DG schemes greater access to the distribution network in a non-firm manner

and, even if the first-in DG schemes are remunerated for curtailing power outputs,

there could be an overall revenue gain for all the DG scheme developers.

• The DG output control algorithms were delivered to the DIUS Project consortium

and the demand-following control algorithm was installed on an industrial PC for

open and closed loop trials of the prototype control system with monitored data from

the field trial network. This process required further innovative refinements to the

control algorithms to provide graceful degradation functionality, allowing the control

system to continue to operate with increasingly conservative signals dispatched to the

DG scheme as an increasing number of communication signals to the control system

are lost.
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In summary, it appears that, if suitable contractual and regulatory mechanisms are in

place, the active management of DG based on component thermal properties is a viable op-

tion for facilitating future renewable energy penetration gains through non-firm DG access

to the distribution network.

15.2 Further work

A number of avenues for further research were identified as:

• The use of real-time power flow sensitivity factors within the control algorithms;

• the development of a DG output control system to function in electrical contingency

scenarios;

• the development of a proactive DG output control system that makes use of load

forecasts and real-time thermal rating forecasts;

• the development of a DG output control system utilising fuzzy logic to deal with

decision-making uncertainties;

• the development of a DG output control system that allows provision of ancillary

services such as voltage control;

• the development of a DG output control system that makes use of alternative multiple

DG output control strategies such as an equal MW reduction signal dispatched to all

DG schemes or the use of flow-tracing techniques with power flow sensitivity factors;

• the dynamic modelling and analysis of DG set point changes;

• the active management of generators based on component thermal properties at the

transmission level; and

• the potential adaptation of the power flow sensitivity factor techniques for future

demand-side management scenarios.
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Appendix B

Field trial network electrical parameters

B.1 Parameters used in TVF study

Unless otherwise stated, all values are given in per unit form on 100MVA base.

Table B.1: Infeeds

Infeed point Summer Winter

T1 0.47797 j0.07695 1.21042 + j0.35052

T2 0.47624 j0.07675 1.206 + j0.34903

T3 -0.12812 + j0.12106 0.73085 + j0.49021

T4 -0.12812 + j0.12106 0.73085 + j0.49021

Table B.2: Nodal voltages

Node Voltage (kV)

B1 132

B2 132

B3 132

B4 132

B5 132

B6 132

B7 132
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Table B.3: Component data

Name Voltage (kV) R X Rating

T1 400/132 0.0014 0.0829 2.4

T2 400/132 0.0014 0.0832 2.4

T3 400/132 0.0015 0.0813 2.4

T4 400/132 0.0015 0.0813 2.4

C1 132 0.042176 0.094215 0.89

C2 132 0.01827 0.0407 0.89

C3 132 0.004862 0.013975 0.89

C4 132 0.007 0.0165 0.89

C5 132 0.014772 0.032786 0.89

C6 132 0.01314 0.0326 0.89

C7 132 0.0262 0.0658 0.89

C8 132 0.027341 0.060908 0.89

C9 132 0.024559 0.054979 0.89

Table B.4: Loads

Infeed point Summer Winter

L1 0.52191 + j0.16237 1.69525 + j0.54876

L2 0.09694 + j0.02983 0.34507 + j0.15064

L3 0.04624 + j0.00192 0.14267 + j0.02349

L4 0.06751 + j0.00170 0.22313 + j0.10697

L5 0.06239 + j0.02601 0.21023 + j0.09029

L6 0.11822 + j0.03568 0.41951 + j0.20115

L7 0.60351 + j0.17862 2.03067 + j0.59877



Appendix C

UKGDS electrical parameters

C.1 Parameters used in UKGDS studies

Unless otherwise stated, all values are given in per unit form on 100 MVA base.
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Table C.1: Nodal voltages

Node Voltage (kV)

99 275

101 132

102 132

103 132

104 132

105 132

106 132

107 132

108 132

109 132

110 132

111 132

112 132

113 132

114 132

115 132

116 132

117 132

301 33

303 33

305 33

306 33

307 33

308 33

309 33

311 33

312 33

313 33

Continued on next page
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Node Voltage (kV)

