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1. Introduction and definitions 
This thesis deals with the modelling of partially saturated soils and the explicit stress 

integration of elasto-plastic constitutive models idealising the behaviour of such soils. 

The document is divided into 8 chapters. This short chapter describes the thesis 

structure and introduces some commonly used definitions. Chapter two provides a 

review of key features found in unsaturated soils. Both the macroscopic behaviour and 

microscopic behaviour of partially saturated soils are described. Chapter three gives 

some insight into the microscale modelling of unsaturated soils and provides some 

results regarding the influence of suction on the unsaturated soil fabric. Chapter four 

describes existing constitutive models for unsaturated soils. The models discussed 

include both those predicting deformation of unsaturated soils under loading, as well as 

those for the water retention behaviour. Chapter five introduces the novel concept of a 

multi-cell enhanced model and the implementation of this concept for the Barcelona 

Basic Model. Chapter six reports on the explicit stress integration of constitutive models 

for unsaturated soils. It covers several Runge-Kutta algorithms and an extrapolation 

algorithm for stress integration. The details of their implementation for the Barcelona 

Basic Model are given. Chapter seven provides a thorough comparison between those 

stress integration methods and chapter eight presents a final summary of the main 

findings from the thesis. 

Original developments include: (i) results on micromechanics given in chapter three, (ii) 

the multi-cell concept, (iii) implementation of Runge-Kutta methods for stress 

integration for the Barcelona Basic Model given in chapter six, (iv) use of the 

extrapolation method for stress integration as given in chapter six, (v) the stress 

integration algorithm for multi-cell enhanced model (chapter six), (vi) a set of 

benchmark tests to evaluate the performance of the stress integration schemes for the 

Barcelona Basic Model (chapter seven) and (vii) accuracy, robustness and efficiency 

comparisons between various integration schemes (chapter seven). This work may be of 

particular interest to computational geomechanicians and those engaged in the detailed 

analysis of engineering structures comprising unsaturated soils. 
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1.1. Definitions 
In this section commonly used terms in soil mechanics and unsaturated soil mechanics 

are defined (although it is assumed that the reader has a good knowledge of solid 

mechanics). 

1.1.1. Coordinate system used 

Through the thesis a Cartesian coordinate system is used. The axes are usually denoted 

by numbers 1, 2 and 3 corresponding to the x, y and z axes. 

1.1.2. Stress quantities and suction 

The total mean stress is defined as an average of the direct stresses: ^-(CT,, + a22 + a,,) 

The mean net stress p is defined as a difference between total mean stress and air 

pressure (usually atmospheric pressure) 
] usually ] 

P = -( C T 1I + ( J 2 2 + a 3 3 ) - U

a = + C T 22+^33 ) - P a > 

The shear stress is defined by stress tensor components as 

q = - ^ ( ( C M "C T22) 2 + ( ° l . "OSS)2 +( a22 - C T 3 3 ) 2 + 6(<7>2 +<4 + CTL)) 

Suction is the difference between the air pressure and water pressure 

s = u a - u w 

In unsaturated soils, due to capillary forces, the soil water pressure is less then the 

atmospheric pressure and thus suction, s, is a positive quantity. 

1.1.3. Strain and quantities describing deformations 

Volumetric strain is defined as sum of direct strains sv = e n +e 2 2 +e 3 , . The shear strain 

is defined as 

S =y - V [ ( £ l ! - £ 22) 2
 + ( £ 1 1 -E33)2 + ( £ 22 -e33)2|+6(e,2, + €*2 + 4 ) 

The unsaturated soil volume V may be divided into the volume of solids (volume of soil 

grains) V s , volume of pore fluid V w and volume of gas V a , where V = V s + V w + V a . 

The void ratio e is the proportion of volume of voids and water to volume of solids 
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V + v 
e = —^—— whereas specific volume v is the volume of soil divided by the volume of 

. . . V soil grains v = — = e + 1 . 

1.1.4. Quantities describing water content 

In saturated soil, i f one wishes to characterise the amount of water present in soil it is 

enough to give the void ratio of soil. The other often used quantity is water content, 

being the ratio of masses of water and solid particles in any soil volume w = - m - 2 L . The 
m s 

amount of water can be also often given in terms of volumetric water content defined as 

V 
ratio of volume of water and total soil volume w„ = ——. However, in the case of 

v V 

unsaturated soils the most often used quantity describing the amount of water is the 

degree of saturation Sr. The degree of saturation is defined as the volume of water 

V 
divided by volume of water and air in soil Sr = — . The other quantity 

r V + V 

a w 

characteristic to unsaturated soils is the water ratio ew defined as ratio of the volume of 

V 
water and volume of solids e„, = ——. 

V. 
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2. Review of key features of unsaturated soil 

behaviour 
Unsaturated soils are encountered frequently above the water table level and thus must 

be often dealt with in engineering practice. However, until recently, the behaviour of 

unsaturated soils has not been extensively researched. It is only during the last twenty 

years that the unsaturated soil has become an important topic within geotechnical 

engineering. This branch of geomechanics has been slow to reach practicing engineers. 

It currently is understood only by academic scholars and few specialist soil 

mechanicians. Thus, in engineering practice, more often than not, such soil is still 

treated as fully saturated. In this chapter some features of the unsaturated soil behaviour 

are discussed and explained. 

This chapter covers only the most important aspects of unsaturated soil behaviour due to 

changes in water content and mechanical loading. The behaviour described is typical for 

clayey or silty soil. Soils with little or no fine grain content (e.g. sand, gravel, and other 

coarse grained materials) and soils with substantial organic content (e.g. peat) will 

behave differently. 

2.1. Macroscopic behaviour 
This section focuses on the macroscopic behaviour of unsaturated soil. The macroscopic 

behaviour is here defined as the behaviour observed where the soil is treated as a 

continuum instead of discrete soil grains. Then, the quantities such as soil deformation 

are relatively easy to observe and measure using conventional instruments and 

laboratory equipment usual to geotechnics. In contrast, the microscopic behaviour is 

spoken about when the changes in single soil grains or small clusters of soil particles are 

observed. The investigation of the microscopic soil behaviour requires either electro-

scanning microscope or indirect tests such as Mercury Intrustion Porosimetry (MIP). 

2.1.1. Mechanical behaviour 

Suction is the variable that is used instead of pore water pressure in partially saturated 

soils. Suction is defined as the difference between the air pressure and pore water 

pressure and is generally higher the dryer a soil is. As long as suction and degree of 

saturation of soil may be regarded as constant, then the behaviour of unsaturated soil is 
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very similar to the behaviour of a fully saturated one (including features like e.g. small 

strain nonlinearity). It is expected that deformations of unsaturated soil will be smaller 

compared to the fully saturated soil. This typical behaviour of unsaturated soils is 

illustrated in Fig. 2.1. (Sharma 1998). It is clear that the higher the suction is, the higher 

is the yielding point and the stiffer is the soil before yielding. A constitutive model 

created for saturated soils but calibrated for a given unsaturated soil should be able to 

predict soil behaviour with similar accuracy as for the saturated soil, as long as suction 

remains constant. For a useful description of saturated soil behaviour see e.g. Muir 

Wood (1990). 

- I I1 ( v - 100 kPa) 

T13 (s - 200 kPa) 

a> 

00 kPa) I 7 (.v 01 

\ 
200 kPa) T9 (.v 

i • 

00 kPa) 

Mean net s t ress p 

Figure 2.1. Increase in soil stifrhess and resistance with suction increase under mean net stress loading 

(after Sharma 1998). 

The increase in mean stress invariably leads to volume reduction in soils. It has been 

suggested that this behaviour can be described by a bilinear relationship in the e - In p 

plane. In particular, when the soil is compressed beyond a certain level, the slope of this 

line becomes steeper and the soil deforms irreversible (that is, elasto-plastically). This 

steeper line is commonly referred to as a virgin compression line. The slope of virgin 

compression line for unsaturated soil may not be constant and may depend on suction 
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for some soils, as suggested by Alonso et al. (1990, Fig. 2.2). It is, however, not clear 

whether the suction dependence of this slope is characteristic for all unsaturated soils 

and how significant this effect is, as in most of the recently published experimental data 

the slopes of fully yielded virgin compression lines appear similar (see e.g. Wheeler & 

Sivakumar 1995, shown on Fig. 2.3, Sharma 1998, Barrera 2002). On the other hand, 

some evidence suggests that the slope of virgin compression line changes also at 

constant suction, when sufficiently high loading is considered. Thus, it is likely that 

during a mean net stress increase, the unsaturated virgin compression line may initially 

be less steep than the saturated one (as the transition between elastic and elasto-plastic 

regions in unsaturated soils is less pronounced than for the saturated soils), then upon 

further loading those lines become parallel to each other and finally the virgin 

compression lines for unsaturated and saturated states become closer together (see Fig. 

2.4.). Such behaviour is confirmed by the maximum amount of possible collapse (e.g. 

Yudhbir 1982, Gonzalez and Colmenares 2006, Sun et. al 2007b), see also Fig. 2.5. 

Note that for high mean net stresses the description in the commonly used e - In p space 

is rather imperfect and use of a In e - In p space is advised, as advocated by Butterfield 

(1979). 
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Figure 2.2. Virgin compression lines slopes for suction s=60 and s=90 kPa (after Alonso et al. 1990). 
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Figure 2.3. Isotropic compression tests for suctions 0, 100, 200 and 300 kPa (after Wheeler and 

Sivakumar 1995). Note that virgin compression lines corresponding to the reconstituted saturated kaolin 

and kaolin with non-zero suction have very similar slopes. 
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Figure 2.4. Schematic of isotropic compression line for fully saturated and partially saturated soil (after 

Georgiadis et al. 2005). The amount of collapse initially increases then reduces, in line with the results 

presented by Sun et al. (2007), see Fig. 2.5. 
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Figure 2.5. Amount of collapse for compacted soil samples to different initial void ratio. The relative 

amount of collapse decreases in high mean net stresses (after Sun et al. 2007b). 

Most constitutive models use a framework similar to the one for saturated soils, thus 

suggesting that the virgin compression behaviour is well described by straight lines in 

the semi-log or log-log plots. Models that do not assume straight virgin compression 

lines for partially saturated soil are relatively scarce. Such models have been proposed 

by Georgiadis et al. (2005) and Russel and Khalili (2005) (though it appears that the 

latter model was mostly designed for coarse grained soils). 

When the effects of changes in suction and water content are investigated, it has been 

observed that soils generally shrink while dried and swell while wetted. During drying 

the suction increases and the soil becomes stiffer. The soil behaves purely elastically at 

higher stress levels and thus the elasto-plastic deformations are much smaller compared 

to the fully saturated case (see Fig. 2.1). 

When an unsaturated soil is wetted, suction decreases. I f this decrease happens under a 

mean stress much lower than the historical maximum (i.e. for heavily overconsolidated 

soil), then the soil swells. However, the soil that is under a high mean net stress (for 

example when deforming elasto-plastically while unsaturated) is likely to reduce its 

specific volume during wetting, contrary to the expected swelling behaviour of the 

unloaded soil (although, some initial swelling is possible). Such a reduction in the void 

ratio during wetting is usually referred to as a collapse and is unique to unsaturated 

soils. The collapse behaviour has been observed in great many laboratory tests (e.g. Josa 
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1988, Sivakumar 1993, Sharma 1998, Geiser 1999, Romero 1999, Barrera 2002, 

Colmenares 2002, Vasallo 2003, Jotisankasa 2005 and Monroy 2005 provide recent 

findings, see also Fig. 2.5). However, despite a large number of tests, the understanding 

of collapse is still somewhat limited. This is shown by Colmenares (2002), who not 

only reports that after full saturation and collapse the specific volume of soil does not 

necessarily lie on the virgin compression line for saturated soil (which is the usual 

assumption in constitutive modelling) but also that ''there is insufficient evidence in this 

•work to conclude that yield caused by loading is similar mechanistically to yield caused 

by wetting'. 

The amount of shrinkage and swelling in a soil during drying and wetting is not easy to 

assess. Most often it is assumed that this behaviour is fully elastic (as typically assumed 

in the Barcelona Basic Model, though originally described as elasto-plastic by Alonso et 

al. 1990) or elasto-plastic (Wheeler et al. 2003). In general, the constitutive models for 

unsaturated soils struggle to accurately predict the outcome of multiple cycles of drying 

and wetting. Even for a fairly uncomplicated stress path, consisting only of isotropic 

loading, unloading and some wetting and drying (as given in Fig. 2.6), most models do 

not predict soil behaviour similar to that one observed in the laboratory test. 

The dilative and contractive behaviour during shearing, seen in saturated soils is also 

present in unsaturated soils. Some experimental evidence suggests that the higher the 

suction is, the more dilation during shearing the soil exhibits and the higher is its shear 

angle (e.g. Vaunat et al. 2007, Fig. 2.7). 

Once other external influences are included, unsaturated soil behaviour becomes more 

complex, exhibiting hydro-thermo-chemo-mechanical coupling. The thermo-chemo 

aspects are beyond the scope of this thesis. The reader is referred to Romero (1999), 

Villar (2000) and Sanchez et al. (2005) for further information on this subject. 
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Figure 2.6. Mean net stress loading of a compacted sample with changes in suction (after Barrera 2002). 
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Figure 2.7. Residual shear resistance envelopes for saturated and unsaturated (s=70MPa) Boom clay and 

Barcelona silty clay (at s=75 MPa, after Vaunat et al. 2007). 

2.1.2. Water retention behaviour 

The water retention behaviour describes the relation between the suction and degree of 

saturation for given state of soil. This relation has been found not to be unique since the 

water retention behaviour is influenced heavily by the history of soil. Both the 

mechanical history of soil and the hydrological (wetting and drying) are important. 

In particular, the degree of saturation versus suction curve obtained from soil dried from 

a fully saturated state is often referred to as main drying curve, whereas the curve 

obtained from a fully dry state is often referred to as main wetting curve. The hysteretic 

curves connecting the main wetting and main drying curves are usually referred to as 

the scanning curves (see Fig. 2.8). 

To describe the soil behaviour during drying one clearly needs, apart of the relation 

between the water content and suction, an understanding of the volumetric behaviour. 

Marinho (1994) observed that a fully saturated soil subjected to drying will initially 

shrink. The loss of volume due to shrinkage is the same as the volume of evaporated 

water as confirmed by Marinho (1994). Thus, the soil remains fully saturated and the 

suction should be acting as an additional pressure. At some point the soil ceases to be 

fully saturated. This happens when the suction equals to the Air Entry Value (AEV, 

which is sometimes referred to as the bubbling pressure). 
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Figure 2.8. Typical water retention behaviour (after Tarantino 2007). Note that the difference in degree of 

saturation after a full drying-wetting cycle is rather exaggerated. 

Upon attaining the AEV, the soil volume can be divided into dry and wet regions. The 

dry zones are not compressed with suction, whereas the wet parts are compressed with 

increasing suction during drying (and some additional forces due to surface tension). 

Finally one may hypothesise that this process leads to creation of a double structure in 

soil. It has been found (e.g. Marinho 1994) that the soil usually does not shrink much 

after suction has reached the AEV. This may be because there is part of soil where 

suction is not acting and thus it is not being compressed. 

While the unsaturated soil is being mechanically compressed it has been found (e.g. 

Cuisinier and Laloui 2004, Monroy 2005) that the larger pores, which become 

unsaturated first, decrease in volume much more than the smaller pores (see Fig. 2.9.). 

Thus, as the AEV depends mostly on the size of largest pores, the AEV changes during 

mechanical loading. It is not just the AEV but also the water retention behaviour which 

is altered. 

As the water retention behaviour describes the relationship between the degree of 

saturation and suction, it is clear that when at some given suction we start to compress 

the soil undrained (i.e. keeping the water volume in soil constant), the degree of 

saturation of soil will rise and the suction will drop. This decrease of suction will be 

smaller than the decrease of suction reached at the same degree of saturation during 

wetting. This is possibly due to the volume of the larger pores decreasing more than the 

volume of the smaller pores during mechanical loading and thus the overall degree of 
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saturation being higher for the same amount of suction than in the case of wetting (see 

e.g. Tarantino 2007, 2008). 

0.8 -c o 
o c 

S" 0.6 
(0 c 
Q) 

TJ 
<1) 
N 5 0.4 

o 
Q_ 

0.2 -

I - i 

0.8 " c o 
o c 

«? 0.6 
CD x> 
0> 
Nj 
CO 
<u 0.4 
o 

0.2 

large 

17,440 

i nte rrnedi ate 

110 
small 

i 1 1 n u n — r 

10 

TTTTTTl 1 I I llllll 1 I I I Hill—I I I HUM 1 I I MINI 
100 1000 10000 100000 1000000 

Equivalent pore diameter [nm] 

large 

14,730 

small 
40 

intermediate 
125 

i 11 IIIIII—i i I I I I I I I— i i m i n i — i 11 IIIIII—i 11 IIIIII—I I I llllll 
1 10 100 1000 10000 100000 1000000 

Equivalent pore diameter [nm] 

Figure 2.9. Pore size distribution at the initial state (top) and after mean net stress loading (bottom) at 

constant water content for compacted London Clay (after Monroy 2005). 

As mentioned before, the water retention curve depends on whether the soil is being 

dried or wetted. This difference has often been explained by the 'ink-bottle' effect (e.g. 

Hillel 1998, Lourenco 2008). The 'ink bottle' effect is explained by the existence of 
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large pores connected to the other pores via much smaller pores. Those smaller pores 

will not dry until a much higher value of suction is reached, thus some water is trapped 

in the larger pores. This effect does not exist during wetting. This gives rise to a 

difference in the water retention behaviour (note that during wetting some air may be 

trapped in the soil pores such that a degree of saturation equal to 1 may be difficult to 

obtain, compare Fig. 2.8). To experimentally check the ink-bottle hypothesis one may 

try to induce small cyclic deformations on unsaturated soil (preferably in the elastic 

range), just large enough to break the ink-bottle effect and check whether the water 

retention curves merge. Other explanations of the hysteresis phenomena include effects 

of contact angle (as the contact angle will be different when the meniscus is advancing 

or retreating), and the effect of chemical swelling/shrinking of soil minerals due to the 

presence of water. Finally, recently Lechman et al. (2006) researched disk-shaped 

particles and obtained hysteretic water retention curve basing on a thermodynamical 

energy stability concept without explicit involvement of the contact angle and ink-bottle 

hypothesis. 

Some research suggests that the water retention curves obtained for the same soil but 

with different loading history (and different stress state during wetting and drying) may 

merge into one curve while being plotted in the appropriate space. Marinho (1994) 

suggest a log s - w/C space, where s - suction, w - water content and C - suction 

capacity. Suction capacity C is defined as 8w / 8 log s. Tarantino (2007, 2008) suggest 

plotting water retention curve in log s - log ew space (where ew is the water ratio being 

ratio between volume of water and volume of solids) or in log s - log e'w space (where 

e'w stands for modified water ratio, being the ratio of the volume of water reduced by 

the volume of water attached to soil at infinite suction). The ideas of Marinho (1994) 

has been investigated further by Harrison and Blight (2000). Recently Marinho (2005) 

found some empirical connection between the value of suction capacity C, liquid limit, 

plastic limit, normalised water content and water retention curve and provided a 

relevant set of graphs for simple water retention curve identification. 

Unfortunately, thus far there is relatively little understanding of the physical reasons 

why the water retention curves should merge when plotted in modified space. It is also 

not clear what are the effects of multiple cycles of wetting and drying on the water 

retention behaviour and whether the effect of such cycles is similar to the effects of the 

mechanical loading. 
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2.1.3. Shear strength 

A change in suction has a strong influence on the shear strength of soil. It is generally 

agreed that an increase of suction leads to an increase of the shear strength (as shown in 

Fig. 2.7.). Increase in suction results both in increase of the shear angle and cohesion of 

soil (Vaunat et al. 2007). However, some contrary evidence exists. Nishimura and 

Toyota (2002) report that, in the case of silty soil they tested, the shear strength is not 

always increasing with increasing suction. Instead it peaks for some value of suction 

and further drying may lead to a decrease in the shear strength from that peak value (see 

Fig. 2.10.). Similar results have been obtained by Vesga and Vallejo (2006) (Fig. 2.11) 

who tested unsaturated kaolinite clay. They found that the shear strength peaks at 

suction between 1 and 10 MPa which corresponds to water contents of a little over 10%. 

Further increase of suction over 10 MPa led to reductions in shear and tensile strengths. 

They suggested that this decrease in both shear and tensile strengths at high suction is 

due to a reduction of capillary forces between soil particles as the amount of water in 

soil is insufficient. 
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Figure 2.10. Shear strength of silty/ low plasticity silty soil (after Monroy 2005, data from Nishimura and 

Toyota 2002). 
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Figure 2.11. Shear strength and tensile strength of kaolinite clay with varying water content/suction. 

Suction values approximate (after Vesga and Vallejo 2006). 
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Figure 2.12. Yield locus shape for increasing suction (after Estabargh and Javadi 2005). 

Finally, the shear strength is heavily influenced by anisotropy (Cui 1993, Cui and 

Delage 1996). It seems that the yield surface in the mean net stress - shear stress (p - q) 

space should rather have the shape of a rotated or sheared ellipse which is dependent on 

the soil history. The laboratory data from Estabargh and Javadi (2005) confirms that 

such a yield surface should be used in conjunction with a non-associated flow rule, 

perhaps additionally depending on the suction value (see Figs 2.12, 2.13). 
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Figure 2.13. Plastic strain increment directions (after Estabargh and Javadi 2005). 

In engineering analyses the shear strength is most often assessed by extending the 

Mohr-Couiomb criterion into unsaturated states (see Fredlund and Rahardjo 1993). The 

extended criterion is 

T = C' + ( O ± - u a ) tan <)>a + stan <|>b (2.1) 

where c' is the cohesion at zero matric suction and zero net normal stress, a x - u a is the 

net normal stress at failure, <j>a is the internal friction angle associated with net normal 

stress and tj)b is the internal friction angle associated with suction. This criterion has 

often been modified and is used with the Bishop stress (see Bishop 1954, 1959) 

T = c' + (a 1 -u a +xs)tan<)) ' (2.2) 

where x is the effective stress parameter. It has been suggested (e.g. Houlsby 1997) that 

the effective stress parameter x should be equal to degree of saturation S r 

a f j = a ( j - ( S r u w + (1-S r )u,)5 s = a s - ( u . - S ^ (2.3) 

The same equation has been arrived at by e.g. Hutter et al. (1999) (who used the 

framework of mixture theory, Hassanizadeh and Gray 1990) and Li (2007). 

It will be shown in chapter 3 that this stress definition is, allowing for some simplifying 

assumption, equal to the average skeleton stress in soil. 

2.2. On the way to understand unsaturated soil 

The structure (that is the configuration of the grains or fabric) and structure evolution 

within unsaturated soils has its importance acknowledged for a long time (e.g. Alonso et 
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al. 1987). As a consequence of the recent research into unsaturated soil microstructure it 

is now possible to offer an explanation of some of the phenomena seen on the 

macroscopic level based on changes in the microstructure. Unfortunately there is still 

not enough evidence about the changes in microstructure of unsaturated soils, thus 

much of this section is speculative, based on the laboratory data available. Future 

research may render this obsolete. 

2.2.1. Laboratory tests revealing soil microstructure 

There are several ways to examine the soil microsttucture. The most direct is to observe 

the fabric using Scanning Electron Microscopy (SEM). This technique was described by 

Gillot (1973) and perfected e.g. by Delage et al. (1982, 1984). The sample for SEM 

observation initially needed to be frozen and then freeze-dried. With introduction of 

Environmental SEM (ESEM) freezing is not always required. The SEM images of 

unsaturated soils may be found in many recent publications, e.g. Delage (1996), 

Romero (1999), Barrera (2002), Zhang et al. (2003), Jafari and Shafiee (2004), Monroy 

(2005) and Thorn et al. (2007). However, due to the very nature of SEM images they do 

not provide 'hard evidence' of soil behaviour as they can just offer an insight into the 

local structure of fabric. To the best of the author's knowledge they have not been used 

to calibrate a constitutive model. 

In general, the SEM images usually show that the smallest clay platelets tend to be 

organised into larger entities which are typically referred to as aggregates. The presence 

of those aggregates seems to be connected with method of preparation of the soil. The 

reconstituted saturated soil does not seem to have particles organised in aggregates 

(Monroy 2005). 

The other source of information about soil microstructure is via mercury intrusion 

porosimetry (MIP). The samples for MIP are prepared similarly as for the SEM; they 

are frozen and then vacuum freeze-dried (see e.g. Romero 1999). The prepared sample 

is inserted into a probe, then the air is pumped out and mercury intruded. Because of the 

negative value of contact angle and high surface tension of mercury the pressure 

required to fill the pores of the sample is quite high and easy to measure. Knowing the 

pressure and the contact angle of mercury, it is possible (using the Jurin - Young -

Laplace equation) to calculate the smallest radius of a pore that is currently filled with 

mercury. Unfortunately, the injection of the mercury may change the structure of the 

part of the sample that is not yet filled with mercury. Also, it is arguable what value of 

39 



contact angle should be used. In summary, the MIP tests offer only an approximation of 

the pore size structure of a given soil. 

The MIP reveals that many unsaturated soils exhibit two maximums on the pore size 

distribution curve - one corresponding to the large, intra-aggregate pores and the other 

corresponding to the small inter-aggregate pores. This confirms the findings from the 

SEM images that two levels of structure exist in the fabric. The pores between the 

aggregates correspond to the macroporosity revealed by the MIP, whereas the 

microporosity is porosity within aggregates, between the clay platelets. MIP data may 

be found e.g. in Cuisinier and Laloui (2004), Monroy (2005) and Thorn et al. (2007). 

MIP data also show that in some cases the unsaturated soil does not exhibit double 

structure. This may happen when the soil is dried from the mould, without the crushing 

and compacting stage. Such unsaturated soil may have different properties and generally 

is not considered in this work. Some data on such soil can be found in Barrera (2002) 

and Gasprarre (2005). The requirements for creation of double structured or single 

structured soil upon drying from remoulded state are, however, unclear. 

It should be recognised that the soil microstructure is sensitive to certain chemical 

species in the pore water. Such soil, although dried from the mould, is likely to develop 

a double structure (Wang and Siu 2006a,b , Wang and Xu 2007, Dolinar and Trauner 

2007, see also Fig. 2.19). Similarly, the introduction of some stabilisers like lime, 

changes the soil microstructure, greatly increasing the volume of the smallest pores and 

reducing the overall porosity (Russo et al. 2007). 

The double structured soil required for laboratory tests is usually obtained from 

remoulded soil. Such remoulded soil is (i) initially dried (in a dryer), then (ii) grinded or 

sieved and (iii) compacted. Before sieving and/or upon compaction a small quantity of 

water is added. Soil is usually compacted dynamically in Proctor machine (e.g. Sharma 

1998, Monroy 2005), though a static compaction under isotropic pressure is also 

possible (e.g. Barrera 2002). The water content of soil during Proctor compaction 

usually corresponds to dry of optimum or optimum water content. Toll (2000) suggests 

that soils compacted with degree of saturation below 90% are likely to be aggregated. 

This has been partially confirmed by Toll & Ong (2003) where samples compacted with 

water content wet of optimum (at water content 15.6% vs. optimum 14.2%, soil with 

plastic limit of 22% and liquid limit of 36%) exhibit double structure. 
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Schematically the process of creation of double structured soil is given in Fig. 2.14 and 

a description of a typical sample preparation (for tests performed by Sharma, see 

Sharma 1998) is given in section 5.2.3. 

Such prepared and compacted soil exhibits double structure and results in a high initial 

value of suction. Thus to reach a required value of suction for a given test, some amount 

of water is added before the test. 
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Figure 2.14. Typical sample preparation for unsaturated soil testing resulting in double structured soil. 

