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Abstract 

Mobile agent technology, when designed and used effectively, can minimize bandwidth 

consumption and autonomously provide a snapshot of the current context of a distributed 

system. Protecting mobile agents from server crashes is a challenging issue, since developers 

normally have no control over remote servers. Server crash failures can leave replicas, in 

stable storage, unavailable for an unknown time period. Furthennore, few systems have 

considered the need for using a fault tolerant protocol among a group of collaborating mobile 

agents. 

This thesis uses exception handling to protect mobile agents from server crash failures. 

An exception model is proposed for mobile agents and two exception handler designs are 

investigated. The first exists at the server that created the mobile agent and uses a timeout 

mechanism. The second, the mobile shadow scheme, migrates with the mobile agent and 

operates at the previous server visited by the mobile agent. A case study application has been 

developed to compare the performance of the two exception handler designs. Performance 

results demonstrate that although the second design is slower it offers the smaller trip time 

when handling a server crash. Furthermore, no modification of the server environment is 

necessary. 

This thesis shows that the mobile shadow exception handling scheme reduces complexity 

for a group of mobile agents to survive server crashes. The scheme deploys a replica that 

monitors the server occupied by the master, at each stage of the itinerary. The replica exists at 

the previous server visited in the itinerary. Consequently, each group member is a single fault 

tolerant entity with respect to server crash failures. Other schemes introduce greater 

complexity and performance overheads smce, for each stage of the itinerary, a group of 

replicas is sent to servers that offer an equivalent service. In addition, future research is 

established for fault tolerance in groups of collaborating mobile agents. 
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Chapter I Introduction 

Chapter 1 :O:ntroduction 

1 Research aims 

Waldo, in [W aldoO I], implies the lack of a failure model for mobile agent systems: 

"Finally, an agent system 's implementation in the Jini technology model would provide a 

failure model that the agent community mightfind useful". [WaldoO 1] 

The literature provides no consensus on what the terms agent and mobile agent mean. 

Indeed, there are two research communities for mobile agents, i.e. distributed systems and 

artificial intelligence. This thesis focuses on mobile agents that belong to the distributed systems 

community with the view that they are distributed objects with limited intelligence. 

The thesis is interested in understanding mobile agents that fail due to an agent server crash. 

The literature has suggested many techniques for protecting the loss of mobile agents due to the 

crash of an agent server. However, there appear to be few implementations adopted in actual 

mobile agent systems. A frequently stated potential application domain for mobile agents is 

information retrieval. For example, mobile agents may be used to filter large quantities of 

information from remote hosts. 

Some solutions [DeAssisSilvaO 1, MohindraOO, SilvaOO, Strasser98] employ transaction 

processing to satisfy failure dependencies with agent servers, i.e. execution of a mobile agent 

modifies its internal state and the state of the agent server. However, for information retrieval 

applications, transaction processing solutions introduce unnecessary performance overheads 

since there are no state dependencies introduced between the mobile agent and remote agent 

servers. The mobile agent only consumes information at visited agent servers. Furthermore, 

there are some solutions that inject a replica into stable storage upon arrival at a host. However, 

in the event of an agent server crash, the replica is unavailable for an unknown time period. 

This thesis is concerned with developing a framework that employs exception handling for 

mobile agents to survive crash failures of hosts visited on a trip. Consequently, no modification 

of the agent server environment is necessary. This increases the likelihood that the framework is 

interoperable between mobile agent systems. Furthennore, the application developer is free to 

elect how to handle the loss of a mobile agent through an agent server crash. A conceptual 

framework will provide the basis for understanding how mobile agents can survive the crash of 

hosts visited on a trip. This implies that an exception handling model is required to outline the 

components of a mobile agent system and suggest exception handling control flow. 
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To summarise, the aims of this research are: 

1. The development of a conceptual model for exception handling m mobile agent 

systems. 

2. The development of a concephml framework to protect mobile agents from failure due 

to an agent server crash. The framework uses exception handling for mobile agents to 

survive crash failures of agent servers. 

3. A conceptual framework for mobile agents to survrve crash failures should be 

independent of the agent server environment. This facilitates implementation across all 

mobile agent systems. 

4. The conceptual framework must have the potential to be adopted for a group of mobile 

agents. The opinion is that the conceptual framework should be independent from the 

group of mobile agents to reduce the complexity of the design. 

5. It is hoped that the thesis will provide a better understanding of how exception handling 

can be used to protect mobile agents from host crashes. 

2 Assumptions 

• Mobile agents are assumed to belong to the distributed systems community. 

Consequently, in this thesis a mobile agent is an active object that can migrate 

autonomously between hosts to perform an application task on the behalf of a user. 

• Mobile agents for information retrieval applications do not modify the state of visited 

hosts. Consequently, transaction processing at hosts is an unnecessary performance 

overhead for mobile agent information retrieval applications. 

• A failure model is required that states the conditions of failure for the environment 

where mobile agents are sihmted. 

3 Research method 

The research method adopted for the thesis is an engineering one, based upon an iterative 

improvement of the conceptual exception handling framework. In particular, the framework is 

examined based upon the conceptual model of exception handling in mobile agent systems. 

Further consideration is given regarding how the framework can be adopted for groups of co

operating mobile agents. The exception handling framework is compared to other systems for 

mobile agents to survive crash failures. Potential is also considered regarding the adoption of 

the exception handling framework within a group of co-operating mobile agents for infonnation 

retrieval applications. 
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4 Contribution of thesis 

The main contribution of the thesis is an understanding of exception handling for mobile 

agent systems. Indeed, the literature has witnessed little work in this area. This is achieved by 

creating an exception handling model for mobile agent systems and then implementing an 

exception handling scheme to protect mobile agents from agent server crash failures. 

Subsequently, the case study implementation provides an insight into how the scheme compares 

with others for groups of mobile agents. 

5 Criteria for success 

The overall criteria for the success of this research may be considered to be the development 

and evaluation of an exception handling scheme to protect mobile agents against agent server 

crashes. 

This may be broken down into a number of areas which will be addressed by the thesis. The 

criteria for success are therefore: 

a) Create an exception handling model for mobile agent systems 

Very few examples of exception handling for mobile agents exist. Therefore, before 

developing an exception handling scheme for mobile agents to survive agent server crash 

failures, it is necessary to identify how mobile agents interact with software services at remote 

agent servers. This aids in understanding the control flow of exceptions between the agent 

server and mobile agents. Furthermore, the unique aspects for exception handling in mobile 

agent systems can be considered. 

b) Identify a failure model for mobile agent systems 

With any fault tolerance design there is the necessity to outline a failure model. This 

provides an understanding of the likely ways in which mobile agent execution can fail. Only 

then can exception detection mechanisms and recovery prove to be effective. 

c) Development of an exception handling scheme for the protection of mobile agents 

against agent server crashes 

An exception handling scheme will be developed and evaluated to protect mobile agents 

from agent server crash failures. A prototype of the exception handling scheme will be 

implemented and deployed using a case study application. An experiment will be performed to 

investigate the trip time increase incurred when an agent server crash is encountered. 
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d) Identify the best approach for mobile agent groups to survive agent server crashes 

Using the experience gained from the development of the exception handling scheme in c), 

the key aspects will be identified with respect to the suitability of the scheme for use with 

groups of collaborating mobile agents. Furthermore, consideration will be given towards the 

viability of the scheme developed in this thesis in comparison with other systems that protect 

mobile agents from agent server crash failures. 

These criteria will be evaluated in chapter 6. 

6 Thesis overview 

This thesis is composed of seven chapters, of which this is the first. Chapter 2 provides an 

introduction to mobile agents. In particular, an overall introduction to the agent paradigm is 

provided and mobile agents are defined. The architech1re of a typical mobile agent system is 

described before the chapter concludes, by identifying the current problems encountered with 

mobile agents. 

Chapter 3 provides an introduction to exception handling. This highlights the difficulties 

and existing approaches for exception handling in traditional distributed systems. Existing 

research into exception handling for mobile agents is then summarised and problem areas are 

identified. 

Chapter 4 provides a failure model for mobile agent systems. The failure model provides a 

classification of the failures that can occur in a mobile agent system. Specific attention is given 

towards the issues involved and assumptions necessary for crash failures of remote agent 

servers. Subsequently, a model for exception handling in mobile agent systems is then outlined 

and a conceprual exception handling scheme is proposed to protect mobile agents from agent 

server crash failures. The chapter concludes with a description of an IBM Aglets [Oshima98] 

implementation of the exception handling scheme. 

Chapter 5 describes a case srudy application that is used to assist with the evaluation of the 

concephlal exception handling scheme outlined in chapter 4. The experiments that will be 

perfonned with the case study application, using an Ajanta [Tripathi02] and IBM Aglets 

[Oshima98] implementation of the exception handling scheme, are then described. 
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Chapter 6 evaluates the exception handling scheme outlined in chapter 4. The results of the 

case study experiments, outlined in chapter 5, are presented and evaluated. The exception 

handling scheme is then evaluated with respect to the exception handling model proposed for 

mobile agent systems in chapter 4. Finally, the features of the exception handling scheme are 

compared to existing systems that protect mobile agents from agent server crash failures. 

Chapter 7 provides a summary of the research and some of the conclusions that can be 

drawn. The chapter also revisits the criteria for success listed in section 5. Finally, areas of 

future research are outlined. 
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Chapter 2 Mobile Agents 

This chapter describes the broad context of the research, i.e. mobile agents in general. Later 

chapters focus on fault tolerance and fault tolerance for mobile agents. Mobile agents are 

defined for use in the thesis. A generic software architecture for mobile agent systems is then 

defined and some example application domains are outlined. Finally, the chapter concludes by 

discussing some of the problems with mobile agents. 

1 What is a mobile agent? 

This section aims to define the tenn mobile agent in the context of this thesis. There are 

many definitions for a mobile agent, dispersed across the distributed systems and artificial 

intelligence communities. This is more than likely attributed to the fact that the tenn agent itself 

is weakly defined, governed by many different classifications. Consequently, section 1.1 starts 

by highlighting the key properties of an agent. Section 1.2 then outlines the different types of 

agent within the research communities. Within the distributed systems research cmmnunity 

mobile agents are often associated with mobile code systems. Significant confusion exists, 

distinguishing between mobile code systems and mobile agents. Consequently, section 1.3 

defines the concept of a mobile code system and section 1.4 then distinguishes between mobile 

code and mobile agents for the context of the thesis. 

1. 1 What is an agent? 

The agent cmmnunity lacks a concrete definition for the term agent, a fact highlighted by 

Hyacinth Nwana [Nwana96] in her survey of software agent teclmologies: 

"We have as much chance of agreeing on a consensus definition for the word agent as AI 

researchers have of arriving at one for artificial intelligence itself- nil! Recent postings to 

the software agents mailing list (agents@sunlabs.eng.Sun.COM) prove this". [Nwana96] 

This sectio'n defines the tenn agent by highlighting the key properties that distinguish agents 

from traditional software. 

The term agent is often used as an umbrella term. Consequently, there have been many 

attempts to distil the key properties of an agent [Franklin97, Wooldridge97, Ndumu97]. Table 

2-1 summarises properties frequently used to describe an agent. 
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Property Description 

Autonomy The ab ility of the agent to act independently without human intervention. 

Proacti veness The agent performs actions in a goal oriented maru1er. 

Reactive Agents are situated in an environment, are able to perceive it and respond in 

a timely fashion to changes that occur in it. 

Table 2-1 Agent properties 

Autonomy is often cited as the significant property that distinguishes agents from traditional 

software. However, it is di fficult to define. This is highlighted by Shoham: 

"The sense of autonomy is not precise, but the term is taken to mean that the agents' 

activities do not require human guidance or intervention". [Shoham93] 

Wooldridge's perception of autonomy is that an agent's behaviour is denoted purely by its 

encapsulated state [Wooldridge97]. Huhns and Singh [Huhns97] extend this by introducing 

di ffe rent degrees of autonomy: 

• Absolute : The behaviour of the agent is completely tmpredictable. 

• Social : The agent is aware of communication partners but exhibits autonomy when 

independently entering commitments. Social autonomy is perceived as weaker, 

since some degree of autonomy is lost tlu·ough co-ordination and communication. 

• Interface: Autonomy is re lative to internal design, provided that an application 

programming interface (API) is maintained. The API defwes the behaviour of the 

agent but does not guarantee that it will continuously perform as requested. 

• Execution: The degree of freedom the agent has while executing in its environment 

without external intervention . 

• Design: The degree of autonomy assigned by agent designers. The greater the 

degree of autonomy the more heterogeneous the system is, since programmers 

contributing agents have to satisfy fewer constraints. Agent frameworks restrict 

design autonomy, e.g. some require that agents are constructed using a specific 

language. 

The above definitions of autonomy highlight an agent's independence, i.e. the agent is 

capable of making its own decisions without extemal intervention. Conversely, traditional 

software does not usually possess this attribute since behaviour is imperatively declared. 

Another property that distinguishes agents from traditional software is proactive or goa l

oriented behaviour. An agent acts to satisfy a declarative set of goals. Consequently, the agent is 

expected to detennine goal achievement possibly using reasoning or pre-compiled plans. 
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Therefore an agent must be aware of its goals. Conversely, a traditional program possesses 

goals, although they are implicit, i.e. hard coded. 

So far the tenn weak agency has been defined to describe agents that are autonomous, 

proactive and reactive. Within the artificial intelligence community a stronger abstraction is 

considered, whereby the state of an agent consists of mental attitudes that the agent reasons with 

to decide subsequent actions. Attitudes explain human behaviour, e.g. "Simon turned down the 

thermostat because he believed the room was too warm." Wooldridge and Jennings 

[Wooldridge94] identify two mental attitudes: 

• Informational attitudes: Belief and knowledge. 

• Pro-attitudes: Desire, intention, obligation, commitment and choice. 

Informational attitudes represent information the agent possesses about its environment and 

pro-attitudes direct or motivate the actions perfonned by the agent. Agents that possess strong 

agency are termed cognitive or intentional systems. The philosopher Dennett coined the tenn 

intentional systems to describe entities whose behaviour can be predicted by the method of 

attributing belief, desires and rational acumen [Dennett87]. 

Indeed an intentional system may be perceived as an abstraction tool that describes and 

predicts the behaviour of a complex entity. A popular model of an intentional system's state is 

the Belief-Desire-Intention (BDI) model proposed by Rao and Georgeff [Rao95]. Essentially, 

beliefs are facts the agent possesses about its environment. Desires are facts that the agent may 

possess in future states of the world, e.g. the ability to swim, and are consequently motivations. 

Intentions represent desires that the agent has selected to achieve. Intentions affect future 

decision making, i.e. an agent must not select intentions that conflict with those it currently 

holds. 

Wooldridge and Fischer [Wooldridge94b] describe the advantages of the intentional 

abstraction compared to traditional software as: 

• Non-technical and non-implementation dependent. 

• Agents can model other agents. This is essential for certain types of collaboration. 

However, selecting the beliefs and desires depends upon the designer's intuition of the 

modelled entity's role. 
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Figure 2-l illustrates the perception of an agent adopted by the thesis. Agents are situated in 

an environment (e.g. the Internet) comprising users, hardware, agents, databases etc. Changes 

within the environment are actively monitored by the agent's sensors. The agent responds and 

acts upon changes through its effectors. Actions performed affect future sensing. Environmental 

changes may be triggered by some internal environment event or communication from a peer 

agent. 

Environment 

r-~~------, effectors 
Agent I llo 

Figure 2-1 Reactive agent system 

1. 2 Types of agent 

Hyacinth Nwana [Nwana96] provides a classification of agents. The classification of agents 

is summarised as follows. 

Collaborative agents are characterised as autonomous, co-operative, static and coarse 

grained. Other traditional properties, such as learning and pro-activeness are cmmnon. The goal 

of a collaborative agent system is that the group of agents function beyond the capabilities of the 

individual members. Some of the motivations for a collaborative agent system are identified as: 

• Overcoming resource limitation and system failure, the shortfalls of a single centralised 

system. 

• Integration of legacy systems such as expert systems, decision support etc. 

• Distributed information retrieval. 

Intelface agents are personal assistants that perform a task on behalf of a user. The agent 

observes the user perfonning a task, learns their activities and suggests alternative ways of 

perfonning them. Consequently, collaboration emerges between the agent and the user. Key 

characteristics are autonomy and learning abilities. Learning may involve: 

• Observing and imitating the user. 

• Receiving positive and negative feedback. 

• Receiving explicit instructions from the user. 

• Receiving advice from other agents. 



Chapter 2 Mobile Agents 10 

Pattie Maes [Maes95] envisages interface agents providing a proactive intelface as opposed 

to the traditional direct manipulation GUI. A direct manipulation interface passively waits for 

explicit instructions from the user. Conversely, a user may delegate tasks to a proactive interface 

agent that may perfonn complex tasks such as distributed information retrieval. In this sense, 

the user and interface engage in a co-operative process. Benefits include reducing the user 

workload for laborious tasks and adapting to user preferences and activities. An example is a 

web searching agent proposed in Lieberman [Lieberman95). Traditionally, search engines are 

idle when the user browses. Similarly, the user is idle when a search is conducted. The proposed 

system uses agents to conduct a concurrent breadth search strategy based upon user browsing 

activity. For example, the user may frequently visit a site or reference a bookmarked page. If the 

agents are used within an Internet environment they are termed Information/Internet agents. 

Typically, these agents claim to address the problem of information overload and provide 

information management. Internet agents may be mobile, i.e. traverse the web gathering 

information and reporting the results achieved. 

Mobile agents are capable of roaming a network, interacting with other agents at foreign 

hosts, gathering information and returning the results back to users [Nwana96]. In her survey 

paper [Maes95) Maes conveys the key attributes of mobile agents to be autonomy and co

operation. 

Hybrid agents combine two or more agents into a singular agent so that the benefits of each 

agent type are maximised and the weaknesses are minimised. Hybrid agents are typically 

synonymous with hybrid agent architectures. For example, Muller eta/'s InteRRaP architecture 

[Muller96] combines deliberative and reactive agents. 

A heterogeneous agent system compnses an integrated set of different types of agent, 

including hybrid agents. Consequently, agent programs can interoperate. A claimed advantage is 

that the cost of maintaining and rewriting legacy systems is reduced. A new domain, agent

based software engineering, facilitates interoperable agents. In particular, many standards have 

been proposed for heterogeneous agent systems. The key consideration is a base commtmication 

language. Genesereth and Ketchpel [Genesereth94] introduce the notion of an Agent 

Communication Language (ACL) that consists of the Knowledge Interchange Format (KIF), the 

Knowledge Query and Manipulation Language (KQML) and Ontolingua. 

Nwana [Nwana96) classifies a reactive, hybrid and heterogeneous agent system as types of 

agent. Reactivity is defined in Table 2-1. In this case the types are architectural, providing the 

underlying agent technology. 
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Many more types of agent exist, the most notable being introduced in Franklin and Graesser 

[Franklin97] and Wooldridge and Jennings [Wooldridge95]. The following classifications are 

identified by Franklin and Graesser [Franklin97]: 

• Control I structure: Deliberative or reactive. 

• Environment: Database, file system, network and internet. 

• Language: Interpreted or compiled. 

• Applications: The application domains, e.g. electronic commerce. 

• Mobile: Static or mobile. 

• Communication: Conununicative or non-conununicative. 

• Adaptive: Learning or non-learning. 

Wooldridge and Jennings [Wooldridge95] envisage a broader classification according to the 

behaviour of the agent: 

• Gopher: Perform simple tasks based on static rules and assumptions, e.g. reminder 

agents. 

• Service-performing: Perform a well-defined high-level task as represented by the user, 

e.g. web searching. 

• Predictive/proactive: Provide information or services to the user. 

1.3 Mobile code systems 

Fuggetta et a/. describe a model for mobile code systems [Fuggetta98]. A mobile code 

system is a layered architecture comprising: hardware, a core operating system, a network 

operating system, a computational environment and components. The core operating system 

provides system services such as memory management, scheduling etc. The network operating 

system provides low level communication services such as the TCP/IP protocol etc. A 

computational environment provides applications with the ability to relocate components at 

different hosts. Relocation is understood as dynamically binding code and data to execution 

location. A component can be an executing unit or resource. An executing unit is synonymous 

to a thread comprising code and state (data space and execution state). Code is static and 

represents the behaviour of the executing unit. State consists of a data space and execution 

state. The data space represents the resources referenced by the executing unit. Resources may 

be shared by executing units, e.g. files, objects etc., and may be distributed at other 

computational environments. The execution state comprises thread data, variables and execution 

context, i.e. the stack and program counter etc. 

Mobile code systems are distinguished from traditional distributed systems by the ability to 

move the code and state of an executing unit to a remote computational environment. There are 

two classes of mobility: strong and weak. A system possesses strong mobility when the entire 
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executing unit and execution state is transferred to a remote computational environment. Two 

mechanisms support strong mobility: migration and remote cloning. Migration mechanisms 

suspend the executing unit and transmit it to the destination computational environment, where 

it resumes execution. An executing unit migrates proactively or reactively. An executing unit 

that migrates proactively decides both the time and location of migration. An executing unit that 

migrates reactively does so in reaction to stimuli from a local or remote executing unit. Remote 

cloning mechanisms create a copy of an executing unit at a remote computational environment. 

Consequently, the original execution unit is static, since it remains at its current computational 

environment. Weak mobility mechanisms only support code relocation, i.e. code is transferred 

to another computational environment where it is either dynamically linked to a running 

executing unit or used to fonn a new executing unit. Note that execution state is not saved. 

So far, migration of code and execution state has been described. However, an executing 

unit also references resources such as files, objects etc. that are owned by the current 

computational environment. An executing unit that moves to a new computational environment 

may still need to use resources at previous computational environments. However, resources are 

not always transferable. For example, an object may be shared between executing units or a file 

resource may be too large to move for perfonnance reasons. The following techniques are 

suggested [Fuggetta98] for managing resources when an executing unit migrates: 

• Move: If the resource is transferable, move it with the executing unit. An exception will 

be raised if other executing units attempt to reference the resource at the source 

computational environment. 

• Move with network reference: If the resource is transferable, move it with the 

executing unit. Executing units at the source computational environment reference the 

resource at its new computational environment. 

• Network reference: If the resource is not transferable, then the executing unit 

references the resource located at the fixed computational environment. 

• Copy: Move a copy of the resource with the executing unit. 

• Locate compatible resource: The executing unit locates a resource of the same type at 

the new computational environment. 

1.4 Mobile code and mobile agents 

Typical of evolving and immature research fields is the lack of widely accepted terms and 

methodologies. Mobile agents are no exception. In particular, there exists terminological and 

semantic confusion for distinguishing between mobile code and mobile agents. Sections 1.1 and 

1.2 define and outline types of agent. Here it is seen that agent teclmology is often associated 

with the artificial intelligence community. However, mobile agents introduce an overlap 

between artificial intelligence and distributed systems, i.e. agent mobility implies mobile code 
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mechanisms. This section provides a brief history of mobile code and identifies the properties 

that distinguish mobile agents from mobile code. 

Mobile code is by no means a new technology. Several mechanisms have been proposed for 

moving code between network nodes. The earliest technology is remote batch job submissions 

[Boggs73] and, surprisingly, the use of a page description language, postscript [Adobe85], to 

control printers. Nuttall [Nuttall94] provides a survey of process and object migration systems. 

Distributed operating systems employ process migration mechanisms allowing an operating 

system process to move from one machine environment to another and resume execution. In this 

case migration is transparent, i.e. the programmer is unaware of the process and has no control. 

A finer degree of mobility is provided by object migration mechanisms, allowing objects to 

move between address spaces. In this case, the programmer is able to specify what is migrated, 

ranging from atomic data to complex objects. In some cases the programmer may explicitly 

specify the location. Emerald [Levy88] is one such example. 

In traditional distributed systems the elements required to perform a software service, i.e. 

code and resources, are all located at the same host. A client uses the service from a remote 

location by issuing method calls to a software component that performs the service. The 

software component is co-located with the code and resources necessary to perfonn the service. 

Conversely, mobile code systems allow the elements of a software service to relocate 

dynamically. Mobile code systems are therefore classified according to which elements are 

relocated. There are three classifications of code mobility [Fuggetta98, PiccoOl]: Remote 

Evaluation, Code on Demand and Mobile Agent. Remote Evaluation (REV) relocates the code 

to a remote host that holds the resources necessary for the computation. A Code on Demand 

(COD) system possesses the resources necessary for computation but downloads code 

dynamically from a remote host to perform the service. Mobile agents possess code and some of 

the resources necessary to perform the service. Migration to a remote host is driven by resource 

availability. In this case, the entire computational component migrates to the remote host where 

it resumes execution. 

So far, it is has been established that a mobile agent is a classification of code mobility. 

Code mobility mechanisms are employed to move an entire component (mobile agent), i.e. code 

data and execution state, to a remote host. Furthennore, the mobile agent may move some of the 

resources to the remote host. Conversely, Remote Evaluation and Code on Demand mobile code 

systems only move code, i.e. resources at remote hosts remain static. This distinction is also 

highlighted by Luca Cardelli's definition of mobile code. 
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"An architecture independent representation of program code (source text or byte codes) is 

shipped over the network and interpreted remotely. When code moves, the current state of 

the computation (if any) is lost, and connections that the computation had at the originating 

site vanish. State and connectivity must be re-established at the receiving site". [Cardelli97] 

Mobile code is therefore used to describe the ability to relocate code within a heterogeneous 

system. Upon arrival at a remote host, the code entity is interpreted and executed locally. State 

and resources accessed at the originating node are not preserved. 

Many mobile agent definitions have been proposed within the artificial intelligence and 

distributed systems community. Furthennore, these are highlighted in the context of the 

underlying research project. Kotz et al. [Kotz99] define mobile agents as: 

"Programs that can migratefi·om host to host in a network, at times and places of their own 

choosing. The state of the program is saved, transported to the new host and restored, 

allowing the program to continue where it left off'. [Kotz99] 

Luca Cardelli [Cardelli97] provides a contrast between mobile agents and mobile code: 

"Agents however, are meant to be completely self-contained. They do not communicate 

remotely with other agents; rather they move to some location and communicate locally 

when they get there". [Cardelli97] 

The above definitions summarise the autonomous nature of a mobile agent. A mobile agent 

possesses autonomy when it is an independent entity capable of deciding dynamically upon the 

time and location for migration. This implies that mobile agents must be aware of the resources 

available at the execution enviromnent and respond appropriately to changes in availability. 

Table 2-2 illustrates a comparison between mobile agents and mobile code. A mobile agent 

is an implementation of mobile code technology that is autonomous and capable of migrating its 

entire execution unit to a foreign host. Essentially, interactions are based on a computational 

component that communicates by relocating dynamically to another execution environment to 

access resources locally. This differs from mobile code technology, such as Code on Demand 

(COD) and Remote Evaluation (REV), whereby interactions are requests for remote execution 

of code. Formally, a mobile agent is understood to be a self contained entity that is situated in 

an environment (e.g. the Internet), encapsulates state comprising code and data, can decide 

upon the time and location for migration and is resource aware. Mobile agents are assumed to 

support weak mobility to compensate for the change of environment and consequent resource 

availability. 
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Property Mobile Code Mobile Agent 

Mobility Code Code, data and possibly 

execution state. 

Autonomous No Yes 

Interaction Request for remote execution Method invocation and 

of code. migration to remote 

enviromnent. 

Resource aware Yes Yes 

Table 2-2 Comparison between mobile agents and mobile code 

2 Mobile agent architectures 

Sections 1.1 and 1.2 introduced an agent as an umbrella term. The tenn mobile agent is used 

within the artificial intelligence and distributed systems communities. Mobile agents in the 

distributed systems cormmmity are communication-oriented, i.e. they provide code mobility, 

security and information passing. However, reasoning is performed at a low level using 

conditional statements. The artificia l intelligence conunun ity foc uses on agent knowledge 

representation and reasoning about the enviromnent. For exa mple , an intelligent mobile agent 

may be able to detennine the fastest and most reliable route when it migrates to the next host. 

Tllis thesis is concerned with mobile agent architectures for the distributed systems conmmnity. 

Consequently, mobile agents are believed to be reactive, responding to events such as migration 

requests and messages received from peer mobile agents. A mobile agent is an active object that 

consists of code, data and execut ion state. Each mobile agent executes witllin its own thread of 

control and, upon migration, the entire object graph is transferred. 

The following structure is emp loyed to describe the architecture of mobile agent systems in 

the distributed systems community. Section 2.1 starts by defining the term software 

architecture. Section 2.2 then outlines a generic mobile agent system and identifies the abstract 

elements, their functionality and interactions. There are two levels of interest witl1 respect to the 

architectme of a mobile agent system. The first is the mobile agent. For example, how does a 

mobile agent organise its travel plan and communicate with resources (fi les and objects) at 

execution environments? These issues are described in Section 2.3. The second level of interest 

is the architecture of the execution environment. Sections 2.4 and 2.5 describe the core 

mechanisms of mobility provided by the execution environment, i.e. migration and intra mobile 

agent cmmnunication respectively. Finally, significant interest exists for interoperable mobile 

agent systems, i.e. mobi le agents can nligrate to different mobile agent systems and 

cmmnunicate with mobile agents from different vendors. Section 2.6 highlights standards and 

middleware for interoperability between mobile agent systems. Section 2.7 then concludes with 

a summary of the architectura l feahrres offered by existing mobile agent systems. 
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2.1 Software architecture definition 

The architecture of a software system defines the system in terms of components and 

interactions among these components [Shaw95]. It can be considered as a high level abstraction 

for describing the structure of software, identifYing entities, their functionality and 

interrelationships. Software architech1re is certainly not a new field. Computing has witnessed 

network and hardware architectures. Software engineers may use architectures to provide users 

with multiple views to understand different aspects of the software structure. Perry et al. 

[Perry92] define a model for software architecture that consists of elements ,form and rationale. 

Elements are classified as processing, data and connecting. Processing elements transform data 

elements that represent infonnation. Connecting elements describe the interactions that integrate 

procedure and data elements, e.g. procedure calls, message passing and shared data. Fmm 

comprises weighted properties and relationships. Relationships specify the organisation of 

elements and interaction constraints. Properties are constraints on elements. A weighting grades 

the importance for a specific property/relationship or represents the degree of selecting from 

alternatives. Rationale relates to the motivation behind selecting the style of architecture and 

satisfying constraints such as functional and non-functional requirements. 

In this thesis, architecture describes the design of a mobile agent system. The internal 

structure of a mobile agent system is characterised by identifying the abstract elements in tenns 

of functionality and interactions. In particular, the architech1re of the agent sen,er is examined. 

The agent server provides an execution environment that is responsible for hosting software 

resources such as files and shared objects, managing mobile agent execution and transparently 

migrating the mobile agent to a remote host specified by the application developer. At another 

level the internal structure of a mobile agent is described, focusing on how the mobile agent 

interacts with its environment and organises migration to remote hosts. In the following section 

the elements that constitute a mobile agent system are described. 

2.2 A generic mobile agent system architecture 

Figure 2-2 illustrates an abstract architecture for a mobile agent system from the distributed 

systems community. Dashed entities are only provided by some mobile agent systems. 

A mobile agent system consists of an agent server that runs within an interpreter and is 

capable of hosting mobile agents implemented in the interpreted language. Consequently, 

running the agent server within an interpreter provides operating system interoperability and the 

mobile agent can migrate between hosts independent of the operating system. This assumes that 

the same agent server and interpreter exist at each host. An agent server is a server process that 

runs at hosts willing to accept mobile agents. 



Chapter 2 Mobile Agents 17 

The agent server has the following responsibilities: 

• Pack and unpack mobile agent code, data and execution state. 

• Transport the mobile agent to destination host. 

• Authenticate the identity of a mobile agent's owner. 

• Enforce resource access limits to visiting mobile agents. 

• Provide a communications infrastructure for local mobile agent interaction. 
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Figure 2-2 Mobile agent system architecture 

Figure 2-2 illustrates that the agent server provides a mobile agent inteiface and a transport 

interface. The mobile agent interface allows mobile agents to interact with the agent server for 

migration and communication requests. The transport interface is provided for agent servers to 

send and receive mobile agents over a secure communication channel. The transport interface 

may also provide access to a code repository if code is tmavailable at the remote agent server. 

Typically, the transport interface uses TCP, since it is a connection oriented protocol that offers 

reliability. The core components of the agent server are: 

• Agent management: Responsible for mobile agent management (initiation, suspension, 

resumption and termination) and routing requests to the transport and communication 

manager respectively. The agent management component is also responsible for 

creating a unit of execution for the mobile agent within the interpreter and suspending 

the mobile agent after a migration request. 
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• Transport manager: Responsible for the capture and restoration of mobile agent state, 

i.e. data variables, code, and execution state (if strong mobility semantics are assumed). 

A code base is provided by some agent servers to download code for the mobile agent if 

it is not available at remote agent servers. There are different strategies to download 

mobile agent code. For example, some agent servers ship the entire code with the 

mobile agent. Others request code from the code base, as and when it is needed. Section 

2.4 describes the notion of mobile agent state and code download strategies. 

• Communication manager: Responsible for intra mobile agent communication, I.e. 

mobile agent communication with local mobile agents. Communication between mobile 

agents is possible using method calls and shared memory. Most agent servers only 

provide some of these communication mechanisms. For example, Tracy [BraunOl] 

provides shared memory and message passing. Section 2.5 discusses mobile agent 

communication mechanisms. 

Unfortunately, a variety of agent servers are implemented usmg different interpreted 

languages. Furthennore, the mobile agent and transport interfaces differ between agent servers. 

Consequently, migration between agent servers is mostly homogeneous, i.e. a mobile agent can 

only migrate to hosts that offer the same agent server and interpreter. However, recently there 

has been significant interest regarding interoperability between mobile agent systems. Section 

2.6 describes the cun·ent approaches for interoperable mobile agent systems. 

2. 3 Mobile agent architecture 

A mobile agent is typically represented by an object that inherits from an abstract class, 

unique to each mobile agent system. The abstract class provides a method, e.g. runO, to 

represent the main execution thread of the mobile agent. Instructions are provided by the agent 

server to move to another host, e.g. go(agent server addres~). An object-oriented representation 

of a mobile agent is adopted in this thesis due to maintainability and the wide choice of 

available mobile agent systems. However, there are other representations of a mobile agent that 

are not object-oriented. For example D' Agents [Gray02] and TACOMA [Johansen02] allow 

mobile agents to be written using the interpreted Tel procedural scripting language. 

Information available to the mobile agent includes: the address of the home agent server, 

i.e. the agent server that created the mobile agent, its identification, an interface to the current 

agent server environment and an itinerary of agent servers to visit. Each agent server provides 

an object interface that a visiting mobile agent can use to access: 

• The name or address of the cunent agent server. 

• A registry of mobile agents currently running at the agent server. 

• A registry of resources available for consumption at the agent server. 
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When the mobile agent migrates to a new agent server a reference to the agent server 

environment is updated. Using the resource registry, a mobile agent can communicate with co

located agents to access and publish resources at the agent server. A resource may be a file, 

database or software object. For example, an agent server may represent a supplier that provides 

an interface to a database that represents its product catalogue. Mobile agents may interact with 

the resource to search the catalogue for specific items of interest. Directory services for 

traditional distributed systems are employed in most mobile agent systems. Other mobile agent 

systems, such as IDM Aglets [Oshima98], require the programmer to employ static mobile 

agents to represent services. In this case, a list of mobile agents running at the agent server is 

accessible to the mobile agent. Each directory entry corresponds to an object that is referenced 

by an immutable name, e.g. a URL. Clients retrieve an object from the directory to access 

information or perform an action. A proxy is returned that forwards the request to the object. 

Java mobile agent systems employ Java directory services, e.g. the RMI naming registry or 

JNDI. Mobile agent systems compliant with the MASIF standard, e.g. Grasshopper 

[Baeumer03], employ the CORBA naming service. 