314 33

315 33

316 33

317 33

318 33

319 33

320 33

321 33

322 33

324 33

325 33

326 33

327 33

328 33

329 33

330 33

331 33

332 33

333 33

334 33

335 33

336 33

337 33

338 33

339 33

340 33

341 33

342 33

343 33

344 33

Continued on next page
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Node Voltage (kV)

345 33

346 33

347 33

348 33

350 33

351 33

352 33

353 33

354 33

355 33

356 33

357 33

358 33

359 33

360 33

361 33

362 33

363 33

1101 11

1102 11

1103 11

1104 11

1105 11

1106 11

1107 11

1108 11

1109 11

6601 6.6

6602 6.6

6603 6.6

Continued on next page
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Node Voltage (kV)

6604 6.6

6605 6.6

6606 6.6

6607 6.6

6608 6.6

6609 6.6

6610 6.6

6611 6.6

6612 6.6

6613 6.6

6614 6.6

6615 6.6

6616 6.6

6617 6.6

Table C.2: Component data

From node To node Voltage (kV) R X Rating

101 102 132 0.004564 0.022781 1.900

101 103 132 0.004067 0.020296 1.900

101 106 132 0.017095 0.037430 1.000

101 107 132 0.014924 0.032644 1.000

101 108 132 0.000364 0.000818 1.300

101 109 132 0.000432 0.000969 1.300

101 110 132 0.006169 0.013279 1.000

101 111 132 0.006503 0.013986 1.000

101 116 132 0.012188 0.027453 1.000

102 104 132 0.000876 0.001226 1.000

103 105 132 0.000768 0.001081 1.000

Continued on next page
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From node To node Voltage (kV) R X Rating

103 117 132 0.002139 0.004865 0.700

106 112 132 0.000335 0.000754 1.000

106 114 132 0.006463 0.022041 1.900

107 113 132 0.000330 0.000741 1.000

107 115 132 0.006869 0.023424 1.900

307 341 33 0.017766 0.021981 0.300

313 308 33 0.057083 0.054039 0.200

313 309 33 0.079069 0.107759 0.200

313 362 33 0.001023 0.001279 0.200

313 363 33 0.000641 0.001182 0.200

314 315 33 0.018691 0.017724 0.300

315 345 33 0.070712 0.062393 0.200

316 314 33 0.034026 0.034219 0.300

316 315 33 0.069053 0.048957 0.200

316 317 33 0.005534 0.005148 0.200

316 318 33 0.005619 0.004905 0.200

316 353 33 0.032158 0.029616 0.200

316 354 33 0.039416 0.020025 0.200

327 326 33 0.083931 0.086985 0.300

332 325 33 0.019861 0.018063 0.200

334 327 33 0.042027 0.081161 0.300

334 332 33 0.022549 0.019765 0.300

336 332 33 0.033351 0.037060 0.300

337 333 33 0.033351 0.037060 0.300

337 336 33 — 0.000100 0.200

338 305 33 0.045306 0.077399 0.200

338 306 33 0.057065 0.089944 0.200

338 330 33 0.102503 0.127480 0.300

338 331 33 0.111052 0.139716 0.300

338 334 33 0.062959 0.103335 0.300

Continued on next page
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From node To node Voltage (kV) R X Rating

338 331 33 0.111052 0.139716 0.300

338 334 33 0.062959 0.103335 0.300

338 339 33 0.000826 0.001105 0.200

338 340 33 0.000472 0.000651 0.200

338 341 33 0.043377 0.071572 0.200

338 346 33 0.018128 0.016164 0.200

338 347 33 0.016821 0.014892 0.200

338 360 33 0.040269 0.037007 0.200

338 361 33 0.035162 0.032313 0.200

342 319 33 0.016932 0.016005 0.300

342 320 33 0.012286 0.012501 0.300

342 335 33 0.043167 0.034897 0.300

342 336 33 0.039394 0.047223 0.300

342 337 33 0.065757 0.081714 0.300

342 343 33 0.009937 0.009219 0.200

342 344 33 0.007715 0.007088 0.200

342 350 33 0.014976 0.010769 0.200

342 351 33 0.013056 0.009365 0.200

348 324 33 0.107692 0.107409 0.300

348 327 33 0.273013 0.371732 0.200

348 328 33 — 0.000100 0.200

348 329 33 — 0.000100 0.200

353 352 33 0.028663 0.024380 0.200

353 357 33 0.014894 0.012959 0.200

357 301 33 0.033273 0.031276 0.200

357 303 33 0.035057 0.031145 0.200

357 311 33 0.01781 0.015729 0.200

357 312 33 0.019458 0.017318 0.200

357 321 33 0.008119 0.009733 0.300

357 322 33 0.009055 0.010849 0.300

Continued on next page
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From node To node Voltage (kV) R X Rating