2.2.2. Loading and unloading under constant suction 

During the mechanical loading of soil, with a mean net stress exceeding the maximum 

historical stress experienced by the soil fabric, the pores between aggregates decrease in 

volume and radius substantially. However, the small pore volume (corresponding to the 

intra-aggregate porosity) is reduced only by a small percentage (see Cuisinier and 

Laloui 2004, tests on silt, Fig. 2.15) or virtually unaffected (Miao et al. 2007). A small 

change in the intra-aggregate porosity is also observed by Monroy (2005), see Fig. 2.9, 

though in this test the suction varied as water content was kept constant. It appears 

likely that the external stress mostly affects the way the aggregates are positioned 

against each other. The aggregates may also change their shape, but this is not 

accompanied by significant changes in their volume. The larger pores become smaller 

thus the porosity curve may shifts slightly in the direction of smaller pores as observed 

by Cuisinier and Laloui (2004). It is apparent that during loading the largest pores are 

most affected; they are the first to disappear (Fig. 2.15). 

When the soil is subsequently unloaded, fewer large pores are recovered, though the 

porosity curve shifts slightly in the direction of larger pores. I f soil is now loaded again 

to the value of mean net stress experienced previously, then the reduction of volume is 

much smaller. Again, upon further unloading not the whole volume of macropores is 

recovered. Macroscopically, such loading corresponds to cycles of isotropic 
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compression and unloading. The experiments confirm that the volume of voids in soil 

fabric will decrease with each cycle (e.g. Ferber et al. 2006). It also appears that the 

higher the suction is, the smaller is the volume change in the macropores. This is likely 

to be an effect of the aggregates being much stiffer and more resistant to stress resulting 

in smaller changes of aggregate shape. 

From a physical point of view, it may be that the plastic change of volume in soil 

corresponds to the inelastic shape changes of aggregates. Then the elastic changes in 

volume would be a result of bending the clay platelets between and within aggregates. 

During cyclic loading, the elasto-plastic effect would be inevitable as in each cycle of 

loading and unloading the clay particles generally would not only bend but also slip, 

which would result in a plastic change of volume. 
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Figure 2.15. Evolution of soil fabric under mechanical loading in saturated state. Values in brackets 

indicate maximum mean stress applied (after Cuisinier and Laloui 2004) 

2.2.3. Effects of suction changes on soil microstructure 

The wetting and drying of soil lead to a highly complex interaction between micro- and 

macrostructure of soil fabric. The reader should be aware that some of the results given 

in this section may be soil specific, so more research would be required to reach any 

definite conclusion. 

Assuming an initial double structured soil with high suction, wetting under low mean 

net stress should lead to swelling. Once the soil is allowed to swell without changing the 
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load, its double porosity reduces and the porosity curve exhibit the peak in the range of 

mesopores and smaller peak in the range of macropores (Monroy 2005, tests on London 

Clay). When the London Clay is wetted, while the volume is kept constant, the peak in 

large pores is less pronounced and the volume of meso and macro pores is reduced 

(Monroy 2005, Fig. 2.16.). 

On the other hand, Cuisinier and Laloui (2004) report that the double porosity is 

recovered when the silt they tested (and which had double structure initially) is dried 

from the saturated state (Fig. 2.17). They noted that when drying from a fully saturated 

state the volume of micro and macropores rises. This suggests that the soil particles 

become organised into aggregates (Fig. 2.18). 

Such findings may not be universal - some research suggests that in some soils the 

dried soil with a single peak of porosity may just shrink uniformly and no double 

structure may be created (Koliji 2008), especially when the drying is performed on a 

heavily loaded soil. Such soil behaviour, with hypothetical requirements for double 

structure creation is schematically presented in Fig 2.20. 

Ferber et al (2006) found that upon cyclic drying and wetting, the inter-aggregate 

volume seems to systematically decrease. This could be explained by the clay platelets 

inside the aggregates rearranging (optimising) their position in the aggregates during 

each cycle of wetting and drying, adding plastic deformation. 

The effects of shearing on the soil microstructure are little known. However, the 

research of Vaunat et al. (2007), Fig. 2.7, implies that the higher the suction is and the 

stiffer the aggregates are, then more shear resistance is exhibited and the greater dilation 

observed. This may suggest that the behaviour of dry soil with aggregates tend to 

resemble the behaviour of soil composed of larger soil grains (coarser grained soils have 

higher shear angle and dilate more), as suggested Toll (1990). On the other hand, Vesga 

and Vallejo (2006) suggest that at low water content the amount of water in soil may be 

not sufficient to connect all the aggregates and thus drying above some value of suction 

may actually lead to a reduction of the shear strength from the peak value. 
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Figure 2.16. Fabric evolution during wetting: pore structure after compaction (top), after free swelling 

(middle) and after swelling under constant volume (bottom), after Monroy (2006). 
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Figure 2.17. Fabric evolution during drying with suction increas from 0 up to 400 kPa (after Cuisinier and 

Laloui 2004). 
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2.2.4. Interaction between soil microstructure and water retention 
behaviour 

This is one of the least understood phenomena in unsaturated soils but it is area of 

interest not only of geotechnics but also agriculture (e.g. Stange and Horn 2005). The 

size of the largest pores influences the air entry value (AEV). The larger those pores are, 

the lower the AEV is. Using a Fisher equation (Fisher 1926) it is possible to calculate a 

theoretical value of suction for a given degree of saturation and given pore size 

distribution (e.g. Cui 1993). Unfortunately this approach is both laborious and 

inaccurate. Some other models exists, see e.g. Chan and Govindaraju (2004). 

2.2.5. Possible way of creating a double porosity structure in natural 
soil 

There are many uncertainties in the way the micro- and macrostructure interacts with 

each other. It is also not well explained how the double structure may be created in 
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natural unsaturated soils. Only some hypotheses of the double structure creation process 

can be given. One hypothesis suggests that the pore fluid in water had not always been 

chemically neutral and at some point it had caused aggregation (during similar process 

as one reported e.g. by Wang and Siu 2006a,b , Wang and Xu 2007 or Dolinar and 

Trauner 2007). Then, during each drying phase this aggregation has been recovered 

resulting in an aggregated soil (Fig. 2.19). 
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Figure 2.19. Creation of double structured soil due to chemical effects. 

The other possibility is that the soil will naturally develop aggregation i f it experiences 

enough cycles of wetting and drying. The process for an initially remoulded, fully 

saturated soil may be as follows. Upon drying, until reaching the Air Entry Value 

(AEV), the soil is uniformly compressed with additional stress equal to the suction 

value; hence there are no reasons for a double structure to emerge. However, after 

reaching the AEV, the wet regions in soil are compressed with the suction value 

whereas the just dried regions are not (the menisci water is neglected here). This should 

lead to double structure, as the dry regions (contrary to the wet regions), should not 

shrink. As it is confirmed that the soil shrinks little overall after reaching AEV, the 

pores between the wet and dry regions wil l become larger, resulting in the overall 

volume of pores being fairly constant. Thus, upon several cycles of wetting and drying a 

double structure will emerge (Fig. 2.20). However, this is a hypothesis that needs testing 

and scientific evaluation. 

i -

suction 
increase 

3* 

remoulded soil 
chaotic structure 

V,1-/' 

suction 
increase 

3* 

shrinking until 
reaching the A E V 

?h'9hmeann . 

double 
structured 

soil 

soil structure remains chaotic 
single structured soil 

Figure 2.20. Hypothetical requirements for creation of double structured soil from remoulded state. 
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3. Microscale theory of unsaturated soils 
This chapter considers those forces which appear on the microscopic level (that is 

mainly forces between aggregates, not the forces between clay platelets as described by 

diffuse double layer theory) and are a consequence of water presence in soil. The forces 

considered include surface tension and pore pressure. 

One possible way to model behaviour of unsaturated soils is through a micro- to macro-

approach. Once all the forces acting on soil particle in unsaturated soil are known and 

modelled, then the macroscopic stresses can be fairly easily derived. Currently, a not 

overly simplified solution of this problem remains unknown. However, some rough 

estimates of unsaturated soil behaviour are possible. It is unlikely that such estimates 

would properly predict all aspects of the soil behaviour, but they may be able to provide 

some insight into mechanisms present in unsaturated soil and enhance the understanding 

of this material. 

Research on the microscale modelling of the unsaturated soils has been conducted for 

some time. The first results were obtained by Fisher (1926). Recently findings by Cho 

(2001), Cho and Santamarina (2001), Lu and Likos (2004), Likos and Lu (2004), Lu 

and Likos (2006) and Lechman and Lu (2008) increased the understanding of this area. 

One of more interesting result has been obtained by Lechman et al. (2006) who 

presented a solution of cyclic wetting and drying of a medium created from disk-shaped 

particles. They found that such a material does exhibit a hysteretic behaviour during 

cyclic drying and wetting and that this behaviour may be obtained using a 

thermodynamic free energy approach and thermodynamic energy stability concept. To 

obtain the hysteresis, no explicit involvement of contact angles and ink-bottle hysteresis 

was used. Lechman et al. (2006) additionally confirmed that the smaller the particle size 

is, the higher the capillary stress is and the higher the degree of saturation is when the 

hysteresis occurs. 

3.1. Skeleton stress in menisci area of unsaturated soil 

The forces resulting from a connection by water of the two equally sized spheres were 

assessed by Fisher (1926). This solution is briefly restated below. Having two speheres 

connected by menisci, the compressive force between the spheres is the sum of forces 

resulting from surface tension T and suction s (see Fig. 3.1 for definition of all the 

symbols). This force F, in case of equally sized grains is 
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F = jrr,(s-r,+2T) (3.1) 

In this solution a simplifying assumptions of contact angle equal to zero and menisci 

radius being constant has been made. 

The Laplace-Young law states that the additional pressure due to surface tension within 

the bubble of radii n and rj is 

—+ — (3.2) 

In the case shown on Fig. 3.1 the surface tension acting along the curvature of radius t\ 

will cause increase of pressure, whereas the surface tension acting along the curvature 

of radius r 2 wil l decrease the pressure in the meniscus. As suction is taken positive 

when the pressure inside the meniscus is decreased, hence suction is 

s = T 
{ 1 1^ 

V r 2 hj 
(3.3) 

Note that equations above can often be found written with double amount of surface 

tension (i.e. 2T) instead. Such an equation is a solution for an air filled bubble, where a 

bubble surface is in contact with air from two sides of the water film which doubles the 

amount of pressure inside (for a more detailed explanation see e.g. Mei 2004). 

The approximate volume of a single meniscus can be computed as 

.2 Y 
V m = 7 t h 1 ( r I + h 2 ) 2 - 2 ^ f 3 ( r 1 + h 2 ) 2

+ ^ 
6 

two volumes of cap' from soil grains 

~ A m - 2 ^ , (3.4) 
- v / ^ v 

Volume of a cylinder v ^ ' , Volume missing from the cylinder due to r 2 radius 

where the unknown n, r 2 , h i , h 2 , A m and 8 are obtained from equations: 

r 2 +(r, + r 2 ) 2 = (r + r 2 ) 2 (Pytaghoras theorem, triangle vertex is grain centre) 

r 2 = ( r -0 .5h , ) 2 +(r, + h 2 ) 2 (Pythagoras theorem, triangle vertex is the edge of meniscus) 

r 2 =0.25hf +(r 2 - h 2 ) 2 (Pythagoras theorem, triangle with hypotenuse r 2 ) 

h, 
2 

A m =6r 2

2 — L ( r 2 - h 2 ) (the area of small circle segment less the area of triangle) 

8 = arcsin—-
2r2 

and equation (3.3) for a ful l solution for given suction value. 
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Figure 3.1. Forces acting on a soil grain in a simple cubic packing 

The force determined using (3.1) and the volume using (3.4) has been used to create 

Figs 3.3 and 3.4. Similar solutions may be found in L u and Likos (2004, 2006). 

In equilibrium conditions menisci between soil grains that touch each other are always 

present, as the suction in meniscus may be arbitrary high. However, as suction 

increases, the radius n reduces, thus the overall force is fairly constant (see Fig. 3.3). 

Nevertheless, generally speaking, the force between any two grains due to a meniscus is 

small. This can be balanced by the number of grains; the smaller the grains are, the 

more menisci are present in a unit volume. Thus the overall pressure may be significant. 

Assuming a simple cubic packing (a packing where each sphere is touching its 6 

immediate neighbours, Fig. 3.2) the increase in stress is as presented in Fig. 3.3. and 

corresponding degree of saturation in Fig. 3.4. The mean net stress due to menisci is 

computed as 

(3.5) 

and the degree of saturation S r is equal to 

W simple cubic packing 'l\r 
g water rr 3V„ 

V 4- V menisci i 
water air 

reglon V - V g r a i n r 3 (8 -4 /37 l ) 
(3.6) 

and in the menisci part of soil is generally low or very low. 
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Figure 3.2. Simple cubic packing of aggregates 
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Figure 3.3. Mean net stress in menisci part of soil due to menisci forces. Simple cubic packing assumed 
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Figure 3.4. Degree of saturation due to menisci. Simple cubic packing assumed 

The simple packing (Fig. 3.2) assumed in the results presented in Figs 3.3 and 3.4 is not 

a good approximation of a soil structure built from clay or silt particles. Such particles 

are instead gathered together creating aggregates. However, perhaps the aggregates may 

be assumed to be ordered in a simple cubic packing. Then, assuming an aggregate 

radius of 5 um , the realistic additional mean net stress due to menisci is in range of tens 

of kPa and is fairly constant, largely independent of the suction value. Still, even for 

aggregates, Figs 3.3 and 3.4 give just an approximation of the forces present in real soil. 

Despite this, the additional stress due to menisci is likely to stay in the computed range 

independent of the actual packing structure of aggregates in soil. As unsaturated soils 

exhibit two regions (one with menisci and the one with bulk water), the following 

section will deal with the bulk water area. 

3.2. Skeleton stress in bulk water region of unsaturated 

soil 

The bulk water area of soil is the part of soil that is completely flooded with water. 

Those regions, combined with the regions where only menisci water is present cover the 

whole volume of soil. In the bulk water, the additional pressure on soil grains is equal to 
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the suction. Additionally, on the boundary of the bulk water region there are surface 

tension forces acting, increasing the overall stability of such regions. 

3.2.1. Bulk water within aggregates 

It is often assumed that the bulk water regions are restricted to those regions within the 

aggregates. Thus, the aggregates remain fully saturated, and connected by menisci, 

whereas the larger pores between aggregates are not filled with water. Hence the total 

mean stress within aggregates would be 

Pagg = P + § + Pmer, + P s . O" 7 ) 

external mean net stress suction m e a n stress due to menisci mean stress due 
connecting the aggregates to surface tension 

where p m e n is the mean stress due to menisci forces and p s t is the additional mean stress 

due to surface tension. The suction component is due to decrease in pore water pressure 

within the aggregate. It is difficult to exactly assess, how much influence on the stress 

have the last two components of the equation (3.7). The p m e n can be approximated using 

equations from section 3.1. Assuming simple cubic packing of the aggregates and 

estimating aggregate radius to be 5um, the p m e n is likely to be in the range of tens of kPa 

(as shown in Fig. 3.3). The component due to surface tension, p s t is directly influenced 

by the aggregate radius. 
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Figure 3.5. Fragment of surface and fragment of a cross-section of a spherical aggregate of radius R from 

Fig. 3.2 created from spherical grains of radius r. 

Let's assume an idealised spherical aggregate of radius R created from spherical grains 

of radius r, where R » r . An approximate hexagonal tessellation of the sphere surface of 

the aggregate (see Fig. 3.5.) is assumed such as that each soil grain on the surface 
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corresponds to one hexagon. Such a hexagon has the perimeter equal to 4-s/3r and area 

of 2V3r 2 . Along this perimeter are acting the surface tension forces which contribute to 

the p s t term. The radial component of the surface tension force is approximately equal to 

T4V3r sin 5 which may be further simplified as T4- \ /3—. This leads to a stress value 

2T 
p s t = — as the mean stress is averaged over the whole area. Note that this stress 

R. 

component, partially because the simplified assumption used, is independent of suction 

but linearly dependent on the radius of aggregate. Assuming an aggregate radius of 

5um leads to additional mean stress 

p > = 1000.2-0.073 = 2 9 2 k p a ( 3 g ) 

This simple solution is valid only for spherical aggregates built from spherical grains 

and thus is a gross simplification. Yet it gives valuable insight into the nature of forces 

within an unsaturated soil. 

In the case of a higher degree of saturation, the bulk water areas become larger, as there 

is more water than can be accommodated by the swollen aggregates. In such cases the 

p m e n and p s t stresses would likely become smaller than those calculated above. 

Finally, it is possible to calculate an average stress in unsaturated soils. This stress is 

P a v = P + (1 - X ) P m e „ + x ( P m e „ + P s . + s) (3-9) 

where x is a parameter describing the relative volume of bulk water region. When it is 

assumed that all the water within soil is the bulk water (as the menisci degree of 

saturation is very small for majority of suctions, see Fig. 3.4) x becomes equal to 

degree of saturation S r . When additionally the stress due to menisci forces and the stress 

due to surface tension is disregarded, the average stress becomes 

which is the form of stress, sometimes dubbed as the effective stress, given in (2.3). 

Such a stress measure has been used in some constitutive models, e.g. by Wheeler et al. 

(2003). However, to the best knowledge of the author, no constitutive model for 

unsaturated soils explicitly includes any stress correction corresponding to stresses due 

to menisci p m e n and surface tension p s t . 
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4. Constitutive modelling of unsaturated soils 
To model the macroscopic behaviour of unsaturated soils, the elastic and inelastic 

response due to mechanical loading and drying and wetting need to be addressed. 

Usually a separate constitutive model for water retention and mechanical behaviour is 

adopted. In such circumstances the mechanical model can be used with any model for 

water retention behaviour. Recently, as in the models of Wheeler et al. (2003) and 

Sheng et al. (2008), the model for water retention behaviour has become an integral part 

of the formulation describing the soil behaviour. 

The most widely known constitutive model for unsaturated soil is that proposed by 

Alonso et al. (1990), commonly referred to as the Barcelona Basic Model (BBM). This 

model and its modification have the leading position in the field of unsaturated soil. 

However, there are numerous constitutive models for unsaturated soils that have 

different origins from the B B M . These include those proposed by Blatz and Graham 

(2003), Bolzon et al. (1996), Cui et al. (1995), Fredlund and Pham (2006), Gallipoli et 

al. (2003a), Georgiadis et al. (2005), Ghorbel and Leroueil (2006), Kohler and 

Hofstetter (2008), Loret and Khalili (2002), Masin and Khalili (2008), Nuth and Laloui 

(2008) [see also Laloui et al. 2008], Rampino et al. (2000), Russel and Khalili (2006), 

Sheng (2003a, b), Sheng et al. (2008), Stropeit et al. (2008), Sun et al (2007a), Thu et al. 

(2007), Tamagnini (2004), Wheeler et al. (2003). The Barcelona Basic Model and the 

model by Wheeler et al. (2003) have been singled-out here to be described in greater 

detail below. 

Many of the above-mentioned models are currently used only by the research group 

they were created in. This is usually due to their complexity: they require a significant 

time investment before one can properly assess the model quality and its fitness for any 

given problem. This is necessary, as some of the models do not appear to be 

substantially better in many practical cases than the B B M is spite of requiring more 

parameters. Other may seem to be able to model the behaviour of unsaturated soils well, 

but the number of parameters is prohibitive and thus their use is restricted to those 

engineering problems which must be solved as accurately as possible. The number of 

parameters is important, as to properly calibrate the model, more laboratory tests are 

required. Conducting those tests requires special equipment, can be costly and time-

consuming. Because of this, the most complex problems are usually tackled by 
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specialised research groups such as the groups at UPC in Barcelona or at ENPC in Paris 

where a constitutive model is often enhanced to suit the specific problem requirements. 

4.1. Barcelona Basic Model 

The Barcelona Basic Model was first proposed by Alonso et al. in 1990. This model is 

now as the benchmark against which all the more recently proposed constitutive models 

are tested. The B B M is an extension of the Modified Cam Clay (MCC) model (Roscoe 

and Burland 1968) into the area of unsaturated soils. It operates in the triaxial stress 

space p-q where p is the net mean stress (total stress reduced by the value of air 

pressure) and q is the shear stress. Similar to the M C C , the model assumes linear 

relationships in void ratio e (or specific volume v) versus logarithm of mean net stress 

[e-ln(p)] space. Different stiffness (line slopes) for elastic states within yield locus and 

elasto-plastic loading are used, as in the M C C . However, in the B B M the slope of the 

elasto-plastic virgin compression line depends additionally on the current value of 

suction. The B B M uses the M C C constants: X - slope of the virgin compression line in 

the log (p) - v graph, K - slope of the elastic loading - unloading line in the log (p) - v 

plot, M - slope of the critical state line in the p - q space, G - shear modulus and N -

specific volume for virgin compressed soil reached reference mean stress p c. The 

additional constants required are K s - slope of the elastic loading - unloading line in the 

log (s) - v plot, k - parameter describing the increase in cohesion with suction at 

atmospheric pressure p a t m , r - parameter defining the maximum soil stiffness and P -
parameter controlling the rate of increase of soil stiffness with suction. Finally, the 

M C C allows for the reference mean stress p c to be taken as arbitrary, as long as the 

corresponding value of N is used, whereas in the B B M p c is a unique mean stress value 

at which the yield locus size remains constant when the soil is dried or wetted. 

4.1.1. Capabilities of the BBM 

The B B M has been developed as an extension of the Modified Cam Clay (MCC) for 

partially saturated soils. It has been designed, similarly to the M C C , in a p-q space with 

suction being an additional parameter. The most important single feature of the B B M is 

probably its ability to model collapse (see section 2.1). 

Barcelona Basic Model assumes that the yield locus expands when suction increases 

and contract when suction decreases. Thus, partially saturated soil behaves elastically 

until reaching higher mean net stress comparing to the fully saturated soil with the same 

55 



hardening parameter p'0. While the soil is wetted, the yield locus decreases its size and, 

if mean net stress is high enough, large plastic deformations occur leading to the 

simulation of collapse. 

Apart from the model constants, the size of the B B M yield locus (Fig. 4 . 1 ) is 

determined by the preconsolidation stress for saturated conditions Pq and suction. The 

yield function equation is 

F = q 2 - M 2 ( p + ks ) (p 0 -p ) = q 2 - M 2 ( p + ksj p< Po 
M0)-K 

l ( 0 ) | - t ) e " " t i ) - » -

" P = 0 ( 4 . 1 ) 

Although, the shape of the yield locus is the same as in the M C C - an ellipse, equation 

( 4 . 1 ) shows that during an increase in suction, the yield locus not only changes its size, 

but also its centre moves. Thus the B B M belongs to the family of models that exhibit 

both isotropic and kinematic hardening. The shift of the yield locus is governed by the 

value of k - parameter describing the increase in cohesion with suction at atmospheric 

pressure. 

Inaccessib le 
a r e a 

Cri t ical s tate line for 
suct ion s 

Cri t ical state l ineMor 
suct ion s=0 

Yield locus for 
suct ion s 

Yield locus for 
suct ion s=0 

Figure 4.1. BBM yield locus. Note that the part of the yield locus left to the shear stress q axis is not 

accessible. 

It is generally perceived that an elliptic yield locus, does not predict the shear behaviour 

of soil very well (compare Fig. 2 . 13 ) . Unfortunately such an elliptic yield locus has 

been assumed in the B B M , similarly to the M C C . Thus, probably in an attempt to 
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increase the accuracy of the model predictions on paths that include shearing, a non-

associated flow rule and a shift in the yield locus due to suction has been introduced. 

The flow rules in the B B M are: 

d £ P = A - ( M 2 ( 2 p + k s - p 0 ) ) (4.2) 

M M ^ 9 X M - 3 ) ^ _ 

9 ( 6 - M ) j H_ 
MO) 

where A is a non-negative scalar plastic multiplier. This non-associated flow rule has 

been chosen such that on an oedometric stress path where the horizontal stresses are 

calculated using Jaky's equation, the lateral strains are equal to zero. However, due to 

some decrease in numerical stability and theoretical considerations regarding 

thermodynamical correctness of using a non-associated flow rule, the B B M is 

sometimes used with an associated flow rule. In such case the plastic shear strain is 

dss

p = A • 2q (4.4) 

The shift of the yield locus also describes the increase of strength of soil at zero mean 

stress - i.e. dry soil has some capabilities for bearing the tensile stress. Unfortunately, 

due to using linear relationship between void ratio and logarithm of mean net stress, the 

mean net stress must stay positive. Thus, the shift in the yield locus leads only to 

different yield locus size and shape, while the part of the ellipse corresponding to the 

negative mean net stress may as well not exist (see Fig. 4.1). 

The original formulation of the B B M , makes use of an additional yield locus 

corresponding to the highest suction value experienced in soil history. Thus, when the 

suction is below the value of the highest suction experienced by soil, the volume 

changes due to suction should be elastic (plus a possible additional plastic change due to 

the existing stress state as a consequence of the decrease of the yield locus size during 

wetting). When suction reaches its maximum historical value, on further increasing of 

the suction, the deformations becomes elasto-plastic and the suction yield locus 

expands. This feature of the B B M is most often dropped and usually the implementation 

of the B B M in F E codes does not allow for the suction yield locus. The usual reasons 

for omitting the suction yield locus are the increase of algorithmic complexity and 

theoretical difficulties in calibration - most unsaturated soils experienced a very high 

suction value in its lifetime meaning that the suction yield locus should not be reached 
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(the latter is also true for most of laboratory experiments during which the soil dried 

completely before wetting it to the value of suction required for the experiment). 

A stress path illustrating the capabilities of the B B M is presented on Figure 4.2. In this 

diagram it is initially assumed that the soil is (i) fully saturated, (ii) in a isotropic stress 

state and that (iii) it has never in history been loaded over the value of p c (point A). At 

that point the mean net stress is increased until reaching point B. Over the A - B path, the 

predicted soil behaviour is the same as that given by the Modified Cam Clay. At B the 

soil is dried and suction increases from zero to so. During drying the soil shrinks and 

reaches point C. Note that the amount of shrinkage is independent of the stress state the 

soil experiences at the moment of drying. At C the mean net stress is increased again. 

The B B M predicts an elastic behaviour until F. At point F the soil will start behaving 

elasto-plastically once more. 

Point F may be reached as a result of following other stress paths. For example, if the 

soil is at A until suction reaches So and then loaded, the loading would be elasto-plastic 

from the very beginning and would follow the virgin compression line G - F with the 

slope of A.(so), finally reaching the same point F . 

N(0) 

N(s„) 

Ela; tic specific volume change 
due to suctiort increment 

-Virgin compression, suction s=0 

Virgin compression, suction s=s 

Elastic loading - unloading 

Virgin compression, 
suction s=s1<sQ 

If suction reduced, initial 
elastic swelling followed by / 
plastic collapse 

Plastic collapse! if suction reduce 

0 
'o Pots,) P 0(s 0) Inp 

Figure 4.2. Behaviour of soil on isotropic stress paths, as predicted by the BBM. 
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In the situation where the sample is wetted, the yield locus will decrease in size that 

may result in collapse. Generally collapse will occur, when the specific volume (or 

mean net stress) is large enough when soil is wetted. Then, after a hypothetical 

expansion of the sample due to decrease in suction, the specific volume would lie above 

the virgin compression line corresponding to the reduced suction. Such a high specific 

volume is not permitted and will be corrected to the value lying on the virgin 

compression line corresponding to the reduced suction, resulting in collapse. If we wet 

the sample while the state lies on the virgin compression line corresponding to given 

value of suction (e.g. at point E ) , collapse will occur independent on the amount of 

wetting (but the amount of collapse will be dependent on the suction decrease). After 

reducing the suction to zero, the specific volume will reach that state on the virgin 

compression line corresponding to zero suction, matching the current mean stress (point 

E i ) . If we wet the soil while being in the elastic region (e.g. at point D), the soil will 

initially expand, until reaching the virgin compression line for reduced suction (point 

Di ) , and then collapse, finally reaching point D 2 on the virgin compression line for fully 

saturated soil. Finally, if the soil is wetted while being substantially unloaded (i.e. left 

from the point C in the Fig. 4.2), the soil will only elastically expand, but no collapse 

will be observed. 

4.1.2. Evaluation of Barcelona Basic Model 

The Barcelona Basic Model, albeit because of its similarity to the popular Modified 

Cam Clay Model is fairly easy to understand, has several shortcomings that hinder its 

application in both engineering and research analyses. 