A mobile agent uses an itinerary data stmcture as an organised representation of the agent 

servers to visit during its trip. An itinerary can represent an ordered or dynamic set of agent 

servers. Each entry in the itinerary represents the address of an agent server. The simplest 

representation of an itinerary is an ordered list of agent server addresses usually with an index to 

represent the current agent server. In addition to storing the agent server address some 

itineraries also log the method that will be invoked upon the mobile agent's arrival. 

Consequently, it is possible to invoke a different method depending upon the current location of 

the mobile agent. Itineraries that employ the same method at each agent server are classified as 

fixed entry. Most itineraries do not store the success of each visit for an agent server. For 

example, a mobile agent may visit an agent server and encounter a software exception, e.g. the 

agent server may deny access to its resources. The Ajanta [Tripathi02] mobile agent system 

allows the success of each agent server visit to be logged. Other mobile agent systems 

[BraunOl, Gray02, Oshima98, Peine02] leave this responsibility to the programmer. 

Furthermore, Ajanta [Tripathi02] also allows the programmer to define criteria for choosing the 

agent server to visit using its Select itinerary pattern. For example, criteria may include the 

availability of the agent server or the state of the mobile agent. Alternatively, the Set itinerary 

selects the next unvisited agent server at random. 

There are various design patterns for an itinerary [Oshima98, Tripathi02]. IBM Aglets 

[Oshima98] provide a master slave pattern that allows a stationary master agent to spawn one or 

more slaves that migrate and execute in parallel. When a slave's itinerary is complete, results 

are returned to the master. Another example is the meeting pattern that allows a group of mobile 
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agents to interact locally at a single host and exist independently of the home agent server. The 

address of the agent server where the meeting occurs is pre-aiTanged. Each agent has a meeting 

object that stores its location and id. When a mobile agent arrives at the agreed agent server, the 

meeting object infonns a meeting manager at the agent server. The meeting manager notifies all 

agents that have arrived in the group of the new arrival. 

2.4 Mobile agent migration 

Migration describes the process of packaging the code, data and execution state (if strong 

mobility semantics are adopted) for a mobile agent into a portable representation that is 

transported on a TCP network connection to the destination agent server. The migration process 

involves sending and restoring a portable representation of a mobile agent at a remote agent 

server. Before outlining the process for migration it is necessary to understand how the code and 

data of a mobile agent can be represented, the strategies for code mobility and resource 

maintenance. 

There are many Java mobile agent systems, smce persistency and code mobility are 

provided as standard language feahtres. Firstly, object persistency is provided by the Java 

serialisation API. In Java, serialisation denotes the activity for storing the state of an object and 

its set of objects into a serial form, i.e. bytes. Deserialisation is the activity of restoring the state 

of an object and its associated set of objects from its serialised form. Details concerning the 

class of each object, such as the name and version number, are included in addition to the types, 

names and values of instance variables. This meta-data is used to restore the state of the object. 

However, an object cannot be instantiated without an associated class file which represents the 

behaviour, i.e. methods. Java allows the programmer to customise class loading. Custom class 

loaders are used when the default Java class loader cannot locate a class in either the local cache 

or the directories specified in the CLASSPATH system variable. Consequently, the programmer 

can dynainically load the classes from a remote location over the network. Despite the 

popularity of Java for mobile agent systems, alternative implementations do exist in other 

languages [Gray02, Peine02]. These provide a customised representation of code and data. For 

example, Lingau et a/. [Lingau95] embed the code and data into a Multipurpose Internet Mail 

Extension (MIME) message. Others use XML [EmmerichOO] or provide a custom 

representation of transforming the code and data into bytes [Gray02, Peine02] for shipment to 

the destination agent server. 

So far, it has been established that there are numerous strategies for transferring data and 

code. However, there are also different strategies for code mobility, i.e. pull, push or push per 

unit. A pull code mobility strategy sends only the mobile agent's class to the destination agent 

server. When the destination agent server unpacks the data and code, it requests classes from the 
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mobile agent's home agent server, I.e. the agent server that created the mobile agent. 

Consequently, code is downloaded on demand from the home agent server, as and when it is 

needed. This approach has the disadvantage that the autonomy of the mobile agent is reduced, 

i.e. if the home agent server fails then the mobile agent can no longer execute. Conversely, the 

push mobi le code strategy ships all classes to the destination mobile agent server. This 1s 

popular with non Java implementations and offers the advantage that the mobile agent 1s 

independent of the home agent server, i.e. the mobile agent can execute even if the home agent 

server is di scmmected. However, shipping the entire classes to the destination agent server may 

represent inefficient use of network bandwidth, i.e. some classes may not be needed at the 

destination agent server. Alternatively, there are some mobile agent systems, e.g. Tracy 

[BraunOI] and Sumatra [Acharya97], which employ a push per unit strategy to enable the 

programmer to specify the classes that migrate with the mobile agent. 

The majority of mobile agent systems ship the entire object graph occupied by the mobile 

agent. This means that the state of all objects referenced by the mobile agent is saved. 

Consequently, the entire mobile unit migrates to a new location. In these systems it is the 

responsibility of the programmer to maintain references to stationary objects that exist at the 

remote agent server. For example, a stationary object may represent a resource that the mobile 

agent wishes to use. Some mobile agent systems allow the application developer to specify co

location semantics with respect to static resources at remote sites and peer units of mobility 

[Holder99, Picco98]. For example, Fargo [Holder99] allows the programmer to select related 

tmits of mobili ty to migrate. In Fargo [Holder99] a unit of mobi lity is represented by a group of 

objects tenned a complet. The programmer can choose to move referenced complets, move a 

duplicate of a referenced complet or form a new reference to a complet of a similar type at the 

remote destination . Unfortunately, mobile agent systems that provide this functionality are rare. 

Figure 2-3 illustrates the process of migration between two agent servers. When a mobile 

agent issues a migrate request (I) the unit of execution for the mobile agent is suspended by the 

agent manager (2) and forwarded to the transport manager (3) . In Java mobile agent systems the 
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unit of execution corresponds to a thread that executes within an agent server process. Others, 

e.g. [Gray02], run the mobile agent in an operating system process. The state of the mobile 

agent is then packaged ( 4) and transferred ( 5) to the destination agent server by the transport 

manager. Mobile agent systems differ according to the transport protocol used. For example, 

each agent server may provide an RPC interface with a signature to receive a portable 

representation of the mobile agent. Others may provide TCP socket or HTTP interface. Upon 

reception of state, the transport manager at the destination agent server unpacks the state (6) and 

forwards it to the agent manager (7) that creates a new unit of execution (8). 

The process of packing and extracting the state of the mobile agent depends upon the 

mobility semantics and the interpreter adopted by the mobile agent system. For example, if the 

interpreter allows saving the execution state, e.g. D' Agents [Gray02], then the agent system 

developer can use the state extraction routines of the interpreter to provide strong mobility 

semantics. Alternatively, if the interpreter does not provide execution state restoration, e.g. 

Sun's Java Virtual Machine (JVM), then the agent system developer has more work to provide 

strong mobility semantics. Firstly, the interpreter could be modified to allow saving the 

execution state of the mobile agent thread. This approach, adopted by NOMADS [SuriOO] and 

Sumatra [ Acharya97], has the disadvantage that hosts must install a new interpreter. An 

alternative is to transfonn the bytecodes produced when the mobile agent is compiled. For 

example, Sakamoto eta/. [SakamotoOO] propose an algorithm that transfonns the bytecodes for 

each method by adding instructions to save and restore the execution state. This is achieved by 

modifying the method signature to include a data structure that stores the execution state. A 

method that contains a migration instruction is modified to throw an exception. This triggers 

saving the execution state of the method. The exception is then thrown to trigger state saving 

operations further up the calling hierarchy. Upon resumption, instructions are inserted to restore 

the execution state using the data structure passed to the modified method signature. An 

alternative method is to transform the source code to produce a class file that provides strong 

mobility [Sekiguchi99]. This works on the same principle, i.e. exceptions are used to trigger the 

state saving routine up the call hierarchy. However, a compiler must insert instructions before 

runtime and the approach requires access to the source code for the mobile agent. 

2.5 Mobile agent communication 

Conununication between client and server software components in a conventional 

distributed system uses Remote Procedure Call (RPC), whereby a client requests the invocation 

of a remote method offered by a server. The server perfonns the request and replies with the 

result. Both the client and the server exist at fixed nodes and must be aware of the identities of 

communication partners. Consequently, conununication is synchronous, i.e. the client blocks 

until the server sends an acknowledgement. The mobile agent research community is 
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speculative of using remote procedure calls for mobile agent interaction. Firstly, the remote 

procedure call communication strategy assumes that communication parties share a common 

name space and are aware of each other's identity. This can sacrifice the degree of a mobile 

agent's autonomy [HermannOO, Cabri02]. For example, if a mobile agent executes a procedure 

under foreign control, i.e. it is fulfilling a remote request, the agent may not migrate until the 

procedure has been executed. Equally, it could be the case that the mobile agent migrates 

without fulfilling the request. Secondly, communication relies upon the stability of the network. 

This is a problem when the location of the mobile agent is dynamic. A complex 

cmrununications infrastructure is required for mobile agents to provide message forwarding and 

track the dynamic location of named mobile agents. 

One solution is to reduce the complexity of the communications infrastructure by localising 

the mobile agent interactions and wherever possible, enforce uncoupled interactions [Cabri02]. 

Meeting points and tuple spaces are examples. Mobile agents can establish a meeting point at a 

local agent server where agents can join and synchronise for interaction. Establishing a meeting 

point at a local agent server reduces the problems of a stable network, since all cmrununication 

occurs locally. However, all participants must be present at the same agent server, thus 

sacrificing a degree of autonomy. Furthermore, the meeting point represents a single point of 

failure. Tuple spaces provide associative cmrununication and co-ordination. A tuple space 

communication model consists of a shared data space (tuple space), information elements that 

exist on the data space (tuples) and a small set of operations to add, remove and access tuples on 

the space. Communication is associative, i.e. infonnation is accessed by content, possibly using 

pattern matching. Interactions are characterised as indirect and uncoupled through the creation 

and manipulation of tuples on the shared tuple space. Specifically, temporal and spatial 

decoupling is enabled [MurphyOl]. Temporal decoupling means that cmmnunication parties do 

not need to synchronise for cmmnunication, i.e. the sender and the receiver do not have to exist 

at the same time. Spatial decoupling means that the conununication parties do not have to be 

aware of the identities of their peers to cmmnunicate. Both properties preserve the autonomy of 

mobile agents. This means that the mobile agent does not have to lookup the name and location 

of a cmmnunication peer and then synchronise communication activity at a specific location. 

Furthermore, cmrummication is localised to the tuple space. Linda [Gelernter85] was the earliest 

tuple space implementation that provided a single tuple space with no transactional support or 

authentication of tuple accesses. Later implementations, e.g. TSpaces [Lehman99] and 

JavaSpaces [JavaSpaces03], provide persistency and an event notification system that notifies 

registered conununication parties when the tuple space is modified. In these implementations, a 

central tuple space provides remote access to multiple communication parties. 
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MARS [Cabri02, OmiciniOl] and TUCSON [OmiciniOl] provide programmable tuple 

spaces that are independent of Java mobile agent systems. An independent programmable tuple 

space exists at each agent server to allow reactions to be programmed for the addition, removal 

and access of tuples on the space. A reaction is represented as a code fragment, i.e. a Java object 

in MARS [CabriOO, Ca:bri02] and a first order logic term in TUCSON [OmiciniOl]. The code 

fragment is executed in response to a specific tuple operation. MARS [CabriOO, Cabri02] allows 

reactions to be installed by the agent server or application mobile agents. For example, the agent 

server may install reactions to provide environment specific co-ordination such as security. 

Alternatively, an application mobile agent may install a reaction onto the tuple space to 

exchange application specific knowledge. Application based reactions must be confined to the 

context of the application and are enforced by associating an identifier with mobile agents in the 

application. MARS [CabriOO, Cabri02] and TUCSON [OmiciniOl] provide a single static tuple 

space at each agent server. The tuple space is independent of tuple spaces at remote agent 

servers. Alternatively, LIME [MurphyOl] permanently associates one or more named 

programmable tuple spaces with a mobile agent. Consequently, the tuple spaces migrate with 

the mobile agent. When a mobile agent arrives at a host the tuple spaces are automatically 

merged with the tuple spaces of co-located mobile agents. Consequently, mobile agents that are 

co-located at an agent server may share tuples for the duration of their stay. Furthermore, a 

mobile agent may declare private tuple spaces. When a mobile agent migrates to another host, 

the tuple spaces migrate with it. Consequently, upon migration, the tuples owned by the mobile 

agent are no longer visible to co-located mobile agents. Tuple spaces have potential for mobile 

agent communities that interact via accessing and manipulating shared data stored at one or 

more agent servers. LIME [MurphyOl] allows a mobile agent to migrate a tuple space that 

represents the application context. However, the size of the tuple space must be controlled to 

preserve the potential bandwidth savings offered by mobile agent technology. 

2. 6 Mobile agent interoperability 

A significant problem that hinders the widespread adoption of mobile agent technology is 

the lack of interoperability between mobile agent systems. Two mobile agent systems are 

interoperable if a mobile agent of one system can migrate to the second system, the agent can 

interact and cmmnunicate with other agents (local or even remote agents), and the agent can 

leave this system and resume its execution on the next interoperable system [PinsdorfU2]. The 

following issues contribute to the lack of interoperability between mobile agent systems: 

• Language: Agent servers are typically implemented using an interpreted language, e.g. 

Java and Tel. If hosts run the same agent server platform then interoperability between 

computer architectures is gained. For example, mobile agents are able to migrate 

between Microsoft Windows and Linux machines. However, migration between agent 

servers implemented using different languages is homogenous. 
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• Mobile agent system interface: Agent servers provide an interface for visiting mobile 

agents to access resources and platform services such as agent management, tracking 

etc. Different agent servers provide different interfaces for visiting mobile agents. 

Furthermore, most mobile agent systems enforce the application programmer to inherit 

from an abstract class. Unfortunately, even if agent servers are implemented using the 

same programming language, the abstract class is not universal across all mobile agent 

systems. 

• Migration semantics: Most agent server platforms provide either strong or weak 

mobility. Sun's Java Virtual Machine does not provide execution state capture. 

Consequently, Java mobile agent systems that require strong mobility provide a 

modified Java Virtual Machine or use pre-processing. Consequently, migration between 

agent server platforms that provide different migration semantics is difficult. 

• Heavyweight architectures: Most mobile agent systems are single monolithic 

heavyweight systems attempting to provide a common denominator of features 

[Picco98]. These features include communication (message transport and delivery), 

mobility (agent transport and encoding), security (agent authentication and state 

appraisal) and general (agent creation and lifecycle) [PinsdorfU2]. The same features are 

often implemented different ways across mobile agent systems. For example, most Java 

mobile agent systems provide some means of mobile agent communication using RMI. 

Others, such as D' Agents [Gray02], provide their own implementation. The J.!Code 

[Picco98] open source project focuses on this problem to provide a lightweight mobile 

agent system. This allows developers to select different implementations for the same 

feature. 

Existing approaches for interoperable mobile agent systems either enforce standard 

interfaces or employ agent factories that convert a mobile agent into a mobile agent for the 

target environment. Each approach focuses on different levels of interoperability. For example, 

some provide interoperability between mobile agent systems implemented using the same 

interpreted language. Furthermore, only some aspects of interoperability may be enforced, e.g. 

security may not be addressed. This section describes the existing approaches for 

interoperability between mobile agent systems. 

2.6.1 lnteroperability standards 

There are two interoperability standards for mobile agents, MASIF [Milojivcic98] and FIPA 

[Fipa04]. MASIF [Milojivcic98] incorporates interoperability using the CORBA framework 

without the need to modify the agent platform. Two CORBA IDL interfaces are provided, 

implementations of which can be published to a CORBA naming service. The MAF AgentSystem 
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interface must be implemented by the agent server to provide interoperability for agent transfer 

and management. Standard methods are provided concerning the mobile agent lifecycle (create, 

tenninate, suspend and resume) The MAFFinder interface, accessed via the CORBA naming 

service or MAF AgentSystem interface, provides a registry that can be used to maintain a 

database of mobile agents, agent servers and mobile agent systems. Methods are defined to 

register, deregister and locate these entities. A mobile agent can also use the MAFFinder 

interface to locate mobile agent systems that match its requirements specified in an AgentProfile 

object. Requirements include language, serialisation mechanism, the type of agent server and 

version number. MASIF [Milojivcic98] uses these interfaces to standardise mobile agent and 

agent server names, agent system types and location syntax. It should be noted that there are 

some aspects that are not standardised. These include agent encoding and security. The only 

mechanism for agent transfer that is standardised is the interface for agent transfer employed by 

the mobile agent system. Consequently, the MASIF [Milojivcic98] standard assumes agreement 

between agent servers concerning the encoding of the mobile agent for transfer. Furthennore, it 

is clearly stated that the standard is only concerned with interoperability between mobility agent 

systems written in the same language and expected to go through revisions [Milojivcic98]. 

FIPA [Fipa04] is a standard from the intelligent agent community that focuses significantly 

on interoperable agent communication between heterogeneous FIP A compliant agents using a 

standard Agent Communication Language (ACL). The specification for the FIPA standard 

[Fipa04] outlines a framework for agents including an Agent Management System (AMS), 

Directory Facilitator (DF) and Agent Communication Channel (ACC) that operates over 

CORBA IIOP. The Agent Management System and Directory Facilitator offer functionality 

similar to the MAFAgentSystem and MAFFinder interfaces of the OMG MASIF [Milojivcic98] 

standard. Cmmnunication between agents is achieved using a message forwarding service 

between agents. 

Grimstrup et al. [Grimstrup02] propose the GMAS interoperability standard to serve as an 

interface between the native mobile agent system and foreign mobile agents from different 

platfonns. The interoperability standard translates a foreign mobile agent system API into the 

API for the native mobile agent system. Consequently, to achieve interoperability each mobile 

agent system must provide a translator between its own API and the GMAS interoperability 

API. This is achieved by implementing the Foreign2GMAS interface. To host foreign mobile 

agents, the native mobile agent system must implement the GMAS2Native interface that 

converts GMAS API calls into API calls for the native mobile agent system. Each mobile agent 

system has a gateway and launcher software component that is responsible for dispatching and 

receiving mobile agents respectively. Migration between GMAS compliant mobile agent 

systems is achieved by transporting the mobile agent state and meta-data between the gateway 
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at the origin and the launcher component at the target mobile agent system. However, it is 

assumed that a common communication protocol, e.g. CoABS [Coabs04], exists between 

mobile agent systems. When a mobile agent migrates to a different GMAS compliant mobile 

agent system, its Foreign2GMAS adaptor is dynamically downloaded from a specified remote 

code base. This then cmmnunicates with the GMAS2Native adaptor for the target mobile agent 

system. 

2.6.2 Mobile agent factories 

Brazier et al. [Brazier02] migrates an architectural description, or blueprint, of mobile agent 

functionality with the application state. An agent factory at the target mobile agent system uses 

the blueprint to generate a compatible mobile agent. The mobile agent functionality is specified 

at two levels. The conceptual level describes the components of the mobile agent including 

component interfaces and interaCtions. The detailed level includes code and definitions, e.g. 

interfaces. For example, there may be implementations in Python, C and Java for a single 

component at the conceptual level. Libraries of descriptions may include design patterns, 

knowledge based models or agent wrappers that provide cross platfonn interfaces. The agent 

itself is responsible for storing and restoring state using platform independent measures, e.g. 

XML. The agent factory is responsible for sending the agent state and blueprint to the target 

host. It is assumed that the target host has access to an agent factory capable of producing a 

mobile agent for the target platform. Migrating a specification of the mobile agent functionality 

offers the advantage of language interoperability. However, so far, this is only applicable for 

mobile agent systems that support weak mobility. 

Design techniques exist for interoperability between Java mobile agent systems. A design 

based upon the adaptor pattern is presented in [MisikangasOO]. This design separates platform 

specific functionality from the application. A mobile agent is separated into two classes, a head 

and body. The head is platform independent and represents the application mobile agent. The 

body represents the platfonn specific operations of the mobile agent with methods defined for 

migration, message passing and service location. Interoperability is achieved by moving the 

head to a target mobile agent system and binding it to the platfonn specific body 

implementation. A migration service (Monads Agent Gateway) is provided that opens a socket 

to the destination and transfers the head. The receiving migration service (Monads Agent 

Gateway) then binds an instance of its platform specific body to the received head. The 

migration service is only used when the mobile agent needs to migrate to a different mobile 

agent system and exists at hosts that provide the monads service API [CampadelloOO]. 

Interoperable co111111unication is provided by using text based messaging. A method is provided 

in the body (receiveMessage(String)). If the head is present, the message is delivered. 

Otherwise, the body can either store the message until the head returns or request the migration 
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service to deliver the message to the head. However, no details are provided regarding how the 

gateway determines the current location of the mobile agent. 

An agent factory has also been adopted by [PinsdorfD2] in the SeMoA mobile agent system 

[RothOl]. At the time of writing Jade [Bellifemine99] and Tracy [BraunOl] mobile agents can 

migrate and execute at any SeMoA [RothO 1] agent server. When a mobile agent is deserialised, 

a lifecycle registry forwards it to registered factories and waits for a signal from a factory that is 

willing to handle the mobile agent's class. The factory then generates an instance that handles 

the mobile agent's lifecycle. The instance acts as a wrapper capable of translating between 

native lifecycle and foreign mobile agent system lifecycle. Consequently, all necessary 

components are instantiated to make the mobile agent believe that it is nmning on its native 

mobile agent system. However, access to source code is assumed for analysis of the mobile 

agent architecture and lifecycle. 

2. 7 Mobile agent architecture summary 

This section concludes by summarising the architectural features available for existing 

mobile agent systems. There are some mobile agent systems such as Concordia [Wong97] that 

are no longer available. For this reason these have not been included in the survey, since they do 

not represent the latest available mobile agent systems. 

Table 2-3 characterises mobile agent systems according to the following properties: 

• Language: The implementation language adopted by the mobile agent system for 

application developers to program a mobile agent. 

• Code transfer: The strategy used to transfer mobile agent code. Section 2.4 introduced 

the push, pull and push per unit code download strategies. 

• Mobility semantics: Is strong or weak mobility used for migration? 

• Communication mechanism: The means of communication available to mobile agents. 

Section 2.5 introduced remote procedure calls, meeting points and tuple spaces as 

mechanisms for communication between mobile agents. 

• Interoperability: Sections 2.6.1 and 2.6.2 described interoperability mechanisms for 

mobile agent systems. Interoperable mobile agent systems may implement a standard 

[Milojivcic98, Fipa04, Grimstrup02]. Alternatively, agent factories may be used to 

translate a mobile agent into a mobile agent for the target mobile agent system. 
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Mobility Communication 
Language Code transfer Interoperable 

semantics semantics 

IBMAglets push I pull remote and partial 
Java weak 

[Oshima98] (code server) meeting point MAS IF 

Ajanta 
Java 

pull from 
weak remote none 

[Tripathi02] code server 

Ara Java, remote and tuple 
push strong none 

[Peine02] C++, Tel space 

DAgents Java, Tel , 
push strong remote none 

[Gray02] Scheme 

Fargo 
Java push weak remote none 

[Holder99] 

Grasshopper 
Java pull weak MASIF/FIPA remote 

[Baeumer03] 

JSEAL2 
Java push weak remote none 

[BinderOl] 

Jumping 

beans Java push weak remote none 

[Beans04] 

Nomads 
Java push strong remote none 

[SuriOO] 

SeMoA Tracy and 

[PinsdorfD2, Java 
push I pull 

weak Jade mobile remote events 

RothOl] 
(code server) 

agent systems 

Sumatra 
Java push strong remote none 

[ Acharya97] 

Tracy push all and ma ilbox and 
Java weak none 

[BraunOl] pull tuple space 

Table 2-3 Summary of mobile agent systems 

Table 2-3 highlights the popularity of Java as the implementation language for mobile agent 

systems. Subsequently, weak mobility predominates over strong mobility, since without 

modification the Java Virtual Machine cannot serialise the execution state of threads. The 

default mobility strategy uses a pull strategy. However, some mobile agent systems provide a 

hybrid strategy to allow the programmer to control tl1e strategy of mobility, e.g. Tracy 

[BraunO l] , SeMoA [RothO l] and IBM Aglets [Oshima98]. Interoperability between mobile 

agent systems is in the early stages. Most of the avai lable mobile agent systems are either 

compliant with an interoperability standard [Milojivcic98, Fipa04] or provide interoperability at 
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the language level, i.e. mobile agents can be implemented using different languages. However, 

these systems still limit migration to hosts that run the same agent server platform. There is 

evidence of limited interoperability between some mobile agent systems, e.g. some developers 

have collaborated [Pinsdorf02] to provide interoperability only between the Jade 

[Bellifemine99], Tracy [BraunOl] and SeMoA [RothOl] mobile agent systems. Section 2.6 

highlighted that the trend is moving away from standards such as MASIF [Milojivcic98], 

toward middleware that uses adaptors to provide interoperability. 

3 Mobile agent applications 

A significant problem with mobile agents is the lack of a "killer application" [Milojivcic99]. 

Small case study applications have been used within the research community for proof of 

concept. However, there is little evidence of commercial applications that solely use migration. 

Consequently, the trend appears to be to focus not on finding applications that purely use 

mobility but rather on examining the conditions and scenarios where mobility is a useful tool in 

applications [Kotz02]. 

Mobile agents have been proposed for routing protocols in mobile ad hoc networks. A 

routing protocol directs traffic from a source to a destination node to maximise the network 

perfonnance and minimise the costs. An ad hoc network is defined as a multi-hop network that 

consists of mobile hosts that communicate without the support of a wired backbone, HAlF A or 

Base Station [WangOl]. Multi-hop communication occurs when the mobile hosts are not in 

direct radio range and are routed through one or more intermediate mobile hosts [Liu02]. The 

network is characterised as ad hoc since the topology or structure of the network frequently 

changes. For example, a mobile host may move out of range from its neighbours to a new 

location and form new neighbours. Some conventional routing protocols such as Destination 

Sequenced Distance Vector [Perkins94] rely upon knowledge of the network topology a priori. 

These algorithms are unsuitable for use in a mobile ad hoc network environment, since topology 

information would frequently have to be distributed over the network due to the dynamic nature 

of the network [Marwaha02] and [RoyChoudhuryOO]. It is expected that this would seriously 

limit the network bandwidth for actual communication. Routing schemes such as Dynamic 

Source Routing (DSR) delay the transmission of data until the route is discovered, thus being 

unsuitable for real time systems. Furthermore, it would be difficult for mobile hosts to perform 

the routing algorithm, since they may not possess sufficient battery power for algorithm 

execution [Mingas03]. 

Mobile agents have been proposed to traverse the topology of the network and provide full 

connectivity information. The general strategy is that a population of mobile agents are 

frequently dispatched to a randomly selected destination in the network. Each mobile host owns 
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a routing table that mobile agents query to determine the next mobile host to visit in the path 

towards the destination. Mobile agents maintain a history of intermediate nodes visited on the 

path to the destination. Each entry in the history may be associated with a trip time denoting the 

distance between the launch host and intermediate hosts. Mobile agents update the routing table 

of mobile hosts with the best routes for other nodes in the network. Consequently, the mobile 

agents are active and possess intelligence for selecting the best route to each node visited on the 

path to a destination mobile host. However, there are problems with the mobile agent approach 

[Marwaha02]. A host sending packets to a destination for which it doesn't have an up-to-date 

route must wait for a mobile agent to provide a route. Furthermore, if a route breaks, the source 

may still keep sending data packets unaware of the link failure. A hybrid approach m 

[Marwaha02] combines the AODV [Perkins99] routing protocol with mobile agents to 

overcome this. AODV is used for local connection maintenance. Mobile agents enhance the 

shortfalls of AODV routing protocols by increasing cmmectivity and decreasing the end-to-end 

delay and route discovery latency. 

In [Minar99] mobile agents co-operate to learn about the connectivity of the network. A 

mobile agent learns about all the edges for the node where it is located and stores them as 

knowledge. Next, the mobile agent learns node edges from peer mobile agents co-located at the 

current node. Finally, the agent selects a node to migrate to. Selection of the node is done 

conscientiously at mntime, by choosing a node that has been least visited or never before 

visited. Super conscientious agents also visited rarely visited nodes, but the decision to move is 

based on facts assembled independently and by peers. A simulation measured the time taken for 

all agents to learn the connectivity of the network. Obviously, conscientious agents perfonn 

better than using a random selection strategy, since the nodes acquire more infonnation from 

each other. For small populations of agents it was found that the super conscientious selection 

strategy performed best. However, as the node population grew, super conscientious agents 

tended to be clustered, thus duplicating efforts based on shared information. 

Mobile agents are useful for information retrieval applications, whereby a mobile agent 

visits one or more remote hosts to query and filter data. The hypothesis is that network 

bandwidth is utilised more efficiently by co-locating a mobile agent to one or more remote 

agent servers to perfonn computations on data locally. The success of the hypothesis depends 

upon the nature of the application [PiccoOl]. For example, if the mobile agent accumulates data 

at remote hosts, there is the danger that the size of the mobile agent outweighs the perfonnance 

benefit of issuing separate RPC calls to the servers. Furthennore, employing mobile agent 

technology for message passing, e.g. querying a remote database, demonstrates poor 

performance compared to using traditional RPC calls. This is likely attributed to the overhead of 

migrating the code and the query on route to the remote host, in addition to the query results on 
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the return to the sending host. However, the hypothesis may be useful when the mobile agent is 

used to compress or filter the data at remote hosts. In [Picco98b] this approach was used in a 

network management application where a mobile agent migrated to remote hosts to determine 

the busiest network interface. It was found that this produced a saving of 30% on the utilisation 

of the network compared to using a centralised network management station that polled devices. 

Mobile agents have been used to implement distributed indexing [GreyOO] to overcome the 

performance bottleneck given by centralised indexes. Each web site maintains its own index. A 

c01mnunity of mobile agents wanders the web visiting remote sites seeking information of 

interest on the behalf of the user. Three types of agents are introduced: ferrets, publicists and 

gurus. Essentially, agents traverse the Internet looking for indexes that meet the needs of the 

user. Hopefully, the mobile agents meet other agents that are searching for the same topic. A 

publicist advertises a topic that it is looking for. A ferret looks for advertisers of a topic and 

provides the location of the information consumer. A guru schedules meetings with publicists 

and ferrets by remembering which agents they met and the topics they were interested in. 

Recently, mobility has been proposed to monitor the health status of service providers 

subscribed with a registry or directory service in an autonomic computing environment 

[Thoma03]. A fault tolerant distributed direct01y service is responsible for maintaining 

information with respect to the health and functionality of each service provider. When a service 

provider is faulty, the registry is responsible for logging the abnonnality. Consequently, clients 

only receive references to healthy service providers. Steady communication links between the 

registry and service providers are needed to monitor the health status. However, the distributed 

systems of today operate in an environment that has no defined boundary. This means that 

systems dynamically alter scale and connectivity during service provision. Furthennore, new 

functionality is added to services during service provision and resources are shared across 

organisations. Mobile agents have been proposed to visit the service providers periodically to 

retrieve information on the execution status. In the dynamically changing network, the mobile 

agent is responsible for finding the route to the service provider even if a link fails. 

A f1.1rther example is the use of mobile agents to gather load balancing information for web 

servers and redistribute jobs to servers with a lower load. A distributed pool of web servers can 

improve the quality of web services by replicating resources to deal with concurrent client 

requests and crash failures. A client request can be sent to alternate servers according to load 

balancing strategies. Load balancing aims to distribute client requests evenly to each server. 

According to [Cao03] traditional load balancing strategies mix the load balancing policies with 

the service implementation. Consequently, maintaining the load balancing strategy is complex. 

Furthermore, servers must be fi·equently polled to gather load balancing information. If a server 

rejects a job then another round of polling must be enforced. Conversely, in [Cao03], mobile 
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agents are employed to separate the load balancing strategy from the service implementation. If 

a server rejects a job, then the mobile agent can dynamically select the next best strategy, thus 

reducing latency. Currently, experimental results demonstrate that employing mobile agents in a 

LAN enviromnent produced better performance than the load balancing module employed by 

the Apache web server for a LAN enviromnent. Mobile agents maintained the lowest deviation 

of load distribution (in terms of job queue length). Throughput (total client requests per second) 

was greater using mobile agents for concurrent client requests greater than five hundred. 

From the above applications of mobility it can be deduced that mobile agents may be useful 

to report on the status of remote hosts autonomously to the user application. The advantage of 

the mobile agent strategy is to sense the network conditions and links at remote hosts and act 

accordingly. Furthermore, under some conditions, mobility can be useful to compress 

information stored at remote hosts. It appears that the trend of applications that use mobility is 

to provide mobility at either the system application level or as middleware. To smmnarise, 

mobility can be useful in applications to: 

• Compress large amounts of information at remote hosts, e.g. filter the best buy for a 

product offered by a group of known suppliers. 

• Gather state infonnation while adapting to dynamic network conditions. For example, 

intelligent mobile agents can react to failed cormnunication links or slow servers. 

• Discover a network topology that changes frequently. This is applicable to adhoc 

networks in mobile computing environments where there are frequent connections and 

disconnections. 

• Perform actions on behalf of a mobile computer user at a stable host during periods of 

disconnection. Later, when the user is reconnected, the mobile agent can be retrieved. 

4 Mobile agent problems 

This section highlights a brief overview of the problems with mobile agents and aims to 

identify the key technical and non-technical hurdles faced for acceptance in industry. Technical 

hurdles are understood as problems influenced by mobility. For example, security is an obvious 

concern when private code and data is shipped over a network link to remote hosts. Non

technical hurdles are high level issues that may cause concern for industry. 

Perhaps a key challenge is identifying a universal definition for mobile agents. Indeed, this 

is highly unlikely to be resolved when the term agent is loosely defined. Section 1.4 highlighted 

the confusion that exists between mobile agents and mobile code. The two tenns are often used 

interchangeably within the research conununity. Further confusion is added concerning which 

community mobile agents belong to. Some perceive that a mobile agent is synonymous to a 

distributed object that can migrate state and code autonomously across hosts. Others belong to 
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the distributed artificial intelligence community whereby mobility is viewed as a characteristic 

of an agent. In this context, a mobile agent possesses knowledge of its enviromnent, executes to 

satisfy goals and communicates using an Agent Communication Language (ACL). Furthermore, 

the mobile agent is capable of migrating autonomously to another location. It is unlikely that 

there will be a true definition for a mobile agent. It appears that the current trend for researchers 

is to fonn their own definition and develop a solution to suit. Consequently, the Jack of a 

concrete definition influences uncertainty amongst industry and researchers. Unfortunately, this 

can be a factor towards reluctance to use the technology. 

There is significant debate concerning the characteristics of mobile agents that make them 

suitable to specific application domains. For industrial acceptance a comprehensive study is 

required. Application domains suited to mobile agents were discussed by leading researchers in 

[Milojivcic99]. Electronic commerce, network management, information retrieval and mobile 

commerce were identified as potential applications of mobile agent technology. Mobile agents 

were envisaged as useful for autonomously representing users. A user could dispatch a mobile 

agent to perfonn a task at a remote node, e.g. querying a database. Mobile agents also have 

potential for data-intensive applications where data is remotely located and the user has 

specialised needs. For example, mobile agents may be launched by mobile devices to provide 

personal mobility, i.e. a mobile agent may represent a personal user profile and execute at a 

remote location, contacting the user when events of interest occur. 

Despite these potential uses, there appears to be no consensus concemmg a killer 

application where mobile agents are used as the main structuring unit [Milojivcic99, Lange99, 

SchoderOO]. It could be argued that traditional technology may equally be used. For example, 

client server technology could be employed for querying a remote database. Industry may prefer 

familiar technology and established methodologies. Mobile agents may therefore be perceived 

as a solution in search of a problem domain [Nwana99]. 

