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Abstract

Mobile agent technology, when designed and used effectively, can minimize bandwidth
consumption and autonomously provide a snapshot of the current context of a distributed
system. Protecting mobile agents from server crashes is a challenging issue, since developers
normally have no control over remote servers. Server crash failures can leave replicas, in
stable storage, unavailable for an unknown time period. Furthermore, few systems have
considered the need for using a fault tolerant protocol among a group of collaborating mobile

agents.

This thesis uses exception handling to protect mobile agents from server crash failures.
An exception model is proposed for mobile agents and two exception handler designs are
investigated. The first exists at the server that created the mobile agent and uses a timeout
mechanism. The second, the mobile shadow scheme, migrates with the mobile agent and
operates at the previous server visited by the mobile agent. A case study application has been
developed to compare the performance of the two exception handler designs. Performance
results demonstrate that although the second design is slower it offers the smaller trip time
when handling a server crash. Furthermore, no modification of the server environment is

necessary.

This thesis shows that the mobile shadow exception handling scheme reduces complexity
for a group of mobile agents to survive server crashes. The scheme deploys a replica that
monitors the server occupied by the master, at each stage of the itinerary. The replica exists at
the previous server visited in the itinerary. Consequently, each group member is a single fault
tolerant entity with respect to server crash failures. Other schemes introduce greater
complexity and performance overheads since, for each stage of the itinerary, a group of
replicas is sent to servers that offer an equivalent service. In addition, future research is

established for fault tolerance in groups of collaborating mobile agents.
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Chapter 1 Introduction 1

Chapter 1 Introduction

1 Research aims

Waldo, in [Waldo01], implies the lack of a failure model for mobile agent systems:

“Finally, an agent system’s implementation in the Jini technology model would provide a

Jailure model that the agent community might find useful”. [WaldoO1]

The literature provides no consensus on what the terms agent and mobile agent mean.
Indeed, there are two research communities for mobile agents, i.e. distributed systems and
artificial intelligence. This thesis focuses on mobile agents that belong to the distributed systems

community with the view that they are distributed objects with limited intelligence.

The thesis is interested in understanding mobile agents that fail due to an agent server crash.
The literature has suggested many techniques for protecting the loss of mobile agents due to the
crash of an agent server. However, there appear to be few implementations adopted in actual
mobile agent systems. A frequently stated potential application domain for mobile agents is
information retrieval. For example, mobile agents may be used to filter large quantities of

information from remote hosts.

Some solutions [DeAssisSilva0l, Mohindra00, Silva00, Strasser98] employ transaction
processing to satisfy failure dependencies with agent servers, i.e. execution of a mobile agent
modifies its internal state and the state of the agent server. However, for information retrieval
applications, transaction processing solutions introduce unnecessary performance overheads
since there are no state dependencies introduced between the mobile agent and remote agent
servers. The mobile agent only consumes information at visited agent servers. Furthermore,
there are some solutions that inject a replica into stable storage upon arrival at a host. However,

in the event of an agent server crash, the replica is unavailable for an unknown time period.

This thesis is concerned with developing a framework that employs exception handling for
mobile agents to survive crash failures of hosts visited on a trip. Consequently, no modification
of the agent server environment is necessary. This increases the likelihood that the framework is
interoperable between mobile agent systems. Furthermore, the application developer is free to
elect how to handle the loss of a mobile agent through an agent server crash. A conceptual
framework will provide the basis for understanding how mobile agents can survive the crash of
hosts visited on a trip. This implies that an exception handling model is required to outline the

components of a mobile agent system and suggest exception handling control flow.
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To summarise, the aims of this research are:

1.

The development of a conceptual model for exception handling in mobile agent
systems.

The development of a conceptual framework to protect mobile agents from failure due
to an agent server crash. The framework uses exception handling for mobile agents to
survive crash failures of agent servers.

A conceptual framework for mobile agents to survive crash failures should be
independent of the agent server environment. This facilitates implementation across all
mobile agent systems.

The conceptual framework must have the potential to be adopted for a group of mobile
agents. The opinion is that the conceptual framework should be independent from the
group of mobile agents to reduce the complexity of the design.

It is hoped that the thesis will provide a better understanding of how exception handling

can be used to protect mobile agents from host crashes.

2 Assumptions

Mobile agents are assumed to belong to the distributed systems community.
Consequently, in this thesis a mobile agent is an active object that can migrate
autonomously between hosts to perform an application task on the behalf of a user.
Mobile agents for information retrieval applications do not modify the state of visited
hosts. Consequently, transaction processing at hosts is an unnecessary performance
overhead for mobile agent information retrieval applications.

A failure model is required that states the conditions of failure for the environment

where mobile agents are situated.

3 Research method

The research method adopted for the thesis is an engineering one, based upon an iterative

improvement of the conceptual exception handling framework. In particular, the framework is

examined based upon the conceptual model of exception handling in mobile agent systems.

Further consideration is given regarding how the framework can be adopted for groups of co-

operating mobile agents. The exception handling framework is compared to other systems for

mobile agents to survive crash failures. Potential is also considered regarding the adoption of

the exception handling framework within a group of co-operating mobile agents for information

retrieval applications.




Chapter 1 Introduction 3

4 Contribution of thesis

The main contribution of the thesis is an understanding of exception handling for mobile
agent systems. Indeed, the literature has witnessed little work in this area. This is achieved by
creating an exception handling model for mobile agent systems and then implementing an
exception handling scheme to protect mobile agents from agent server crash failures.
Subsequently, the case study implementation provides an insight into how the scheme compares

with others for groups of mobile agents.

5 Criteria for success

The overall criteria for the success of this research may be considered to be the development
and evaluation of an exception handling scheme to protect mobile agents against agent server

crashes.

This may be broken down into a number of areas which will be addressed by the thesis. The

criteria for success are therefore:

a) Create an exception handling model for mobile agent systems

Very few examples of exception handling for mobile agents exist. Therefore, before
developing an exception handling scheme for mobile agents to survive agent server crash
failures, it is necessary to identify how mobile agents interact with software services at remote
agent servers. This aids in understanding the control flow of exceptions between the agent
server and mobile agents. Furthermore, the unique aspects for exception handling in mobile

agent systems can be considered.

b) Identify a failure model for mobile agent systems

With any fault tolerance design there is the necessity to outline a failure model. This
provides an understanding of the likely ways in which mobile agent execution can fail. Only

then can exception detection mechanisms and recovery prove to be effective.

¢) Development of an exception handling scheme for the protection of mebile agents

against agent server crashes

An exception handling scheme will be developed and evaluated to protect mobile agents
from agent server crash failures. A prototype of the exception handling scheme will be
implemented and deployed using a case study application. An experiment will be performed to

investigate the trip time increase incurred when an agent server crash is encountered.
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d) Identify the best approach for mobile agent groups to survive agent server crashes

Using the experience gained from the development of the exception handling scheme in ¢),
the key aspects will be identified with respect to the suitability of the scheme for use with
groups of collaborating mobile agents. Furthermore, consideration will be given towards the
viability of the scheme developed in this thesis in comparison with other systems that protect

mobile agents from agent server crash failures.

These criteria will be evaluated in chapter 6.

6 Thesis overview

This thesis is composed of seven chapters, of which this is the first. Chapter 2 provides an
introduction to mobile agents. In particular, an overall introduction to the agent paradigm is
provided and mobile agents are defined. The architecture of a typical mobile agent system is
described before the chapter concludes, by identifying the current problems encountered with

mobile agents.

Chapter 3 provides an introduction to exception handling. This highlights the difficulties
and existing approaches for exception handling in traditional distributed systems. Existing
research into exception handling for mobile agents is then summarised and problem areas are
identified.

Chapter 4 provides a failure model for mobile agent systems. The failure model provides a
classification of the failures that can occur in a mobile agent system. Specific attention is given
towards the issues involved and assumptions necessary for crash failures of remote agent
servers. Subsequently, a model for exception handling in mobile agent systems is then outlined
and a conceptual exceﬁtion handling scheme is proposed to protect mobile agents from agent
server crash failures. The chapter concludes with a description of an IBM Aglets [Oshima98]

implementation of the exception handling scheme.

Chapter 5 describes a case study application that is used to assist with the evaluation of the
conceptual exception handling scheme outlined in chapter 4. The experiments that will be
performed with the case study application, using an Ajanta [Tripathi02] and IBM Aglets

[Oshima98] implementation of the exception handling scheme, are then described.
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Chapter 6 evaluates the exception handling scheme outlined in chapter 4. The results of the
case study experiments, outlined in chapter 5, are presented and evaluated. The exception
handling scheme is then evaluated with respect to the exception handling model proposed for
mobile agent systems in chapter 4. Finally, the features of the exception handling scheme are

compared to existing systems that protect mobile agents from agent server crash failures.

Chapter 7 provides a summary of the research and some of the conclusions that can be
drawn. The chapter also revisits the criteria for success listed in section 5. Finally, areas of

future research are outlined.
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Chapter 2 Mobile Agents

This chapter describes the broad context of the research, i.e. mobile agents in general. Later
chapters focus on fault tolerance and fault tolerance for mobile agents. Mobile agents are
defined for use in the thesis. A generic software architecture for mobile agent systems is then
defined and some example application domains are outlined. Finally, the chapter concludes by

discussing some of the problems with mobile agents.

1 What is a mobile agent?

This section aims to define the term mobile agent in the context of this thesis. There are
many definitions for a mobile agent, dispersed across the distributed systems and artificial
intelligence communities. This is more than likely attributed to the fact that the term agen itself
is weakly defined, governed by many different classifications. Consequently, section 1.1 starts
by highlighting the key properties of an agent. Section 1.2 then outlines the different types of
agent within the research communities. Within the distributed systems research community
mobile agents are often associated with mobile code systems. Significant confusion exists,
distinguishing between mobile code systems and mobile agents. Consequently, section 1.3
defines the concept of a mobile code system and section 1.4 then distinguishes between mobile

code and mobile agents for the context of the thesis.

1.1 What is an agent?

The agent community lacks a concrete definition for the term agent, a fact highlighted by

Hyacinth Nwana [Nwana96] in her survey of software agent technologies:

“We have as much chance of agreeing on a consensus definition for the word agent as Al
researchers have of arriving at one for artificial intelligence itself - nil! Recent postings to

the software agents mailing list (agents@sunlabs.eng.Sun.COM) prove this”. [Nwana96]

This section defines the term agent by highlighting the key properties that distinguish agents

from traditional software.

The term agent is often used as an umbrella term. Consequently, there have been many
attempts to distil the key properties of an agent [Franklin97, Wooldridge97, Ndumu97]. Table

2-1 summarises properties frequently used to describe an agent.
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Therefore an agent must be aware of its goals. Conversely, a traditional program possesses

goals, although they are implicit, i.e. hard coded.

So far the term weak agency has been defined to describe agents that are autonomous,
proactive and reactive. Within the artificial intelligence community a stronger abstraction is
considered, whereby the state of an agent consists of mental attitudes that the agent reasons with
to decide subsequent actions. Attitudes explain human behaviour, e.g. “Simon turned down the
thermostat because he believed the room was too warm.” Wooldridge and Jennings
[Wooldridge94] identify two mental attitudes:

e Informational attitudes: Belief and knowledge.

e Pro-attitudes: Desire, intention, obligation, commitment and choice.

Informational attitudes represent information the agent possesses about its environment and
pro-attitudes direct or motivate the actions performed by the agent. Agents that possess strong
agency are termed cognitive or intentional systems. The philosopher Dennett coined the term
intentional systems to describe entities whose behaviour can be predicted by the method of

attributing belief, desires and rational acumen [Dennett87].

Indeed an intentional system may be perceived as an abstraction tool that describes and
predicts the behaviour of a complex entity. A popular model of an intentional system's state is
the Belief-Desire-Intention (BDI) model proposed by Rao and Georgeff [Ra095]. Essentially,
beliefs are facts the agent possesses about its environment. Desires are facts that the agent may
possess in future states of the world, e.g. the ability to swim, and are consequently motivations.
Intentions represent desires that the agent has selected to achieve. Intentions affect future
decision making, i.e. an agent must not select intentions that conflict with those it currently
holds.

Wooldridge and Fischer [Wooldridge94b] describe the advantages of the intentional
abstraction compared to traditional software as:
e Non-technical and non-implementation dependent.

e Agents can model other agents. This is essential for certain types of collaboration.

However, selecting the beliefs and desires depends upon the designer’s intuition of the

modelled entity's role.
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Figure 2-1 illustrates the perception of an agent adopted by the thesis. Agents are situated in
an environment (e.g. the Internet) comprising users, hardware, agents, databases etc. Changes
within the environment are actively monitored by the agent's sensors. The agent responds and
acts upon changes throﬁgh its effectors. Actions performed affect future sensing. Environmental
changes may be triggered by some internal environment event or communication from a peer

agent.

Environment

Sensors effectors

»

»

Figure 2-1 Reactive agent system

1.2 Types of agent

Hyacinth Nwana [Nwana96] provides a classification of agents. The classification of agents

1s summarised as follows.

Collaborative agents are characterised as autonomous, co-operative, static and coarse
grained. Other traditional properties, such as learning and pro-activeness are common. The goal
of a collaborative agent system is that the group of agents function beyond the capabilities of the
individual members. Some of the motivations for a collaborative agent system are identified as:

e Overcoming resource limitation and system failure, the shortfalls of a single centralised

system.

e Integration of legacy systems such as expert systems, decision support etc.

¢ Distributed information retrieval.

Interface agents are personal assistants that perform a task on behalf of a user. The agent
observes the user performing a fask, learns their activities and suggests alternative ways of
performing them. Consequently, collaboration emerges between the agent and the user. Key
characteristics are autonomy and learning abilities. Learning may involve:

e Observing and imitating the user.

e Receiving positive and negative feedback.

e Receiving explicit instructions from the user.

e Receiving advice from other agents.
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Pattie Maes [Maes95] envisages interface agents providing a proactive interface as opposed
to the traditional direct manipulation GUL. A direct manipulation interface passively waits for
explicit instructions from the user. Conversely, a user may delegate tasks to a proactive interface
agent that may perform complex tasks such as distributed information retrieval. In this sense,
the user and interface engage in a co-operative process. Benefits include reducing the user
workload for laborious tasks and adapting to user preferences and activities. An example is a
web searching agent proposed in Lieberman [Lieberman95]. Traditionally, search engines are
idle when the user browses. Similarly, the user is idle when a search is conducted. The proposed
system uses agents to conduct a éoncunellt breadth search strategy based upon user browsing
activity. For example, the user may frequently visit a site or reference a bookmarked page. If the
agents are used within an Internet environment they are termed Information/Internet agents.
Typically, these agents claim to address the problem of information overload and provide
information management. Internet agents may be mobile, i.e. traverse the web gathering

information and reporting the results achieved.

Mobile agents are capable of roaming a network, interacting with other agents at foreign
hosts, gathering information and returning the results back to users [Nwana96]. In her survey
paper [Maes95] Maes conveys the key attributes of mobile agents to be autonomy and co-

operation.

Hybrid agents combine two or more agents into a singular agent so that the benefits of each
agent type are maximised and the weaknesses are minimised. Hybrid agents are typically
synonymous with hybrid agent architectures. For example, Muller et al's InteRRaP architecture

[Muller96] combines deliberative and reactive agents.

A heterogeneous agent system comprises an integrated set of different types of agent,
including hybrid agents. Consequently, agent programs can interoperate. A claimed advantage is
that the cost of maintaining and rewriting legacy systems is reduced. A new domain, agent-
based software engineering, facilitates interoperable agents. In particular, many standards have
been proposed for heterogeneous agent systems. The key consideration is a base communication
language. Genesereth and Ketchpel [Genesereth94] introduce the notion of an Agent
Communication Language (ACL) that consists of the Knowledge Interchange Format (KIF), the
Knowledge Query and Manipulation Language (KQML) and Ontolingua.

Nwana [Nwana96] classifies a reactive, hybrid and heterogeneous agent system as types of
agent. Reactivity is defined in Table 2-1. In this case the types are architectural, providing the

underlying agent technology.
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Many more types of agent exist, the most notable being introduced in Franklin and Graesser
[Franklin97] and Wooldridge and Jennings [Wooldridge95]. The following classifications are
identified by Franklin and Graesser [Franklin97]:

e Control / structure: Deliberative or reactive.

o Environment: Database, file system, network and internet.

e Language: Interpreted or compiled.

e Applications: The application domains, e.g. electronic commerce.

e Mobile: Static or mobile.

e Communication: Communicative or non-communicative.

e Adaptive: Learning or non-learning.

Wooldridge and Jennings [Wooldridge95] envisage a broader classification according to the
behaviour of the agent:
e Gopher: Perform simple tasks based on static rules and assumptions, e.g. reminder
agents.
e Service-performing: Perform a well-defined high-level task as represented by the user,
e.g. web searching.

o Predictive/proactive: Provide information or services to the user.

1.3 Mobile code systems

Fuggetta et al. describe a mode! for mobile code systems [Fuggetta98]. A mobile code
system is a layered architecture comprising: hardware, a core operating system, a network
operating system, a computational environment and components. The core operating system
provides system services such as memory management, scheduling etc. The network operating
system provides low level communication services such as the TCP/IP protocol etc. A
computational environment provides applications with the ability to relocate components at
different hosts. Relocation is understood as dynamically binding code and data to execution
location, A component can be an executing unit or resource. An executing unit is synonymous
to a thread comprising code and state (data space and execution state). Code is static and
represents the behaviour of the executing unit. State consists of a data space and execution
state. The data space represents the resources referenced by the executing unit. Resources may
be shared by executing units, e.g. files, objects etc., and may be distributed at other
computational environments. The execution state comprises thread data, variables and execution

context, i.e. the stack and program counter etc.

Mobile code systems are distinguished from traditional distributed systems by the ability to
move the code and state of an executing unit to a remote computational environment. There are

two classes of mobility: strong and weak. A system possesses strong mobility when the entire
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executing unit and execution state is transferred to a remote computational environment. Two
mechanisms support strong mobility: migration and remote cloning. Migration mechanisms
suspend the executing unit and transmit it to the destination computational environment, where
it resumes execution. An executing unit migrates proactively or reactively. An executing unit
that migrates proactively decides both the time and location of migration. An executing unit that
migrates reactively does so in reaction to stimuli from a local or remote executing unit. Remote
cloning mechanisms create a copy of an executing unit at a remote computational environment.
Consequently, the original execution unit is static, since it remains at its current computational
environment. Weak mobility mechanisms only support code relocation, i.e. code is transferred
to another computational environment where it is either dynamically linked to a running

executing unit or used to form a new executing unit. Note that execution state is not saved.

So far, migration of code and execution state has been described. However, an executing
unit also references resources such as files, objects etc. that are owned by the current
computational environment. An executing unit that moves to a new computational environment
may still need to use resources at previous computational environments. However, resources are
not always transferable. For example, an object may be shared between executing units or a file
resource may be too large to move for performance reasons. The following techniques are
suggested [Fuggetta98] for managing resources when an executing unit migrates:

* Move: If the resource is transferable, move it with the executing unit. An exception will
be raised if other executing units attempt to reference the resource at the source
computational environment.

s Move with network reference: If the resource is transferable, move it with the
executing unit. Executing units at the source computational environment reference the
resource at its new computational environment.

e Network reference: If the resource is not transferable, then the executing unit
references the resource located at the fixed computational environment.

e Copy: Move a copy of the resource with the executing unit.

» Locate compatible resource: The executing unit locates a resource of the same type at

the new computational environment.

1.4 Mobile code and mobile agents

Typical of evolving and immature research fields is the lack of widely accepted terms and
methodologies. Mobile agents are no exception. In particular, there exists terminological and
semantic confusion for distinguishing between mobile code and mobile agents. Sections 1.1 and
1.2 define and outline types of agent. Here it is seen that agent technology is often associated
with the artificial intelligence community. However, mobile agents introduce an overlap

between artificial intelligence and distributed systems, i.e. agent mobility implies mobile code
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mechanisms. This section provides a brief history of mobile code and identifies the properties

that distinguish mobile agents from mobile code.

Mobile code is by no means a new technology. Several mechanisms have been proposed for
moving code between network nodes. The earliest technology is remote batch job submissions
[Boggs73] and, surprisingly, the use of a page description language, postscript {Adobe85], to
control printers. Nuttall [Nuttall94] provides a survey of process and object migration systems.
Distributed operating systems employ process migration mechanisms allowing an operating
system process to move from one machine environment to another and resume execution. In this
case migration is transparent, i.e. the programmer is unaware of the process and has no control.
A finer degree of mobility is provided by object migration mechanisms, allowing objects to
move between address spaces. In this case, the programmer is able to specify what is migrated,
ranging from atomic data to complex objects. In some cases the programmer may explicitly

specify the location. Emerald [Levy88] is one such example.

In traditional distributed systems the elements required to perform a software service, i.e.
code and resources, are all located at the same host. A client uses the service from a remote
location by issuing method calls to a software component that performs the service. The
software component is co-located with the code and resources necessary to perform the service.
Conversely, mobile code systems allow the elements of a software service to relocate
dynamically. Mobile code systems are therefore classified according to which elements are
relocated. There are three classifications of code mobility [Fuggetta98, Picco0Ol]: Remote
Evaluation, Code on Demand and Mobile Agent. Remote Evaluation (REV) relocates the code
to a remote host that holds the resources necessary for the computation. A Code on Demand
(COD) system possesses the resources necessary for computation but downloads code
dynamically from a remote host to perform the service. Mobile agents possess code and some of
the resources necessary to perform the service. Migration to a remote host is driven by resource
availability. In this case, the entire computational component migrates to the remote host where

it resumes execution.

So far, it is has been established that a mobile agent is a classification of code mobility.
Code mobility mechanisms are employed to move an entire component (mobile agent), i.e. code
data and execution state, to a remote host. Furthermore, the mobile agent may move some of the
resources to the remote host. Conversely, Remote Evaluation and Code on Demand mobile code
systems only move code, i.e. resources at remote hosts remain static. This distinction is also

highlighted by Luca Cardelli’s definition of mobile code.
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“An architecture independent representation of program code (source text or byte codes) is
shipped over the network and interpreted remotely. When code moves, the current state of
the computation (if any) is lost, and connections that the computation had at the originating

site vanish. State and connectivity must be re-established at the receiving site”. [Cardelli97]

Mobile code is therefore used to describe the ability to relocate code within a heterogeneous
system. Upon arrival at a remote host, the code entity is interpreted and executed locally. State

and resources accessed at the originating node are not preserved.

Many mobile agent definitions have been proposed within the artificial intelligence and
distributed systems community. Furthermore, these are highlighted in the context of the

underlying research project. Kotz et al. [Kotz99] define mobile agents as:

“Programs that can migrate from host to host in a network, at times and places of their own
choosing. The state of the program is saved, transported to the new host and restored,

allowing the program to continue where it left off”. [Kotz99]

Luca Cardelli [Cardelli97] provides a contrast between mobile agents and mobile code:

“Agents however, are meant to be completely self-contained. They do not communicate
remotely with other agents; rather they move to some location and communicate locally

when they get there”. [Cardelli97]

The above definitions summarise the autonomous nature of a mobile agent. A mobile agent
possesses autonomy when it is an independent entity capable of deciding dynamically upon the
time and location for migration. This implies that mobile agents must be aware of the resources

available at the execution environment and respond appropriately to changes in availability.

Table 2-2 illustrates a comparison between mobile agents and mobile code. A mobile agent
is an implementation of mobile code technology that is autonomous and capable of migrating its
entire execution unit to a foreign host. Essentially, interactions are based on a computational
component that communicates by relocating dynamically to another execution environment to
access resources locally. This differs from mobile code technology, such as Code on Demand
(COD) and Remote Evaluation (REV), whereby interactions are requests for remote execution
of code. Formally, a mobile agent is understood to be a self contained entity that is situated in
an environment (e.g. the Internet), encapsulates state comprising code and data, can decide
upon the time and location for migration and is resource aware. Mobile agents are assumed to
support weak mobility to compensate for the change of environment and consequent resource

availability.
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2.1 Software architecture definition

The architecture of a software system defines the system in terms of components and
interactions among these components [Shaw95]. It can be considered as a high level abstraction
for describing the structure of software, identifying entities, their functionality and
interrelationships. Software architecture is certainly not a new field. Computing has witnessed
network and hardware architectures. Software engineers may use architectures to provide users
with multiple views to understand different aspects of the software structure. Perry et al.
[Perry92] define a model for software architecture that consists of elements, form and rationale.
Elements are classified as processing, data and connecting. Processing elements transform data
elements that represent information. Connecting elements describe the interactions that integrate
procedure and data elements, e.g. procedure calls, message passing and shared data. Form
comprises weighted properties and relationships. Relationships specify the organisation of
elements and interaction constraints. Properties are constraints on elements. A weighting grades
the importance for a specific property/relationship or represents the degree of selecting from
alternatives. Rationale relates to the motivation behind selecting the style of architecture and

satisfying constraints such as functional and non-functional requirements.

In this thesis, architecture describes the design of a mobile agent system. The internal
structure of a mobile agent system is characterised by identifying the abstract elements in terms
of functionality and interactions. In particular, the architecture of the agent server is examined.
The agent server provides an execution environment that is responsible for hosting software
resources such as files and shared objects, managing mobile agent execution and transparently
migrating the mobile agent to a remote host specified by the application developer. At another
level the internal structure of a mobile agent is described, focusing on how the mobile agent
interacts with its environment and organises migration to remote hosts. In the following section

the elements that constitute a mobile agent system are described.