From a theoretical point of view the B B M inherited most of the flaws of the M C C 

model. Note that the M C C model has been described as a 'pedagogic model' (Muir 

Wood 1990) and as such should not be considered as a model suitable for the prediction 

of advanced soil behaviour (at least without some extensions). The well known 

weaknesses of the M C C lie mainly in the prediction of soil response under shear 

loading and lack of proper modelling of the elastic behaviour, especially under cyclic 

loading. 

The shear behaviour has been corrected by use of the non-associated flow rule. 

However, this correction relies on Jaky's solution of the Ko line, which is a rather crude 

approximation. Thus, the effects of shear are often not substantially better predicted 

than in the case of the M C C . 
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Some of the problems in the model are due to the way the unsaturated state behaviour is 

predicted. Wheeler et al. (2002) points out that assumption of no change in the size of 

yield locus due to suction value at reference stress p c is "unlikely to be true in practice". 

Indeed, such an assumption has little theoretical justification - a suggestion that at some 

external net stress p c the suction becomes irrelevant to soil behaviour finds little 

justification both in laboratory testing and from theoretical standpoint. 

In the same paper Wheeler et al. (2002) points out that the load-collapse ( L C ) curve, 

corresponding to the increase of yield locus size due to suction for some selection of 

B B M parameters, is non-convex. The issue of non-convexity raises problems in the 

numerical implementation of the B B M , as the usual assumption taken is that the yield 

locus, constructed in the mean net stress - shear stress - suction (p-q-s) space, is 

convex. 

Another weakness of the B B M stems from the fact that it only macroscopically 

describes unsaturated soil. However, depending on the microstructure of soil (the pore 

sizes distribution) the unsaturated soil may behave quite differently. Thus, the B B M is 

not likely to predict correctly the behaviour of soil that involves multiple wetting and 

drying cycles, as during such cycles (especially full wetting) the distribution of soil pore 

sizes is likely to be affected. Similarly, several cycles of loading and unloading in the 

elastic region of the yield locus will have some effect on the soil pore structure. 

Effectively, cyclic loading (even with low number of cycles), both due to changes in 

stress state and wetting and drying of soil, changes the soil fabric thus the soil is likely 

to behave in other way than before. Evidence of such behaviour is given e.g. by Day 

(1994), Barrera (2002), Jafari and Shafiee (2004), Hong et al (2006) and Ferber et al. 

(2006). Changes in suction alone lead to change in the microstructure of the soil fabric 

too. Such changes in structure are possible even at constant void ratio (e.g. Cuisinier 

and Laloui 2004). 

Finally, the B B M assumes a linear relationship between the natural logarithm of mean 

net stress p and void ratio e. This relationship is inappropriate both in the region of low 

and very high stresses. At high stresses the soil behaviour may be better described by a 

line in a ln(p) - ln(e) space (as in the formulation of the B B M the void ratio can become 

negative which is obviously wrong). Such a relationship (proposed by Butterfield 1979) 

is also easier to justify in a thermodynamical framework (see e.g. Houlsby 1981). On 

the other hand, at low stresses it would be advisable to allow for a small amount of 

tension before failure of a soil with high suction, as it is confirmed by laboratory tests. 

60 



Note, however, that the B B M (used with properly calibrated parameters) predictions 

generally stay on the safe side in both regions, overestimating the deformations both in 

high and low stress ranges. The other reason why the B B M does not allow for 

modelling the soil over the full range of stresses may be that the slope of the virgin 

compression lines corresponding to a given suction is constant whereas the laboratory 

evidence suggests that it is changing depending on the value of mean net stress 

(compare Fig. 2.4). 

In engineering practice the B B M has not been used too often, though probably more 

than any other constitutive model for unsaturated soils. This is likely to be due to a 

combination of factors such as: (i) the B B M seems to be significantly more complex 

than the commonly used constitutive models, (ii) the amount of time and tests (and thus 

cost) required for calibration of the model constants is high, (iii) the B B M is rarely a 

part of commercially available Finite Element codes (probably only implemented in 

C O D E B R I G H T ) and (iv) there is a relative lack of expertise available, associated with 

unsaturated soils in general and the B B M in particular. As a result only few practical 

analyses have been performed up to date. Those were mostly performed by universities 

who have resources and expertise to introduce the B B M into their own Finite Element 

codes. 

To sum up, the use of the B B M is currently constrained to fairly special cases where a 

more advanced analysis is required. Such analysis is usually performed by specialised 

university research groups. However, as it has been pointed out, sometimes the B B M 

does not offer the quality of prediction required for a very advanced analysis. This will 

be shown below on example of choosing the model constants to the data provided by 

Barrera (2002). This fitting was performed as part of the M U S E research program. 

4.1.3. Parameter estimation for BBM 

The determination of the B B M constants using a given set of laboratory data is a 

difficult task. Such a task was one of the benchmark activities within M U S E research 

training network. All the participants received the same set of laboratory data and their 

task was to choose the B B M material parameters that provided the best-fit to the data. 

The experimental data provided by Barrera (2002) were chosen for this purpose. For the 

parameter estimation, only those data from tests performed in a high quality triaxial cell 

were considered. These comprised: oedometric test EDO-1, saturated isotropic test 

SAT-1, triaxial isotropic test with controlled suction TISO-1 (see Fig. 2.6) and triaxial 
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tests involving shearing: IS-OC-03, IS-NC-06, IS-NC-12, IS-OC-06, IWS-OC-01 and 

IWS-NC-02. For details of the tests see Barrera (2002) or D'Onza et al. (2007). 

Several approaches for parameter estimation are possible however they can lead to 

significantly different values of parameters (see D'Onza et al. 2007). The approach 

adopted was to estimate all the saturated material constants, i.e. X(0), K , N(0), and the 

initial value of the hardening parameter p'0 from the saturated test SAT-1 (Fig. 4.3 left). 

Subsequently the value of elastic stiffness parameter for changes in suction, K s , was 

computed based on test TISO-1 under assumption that the atmospheric pressure p a i m is 

equal to 100 kPa. 

The values of the unsaturated material constants r, P and p c were obtained based on the 

unsaturated triaxial tests. The value of reference stress p c was estimated based on the 

slope of unsaturated virgin compression lines k(s). This was done for the IS-NC-12 and 

IS-OC-06 tests (see Barrera 2002, D'Onza et al. 2007) where initial loading is isotropic, 

suction is constant and both elastic and elasto-plastic deformations are present. Thus, 

the preconsolidation (yield) stress po can be estimated from the graph. This stress 

corresponds to the previously obtained hardening parameter p^. As X,(0) and K values 

are already known, the value of the reference stress p c can be calculated as 

f , q ( Q ) - K ^x(o)-x(s) 

P = 
lPo) ? - ( s ) - K 

Po 
(4.5) 

A rounded average value from the two estimates corresponding to IS-NC-12 and IS-

OC-06 tests was taken as the final value of the reference stress p c. 

In tests TISO-1 (Fig. 2.6), IWS-OC-01 and IWS-OC-02, collapsible behaviour of soil is 

observed. After collapse, the value of po is known (this is the value of current mean net 

stress). As the specific volume of soil is also known, one can calculate the 

corresponding value of hardening parameter p'0 using 

* 

v = N ( 0 ) - M 0 ) l n ^ - K s l n ^ ± ^ - - K l n % (4.6) 
P c P a t Po 

Then, for tests TISO-1, IWS-OC-01 and IWS-OC-02 the value of X(s), corresponding 

to suction in soil after collapse may be determined using (4.5). Additional values of 

>.(s)that may be used are those from tests IS-NC-12 and IS-OC-06. Having calculated 
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X(s) for a given value of suction, it is possible to fit the parameters r and P using e.g. 

the least squares method from 

The critical state line slope M, the parameter describing the increase in cohesion with 

suction k and shear modulus G were estimated based on data from tests IS-OC-03, IS-

NC-06, IS-NC-12, IS-OC-06 IWS-OC-01 and IWS-NC-02 (for the tests details see 

Barrera 2002 or D'Onza et al 2007). In those tests the specific volume corresponding to 

the critical state was identified. Then, as suction is known, the values of the hardening 

parameter p'0 and preconsolidation pressure po corresponding to this specific volume 

can be computed. The mean net stress p c n t and the shear stress q c n l corresponding to 

the stress in the critical state are 

, which allows for calculation of M and k. 

The final set of parameters estimated by Solowski and Toll is given in Table 4.1. 

Selection of B B M prediction with these initial parameters compared with the 

experimental data is given in Figures 4.3 and 4.4. Note that a set of parameters that 

approximate a single given test is not so difficult to find, however, a set of B B M 

material constants that give a close approximation to all the laboratory tests may not 

exist. 

The usual way of plotting the comparison of model prediction against experimental data 

is to use the model as being stress driven, where strains are predicted. Another 

possibility exists, i.e. instead of stresses one can prescribe strains and find the stress 

response of the model. If the laboratory data were ideally matched, then the predictions 

will agree (a situation close to this is shown in Fig. 4.3 left, where the saturated test is 

simulated). However in the case where model response only approximates the 

laboratory data, the difference can be significant (Fig. 4.3 right). 

When the parameters have been estimated by initially fitting the response of the soil 

under isotropic stress conditions, then the oedometric and shear tests are predicted 

poorly (as in Fig. 4.4). Yet, when an emphasis is put on first fitting the unsaturated 

tests, then prediction of the saturated test was even worse. Thus it is possible to fix the 

Ms) = M0)((l-r) + r (4.7) 

p c n t =0.5(ks + p 0 ) (4.8) 

q c r" =0.5M(ks + p 0 ) (4.9) 
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model constants so that the error in the unsaturated isotropic test (Fig. 4.3. right) is 

minimised, but the saturated test simulation then becomes unsatisfactory. An 

intermediate choice of the parameters values is also possible. This observation was also 

revealed by other M U S E members who undertook the same exercise. It appears that the 

general procedure followed was usually similar to the ones described above. This led to 

saturated material constants being similar to the one described. Also the values of M 

and k were very similar for all the groups. However, the choice of initial hardening 

parameter and the unsaturated parameters varied significantly across different research 

groups (d'Onza et al 2008). Thus the predictions of a hypothetical new test based on 

parameters estimated by different research groups were rather inconsistent. 

Despite the limitations described above, the B B M still remains the most popular model 

for unsaturated soils, perhaps because it strives for a balance between complexity and 

capability of prediction in practical engineering problems. 

Table 4.1. BBM material constants for data by Barrera (2002) 

Parameter description Value 

G - shear modulus 150 MPa 

K - elastic stiffness parameter for changes in mean net stress 0.012 

X (0) - stiffness parameter for changes in mean net stress for virgin 

states of the soil with suction s=0 

0.074 

M - critical state line slope 1.14 

p c - reference stress 0.5 kPa 

N(0) - specific volume at zero suction for mean net stress equal to 

reference stress p c 

2 

Pat m - atmospheric pressure 100 kPa 

K s - elastic stiffness parameter for changes in suction 0.001 

k - parameter describing the increase in cohesion with suction 0.46 

(3 - parameter defining the maximum increase of soil stiffness with 

suction 

0.125 kPa"1 

r - parameter defining the maximum soil stiffness 0.8 

Po — initial value of hardening parameter 85 kPa 
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Figure 4.3. Comparison for the saturated SAT-1 (left) and unsaturated TISO-1 (right) isotropic tests. In 

the figure laboratory data and predictions of the BBM (both strain and stress driven) are given. 
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Figure 4.4. Simulation of an oedometric test EDO-1 (left), and shear test IWS-NC-02 (right). Only strain 

driven simulation is presented. 

4.1.4. Common modifications to the BBM 

A number of extensions to the Barcelona Basic Model exists. As mentioned before, the 

most usual and quite universally accepted modification is to dismiss the suction increase 

SI yield locus and treat all suction increments as purely elastic. Often the shear modulus 

G is taken not constant, as in Alonso et al (1990); the value of Poisson ratio is set 

65 



constant instead. Such an approach has been used e.g. by Gallipoli (2000) and in 

benchmark C5 of the MUSE project (Vaunat 2007). 

Additionally, in the benchmark C5 (Vaunat 2007) it has been proposed that the bulk 

modulus K is given by K = — instead of K = , including specific volume, as in 

K K 

Alonso et al. (1990). This modification effectively lead to a model in which the elastic 

behaviour is linear in the log (specific volume) - log (mean net stress) place, as 

compared to specific volume - log (mean net stress) plane proposed by Alonso et al. 

(1990). 

The changes described above are amongst the most common. Other modifications are 

possible and lead to constitutive models for soil that closely follow the BBM. Currently 

the BBM model is being extended under guidance of its authors in the research group at 

the UPC resulting in double structure formulations. Such models are given e.g. by 

Alonso et al. (1999) and Sanchez et al. (2005). 

The model of Sanchez et al. (2005) is placed within the framework proposed by Gens 

and Alonso (1992) and then Alonso et al. (1999). Sanchez et al. (2005) double structure 

model is based on the assumption that two levels of material structure should be 

considered, being related to the micro- and the macrostructure of soil. It is further 

assumed that the inelastic behaviour associated with hydraulic loading is a result of 

interaction between the two structural levels (the micro- and the macrostructure of the 

soil). The macrostructure is modelled with the Barcelona Basic Model (Alonso et al. 

1990), which has been enhanced to deal with the additional effects of temperature 

change. The microstructure behaviour is treated as being fully reversible and isotropic 

(no preferential orientation of microstructure is present). The interaction between micro-

and macrostructure is fairly simple and achieved by interaction functions. The two 

interaction functions correspond to microstructural contraction and microstructural 

swelling. The function values depend on the ratio between mean net stress and 

preconsolidation stress. The interaction functions bind the strain increments in 

microstructure to the plastic strain increments of macrostructure. Thus the total 

macroscopic plastic strain is a sum of the plastic strain arising from microstructural 

reversible strain and the plastic strain computed from the BBM. It seems that such 

double structure models are able to predict the behaviour of unsaturated soils quite well. 

However, they are more complex and more difficult to calibrate than the models 

proposed by Alonso et al. (1990) or Wheeler et al. (2003). 
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4.2. Models for water retention behaviour 

As mentioned in the introduction, many models, including the BBM, operate in the 

mean net stress - suction space. Such models need coupling with a water retention 

model in order to be implemented into a Finite Element code, as the suction is not 

known and cannot be calculated. The FE deals with general laws for water flow and 

thus are able to predict the amount of water in given finite element. Then, using a water 

retention model, the suction in the element can be computed, which is required by the 

constitutive model for unsaturated soil. Not surprisingly, there are many models 

describing the water retention behaviour of soils. 

4.2.1. Van Genuchten Model 

One of the most popular approaches to describe the water retention behaviour is the van 

Genuchten model (1980). This requires at least three parameters to calibrate. It does not 

allow either for (i) modelling the difference between wetting and drying paths of the 

water retention behaviour or (ii) the difference in the water retention curves due to 

mechanical stress state and soil history. Nevertheless, with this model a good fit of the 

laboratory data for the great majority of soils is possible. It is also relatively simple to 

calibrate (this issue was addressed by van Genuchten 1980). Additionally, due to 

popularity and longevity of the model a considerable body of experience for its 

calibration exists. Because of these advantages, the van Genuchten (1980) model for 

water retention behaviour is the benchmark in the field and one of the most popular 

models currently used for the relationship between the suction and degree of saturation 

(Imre et al. 2006). 

The lack of advance features (like ability to model the difference between wetting and 

drying paths) of the van Genuchten model is probably, maybe surprisingly, one of its 

strengths. It is rare that the difference between wetting and drying paths (and the 

difference in the water retention due to mechanical load) is important in engineering 

analyses. I f it is important then an expensive testing program is required, which makes 

the more advanced models less commonly used in practical engineering. 

Van Genuchten (1980) equation of the water retention curve is 

w = w r + w w 
\ 

1 + 

(4.10) 
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where a, n and m are model constants, w r is the residual volumetric water content of the 

fully dried sample and w s is the volumetric water content at ful l saturation. The 

equation may be rewritten differently as 

Sr =• 
1 

' s 
(4.11) 

1 + 

, where it was assumed that the residual volumetric water content w r is equal to zero, or, 

in other words, that at degree of saturation equal to one and zero the suction is zero and 

infinite, respectively. A model for the water retention curve offering comparable 

accuracy and used in similar problems is that of Fredlund and Xing (1994) which has 

the following equation 

w = w +- w_ - w. 
f n \ 

In e + 
s 

V \ / 

(4.12) 

This may be simplified, using the same assumption as above, to 

s.=. 1 

/ n 

In e + l s 

V \ J 

(4.13) 

Recently a constitutive model for water retention behaviour has been given by Pham 

and Fredlund (2008). The authors claim that their model allows for modelling of water 

retention curve accurately across the whole range of water contents. The model 

parameters have a clear graphical interpretation thus a graphical calibration of the model 

is possible. However, the equation used is, unfortunately, rather complex. Because of 

this the authors proposed also a simplified expression where not all the parameters have 

such a transparent graphical interpretation. It is unclear whether the simplified model 

has advantages over the van Genuchten model. 

4.2.2. Model of Gallipoli et al. (2003) 

One of the problems with the van Genuchten (1980) model (and similar formulations) is 

that its parameters are independent from soil history. The model of Gallipoli et al. 2003) 

modifies the van Genuchten model so that some influence of the soil history (given in 
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the form of the void ratio) on the water retention behaviour appears. This influence is 

obtained by choosing the 'a' parameter of the van Genuchten (1980) model as 

a = l- (4.14) 
< K v - l ) v 

resulting in an equation for the degree of saturation 

S r = 7 — r " T^T (4-15) 
( i+[<Kv-ir s ] n ) m 

with parameters <|> and \\i instead of van Genuchten's parameter 'a'. Such a choice of 

function has been justified by Gallipoli et al. (2003) by showing a good fit to 

experimental data. Unfortunately the new parameters do not have any clear physical 

meaning. Gallipoli et al. (2003) do not suggest, however, any simple method of 

choosing the parameters. In the calculated examples shown in the paper the model 

constants were chosen according to a least squares fitting procedure. 

4.2.3. Model by Marinho (2005) 

Marinho (1994) suggested that the soil water retention curve is unique during drying 

and wetting when normalised with respect to suction capacity C, defined as 5w / 5 log s. 

This concept has been expanded in Marinho (2005, 2006) where an algorithm to 

approximately construct the water retention curve has been given. The accuracy of 

prediction is not very high, but it is likely to be adequate in engineering practice. The 

strongest point of this model is that to obtain the water retention behaviour it is only 

necessary to know (i) the Atterberg limits for the soil, (ii) one value of suction at a 

known water content. Then tables given by Marinho (2005) allow for estimation of 

water retention curve. It is clear that i f this method proves to be accurate enough for 

wide range of soils, then it should be highly successful in engineering practice. The only 

difficulty lies in having the one suction value at a given water content. This suction 

value can be obtained immediately i f a tensiometer is available or in around a week time 

when the filter paper technique is used. The former is useful when time is pressing, 

which is usually the case in most engineering applications. If, on the other hand, the 

suction needs to be measured using filter paper, this test can be performed even in the 

most basic of soil mechanics laboratories which might have no specialised equipment 
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for unsaturated soils. The latter allows introduction of the unsaturated soil mechanics 

into everyday practice. 

4.2.4. Other models describing water retention behaviour 

The above models for water retention behaviour are all relatively simple. Sometimes it 

is required to obtain the solutions which are very accurate and thus the modelling of the 

water retention behaviour must properly include the hysteretic effects and scanning 

curves (compare Fig. 2.8). Such models are generally more complex and their 

application has been limited to relatively few cases. A review of hysteresis models for 

water retention curves is given in Pham et al. (2005). 

4.3. Wheeler et al. model (2003) - framework and 

general description 

The next generations of constitutive models for unsaturated soils do not only model the 

mechanical, but also the water retention behaviour of soil. An example of such model is 

that proposed by Wheeler et al. (2003). Other models of this type exist, for example 

Sheng et al. (2008). 

The model described by Wheeler et al. (2003) introduces the stress measure named 

average skeleton stress (a*). This stress is defined as a sum of the net stress (the 

difference between total stress and air pressure, as in BBM) and the product of the 

suction and degree of saturation: 

a* = c 8 - Xs = ^ - S ^ = a, - [S ruw + (1 - Sr )u. ^ (4.16) 

Such stress variables correspond to the stress variable suggested by Houlsby (1997) and 

Bishop stress (1959) taken with the value of weighting factor x equal to the degree of 

saturation Sr. This form of a stress variable has been used beforehand e.g. in the Bolzon 

et al. (1996) model. The Wheeler et al. (2003) model employs also a modified suction 

s* variable which is suction multiplied by the value of porosity n (s* =ns). This 

measure of suction was suggested by Houlsby (1997). As mentioned previously a water 

retention curve is incorporated which may be regarded as an advantage over the BBM. 

The Wheeler et al. (2003) constitutive model has been proposed for isotropic stress 

states only. Its material constants are parameters are: X, K , X , S , K s , k,, k 2 , and 
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hardening parameters are: p 0 , s], s*D. It also requires a value of the specific volume for 

the initial conditions. 

The stress hardening parameter p*0 defines the maximum skeleton stress experienced by 

the soil. The suction hardening parameters, sj and s*D define upper and lower bounds for 

plastic suction increment. Suction increments between s] and s'D are elastic. 

X and K parameters have similar meaning as in the MCC, however instead of the mean 

net stress, the mean skeleton stress in used. Xs and K s describe the water retention curve 

in the degree of saturation - log (modified suction) space. The plastic lines have a slope 

of X s and the elastic lines have a slope of K s . The model yield locus and water retention 

description is given in Fig. 4.2.1. Finally, the parameters k,and k 2 describe coupling 

between the mean stress and suction yield loci. 

<JS 

Suction Increase (SI) yield locus 
V) 

2 o 
de 

0> a t 

5 Z} 
Suction Decrease (SO) yield locus 

I d S ? 

P loots') 

Figure 4.5. Yield locus and water retention behaviour of the Wheeler et al. (2003) model. 

The relationship between hardening parameters, plastic volumetric strain increment and 

plastic change of degree of saturation are given as 

p l _ ft-K) < dep' = 
v ( l - k , k 2 ) 

dp d S r 10. _ 1, " J D 
a ^-1 • 

V Ho 
(4.17) 

D J 

dS? = -IK-*.) 
v ( l - k , k 2 ) 

^ds'p dpj 

V S D Po J 
(4.18) 
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The model has relatively few model constants (less than the BBM when taken with the 

calibration of the water retention curve). On the other hand, the authors suggest that "the 

modelling of water retention behaviour (...) is relatively crude and future refinement 

may be desirable" which would likely imply the addition of extra parameters to 

calibrate. According to Wheeler et al. (2003) the "use of the stress variables a's and s* 

results in several important advantages. These include strain increment variables that 

are integrable, decoupling of elastic behaviour, very simple shapes for the LC, SI and 

SD yield curves, and a relatively small number of soil constants (given the capabilities). 

These advantages justify the use of stress variables that are more complex than the 

conventional choice of net stresses and suction" Recently the model has been amended 

to include bounding surface plasticity with just one additional parameter. More 

information can be found in Raveendiraraj (2008). 

Note that the stress a*j has a quite straightforward physical interpretation, rj* is an 

average skeleton stress when the effect of menisci are disregarded (see chapter 3 for 

details). Assuming initially that suction acts on the volume of voids, the modified 

suction s* can be interpreted as suction averaged over the whole volume of soil as 

s* = — — s = ns (4.19) 
e + 1 

where e and n are the void ratio and porosity respectively. 

It is disputable whether the introduction of the new stress and strain variables is a step 

in the right direction, especially without a proper thermodynamical derivation of the 

model. Once the model is expanded to describe the shear states and the water retention 

behaviour is captured more accurately, the number of required model constants to 

calibrate will increase. It is likely that the total number of parameters will be equal or 

exceed those for the BBM. In such a case, the model, having stress variables more 

difficult to understand by practicing engineers, is not that likely to be employed in 

engineering practice unless it will provide significantly better results than the BBM. 

This may be difficult, as it seems that the major weakness of the BBM lies not in the 

description of the isotropic states but rather in prediction of soil behaviour in non-

isotropic states. Also, the anisotropy of soil may sometimes play a role. In such cases a 

simple "pedagogic" model of Ghorbel and Leroueil (2006) may be a better choice. 

Despite the critique above, the model proposed by Wheeler et al. (2003) is attractive as 
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its framework is quite appealing, with the choice of stress and suction variables inspired 

by thermodynamics. It would be an additional advantage of the model i f it could be 

derived within the thermodynamical framework. However, it must be noted here that, as 

for today, the model does not seem to offer significant improvements either in the 

prediction of unsaturated soil behaviour or in the correctness of derivation, as compared 

to the BBM. 

4.4. Summary 

There are a number of constitutive models designed to predict the behaviour of 

unsaturated soil under certain conditions. The quality of the prediction depends on the 

problem the model is used to analyse. Generally, the more advanced the model is and 

the more material constants the model has, the wider the range of soils can be covered 

and the more accurate the simulations can become. None of the described models is, 

however, able to accurately predict behaviour of unsaturated soil under complicated 

loading that e.g. include many cycles of wetting and drying and several cycles of 

loading. It is likely that the major shortcoming of many existing models is their drive 

towards a greater number of constants (essentially a consequence of curve fitting 

exercise) that are difficult to obtain from the laboratory tests. This leads to models 

expensive to use, not only in terms of cost of the laboratory tests required, but also in 

terms of knowledge necessary to successfully choose the model constants and use it 

within finite element code. 

Additionally, the majority of the models are created without respect to both the laws of 

thermodynamics and the evolution of the soil fabric microstructure. The ideal model 

should provide insights in the evolution of soil microstructure, as only then can the 

macroscopic model be truly versatile (one step in this direction are models of soil 

microstructure evolution proposed by Kolij i et al. 2006 and Ferber et al. 2006). It would 

also be advisable i f such a model were thermodynamically consistent, as otherwise its 

usability would have to be limited to certain stress paths. A model which would provide 

correct predictions of soil behaviour in great majority of cases and give insights into 

micro- and macrostructure of unsaturated soils seems to be, however, quite far away. 

In the next chapter some ideas that allow for enhancing the response of soil without 

increasing the number of model constants required are presented. 
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5. Multi-cell enhancement to constitutive models 
In this chapter some modifications to the constitutive models are proposed. They should 

enhance the ability of the models to approximate the behaviour of unsaturated soils, 

especially during the transition from elastic to elasto-plastic behaviour. The described 

idea is introduced into BBM and examples of its performance given. Finally some ideas 

for future development of constitutive models for unsaturated soils are suggested. 

5.1. Concept of multi-cell enhancement 

The idea of the proposed multi-cell enhancement for the constitutive models stems from 

examination of the microstructure and water retention in unsaturated soils. Most 

constitutive models (with the exception of models using a double structure framework, 

such as developed by Gens and Alonso 1992) ignore important aspects of microscopic 

soil fabric and thus assume a homogeneous medium, simply extending the continuum 

constitutive frameworks developed for fully saturated soils. However, as described in 

section 2.2 fine grained unsaturated soil can have a much more complex fabric at the 

microscopic level than saturated soil. The clay platelets combine together creating larger 

clusters, commonly referred to as aggregates (as pointed out already by Alonso et al. 

1987). The pores between the aggregates (macropores) are larger than within the 

aggregates (micropores) which leads to a double porosity structure. Such a structure can 

be seen in environmental scanning electron microscopy (ESEM) images and is 

confirmed by mercury intrusion porosimetry (MIP) tests (see e.g. Monroy 2005). 

The non-homogeneous microstructure of unsaturated soil is also indirectly confirmed by 

the water retention curve. This curve describes the relationship between the suction and 

the water content for a given soil. The amount of water retained under a given suction is 

related to the pore size distribution of the soil according to the Young-Laplace equation. 

Therefore, the water retention curve can be used to calculate the radius of the largest 

pores filled with water at a given suction. As the water content of soil is known, the 

volume of pores with a smaller radius than this can also be estimated (Romero 1999). 

Such an estimation of pore sizes in unsaturated soil via the water retention curve is 

helpful but imperfect, as the drying/wetting of the soil leads to changes in its structure. 