357 355 33 0.024342 0.023032 0.200

357 356 33 0.036877 0.038044 0.200

357 358 33 0.001456 0.001393 0.200

357 359 33 0.001475 0.001411 0.200

99 101 275/132 — 0.100000 5.000

99 101 275/132 — 0.100000 5.000

104 316 132/33 0.005563 0.171987 0.900

105 316 132/33 0.005380 0.170619 0.900

108 338 132/33 0.009160 0.194580 0.600

109 338 132/33 0.008975 0.194858 0.600

109 338 132/33 0.009160 0.198374 0.600

110 342 132/33 0.010704 0.223500 0.600

111 342 132/33 0.010704 0.224570 0.600

112 348 132/33 0.013165 0.302382 0.450

113 348 132/33 0.013165 0.294631 0.450

114 313 132/33 0.006896 0.235117 1.000

115 313 132/33 0.006140 0.237100 0.900

116 357 132/33 0.010789 0.228085 0.600

117 357 132/33 0.010789 0.225280 0.600

301 6601 33/6.6 0.037376 0.971779 0.140

303 6601 33/6.6 0.037376 0.971779 0.140

305 6602 33/6.6 0.043849 1.096230 0.230

306 6602 33/6.6 0.043849 1.096230 0.230

307 6602 33/6.6 0.043849 1.096230 0.230

308 6603 33/6.6 0.037154 0.928840 0.230

309 6603 33/6.6 0.037154 0.928840 0.230

311 6604 33/6.6 0.041118 1.027950 0.230

312 6604 33/6.6 0.041118 1.027950 0.230

314 6605 33/6.6 0.039312 1.022120 0.140

314 6605 33/6.6 0.039312 1.022120 0.140

Continued on next page
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From node To node Voltage (kV) R X Rating

315 6606 33/6.6 0.040651 1.016270 0.230

315 6606 33/6.6 0.040651 1.016270 0.230

316 6615 33/6.6 0.038145 0.991776 0.230

316 6615 33/6.6 0.038145 0.991776 0.230

317 6607 33/6.6 0.043217 1.080420 0.230

318 6607 33/6.6 0.043217 1.080420 0.230

319 6608 33/6.6 0.037279 0.931982 0.230

320 6608 33/6.6 0.037279 0.931982 0.230

321 6609 33/6.6 0.042804 1.070110 0.230

322 6609 33/6.6 0.042804 1.070110 0.230

324 1101 33/11 0.042555 1.063870 0.230

325 1102 33/11 0.040077 1.042000 0.125

326 1102 33/11 0.040077 1.042000 0.125

328 1103 33/11 0.042227 1.055670 0.210

329 1103 33/11 0.042227 1.055670 0.210

330 1104 33/11 0.038733 0.968323 0.230

331 1104 33/11 0.038733 0.968323 0.230

332 1105 33/11 0.040500 1.012500 0.230

333 1105 33/11 0.040500 1.012500 0.230

336 1106 33/11 0.037728 0.980926 0.140

337 1106 33/11 0.037728 0.980926 0.125

339 6610 33/6.6 0.043526 1.088150 0.230

340 6610 33/6.6 0.043526 1.088150 0.230

341 6611 33/6.6 0.038321 0.996347 0.140

341 6611 33/6.6 0.038321 0.996347 0.140

343 6612 33/6.6 0.038563 0.964073 0.230

344 6612 33/6.6 0.038563 0.964073 0.230

346 1107 33/11 0.039257 0.981416 0.230

347 1107 33/11 0.039257 0.981416 0.230

350 1108 33/11 0.041460 1.077970 0.125

Continued on next page
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From node To node Voltage (kV) R X Rating

