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Measuring the distribution of stars and dark matter in

galaxy-scale strong gravitational lenses: lessons from an

automated approach

Amy Etherington

Abstract: In this thesis, I constrain the distributions of mass and light of the largest sample of

galaxy-scale strong lens systems modelled using an automated approach to this date. New surveys

will soon observe hundreds of thousands of galaxy lenses requiring reliable automated methods to be

exploited. With this in mind, I present not only the successful model fit results, but also the reasons

why some lenses failed initially and the strategies we adopted to ultimately fit all the galaxies with

minimal intervention. I discuss what we can learn from this process that could benefit future large

scale studies.

I propose and evaluate a likelihood cap method to avoid the underestimation of errors due to noisy

likelihood evaluations that appear in pixel-based source reconstruction methods. I test the method on

a large sample of mock galaxies which significantly improves the coverage probabilities on all of the

model parameters. With this approach to error estimation I find that the Einstein radius is typically

constrained to ∼ 1% and the errors on the model parameters including density profile slope do not

degrade with redshift. This will be beneficial for studies of galaxy evolution.

I measure an average mass density slope of ⟨𝛾⟩ = 2.075+0.023
−0.024 with little intrinsic scatter 𝜎𝛾 =

0.172+0.022
−0.032 for the (typically) early-type galaxies acting as lenses in our sample. This is consistent

with those measured using an independent lensing and dynamics approach. More generally, this

result supports the empirical coincidence that the total mass profiles of early-type galaxies can be

well described by a single power law – known as the ‘bulge-halo conspiracy’. However, I reveal a 3𝜎

disagreement between our measurements of the coefficient describing the relationship between slope

and surface mass density 𝜕⟨𝛾⟩
𝜕Σtot

= −0.432+0.175
-0.191 and that inferred for the slopes measured using the

independent method. This can potentially be explained by finer structure in the mass density profile.

Finally, I demonstrate that the ‘external shear’ parameters commonly adopted in strong lens models

can not be assumed to represent perturbations only external to the mass model. Instead, they highlight

the inability of the power law to fit the distribution of mass in these types of galaxies. Future strong

1



Abstract 2

lensing studies will require more complex mass models to appropriately describe the lens galaxy, and

avoid biases on high precision measurements of galaxy masses, cosmological parameters 𝐻0, and dark

matter substructures.
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Chapter 1

Introduction

1.1 General Relativity: A foundation for understanding the Universe

Gravity is the fundamental force that dominates at large scales of the Universe. Our current description

of gravity is a geometric one; introduced by Albert Einstein in 1915 (Einstein, 1915), the General

Theory of Relativity has stood the test of time remaining the simplest theory consistent with experi-

mental data (Abbott et al., 2016, 2021; Castelvecchi, 2022). Before General Relativity (GR) questions

about the geometry of space and the role of gravity on cosmological scales were studied separately.

We give a brief overview of Einstein’s realisation that they are fundamentally linked, providing the

framework that the majority of astrophysicists use to study the Universe today.

1.1.1 The equivalence principle

Historically deemed the starting point of a series of discoveries that culminated in Einstein’s formu-

lation of GR is his realisation of the importance of the equivalence of the gravitational and inertial

mass (Einstein, 1907). Although, knowledge of the equivalence already existed, for example Galileo

experimentally expressed that the acceleration of some mass due to gravity does not depend on the

amount of mass being accelerated, it was Einstein who formally introduced the concept as a physical

principle. The equivalence principle (EP) arose from one of Einstein’s famous thought experiments

(Einstein, 1920).

He considered an observer in a spacious chest freely falling in a large portion of empty space. Since

objects fall with the same acceleration, the observer would consider themself and any released objects

weightless, since they would not appear to fall. The observer would thus be justified in interpreting

their state as at rest, with gravity ceasing to exist. Continuing the experiment, Einstein considered how

1
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the observer would perceive themself if the chest was then pulled upwards in space with a uniform

acceleration. The observer would now find themselves standing on the floor, which transmits the

acceleration to them through its reaction, and other objects would now fall to the floor with that

same acceleration. Thus, Einstein concludes the observer’s perceptions are consistent with being in a

uniform gravitational field. The EP states that accelerating frames of reference are just frames with

gravity, and can be treated in exactly the same way as inertial frames - those without gravity.