The soil structure (skeleton) may change irreversibly as the wet portion of soil is drawn 

together or undergoes swelling due to the spatial variation of suction. So, while the 



water retention curve can be used to estimate the pore size distribution, the outcome will 

not be entirely representative for the soil given the non-uniqueness of the relationship 

between suction and water content caused by both irreversible strains and hydraulic 

hysteresis. This dependence of water retention behaviour on the soil deformation history 

has indeed been observed during experiments and partially incorporated in recent 

models for water retention behaviour (e.g. Gallipoli et al 2003b). 

Despite the shortcomings mentioned above, the water retention curve carries useful 

information about the microstructural behaviour of unsaturated soil. It is thus 

appropriate to use this information in constitutive modelling. To keep the modification 

as simple as possible, it is assumed that a unique water retention curve (independent 

from the deformation and wetting/drying history of soil) exists. 

Such a water retention curve can be expressed as a direct relationship between suction 

and degree of saturation. Given this relationship, it is straightforward to determine what 

percentage of soil has experienced a maximum given value of suction - it is the 

corresponding value of degree of saturation S r read from the water retention curve. It 

follows that at a given value of suction, the average mean stress acting on the soil 

skeleton is equal to the sum of the external stress p and the current suction multiplied by 

the corresponding degree of saturation sSr as described in chapter 2 and 3. 

Such an average stress does not account, however, for the history of soil, i.e. it does not 

take into account that the parts of soil which are currently dry, previously experienced 

suction. Here, an assumption has been made that the dried part of soil behaves 'as 

though' the suction value that it has recently experienced is still acting. Thus the 

partially saturated soil can be divided into two parts. In the wet part current value of 

suction is acting. The soil in the dry part is modelled with the most recently experienced 

value of suction. This results in a continuous distribution of suction for modelling 

purposes in the dry part. This continuous distribution is approximated by dividing the 

whole soil volume into cells, where the number of cells is controlled by the user. In 

each cell the most recently experienced suction is stored. Of course, in the cells 

corresponding to the wet part of soil volume, which is S r percent of cells, the most 

recently experienced suction is the current suction. 

Having the suction distribution for all the cells, in each cell a separate instance of the 

constitutive model is run. Thus, during the analysis each cell experiences the same mean 

stress, but has its own separate hardening parameter value and suction. The assumption 
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of equal stress means that the strains in each cell may be different. Thus, after the 

computations, the final deformation is an average of all the cells deformations. 

As a separate instance of constitutive model is run for each cell, this may be expensive 

in term of calculation time. Because of this, the number of cells, n, must be chosen to 

provide balance between satisfying computational efficiency and realism. 

5.2. Multi - cell Barcelona Basic Model 

The multi-cell concept, as described above, has been implemented in the BBM. 

It is convenient to assume that in the initial state the material is saturated, so that the 

initial value of suction in all cells is set equal to zero. The other assumption made at the 

beginning of the simulation is that the hardening parameter p'0 (BBM preconsolidation 

stress for saturated conditions) in all cells is identical. Once suction is applied, the 

values of current preconsolidation pressure po in each cell are dependent on the value of 

hardening parameter p^ and the most recently experienced suction s 

where p c is the value of the reference stress and X(s) is the slope of the virgin 

compression line at suction s. This slope is calculated as 

where X(Q) is the slope of the virgin compression line for the fully saturated soil, r and 

P are BBM constants. In every cell a separate instance of the BBM is used and, 

subsequently, the values of deformations from all cells are averaged. 

5.2.1. Example 

In this section an illustrative example is given. To keep the example as simple as 

possible it was decided to use 5 cells (n=5). The water retention curve is given in Figure 

5.2. Initially (Fig. 5.1, point A) the soil is fully saturated, with a mean net stress p of 10 

kPa which is also the value used for the reference pressure p c in BBM. The soil is 

normally consolidated, so the hardening parameter p^ is equal to 10 kPa. The other 

BBM parameters used were: elastic stiffness parameter for changes in net mean stress 

K=0.02, elastic stiffness parameter for changes in suction K s=0.05, atmospheric pressure 

Po =Po(Po> s ) = P C 

\ ( 0 ) - K 

X ( S ) - K 

P C 

(5.1) 

X(s) = M 0 ) ( l - r ) (5.2) 
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Patm=100 kPa, stiffness parameter for changes in net mean stress for virgin states of the 

soil (with suction s=0) ^(0)=0.2, parameter defining the maximum increase of soil 

stiffness with suction P=0.01 1/kPa and parameter defining the maximum soil stiffness 

r=0.75. The initial specific volume at the reference pressure p c is set to 2.6. The initial 

soil state is given in Table 5.1. 

The stress path and corresponding values of the specific volume of soil are summarised 

in Figure 5.1. First, the soil is isotropic loaded until p=100 kPa (Fig. 5.1, path A-B). The 

state of soil after such loading is given in Table 5.2. 

Table 5.!. Initial condition of soil (Fig. 5.1, point A) 

Cell (i) 1 2 3 4 5 

* 

Hard. par. p 0 [kPa] 10 10 10 10 10 

Suction [kPa] 0 0 0 0 0 

Specific Vol. N(0)* 2.6 2.6 2.6 2.6 2.6 

*N(0) is the specific volume at the reference pressure pc 

N(0)FT 

400 200 300 10 100 
Figure 5.1. Stress path, as calculated in the example 
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Table 5.2. Soil state at p=100 kPa(Fig. 5.1, point B) 

Cell (i) 1 2 3 4 5 

* 

Hard. par. p 0 [kPa] 100 100 100 100 100 

Suction [kPa] 0 0 0 0 0 

Specific Volume vj 2.139 2.139 2.139 2.139 2.139 

At this stage (Fig. 5.1, point B) the values of specific volume for each cell v', in Table 2 

are equal and calculated as 

• j 

v ; = N ( 0 ) - M 0 ) l n ^ ,i=1..5 (5.3) 
P 

The average specific volume is 

v, = - $ > ! = - ! ! ! L = 2.139 (5.4) 

where n is the number of cells used. 

The soil is then dried until suction reaches 200 kPa (Fig. 5.1, B-C). The values of 

suction corresponding to Sr equal to 0.9, 0.7, 0.5 and 0.47 are 30 kPa, 100 kPa, 180 kPa 

and 200 kPa respectively (see Fig. 5.2). The cells are dried in a sequence, assuming that 

the cell is becoming dry when more then 50% of the cell is dried. This assumption leads 

to drying the cells once the degree of saturation reaches 0.9, 0.7, 0.5 which correspond 

to 30 kPa, 100 kPa and 180 kPa suction respectively (see Fig. 5.2). As at final suction 

200 kPa the corresponding degree of saturation is 0.47>0.3, so the cells 4 and 5 remain 

wet. The evolution of cell suction is given by Table 5.3, where s(Sr) denotes suction 

corresponding to the value of degree of saturation as given by the water retention curve 

(Figs 5.2 and 5.3). 
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Figure 5.2. Water retention curve 
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Figure 5.3. Illustration of suction distribution within cells after drying to s=200 kPa (Fig. 5.1, point C). A 

cell is assumed to be dry when its S r <0.5. 
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Table 5.3. Evolution of suction during drying 

Suction Value [kPa] 

Cell (i) 1 2 3 4 5 

Sr>0.9 s(S r) s(S r) s(S r) s(S r) s(S r) 

Sr=0.9 30 30 30 30 30 

0.9>Sr>0.7 30 s(S r) s(S r) s(S r) s(S r) 

Sr=0.7 30 100 100 100 100 

0.7>Sr>0.5 30 100 s(S r) s(S r) s(S r) 

Sr=0.5 30 100 180 180 180 

0.5>Sr>0.3 30 100 180 s(S r) s(S r) 

Sr=0.47 30 100 180 200 200 

Table 5.4. Soil state after drying to s=200 kPa (Fig. 5.1, point C) 

Cell (i) 1 2 3 4 5 

* 

Hard. par. p 0 [kPa] 100 100 100 100 100 

Suction [kPa] 30 100 180 200 200 

Specific Volume 2.126 2.104 2.088 2.084 2.084 

Precons. pres. [kPa] 119.6 163.3 200.4 207.1 207.1 

Table 5.5. Evolution of hardening during loading 

Loading e - elastic ep - elasto-plastic 

Cell (i) 1 2 3 4 5 

P<Po e e e e e 

P ^ P o ep e e e e 

P o ^ P o ep ep e e e 

P o ^ P o ep ep ep e e 

P > P S = P O ep ep ep ep ep 

The soil state after drying is summarized in Table 5.4. The specific volume for each cell 

v'2 and preconsolidation pressure p'0 in Table 5.4 are calculated using 

v'2 =v; - K s l n S + P a l m , 1=1 ..5 (5.5) 
Patm 
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Po =Po(Po''> s') = P < 

X(0) -K 
— 

Po 

VP 

X ( S ' ) - K 

,i=1..5 (5.6) 

where p a t m
 = 100 kPa is atmospheric pressure. The average specific volume is, similarly 

to equation (5.4), given by 

V 2 ^ Y v i = - 2 — 2 T V 2 T V 2 T V 2 = 2 Q 9 7 ( 5 7 ) 

After drying, the soil is isotropically loaded to p=500 kPa (Fig. 5.1, C-D). This final 

value of mean net stress is higher than the value of the preconsolidation pressure p5

0 

given in Table 4, so all the cells will be at stress states on the yield locus. The evolution 

of elastic and elasto-plastic loading is given in Table 5.5. The soil state after loading to 

500 kPa is given in Table 5.6. Note that after loading the cell hardening parameters are 

different 

•1 * 2 • 3 *4 *5 
Po' >Po' > P o ' > P o ' =Po' > 

whereas the preconsolidation pressure po is the same for each cell. This is because the 

values of suction are different for cells 1, 2, 3 and 4. 

As the cells do not yield at the same mean net stress (compare Table 5.5) the transition 

between elastic and elasto-plastic regime appears smoother than in the original BBM. 

The greater the number of cells used in the model, the smoother the transition. 

Table 5.6. Soil state at p=500 kPa (Fig. 5.1, point D) 

Cell (i) 1 2 3 4 5 

Hard. par. p 0 ' [kPa] 377.3 253.6 202.6 195.4 195.4 

Suction [kPa] 30 100 180 200 200 

Specific Volume 1.855 1.906 1.929 1.932 1.932 

Precons. pres. p 0 [kPa] 500 500 500 500 500 

The value of hardening parameters p0'' and specific volumes v j in Table 6 are 

calculated using 

( \ M O ) - K 

Po-
Ps ,i=1..5 (5.8) 
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v ; = N ( 0 ) - X ( s i ) l n ^ - K s l n S + P a t m ,i=1..5 (5.9) 
P ° Patm 

The average specific volume is 

^ J y ^ M i ! ^ . , , , , ( 5 | 0 ) 

In the next stage, the soil is unloaded until it reaches the mean stress of 100 kPa (Fig. 

5.1, D-E). The specific volume for each cell is then 

vj , = v ^ - K l n - £ - , i=1..5 (5.11) 
Po 

The average specific volume is calculated similarly as before (see e.g. 5.4). 

At this stage the sample is wetted until fully saturated (Fig. 1, E-F). The evolution of 

suction during wetting is given in Table 5.7 and the soil state after wetting is identified 

in Table 5.8. After saturation, the hardening parameters are unchanged and the value of 

preconsolidation pressure in each cell is equal to the value of hardening parameter in 

this cell. 

Table 5.7. Evolution of suction during wetting [kPa] 

Loading e - elastic ep - elasto-plastic 

Cell (i) 1 2 3 4 5 

Sr=0.47 30 100 180 200 200 

Sr<0.5 30 100 180 s(S r) s(S r) 

Sr=0.5 30 100 180 180 180 

0.5<Sr<0.7 30 100 s(S r) s(S r) s(S r) 

Sr=0.7 30 100 100 100 100 

0.7<Sr<0.9 30 s(S r) s(S r) s(S r) s(S r) 

Sr=0.9 30 30 30 30 30 

Sr>0.9 s(S r) s(S r) s(S r) s(S r) s(S r) 
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Table 5.8. Soil state after wetting (s=0 kPa) (Fig. 5.1, point F) 

Cell (i) 1 2 3 4 5 

Hard. par. p*J [kPa] 377.3 253.6 202.6 195.4 195.4 

Suction [kPa] 0 0 0 0 0 

Specific Volume 1.900 1.972 2.012 2.019 2.019 

Precons. pres. pj, [kPa] 377.3 253.6 202.6 195.4 195.4 

Table 5.9. Evolution of hardening during loading 

Loading 

Cell(i) 

e - elastic ep - elasto-plastic Loading 

Cell(i) 1 2 3 4 5 

P<Po' e e e e e 

Po'<P<Po 2 ep e e e e 

P;- 2<P<P;- 3 ep ep e e e 

Po 3 <P<Po 4 ep ep ep e e 

P > P o 4 = P o 5 ep ep ep ep ep 

2.15 virgin compression line (saturated) 

2 cells 

« 100 cells 
2.05 CO 

2 cells 

1.95 

100 cells 

1.85 
Enlarged area 

1 8 80 100 200 300 400 500 

Mean stress [kPa] 

Figure 5.4. Influence of number of cells used in simulation: comparison between simulation with 2 and 

100 cells 
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Figure 5.5. Influence of number of cells used in simulation - enlarged detail from Figure 5.4. Comparison 

between simulations using 2, 3, 5, 10 and 100 cells 

The specific volume in Table 5.8 is calculated as 

v'5 =v j , + K s l n P + P a ' m ,i=1..5 (5.12) 
Patm 

The average specific volume is the mean of the specific volumes calculated in each cell 

(see 5.4). 

Finally, the soil is loaded until the mean net stress p reaches a value of 500 kPa (Fig. 

5.1, F-G). The loading is initially elastic, but as the mean stress increases, so the cells 

yield. The evolution of hardening during this loading is given in Table 5.9, and the final 

soil state is given in Table 5.10. 

The value of specific volume for each cell is then calculated as in (5.3) and the average 

specific volume as in (5.4). Note that the plastic behaviour will start gradually, with 

some yielding of the material before reaching the virgin compression line. This gradual 

transition wil l be better approximated when more cells are used. The influence of the 

number of cells used is illustrated in the Figures 5.4 and 5.5. 
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Table 5.10. Soil state at p=500 kPa (final, Figure 5.1, point G) 

Cell (i) 1 2 3 4 5 

* 

Hard. par. p 0 [kPa] 500 500 500 500 500 

Suction [kPa] 0 0 0 0 0 

Specific Volume v'6 1.818 1.818 1.818 1.818 1.818 

Precons. pres. p 0 [kPa] 500 500 500 500 500 

5.2.2. Comparison with the original BBM 

The comparison has been made using a problem given in section 5.2.1. All the 

parameters used for the BBM were the same as in the previous example. The test began 

with a mean net stress p=10 kPa on a saturated virgin compressed soil and the water 

retention curve is as depicted in Figure 5.2. 

The comparison of the modified model prediction with the original BBM prediction 

(Fig. 5.6) reveals the differences. The slopes of the unsaturated compression lines are 

slightly different. This is to be expected, as the modified model effectively averages the 

specific volume and a range of suctions are operating within the material, whereas the 

original BBM uses only the current value of suction. The model can be calibrated, 

however, such that the fully yielded behaviour is similar. The other noticeable 

difference is the amount of elastic shrinking and swelling predicted by the models. This 

occurs because in the original formulation the shrinking depends on the final value of 

suction whereas in the modified form it is averaged over different changes in suction 

across the cells. As the shrinking and swelling behaviour are different, and the slope of 

the unsaturated compression line .̂(s) is steeper in the case of the modified model, the 

amount of collapse predicted by the original model is larger. 

Finally, it is evident that the modified model predicts a smoother transition between the 

elastic and elasto-plastic regions. This smooth transition occurs also in the case of 

loading a fully saturated soil when it has previously been in an unsaturated state and 

was loaded beyond the yield point (of any of cells). 
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Fig. 5.6. Comparison of the modified BBM with the original formulation (for the same parameter set). 

5.2.3. Comparison with experimental data 

Although the concept of the multi-cell enhancement may look promising, only after 

comparing its performance against laboratory data can it be judged. In this section such 

a comparison has been made. The predictions of the BBM and the multi-cell enhanced 

BBM has been compared with data from Sharma (1998). 

Sharma (1998) investigated 1:9 Wyoming sodium bentonite:speswhite kaolin mixture. 

This soil had liquid and plastic limits of 93% and 33% respectively. To prepare the soil 

for the test, it was initially powdered and dried at 105'C. Then water was added to reach 

25% water content, which is on the dry side of optimum compaction. After mixing, the 

soil was sieved (using a 1.18 mm sieve). The remains on the sieve were grinded and 

sieved again, until all the whole mass of soil passed the 1.18 mm sieve. The soil was 

then stored keeping the water content constant for a week. The soil was mixed again 

before compaction which were performed using the standard Proctor procedure (simial 

to the scheme given in Fig. 2.14). After compaction, but before beginning of the main 

test, the soil samples were wetted in the triaxial cell under a given mean net stress until 

reaching the desired value of suction. 

The Barcelona Basic Model has been calibrated to simulate the data from isotropic 

compression of samples with suction equal to 100, 200 and 300 kPa. The results of this 

BBM simulation and the experimental findings are given in Fig. 5.7. Such a good fit is 

virgin compression line (saturated) 

modified model 

BBM to BBM 

modified model 
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usually difficult to obtain, as BBM parameters are constrained by calibration at the fully 

saturated state. Here there were no such constraints, as no saturated tests were given; 

thus the parameters have been chosen to fit optimally these three tests. The parameters 

chosen for the simulation were: elastic stiffness parameter for changes in net mean 

stress K=0.01, elastic stiffness parameter for changes in suction K s =0.1, atmospheric 

pressure p atm =100 kPa, stiffness parameter for changes in net mean stress for virgin 

states of the soil (with suction s=0) A,(0)=0.28, parameter defining the maximum 

increase of soil stiffness with suction P=0.00913 1/kPa and parameter defining the 

maximum soil stiffness r=0.349. The initial specific volume at the reference pressure p c 

is set to 2.56. The reference pressure p c was set to 10 kPa and the hardening parameter 

p* to 18.8 kPa. 

Keeping the MCC parameters of BBM constant, as they should fit the saturated state, 

changing the model constants r to 0.39 and beta to 0.0109 a new fit for the multi-cell 

enhanced BBM has been made (Fig. 5.8). It can be seen that the enhanced model fits the 

experimental data better during the elastic to elasto-plastic transition. The direct 

comparison of BBM and multi-cell enhanced BBM is given on Figs 5.9-5.11. Note that 

the experimental curves for suction 200 and 200 kPa have nearly identical initial 

specific volume whereas the initial specific volume for curve corresponding to suction 

100 kPa is substantially higher. This result may be specific for the tested soil or be a 

result of slightly different samples used at tests. Such behaviour is not well 

approximated by the BBM. 
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Figure 5.7. BBM approximation of experimental data. Data after Sharma (1998). 
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Figure 5.8. Multi-cell enhanced BBM (MC-BBM) approximation of experimental data. Data after Sharma 

(1998). 
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Figure 5.9. Multi-cell enhanced BBM (MC-BBM) and BBM approximation of experimental data. Data 

after Sharma (1998). 
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Figure 5.10. Multi-cell enhanced BBM (MC-BBM) and BBM approximation of experimental data. Data 

after Sharma (1998). 
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Figure 5.11. Multi-cell enhanced BBM (MC-BBM) and BBM approximation of experimental data. Data 

after Sharma (1998). 

One can see that although the transition between elastic and elasto-plastic state is closer 

to the laboratory data, the general modelling ability of the multi-cell enhanced BBM is 

similar to the original BBM,. This is to be expected, as the multi-cell enhancement does 

not change the core abilities of the model. The smoothing of the response, by using the 
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multi-cell approach may also offer greater numerical stability in a large scale Finite 

Element analysis. 

5.2.4. Conclusions 

The proposed modifications to the BBM improve the capabilities of the model by 

offering a gradual change of stiffness during initial yielding. The number of parameters 

in the model is unchanged as the water retention curve is also a pre-requisite for the 

BBM. The proposed solution may be regarded as a 'partial-fix' to the model working 

only for unsaturated states, as no smoothing effect is present for saturated soil. 

The calibration of the model requires some care, as calculations of the slope of the 

unsaturated compression line slope .̂(s) and amount of elastic shrinking/swelling is not 

so straightforward. The calibration process could employ an optimisation algorithm 

which would allow for automation of the process. Alternatively, the model parameters 

may be computed in a series of approximations. The latter approach would require an 

algorithm that would calculate deformations under given loading. It should be pointed 

out that the calibration of the model still does not require a greater number of tests than 

those required for the BBM. This is certainly an advantage over a model that would 

introduce a bounding surface plasticity framework into the BBM. 

The amount of computer resources required is higher than for the BBM. However, on 

current machines, it is entirely feasible to perform 2D Finite Element simulations with 

more than 105 elements using the enhanced model. Given that the speed (and memory) 

of computers continues to increase, it is very likely that in few years 3D analyses will be 

almost as quick as current 2D simulations. 

It is worth adding that the algorithm complexity of this enhanced model is not 

significantly increased compared with the original BBM, as much of the code used for 

each of the cells is the same. 

5.3. Random enhancement of the multi-cell concept 
The multi-cell concept may be enhanced to enable the model to capture hysteresis 

during cyclic wetting and drying. This can be achieved by randomly choosing the cell to 

be dried from all the wet cells (and putting it in a random place between the dry cells), 

instead of drying and wetting the cells always in the same order. This may result in 

progressively higher values of the hardening parameter in dried cells following a 

decrease in specific volume and in an increase of suction value stored in the dried cells. 
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Of course, when no drying and wetting cycles occur, then, the behaviour of the model 

would remain the same as the model described previously. The drawback of this 

approach is that to capture hysteresis in many cycles, a large number of cells is required 

which slows down computations. 

To demonstrate capabilities of such an enhanced multi-cell BBM, a similar example has 

been used to the one in section 5.2.1. The soil is however instead initially dried until 

suction reaches 200 kPa, and then loaded to 100 kPa. At this stage, multiple cycles of 

drying and wetting are made during which the soil is wetted to suction 100 kPa and then 

dried back to suction 200 kPa. In the example one, five and fifty such cycles were 

simulated. Subsequently the loading in this example is the same as in section 5.2.1, that 

is the soil is loaded until 500 kPa mean net stress, unloaded, fully wetted and loaded 

again. The behaviour of the multi-cell enhanced BBM with this random sequence of cell 

drying (RMC-BBM) is given in Fig. 5.12 where the model is also compared to a multi-

cell enhanced BBM (MC-BBM) described in section 5.2. In Fig. 5.13 the increase of 

specific volume during cycles of drying and wetting is shown. Finally Fig. 5.14 shows 

the consequence of using an increasing number of cells when modelling cyclic wetting 

and drying. 
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Figure 5.12. Random multi-cell enhanced BBM (RMC-BBM) with one, five and fifty wetting and drying 

cycles. The MC-BBM solution is equal to RMC-BBM with one cycle. 
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Figure 5.13. Random multi-cell enhanced BBM (RMC-BBM) with five (left) and fifty (right) wetting 

and drying cycles. The MC-BBM solution is equal to RMC-BBM with one cycle. 
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Figure 5.14. Random multi-cell enhanced BBM (RMC-BBM) modelling fifty wetting and drying cycles 

with 100 (left) and 10 (right) cells. The number of cells heavily influences the quality of model prediction 

(compare also Fig. 5.13 right). The MC-BBM solution is equal to RMC-BBM with one cycle - the 

difference in the figure is due to 1000 cells used in MC-BBM solution. 

The effect of the decrease of specific volume during cyclic wetting and drying is a result 

of an initially wet cell being dried at lower suction. In such a cell, collapse may occur. 

The result of such process is a decrease in total specific volume. Other effect is the 

increase of suction in the cells which are dry during whole cycle of wetting and drying 

which lead to small decrease of specific volume due to shrinkage. 
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After a large number of loading cycles combined with wetting and drying, all the cells 

will have the hardening parameter set to the one corresponding to the lowest suction 

during cycles and no further influence of wetting and drying will be given by the model. 

How many cycles are required for such a situation to occur depends on the number of 

cells used and the range of suction in drying-wetting cycles. Note that due to random 

nature of the model, the outcome will not always be the same, especially with low 

number of cells used. This means that the final specific volume as given in Fig. 5.14 

right may be reached not after fifty cycles, but after just five or ten cycles. Such a 

situation is highly unlikely when a larger number of cells is used, as the probability of 

wetting all the cells with lowest hardening parameter in subsequent cycles of wetting 

and drying is several magnitudes lower when a large number of cells is used. 

5.4. Future research and conclusions 
Constitutive models for unsaturated soils are still unable to predict the general soil 

behaviour in a convincing way. The simulation ability of the models increases with the 

number of model parameters. However a model with many constants is difficult and 

expensive to calibrate. Here a multi-cell enhancement has been proposed where no 

additional model constants are required. The multi-cell enhanced models are likely to 

offer better abilities of modelling the soil behaviour between elastic and elasto-plastic 

states without any decrease in overall modelling abilities. The random multi-cell 

enhancement also allows capturing the increase of soil deformations due to cyclic 

wetting and drying. This is also achieved without introduction of any additional model 

parameters. 

It seems likely that an increased understanding of unsaturated soil behaviour will likely 

lead to a new generation of constitutive models. The ideal model should give insights in 

micro- and macrostructure changes of the unsaturated soil and be not only a good 

engineering tool, but also a tool that captures the underlying physics of the unsaturated 

soil behaviour. Ideally, the new models should have meaningful parameters which 

should be simple and unequivocal to calibrate. Finally, they should be constructed 

within a fhermodynamically consistent framework - otherwise they are unlikely to be 

truly universal. 
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6. Stress integration of constitutive models for 

unsaturated soils: Theory 
Constitutive models for unsaturated soils can be complex and for their application to 

cases of practical importance the aid of a digital computer is necessary. Such models 

idealise the behaviour at a material point, thus they need to be implemented in computer 

algorithms, most often Finite Element (FE) codes, to allow analysing of large-scale 

engineering structures. 

The stress integration procedure is one of the crucial procedures in the FE approach and 

its proper implementation is important both for stability and efficiency of the code. 

Integration algorithms are divided into two broad groups: (i) explicit algorithms where 

the integrated stress is obtained using the stiffness at the start of each integration step 

and (ii) implicit algorithms, where the stress increment is calculated using the stiffness 

at the end of the integration step (this requires an iterative approach as the values at the 

end of the step are initially unknown). Both methods are used in practice and have their 

own advantages and disadvantages. 

A general description of implicit algorithms may be found in Simo and Hughes (1998) 

wherein an extensive list of references is available. Implicit algorithms for the 

integration of elasto-plastic models for saturated soils were developed, among others, by 

Borja and Lee (1990) and Borja (1991). Some novel ideas were more recently presented 

by Wang et al. (2004) and Foster et al. (2005). With reference to unsaturated soils, 

Vaunat et al. (2000) proposed an implicit integration algorithm including a return 

mapping scheme for the Barcelona Basic Model (BBM) of Alonso et al. (1990). Further 

implicit algorithms for unsaturated soil were proposed by Zhang et al. (2001) and Borja 

(2004). 

Explicit algorithms, because of early adoption of the poorly performing Forward Euler 

Method, have been often considered less efficient than implicit algorithms, although 

they are regarded as simpler to code and more generally applicable. A new class of 

explicit algorithms with substepping and error control based on a local error estimate 

was adopted for geomechanics by Sloan (1987). Such explicit algorithms are now 

widely used, especially for advanced elasto-plastic constitutive models. They are 

significantly easier to code, while being competitive with implicit algorithms ( i f not 

better than them) in terms of computer resource usage and accuracy, especially when 
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high accuracy of the solution is required (see Potts and Zdravkovic 1999). Explicit 

algorithms using substepping have been progressively refined during past years, but 

only recently they have been applied to elasto-plastic models for unsaturated soils (e.g. 

Sheng et al. 2003a, b). 