2.2 A generic mobile agent system architecture

Figure 2-2 illustrates an abstract architecture for a mobile agent system from the distributed

systems community. Dashed entities are only provided by some mobile agent systems.

A mobile agent system consists of an agent server that runs within an interpreter and is
capable of hosting mobile agents implemented in the interpreted language. Consequently,
running the agent server within an interpreter provides operating system interoperability and the
mobile agent can migrate between hosts independent of the operating system. This assumes that
the same agent server and interpreter exist at each host. An agen! server is a server process that

runs at hosts willing to accept mobile agents.
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¢ Transport manager: Responsible for the capture and restoration of mobile agent state,
i.e. data variables, code, and execution state (if strong mobility semantics are assumed).
A code base is provided by some agent servers to download code for the mobile agent if
it is not available at remote agent servers. There are different strategies to download
mobile agent code. For example, some agent servers ship the entire code with the
mobile agent. Others request code from the code base, as and when it is needed. Section
2.4 describes the notion of mobile agent state and code download strategies.

¢ Communication manager: Responsible for intra mobile agent communication, i.e.
mobile agent communication with local mobile agents. Communication between mobile
agents is possible using method calls and shared memory. Most agent servers only
provide some of these communication mechanisms. For example, Tracy [Braun01]
provides shared memory and message passing. Section 2.5 discusses mobile agent

communication mechanisms.

Unfortunately, a variety of agent servers are implemented using different interpreted
languages. Furthermore, the mobile agent and transport interfaces differ between agent servers.
Consequently, migration between agent servers is mostly homogeneous, i.e. a mobile agent can
only migrate to hosts that offer the same agent server and interpreter. However, recently there
has been significant interest regarding interoperability between mobile agent systems. Section

2.6 describes the current approaches for interoperable mobile agent systems.

2.3 Mobile agent architecture

A mobile agent is typically represented by an object that inherits from an abstract class,
unique to each mobile agent system. The abstract class provides a method, e.g. run(), to
represent the main execution thread of the mobile agent. Instructions are provided by the agent
server to move to another host, e.g. go(agent server address). An object-oriented representation
of a mobile agent is adopted in this thesis due to maintainability and the wide choice of
available mobile agent systems. However, there are other representations of a mobile agent that
are not object-oriented. For example D’Agents [Gray02] and TACOMA [Johansen02] allow

mobile agents to be written using the interpreted Tcl procedural scripting language.

Information available to the mobile agent includes: the address of the home agent server,
i.e. the agent server that created the mobile agent, its identification, an interface to the current
agent server environment and an itinerary of agent servers to visit. Each agent server provides
an object interface that a visiting mobile agent can use to access:

e The name or address of the current agent server.

* A registry of mobile agents currently running at the agent server.

o A registry of resources available for consumption at the agent server.
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When the mobile agent migrates to a new agent server a reference to the agent server
environment is updated. Using the resource registry, a mobile agent can communicate with co-
located agents to access and publish resources at the agent server. A resource may be a file,
database or software object. For ekample, an agent server may represent a supplier that provides
an interface to a database that represents its product catalogue. Mobile agents may interact with
the resource to search the catalogue for specific items of interest. Directory services for
traditional distributed systems are employed in most mobile agent systems. Other mobile agent
systems, such as IBM Aglets [Oshima98], require the programmer to employ static mobile
agents to represent services. In this case, a list of mobile agents running at the agent server is
accessible to the mobile agent. Each directory entry corresponds to an object that is referenced
by an immutable name, e.g. a URL. Clients retrieve an object from the directory to access
information or perform an action. A proxy is returned that forwards the request to the object.
Java mobile agent systems employ Java directory services, e.g. the RMI naming registry or
JNDI. Mobile agent systems compliant with the MASIF standard, e.g. Grasshopper
[Baeumer03], employ the CORBA naming service.

A mobile agent uses an itinerary data structure as an organised representation of the agent
servers to visit during its trip. An itinerary can represent an ordered or dynamic set of agent
servers. Each entry in the itinerary represents the address of an agent server. The simplest
representation of an itinerary is an ordered list of agent server addresses usually with an index to
represent the current agent server. In addition to storing the agent server address some
itineraries also log the method that will be invoked upon the mobile agent's arrival.
Consequently, it is possible to invoke a different method depending upon the current location of
the mobile agent. Itineraries that employ the same method at each agent server are classified as
fixed entry. Most itineraries do not store the success of each visit for an agent server. For
example, a mobile agent may visit an agent server and encounter a software exception, e.g. the
agent server may deny access to its resources. The Ajanta [Tripathi02] mobile agent system
allows the success of each agent server visit to be logged. Other mobile agent systems
[Braun01, Gray02, Oshima98, Peine02] leave this responsibility to the programmer.
Furthermore, Ajanta [TripathiO2] also allows the programmer to define criteria for choosing the
agent server to visit using its Select itinerary pattern. For example, criteria may include the
availability of the agent server or the state of the mobile agent. Alternatively, the Set itinerary

selects the next unvisited agent server at random.

There are various design patterns for an itinerary [Oshima98, Tripathi02]. IBM Aglets
[Oshima98] provide a master slave pattern that allows a stationary master agent to spawn one or
more slaves that migrate and execute in parallel. When a slave’s itinerary is complete, results

are returned to the master. Another example is the meeting pattern that allows a group of mobile
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agents to interact locally at a single host and exist independently of the home agent server. The
address of the agent server where the meeting occurs is pre-arranged. Each agent has a meeting
object that stores its location and id. When a mobile agent arrives at the agreed agent server, the
meeting object informs a meeting manager at the agent server. The meeting manager notifies all

agents that have arrived in the group of the new arrival.

2.4 Mobile agent migration

Migration describes the process of packaging the code, data and execution state (if strong
mobility semantics are adopted) for a mobile agent into a portable representation that is
transported on a TCP network connection to the destination agent server. The migration process
involves sending and restoring a portable representation of a mobile agent at a remote agent
server. Before outlining the process for migration it is necessary to understand how the code and
data of a mobile agent can be represented, the strategies for code mobility and resource

maintenance.

There are many Java mobile agent systems, since persistency and code mobility are
provided as standard language features. Firstly, object persistency is provided by the Java
serialisation APL In Java, serialisation denotes the activity for storing the state of an object and
its set of objects into a serial form, i.e. bytes. Deserialisation is the activity of restoring the state
of an object and its associated set of objects from its serialised form. Details concerning the
class of each object, such as the name and version number, are included in addition to the types,
names and values of instance variables. This meta-data is used to restore the state of the object.
However, an object cannot be instantiated without an associated class file which represents the
behaviour, i.e. methods. Java allows the programmer to customise class loading. Custom class
loaders are used when the default Java class loader cannot locate a class in either the local cache
or the directories specified in the CLASSPATH system variable. Consequently, the programmer
can dynamically load the classes from a remote location over the network. Despite the
popularity of Java for mobile agent systems, alternative implementations do exist in other
languages [Gray02, Peine02]. These provide a customised representation of code and data. For
example, Lingau ef al. [Lingau95] embed the code and data into a Multipurpose Internet Mail
Extension (MIME) message. Others use XML [Emmerich00] or provide a custom
representation of transforming the code and data into bytes [Gray02, Peine02] for shipment to

the destination agent server.

So far, it has been established that there are numerous strategies for transferring data and
code. However, there are also different strategies for code mobility, i.e. pull, push or push per
unit. A pull code mobility strategy sends only the mobile agent’s class to the destination agent

server. When the destination agent server unpacks the data and code, it requests classes from the
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unit of execution corresponds to a thread that executes within an agent server process. Others,
e.g. [Gray02], run the mobile agent in an operating system process. The state of the mobile
agent is then packaged (4) and transferred (5) to the destination agent server by the transport
manager. Mobile agent systems differ according to the transport protocol used. For example,
each agent server may provide an RPC interface with a signature to receive a portable
representation of the mobile agent. Others may provide TCP socket or HTTP interface. Upon
reception of state, the transport manager at the destination agent server unpacks the state (6) and

forwards it to the agent manager (7) that creates a new unit of execution (8).

The process of packing and extracting the state of the mobile agent depends upon the
mobility semantics and the interpreter adopted by the mobile agent system. For example, if the
interpreter allows saving the execution state, e.g. D’Agents [Gray02], then the agent system
developer can use the state extraction routines of the interpreter to provide strong mobility
semantics. Alternatively, if the interpreter does not provide execution state restoration, e.g.
Sun’s Java Virtual Machine (JVM), then the agent system developer has more work to provide
strong mobility semantics. Firstly, the interpreter could be modified to allow saving the
execution state of the mobile agent thread. This approach, adopted by NOMADS [Suri00] and
Sumatra [Acharya97], has the disadvantage that hosts must install a new interpreter. An
alternative is to transform the bytecodes produced when the mobile agent is compiled. For
example, Sakamoto et al. [Sakamoto00] propose an algorithm that transforms the bytecodes for
each method by adding instructions to save and restore the execution state. This is achieved by
modifying the method signature to include a data structure that stores the execution state. A
method that contains a migration instruction is modified to throw an exception. This triggers
saving the execution state of the method. The exception is then thrown to trigger state saving
operations further up the calling hierarchy. Upon resumption, instructions are inserted to restore
the execution state using the data structure passed to the modified method signature. An
alternative method is to transform the source code to produce a class file that provides strong
mobility [Sekiguchi99]. This works on the same principle, i.e. exceptions are used to trigger the
state saving routine up the call hierarchy. However, a compiler must insert instructions before

runtime and the approach requires access to the source code for the mobile agent.

2.5 Mobile agent communication

Communication between client and server software components in a conventional
distributed system uses Remote Procedure Call (RPC), whereby a client requests the invocation
of a remote method offered by a server. The server performs the request and replies with the
result. Both the client and the server exist at fixed nodes and must be aware of the identities of
communication partners. Consequently, communication is synchronous, i.e. the client blocks

until the server sends an acknowledgement. The mobile agent research community is
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speculative of using remote procedure calls for mobile agent interaction. Firstly, the remote
procedure call communication strategy assumes that communication parties share a common
name space and are aware of each other's identity. This can sacrifice the degree of a mobile
agent’s autonomy [Hermann00, Cabri02]. For example, if a mobile agent executes a procedure
under foreign control, i.e. it is fulfilling a remote request, the agent may not migrate until the
procedure has been executed. Equally, it could be the case that the mobile agent migrates
without fulfilling the request. Secondly, communication relies upon the stability of the network.
This is a problem when the location of the mobile agent is dynamic. A complex
communications infrastructure is required for mobile agents to provide message forwarding and

track the dynamic location of named mobile agents.

One solution is to reduce the complexity of the communications infrastructure by localising
the mobile agent interactions and wherever possible, enforce uncoupled interactions [Cabri02].
Meeting points and tuple spaces are examples. Mobile agents can establish a meeting point at a
local agent server where agents can join and synchronise for interaction. Establishing a meeting
point at a local agent server reduces the problems of a stable network, since all communication
occurs locally. However, all participants must be present at the same agent server, thus
sacrificing a degree of autonomy. Furthermore, the meeting point represents a single point of
failure. Tuple spaces provide associative communication and co-ordination. A tuple space
communication model consists of a shared data space (tuple space), information elements that
exist on the data space (tuples) and a small set of operations to add, remove and access tuples on
the space. Communication is associative, i.e. information is accessed by content, possibly using
pattern matching. Interactions are characterised as indirect and uncoupled through the creation
and manipulation of tuples on the shared tuple space. Specifically, temporal and spatial
decoupling is enabled [Murphy0O1]. Temporal decoupling means that communication parties do
not need to synchronise for communication, i.e. the sender and the receiver do not have to exist
at the same time. Spatial decoupling means that the communication parties do not have to be
aware of the identities of their peers to communicate. Both properties preserve the autonomy of
mobile agents. This means that the mobile agent does not have to lookup the name and location
of a communication peer and then synchronise communication activity at a specific location.
Furthermore, communication is localised to the tuple space. Linda [Gelernter85] was the earliest
tuple space implementation that provided a single tuple space with no transactional support or
authentication of tuple accesses. Later implementations, e.g. TSpaces [Lehman99] and
JavaSpaces [JavaSpaces03], provide persistency and an event notification system that notifies
registered communication parties when the tuple space is modified. In these implementations, a

central tuple space provides remote access to multiple communication parties.
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MARS [Cabri02, Omicini01] and TUCSON [Omicini0l] provide programmable tuple
spaces that are independent of Java mobile agent systems. An independent programmable tuple
space exists at each agent server to allow reactions to be programmed for the addition, removal
and access of tuples on the space. A reaction is represented as a code fragment, 1.e. a Java object
in MARS [Cabri00, Cabri02] and a first order logic term in TUCSON [OmiciniO1]. The code
fragment is executed in response to a specific tuple operation. MARS [Cabri00, Cabri02] allows
reactions to be installed by the agent server or application mobile agents. For example, the agent
server may install reactions to provide environment specific co-ordination such as security.
Alternatively, an application mobile agent may install a reaction onto the tuple space to
exchange application specific knowledge. Application based reactions must be confined to the
context of the application and are enforced by associating an identifier with mobile agents in the
application. MARS [Cabri00, Cabri02] and TUCSON [OmiciniO1] provide a single static tuple
space at each agent server. The tuple space is independent of tuple spaces at remote agent
servers. Alternatively, LIME [Murphy0l] permanently associates one or more named
programmable tuple spaces with a mobile agent. Consequently, the tuple spaces migrate with
the mobile agent. When a mobile agent arrives at a host the tuple spaces are automatically
merged with the tuple spaces of co-located mobile agents. Consequently, mobile agents that are
co-located at an agent server may share tuples for the duration of their stay. Furthermore, a
mobile agent may declare private tuple spaces. When a mobile agent migrates to another host,
the tuple spaces migrate with it. Consequently, upon migration, the tuples owned by the mobile
agent are no longer visible to co-located mobile agents. Tuple spaces have potential for mobile
agent communities that interact via accessing and manipulating shared data stored at one or
more agent servers. LIME [Murphy0l] allows a mobile agent to migrate a tuple space that
represents the application context. However, the size of the tuple space must be controlled to

preserve the potential bandwidth savings offered by mobile agent technology.

2.6 Mobile agent interoperability

A significant problem that hinders the widespread adoption of mobile agent technology is
the lack of interoperability between mobile agent systems. Two mobile agent systems are
interoperable if a mobile agent of one system can migrate to the second system, the agent can
interact and communicate with other agents (local or even remote agents), and the agent can
leave this system and resume its execution on the next interoperable system [Pinsdorf02]. The
following 1ssues contribute to the lack of interoperability between mobile agent systems:

e Language: Agent servers are typically implemented using an interpreted language, e.g.
Java and Tcl. If hosts run the same agent server platform then interoperability between
computer architectures is gained. For example, mobile agents are able to migrate
between Microsoft Windows and Linux machines. However, migration between agent

servers implemented using different languages is homogenous.
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o Mobile agent system interface: Agent servers provide an interface for visiting mobile
agents to access resources and platform services such as agent management, tracking
etc. Different agent servers provide different interfaces for visiting mobile agents.
Furthermore, most mobile agent systems enforce the application programmer to inherit
from an abstract class. Unfortunately, even if agent servers are implemented using the
same programming language, the abstract class is not universal across all mobile agent
systems.

e Migration semantics: Most agent server platforms provide either strong or weak
mobility. Sun’s Java Virtual Machine does not provide execution state capture.
Consequently, Java mobile agent systems that require strong mobility provide a
modified Java Virtual Machine or use pre-processing. Consequently, migration between
agent server platforms that provide different migration semantics is difficult.

e Heavyweight architectures: Most mobile agent systems are single monolithic
heavyweight systems attempting to provide a common denominator of features
[Picco98]. These features include communication (message transport and delivery),
mobility (agent transport and encoding), security (agent authentication and state
appraisal) and general (agent creation and lifecycle) [Pinsdorf02]. The same features are
often implemented different ways across mobile agent systems. For example, most Java
mobile agent systems provide some means of mobile agent communication using RMI.
Others, such as D’Agents [Gray02], provide their own implementation. The pCode
[Picca98] open source project focuses on this problem to provide a lightweight mobile
agent system. This allows developers to select different implementations for the same

feature.

Existing approaches for interoperable mobile agent systems either enforce standard
interfaces or employ agent factories that convert a mobile agent into a mobile agent for the
target environment. Each approach focuses on different levels of interoperability. For example,
some provide interoperability between mobile agent systems implemented using the same
interpreted language. Furthermore, only some aspects of interoperability may be enforced, e.g.
security may not be addressed. This section describes the existing approaches for

interoperability between mobile agent systems.

2.6.1 Interoperability standards

There are two interoperability. standards for mobile agents, MASIF [Milojivcic98] and FIPA
[Fipa04]. MASIF {Milojivcic98] incorporates interoperability using the CORBA framework
without the need to modify the agent platform. Two CORBA IDL interfaces are provided,
implementations of which can be published to a CORBA naming service. The MAFAgentSystem
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interface must be implemented by the agent server to provide interoperability for agent transfer
and management. Standard methods are provided concerning the mobile agent lifecycle (create,
terminate, suspend and resume) The MAFFinder interface, accessed via the CORBA naming
service or MAFAgentSystem interface, provides a registry that can be used to maintain a
database of mobile agents, agent servers and mobile agent systems. Methods are defined to
register, deregister and locate these entities. A mobile agent can also use the MAFFinder
interface to locate mobile agent systems that match its requirements specified in an AgentProfile
object. Requirements include language, serialisation mechanism, the type of agent server and
version number. MASIF [Milojivcic98] uses these interfaces to standardise mobile agent and
agent server names, agent system types and location syntax. It should be noted that there are
some aspects that are not standardised. These include agent encoding and security. The only
mechanism for agent transfer that is standardised is the interface for agent transfer employed by
the mobile agent system. Consequently, the MASIF [Milojivcic98] standard assumes agreement
between agent servers concerning the encoding of the mobile agent for transfer. Furthermore, it
is clearly stated that the standard is only concerned with interoperability between mobility agent

systems written in the same language and expected to go through revisions [Milojivcic98].

FIPA [Fipa04] is a standard from the intelligent agent community that focuses significantly
on interoperable agent communication between heterogeneous FIPA compliant agents using a
standard Agent Communication Language (ACL). The specification for the FIPA standard
[Fipa04] outlines a framework for agents including an Agent Management System (AMS),
Directory Facilitator (DF) and Agent Communication Channel (ACC) that operates over
CORBA IIOP. The Agent Management System and Directory Facilitator offer functionality
similar to the MAFAgentSystem and MAFFinder interfaces of the OMG MASIF [Milojivcic98]
standard. Communication between agents is achieved using a message forwarding service

between agents.

Grimstrup et al. [Grimstrup02] propose the GMAS interoperability standard to serve as an
interface between the hative mobile agent system and foreign mobile agents from different
platforms. The interoperability standard translates a foreign mobile agent system API into the
API for the native mobile agent system. Consequently, to achieve interoperability each mobile
agent system must provide a translator between its own API and the GMAS interoperability
APIL. This is achieved by implementing the Foreign2GMAS interface. To host foreign mobile
agents, the native mobile agent system must implement the GMAS2Native interface that
converts GMAS API calls into API calls for the native mobile agent system. Each mobile agent
system has a gateway and launcher software component that is responsible for dispatching and
receiving mobile agents respectively. Migration between GMAS compliant mobile agent

systems is achieved by transporting the mobile agent state and meta-data between the gateway
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at the origin and the launcher component at the target mobile agent system. However, it is
assumed that a common communication protocol, e.g. CoABS [Coabs04], exists between
mobile agent systems. When a mobile agent migrates to a different GMAS compliant mobile
agent system, its Foreign2GMAS adaptor is dynamically downloaded from a specified remote
code base. This then communicates with the GMAS2Native adaptor for the target mobile agent

system.

2.6.2 Mobile agent factories

Brazier et al. [Brazier02] migrates an architectural description, or blueprint, of mobile agent
functionality with the application state. An agent factory at the target mobile agent system uses
the blueprint to generate a compatible mobile agent. The mobile agent functionality is specified
at two levels. The conceptual level describes the components of the mobile agent including
component interfaces and interactions. The detailed level includes code and definitions, e.g.
interfaces. For example, there may be implementations in Python, C and Java for a single
component at the conceptual level. Libraries of descriptions may include design patterns,
knowledge based models or agent wrappers that provide cross platform interfaces. The agent
itself is responsible for storing and restoring state using platform independent measures, e.g.
XML. The agent factory is responsible for sending the agent state and blueprint to the target
host. It is assumed that the target host has access to an agent factory capable of producing a
mobile agent for the target platform. Migrating a specification of the mobile agent functionality
offers the advantage of language interoperability. However, so far, this is only applicable for

mobile agent systems that support weak mobility.

Design techniques exist for interoperability between Java mobile agent systems. A design
based upon the adaptor pattern is presented in [Misikangas00]. This design separates platform
specific functionality from the application. A mobile agent is separated into two classes, a head
and body. The head is platform independent and represents the application mobile agent. The
body represents the platform specific operations of the mobile agent with methods defined for
migration, message passing and service location. Interoperability is achieved by moving the
head to a target mobile agent system and binding it to the platform specific body
implementation. A migration service (Monads Agent Gateway) is provided that opens a socket
to the destination and transfers the head. The receiving migration service (Monads Agent
Gateway) then binds an instance of its platform specific body to the received head. The
migration service is only used when the mobile agent needs to migrate to a different mobile
agent system and exists at hosts that provide the monads service APl [Campadello00].
Interoperable communication is provided by using text based messaging. A method is provided
in the body (receiveMessage(String)). If the head is present, the message is delivered.

Otherwise, the body can either store the message until the head returns or request the migration
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service to deliver the message to the head. However, no details are provided regarding how the

gateway determines the current location of the mobile agent.

An agent factory has also been adopted by [Pinsdorf02] in the SeMoA mobile agent system
[Roth01]. At the time of writing Jade [Bellifemine99] and Tracy [Braun01] mobile agents can
migrate and execute at any SeMoA [Roth01] agent server. When a mobile agent is deserialised,
a lifecycle registry forwards it to registered factories and waits for a signal from a factory that is
willing to handle the mobile agent’s class. The factory then generates an instance that handles
the mobile agent’s lifecycle. The instance acts as a wrapper capable of translating between
native lifecycle and foreign mobile agent system lifecycle. Consequently, all necessary
components are instantiated to make the mobile agent believe that it is running on its native
mobile agent system. However, access to source code is assumed for analysis of the mobile

agent architecture and lifecycle.

2.7 Mobile agent architecture summary

This section concludes by summarising the architectural features available for existing
mobile agent systems. There are some mobile agent systems such as Concordia [Wong97] that
are no longer available. For this reason these have not been included in the survey, since they do

not represent the latest available mobile agent systems.

Table 2-3 characterises mobile agent systems according to the following properties:

e Language: The implementation language adopted by the mobile agent system for
application developers to program a mobile agent.

¢ Code transfer; The strategy used to transfer mobile agent code. Section 2.4 introduced
the push, pull and push per unit code download strategies.

s  Mobility semantics: Is strong or weak mobility used for migration?

¢ Communication mechanism: The means of communication available to mobile agents.
Section 2.5 introduced remote procedure calls, meeting points and tuple spaces as
mechanisms for communication between mobile agents.

o Interoperability: Sections 2.6.1 and 2.6.2 described interoperability mechanisms for
mobile agent systems. Interoperable mobile agent systems may implement a standard
[Milojiveic98, Fipa04, Grimstrup02]. Alternatively, agent factories may be used to

translate a mobile agent into a mobile agent for the target mobile agent system.
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the language level, i.e. mobile agents can be implemented using different languages. However,
these systems still limit migration to hosts that run the same agent server platform. There is
evidence of limited interoperability between some mobile agent systems, e.g. some developers
have collaborated [Pinsdorf02] to provide interoperability only between the Jade
[Bellifemine99], Tracy [Braun0O1] and SeMoA [Roth01] mobile agent systems. Section 2.6
highlighted that the trend is moving away from standards such as MASIF [Milojivcic98],

toward middleware that uses adaptors to provide interoperability.

3 Mobile agent applications

A significant problem with mobile agents is the lack of a “killer application” [Milojivcic99].
Small case study applications have been used within the research community for proof of
concept. However, there is little evidence of commercial applications that solely use migration.
Consequently, the trend appears to be to focus not on finding applications that purely use
mobility but rather on examining the conditions and scenarios where mobility is a useful tool in

applications [Kotz02].

Mobile agents have been proposed for routing protocols in mobile ad hoc networks. A
routing protocol directs traffic from a source to a destination node to maximise the network
performance and minimise the costs. An ad hoc network is defined as a multi-hop network that
consists of mobile hosts that communicate without the support of a wired backbone, HA/FA or
Base Station [Wang01]. Multi-hop communication occurs when the mobile hosts are not in
direct radio range and are routed through one or more intermediate mobile hosts [Liu02]. The
network is characterised as ad hoc since the topology or structure of the network frequently
changes. For example, a mobile host may move out of range from its neighbours to a new
location and form new neighbours. Some conventional routing protocols such as Destination
Sequenced Distance Vector [Perkins94] rely upon knowledge of the network topology a priori.
These algorithms are unsuitable for use in a mobile ad hoc network environment, since topology
information would frequently have to be distributed over the network due to the dynamic nature
of the network [Marwaha02] and [RoyChoudhury00]. It is expected that this would seriously
limit the network bandwidth for actual communication. Routing schemes such as Dynamic
Source Routing (DSR) delay the transmission of data until the route is discovered, thus being
unsuitable for real time systems. Furthermore, it would be difficult for mobile hosts to perform
the routing algorithm, since they may not possess sufficient battery power for algorithm

execution [Mingas03].