Although it is easy to conceptualise application scenarios where mobile agents may be 

useful, awareness of the proposed benefits is important. Benefits frequently claimed for mobile 

agents are clearly stated in [Lange99]: 

• Reduce network load: Traditional distributed systems require multiple interactions to 

perform a given task, consequently increasing network traffic. Mobile agents can be 

transferred to remote hosts where large volumes of data can be processed locally. 

• Overcome network latency: For critical real-time systems, where entities need to 

respond to environmental changes in real-time, the network latency involved IS 

significantly large. Mobile agents are seen as offe1ing a solution since they can act 

locally. 
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• Encapsulate protocols: Mobile agents can migrate to remote hosts to establish 

channels based on proprietary protocols. Conversely, traditional approaches require that 

hosts implement protocols to code output data and interpret input data. Consequently, it 

is difficult to upgrade protocol code. 

• Execute asynchronously and autonomously: Mobile devices operate in environments 

with fragile network c01mections. Mobile agents can embed tasks that are released into 

the mobile network to execute asynchronously and autonomously. 

• Adapt dynamically: Mobile agents can distribute themselves to hosts in an itinerary to 

maintain the optimal configuration for performing a task. 

• Naturally heterogeneous: It is claimed that mobile agents are generally computer and 

transport layer independent. Indeed, this is tme to some extent for mobile agent systems 

implemented in Java. However, a mobile agent may only migrate to hosts that provide 

the same agent server. 

• Robust and fault tolerant: It is claimed that the ability of mobile agents to 

dynamically react to adverse events, e.g. host failure, facilitates robust and fault tolerant 

distributed systems. 

The benefits of improved network load and latency are debateable. Indeed, for mobile 

agents to provide a significant network load benefit, investigations are required to understand 

the degree in which the size of the mobile agent overrides the perfonnance benefit. Recall that a 

mobile agent is a computational entity comprising code and state. Indeed, some experiments 

have been performed [Picco98b], although it is felt that there exists no consensus. Equally it 

may be argued that network bandwidth is constantly increasing. 

Interoperability among mobile agent systems is limited. Although standards have been 

introduced there are few mobile agent systems that are fully compliant. Indeed, Grasshopper 

[Baeumer03] is the only MASIF [Milojivcic98] compliant mobile agent system. Furthennore, 

the ability of mobile agents to migrate autonomously to hosts can be equally viewed as a 

hindrance to fault tolerance. For example, tracing mobile agents can be a problem. In this case, 

mobile IP can be employed whereby the home agent server is notified of the mobile agent's new 

location after migration. However, it is possible that the mobile agent continuously migrates 

during the latent period of notifying the home agent server of its new location [Murphy99]. 

Another serious concern for mobile agents is security. Customers are wary of tmsting third 

party service providers. For example, a malicious host may modify the state of the mobile agent. 

From another perspective, third party server providers may be wary of granting execution 

privileges to foreign mobile agents. It may be the case that malicious mobile agents present 

denial of service attacks dramatically consuming CPU load. Furthermore, Schader et a!. 
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[SchoderOO] perceive the absence of a social and legal framework as a challenge for controllable 

deployment of mobile agents. Problems such as stability and communication security are 

scarcely solved by a centralised control system. This is due to the number of mobile agents that 

dynamically join the system in addition to the technical constraints of the underlying 

communications networks. 

Essentially, mobile agents should be perceived as a uniform solution to many problems, 

such as network bandwidth, rather than a new technology that provides services that are not 

possible using other technologies. This argument dates back to [Chess95], i.e. there are few 

overwhelming advantages and an equivalent solution can be found that does not require mobile 

agents. 

5 Summary 

Tllis chapter has presented an overview of the current research within the mobile agent 

community. 

The mobile agent community 1s a wide and constantly evolving research field. 

Subsequently, there is typically a lack of widely accepted terms and methodologies. The agent 

cmmnunity lacks a concrete definition for the term agent. Furthennore, there exists 

terminological and semantic confusion for distinguishing between mobile code and mobile 

agents. This chapter has therefore presented a definition for the terms, agent and mobile agent, 

which are subsequently adopted by the remainder of the thesis. 

There are two levels of interest with respect to the architecture of a mobile agent system, i.e. 

the mobile agent and the agent server. Consequently, this chapter has outlined techniques for a 

mobile agent to organise its travel plan and communicate with resources at remote hosts. 

Furthem10re, the core mechanisms of mobility, mobile agent cmmnunication and 

interoperability have been described. 

Finally, the chapter presented a summary of the motivation for mobile agents and 

highlighted a brief overview of the problems with mobile agents. The following chapter 

provides an introduction to exception handling and investigates the challenges for exception 

handling in mobile agent systems. 
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Chapter 3 Exception Handling and Fault Tolerance 

1 Introduction 

Businesses and society are increasingly dependent on software systems, increasing demand 

for their flexible evolution and reliability. Safety critical systems and the fwancial sector are 

typical examples of dependable software applications. The dependability of a software system is 

defined in terms of trustworthiness such that reliance can justifiab ly be placed on the service it 

delivers [Laprie85 , Laprie92] . Reliability is an attribute of dependability, dealing with 

continuity of service [Laprie85, Laprie92]. This section defines a system model and exception 

handling framework to form a groundwork for subsequent sections. A software system (Figure 

3-1 [XuOO]) is described as a set of interacting components co-operating to meet the demands of 

a system enviromnent [Anderson81]. A system's extemal behaviour is the combined activity of 

its components. Design components manage component interactions and connections with a 

system environment that provides inputs and receives outputs. An input from the environment 

triggers a service in a component. A system tmdergoes a sequence of internal states influenced 

by component interaction. An intemal state consists of design data values, component output 

values (external states) and the values of variables maintained directly by design [GarciaOI]. 

Specific sequences of component interactions influence erroneous states and transitions. A 

component fault leads to component failure and a design fault leads to design failure. Both 

influence an erroneous transition, tenned the manifestation o.f a .fault. A .fault produces one or 

more errors which in tum introduce system .failure. 

System System Environment 

Figure 3-1 System model 

Software engineers use a specification to assess system behaviour and reliability. A system 

failure is a deviation from the specification. An error is an invalid system state that could lead to 

failure . The source of an error is a fault that manifests itself in a software or hardware 

component. Faults and errors are irreversible. The presence of an error indicates a fault. 

However, a fault does not imply an error, unless observed. Duration and phase are two 

properties used to categorise faults presented in [Laprie92, .Talote94]. Transient faults are 
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temporary; failures and errors are apparent only within the fault duration and are consequently 

difficult to detect. Permanent faults are ever lasting. Design faults occur during system design 

or modification. Operational faults occur during system usage. 

If faults can be prevented, it seems reasonable to assume that reliability is massively 

increased. Although this is true to some extent, it is unlikely to succeed, due to the intuitive and 

creative nature of design. Design faults may remain undetected, thus it is impossible to eradicate 

all faults. A mechanism is required to provide reliability in the presence of faults. This is termed 

fault tolerance and introduces redundancy to address faults. A system is fault tolerant if the 

behaviour of the system, despite the failure of some of its components, is consistent with its 

specifications [J alote94]. Anderson and Lee [ Anderson8l] divide fault tolerance into four 

phases to manage the additional complexity and consequent increase in system state: 

1. Error detection: Identify errors in system state. 

2. Damage confinement and assessment: Assess the scope of error propagation and take 

appropriate measures for confinement. 

3. Error recovery: Correct erroneous state to allow resumption of normal activity. 

4. Fault treatment and continued service: Prevent a fault from immediately recurring to 

allow the system to provide the services outlined in its specification. 

Error recovery is divided into forward error recovery and bacbvard error recovery. 

Forward error recovery techniques correct an erroneous state to produce a new state that is, 

hopefully, error free. Backward error recovery techniques restore the current erroneous state to a 

prior error free state. Forward error recovery is application specific requiring prior knowledge of 

enors. Consequently, damage assessment and error prediction are significantly important. 

Backward error recovery replaces the entire system state, thus invalidating the need for damage 

assessment and error prediction. Backward error recovery provides higher reliability since 

unanticipated faults may be handled. However, there is the performance drawback of complete 

state restoration. Forward enor recovery techniques use measures. Backward enor recovery 

teclmiques use measures or mechanisms. Anderson and Lee [ Anderson8l] define a measure and 

mechanism as follows: 

"A measure is a construction within the design of a system (e.g. in the program of an 

interpreted system) intended to perform a !>pecific task. A mechanism is a construction 

within an inte1preter which provides a specific facility". [ Anderson81] 
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Exceptions and exception handling provide a framework for the four phases of fau lt 

tolerance outlined above. Xu and Randell [XuOO] declare an exception as an abnormal response 

from a component or an abnormal event occurrence within a component. Figure 3-2 [GarciaO I] 

illustrates the framework in the context of a system component that functions as both a server 

and client. Servers supply services requested by one or more clients and return a response . A 

normal response is the expected service output. An abnormal response signifies the presence of 

a fault using interface, failure and local exceptions [GarciaO 1]. Interface exceptions signify an 

illegal client request. A server signals a fa ilure exception when it cam1ot provide a requested 

service. Local exceptions are raised when a component invokes its own fault tolerance 

measures. At this point there 1s an important distinction between raising and signalling 

exceptions. Raised exceptions are internal to a component. Signalled exceptions are 

communicated to clients. Consequently, fault tolerant measures are external to the component. 

A component's behaviour is clearly separated into normal and abnormal (exceptional). Normal 

behaviour relates to the provision of services and is resumed upon successful exception 

handling. A component activates its abnormal behaviour upon receipt of an external (signalled) 

exception or during the occurrence of a local (raised) exception. 

service normal 
requests responses 

service normal 
requests responses 

interface failure 
exceptions exceptions 

failure 
exceptions 

Figure 3-2 Exception handling framework 

Abnormal behaviour therefore relates to a component's fault tolerant activity that is 

managed by handlers. A handler provides error recovery for a specific, anticipated, exception. 

An exception mechanism automatically detects implicit and explicit exceptions, searches for a 

suitable handler and transfers control to it. Implicit exceptions are detected at nm time by the 

underlying hardware, language or operating system. Explicit exceptions are defined by the user 

and detected by the application [GarciaO 1]. Handlers are attached to a protected region, i.e . a 

bounded area of code that has the potential of producing exceptions. 

Having established a system model and exception handling framework, it is now possible to 

defme program control flow in the presence of exception handling. An exception raised within a 

protected region directs control to the component's abnormal activity. If the exception is local to 

the component the exception mechanism searches for a local handler. Alternatively, the 

exception mechanism raises an external exception (interface or failure) and signals it to the 

client component. Control reverts to the component's normal activity after the exception 
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mechanism has executed the appropriate handler. Two important issues arise at this point: (i) 

exception propagation and (ii) control flow continuation. An exception is propagated (signalled) 

when no suitable local handler exists. Propagation is explicit or automatic [GarciaOl]. Explicit 

propagation signals the exception to the immediate caller where it is handled or signalled to a 

higher level component. (Note that the same exception is not necessarily signalled.) A general 

exception is propagated when no suitable handler exists within the caller or the program 

tenninates. When automatic propagation is employed, the exception automatically propagates 

up the calling hierarchy until a matching handler is found, i.e. handling is not restricted to the 

immediate caller. The system should resume normal activity upon completion of exception 

handling. If the exception handler successfully averted failure, then control should resume at an 

appropriate location in the software to provide a continued service. Alternatively, the exception 

handler terminates and signals a failure exception. This scenario illustrates two models: (i) 

resumption and (ii) termination. The resumption model resumes normal activity at the statement 

subsequent to the one that raised the exception. The tetmination model terminates the activity of 

the component that raised the exception. If the component is strictly terminated the entire 

program is halted and control is directed to the operating system. Return termination terminates 

the signalling component and directs control to the statement that follows the protected region. 

Alternatively, the signaller may be terminated and retried. Resumption implies saving state 

before exception handling. Termination requires that the computation perfonned before an 

exception occurrence is undone and retried. Anderson and Lee [Anderson81] maintain that the 

termination model is preferred due to simple semantics, i.e. an exception is regarded as an 

abnormal event. Furthermore, the resumption model is highly likely to introduce failure since 

control reverts back to a potentially faulty component. This section concludes with a significant 

point raised in [Jalote94]: 

"Note that exception handling provides a framework which supports the design of fault 

tolerant software, it is not a technique for fault tolerance. Fault tolerance has to be 

programmed using the primitives provided by exception handling". [Jalote94] 

In other words, exception handling is not a technique. It is a tool for the design and 

construction of fault tolerant software. In reality, excluding safety critical systems, exception 

handling is not considered a design issue. 

So far, a system model, reliability and fault tolerance have been introduced. The system 

model was extended to describe an exception handling framework, forming a basis for outlining 

exception handling control flow. Sections 2 and 3 describe exception handling for serial and 

concurrent systems respectively. 
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2 Exception handling in serial systems 

Tllis section examines software fault tolerance techniques for serial systems. Software 

faults occur during software design and construction [Anderson81]. A serial system executes at 

a fixed location and has a single thread of control. 

Abstraction is an established technique for controlling system complexity by recursively 

partitioning a software system into a hierarchy of modules. Each module consists of state 

variables and procedures. A module has an internal state and an abstract state. The internal 

state is the sum of all state variables. The abstract state is the result of applying a procedure. A 

procedure provides a specific coherent service, and one or more exceptional services (handlers), 

to handle abnormal situations. Figure 3-3 illustrates a module hierarchy. 

Figure 3-3 Module hierarchy 

Modules are represented as nodes. An arrow from node A to node B signifies that A is a 

user of B, i.e. A invokes a procedure in B. Successfi.ll completion of A depends upon the 

outcome of the procedure invoked in module B. If a module is unable to perfonn a requested 

service an exception is raised and a handler perfonns error recovery. Ideally, the handler masks 

the exception from the calling module. In this case the procedure satisfies the intended service 

and returns a nonnal response. lf.the exception cannot be entirely masked from the caller, it is 

propagated (signalled). Figure 3-4 highlights exception propagation in serial systems. Explicit 

propagation occurs when no suitable handler exists in the signalling module. In this case the 

exception is propagated to the immediate caller. If a suitable handler exists remedial action is 
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Figure 3-4 Exception propagation 
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taken. Alternatively, a default exception is automatically forwarded to the immediate caller or 

the program can tenninate. Automatic propagation signals the exception up the module 

hierarchy until a suitable handler is located. 

Normal activity should resume upon successf·ul exception handling. Continuation of control 

flow may follow the resumption or termination model. The resumption model resumes conh·ol 

at the statement subsequent to the one that signalled the exception. Essentially, control resumes 

at the signalling module. The tem1ination model forbids continuation within the signalling 

component. Garcia et al. [GarciaO 1] identify three divisions: 

• Return: The signalling module is tenninated and control resumes at the statement 

subsequent to the handler. 

• Strict: The entire program is terminated and control is divetted to the operating system. 

• Retry: The signalling module is temtinated and retried. 

By far the most difficult faults to eradicate are design faults. Even after a component has 

been designed, implemented and tested, there remains a strong probabili ty that design faults are 

undetected. Consequently, this section aims to introduce briefly enor recovery for software 

design faults, providing a basis for section 3. 

So far, forward and backward error recovery techniques have been introduced. Forward 

error recovery fa ils to erad icate design faults since they must be foreseen at design. 

Unanticipated design faults are therefore unaccounted for. Alternatively, rep lication is an 

established technique for increasing the avai labi li ty and fau lt tolerance of ctistributed systems. 

Essentially, multiple copies of a component are maintained. However, replication also fai ls 

since each replica depends upon the same design. Backward enor recovery is prefened for 

tmanticipated errors since the effects of execution are cancelled to a state that is, hopefully, error 

free. However, design faults still remain. 

Two solutions exist: (i) design diversity and (ii) data diversity. Eradicating design fau lts 

implies using two or more components (variants) , each implementing altemative and 

independent designs for the same specification. Subsequently, tl1e probability of a common 

mode of failure is reduced. This solution is termed design diversity. Xu and Randell [XuOO] 

propose a framework (Figure 3-5 [XuOO]) whereby an adjudicator is a decision algorithm that 

controll er 

I adjudicator exceptionhandling I 
variant I exception variant n exception 

handling handling 

Figure 3-5 Design diversity model 
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serves to provide an error free result among executed variants. A controller manages the 

execution of variants. If a variant fails to produce an acceptable result, the controller selects and 

executes an alternative design. 

Data diversity perceives design faults to be triggered by specific inputs. Consequently, if the 

inputs are varied, design faults may be eradicated. This approach executes an algorithm for 

logically equivalent sets of data. A decision algorithm is applied to detennine system output 

according to the results. Data diversity is dependent upon data re-expression, i.e. reassigning 

data values that are logically equivalent. The focus of this thesis is therefore design diversity, 

namely recovery blocks [Homing74] and N-Version programming [Chen78]. 

2. 1 Recovery blocks 

A recovery block comprises an acceptance test, a primary module and a sequence of 

alternate modules. An acceptance test (adjudicator) is an error detection measure 

complementary to system state assertions and hardware error detection mechanisms [XuOO]. 

Tests are performed subsequent to server computation of results and prior to forwarding output 

to the client. A block comprises a series of alternate algorithms (variants), each considered an 

ideal fault tolerant component. Essentially, this means that each component has its own fault 

tolerance capabilities. The primary module executes first and is organised so that it is more 

desirable than its alternate modules. Subsequent alternatives employ increasingly degrading and 

simpler implementations. An alternate module is executed when the primary module/alternate 

fails the acceptance test or an exception is raised by another alternate module. Consequently, a 

recovery block scheme supplies gracefully degrading software [ Anderson81]. 

Figure 3-6 [XuOO] illustrates recovery block control flow. Upon entering a recovery block 

the system state is check-pointed to enable backward recovery. The primary module executes 

and an acceptance test evaluates the results. If the primary module completes satisfactorily the 

recovery block exits. Alternatively, if an exception is raised, then backward error recovery is 

invoked to cancel the effects of the primary module and allow alternate execution. The next 

alternate module executes and an acceptance test is performed. The sequence continues until an 

alternate module passes the acceptance test or all alternate modules fail. In this case, a failure 

exception is signalled to the enclosing environment. 

The recovery block scheme is largely extended. For example, the deadline mechanism 

[Campbell79] introduces support for real time systems to assume a predetern1ined maximum 

response time for services. A distributed recovery block scheme [Kim84] is capable of 

recovering from both hardware and software faults by applying distributed processing. 
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The success of recovery blocks depends upon the adopted error detection mechanism and 

acceptance tests. Further design faults are likely to be introduced as the accuracy and 

consequent complexity of acceptance tests rises. Performance is also an issue, the worst case 

being when all alternate modules fail. 

2.2 N-Version programming 

N-Version programming (Figure 3-7) was founded by Chen and Avizienis [Chen78]. N

versions (N> 1) of a program are implemented, each independently designed and executed. All 

versions are supplied with the same inputs and initial conditions. 

input output 

Figure 3-7 N-Version programming model 

A driver program, synonymous to the controller in Xu and Randell's model of design 

diversity [XuOO], is responsible for invoking all versions, assimilating results and applying a 

voting algorithm to detennine a single consistent result. The perfonnance of N-Version 

programming systems is always equal to the worst case module, i.e. the longest executing. This 

has the advantage that execution time is predictable. 
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2.3 Design diversity costs 

If, in an ideal world, resources were infinite, then multi-version software would appear to be 

a viable approach for producing dependable software. However, this is not the case in industry. 

It is debatable whether it is cost effective to channel development costs into a single version 

application with the hypothesis that increased development time provides dependable software. 

Should limited resources be applied to a multi-version application? Such a debate can only be 

answered provided that the cost of failure is known a priori. For example, in the consumer 

electronics industry recall costs are high. Conversely, software development costs in industries 

such as fly-by-wire aircraft, only account for a small proportion. 

Newcastle University conducted experiments to determine the cost effectiveness of design 

diversity as opposed to single-version software applications [XuOO]. The experiments compared 

the costs for building a multi-version (3-version) and a single-version application for a factory 

production cell (presented in [XuOO]). Both systems were constructed using equal resources, 

each version being divided into equal units of time. The single version application was allocated 

three units of time. The results concluded that single-version software is more dependable since 

less faults and failures were detected. The multi-version application could equally be interpreted 

as being more reliable since there were fewer undetected failures. It cannot be said that single

version software is more dependable and safer in the presence of limited resources, since we 

cannot guarantee that the quality of software increases with time [XuOO]. Some failures will 

always remain undetected, largely due to contributions from the software crisis and design. 

3 Exception !handling in concurrent systems 

The components of a concurrent system (Figure 3-8 [XuOO]) are objects, threads and 

actions. An object is defined by its state and behaviour (methods). Threads are active entities 

that invoke object methods. An action is a programming abstraction that allows the application 

progrmmner to group a set of operations on objects into a logical execution unit [XuOO]. 
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Figure 3-8 Concurrent system model 

Anderson and Lee classify concuiTency as independent, competing or co-operating 

[Anderson81]. The simplest fonn of concurrency is independent, whereby the activity of each 

process is isolated. Independent concuiTency is present when an object is only accessible to one 

thread. Competing concurrency exists when an object is accessible to many threads purely for 
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resource consumption. No communication exists between threads. This thesis focuses on co

operative concurrency, i.e. threads have shared access to objects enabling inter-thread 

communication. Shared objects instigate the need for alternative exception handling 

mechanisms due to thread interdependencies and concurrent exceptions. 

Thread interdependencies increase the likelihood of erroneous infonnation propagation. 

Damage confinement is vital. Consequently, the handling of an exception should involve all co

operating concurrent threads [GarciaOl]. Process dependencies, e.g. complex interactions, 

require several processes to handle a raised exception co-operatively. System state is 

consequently increased and likely to be inconsistent. Atomic actions are widely accepted for 

controlling error propagation and recovery in concurrent systems. Anderson and Lee 

[ Anderson81] define an atomic action as: 

"The activity of a group of components constitute an atomic action if there are no 

interactions between that group and the rest of the system for the duration of the activity". 

[ Anderson81] 

An atomic action IS a structural unit that orgamses the interactions for a group of 

components. Interactions are temporal. Therefore an atomic action reflects the dynamic 

struchtre of a system. Error propagation is controlled by the restriction that interactions are 

internal. If an exception is raised during the activity of an atomic action then only those 

components participating need to be recovered. Externally, the execution of an atomic action is 

indivisible, i.e. the action appears as a primitive operation that transforms system state. 

Intermediate state changes are concealed. The use of atomic actions in serial systems has been 

introduced in the fonn of recovery blocks. Concurrent systems employ conversations, 

transactions or the hybrid CA action approach for atomic action mechanisms, in addition to an 

exception resolution mechanism. 

3. 1 Exception resolution 

Serial systems raise a maximum of one exception. Concurrent systems alter this propetiy 

when parallel processes simultaneously raise different exceptions. Which one is handled? 

Concurrent exception handling employs an exception resolution mechanism to resolve 

simultaneous exceptions and determine a generic handler. Xu et a!. [XuOOb] maintain that 

concurrent exception resolution must be addressed for the following reasons: 

• Immediate communication of an exception among participating processes is difficult. 

Distributed systems have a higher probability that further exceptions will occur before 

participants are notified of an exception occurrence. 

• Concurrent exceptions may trigger a further serious fault. 
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• Distributed systems are inherently more complex to design compared to centralised 

systems. Consequently, an increase in the frequency of design faults is witnessed. 

• If concurrent exceptions are ignored, all participants must co-operate for error detection 

and recovery. Consequently, performance is hindered. 

Campbell and Randell proposed an exception resolution tree [Campbell86]. Exceptions 

associated with an atomic action are arranged into a tree hierarchy, whereby a higher level 

exception has a handler capable of dealing with lower level exceptions. If exceptions are raised 

concurrently, the resolving exception is the root of the highest subtree that contains all 

exceptions. Such an approach is static, whereby the designer must anticipate application 

exceptions. Another static approach is the chain algorithm [Jalote86] that employs both forward 

and backward recovery. Processes are statically linked and employ a rendezvous as the 

communication link. Each process receives exceptions from its left neighbour and forwards the 

resolution to the right. The rightmost neighbour resolves the exception and transmits results to 

the left that then calls the appropriate handler. An implementation for an exception resolution 

mechanism in Ada 83, Ada 95 and Java is presented in [RomanovskyOO] that uses a controller 

process to collect all exception information from participants and co-ordinate resolution. 

The exception tree is accepted as the most suitable approach [Campbell86, RomanovskyOO] 

since it is inherently object-oriented. However, design complexity is increased, i.e. a higher 

level handler must be capable of providing recovery implemented by lower levels. Furthermore, 

the resolution tree can be built only when the designer is clear about the errors that are to be 

tolerated and the handlers can be implemented only after the tree has been built 

[RomanovskyOO]. 

3. 2 Conversations 

The conversation scheme [Randel175] aims to provide co-ordinated error recovery for a 

group of interacting processes. Interactions may occur through message passing or referencing 

shared objects. A conversation (Figure 3-9 [XuOO]) is an application unit comprising a recove1y 

line, a test line and twofirewalls. The recovery line, established before interaction, is a series of 

co-ordinated checkpoints employed by interacting threads to enforce backward error recovery. 
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Figure 3-9 Conversation 
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A test line consists of acceptance tests for each participating thread. The firewall imposes the 

restriction that a thread may only communicate with conversation participants. A recovery 

mechanism is triggered if a participant raises an exception. 

Backward and forward recovery techniques may be employed by the exception handlers. If 

backward recovery is used, all participating threads roll back to the check-pointed state and 

retry, possibly executing an alternate algorithm. Forward error recovery is useful for errors that 

affect the environment, e.g. hardware devices, users etc., since they cannot backtrack. The 

conversation is only successful when all processes satisfy acceptance tests at the test line. In 

particular whenever recovety is co-ordinated, the domino effect [Randel175] is avoided. The 

domino effect occurs in the presence of backward recovery and process communication. It is 

possible that rollback may have an uncontrolled cascading affect, e.g. the state of all recipients 

must be rolled back if commands that involve message passing are undone. 

Campbell and Randell [Campbell86] introduce exception handling mechanisms into 

conversations for asynchronous systems. A system is structured as a series of actions or 

conversations, each containing a group of co-ordinating processes. Each action owns a set of 

predefined exceptions. Patticipants specify handlers for all or some of the exceptions. When an 

exception is raised the appropriate handlers are initiated within all patticipants. When a co

operating thread has raised an exception, error recovery should proceed in a co-ordinated way 

[GarciaOl]. If an exception is raised for which a component does not own a handler, an atomic 

action failure exception is signalled to the containing action. Garcia et al. [GarciaOI] identify 

three scenarios when participants may leave the action: 

I. No exceptions have been raised. 

2. An exception has been raised and the called handlers have recovered the action. 

3. There are no appropriate handlers or recovery is not possible. 

The resolution mechanism employs an exception tree to resolve different concurrent 

exceptions. The root of the smallest subtree containing all concurrently raised exceptions is 

selected as the resolving exception. Nested actions introduce the scenario whereby a thread 

ratses an exception simultaneous to participant activity in nested (internal) actions (Figure 

3-10). 
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Figure 3-10 Nested action activity 
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In this case, the internal atomic actions are aborted before the containing action invokes its own 

fault tolerant activity [Campbell86]. Each action defines one and only one abortion exception 

that is raised when the containing action signals an exception. Participants in the containing 

action suspend, while the nested action applies measures to abort itself and consequently 

terminate. Only then may the containing action handle the exception. 

3.3 Co-ordinated Atomic Actions 

The Co-ordinated Atomic Action scheme (CA action) [Xu95] integrates conversations, 

exception handling and transaCtions. Conversations provide co-ordination and backward 

recovery but do not support use of shared external resources [XuOOb]. The consistency of shared 

objects is controlled by transactions to guarantee the ACID (atomicity, consistency, integrity, 

durability) properties. A transaction may be considered as an action that encapsulates and 

performs a sequence of operations on shared objects [Xu95]. The effects of performing the 

transaction are written using a commit operation. An abort operation undoes the effects of a 

commit by employing backward/forward error recovery. External objects are designed 

independently of participating CA action threads and are responsible for maintaining 

consistency in the presence of concurrent updates. Transactions mask the effects of concunent 

updates and appear to be serially executed. The internal state of the transaction is invisible to 

others, i.e. execution appears as a primitive operation. 

Exception handling now involves shared objects. If an exception is raised during the activity 

of a CA action then there must be a guarantee that shared objects are in a consistent state after 

recovery. Forward or backward recovery techniques may be employed. If any of the external 

shared objects fails to reach a correct state, a failure exception must be signalled to the 

containing action [XuOO]. 

The semantics of a CA action are identified as follows: 

• If backward error recove1y is supported, a recovery line is established. 

• Establish a test line and a global test for the entire action. 

• Upon error detection, all participants co-operatively apply forward and/or backward 

recovery. 

• Explicit co-ordinated enor recovery is employed for internal threads. 

• External objects must possess atomicity and supply their own enor co-ordination 

mechanisms. 

• Communication is restricted to internal participants and external shared objects. 

• Accessing external atomic actions involves starting a transaction. 
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If the CA action is successful, the recovery line is di scarded, all related extemal atomic 

objects are committed and the CA action terminates. Alternatively, if the CA action fai ls all 

patticipants roll back to a checkpoint and execute alternates. Any transactions must be aborted 

during backward recovery. 

3.4 Open Multi-Threaded Transactions 

Kienzle et al. [KienzleOl] employ transactions (Figure 3- 11 ) as a system structuring unit 

and exception context. Threads can create or join a transaction at any time and may fork and 

terminate wi thin a transaction. Self-checking, shared transactional objects provide a 

communications medium fo r patticipating threads. Self-checking is understood as employing 

preconditions, postconditions and invariants . If any of these are violated an exception is 

propagated to the calling participant. In this sense, thread communication is implicit and 

participants are loosely coupled and independent. 

Transaction A 
, , , 

Transaction 8 
, , , , 

,~ , 
\ ' exception context 

, , ' , , \ ' 
\ ' , , 

' , 
\ e;~eption context 

I 
I , , 

I , \ ' 

I o 0 
shared transactional objects 

Figure 3-11 Open multi-threaded transactions 

Exceptions are classified as internal and extemal. Each participant defines a set of handlers 

for the internal exceptions that may be raised for the duration of the transaction. When a 

participant raises an exception, the conesponding handler is invoked, thus completing activity. 

Extemal exceptions are signalled explicitly outside of the transaction and trigger transaction 

abortion. If a pmticipant abmts, i.e. an extemal exception is s ignalled, the entire transaction is 

aborted. Consequently, the exception is either signalled to the enclosing transaction or backward 

recovery is employed and the transaction is retried . Equally, forward error recovery can perform 

compensating state actions on transactional objects. All external threads must leave 

synchronously and the transaction commits only when all pmticipants vote to commit. 

It is claimed that open multi threaded transactions are suitable for dynamic systems whereby 

the number of transaction participants are unknown a priori. Each participant thread strives to 

handle an exception loca ll y. Consequently, participants are autonomous in [KienzleO 1]: 

"Although they pe1jorm joint work inside a transaction and have a common goal, they are 

not tightly synchronised and can pe1jorm jobs even when not all of them are in the 

transaction". [KienzleO l] 
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Open multi threaded transactions assume that each exception can be handled locally by the 

participant that raised it. Each participant is independent in the sense that communication is 

achieved solely through accessing transactional objects. However, communication is still 

necessary to signal exceptions among participants. Consequently, a resolution mechanism is 

controversially abolished. Participants enter the transaction with the same goal. If an exception 

is raised participants are likely to be affected. It appears that continuous exceptions will cause 

the transaction to abort. This results in a retry or an external exception that is signalled to the 

containing environment. This is a performance hazard since cascading exceptions occur until 

the transaction aborts. At this point, transactional objects are in an erroneous state. Clearly, the 

scheme is only scalable to applications that are not inherently co-operative. 

4 Exception model for mobile agents 

Exception handling is essential for mobile agent systems, as is the case for other software 

systems. A developer is particularly interested in the abnormal situations that may occur during 

execution. Armed with this knowledge, robustness is enhanced by employing redtmdant code to 

address errors and provide a continued service. Exception handling can be utilised at the design 

stage. Without this knowledge and exception handling the application will tem1inate whenever 

an error is encountered. Mobile agents are distinguished by the ability to autonomously migrate 

code and state between hosts. Consequently, further challenges are introduced that threaten the 

robustness of an application. Typical examples are mobility (node and comtmmication link 

failures) and random interactions. Within an open environment security violations (inadequate 

access rights for host resources) also raise additional exceptions. So far, little attention is evident 

towards exception handling for mobile agents. This is despite the fact that previous experience 

has shown that exception handling is the most complex, misunderstood, poorly documented and 

least tested part of a software system [Pamas90]. An exception taxonomy is clearly useful as a 

first step to address exception handling in mobile agent systems. 

A taxonomy may be multi-level or single-level. A multi-level taxonomy is detailed 

consisting of one or more sub classifications. The only exception handling taxonomy for mobile 

agents that is known, to date, is by Tripathi and Miller [TripathiOl] (see Table 3-1 next page). 

A single-level taxonomy, selected by Tripathi and Miller [Tripathi01], comprises a single 

high level classification. Although a multi-level taxonomy may be complex and difficult to 

interpret there is the strong advantage that there exists a smaller degree of overlap between 

classifications. The taxonomy presented in Table 3-1 (see next page) concisely establishes a 

classification of exception scenarios within mobile agent environments. Such a benefit comes 

with the price of ambiguity. The mobility and security categories are linked. Assume that a 

mobile agent requests migration and subsequently relocates with insufficient access privileges. 
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Is the scenario classified as a mobility or security exception? A mobility exception is equally 

appropriate since the agent is unable to perfom1 the task upon migration. A similar scenario 

could arise between the security and conununication categories. An agent communicates with a 

proxy to access host resources. Resources are successfully allocated if the requesting agent has 

sufficient access rights . If the requesting mobile agent lacks sufficient access rights, is the 

scenario described as a security or communication exception? One approach would be to signal 

all exception classes that are relevant. However, further complication is introduced during 

design when the client component must ensme that all possible exceptions are caught. Certainly 

a measure of severity could be introduced into the taxonomy, e.g. those exceptions that result in 

termination. Furthermore, there exists some confusion between fault tolerance and exception 

handling. For example, message delivery failure is classified as an exception. However, tllis is 

treated as a fault tolerance issue by Murphy et al. [Murphy99]. Exception handling is a limited 

form of software fault tolerance, i.e. the operation that caused the fault can be ignored or a 

predefined degraded response is incorporated into the recovery handler. Conversely, a system is 

considered fau lt tolerant if the behaviour of the system despite the failure of some of its 

components is consistent with its specifications [Jalote94]. The effects of such failures are 

masked from the client. Therefore exception handl ing is not tmly fault tolerant, since a 

departure from the specification is possible. 

Exception Description 

Mobility Occurs when a migration request is made to a non existent host, 

cmmnunication link failure or insufficient security permissions. 

Security Some examples include insufficient resources allocated for a task and 

illegal modifications of mobile agent state. 

Cotmnunication Examples include failure to locate receiving mobile agent and message 

delivery fai lure. 

Co-ordination Mobile agents fail to conununicate within a bounded region of time. 

Configuration Occurs due to incorrect configuration of agent server, e.g. inadequate 

security privileges or incorrect location of classes utilised by the mobile 

agent. 

Table 3-1 Exception taxonomy 

Tripathi and Miller [TripathiO 1] adopt their taxonomy for an exception handling 

architecture specific to mobile agents . This is based upon work clone by Mark Klein [Klein99] 

for multi-agent systems. To the author's knowledge, these are currently the only approaches for 

exception handling specific to the agent paradigm. 



Chapter 3 Exception Handling and Fault Tolerance 53 

4. 1 Exception handling for mobile agents 

Traditionally, co-ordinated exception handling has been "hard coded" into co-operative 

agents resulting in agents that are difficult to maintain and understand. Klein [Klein99] proposes 

a knowledge based exception handling architecture that clearly separates exception handling 

from an agent's normal behaviour. An exception handling agent monitors an agent for 

symptoms and suggests both a diagnosis and resolution using a heuristic classification process. 