The EP in its strong form1 extends the equivalence to all laws of nature in freely falling systems of

local inertia, to which Einstein applied the physics of his special theory of relativity. Armed with

the equivalence principle Einstein set out to formulate gravity such that all observers could agree on

the definition, regardless of their motion relative to each other. The consequence of which was his

proposal that the gravitational field is curved space-time.

1.1.2 Mathematical framework

In his theory of special relativity (SR) Einstein unified space and time by treating time and space

coordinates equally in a single vector (Einstein, 1907). This four-dimensional manifold, known as

Minkowski space, has coordinates 𝑥𝜇 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) = (𝑐𝑡, 𝑥, 𝑦, 𝑧), where 𝑐𝑡 is the time coordinate

with 𝑐 equal to the speed of light, and 𝑥, 𝑦, and 𝑧 are spatial coordinates. The interval between two

events (world points) in Minkowski space, which require all four coordinates to be defined, is given

by the spacetime interval

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 (1.1.1)

= 𝜂𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 , (1.1.2)

which is analogous to a distance in three-dimensional space. The Einstein summation convention2

has been used to arrive at the final form for 𝑑𝑠2, and we have defined the Minkowski metric

𝜂𝜇𝜈 =

©­­­­­­­«

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

ª®®®®®®®¬
. (1.1.3)

The metric describes the geometry of the manifold which, given it is a constant in Minkowski space, is

described as being flat. The negative value of the metric component 𝜂00 = −1 is the only differentiating

1The weak equivalence principle, also known as the Galilean equivalence principle, is restricted to the physics of
mechanics and is essentially a restatement of the fact that the inertial mass equals the gravitational mass.

2In the summation convention identical upper and lower indices are implicitly summed over all their possible values.
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factor from the familiar Euclidean geometry that permeates our every day experience. Transitioning

from this pseudo-Euclidean flat spacetime to one that could be curved required Einstein to formulate

the concepts of GR in a non-Euclidean space, for which Reimann provided the appropriate geometrical

framework (Riemann, 1854).

Reimannian geometry is essentially an extension of Gauss’s theory of curved surfaces to higher

dimensional curved spaces. With this geometrical prescription points in space can be labelled without

reference to objects outside of that space using generalised Gaussian coordinates. In GR a given set

of coordinates of the spacetime manifold are related to the invariant interval 𝑑𝑠2 through

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 , (1.1.4)

where the metric 𝑔𝜇𝜈 ≠ 𝜂𝜇𝜈 is no longer constant as in SR. Although locally the metric does describe

a Minkowskian spacetime, globally it is curved. The metric encodes the information necessary to

determine this curvature of spacetime, the nonlinear second derivative of the metric which measures

the deviations from Euclidean geometry.

To describe how a particle travels in this curved spacetime, we replace the concept of a straight line

with the geodesic which describes the shortest and straightest possible path a particle can take. From

equation 1.1.4 we can define the length of a curve between two points

𝑠 =

∫
𝑑𝑠 =

∫ √︁
𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 =

∫ √︂
𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
𝑑𝜆 =

∫
𝐿𝑑𝜆, (1.1.5)

where we have both introduced the affine parameter 𝜆, and defined the ‘Lagrangian’

𝐿 = 𝐿 (𝑥, ¤𝑥) =
√︂
𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
, (1.1.6)

where ¤𝑥 = 𝑑𝑥/𝑑𝜆. To determine the shortest possible path this curve can take in curved space, we

impose the extremization condition for variation of the path with end points fixed

𝛿𝑠 = 𝛿

∫
𝐿 (𝑥, ¤𝑥)𝑑𝜆 = 0. (1.1.7)

By calculus of variation this can be translated into the Euler-Lagrange partial differential equation

𝑑

𝑑𝜆

𝜕𝐿

𝜕 ¤𝑥𝜌 − 𝜕𝐿

𝜕𝑥𝜌
= 0. (1.1.8)

We will now pass the Lagrangian (equation 1.1.6) through this equation to determine the shortest path

in the general spacetime metric 𝑔𝜇𝜈 . We begin by calculating the partial differential in the first term
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using the chain rule

𝜕𝐿

𝜕 ¤𝑥𝜌 =
1

2
√︁
𝑔𝜇𝜈 ¤𝑥𝜇 ¤𝑥𝜈

𝜕

𝜕 ¤𝑥𝜌

(
𝑔𝜇𝜈 ¤𝑥𝜇 ¤𝑥𝜈

)
(1.1.9)