Mobile agents have been proposed to traverse the topology of the network and provide full
connectivity information. The general strategy is that a population of mobile agents are

frequently dispatched to a randomly selected destination in the network. Each mobile host owns
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a routing table that mobile agents query to determine the next mobile host to visit in the path
towards the destination. Mobile agents maintain a history of intermediate nodes visited on the
path to the destination. Each entry in the history may be associated with a trip time denoting the
distance between the launch host and intermediate hosts. Mobile agents update the routing table
of mobile hosts with the best routes for other nodes in the network. Consequently, the mobile
agents are active and possess intelligence for selecting the best route to each node visited on the
path to a destination mobile host. However, there are problems with the mobile agent approach
[Marwaha02]. A host sending packets to a destination for which it doesn’t have an up-to-date
route must wait for a mobile agent to provide a route. Furthermore, if a route breaks, the source
may still keep sending data packets unaware of the link failure. A hybrid approach in
[Marwaha02] combines the AODV [Perkins99] routing protocol with mobile agents to
overcome this. AODV is used for local connection maintenance. Mobile agents enhance the
shortfalls of AODYV routing protocols by increasing connectivity and decreasing the end-to-end

delay and route discovery latency.

In [Minar99] mobile agents co-operate to learn about the connectivity of the network. A
mobile agent learns about all the edges for the node where it is located and stores them as
knowledge. Next, the mobile agent learns node edges from peer mobile agents co-located at the
current node. Finally, the agent selects a node to migrate to. Selection of the node is done
conscientiously at runtime, by choosing a node that has been least visited or never before
visited. Super conscientious agents also visited rarely visited nodes, but the decision to move is
based on facts assembled independently and by peers. A simulation measured the time taken for
all agents to learn the connectivity of the network. Obviously, conscientious agents perform
better than using a random selection strategy, since the nodes acquire more information from
each other. For small populations of agents it was found that the super conscientious selection
strategy performed best. However, as the node population grew, super conscientious agents

tended to be clustered, thus duplicating efforts based on shared information.

Mobile agents are useful for information retrieval applications, whereby a mobile agent
visits one or more remote hosts to query and filter data. The hypothesis is that network
bandwidth is utilised more efficiently by co-locating a mobile agent to one or more remote
agent servers to perform computations on data locally. The success of the hypothesis depends
upon the nature of the application [PiccoOl]. For example, if the mobile agent accumulates data
at remote hosts, there ié the danger that the size of the mobile agent outweighs the performance
benefit of issuing separate RPC calls to the servers. Furthermore, employing mobile agent
technology for message passing, e.g. querying a remote database, demonstrates poor
performance compared to using traditional RPC calls. This is likely attributed to the overhead of

migrating the code and the query on route to the remote host, in addition to the query results on
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the return to the sending host. However, the hypothesis may be useful when the mobile agent is
used to compress or filter the data at remote hosts. In [Picco98b] this approach was used in a
network management application where a mobile agent migrated to remote hosts to determine
the busiest network interface. It was found that this produced a saving of 30% on the utilisation
of the network compared to using a centralised network management station that polled devices.
Mobile agents have been used to implement distributed indexing [Grey00] to overcome the
performance bottleneck given by centralised indexes. Each web site maintains its own index. A
community of mobile agents wanders the web visiting remote sites seeking information of
interest on the behalf of the user. Three types of agents are introduced: ferrets, publicists and
gurus. Essentially, agents traverse the Internet looking for indexes that meet the needs of the
user. Hopefully, the mobile agents meet other agents that are searching for the same topic. A
publicist advertises a topic that it is looking for. A ferret looks for advertisers of a topic and
provides the location of the information consumer. A guru schedules meetings with publicists

and ferrets by remembering which agents they met and the topics they were interested in.

Recently, mobility has been proposed to monitor the health status of service providers
subscribed with a registry or directory service in an autonomic computing environment
[Thoma03]. A fault tolerant distributed directory service is responsible for maintaining
information with respect to the health and functionality of each service provider. When a service
provider is faulty, the registry is responsible for logging the abnormality. Consequently, clients
only receive references to healthy service providers. Steady communication links between the
registry and service providers are needed to monitor the health status. However, the distributed
systems of today operate in an environment that has no defined boundary. This means that
systems dynamically alter scale and connectivity during service provision. Furthermore, new
functionality is added to services during service provision and resources are shared across
organisations. Mobile agents have been proposed to visit the service providers periodically to
retrieve information on the execution status. In the dynamically changing network, the mobile

agent is responsible for finding the route to the service provider even if a link fails.

A further example is the use of mobile agents to gather load balancing information for web
servers and redistribute jobs to servers with a lower load. A distributed pool of web servers can
improve the quality of web services by replicating resources to deal with concurrent client
requests and crash failures. A client request can be sent to alternate servers according to load
balancing strategies. Load balancing aims to distribute client requests evenly to each server.
According to [Cao03] traditional load balancing strategies mix the load balancing policies with
the service implementation. Consequently, maintaining the load balancing strategy is complex.
Furthermore, servers must be frequently polled to gather load balancing information. If a server

rejects a job then another round of polling must be enforced. Conversely, in [Cao03], mobile
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agents are employed to separate the load balancing strategy from the service implementation. If
a server rejects a job, then the mobile agent can dynamically select the next best strategy, thus
reducing latency. Currently, experimental results demonstrate that employing mobile agents in a
LAN environment produced better performance than the load balancing module employed by
the Apache web server for a LAN environment. Mobile agents maintained the lowest deviation
of load distribution (in terms of job queue length). Throughput (total client requests per second)

was greater using mobile agents for concurrent client requests greater than five hundred.

From the above applications of mobility it can be deduced that mobile agents may be useful
to report on the status of remote hosts autonomously to the user application. The advantage of
the mobile agent strategy is to sense the network conditions and links at remote hosts and act
accordingly. Furthermore, under some conditions, mobility can be useful to compress
information stored at remote hosts. It appears that the trend of applications that use mobility is
to provide mobility at either the system application level or as middleware. To summarise,
mobility can be useful in applications to:

e Compress large amounts of information at remote hosts, e.g. filter the best buy for a

product offered by a group of known suppliers.

e  Qather state information while adapting to dynamic network conditions. For example,

intelligent mobile agents can react to failed communication links or slow servers.

¢ Discover a network topology that changes frequently. This is applicable to adhoc

networks in mobile computing environments where there are frequent connections and
disconnections.

¢ Perform actions on behalf of a mobile computer user at a stable host during periods of

disconnection. Later, when the user is reconnected, the mobile agent can be retrieved.

4 Mobile agent problems

This section highlights a brief overview of the problems with mobile agents and aims to
identify the key technical and non-technical hurdles faced for acceptance in industry. Technical
hurdles are understood as problems influenced by mobility. For example, security is an obvious
concern when private code and data is shipped over a network link to remote hosts. Non-

technical hurdles are high level issues that may cause concern for industry.

Perhaps a key challenge is identifying a universal definition for mobile agents. Indeed, this
is highly unlikely to be resolved when the term agent is loosely defined. Section 1.4 highlighted
the confusion that exists between mobile agents and mobile code. The two terms are often used
interchangeably within the research community. Further confusion is added concerning which
community mobile agents belong to. Some perceive that a mobile agent is synonymous to a

distributed object that can migrate state and code autonomously across hosts. Others belong to
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the distributed artificial intelligence community whereby mobility is viewed as a characteristic
of an agent. In this context, a mobile agent possesses knowledge of its environment, executes to
satisfy goals and communicates using an Agent Communication Language (ACL). Furthermore,
the mobile agent is capable of migrating autonomously to another location. It is unlikely that
there will be a true definition for a mobile agent. It appears that the current trend for researchers
is to form their own definition and develop a solution to suit. Consequently, the lack of a
concrete definition influences uncertainty amongst industry and researchers. Unfortunately, this

can be a factor towards reluctance to use the technology.

There is significant debate concerning the characteristics of mobile agents that make them
suitable to specific application domains. For industrial acceptance a comprehensive study is
required. Application domains suited to mobile agents were discussed by leading researchers in
[Milojivcic99]. Electronic commerce, network management, information retrieval and mobile
commerce were identified as potential applications of mobile agent technology. Mobile agents
were envisaged as useful for autonomously representing users. A user could dispatch a mobile
agent to perform a task at a remote node, e.g. querying a database. Mobile agents also have
potential for data-intensive applications where data is remotely located and the user has
specialised needs. For example, mobile agents may be launched by mobile devices to provide
personal mobility, i.e. a mobile agent may represent a personal user profile and execute at a

remote location, contacting the user when events of interest occur.

Despite these potential uses, there appears to be no consensus concerning a killer
application where mobile agents are used as the main structuring unit [Milojivcic99, Lange99,
Schoder00]. It could be argued that traditional technology may equally be used. For example,
client server technology could be employed for querying a remote database. Industry may prefer
familiar technology and established methodologies. Mobile agents may therefore be perceived

as a solution in search of a problem domain [Nwana99].

Although it is easy to conceptualise application scenarios where mobile agents may be
useful, awareness of the proposed benefits is important. Benefits frequently claimed for mobile
agents are clearly stated in [Lange99]:

¢ Reduce network load: Traditional distributed systems require multiple interactions to

perform a given task, consequently increasing network traffic. Mobile agents can be
transferred to remote hosts where large volumes of data can be processed locally.

o Overcome network latency: For critical real-time systems, where entities need to

respond to environmentél changes in real-time, the network latency involved is
significantly large. Mobile agents are seen as offering a solution since they can act

locally.
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¢ Encapsulate protocols: Mobile agents can migrate to remote hosts to establish
channels based on proprietary protocols. Conversely, traditional approaches require that
hosts implement protocols to code output data and interpret input data. Consequently, it
is difficult to upgrade protocol code.

¢ Execute asynchronously and autonomously: Mobile devices operate in environments
with fragile network connections. Mobile agents can embed tasks that are released into
the mobile network to execute asynchronously and autonomously.

¢ Adapt dynamically: Mobile agents can distribute themselves to hosts in an itinerary to
maintain the optimal configuration for performing a task.

¢ Naturally heterogeneous: It is claimed that mobile agents are generally computer and
transport layer independent. Indeed, this is true to some extent for mobile agent systems
implemented in Java. However, a mobile agent may only migrate to hosts that provide
the same agent server.

e Robust and fault tolerant: It is claimed that the ability of mobile agents to
dynamically react to adverse events, e.g. host failure, facilitates robust and fault tolerant

distributed systems.

The benefits of improved network load and latency are debateable. Indeed, for mobile
agents to provide a significant network load benefit, investigations are required to understand
the degree in which the-size of the mobile agent overrides the performance benefit. Recall that a
mobile agent is a computational entity comprising code and state. Indeed, some experiments
have been performed [Picco98b], although it is felt that there exists no consensus. Equally it

may be argued that network bandwidth is constantly increasing.

Interoperability among mobile agent systems is limited. Although standards have been
introduced there are few mobile agent systems that are fully compliant. Indeed, Grasshopper
[Baeumer03] is the only MASIF [Milojiveic98] compliant mobile agent system. Furthermore,
the ability of mobile agents to migrate autonomously to hosts can be equally viewed as a
hindrance to fault tolerance. For example, tracing mobile agents can be a problem. In this case,
mobile IP can be employed whereby the home agent server is notified of the mobile agent’s new
location after migration. However, it is possible that the mobile agent continuously migrates

during the latent period of notifying the home agent server of its new location [Murphy99].

Another serious concern for mobile agents is security. Customers are wary of trusting third
party service providers..For example, a malicious host may modify the state of the mobile agent.
From another perspective, third party server providers may be wary of granting execution
privileges to foreign mobile agents. It may be the case that malicious mobile agents present

denial of service attacks dramatically consuming CPU load. Furthermore, Schoder ef al.




Chapter 2 Mobile Agents 36

[Schoder00] perceive the absence of a social and legal framework as a challenge for controllable
deployment of mobile agents. Problems such as stability and communication security are
scarcely solved by a centralised control system. This is due to the number of mobile agents that
dynamically join the system in addition to the technical constraints of the underlying

communications networks.

Essentially, mobile agents should be perceived as a uniform solution to many problems,
such as network bandwidth, rather than a new technology that provides services that are not
possible using other technologies. This argument dates back to [Chess95], i.e. there are few
overwhelming advantages and an equivalent solution can be found that does not require mobile

agents.

5 Summary

This chapter has presented an overview of the current research within the mobile agent

community.

The mobile agent community is a wide and constantly evolving research field.
Subsequently, there is typically a lack of widely accepted terms and methodologies. The agent
community lacks a concrete definition for the term agent. Furthermore, there exists
terminological and semantic confusion for distinguishing between mobile code and mobile
agents. This chapter has therefore presented a definition for the terms, agent and mobile agent,

which are subsequently adopted by the remainder of the thesis.

There are two levels of interest with respect to the architecture of a mobile agent system, i.e.
the mobile agent and the agent server. Consequently, this chapter has outlined techniques for a
mobile agent to organise its travel plan and communicate with resources at remote hosts.
Furthermore, the core mechanisms of mobility, mobile agent communication and

interoperability have been described.

Finally, the chapter presented a summary of the motivation for mobile agents and
highlighted a brief overview of the problems with mobile agents. The following chapter
provides an introduction to exception handling and investigates the challenges for exception

handling in mobile agent systems.
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temporary; failures and errors are apparent only within the fault duration and are consequently
difficult to detect. Permanent faults are ever lasting. Design faults occur during system design

or modification. Operational faults occur during system usage.

If faults can be prevented, it seems reasonable to assume that reliability is massively
increased. Although this is true to some extent, it is unlikely to succeed, due to the intuitive and
creative nature of design. Design faults may remain undetected, thus it is impossible to eradicate
all faults. A mechanism is required to provide reliability in the presence of faults. This is termed
Sault tolerance and introduces redundancy to address faults. A system is fault tolerant if the
behaviour of the system, despite the failure of some of its components, is consistent with its
specifications [Jalote94]. Anderson and Lee [Anderson81] divide fault tolerance into four
phases to manage the additional complexity and consequent increase in system state:

1. Error detection: Identify errors in system state.

2. Damage confinement and assessment: Assess the scope of error propagation and take

appropriate measures for confinement.
Error recovery: Correct erroneous state to allow resumption of normal activity.
4. Fault treatment and continued service: Prevent a fault from immediately recurring to

allow the system to provide the services outlined in its specification.

Error recovery is divided into forward error recovery and backward error recovery.
Forward error recovery techniques correct an erroneous state to produce a new state that is,
hopefully, error free. Backward error recovery techniques restore the current erroneous state to a
prior error free state. Forward error recovery is application specific requiring prior knowledge of
errors. Consequently, damage assessment and error prediction are significantly important.
Backward error recovery replaces the entire system state, thus invalidating the need for damage
assessment and error prediction. Backward error recovery provides higher reliability since
unanticipated faults may be handled. However, there is the performance drawback of complete
state restoration. Forward error recovery techniques use measures. Backward error recovery
techniques use measures or mechanisms. Anderson and Lee [Anderson81] define a measure and

mechanism as follows:

“A measure is a construction within the design of a system (e.g. in the program of an
interpreted system) intended to perform a specific task. A mechanism is a construction

within an interpreter which provides a specific facility”. [Anderson81]
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mechanism has executed the appropriate handler. Two important issues arise at this point: (i)
exception propagation and (ii) control flow continuation. An exception is propagated (signalled)
when no suitable local handler exists. Propagation is explicit or automatic [Garcia0l]. Explicit
propagation signals the exception to the immediate caller where it is handled or signalled to a
higher level component. (Note that the same exception is not necessarily signalled.) A general
exception is propagated when no suitable handler exists within the caller or the program
terminates. When automatic propagation is employed, the exception automatically propagates
up the calling hierarchy until a matching handler is found, i.e. handling is not restricted to the
immediate caller. The system should resume normal activity upon completion of exception
handling. If the exception handler successfully averted failure, then control should resume at an
appropriate location in the software to provide a continued service. Alternatively, the exception
handler terminates and signals a failure exception. This scenario illustrates two models: (i)
resumption and (ii) termination. The resumption model resumes normal activity at the statement
subsequent to the one that raised the exception. The termination model terminates the activity of
the component that raised the exception. If the component is strictly terminated the entire
program is halted and control is directed to the operating system. Return termination terminates
the signalling component and directs control to the statement that follows the protected region.
Alternatively, the signaller may be terminated and retried. Resumption implies saving state
before exception handling. Termination requires that the computation performed before an
exception occurrence is undone and retried. Anderson and Lee [Anderson81] maintain that the
termination model is preferred due to simple semantics, i.e. an exception is regarded as an
abnormal event. Furthermore, the resumption model is highly likely to introduce failure since
control reverts back to a potentially faulty component. This section concludes with a significant

point raised in [Jalote94]:

“Note that exception handling provides a framework which supports the design of fault
tolerant software, it is not a technique for fault tolerance. Fault tolerance has to be

programmed using the primitives provided by exception handling”. [Jalote94]

In other words, exception handling is not a technique. It is a tool for the design and
construction of fault tolerant software. In reality, excluding safety critical systems, exception

handling is not considered a design issue.

So far, a system model, reliability and fault tolerance have been introduced. The system
model was extended to describe an exception handling framework, forming a basis for outlining
exception handling control flow. Sections 2 and 3 describe exception handling for serial and

concurrent systems respectively.




Chapter 3 Exception Handling and Fault Tolerance 41

2 Exception handling in serial systems

This section examines software fault tolerance techniques for serial systems. Software
faults occur during software design and construction {[Anderson81]. A serial system executes at

a fixed location and has a single thread of control.

Abstraction is an established technique for controiling system complexity by recursively
partitioning a software system into a hierarchy of modules. Each module consists of state
variables and procedures. A module has an infernal state and an abstract state. The internal
state is the sum of all state variables. The abstract state is the result of applying a procedure. A
procedure provides a specific coherent service, and one or more exceptional services (handlers),

to handle abnormal situations. Figure 3-3 illustrates a module hierarchy.
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Figure 3-3 Module hierarchy

Modules are represented as nodes. An arrow from node A to node B signifies that A is a
user of B, i.e. A invokes a procedure in B. Successful completion of A depends upon the
outcome of the procedure invoked in module B. If a module is unable to perform a requested
service an exception is raised and a handler performs error recovery. Ideally, the handler masks
the exception from the calling module. In this case the procedure satisfies the intended service
and returns a normal response. If the exception cannot be entirely masked from the caller, it is
propagated (signalled). Figure 3-4 highlights exception propagation in serial systems. Explicit
propagation occurs when no suitable handler exists in the signalling module. In this case the

exception is propagated to the immediate caller. If a suitable handler exists remedial action is
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serves to provide an error free result among executed variants. A controller manages the
execution of variants. If a variant fails to produce an acceptable result, the controller selects and

executes an alternative design.

Data diversity perceives design faults to be triggered by specific inputs. Consequently, if the
inputs are varied, design faults may be eradicated. This approach executes an algorithm for
logically equivalent sets of data. A decision algorithm is applied to determine system output
according to the results. Data diversity is dependent upon data re-expression, i.e. reassigning
data values that are logically equivalent. The focus of this thesis is therefore design diversity,

namely recovery blocks [Horning74] and N-Version programming [Chen78].

2.1 Recovery blocks

A recovery block comprisesi an acceptance test, a primary module and a sequence of
alternate modules. An acceptance test (adjudicator) is an error detection measure
complementary to system state assertions and hardware error detection mechanisms [Xu00].
Tests are performed subsequent to server computation of results and prior to forwarding output
to the client. A block comprises a series of alternate algorithms (variants), each considered an
ideal fault tolerant component. Essentially, this means that each component has its own fault
tolerance capabilities. The primary module executes first and is organised so that it is more
desirable than its alternate modules. Subsequent alternatives employ increasingly degrading and
simpler implementations. An alternate module is executed when the primary module/alternate
fails the acceptance test or an exception is raised by another alternate module. Consequently, a

recovery block scheme supplies gracefully degrading sofiware [ Anderson81].

Figure 3-6 [Xu00] illustrates recovery block control flow. Upon entering a recovery block
the system state is check-pointed to enable backward recovery. The primary module executes
and an acceptance test evaluates the results. If the primary module completes satisfactorily the
recovery block exits. Alternatively, if an exception is raised, then backward error recovery is
invoked to cancel the effects of the primary module and allow alternate execution. The next
alternate module executes and an acceptance test is performed. The sequence continues until an
alternate module passes the acceptance test or all alternate modules fail. In this case, a failure

exception is signalled to the enclosing environment.

The recovery block scheme is largely extended. For example, the deadline mechanism
[Campbell79] introduces support for real time systems to assume a predetermined maximum
response time for services. A distributed recovery block scheme [Kim84] is capable of

recovering from both hardware and software faults by applying distributed processing.
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Figure 3-6 Recovery block control flow

The success of recovery blocks depends upon the adopted error detection mechanism and
acceptance tests. Further design faults are likely to be introduced as the accuracy and
consequent complexity of acceptance tests rises. Performance is also an issue, the worst case

being when all alternate modules fail.

2.2 N-Version programming

N-Version programming (Figure 3-7) was founded by Chen and Avizienis [Chen78]. N-
versions (N>1) of a program are implemented, each independently designed and executed. All

versions are supplied with the same inputs and initial conditions.

Figure 3-7 N-Version programming model

A driver program, synonymous to the controiler in Xu and Randell’s model of design
diversity [Xu00], is responsible for invoking all versions, assimilating results and applying a
voting algorithm to determine a single consistent result. The performance of N-Version
programming systems is always equal to the worst case module, i.e. the longest executing. This

has the advantage that execution time is predictable.
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2.3 Design diversity costs

If, in an ideal world, resources were infinite, then multi-version software would appear to be
a viable approach for producing dependable software. However, this is not the case in industry.
It is debatable whether it is cost effective to channel development costs into a single version
application with the hypothesis that increased development time provides dependable software.
Should limited resources be applied to a multi-version application? Such a debate can only be
answered provided that the cost of failure is known a priori. For example, in the consumer
electronics industry recall costs are high. Conversely, software development costs in industries

such as fly-by-wire aircraft, only account for a small proportion.

Newcastle University conducted experiments to determine the cost effectiveness of design
diversity as opposed to single-version software applications [Xu00]. The experiments compared
the costs for building a multi-version (3-version) and a single-version application for a factory
production cell (presented in [Xu00]). Both systems were constructed using equal resources,
each version being divided into equal units of time. The single version application was allocated
three units of time. The results concluded that single-version software is more dependable since
less faults and failures were detected. The multi-version application could equally be interpreted
as being more reliable since there were fewer undetected failures. It cannot be said that single-
version software 1s more dependable and safer in the presence of limited resources, since we
cannot guarantee that the quality of software increases with time [Xu00]. Some failures will

always remain undetected, largely due to contributions from the software crisis and design.

3 Exception handling in concurrent systems

The components of a concurrent system (Figure 3-8 [Xu00]) are objects, threads and
actions. An object is defined by its state and behaviour (methods). Threads are active entities
that invoke object methods. An action is a programming abstraction that allows the application

programmer to group a set of operations on objects into a logical execution unit [Xu00].
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Figure 3-8 Concurrent system model

Anderson and Lee classify concurrency as independent, competing or co-operating
[Anderson81]. The simplest form of concurrency is independent, whereby the activity of each
process is isolated. Independent concurrency is present when an object is only accessible to one

thread. Competing concurrency exists when an object is accessible to many threads purely for
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resource consumption. No communication exists between threads. This thesis focuses on co-
operative concurrency, i.e. threads have shared access to objects enabling inter-thread
communication. Shared objects instigate the need for alternative exception handling

mechanisms due to thread interdependencies and concurrent exceptions.

Thread interdependencies increase the likelihood of erroneous information propagation.
Damage confinement is vital. Consequently, the handling of an exception should involve all co-
operating concurrent threads [Garcia0l]. Process dependencies, e.g. complex interactions,
require several processes to handle a raised exception co-operatively. System state is
consequently increased and likely to be inconsistent. Atomic actions are widely accepted for
controlling error propagation and recovery in concurrent systems. Anderson and Lee

[Anderson81] define an atomic action as:

“The activity of a group of components constitute an atomic action if there are no
interactions between that group and the rest of the system for the duration of the activity”.

[Anderson81]

An atomic action is a structural unit that organises the interactions for a group of
components. Interactions are temporal. Therefore an atomic action reflects the dynamic
structure of a system. Error propagation is controlled by the restriction that interactions are
internal. If an exception is raised during the activity of an atomic action then only those
components participating need to be recovered. Externally, the execution of an atomic action is
indivisible, i.e. the action appears as a primitive operation that transforms system state.
Intermediate state changes are concealed. The use of atomic actions in serial systems has been
introduced in the form of recovery blocks. Concurrent systems employ conversations,
transactions or the hybrid CA action approach for atomic action mechanisms, in addition to an

exception resolution mechanism.

3.1 Exception resolution

Serial systems raise a maximum of one exception. Concurrent systems alter this property
when parallel processes simultaneously raise different exceptions. Which one is handled?
Concurrent exception handling employs an exception resolution mechanism to resolve
simultaneous exceptions and determine a generic handler. Xu et a/. [Xu0Ob] maintain that
concurrent exception resolution must be addressed for the following reasons:

e Immediate communication of an exception among participating processes is difficult.

Distributed systems have a higher probability that further exceptions will occur before
participants are notified of an exception occurrence.

¢ Concurrent exceptions may trigger a further serious fault.
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o Distributed systems are inherently more complex to design compared to centralised
systems. Consequently, an increase in the frequency of design faults is witnessed.
o If concurrent exceptions are ignored, all participants must co-operate for error detection

and recovery. Consequently, performance is hindered.