An action and query language provide the interface between the agent and exception handling 

agents. Actions performed for recovery may involve reordering, adding or removing tasks. 

Recovery is a plan that completes slots by querying the state of the agent. Tripathi et a/. 

[TripathiOl] adopt a similar framework for mobile agents. Exceptions are divided into two 

categories: (i) internal and (ii) external. An internal exception is handled independently by the 

mobile agent. External and unanticipated exceptions are resolved through co-operation with a 

group of agents via a guardian. The guardian is a central static agent that monitors application 

agents and provides global recovery. When a mobile agent encounters an external or 

unanticipated exception it notifies the guardian agent. Communication between mobile agents 

and their guardian may be achieved remotely or locally, i.e. the mobile agent can relocate to the 

guardian's environment. Exceptions are handled by communicating commands to mobile agents 

that, in turn, modify and query state. In some cases the environmental state may be modified. 

Example recovery commands include: retry, terminate and relocation. Similar to Klein's 

[K1ein99] architecture, a guardian agent may encapsulate an exception handling pattern. 

Klein's exception handling architecture [K1ein99] is limited to static multi-agent systems. 

Mobile agents are dynamic, i.e. an agent can relocate to a remote host. Adopting the architecture 

for mobile agent systems would consequently reduce performance, i.e. each server must host a 

knowledge base that mobile agents use to register a model of their normal behaviour. Agents are 

introduced for detecting exceptions and determining a resolution. These are only necessary for 

the duration of an agent's stay and are justified providing an agent performs a sufficient task. 

The process is repeated when a mobile agent migrates to the next agent server in the itinerary. 

Distributing the knowledge base at hosts visited by agents is clearly costly in terms of 

maintenance. However, the architecture incorporates domain independent recovery patterns, i.e. 

exception handling strategies for specific abnormal events. Benefits include enhanced 

understanding and testability, although agents must implement interfaces to report a behaviour 

model and enable modification of their actions. Domain independent recovery relies upon 

correctly identifying the causes of failure for each generic problem solving process in the 

knowledge base. An agent registers a model of its nonnal behaviour that is then matched with 

the set of generic processes. Applicable failure modes are thus derived. The recovery technique 

modifies an agent's actions appropriately based upon the knowledge of failure modes and their 

respective resolution strategy. The drawbacks are: (i) implementation is inherently complex to 
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account for generic exception handling, (ii) there is no guarantee for correctly detecting and 

handling exceptions within any application domain and (iii) recovery is costly when designing 

resolution strategies and envisaging a suitable taxonomy of generic problem solving processes. 

Knowledge of the application domain is needed to some extent for reliable recovery. 

Indirectly this is acknowledged in [Klein99]: 

"An important characteristic of heuristic class~fication is that the diagnoses represent 

hypothesis rather than guaranteed deductions: multiple diagnoses may be suggested by the 

same :-.ymptoms, and often the only way to verifY a diagnosis is to see if the associated 

prescriptions are effective". [Kiein99] 

An alternative is an exception handling framework that divides component activity into 

normal and exception handling behaviour. Normal activity corresponds to service provision. 

Exception handling is activated upon receipt of an external (signalled) exception or during the 

occurrence of a local (raised) exception. Forward recovery is employed whereby the system 

state is con·ected in response to exceptions predicted for the application domain. Although 

application dependent, this approach is preferred since it is cheap and easy to implement. For 

example, language primitives exist, e.g. try-catch blocks and throw statements, to identify 

handler code and signal exceptions to a client component. Application specific exceptions are 

easily introduced through an inheritance hierarchy. 

4.2 Exception handling for failure models 

A failure model defines the ways in which failures may occur m order to provide an 

understanding of the effects of failure [GoulourisOO]. Hadzilacos and Toueg [Hadzilacos94] 

provide a failure model (see Table 3-2 next page) that distinguishes between process and 

communication channel failures . for distributed systems. In order to establish an exception 

handling framework for mobile agents, a failure model is required to provide an understanding 

of the likely ways in which a mobile agent system fails. Only then can measures be taken to 

address failures. So far, there exists no failure model for mobile agent systems [WaldoOl]. 

Pleisch and Schiper [PleischOO] provide an insight into failures that are pe11inent to mobile 

agent systems. Mobile agents can operate within a synchronous and asynchronous environment. 

Mobile agent systems that operate within an asynchronous enviromnent have no boundaries on 

message passing and communication delays. The root cause of mobile agent failure is therefore 

a problem in asynchronous environments, since it is difficult to distinguish between a slow 

communication link and a mobile agent that fails by crashing. If a crash is diagnosed, it may be 

the case that the mobile agent is delivered on a slow machine or communications link, resulting 

in duplicate mobile agent execution. Conversely, blocking occurs if it is assumed that the 
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mobile agent will eventually be delivered due to a slow communication link, when in actual fact 

it crashed. Indeed, several scenarios exist for a crash failure. A mobile agent executes at an 

agent server. An agent server is a process that mns at each host visited by the mobi le agent. 

The following relationships exist between these three abstractions for a crash fa ilure: 

• Host crash: Affects mobile agents and agent servers. 

• Agent server: Mobile agents are lost. 

• Agent: Machines and agent servers are not affected. 

Failme Failure Effects Description 

class 

omission A processor or co1mnunication channel fails to 

perfonn actions expected. 

fai l-stop process Process remains halted. The failure is detected by 

other processes and stable storage is unaffected . 

crash process Process remains halted. Other processes may not 

detect such a fai lure. 

OllliSSIOn cha1mel An outgoing message, within a send buffer, is not 

received at the destinations incoming buffer. 

send process Process completes perfonning a send but the 

OllliSSIOil message is not assigned to the send buffer. 

receive process A message arri ves in the process' receive buffer 

OilliSSIOil but the process does not receive it. 

arbitrary Failure of a process or chmmel is arbitrary, i.e. 

messages may be transmitted randomly, channel 

omissions may be cmmnitted or a process may 

deliberately ha lt. 

timing process Occurs in synchronous distri buted systems where 

or bounded time limits are exceeded for execution 

challl1el time, message delivery and clock drift rate. 

clock process The local clock exceeds drift from real time. 

performance process Process exceeds time interval between performing 

two computations. 

performance channel Message transmission exceeds boundary. 

Table 3-2 Failure model for distributed systems 
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A failure model is needed to gain understanding of the likely ways in which an application 

can fail. Only then can exception detection mechanisms, and consequently recovery, prove to be 

effective. Furthennore, a measure of severity is implicitly gained to determine a resolution 

strategy. For example, security exceptions may be handled using termination. A mobility 

exception, e.g. a non existent agent server in the itinerary, may be handled by dispatching the 

agent to the next host in the itinerary. Clearly a failure model will differ across application 

domains. 

5 Summary 

This chapter has investigated techniques for exception handling in traditional serial and 

concurrent systems. Subsequently, the chapter outlined the challenges for exception handling in 

mobile agent systems. These are namely distinguished by the ability of mobile agents to 

autonomously migrate code and state between hosts, thus leading to increased complexity with 

respect to error detection and confinement. 

Finally, the chapter highlighted the fact that little attention is evident towards exception 

handling for mobile agents. An overview of existing approaches was briefly presented and 

highlighted the lack of a concrete failure model for mobile agent systems. A failure model is 

required to provide an understanding of the likely ways in which a mobile agent system fails. 

Only then can exception detection mechanisms, and consequently recovery, prove to be 

effective. 

The following chapter presents a failure model for mobile agent systems and focuses on 

providing exception handling for server crash failures. 
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Chapter 4 The Mobile Shadow Exception Han.dler 

1 ~ntroduction 

Chapter 2 discussed the mobile agent paradigm in general, identifying: what a mobile agent 

is, the architecture of a mobile agent system, applications of mobility and the current problems 

with mobile agents. A mobile agent is a computational entity that is capable of relocating its 

code and data to remote hosts to execute a task on behalf of a user. The sequence of hosts that a 

mobile agent visits is described by its itinerary. Weak mobility [Fuggetta98] is assumed, i.e. the 

mobile agent restarts its execution at each host. A remote host runs an agent server platform that 

provides an execution environment for the mobile agent. The home agent server is where the 

mobile agent is created. Remote hosts visited by a mobile agent are assumed to execute the 

same agent server platform. Chapter 3 then discussed fault tolerance and exception handling in 

general. In particular, exception handling was explored for mobile agents and concern was 

raised for the lack of an established failure model for mobile agent systems. The remainder of 

the thesis is aimed at exploring exception handling for mobile agent loss due to crash failures of 

agent servers. Furthermore, the thesis is concerned with how this can be used amongst a group 

of collaborating mobile agents. 

Chapter 3 highlighted the lack of a failure model for mobile agents. To the best of the 

author's knowledge there are few failure models for mobile agents. A failure model is important 

to understand the ways in which a distributed system can fail. The developers of any fault 

tolerant system must design a failure model that outlines: 

• Failures masked from the user. 

• Failure semantics, e.g. does a process halt when it fails. 

• Assumptions made regarding the environmental conditions of failure, e.g. there may be 

a boundary for the total number of failures tolerated. 

• Protective mechanisms to mask failures. 

• Level where fault tolerance is pitched, e.g. middleware or transparent to the application 

developer. 

• System model of the software and hardware environment. 

A system model of the software and hardware environment facilitates identifying the 

components that are susceptible to failure and the boundary, or coverage, for the effects of 

failures. In this thesis a model describes the entities or components that fonn the system and 

their interrelationships. The software environment is described at a high level of abstraction in 
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terms of the functional components and interrelationships. The hardware environment is also 

characterised by the model to a limited extent. For example, nodes in the network may be fully 

connected. 

A mobile agent system can fail in many different ways. For example, a communication link 

may fail or a network partition could prevent migration. Alternatively, a mobile agent may not 

have sufficient access rights to execute at a remote agent server. This thesis explores a crash 

failure model for mobile agents. Tolerating crash failures is particularly important for mobile 

agents since a mobile agent represents a single point of failure. Without fault tolerance, an agent 

server process or host that fails by crashing has the effect that all local mobile agents are lost 

and consequently fail to return results to the home agent server. 

The execution path of a mobile agent can be partitioned into stages (Figure 4-1 ). Each stage 

corresponds to an agent server in the mobile agent itinerary. 

Figure 4-1 Mobile agent stage execution 

There are three approaches to provide fault tolerance for mobile agents to survive agent server 

crash failures: 

1. Spatial replication: Each itinenuy stage is described by a set of agent servers that can 

potentially execute the mobile agent. A replica of the mobile agent is dispatched to each 

agent server. Agent servers in a stage monitor the executing mobile agent's agent server 

for failure. At the end of each stage, agent servers agree upon the agent server that 

executed the mobile agent and the set of agent servers for the next stage. Consensus is 

used for agreement. Once agreement has been reached the mobile agent is sent to the set 

of agent servers in the next stage. 

2. Temporal replication: One or more visited agent servers monitor the current agent 

server. If an agent server crash occurs, a mobile agent is dispatched to the next agent 

server in the itinerary or an alternative agent server. 

3. Implementation language: Crash failure handling IS implemented in a scripting 

language. The scripting language is used to specify a tree of travel plan choices for the 

mobile agent. If the mobile agent fails at a host, it backtracks to the nearest parent and 

selects an alternative choice or defers the visit to the host. Hosts visited by the mobile 

agent send heartbeat messages to the immediate previous host. 
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Transaction protocols are sometimes employed between sender and receiver agent servers to 

provide atomic migration, i.e. the mobile agent is accepted and executes at its destination agent 

server or not at all in the event of an agent server crash. There are two cases for the transaction 

boundary: 

• Receive, execute and send: A mobile agent has executed at an agent server only when 

it has been received, executed and then sent to the next agent server in the itinerary. 

• Send, receive, execute and acknowledge: A mobile agent has executed only when the 

previously visited agent server has received acknowledgement of completion. 

Not all mobile agent systems provide fault to lerance mechanisms against the crash of an 

agent server. Table 4- 1 summarises the mobile agent systems that explicitly provide fau lt 

tolerance for the loss of a mobile agent due to an agent server crash fa ilure. Each mobile agent 

system in Table 4-1 is named with the fault tolerance mechanism app lied for surviving crash 

fai lures, e.g. spatial replication, temporal replication or implementation language. Furthermore, 

the following propetiies are outlined for each mobile agent system: 

• Fault tolerance location : Is the fault tolerance algoritlm1 located at the agent serve r 

or in the mobile agent? 

• Recovery assumptions: Assumptions made regarding recovery of crash and 

comtmmication failures. For example, do agent server crash failures and network 

partitions eventually recover? 

• Communication assumptions: Assumptions made conceming communication. 

For example, is reliable messaging assmned fo r communication between mobile 

agents? 

• Transaction mechanism: Is atomic migration provided, or is the loss of a mobile 

agent handled after a crash has occurred? Alternatively, a transaction mechanism 

may not be used to handle the loss of a mobile agent due to an agent server crash 

failure . 

Location Recovery Comn1l1!1ication Transaction Description 

assumptions assumptions mechanism 

Mole agent host crash reliable atomic transaction 

[Strasser99] server and network messaging for migration and leader 

spatial partitions voting election to 

replication recover vote upon 

mobile agent 

executed 
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Net Pebbles agent none none rollback a lternative 

[MohindraOO] server script state migration 

temporal at visited points 

replication hosts specified 

and language using 

scripting 

language 

FA TOMAS mobile recover from reliable abort I consensus 

[PleischOO, agent crash and broadcast for undo for agent 

PleischOl , link failures consensus duplicate server 

Pleisch03] agent executed, 

spatial servers agent servers 

replication from false in next stage 

suspects and mobile 

agent sent 

JAMES agent host crashes reliable atomic transaction 

[SilvaOO] server and network messaging migration with two 

temporal partitions phase 

replication recover c01mnit 

between 

sender and 

receiver 

Design for agent network reliable atomic distributed 

GMDFOKUS server partitions messaging for migration transactions 

[DeAssisSilvaOO] recover events and leader 

spatial election 

replication 

NAP: Tacoma agent fail stop rely on transport no linear 

[Johansen99] server protocol transaction reliable 

replication mechanism broadcast to 

employed send agent 

Table 4-1 Fault tolerant mobile agent systems 

For a group of co-operating mobile agents the use of replicas at alternative agent servers can 

increase the complexity of the agent design. Fmthermore, there are also interoperability issues 

to consider. The location of the fault tolerance algorithm may be situated at the agent server or 

1 Fai l stop [Schlichting83] semantics define that a process halts upon fai lure and other processes detect 
the failure . Furthermore, stable storage is unaffected by failure and is readable by other processes. 
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at the mobile agent. Si tuating the fault tolerance algorithm at the mobile agent increases its size. 

Alternatively, the fault tolerance algorithm could exist at the agent server. However, all mobile 

agent platfonns must be willing to incorporate the new fault tolerance design. Furthermore, 

using replication for fault tolerance in the mobile agent paradigm is complicated due to the fact 

that, if the primary mobile agent replica fails, it is not independent of its environment. This is 

because mobi le agents indirectly modify the environment by service invocations. If the mobile 

agent fai ls then the modified state of the environment remains. Converse ly, a replica that 

crashes in a traditional distributed system results in the entire state being lost. Additional 

complexity is evident for fault tolerance in mobile agent systems since there is no natural 

instance that can mon itor the mobile agent as it migrates autonomously to remote hosts. 

Conversely, in traditional distributed systems the client monitors the server at its static location. 

An exception handling scheme to protect mobile agents against agent server crash failures , 

requires an exception handling model. This outlines a system model to describe how mobi le 

agents interact with software services at remote agent servers. Furthermore, the control flow for 

raising and signalling exceptions between mobile agents and agent servers is outlined. The 

remainder of the chapter is structured as fo llows. Section 2 introduces an exception handling 

model for mobi le agents. Section 3 then presents an overview of fa ilures for mobile agent 

systems and outlines the failure model adopted for mobile agents to survive agent server crash 

fa ilures. Section 4 describes a conceptual design that uses exception handling to protect mobile 

agents from agent server crash failures. Finally, section 5 describes an implementation of the 

conceptual des ign and section 6 provides a demonstration. 

2 An exception handling model for mobile agents 

A mobile agent can be regarded naturally as a software component. Figure 4-2 illustrates an 

adaptation of the exception model for software components presented in [Garcia01 , XuOO] for 

mobile agents. The main architectural components are the agent server, mobile agent and 

software services. The agent server executes as a thread within the interpreter process. The 

mobile agent is assumed to run as a tlu·ead within the agent server. An agent server AGi offers a 

set of services S = {s 1, s2, ... , s,}. A services; is a software component that a mobile agent 

manipulates by issuing method calls (service requests). A software component (i.e. an agent or a 

Mobile agent MA k service 
(with response or request response 
externa l exception 'f--.l.i.--,,.-J--'-----, 
from s~rvicc of AG~c) 

Services, or mobile agent MA, 
waiting for child MAk to return. 

Retry or signal failure exception 

Mobi le agent MA1 

Figure 4-2 Mobile agent exception handling model 
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service) defines its own set of internal or local exceptions I = { e~. e2, ... , ek} and associated 

handlers IH = {h~. h2, ... , hd that serve to provide corrective action. An internal exception 

occurrence ei triggers the exceptional activity hi within the software component. If the exception 

is successfully handled, normal activity resumes and completes, e.g. a service si completes its 

execution by providing a response to the mobile agent that made the service request. A mobile 

agent completes its activity by migrating to the next agent server in its itinerary. A mobile agent 

itinerary, itin, describes an ordered sequence of hosts that the mobile agent visits during its trip. 

A corrective action is perfonned by a service or mobile agent in response to an internal 

exception. This is application specific and may involve dispatching a compensating mobile 

agent CM to interact with service si at a remote agent server AGi. For example, a mobile agent 

may spawn a child to cancel a purchase made at AGj. 1 and locate a cheaper product because it 

exceeded its budget. 

A service si signals a set of external exceptions E = {interface, failure} to a mobile agent 

when it fails to satisfy the service request. There are two classifications for external exceptions: 

1. Interface: Input values supplied by the mobile agent violate the service specification. 

2. Failure: The service is unable to provide a suitable response, e.g. a commerce service is 

unable to meet the delivery deadline for a given order. 

Upon receiving an external exception the mobile agent may retry service si, locate a service 

at an alternative agent server or report back to the home agent server or parent mobile agent. 

Figure 4-2 illustrates that the exception handling model is recursive. For example, service si 

at agent server AGi may spawn a mobile agent MAk to visit an agent server AGk in reaction to a 

request made by MAj. Similarly, mobile agent MAi may spawn a child MAk to perfonn a 

delegated task such as information retrieval. Consequently, the owner of a child is either a 

service or mobile agent. A mobile agent is dispatched a second time if it crashed or repotted 

back to its owner with a failure exception. If the owner is a service a failure exception is 

signalled to the mobile agent that made the request, provided that the retry failed and no 

alternative service could be located. If the owner is a mobile agent, the failure exception is 

forwarded to its parent. The relationship between a parent and child is normally asynchronous. 

However, if the parent depends upon the results collected from its child, a synchronous 

relationship is introduced, i.e. the parent must remain stationary until its child has returned. For 

example, assume a mobile agent is dispatched to detennine a purchase plan for PC system 

components, e.g. motherboard, CPU etc. The mobile agent dispatches a child to determine the 

best deal for a CPU. Due to hardware dependencies, the parent can only consider a motherboard 

when its child returns. 
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At this point it is necessary to discuss the failure model of the mobile agent for crashes. 

When a mobile agent crashes it may be the result of a host failure or a machine failure. Without 

fault tolerance the mobile agent is lost at the agent server that fails. The crash failure model 

depends upon the application. For example, if operations performed by the mobile agent are 

idempotent then there is no need for transactions since the mobile agent does not alter the state 

of the agent server. However, if the mobile agent modifies the state of the agent server indirectly 

through service invocation, then action must be taken to ensure that the mobile agent performs 

the necessary steps exactly once. Exactly once semantics are difficult to achieve in 

asynchronous distributed systems since it is has been proved impossible to distinguish between 

a slow agent server and a crashed agent server process. Furthennore, transactions are necessary 

to provide all or nothing mobile agent execution. Firstly, the session state for mobile agent 

execution must be durable or persistent. If an agent server crashes and later recovers, then the 

session state for each mobile agent must be restored from stable storage. If there is an error and 

the mobile agent cannot proceed, then it must be possible to roll back the session state of the 

mobile agent at that agent server. Section 3 defines the failure model adopted in this thesis. 

3 Failure model 

A failure model defines the ways m which failures may occur in order to provide an 

understanding of the effects of failure [GoulourisOO]. Only then can recovery prove effective. A 

failure model is ideally defined by conducting field-based observations over a large time period 

for different systems in operation [Marsden02]. Infonnation may be collected such as failure 

classification, frequency and the activities that lead to failure. However, it is believed that few 

studies exist for mobile agents. So far, there are few concrete failure models for mobile agent 

systems [WaldoOl]. To the best of our knowledge the only existing failure model is presented in 

[TripathiOl]. Table 4-2 outlines a failure model for mobile agent systems. 

The focus of this thesis is an exception handling scheme to protect mobile agents from agent 

server and host crash failures. Consequently, the scheme provides the foundation for the 

exception handling model to operate in the presence of agent server and host crash failures. 

Section 2 outlined a model for mobile agent exception handling to aid understanding the effects 

of crash failures. At this point, the failure model adopted for agent server and host crash failure 

is outlined to describe environmental assumptions and the effects of failure. 

Mobile agents are assumed to operate in a synchronous network environment, e.g. a LAN. 

This means there is a maximum time boundary for migration and round trip time. Furthermore, 

network partitions, host crashes and communication link failures recover eventually. This last 

assumption is made by most of the fault tolerance schemes in Table 4-1. 
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Class Description 

Security There are two types of attacker: malicious agent or host. 

Malicious agent Unauthorised access to services, denial of service (e.g. recursive 

cloning), and monitoring agent server and mobile agent activity. 

Malicious agent Denial of execution, masquerading as a trusted agent server, state 

server COITUption, improper code execution and modifying system call results. 

Communication There are two classes of c01mnunication fault: transport and message. 

Transport Mobile agent transp01t failure, e.g. communication link failure or 

permission refused to execute at an agent server. 

Message Message failure due to dynamic location, e.g. out of sequence, 

duplicate or conupted messages. 

Software Software faults within the mobile agent or a service at the agent server. 

Invalid inputs or response fi·om a software service at the agent server. 

Denied access to a software service due to heavy load. 

Locking fai lmes, e.g. deadlock and livelock. 

Crash failures Mobile agent fails to rep01t back to the home agent server. 

Mobile agent Node crash due to hardware or systems software fault. 

loss 

Agent server crash due to operating system process deletion, system 

software failure or security attack. All active mobile agents and 

services at the agent server are lost. 

Mobile agent crash due to deadlock, node or agent server crash. 

Application Mobile agent blocks to conununicate with child, or parent, that has 

crashed. 

Table 4-2 Mobile agent system failure model 

A mobile agent is assumed to fail under the following ci rcumstances: 

• Agent server crash: All local mobile agents and software services are lost. 

• Host crash: The agent server process is lost in addition to all local mobile agents. 

• Communication link failure: The mobile agent system transpmt protocol fai ls to 

deliver the mobile agent to the destination agent server. 

Consequently, a crash fai lme denotes the occurrence of an agent server or host crash. This 

does not imply a mobile agent crash that occurs due to a software fault , e.g. an infinite loop. 

An agent server A Gk hosts a set of mobile agents, agents = { MA h MA2, ... , MAn } and 

services services= { S1, S2, . • . , Sr }. Services are software components that mobile agents use to 

access resources at the agent server environment. A mobile agent MAk migrates to the next 
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agent server in its itinerary, AGk+l, as a result of a go( AGdest) operation, where AGdest is the 

address of the next agent server in the itinerary, i.e. AGk+l· There are three scenarios for failure 

when AGk dispatches MAk to AGk+l at timet: 

l. AGk+l crashes at time u < t. 

2. MAk is accepted atAGk+l at time u. AGk+I fails by crashing at time v > u. 

3. Communication link failure between AGk and AGk+I at time u > t. 

In the first case the sender throws a failure exception when agent server AGk+I crashes 

before dispatching MAk. In the second and third cases, without fault tolerance, the mobile agent 

is lost. 

An agent server crash is assumed to obey fail stop [Schlichting83] semantics and occurs due 

to failure of the Java Virtual Machine or a host crash. This means that all local mobile agents 

and services at AGk+1 halt. Furthennore the dispatching agent server AGk eventually detects the 

loss of a mobile agent, due to communications failure or destination agent server crash. 

Eventually, it is assumed that agent server AGk+I recovers and restarts the software services. 

However, the agent server, AGk+t. is not responsible for restarting agents that were lost due to a 

crash failure. Consequently, the stable storage property of fail stop semantics [Schlichting83] is 

not required. 

Furthermore, it is assumed that the mobile agent executes at agent servers for infonnation 

retrieval only. In chapter 2 it was seen that distributed information retrieval is a popular 

application of mobile agents for collecting data at remote hosts and investigating the network 

topology. Consequently, the failure model adopted by the thesis assumes at least once 

application semantics. This means that a mobile agent may perform a task at an agent server at 

least one time, but possibly more. This is a reasonable assumption for information retrieval 

applications since a mobile agent does not modify the state of the agent server, i.e. interactions 

between the mobile agent and agent servers are idempotent. 

Finally, it has been established that the failure model is for crash failures in a synchronous 

network environment. If the failure model was implemented in an asynchronous network 

environment then false failure suspicions are likely to occur since there is no time boundary for 

migration between agent servers and the total round trip time to complete the itinerary. 

Consequently, it is impossible to distinguish between a mobile agent that is lost due to an agent 

server crash and a slow communication link or processor. However, if the operations perfom1ed 

by mobile agents at remote agent servers are idempotent then the damage is confined to 

duplicate agents executing at agent servers. 
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4 The mobile shadow scheme 

The mobile shadow exception handling scheme employs a pair of replica mobile agents, 

master and shadow, to survive agent server crashes. It is assumed that the home agent server is 

always available to its mobile agents. For example, if the home agent server crashes its mobile 

agents may return to a replica agent server. The master is created by its home agent server, 

home, and is responsible for executing a task Tat the hosts described in its itinerary. Initially, 

the master spawns a shadow, shadowhome, at its home agent server before it starts the itinerary at 

AGi.(Figure 4-3 a). Before the master migrates to the next host in the itinerary, i.e. AG;+1, it 

spawns a clone or shadowi and sends a die message to tenninate shadowhome(Figure 4-3 b). The 

shadowi repeatedly pings agent server AGi+J until it receives a die message from its master. The 

functionality of shadow and master roles is now discussed for exception handling. 

(a) 
ping 

home AG; 

(b) 

home AGi AGi--:-1 

Figure 4-3 Normal execution for the mobile shadow scheme 

A shadow is a clone of the master that acts as an exception handler for a master crash. The 

shadow pings its master's agent server. If a shadow detects a master crash it raises a local 

exception to signify master failure. The exception handler skips the master's current location 

and migrates the shadow to the next agent server. A shadow terminates when it receives a die 

message from its master. This signifies that the master has completed execution at AGi+J and 

spawned a new clone shadowi+J to monitor agent server AGi+2 (Figure 4-4 a). However, assume 

the master is lost due to an agent server crash at AGi+l· For example, AGi+J could crash before 

the master migrates or during execution. The shadow, shadowj, at AGi detects the crash of its 

master, spawns a new clone shadow'i and proceeds to visit agent server AGi+z (Figure 4-4 b). 

Consequently, shadowi is the new master, monitored by shadow 'i· 

(a) 0 
home AG; AG;+I AG;+2 

(b) 0 
home 

Figure 4-4 Handling a crash at the server occupied by the master 
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A master pings the shadow's agent server AG;. 1 concun·ently with the execution of task TIn 

the normal case (Figure 4-5 a) the master completes its execution and spawns a new clone 

shadow' to monitor the next host in the itinerary A G; 1 1• Before the master migrates a die 

message is sent to terminate the shadow at AG;.1• If the master detects a shadow crash it raises a 

local exception to signify the failure of its shadow. The master's exception handler then spawns 

and dispatches a replacement shadow" to the next preceding active agent server, i.e. A G;.k and 

pinging resumes between the new shadow and the master (Figure 4-5 b). Before the master 

migrates to the next host it sends a die message to terminate the replacement shadow at A Gi-k· 

(a) 0 
home AGi-1 AGi AGi+l 

ping 

(b) 0 
AGi-k AGi+l 

Figure 4-5 Handling a crash at the server occupied by the shadow 

The failure model, outlined in section 3, assumes a synchronous network environment and 

at least once application semantics, i.e. applications must be idempotent. If the mobile shadow 

scheme is adopted in an asynchronous network environment then false failure suspicions occur 

due to slow communication links or slow processor speeds. False failure suspicions have the 

following implications for the mobile shadow scheme in an asynchronous system with at least 

once and idempotent application semantics: 

• Duplicate master instances occur when a shadow falsely suspects a master crash. 

• Duplicate shadow instances occur when a master falsely suspects a shadow crash. 

• Redundant ping messages. For example, a shadow that is falsely suspected to have 

crashed by a master results in the replacement shadow and the master sending ping 

messages. Furthermore, the original shadow continues to ping the agent server 

occupied by its master. 

• Many master instances report back to the home agent server when a shadow falsely 

suspects a master crash. This increases the load at the home agent server. 

• The original master or shadow remains monitoring the agent server occupied by its 

partner. Consequently a duplicate instance is created if the original master or 

shadow correctly, or falsely, suspects that the agent server previously occupied by 

its partner fails by crashing. 
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It is assumed that an itinerary and mobile agent have the following operations and state: 

Itinerary: An itinerary encapsulates a queue, _destinations, of agent servers to visit, and a 

stack, _visited, of agent servers visited by the mobile agent. 

• goO: Remove next agent server in the sequence from _destinations queue and push onto 

_visited stack. Dispatch mobile agent to the next agent server. 

• skipQ: Skip next agent server by removing address from the head of _destinations queue. 

• lac= itin.getPrevDestination(k): Get the address of the k111 previous agent server visited. 

Mobile Shadow 

o itin:ltinerary instance. 

o master: True when the mobile agent is a master. 

• alive: False when a mobile agent is notified that its shadow or master has crashed. 

• dieProxy: Reference to shadow that master terminates before migrating to next agent server. 

• shadowProxy: Reference to master's shadow. 

o masterHost: Address of master agent server that shadow pings. 

• shadowHost: Address of shadow agent server that master pings. 

o shadowProxy = spawnShadowO: Spawn a new replica and retum its reference. The 

dieProxy is updated to reference the master's previous shadow and master is set to false in 

the replica. If the agent is a shadow that has detected its master crash then masterHost is set 

to the next available host in the itinerary. If the agent is a master then master Host is the next 

host to visit. The shadowHost is always the address of the current agent server. 

• PingThread(HostName, proxy): Thread that pings host HostName. The mobile agent proxy 

is notified of a crash by sending it a pingNotify message. 

• dispatch (proxy, HostName): Dispatch mobile agent proxy to agent server HostName. 

• send(die): Message that the master sends to tenninate its shadow. 

• receive( die): Shadow listens for die message sent by its master for termination. 

• receive(pingNotifj;): Notification of a master or shadow crash. 

• executeO: Start execution at the current agent server. 

• atHomeO: Retum true if at home agent server. 

Figure 4-6 describes the protocol. When the master starts at its home agent server (line 11 ), 

i.e. atHomeO=true, it spawns a shadow (line 13) and migrates to the first host in the itinerary 

(line 26). If the mobile agent is a master and is at a remote agent server (line 14) it creates a 

thread to ping the shadow (line 16). Before the master migrates to the next agent server it 

spawns a new shadow (line 19) and sends a die message (line 20) to terminate the old one. 

However, if the mobile agent is a shadow, i.e. master=.false, it invokes monitorMasterO (lines 

44-53) to create a ping thread to monitor the master's current agent server. Pinging continues if 

the master is alive and has not dispatched a die message, i.e. alive=true and !receive(die). 
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I : master = true 
2: alive= true 
3: 
4: {II application specific task } 
5: execute() 
6: 
7: {II is mobile agent at home agent server} 
8: atl-Iome() 
9: 
I 0: run(){ II mobile agent execution thread } 
II: {if master && ati-Iome() { I I master at home } 
12: { II spawn a shadow } 
13: shadowProxy=spawnShadow() 
14: else if master {II if mobile agent is a master} 
15: { II start thread to ping shadow toe.} 
16: pingShadow( shadow .Host ) 
17: execute() { II ex~cute application task } 
18: {II spawn a new shadow} 
19: shadowProxy=spawnShadow() 
20: send( die) {II terminate previous shadow} 
21: else { II mobile agent is a shadow } 
22: monitorMaster() { II ping master } 
23: 
24: if master 
25: { II migrate to next agent server } 
26: itin.go() 
27: } 

28: pingNotify() { II callback for ping thread } 
29: { alive=false 
30: if master {II if master then replace shadow} 
31: shadowDispatched=false; k = 2 
32: prev = itin.getPrevDestination( k) 
33: while !shadowDispatched && prev !=null 
34: try 
35: shadowProxy=spawnShadow() 
36: pingShadow( prev) 
37: dispatch(shadowProxy, prev) 
38: shadowDispatched =true 
39: catch(Unknown.HostException) 
40: k++ 
41: prev=itin.getPrevDestination( k) 
42:} 
43: 
44: monitorMaster() 
45: { { II start pinging master } 
46: PingThread pinger=new 

47: 
48: 
49: 
50: 
51: 
52: 
53: } 

PingThread(master.Host, this) 
pinger.start() 
while(alive && !receive( die)) 

if !alive { II if master crash detected } 
itin.skip() { II skip crashed agent server } 
shadowProxy=spawnShadow() 
master= true {I I change to master status} 

Figure 4-6 Mobile shadow scheme pseudocode 
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If the ping thread detects a crash the pingNotifYO callback method is invoked (lines 28 - 42) 

and the alive flag is set to false to trigger exception handling activity. If the mobile agent is a 

master then the shadow exception handler is activated (lines 31 - 41) to spawn a replacement 

shadow at the first active previous agent server, itin.getPrevDestination(k). The master can then 

ping the location of the new shadow (line 36). Alternatively, if the mobile agent is a shadow 

then master exception handling activity is activated (lines 49-52). The master exception handler 

spawns a new shadow and initialises the shadow to become the new master, i.e. master= true. 

The mobile shadow exception handling scheme offers the advantage that all agent servers 

are not revisited in the event of a crash failure, since a replica is available at an agent server that 

precedes the master. Consequently, there is less infonnation loss. However, greater performance 

overheads are imposed on a mobile agent since a replica must be spawned by the master before 

it migrates to the next host in its itinerary. Furthennore, a limited number of remote agent server 

crashes are addressed. 

In this research the following assumptions are made to protect mobile agents from agent 

server crashes: 

• Reliable communication links are assumed. 

• All agent servers are correct and trustworthy. 

• A mobile agent crashes when its current local agent server halts execution due to a host 

crash or fault in the agent server process. 
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• No stable storage mechanism is provided at visited agent servers for the recovery of 

executing agents. 

• At least once failure semantics are assumed whereby the agent performs its designated 

task at least once. If an agent server crashes it is possible to repeat the task at agent 

servers ignoring those that crashed. 

• A mobile agent ignores crashed agent servers. 

• A mobile agent visits agent servers to consume infotmation, i.e. agent server state is not 

modified. 

• There are no simultaneous crashes of agent servers where master and shadow operate. 

5 Implementation 

So far the failure model and design of the mobile shadow scheme for mobile agents to 

survive agent server crash failures has been discussed. This section describes an IBM Aglets 

[Oshima98] implementation of the mobile shadow exception handling scheme. Firstly, the 

rationale for using the IBM Aglets [Oshima98] mobile agent system is outlined in section 5.1. 