In this work, explicit stress integration schemes with substepping and error control have 

been adopted because of their greater flexibility and better error control than implicit 

algorithms. However, given that several such explicit integration schemes are available, 

detailed research has been performed here to find the method that is most advantageous 

in terms of robustness, efficiency and quality of error control. In the following sections, 

a number of explicit integration schemes with substepping and error control, based on 

different versions of the Runge-Kutta methods, as well as on a novel application of the 

extrapolation method, will be presented. 

6.1. Description of Runge-Kutta stress integration 
algorithm 
Runge-Kutta integration schemes have been adopted for stress integration by Sloan 

(1987). The general formulation of those algorithms is similar to the Runge-Kutta (RK) 

schemes widely used for the solution of ordinary differential equations. RK schemes 

with substepping and automatic error control described by Sloan (1987) include a 

second order Modified Euler scheme and a f if th order England scheme. Of the two 

algorithms, the Modified Euler has become far more popular. In this section a general 

description of a Runge-Kutta algorithm is given as an introduction to the novel 

developments proposed later in this thesis. 

6.1.1. Stress integration problem 

Elasto-plasticity is expressed in infinitesimal (rate) form, where the stress increment due 

to strain change is given by 

where ACT is the stress increment to be calculated and As is the given strain increment. 

In general it is not possible to integrate (6.1) analytically. Thus we are restricted to 

approximations through numerical integration. Equation 6.1 follows from the governing 

infinitesimal form 

E + A E 

fads A<r (6.1) 
c 
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— = D e p ( £ ,<r ,h) (6.2) 

where D e p (£ ,a ,h) i s the elasto-plastic tangent matrix (or, in the case of elasticity, the 

elastic matrix) depending on the strain state E , stress state a and hardening parameters 

h . Equation (6.2) is an ordinary differential equation of first order. Such an equation 

can be solved numerically in many ways (see e.g. Lambert 1973, Butcher 1987, 

Shampine 1994, Dormand 1996, Deuflhard and Bornemann 2002). 

By reading through the broader literature covering both fields of mathematics and 

engineering, one can get the impression that the mathematicians and physicists seem to 

favour explicit methods for solving such equations whereas, in engineering, the implicit 

schemes are rather popular. The preference of engineers for implicit methods may be 

due to two main reasons: a) implicit methods, while being usually accurate enough for 

practical purposes, are regarded as more stable and b) implicit methods are usually used 

in conjunction with a consistent elasto-plastic matrix, which leads to a quadratic rate of 

asymptotic convergence of the Finite Element solution at global level. These often 

heard presumptions are not in line with some published evidence (e.g. Potts and 

Ganendra 1994). Thus a wide study regarding stability and accuracy of explicit stress 

integration has been made and will be presented in the subsequent chapter. 

6.1.2. Runge - Kutta method 

The simplest explicit method for the solution of equation (6.1) is the Forward Euler 

scheme. I f this scheme is used with substepping, the strain to integrate AE is divided 

into subincrements SEjSuch that ^ 5 £ j = AE . The matrix D ^ ^ O j h ) is calculated at 

i 

the beginning of each subincrement and the corresponding stress subincrement is 

obtained by simple multiplication of such matrix with the strain subincrement. This 

method, however, is inaccurate unless a very large number of subincrements is used, 

resulting in high computational costs. 

The Runge-Kutta methods may be seen as an evolution of the Forward Euler scheme. 

One of the most basic Runge-Kutta approaches adopted for stress integration is the 

Modified Euler approach (Sloan 1987). Here each stress subincrement 5<r, is calculated 

as an average of two stress estimates Scr^and 5o[ 2 ) . The first stress subincrement 

estimate So™ is computed using the elasto-plastic D e p matrix corresponding to the 
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initial (i.e. at the beginning o f the i-th subincrement) values o f strain, stress and 

hardening parameters (denoted by subscript zero) 

8 o ( 1 ) = 5 a ( 1 ) ( £ 0 , a 0 , h 0 ) (6.3) 

Then, for the same strain subincrement, a second stress subincrement estimate 8a[ 2 ) i s 

calculated, this time with the D e p (£ ,w ,h ) calculated for the updated quantities o f strain, 

stress and hardening parameter 

8o< 2 ) = 5<T<2)(£0 + 6 £ i , «f0 + 8 * 1 " , h 0 + 8h< 1 )) (6.4) 

where the hardening parameter estimate Sh^1' corresponds to the stress subincrement 

estimate 6o\n. The calculation o f S h i 0 is specific to a given constitutive model. For 

example, when the hardening parameter depends on volumetric plastic strain only, this 

hardening parameter subincrement estimate can be computed as 

5h<'> =_^ h - (8 e P 1 Y 1 )

 =

 a h

 A ( D 3 G ( q » s ' P o ) = A ( i ) a h d G ( g , s , P ; ) 

where the plastic multiplier A is computed as part o f the computations o f D e p matrix 

and G is the plastic potential function. Note that h w i l l be a scalar measure for an 

isotropic elasto-plastic model where hardening depends only on the volumetric plastic 

strain. For further details see section 6.2. 

The stress subincrement is taken as an average o f these two stress estimates and the 

error estimate E is computed as half the difference between the two stress estimates. 

8<rj = 0.5(8o| 1 ) + 8 a [ 2 ) ) E f = 0 . 5 | 8 « - 8<r<2)| (6.6) 

The calculations are repeated for subsequent subincrements until the whole strain 

increment As is covered. The answer to the remaining question about how the strain 

AE should be divided into subincrements bz{ is given in the subsequent section. 

To sum up, calculation o f the stress subincrements with the Modified Euler method 

requires two computations of the stress estimate. Thus the Modified Euler method has 

two stages in which 8o ( 1 ) and 8 « ( 2 ) are calculated. It is also a method of second order, 

as it neglects only third order terms in the Taylor expansion series o f the stress 

increment, and it has a first order error estimate, given that the solution from the 

Forward Euler Method is used for estimating the error. 
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Generally, Runge-Kutta methods can have a number o f stages (NoS) larger than two 

and be o f a high order. The order o f error estimate is usually one order lower than the 

order o f method itself. In the general formulation o f Runge-Kutta methods, the stress 

estimate in stage's' in a given subincrement is computed as 

( s-l . s-l 

E 0 + C ( s ) 5 E , <r0 + £ a ( s j ) 5 < y ( j ) , h 0 + £ a ( s j ) h j (6.7) 

The stress subincrement and error estimate are then calculated as 

NoS NoS . NoS . . 

5<y = £ b ( s ) 8 o ( s ) E ( 8 a ) = £ ( b ( s ) - d ( s ) ) o o ( s ) = £ ( e ( s ) ) 5 ( T ( s ) (6.8) 

where a ( s j ) and c ( s ) are coefficients employed in the calculation o f stresses in the s-th 

stage, b ( s ) are weighting factors allowing for the calculation o f a high order solution and 

d ( s ) are the weighting factors for the one order lower Runge-Kutta method. The error 

estimate is computed as a difference between the higher and lower order solution (for 

values o f the coefficients, see Appendix 1). Note that, in general, the values o f 

hardening parameters also need to be calculated in similar fashion as those o f stresses. 

6.1.3. Error estimation and automatic subincrementation 

As mentioned above, to integrate stresses with a Runge-Kutta method while 

maintaining a reasonable accuracy, the strain increment AE has to be divided into 

subincrements Sc^such that ^ 8 E ; = A E ) . The subincrement size can be constant. 

i 

However, to make best use o f computer resources, it is advisable to change the size o f 

subincrements depending on the error made. This allows for creation o f a method that is 

as efficient as possible while still satisfying the error criterion. 

There are several ways o f setting the next subincrement size. They usually rely on the 

error estimate in the most recently integrated subincrement (local error estimate), which 

is provided by all modern Runge-Kutta methods. One possibility for error correction is 

the Error Per Step (EPS) method where the user specifies a value below which the error 

in each subincrement must fa l l . A specific variation o f the EPS error control was 

proposed by (Sloan 1987), where a relative value o f error with respect to the value o f 

the integrated variable must be below a specified tolerance. Finally in the Error Per Unit 

Step (EPUS) method the value o f error in the subincrement must be below some 

percentage o f the integrated value o f the variable in this subincrement. 
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The EPS procedure advocated by Sloan (1987) is probably the most commonly used in 

engineering practice and is the method of error control used throughout the thesis. In 

this procedure, given the method order and the error estimate, the size x, o f the next 

subincrement relative to the current subincrement size is calculated as 

(6-9) 
||E(5a) 

11° o + H 

where TOL is the error tolerance set by the user, m is the order o f the method and o 0 is 

the stress value before integration o f the last stress subincrement 8a . The coefficient 

4 is a scalar safety factor, smaller than unity, used to reduce the new subincrement size 

to account for the fact that, during derivation o f equation (6.8), the higher order terms 

in a Taylor series have been neglected (see Shampine 1994 for details). I f the error 

||E(5o)|| 
estimate norm divided by total stress norm ^ is larger then the value o f TOL, 

I K + H I 

then the subincrement is rejected, the stress state is not updated and a new, smaller 

subincrement o f strain is calculated using (6.9). Otherwise, the calculated value o f stress 

subincrement is deemed accurate enough, added to the total stress and a new 

subincrement o f size 8E j + 1 = xSCj is integrated. This error control method, in the case o f 

strictly dissipative systems, should lead to the final error being close to the set error 

tolerance TOL (for a definition o f strictly dissipative systems and proof see Shampine 

1994). 

Note that here only the error in the stresses has been considered. In practical analyses 

the error in the hardening parameter(s) should also be taken into account. To reduce the 

size volatility o f the strain subincrements, it is recommended to limit the factor x to the 

range o f (0.1 - 10) or similar. This is essentially because the error estimate is based on a 

lower order embedded Runge-Kutta method and is thus inaccurate by itself. I f we were 

to increase the step size more than 10 times, the neglected terms in the Taylor series 

expansion may become important (Shampine 1994). 

The choice o f the norm in (6.9) is important and influences the robustness and 

convergence o f the stress integration. The norm used throughout the calculation was the 

maximum norm calculated for each stress component separately. Additionally error in 

mean net stress, shear stress and hardening parameter were computed. The largest error 

99 



f rom all those calculations was taken as indicative o f the error made in the subincrement 

and used for accepting/rejecting the subincrement and in (6.9), for the calculation o f the 

next subincrement size. 

6.1.4. Drift correction 

After accepting an elasto-plastic subincrement, a check on whether the computed stress 

state is close enough to the yield locus is performed. In case it is not, it is said that the 

stress state has 'drif ted ' f rom the yield locus. In such a case, a drif t correction algorithm 

is invoked and the stress state is returned to the yield locus. The stress change due to the 

drif t correction is added to the error estimate o f the subincrement. Thus it is possible 

that after drif t correction the subincrement w i l l be rejected. 

The drift correction follows the algorithm given in Potts and Zdravkovic (1999), which 

is based on the findings o f Potts and Gens (1985). The need for drif t correction arises 

when the resulting stress state after the Runge-Kutta subincrement does not lie on the 

yield locus (which is decided by the yield locus tolerance, see also 6.3.1). At the 

beginning o f the subincrement the stress state corresponds to a point A on the yield 

surface, so the value of the yield function F for the initial value o f stress and hardening 

parameters is equal to z e r o F ( a A , h A ) = 0 (here '=0 ' denotes a stress state in a close 

proximity o f the yield surface where the yield function has a value smaller than a given 

tolerance whereas ' ^0 ' indicates that the yield function has an absolute value greater 

than the tolerance). After integrating the subincrement, the stress state and hardening 

parameters are updated to a new point B in stress space ( o B = <TA + 5a) . I f the point B 

does not satisfy the yield locus equation within the required tolerance, i.e. 

F ( a B , h B ) * 0 , then a correction is required to a final stress state corresponding to a 

point C in stress space, which satisfies the yield locus equation, i.e. F ( o c , h c ) = 0. 

During the correction the total strain remains constant while changes in the elastic and 

plastic components o f strain are equal in absolute value but opposite in sign 

d s e l = ( D e l ) - ' ( o C - ( T B ) (6.10) 

d £ p , = - d e e , = - ( D e ' ) " ' ( < J c - « B ) ( « • " ) 

The plastic strain is proportional to the gradient o f the plastic potential G, i.e. 

dG 
ds , = A — (the so-called f low rule) where A is a scalar. Thus the stress in point C is 

p do 
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= aa — A D e l —— (6.12) C ~ " B da 

The change o f plastic volumetric strain also triggers a change in the hardening 

parameter. Linearising, by differentiation, the generally non-linear equation o f the 

hardening parameter gives the fol lowing relationship 

dh = dh(ds , ) = dh[ A —— 1 = Adh(——-) (6.13) 
V da J da 

The stress state at point C must also be consistent with the yield function 

F ( c c , h c ) = F as - A D — , h B + A d h ( — ) = 0 (6.14) 
da da J 

Expanding equation (6.13) in a Taylor's series and neglecting terms in A 2 and above, 

after some rearrangement, gives the value o f the scalar multiplier A 

A = F ( ° M (6.15) 

ydaj 
D e , a G 

da 

fdF} 

dh da 

To calculate A f rom (6.15) it would be advised to use the values o f gradients and 

functions (thus stresses and hardening parameter) corresponding to the point C, but they 

are not known. Potts and Zdravkovic (1999) suggest using the values o f stresses and 

hardening parameter at the beginning o f the subincrement, i.e. at point A . They argue 

that, as point B lies in the illegal stress space outside the yield locus, using the values o f 

derivatives at point B may lead to substantial errors. 

Having calculated A the stress state at point C and the change in elastic and plastic 

strains are computed using (6.12), (6.10) and (6.11). In the case that the stress state is 

not mapped back to the yield surface after the first drif t correction (which may generally 

happen when a strict yield locus tolerance is coupled with a loose integration tolerance), 

the procedure may be repeated using the new corrected stress state (which is again not 

on the yield locus) as the initial stress state (i.e. point B) . 

6.2. Advances in explicit stress integration 

This section presents the developments undertaken in this work to apply explicit 

integration schemes with substepping and error control to elasto-plastic constitutive 

models for unsaturated soils and introduces a number o f improvements made to existing 



explicit stress integration algorithms. First it highlights the changes required for the 

application o f existing stress integration algorithms to unsaturated soil models. Later, it 

describes the application o f the extrapolation algorithm to the problem o f stress 

integration. The extrapolation algorithm is well known to mathematicians and physicists 

but has never been used for stress integration. The section finishes with a description o f 

the EPUS error control method, which also has not been previously tested in stress 

integration. 

6.2.1. Stress integration of unsaturated soil constitutive models 

Constitutive models for unsaturated soils are usually formulated by using additional 

stress variables compared to the saturated case. Stress integration for unsaturated soils 

must therefore accommodate the use o f other variables in addition to the conventional 

stress and strain measures. A l l stress integration algorithms developed and tested in this 

work have been developed and tested with specific reference to the Barcelona Basic 

Model (BBM) , arguably the best known of the elasto-plastic constitutive models for 

unsaturated soils. With respect to the saturated case, the B B M requires one additional 

scalar parameter: soil suction. In the stress integration algorithms presented in this 

work, suction is treated as an additional strain-like quantity but there is no stress 

corresponding to suction. This leads to non-square elastic D e l and elasto-plastic D e p 

matrices, and an incremental stress-strain relationship where the six stress components 

are computed using seven strain increments, i.e. six mechanical strains plus suction. 

° = { C T l l ' a 2 2 5

C T 3 3 ' C f l 2 J

C T l 3 ' C r 2 3 } = D e l / e P - { £ l p e 2 2 ' £ 3 3 . £ I 2 ' £ l 3 . e 2 3 ' S } T ( 6 - 1 6 ) 

Details about the tangent elastic D e l and elasto-plastic D e p matrices are given in section 

6.3 describing the implementation o f the stress integration algorithm for the specific 

case o f the B B M . 

6.2.2. Studied Runge-Kutta methods 

For stress integration, two Runge-Kutta methods have been commonly used - the 

Modified Euler and the England method. In this study several other Runge-Kutta 

algorithms of different order have been developed and their performances compared. 

The Runge-Kutta algorithms coded in this work were: 

(i) Modified Euler method (Sloan 1987) - a second order scheme with embedded 

first order solution 
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( i i ) two third order schemes with embedded second order solution and coefficients 

proposed by Nystrom (Gear 1971 and Lee and Schiesser 2003) and Bogacki-

Shampine (Bogacki and Shampine 1996) 

( i i i ) a fourth order scheme with embedded third order solution (Lee and Schiesser 

2003) 

(iv) four f i f t h order schemes with embedded fourth order solution and coefficients 

proposed by England (Sloan 1987 and Lee and Schiesser 2003), Cash and Karp 

(Press et al. 2002 and Lee and Schiesser 2003), Dormand and Prince (Dormand 

1996) and Bogacki and Shampine (Bogacki and Shampine 1996) 

Good performance had been expected f rom the relatively recent Bogacki-Shampine 

Runge-Kutta methods, as they have found a considerable acclaim among applied 

mathematicians (which resulted in implementation o f Bogacki-Shampine schemes into 

several free libraries and codes containing solvers for ordinary differential equations, 

e.g. into Matlab; see also Bogacki and Shampine 1996). Unfortunately tests here show 

that, in the case o f stress integration for the Barcelona Basic Model, this scheme seems 

to have no advantage over other Runge-Kutta schemes o f the same order. 

The relevant coefficients for the above Runge-Kutta methods are given in the Appendix. 

6.2.3. Extrapolation method 

The extrapolation method has its origin in the works o f Richardson (see e.g. Gear 1971). 

It was first used for the solution o f differential equations by Gragg (1965) and is well 

described by Lambert (1973). Since then, the extrapolation method has been refined, 

most importantly by Stoer and Bulirsch (2002), who present all the important concepts 

o f the method. The extrapolation method has been praised for its robustness, stability 

and efficiency (e.g. Press et al. 2002). The method has never been used for stress 

integration and this work aims at exploring its efficiency and robustness with specific 

reference to the case of the integration o f elasto-plastic constitutive models for 

unsaturated soils. 

Contrary to the Runge-Kutta method that assesses the global error based on the local 

error estimate, the accuracy o f the integration is assessed in the extrapolation method by 

directly using the global error estimate. This method is also much more stable than 

similar Runge-Kutta methods, as the strain to integrate is always divided into equally 

sized subincrements and the results obtained f rom the integration with a different 

number o f subincrements are 'extrapolated' to calculate the final result. This 
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extrapolated result is significantly more accurate than any o f the computed results for 

equally sized subincrements. Furthermore, the method should not be worse than a 

constant subincrement Midpoint method using the same number o f subincrements as 

used in the last computation for extrapolation. The idea of the extrapolation method is 

shown in Fig. 6.1. To obtain the extrapolated result, stress was first integrated twice 

with the Midpoint method with two and four subincrements. Stress at the end o f each of 

the subincrements is shown. The extrapolation method allows the stress to be calculated 

only at the final state (at the end o f integration). 

12 
Midpoint method approximation (2 points (2 points) 

(4 points) Midpoint method approximation 
10 • Extrapolated result 

8 

55 6 
CO 
CD 

Mean Stress p [kPa] 
i i i 

0 2 4 6 8 10 12 14 16 18 

Figure 6.1. Extrapolation method: stress integrated with twice with constant subincrement size Midpoint 

method (with two and four subincrements) and the extrapolated result. Results obtained for error per step 

(EPS) error control. 

In the extrapolation method an initial approximation o f the stress increment Aoo ( 0 ) is 

calculated by dividing the corresponding strain increment Ae in a number No of equal 

sub-increments 5 £ 0

= A E / N 0 and by using an explicit scheme to integrate stresses over 

each o f these sub-increments. Subsequently a second approximation o f the stress 

increment A o i ( 0 ) over the same increment Ac is calculated by using a number o f sub-

increments Ni>No . The linear combination o f these two approximations yields a more 

accurate extrapolated approximation A « i ( 1 ) (i.e. an approximation whose error series 

has a leading term of higher order than Aco ( 0 ) and A o / 0 ' ) . The error estimate o f such an 

extrapolated approximation is then computed and, i f such error is acceptable, the 

calculations are terminated. Otherwise, another approximation o f the stress increment 

A<r2 ( 0 ) is calculated with a number o f sub-increments N 2 > N i . Similarly as above, the 

linear combination o f A<r 2

( 0 ) and A<T| ( 0 ) yields the extrapolated approximation A«T2 ( I ) , 

104 



which is then combined again with the previous extrapolated approximation A a i ( 1 ) to 

give an even more accurate extrapolated approximation A<T2 ( 2 ) . I f the error estimate is 

acceptable at this stage, calculations are terminated. Otherwise, a new approximation o f 

the stress increment A o , ( 0 ) is calculated by using a larger number o f sub-increments 

N j > N j . | and this approximation is used for calculating further extrapolated values. Such 

a process continues until the error estimate becomes smaller than the set tolerance. 

The scheme is summarized in the fol lowing table 

N 0 Aa0°> 

N , Aa< 0 ) A o j " 

N 2 A < A«?> A<r f 

N 3 A < > A««'> Aa< 2 ) Ao< 3 ) 1 ' ' 

N f Aa< 0 ) A a j 0 A«< 2 ) A<r<3) Aa\m) 

The first column o f stresses in table (6.17) show the non-extrapolated approximation 

A o j ( 0 ) calculated by using an explicit integration scheme over N j equal sized sub-

increments 5E; (i.e. 8£j=A£/Nj). 

The other columns o f table (6.17) contain the extrapolated approximation A a j ( m ) (with 

m>0), which can be calculated as a linear combination o f the approximations Aa/" 1 ' 1* 

and Ao-j./" 1 " 1 ' according to the fol lowing two alternative rules 

A o | m ) = Aal" 1 -" + ^ (6.18) 

where i,m= 1,2,3,... or 

A<T<m) = Aor"+^7 (6.19) 

N , . m y 

- 1 

where i ,m=l,2,3, . . 

It can be shown that equations (6.18) and (6.19) provide extrapolated approximations 

whose error expansion series have leading terms o f progressively higher order and 

therefore converge towards the true solution (see, for example, Gragg 1965). The 
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extrapolation rule o f equation (6.18) is used when the error expansion series o f the 

approximation A<i j ( 0 ) contains only even power terms such as 

Ao = A«r<0) +a, M 
2 

fA E] 
4 6 

+ a, + a 2 + a 3 + 1 
IN,-J 

z U J 
+ a 3 

U J 
(6.20) 

Equation (6.19) is instead used when the error expansion series o f the approximation 

A<Tj ( 0 ) contains both odd and even power terms such as 

Aa = A«? 0 ) +a , M 
1 2 

M + a, + a 7 + a. 1 U J U J U J 
+ ... (6.21) 

I f the error expansion o f the approximation A<Tj ( 0 ) has the form o f equation (6.20) (so 

equation 6.18 applies), then the algorithm converges faster as each subsequent 

extrapolation increases (by two) the order o f the error o f the leading term in the series. 

Note that the superscript ( m ) in the approximation A a j ( m ) refers to the number o f 

subsequent extrapolations used to calculate that particular approximation. Thus those 

approximations wi th the same superscript ( m ) have leading terms o f the error series o f 

the same order. The subscript j in the approximation A c j ( m ) identifies instead those 

approximations that belong to the same sequence of extrapolations (i.e. those 

approximations that are on the same row of table 6.17). 

Different sequences o f sub-increment N j can be used in (6.17). It is only required that 

(i) all the numbers are even and ( i i ) each subsequent value o f N is higher than the one 

before (for all i>0 Nj<Nj+i ) . The most common sequences are: 

N j = 2(i + 1) => N = {2, 4, 6, 8,10,12,14,...} 

(Deuflhard 1983, 2002) 

N : = 2N ; _ 2 => N = {2, 4, 6, 8,12,16, 24, 32, 48, 64,...} 

(6.22) 

(6.23) 

(Stoer and Bulirch 2002, Lambert 1973) 

N j = 2 i + l => N = {2, 4, 8,16, 32, 64,128,...} (6.24) 

(Lambert 1973) 

In the calculations the following sequence was used 

N = {32, 48, 64, 96,128,160,192, 256, 320, 384, 448, 512, 608, 736, 992} (6.25) 

106 



This sequence performed best for the fairly large strain increments As used in this work 

(see section 7.2.1), although for smaller increments the sequences given in (6.22) or 

(6.23) are advantageous. It was also observed that the choice o f the sequence of sub-

increments may seriously influence the quality o f the results and the computational time 

required for integration. 

The extrapolation method does not have a fixed order as, for example, Runge-Kutta 

schemes. In the extrapolation method the order o f the approximation depends on the 

number o f subsequent extrapolations, i.e. on the number o f columns in table (6.17). 

Each subsequent column has another term eliminated in the error series and thus gives a 

higher order approximation. 

Graphical interpretation o f the extrapolation method stages is given in Fig. 6.2. First 

stress increments were integrated three times, resulting in stress increments A<T[, 0 ) , 

Ao[ 0 ) and A<r (

2

0 ). Those results are second order accurate. The extrapolation method 

initially calculates extrapolated results basing on integration with two and four 

subincrements resulting in A o j 0 (Fig. 6.2, first magnification). Similar computation is 

done for stresses obtained f rom four and six subincrements which gives stress Aw', 1 '. 

Stresses Atr j 1 ' and A o , 0 are fourth order accurate (under assumption o f 6.20). Final 

stress Aw (

2

2 ) (sixth order accurate) is computed based on A c } 0 and Ao^ (Fig. 6.2, 

second magnification). 

A n estimate o f the integration error E over the strain increment As is obtained as (see 

Deuflhard and Bornemann 2002, Stoer and Bulirsch 2002) 

E = A o [ m ) - A c [ m - 1 ) | (6.26) 

In equation (6.26) A « j ( m ) denotes the most accurate value in the extrapolation table 

(6.17) and A o^m'l) the second most accurate value on the same row. 

In this work the extrapolation method has been implemented by using a constant 

subincrement Runge-Kutta Midpoint method (see Appendix) which has been employed 

for calculation o f the approximate results for each stage o f the extrapolation method. 
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Figure 6.2. Extrapolation method: stress increments integrated with 2, 4 and 6 subincrements (Aoj'", 

Ao\0) and Ac', 0') are extrapolated to obtain Ac'" and Aoj". Those stress increments are used to obtain 

final, most accurate stress increment Aa' 2

2 ) • 

The Runge-Kutta Midpoint method has been chosen instead o f the Modified Midpoint 

method (which is the method of choice as advised in Lambert 1973, Deuflhard and 

Bornemann 2002, Stoer and Bulirsch 2002) due to convergency problems with the 

Modified Midpoint method. However, the use o f the Modif ied Midpoint method is 

advisable whenever it is possible, as it is theoretically more correct (the Runge-Kutta 

midpoint method only approximately satisfies the requirements for 6.18 whereas the 

Modified Midpoint method has the error expansion in the form of 6.20, see Deuflhard 

and Bornemann 2002 for a proof) and its rate o f convergence should be higher. Despite 
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that, the Runge-Kutta Midpoint method has been successfully used with rule (6.18), 

exactly as the Modif ied Midpoint method would be used. 

6.2.4. Error control methods 

The accuracy o f the stress integration algorithm is pivotal for the performance o f 

reliable finite element simulations. As such, it is advantageous to identify an error 

control method that would guarantee that the numerical stress integration w i l l always be 

within the accuracy set by the user. Such a method seems to be the Error per Unit Step 

(EPUS) error control method (e.g. Shampine 1994). In this approach the error estimate 

of a quantity must be below the percentage o f this quantity integrated in the same 

substep. In the case o f stress integration, to accept the result o f Runge-Kutta integration, 

it is required that in a given subincrement 

| |E(8o)| |<TOL-||5o| | (6.27) 

where E(5w)is the error estimate, TOL is the user defined tolerance and do is the 

integrated stress subincrement (due to the strain subincrement 5E ). I f the error norm is 

too large, similarly as in the method described in Sloan (1987), the result is rejected and 

the subincrement size reduced. Otherwise the stress subincrement is deemed correct and 

added to the total stress. In each case the size o f the new subincrement is calculated as 

(Shampine 1994) 

X = 4 
m-l 

T 0 L (6.28) 
||E(5<I) 

\oQ + 5 o 

Note that equation (6.28) is similar to equation (6.9). One difference lies in the order o f 

the root, which is equal to the order o f the Runge-Kutta method reduced by one. This is 

why, for the EPUS error control method, a Runge-Kutta method of higher order than 

two (preferably fifth order) is advisable. 