Campbell and Randell proposed an exception resolution tree [Campbeli86]. Exceptions
associated with an atomic action are arranged into a tree hierarchy, whereby a higher level
exception has a handler capable of dealing with lower level exceptions. If exceptions are raised
concurrently, the resolving exception is the root of the highest subtree that contains all
exceptions. Such an approach is static, whereby the designer must anticipate application
exceptions. Another static approach is the chain algorithm [Jalote86] that employs both forward
and backward recovery. Processes are statically linked and employ a rendezvous as the
communication link. Each process receives exceptions from its left neighbour and forwards the
resolution to the right. The rightmost neighbour resolves the exception and transmits results to
the left that then calls the appropriate handler. An implementation for an exception resolution
mechanism in Ada 83, Ada 95 and Java is presented in [Romanovsky00] that uses a controller

process to collect all exception information from participants and co-ordinate resolution.

The exception tree is accepted as the most suitable approach [Campbell86, Romanovsky00]
since it is inherently object-oriented. However, design complexity is increased, i.e. a higher
level handler must be capable of providing recovery implemented by lower levels. Furthermore,
the resolution tree can be built only when the designer is clear about the errors that are to be
tolerated and the handlers can be implemented only after the tree has been built

[Romanovsky00].

3.2 Conversations

The conversation scheme [Randell75] aims to provide co-ordinated error recovery for a
group of interacting processes. Interactions may occur through message passing or referencing
shared objects. A conversation (Figure 3-9 [Xu00]) is an application unit comprising a recovery
line, a test line and two firewalls. The recovery line, established before interaction, is a series of

co-ordinated checkpoints employed by interacting threads to enforce backward error recovery.
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Figure 3-9 Conversation
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A test line consists of acceptance tests for each participating thread. The firewall imposes the
restriction that a thread may only communicate with conversation participants. A recovery

mechanism is triggered if a participant raises an exception.

Backward and forward recovery techniques may be employed by the exception handlers. If
backward recovery is used, all participating threads roll back to the check-pointed state and
retry, possibly executing an alternate algorithm. Forward error recovery is useful for errors that
affect the environment, e.g. hardware devices, users etc., since they cannot backtrack. The
conversation is only successful when all processes satisfy acceptance tests at the test line. In
particular whenever recovery is co-ordinated, the domino effect [Randell75] is avoided. The
domino effect occurs in the presence of backward recovery and process communication. It is
possible that rollback may have an uncontrolled cascading affect, e.g. the state of all recipients

must be rolled back if commands that involve message passing are undone.

Campbell and Randell [Campbell86] introduce exception handling mechanisms into
conversations for asynchronous systems. A system is stiuctured as a series of actions or
conversations, each containing a group of co-ordinating processes. Each action owns a set of
predefined exceptions. Participants specify handlers for all or some of the exceptions. When an
exception is raised the appropriate handlers are initiated within all participants. When a co-
operating thread has raised an exception, error recovery should proceed in a co-ordinated way
[Garcia01]. If an exception is raised for which a component does not own a handler, an atomic
action failure exception is signalled to the containing action. Garcia et al. [Garcia0l] identify
three scenarios when participants may leave the action:

1. No exceptions have been raised.

2. An exception has been raised and the called handlers have recovered the action.

3. There are no appropriate handlers or recovery is not possible.

The resolution mechanism employs an exception tree to resolve different concurrent
exceptions. The root of the smallest subtree containing all concurrently raised exceptions is
selected as the resolving exception. Nested actions introduce the scenario whereby a thread
raises an exception simultaneous to participant activity in nested (internal) actions (Figure

3-10).
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In this case, the internal atomic actions are aborted before the containing action invokes its own
fault tolerant activity [Campbell86]. Each action defines one and only one abortion exception
that is raised when the containing action signals an exception. Participants in the containing
action suspend, while the nested action applies measures to abort itself and consequently

terminate. Only then may the containing action handle the exception.

3.3 Co-ordinated Atomic Actions

The Co-ordinated Atomic Action scheme (CA action) [Xu95] integrates conversations,
exception handling and transactions. Conversations provide co-ordination and backward
recovery but do not support use of shared external resources [XuQ0b]. The consistency of shared
objects is controlled by transactions to guarantee the ACID (atomicity, consistency, integrity,
durability) properties. A transaction may be considered as an action that encapsulates and
performs a sequence of operations on shared objects [Xu95]. The effects of performing the
transaction are written using a commit operation. An abort operation undoes the effects of a
commit by employing backward/forward error recovery. External objects are designed
independently of participating CA action threads and are responsible for maintaining
consistency in the presence of concurrent updates. Transactions mask the effects of concurrent
updates and appear to be serially executed. The internal state of the transaction is invisible to

others, i.e. execution appears as a primitive operation.

Exception handling now involves shared objects. If an exception is raised during the activity
of a CA action then there must be a guarantee that shared objects are in a consistent state after
recovery. Forward or backward recovery techniques may be employed. If any of the external
shared objects fails to reach a correct state, a failure exception must be signalled to the

containing action [Xu00].

The semantics of a CA action are identified as follows:

e Ifbackward error recovery is supported, a recovery line is established.

e FEstablish a test line and a global test for the entire action.

e Upon error detection, all participants co-operatively apply forward and/or backward
recovery.

e Explicit co-ordinated error recovery is employed for internal threads.

e External objects must possess atomicity and supply their own error co-ordination
mechanisms.

e Communication is restricted to internal participants and external shared objects.

* Accessing external atomic actions involves starting a transaction.
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Open multi threaded transactions assume that each exception can be handled locally by the
participant that raised it. Each participant is independent in the sense that communication is
achieved solely through accessing transactional objects. However, communication is still
necessary to signal exceptions among participants. Consequently, a resolution mechanism is
controversially abolished. Participants enter the transaction with the same goal. If an exception
is raised participants are likely to be affected. It appears that continuous exceptions will cause
the transaction to abort. This results in a retry or an external exception that is signalled to the
containing environment. This is a performance hazard since cascading exceptions occur until
the transaction aborts. At this point, transactional objects are in an erroneous state. Clearly, the

scheme is only scalable.to applications that are not inherently co-operative.

4 Exception model for mobile agents

Exception handling is essential for mobile agent systems, as is the case for other software
systems. A developer is particularly interested in the abnormal situations that may occur during
execution. Armed with this knowledge, robustness is enhanced by employing redundant code to
address errors and provide a continued service. Exception handling can be utilised at the design
stage. Without this knowledge and exception handling the application will terminate whenever
an error is encountered. Mobile agents are distinguished by the ability to autonomously migrate
code and state between hosts. Consequently, further challenges are introduced that threaten the
robustness of an application. Typical examples are mobility (node and communication link
failures) and random interactions. Within an open environment security violations (inadequate
access rights for host resources) also raise additional exceptions. So far, little attention is evident
towards exception handling for mobile agents. This is despite the fact that previous experience
has shown that exception handling is the most complex, misunderstood, poorly documented and
least tested part of a software system [Parnas90]. An exception taxonomy is clearly useful as a

first step to address exception handling in mobile agent systems.

A taxonomy may be multi-level or single-level. A multi-level taxonomy is detailed
consisting of one or more sub classifications. The only exception handling taxonomy for mobile

agents that is known, to date, is by Tripathi and Miller [TripathiO!1} (see Table 3-1 next page).

A single-level taxonomy, selected by Tripathi and Miller [TripathiO1], comprises a single
high level classification. Although a multi-level taxonomy may be complex and difficult to
interpret there is the strong advantage that there exists a smaller degree of overlap between
classifications. The taxonomy presented in Table 3-1 (see next page) concisely establishes a
classification of exception scenarios within mobile agent environments. Such a benefit comes
with the price of ambiguity. The mobility and security categories are linked. Assume that a

mobile agent requests migration and subsequently relocates with insufficient access privileges.







Chapter 3 Exception Handling and Fault Tolerance 53

4.1 Exception handlihg for mobile agents

Traditionally, co-ordinated exception handling has been “hard coded” into co-operative
agents resulting in agents that are difficult to maintain and understand. Klein [K1ein99] proposes
a knowledge based exception handling architecture that clearly separates exception handling
from an agent’s normal behaviour. An exception handling agent monitors an agent for
symptoms and suggests both a diagnosis and resolution using a heuristic classification process.
An action and query language provide the interface between the agent and exception handling
agents. Actions performed for recovery may involve reordering, adding or removing tasks.
Recovery is a plan that completes slots by querying the state of the agent. Tripathi es al.
[TripathiO1] adopt a similar framework for mobile agents. Exceptions are divided into two
categories: (i) internal and (ii) external. An internal exception is handled independently by the
mobile agent. External and unanticipated exceptions are resolved through co-operation with a
group of agents via a guardian. The guardian is a central static agent that monitors application
agents and provides global recovery. When a mobile agent encounters an external or
unanticipated exception it notifies the guardian agent. Communication between mobile agents
and their guardian may be achieved remotely or locally, i.e. the mobile agent can relocate to the
guardian’s environment. Exceptions are handled by communicating commands to mobile agents
that, in turn, modify and query state. In some cases the environmental state may be modified.
Example recovery commands include: retry, terminate and relocation. Similar to Klein’s

[Klein99] architecture, a guardian agent may encapsulate an exception handling pattern.

Klein’s exception handling architecture [Klein99] is limited to static multi-agent systems.
Mobile agents are dynamic, i.e. an agent can relocate to a remote host. Adopting the architecture
for mobile agent systems would consequently reduce performance, i.e. each server must host a
knowledge base that mobile agents use to register a model of their normal behaviour. Agents are
introduced for detecting exceptions and determining a resolution. These are only necessary for
the duration of an agent’s stay and are justified providing an agent performs a sufficient task.
The process is repeated when a mobile agent migrates to the next agent server in the itinerary.
Distributing the knowledge basé at hosts visited by agents is clearly costly in terms of
maintenance. However, the architecture incorporates domain independent recovery patterns, i.c.
exception handling strategies for specific abnormal events. Benefits include enhanced
understanding and testability, although agents must implement interfaces to report a behaviour
model and enable modification of their actions. Domain independent recovery relies upon
correctly identifying the causes of failure for each generic problem solving process in the
knowledge base. An agent registers a model of its normal behaviour that is then matched with
the set of generic processes. Applicable failure modes are thus derived. The recovery technique
modifies an agent’s actions appropriately based upon the knowledge of failure modes and their

respective resolution strategy. The drawbacks are: (i) implementation is inherently complex to
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account for generic exception handling, (ii) there is no guarantee for correctly detecting and
handling exceptions within any application domain and (iii) recovery is costly when designing

resolution strategies and envisagirig a suitable taxonomy of generic problem solving processes.

Knowledge of the application domain is needed to some extent for reliable recovery.

Indirectly this is acknowledged in [Klein99]:

“An important characteristic of heuristic classification is that the diagnoses represent
hypothesis rather than guaranteed deductions: multiple diagnoses may be suggested by the
same symptoms, and ofien the only way to verify a diagnosis is to see if the associated

prescriptions are effective”. [Klein99]

An alternative is an exception handling framework that divides component activity into
normal and exception handling behaviour. Normal activity corresponds to service provision.
Exception handling is activated upon receipt of an external (signalled) exception or during the
occurrence of a local (raised) exception. Forward recovery is employed whereby the system
state is corrected in response to exceptions predicted for the application domain. Although
application dependent, this approach is preferred since it is cheap and easy to implement. For
example, language primitives exist, e.g. try-catch blocks and throw statements, to identify
handler code and signal exceptions to a client component. Application specific exceptions are

easily introduced through an inheritance hierarchy.

4.2 Exception handling for failure models

A failure model defines the ways in which failures may occur in order to provide an
understanding of the effects of failure [Goulouris00]. Hadzilacos and Toueg [Hadzilacos94]
provide a failure model (see Table 3-2 next page) that distinguishes between process and
communication channel failures for distributed systems. In order to establish an exception
handling framework for mobile agents, a failure model is required to provide an understanding
of the likely ways in which a mobile agent system fails. Only then can measures be taken to
address failures. So far, there exists no failure model for mobile agent systems [WaldoO1].
Pleisch and Schiper [Pleisch00] provide an insight into failures that are pertinent to mobile
agent systems. Mobile agents can operate within a synchronous and asynchronous environment.
Mobile agent systems that operate within an asynchronous environment have no boundaries on
message passing and communication delays. The root cause of mobile agent failure is therefore
a problem in asynchronous environments, since it is difficult to distinguish between a slow
communication link and a mobile agent that fails by crashing. If a crash is diagnosed, it may be
the case that the mobile agent is delivered on a slow machine or communications link, resulting

in duplicate mobile agent execution. Conversely, blocking occurs if it is assumed that the
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A failure model is needed to gain understanding of the likely ways in which an application
can fail. Only then can exception detection mechanisms, and consequently recovery, prove to be
effective. Furthermore, a measure of severity is implicitly gained to determine a resolution
strategy. For example, security exceptions may be handled using termination. A mobility
exception, e.g. a non existent agent server in the itinerary, may be handled by dispatching the
agent to the next host in the itinerary. Clearly a failure model will differ across application

domains.

5 Summary

This chapter has investigated techniques for exception handling in traditional serial and
concurrent systems. Subsequently, the chapter outlined the challenges for exception handling in
mobile agent systems. These are namely distinguished by the ability of mobile agents to
autonomously migrate code and state between hosts, thus leading to increased complexity with

respect to error detection and confinement.

Finally, the chapter highlighted the fact that little attention is evident towards exception
handling for mobile agents. An overview of existing approaches was briefly presented and
highlighted the lack of a concrete failure model for mobile agent systems. A failure model is
required to provide an understanding of the likely ways in which a mobile agent system fails.
Only then can exception detection mechanisms, and consequently recovery, prove to be

effective.

The following chapter presents a failure model for mobile agent systems and focuses on

providing exception handling for server crash failures.
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Chapter 4 The Mobile Shadow Exception Handler

1 Introduction

Chapter 2 discussed the mobile agent paradigim in general, identifying: what a mobile agent
is, the architecture of a mobile agent system, applications of mobility and the current problems
with mobile agents. A mobile agent is a computational entity that is capable of relocating its
code and data to remote hosts to execute a task on behalf of a user. The sequence of hosts that a
mobile agent visits is described by its itinerary. Weak mobility [Fuggetta98] is assumed, i.e. the
mobile agent restarts its execution at each host. A remote host runs an agent server platform that
provides an execution environment for the mobile agent. The home agent server is where the
mobile agent is created. Remote hosts visited by a mobile agent are assumed to execute the
same agent server platform. Chapter 3 then discussed fault tolerance and exception handling in
general. In particular, exception handling was explored for mobile agents and concern was
raised for the lack of an established failure model for mobile agent systems. The remainder of
the thesis is aimed at exploring exception handling for mobile agent loss due to crash failures of
agent servers. Furthermore, the thesis is concerned with how this can be used amongst a group

of collaborating mobile agents.

Chapter 3 highlighted the lack of a failure model for mobile agents. To the best of the
author’s knowledge there are few failure models for mobile agents. A failure model is important
to understand the ways in which a distributed system can fail. The developers of any fault
tolerant system must design a failure model that outlines:

e Failures masked from the user.

e Failure semantics, e.g. does a process halt when it fails.

e Assumptions made regarding the environmental conditions of failure, e.g. there may be

a boundary for the total number of failures tolerated.

® Protective mechanisms to mask failures.

o Level where fault tolerance is pitched, e.g. middleware or transparent to the application

developer.

e System model of the software and hardware environment.

A system model of the software and hardware environment facilitates identifying the
components that are susceptible to failure and the boundary, or coverage, for the effects of
failures. In this thesis a model describes the entities or components that form the system and

their interrelationships. The software environment is described at a high level of abstraction in
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terms of the functional components and interrelationships. The hardware environment is also
characterised by the model to a limited extent. For example, nodes in the network may be fully

connected.

A mobile agent system can fail in many different ways. For example, a communication link
may fail or a network partition could prevent migration. Alternatively, a mobile agent may not
have sufficient access rights to execute at a remote agent server. This thesis explores a crash
failure model for mobile agents. Tolerating crash failures is particularly important for mobile
agents since a mobile agent represents a single point of failure. Without fault tolerance, an agent
server process or host that fails by crashing has the effect that all local mobile agents are lost

and consequently fail to return results to the home agent server.

The execution path of a mobile agent can be partitioned into stages (Figure 4-1). Each stage

corresponds to an agent server in the mobile agent itinerary.
Stage Stage Stage
Si Si+| si+2

Figure 4-1 Mobile agent stage execution

There are three approaches to provide fault tolerance for mobile agents to survive agent server
crash failures:

1. Spatial replication: Each itinerary stage is described by a set of agent servers that can
potentially execute the mobile agent. A replica of the mobile agent is dispatched to each
agent server. Agent servers in a stage monitor the executing mobile agent's agent server
for failure. At the end of each stage, agent servers agree upon the agent server that
executed the mobile agent and the set of agent servers for the next stage. Consensus is
used for agreement. Once agreement has been reached the mobile agent is sent to the set
of agent servers in the next stage.

2. Temporal replication: One or more visited agent servers monitor the current agent
server. If an agent server crash occurs, a mobile agent is dispatched to the next agent
server in the itinerary or an alternative agent server.

3. Implementation language: Crash failure handling is implemented in a scripting
language. The scripting language 1s used to specify a tree of travel plan choices for the
mobile agent. If the mobile agent fails at a host, it backtracks to the nearest parent and
selects an alternative choice or defers the visit to the host. Hosts visited by the mobile

agent send heartbeat messages to the immediate previous host.
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service) defines its own set of internal or local exceptions [ = {e,, e, ..., e} and associated
handlers IH = {hy, h, ..., b} that serve to provide corrective action. An internal exception
occurrence e; triggers the exceptional activity 4; within the software component. If the exception
is successfully handled, normal activity resumes and completes, e.g. a service s; completes its
execution by providing a response to the mobile agent that made the service request. A mobile
agent completes its activity by migrating to the next agent server in its itinerary. A mobile agent

itinerary, itin, describes an ordered sequence of hosts that the mobile agent visits during its trip.

A corrective action is performed by a service or mobile agent in response to an internal
exception. This is application specific and may involve dispatching a compensating mobile
agent CM to interact with service s; at a remote agent server AG;. For example, a mobile agent
may spawn a child to cancel a purchase made at AG;.,, and locate a cheaper product because it

exceeded its budget.

A service s; signals a set of external exceptions E = {interface, failure} to a mobile agent
when it fails to satisfy the service request. There are two classifications for external exceptions:

1. Interface: Input values supplied by the mobile agent violate the service specification.

2. Failure: The service is unable to provide a suitable response, e.g. a commerce service is

unable to meet the delivery deadline for a given order.

Upon receiving an external exception the mobile agent may retry service s;, locate a service

at an alternative agent server or report back to the home agent server or parent mobile agent.

Figure 4-2 illustrates that the exception handling model is recursive. For example, service s;
at agent server AG; may spawn a mobile agent MA, to visit an agent server 4Gy in reaction to a
request made by MA; Similarly, mobile agent MA4; may spawn a child MA, to perform a
delegated task such as information retrieval. Consequently, the owner of a child is either a
service or mobile agent. A mobile agent is dispatched a second time if it crashed or reported
back to its owner with a failure exception. If the owner is a service a failure exception is
signalled to the mobile agent that made the request, provided that the retry failed and no
alternative service could be located. If the owner is a mobile agent, the failure exception is
forwarded to its parent. The relationship between a parent and child is normally asynchronous.
However, if the parent depends upon the results collected from its child, a synchronous
relationship is introduced, i.e. the parent must remain stationary until its child has returned. For
example, assume a mobile agent is dispatched to determine a purchase plan for PC system
components, e.g. motherboard, CPU etc. The mobile agent dispatches a child to determine the
best deal for a CPU. Due to hardware dependencies, the parent can only consider a motherboard

when its child returns.
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At this point it is necessary to discuss the failure model of the mobile agent for crashes.
When a mobile agent crashes it may be the result of a host failure or a machine failure. Without
fault tolerance the mobile agent is lost at the agent server that fails. The crash failure model
depends upon the application. For example, if operations performed by the mobile agent are
idempotent then there is no need for transactions since the mobile agent does not alter the state
of the agent server. However, if the mobile agent modifies the state of the agent server indirectly
through service invocation, then action must be taken to ensure that the mobile agent performs
the necessary steps exactly once. Exactly once semantics are difficult to achieve in
asynchronous distributed systems since it is has been proved impossible to distinguish between
a slow agent server and a crashed agent server process. Furthermore, transactions are necessary
to provide all or nothing mobile agent execution. Firstly, the session state for mobile agent
execution must be durable or persistent. If an agent server crashes and later recovers, then the
session state for each mobile agent must be restored from stable storage. If there is an error and
the mobile agent cannot proceed, then it must be possible to roll back the session state of the

mobile agent at that agent server. Section 3 defines the failure model adopted in this thesis.

3 Failure model

A failure model defines the ways in which failures may occur in order to provide an
understanding of the effects of failure [Goulouris00]. Only then can recovery prove effective. A
failure model is ideally defined by conducting field-based observations over a large time period
for different systems in operation [Marsden02]. Information may be collected such as failure
classification, frequency and the activities that lead to failure. However, it is believed that few
studies exist for mobile agents. So far, there are few concrete failure models for mobile agent
systems [Waldo0O1]. To the best of our knowledge the only existing failure model is presented in

[TripathiOl]. Table 4-2 outlines a failure model for mobile agent systems.

The focus of this thesis is an exception handling scheme to protect mobile agents from agent
server and host crash failures. Consequently, the scheme provides the foundation for the
exception handling model to operate in the presence of agent server and host crash failures.
Section 2 outlined a model for mobile agent exception handling to aid understanding the effects
of crash failures. At this point, the failure model adopted for agent server and host crash failure

is outlined to describe environmental assumptions and the effects of failure.

Mobile agents are assumed to operate in a synchronous network environment, e.g. a LAN.
This means there is a maximum time boundary for migration and round trip time. Furthermore,
network partitions, host crashes and communication link failures recover eventually. This last

assumption is made by most of the fault tolerance schemes in Table 4-1.
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agent server in its itinerary, 4G4, as a result of a go( AGy ) operation, where 4Gy is the
address of the next agent server in the itinerary, i.e. AGy.,. There are three scenarios for failure
when 4G, dispatches MA, to AGy., at time ¢:

1. AGy., crashes at time u < ¢,

2. MAy is accepted at AGy., at time u. AGy., fails by crashing at time v > u.

3. Communication link failure between AGy and 4G, at time u > ¢.

In the first case the sender throws a failure exception when agent server 4Gy, crashes
before dispatching MAy. In the second and third cases, without fault tolerance, the mobile agent

is lost.

An agent server crash is assumed to obey fail stop [Schlichting83] semantics and occurs due
to failure of the Java Virtual Machine or a host crash. This means that all local mobile agents
and services at 4Gy, halt. Furthermore the dispatching agent server 4G, eventually detects the
loss of a mobile agent, due to communications failure or destination agent server crash.
Eventually, it is assumed that agent server 4G, recovers and restarts the software services.
However, the agent server, AGy.., is not responsible for restarting agents that were lost due to a
crash failure. Consequently, the stable storage property of fail stop semantics [Schlichting83] is

not required.

Furthermore, it is assumed that the mobile agent executes at agent servers for information
retrieval only. In chapter 2 it was seen that distributed information retrieval is a popular
application of mobile agents for collecting data at remote hosts and investigating the network
topology. Consequently, the failure model adopted by the thesis assumes at least once
application semantics. This means that a mobile agent may perform a task at an agent server at
least one time, but possibly more. This is a reasonable assumption for information retrieval
applications since a mobile agent does not modify the state of the agent server, i.e. interactions

between the mobile agent and agent servers are idempotent.

Finally, it has been established that the failure model is for crash failures in a synchronous
network environment. If the failure model was implemented in an asynchronous network
environment then false failure suspicions are likely to occur since there is no time boundary for
migration between agent servers and the total round trip time to complete the itinerary.
Consequently, it is impossible to distinguish between a mobile agent that is lost due to an agent
server crash and a slow communication link or processor. However, if the operations performed
by mobile agents at remote agent servers are idempotent then the damage is confined to

duplicate agents executing at agent servers.
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4 The mobile shadow scheme

The mobile shadow exception handling scheme employs a pair of replica mobile agents,
master and shadow, to survive agent server crashes. It is assumed that the home agent server is
always available to its mobile agents. For example, if the home agent server crashes its mobile
agents may return to a replica agent server. The master is created by its home agent server,
home, and is responsible for executing a task 7 at the hosts described in its itinerary. Initially,
the master spawns a shadow, shadowy,me, at its home agent server before it starts the itinerary at
AG;.(Figure 4-3 a). Before the master migrates to the next host in the itinerary, i.e. AG., it
spawns a clone or shadow; and sends a die message to terminate shadowp,m(Figure 4-3 b). The
shadow; repeatedly pings agent server AG;,, until it receives a die message from its master, The

functionality of shadow and master roles is now discussed for exception handling.

(a) shadow,gme

home AG;

(b) i master

shadow;

honte AG; AGi+
Figure 4-3 Normal execution for the mobile shadow scheme

A shadow is a clone of the master that acts as an exception handler for a master crash. The
shadow pings its master’s agent.server. If a shadow detects a master crash it raises a local
exception to signify master failure. The exception handler skips the master’s current location
and migrates the shadow to the next agent server. A shadow terminates when it receives a die
message from its master. This signifies that the master has completed execution at AG;,; and
spawned a new clone shadow;., to monitor agent server 4G, (Figure 4-4 a). However, assume
the master is lost due to an agent server crash at AG;.,. For example, AG;,, could crash before
the master migrates or during exécution. The shadow, shadow;, at AG; detects the crash of its
master, spawns a new clone shadow’; and proceeds to visit agent server 4G, (Figure 4-4 b).