Subsequently, an overview of the implementation is then provided in section 5.2 with the aid of 

UML class and sequence diagrams. 

5. 1 Rationale for IBM Aglets 

A summary of the features of existing mobile agent systems is provided in chapter 2, 

section 2.7. Two mobile agent systems were considered for the implementation of the mobile 

shadow exception handling scheme. These are Ajanta [Tripathi02] and IBM Aglets [Oshima98]. 

Ajanta [Tripathi02] provides exception handling for mobile agents. IBM Aglets [Oshima98] 

provides a partial implementation of the OMG MASIF interoperability standard [Milojivcic98]. 

Neither mobile agent system protects mobile agents from agent server crashes. 

Ajanta [Tripathi02], developed at the University of Minnesota, is a mobile agent system for 

research into exception handling and security. The concept of a guardian software object is used 

to handle unprecedented exceptions encountered by mobile agents at remote agent servers. An 

introduction to exception handling in the Ajanta [Tripathi02] mobile agent system is provided in 

chapter 3, section 4.1. If a mobile agent encounters an unprecedented exception at a remote 

agent server, it can co-locate with the guardian software object at the home agent server for 

remedial action. The security model of Ajanta [Tripathi02] focuses on protecting agent server 

resources from malicious mobile agents. It is assumed that agent servers are not malicious. An 

Ajanta agent server provides a registry of software services that are available to visiting mobile 

agents. Each mobile agent is assigned a set of credentials that describe its name, owner, creator 

and code base. An Ajanta agent server inspects the credentials of a mobile agent to authenticate 

access to local services. Based upon these credentials an agent server creates a proxy to the 
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requested software resource. Consequently, mobile agents are not given direct access to 

software resources. Instead, a proxy controls access to software resources based upon the 

mobile agent's credentials. 

Aglets [Oshima98] is a mobile agent system originally developed by IBM. In August 2000 

IBM released Aglets as an open source project at http://aglets.sourceforge.net/. Unlike Ajanta 

[Tripathi02], IBM Aglets [Oshima98] does not have an explicit model for exception handling. 

There is also no registry of software services available to visiting mobile agents. Instead, 

visiting mobile agents can retrieve a list of mobile agents currently executing at the agent server 

for c01mnunication by proxy. In this case mobile agents can interact with resources through 

static mobile agents. Controlled access to agent server resources is therefore limited with iBM 

Aglets [Oshima98]. 

Initially, Ajanta [Tripathi02] was selected as the mobile agent system for the 

implementation of the mobile shadow exception handling scheme. This was due to the 

availability of an exception handling model for mobile agents and controlled access to agent 

server resources. Indeed, an initial experiment using Ajanta [Tripathi02] is detailed in chapter 6 

section 2.1. However, there were problems encountered and bugs uncovered. Furthermore, at 

the time of implementation Ajanta [Tripathi02] was only compatible with Java JDK 1.1. Work 

was underway, at the University of Minnesota, to migrate Ajanta [Tripathi02] for compatibility 

with JDK1.2+. However, a release was unavailable at the time of implementation. 

Consequently, Ajanta [Tripathi02] was abandoned and development migrated to IBM Aglets 

[Oshima98]. 

5.2 An IBM Aglets implementation 

The IBM Aglets [Oshima98] implementation of the mobile shadow scheme consists of two 

packages: 

• Shadow package: Migrates with application mobile agents. Provides the mobile 

shadow exception handling scheme, including an itinermy pattern and a ping utility. 

• Server package: Distributed at agent servers visited by the mobile agent. Provides an 

agent server and a utility that allows agent servers to respond to ping messages from a 

shadow or master. 

This section begins with an outline of the shadow and server packages for the IBM Aglets 

[Oshima98] implementation of the mobile shadow exception handling scheme. An overview of 

a mobile agent's life cycle in the mobile shadow exception handling scheme is then provided 

with the aid of a UML state diagram for the roles of master and shadow. Subsequently, 
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implementations of the following conceptual operations are outlined with the aid of UML 

sequence and class diagrams: 

• Spawn a shadow. 

• Terminate a shadow. 

• Dispatch a replacement shadow. 

• Ping the availability of an agent server. 

Application developers must be able to develop an application task that is independent of 

the mobile shadow implementation. The section concludes with a description of the classes that 

enable application development with the mobile shadow exception handling scheme. 

5.2.1 Implementation classes 

Figure 4-7 illustrates a UML class diagram for the shadow package. The master and shadow 

mobile agents are both instances of the MobileShadow class. This encapsulates the protocol for 

the mobile shadow exception handler scheme outlined in section 4. 
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Figure 4-7 UML class diagram for mobile shadow agent package 

The MobileShadow class contains an instance of a sequential itinerary (class Seqltinermy) 

and a ping utility (class Ping) to ping an agent server occupied by a shadow or master. The 

itinerary is based upon the itinerary pattern of [Aridor98]. Operations are provided to retrieve 
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the next address from the itinerary, getNextDestinationO, move the mobile agent to the next 

agent server, goO, and determine if there are more destinations to visit, I.e. 

hasMoreDestinationsO. The itinerary pattern outlined in [Aridor98] is extended to log a history 

of agent servers, visited. Each entry in the visited vector represents the URL of a visited agent 

server. Consequently, it is possible to retrieve the URL of the k111 previous agent server, 

getPrevDestination(k). Another extension to [Aridor98] is the possibility to bypass the next 

agent server in the itinerary. This is useful when the next agent server has failed by crashing. 

The skipO operation returns the URL of the agent server subsequent to the one bypassed. 

A mobile shadow agent pings the availability of its master or shadow using an instance of 

the Ping class. A Ping object is transient, i.e. its state is not saved upon migration, and contains 

the host address and port of the master or shadow's agent server. The Ping class executes the 

pingO operation within a thread that continuously monitors the agent server occupied by the 

master or shadow. Consequently, each agent server assigns security pennissions for visiting 

mobile agents to connect and ping port number 5555. 

Figure 4-8 illustrates a UML class diagram for the server package. The Server class 

represents an agent server implementation. The Server class is a wrapper for an AgletsContext 

object, i.e. the core IBM Aglet class for sending, receiving and hosting mobile agents. Each 

agent server has a propertyFile field that references the path to a file that configures the agent 

server. 

Server 
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contcxtNamc: String 
propcrtyfilc : String 

+ Scrvcr(String Name, String FilcPath) 
+ stm1() : void 
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+ run{ ) : void 

setScrverl'ort( ) : void 

* 

java. h1ng.Runnablc 
<< lntcrlilcc >> 

+ nm(): void 

; 

Pingllandler 

socket : Socket 
handlcrThrc-Jd : Thread 

+ l'ingllandlc1 ( Socket socket ) 
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I 
I 

Figure 4-8 UML class diagram for mobile shadow set·vet· package 

The configuration variables for the server are: 

• AGLET_CLASS_PATH: Java class path where IBM Aglets [Oshima98] searches for 

classes referenced by an aglet. 

• AGLET_EXPORT_PATH: Java class path that represents the code base, I.e. the 

directory where a remote agent server requests classes. 

• PORT: The TCP/IP port that the agent server listens to for ping requests. 
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The startO operation boots the agent server. This involves loading configuration variables 

from file, starting a ping server thread and booting the IBM Aglets [Oshima98] runtime. 

Each agent server nms a pmg server (class PingServer) on a gtven port. In this 

implementation port 5555 was selected. Assigning a fixed port number for ping operations is a 

realistic assumption, since operating systems also provide services at fixed ports. For example, 

the echo service is assigned to port 7. Class PingServer represents a ping server thread that 

continuously listens for a connection on port 5555. For each request a thread (class 

PingHandler) is spawned that echoes back the string sent. 

5.2.2 Mobile shadow life cycle 

So far, it has been established that the MobileShadow class (Figure 4-7) represents a mobile 

agent. A master and shadow in the mobile shadow exception handling scheme are both 

instances of the MobileShadow class. Figure 4-9 illustrates a UML state diagram for an instance 

of the MobileShadow class. The runningMaster and runningShadow superstates describe the 

execution of the mobile agent as a master and shadow respectively. 
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Figure 4-9 UML state diagram for a mobile agent in the mobile shadow scheme 

A mobile agent executes the role of a master when it is in the runningMaster state. This is 

synonymous to the runParent operation of the MobileShadow class (Figure 4-7). The arrival 

state is triggered when a master is created, or aiTives, at an agent server in the itinerary. This 

allows the master to determine the subsequent action for its current location. 

When the master is created at the home agent server the runHomeO operation is executed. 

This triggers the transition from the arrival to the cloning state. A shadow is spawned and the 

master migrates to the next agent server. This activates the transition from the cloning to arrival 

state. Consequently, the master is now located at the first remote agent server in the itinerary. 
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When the master arrives at a remote agent server it invokes the pingShadowO operation. 

This triggers the master to enter the monitoring shadow state. Upon entry a ping thread is 

spawned, ping.startO, to monitor the agent server occupied by the shadow. Subsequently, the 

normal state sequence is triggered, i.e. execute the application task, execution, spawn a new 

shadow, cloning, and terminate the old shadow, terminating shadow. Figure 4-9 illustrates two 

transitions from the terminating shadow state. The transition to the arrival state is triggered 

when the master has not visited all agent servers in the itinerary, i.e. itin.hasMoreDestinationsO 

=true. Alternatively, the master terminates itself when it arrives back at the home agent server, 

thus completing the itinerary. 

When the mobile agent has arrived back at the home agent server and completed its 

itinerary, it invokes the sendDieO operation. This triggers the transition from the arrival state to 

the terminating shadow state. Consequently, the master sends a die message, sendDieO, to the 

shadow and terminates itself. 

So far, the normal mode of execution for the master has been described. The transition from 

the execution to replacing shadow state represents an exception handler for the loss of a shadow 

due to an agent server crash. The ping thread notifies the master when the agent server occupied 

by the shadow fails by crashing. When a master receives a notify message from its ping thread it 

invokes the pingNot!fyO operation. This triggers the master to enter the replacing shadow state. 

The master invokes its dispatchReplacementShadowO operation to spawn and dispatch a 

replacement shadow to the next available agent server. Furthennore, the master invokes the 

monitorShadowO operation to spawn a new ping thread to monitor the agent server occupied by 

the replacement shadow. The master then resumes the execution state. 

A mobile agent executes the role of a shadow when it is in the runningShadow state. This is 

synonymous to the runChildO operation of the MobileShadow class. Initially, a shadow 

executes the monitorParent operation that triggers the monitoring master state. In this state the 

shadow spawns a thread to ping the agent server occupied by its master, ping.startO, and then 

executes the blockO operation. Subsequently, the shadow waits for receipt of a die message or 

notification from the ping thread that the agent server occupied by the master has failed by 

crashing. The dieO operation is invoked when the shadow receives a die message from its 

master. This sets the dieReceived flag to tme and subsequently triggers the transition to the 

disposal state, thus terminating the shadow. 

The triggerHostAliveO operation is invoked when the shadow receives notification of an 

agent server crash failure from its ping thread This sets the alive flag to false, thus triggering 

the transition to the cloning state. This transition represents an exception handler for the loss of 
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a master, due to an agent server crash. Subsequently, the shadow spawns a new shadow and 

migrates to the next agent server in the itinerary. This is denoted by the transition from the 

cloning state, in the runningShadow super state, to the arrival state of the runningMaster super 

state. The shadow is now the new master. 

5.2.3 Spawning a shadow 

A mobile agent, in the mobile shadow exception handling scheme, spawns a shadow by 

invoking the spawnChild operation (see MobileShadow class, Figure 4-7). The following 

requirements must be taken into account when a shadow is spawned. Firstly, the master must be 

able to produce a replica, or shadow, with an initial state. Secondly, both a shadow and master 

must be aware of the location of its partner. This enables a shadow and master to ping the 

availability of the agent server occupied by its partner. Finally, the master must maintain a 

communication reference to the current shadow before a new shadow is spawned to monitor the 

next agent server in the itinerary. Consequently, the master must be able to instruct the current 

shadow to dispose of itself. 

IBM Aglets [Oshima98] provides the ability to produce a replica of the state and behaviour 

of a mobile agent in volatile memory. The IBM Aglets specification [Oshima98] describes this 

as a clone operation that is synonymous to spawning a shadow in the mobile shadow scheme. 

The Aglet class (Figure 4-7) provides the clone operation to produce a replica mobile agent. 

When a clone operation is performed, a proxy to the new clone is created. Consequently, the 

proxy can be used to dispatch the clone. 

Most Java mobile agent systems allow reactions to be developed for a mobile agent in 

response to mobility events, e.g. dispatch and arrival at an agent server. IBM Aglets [Oshima98] 

allows a mobile agent to react when a clone operation is performed. This is achieved using call 

back operations. A mobile agent implements the CloneListener interface (Figure 4-7) and 

registers for notification of clone operations, i.e. addC!oneListener(thi~). Table 4-3 lists the 

clone call back operations, when they are invoked and on which object, i.e. the master or clone. 

on Cloning before clone operation master prepare state for cloning 

onClone when clone is created clone initialise unique state in clone 

onCloned after clone created master clean up state of master 

Table 4-3 Aglet clone operations 
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Figure 4-l 0 illustrates the sequence of operations that occur when a master spawns a 

shadow. Before a new shadow is spawned a proxy to the current shadow is saved, dieProxy = 

shadowProxy, so that the master can tenninate it before migrating to the next agent server in the 

itinerary. The master invokes the spawnChild operation to spawn a shadow. The clone operation 

is then performed and a reference to the new shadow is saved, shadowProxy. The onCloneO is 

then invoked on the shadow which sets the shadow to a default state, i.e. it is not a master 

(master=false) and the agent server occupied by the master is currently alive (alive=true). The 

itinerary of the shadow is then initialised with the shadow's proxy. This is necessary so that the 

itinerary operates on the new shadow, not the master. Finally, the onClnnedO operation is 

invoked when cloning is complete. 

shadow: 
MobileShadow 

dieProxy = shadow Proxy 

master= false 
alive= true 
itincrary.init(this) 

Figure 4-10 UML sequence diagram for spawning a shadow 

With respect to the mobile shadow exception handler scheme, a shadow must ping the 

location of its master. Similarly, a master must ping the location of its shadow. Recall that the 

master and shadow are both instances of the MobileShadow class (Figure 4-7). The master Host 

and shadow Host variables log the URL for the agent server occupied by the master and shadow 

respectively. The master initialises these variables in the on Cloning operation. 

Figure 4-11 illustrates the behaviour of a clone operation perfonned by the master. There 

are three scenarios in which a shadow is spawned: 

• Migration of master to next agent server in the itinerary: Before the master migrates 

to the next agent server in the itinerary a new shadow is spawned. The masterHost 

variable is configured as the URL of the next agent server in the itinerary. 

• Shadow replaces its master lost due to an agent server crash: The masterHost 

variable is configured as the URL of the next available agent server in the itinerary. 

• Master replaces a shadow lost due to an agent server crash: The masterHost 

variable is configured as the URL of the agent server currently occupied by the master. 



Chapter 4 The Mobile Shadow Exception Handler 

clone 

masl<'rHost=itin g<'<tNextDestinatim(' 
shatlowHost"' 
getAglctCont<'XU ).~elHostinglJR U l 

masterHost=itrn ~klpt) 
shadawHost= 
gcl>\glell"ontext()g.:tHootingURL() 

lll:l>terilost= sharlmvHo.~t = 
~ctAgktContextr),getHostingURU l 

Figm·e 4-11 UML state diagram for aglets clone operation 
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In each scenario the shadowHost variable is initialised with the URL of the current agent 

server. Consequently, when the master arrives at the next agent server in the itinerary the 

shadowHost variable refers to the URL of the agent server occupied by the shadow. 

5.2.4 Terminating a shadow 

A master employs synchronous message passing to terminate a shadow. An aglets message 

is an object. For example, new Message("die '') creates a message of type die. The syntax for 

sending a synchronous message is receiver.sendMessage(Message) where receiver is a proxy to 

the receiving mobile agent. The sender blocks until the receiver has handled the message. 

master: shadow : Aglet 
MobilcShadow 

sendMessagc(m) handleMcssagc(m) die() 

dispose() 

Figure 4-12 UML sequence diagram for master terminating a shadow 

Figure 4-12 illustrates a UML sequence diagram for the sendDie operation, invoked by the 

master to terminate its shadow. A die message is created by the master, Message("die ''), and 

dispatched to the shadow via its proxy, dieProxy.sendMessage(m). Whenever an ffiM Aglets 

[Oshima98] mobile agent receives a message the handleMessage operation is invoked. This 

operation allows the developer to react to different messages. If a die message is received, 

msg.sameKind("die '')=true, the shadow disposes itself, disposeO. and sets its dieReceived flag 

to true. The change in state of the dieReceived flag gracefully exits the run thread of the shadow. 

Consequently, the shadow is terminated. 
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5.2.5 Dispatching a replacement shadow 

A master monitors the agent server occupied by its shadow. If the master detects the failure 

of its shadow's agent server, it spawns a replacement and dispatches it to the next available 

agent server previously visited. The procedure for sending a replacement shadow (Figure 4-13) 

loops until the shadow is successfully dispatched or no available agent server is found, i.e. 

[prevDestination != null && !dispatched]. 
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Figure 4-13 UML sequence diagram for dispatching a replacement shadow 

Before entering the loop the master uses the Seqltinermy class (Figure 4-7) to detennine the 

URL of the last agent server visited prior to that currently occupied by the shadow. This is 

achieved by the getPrevDestination operation. The loop begins by spawning a shadow and 

initialising its proxy, shadowProxy. The shadow is dispatched to the previously visited agent 

server via its proxy, dispatch(prevDestination). Furthermore, the dieProxy is updated to 

reference the replacement shadow so that it can be tenninated before the master migrates to the 

next agent server in the itinerary. Finally, the master spawns a thread to ping the agent server 

occupied by the replacement shadow, pingShadow(prevDestination) and sets the dispatched flag 

to true to exit the loop. 

The dispatch method raises an exception if the agent server referenced by prevDestination 

has failed by crashing. Consequently, the URL of the next available previous agent server 

visited in the itinerary is retrieved. The dispatched flag is reset to false and the loop continues. 

The option box in Figure 4-13 highlights the sequence of events for this scenario. 
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5.2.6 Pinging an agent server 

The master and shadow spawn a ping thread (class Ping Figure 4-7) to monitor the 

availability of the agent server occupied by its partner. Figure 4-14 illustrates the creation of a 

ping thread and the execution sequence for notification of an agent server crash failure. 

agent: 
MobileShadow 

pingShadow( URL) : Ping( host, proxy, 5555) : 

[agent server at 
the address 
denoted by host 
crashes] 

stat1() 

pingNotifyQ 

sendOncWayMessage(msg 

[master= true] 
dispatchReplacemcn~Shadow() 

I 

I 

triggerHostAiivc() : 
I 

Figure 4-14 UML sequence diagram for notification of an agent server crash failure 

A ping thread (class Ping) accepts three parameters for creation: 

• Host: The URL string representing the agent server to ping. 

• Proxy: A proxy to the mobile agent. This is used to notify the mobile agent if an agent 

server crash is detected. 

• Port number: All agent servers listen for ping messages on port 5555. 

When the thread is started it invokes its ping method. The ping method connects to a Java 

TCP/IP server socket on port 5555 at the host denoted by the agent server URL. A string is then 

sent and echoed back by an instance of the PingHandler class at the agent server. The ping 

method continuously pings while the agent server is alive. If the ping utility fails to connect to a 

Java server socket, it invokes its pingNotify operation. The option box in Figure 4-14 highlights 

the subsequent sequence of events. The ping utility notifies a mobile agent, via its proxy, that 

the agent server has failed by crashing. When a MobileShadow instance receives a pingNotifY 

message it invokes its own pingNot!fy operation. If the mobile agent is a master, master = true, 

a replacement shadow is dispatched, dispatchReplacementShadowO. Furthermore, the alive flag 

is set to false, triggerHostAliveO. If the mobile agent is a shadow then the state change of the 

alive flag triggers replacement of the master. 
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5.2. 7 Application development 

So far, it has been established that the master, is responsible for performing an application 

specific task at each agent server visited in the itinerary. The mobile shadow exception handling 

scheme is intended to be transparent to application developers. This implies the following 

requirements for application development. Firstly, it must be possible to develop an application 

specific task that is perfonned by the master at each agent server in the itinerary. Furthermore, 

an application task may require access to local software resources at the current agent server. 

For example, a database resource may be queried or an application object may perfonn a task on 

behalf of the mobile agent. It is assumed that a mobile agent does not modifY the local resources 

at an agent server. Subsequently, prior to execution, the developer must be able to locate local 

resources at each agent server. 

The UML class diagram in Figure 4-15 illustrates the abstract classes for application 

development in the mobile shadow exception handling scheme. So far, it has been established 

that the master and shadow are both instances of the MobileShadow class. Furthermore, the 

MobileShadow class is initialised with an instance of the ApplicationObject class and a vector 

containing the URLs of agent servers to visit in the itinerary. These are encapsulated within an 

Args object. The application developer must develop a class that derives from the 

ApplicationObject class. This class represents the application specific task performed at each 

agent server and contains two operations that must be implemented, execute and initResources. 

The execute operation is invoked by the master to perform the application specific task at each 

agent server. The initResources operation uses an instance of the ResourceManager class to 

locate application specific resources at the agent server. Figure 4-15 illustrates that a mobile 

agent, MobileShadow, is assigned the role of resource manager. 
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Figure 4-15 UML class diagram for application development in the 
mobile shadow scheme 

The IBM Aglets [Oshima98] implementation of the mobile shadow exception handling 

scheme provides the following concept for mobile agents to locate resources at an agent server. 

An agent server, AGk. hosts a stationary mobile agent, SMk, for each resource, Rk. This acts as 

an intermediary, or proxy, between a visiting mobile agent and the resource. It is assumed that 
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the mobile agent system allows visiting mobile agents to inspect a list, execution1;5r, of active 

mobile agents at the agent server. A mobile agent can be retrieved from the list identified by its 

unique class name. A visiting mobile agent, MAk, locates a resource, Rk, indirectly by retrieving 

a handle to the stationary mobile agent, SMk, from the list of active mobile agents, execution 1;sr, 

at the agent server. Subsequently, the mobile agent communicates with SMk to use resource Rk. 

IBM Aglets [Oshima98] provides the AgletContext class for visiting mobile agents to query the 

environment of its current agent server. This provides the getAgletProxies operation to allow 

mobile agents to retrieve a list of executing mobile agents. Each list entry is a proxy. 

Subsequently, the getResourceByName operation retrieves a proxy to a stationary mobile agent 

at the agent server. The application developer forwards requests to the stationary mobile agent 

to use the resource. 

The UML sequence diagram in Figure 4-16 illustrates the scenario for a master executing an 

application task. When a master arrives at the next agent server in the itinerary it invokes the 

execute operation. This starts the application task by invoking the start operation, start(master), 

of the application object. The start operation accepts an instance of the master as the resource 

manager. When an application task is started the initResources operation is invoked. This is an 

abstract operation that is overridden by the application developer to access local resources at the 

agent server. A resource is accessed using the getResourceByName operation of the resource 

manager. Application developers specify the full class name of the stationary mobile agent that 

acts as a proxy to the required resource, e.g. shadow.DBManager. Once local resources have 

been located the application task is executed at the agent server, i.e. execute. 

Figure 4-16 UML sequence diagram for executing an application task 
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6 Demonstration 

This section concludes with a demonstration of the IBM Aglets [Oshima98] implementation 

of the mobile shadow exception handling scheme. The demonstration is deployed within a 

l Ombps local area network using four 64MB Intel Pentium II 400Mhz (Celeron) PC's running 

RedHat Linux 7.2 and IBM Aglets version 2.0.2. The case study scenario, outlined in chapter 5, 

is used, i.e. a single mobile agent visits three agent servers to detennine the best buy for a 

specific product. The itinerary is illustrated in Figure 4-17. 

Home agent set·vet· 

host pc-dpart 12.dur.ac.uk 

agent server supplier 

host pc-dpart05.dur.ac.uk host pc-dpart II .dur.ac.uk host pc-dpart08.dur.ac.uk 

I I I 
agent server Supplier! agent server Supplier2 agent server Supplier3 

Figure 4-17 Itinerary 

Figure 4-18 illustrates a sample agent server running at host pc-dpart08.dur.ac.uk. When an 

agent server is started its environment is configured. Configuration tasks include: starting a 

tluead to accept ping requests and initializing the IBM Aglets [Oshima98] runtime. When the 

agent server is successfully configured it displays its name and waits for visiting mobile agents. 

Configuration of the IBM Aglets [Oshima98] agent server is described in section 5 .1. 

Figure 4-18 Agent server running at host pc-dpatt08.dur.ac.uk 

The execution of a mobile agent, with no agent server crash failures encountered, 1s 

illustrated in Figure 4-19. Tenninal windows are used to display the output for each agent server 

visited in the itinerary. A mobile agent is dispatched to visit three agent servers. At each agent 

server the following activities are performed by the master: 

• Execute the application task. 

• Spawn a shadow to ping the availability of the next agent server in the itinerary. 

• Terminate the old shadow, at the preceding agent server, before tnigrating to the 

next agent server in the itinerary. 
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Figure 4-19 Normal mobile agent execution 
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For example, when the master has completed execution at the last agent server m the 

itinerary, atp://pc-dpart08.dur.ac.uk, the following activities occur: 

• Spawn a new shadow to monitor the avai lability of the home agent server, atp://pc

dpartl2. dur. a c. uklsupplier. 

• Terminate the shadow at agent server atp: //pc-dpartl J.dur.ac.uk/Supplier2. 

• Migrate to the home agent server, atp://pc-dpartl2.dur.ac.uklsupplier. 

Recall that the mobile shadow exception handler scheme contains two exception handlers. 

The master exception handler is invoked within the shadow when it detects the crash of the 

agent server occupied by its master. The shadow exception handler is invoked within the master 

when it detects the crash of the agent server occupied by its shadow. Section 6.1 provides a 

demonstration for the master exception handler. Finally, section 6.2 concludes with a 

demonstration of the shadow exception handler. 
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6. 1 Master exception handler 

The following simulation triggers the master exception handler. When the master arrives at 

host pc-dpart05.dur.ac.uk it terminates the agent server, using the Java command 

System.exit(l). Consequently, the shadow must detect the agent server crash and replace the 

master by migrating to the next avai lable agent server in the itinerary, i.e. atp://pc

dpartll .dur.ac.uk/Supplier2. 

Figure 4-20 illustrates a terminal window for each agent server visited in the itinerary. The 

output for host pc-dpartl2.dur.ac. uk illustrates that the master is initially dispatched to the first 

agent server in the itinerary, i.e. atp://pc-dpart05.dur.ac.uk/Supp/ierl. Before the master 

migrates, it spawns a shadow to monitor the ava ilabili ty of agent server atp://pc

dpart05.dur.ac.uk/Supp/ierl. Subsequently, the shadow detects the crash and activates the 

master exception handler. This spawns a new shadow, with identifier Oe006e39b6160dfl , and 

then dispatches the current shadow to the next agent server, atp:/lpc

dpartll.dur.ac.uk/Supplier2. At this point the shadow has replaced the master and nonnal 

execution resumes. The replacement master completes the itineraty, at agent servers atp://pc

dpartll.dur.ac.uk/Supplier2 and atp://pc-dpart08.dur.ac.uk/Supplier3, before reporting back to 

the home agent server at atp://pc-dpart 12.dur.ac.uk/supp/ier. 

~IP·••t12 

UILDIHG DOM PROM KML PILE o~derPo~~at .x~l 
ISPATCHING AGENTS FOR EACH PRODUCT 
IMULATIHG CRASH AT AGENT SERUER HUMBER : : 1 
ASTER STARTING ITINERARY 
ASTER MIGRAJI HG TO atp:/ /pc -dpa~t 1!15 . du~ . ac. uk/S upplie••1 

HADOfl 6f6562caad?1b531!1 - MONITORING MA STER AT !! atp://pc - dpa••t l!l5.duJ• .ac .uk/Supplie~1 

GENT SERUER CRASII DETECT ED 
HADOfl DET ECTED MAST ER FA I LURE - MA STER EXCEPT! ON HANDLER ACT I U AT ED 
HADO~ REPLACING H~STER 
HADOfl MIGRATING TO atp ://pc - dpal't11.du .. . ac.uk/ Supplie••2 
HADOII l!lel!ll!l6e 39b6161!1df1 - MONITORING MASTER AT !! a tp: //pc - dpal't11.du ... ac .uk/Supplie••2 

HADOfl l!lel!ll!l6e39b6161!1df1 TERMINATED BY DIE MESSAGE 
I T INERARY COMPLETE 

ASTER TERMINATI NG SHA DO\l @ at p ://pc- dpa ••tl!l8 .dUJ•.ac .uk/S upplieJ•3 

ASTER EXECUTI NG APPLICATION TASK 
ASTER COMPLETED EKECUTI OH - SPA\iHI HG SHADOU 
ASTER TERMINA TI NG SllA D0\·1 @ a tp: //pc-dpa••t12 . dul'.ac .uk/s upp lieJ• 

HADOII 59286?d1ac5 4 21!188 - MONITORING MA STER AT @ atp: / / pc-dpaJ•t 1!18. du••. ac. uk/Suppliel'3 

EXECUTI NG APPLICATION TASK 
COMPLETED EKECUTIOH - SPfl\lHIHG SHADOU 

IERI11HATIHG SHA DOW e ijtp :Npc - dpa•·t11.dul'.ac .uk1Supplie•·2 
4fbad4al!l5 c?bf46d - 110HITORI HG MA STER AT @ a tp : / /pc - dpal't 12. du1•. ac. uk/s upplie•• 

_j 

HA DO\~ ~:~::~!~~c~gf ~a:~ ~~~~~~~~~1~v d~l i; a~E~~~~~pplie •• _:j 

Figure 4-20 Master exception handler 
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6.2 Shadow exception handler 

The following scenario is simulated to trigger the shadow exception handler with respect to 

the itinerary described in Figure 4-17. When the master arrives at agent server atp://pc

dpartll.dur.ac.uk/Supplier2 the agent server at host pc-dpart05.dur.ac.uk is manually 

terminated. Consequently, the master should detect that the agent server occupied by its shadow 

has crashed. The shadow exception handler must be activated to dispatch a replacement shadow 

to the next available preceding agent server, pc-dpart12.dur.ac.uk/supplier. When the master 

has completed execution at agent server pc-dpartll.dur.ac.uk/Supplier2 it should spawn a new 

shadow and then terminate the replacement shadow at pc-dpart12.dur.ac.uk/ supplier. 
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Figure 4-21 illustrates a termina l window for each agent server visited in the itinerary. The 

output for host pc-dpart12.dur.ac.uk illustrates that the master is initially dispatched to the first 

agent server in the itinerary, i.e. atp:/lpc-dpart05.dur.ac.uk/Supplierl . When the master has 

completed its execution at atp:/lpc-dpart05.dur.ac.uk/Supplierl it spawns a shadow to monitor 

the availability of agent server atp://pc-dpartll.dur.ac.uk/Supplier2 . The master then migrates 

to the next agent server in the itinerary, atp://pc-dpartll.dur.ac.uk/Supplier2. At this point the 

agent server at host pc-dpart05.dur.ac. uk is manually terminated. The output for the agent 

server at host pc-dpartll .dur.ac.uk illustrates that the crash is detected and the shadow 
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exception handler is activated. Subsequently, a replacement shadow is dispatched to the next 

available preceding agent server, atp:/lpc-dpartl2.dur.ac. uk/supplier, and the master continues 

with its execution. Subsequently, the output for host pc-dpart-12.dur.ac.uk illustrates that the 

replacement shadow monitors its master at agent server atp://pc-dpartll.dur.ac.uk!Supplier2 

and is terminated when the master completes its execution. 

7 Summary 

This chapter has outlined the design and implementation of the mobile shadow exception 

handling scheme. The mobile shadow exception handling scheme provides a fault tolerant 

service for maintaining mobile agent availability in the presence of agent server and host 

crashes. This service is embedded within the application mobile agent. Several important design 

issues were considered. 

Firstly, existing research into mobile agents surviving agent server and host crashes was 

considered. Most of the existing fault tolerant mobile agent systems use spatial or temporal 

replication. Spatial replication defines a set of agent servers for each stage in the itinerary. Each 

agent server provides an equivalent service and hosts a replica mobile agent. Temporal 

replication advocates one or more visited agent servers monitoring the current agent server. If 

an agent server crash occurs, a mobile agent is dispatched to the next agent server in the 

itinerary or an alternative agerit server. Temporal replication was selected to minimise 

additional communication overheads imposed by fault tolerance. This is important to preserve 

the potential savings in bandwidth offered by the mobile agent paradigm. 

Secondly, an exception handling model for mobile agents was presented to describe how 

mobile agents interact with software services at remote agent servers. Furthermore, the control 

flow for raising and signalling exceptions was defined. In the event that an agent server or host 

crash occurs exception handling is required to perform application specific action so that the 

mobile agent can complete the itinerary. 

Thirdly, a failure model for mobile agent systems has been outlined. Chapter 3 highlighted 

the need for a failure model for mobile agent systems. This chapter has focused specifically on 

crash failures of mobile agent systems and presented a failure model suitable for applications 

that are idempotent, e.g. infonnation retrieval or network monitoring. A failure model is 

required for any fault tolerant system to define the ways in which failures occur and the 

assumptions made concerning the system environment. 

The following chapter introduces the design and implementation of an experimental case 

study environment for the mobile shadow exception handler scheme. 
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Chapter 5 A Case Study Application 

1 Introduction 

This research employs a Java case study application to provide an experimental 

environment for simulation of agent server crash failures and subsequent analysis of the mobile 

shadow exception handling design. A frequently adopted application domain for mobile agents 

is within an electronic commerce business supply chain [Vogler97, Dasgupta99]. 

In [Pears03, Pears03b] a case study enviromnent for the mobile shadow exception handling 

scheme is outlined and the overheads introduced on the trip time in the event of an agent server 

crash are investigated. This chapter describes the requirements and architecture for the case 

study environment. The application case study provides an experimental environment for an 

implementation of the mobile shadow scheme introduced in chapter 4. The case study 

environment provides the ability to simulate agent server crash failures to exercise the mobile 

shadow crash exception handler. 

This chapter outlines the case study architecture of [Pears03, Pears03b]. There are two 

implementations of the case study architecture. Firstly, an Ajanta [Tripathi02] implementation is 

described. The Ajanta [Tripathi02] implementation of the case study architecture is used to 

compare the performance of the mobile shadow exception handling scheme against an exception 

handler that uses a timeout mechanism. In chapter 4, section 5.1, it was mentioned that 

implementation anomalies were encountered with the Ajanta mobile agent system [Tripathi02]. 

Furthermore, a random agent server crash could not be simulated. Consequently, an IBM Aglets 

[Oshima98] implementation was performed. The IBM Aglets [Oshima98] implementation of 

the case study architecture allows the overheads of the mobile shadow exception handling 

scheme to be investigated in the event of a random agent server crash. Experiments conducted 

using the case study architecture are outlined in chapter 6, section 2. 

2 Application case study architecture 

Figure 5-l illustrates the case study architecture. The supply chain case study scenano 

executes within a local area network, each node hosting an agent server that represents a 

supplier of computer hardware components. The case study application enables a supplier to 

replenish stock using mobile agent technology. A mobile agent is dispatched, for each product 

component, to several known suppliers to dynamically determine the best buy with respect to 

delivery date and price. The product components, order constraints and a list of potential 

supplier agent servers are outlined in an XML file. 
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Figure 5-2 illustrates an example XML file for the order of a hard drive component. An 

order fo r stock replenislunent is ass igned a total budget and de livery deadline. Each order 

contains a list of product items that require stock replenishment. A product item in the XML file 

includes: the class of product (e.g. hard drive) , required stock, delivery date, a list of known 

suppliers and search criteria parameters. Consequently, the supplier that provides the cheapest 

product and earliest delivery date offers the best buy. Figure 5-2 illustrates an order for stock 

replenishment for 25 IDE hard drives with a capacity of 30 GB to be received by 115/2004 . 