Additionally, in some cases the stress subincrement corresponding to the strain 

subincrement may be very small. Then, due to possible division by zero, calculation o f 

the substep size f rom (6.28) is ineffective and may lead to an infinite loop and general 

instability o f the algorithm. A way o f dealing with this problem must be included in the 

stress integration procedure. 
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A comparison o f the efficiency and accuracy o f the Runge-Kutta methods and the 

extrapolation method, when coupled either with EPS or EPUS error control is given in 

chapter 7. 

6.3. Stress integration for the BBM 

As mentioned in the section 6.2.1, the development o f a stress-strain integration 

algorithm for the Barcelona Basic Model ( B B M ) requires creation o f non square 6x7 

elastic and elasto-plastic matrices due to the introduction o f soil suction. It is possible to 

condense the non square 6x7 matrix to a square 6x6 matrix, just by introducing a 

dependence of the bulk modulus K on suction or by modifying the input strains. Such a 

solution is, however, not so clear and elegant, given that the dependency on soil suction 

is hidden among mechanical strains. 

Note that the Barcelona Basic Model is formulated using mean net stress p. In this 

model the stresses referred to are the net stresses yet here they are often described 

simply as stresses. 

6.3.1. Elastic procedure 

Calculation o f a stress increment resulting f rom a purely elastic strain increment 

requires a different algorithm with respect to the integration o f an elasto-plastic strain 

increment. The application o f Runge-Kutta schemes and the extrapolation method is 

limited in this work to the integration o f elasto-plastic increments, as the solution in the 

elastic domain can be obtained in a closed form. The algorithms for the Runge-Kutta 

schemes and extrapolation method proposed in this work assume therefore that the 

initial stress state satisfies the yield locus equation. Thus, i f the initial stress state lies 

inside the yield surface or initial elastic unloading occurs, then the elastic portion o f the 

stress increment needs to be calculated first. 

The elastic procedure created for the Barcelona Basic Model is similar to the one 

described by Sheng et al. (2000). Initially, a normalised yield locus needs to be derived 

to allow for a definition o f a constant yield surface tolerance. The B B M mean net stress 

p and shear stress q are normalised by dividing it by (po+ks) a sum of preconsolidation 

stress and a shift o f the yield locus due to suction (see also Fig. 4.1) to obtain the 

normalised stresses p' and q ' . The normalised yield locus thus reads as 
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( n V ( 
F = 

v p 0 + k s y 

- M 
p + ks 

v p 0 +ks 
^ = f l = ( q ' ) 2 - M 2 ( p ' X l - p ' ) = 0 (6.29) 
Po + ks ) 

This corresponds to an ellipse with a major and minor axis being unity and half M 

respectively. On such a modified yield locus, a single value o f tolerance has been used. 

Thus, throughout the algorithm it is assumed that the stress state is on the yield locus. 

That is, the absolute value o f function F n for given stress state and hardening parameters 

is smaller than a user specified tolerance. 

Following the approach by Sheng et al. (2000), a procedure that uses a closed form 

solution has been designed to calculate the elastic stress increment. The procedure 

involves the determination o f a secant elasto-plastic matrix which, after multiplication 

by the strain, gives the correct (elastic) stress increment. This secant elasto-plastic 

matrix may either be square, where suction is incorporated into the strain increment 

used for stress computation, or has a rectangular shape, where suction w i l l lead to a 

computation o f corrections to the stresses. 

As the stress integration algorithm operates in f u l l stress space, it is necessary to extend 

the B B M formulation f rom the p-q space into fu l l six dimensional stress space. In 

general net stress space, the shear stress q is proportional (by a factor o f V3) to the 

second invariant J2D o f net stresses 

Q = ^ ( f a l l - G 2 2 ) 2 + fal. - <*33 ) 2 + ( C T 22 " <*33 f + ^ + < 4 + <*23 ) ) = 

= j | fau - SijpXoij - 5 i jP) = ^3 • J 2 D i , j = 1,2,3 

(6.30) 

where 5jj is the Kronecker delta. Similarly, the mean net stress p is is proportional (by a 

factor o f a third) to the first invariant o f net stresses J1 

P = T f a n + C T 2 2 + a 3 3 ) = T J l ^ \ 11 t.L J J / 3 (6.31) 

In the algorithm, a circular cross section in a plane perpendicular to the mean net stress 

axis o f the yield locus has been assumed. Such a cross section is inferior to the surface 

proposed by Nakai or Mohr-Coulomb. The decision to use a circular cross-section in the 

deviatoric plane was adopted to simplify the algorithm. 

In the B B M , the elastic change o f specific volume A v s due to suction is computed as 
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. . s + p„. + As 
Av = K In — 

s s 
S + Pat 

where p a t is the atmospheric pressure, K s is the elastic stiffness parameter associated 

with changes in suction, s is the initial value o f suction and As is the suction increment. 

The suction change is therefore related to the elastic volumetric strain through 

A e . „ = - J ^ = - l n ^ = - l „ 1+ S - ^ ~ 

V 
which for small changes in specific volume A v s reduces to 

^ ^ s + p ^ A s ( 6 J 2 ) 

v s + p a t 

where v denotes the initial specific volume. Such an approximation to the small change 

o f the specific volume is acceptable in most engineering applications and often assumed 

(Borja 1992, Sheng et al. 2000). 

Having computed the part o f the elastic volumetric strain due to suction, this elastic 

strain needs to be deducted from the given volumetric strain (6.34). Having made this 

deduction, we are left with the volumetric strain needed for the calculation o f the stress 

increments. Because the effect o f suction is assumed to be the same in all directions, the 

strain components £ N , E 2 2 ' s 3 3 associated with a change o f stress are computed by 

subtracting a third o f the volumetric strain due to suction f rom the corresponding total 

strain components which leads to (6.37). The alternative approach involves leaving the 

strain components unchanged, but changing the terms within the matrix so they depend 

on the change of suction, which leads to (6.38). 

Finally one can calculate a correction to the stress state obtained using just strain by a 

component using suction. For such a calculation suction is treated as an additional strain 

component. The terms in the matrix corresponding to the suction have some dependence 

on the other matrix terms, in particular the bulk modulus, which leads to (6.39). The 

derivation o f (6.37) - (6.39). is shown in detail below. 

The total change in volumetric strain is defined as a sum of changes o f volumetric 

strains due to suction and mean net stress 
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K i P + A P K s i s + As + p. 
A E v = As + A s v s = l n ^ £ Mn ^ 

v p v s + p a t 

(6.33) 

To calculate the change of the mean net stress Ap, the part of strains corresponding to 

mechanical loading is computed as 

As = AE — AE 
v.p V v.s 

The change of mean net stress Ap is then equal to 

Ap = p 
V J 

and the secant bulk modulus is therefore defined as 

(6.34) 

e ^ ' - l (6.35) 

e - 1 

P As... AE. 
or K = 

Ap_ 
AE.. 

e - 1 
J 

As. 
(6.36) 

Now the stress increment may be calculated as 

3K p +4G 3 K p - 2 G 3 K p - 2 G 0 0 0 A E H,P 
3K p - 2 G 3K p +4G 3 K p - 2 G 0 0 0 A £ 2 2 , p 

1 3 K p - 2 G 3 K p - 2 G 3K p +4G 0 0 0 
• « 

A £ 3 3 . p 

3 0 0 0 3G 0 0 AE 1 2 

0 0 0 0 3G 0 As 1 3 

0 0 0 0 0 3G As 2 3 

(6.37) 

where the sH are the given value of strain to integrate, reduced by a third of the strain 

caused by the suction change. The same stress increment may be computed as 

"3K + 4G 3 K - 2 G 3 K - 2 G 0 0 0 " As n 

3 K - 2 G 3K + 4G 3 K - 2 G 0 0 0 As 2 2. 

1 3 K - 2 G 3 K - 2 G 3K + 4G 0 0 0 As 3 3 

3 0 0 0 3G 0 0 As1 2 

0 0 0 0 3G 0 As,3 

0 0 0 0 0 3G AE 2 3 _ 

(6.38) 

Finally, one can reformulate equation (6.37) above and instead of manipulating strains, 

add suction as an extra component in the strain vector and a further column in the 

matrix. 
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Aa = -
3 

0 
0 
0 

0 
0 
0 

0 
0 
0 

9 K „ 
0 0 0 p 

'As,, 

As 2 2 

0 0 0 P 

A £ 3 3 
0 0 0 

A £ 3 3 
9 K „ As,-, 

0 0 0 p 12 

K S 
AE, 3 

2G 0 0 0 A E 2 3 

0 2G 0 0 As 
0 0 2G 0 

(6.39) 

where 

K, = 
As As As 

As? As? ' s 0 +P a, + A S ^ In 
(6.40) 

S 0 + P a 

The result of calculations is clearly the same in all three cases. Equation (6.39) can be 

written used an enhanced strain vector A£ e n h = {As, , ,As 2 2 ,As 3 3, As, 2, A E 1 3 , A E 2 3 , S } t as 

ACT = D Ae 
" s e c 

cnh (6.41) 

To compute the elasto-plastic part of the strain increment with an explicit integration 

method, it is first necessary to calculate the purely elastic part for each strain increment. 

This task is achieved here by using the Pegasus algorithm modified to suit the needs of 

the BBM. The Pegasus algorithm was initially proposed by Dowell and Jarratt (1972) 

and then used for similar tasks by e.g. Potts and Zdravkovic (1999) and Sloan et al. 

(2001). The Pegasus algorithm is employed to solve the problem of finding the 

parameter a such that that the elastic portion of the strain increment is defined as 

Ase, = aAs e n h . This approach leads to an elasto-plastic stress increment starting from 

the updated stress state <ra on the yield surface, for which the yield function is equal to 

zero, i.e. F (o a ) = 0 . 

The Pegasus algorithm is used only when part of the step is elasto-plastic. Thus, the 

value of a is in range 0 = a 0 < a < a, = 1. 

I f the yield function were linear, then the correct value of a would be 

a = 
F ( « 0 ) 

F K ) - F ( < T 0 + A < T ) F 0 - F , 
(6.42) 
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where F(<r0) is the value of the yield function corresponding to the initial stress ( a = 0) 

and F(« 0 + Ao) = F(<r0 + D s e c A8 e n h ) is the value of the yield function corresponding to 

a = 1. However, in the BBM, the yield function is not linear (and appears not to be 

solvable in a closed form), yet (6.42) may be used as an approximation of the solution. 

Then the stress state for the computed a is calculated and new lower or upper bound 

are set, depending on the value of the yield function. The value of the new bound for a 

is computed as 

i f F(o0 + [ a 0 +a(a , - a 0 ) ] D s e c A £ E " h ) > 0 

then F, = F(<F0 + [ a 0 +a(a , - a 0 ) ] D s e c A £ e n h ) and a l n e w = a 0 +a(a, - a 0 ) 

i f F(o0 + [ a 0 +a(a , - a 0 ) ] D s e c A e e n h ) < 0 

then F0 = F(« 0 + [ a 0 +a (a , - a 0 ) ] D s e c A E e n h ) and a 0 n e w = a 0 + a ( a , - a 0 ) 

The next step of the algorithm is performed exactly in the same way, with the value of 

a 0 or a, being substituted by a 0 n e w or a, n e w respectively. The value of the elastic 

portion of strain is assumed to have been found once the calculated value of the yield 

function F lies within a required tolerance. This algorithm is unconditionally stable as 

only one cross-section with the yield locus is possible (the effect of a non-convex yield 

locus as mentioned by Wheeler et al (2002) is not accounted for; though the warning of 

the choice of parameters resulting in such a yield locus is given by the algorithm). 

The above algorithm tends to slow down in the case of a large strain increment. In such 

situations only one bound (usually a 0 ) is modified during interations while the other 

remains unchanged (see Fig. 6.3 which shows the first two iterations of the Pegasus 

algorithm). 
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Figure 6.3. Graphical illustration of the first two iterations of Pegasus algorithm 

To improve the efficiency of the algorithm an additional check on the value of a is 

made. I f the current guess for a is smaller than 0.01 or larger than 0.99, then an 

additional correction to the alpha is made: 0.05 is added or subtracted respectively. It 

has been found that such a check greatly improves the rate of convergence. 

The final problem involves catering for the strain increments initiated for the stress state 

on the yield locus leading to initial elastic unloading and further elasto-plastic loading 

of soil. This situation is indicated by the tangent stress increment pointing inwards the 

yield locus. It is easy to check for this, as the scalar product of the tangent stress 

increment (obtained by multiplying the tangent elastic matrix by the strain increment) 

and yield surface gradient will be negative. 

3F 
i f — D d A £ e n h <0 -> elastic unloading present (6.43) 

do 

where D e | is the tangent elastic matrix. The tangent elastic matrix is similar to the 

matrix given by (6.39), but is computed with bulk moduli K and K s 

K = P X K s = p - K ' v ' 
KP Kp(s + P a t ) 

so 

^ = (6.44) 

In the equations above, the values of mean net stress and suction correspond to the 

initial values of those quantities. 

For finding the intersection with the yield locus during these unloading-loading cases, 

the same Pegasus algorithm was used. However, the problem to overcome is that the 

algorithm would report initial convergence, as the initial stress state is on the yield locus 
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within tolerance. This has been solved by initially setting the yield locus tolerance to a 

smaller value, so the initial state does not lie on the yield locus anymore. However, this 

solution works only when the initial state lies on the inside of the yield locus (see Fig. 

6.4, top) In case the initial stress state lies outside of the yield locus, the tolerance is set 

to a smaller value and a small quantity is subtracted from the value of the yield function 

(so that the value of yield function corresponds to the function inside the yield locus). 

The subtracted quantity and temporary tolerance is such that the final value of the yield 

function will lead to a stress state being on the yield locus within the original tolerance 

(see Fig. 6.4, bottom). 

Elasto-plasticity 
YL Elasto-plasticity YL 

X 
Elasticity \ 

Initial tolerance 
Temporarily 
tightened 
tolerance 

Stress state outside 
Initial stress state yield locus 

Elasticity Initial tolerance 

Elasto-plasticity 
Elasto-plasticity YL 

\ Temporanly 
moved YL Initial tolerance 

Temporanly 
tightened 
tolerance 

Stress state outside Initial stress state 
new yield locus 

Elasticity Elasticity Init ial YL 
Initial tolerance 

Figure 6.4. Graphical illustration of the modification of the yield tolerance during unloading-loading case 

for the Pegasus algorithm. Yield tolerance modified when the initial stress state lies on the elastic side of 

the yield locus (top). Yield tolerance modified and yield locus temporarily moved when the initial stress 

state lies on the elasto-plastic side of the yield locus (bottom). 
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6.3.2. Computation of elasto-plastic matrix and drift correction 

Having calculated the stress increment associated with the purely elastic response, the 

remaining part of the subincrement will be elasto - plastic. The stress increment 

corresponding to that part of the strain increment is calculated using an explicit stress 

integration scheme with subincrementation (substepping) and error control. For such 

schemes, it is necessary to calculate the elasto-plastic tangent matrix D e p . This matrix is 

derived below. 

The yield function F and plastic potential G are defined in terms of the net stress a, 

suction s and the hardening parameter po* as 

F = F(«T,S, P O) = 0 (6.45) 

G = G(<i,s,p0) = 0 (6.46) 

Through the flow rule, the plastic strain change is dependent on the stress derivative of 

the plastic potential 

d £ P l = A ^ s , P o ) ( 6 4 7 ) 

da 

where A is the plastic multiplier. The volumetric plastic strain increment de v

p l= den p l + 

ds22pl + d£33pl is related to a change of the hardening parameter po* according to the 

following equation 

d P o ^ d e ? (6.48) 

The consistency condition to be satisfied by all infinitesimal quantities is 

8F d F V f d F " T 

dF= — do+ — ds + 
{da) {ds) 

d p 0 = 0 (6.49) 
V^Po 

The differential form of the stress - strain relationship for the BBM, is given by 

do = D e l d£ d = D e ' (ds - d£ p l - - m , K s d s , ) (6.50) 
3 (p a t +s)v 

where D e l is the elastic tangent matrix calculated at the beginning of the increment, d£ is 

the strain increment, d£ p l is the plastic component of the strain increment, K s is the 

118 



swelling parameter associated to suction change and p a t is atmospheric pressure. 

Introducing (6.47) into (6.50) gives 

d« = D"de - AD" ^ h P l l _ I D e . m 

da 3 (p a I + s)v 
(6.51) 

After introducing (6.51) into (6.49) and recognising that the transpose of a scalar 

variable coincides with the scalar variable itself, the following relationship is obtained 

do 
D e , d £ - D e l 

dG(<r,s,Po) 1 
da 

A — D.,m 
K.ds 

3 d ( p . + s K 
d¥ dF 

+—ds + — d p 0 = 0 ( 6 - 5 2 ) 
os 5p 0 

As dpo is a function of the plastic volumetric strain increment as indicated in (6.48), 

then 

v^Poy 
dPo = 

dp0 

and, after expressing de v

p l as 

del1 =Yds? = A m 1 

v n i=l 

aG(q,s,Po) 
da 

(6.53) 

(6.54) 

the following result is obtained 

dp 
dpi = A 

rd?Ydp'0) T(dG(o,s,p'0) m 
dPo . dzpi da J 

After introducing (6.55) into (6.52), A can be expressed as 

_ aTD e'de + [c-a T D e 'b]ds 
a T D e l g - d 

(6.55) 

(6.56) 

where 

dF 1 K S dF <?F dp0 T <5G 
a = — , b = - m — 5 — , c = — , d = — r — — , g = — 

da 3 p a l + s 5s dp0 dsp

v da da 

Having calculated the scalar plastic multiplier A , the infinitesimal stress increment is 

then equal to 

da = D e lded = D e l (de - dE

p l - dzs) = De'd£ - A D d 5 G ( g > s >Po) _ I D 
v ' da 3 m-

K sds 

Pa, + S 
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substituting (6.56) in to the above gives 

d s , D - l d e - D - ' g a T D " d ^ l C r a T D " b l d S - l D " m J ^ -
a TD"g-d 3 p,+s 

which leads to 

I a T D"g-dJ [ 6 a T D"g-d 3 p . + s j 

This can be simplified to 

do = D e p- e p sde + D e p ' sds = D e p d £ c n h (6.57) 

where 

d£ e n h = {d£,ds}T = {ds l l,de2 2,de33,de1 2,de1 3,de23,ds}T, D e p e p s = D e l - ^ ° ' is a 6x6 
a D g — d 

(c — aTD e lb) 1 K 
matrix and D e p , s = D e l g ^ — ; *- D e lm—^— is a column matrix. 

6 a T D e , g -d 3 p a t + s 

The 6x7 elasto-plastic matrix D e p can be reduced to the square 6x6 form, similar as for 

pure elasticity (see section 6.3.1). The rule to be followed in such a transformation is 

that the resulting stresses must be the same as obtained from the 6x7 matrix. Thus the 
product of D e p sds must be added to the result of multiplication D e p e p s d £ . This can be 

achieved by modifying the strains d£ (obtaining d£ ( m o d ) ) so 

do = D e p e p s d £ + D e p s ds = D e p e p s d £ ( m o d ) (6.58) 

To obtain the modified strains, the strains dsn, d£22, d£33 should be altered by the same 

amount (the suction acts isotropic). Another possibility is to modify the D e p e p s matrix 

(to obtain D e p ( m o d ) ) s o 

do = D e p e p s d £ + D e p s ds = D e p ( m o d ) d£ (6.59) 

To obtain D e p ( m o d ) only the three first elements the diagonal should be modified. 

Unfortunately, both of these solutions required knowledge of relative amounts of 

suction and strain increments before calculations of the relevant matrix and thus are 

inelegant. 

The additional problem that must be addressed in the explicit stress integration is the 

problem of drift correction. The drift correction algorithm used has been described in 

section 6.1.4. Here it will be described in detail for the case of BBM. 
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The stress state is said to drift from the yield locus and needs to be corrected back with 

a drift correction algorithm when, after integrating the stress, the final stress state is not 

on the yield surface within the requested tolerance (however as the whole subincrement 

was elasto-plastic, it should be). 

Before integration of a subincrement, the initial stress state o A lies on the yield locus at 

point A, that is F (a A , s A ,Po ( A ) ) = 0. After calculating the stress increase 8<r, as 

explained in the previous section, the stress state changes to OQ= « A + 5« moving to 

point B. This will no longer be on the yield locus, i.e. F (a B , s B ,Po ( B ) ) * 0. The drift 

correction algorithm imposes a change of the elastic strain 5se (by maintaining 

unchanged the total strain increment 8e, i.e. 8ee=-8epl), which results in the correction of 

the stress state to point C lying on the yield locus. The yield locus equation after 

correction will therefore be 

F(<T c,s,p* c) = F(a B +8adrift,s,PoB + 8pJ) = 0 (6.60) 

where A<r and 5po* are the corrections to the stress state and hardening parameter 

respectively and no correction to suction is applied as explained below. 

After expanding (6.60) in Taylor series we obtain 

(3FV dF dF 
FOC>S,PO C) = F(«B> S >POB) + T - S f f ^ + —5s + —r8p*+. . . (6.61) 

\ooj os dp0 

where the stress change Shrift is 

A**,, = A<T d r i f t(5£ e l) = D d 8 e d = -D d 8e p l = - D d A ^ (6.62) 
do 

After substituting (6.62) and (6.55) into (6.61), neglecting second order terms and above 

and noticing that the change of suction 8s is equal to zero (as suction change is 

proportional to the variation of strain 8e which remains unchanged) the following 

expression for X is obtained 

A = ^ M k ) ( 6 . 6 3 ) 

' dF V n e ] dG dF dp' T 5G(«, s, p*0) 
d<s do dp0 5epl do 

The stress state in point C is then equal to 
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« c = o B - A D e ' — (6.64) 
da 

In the unlikely situation when, after the first correction, the stress state still lies outside 

the yield locus, the above algorithm is performed again until the stress state is mapped 

back onto the yield locus within the set tolerance. During tests it appeared that the 

algorithm is more stable when the derivatives are computed at point B. Note, however, 

that drift correction after calculating the subincrement should be rather an exception 

than a rule, as the results should be accurate enough to be within set tolerance from the 

yield locus. I f drift correction is performed too often it slows down the algorithm. To 

overcome this once can consider increasing the integration tolerance (it will be shown in 

the subsequent chapter that this may even increase the overall speed of algorithm) or 

increase the tolerance at which it is assumed that the stress state is still on the yield 

locus. 

6.3.3. Stress integration with Runge - Kutta and extrapolation 

The Runge-Kutta integration for the BBM follows the scheme for the general case 

presented in section 6.1.2. The method is started with an attempt to compute the stress 

increment due to the whole strain increment in one step. I f this is unsuccessful (the error 

is too large), the strain increment is divided into subincrements and for each 

subincrement the stress increment is calculated. The stress in each subincrement may be 

calculated in several stages, depending on the specific Runge-Kutta method. The stress 

for each stage of the method is computed using (6.57) with initial conditions as required 

by (6.7). After computing the stress for each stage of the Runge-Kutta method, the error 

is assessed and the subincrement size is modified. The whole change of stress due to 

drift correction (performed as in 6.3.2) is added to the error of the method. The stress 

integration is finished when the whole strain increment is covered. 

The stress integration with the extrapolation method is performed as described in 

section 6.2.3. Again, the required elasto-plastic matrix is calculated with (6.57). The 

stress state is checked for being within the tolerance of the yield surface; however 

seldom any drift correction is required. I f such a case arises then the whole change of 

stress due to drift correction is added to the error measure and possibly an additional 

iteration of the method is required. 
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6.4. Stress integration for a multi-cell enhanced model 

In this section a stress integration algorithm for the multi-cell enhanced model is 

presented. The algorithm is kept general, i.e. it can be used for any model adopting a 

multi-cell extension as long as a stress integration algorithm for the model is given. 

However, it is likely that a more efficient algorithm for each specific model could be 

found. The following algorithm should be treated simply as a proof of concept. 

The input to the stress integration algorithm is a change of strain Ae and a change of 

suction As. The change of strain in individual cells will differ from once cell to another; 

however the average of strain increments over all the cells must be equal to the supplied 

change of strain. Given n cells 

1 " 
— V A 8 C = A E c = l,2,...,n (6.65) 

(subscript c denotes the c-th cell). On the other hand, the stress increment in each of the 

cells must be equal, so 

V Ao c = Aw c = l,2,...,n (6.66) 
c=l ..n 

In the proposed algorithm, initially, a distribution of suction in the cells is calculated, as 

the suction increment is known. The suction increment for every individual cell is 

known and constant (though not the same for all the cells) thus will not be changed 

during the iterations of the algorithm. 

In the proposed procedure, the algorithm starts by computing the stress state a\]) in all 

the cells with the stress integration procedure assuming that the strain increments are the 

same and equal to Ae for all the cells (superscript (1 ) denotes first iteration). The input 

suction change for given cell is constant and equal to the initially computed suction 

increment. After this initial stage, the stress distribution in all the cells is known and the 

stress in the c-th cell is . However, the stress distribution is likely to be unequal 

between the cells. Now, an average stress a^ can be computed as 

^=-t<} (6-67) 

and a correction stress for each of the cells as 

A«?>=<>-o«> (6.68) 
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For each of the cells a corresponding elasto-plastic matrix D^'can be computed and its 

inverse will allow for the approximation to the strain correction required 

Now, all the cells have constant stresses. Unfortunately, this will likely result in the 

average strain increment being different from the prescribed strain increment (i.e. the 

sum of all corrections 8E^) will not be equal to zero). The average of unbalanced strains 

can be calculated as 

The aim of the subsequent part of the algorithm is to reach a situation when the average 

of the strain increments over all the cells is equal to the input strain increment, and the 

stress computed in each of the cells, using the tangent matrix, will be the same. After 

reaching this goal, the strains obtained are integrated and the error of integration is 

checked. 

The balancing of the strains and stresses is achieved in relatively crude way. However, 

this part of the algorithm is relatively cheap, as it involves neither stress integration nor 

calculation of tangent matrices. 

Out of all tangent matrices D^ 0 that with minimum value of first component on the 

diagonal is chosen: 

This matrix is likely to give the smallest changes in stress for the given strain increment. 

Now, the average unbalanced strain is multiplied by D(

m?n and a correction to the stress 

state is computed 

8 E < l ) = D « r V ) (6.69) 

5 > i 8e(' i) 
unb 

n 

1 
(6.70) 

D ( l = m i n D ^ [ l , l ] c = l,2,...,n (6.71) 

5o = D ( 0 8 E

( 1 )

h 
" m m unb 

(6.72) 

This correction is generally small. The new stress state we aim for is 

' (i 
av av 

(6.73) 

For each cell a new correction for stresses follows 

Ao' ( 1 ) = « ( l , - o ( l 

c av c 

.(I) (6.74) 
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and strains may be computed 

8 e ' ( , ) = D { , ) A«' ( , ) 

c c c 
(6.75) 

The new unbalanced average strain can be calculated as 

1 n 

2 > ' c '(0 ' ( i 5E unb 

n c= 

(6.76) 

The steps (6.72) to (6.76) are repeated (each time with updated values of the average 

unbalanced strain) until the unbalanced strains satisfy the convergence requirements. 

The convergence requirements could be that this unbalanced strain is smaller than a 

given percentage of the strain increment of smaller than some predefined absolute 

value. 

Once the unbalanced average strain is considered to be small enough, the stresses are 

integrated using the provided stress integration procedure for the given model (with the 

appropriate inner iteration of strains AE' c

( 1 ) and suction increment) and a new stress state 

<r^2) is reached. The steps of the algorithm (equations 6.67 - 6.76) are now repeated 

until the differences in stress states in all the cells are within an acceptable tolerance. 

This iterative procedure is required as tangent matrices D c were used during the 

calculations. 

Convergence is reached when the average absolute difference in actual stress state and 

the average stress state in each of the stress components is smaller than a given for the 

last iteration (denoted last). 