Consequently, shadow; is the new master, monitored by shadow ;.

die
(a) Q @ ping

home AG; AGi AGis

home

ping

Figure 4-4 Handling a crash at the server occupied by the master
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A master pings the shadow’s agent server AG;, concurrently with the execution of task 7. In
the normal case (Figuré 4-5 a) the master completes its execution and spawns a new clone
shadow’ to monitor the next host in the itinerary AG;,;. Before the master migrates a die
message is sent to terminate the shadow at AG;,. If the master detects a shadow crash it raises a
local exception to signify the failure of its shadow. The master’s exception handler then spawns
and dispatches a replacement shadow’’ to the next preceding active agent server, i.e. AG;y and
pinging resumes between the new shadow and the master (Figure 4-5 b). Before the master

migrates to the next host it sends a die message to terminate the replacement shadow at AG;.

AGiy

Figure 4-5 Handling a crash at the server occupied by the shadow

The failure model, outlined in section 3, assumes a synchronous network environment and
at least once application semantics, i.e. applications must be idempotent. If the mobile shadow
scheme is adopted in an asynchronous network environment then false failure suspicions occur
due to slow communication links or slow processor speeds. False failure suspicions have the
following implications for the mobile shadow scheme in an asynchronous system with at least
once and idempotent application semantics:

¢ Duplicate master instances occur when a shadow falsely suspects a master crash.

e Duplicate shadow instances occur when a master falsely suspects a shadow crash.

e Redundant ping messages. For example, a shadow that is falsely suspected to have
crashed by a master results in the replacement shadow and the master sending ping
messages. Furthermore, the original shadow continues to ping the agent server
occupied by its master.

e Many master instances report back to the home agent server when a shadow falsely
suspects a master crash. This increases the load at the home agent server.

¢ The original master or shadow remains monitoring the agent server occupied by its
partner. Consequently a duplicate instance is created if the original master or
shadow correctly, or falsely, suspects that the agent server previously occupied by

its partner fails by crashing,
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It is assumed that an itinerary and mobile agent have the following operations and state:
Itinerary: An itinerary encapsulates a queue, _destinations, of agent servers to visit, and a
stack, _visited, of agent servers visited by the mobile agent.

e go(): Remove next agent server in the sequence from _destinations queue and push onto
_visited stack. Dispatch mobile agent to the next agent server.

e skip(): Skip next agent server by removing address from the head of _destinations queue.

e loc = itin.getPrevDestination(k): Get the address of the A" previous agent server visited.

Mobile Shadow

e jtin:Ttinerary instance.

o master: True when the mobile agent is a master.

e alive: False when a mobile agent is notified that its shadow or master has crashed.

o dieProxy: Reference to shadow that master terminates before migrating to next agent server.

e shadowProxy: Reference to master's shadow.

o masterHost: Address of master agent server that shadow pings.

o shadowHost: Address of shadow agent server that master pings.

o shadowProxy = spawnShadéw(): Spawn a new replica and return its reference. The
dieProxy is updated to reference the master's previous shadow and master is set to false in
the replica. If the agent is a shadow that has detected its master crash then masterHost is set
to the next available host in the itinerary. If the agent is a master then masterHost is the next
host to visit. The shadowHost is always the address of the current agent server.

e PingT hread(HostNdme, proxy). Thread that pings host HostName. The mobile agent proxy
is notified of a crash by sending it a pingNotify message.

o dispatch(proxy, HostName).: Dispatch mobile agent proxy to agent server HostName.

e send(die): Message that the master sends to terminate its shadow.

e receive(die): Shadow listens for die message sent by its master for termination.

o receive(pingNotify): Notification of a master or shadow crash.

o execute(): Start execution at the current agent server.

o atHome(): Return true if at home agent server.

Figure 4-6 describes the protocol. When the master starts at its home agent server (line 11),
1.e. atHome()=true, it spawns a shadow (line 13) and migrates to the first host in the itinerary
(line 26). If the mobile agent is a master and is at a remote agent server (line 14) it creates a
thread to ping the shadow (line .16). Before the master migrates to the next agent server it
spawns a new shadow (line 19) and sends a die message (line 20) to terminate the old one.
However, if the mobile agent is a shadow, i.e. master=false, it invokes monitorMaster() (lines
44-53) to create a ping thread to monitor the master’s current agent server. Pinging continues if

the master is alive and has not dispatched a die message, 1.e. alive=true and /receive(die).
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1: master = true 28: pingNotify() { // callback for ping thread }

2: alive = true 29: { alive=false

3: 30:  if master {// if master then replace shadow}
4: {// application specific task } 31: shadowDispatched=false; & = 2

5: execute() 32: prev = itin.getPrevDestination( & )

6: 33: while IshadowDispatched && prev !=null
7: {// is mobile agent at home agent server } 34: try

8: atHome() 35: shadowProxy=spawnShadow()

9: 36: pingShadow( prev )

10: run(){ // mobile agent execution thread } 37 dispatch(shadowProxy, prev)

11: {if master && atHome() { // master at home } | 38: shadowDispatched = true

12: { // spawn a shadow } 39: catch(UnknownHostException)

13: shadowProxy=spawnShadow() 40: k++

14: else if master {// if mobile agent is a master} 41: prev=itin.getPrevDestination( k )

15: { // start thread to ping shadow loc.} 42:}

16: pingShadow( shadowHost ) 43:

17: execute() { // execute application task } 44: monitorMaster()

18: { // spawn a new shadow } 45:{ { // start pinging master }

19: shadowProxy=spawnShadow() 46:  PingThread pinger=new

20: send(die) {// terminate previous shadow} PingThread(masterHost, this)

21: else {// mobile agent is a shadow } 47:  pinger.start()

22: monitorMaster() { // ping master } 48:  while(alive && !receive(die))

23: 49: if lalive {//if master crash detected }

24: if master 50: itin.skip() { // skip crashed agent server }
25: { // migrate to next agent server } 51: shadowProxy=spawnShadow()

26: itin.go() 52: master = true {// change to master status}
27:} 53:}

Figure 4-6 Mobile shadow scheme pseudocode

If the ping thread detects a crash the pingNotify() callback method is invoked (lines 28 - 42)
and the alive flag is set to false to trigger exception handling activity. If the mobile agent is a
master then the shadow exception handler is activated (lines 31 — 41) to spawn a replacement
shadow at the first active previous agent server, itin.getPrevDestination(k). The master can then
ping the location of the new shadow (line 36). Alternatively, if the mobile agent is a shadow
then master exception handling activity is activated (lines 49-52). The master exception handler

spawns a new shadow and initialises the shadow to become the new master, i.e. master = true.

The mobile shadow exception handling scheme offers the advantage that all agent servers
are not revisited in the event of a crash failure, since a replica is available at an agent server that
precedes the master. Consequently, there is less information loss. However, greater performance
overheads are imposed on a mobile agent since a replica must be spawned by the master before
it migrates to the next host in its itinerary. Furthermore, a limited number of remote agent server

crashes are addressed.

In this research the following assumptions are made to protect mobile agents from agent
server crashes:

¢ Reliable communication links are assumed.

e All agent servers are correct and trustworthy.

e A mobile ageht crashes when its current local agent server halts execution due to a host

crash or fault in the agent server process.
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e No stable storage mechanism is provided at visited agent servers for the recovery of
executing agents.

e At least once failure semantics are assumed whereby the agent performs its designated
task at least once. If an agent server crashes it is possible to repeat the task at agent
servers ignoring those that crashed.

¢ A mobile agent ignores crashed agent servers.

e A mobile agent visits agent servers to consume information, i.e. agent server state is not

modified.

e There are no simultaneous crashes of agent servers where master and shadow operate.

5 Implementation

So far the failure model and design of the mobile shadow scheme for mobile agents to
survive agent server crash failures has been discussed. This section describes an IBM Aglets
[Oshima98] implementation of the mobile shadow exception handling scheme. Firstly, the
rationale for using the IBM Aglets [Oshima98] mobile agent system is outlined in section 5.1.
Subsequently, an overview of the-implementation is then provided in section 5.2 with the aid of

UML class and sequence diagrams.

5.1 Rationale for IBM Aglets

A summary of the features of existing mobile agent systems is provided in chapter 2,
section 2.7. Two mobile agent systems were considered for the implementation of the mobile
shadow exception handling scherﬁe. These are Ajanta [Tripathi02] and IBM Aglets [Oshima98].
Ajanta [TripathiO2] provides exception handling for mobile agents. IBM Aglets [Oshima98]
provides a partial implementation of the OMG MASIF interoperability standard [Milojivcic98].

Neither mobile agent system protects mobile agents from agent server crashes.

Ajanta [Tripathi02], developed at the University of Minnesota, is a mobile agent system for
research into exception handling énd security. The concept of a guardian software object is used
to handle unprecedented exceptions encountered by mobile agents at remote agent servers. An
introduction to exception handling in the Ajanta [Tripathi02] mobile agent system is provided in
chapter 3, section 4.1. If a mobile agent encounters an unprecedented exception at a remote
agent server, it can co-locate with the guardian software object at the home agent server for
remedial action. The security model of Ajanta [Tripathi02] focuses on protecting agent server
resources from malicious mobile vagents. It is assumed that agent servers are not malicious. An
Ajanta agent server provides a registry of software services that are available to visiting mobile
agents. Each mobile agent is assigned a set of credentials that describe its name, owner, creator
and code base. An Ajanta agent server inspects the credentials of a mobile agent to authenticate

access to local services. Based upon these credentials an agent server creates a proxy to the
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requested software resource. Consequently, mobile agents are not given direct access to
software resources. Instead, a proxy controls access to software resources based upon the

mobile agent’s credentials.

Aglets [Oshima98] is a mobile agent system originally developed by IBM. In August 2000
IBM released Aglets as an open source project at http://aglets.sourceforge.net/. Unlike Ajanta
[Tripathi02], IBM Aglets [Oshima98] does not have an explicit model for exception handling.
There is also no registry of software services available to visiting mobile agents. Instead,
visiting mobile agents can retrieve a list of mobile agents currently executing at the agent server
for communication by proxy. In this case mobile agents can interact with resources through
static mobile agents. Controlled access to agent server resources is therefore limited with IBM

Aglets [Oshima98].

Initially, Ajanta [Tripathi02] was selected as the mobile agent system for the
implementation of the mobile shadow exception handling scheme. This was due to the
availability of an exception handling model for mobile agents and controlled access to agent
server resources. Indeed, an initial experiment using Ajanta [Tripathi02] is detailed in chapter 6
section 2.1. However, there were problems encountered and bugs uncovered. Furthermore, at
the time of implementation Ajanta [Tripathi02] was only compatible with Java JDK 1.1. Work
was underway, at the University of Minnesota, to migrate Ajanta [Tripathi02] for compatibility
with JDKI1.2+. However, a release was unavailable at the time of implementation.
Consequently, Ajanta [Tripathi02] was abandoned and development migrated to IBM Aglets
[Oshima98].

5.2 An IBM Aglets implementation

The IBM Aglets [Oshima98] implementation of the mobile shadow scheme consists of two
packages:
o Shadow package: Migrates. with application mobile agents. Provides the mobile
shadow exception handling scheme, including an itinerary pattern and a ping utility.
¢ Server package: Distributed at agent servers visited by the mobile agent. Provides an
agent server and a utility that allows agent servers to respond to ping messages from a

shadow or master.

This section begins with an outline of the shadow and server packages for the IBM Aglets
[Oshima98] implementation of the mobile shadow exception handling scheme. An overview of
a mobile agent’s life cycle in the mobile shadow exception handling scheme is then provided

with the aid of a UML state diagram for the roles of master and shadow. Subsequently,
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implementations of the following conceptual operations are outlined with the aid of UML
sequence and class diagrams:

¢ Spawn a shadow.

e Terminate a shadow.

e Dispatch a replacement shadow.

* Ping the availability of an agent server.

Application developers must be able to develop an application task that is independent of
the mobile shadow implementation. The section conciudes with a description of the classes that

enable application development with the mobile shadow exception handling scheme.

5.2.1 Implementation classes

Figure 4-7 illustrates a UML class diagram for the shadow package. The master and shadow
mobile agents are both instances of the MobileShadow class. This encapsulates the protocol for

the mobile shadow exception handler scheme outlined in section 4.
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Figure 4-7 UML class diagram for mobile shadow agent package

The MobileShadow class contains an instance of a sequential itinerary (class Seqltineiary)
and a ping utility (class Ping) to ping an agent server occupied by a shadow or master. The

itinerary is based upon the itinerary pattern of [Aridor98]. Operations are provided to retrieve




Chapter 4 The Mobile Shadow Exception Handler 73

the next address from the itinerary, getNextDestination(}, move the mobile agent to the next
agent server, go(), and detérmine if there are more destinations to visit, i.e.
hasMoreDestinations(). The itinerary pattern outlined in [Aridor98] is extended to log a history
of agent servers, visited. Each entry in the visited vector represents the URL of a visited agent
server. Consequently, it is possible to retrieve the URL of the k™ previous agent server,
getPrevDestination(k). Another extension to [Aridor98] is the possibility to bypass the next
agent server in the itinerary. This is useful when the next agent server has failed by crashing.

The skip() operation returns the URL of the agent server subsequent to the one bypassed.

A mobile shadow agent pings the availability of its master or shadow using an instance of
the Ping class. A Ping object is transient, i.e. its state is not saved upon migration, and contains
the host address and port of the master or shadow's agent server. The Ping class executes the
ping() operation within a thread that continuously monitors the agent server occupied by the
master or shadow. Consequently, each agent server assigns security permissions for visiting

mobile agents to connect and ping port number 5555.

Figure 4-8 illustrates a UML class diagram for the server package. The Server class
represents an agent server implementation. The Server class is a wrapper for an AgletsContext
object, i.e. the core IBM Aglet class for sending, receiving and hosting mobile agents. Each
agent server has a propertyFile field that references the path to a file that configures the agent

Server.

Server java.lang.Runnable
<< Interface >>

cxt : AgletContext K
contextName : String + un( ) : void
propertyFile : String

+

Server(String Name, String FilePath) J
+  star() - void e
+  loadProps(} : void

/
‘.
,
’
’
,
/.

PingServer

srvSocket : ServerSocket PingHandler
pingScrver : Thread

socket : Socket

+  PingServer( ) * - handlerThread : Thread

+  handleConnections( ) : boolean

+  un(): void +  Pingllandler ( Socket socket )
setServerPort( ) : void + un( ) void

Figure 4-8 UML class diagram for mobile shadow server package

The configuration variables for the server are:

e AGLET_CLASS_PATH: Java class path where IBM Aglets [Oshima98] searches for
classes referenced by an aglet.

e AGLET_EXPORT PATH: Java class path that represents the code base, i.e. the
directory where a remote agent server requests classes.

e PORT: The TCP/IP port that the agent server listens to for ping requests.
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The start() operation boots the agent server. This involves loading configuration variables

from file, starting a ping server thread and booting the IBM Aglets [Oshima98] runtime.

Each agent server runs a ping server (class PingServer) on a given port. In this
implementation port 5555 was selected. Assigning a fixed port number for ping operations is a
realistic assumption, since operating systems also provide services at fixed ports. For example,
the echo service is assigned to port 7. Class PingServer represents a ping server thread that
continuously listens for a connection on port 5555. For each request a thread (class

PingHandler) is spawned that echoes back the string sent.

5.2.2 Mobile shadow life cycle

So far, it has been established that the MobileShadow class (Figure 4-7) represents a mobile
agent. A master and shadow in the mobile shadow exception handling scheme are both
instances of the MobileShadow class. Figure 4-9 illustrates a UML state diagram for an instance
of the MobileShadow class. The runningMaster and runningShadow superstates describe the
execution of the mobile agent as a master and shadow respectively.
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Figure 4-9 UML state diagram for a mobile agent in the mobile shadow scheme

A mobile agent executes the role of a master when it is in the runningMaster state. This is
synonymous to the runParent operation of the MobileShadow class (Figure 4-7). The arrival
state is triggered when a master is created, or arrives, at an agent server in the itinerary. This

allows the master to determine the subsequent action for its current location.

When the master is created at the home agent server the runHome() operation is executed.
This triggers the transition from the arrival to the cloning state. A shadow is spawned and the
master migrates to the next agent server. This activates the transition from the cloning to arrival

state. Consequently, the master is now located at the first remote agent server in the itinerary.
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When the master arrives at a remote agent server it invokes the pingShadow() operation.
This triggers the master to enter the monitoring shadow state. Upon entry a ping thread is
spawned, ping.start(), to monitor the agent server occupied by the shadow. Subsequently, the
normal state sequence is triggered, i.e. execute the application task, execution, spawn a new
shadow, cloning, and terminate the old shadow, terminating shadow. Figure 4-9 illustrates two
transitions from the ferminating shadow state. The transition to the arrival state is triggered
when the master has not visited all agent servers in the itinerary, i.e. itin.hasMoreDestinations()
=true. Alternatively, the master terminates itself when it arrives back at the home agent server,

thus completing the itinerary.

When the mobile agent has arrived back at the home agent server and completed its
itinerary, it invokes the sendDie() operation. This triggers the transition from the arrival state to
the terminating shadow state. Consequently, the master sends a die message, sendDie(), to the

shadow and terminates itself.

So far, the normal mode of execution for the master has been described. The transition from
the execution to replacing shadow state represents an exception handler for the loss of a shadow
due to an agent server crash. The ping thread notifies the master when the agent server occupied
by the shadow fails by crashing. When a master receives a notify message from its ping thread it
invokes the pingNotify() operation. This triggers the master to enter the replacing shadow state.
The master invokes its dispatcszeplacementShadowO operation to spawn and dispatch a
replacement shadow to the next available agent server. Furthermore, the master invokes the
monitorShadow() operation to spawn a new ping thread to monitor the agent server occupied by

the replacement shadow. The master then resumes the execution state.

A mobile agent executes the role of a shadow when it is in the runningShadow state. This is
synonymous to the runChild() operation of the MobileShadow class. Initially, a shadow
executes the monitorParent operation that triggers the monitoring master state. In this state the
shadow spawns a thread to ping the agent server occupied by its master, ping.start(), and then
executes the block() operation. Subsequently, the shadow waits for receipt of a die message or
notification from the ping thread that the agent server occupied by the master has failed by
crashing. The die() operation is invoked when the shadow receives a die message from its
master. This sets the dieReceived flag to true and subsequently triggers the transition to the

disposal state, thus terminating the shadow.

The triggerHostAlive() operation is invoked when the shadow receives notification of an
agent server crash failure from its ping thread This sets the alive flag to false, thus triggering

the transition to the cloning state. This transition represents an exception handler for the loss of
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a master, due to an agent server crash. Subsequently, the shadow spawns a new shadow and
migrates to the next agent server in the itinerary. This is denoted by the transition from the
cloning state, in the runningShadow super state, to the arrival state of the runningMaster super

state. The shadow is now the new master.

5.2.3 Spawning a shadow

A mobile agent, in the mobile shadow exception handling scheme, spawns a shadow by
invoking the spawnChild operation (see MobileShadow class, Figure 4-7). The following
requirements must be taken into account when a shadow is spawned. Firstly, the master must be
able to produce a replica, or shadow, with an initial state. Secondly, both a shadow and master
must be aware of the location of its partner. This enables a shadow and master to ping the
availability of the agent server occupied by its partner. Finally, the master must maintain a
communication reference to the current shadow before a new shadow is spawned to monitor the
next agent server in the itinerary. Consequently, the master must be able to instruct the current

shadow to dispose of itself.

IBM Aglets [Oshima98] provides the ability to produce a replica of the state and behaviour
of a mobile agent in volatile memory. The IBM Aglets specification [Oshima98] describes this
as a clone operation that is synonymous to spawning a shadow in the mobile shadow scheme.
The Aglet class (Figure 4-7) provides the clone operation to produce a replica mobile agent.
When a clone operation is performed, a proxy to the new clone is created. Consequently, the

proxy can be used to dispatch the clone.

Most Java mobile agent systems allow reactions to be developed for a mobile agent in
response to mobility events, e.g. dispatch and arrival at an agent server. IBM Aglets [Oshima98]
allows a mobile agent to react when a clone operation is performed. This is achieved using call
back operations. A mobile agent implements the ClonelListener interface (Figure 4-7) and
registers for notification of clone operations, i.e. addCloneListener(this). Table 4-3 lists the

clone call back operations, when they are invoked and on which object, i.e. the master or clone.

onCloning | before clone operation master _prepare state for cloning
onClone when clone is created clone | initialise unique state in clone
onCloned | after clone created master | clean up state of master

Table 4-3 Aglet clone operations




Chapter 4 The Mobile Shadow Exception Handler 77

Figure 4-10 illustrates the sequence of operations that occur when a master spawns a
shadow. Before a new shadow is spawned a proxy to the current shadow is saved, dieProxy =
shadowProxy, so that the master can terminate it before migrating to the next agent server in the
itinerary. The master invokes the spawnChild operation to spawn a shadow. The clone operation
is then performed and a reference to the new shadow is saved, shadowProxy. The onClone() is
then invoked on the shadow which sets the shadow to a default state, i.e. it is not a master
(master=false) and the agent server occupied by the master is currently alive (alive=true). The
itinerary of the shadow is then initialised with the shadow’s proxy. This is necessary so that the
itinerary operates on the new shadow, not the master. Finally, the onCloned() operation is

invoked when cloning is complete.

master : . _
MobileShadow | oA dicProxy = shadowProxﬂ

spawnChild()

clone()

shadow :

onClonin
Ij I g0 MobileShadow

<< create >> D
-
L
master = falsc

onClone( AD alive = true
jonClonch g itincrary.init(this)

1
1
1
Ll
]
1

Figure 4-10 UML sequence diagram for spawning a shadow

With respect to the mobile shadow exception handler scheme, a shadow must ping the
location of its master. Similarly, a master must ping the location of its shadow. Recall that the
master and shadow are both instances of the MobileShadow class (Figure 4-7). The masterHost
and shadowHost variables log the URL for the agent server occupied by the master and shadow

respectively. The master initialises these variables in the onCloning operation.

Figure 4-11 illustrates the behaviour of a clone operation performed by the master. There
are three scenarios in which a shadow is spawned:

¢ Migration of master to next agent server in the itinerary: Before the master migrates
to the next agent server in the itinerary a new shadow is spawned. The masterHost
variable is configured as the URL of the next agent server in the itinerary.

¢ Shadow replaces its master lost due to an agent server crash: The masterHost
variable is configured as the URL of the next available agent server in the itinerary.

e Master replaces a shadow lost due to an agent server crash: The masterHost

variable is configured as the URL of the agent server currently occupied by the master.
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Figure 4-11 UML state diagram for aglets clone operation

In each scenario the shadowHost variable is initialised with the URL of the current agent
server. Consequently, when the master arrives at the next agent server in the itinerary the

shadowHost variable refers to the URL of the agent server occupied by the shadow.

5.2.4 Terminating a shadow

A master employs synchronous message passing to terminate a shadow. An aglets message
is an object. For example, new Message(“die”) creates a message of type die. The syntax for
sending a synchronous message is receiver.sendMessage(Message) where receiver is a proxy to

the receiving mobile agent. The sender blocks until the receiver has handled the message.

master : dicProxy : shadow : Aglet
MobileShadow AglctProxy

. sendDie()

-':l Message
Message( “dic” ) !

sendMessage(m) dic()

j
1
1
1
1
1
1
1
:
]
p ] >
H dispose()
L T
b

m:

handleMcssage(m)

Figure 4-12 UML sequence diagram for master terminating a shadow

Figure 4-12 illustrates a UML sequence diagram for the sendDie operation, invoked by the
master to terminate its ‘shadow. A die message is created by the master, Message(“die”), and
dispatched to the shadow via its proxy, dieProxy.sendMessage(m). Whenever an IBM Aglets
[Oshima98] mobile agent receives a message the handleMessage operation is invoked. This
operation allows the developer to react to different messages. If a die message is received,
msg.sameKind(die ")=true, the shadow disposes itself, dispose(), and sets its dieReceived flag
to true. The change in state of the dieReceived flag gracefully exits the run thread of the shadow.

Consequently, the shadow is terminated.
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5.2.5 Dispatching a replacement shadow

A master monitors the agent server occupied by its shadow. If the master detects the failure
of its shadow’s agent server, it spawns a replacement and dispatches it to the next available
agent server previously visited. The procedure for sending a replacement shadow (Figure 4-13)
loops until the shadow is successfully dispatched or no available agent server is found, i.e.

[prevDestination != null && !dispatched].
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Figure 4-13 UML sequence diagram for dispatching a replacement shadow

Before entering the loop the master uses the Seqltinerary class (Figure 4-7) to determine the
URL of the last agent server visited prior to that currently occupied by the shadow. This is
achieved by the getPrevDestination operation. The loop begins by spawning a shadow and
initialising its proxy, shadowProxy. The shadow is dispatched to the previously visited agent
server via its proxy, dispatchCbrevDestination). Furthermore, the dieProxy is updated to
reference the replacement shadow so that it can be terminated before the master migrates to the
next agent server in the itinerary. Finally, the master spawns a thread to ping the agent server
occupied by the replacement shadow, pingShadow(prevDestination) and sets the dispatched flag

to true to exit the loop.