Three known suppliers are listed. 

<?xm1 version=" 1.0"?> 
<ORDER budget=" I 00.00" deadline=" l/5/2004"> 

<ITEM> 
<CLASS> Hard Drive</CLASS> 
<STOCK> 25</STOCK> 
<DELIVERY> 1/5/2004</DELIVERY> 
<SUPPLIER> 

<URN>atp:/ /pc-dpart08. dur.ac. uk: 4434</URN> 
</SUPPLIER> 
<SUPPLIER> 

<URN>atp://pc-dpart05 .dm.ac.uk:4434</URN> 
</SUPPLIER> 
<SUPPLIER> 

<URN>atp://pc-dpartl 1.dur.ac.uk:4434</URN> 
</SUPPLIER> 
<PARAMETER> 

<NAME>interface</NAME> 
<V ALUE>ide<N ALUE> 

</PARAMETER> 
<PARAMETER> 

<NAME>size</NAME> 
<V ALUE>30<N ALUE> 

</PARAMETER> 
</ITEM> 

</ORDER> 

Figure 5-2 Xml order criteria 
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Figure 5-3 illustrates the architecture of a supplier host in the case study. Each supplier runs 

an agent server and application interface. It is assumed that suppliers host the same agent server 

platform, e.g. IBM Aglets [Oshima98], for interoperability. Furthennore, access to the product 

catalogue is assumed to be in the same business domain. Consequently, the case study scenario 

is applicable to small businesses that replenish stock from a manufacturer or mail order 

company. 

A sales agent resource enables visiting mobile agents, from trusted suppliers, to query the 

supplier's product catalogue for item prices and availability. The sales agent is a software object 

located at each agent server that provides a standard interface for queries to the product 

catalogue. Each supplier provides a sales agent to implement a standard set of queries on the 

product catalogue for a given business domain. For example, all hard drive products may be 

queried by capacity and interface type (SCSI, FLASH or IDE). This requires the developer of 

visiting mobile agents to be aware of the query parameters for each product in the business 

domain. A visiting mobile agent invokes the executeQuel)' operation of the sales agent interface 

that accepts the product class, product criteria and order constraints as parameters. The sales 

agent then queries the product catalogue for the given class of product. A list of estimates that 

match the product criteria and order constraints is then retumed to the visiting mobile agent. 

The product catalogue stores information for products sold by the supplier including: item 

id, manufacturer id, stock and price. The supplier is free to choose the structure and format for 

the product catalogue, e.g. XML or a database may be used. This is possible since the sales 

agent provides a standard interface to query the information stored in the product catalogue for a 

given business domain. Mobile agents can query product catalogues that are of different fonnats 

and structure. However, there is the restriction that each supplier must comply with the interface 

provided by the sales agent. 

The application interface contains two utility classes, Driver and RunServer, to boot a 

supplier agent server. The Driver utility starts an instance of a supplier agent server that 
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replenishes stock for product items listed in an XML file. Two parameters are accepted: the path 

to the XML file that describes the product components for stock replenishment and a name for 

the supplier agent server. The Driver utility parses the XML file to create an object graph of 

product components that includes: order constraints, product criteria and a list of suppliers. 

Subsequently, an agent server is then booted with the object graph. The agent server traverses 

the object graph and dispatches a mobile agent for each product item. Finally, the RunServer 

utility starts an instance of a supplier agent server identified by a given name. 

The case study application assumes that the product catalogue is represented by a database 

at each supplier. To facilitate the configuration of the experiment environment each supplier is 

expected to represent the product catalogue using a mysql database. Sections 2.1 and 2.2 

describe the implementation classes for the sales agent and application interface. 

2. 1 The sales agent 

Figure 5-4 illustrates a UML class diagram for the implementation of the sales agent 

resource. The Estimate and SalesAgent classes are distributed at each agent server: 

• Estimate: Represents a matching product offered by the supplier. A matching product 

is described by item id, total price and delivery date. 

• SalesAgent: Implementation of the sales agent resource that provides an interface for 

querying the product catalogue database. Visiting mobile agents invoke the 

executeQue1y operation to forward a hashtable of product criteria, the product class and 

order constraints. 
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Figure 5-4 UML class diagram for sales agent implementation 

A mobile agent in the case sh1dy (see MobileAgent class2 Figure 5-4) filters the best buy 

from an itinerary of suppliers for a given product component described by: 

• Product class: A string that represents the class of product, e.g. hard drive. 

2 The API for most mobile agent systems enforces the developer to inherit from an abstract class that 
represents a mobile agent. The class diagram in Figure 5-4 is intended to be independent of mobile agent 
systems. Consequently, common state and operations are included in the mobile agent class. 
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• Product criteria: A hash table containing search criteria attributes and values for the 

product, e.g. hard drives, are queried based upon interface type and capacity attributes. 

• Order constraints: Product order constraints including delivery date and total stock. 

When the mobile agent has returned to the home agent server the bestBuy attribute contains 

an estimate from the supplier that offers the best buy. The supplier that provides the best buy 

offers the cheapest price and earliest delivery date. 

The UML sequence diagram in Figure 5-5 illustrates the interaction between an 

application mobile agent and a sales agent to retrieve a list of matching estimates. When a 

mobile agent arrives at a supplier agent server it locates the sales agent. Most mobile agent 

systems provide a registry of resources, at each agent server, that mobile agents can use to 

access a proxy to a software resource. The executeQuery operation is then invoked on the sales 

agent with the product class, product criteria and order constraints as parameters. The sales 

agent examines the product class parameter to determine which query to perfonn on the product 

catalogue database. Subsequently, the product criteria names and values are retrieved from the 

product criteria hashtable and forwarded to the appropriate query operation. In the scenario 

illustrated in Figure 5-5 the queryHdd operation is invoked. Each query operation performs a 

specific query on the supplier product catalogue and stores the matching estimates in an array 

using the createEstimates operation. The product catalogue is queried to return an array of 

estimates that match the product criteria and order constraints. Finally, the mobile agent filters 

the best buy from the list of estimates offered by the local supplier, getSupplierBestBuy. The 

updateBestBuy operation is invoked to determine if the estimate for the supplier's best buy is 

competitive. If so, the best buy attribute is updated to reference the supplier estimate. 

agent: server: 
Mobile Agent Agent Server 

estimates 

gctSupplierBestBuy() 

updateBestBuy(supBcst) 

sales : 
Sales Agent 

queryl-ldd 
(intcrf.sizc,ordcr) 

crcatcEstimatcs 
( rs,ordcr,arraySize) 

Figure 5-5 UML sequence diagram for sales agent to query product catalogue 



Chapter 5 A Case Study Application 93 

2.2 The application interface 

Figure 5-6 illustrates the Driver and RunServer classes of the application interface. Both 

classes boot an instance of an agent server, represented by the Server class that is specific to the 

mobile agent system adopted in the case study architecture. When the agent server is booted it 

creates a sales agent resource and registers it with the local registry of software resources. 

RunServer 

~crvcr: Scr\ll'r 

RunS~'f\'Cf { Strmg name) 
main(Sn-inga~sf} ):static\'OiJ 

~crver: Server 

Drivcr(Stringfik.Sifingnamc) 
main(Stringargs[] ):staticvnJtl 
CTC3lloQbju:rGrnph( Nrode n. ComponentNode c): Grnph 

I Scrm I 
I l tlispatcht\gcntstGraphg) I 

Figure 5-6 UML class diagram for case study application interface 

The RunServer class boots a basic agent server and creates a sales agent resource. The 

Driver class parses an order XML file and spawns a mobile agent for each product component. 

Figure 5-7 illustrates a UML sequence diagram for the Driver class. The Driver class accepts 

two parameters: 

• XML file: Path to XML file of product components for stock replenishment. 

• Server id: Name that uniquely identifies the agent server at the supplier host. 

The Driver class creates a document object model (DOM) for the order.xml file using the 

Java Xerces [Xerces04] XML parser. The root node of the DOM is forwarded to the 

createObjectGraph operation to recursively process each node of the order.xml file and create 

an object graph of product components. Each product component in the object graph is 

described by: the product class, search criteria, suppliers and order constraints. 

An agent server is then booted and assigned the name ACME. Most mobile agent systems 

allow a name to be assigned to the agent server that is incorporated into the full address. For 

driver: 
Driver 

"order.xml", "ACME" 

ereateObjectGraph(node, null) 

"ACME" 

dispatchAgents( objGraph) 

server: 
Server 

JDBC driver and 
connection string 

Figure 5-7 UML sequence diagram for driver utility 
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example, the address of the ACME agent server m IBM Aglets [Oshima98] is atp://cs-

128.dur.ac.uk:4044/ACME. The agent server creates and initialises a sales agent instance with 

the name of the JDBC driver and a connection string for the product catalogue database. The 

sales agent is then registered with the local resource registry. 

Finally, the Driver class forwards the object graph of product components to the 

dispatchAgents operation of the agent server. For each product component in the object graph, 

the dispatchAgents operation creates a mobile agent that is initialised with the following 

parameters: 

• Product class. 

• Hash table of product criteria. 

• Order constraints. 

• Itinerary of suppliers. 

Each mobile agent is then dispatched to its itinerary of suppliers. 

3 Ajanta case study architecture 

3.1 Agent server implementation classes 

The sales agent is registered as a resource at the Ajanta [Tripathi02] agent server. A 

resource is an object that acts as an interface to some service or information available at the host 

[Tripathi02]. In the application case study the sales agent resource provides an interface to the 

supplier product catalogue database. Resources are stored in a registry at the Ajanta agent 

server, indexed by a unique URN that is represented in the format URN:ans:host name/resource 

name where: 

• Host name is the name of the host where the agent server is mnning. 

• Resource name is a unique name for the resource, e.g. SalesAgent. 

The Ajanta mobile agent system [Tripathi02] requires that visiting mobile agents know the 

identity of the resource. Each Ajanta mobile agent can detennine the host name property by 

querying the current agent server environment. 

Figure 5-8 illustrates a UML class diagram for the sales agent resource in the Ajanta 

[Tripathi02] case study implementation. Unshaded classes are implemented by the application 

developer. The following application classes provide the sales agent resource: 

• SalesAgent: Interface that defines the operations for the sales agent resource to query 

the product catalogue. Application developers extend the empty Resource interface 

provided by the Ajanta [Tripathi02] mobile agent system. 
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• SalesAgentlmpl: Implementation of the sales agent resomce. An Ajanta application 

resource must inherit from the abstract class Resource/mpl and implement the 

AccessProtocol interface. The AccessProtocol interface is provided by the Ajanta 

[Tripathi02] mobile agent system and has a single operation getProxy that developers 

implement to create a proxy to the application resource. 

• SalesAgentProxy: Contains a transient reference to an instance of the sales agent 

resource, SalesAgentlmpl, and implements the SalesAgent interface. A proxy forwards 

requests to the sales agent resomce. 

Salc5Ai;ent 
<< inlerfnce >> 

+ c:~~ecutc:Query( l lashtabl~ c. Stnng prodCiau. Ordcrf'llrnrn o) : :------ ---- Flllimate() 
quayf'loppy( OrdcrPtr.~m o ) : E.s timatcU 
quaylldd( String intaf. Dooi.Sizc. OrdcrParam o): F...stimatc{] 

+ cort :java.sql.Cau!cdion 
s1m1: j:.wa.sqi.Suuemrnt 

I SolesAgcutlmpi!String JDBCDriva. String ronncctStr) 
crcaiCF...stimareq RcsultSd rs. OrderParam o, m1 n'Count) : 
Es timalc[] 
load Db( String dnvcrNamc:. Slnng ca•ncciStr) 

S.1lcsAgmtProJty 

Figure 5-8 UML class diagram for Ajanta sales agent resource 

Figure 5-9 illustrates the interactions to register and retrieve a sales agent resource in the 

Ajanta [Tripathi02] mobile agent system. When the Ajanta agent server is booted, an instance of 

a sales agent (class SalesAgentlmpl Figure 5-8) is stored in the resource registry and indexed by 

a URN identifier (1). Recall that resources in Ajanta [Tripathi02] are retrieved using a URN 

string that describes the host name and a unique identifier for the resource. Visiting mobile 

agents send a request to the agent server environment for a proxy to the sales agent resource (2). 

Included with the request is the URN of the sales agent resource. The Ajanta agent server 

environment retrieves a reference to the sales agent resource from its resomce registry and 

invokes the getProxy implementation of the AccessProtocol interface (3). Subsequently, a proxy 

to the sales agent resource is created (class SalesAgentPrm.y Figure 5-8) and returned to the 

visiting mobile agent (4). The visiting mobile agent then invokes the executeQuery operation on 

the sales agent proxy to query the product catalogue (5). Consequently, a list of estimates is 

retrieved from the product catalogue (6) . 

AJA NTA AGENT SERVE R 

S:tles Agent Resource 

Mobile agen l 
,--- ~ 5 execut e query 

0 llcst buy -o 
0 Product cl ass b l'rocluct~ >< 
0 Protluct criteria 6 li st of es timates '< ca talogue 

0 Order constrainLs '----- Access Protocol 

·r 2 4~GENT SE RVER ENV IRONMENT ____j 1 

I 

[ Resource registry 

Figure 5-9 Ajanta agent set·ver architecture for sales agent resource 
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3. 2 Ajanta case study mobile agent 

Figure 5-l 0 illustrates the implementation of an Ajanta mobile agent in the case study 

application. Shaded classes represent those provided by the Ajanta [Tripathi02] mobile agent 

system. The /tinAgent abstract class represents a mobile agent that visits a sequence of agent 

servers. Subclasses of ltinAgent must be initialised with an itinerary and credentials. The 

Itinerary object encapsulates the addresses of agent servers to visit and provides operations to 

move to the next and previous agent servers in the itinerary. A Credentials object migrates with 

each Ajanta mobi le agent. An Ajanta agent server inspects the credentials of a mobile agent to 

authenticate access to local software resources. Credentials include: 

• Name: Urn representing the name of the mobile agent. 

• Owner: Urn of the human user represented by the mobile agent. 

• Creator: Urn of the application that created and dispatched the mobile agent. 

• Code base: Urn of the code server for the mobile agent. This defaults to the agent 

server that created and dispatched the mobi le agent. 

MuhileSha,/ow 

-+ MobileShadow( Cret.len! ials cred. lt inernry 
it in) 

-+ mn() : void 
+ f!X('n//1!() : \'Oid 

ProJuct 

protluC1Ciass : String 
procluctCrit eria: Hashtable 
estimates : transient EstimateiJ 
bestBuy: Es timate 
01\ler : Order 

-t Product(Cret.lentials erN. Itinerary itin. String 
itemCiass.. Hashtnble critnia. Onler 
onletCriteria) 
llrnveO: void 

-t getEstimates(): void 
-+ getSupplierDestBuy(): Estimate 
+ upJmellestUu){ Estimate e): ,·o iJ 

F.stimate 

delivery: Calendar 
tOia iPrice: double 
itemld : illl 

Estimate() 
f-:Stimate( Ca lendar Jate. Jouble 
price. int id) 
get Delivery() :Calendar 
getTOiaiPrice() : Joublc 
get ltcmkJ(): irll 

JtliveryDate:Calentlar 

>---r--'-~'-"'_=_• _: in_' ----------~ 
t Order( Calendar date, int tOllll) 
i getTOiall tems( ) : in t 
+ getRequcstcdDcl i Y~Dntc(): Ca lendar 

Figure 5-10 UML class diagram for Ajanta case study mobile agent 

The MobileShadow class represents an Ajanta mobile agent that encapsulates the mobile 

shadow exception handler. The abstract execute operation represents the application specific 

task performed at each agent server visited in the itinerary. Consequently, subclasses of the 

MobileShadow class inherit the mobile shadow exception handler and override the execute 

operation to implement an application specific task at each agent server. The Product class 

represents the application task . for the case study application and has the following 

responsibilities: 

• Interact with the sales agent resomce at each agent server environment to retrieve 

estimates from the supplier product catalogue. 

• Log an estimate for the supplier that offers the best buy in tenn s of delivety date and 

price. 
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agent: 
Product 

sales agent 

[ mastcJ=tmc] 
execute() 

gctEstimates() 

host: 
AgcntEnv 

I 

exccuteQuery(prodCiass, prodC.1tcria, orderCriteria) 

estimates : 

sales: 
SalcsAgcnt 

-------------------r--------------

[estimates .length> OJ 

gctSupplicrBcstBuy() 

updatcBestBuy(supBcst) 

supBest: 
Estimate 

Figure 5-11 UML sequence diagram for Ajanta mobile agent 
interaction with sales agent 
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The UML sequence diagram in Figure 5-11 illustrates the interaction between an Ajanta 

mobile agent (class Product) and the sales agent resource at a supplier agent server. When the 

Product mobile agent arrives at the next supplier agent server in the itinerary, it retrieves the 

local sales agent resource. This is achieved by invoking the getResource operation of the Ajanta 

host environment with the URN of the sales agent resource. All agent servers are assumed to 

adopt the same name for the sales agent resource. 

Subsequently, the main thread inherited from the MobileShadow class is executed. Provided 

that the Product mobile agent is a master in the mobile shadow exception handler scheme, the 

case study application task is started, execute. The getEstimates operation of the Product class 

retrieves a list of estimates from the supplier's product catalogue by invoking the executeQuery 

operation of the sales agent. The sales agent responds with a list of estimates for matching 

products in the supplier product catalogue. If matching products were found, i.e. 

estimates.length > 0, the getSupplierBestBuy operation is invoked to detennine the best buy 

offered by the supplier in relation to earliest delivery date and price. The updateBestBuy 

operation is then invoked to determine if the supplier's best buy is competitive. If so, the 

Product mobile agent updates the bestBuy field with the supplier's estimate. 
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4 IBM Aglets case study architecture 

4.1 Agent server implementation classes 

Figure 5-12 illustrates a UML class diagram for the case study classes that are distributed at 

an agent server in the IBM Aglets [Oshima98] case study implementation. A DatabaseManager 

agent is created when an agent server is initialised and is responsible for creating a proxy to a 

sales agent (see class SalesAgent Figure 5-12) for each visiting mobile agent. Recall that the 

sales agent provides an interface to the product catalogue database for visiting mobile agents. A 

visiting mobile agent uses a sales agent to retrieve a list of matching estimates by sending an 

execute query message with the following parameters: 

• Product class: A string that represents the class of product, e.g. hard drive. 

• Product criteria: A hashtable that contains the search criteria for the product, e.g. hard 

drives may be queried based upon interface type and capacity. 

• Order criteria: An order object that describes required stock and delivery date. 

+ handlcM<!>SOJgc(Mt.:Ssa!!c msg): huukall 

St'f\'L'f 

C'\1 :Aglt:tConteXI 
C<llltnrName: String 

pn>pertyFik:String 

St..-rver(Srringnarne.String fileP01th) 
~tart[): vord 
JoaUProps(J :void 
crcatc.Agents(Onlero):voi<J 

Figure 5-12 UML class diagram for IBM Aglets agent server case study classes 

Figure 5-13 illustrates a UML sequence diagram for a sales agent that queries the product 

catalogue for an IDE hard drive. Upon receipt of an execute que1y message, the sales agent 

retrieves the product class, product criteria and order criteria arguments from the aglets message 

object. In response to an execute que1y message, the sales agent invokes the executeQue1y 

operation that examines the product class argument to determine which query to perform on the 

supplier catalogue database. Subsequently, the product criteria are retrieved from the criteria 

hashtable and forwarded to the appropriate query operation. The que1yHdd operation is invoked 

in the scenario illustrated in Figure 5-13. 

A sales agent provides operations to query the product catalogue for a given business 

domain. Each operation performs a specific query on the supplier product catalogue and accepts 

an Order object. For example, the SalesAgent class in Figure 5-12 and Figure 5-13 provides the 

queryHdd operation to query the product catalogue for a hard disk drive. The drive interface and 
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capacity are accepted as parameters. The array of estimates is then sent as a reply to the execute 

query message. 

sales: msg: 
SalesAgent Message 

handleMcssage(msg) 

gctArg("criteria") 

interface 

getArg("class") 

prodCiass 

gctArg("order") 

order 

cxecutcQuery 
(criteria,prodCiass,order) 

queryHdd 
(interf,size,ordcr) 

creatcEstimates 
( rs,order,arraySizc) 

scndReply 
( estimatcsArray) 

Figure 5-13 UML sequence diagram for Aglets sales agent querying product catalogue 

4. 2 Aglets case study mobile agent 

Unlike Ajanta [Tripathi02], IBM Aglets [Oshima98] does not provide an explicit registry 

for mobile agents to access software resources at the agent server. However, the agent server 

environment for IBM Aglets [Oshima98] does allow visiting mobile agents to retrieve a list of 

executing mobile agents at an agent server. Section 5.2.7 of chapter 4 described the 

implementation of a simple resource registry that allows IBM Aglets [Oshima98] mobile agents 

to access, by class name, a stationary mobile agent that acts as a proxy to a specific resource at 

I ResourccManagcr I 
I + gctRCStliJrceDyNamc( String ClassNamc): ObjeLt r ·------------L_ __ M_.~_''..,"','"-""_w __ -.J 

I I 
+ Applio.:atimObject() 
+ start( RcsourccManagLT m): \'tlid 
+ <'.wrute():mid 
# initR<•.wurn!.~() 1hr111!.'." Ri!.wun:I!NotFou/11/ 

PmJuct 

produL'tCiass: String 
pnxluctCriteria : Hashtable 
estimates : transient EstimatcLJ 
be~illuy : Estimate 
on!1:f: Order 
dbCatJilogueProxy: tnmsicnt AglctPnu .. y 

+ Pwdud(String itemCiass, Uashtahlc critcri.J, 
Ord\'l"PammordcrCriteria) 

+ getEstirnatcs(): void 
+ getSupplicrDestBuy(): Estimate 
+ updateBcstBuy( Estimate c) : void 

Estimate 

deli1LTV :Calendar 
tntaiPri.:c:doublc 
itcrnlll:int 

+ Estimate() 
+ Estimate( Calendar d.ltc, double 

price, int id) 
+ gt:tDdin:ry(): Cak.mlar 
+ gctTntaiPrice( l : double 
+ gt.1.ltcmld(): int 

Onk:r 

~leliv«yDate: Ca!eJld.ir 
tut.llllt..'111S:int 

+ Ordt..T( Calendar date, inttotal ) 
getTotalltems():inl 

+ gCIRcquestcODeliveryDatt..i) ·Calendar 

Figure 5-14 UML class diagram for IBM Aglets case study mobile agent 
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the agent server. Figure 5-14 illustrates the case study application classes that migrate with an 

IBM Aglets [Oshima98] mobile agent to find the best buy offered by a supplier. A mobile agent 

(class MobileShadow) encapsulates the mobile shadow exception handling scheme and contains 

an application task (class Product derived from ApplicationObject), executed at each agent 

server in the itinerary. The MobileShadow class implements the ResourceManager interface to 

allow developers to locate resources, by class name, at the current local agent server. 

Figure 5-15 summarises the interactions for retrieving a proxy to a sales agent resource in 

the IBM Aglets [Oshima98] implementation of the case study. An IBM Aglets [Oshima98] 

agent server allows visiting mobile agents to retrieve a proxy to any local executing mobile 

agent. When a mobile agent arrives at a supplier agent server, it examines the list of executing 

mobile agents, provided by the IBM Aglets [Oshima98] agent server, to retrieve a proxy to the 

database manager agent. A visiting mobile agent then sends a connect message to the database 

manager to create an instance of a sales agent. The database manager responds by returning a 

proxy to the new sales agent. Subsequently, the visiting mobile agent sends an execute que~y 

message to the new sales agent to query the product catalogue. 

\GLETS AGENT SERVER 

execute query message Sales Agent 

~ 
Mobile agent 

0 Best buy connect Database 
~ :;> 

0 Product class message Manager 
0 Product criteria Agent ~ b) PrOOuct 
0 Order constraints l!is1lcs agent n1taloguc 

~j find proxy for AGENT SERVER ENVIRONMENT 
db.Dat"bun·Marrager agent 

proxies for executing 

J mobile agents 

Figure 5-15 IBM Aglets agent server architecture for sales agent resource 

The UML sequence diagram in Figure 5-16 illustrates the execution sequence for a visiting 

mobile agent at a supplier agent server. When the master arrives at a supplier agent server it 

invokes the execute operation. This initializes the application task by invoking the start 

operation of its application object, i.e. the Product class. The start operation locates the 

resources required for execution at the agent server, initResources, and triggers execution of the 

application task, execute. In this case study a proxy to the supplier's database manager, 

dbProxy, is retrieved by the initResources operation. The database manager is a stationary 

mobile agent, located at each supplier agent server, that provides visiting mobile agents with a 

proxy to a sales agent. Subsequently, the execute operation is invoked to perform the task of 

retrieving product estimates and detennining the best buy. 
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visitor: task: 
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salcsProxy : 
AglctProxy 

supBest: 
Estimate 

Figure 5-16 UML sequence diagram for Aglets mobile agent interaction with sales agent 

The getEstimates operation of the Product class sends the database manager a connect 

message to retrieve a proxy to the supplier's sales agent. Recall that the sales agent is a 

stationary agent located at each agent server that queries the product catalogue. An execute 

query message is sent to the sales agent, which responds with a list of estimates for matching 

products in the supplier's product catalogue. If matching products were found, i.e. 

estimates.length > 0, the getSupplierBestBuy operation is invoked to determine the best buy 

offered by the supplier in relation to earliest delivery date and price. The updateBestBuy 

operation is then invoked to determine if the supplier's best buy is competitive. If so, the 

Product class updates its bestBuy field with the supplier's estimate. 

5 Summary 

This chapter has outlined the design and implementation of an experimental case study 

environment for the simulation of agent server crash failures and the subsequent analysis of the 

mobile shadow exception handling scheme. The application domain selected for the case study 

is information retrieval using an electronic commerce supply chain scenario. A mobile agent is 

dispatched, for each product component, to several known suppliers to dynamically determine 

the best buy with respect to delivery date and price. 
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Chapter 6 Evaluation 

1 Introduction 

This chapter presents an evaluation of the mobile shadow exception handling scheme 

detailed in chapter 4. An implementation of the mobile shadow exception handling scheme is 

first evaluated for the Ajanta [Tripathi02] and IBM Aglets [Oshima98] mobile agent systems. 

This is performed using the case study application described in chapter 5. The mobile shadow 

exception handling scheme is then evaluated with respect to the exception handling model for 

mobile agents detailed in section 2 of chapter 4. Subsequently, the differences between the 

mobile shadow exception handling scheme and existing systems, for mobile agents to tolerate 

agent server crash failures, will then be shown. Of particular interest is the suitability of the 

mobile shadow exception handling scheme for groups of collaborating mobile agents and 

potential application domains. 

2 Application case study evaluation 

This section outlines two experiments that were performed using the case study architecture 

presented in chapter 5. The initial experiment was implemented using the Ajanta [Tripathi02] 

mobile agent system to compare the performance of the mobile shadow exception handling 

scheme against a system based upon a timeout mechanism, in the presence of a single faulty 

agent server crash. Subsequently, an IBM Aglets [Oshima98] implementation was used to 

investigate the overheads of the mobile shadow exception handling scheme in the event of a 

random agent server crash. 

In both experiments the ping mechanism is implemented using Java TCP sockets. This is 

due to no support for ICMP packets in Java 1.3. By default Linux kernel 2.4 defines a default of 

three retry attempts before the TCP protocol reports a failure to the network layer. The timeout 

value for retransmission (RTO) employed by the TCP protocol is dynamic and is recommended 

to be initialised to 3s in RFC 1122 ( http://www.faqs.org/rfcs/rfcll22.html ). 

2. 1 The Ajanta case study experiment 

The aim of the experiment is to use the case study environment to investigate the 

performance of an Ajanta [Tripathi02] implementation of the mobile shadow exception 

handling scheme compared to an exception handler that uses a timeout mechanism. In particular 

the experiment investigated the mobile agent trip time of both schemes for: 

• A single agent server crash. 

• Normal trip, i.e. no agent server crash failures encountered. 



Chapter 6 Evaluation 103 

A single mobile agent visited three suppliers to determine the best buy for fifteen 8GB IDE 

hard drives. For simplicity, each supplier represents the product catalogue using a Mysql 3.23 

database with JDBC driver 2.0.8. The experiment was perfonned on a I Ombps local area 

network using four 64MB Intel Pentium II 400Mhz (Celeron) PCs nmning RedHat Linux 7.2 

and Ajanta [Tripathi02]. 

Section 2. I .1 describes the timeout exception handler design. Section 2.1.2 then outlines the 

performance measurements investigated for both the mobile shadow and timeout exception 

handler schemes. Finally, section 2.1.3 presents the experiment results and analysis. 

2.1.1 The timeout exception handler 

The timeout exception handler is located at the home agent server and is associated with a 

group of mobile agents dispatched to perfonn an infonnation retrieval task. The timeout 

exception handler (Figure 6-1) waits for a timeout period and then resends mobile agents that 

did not return. 

while !dispatch.isEmpty() {//while agents to send} 
handlerTimeOut(t) {II wait t seconds} 
handlerResend(dispatch) {//send replacements} 

Figure 6-1 Timeout scheme pseudocode 

The following meta operations and state are provided at the home agent server: 

• Dispatch: List of dispatched mobile agents. 

• TaskO: Create dispatch list and send a group of mobile agents to perforn1 an 

information retrieval task. 

• Add(A, dispatch): Add a mobile agent A to the dispatch list. 

• Remove(A, dispatch): Remove mobile agent A from the dispatch list. A mobile agent is 

removed from the dispatch list when it returns home. 

• HandlerQ: Crash exception handler that executes after task operation completed. 

• HandlerTimeOut(t): Wait fort seconds. 

• HandlerResend(dispatch): Resend mobile agents in dispatch list. 

The timeout exception handler tolerates any number of agent server crash failures with no 

additional overheads imposed on mobile agents and remote agent servers. However, in the event 

of an agent server crash, all agent servers are revisited. Furthermore, it is difficult to select a 

timeout value in asynchronous systems since there are no established boundaries for processor 

speed and communication delay. If an aggressive timeout value is used, many duplicate agents 

are dispatched, e.g. a mobile agent may not return within the timeout period if it executes at one 

or more slow agent servers. If a conservative timeout value is chosen, the application will block 

until the timeout expires. This occurs even when some mobile agents return. 
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2.1.2 Performance measurements 

Two performance measures were obtained for both exception handler schemes: 

• Normal round trip time: The time taken for a mobile agent to complete its itinerary 

and return to the home agent server with the best buy. Agent servers visited by the 

mobile agent suffer no crash failures. 

• Crash round trip time: The time taken to complete an itinerary and report back to the 

home agent server with the best buy in the presence of a single agent server crash. 

Furthennore, the performance overheads in Figure 6-2 were measured for a single agent 

server crash. Path 1-2-3-1 for the mobile shadow exception handling scheme represents handler 

execution for an agent server crash. 

I. 
2. 
3. 

Timeout 

~ 
Time taken to prepare dispatch list. 
Time taken for timeout period. 
Time taken to dispatch agents not rctumed. 
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Time taken to spawn and start shadow. 
Time taken for shadow to detect master crash. 
Time taken for shadow to spawn replacement. 

Figure 6-2 Performance overheads for Ajanta case study experiment 

The source code to calculate the performance overheads for the timeout exception handler 

scheme imposed no additional increase to the normal or crash round trip times. This is because 

the calculations are performed at the agent server that dispatched the mobile agent. However, 

this is not true for the mobile shadow exception handling scheme, since the mobile agent state 

must be augmented to log the times for spawning a shadow and detecting the crash of the agent 

server where the master is located. To provide an accurate comparison there were two sets of 

round trip times for the mobile shadow exception handling scheme: 

1. Round trip times assume augmented mobile agent state with perfonnance variables. 

2. Round trip times assume no augmented mobile agent state, i.e. no perfonnance 

variables. 

Conservative timeout values were selected for the timeout scheme so that a mobile agent 

has sufficient time to return before another replica is dispatched. 

2.1.3 Results and analysis 

The round trip times were obtained from forty trial runs. A new mobile agent was 

dispatched for each trial run. To simulate an agent server crash a mobile agent waits at a specific 

agent server to enable manual termination. After recovery the crashed agent server was 

restarted. This was done due to the enforced security model of Ajanta [TtipathiOl], i.e. there is 
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no mechanism to enable a mobile agent to terminate an agent server, or for an agent server to 

halt, when a specific mobile agent arrives. 

Figure 6-3 illustrates the time increase introduced by the crash round trip for each exception 

handler. Perfonnance calculations for the mobile shadow exception handling scheme impose a 

minor increase of 0.50% on the round trip times. The trip times for the mobile shadow scheme 

represent the case where the mobile agent state is not augmented with performance calculations. 

Timeout round trip times Mobile shadow round trip times 
30.0 . --+-Crash trip time- Normal trip time 50.0 --+--Crash trip time -<>--Normal trip tirne 

~ ••.................•••••••••..•....... 
'ii)20.0. 

40.0 

~30.0 
Ql 

§ 10.0. 
~2o.o ... ..-...... v .... .,_.............., . .....,..,.... • .._........, 
"" ...................................... 

0.0 ·1----~---~---,---~ 
10.0 ~~ 
0.0 ------,----.-------.----

0 10 20 
trial number 

30 40 0 10 20 30 
trial number 

Figure 6-3 Trip times for timeout and mobile shadow exception handler 
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The timeout exception handling scheme offers a quicker average normal and crash round 

trip, i.e. 3s and 23.2s respectively. This is compared to the mobile shadow exception handling 

scheme that provides an average of 22.2s and 39.6s. However, the crash trip time for the timeout 

scheme depends upon the total agent servers visited. Longer trips need a larger timeout, 

increasing the crash round trip time. The mobile shadow exception handling scheme is 

independent of trip length and consequently may perfonn better for longer trips. 

Figure 6-4 illustrates perfonnance overheads for the timeout exception handler. The timeout 

exception handler has insignificant times for initialising a record of agents to dispatch (0.1 ms) 

and resending those agents (0.6s) that failed to return. Both measures fall within 1 second. 
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Figure 6-4 Timeout exception handler overheads 
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However these measures were obtained from dispatching a single mobile agent. The major 

performance overheads for the timeout exception handler are the timeout period (20s) and 

recovery time (20.7s). The recovery time represents the time to resend agents that have not 

returned in addition to the timeout period that elapsed when the handler completed. 

The mobile shadow exception handling scheme offers slower round trip times. Figure 6-5 

illustrates the perfonnance overheads. A shadow starts a thread to ping the next agent server 

where its master will execute. The average time for a shadow to be notified of its master's agent 

server crash is 8.3s. The average time to spawn and start a shadow under normal execution is 

negligible, i.e. 0.8s. A larger overhead (13.4s) is introduced when a shadow spawns and starts 

its own shadow during recovery. This may be because the shadow migrates while its child pings 

its destination agent server. 
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To summanse, the timeout exception handling scheme offers quicker round trip times. 

However, it is not independent from the itinerary size, i.e. a larger timeout value is necessary to 

wait for mobile agents to return from longer trips. The advantage of the mobile shadow 

exception handling scheme is that it is independent from the itinerary size. This is because the 

shadow is activated, at the last available preceding server visited, in the event of an agent server 

crash. Furthermore, the mobile shadow exception handling scheme offers the smallest trip time 

increase in the event of an agent server crash. 

2.2 The IBM Aglets case study experiment 

The experiment outlined in section 2.1 investigated the mobile agent trip times for the 

mobile shadow exception handling scheme and a timeout exception handler. The trip times were 

obtained for the crash of a specific agent server. The security model of the Ajanta [Tripathi02] 

mobile agent system does not allow simulation of a random agent server crash, since there is no 
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mechanism available for the agent server environment to react to the arrival of mobile agents. 