I f this convergence criterion is is not valid, another iteration of the algorithm is 

performed (unless the number of iterations becomes too large or the algorithm appears 

to diverge). 

It is easy to modify this convergence condition so the average value of the stress state in 

all the cells must be close enough to the average stress state in relative terms 

1 n 

Yabs( )< Tolerance last) (last) 

av 
n c=l 

(6.77) 

(last) > last) n 

Tabs < Tolerance av 
(last) 

n c= V av 

(6.78) 
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Another possible convergence criteria may require a stress state in each of the cells 

being close enough to the average stress value 

Any of the equations (6.77) - (6.80) should be valid for each stress component. Note 

that in the case of a percentage tolerance, as given by (6.78) or (6.80), a further check 

on whether o^1' is not too close to zero is necessary. 

When the unbalanced stresses increase with the number of iterations of the algorithm, 

the procedure diverges. In such a case (or when no convergence has been reached after a 

given number of iterations), the given strain increment should be divided into smaller 

subincrements, which should be subsequently integrated. 

Such simple substepping algorithm has been introduced and coded for the multi-cell 

version of the Barcelona Basic Model. In such an algorithm, i f convergence is not 

reached after 10 iterations, the integrated strain increment is divided in two and the 

strain subincrements are subsequently integrated. 

The described stress integration algorithm was used to integrate a multi-cell enhanced 

Barcelona Basic Model (with twenty cells, n=20). The model parameters were as given 

in 5.2.3, with an initial suction 200 kPa and initial hardening parameter p* equal to 50 

kPa. The strain increment corresponded to isotropic loading (increase of volumetric 

strain by 3%) and then oedometric loading. It was observed that to ensure convergence 

a fairly strict tolerance is helpful. Thus a tolerance of 0.01 kPa coupled with rule (6.77) 

was used. The results of integration are given in Fig. 6.5 and the maximum error in any 

stress component and error in stress as measured by (6.77) is presented in Fig. 6.6. 

c=l..n 
V a b s ^ " 0 - oi l a s , )) < Tolerance (6.79) 

or within a percentage value of the average stress 

(last) > (last) 

V abs < Tolerance av 
(last) c= ..n 
av 

(6.80) 
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Figure 6.5. Stress integration: initial increment of 3% volumetric strain (as in isotropic loading) followed 

by 1% of e n increment (as in oedometric loading). Evolution of mean net stress versus specific volume 

(left) and mean net stress versus shear stress (right). 
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Figure 6.6. Error in integration shown in Fig. 6.5 (left) due to multi-cell enhancement. Maximum error 

among all stress components in all cells (measured against averaged stress over all the cells, left) and 

average error of non-zero stress components (measured against averaged stress over all the cells, right). 
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7. Testing and comparisons of stress integration 

schemes 

This chapter presents the results of testing of the stress integration algorithms described 

in the previous chapter. The Runge-Kutta algorithms and extrapolation scheme are 

compared against rigorous solutions and against each other. The tests on efficiency and 

accuracy of those algorithms are also presented. 

7.1. Tests against rigorous solutions of BBM 

This section describes validation tests for the stress integration algorithms for BBM. 

The algorithms were checked against independently obtained rigorous solutions. In 

subsections 7.1.1-7.1.2 the general solution for any strain increment is provided, 

whereas subsections 7.1.3-7.1.6 consider specific paths. 

The tests were performed under assumption that all the suction increments are elastic 

(i.e. that the suction increase SI yield curve of the BBM is never attained by the stress 

path, which is also the assumption made in the presented stress integration algorithms). 

The rigorous solutions were programmed in Microsoft Excel, using macros and a built 

in solver. In the cases where a closed form solution cannot be obtained, a large number 

of substeps were used in the Excel macro to ensure the required accuracy. In such cases, 

solutions were deemed accurate when the changes in computed results with doubled 

number of substeps were negligible (i.e. close to the machine accuracy). 

The tests were performed using the BBM parameters given in Table 7.1. Stresses were 

integrated by the various algorithms developed in this work with the tolerance of 20%, 

used in conjunction with EPS error control. Such a high value of tolerance (advised 

tolerances for the integration in FE application are at most 1%) was required to show 

clearly the integration error during comparison with rigorous solutions. With a tolerance 

of 1 %, the integration errors were usually too small to be seen in the graphs. 

For the tests shown in this section only the Modified Euler Runge-Kutta and 

extrapolation method were used. In particular, the results of the tests for the 

extrapolation scheme are presented because of the novelty of this methodology for 

stress integration. Among the several Runge-Kutta methods investigated in this work, 

only the results for the Modified Euler scheme are presented. Al l other Runge-Kutta 
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schemes have proven to be at least as accurate as the Modified Euler scheme and are 

tested against each other in subsequent sections of this chapter. 

Table 7.1. BBM parameters used in tests 

Parameter description Value 

G - shear modulus (constant) 20 MPa 

K - elastic stiffness for changes in mean net stress 0.02 

X(0) - stiffness parameter for changes in mean net stress during 

virgin loading with suction s=0 

0.2 

M - critical state line slope 0.5 

p c - reference stress lOkPa 

N(0) - specific volume at zero suction for mean net stress equal to 

reference stress p c 

1.9 

Patm - atmospheric pressure 100 kPa 

K s - elastic stiffness for changes in suction 0.008 

k - parameter describing the increase in cohesion with suction 0.6 

P - parameter defining the rate of increase of soil stiffness with 

suction 

0.01 kPa"1 

r - parameter defining the limit soil stiffness when suction tends to 

infinity 

0.75 

7.1.1. Elastic solution: general case 

If the initial value of suction s=Sj, mean stress p=pj and shear stress q=qi are given, the 

initial specific volume can be calculated as (Alonso et al. 1990) 

v,- = N ( 0 ) - M s i ) l n ^ L - K s l n S | + P a l m + i c ln^- (7.1) 
P' Patm Pi 

where poj is the preconsolidation pressure (depending on hardening parameter p*0 and 

suction). All tests assume that the initial state is elastic (i.e. pt < p 0 ) and that the 

increase of suction is proportional to the increment of strain (not increment of stress). 

The incremental change of specific volume is given as 

5v 
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The total elastic change of specific volume is connected to the elastic strain increment 

A v e = v i ( e - A £ > ' - l ) = v i ( e - a ^ -1 ) (7.3) 

where a is a scalar quantity. In the general case the sample is loaded with an enhanced 

strain increment A£ e n h = ( A e v , A s q , As) consisting of increments of volumetric strain, 

shear strain and suction. Firstly, the intersection of the strain path with the yield locus 

must be found. That is, the factor a that satisfies the following set of equations must be 

found 

Ae e = a - A E = ( a - A s v , a - A E q , a A s ) 

Ao c = Aa(Ae e ) = (Ap e , A q e , A s e ) = (Ap e , G • a • Ae q , aAs) 

F(a ; +A<T c , sf + A s e ) = 

= fa + Aq e ) 2 - M 2 (p, + Ap e + k • (s, + As e ))(p0, + Ap 0 - fa + Ap<)) = 0 

where the increments of stresses A a e corresponding to the increment of the elastic 

strain Ac e e n h bring the initial stress state to the yield locus. The yield stress state should 

therefore satisfy the initial yield locus equation 

(q, + A q e ) 2 - M 2 f a +Ap e + k - ( S j +As e ) ) (p 0 j +Ap 0 - f a +Ap e ) )=0 (7.4) 

The specific volume on the yield locus is 

v y i e ,d = N(0) - + a • As) l n ^ - K In P i + A P C - K s In s < + a ' A s + V™ = v, + Av e (7.5) 
P' Po Palm 

After introduction of equation (7.1) into (7.3) and (7.3) into (7.5) only a and Ap e are 

unknown. The yield locus equation (7.4) is a quadratic equation in terms of mean stress 

p. Thus Ap e can be calculated from equation (7.3) and introduced into equation (7.5) so 

that a can also be found. 

After calculating the enhanced elastic strain increment, the elasto-plastic part of the 

strain increment is given from the difference between the prescribed strain increment 

A E e n h and the computed enhanced elastic strain increment. The stress state at the end of 

the elastic increment A E e e n h is on the yield locus. The stress increment A<rep 

corresponding to the elasto-plastic strain increment 

A£ep,enh = ( A E ep ^ A t.ep, ) = _ a ) . A e " * n e e d s to be calculated next. 
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7.1.2. Elasto-plastic solution: general case 

In the general case, only an incremental quasi-rigorous solution for the elasto-plastic 

loading in B B M may be computed, although rigorous solutions for specific tests can be 

obtained in closed form. The general solution can be obtained by solving the set of 

equations below (quantities without superscript refer to values at the yield surface) 

Av e p =v (e A E ? ' - 1 ) (7.6) 

v = N ( 0 ) - Hs)In P ^ H ^ - K 1 „ £ ± ^ L - K s l n S + P - + A s C P = v y i e l d + Av<p (7.7) 
P° Po Patm 

(q + 3GAe^ )2 - M 2 ( p + Ap e p + k • s + kAs e p )(p0 + A p * - p - A p e p ) = 0 (7.8) 

X(0 ) -K 

r, 
Po + APo P =p c 

Po+Ap 0 

k P' 

M0)[(l-r)e-,M/uCP+rl-K 
(7.9) 

A s = + A s p = A 8 ^ (7.10) 

A s e

v + A s p =A8 e

v

p (7.11) 

Po MO) - K 

d 8 p = A ~ = A-(lvl 2(2p + k s - p 0 ) ) (7.13) 
dp 

, p . SF M ( M - 9 ) ( M - 3 ) 1 
d e P = A = A-2q or A-2q — - - (7.14) 

dq 9 ( 6 - M ) j K _ 
MO) 

(the second option in equation 7.14 applies to the a non-associated flow rule as used in 

the original formulation of BBM). The unknowns are: change of mean net stress A p e p , 

change of specific volume A v e p , change of hardening parameter Ap*, change of 

preconsolidation stress ApgP, change of elastic shear strain Ae^, change of plastic shear 

strain Ae p , change of elastic volumetric strain As*, change of plastic volumetric strain 

Ae p and scalar plastic multiplier A . When a rigorous solution of equations (7.13) and 
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(7.14) is not possible, a quasi-rigorous solution was obtained by dividing the strain 

increment in very small substeps as described previously. 

7.1.3. Isotropic loading under variable suction 

In this test soil in isotropic stress state is loaded with a volumetric strain increment Ae v 

and suction increment As. At yield p = p 0 and the elastic solution is computed directly 

by combining equation (7.3) and (7.5) as 

X T / ™ -a A M Po . i + A Po , S; + a • As + p _ a A 
v yield =N(0) -X(Sj +a -As ) ln K s l n ^ a— = v i e (7.15) 

P Pa.m 

The equation (7.15) can be solved for a as Ap^ is in this case a function of a only. At 

the end of loading the final specific volume is given by 

v end = N ( ° ) " M s i + A s ) l n - ^ - - K s In S | + A S + P a t m = Vj + Av. As the specific volume 
P C Patm 

increment is Av = v i(e~A E v -1) the final mean stress p o fin is 

N(0H V i + A v + K s In 

Po.n„=P C e M S i + A s ) (7-16) 

Comparison of the rigorous solution with the integration from the Modified Euler 

scheme (which is a second order Runge-Kutta scheme with first order error estimate) 

and the extrapolation method are given in Fig. 7.1. An initial mean net stress equal to 15 

kPa and an initial suction of 100 kPa were assumed. The initial value of the hardening 

parameter PQ was set to 50kPa. 

It can be seen that the solution from both integration schemes is generally accurate and 

it is only at extremely high values of volumetric strain (reaching 15%) that some larger 

error, in the case of the extrapolation method, can be observed. Still, these errors are just 

around 20%, which was the tolerance set for the integration with the EPS error control. 

Again, such a high strain increment has been deliberately chosen to enable a clear 

assessment when the integration error is becoming significant. Note that the small strain 

assumption at this value of volumetric strain is quite crude (as the Lagrangean and 

Eulerian strain measures will differ) and a proper analysis should be performed under 

large strain theory. 
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Figure 7.1. Isotropic loading at variable suction starting from an initial isotropic stress state: mean net 

stress versus volumetric strain (top) and suction versus mean net stress (bottom) 
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7.1.4. Isotropic loading under variable suction with initial non-
isotropic stress state 

The initial stress is given here in terms of mean net stress p;=l 5 kPa, shear stress 

qi=30kPa and suction Sj=100 kPa. The soil is loaded with series of progresively larger 

volumetric strain A E v and a suction increment As, always starting from the same initial 

state. The elastic solution in this case was obtained from (7.1 - 7.5), noting that A E s = 0. 

Using the set of general equations (7.6-7.14) the quasi-rigorous solution is obtained in 

Excel for the elasto-plastic loading as previously explained.. 

Results are given in Figs 7.2 and 7.3, which indicate that very different accuracies are 

obtained by the extrapolation method depending on whether an associated or non-

associated flow rule is employed. This is the only case when such a large error and 

oscillations were observed during stress integration with the extrapolation method. It is 

unclear why such a big discrepancy occurred; it has been however observed that the 

extrapolation algorithm fares relatively poorly on purely volumetric paths while the 

accuracy is usually excellent when variations of shear stresses are involved. It must be 

mentioned that the algorithms for associated and non-associated flow rules are the same 

- the only difference is in the change of the parameter value defining the type of flow 

rule in the B B M . Finally, it must be remembered that the amount of error given in Fig. 

7.2 (obtained with the EPS error control) would be much reduced when using a smaller 

integration tolerance (e.g. 1 % or less as usually done in F E applications) than the value 

of 20% employed in such tests. Additionally, it should be noted that the errors in shear 

stress are large relative to the current value (which is very small). However, even for the 

largest error in shear stress, the absolute magnitude of such error is similar to the 

absolute magnitude of the error in the mean net stress. 
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Figure 7.2. Isotropic loading at variable suction starting from an initial non-isotropic stress state with 

associated flow rule: mean net stress versus volumetric strain (left) and shear stress versus mean net stress 

(right). 
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Figure 7.3. Isotropic loading at variable suction starting from an initial non-isotropic stress state with non-

associated flow rule: mean net stress versus volumetric strain (left) and shear stress versus mean net stress 

(right). 
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7.1.5. Oedometric loading under variable suction with initial non-
isotropic stress state 

Oedometric loading is defined by an increment of strain components such as 

A s e n h =(e,,0,0,0,0,0,As). For this case the relationship between the increments of 

volumetric strain and shear strain is given as 

A E S = | A E , . (7.17) 

The soil is loaded with both an increment of volumetric strain and an increment of 

suction. The rigorous elastic and quasi-rigorous elasto-plastic solution was obtained in 

sections 7.1.1 and section 7.1.2 respectively. 

In the results shown in Figs 7.4 - 7.7 the initial value of suction was equal to 100 kPa 

and the initial value of the hardening parameter p„ was equal to 200kPa. The 

oedometric tests were calculated for two cases: i) a heavily preconsolidated soil with an 

initial mean net stress equal to 5 kPa and ii) a slightly preconsolidated soil with an 

initial mean net stress of 200 kPa. The initial shear stress was zero in all cases. The soil 

was loaded on the oedometric path (i.e. with non-zero En but all other strain 

components equal to zero) until a volumetric strain of 15% was attained. The EPS error 

control was used with the tolerance set to 20%. 

Inspection of Figs 7.4-7.7 indicates that in all cases the extrapolation method matches 

almost perfectly the rigorous solution (with the exception of loading combined with 

wetting with associated flow rule, where some small oscillations can be seen for very 

large strain increments). In the case of the Modified Euler scheme, a noticeable 

departure from the rigorous solution can be observed. The visible cyclical increase and 

decrease in solution accuracy is likely an effect of automatic subincrementation. The 

large discrepancy between the Modified Euler scheme and the rigorous solution is 

deliberate and due to the very large value of the integration tolerance assumed in these 

tests (combined with very large strain increments to integrate). I f the tolerance is set to a 

smaller value, typically 1% or less, the difference between the integrated stresses and 

the rigorous would be difficult to notice. 
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Figure 7.4. Oedometric loading at variable suction for heavily overconsolidated soil with associated flow 

rule: mean net stress versus volumetric strain (left) and shear stress versus mean net stress (right) 
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Figure 7.5. Oedometric loading at variable suction for heavily overconsolidated soil with non-associated 

flow rule: mean net stress versus volumetric strain (left) and shear stress versus mean net stress (right) 
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Figure 7.6. Oedometric loading at variable suction for slightly overconsolidated soil with associated flow 

rule: mean net stress versus volumetric strain (left) and shear stress versus mean net stress (right) 
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Figure 7.7. Oedometric loading at variable suction for slightly overconsolidated soil with non-associated 

flow rule: mean net stress versus volumetric strain (left) and shear stress versus mean net stress (right) 

7.1.6. Wetting under constant volume 

In this test the soil is wetted while its volume is kept constant, so the strain increment is 

given bye = (Ae v , Ae s ) = (0,0) while the non-null suction increment is equal to As. This 

test may be regarded similar to a isotropic compression test combined with wetting, 

where the amount of compression/swelling due to the change in the isotropic stress state 

is such that it exactly counters the collapse/swelling due to a change of suction (so the 

change of specific volume is null). Therefore the rigorous solution for this test 
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corresponds to that for a special case of isotropic compression where suction change is 

applied but the volumetric strain is equal to zero. Thus, the equations previously given 

in Section 7.1.4. for the isotropic compression would apply also to this case. 

The tests undertaken were performed for both associated and non-associated flow rules 

but these gave virtually the same results and are not distinguishable in Fig.7.8. The tests 

were performed for both isotropic (p=70 kPa and q=0) and non-isotropic (p=15 kPa and 

q=30 kPa) initial stress states and involved full wetting from initial suction of 100 kPa. 

The initial hardening parameter p'0 was equal to 50 kPa in both cases. However, as only 

the test with a non-isotropic initial stress state had any shear stress, it is only this test 

which is depicted in Fig. 7.8 (right). It can be observed that an excellent agreement 

exists between the rigorous solution and the results obtained from the integration 

algorithms despite using a large value of the integration tolerance (20%). 
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Figure 7.8. Isochoric wetting starting from both initial isotropic and anisotropic stress states: mean net 

stress versus suction (left) and shear stress versus mean net stress (right). 

7.2. Efficiency of stress integration algorithms 

In this section, the efficiency and accuracy of all stress integration algorithms developed 

in this work is further evaluated. Firstly the evaluation is performed based on random 

strain increments, whereafter results are presented from tests with prescribed strain 

increments, shown in the form of iso-error maps. 
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7.2.1. Evaluation of stress integration algorithms basing on random 
strain increments 

The efficiency of the algorithms has been assessed in terms of the computational time 

and number of evaluations of the elasto-plastic matrix required to integrate 6000 strain 

increments. Each strain increment was randomly generated with increments of strain 

components en, E22, £33 varying over the range [-5%; 5%]„ increments of strain 

components £ 1 2 , £ 1 3 , £23 varying over the range [-3%; 3%] and suction increments 

varying over the range [-lOOkPa; 200kPa]. 

These randomly generated strain increments were imposed starting from three different 

initial triaxial stress states, which were located close to the yield locus corresponding to 

a hardening parameter value po* = 200 kPa. In particular, these three initial triaxial 

stress states are located on the yield ellipse at a constant suction of 100 kPa and 

correspond to three different angles measured from the mean net stress (p) axis about 

the centre of the ellipse. The chosen angles were 0° (initial isotropic stress state), 60° 

(initial stress state on the right side of the constant suction yield ellipse) and 120° (initial 

stress state on the left side of the constant suction yield ellipse). The B B M parameter 

values used in all integrations are the same as in the tests described in section 7.1 and 

are listed in Table 7.1. 

Although three initial stress states have been used in these tests, here the comprehensive 

results for only one initial stress state are shown - i.e. the initial stress state located on 

the mean net stress axis with the initial mean net stress equal to 350 kPa. Only results 

corresponding to this initial stress state are presented because no qualitative difference 

has been observed for the other two states examined. 

Reference quasi-rigorous net stress solutions were calculated for each randomly 

generated strain increment by dividing such increment into one million equal sized 

subincrements and using an explicit forward Euler scheme for the integration. To 

minimise the errors due to machine accuracy, a 30-digit storage was used to calculate 

these solutions. The error for the different integration schemes was quantified against 

these reference solutions. A single measure of the error E a v was obtained by averaging 

the error across all net stress components and all randomly generated strain increments. 

In particular, the average error E a v is calculated as 

1 60001 
E " = ^ ( E ' ? ) + E = + Eg> + E<? + Ej3> + E g ' ) (7.18) 
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E j j ( n ) is the relative error of the ij-th component of the net stress increment 

corresponding to the n-th randomly generated increment of strain and is defined as 

, , abs(Aa-| - A a i i r e f ) 
E ( n , = _ l _ _ u j j = 1,2,3 (7.19) 

Aa k 

IJ abs 

where the Aay is the net stress increment computed by the relevant integration scheme, 

Any r ef is the reference net stress increment calculated according to the quasi-rigorous 

solution given in section 7.1 and Acy abs is the sum of the absolute values of the 

reference net stress changes computed in each of the one million subincrements. 

The quantity Aay a b S is used instead of Aoy r e f in order to reduce the likelihood of a null 

denominator in equation (2). It might happen that, for given strain and suction 

increments, one or more components of the corresponding reference net stress 

increment are equal to zero. However, it is unlikely that net stress changes are equal to 

zero in all subincrements (even if the overall net stress increment given by the sum of 

such sub-steps is equal to zero). This definition of relative error also gives a better 

approximation of the real error. Otherwise, in the case where the change of a net stress 

component is close to zero (over the entire strain and suction increments), the computed 

error would be unrealistically high. 

The efficiency of the Runge-Kutta schemes and the extrapolation method are compared 

in terms of the computational time and number of computations of the elasto-plastic 

tangent stiffness matrix required to integrate all 6000 strain increments. The tolerance 

was never set to more than 30 % as this value seems to be more than a value required 

even for the roughest of engineering simulations. On the other hand, due to limited 

accuracy of the rigorous solution, the tightest tolerance was set so that the error did not 

lie much below 0.001 %. This accuracy, again, is likely to be beyond the accuracy 

needed in most engineering applications. 

It has been found that the accuracy of 30% led to, on average, much more accurate 

solutions when the EPUS error control method was used (compare Fig. 7.15) and thus 

the lowest accuracy obtained with the EPUS method is below 1%. 

A comparison of the computational times for the best performing Runge-Kutta schemes 

and the extrapolation method is given in Fig. 7.9 where the effect of using different 

error control methods (i.e. Error per Step (EPS, as given by Sloan 1987) versus Error 

per Unit Step (EPUS)) can also be appreciated (see sections 6.1.4 and 6.2.3 for 
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description of EPS and EPUS error control). Each of the different curves in Fig. 7.9 has 

been obtained by running the relevant algorithm with a different integration scheme. 

Inspection of Fig. 7.9 indicates that the time of computation with the EPS or E P U S error 

control is similar only for the highest fifth order Runge-Kutta schemes (i.e. Cash-Karp 

and England schemes). For all other schemes, the use of EPS reduced the time required 

for computations over the whole range of average errors. However, even in the case 

when the highest order Runge-Kutta schemes are used, integration algorithms coupled 

with EPUS error control are less robust. 

In general, the extrapolation method appears less efficient than Runge-Kutta schemes 

and, similarly to lower order Runge-Kutta schemes, efficiency improves when EPS 

instead of E P U S control is used. The extrapolation method is also the most robust 

among all tested schemes, and always converges to a solution even when coupled with 

EPUS control. This relatively higher stability stems from the fact that the extrapolation 

method is based on the estimation of a global error over the whole strain increment 

rather than on a local error estimation, as it is the case for all Runge-Kutta schemes with 

automatic subincrementation. The extrapolation routine in the extrapolation method 

only increases the convergence rate and thus the algorithm will finally always converge, 

being at worst similar in efficiency to the constant step forward midpoint method. 
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Figure 7.9. Computation times versus average error for best Runge-Kutta schemes and extrapolation 

method with EPS control (left) and EPUS error control (right). 

Figs 7.10 and 7.11 present a more detailed comparison of the efficiency (in terms of 

computation times and number of evaluations of the tangent elasto-plastic matrix) of 

Runge-Kutta schemes of different orders when using both EPS and EPUS control. 

Figures 7.10 and 7.11 compare the efficiency of the second order Modified Euler 
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scheme, the best performing third order scheme (i.e. Nystrom), the fourth order scheme 

and the best performing fifth order scheme (i.e. Cash-Carp). 

The variations of computation time and number of evaluations of the elasto-plastic 

matrix follow approximately the same trend with average error. This is expected 

because the majority of computation time is spent by the algorithms in evaluating the 

elasto-plastic matrix in each substep. The slight discrepancies between the two trends 

may be explained by the additional computation time associated with plastic drift 

occurring at the end of some sub-steps, which requires mapping the stress state back to 

the yield locus as described in section 6.3.2. 

For the two lower order schemes, there is a clear tendency of the computational time to 

increase when the average error decreases, as expected. However, the two higher order 

schemes show only a slight variation when average errors change by several orders of 

magnitude. Moreover, a counterintuitive decrease of computational time with 

decreasing average error is initially observed. This behaviour (especially evident in Fig. 

7.10 where EPS error control is used) might also be explained by the drift correction at 

the end of some substeps. Any drift correction is added to the estimated error leading to 

larger numbers of rejected sub-steps and hence longer computational times when lenient 

tolerances are used (i.e. at high values of the average error). On the other hand, the drift 

correction becomes largely irrelevant when the integration tolerance is stricter. 

Inspection of Fig. 7.10 indicates that, in the case of EPS error control, the Modified 

Euler is the most efficient scheme for very crude accuracies while higher order schemes 

become more competitive as the average error decreases. Overall, the third order 

Nystrom scheme appears the best for the range of average errors considered. This 

scheme remains competitive even for relatively stringent accuracies and is outperformed 

by the fourth order scheme and fifth order Cash-Karp scheme only when the average 

error decreases to about 0.01%. 

When EPUS error control is used, the fourth order scheme and the fifth order Cash-

Karp scheme are the most efficient choices throughout the whole range of accuracies, as 

shown in Fig. 7.11. The Cash-Karp scheme is also the most efficient scheme when high 

accuracy is required, regardless whether it is used in conjunction with EPS or EPUS 

control. 

Computation times are generally lower when EPS control is used. However such gain of 

efficiency is mainly limited to the lower order schemes. In particular, it is worth noting 

that the second order Modified Euler scheme becomes very inefficient when used in 
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conjunction with E P U S control as shown in Fig. 7.11, which confirms that the EPUS 

error control effectively reduces the method order by one (e.g. Shampine 1994). For the 

fourth order scheme and the fifth order Cash-Karp scheme the efficiency remain largely 

unchanged regardless whether the EPS or EPUS control is used. 

Fig. 7.12 compare efficiency of the two third order schemes (i.e. the Nystrom and 

Bogacki-Shampine schemes) while Fig. 7.13 presents the same comparisons for the four 

fifth order schemes (i.e. the Bogacki-Shampine, England, Cash-Karp and Dormand-

Prince schemes). The results presented in both these figures refer to the case where EPS 

control is used. A similar comparison for the four fifth order schemes used in 

conjunction with E P U S control is shown in Fig. 7.14. 