The dispatch method raises an exception if the agent server referenced by prevDestination
has failed by crashing. Consequently, the URL of the next available previous agent server
visited in the itinerary is retrieved. The dispatched flag is reset to false and the loop continues.

The option box in Figure 4-13 highlights the sequence of events for this scenario.
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5.2.6 Pinging an agent server

The master and shadow spawn a ping thread (class Ping Figure 4-7) to monitor the
availability of the agent server occupied by its partner. Figure 4-14 illustrates the creation of a

ping thread and the execution sequence for notification of an agent server crash failure.

agent : | proxy : pinger :
MobileShadow AgletProxy Ping

pingShadow( URL ) , Ping( host, proxy, 5555 ) 1
o -

1 =|::|
1]
)
start() ! T run()
:
. ;—I .
. : :] ping() msg :
t 1 .
' ! . - Message
o ; : ! pingNotify() :
L] 1 X
h ) Message("pingNotify")!
agent server at | e e >
t[hiI address J'I handlcMessage(msg) —I sondOneWayMessage(mse -
denoted by host pingNotify() "']
crashes]

X
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dispatchReplacementShadow()

triggerHostAlive()

G P = G

Figure 4-14 UML sequence diagram for notification of an agent server crash failure

A ping thread (class Ping) accepts three parameters for creation:

e Host: The URL string representing the agent server to ping.

e Proxy: A proxy to the mobile agent. This is used to notify the mobile agent if an agent
server crash is detected.

e Port number: All agent servers listen for ping messages on port 5555.

When the thread is started it invokes its ping method. The ping method connects to a Java
TCP/IP server socket on port 5555 at the host denoted by the agent server URL. A string is then
sent and echoed back by an instance of the PingHandler class at the agent server. The ping
method continuously pings while the agent server is alive. If the ping utility fails to connect to a
Java server socket, it invokes its pingNotify operation. The option box in Figure 4-14 highlights
the subsequent sequence of evenfs. The ping utility notifies a mobile agent, via its proxy, that
the agent server has failed by crashing. When a MobileShadow instance receives a pingNotify
message it invokes its own pingNotify operation. If the mobile agent is a master, master = true,
a replacement shadow is dispatched, dispatchReplacementShadow(). Furthermore, the alive flag
1s set to false, triggerHostAlive(). If the mobile agent is a shadow then the state change of the

alive flag triggers replacement of the master.
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5.2.7 Application development

So far, it has been established that the master, is responsible for performing an application
specific task at each agent server visited in the itinerary. The mobile shadow exception handling
scheme is intended to be transparent to application developers. This implies the following
requirements for application development. Firstly, it must be possible to develop an application
specific task that is performed by the master at each agent server in the itinerary. Furthermore,
an application task may require access to local software resources at the current agent server.
For example, a database resource may be queried or an application object may perform a task on
behalf of the mobile agent. It is assumed that a mobile agent does not modify the local resources
at an agent server. Subsequently, prior to execution, the developer must be able to locate local

resources at each agent server.

The UML class diagram in Figure 4-15 illustrates the abstract classes for application
development in the mobile shadow exception handling scheme. So far, it has been established
that the master and shadow are both instances of the MobileShadow class. Furthermore, the
MobileShadow class is initialised with an instance of the ApplicationObject class and a vector
containing the URLs of agent servers to visit in the itinerary. These are encapsulated within an
Args object. The application developer must develop a class that derives from the
ApplicationObject class. This class represents the application specific task performed at each
agent server and contains two operations that must be implemented, execute and initResources.
The execute operation is invoked by the master to perform the application specific task at each
agent server. The initResources operation uses an instance of the ResourceManager class to
locate application specific resources at the agent server. Figure 4-15 illustrates that a mobile

agent, MobileShadow, is assigned the role of resource manager.
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Figure 4-15 UML class diagram for application development in the
mobile shadow scheme

The IBM Aglets [Oshima98] implementation of the mobile shadow exception handling
scheme provides the following concept for mobile agents to locate resources at an agent server.
An agent server, 4Gy, hosts a stationary mobile agent, SM,, for each resource, Ry. This acts as

an intermediary, or proxy, between a visiting mobile agent and the resource. It is assumed that
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the mobile agent system allows visiting mobile agents to inspect a list, execution;, of active
mobile agents at the agent server. A mobile agent can be retrieved from the list identified by its
unique class name. A visiting mobile agent, MA,, locates a resource, Ry, indirectly by retrieving
a handle to the stationary mobile agent, SM,, from the list of active mobile agents, execution;,
at the agent server. Subsequently, the mobile agent communicates with SM, to use resource R,.
IBM Aglets [Oshima98] provides the AgletContext class for visiting mobile agents to query the
environment of its current agent server. This provides the getdgletProxies operation to allow
mobile agents to retrieve a list of executing mobile agents. Each list entry is a proxy.
Subsequently, the getResourceByName operation retrieves a proxy to a stationary mobile agent
at the agent server. The application developer forwards requests to the stationary mobile agent

to use the resource.

The UML sequence diagram in Figure 4-16 illustrates the scenario for a master executing an
application task. When a master arrives at the next agent server in the itinerary it invokes the
execute operation. This starts the application task by invoking the start operation, start(master),
of the application object. The start operation accepts an instance of the master as the resource
manager. When an application task is started the initResources operation is invoked. This is an
abstract operation that is overridden by the application developer to access local resources at the
agent server. A resource is accessed using the gefResourceByName operation of the resource
manager. Application developers specify the full class name of the stationary mobile agent that
acts as a proxy to the required resource, e.g. shadow.DBManager. Once local resources have

been located the application task is executed at the agent server, i.e. execufe.

master : application :
‘MobileShadow Application

T T
execute() N start(master) initResources(}
>

>
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(“shadow.DBManager”)
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Figure 4-16 UML sequence diagram for executing an application task
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exception handler is activated. Subsequently, a replacement shadow is dispatched to the next
available preceding agent server, afp.//pc-dpart]2.dur.ac.uk/supplier, and the master continues
with its execution. Subsequently, the output for host pc-dpart-12.dur.ac.uk illustrates that the
replacement shadow monitors its master at agent server atp.//pc-dpartl1.dur.ac.uk/Supplier2

and is terminated when the master completes its execution.

7 Summary

This chapter has outlined the design and implementation of the mobile shadow exception
handling scheme. The mobile shadow exception handling scheme provides a fault tolerant
service for maintaining mobile agent availability in the presence of agent server and host
crashes. This service is embedded within the application mobile agent. Several important design

issues were considered.

Firstly, existing research into mobile agents surviving agent server and host crashes was
considered. Most of the existing fault tolerant mobile agent systems use spatial or temporal
replication. Spatial replication defines a set of agent servers for each stage in the itinerary. Each
agent server provides an equivalent service and hosts a replica mobile agent. Temporal
replication advocates one or more visited agent servers monitoring the current agent server. If
an agent server crash occurs, a mobile agent is dispatched to the next agent server in the
itinerary or an alternative agent server. Temporal replication was selected to minimise
additional communication overheads imposed by fault tolerance. This is important to preserve

the potential savings in bandwidth offered by the mobile agent paradigm.

Secondly, an exception handling model for mobile agents was presented to describe how
mobile agents interact with software services at remote agent servers. Furthermore, the control
flow for raising and signalling exceptions was defined. In the event that an agent server or host
crash occurs exception handling is required to perform application specific action so that the

mobile agent can complete the itinerary.

Thirdly, a failure mode! for mobile agent systems has been outlined. Chapter 3 highlighted
the need for a failure model for mobile agent systems. This chapter has focused specifically on
crash failures of mobile agent systems and presented a failure model suitable for applications
that are idempotent, e.g. information retrieval or network monitoring. A failure model is
required for any fault tolerant system to define the ways in which failures occur and the

assumptions made concerning the system environment.

The following chapter introduces the design and implementation of an experimental case

study environment for the mobile shadow exception handler scheme.
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Chapter 5 A Case Study Application

1 Introduction

This research employs a Java case study application to provide an experimental
environment for simulation of agent server crash failures and subsequent analysis of the mobile
shadow exception handling design. A frequently adopted application domain for mobile agents

is within an electronic commerce business supply chain [Vogler97, Dasgupta99].

In [Pears03, PearsO3b] a case study environment for the mobile shadow exception handling
scheme is outlined and the overheads introduced on the trip time in the event of an agent server
crash are investigated. This chapter describes the requirements and architecture for the case
study environment. The application case study provides an experimental environment for an
implementation of the mobile shadow scheme introduced in chapter 4. The case study
environment provides the ability to simulate agent server crash failures to exercise the mobile

shadow crash exception handler.

This chapter outlines the case study architecture of [Pears03, PearsO3b]. There are two
implementations of the case study architecture. Firstly, an Ajanta [Tripathi02] implementation is
described. The Ajanta [Tripathi02] implementation of the case study architecture is used to
compare the performance of the mobile shadow exception handling scheme against an exception
handler that uses a timeout mechanism. In chapter 4, section 5.1, it was mentioned that
implementation anomalies were encountered with the Ajanta mobile agent system [Tripathi02].
Furthermore, a random agent server crash could not be simulated. Consequently, an IBM Aglets
[Oshima98] implementation was performmed. The IBM Aglets [Oshima98] implementation of
the case study architecture allows the overheads of the mobile shadow exception handling
scheme to be investigated in the event of a random agent server crash. Experiments conducted

using the case study architecture are outlined in chapter 6, section 2.

2 Application case study architecture

Figure 5-1 illustrates the case study architecture. The supply chain case study scenario
executes within a local area network, each node hosting an agent server that represents a
supplier of computer hardware components. The case study application enables a supplier to
replenish stock using mobile agent technology. A mobile agent is dispatched, for each product
component, to several known suppliers to dynamically determine the best buy with respect to
delivery date and price. The product components, order constraints and a list of potential

supplier agent servers are outlined in an XML file.
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Figure 5-3 Supplier host architecture

Figure 5-3 illustrates the architecture of a supplier host in the case study. Each supplier runs
an agent server and application interface. It is assumed that suppliers host the same agent server
platform, e.g. IBM Aglets [Oshima98], for interoperability. Furthermore, access to the product
catalogue is assumed to be in the same business domain. Consequently, the case study scenario
is applicable to small businesses that replenish stock from a manufacturer or mail order

company.

A sales agent resource enables visiting mobile agents, from trusted suppliers, to query the
supplier's product catalogue for item prices and availability. The sales agent is a software object
located at each agent server that provides a standard interface for queries to the product
catalogue. Each supplier provides a sales agent to implement a standard set of queries on the
product catalogue for a given business domain. For example, all hard drive products may be
queried by capacity and interface type (SCSI, FLASH or IDE). This requires the developer of
visiting mobile agents to be aware of the query parameters for each product in the business
domain. A visiting mobile agent ihvokes the executeQuery operation of the sales agent interface
that accepts the product class, product criteria and order constraints as parameters. The sales
agent then queries the product catalogue for the given class of product. A list of estimates that

match the product criteria and order constraints is then returned to the visiting mobile agent.

The product catalogue stores information for products sold by the supplier including: item
id, manufacturer id, stock and price. The supplier is free to choose the structure and format for
the product catalogue, e.g. XML or a database may be used. This is possible since the sales
agent provides a standard interface to query the information stored in the product catalogue for a
given business domain. Mobile agents can query product catalogues that are of different formats
and structure. However, there is the restriction that each supplier must comply with the interface

provided by the sales agent.

The application interface contains two utility classes, Driver and RunServer, to boot a

supplier agent server. The Driver utility starts an instance of a supplier agent server that




Chapter 5 A Case Study Application 91

replenishes stock for product items listed in an XML file. Two parameters are accepted: the path
to the XML file that describes the product components for stock replenishment and a name for
the supplier agent server. The Driver utility parses the XML file to create an object graph of
product components that includes: order constraints, product criteria and a list of suppliers.
Subsequently, an agent server is then booted with the object graph. The agent server traverses
the object graph and dispatches a mobile agent for each product item. Finally, the RunServer

utility starts an instance of a supplier agent server identified by a given name.

The case study application assumes that the product catalogue is represented by a database
at each supplier. To facilitate the configuration of the experiment environment each supplier is
expected to represent the product catalogue using a mysql database. Sections 2.1 and 2.2

describe the implementation classes for the sales agent and application interface.

2.1 The sales agent

Figure 5-4 illustrates a UML class diagram for the implementation of the sales agent
resource. The Estimate and SalesAgent classes are distributed at each agent server:
o Estimate: Represents a matching product offered by the supplier. A matching product
is described by item id, total price and delivery date.
o SalesAgent: Implementation of the sales agent resource that provides an interface for
querying the product catalogue database. Visiting mobile agents invoke the
executeQuery operation to forward a hashtable of product criteria, the product class and

order constraints.

Estimate SalesAgent
- delivery : Calendar - conn: javasgl.Connection
- twallrice ; dooble - st s javasql Starement
- itamld : String

+  SalesAgent( String driverName, String
+  Estimatef ) connectSir)
+  Estimate({ Calendar date, double +  eaccuteQuery( Hashtable ¢, String prodClass,
price, intid) Order o) : Estimate]]

+  geiDelivery( ) : Calendar - queryFloppy( Order o) < Estimate])
+  getTollrice( ) double - queryHdd( Siring inter, oot size, Order o )2
+  petltemld() :int Estimate{]

- createEstimates( ResuliSet s, Order o, im
recordCount ) - Estimatef)

- loadDb( String driverName, String
conncetSir )

.

MobileAgent

- produatClass : String
- productCriteria:Hashtable

- cstimates : transient Estimaie{] Order

- bestBuy : Estimate c

- ordaConstraints : Order - delivayDate : Calendar

- salesRep: transient SalesRep - totalltems - it

- getEstimates() : void +  Order( Calendar date, it ttal )

- getSupplicriestBuy() : Estimate +  getTotailtemst ) - im

- updoteBestBuy( Estimate ¢ ) : void +  geRapuesiedDeiveryDate() : Calendar

Figure 5-4 UML class diagram for sales agent implementation
A mobile agent in the case study (see MobileAgent class® Figure 5-4) filters the best buy
from an itinerary of suppliers for a given product component described by:

e Product class: A string that represents the class of product, e.g. hard drive.

? The API for most mobile agent systems enforces the developer to inherit from an abstract class that
represents a mobile agent. The class diagram in Figure 5-4 is intended to be independent of mobile agent
systems. Consequently, common state and operations are included in the mobile agent class.
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o Product criteria: A hash table containing search criteria attributes and values for the
product, e.g. hard drives, are queried based upon interface type and capacity attributes.

©  Order constraints: Product order constraints including delivery date and total stock.

When the mobile agent has returned to the home agent server the bestBuy attribute contains
an estimate from the supplier that offers the best buy. The supplier that provides the best buy

offers the cheapest price and earliest delivery date.

The UML sequence diagram in Figure 5-5 illustrates the interaction between an
application mobile agent and a sales agent to retrieve a list of matching estimates. When a
mobile agent arrives at a supplier agent server it locates the sales agent. Most mobile agent
systems provide a registry of resources, at each agent server, that mobile agents can use to
access a proxy to a software resource. The executeQuery operation is then invoked on the sales
agent with the product class, product criteria and order constraints as parameters. The sales
agent examines the product class parameter to determine which query to perform on the product
catalogue database. Subsequently, the product criteria names and values are retrieved from the
product criteria hashtable and forwarded to the appropriate query operation. In the scenario
illustrated in Figure 5-5 the queryHdd operation is invoked. Each query operation performs a
specific query on the supplier product catalogue and stores the matching estimates in an array
using the createEstimates operation. The product catalogue is queried to return an array of
estimates that match the product criteria and order constraints. Finally, the mobile agent filters
the best buy from the list of estimates offered by the local supplier, getSupplierBestBuy. The
updateBestBuy operation is invoked to determine if the estimate for the supplier’s best buy is

competitive. If so, the best buy attribute is updated to reference the supplier estimate.

agent : server : sales :
Mobile Agent Agent Server Sales Agent

T T
' locate sales agent at agent !

T
1
SCIVCT IeSource registry N X
Ll 1
salcs .
S i il |
1
executeQuery !
(criteria,prodClass,order) ! - queryHdd
' (interf size,order)
1
1
' createEstimates
1 (rs,order,arraySizc)
1
cstimates '
4.. ____________________________________
getSupplierBestBuy()

updateBestBuy(supBcst)

Figure 5-5 UML sequence diagram for sales agent to query product catalogue
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2.2 The application interface

Figure 5-6 illustrates the Driver and RunServer classes of the application interface. Both
classes boot an instance of an agent server, represented by the Server class that is specific to the
mobile agent system adopted in the case study architecture. When the agent server is booted it

creates a sales agent resource and registers it with the local registry of software resources.

Driver
RunServer

- surver: Server
- server: Server

4 Driver{ String fite. Sting name )
+ RunServer { String name ) = wmain{ String args(] ) :static void
- wain( Swing args[} ) :static void - crateObjectGrph( Node n, ComponentNode ¢ ) : Graph

+ dispatchAgentstGraph g)

Figure 5-6 UML class diagram for case study application interface

The RunServer class boots a basic agent server and creates a sales agent resource. The
Driver class parses an order XML file and spawns a mobile agent for each product component.
Figure 5-7 illustrates a UML sequence diagram for the Driver class. The Driver class accepts
two parameters:

o XML file: Path to XML file of product components for stock replenishment.

e Server id: Name that uniquely identifies the agent server at the supplier host.

The Driver class creates a document object model (DOM) for the order.xml file using the
Java Xerces [Xerces04] XML parser. The root node of the DOM is forwarded to the
createObjectGraph operation to recursively process each node of the order.xml file and create
an object graph of product components. Each product component in the object graph is

described by: the product class, search criteria, suppliers and order constraints.

An agent server is then booted and assigned the name ACME. Most mobile agent systems

allow a name to be assigned to the agent server that is incorporated into the full address. For

driver :
Driver

“order.xml”, “ACME”
A .
createObjectGraph(node, null)

“ACME” server ¢
Scrver

JDBC driver and
connection string

sales :
SalesAgent

register sales agent
in resource registry I:I

[

]

1

Ll

]

1

]

1

dispatchAgents(objGraph) ‘IL_J

Figure 5-7 UML sequence diagram for driver utility
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example, the address of the ACME agent server in IBM Aglets [Oshima98] is atp://cs-
128.dur.ac.uk:4044/ACME. The agent server creates and initialises a sales agent instance with
the name of the JDBC driver and a connection string for the product catalogue database. The

sales agent is then registered with the local resource registry.

Finally, the Driver class forwards the object graph of product components to the
dispatchAgents operation of the agent server. For each product component in the object graph,
the dispatchAgents operation creates a mobile agent that is initialised with the following
parameters:

e  Product class.

e Hashtable of product criteria.

e  Order constraints.

e [tinerary of suppliers.

Each mobile agent is then dispatched to its itinerary of suppliers.

3 Ajanta case study architecture

3.1 Agent server implementation classes

The sales agent is registered as a resource at the Ajanta [Tripathi02] agent server. A
resource 1s an object that acts as an interface to some service or information available at the host
[Tripathi02]. In the application case study the sales agent resource provides an interface to the
supplier product catalogue database. Resources are stored in a registry at the Ajanta agent
server, indexed by a unique URN that is represented in the format URN:ans:host name/resource
name where:

e Host name is the name of the host where the agent server is running.

¢ Resource name is a unique name for the resource, e.g. SalesAgent.

The Ajanta mobile agent system [Tripathi02] requires that visiting mobile agents know the
identity of the resource. Each Ajanta mobile agent can determine the host name property by

querying the current agent server environment,

Figure 5-8 illustrates a UML class diagram for the sales agent resource in the Ajanta
[TripathiO2] case study implementation. Unshaded classes are implemented by the application
developer. The following application classes provide the sales agent resource:

o SalesAgent: Interface that defines the operations for the sales agent resource to query

the product catalogue. Application developers extend the empty Resource interface

provided by the Ajanta [Tripathi02] mobile agent system.
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Figure 5-11 UML sequence diagram for Ajanta mobile agent
interaction with sales agent

The UML sequence diagram- in Figure 5-11 illustrates the interaction between an Ajanta
mobile agent (class Product) and the sales agent resource at a supplier agent server. When the
Product mobile agent arrives at the next supplier agent server in the itinerary, it retrieves the
local sales agent resource. This is achieved by invoking the getResource operation of the Ajanta
host environment with the URN of the sales agent resource. All agent servers are assumed to

adopt the same name for the sales agent resource.

Subsequently, the main thread inherited from the MobileShadow class is executed. Provided
that the Product mobile agent is a master in the mobile shadow exception handler scheme, the
case study application task is started, execute. The getEstimates operation of the Product class
retrieves a list of estimates from the supplier’s product catalogue by invoking the executeQuery
operation of the sales agent. The sales agent responds with a list of estimates for matching
products in the supplier product catalogue. If matching products were found, i.e.
estimates.length > 0, the getSupplierBestBuy operation is invoked to determine the best buy
offered by the supplier in relation to earliest delivery date and price. The updateBestBuy
operation is then invoked to determine if the supplier’s best buy is competitive. If so, the

Product mobile agent updates the bestBuy field with the supplier’s estimate.
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4 IBM Aglets case study architecture

4.1 Agent servér implementation classes

Figure 5-12 illustrates a UML class diagram for the case study classes that are distributed at
an agent server in the IBM Aglets [Oshima98] case study implementation. A DatabaseManager
agent is created when an agent server is initialised and is responsible for creating a proxy to a
sales agent (see class SalesAgent Figure 5-12) for each visiting mobile agent. Recall that the
sales agent provides an interface to the product catalogue database for visiting mobile agents. A
visiting mobile agent uses a sales agent to retrieve a list of matching estimates by sending an
execute query message with the following parameters:

¢ Product class: A string that represents the class of product, e.g. hard drive.

e Product criteria: A hashtable that contains the search criteria for the product, e.g. hard

drives may be queried based upon interface type and capacity.

e Order criteria: An order object that describes required stock and delivery date.

Server

- ext: AglatCoatext
- cuntextName : String
- propertyFile : String

+  Server(String name. String filePath)
< stanil): void

+  loadProps() : void

- ereateAgents( Onder o ) : vaid

DatabaseManager Sales Agent

- con: Connection
- shnt: Statement

+ handkMessage(Message msg) : boolean

+ enCreation(Object obj) : void

- handleMessage{Message insg) : huolean

-+ executeQuery( Hashtable ¢, String prodClass, OrderParam o } 2
Estimatef]

- queryFloppy( OrderParum o) : Fstimaref|

- queryHdd( String interf, flaat size, OnlerParam o) :
Estimate{]

- createlstimatest ResuliSet rs. OrderPParam o, inf recount )
Estimatef]

- oadD( Stiing driverName, String conneet$tr )

Figure 5-12 UML class diagram for IBM Aglets agent server case study classes

Figure 5-13 illustrates a UML sequence diagram for a sales agent that queries the product
catalogue for an IDE hard drive. Upon receipt of an execute query message, the sales agent
retrieves the product class, product criteria and order criteria arguments from the aglets message
object. In response to an execute query message, the sales agent invokes the executeQuery
operation that examines the product class argument to determine which query to perform on the
supplier catalogue database. Subsequently, the product criteria are retrieved from the criteria
hashtable and forwarded to the appropriate query operation. The queryHdd operation is invoked

in the scenario illustrated in Figure 5-13.

A sales agent provides operations to query the product catalogue for a given business
domain. Each operation performs a specific query on the supplier product catalogue and accepts
an Order object. For example, the SalesAgent class in Figure 5-12 and Figure 5-13 provides the
queryHdd operation to query the product catalogue for a hard disk drive. The drive interface and
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capacity are accepted as parameters. The array of estimates is then sent as a reply to the execute

query message.

sales : msg :
SalesAgent Message
T T
L handleMessage(msg) .
1
1
2 getArg("criteria™)
. - =|-_
interface
4. ___________________
getArg(“class") T
prodClass d
4 ____________________
getArg("order™) I
g
order
<. ____________________
| exceuteQuery

(criteria,prodClass,order)
queryHdd
(interf,size,order)

createEstimates
(rs,order;arraySize)

sendReply

(estimatcsArray) ﬂ

Figure 5-13 UML sequence diagram for Aglets sales agent querying product catalogue

4.2 Aglets case study mobile agent

Unlike Ajanta [Tripathi02], IBM Aglets [Oshima98] does not provide an explicit registry
for mobile agents to access sofiware resources at the agent server. However, the agent server
environment for IBM Aglets [Oshima98] does allow visiting mobile agents to retrieve a list of
executing mobile agents at an agent server. Section 5.2.7 of chapter 4 described the
implementation of a simple resource registry that allows IBM Aglets [Oshima98] mobile agents

to access, by class name, a stationary mobile agent that acts as a proxy to a specific resource at

ResourceManager
+ y { String C :Objea [ 777 TTTTTTTR MubileShadow
ApplicationObject
Estimate
8 res : rransient ResourceManager
: -+ delivery : Calendat
+  ApplicaionObjeci() - toalPrice : double
+  start{ ResourceManager m ) : veid - ilanld @it
+ execute( ) void
# o initRe () throws Res Vi i +  Estimate( }
+  Estimate( Calendar date, double
price, int id
Zr +  getDelivery() : Calendar
+  getTotalPrice( ) : double
Product +  getdtemld() @ int

productClass : String

productCriteria : Hashtable

cstimates : transicnt Estimate] ]

bestBuy : Estimate

onder : Order

dbCatalogucProxy : transicnt AgltProxy

Order

deliveryDate : Calendar
totalltems : int

+

Order( Calendar date, int total )
getTowallems() © int
getRequestedDetiveryDate() - Calendar

+

Product(String itemClass, Hashiable criteria,
OrderParam orderCriteria)

getEstimates() : void

+  gesSupplierBestBuy() : Fstinate
updateBestBuy( Estimate ¢ ) : void

+ o+

+

+

Figure 5-14 UML class diagram for IBM Aglets case study mobile agent
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the agent server. Figure 5-14 illustrates the case study application classes that migrate with an
IBM Aglets [Oshima98] mobile agent to find the best buy offered by a supplier. A mobile agent
(class MobileShadow) encapsulates the mobile shadow exception handling scheme and contains
an application task (class Product derived from ApplicationObject), executed at each agent
server in the itinerary. The MobileShadow class implements the ResourceManager interface to

allow developers to locate resources, by class name, at the current local agent server.