351 1108 33/11 0.041460 1.077970 0.125

352 6613 33/11 0.037538 0.975993 0.140

354 6613 33/6.6 0.037538 0.975993 0.140

355 6614 33/6.6 0.036398 0.946356 0.140

356 6614 33/6.6 0.036398 0.946356 0.140

358 6616 33/6.6 0.040595 1.014880 0.230

359 6616 33/6.6 0.040595 1.014880 0.230

360 6617 33/6.6 0.041927 1.048170 0.230

361 6617 33/6.6 0.041927 1.048170 0.230

362 1109 33/11 0.041597 1.039940 0.230

363 1109 33/11 0.041597 1.039940 0.230

Table C.3: Loads

Infeed point Summer Winter

1101 0.04666 + j0.02526 0.15554 + j0.10103

1102 0.04695 + j0.00995 0.15649 + j0.03981

1103 0.06027 + j0.00822 0.20090 + j0.03286

1104 0.02353 + j0.02325 0.07844 + j0.09301

1105 0.04507 + j0.00820 0.15024 + j0.03279

1106 0.03110 + j0.00518 0.10368 + j0.02072

1107 0.03800 + j0.00813 0.12666 + j0.03253

1108 0.01573 + j0.00239 0.52420 + j0.09560

1109 0.05344 + j0.02443 0.17814 + j0.09771

6601 0.04622 + j0.01245 0.15407 + j0.04981

6602 0.05221 + j0.01680 0.17403 + j0.06718

6603 0.05381 + j0.01194 0.17936 + j0.04774

6604 0.05313 + j0.01472 0.17711 + j0.05887

6605 0.04635 + j0.01081 0.15451 + j0.04324

Continued on next page
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Infeed point Summer Winter

6606 0.06438 + j0.01347 0.21461 + j0.05386

6607 0.07055 + j0.01808 0.23516 + j0.07230

6608 0.04665 + j0.02160 0.15549 + j0.08640

6609 0.00753 + j0.00134 0.25110 + j0.05370

6610 0.05249 + j0.01797 0.17498 + j0.07188

6611 0.02288 + j0.00723 0.76280 + j0.02892

6612 0.06907 + j0.02138 0.23023 + j0.08552

6613 0.04523 + j0.01206 0.15075 + j0.04823

6614 0.04756 + j0.01435 0.15852 + j0.05741

6615 0.02006 + j0.01081 0.66860 + j0.04322

6616 0.04569 + j0.01583 0.15230 + j0.06330

6617 0.04927 + j0.00085 0.16423 + j0.03380



Appendix D

DG output control

D.1 Control equation derivations using ETR 124

Figure D.1 represents the constrained connection of a single DG scheme to the distribution

network. The constrained connection exists between node i and node k and means that the

power flow in this component will require the power output constraint of the DG scheme

attached to node i.

Figure D.1: Single DG output control with local constraint
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D.2. Control equation derivations using PFSFs 282

Using an algebraic summation of the power flows at node i [50] the net flow from node

i to node k is given in (D.1.1)-(D.1.3)

Pi,k = GP,i − Pi (D.1.1)

Qi,k = GQ,i − Qi (D.1.2)

Si,k = |Pi,k + jQi,k| = |(GP,i − Pi) + j(GQ,i − Qi)| (D.1.3)

where Pi,k, Qi,k and Si,k represent the real, reactive and apparent power flows from

node i to node k, GP,i and GQ,i represent the real and reactive power outputs of the DG

scheme and Pi and Qi represent the real and reactive load demands at node i. Therefore

the real power output of the DG scheme in terms of the other parameters is given in (D.1.4)

GP,i =
√

S2
i,k − (GQ,i − Qi)2 + Pi (D.1.4)

When the power flow is at the thermal limit, Sc
i,k(lim), of the component (between node

i and node k) the maximum real power output of the DG scheme, GP,i−max is given in

(D.1.5)

GP,i−max =
√

(Sc
i,k(lim))

2 − (GQ,i − Qi)2 + Pi (D.1.5)

If there is a target utilisation of the component, UTar the modification to (D.1.5) may

be made as in (D.1.6).