However, in a wide area network enviromnent an agent server crash is random. Consequently, 

the experiment uses the IBM Aglets [Oshima98] case study implementation to analyse the 

performance of the mobile shadow exception handling scheme with a single random agent 

server crash. 

The same experimental enviromnent outlined in section 2.1 was adopted for the case study 

enviromnent. A single mobile agent visits three suppliers to determine the best buy for fifteen 

8GB IDE hard drives. For simplicity, each supplier represents its product catalogue using the 

Mysql 3.23 database system with JDBC driver 2.0.8. The experiment was performed on a 

10mbps LAN using four 64MB Intel Pentium II 400Mhz (Celeron) PC's running RedHat Linux 

7.2 and IBM Aglets [Oshima98]. Section 2.2.1 describes the simulation of an agent server crash. 

Section 2.2.2 then outlines the perfmmance measurements investigated. Finally, section 2.2.3 

presents the experiment results and analysis. 

2.2.1 Simulating a random crash 

To simulate a crash, the mobile agent terminates an agent server using the Java command 

System.exit(l). Permission to terminate the Java Virtual Machine is assigned in the security 

policy file for each agent server. The CrashSimulator class (Figure 6-6) is initialised with the 

total agent servers to visit (iTripSize). A random number (iCrashlndex) represents the n111 visited 

agent server that will crash, i.e. 0 < iCrashlndex <= iTripSize. Before a mobile agent migrates 

to the next agent server in its itinerary it increments the total number of agent servers visited 

(iVisited), i.e. crash.incrementO. When execution begins at the next agent server, the mobile 

agent determines if it is at the agent server selected to crash (iVisited==iCrashlndex). This is 

done by invoking CrashSimulator.crashO. If so, the mobile agent tenninates the agent server. 

Crash Simulator 

- iTripSize: int 
- iVisited: int 
- iCrashlndex : int 

+ CrashSimulator(int iTripSize) 
+ CrashSimulator(int TripSize, boolean ShadowCrash) 
+ increment(): void 
+ crash() : void 

Figure 6-6 CrashSimulator class 

The crash simulation above is applicable to a master crash. To simulate a shadow crash the 

master delegates the responsibility of terminating the agent server to its shadow. Furthennore, a 

random number must be generated in the range 0 < iCrashlndex <= iTripSize-1 since it is 

assumed that a master discards its shadow when it returns to the home agent server. 

Consequently, the CrashSimulator class provides a second constructor 

CrashSimulator(TripSize, ShadowCrash). 
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2.2.2 Performance measurements 

Two performance measures were obtained for an insight into the overheads introduced by 

the mobile shadow exception handling scheme in the event of a random agent server crash: 

• Normal round trip time: Time taken to complete an itinerary and return to home agent 

server with the best buy. Visited agent servers suffer no crash failures. 

• Crash round trip time: Time taken to complete an itinerary and return to home agent 

server with the best buy in the presence of a single agent server crash. 

Furthennore, the performance measures in Figure 6-7 were obtained in the event of a single 

agent server crash. 
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Figure 6-7 Performance overheads for IBM Aglets case study experiment 

To simulate a random agent server crash the state of the mobile agent was augmented with an 

instance of the CrashSimulator class in addition to code for performance measurements. To 

provide accurate normal and crash round trip times there were two sets of nonnal trip times: 

1. Nonnal round trip time assumes an augmented mobile agent state that includes an 

instance of the CrashSimulator class and performance variables. 

2. Normal round trip time assumes no augmented mobile agent state. 

2.2.3 Results and analysis 

The normal and crash round trip times were obtained from forty trial runs. A new mobile 

agent was dispatched for each trial run. An agent server crash simulation was reset before the 

next trial. 

A comparison of round trip times for the crash of a master and a shadow is illustrated in 

Figure 6-8. Performance calculations for the mobile shadow scheme imposed a minor increase 

of 0.50% on the round trip times. The nonnal round trip time assumes no state augmentation for 

perfonnance calculations or the CrashSimulator class. 

The mobile shadow exception handling scheme provides an average normal round trip time 

of 2.1 s. When fault tolerance measures are exercised in the presence of a random agent server 

crash, the round trip time significantly increases. A shadow crash offers a quicker round trip 

time of 13.8s (11.7s increase) compared to 14.6s (12.5s increase) for a master crash. This is due 
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to the way in which the shadow crash is simulated. When the master migrates to the next agent 

server in the itinerary the shadow terminates its agent server. Consequently, when the master 

arrives at the next agent server in the itinerary its ping thread detects the crash of the shadow. 
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Figure 6-9 illustrates the perfonnance overheads for master and shadow crashes. The time 

taken to spawn and start a shadow is negligible for both a master and shadow crash. For 

example, when handling a master crash the average time for a shadow to spawn a new shadow 

is 76.5ms (0.08s). 

The largest overhead is the time taken for a shadow to be notified of its master's agent 

server crash (4.4s). This is explained by the concurrent execution of the shadow and its ping 

thread. Every shadow starts a thread to ping its master's agent server. The ping thread pings 

until it detects a crash and notifies the blocked shadow. Similarly, the master pings its shadow 

concurrently. 

To summarise, quicker round trip times were obtained with the IBM Aglets [Oshima98] 

case study design for a random agent server crash. This is attributed to the design of the crash 

simulation and the use of JDK1.3 with the IBM Aglets [Oshima98] implementation. 
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Furthermore, the largest overhead was found to be the time taken for a shadow to detect its 

master crash. This is attributed to the concurrent execution of the shadow and its ping thread. 

2.3 Summary 

The experiment performed using the Ajanta [Tripathi02] case study environment compared 

the mobile shadow exception handling scheme with an exception handler that uses a timeout 

mechanism to detect agent server crash failures. Systems that employ a timeout mechanism 

must use a timeout period that exceeds the slowest network conditions for the mobile agent trip 

time. Consequently, even if there are no agent server crash failures, the timeout period must still 

nm to completion to determine failure. The advantage of the mobile shadow exception handling 

scheme is that no timeout mechanism is necessary for the mobile agent trip length. 

Consequently, in the event that the agent server occupied by the master crashes, the shadow is 

available as a replacement. 

There are a number of extensions that can be petformed for the experiment. Firstly, a 

greater number of trial nms can be perfonned. Currently, an agent server must be manually 
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restarted, for each run, when measuring the crash round trip time. A greater number of trial runs 

could be obtained if there was the ability to automatically restart an agent server process that 

encountered a crash failure. Secondly, the experiment could vary the size of the mobile agent 

and the total number of random agent server crashes encountered during a trip. The size of the 

mobile agent could be increased by using redundant state or a larger itinerary. 

A final consideration would be to deploy the case study architecture in a wide area network 

environment. Currently, both of the experiments outlined in sections 2.1 and 2.2 are deployed in 

a local area network. Consequently, the results are applicable to mobile agents that are deployed 

within the same administrative domain to compress information distributed within the local 

network. The next step would be to investigate the performance of the mobile shadow exception 

handling scheme in a wide area network for large scale distributed information retrieval. This 

would have to be perfonned in collaboration with other institutions. Alternatively, a simulation 

of a wide area network environment could be investigated. 

3 Evaluation using exception handling model 

This section evaluates the mobile shadow exception handling scheme with respect to the 

conceptual exception handling model outlined in chapter 4, section 2. The mobile shadow 

exception handling scheme provides a fault tolerant service for maintaining mobile agent 

availability in the presence of agent server crashes. This service is embedded within the 

application mobile agent. Recall that the mobile shadow scheme employs two mobile agents: 

• Master: Responsible for executing the application task. 

• Shadow: Replica that monitors the agent server currently occupied by the master. The 

shadow is located at the agent server previously visited by the master. 

The mobile agent exception handling model partitions the behaviour of a mobile agent into 

normal and exceptional. With respect to the mobile shadow exception handling scheme, the 

nonnal behaviour of a mobile agent corresponds to execution of an application task at each 

agent server visited in the itinerary. The exceptional behaviour is triggered when an application 

exception is signalled through interaction with software services at the agent server. 

Alternatively, a mobile agent's exceptional behaviour may be triggered due to environmental 

conditions. For example, the agent server may disallow mobile agent execution due to 

inadequate access privileges. Furthermore, an agent server may signal an exception to a mobile 

agent when it failed to dispatch the mobile agent to the next agent server in the itinerary. For 

example, the destination agent server may have failed by crashing. 

The mobile shadow exception handling scheme specifically handles exceptions raised by 

the agent server environment with respect to an agent server crash. Consequently, exceptional 
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behaviour is triggered when an agent server occupied by the master or shadow fails by crashing. 

The application developer is expected to address application exceptions raised by software 

services at agent servers visited in the itinerary. Consequently, the developer of a mobile agent 

must be aware of the exceptions that are signalled by software services at agent server 

enviromnents visited in the itinerary. This appears to be the normal case for mobile agents in the 

distributed systems community. To the author's knowledge Ajanta [Tripathi02] is the only 

mobile agent system that imposes a framework to handle application exceptions for mobile 

agents. 

There are two exception handlers that migrate with a mobile agent in the mobile shadow 

scheme: 

• Master exception handler: Replaces a master lost due to an agent server crash. 

• Shadow exception handler: Replaces a shadow lost due to an agent server crash. 

Each agent server provides aping service, sring• to respond to ping messages from remote 

mobile agents. This is synonymous with a service at an agent server in the conceptual exception 

handling model presented in chapter 4. If there is no ping response from the agent server's ping 

service a failure exception is raised in the master or shadow. At this point the exception 

handling model presented in chapter 4 offers the following options for mobile agents that 

receive a failure exception from a service at a remote agent server: 

• Retry. 

• Report back to home agent server. 

• Report back to parent mobile agent. 

If the shadow exception handler is triggered a retry action is performed. The master raises a 

failure exception when the ping service located at the shadow's agent server fails to respond. 

Consequently, the master issues a retry action by dispatching a shadow to the next available 

agent server that was previously visited. 

The master exception handler is triggered when the ping service located at the master's 

agent server fails to respond. In this scenario the shadow reports back to the home agent server 

when the trip is complete. The IBM Aglets [Oshima98] implementation for the mobile shadow 

exception handling scheme, presented in chapter 4, skips the agent server that crashed. 

Consequently, a replacement master arrives at the next available agent server in the itinerary. 

This policy is applicable for applications that require the information within a time deadline. For 

example, resending a mobile agent to visit failed agent servers may add significant overheads to 

the time requirements imposed by the application. A retry action for the master exception 

handler was considered whereby the replacement master installs a clone that repeatedly retries 
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visiting the crashed agent server. Obviously this scheme requires a shadow to monitor the 

availability of the agent server occupied by the clone. However, the disadvantages are as 

follows: 

• The state of the mobile agent is increased to log the id and location of clones that 

attempt to visit a crashed agent server. 

• The scheme requires two additional mobile agents. A clone is required for dispatch 

to the crashed agent server. Furthermore, a shadow must monitor the availability of 

the clone. Eventually, the performance of agent servers could be degraded, 

especially if recursion occurs due to a clone failure. 

In the worst case scenario a mobile agent may visit none of the hosts in its itinerary if all 

have crashed. One solution is to use an itinerary pattern [Tripathi02] whereby the mobile agent 

logs the success for each itinerary entry. The home agent server can take appropriate action 

when the mobile agent returns, e.g. a mobile agent may be dispatched to all failed agent servers. 

The guardian exception handling model presented in [Tripathi02] provides a guardian at the 

home agent server that encapsulates recovery behaviour for exceptions that cannot be handled 

by mobile agents. The guardian may also be used to co-ordinate recovery of mobile agent 

groups. In the exception handling model for mobile agents (presented in chapter 4, section 2), 

the guardian may encapsulate the recovery behaviour at the home agent server when a mobile 

fails to retry or locate an alternative software service. 

The mobile shadow exception handling scheme is evidently recursive for the crash of a 

master or shadow. For example, in the event of a master crash the shadow spawns a new 

shadow and then replaces the master. The case study application presented in chapter 5 and the 

IBM Aglets [Oshima98] implementation in chapter 4 assumes that a single mobile agent visits a 

sequence of agent servers. No children are spawned to perform a task on the behalf of the 

mobile agent. This scenario is raised in the exception handling model presented in chapter 4, 

section 2. The mobile shadow exception handling scheme addresses this scenario provided that 

there is no synchronous relationship introduced between a parent and its children. For example, 

a child may either report back to the home agent server or perform a task on the behalf of its 

parent and then tenninate. However, if a parent requires a response from a child then a 

synchronous relationship is introduced and the mobile shadow exception handling scheme must 

be extended. If the agent server occupied by a master crashes, then children are not aware of the 

location of the replacement master. Similarly, a replacement master is not notified when a child 

has completed its task. A possible solution would be to impose the restriction that all children 

report back to the home agent server. However, fault tolerance mechanisms are required to 

provide high availability of the home agent server. 
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To summarise, the mobile shadow exception handling scheme provides the foundation for 

using the exception handling model in information retrieval environments where mobile agent 

loss must be tolerated. The scheme offers two advantages. Firstly, mobility and replication 

provide fault tolerance during the mobile agent trip, i.e. an exception handler that is independent 

of trip length migrates with the mobile agent. This is compared to a timeout scheme [Pears03] 

where the application developer must va1y the timeout interval for different trip lengths. 

Secondly, the scheme is useful for groups of collaborative information retrieval mobile agents, 

since the master and shadow comprise a single fault tolerant group member. Alternative 

schemes exist, e.g. [DeAssisSilvaOO, Pleisch03, Schneider97, Strasser99], that replicate a 

mobile agent at each stage of its itinerary to an anticipated set of agent servers. However, this 

induces a complex design for collaborative infonnation retrieval mobile agents. For example, a 

single group member requires that replicas are deployed, at alternative agent servers, for each 

stage of the itinerary. 

4 Feature-based evaluation 

In addition to the evaluations using the case study and exception handling model, the mobile 

shadow exception handling scheme was compared with other existing systems for mobile agents 

to survive agent server crashes. This was done to highlight the similarities and differences 

against existing research. 

The features identified, and the rationale for selection, are described in the following table. 

Feature ··· Explanation : ·.:,::;·:, :; ~·.:.:]::::.~ , r.; .. :·: ,,,· 

:.i~F. · .; ,. ' 
Fault tolerance This defines where the fault tolerance design is located. If located within the 

location mobile agent then there is the danger that the state of the mobile agent 

exceeds bandwidth limitations. If located within the agent server then it must 

be feasible to adopt the algorithm for all mobile agent systems. 

Recovery This defines the recovery mechanism. A forward recovery mechanism 

mechanism implies that modifications to the state of the agent server are not undone. The 

application developer is responsible for compensating the state of the agent 

server if it recovers from the crash. If backward error recovery is employed it 

is possible to undo actions performed by mobile agents. 

Stable storage This defines if mobile agents are stored in stable storage at each agent server. 

This is important since it describes if mobile agents are restarted by the agent 

server when it recovers from a crash. 
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Structure to This defines if the fault tolerance design provides any structure for mobile 

determine 

alternative 

agent server 

agents to visit alternative agent servers in the event of an agent server crash. 

Alternatively, this responsibility may be left with the application developer. 

Communication This defines the assumptions made by the fault tolerance design regarding 

assumptions the underlying network conditions. Consequently, this IS important to 

potential users since it describes the underlying conditions of the mobile 

agent's network environment for correct execution of the fault tolerance 

protocol. If no communication assumptions are made, then mobile agents can 

survive network partitions and transport failures due to unreliable 

communication links. 

Fault tolerance 

mechanism 

Child failure 

This defines the fault tolerance mechanism used for mobile agents to survive 

agent server crash failures. A spatial replication mechanism 

[DeAssisSilvaOO, Pleisch03, Schneider97, Strasser99] dispatches replica 

mobile agents to a group of agent servers for the next stage in the itinermy. A 

temporal replication approach executes a mobile agent at a single agent 

server. If execution fails the mobile agent is dispatched to another agent 

server. 

This defines if children spawned, by a parent mobile agent, can survive an 

agent server crash. "Asynchronous" indicates that children survive agent 

server crashes, provided there is no need to report back to the parent. 

"Synchronous" indicates that children survive mobile agent crashes and 

report back results to the parent. 

Table 6-1 Features to be identified in the feature analysis 

Table 6-2 shows the features contained within existing systems for mobile agents to survive 

agent server crash failures. The mobile shadow exception handling scheme has also been 

included for reference. 



System Fault tolerance Recovery Structure to determine Stable storage Communication Fault tolerance Child failure 
location mechanism alternative agent server assumptions mechanism 

Mobile shadow Mobile agent Forward Developer defmed No Reliable Temporal Asynchronous 
[Pears03] messagmg replication 

assumed 
FA TOMAS Mobile agent or Forward Developer defined Yes None Spatial replication Synchronous and 
[PleischO 1] agent server asynchronous 
GMDFOKUS Agent server Forward and Developer defined Yes Reliable Spatial replication Synchronous and 
[DeAssisSilvaOO] backward messaging asynchronous 

assumed 
JAMES Hybrid Backward Yes Yes None Temporal Asynchronous 
[SilvaOO] replication 
Mole Agent server Forward Developer defined Yes Reliable Spatial replication Asynchronous 
[Strasser98] messaging 

assumed 
NAP Agent server Backward Developer defined Yes Reliable Temporal Asynchronous 
[Johansen99] messagmg replication 

assumed 
Net Pebbles Agent server Backward Yes, language Yes None Temporal Asynchronous 
[MohindraOO] constructs for replication 

alternative agent 
servers 

Table 6-2 Feature analysis of fault tolerance systems for surviving agent server crashes 



Chapter 6 Evaluation 117 

The ideal fault tolerant scheme for mobile agents to survive crash failures depends upon the 

requirements of the application and the scale of the network. Consequently, emphasis must be 

given to specific tasks, with the recognition that this may require compromise dependent upon 

the application domain. 

Information retrieval mobile agents perform idempotent operations at each agent server 

visited in the itinerary, i.e. a mobile agent that interacts with software services at each agent 

server does not modify the application state of the agent server. Mobile agents only consume 

information from agent servers visited in the itinerary, thus eradicating the need for backward 

recovery mechanisms. Furthermore, if the mobile agent is dispatched in a wide area network to 

retrieve infonnation then the protocol ideally migrates with the mobile agent. Interoperability 

between mobile agent systems is still a significant problem. However, there is evidence of 

research interest to tackle the problem [Brazier02, Grimstrup02, MisikangasOO, PinsdorfU2]. If 

the fault tolerance protocol migrates with the mobile agent then fault tolerance is provided 

irrespective of the installed mobile agent system. This increases the interoperability of the 

protocol with mobile agent systems, i.e. enterprises do not have to modify the agent server 

environment. However, the increase of the mobile agent's state must be kept to a minimum. 

Mobile agents may also be used to perform an application specific task on the behalf of a 

user. In this scenario the mobile agent may modify the state of agent servers. For example, a 

mobile agent that purchases a product at an agent server alters the stock level. Consequently, 

backward recovery mechanisms are necessary to rollback the application state of the agent 

server in the event that a crashed agent server eventually recovers. Alternatively, forward 

recovery mechanisms [Pears03, PleischO I, Strasser98] may be used to compensate the actions 

perfonned by the mobile agent, e.g. cancelling the purchase made by the mobile agent. 

If the application is deployed over the wide area network then a system is preferred that 

does not make any assumptions regarding cmmnunication in the network. For example, reliable 

messaging is a weak assumption for applications that are deployed in large scale networks 

where network partitions are frequent. In this scenario the mobile shadow exception handling 

scheme fails if the shadow and master are separated by network partitions. Consequently, the 

shadow believes that the master has failed due to an agent server crash. This becomes a problem 

with applications that require exactly once execution semantics since there are two instances of 

the application mobile agent, separated by network partitions. However, this is not a problem if 

the mobile shadow exception handling scheme is used for information retrieval applications 

where the duplicate mobile agent only consumes infonnation. 

Finally, if the mobile agent application deploys a mobile agent that dispatches children to 

perfonn an application task then the mobile shadow exception handling scheme is suitable, 
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provided that there is no synchronous relationship introduced between the parent and child. If it 

is necessary for the parent to synchronise with its children, e.g. to retrieve results, then the 

systems described in [DeAssisSilvaOO, PleischO 1] are preferred. 

To summarise, the mobile shadow exception handling scheme is ideally suited to 

information retrieval applications since no backward recovery is necessary. The strength of the 

mobile shadow exception handling scheme is that a mobile agent is a single fault tolerant entity 

that can survive agent server crash failures. The fault tolerance protocol migrates with the 

mobile agent, eradicating the need to modify the agent server environment at remote hosts. 

Other systems that employ temporal monitoring require modification of the agent server 

environment for installation of fault tolerance measures. Consequently, the mobile shadow 

exception handling scheme has the potential to ease the complexity introduced for a group of 

mobile agents deployed for infonnation retrieval. This is compared to systems that employ 

spatial replication to tolerate agent server crashes. Systems that use spatial replication require a 

group of agent replicas for each mobile agent in the group. The group of replicas are dispatched 

to a set of discrete agent servers for each stage in the itinerary. Additionally, a voting algorithm 

is necessary for replicas to agree upon the following points: 

• A mobile agent has failed due to an agent server crash. 

• The identity of the mobile agent that is executing the application task. 

5 Summary 

This chapter has provided an evaluation of the mobile shadow exception handling scheme 

detailed in chapter 4. The implementation of the mobile shadow exception handling scheme was 

evaluated using a number of techniques. 

Firstly, the implementation of the mobile shadow exception handling scheme was evaluated 

for the Ajanta [Tripathi02] and IBM Aglets [Oshima98] mobile agent systems. The mobile 

shadow scheme has the advantage that it is independent of the itinerary trip length. 

Consequently, a performance benefit is offered over systems that use a timeout mechanism at 

the home agent server, for larger itinerary lengths. Furthermore, performance overheads were 

also obtained for an Ajanta and IBM Aglets [Oshima98] implementation of the mobile shadow 

exception handling scheme. 

Secondly, the mobile shadow exception handling scheme was justified with respect to the 

exception handling model presented in chapter 4, section 2. This highlighted the application 

exception handling options available with respect to an agent server or host crash. Furthennore, 

the difficulties encountered for tolerating a child and parent crash failure while preventing 

blocking is highlighted. 
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Finally, a comparison was provided with existing systems. The result of the analysis 

highlights that the mobile shadow scheme is applicable to idempotent applications that operate 

within a closed network environment. The issues with using the scheme in a wide area network 

environment were highlighted. Furthermore, it was observed that the mobile shadow exception 

handling scheme has the potential to ease the complexity introduced for a group of mobile 

agents deployed for infonnation retrieval, compared with systems that use spatial replication to 

tolerate agent server and host crash failures. Reducing the additional complexity introduced by 

fault tolerance is an important issue for mobile agent applications, in order to preserve the 

potential savings in bandwidth. 
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Chapter 7 Conclusions 

1 Introduction 

The aim of this research was to investigate and develop a scheme that uses exception 

handling for mobile agents to survive agent server crash failures. Therefore, a major part of the 

thesis is firstly a background of mobile agents and techniques for exception handling in 

traditional distributed systems. Subsequently, existing systems for maintaining the availability 

of mobile agents against agent server crashes were investigated. The problem of maintaining the 

availability of mobile agents against agent server crashes is a difficult one. Solutions use 

temporal or spatial replication mechanisms. The remainder of the thesis addresses the problem 

by firstly proposing an exception handling model for mobile agent systems. Consequently, 

based upon the understanding gained, a scheme was implemented that uses a temporal 

replication solution. This was then deployed within a case study application. 

The mobile shadow exception handling scheme proposed in this thesis uses temporal 

replication for mobile agents to survive agent server crash failures. This is based upon the 

principle that the mobile agent is dispatched to each agent server in the itinerary. If the mobile 

agent is lost due to an agent server crash then a replica is sent to an alternative agent server. The 

use of temporal replication introduces a number of issues, the most significant being the 

potential use for adopting the scheme for a group of collaborating mobile agents. Unlike spatial 

replication techniques [DeAssisSilvaOO, Pleisch03, Schneider97, Strasser99] there is no need to 

dispatch replica mobile agents to a static group of equivalent agent servers for each stage of the 

itinerary. Instead, the mobile shadow exception handling scheme uses a shadow mobile agent to 

monitor the availability of the application mobile agent at each stage of the itinerary. 

Consequently, only the set of agent servers specified in the itinerary are visited. This eases 

complexity since, for each agent server visited in the itinerary, there is no need for the 

application developer to determine a set of equivalent agent servers to visit in the event of a 

crash failure. 

There are a number of possible extensions to the mobile shadow exception handling 

scheme, such as extending the failure model and providing a dynamic itinerary that allows the 

mobile agent to select an alternative agent server in the event of a crash failure. However, this 

has been considered for future work. Instead, focus was given to an exception handling model 

for mobile agents, with the aim of allowing exception handling for mobile agents to be better 

understood, particularly with respect to a group of mobile agents. 
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2 Research summary 

This research has presented a number of issues relating to exception handling and fault 

tolerance for mobile agents against agent server crash failures. The primary contributions can be 

considered to be: 

• An exception handling model that highlights the key differences for exception handling 

in mobile agent systems, as opposed to traditional distributed systems. 

• A failure model for mobile agent systems. 

• A demonstration of a fault tolerance scheme that uses exception handling and temporal 

replication to protect mobile agents from agent server crash failures. 

The mobile shadow exception handling scheme uses temporal replication to protect mobile 

agents against agent server crash failures. A sequential itinerary is used to detennine the 

boundary of agent servers visited by the mobile agent. This is assumed in other systems that 

protect mobile agents from agent server crash failures. A replica is spawned before the 

application mobile agent migrates to the next agent server in the itinerary. Exception handlers 

are provided for the crash of the replica and application mobile agent. The crash of a replica is 

transparent to the application developer. In this case the exception handler inspects the 

sequential itinerary to determine an available agent server that can be occupied by a replacement 

replica. If the application mobile agent is lost due to an agent server crash failure then the 

exception handler uses the replica as a replacement. Subsequently, a new replica is spawned to 

monitor the replacement application mobile agent. 

The itinerary is particularly important for the protection of mobile agents against agent 

server crash failures. The mobile shadow exception handling scheme uses a sequential itinerary 

to conveniently provide a set of agent servers, available for occupation by one or more replica 

mobile agents. Furthermore, a natural boundary for error confinement is established. 

Consequently, the itinerary can provide a boundary for atomic actions in mobile agent systems. 

The concept of atomic actions is presented in chapter 3. 

An itinerary has equally been used in spatial replication mechanisms to establish the set of 

agent servers occupied by replicas at each stage of the itinerary. However, this has the 

disadvantage that there is an increase in the state of the mobile agent. For example, entries are 

required for each stage in the itinerary to represent the alternative agent servers that can be 

visited in the event of a crash. 
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3 Criteria for success 

With respect to the exception handling model (outlined in chapter 4, section 2) and the 

mobile shadow exception handling scheme, it is possible to review the introductory chapter to 

summarise what has been achieved. The criteria for success were presented in chapter 1, section 

5. These will now be examined in order to demonstrate the extent to which they have been 

achieved within the thesis. 

a) Create an exception handling model for mobile agent systems 

This research has proposed an exception handling model for mobile agents in chapter 4, 

section 2. Mobile agents execute an itinerary by visiting remote agent servers to interact with 

software services on the behalf of the user. If a mobile agent receives an exception from a 

service at a remote agent server then it can retry the service, migrate to an agent server that 

offers an equivalent service or report back to the home agent server. 

Exception handling in mobile agent applications is recursive. Software services may 

dispatch a mobile agent to satisfy a service request. Similarly, a visiting mobile agent may 

dispatch a child to perform a task on its behalf for the duration of its visit. Exception handling in 

mobile agent systems is complex when a mobile agent dispatches a child to perfmm a task on its 

behalf. If a child encounters an exception from a service at a remote agent server then the parent 

must be notified. This is provided that a synchronous relationship exists between parent and 

child. Consequently, in these circumstances the parent must remain stationary until the child 

returns. 

b) Identify a failure model for mobile agent systems 

A failure model was introduced in chapter 4, section 3, for mobile agent systems in general. 

There are few failure models in existence for mobile agents. The key classifications for mobile 

agent execution failure are: security, communication, software faults and agent server crashes. 

Chapter 4 presents a failure model that summarises, for each class of failure, the scenarios 

and conditions of failure. The mobile shadow exception handling scheme addresses the crash 

failure classification for infonnation retrieval applications. The conditions of agent server crash 

failures have been outlined for information retrieval applications. Namely, these are that 

network partitions, host crashes and communication link failures eventually recover. 

Furthennore, remote agent servers are not expected to provide persistency of mobile agents. 
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c) Development of an exception handling scheme for the protection of mobile agents 

against agent server crashes 

The implementation of an exception handling scheme for the protection of mobile agents 

against agent server crashes was presented in chapter 4, section 4. The demonstration of the 

mobile shadow exception handling scheme, using the case study application that is presented in 

chapter 5, raised significant issues with respect to handling crash failures for mobile agent 

systems. Firstly, a mobile agent's itinerary is useful to establish a boundary for error 

confinement. Secondly, a log is required of the agent servers where a mobile agent failed to 

complete execution due to crash failures. Solutions for the exception handler include: resend the 

mobile agent, in the event that the agent server eventually recovers, or dispatch the mobile agent 

to the home agent server for application recovery. 

A further aspect identified is the difficulty of protecting children from crash failures. Most 

of the systems presented in the feature analysis in chapter 6 assume that children are dispatched 

to perform a task that is independent of the parent. Two of the systems included in the feature 

analysis provide recovery where a synchronous relationship is introduced between parent and 

children. However, both are conceptual with no actual implementation for the scenario. 

d) Identify the best approach for mobile agent groups to survive agent server crashes 

The thesis has concluded that a temporal replication mechanism is preferred for protecting a 

mobile agent that is a member of a group, from agent server crash failures. Furthermore, agent 

servers visited in the itinerary can be used to host a replica that replaces the application mobile 

agent in the event of an agent server crash. This has been demonstrated by the case study 

application in chapter 5 and the evaluation results in chapter 6. 

A significant advantage of the mobile shadow exception handling scheme, with respect to 

mobile agent groups, is that a replica dynamically migrates with the application mobile agent at 

each stage of the itinerary. This reduces the performance overheads when compared to spatial 

replication mechanisms. Spatial replication mechanisms [DeAssisSilvaOO, Pleisch03, 

Schneider97, Strasser99] adopt a voting protocol in the event of an agent server crash to elect a 

new leader from a group of replicas. Furthermore, spatial replication mechanisms produce a 

larger itinerary, since for each stage in the itinerary a mobile agent replica must be dispatched to 

n agent servers that are capable of executing the mobile agent. Complexity is therefore reduced 

by the mobile shadow exception handling scheme, since a group of replicas is not required for 

each group member. Consequently, each member of the mobile agent group is a single fault 

tolerant entity. 
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Re-examination of these criteria, with reference to the relevant parts of the thesis, has 

shown that this research has been successful. The research has addressed the overall aim of 

developing and evaluating a fault tolerance protocol that uses exception handling to protect 

mobile agents from agent server crash failures. Furthermore, this thesis adds to current fault 

tolerance research for mobile agent systems. 

4 Future worlk 

There are many further directions for the research that involve extending the 

implementation of the mobile shadow exception handling scheme, extending the failure model 

and employing the mobile shadow exception handling scheme for a group of collaborating 

mobile agents. This section examines these areas in further detail. 

4.1 Implementation 

The implementation of the mobile shadow exception handling scheme could be extended in 

the following ways. Firstly, in the event of an agent server crash a replica mobile agent, or 

shadow, skips the crashed agent server and executes at the next available agent server in the 

itinerary. The Ajanta [Tripathi02] mobile agent system provides an itinerary pattern to allow a 

mobile agent to log failed visits to agent servers. When a mobile agent completes its trip the 

home agent server has the following options: 

• Dispatch the mobile agent to remote agent servers to retry execution. 

• Dispatch the mobile agent to an alternative agent server that provides an equivalent 

service. 

Most mobile agent systems require that the application developer is aware of the agent 

servers that offer the required service. With the introduction of directory services it is possible 

to dynamically locate a software service that meets functional requirements. In the event of an 

agent server crash, fault tolerance schemes [DeAssisSilvaOO, Pleisch03, Schneider97, 

Strasser99] for mobile agents provide the option to dispatch a replica mobile agent to an 

alternative agent server that provides an equivalent service. Consequently, the mobile shadow 

exception handling scheme presented in chapter 4 could be extended to include a directory 

service that enables mobile agents to lookup agent servers that offer required services. This 

facility is already provided in systems that implement the FIPA [Fipa04] and MASIF 

[Milojivcic98] standards. 

An alternative approach [DeAssisSilvaOO, Pleisch03, Schneider97, Strasser99] to the mobile 

shadow exception handling scheme replicates a mobile agent, at each stage of its itinerary, to a 

set of agent servers that provide the desired service. If a mobile agent is lost due to an agent 

server crash, a voting algorithm is run by the replicas to elect a new leader. There may be 
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savings in recovery perfonnance since a replica is immediately available at an alternative agent 

server. However, overheads still exist for electing a new leader and sending replicas to 

redundant agent servers at each stage of the itinerary. It would be interesting to investigate 

further the performance of this approach with the mobile shadow exception handling scheme. 

4.2 Extended failure model 

This thesis has constrained the design of the mobile shadow exception handling scheme to 

information retrieval applications, i.e. visiting mobile agents consume information at remote 

agent servers. A failure model and conceptual design was presented in chapter 4. The next 

logical step is to apply the mobile shadow exception handling scheme to applications where 

mobile agents can modify the state of remote agent servers through interaction with software 

resources. This in tum implies transactions to rollback the state of a mobile agent to arrival at 

the agent server that crashed. Imposing this additional assumption has the following 

implications for future work: 

• Investigate a distributed transaction model that establishes a boundary of mobile agent 

execution. Furthermore, the transaction model identifies transaction mechanisms and 

the party responsible for mobile agent persistency. Possibilities include the home agent 

server or remote agent servers visited. 

• Create an XML schema to specify the workflow of a mobile agent. The workflow 

describes the agent servers visited by a mobile agent and alternative agent servers that 

provide an equivalent service in the event of a crash failure. Furthennore, meta

information can be included that describes the activities of the mobile agent. For 

example, is it possible to compensate or retry the activity of a mobile agent? 

• Introduce a heterogeneous mechanism, e.g. XML, to save the state of mobile agents into 

stable storage. 

4.3 Exception handling for mobile agent groups 

This thesis has presented the mobile shadow exception handling scheme that allows a single 

mobile agent to survive agent server crash failures. The mobile shadow exception handling 

scheme migrates with the application mobile agent for protection against agent server crash 

failures in information retrieval environments. The next logical step is to investigate the use of 

the mobile shadow exception handling scheme for a group of collaborating mobile agents. This 

is expected to be performed using a case study application. Four scenarios are envisaged for 

mobile agent group collaboration: 

1. Preserve bandwidth savings for mobile agents with large itineraries: A large 

itinerary that encompasses hosts that offer discrete services produces a "fat" mobile 

agent. The mobile agent must encompass knowledge about the actions to perform at 

each agent server. Furthermore, a greater amount of knowledge is required to process 
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the information obtained from different software services at remote agent servers. 

Consequently, there is a danger that the savings in bandwidth gained from employing 

mobile agent technology is sacrificed. Furthermore, the code of the mobile agent is 

monolithic resulting in complex maintainability. To preserve the bandwidth savings and 

reduce complexity it is natural to introduce a hierarchy of ''lean" mobile agents that 

serve to decompose the workflow. Consequently, collaboration must be introduced to 

synchronise information for workflow interdependencies between mobile agents in the 

hierarchy. 

2. Collaboration to preserve shared application semantics: A group workflow structure 

of mobile agents may share common application semantics. For example, a group of e

commerce mobile agents may share application constraints such as budget limit, 

delivery date and possibly location. If one of the semantics is violated, then all agents 

must be informed to enable alternative planning for purchases. This collaboration is 

application specific. 