Figure 5-15 summarises the interactions for retrieving a proxy to a sales agent resource in
the IBM Aglets [Oshima98] implementation of the case study. An IBM Aglets [Oshima98]
agent server allows visiting mobile agents to retrieve a proxy to any local executing mobile
agent. When a mobile agent arrives at a supplier agent server, it examines the list of executing
mobile agents, provided by the IBM Aglets [Oshima98] agent server, to retrieve a proxy to the
database manager agent. A visiting mobile agent then sends a connect message to the database
manager to create an instance of a sales agent. The database manager responds by returning a
proxy to the new sales agent. Subsequently, the visiting mobile agent sends an execute query
message to the new sales agent to query the product catalogue.

GLETS AGENT SERVER

Sales Agent

execute query message

Mobile agent

connect
MESSage

Database
Manager
Agent

Best buy
Product class
Product criteria
Order constraints

Product
\ catalogue

O 000 |

l find proxy for AGENT SERVER ENVIRONMENT

db.DatabaseManager agent
proxics for executing
mobile agents

Figure 5-15 IBM Aglets agent server architecture for sales agent resource

The UML sequence diagram in Figure 5-16 illustrates the execution sequence for a visiting
mobile agent at a supplier agent server. When the master arrives at a supplier agent server it
invokes the execute operation. This initializes the application task by invoking the sfart
operation of its application object, i.e. the Product class. The start operation locates the
resources required for execution at the agent server, initResources, and triggers execution of the
application task, execute. In this case study a proxy to the supplier’s database manager,
dbProxy, is retrieved by the initResources operation. The database manager is a stationary
mobile agent, located at each supplier agent server, that provides visiting mobile agents with a
proxy to a sales agent. Subsequently, the execufe operation is invoked to perform the task of

retrieving product estimates and determining the best buy.
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Figure 5-16 UML sequence diagram for Aglets mobile agent interaction with sales agent

The getEstimates operation of the Product class sends the database manager a connect
message to retrieve a proxy to the supplier’s sales agent. Recall that the sales agent is a
stationary agent located at each agent server that queries the product catalogue. An execute
query message is sent to the sales agent, which responds with a list of estimates for matching
products in the supplier’s product catalogue. If matching products were found, i.e.
estimates.length > 0, the getSupplierBestBuy operation is invoked to determine the best buy
offered by the supplier in relation to earliest delivery date and price. The updateBestBuy
operation is then invoked to determine if the supplier’s best buy is competitive. If so, the

Product class updates its bestBuy field with the supplier’s estimate.

5 Summary

This chapter has outlined the design and implementation of an experimental case study
environment for the simulation of agent server crash failures and the subsequent analysis of the
mobile shadow exception handling scheme. The application domain selected for the case study
is information retrieval using an electronic commerce supply chain scenario. A mobile agent is
dispatched, for each product component, to several known suppliers to dynamically determine

the best buy with respect to delivery date and price.
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Chapter 6 Evaluation

1 Introduction

This chapter presents an evaluation of the mobile shadow exception handling scheme
detailed in chapter 4. An implementation of the mobile shadow exception handling scheme is
first evaluated for the Ajanta [Tripathi02] and IBM Aglets [Oshima98] mobile agent systems.
This is performed using the case study application described in chapter 5. The mobile shadow
exception handling scheme is then evaluated with respect to the exception handling model for
mobile agents detailed in section 2 of chapter 4. Subsequently, the differences between the
mobile shadow exception handling scheme and existing systems, for mobile agents to tolerate
agent server crash failures, will then be shown. Of particular interest is the suitability of the
mobile shadow exception handling scheme for groups of collaborating mobile agents and

potential application domains.

2 Application case study evaluation

This section outlines two experiments that were performed using the case study architecture
presented in chapter 5. The initial experiment was implemented using the Ajanta [Tripathi02]
mobile agent system to compare the performance of the mobile shadow exception handling
scheme against a system based upon a timeout mechanism, in the presence of a single faulty
agent server crash. Subsequently, an IBM Aglets [Oshima98] implementation was used to
investigate the overheads of the mobile shadow exception handling scheme in the event of a

random agent server crash.

In both experiments the ping mechanism is implemented using Java TCP sockets. This is
due to no support for ICMP packets in Java 1.3. By default Linux kernel 2.4 defines a default of
three retry attempts before the TCP protocol reports a failure to the network layer. The timeout
value for retransmission (RTO) employed by the TCP protocol is dynamic and is recommended

to be initialised to 3s in RFC 1122 ( http://www.faqgs.org/rfcs/rfc1122.html ).

2.1 The Ajanta case study experiment

The aim of the experiment is to use the case study environment to investigate the
performance of an Ajanta [Tripathi02] implementation of the mobile shadow exception
handling scheme compared to an exception handler that uses a timeout mechanism. In particular
the experiment investigated the mobile agent trip time of both schemes for:

e A single agent server crash.

e Normal trip, i.e. no agent server crash failures encountered.
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A single mobile agent visited three suppliers to determine the best buy for fifteen 8GB IDE
hard drives. For simplicity, each supplier represents the product catalogue using a Mysqgl 3.23
database with JDBC driver 2.0.8. The experiment was performed on a 10mbps local area
network using four 64MB Intel Pentium II 400Mhz (Celeron) PCs running RedHat Linux 7.2
and Ajanta [Tripathi02].

Section 2.1.1 describes the timeout exception handler design. Section 2.1.2 then outlines the
performance measurements investigated for both the mobile shadow and timeout exception

handler schemes. Finally, section 2.1.3 presents the experiment results and analysis.

2.1.1 The timeout exception handler

The timeout exception handler is located at the home agent server and is associated with a
group of mobile agents dispatched to perform an information retrieval task. The timeout
exception handler (Figure 6-1) waits for a timeout period and then resends mobile agents that

did not return.

while !dispatch.isEmpty() {//while agents to send}
handlerTimeOut(t) {// wait f seconds}
handlerResend(dispatch) {//send replacements}

Figure 6-1 Timeout scheme pseudocode

The following meta operations and state are provided at the home agent server:

e Dispatch: List of dispatched mobile agents.

o Task(): Create dispatch list and send a group of mobile agents to perform an
information retrieval task.

e Add(A, dispatch): Add a mobile agent 4 to the dispatch list.

e Remove(A, dispatch): Remove mobile agent A from the dispatch list. A mobile agent is
removed from the dispatch list when it returns home.

e Handler(): Crash exceptidn handler that executes after task operation completed.

e HandlerTimeOut(t): Wait for ¢ seconds.

e HandlerResend(dispatch): Resend mobile agents in dispatch list.

The timeout exception handler tolerates any number of agent server crash failures with no
additional overheads imposed on mobile agents and remote agent servers. However, in the event
of an agent server crash, all agent servers are revisited. Furthermore, it is difficult to select a
timeout value in asynchronous systems since there are no established boundaries for processor
speed and communication delay. If an aggressive timeout value is used, many duplicate agents
are dispatched, e.g. a mobile agent may not return within the timeout period if it executes at one
or more slow agent servers. If a conservative timeout value is chosen, the application will block

until the timeout expires. This occurs even when some mobile agents return.
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2.1.2 Performance measurements

Two performance measures were obtained for both exception handler schemes:

e Normal round trip time: The time taken for a mobile agent to complete its itinerary
and return to the home agent server with the best buy. Agent servers visited by the
mobile agent suffer no crash failures.

® Crash round trip time: The time taken to complete an itinerary and report back to the

home agent server with the best buy in the presence of a single agent server crash.

Furthermore, the performance overheads in Figure 6-2 were measured for a single agent
server crash. Path 1-2-3-1 for the mobile shadow exception handling scheme represents handler

execution for an agent server crash.

Timeout Shadow — master crash
1. Time taken to prepare dispatch list. 1. Time taken to spawn and start shadow.
2. Time taken for timeout period. 2. Time taken for shadow to detect master crash.
3. Time taken to dispatch agents not returned. 3. Time taken for shadow to spawn replacement.

Figure 6-2 Performance overheads for Ajanta case study experiment

The source code to calculate the performance overheads for the timeout exception handler
scheme imposed no additional increase to the normal or crash round trip times. This is because
the calculations are performed at the agent server that dispatched the mobile agent. However,
this is not true for the mobile shadow exception handling scheme, since the mobile agent state
must be augmented to log the times for spawning a shadow and detecting the crash of the agent
server where the master is located. To provide an accurate comparison there were two sets of
round trip times for the mobile shadow exception handling scheme:

1. Round trip times assume augmented mobile agent state with performance variables.

2. Round trip times assume no augmented mobile agent state, i.e. no performance

variables.

Conservative timeout values were selected for the timeout scheme so that a mobile agent

has sufficient time to return before another replica is dispatched.

2.1.3 Results and analysis

The round trip times were obtained from forty trial runs. A new mobile agent was
dispatched for each trial run. To simulate an agent server crash a mobile agent waits at a specific
agent server to enable manual termination. After recovery the crashed agent server was

restarted. This was done due to the enforced security model of Ajanta [TripathiOl], i.e. there is
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no mechanism to enable a mobile agent to terminate an agent server, or for an agent server to

halt, when a specific mobile agent arrives.

Figure 6-3 illustrates the time increase introduced by the crash round trip for each exception
handler. Performance calculations for the mobile shadow exception handling scheme impose a
minor increase of 0.50% on the round trip times. The trip times for the mobile shadow scheme

represent the case where the mobile agent state is not augmented with performance calculations.

Timeout round trip times Mobile shadow round trip times

30.0 4 —+— Crash trip time —e»— Normal trip time 50.0 , —e— Crash trip time —e— Normal trip time
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Figure 6-3 Trip times for timeout and mobile shadow exception handler

The timeout exception handling scheme offers a quicker average normal and crash round
trip, 1.e. 3s and 23.2s respectively. This is compared to the mobile shadow exception handling
scheme that provides an average of 22.2s and 39.6s. However, the crash trip time for the timeout
scheme depends upon the total agent servers visited. Longer trips need a larger timeout,
increasing the crash round trip time. The mobile shadow exception handling scheme is

independent of trip length and consequently may perform better for longer trips.

Figure 6-4 illustrates performance overheads for the timeout exception handler. The timeout
exception handler has insignificant times for initialising a record of agents to dispatch (0.1ms)

and resending those agents (0.6s) that failed to return. Both measures fall within 1 second.
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Figure 6-4 Timeout exception handler overheads
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However these measures were obtained from dispatching a single mobile agent. The major
performance overheads for the timeout exception handler are the timeout period (20s) and
recovery time (20.7s). The recovery time represents the time to resend agents that have not

returned in addition to the timeout period that elapsed when the handler completed.

The mobile shadow exception handling scheme offers slower round trip times. Figure 6-5
illustrates the performance overheads. A shadow starts a thread to ping the next agent server
where its master will execute. The average time for a shadow to be notified of its master’s agent
server crash is 8.3s. The average time to spawn and start a shadow under normal execution is
negligible, i.e. 0.8s. A larger overhead (13.4s) is introduced when a shadow spawns and starts
its own shadow during recovery. This may be because the shadow migrates while its child pings

its destination agent server.

Master spawns and starts shadow Shadow notified of master crash
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Figure 6-5 Mobile shadow overheads

To summarise, the timeout exception handling scheme offers quicker round trip times.
However, it is not independent from the itinerary size, i.e. a larger timeout value is necessary to
wait for mobile agents to return from longer trips. The advantage of the mobile shadow
exception handling scheme is that it is independent from the itinerary size. This is because the
shadow is activated, at the last avéilable preceding server visited, in the event of an agent server
crash. Furthermore, the mobile shadow exception handling scheme offers the smallest trip time

increase in the event of an agent server crash.

2.2 The IBM Aglets case study experiment

The experiment outlined in section 2.1 investigated the mobile agent trip times for the
mobile shadow exception handling scheme and a timeout exception handler. The trip times were
obtained for the crash of a specific agent server. The security model of the Ajanta [Tripathi02]

mobile agent system does not allow simulation of a random agent server crash, since there is no
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mechanism available for the agent server environment to react to the arrival of mobile agents.
However, in a wide area network environment an agent server crash is random. Consequently,
the experiment uses the IBM Aglets [Oshima98] case study implementation to analyse the
performance of the mobile shadow exception handling scheme with a single random agent

server crash.

The same experimental environment outlined in section 2.1 was adopted for the case study
environment. A single mobile agent visits three suppliers to determine the best buy for fifteen
8GB IDE hard drives. For simplicity, each supplier represents its product catalogue using the
Mysql 3.23 database system with JDBC driver 2.0.8. The experiment was performed on a
10mbps LAN using four 64MB Intel Pentium II 400Mhz (Celeron) PC's running RedHat Linux
7.2 and IBM Aglets [Oshima98]. Section 2.2.1 describes the simulation of an agent server crash.
Section 2.2.2 then outlines the performance measurements investigated. Finally, section 2.2.3

presents the experiment results and analysis.

2.2.1 Simulating a random crash

To simulate a crash, the mobile agent terminates an agent server using the Java command
System.exit(1). Permission to terminate the Java Virtual Machine is assigned in the security
policy file for each agent server. The CrashSimulator class (Figure 6-6) is initialised with the
total agent servers to visit (iTripSize). A random number (iCrashindex) represents the n™ visited
agent server that will crash, i.e. 0 < iCrashlndex <= iTripSize. Before a mobile agent migrates
to the next agent server in its itinerary it increments the total number of agent servers visited
(iVisited), i.e. crash.increment(). When execution begins at the next agent server, the mobile
agent determines if it is at the agent server selected to crash (iVisited==iCrashindex). This is

done by invoking CrashSimulator.crash(). If so, the mobile agent terminates the agent server.

CrashSimulator

iTripSize : int
iVisited : int
iCrashindex : int

‘

CrashSimulator(int iTripSize)

CrashSimulator(int TripSize, boolcan ShadowCrash)
increment(): void

crash() : void

+ o+ o+ o+

Figure 6-6 CrashSimulator class

The crash simulation above is applicable to a master crash. To simulate a shadow crash the
master delegates the responsibility of terminating the agent server to its shadow. Furthermore, a
random number must be generated in the range 0 < iCrashIndex <= iTripSize-1 since it is
assumed that a master discards its shadow when it returns to the home agent server.
Consequently, the  CrashSimulator  class  provides a  second  constructor

CrashSimulator(TripSize, ShadowCrash).
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2.2.2 Performance measurements

Two performance measures were obtained for an insight into the overheads introduced by
the mobile shadow exception handling scheme in the event of a random agent server crash:
¢ Normal round trip time: Time taken to complete an itinerary and return to home agent
server with the best buy. Visited agent servers suffer no crash failures.
¢ Crash round trip time: Time taken to complete an itinerary and return to home agent

server with the best buy in the presence of a single agent server crash.

Furthermore, the performance measures in Figure 6-7 were obtained in the event of a single

agent server crash.

Master crash Shadow crash
1. Time taken to spawn and start 1. Time for master to detect
shadow. shadow crash.
2. Time taken for shadow to detect 2. Time for master to spawn
master crash. replacement shadow.
3. Time for shadow to spawn

replacement.

Figure 6-7 Performance overheads for IBM Aglets case study experiment

To simulate a random agent server crash the state of the mobile agent was augmented with an
instance of the CrashSimulator class in addition to code for performance measurements. To
provide accurate normal and crash round trip times there were two sets of normal trip times:

1. Normal round trip time assumes an augmented mobile agent state that includes an

instance of the CrashSimulator class and performance variables.

2. Normal round trip time assumes no augmented mobile agent state.

2.2.3 Results and analysis

The normal and crash round trip times were obtained from forty trial runs. A new mobile
agent was dispatched for each trial run. An agent server crash simulation was reset before the

next trial.

A comparison of round trip times for the crash of a master and a shadow is illustrated in
Figure 6-8. Performance calculations for the mobile shadow scheme imposed a minor increase
of 0.50% on the round trip times. The normal round trip time assumes no state augmentation for

performance calculations or the CrashSimulator class.

The mobile shadow exception handling scheme provides an average normal round trip time
of 2.1s. When fault tolerance measures are exercised in the presence of a random agent server
crash, the round trip time significantly increases. A shadow crash offers a quicker round trip

time of 13.8s (11.7s increase) compared to 14.6s (12.5s increase) for a master crash. This is due
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to the way in which the shadow crash is simulated. When the master migrates to the next agent
server in the itinerary the shadow terminates its agent server. Consequently, when the master

arrives at the next agent server in the itinerary its ping thread detects the crash of the shadow.

Shadow crash — round trip times Master crash — round trip times
—e— Shadow crash round trip time —e— Master crash round trip time
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Figure 6-8 Mobile shadow trip times

Figure 6-9 illustrates the performance overheads for master and shadow crashes. The time
taken to spawn and start a shadow is negligible for both a master and shadow crash. For
example, when handling a master crash the average time for a shadow to spawn a new shadow
is 76.5ms (0.08s).

The largest overhead is the time taken for a shadow to be notified of its master’s agent
server crash (4.4s). This is explained by the concurrent execution of the shadow and its ping
thread. Every shadow starts a thread to ping its master’s agent server. The ping thread pings
until it detects a crash and notifies the blocked shadow. Similarly, the master pings its shadow

concurrently.

To summarise, quicker round trip times were obtained with the IBM Aglets [Oshima98]
case study design for a random agent server crash. This is attributed to the design of the crash

simulation and the use of JDKI.3 with the IBM Aglets [Oshima98] implementation.
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Figure 6-9 Performance overheads for mobile shadow exception handler

Furthermore, the largest overhead was found to be the time taken for a shadow to detect its

master crash. This is attributed to the concurrent execution of the shadow and its ping thread.

2.3 Summary

The experiment performed using the Ajanta [Tripathi02] case study environment compared
the mobile shadow exception handling scheme with an exception handler that uses a timeout
mechanism to detect agent server crash failures. Systems that employ a timeout mechanism
must use a timeout period that exceeds the slowest network conditions for the mobile agent trip
time. Consequently, even if there are no agent server crash failures, the timeout period must still
run to completion to determine failure. The advantage of the mobile shadow exception handling
scheme is that no timeout mechanism is necessary for the mobile agent trip length.
Consequently, in the event that the agent server occupied by the master crashes, the shadow is

available as a replacement.

There are a number of extensions that can be performed for the experiment. Firstly, a

greater number of trial runs can be performed. Currently, an agent server must be manually
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restarted, for each run, when measuring the crash round trip time. A greater number of trial runs
could be obtained if there was the ability to automatically restart an agent server process that
encountered a crash failure. Secondly, the experiment could vary the size of the mobile agent
and the total number of random agent server crashes encountered during a trip. The size of the

mobile agent could be increased by using redundant state or a larger itinerary.

A final consideration would be to deploy the case study architecture in a wide area network
environment. Currently, both of the experiments outlined in sections 2.1 and 2.2 are deployed in
a local area network. Consequently, the results are applicable to mobile agents that are deployed
within the same administrative domain to compress information distributed within the local
network. The next step would be to investigate the performance of the mobile shadow exception
handling scheme in a wide area network for large scale distributed information retrieval. This
would have to be performed in collaboration with other institutions. Alternatively, a simulation

of a wide area network environment could be investigated.

3 Evaluation using exception handling model

This section evaluates the mobile shadow exception handling scheme with respect to the
conceptual exception handling model outlined in chapter 4, section 2. The mobile shadow
exception handling scheme provides a fault tolerant service for maintaining mobile agent
availability in the presence of agent server crashes. This service is embedded within the
application mobile agent. Recall that the mobile shadow scheme employs two mobile agents:

e Master: Responsible for executing the application task.

¢ Shadow: Replica that monitors the agent server currently occupied by the master. The

shadow is located at the agent server previously visited by the master.

The mobile agent exception handling model partitions the behaviour of a mobile agent into
normal and exceptional. With respect to the mobile shadow exception handling scheme, the
normal behaviour of a mobile agent corresponds to execution of an application task at each
agent server visited in the itinerary. The exceptional behaviour is triggered when an application
exception is signalled through interaction with software services at the agent server.
Alternatively, a mobile agent’s exceptional behaviour may be triggered due to environmental
conditions. For example, the agent server may disallow mobile agent execution due to
inadequate access privileges. Furthermore, an agent server may signal an exception to a mobile
agent when it failed to dispatch the mobile agent to the next agent server in the itinerary. For

example, the destination agent server may have failed by crashing.

The mobile shadow exception handling scheme specifically handles exceptions raised by

the agent server environment with respect to an agent server crash. Consequently, exceptional
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behaviour is triggered when an agent server occupied by the master or shadow fails by crashing.
The application developer is expected to address application exceptions raised by software
services at agent servers visited in the itinerary. Consequently, the develaper of a mobile agent
must be aware of the exceptions that are signalled by software services at agent server
environments visited in the itinerary. This appears to be the normal case for mobile agents in the
distributed systems community. To the author’s knowledge Ajanta [Tripathi02] is the only
mobile agent system that imposes a framework to handie application exceptions for mobile

agents.

There are two exception handlers that migrate with a mobile agent in the mobile shadow
scheme:
e Master exception handler: Replaces a master lost due to an agent server crash.

e Shadow exception handler: Replaces a shadow lost due to an agent server crash.

Each agent server brovides a ping Service, Syng, (o respond to ping messages from remote
mobile agents. This is synonymous with a service at an agent server in the conceptual exception
handling model presented in chapter 4. If there is no ping response from the agent server’s ping
service a failure exception is raised in the master or shadow. At this point the exception
handling model presented in chapter 4 offers the following options for mobile agents that
receive a failure exception from a service at a remote agent server:

e Retry.

e Report back to home agent server.

¢ Report back to parent mobile agent.

If the shadow exception handler is triggered a retry action is performed. The master raises a
failure exception when the ping service located at the shadow’s agent server fails to respond.
Consequently, the master issues a retry action by dispatching a shadow to the next available

agent server that was previously visited.

The master exception handler is triggered when the ping service located at the master’s
agent server fails to respond. In this scenario the shadow reports back to the home agent server
when the trip is complete. The IBM Aglets [Oshima98] implementation for the mobile shadow
exception handling scheme, pre'sented in chapter 4, skips the agent server that crashed.
Consequently, a replacement master arrives at the next available agent server in the itinerary.
This policy is applicable for applications that require the information within a time deadline. For
example, resending a mobile agent to visit failed agent servers may add significant overheads to
the time requirements imposed by the application. A retry action for the master exception

handler was considered whereby the replacement master installs a clone that repeatedly retries
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visiting the crashed agent server. Obviously this scheme requires a shadow to monitor the
availability of the agent server occupied by the clone. However, the disadvantages are as
follows:
» The state of the mobile agent is increased to log the id and location of clones that
attempt to visit a crashed agent server.
¢ The scheme requires two additional mobile agents. A clone is required for dispatch
to the crashed agent server. Furthermore, a shadow must monitor the availability of
the clone. Eventually, the performance of agent servers could be degraded,

especially if recursion occurs due to a clone failure.

In the worst case scenario a mobile agent may visit none of the hosts in its itinerary if all
have crashed. One solution is to use an itinerary pattern [Tripathi02] whereby the mobile agent
logs the success for each itinerary entry. The home agent server can take appropriate action
when the mobile agent returns, e.g. a mobile agent may be dispatched to all failed agent servers.
The guardian exception handling model presented in [Tripathi02] provides a guardian at the
home agent server that encapsulates recovery behaviour for exceptions that cannot be handled
by mobile agents. The guardian may also be used to co-ordinate recovery of mobile agent
groups. In the exception handling model for mobile agents (presented in chapter 4, section 2),
the guardian may encabsulate the recovery behaviour at the home agent server when a mobile

fails to retry or locate an alternative software service.

The mobile shadow exception handling scheme is evidently recursive for the crash of a
master or shadow. For example, in the event of a master crash the shadow spawns a new
shadow and then replaces the master. The case study application presented in chapter 5 and the
IBM Aglets [Oshima98] implementation in chapter 4 assumes that a single mobile agent visits a
sequence of agent servers. No children are spawned to perform a task on the behalf of the
mobile agent. This scenario is raised in the exception handling model presented in chapter 4,
section 2. The mobile shadow exception handling scheme addresses this scenario provided that
there is no synchronous relationship introduced between a parent and its children. For example,
a child may either report back to.the home agent server or perform a task on the behalf of its
parent and then terminate. However, if a parent requires a response from a child then a
synchronous relationship is introduced and the mobile shadow exception handling scheme must
be extended. If the agent server occupied by a master crashes, then children are not aware of the
location of the replacerhent master. Similarly, a replacement master is not notified when a child
has completed its task. A possible solution would be to impose the restriction that all children
report back to the home agent server. However, fault tolerance mechanisms are required to

provide high availability of the home agent server.
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To summarise, the mobile shadow exception handling scheme provides the foundation for
using the exception handling model in information retrieval environments where mobile agent
loss must be tolerated. The scheme offers two advantages. Firstly, mobility and replication
provide fault tolerance during the mobile agent trip, i.e. an exception handler that is independent
of trip length migrates with the mobile agent. This is compared to a timeout scheme [Pears03]
where the application developer must vary the timeout interval for different trip lengths.
Secondly, the scheme is useful for groups of collaborative information retrieval mobile agents,
since the master and shadow comprise a single fault tolerant group member. Alternative
schemes exist, e.g. [DeAssisSilva00, Pleisch03, Schneider97, Strasser99], that replicate a
mobile agent at each stage of its itinerary to an anticipated set of agent servers. However, this
induces a complex design for collaborative information retrieval mobile agents. For example, a
single group member requires that replicas are deployed, at alternative agent servers, for each

stage of the itinerary.