GP,i−max =
√

(UTar × Sc
i,k(lim))

2 − (GQ,i − Qi)2 + Pi (D.1.6)

D.2 Control equation derivations using PFSFs

If the power flow constraint exists deeper into the distribution network, as given in Figure

D.2, the relationship between the change of real power output of the DG scheme at node m,

∆GP,m and the change in real power flow in the thermally vulnerable component between

node i and node k, ∆Pi,k is given by the real power flow sensitivity factor,
dPi,k

dGP,m
as in

(D.2.7).

∆Pi,k =
dPi,k

dGP,m
× ∆GP,m (D.2.7)
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Figure D.2: Single DG output control with non-local constraint

In this case the value of ∆Pi,k, calculated based on the required power flow management

and the thermal limit of the thermally vulnerable component is given in (D.2.8)

∆Pi,k =
√

(UTar × Sc
i,k(lim))

2 − (′′Qi,k)2 −
√

(Si,k)2 − (′Qi,k)2

≡
√

(UTar × Sc
i,k(lim))

2 − (′′Qi,k)2 − ′Pi,k

(D.2.8)

where ′Pi,k and ′Qi,k represent the real and reactive power flows in the component

before power flow management takes place and ′′Qi,k represents the reactive power flow in

the component after power flow management has taken place.

D.3 Egalitarian broadcast signal derivation

This section derives the equation used to provide an egalitarian broadcast signal to multiple

DG schemes. The aim was to provide a single signal that would manage distribution network

power flows by adjust the power outputs of multiple DG schemes by the same percentage

of their present power output.

The total real power adjustment required to manage network power flows in the ther-

mally vulnerable component is given in (D.2.8). Each DG scheme may be apportioned an

amount of the total real power adjustment as given in (D.3.9)
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∆Pi,k−Total = ∆Pi,k−GP,1
+ ∆Pi,k−GP,2

+ ... + ∆Pi,k−GP,mT
(D.3.9)

where ∆Pi,k−Total is the total real power adjustment in the thermally vulnerable com-

ponent to manage network power flows and ∆Pi,k−GP,1 to mT
represents the real power

adjustment apportioned to the DG schemes at nodes 1, 2... mT respectively. The total

real power adjustment to manage network power flows may be written in terms of DG

scheme present power outputs and power flow sensitivity factors by substituting (D.2.7)

into (D.3.9) as in (D.3.10).

∆Pi,k−Total = ∆GP,1
dPi,k

dGP,1
+ ∆GP,2

dPi,k

dGP,2
+ ... + ∆GP,mT

dPi,k

dGP,mT

(D.3.10)

The change in power output of each DG scheme, ∆GP,m, may be written in terms of

the percentage reduction, Φ, of the present power output, GP,m, as in (D.3.11).

∆Pi,k−Total = ΦGP,1
dPi,k

dGP,1
+ ΦGP,2

dPi,k

dGP,2
+ ... + ΦGP,mT

dPi,k

dGP,mT

(D.3.11)

Equation (D.3.11) may be written, generically, as in (D.3.12), which, making Φ the

subject of the equation, gives the egalitarian broadcast signal as in (D.3.13).

∆Pi,k = Φ

m=mT
∑

m=1

GP,m
dPi,k

dGP,m
(D.3.12)

Φ =
∆Pi,k

m=mT
∑

m=1

(

GP,m ×
(

dPi,k

dGP,m

)) (D.3.13)



Appendix E

Field trial network evaluation parameter

results

E.1 Real-time changes in DG outputs

Illustrative graphs of real-time changes in DG outputs for multiple DG control strategies

simulated with component static thermal ratings in the field trial network case study are

presented in Figures E.1–E.4.

E.2 Results analysis: Component seasonal thermal ratings

The marginal annual energy yields for each wind farm development resulting from the each

candidate control strategy simulation with component seasonal thermal rating systems are

given in Figure E.5, based on datum values in Table 12.1. As a general observation the

marginal annual energy yield of each DG scheme is increased for each control strategy de-

ployment with component seasonal thermal ratings as opposed to component static thermal

ratings. This is because the increased component thermal ratings that result from a sea-

sonal thermal rating system lead to greater power transfer capacities within components

of the power system during the spring, autumn and winter months. Therefore power flow

management is required less frequently and/or the thermal violation of components is less

severe.