Figures 7.12, 7.13 and 7.14 indicate that the recently proposed Bogacki-Shampine third 

order and fifth order schemes are noticeably less efficient than the third order Nystrom 

and fifth order Cash-Karp schemes respectively. This is partly because both these 

Bogacki-Shampine schemes do not take advantage of the F S A L (First Same As Last) 

technique, which is one of their distinctive features. The F S A L technique allows saving 

one evaluation of the elasto-plastic stiffness matrix by using the last evaluation within a 

successful sub-step as the first evaluation of the following sub-step. The F S A L 

technique cannot be implemented here because the stress state might change due to drift 

correction, so the last evaluation of the elasto-plastic matrix might no longer be relevant 

to the stress state at the start of the subsequent sub-step. A partial version of the F S A L 

technique has, however, been tested whereby the last evaluation of the elasto-plastic 

stiffness matrix is used again in the subsequent sub-step in case no drift correction was 

performed. This only led to a slightly better performance of the Bogacki-Shampine 

schemes, which still remained less efficient than othe Runge-Kutta options. 
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Figure 7.10. Comparison of efficiency for best Runge-Kutta schemes of order two, three, four and five 

and extrapolation method when coupled with EPS error control. 
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Figure 7.11. Comparison of efficiency for best Runge-Kutta schemes of order two, three, four and five 

and extrapolation method when coupled with EPUS error control. 
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Figure 7.12. Comparison of efficiency for third order Runge-Kutta schemes with EPS control. 
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Figure 7.13. Comparison of efficiency for fifth order Runge-Kutta schemes with EPS error control. 
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Figure 7.14. Comparison of efficiency for fifth order Runge-Kutta schemes with EPUS error control. 
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Fig. 7.15 compares the relationship between average error and integration tolerance for 

the Runge-Kutta schemes when used in conjunction with both EPS and EPUS control. It 

can be noticed that the average error is generally smaller than the set tolerance. Such 

difference is particularly noticeable when EPUS control is used resulting in significantly 

more accurate integration than required. The difference between the two error controls 

is not surprising given that EPUS imposes a stricter constraint on integration than EPS 

as it calculates the estimated error in each sub-step relative to the corresponding stress 

increment (rather than relative to the current stress value as in EPS). This also implies 

that, in the case of EPUS control, the average error is significantly smaller than the 

integration tolerance in the vast majority of subincrements. 

Inspection of Fig. 7.15 indicates that, for all schemes, a linear relationship can 

reasonably be assumed between the logarithm of the average error and the logarithm of 

the integration tolerance. The Modified Euler and Nystrom schemes are not shown for 

higher accuracies as the time of calculations was prohibitive. Note also that the Runge-

Kutta England scheme is the most accurate for a given accuracy. However, this scheme 

also takes longer to compute the stress increments and overall efficiency of this scheme 

is worse than that of Runge-Kutta Cash Karp method (Fig. 7.14). An opposite situation 

is true for the fifth order Bogacki-Shampine scheme. This scheme is the one giving 

highest error for prescribed accuracy, but it is no more efficient than the other schemes 

with calculations at the given error level. 
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Figure 7.15. Average error vs tolerance for Runge-Kutta methods and extrapolation method with EPS 

error control method (top) or EPUS error control method (bottom). 
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The results shown here refer to large strain increments, so it is expected that the sub-

step size is close to optimal. However, previous Finite Element analyses of boundary 

value problems (see e.g. Sloan 1987, Sheng et al. 2003b, Potts and Zdravkovic 1999) 

show that, even when suboptimal sub-step sizes are possibly used in conjunction with 

EPS control, the error remains smaller than the set tolerance and varies proportionally 

with the tolerance value, as expected for strictly dissipative systems (Deuflhard and 

Bornemann 2002). 

It is worth re-stating here that the average errors shown in Figure 7.15 are mean values 

as defined by equation (7.18) across all net stress components and across 6000 

increments of enhanced strain. The integration error for an individual enhanced strain 

increment might be quite different from such average values as shown in the next 

section. 

7.2.2. Evaluation of stress integration algorithms: error maps 

According to the results shown in section 7.2.1, there appears to be little motivation for 

the use of the EPUS control. However, when the error properties are investigated in 

greater depth, some advantages of the EPUS approach become apparent. Comparison of 

error maps for both EPS and EPUS control (see Figs. 7.16 and 7.17) shows that, when 

using EPUS control for the integration of generic strain increments, the error remains 

almost invariably below the set integration tolerance (see Table 7.2). On the other hand, 

when EPS control is used, the error is more likely to exceed the set integration tolerance 

for specific strain increments. This difference between the two types of error control is 

not surprising given that EPUS imposes a stricter constraint on integration than EPS, as 

discussed in the previous section. 

This advantage in terms of accuracy, resulting from the use of EPUS control, comes 

however at the price of longer computation times. It is therefore necessary to make a 

judgement whether an improvement in the error properties of the integration schemes 

justify the use of longer computation times associated to the use of EPUS control 

(bearing in mind that EPUS control might also be less stable particularly in the case of 

low order schemes). 

The error maps shown in Figs 7.16 and 7.17 were created starting from the same initial 

stress state and using the same set of parameter values for the BBM (see Table 7.1.) as 

described in the previous section. The error maps were drawn by integrating strain 

increments over a dense mesh of 101 x 101 points in the volumetric strain shear strain 
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plane, giving a total of 10201 strain increments to integrate. Such a dense mesh allows 

capture of the full behaviour of the algorithm and the fine details of the error variations 

(as shown by the rather uneven contour of iso-error lines). In this case, the rigorous 

reference solution for the calculation of the error was obtained by using the Cash - Karp 

integration scheme with a large number of constant step size subincrements. The error 

maps present the maximum error in any of the stress components. 

The results are summarised in Table 7.2, where the percentage of points with accuracy 

exceeding the integration tolerance is given for all integration schemes used in this 

work. Nystrom and Modified Euler schemes fail to converge when used in conjunction 

with EPUS control, which is why the results from these methods are not included in the 

table. The third-order Bogacki-Shampine method is also not recommended for use in 

conjuction with the EPUS; although in this case it gave quite reasonable results in 

acceptable time, it was still substantially slower than the high order methods. 

The error maps shown in this section are a sample of a wider range of tests, which were 

performed for two suction increments (i.e. no change of suction or reduction of suction 

by 50 kPa) and three integration tolerances (1%, 0.1% and 0.01%). The results 

presented refer to an integration tolerance of 1%, as this order of magnitude is probably 

closest to the accuracy often used in FE applications, and a reduction of suction by 

50kPa, as wetting paths seemed to be most taxing for the stress integration algorithms. 
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Table 7.2. Percentage of points in the mesh with maximum error (in any of the stress components) above 

the set tolearance. 

Method Error Integration accuracy set to: Average 

control 1 % 0.1 % 0.01 % [%] 
type Points with error exceeding tolerance [%] 

Modified Euler EPS 13.4 15.6 16.8 15.3 

Nystrom EPS 8.0 10.0 11.2 9.7 

Bogacki- EPS 24.8 32.8 40.0 32.5 

Shampine 3(2) EPUS 1.56 2.34 1.38 1.76 

Runge - Kutta EPS 16.6 19.1 22.6 19.4 

4(3) EPUS 0.37 0.04 0.03 0.15 

Cash - Karp EPS 9.4 11.2 8.4 9.67 

EPUS 0.05 0.02 0.1 0.06 

England EPS 6.9 7.6 8.5 7.67 

EPUS 0 0 0 0 

Dormand - EPS 3.7 4.8 5.6 4.7 

Prince EPUS 0.02 0 0 0 

Bogacki - EPS 10.1 22.2 18.8 17.0 

Shampine 5(4) EPUS 1.75 0.98 0.30 1.01 

Extrapolation Any 0 0 0 0 
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Figure 7.16. Error maps for EPS error control. Percentage error in stresses integrated with: a) Modified 
Euler 2(1), b) Nystrom 3(2) c) fourth order R-K method 4(3) d) England 5(4) e) Cash-Karp 5(4) f) 
extrapolation method. In all cases the tolerance was set to 1%. Areas with error larger than 1% are 
greyed out. 
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Figure 7.17. Error maps for EPUS error control. Percentage error in stresses integrated with: a) fourth 

order R-K method 4(3), b) England 5(4) c) Cash-Karp 5(4) and d) extrapolation method. In all cases the 

tolerance was set to 1%. Areas with error larger than 1% are greyed out. 

7.3. Comparison between explicit and implicit stress 

integration algorithms 

In this section, some general findings about accuracy and efficiency of explicit and 

implicit stress integration algorithms are given. This work was undertaken in 

cooperation with Matthias Hofmann from Innsbruck University. Al l the implicit 

schemes used for comparison have been created in Innsbruck University. The implicit 

algorithms used were: (i) an algorithm similar to that described by Simo and Hughes 

(1998) and Vaunat et al. (2000), (ii) implicit algorithms further improved by Hofmann 

(see Hofmann 2009). 
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The explicit algorithms used in the comparison were the Modified Euler, Nystrom, 

Cash-Karp and extrapolation, all coupled with Error Per Step (EPS) error control. The 

algorithms adopted a TOL value of 10%. Such a high value was used in an attempt to 

reduce the difference in running time, as the explicit algorithms were several times 

slower than the best implicit scheme created by Hofmann. 

The difference in the calculation time required by the implicit and explicit algorithms 

may be due to a range of factors. One of the reasons may be the size of the matrices 

used. The quick implicit schemes were coded in Fortran and were highly optimised. The 

explicit algorithms were coded in C++ with regard of reusability and used full 6x6 

matrices. The multiplication of 6x6 matrix by another 6x6 matrix takes 216 operations 

(as coded) comparing to 8 in the case of 2x2 matrices and 27 in the case of 3x3 

matrices. This gives 27 or 8 times more operations respectively. It is entirely feasible to 

create the explicit algorithm operating on such matrices that would result in comparable 

increase of integration speed. This difference in speed is similar for implicit algorithms, 

where the general scheme is more than a level of magnitude slower than the algorithms 

created specifically for the BBM. 

The algorithms were compared against each other using three sets of parameters for the 

Barcelona Basic Model. Two sets of parameters were taken from the Alonso et al. 

(1990) paper (corresponding to Compacted Kaolin and Lower Cromer till). The final 

test was performed with the parameters calibrated for the Barcelona sandy silt, tested by 

Barrera (2002). 

The major outcomes of the study were that (i) the general implicit algorithm was less 

accurate and less stable than the explicit algorithm, meaning that it failed to converge 

for larger strain increments (see Fig. 7.18), (ii) the accuracy of the advanced implicit 

algorithms is comparable to the accuracy of explicit algorithms with set tolerance of 

10%, though the explicit algorithms were more accurate for large strain increments (see 

Figs 7.19 and 7.20), (iii) the advanced implicit algorithms were stable and consistently 

around ten times faster than the explicit algorithms. 

These outcomes are notable as the implicit algorithms are often believed to be more 

robust than the explicit ones. As the accuracy of the explicit algorithm was set to 10% 

which is a high value, it also shows that the implicit schemes are not that accurate. On 

the other hand, the explicit algorithm can be as accurate as desired due to choice of the 

TOL value. This can be regarded as an advantage over implicit schemes. However, the 

absolute error in stresses integrated with the implicit algorithms is likely to be 
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acceptable in most engineering analyses, especially given that large strain increments 

are fairly rare in real FE simulations (as global convergence often requires small 

substeps in the global Newton-Raphson iterations). 

The advanced implicit algorithms were consistently faster than the explicit ones (this 

may be due to differences in coding, as mentioned above). However, the speed of the 

general implicit algorithm was comparable to the explicit algorithms. This general 

algorithm was also unstable when the strain increment was too large. The improved 

implicit algorithms were stable even for relatively large strain increments. 

Finally, the implicit algorithms offered smooth error maps compared with the explicit 

algorithms (compare Figs 7.19 and 7.20). This means that one can be fairly sure of high 

accuracy when the strain increment is small enough. For explicit schemes, sudden 

changes of error may appear when more than one substep is required to satisfy the error 

criterion. Sometimes the local error control may be misled and the stress is integrated 

with one substep when more substeps are in fact needed. This is less true for the 

extrapolation scheme, where the global error control is used and this algorithm offered a 

more consistent error distribution. Further details of these comparisons can be found in 

Solowski and Hofmann (2009). 

Figure 7.18. Shaded areas of the map indicate non - convergence of the general implicit algorithm. Tests 

were done for BBM with parameters for Lower Cromer till (Alonso 1990). The initial stress state was 

p=500 kPa q=0, initial suction 800 kPa and suction increment -300 kPa, constant for each strain 

increment (volumetric and shear strain increment were as indicated on the axes). Data obtained by 

Solowski and Hofmann. 
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Figure 7.19. Percentage error in mean net stress integrated with explicit Modified Euler scheme (left) and 

advanced implicit algorithm (right). BBM parameters, strain increment, suction increment and initial 

stress state same as in Fig. 7.18. Data obtained by Solowski and Hofmann. 
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Figure 7.20. Percentage error in shear stress integrated with explicit Modified Euler scheme (left) and 

advanced implicit algorithm (right). BBM parameters, strain increment, suction increment and initial 

stress state same as in Fig. 7.18. The large percentage error in the case of implicit algorithm (left) is 

misleading, as the absolute value of shear stress was low for increments with small shear strain increment. 

Data obtained by Solowski and Hofmann. 

159 

I 



7.4. Conclusions 
The validation of the explicit algorithms with substepping and error control developed 

in this work, together with an evaluation of their efficiency and accuracy, has been 

presented in this chapter. Based on the performed tests, it appears that the main 

advantages of stress integration with the proposed explicit schemes are accuracy and 

robustness. The explicit algorithms are also not difficult to code. I f an integration error 

smaller than the set tolerance must be ensured for all strain increments, then it is 

advisable to use either Runge-Kutta schemes in combination with the Error Per Unit 

Step (EPUS) control or the extrapolation method regardless of the type of error control 

used. Unfortunately, the Runge-Kutta schemes with EPUS error control are 

significantly slower and not so robust compared with Runge-Kutta coupled with the 

usual Error Per Step (EPS) error control. To eliminate convergence problems associated 

with the EPUS error control, the extrapolation Method can be used instead. This 

algorithm offers superior robustness and ensures accuracy, but is slower than Runge-

Kutta schemes. 

The recommended algorithm for use with the EPS error control is the third order 

Runge-Kutta Nystrom scheme. This scheme is nearly as efficient as the Modified Euler 

scheme for low accuracies and competitive with high order Runge-Kutta schemes for 

high accuracies. When the EPUS error control method is used, any high order Runge-

Kutta scheme is recommended. In the tests, the f if th order Runge-Kutta Cash-Karp was 

most efficient, but Rugne-Kutta England or Runge-Kutta Dormand-Prince schemes 

were almost equally as good. 

Finally, the scheme that is most robust and has best error control among the algorithms 

tested is the extrapolation scheme. Unfortunately, stress integration with extrapolation is 

also slower then the stress integration performed with Runge-Kutta schemes. 

The implicit schemes require more sophisticated coding and calculation of second order 

derivatives, which may be inconvenient for more advanced constitutive models. Fine 

tuning of the implicit algorithm to the given constitutive model is also needed; 

otherwise the implicit algorithm may neither be very robust nor very accurate. The 

advanced implicit schemes tend to work well and offer acceptable accuracy for most 

practical cases. 

Due to integration errors, it is crucial that the implicit schemes are used with a 

consistent elasto-plastic tangent matrix in the global Newton-Raphson iteration. The 
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stability of the global solution with implicit stress integration and the continuum tangent 

elasto-plastic matrix is not sufficient. However, i f the consistent tangent matrix is used, 

the solution asymptotically converges at a quadratic rate. This is often cited as a big 

advantage of implicit integration. In the explicit integration, no consistent tangent 

matrix is used. The tangent elasto-plastic matrix is used instead. As the accuracy of the 

explicit integration is much higher, this is usually not a problem; still more research in 

this area is required. 
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8. Conclusions, implications and 

recommendations 
Research on partially saturated soil behaviour has progressed quickly recently, however, 

the field remains relatively immature. The work reported in this thesis has dealt with the 

constitutive modelling of unsaturated soil and the stress integration of such constitutive 

models. 

In chapter three the theoretical derivation of water content and average mean stress in 

the menisci area of soil was given. Findings suggest that the average mean stress in the 

menisci area is essentially independent of the value of suction. That chapter also 

revealed that the menisci contribution to the mean stress can be very significant when 

the soil is fine grained. This contribution is however unlikely to be seen in reality, as the 

small particles are not arranged as assumed in the derivation (i.e. under simple cubic 

packing) but are typically grouped into larger clusters referred to as aggregates. Those 

aggregates are saturated and one can only speak about menisci formed between 

aggregates. This leads to a menisci contribution to the average stress in the range of tens 

of kPa. Such an amount can still be significant, especially since it does not depend a 

great deal on suction. It is, however, unclear whether the number of menisci connecting 

the aggregates is the same at low suction level. It is evident that soil must be unsaturated 

before the menisci are created, thus suction must be equal at least to the air entry value 

(or air expulsion value during wetting). It is thus likely that until suction attains a value 

in the range of tens of kPa, the aggregates would be difficult to distinguish (or the soil 

would be fully saturated) in a fine grained soil. 

Chapter five introduces a multi-cell enhancement and its evolution (a random multi-

cell enhancement) allowing construction of a new form of constitutive model. This 

novel concept in unsaturated soils does not require the introduction of any additional 

material constants to the constitutive models. It also seems that a multi-cell 

enhancement can be fairly simple to implement in a whole class of models for 

unsaturated soils that deal with suction and do not include any dependency on water 

retention behaviour. The use of the multi-cell enhancement provides several advantages. 

As illustrated in the example of the Barcelona Basic Model, the random multi-cell 

approach allows for a smoother transition between elastic and elasto-plastic states and 

the modelling of the increase of plastic deformation during cycles of wetting and 
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drying. The smoother transition between elastic and elasto-plastic states does not only 

allow a more realistic prediction of unsaturated soil behaviour, but also may improve 

stability of large scale Finite Element analyses. Additionally, the increase of 

deformations during cyclic wetting and drying (as given by the random multi-cell 

approach) is a well documented phenomenon and the ability to approximate such 

behaviour is an asset for any constitutive model for unsaturated soil. Motivated by 

considerations of the soil fabric, the multi-cell enhancement allows an engineer to get 

closer to address the microscale influence on the macroscopic behaviour of unsaturated 

soils. Such an approach may lead to improvements in soil modelling without any 

necessary increase in the number of material constants of the model. This is valuable, as 

additional material constants generally imply that more laboratory tests are required. 

The latter typically leads to an increase of expenses associated not only with the cost of 

additional laboratory tests but also with the time spent waiting for the results of those 

tests. Geotechnical laboratory data are often not so easy to interpret even by experienced 

researchers (compare d'Onza et al. 2008) and even relatively simple constitutive models 

are not straightforward to calibrate. Calibration of a complex model with large number 

of material parameters is usually even more difficult, especially when unique 

(uncoupled) physical phenomena cannot be identified (and measured) for each material 

constant. 

Stress integration is one of the key issues when introducing an elasto-plastic constitutive 

model into Finite Element codes. This was addressed in chapter six which provides a 

detailed review of the explicit stress integration method. A great deal of attention is 

given to the accuracy and stability of the calculations. Thus an extrapolation method, a 

method not yet used for stress integration, was described alongside with a more accurate 

EPUS error control method. The stress integration methods were then compared in 

chapter seven. It appears that: (i) the EPUS error control properties are better than the 

traditional error control method, as given by Sloan (1987) but the Sloan approach is 

quicker and more stable, (ii) the global error control, as provided by the extrapolation 

method, essentially guarantees an error below a set tolerance, (iii) the extrapolation 

method offers superior stability compared to all other methods, but is slower, (iv) the 

traditional Runge-Kutta Modified Euler scheme is best when low accuracy is required 

and i f is used with an error control method as proposed by Sloan (1987), (v) it may be 

advisable to use the Runge-Kutta Nystrom method instead of the Runge-Kutta Modified 

Euler method as it is nearly as efficient at lower accuracies and significantly faster when 
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a higher accuracy is required, (vi) high order Runge-Kutta methods have no advantage 

over the Nystrom and Modified Euler schemes unless a very high accuracy is required 

and (vii) i f use of the EPUS error control is desired, then it should be coupled with a 

high order Runge-Kutta method due to both stability and efficiency reasons. 

As the constitutive models for unsaturated soils are currently not implemented in the 

majority of commercial Finite Element codes, it is likely that some test cases for the 

evaluation of the algorithms may be needed. The benchmark tests used for evaluation of 

the stress integration algorithms for the Barcelona Basic Model, given in chapter seven, 

may allow engineers to check the accuracy and quality of stress integration algorithms 

in future commercial codes. 

Partially saturated soil mechanics is a dynamic area of research. Thus it is not surprising 

that the understanding of unsaturated soil is still evolving. Yet, it appears that the 

microstructural behaviour of unsaturated soil is still not thoroughly understood. For 

example, it is unclear whether the soil dried from a remoulded state and compacted soils 

behave, in principle, similarly and it is uncertain just what are the requirements for a 

constitutive model to correctly model both kinds of soils. 

Another issue that would benefit from further investigation is the shear strength of 

unsaturated soils. It is not so clear whether the conventional models are able to describe 

the shear strength properly. Also the shape of the yield locus and anisotropy present in 

unsaturated soils need to be better understood. 

Because of those gaps in our understanding, creation of a constitutive model for 

unsaturated soils that would cover all the aspects of soil behaviour and provide valuable 

insights into the evolution of the soil microstructure appears to be possible only at some 

distant time in the future. Nevertheless, research in this direction and creation of 

constitutive models that not only describe macroscopic behaviour but also provide 

insight into microstructural changes of soil fabric is, in the author's opinion, highly 

desirable. Unsaturated soil mechanics is slow to be adopted by practicing engineers. 

This is partially because of a lack of implementation of a suitable constitutive model 

into the commercial Finite Element codes. 

The comparisons between the explicit integration schemes suggest that some 

improvements in the area are possible - though it would be of course desirable to 

provide such a comparison not only on the level of single material (Gauss) point, but 

also on a structural level through a wide range Finite Element analyses. Only then could 
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the advantages of a given stress integration algorithm be truly assessed. Such 

comparisons could also answer the question about how big an influence the error in the 

stress integration algorithm has on results of the engineering analyses. It would be 

particularly interesting to see whether the high accuracy and stability of the 

extrapolation method leads to faster convergence of the global Finite Element solutions. 
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Appendix: Runge-Kutta pairs coefficients 
This appendix provides a list of tables (for each of the eight Runge-Kutta schemes used 

in this work) with the relevant values of the coefficients a ( l j ), b ( l ), c ( l ) and d ( l ) as defined 

by equations (6.7) and (6.8). The number of rows in each table corresponds to the 

number of stages NoS of the method. The description (a,b) denotes a scheme of order a 

with an embedded error estimation scheme of order b. 

Table A. 1. Modified Euler-Runge-Kutta (2,1) (Sloan 1987) 

Stage number 

(i) 
c ( i ) a ( , , ) b ( i ) d ( i ) 

1 0 - 1 
2 

1 

2 1 1 
1 
2 

0 

Table A.2. Midpoint-Runge-Kutta (2,1) (Sloan 1987) 

Stage number 

(i) 
c ( i ) a ( i l ) b ( , ) d ( i ) 

1 0 - 0 1 

2 0.5 0.5 1 0 

Table A.3. Nystrom-Runge-Kutta (3,2) (Lee and Schiesser 2003) 

Stage 

number (i) 
c ( i ) a ( , , ) a ( i 2 ) b ( i ) d ( i ) 

1 0 - -
2 
8 

1 
4 

2 2 3 3 
z 3 3 8 4 

3 
2 
3 

0 
2 
3 

3 
8 

0 
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Table A.4 Bogacki - Shampine Parameters for Embedded Runge- Kutta method (3,2) - four stages FSAL 

(first same as last) procedure (Bogacki and Shampine 1996) 

i b ( , ) d<'> 

2 7 
1 0 _ - _ — 1 0 

9 24 

1 1 1 1 
z 2 2 3 4 

3 
0 

3 4 1 
3 0 — _ — — 

4 4 9 3 

2 1 4 1 
4 1 — 0 1 

9 3 9 
0 

8 

j = 1 2 3 - -

Table A.5. Parameters for Runge-Kutta method (4,3) (Lee and Schiesser 2003) Error estimate coefficients 

given instead of the third order solution. 

i b ( , ) e( l ) 

1 0 - - - -
1 

10 
1 

15 

2 
1 
3 

1 
3 

- - - 0 0 

•5 
1 1 1 3 3 

J 
3 6 6 10 10 

4 
1 1 

0 
3 4 4 

2 8 
0 

8 10 15 

5 1 
1 

0 
3 

2 
2 1 

1 
2 

0 
2 10 30 

j = 1 2 3 4 - -
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Table A.6. Parameters for England-Runge-Kutta method (5,4) (Sloan 1987, Lee and Schiesser 2003) 

Error estimate coefficients given instead of the fourth order solution. 

i c<'> aiu> b ( , ) c ( , ) 

1 0 - - - - -
14 

3 3 6 

42 

336 

2 
1 

2 

1 

2 
- - - - 0 0 

3 
1 1 1 

0 
224 

2 4 4 
0 

336 

4 1 0 -1 2 - -
3 5 

3 3 6 

21 

336 

c 2 7 10 
0 

1 162 162 
J 

3 2 7 2 7 
0 

2 7 3 3 6 3 3 6 

c. 2 2 8 125 5 4 6 54 378 125 125 

0 10 6 2 5 6 2 5 6 2 5 6 2 5 6 2 5 3 3 6 3 3 6 

j = 1 2 3 4 5 - -

Table A.7. Parameters for Cash-Karp Runge-Kutta method (5,4) (Press et al. 2002, Lee and Schiesser 

2003) 

i c<" a™ 

1 0 
3 7 2 8 2 5 

1 0 
378 2 7 6 4 8 

2 
2 

10 

2 

10 
- - - - 0 0 

3 3 9 2 5 0 18575 
J 

10 4 0 4 0 621 4 8 3 8 4 

A 
6 3 9 12 125 13525 

10 10 10 10 594 5 5 2 9 6 

c 1 
11 5 70 35 

0 
2 7 7 

J 1 
54 2 2 7 2 7 

0 
14336 

6 7/8 
1631 175 575 4 4 2 7 5 253 512 1 

6 7/8 
5 5 2 9 6 512 13824 110592 4 0 9 6 1771 4 

j = 1 2 3 4 5 
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Table A.8. Parameters for Dormand-Prince (5,4). First Same as Last (FSAL) procedure. (Dormand 1996) 

i c<'> 

1 0 - - - - - -
35 

384 
5179 
57600 

2 
2 
10 

2 
10 

- - - - - 0 0 

3 
3 
10 

3 
40 

9 
40 

- - - -
500 
1113 

7571 
16695 

4 
8 
10 

44 
45 

56 
15 

32 
9 

- - -
125 
192 

393 
640 

5 
8 
9 

19372 
6561 

25360 
2178 

64448 
6561 

212 
729 

- -
2187 
6784 

92097 
339200 

6 1 
9017 
3168 

355 
33 

46732 
5247 

49 
176 

5103 
18656 

-
11 
84 

187 
2100 

7 1 
35 
384 

0 
500 
1113 

125 
192 

2178 
6784 

11 
84 

0 
1 

40 

j = 1 2 3 4 5 6 

180 



Table A.9. Parameters for Bogacki - Shampine Runge - Kutta method (5,4) (Bogacki and Shampine 

1996) 

i c w a(u) 

1 0 - - - - - - -
578 

8064 
2479 

34992 

2 
1 
6 

1 
6 

- - - - - - 0 0 

3 
2 
9 

2 
27 

4 
27 

- - - - -
4440339 
15491840 

123 
416 

4 
3 
7 

183 
1372 

162 
343 

1053 
1372 

- - - -
24353 
124800 

612941 

3411720 

5 
2 
3 

68 4 
11 

42 
143 

1960 
- - -

387 43 
5 

2 
3 297 

4 
11 

42 
143 3861 

- - -
44800 1440 

6 
3 
4 

597 81 63099 58653 4617 
- -

2152 2272 
6 

3 
4 22528 352 585728 366080 20480 

- -
5985 6561 

7 1 174197 30942 8152137 666106 29421 482048 
-

7267 79937 7 1 
959244 79937 19744439 1039181 29068 414219 

-
94080 1113912 

8 1 587 0 4440339 24353 387 2152 7267 
0 3293 8 1 

8064 
0 

15491840 124800 44800 5985 94080 
0 

556956 

j= 1 2 3 4 5 6 7 

Note that this Bogacki-Shampine pair has an additional error estimate, different to the 

one given in the table above. The estimate has the coefficients f — , 0, 
1280 

6561 343 243 1 . . . 
, , , , 01. This error estimate does not require finishing the 

632320 20800 12800 95 

last stage of the procedure; in case this error estimate is too large, calculations of the last 

stage of the procedure should be skipped and the substep should be rejected. 

h 7 
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