4 Feature-based evaluation

In addition to the evaluations using the case study and exception handling model, the mobile
shadow exception handling scheme was compared with other existing systems for mobile agents
to survive agent server crashes. This was done to highlight the similarities and differences

against existing research.

The features identified, and the rationale for selection, are described in the following table.

ature _Explanatiol _ , _ :
location mobile agent then there is the danger that the state of the mobile agent
exceeds bandwidth limitations. If located within the agent server then it must

be feasible to adopt the algorithm for 4ll mobile agent systems.

Recovery This defines the recovery mechanism. A forward recovery mechanism
mechanism implies that modifications to the state of the agent server are not undone. The
application developer is responsible for compensating the state of the agent
server if it recovers from the crash. If backward error recovery is employed it

is possible to undo actions performed by mobile agents.

Stable storage This defines if mobile agents are stored in stable storage at each agent server.
This is important since it describes if mobile agents are restarted by the agent

server when it recovers from a crash.
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Structtife to
determine
alternative

agent server

This defines if the fault tolerance design provides any structure for mobile
agents to visit alternative agent servers in the event of an agent server crash.

Alternatively, this responsibility may be left with the application developer.

Communication

assumptions

This defines the assumptions made by the fault tolerance design regarding
the underlying network conditions. Consequently, this is important to
potential users since it describes the underlying conditions of the mobile
agent’s network environment for correct execution of the fault tolerance
protocol. If no communication assumptions are made, then mobile agents can
survive network partitions and transport failures due to unreliable

communication links.

Fault tolerance

mechanism

This defines the fault tolerance mechanism used for mobile agents to survive
agent server crash failures. A spatial replication mechanism
[DeAssisSilva00, Pleisch03, Schneider97, Strasser99] dispatches replica
mobile agents to a group of agent servers for the next stage in the itinerary. A
temporal replication approach executes a mobile agent at a single agent
server. If execution fails the mobile agent is dispatched to another agent

Server.

Child failure

This defines if children spawned, by a parent mobile agent, can survive an
agent server crash. “Asynchronous” indicates that children survive agent
server crashes, provided there is no need to report back to the parent.
“Synchronous” indicates that children survive mobile agent crashes and

report back results to the parent.

Table 6-1 Features to be identified in the feature analysis

Table 6-2 shows the features contained within existing systems for mobile agents to survive

agent server crash failures. The mobile shadow exception handling scheme has also been

included for reference.







Chapter 6 Evaluation 117

The ideal fault tolerant scheme for mobile agents to survive crash failures depends upon the
requirements of the application and the scale of the network. Consequently, emphasis must be
given to specific tasks, with the recognition that this may require compromise dependent upon

the application domain.

Information retrieval mobile agents perform idempotent operations at each agent server
visited in the itinerary, i.e. a mobile agent that interacts with software services at each agent
server does not modify the application state of the agent server. Mobile agents only consume
information from agent servers visited in the itinerary, thus eradicating the need for backward
recovery mechanisms. Furthermore, if the mobile agent is dispatched in a wide area network to
retrieve information then the protocol ideally migrates with the mobile agent. Interoperability
between mobile agent systems is still a significant problem. However, there is evidence of
research interest to tackle the problem [Brazier02, Grimstrup02, Misikangas00, Pinsdorf02]. If
the fault tolerance protocol migrates with the mobile agent then fault tolerance is provided
irrespective of the installed mobile agent system. This increases the interoperability of the
protocol with mobile agent systems, i.e. enterprises do not have to modify the agent server

environment. However, the increase of the mobile agent’s state must be kept to a minimum.

Mobile agents may also be used to perform an application specific task on the behalf of a
user. In this scenario the mobile agent may modify the state of agent servers. For example, a
mobile agent that purchases a product at an agent server alters the stock level. Consequently,
backward recovery mechanisms are necessary to rollback the application state of the agent
server in the event that a crashed agent server eventually recovers. Alternatively, forward
recovery mechanisms [Pears03, Pleisch01, Strasser98] may be used to compensate the actions

performed by the mobile agent, e.g. cancelling the purchase made by the mobile agent.

If the application is deployed over the wide area network then a system is preferred that
does not make any assumptions regarding communication in the network. For example, reliable
messaging is a weak assumption for applications that are deployed in large scale networks
where network partitions are frequent. In this scenario the mobile shadow exception handling
scheme fails if the shadow and master are separated by network partitions. Consequently, the
shadow believes that the master has failed due to an agent server crash. This becomes a problem
with applications that require exactly once execution semantics since there are two instances of
the application mobile agent, separated by network partitions. However, this is not a problem if
the mobile shadow exception handling scheme is used for information retrieval applications

where the duplicate mobile agent only consumes information.

Finally, if the mobile agent application deploys a mobile agent that dispatches children to

perform an application task then the mobile shadow exception handling scheme is suitable,
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provided that there is no synchronous relationship introduced between the parent and child. If it
is necessary for the parent to synchronise with its children, e.g. to retrieve results, then the

systems described in [DeAssisSilva00, Pleisch01] are preferred.

To summarise, the mobile shadow exception handling scheme is ideally suited to
information retrieval applications since no backward recovery is necessary. The strength of the
mobile shadow exception handling scheme is that a mobile agent is a single fault tolerant entity
that can survive agent server crash failures. The fault tolerance protocol migrates with the
mobile agent, eradicating the need to modify the agent server environment at remote hosts.
Other systems that employ temporal monitoring require modification of the agent server
environment for installation of fault tolerance measures. Consequently, the mobile shadow
exception handling scheme has the potential to ease the complexity introduced for a group of
mobile agents deployed for information retrieval. This is compared to systems that employ
spatial replication to tolerate agent server crashes. Systems that use spatial replication require a
group of agent replicas for each mobile agent in the group. The group of replicas are dispatched
to a set of discrete agent servers for each stage in the itinerary. Additionally, a voting algorithm
is necessary for replicas to agree upon the following points:

e A mobile agent has failed due to an agent server crash.

¢ The identity of the mobile agent that is executing the application task.

5 Summary

This chapter has provided an evaluation of the mobile shadow exception handling scheme
detailed in chapter 4. The implementation of the mobile shadow exception handling scheme was

evaluated using a number of techniques.

Firstly, the implementation of the mobile shadow exception handling scheme was evaluated
for the Ajanta [Tripathi02] and IBM Aglets [Oshima98] mobile agent systems. The mobile
shadow scheme has the advantage that it is independent of the itinerary trip length.
Consequently, a performance benefit is offered over systems that use a timeout mechanism at
the home agent server, for larger itinerary lengths. Furthermore, performance overheads were
also obtained for an Ajanta and IBM Aglets [Oshima98] implementation of the mobile shadow

exception handling scheme.

Secondly, the mobile shadow exception handling scheme was justified with respect to the
exception handling model presented in chapter 4, section 2. This highlighted the application
exception handling options available with respect to an agent server or host crash. Furthermore,
the difficulties encountered for tolerating a child and parent crash failure while preventing

blocking is highlighted.
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Finally, a comparison was provided with existing systems. The result of the analysis
highlights that the mobile shadow scheme is applicable to idempotent applications that operate
within a closed network environment. The issues with using the scheme in a wide area network
environment were highlighted. Furthermore, it was observed that the mobile shadow exception
handling scheme has the potential to ease the complexity introduced for a group of mobile
agents deployed for information retrieval, compared with systems that use spatial replication to
tolerate agent server and host crash failures. Reducing the additional complexity introduced by
fault tolerance is an important issue for mobile agent applications, in order to preserve the

potential savings in bandwidth.
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Chapter 7 Conclusions

1 Introduction

The aim of this research was to investigate and develop a scheme that uses exception
handling for mobile agents to survive agent server crash failures. Therefore, a major part of the
thesis is firstly a background of mobile agents and techniques for exception handling in
traditional distributed systems. Subsequently, existing systems for maintaining the availability
of mobile agents against agent server crashes were investigated. The problem of maintaining the
availability of mobile agents against agent server crashes is a difficult one. Solutions use
temporal or spatial replication mechanisms. The remainder of the thesis addresses the problem
by firstly proposing an exception handling model for mobile agent systems. Consequently,
based upon the understanding gained, a scheme was implemented that uses a temporal

replication solution. This was then deployed within a case study application.

The mobile shadow exception handling scheme proposed in this thesis uses temporal
replication for mobile agents to survive agent server crash failures. This is based upon the
principle that the mobile agent is dispatched to each agent server in the itinerary. If the mobile
agent is lost due to an agent server crash then a replica is sent to an alternative agent server. The
use of temporal replication introduces a number of issues, the most significant being the
potential use for adopting the scheme for a group of collaborating mobile agents. Unlike spatial
replication techniques [DeAssisSilva00, Pleisch03, Schneider97, Strasser99] there is no need to
dispatch replica mobile agents to a static group of equivalent agent servers for each stage of the
itinerary. Instead, the mobile shadow exception handling scheme uses a shadow mobile agent to
monitor the availability of the application mobile agent at each stage of the itinerary.
Consequently, only the set of agent servers specified in the itinerary are visited. This eases
complexity since, for each agent server visited in the itinerary, there is no need for the
application developer to determine a set of equivalent agent servers to visit in the event of a

crash failure.

There are a number of possible extensions to the mobile shadow exception handling
scheme, such as extending the failure model and providing a dynamic itinerary that allows the
mobile agent to select an alternative agent server in the event of a crash failure. However, this
has been considered for future work. Instead, focus was given to an exception handling model
for mobile agents, with the aim of allowing exception handling for mobile agents to be better

understood, particularly with respect to a group of mobile agents.
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2 Research summary

This research has presented a number of issues relating to exception handling and fault
tolerance for mobile agents against agent server crash failures. The primary contributions can be
considered to be:

¢  An exception handling model that highlights the key differences for exception handling

in mobile agent systems, as opposed to traditional distributed systems.

o A failure model for mobile agent systems.

¢ A demonstration of a fault tolerance scheme that uses exception handling and temporal

replication to protect mobile agents from agent server crash failures.

The mobile shadow exception handling scheme uses temporal replication to protect mobile
agents against agent server crash failures. A sequential itinerary is used to determine the
boundary of agent servers visited by the mobile agent. This is assumed in other systems that
protect mobile agents from agent server crash failures. A replica is spawned before the
application mobile agent migrates to the next agent server in the itinerary. Exception handlers
are provided for the crash of the replica and application mobile agent. The crash of a replica is
transparent to the application developer. In this case the exception handler inspects the
sequential itinerary to determine an available agent server that can be occupied by a replacement
replica. If the application mobile agent is lost due to an agent server crash failure then the
exception handler uses the replica as a replacement. Subsequently, a new replica is spawned to

monitor the replacement application mobile agent.

The itinerary is particularly important for the protection of mobile agents against agent
server crash failures. The mobile shadow exception handling scheme uses a sequential itinerary
to conveniently provide a set of agent servers, available for occupation by one or more replica
mobile agents. Furthermore, a natural boundary for error confinement is established.
Consequently, the itinerary can provide a boundary for atomic actions in mobile agent systems.

The concept of atomic actions is presented in chapter 3.

An itinerary has equally been used in spatial replication mechanisms to establish the set of
agent servers occupied by replicas at each stage of the itinerary. However, this has the
disadvantage that there is an increase in the state of the mobile agent. For example, entries are
required for each stage in the itinerary to represent the alternative agent servers that can be

visited in the event of a crash.
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3 Criteria for success

With respect to the exception handling model (outlined in chapter 4, section 2) and the
mobile shadow exception handling scheme, it is possible to review the introductory chapter to
summarise what has been achieved. The criteria for success were presented in chapter 1, section
5. These will now be examined in order to demonstrate the extent to which they have been

achieved within the thesis.
a) Create an exception handling model for mobile agent systems

This research has proposed an exception handling model for mobile agents in chapter 4,
section 2. Mobile agents execute an itinerary by visiting remote agent servers to interact with
software services on the behalf of the user. If a mobile agent receives an exception from a
service at a remote agent server then it can retry the service, migrate to an agent server that

offers an equivalent service or report back to the home agent server.

Exception handling in mobile agent applications is recursive. Software services may
dispatch a mobile agent to satisfy a service request. Similarly, a visiting mobile agent may
dispatch a child to perform a task on its behalf for the duration of its visit. Exception handling in
mobile agent systems is complex when a mobile agent dispatches a child to perform a task on its
behalf. If a child encounters an exception from a service at a remote agent server then the parent
must be notified. This is provided that a synchronous relationship exists between parent and
child. Consequently, in these circumstances the parent must remain stationary until the child

returns.
b) Identify a failure model for mobile agent systems

A failure model was introduced in chapter 4, section 3, for mobile agent systems in general.
There are few failure models in existence for mobile agents. The key classifications for mobile

agent execution failure are: security, communication, software faults and agent server crashes.

Chapter 4 presents a failure model that summarises, for each class of failure, the scenarios
and conditions of failure. The mobile shadow exception handling scheme addresses the crash
failure classification for information retrieval applications. The conditions of agent server crash
failures have been outlined for information retrieval applications. Namely, these are that
network partitions, host crashes and communication link failures eventually recover.

Furthermore, remote agent servers are not expected to provide persistency of mobile agents.
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¢) Development of an exception handling scheme for the protection of mobile agents

against agent server crashes

The implementation of an exception handling scheme for the protection of mobile agents
against agent server crashes was presented in chapter 4, section 4. The demonstration of the
mobile shadow exception handling scheme, using the case study application that is presented in
chapter 5, raised significant issues with respect to handling crash failures for mobile agent
systems. Firstly, a mobile agent’s itinerary is useful to establish a boundary for error
confinement. Secondly, a log is required of the agent servers where a mobile agent failed to
complete execution due to crash failures. Solutions for the exception handler include: resend the
mobile agent, in the event that the agent server eventually recovers, or dispatch the mobile agent

to the home agent server for application recovery.

A further aspect identified is the difficulty of protecting children from crash failures. Most
of the systems presented in the feature analysis in chapter 6 assume that children are dispatched
to perform a task that is independent of the parent. Two of the systems included in the feature
analysis provide recovery where a synchronous relationship is introduced between parent and

children. However, both are conceptual with no actual implementation for the scenario.

d) Identify the best approach for mobile agent groups to survive agent server crashes

The thesis has concluded that a temporal replication mechanism is preferred for protecting a
mobile agent that is a member of a group, from agent server crash failures. Furthermore, agent
servers visited in the itinerary can be used to host a replica that replaces the application mobile
agent in the event of an agent server crash. This has been demonstrated by the case study

application in chapter 5 and the evaluation results in chapter 6.

A significant advantage of the mobile shadow exception handling scheme, with respect to
mobile agent groups, is-that a replica dynamically migrates with the application mobile agent at
each stage of the itinerary. This reduces the performance overheads when compared to spatial
replication mechanisms. Spatial replication mechanisms [DeAssisSilva00, Pleisch03,
Schneider97, Strasser99] adopt a voting protocol in the event of an agent server crash to elect a
new leader from a group of replicas. Furthermore, spatial replication mechanisms produce a
larger itinerary, since for each stage in the itinerary a mobile agent replica must be dispatched to
n agent servers that are capable of executing the mobile agent. Complexity is therefore reduced
by the mobile shadow exception handling scheme, since a group of replicas is not required for
each group member. Consequently, each member of the mobile agent group is a single fault

tolerant entity.
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Re-examination of these criteria, with reference to the relevant parts of the thesis, has
shown that this research has been successful. The research has addressed the overall aim of
developing and evaluating a fault tolerance protocol that uses exception handling to protect
mobile agents from agent server crash failures. Furthermore, this thesis adds to current fault

tolerance research for mobile agent systems.

4 Future work

There are many further directions for the research that involve extending the
implementation of the mobile shadow exception handling scheme, extending the failure model
and employing the mobile shadow exception handling scheme for a group of collaborating

mobile agents. This section examines these areas in further detail.

4.1 Implementation

The implementation of the mobile shadow exception handling scheme could be extended in
the following ways. Firstly, in the event of an agent server crash a replica mobile agent, or
shadow, skips the crashed agent server and executes at the next available agent server in the
itinerary. The Ajanta [Tripathi02] mobile agent system provides an itinerary pattern to allow a
mobile agent to log failed visits to agent servers. When a mobile agent completes its trip the
home agent server has the following options:

e Dispatch the mobile agent to remote agent servers to retry execution.

e Dispatch the mobile agent to an alternative agent server that provides an equivalent

service.

Most mobile agent systems require that the application developer is aware of the agent
servers that offer the required service. With the introduction of directory services it is possible
to dynamically locate a software service that meets functional requirements. In the event of an
agent server crash, fault tolerance schemes [DeAssisSilva00, Pleisch03, Schneider97,
Strasser99] for mobile agents provide the option to dispatch a replica mobile agent to an
alternative agent server that provides an equivalent service. Consequently, the mobile shadow
exception handling scheme presented in chapter 4 could be extended to include a directory
service that enables mobile agents to lookup agent servers that offer required services. This
facility is already provided in systems that implement the FIPA [Fipa04] and MASIF
[Milojivcic98] standards.

An alternative approach [DeAssisSilva00, Pleisch03, Schneider97, Strasser99] to the mobile
shadow exception handling scheme replicates a mobile agent, at each stage of its itinerary, to a
set of agent servers that provide the desired service. If a mobile agent is lost due to an agent

server crash, a voting algorithm is run by the replicas to elect a new leader. There may be
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savings in recovery performance since a replica is immediately available at an alternative agent
server. However, overheads still exist for electing a new leader and sending replicas to
redundant agent servers at each stage of the itinerary. It would be interesting to investigate

further the performance of this approach with the mobile shadow exception handling scheme.

4.2 Extended failure model

This thesis has constrained the design of the mobile shadow exception handling scheme to
information retrieval applications, i.e. visiting mobile agents consume information at remote
agent servers, A failure model and conceptual design was presented in chapter 4. The next
logical step is to apply the mobile shadow exception handling scheme to applications where
mobile agents can modify the state of remote agent servers through interaction with software
resources. This in turn implies transactions to rollback the state of a mobile agent to arrival at
the agent server that crashed. Imposing this additional assumption has the following
implications for future work:

* Investigate a distributed transaction model that establishes a boundary of mobile agent
execution. Furthermore, the transaction model identifies transaction mechanisms and
the party responsible for mobile agent persistency. Possibilities include the home agent
server or remote agent servers visited.

e Create an XML schema to specify the workflow of a mobile agent. The workflow
describes the agent servers visited by a mobile agent and alternative agent servers that
provide an equivalent service in the event of a crash failure. Furthermore, meta-
information can be included that describes the activities of the mobile agent. For
example, is it possible to compensite or retry the activity of a mobile agent?

e Introduce a heterogeneous mechanism, e.g. XML, to save the state of mobile agents into

stable storage.

4.3 Exception handling for mobile agent groups

This thesis has presented the mobile shadow exception handling scheme that allows a single
mobile agent to survive agent server crash failures. The mobile shadow exception handling
scheme migrates with the application mobile agent for protection against agent server crash
failures in information retrieval environments. The next logical step is to investigate the use of
the mobile shadow exception handling scheme for a group of collaborating mobile agents. This
is expected to be performed using a case study application. Four scenarios are envisaged for
mobile agent group collaboration:

1. Preserve bandwidth savings for mobile agents with large itineraries: A large

itinerary that encompasses hosts that offer discrete services produces a “fat” mobile
agent. The mobile agent must encompass knowledge about the actions to perform at

each agent server. Furthermore, a greater amount of knowledge is required to process
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the information obtained from different software services at remote agent servers.
Consequently, there is a danger that the savings in bandwidth gained from employing
mobile agent technology is sacrificed. Furthermore, the code of the mobile agent is
monolithic resulting in complex maintainability. To preserve the bandwidth savings and
reduce complexity it is natural to introduce a hierarchy of "lean” mobile agents that
serve to decompose the workflow. Consequently, collaboration must be introduced to
synchronise information for workflow interdependencies between mobile agents in the
hierarchy.

2. Collaboration to preserve shared application semantics: A group workflow structure
of mobile agents may share common application semantics. For example, a group of e-
commerce mobile agents may share application constraints such as budget limit,
delivery date and possibly location. If one of the semantics is violated, then all agents
must be informed to enable alternative planning for purchases. This collaboration is
application specific.

3. Collaboration to prevent duplicate migration: Mobile agents can be used to traverse
large web databases, e.g. searching internet databases of web pages [Cabri00]. One use
is to employ mobile agents to traverse links and form a global perspective of the
hyperlink structure. A clone may be deployed to follow new hyperlinks to databases or
retrieve new material. Cloning is much more efficient as opposed to using a single
monolithic agent since the clone is a leaner agent, i.e. it employs a smaller itinerary and
has no accumulated state upon creation. To avoid duplicate searches between clones
collaboration is necessary, e.g. a marker could be installed at a site to inform clones that
the site has been visited and searched on a specific date and time. Future clones that
visit the site may only search the database for those entries after a specific date/time,
avoiding redundant searching and processing.

4. Collaboration for mobile computing: Single hop mobile agent technology is useful
for the mobile computing domain, e.g. e-auctions or e-conferencing. A mobile agent
could be dispatched from a mobile computer to negotiate at a central server. The mobile
agent negotiates with other mobile agent representatives on the behalf of its
disconnected user. This scenario is useful for low powered mobile devices that suffer

frequent disconnections.

Scenarios 1, 2 and 3 are of particular interest where shared application semantics introduce
dependencies between collaborating mobile agents. The following conceptual model is foreseen
for a group of collaborating mobile agents. A group has a global application state, visible to all
members, that is limited by a set of shared application constraints, 1.e. constraints = { C,, C; ...
C. }. Actions that are performed by a member at an agent server AG, modify the group

application state.
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The exceptions raised in a group are classified as local and group. Local exceptions are
private to each member and handled autonomously. Each member has a set of local exceptions,
local = { ley, le,, ... le, } and corresponding handlers, internal_handlers = { Ihy, lh,, ... lh, }. A
group exception ge, is raised by a member when a shared application constraint C, is Qiolated.
Furthermore, a group exception event is described by the triple, ge = { ID, AG\, hame}, where
ID is the identifier of the member that produced the exception, 4Gy is the agent server where the
member identified by /D executed and name is a unique name for the exception. Group
exceptions, group_exceptions = {ge|, ge,, ... ge. }, are known to all members, i.e. members are
aware of the group exceptions that can be raised and all members are notified of a group
exception occurrence. Each member has a corresponding set of group exception handlers, i.e.
group_handlers = { ghy, gh,, ... gh. }. When a member is notified of a group exception ge, the

corresponding handler gh, is invoked.

A CA action framework [Xu00b], introduced in chapter 3, is used in traditional distributed
applications to confine errors and exception handling within a group of distributed participants.
For mobile agents a boundary for error confinement could include:

¢ Mobile agents that are members of the group.

e Software resources at remote agent servers modified by interaction with mobile agents.

Adopting a CA action framework [Xu00b] for mobile agents is significantly challenging
with respect to the mobility of group members. An important problem to address is notifying all
group members of an exception occurrence. In any distributed system there is a communication
delay introduced for sending and receiving messages. However, with mobile agents this delay is
likely to be increased due to the ability of mobile agents to dynamically relocate between
remote hosts. This raises significant concerns when notifying group participants of exception
occurrences and changes of the shared application state. Consequently, a mechanism is needed
to communicate exceptions and changes in the group application state. One possibility would be
to investigate the use of tuple space communication for mobile agents [Cabri02, Omicini0l,
Murphy01], introduced in chapter 2, section 2.5. Mobile agents can communicate by inserting,
modifying and deleting objects at a shared memory space provided at each agent server. A tuple
space communication mechanism offers the advantage that mobile agents do not have to
synchronise location for communication. This concept may be combined with gossip protocols
[Ganesh03, Gupta0l, Ranganathan01] to disseminate each member’s knowledge to the rest of
the group. Eventually, all members learn of exceptions and application state changes in the
group. However, further research is required for adopting gossip protocols [Ganesh03, Gupta0Ol,
Ranganathan01] for mobile agents. This is necessary to ensure that the extra bandwidth is

minimised to maintain the benefit of using mobile agent technology.
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5 Summary

This thesis has examined the fundamental principles and challenges for mobile agents to
survive agent server and host crash failures. A new approach is then proposed that has the
potential to be adopted in information retrieval applications. The new approach, called the
mobile shadow exception handling scheme, is described in detail. This includes the use of a case
study application to demonstrate the principle concepts of the mobile shadow exception
handling scheme. The mobile shadow exception handling scheme reduces complexity for a
group of mobile agents to survive server crashes. Each group member is a single fault tolerant
entity with respect to server crash failures. The thesis has highlighted the importance of
reducing the complexity introduced through fault tolerance, in order to preserve the potential
bandwidth savings gained from using the mobile agent paradigm. An evaluation of the mobile
shadow exception handling scheme identified its relative merits and areas of future work have

been identified for ways in which the research could be carried forward.
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