285
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Figure E.1: Illustration of real-time changes in DG2 output for candidate control strategy

simulations

Figure E.2: Illustration of real-time changes in DG3 output for candidate control strategy

simulations
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Figure E.3: Illustration of real-time changes in DG4 output for candidate control strategy

simulations

Figure E.4: Illustration of real-time changes in DG5 output for candidate control strategy

simulations
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Figure E.5: Individual DG marginal annual energy yields resulting from candidate control

strategy deployments with component seasonal thermal ratings

Consequently, the requirement to constrain DG schemes occurs less frequently, the mag-

nitude of the constraint is smaller and the net result is improved DG annual energy yields.

However, from an operational perspective there are difficulties associated with the mainte-

nance of an accurate database of component seasonal ratings. Moreover, the seasonal rating

approach bears the latent risk of an anomalous ‘hot day’ where the prevailing meteorological

conditions could result in components being rated higher than they should be.

As expected, the losses are increased (relative to the static thermal rating simulations)

in those individual components that, as a result of increased ratings, facilitate increased

power transfers. Component marginal losses are increased by the greatest amount when the

TMA strategy is adopted. C6, C8, and C9 represent a subset of components (C3–C9) in

which the greatest losses occur. Marginally, increases in losses of 35.7%, 34.2%, and 39.2%

occur in components C6, C8 and C9 respectively. This represents losses of 4.5 GWh/annum,

6.4 GWh/annum and 6.5 GWh/annum in the respective components in absolute terms.

A summary of losses apportioned to individual DG schemes due to the implementa-

tion of the candidate control strategies with component seasonal rating systems is given

in Figure E.6. Due to greater individual component energy losses the DG apportioned

losses are increased relative to the values presented in Figure 12.10. Considering the LIFO

DG tripping control approach, DG4–DG6 are apportioned the greatest amount of losses:
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Figure E.6: DG apportioned annual energy losses resulting from candidate control strategy

deployments with component seasonal thermal ratings

1.14 GWh/annum, 1.35 GWh/annum, and 1.31 GWh/annum respectively. The same ob-

servation may be made for the LIFO PFSF-based approach and the egalitarian control

approach. However, considering the technically most approach control strategy, DG3–DG5

are apportioned the greatest amount of losses: 1.20 GWh/annum, 1.35 GWh/annum, and

1.20 GWh/annum respectively. This reflects a shift in the magnitude of DG annual energy

yields brought about by adopting a coordinated control approach.

The NPVs and PIs for each wind farm development are summarised in Table E.1. Rela-

tive to the values in Table 12.4, it can be seen that greater NPVs and hence PIs occur for all

the DG schemes with LIFO tripping, LIFO PFSF-based and egalitarian control strategies.

Moreover, for DG1–DG3 the same NPVs (£49.2M, £58.6M, and £76.2M respectively) and

PIs (2.4, 2.3, and 2.4 respectively) result from the TMA control strategy deployed with

both static and seasonal thermal ratings. This indicates that with the TMA control strat-

egy the above mentioned DG schemes are operating with unconstrained outputs. This is

because the PFSFs of the DG schemes DG1–DG3, as given in (12.2), are lower than the

DG schemes DG4–DG8 and therefore it is the latter DG schemes that are constrained, in

a coordinated manner, to manage network power flows.
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Table E.1: Wind farm financial evaluation (seasonal thermal ratings)

Parameter Control strategy DG1 DG2 DG3 DG4 DG5 DG6 DG7 DG8

NPV LIFO Trip 6.4 14.1 27.5 43.6 41.5 51.2 68.7 91.3

(£M) LIFO PFSF-based 26.9 38.4 59.7 78.4 85.6 86.2 161.7 217.0

Egalitarian 43.6 51.9 67.5 77.0 77.2 77.9 160.9 206.4

TMA 49.2 58.6 76.2 87.1 70.2 60.8 154.6 206.8

PI LIFO Trip 0.3 0.6 0.9 1.3 0.9 1.4 0.8 0.8

LIFO PFSF-based 1.3 1.5 1.9 2.4 1.9 2.3 1.8 1.8

Egalitarian 2.2 2.1 2.1 2.3 1.7 2.1 1.8 1.7

TMA 2.4 2.3 2.4 2.6 1.5 1.6 1.7 1.7