3. Collaboration to prevent duplicate migration: Mobile agents can be used to traverse 

large web databases, e.g. searching internet databases of web pages [CabriOO]. One use 

is to employ mobile agents to traverse links and fonn a global perspective of the 

hyperlink structure. A clone may be deployed to follow new hyperlinks to databases or 

retrieve new material. Cloning is much more efficient as opposed to using a single 

monolithic agent since the clone is a leaner agent, i.e. it employs a smaller itinerary and 

has no accumulated state upon creation. To avoid duplicate searches between clones 

collaboration is necessary, e.g. a marker could be installed at a site to inform clones that 

the site has been visited and searched on a specific date and time. Future clones that 

visit the site may only search the database for those entries after a specific date/time, 

avoiding redundant searching and processing. 

4. Collaboration for mobile computing: Single hop mobile agent technology is useful 

for the mobile computing domain, e.g. e-auctions or e-conferencing. A mobile agent 

could be dispatched from a mobile computer to negotiate at a central server. The mobile 

agent negotiates with other mobile agent representatives on the behalf of its 

disconnected user. This scenario is useful for low powered mobile devices that suffer 

frequent disconnections. 

Scenarios 1, 2 and 3 are of particular interest where shared application semantics introduce 

dependencies between collaborating mobile agents. The following conceptual model is foreseen 

for a group of collaborating mobile agents. A group has a global application state, visible to all 

members, that is limited by a set of shared application constraints, i.e. constraints = { C" C2 ... 

Cc } . Actions that are performed by a member at an agent server A Gk modify the group 

application state. 
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The exceptions raised in a group are classified as local and group. Local exceptions are 

private to each member and handled autonomously. Each member has a set of local exceptions, 

local= { le~. le2. ... len} and corresponding handlers, internal_handlers = { lh~. lh2, •.• lh11 }. A 

group exception ge. is raised by a member when a shared application constraint c. is violated. 

Furthermore, a group exception event is described by the triple, ge = { ID, AGk, name}, where 

ID is the identifier of the member that produced the exception, A Gk is the agent server where the 

member identified by ID executed and name is a unique name for the exception. Group 

exceptions, group_exceptions = {ge~. ge2 , .•• gee }, are known to all members, i.e. members are 

aware of the group exceptions that can be raised and all members are notified of a group 

exception occurrence. Each member has a corresponding set of group exception handlers, i.e. 

group_handlers = { gh 1, gh2, ••• ghc }. When a member is notified of a group exception ge. the 

corresponding handler gh. is invoked. 

A CA action framework [XuOOb], introduced in chapter 3, is used in traditional distributed 

applications to confine errors and exception handling within a group of distributed participants. 

For mobile agents a boundary for error confinement could include: 

• Mobile agents that are members of the group. 

• Software resources at remote agent servers modified by interaction with mobile agents. 

Adopting a CA action framework [XuOOb] for mobile agents is significantly challenging 

with respect to the mobility of group members. An important problem to address is notifYing all 

group members of an exception occurrence. In any distributed system there is a communication 

delay introduced for sending and receiving messages. However, with mobile agents this delay is 

likely to be increased due to the ability of mobile agents to dynamically relocate between 

remote hosts. This raises significant concerns when notifying group participants of exception 

occurrences and changes of the shared application state. Consequently, a mechanism is needed 

to communicate exceptions and changes in the group application state. One possibility would be 

to investigate the use of tuple space communication for mobile agents [Cabri02, OmiciniOl, 

MurphyOl], introduced in chapter 2, section 2.5. Mobile agents can communicate by inserting, 

modifYing and deleting objects at a shared memory space provided at each agent server. A tuple 

space communication mechanism offers the advantage that mobile agents do not have to 

synchronise location for communication. This concept may be combined with gossip protocols 

[Ganesh03, GuptaOl, RanganathanOl] to disseminate each member's knowledge to the rest of 

the group. Eventually, all members leam of exceptions and application state changes in the 

group. However, further research is required for adopting gossip protocols [Ganesh03, GuptaOl, 

RanganathanO 1] for mobile agents. This is necessary to ensure that the extra bandwidth IS 

minimised to maintain the benefit of using mobile agent technology. 
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5 Summary 

This thesis has examined the fundamental principles and challenges for mobile agents to 

survive agent server and host crash failures. A new approach is then proposed that has the 

potential to be adopted in information retrieval applications. The new approach, called the 

mobile shadow exception handling scheme, is described in detail. This includes the use of a case 

study application to demonstrate the principle concepts of the mobile shadow exception 

handling scheme. The mobile shadow exception handling scheme reduces complexity for a 

group of mobile agents to survive server crashes. Each group member is a single fault tolerant 

entity with respect to server crash failures. The thesis has highlighted the importance of 

reducing the complexity introduced through fault tolerance, in order to preserve the potential 

bandwidth savings gained from using the mobile agent paradigm. An evaluation of the mobile 

shadow exception handling scheme identified its relative merits and areas of future work have 

been identified for ways in which the research could be carried forward. 



References 

!References 

[ Acharya97] 

[Adobe85] 

[ Anderson81] 

[Aridor98] 

[Baeumer03] 

[Beans04] 

[Bellifemine99] 

[Binder01] 

[Boggs73] 

129 

A.Acharya, M.Ranganathan and J.Saltz, "Sumatra: A Language for 

Resource-Aware Mobile Programs," in Mobile Object Systems: 

Towards the Programmable Internet, pp.111-130, Springer Verlag, 

1997. 

Adobe Systems Inc, Addison-Wesley, Postscript Language Reference 

Manual, 1985. 

T.Anderson and P.A.Lee, Fault Tolerance Principles and Practice. 

Prentice-Hall International, 1981. 

Y.Aridor and D.B.Lange, "Agent Design Patterns: Elements of Agent 

Application Design," in Proceedings of the 2nd International 

Conference on Autonomous Agents, Minneapolis, U.S.A., May, 1998, 

pp.108-115. 

C.Baeumer, M.Breugst, S.Chay and T.Magedanz, Grasshopper - A 

Universal Agent Platform Based on OMG MASIF and FIPA Standards. 

http:/1213.160.69.23/grasshopper-website/links.html (September 2003) 

Jumping Beans. http://www.jumpingbeans.com (September 04) 

F.Bellifemine, A.Poggi and G.Rimassa, "JADE - A FIPA-Compliant 

Agent Framework," in Proceedings of the 4'" International Conference 

on The Practical Application of Intelligent Agents and Multi-Agent 

Technology, London, U.K., April, 1999, pp.97-108. 

W.Binder, "Design and Implementation of the JSEAL2 Mobile Agent 

Kernel," in Proceedings of the 2001 Symposium on Applications and 

the Internet (SAINT-2001), San Diego, U.S.A., January, 2001, pp.35-47. 

J.K.Boggs, "IBM Remote Job Entry Facility: Generalise Subsystem 

Remote Job Entry Facility," Technical Report, IBM Technical 

Disclosure Bulletin 752, IBM, August, 1973. 



References 

[Braun01] 

[Brazier02] 

[CabriOO] 

[Cabri02] 

[CampadelloOO] 

[Campbell79] 

[Campbell86] 

[Cao03] 

[Cardelli97] 

130 

P.Braun, J.Eismann, C.Erfurth and W.R.Rossak, "Tracy - A Prototype 

of an Architected Middleware to Support Mobile Agents," in 

Proceedings of the 81
h IEEE Conference and Workshop on the 

Engineering of Computer Based Systems (ECBS), Washington D.C., 

U.S.A., April, 2001, pp.255-260. 

F.M.T.Brazier, B.J.Overeinder, M. van Steen and N.J.E.Wjingaards. 

"Agent Factory: Generative Migration of Mobile Agents in 

Heterogeneous Enviromnents," in Proceedings of the ACM Symposium 

on Applied Computing (SAC2002), Madrid, Spain, March, 2002, 

pp.101-106. 

G.Cabri, L.Leonardi and F.Zambonelli, "Mars: A Programmable 

Coordination Architecture for Mobile Agents," IEEE Internet 

Computing, 4(4), pp.26-35, 2000. 

G.Cabri, L.Leonardi and F.Zambonelli, "Engineering Mobile Agent 

Applications via Context-Dependent Coordination," IEEE Transactions 

on Software Engineering, 28(11), pp.l039-1055, 2002. 

S.Campadello, H.Helin, O.Koskimies, P.Misikangas, M.Makela and 

K.Raatikainen, "Using Mobile Agents and Intelligent Agents to Support 

Nomadic Users," in Proceedings a_( the 6th International Conference on 

Intelligence in Networks (ICIN2000), Bordeaux, France, January, 2000. 

R.H.Campbell, K.H.Horton and G.G.Bedford, "Simulations of a Fault 

Tolerant Deadline Mechanism," in Proceedings of the gth International 

Symposium on Fault Tolerant Computing Systems (FTCS-9), Madison, 

U.S.A., June, 1979, pp.95-101. 

R.H.Campbell and B.Randell, "Error Recovery in Asynchronous 

Systems," IEEE Transactions on So_(tware Engineering, 12(8), pp.811-

826, 1986. 

J.Cao, Y.Sun, Y.Wang and S.K.Das, "Scalable Load Balancing on 

Distributed Web Servers Using Mobile Agents," Journal of Parallel 

and Distributed Computing, 63(10), pp.996-1005, 2003. 

L.Cardelli, "Mobile Computation," in Mobile Object Systems Towards 

the Programmable Internet, pp.4-6, Springer Verlag, 1997. 



References 

[Chen78] 

[Chess95] 

[Coabs04] 

[Dasgupta99] 

[DeAssisSilvaOO] 

[Derulett87] 

[EmmerichOO] 

[Fipa04] 

[Franklin97] 

[Fuggetta98] 

[Ganesh03] 

131 

L.Chen and A.Avizienis, "N-Version Programming: A Fault-Tolerance 

Approach to Reliability of Software Operation," in Proceedings of the 

8111 International Symposium on Fault-Tolerant Computing Systems 

(FTCS-8), Toulouse, France, June, 1978, pp.3-9. 

D.M.Chess, C.G.Harrison and A.Kershenbaum, "Mobile Agents: Are 

they a Good Idea?," Technical Report, illM Research Division, 

http://www. research.ibm. com/iagents/publications.html, 1995. 

Control of Agent Based Systems. http://coabs.globalinfotek.com 

(June2004) 

P.Dasgupta, N.Narasimhan, L.Moser and P.M.Melliar-Smith, 

"MAgNET: Mobile Agents for Networked Electronic Trading," IEEE 

Transactions on Knowledge and Data Engineering, 24(6), pp.509-525, 

1999. 

F.M. de Assis Silva and R.Popescu-Zeletin, "Mobile Agent-Based 

Transactions in Open Environments," IEICE Transactions on 

Communications, E83-B(5), pp.973-987, 2000. 

D.C.Dennett, The Intentional Stance. MIT Press, 1987. 

W.Emmerich, C.Mascolo and A.Finkelstein, "Implementing 

Incremental Code Migration with XML," in Proceedings of the 22"d 

International Conference on So.fiware Engineering, Limerick, Ireland, 

June, 2000, pp.397-406. 

Fipa. http://www.fipa.org (June 2004) 

S.Franklin and A.Graesser, "Is it an Agent or Just a Program? A 

Taxonomy for Autonomous Agents," in Intelligent Agents Ill Agent 

Theories, Architectures and Languages, pp.21-35, Springer Verlag, 

1997. 

A.Fuggetta, G.P.Picco and G.Vigna, "Understanding Code Mobility," 

IEEE Transactions on So.fiware Engineering, 24( 5), pp.342-361, 1998. 

A.J.Ganesh, A.Kermarrec and L.Massoulie, "Peer-to-Peer Membership 

Management for Gossip-Based Protocols," IEEE Transactions on 

Computers, 52(2), pp.l39-149, 2003. 



References 

[Garcia01] 

[Gelernter85] 

[ Genesereth94] 

[Gou1ouris00] 

[Gray02] 

[GreyOO] 

[Grimstrup02] 

[Gupta01] 

[Hadzilacos94] 

[HennannOO] 

132 

A.F.Garcia, C.M.F.Rubira, A.Romanovsky and J.Xu, "A Comparitive 

Study of Exception Handling Mechanisms for Building Dependable 

Object-Oriented Software," Journal of Systems So.fiware, 59(2), pp.197-

222, 2001. 

D.Gelernter, "Generative Communication in Linda," ACM Computing 

Surveys, 7(1), pp.S0-112, 1985. 

M.R.Genesereth and S.P.Ketchpel, "Software Agents," 

Communications of the ACM, 37(7), pp.48-53, 1994. 

G.Goulouris, J.Dollimore and T.Kindburg, Distributed Systems 

Concepts and Design. Addison Wesley, 3"1 ed., 2000. 

R.S.Gray, G.Cybenko, D.Kotz, R.A.Peterson and D.Rus, "D'Agents: 

Applications and Performance of a Mobile-Agent System," Software 

Practice and Experience, 32(6), pp.543-573, 2002. 

D.J.Grey, P.Dunne and R.I.Ferguson, "On Searching the WWW with 

Mobile Collaborative Agents," in Proceedings of the IIIS International 

Conference on Systems, Analysis and Synthesis (SCI-ISAS2000), 

Orlando, U.S.A., July, 2000, pp.59-64. 

A.Grimstrup, R.Gray, D.Kotz, M.Breedy, M.Carvalho, T.Cowin, 

D.Chacon, J.Barton, C.Garrett and M.Hofmann, 'Toward 

Interoperability of Mobile-Agent Systems," in Proceedings of the Sixth 

IEEE International Conference on Mobile Agents, Barcelona, Spain, 

October, 2002, pp.106-120. 

!.Gupta, R. van Renesse and K.P.Birman, "Scalable Fault Tolerant 

Aggregation 111 Large Process Groups," in Proceedings of the 

International Conference on Dependable Systems and Networks 

(DNS'Ol), Goteborg, Sweden, July, 2001, pp.433-442. 

V.Hadzilacos and S.Toueg, "A Modular Approach to Fault Tolerant 

Broadcasts and Related Problems," Technical Report TR94-1425, Dept. 

Computer Science, Cornell University, Ithaca, U.S.A., May 1994. 

K.Hermann and M.Zopf, Ametas White Paper Series, 

http://www. vsb.cs. uni-frankfurt.de/ametas/ docs/white/ All White. pdf, 

2000. 



References 

[Holder99] 

[Horning74] 

[Huhns97] 

[Jalote86] 

[Jalote94] 

[JavaSpaces03] 

[Johansen99] 

[Johansen02] 

[KienzleO 1] 

[Kim84] 

133 

O.Holder, I.Ben-Shaul and H.Gazit, "Dynamic Layout of Distributed 

Applications in FarGo," in Proceedings ~f the 21" International 

Conference on Software Engineering (ICSE'99), Los Angeles, U.S.A., 

May, 1999, pp.l63-173. 

J.J.Homing, H.C.Lauer, P.M.Melliar-Smith and B.Randell, "A Program 

Structure for Error Detection and Recovery," in Proceedings ~f the 

International Symposium on Operating Systems, Rocquencourt, France, 

April, 1974,pp.l71-187. 

M.N.Huhns and M.P.Singh, "Readings In Agents," Chapter 1, pp.1-23, 

Morgan Kauffmann, 1997. 

P.Jalote and R.H.Campbell, "Atomic Actions for Fault-Tolerance Using 

CSP," IEEE Transactions on Software Engineering, 12(1), pp.59-68, 

1986. 

P.Jalote, Fault Tolerance in Distributed Systems. Prentice-Hall 

International, 1994. 

JavaSpaces v2.0 Specification. http://www.sun.com/jini/specs/js2_0.pdf 

(June2003) 

D.Johansen, K.Marzullo, F.Schneider, K.Jacobsen and D.Zagorodnov, 

"NAP:Practical Fault Tolerance for Itinerant Computations," in 

Proceedings of the 191
" IEEE International Conference on Distributed 

Computing Systems (ICDCS), Texas, U.S.A., June, 1999, pp.l80-189. 

D.Johansen, K.Lauvset, R. van Renesse, F.Schneider, N.Sudmann and 

K.Jacobsen, "A TACOMA Retrospective," S~ftware Practice and 

Experience, 32(6), pp.605-619, 2002. 

J.Kienzle, A.Romanovsky and A.Stroheimer, "Open Multithreaded 

Transactions Keeping Threads and Exceptions Under Control," in 61
" 

International Workshop on Object-Oriented Real-Time Dependable 

Systems, Roma, Italy, January, 2001, pp.209-217. 

K.H.Kim, "Distributed Execution of Recovety Blocks: An Approach to 

Uniform Treatment of Hardware and Software Faults," in Proceedings 

of the 41
" International Conference on Distributed Computing Systems, 

San Francisco, U.S.A., May, 1984, pp.577-632. 



References 

[Klein99] 

[Kotz99] 

[Kotz02] 

[Lange99] 

[Laprie85] 

[Laprie92] 

[Lehman99] 

[Levy88] 

[Liebennan95] 

[Lingau95] 

134 

M.Klein and C.Dallarocus, "Exception Handling in Agent Systems," in 

Proceedings of the 3'"'1 International Conference on Autonomous Agents 

(Agent 99), Seattle, U.S.A., May, 1999, pp.62-68. 

D.Kotz and R.S.Gray, "Mobile Agents and the Future of the Internet," 

ACM Operating Systems Review, 33(3), pp.7-13, 1999. 

D.Kotz, R.Gray and D.Rus, Future Directions for Mobile Agent 

Research, 

(November 2002) 

http://dsonline.computer.org/0208/f/kot_print.htm, 

D.B.Lange and M.Oshima, "Seven Good Reasons for Mobile Agents," 

Communications of the ACM, 42(3), pp.88-89, 1999. 

J.C.Laprie, "Dependable Computing and Fault Tolerance: Concepts and 

Terminology," in Proceedings of the 15'" International Symposium on 

Fault Tolerant Computing Systems, Michigan, U.S.A., June, 1985, pp.2-

11. 

J.C.Laprie, Dependability: Basic Concepts and Terminology - In 

English, French, German and Japanese. Springer Verlag, 1992. 

T.J.Lehman, S.W.McLaughry and P.Wycoff, "TSpaces: The Next 

Wave," in Proceedings of the 32"'1 Hawaii International Conference on 

System Sciences (HICSS-32), Maui, Hawaii, January, 1999. 

H.Levy, E.Jul, N.Hutchinson and A.Black, "Fine-Grained Mobility in 

the Emerald System," ACM Transactions on Computer Systems, 6(2), 

pp.l09-133, 1988. 

H.Liebennan, "Letizia: An Agent that Assists Web Browsing," in 

Proceedings of the 14'" International Joint Conference on Art(ficial 

Intelligence (ICJAI-95), Montreal, Canada, August, 1995, pp.924-929. 

A.Lingau, O.Drobinky and P.Domel, "A http Infrastmcture for Mobile 

Agents," in Proceedings of the 4'" International WWW Conference, 

Boston, U.S.A., April, 1995, pp.23-32. 



References 

[Liu02] 

[Maes95] 

[Magnin02] 

[Marsden02] 

[Marwaha02] 

[Milojivcic98] 

[Milojivcic99] 

[Minar99] 

135 

J.Liu, Q.Zhang, B.Li, W.Zhu and J.Zhang, "A Unified Framework for 

Resource Discovery and QoS Aware Provider Selection in Ad-hoc 

Networks," ACM Mobile Computing and Communications Review, 

6(1 ), pp.l3-21, 2002. 

P.Maes, "Intelligent Software," Scientific American, 273(3), pp.84-86, 

1995. 

L.Magnin, V.T.Pham, A.Dury and N.Besson, "Our Guest Agents are 

Welcome to Your Agent Platforms," in Proceedings of the ACM 

Symposium on Applied Computing (SAC2002), Madrid, Spain, March, 

2002, pp.l01-106. 

E.Marsden, J.Fabre and J.Arlat, "Dependability of CORBA Systems: 

Service Characterization by Fault Injection," in Proceedings of the. 21'1 

IEEE Symposium on Reliable Distributed Systems, Suita, Japan, 

October, 2002, pp.276-285. 

S.Marwaha, C.H.Tham and D.Srinivasan, "Mobile Agents Based 

Routing Protocol for Mobile Ad Hoc Networks," in Proceedings of the 

IEEE Globecom 2002: The World Converges, Taipei, Taiwan, 

November, 2002. 

D.Milojivcic, M.Breugst, I.Busse, J.Campbell, S.Covaci, B.Friedman, 

K.Kosaka, D.Lange, K.Ono, M.Oshima, C.Tham, S.Virdhagriswaran 

and J.White, "MASIF The OMG Mobile Agent System Interoperability 

Facility," in Proceedings of the 2"d International Workshop on Mobile 

Agents (MA '98), Stuttgart, Germany, September, 1998, pp.50-67. 

D.Milojivcic, "Trend Wars: Mobile Agent Applications," IEEE 

Concurrency, 7(3), pp.80-90, 1999. 

N.Minar, K.H.Kramer and P.Maes, "Cooperating Mobile Agents for 

Dynamic Network Routing," in Software Agents for Future 

Communication Systems, pp. 287-304, Springer Verlag, 1999. 



References 

[Mingas03] 

[MisikangasOO] 

[MohindraOO] 

[Muller96] 

[Murphy99] 

[Murphy01] 

[Ndumu97] 

[Nuttall94] 

[Nwana96] 

[Nwana99] 

136 

N.Mingas, W.J.Buchanan and K.A.McArtney, "Mobile Agents for 

Routing, Topology Discovery and Automatic Network Reconfiguration 

in Ad Hoc Networks," in Proceedings of the IEEE International 

Conference and Workshop on the Engineering of Computer Based 

Systems (ECBS'03), Huntsville, U.S.A., April, 2003, p200-206. 

P.Misikangas and K.Raatikainen, "Agent Migration Between 

Incompatible Agent Platforms," in Proceedings of the 20111 International 

Conference on Distributed Computing Systems (ICDCS 2000), Taipei, 

Taiwan, April, 2000, pp.4-10. 

A.Mohindra, A.Purakayastha and P.Tahiti, "Exploiting Non

Determinism for Reliability of Mobile Agent Systems," in Proceedings 

of the International Conference on Dependable Systems and Nenvorks, 

New York, U.S.A., June, 2000, pp.144-153. 

J.P.Muller, The Design of Intelligent Agents: A Layered Approach, 

Springer Verlag, 1996. 

A.L.Murphy and G.P.Picco, "Reliable Communication for Highly 

Mobile Agents," in Proceedings of the 3'" International Symposium on 

Mobile Agents (MA '99), California, U.S.A., October, 1999, pp.l41-150. 

A.L.Murphy, G.P.Picco and G.C.Roman, "LIME: A Middleware for 

Physical and Logical Mobility," in Proceedings of the 21'"1 International 

Conference on Distributed Computing Systems (ICDS-21), Phoenix, 

U.S.A., 2001, pp.524-536. 

D.T.Ndumu and H.S.Nwana, "Research and Development Challenges 

for Agent-Based Systems," lEE Proceedings on Software Engineering, 

144(1), pp.2-10, 1997. 

M.Nuttall, "A Brief Survey of Systems Providing Process or Object 

Migration Facilities," ACM Operating Systems Review, 28(4), pp.64-80, 

1994. 

H.S.Nwana, "Software Agents: An Overview," The Knowledge 

Engineering Review, 11(3), pp.205-244, 1996. 

H.S.Nwana and D.T.Nolumn, "A Perspective on Software Agents 

Research," Knowledge Engineering Review, 14(2), pp.125-142, 1999. 



References 

[OmiciniO 1] 

[Oshima98] 

[Pamas90] 

[Pears03] 

[Pears03b] 

[Peine02] 

[Perkins94] 

[Perkins99] 

[Perry92] 

[Picco98] 

137 

A.Omicini and E.Denti, "From Tuple Spaces to Tuple Centres," Science 

of Computer Programming, 41(3), p277-294, 2001. 

M.Oshima, G.Karjoth and K.Ono, Aglets Specification 1.1 Draft. 

http:/ /www.trl.ibm.co.jp/aglets/spec 11.html, 1998. 

D.L.Pamas, J.Scouwen and K.S.Po, "Evaluation of Safety-Critical 

Software," Communications ofthe ACM, 33(6), pp.636-648, 1990. 

S.Pears, J.Xu and C.Boldyreff, "Mobile Agent Fault Tolerance for 

Information Retrieval Applications: An Exception Handling Approach," 

in Proceedings of the 6th International Symposium on Autonomous 

Decentralized Systems (ISADS'03), Pisa, Italy, April, 2003, pp.115-124. 

S.Pears, J.Xu and C.Boldyreff, "A Dynamic Shadow Approach for 

Mobile Agents to Survive Crash Failures," in Proceedings of the 6th 

International Symposium on Object-Oriented Real-Time Distributed 

Computing (ISORC'03), Hokkaido, Japan, May, 2003, pp.113-120. 

H.Peine, "Application and Programming Experience with the Ara 

Mobile Agent System," Software Practice and Experience, 32(6), 

pp.515-541, 2002. 

C.E.Perkins and P.Bhagwat, "Highly Dynamic Destination Sequenced 

Vector Routing (DSDV) for Mobile Computers," in Proceedings of the 

ACM Conference on Communications Architectures, Protocols and 

Applications (SIGCOMM'94), London, U.K., August, 1994, pp.234-

244. 

C.E.Perkins, E.M.Rayer and S.R.Das, "Ad Hoc On Demand Distance 

Vector (ASDV) Routing," in Proceedings of the 2"'1 IEEE Workshop on 

Mobile Computing Systems and Applications, New Orleans, U.S.A., 

Febmaty, 1999, pp.90-100. 

D.E.Perry and A.L.Wolf, "Foundations for the Study of Software 

Architecture," ACM SIGSOFT Software Engineering Notes, 17(4), 

pp.40-52, 1992. 

G.P.Picco, "11Code: A Lightweight and Flexible Mobile Code Toolkit," 

in Proceedings of the 2"d International Workshop on Mobile Agents 98 

(MA '98), Stuttgart, Germany, September, 1998, pp.160-171. 



References 

[Picco98b] 

[Picco01] 

[PinsdorfU2] 

[PleischOO] 

[PleischO 1] 

[Pleisch03] 

[Randell? 5] 

[RanganathanO 1] 

[Rao95] 

[RomanovskyOO] 

138 

G.P.Picco and M.Baldi, "Evaluating the Tradeoffs of Mobile Code 

Design Paradigms on Network Management," in Proceedings of the 20111 

International Conference on So.fiware Engineering (ICSE'98), Kyoto, 

Japan, April, 1998, pp.146-155. 

G.P.Picco, "Mobile Agents: An Introduction," Journal of 

Microprocessors and Microsystems, 25(2), pp.65-74, 2001. 

U.Pinsdorf and V.Roth, "Mobile Agent Interoperability Patterns and 

Practice," in Proceedings of the 9111 IEEE International Conference and 

Workshop on the Engineering of Computer-Based Systems (ECBS 

2002), Lund, Sweden, April, 2002, pp.238-244. 

S.Pleisch and A.Schiper, "Modeling Fault-Tolerant Mobile Agent 

Execution As a Sequence of Agreement Problems," in Proceedings of 

the 191
" IEEE Symposium on Reliable Distributed Systems, Piscataway, 

U.S.A., October, 2000, pp.11-20. 

S.Pleisch and A.Schiper, "FA TOMAS- A Fault-Tolerant Mobile Agent 

System Based on the Agent-Dependent Approach," in Proceedings of 

the International Conference on Dependable Systems and Networks 

(DSN'OJ), Goteborg, Sweden, July, 2001, pp.215-224. 

S.Pleisch and A.Schiper, "Fault-Tolerant Mobile Agent Execution," 

IEEE Transactions on Computers, 52(2), pp.209-222, 2003. 

B.Randell, "Systems Structure for Software Fault Tolerance," IEEE 

Transactions on Software Engineering, 1(2), pp.220-232, 1975. 

S.Ranganathan, A.D.George, R.W.Todd and M.C.Chidester, "Gossip 

Style Failure Detection and Distributed Consensus for Scalable 

Heterogeneous Clusters," Cluster Computing, 4(3 ), pp.l97 -209, 2001. 

A.S.Rao and M.P.Georgeff, "Bdi Agents: From Theory To Practice," in 

Proceedings of the 1"'1 International Conference on Multi-Agent Systems 

(ICMAS-95), San Francisco, U.S.A., June, 1995, pp.312-319. 

A.Romanovsky, "Extending Conventional Languages by 

Distributed/Concurrent Exception Resolution," Journal of Systems 

Architecture, 46( 1 ), pp. 79-95, 2000. 



References 

[RothOl] 

[RoyChoudhuryOO] 

[SakamotoOO] 

[Schlichting83] 

[Schneider97] 

[SchoderOO] 

[Sekiguchi99] 

[Shaw95] 

[Shoham93] 

139 

V.Roth and M.Jalali, "Concepts and Architecture of a Security-Centric 

Mobile Agent Server," in Proceedings of the 51
h International 

Symposium on Autonomous Decentralized Systems (ISADS 2001), 

Dallas, U.S.A., March, 2001, pp.435-442. 

R.RoyChoudhury, S.Bandyopadhyay and K.Paul, "A Distributed 

Mechanism for Topology Discovery in Ad Hoc Wireless Networks 

Using Mobile Agents," in Proceedings of' the 1'"' ACM International 

Symposium on Mobile Ad Hoc Nehvorking and Computing, Boston, 

U.S.A., 2000, pp.l45-146. 

T.Sakamoto, T.Sekiguchi and A.Yonezawa, "Bytecode Transformation 

for Portable Thread Migration in Java," in Agent Systems, Mobile 

Agents and Applications, 2"d International Symposium on Agent Systems 

and Applications and Fourth International Symposium on Mobile 

Agents (ASAIMA 2000), pp.l6-28, Springer Verlag, 2000. 

R.Schlichting and F.Schneider, "Fail-Stop Processors: An Approach to 

Designing Fault-Tolerant Computing Systems," ACM Transactions on 

Computer Systems, I (3), pp.222-238, 1983. 

F.Schneider, "Towards Fault-Tolerant and Secure Agentry," in 

Proceedings of the 11th International Workshop on Distributed 

Algorithms, Saarbmcken, Germany, September, 1997, pp.l-14. 

D.Schoder and T.Eymann, "The Real Challenges of Mobile Agents," 

Communications of the A CM, 43( 6), pp.l11-112, 2000. 

T.Sekiguchi, H.Masuhara and A.Yonezawa, "A Simple Extension of 

Java Language for Controllable Transparent Migration and its Portable 

Implementation," in Coordination Languages and Models, pp.211-226, 

Springer Verlag, 1999. 

M.Shaw, "Abstraction to Software Architecture Perspectives and Tools 

to Support Them," IEEE Transactions on Software Engineering, 21(4), 

pp.l-44, 1995. 

Y.Shoham, "Agent-Oriented Programming," Artificial Intelligence, 

60(1), pp.51-92, 1993. 



References 

[SilvaOO] 

[Strasser98] 

[Strasser99] 

[SuriOO] 

[Thoma03] 

[TripathiO 1] 

[Tripathi02] 

[Vogler97] 

140 

L.Silva, V.Batista and J.Silva, "Fault-Tolerant Execution of Mobile 

Agents," in Proceedings of the International Conference on 

Dependable Systems and Networks, New York, U.S.A., June, 2000, 

pp.135-143. 

M.Strasser and K.Rothermel, "Reliability Concepts for Mobile Agents," 

International Journal of Co-operative Information Systems, 7(4), 

pp.355-382, 1998. 

M.Strasser, J.Baumann and M.Schwehm, "An Agent-Based Framework 

for the Transparent Distribution of Computations," in Proceedings of 

the International Conference on Parallel and Distributed Processing 

Techniques and Applications (PDPTA'99), Las Vegas, U.S.A., June, 

1999, pp.376-382. 

N.Suri, J.M.Bradshaw, M.R.Breedy, P.T.Groth, G.A.Hill and R.Jeffers, 

"Strong Mobility and Fine Grained Resource Control in NOMADS," in 

LNCS 1882:Proceedings of the 2'"1 International Symposium on Agent 

Systems and Applications and 4th International Symposium on Mobile 

Agents (ASAIMA 2000), pp.2-15, Springer Verlag, 2000. 

Y.Thoma, "Fault Tolerance in Autonomic Computing Environment," in 

Proceedings of the 6th IEEE International Symposium on Object

Oriented Real Time Distributed Computing (ISORC'03), Hakodate, 

Japan, May, 2003. 

A.Tripathi and R.Miller, "Exception Handling in Agent-Oriented 

Systems," in LNCS 2022: Advances in Exception Handling Techniques, 

pp.128-146, Springer Verlag, 2001. 

A.Tripathi, N.M.Karnik, T.Aluned, R.D.Singh, A.Prakash, V.Kakani, 

M.K.Vora and M.Pathak, "Design of the Ajanta System for Mobile 

Agent Progrmmning," Journal of Systems and Software, 62(2), pp.l23-

140, 2002. 

H.Vogler, T.Hunklemann and M.Moschgath, "An Approach for Mobile 

Agent Security and Fault Tolerance Using Distributed Transactions," in 

Proceedings of the 1997 International Conference on Parallel and 

Distributed Systems (ICPADS'97), Seoul, Korea, December 1997, 

pp.268-274. 



References 

[WaldoOl] 

[Wang01] 

[Wong97] 

[W ooldridge94] 

[Wooldridge94b] 

[Wooldridge95] 

[Wooldridge97] 

[Xerces04] 

[Xu95] 

[XuOO] 

141 

J.Waldo, "Mobile Code, Distributed Computing and Agents," IEEE 

Intelligent Systems, 16(2), pp.l 0-12, 200 I. 

X.Wang, F.Li, S.Ishihara and T.Mizuni, "A Multi-cast Routing 

Algorithm Based on Mobile Multicast Agents in Ad-Hoc Networks," 

IEICE Transactions on Communications, E84-B(8), pp.2087-2094, 

2001. 

D.Wong, N.Paciorek, T.Walsh and J.DiCelie, "Concordia an 

Infrastructure for Collaborating Mobile Agents," in Proceedings of the 

First International Workshop on Mobile Agents (MA'97), Berlin, 

Germany, April, 1997, pp.86-97. 

M.Wooldridge and N.Jennings, "Agent Theories, Architectures and 

Languages: A Survey," in Intelligent Agents: ECAI-94 Workshop on 

Agent Theories, Architectures and Languages, pp.l-39, Springer 

Verlag, 1994. 

M.Wooldridge and M.Fischer, "Agent Based Software Engineering," 

Technical Report, Department Of Computation, University Of 

Manchester, 1994. 

M.Woo1dridge and N.Jennings, "Intelligent Agents: Theory and 

Practice," The Knowledge Engineering Review, 1 0(2), pp.115-152, 

1995. 

M.Wooldridge, "Agent-Based Software Engineering," lEE Proceedings 

on Software Engineering, 144(1), pp.26-37, 1997. 

Xerces. http://xml.apache.org/xerces-j/ (July2004) 

J.Xu, B.Randell, A.Romanovsky, C.Rubira, R.Stroud and Z.Wu, "Fault 

Tolerance in Concurrent Object-Oriented Software Through Co

ordinated Error Recovery," in Proceedings of the 25111 IEEE 

International Symposium on Fault Tolerant Computing, Pasadena, 

U.S.A., June, 1995, pp.499-508. 

J.Xu and B.Randell, "Tutorial: Exception Handling and Software Fault 

Tolerance," in Proceedings of the International Conference on 

Dependable Systems and Networks, New York, U.S.A., June, 2000. 



References 

[XuOOb] 

142 

J.Xu, A.Romanovsky and B.Randell, "Concurrent Exception Handling 

and Resolution in Distributed Object Systems," IEEE Transactions on 

Parallel and Distributed Systems, 11 (1 0), pp.1 019-1032, 2000 . 

. .. 

'0 