=
1

2𝐿
(𝑔𝜇𝜈𝛿𝜇𝜌 ¤𝑥𝜈 + 𝑔𝜇𝜈𝛿

𝜈
𝜌
¤𝑥𝜇) = 1

2𝐿
(𝑔𝜌𝜈 ¤𝑥𝜈 + 𝑔𝜌𝜇 ¤𝑥𝜇) (1.1.10)

=
1
𝐿
𝑔𝜌𝜇 ¤𝑥𝜇, (1.1.11)

where in the last step we used the symmetry of the metric. If we now use the definition of 𝑠 in

equation 1.1.5 to note that 𝑑𝑠
𝑑𝜆

= 𝐿 then we can obtain

𝜕𝐿

𝜕 ¤𝑥𝜌 =
1
𝐿
𝑔𝜌𝜇

𝑑𝑥𝜇

𝑑𝑠

𝑑𝑠

𝑑𝜆
=

1
𝐿
𝑔𝜌𝜇

𝑑𝑥𝜇

𝑑𝑠
𝐿 (1.1.12)

=𝑔𝜌𝜇
𝑑𝑥𝜇

𝑑𝑠
. (1.1.13)

Evaluating the second term in equation 1.1.8 we have

𝜕𝐿

𝜕𝑥𝜌
=

1
2𝐿

𝜕𝑔𝜇𝜈

𝜕𝑥𝜌
¤𝑥𝜇 ¤𝑥𝜈 =

1
2𝐿

𝜕𝑔𝜇𝜈

𝜕𝑥𝜌
𝑑𝑥𝜇

𝑑𝑠

𝑑𝑠

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
(1.1.14)

=
1
2
𝜕𝑔𝜇𝜈

𝜕𝑥𝜌
𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝜈

𝑑𝜆
. (1.1.15)

Substituting the terms derived in equations 1.1.11 and 1.1.15 into the Euler-Lagrange equation (equa-

tion 1.1.8) and multiplying both sides by 𝑑𝜆/𝑑𝑠 then

𝑑

𝑑𝜆

(
𝑔𝜌𝜇

𝑑𝑥𝜇

𝑑𝑠

)
− 1

2
𝜕𝑔𝜇𝜈

𝜕𝑥𝜌
𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝜈

𝑑𝜆
=0 (1.1.16)

𝑑

𝑑𝑠

(
𝑔𝜌𝜇

𝑑𝑥𝜇

𝑑𝑠

)
− 1

2
𝜕𝜌𝑔𝜇𝜈

𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝜈

𝑑𝑠
=0. (1.1.17)

We have arrived at the geodesic equation. This can equivalently be written in the following form

𝑑2𝑥𝜆

𝑑𝑠2 + Γ𝜆
𝜇𝜈

𝑑𝑥𝜇

𝑑𝑠

𝑑𝑥𝜈

𝑑𝑠
= 0, with Γ𝜆

𝜇𝜈 =
1
2
𝑔𝜆𝜌 (𝑔𝜇𝜌,𝜈 + 𝑔𝜈𝜌,𝜇 − 𝑔𝜇𝜈,𝜌), (1.1.18)

where 𝑔𝜇𝜈,𝜌 is the first derivative of the metric with respect to 𝜌. To determine the form of the

metric function, hence the geometry of spacetime itself, one must solve the equations underpinning

the general theory of relativity; Einstein’s field equations

𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈𝑅 =

8𝜋𝐺
𝑐4 𝑇𝜇𝜈 + Λ𝑔𝜇𝜈 , (1.1.19)

where the Ricci tensor 𝑅𝜇𝜈 and Ricci scalar 𝑅 are functions of the metric 𝑔𝜇𝜈 , 𝑇𝜇𝜈 is the energy

momentum tensor, and Λ is a constant of integration. Thus, the equations describe how the energy

momentum of a field of matter (encompassed in 𝑇𝜇𝜈) relates to the curvature of spacetime. Although
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often difficult to solve3, through determining 𝑔𝜇𝜈 , Einstein’s field equations predict a number of

interesting and useful physical consequences.

1.1.3 The deflection of light and other consequences

From consideration of the EP alone, Einstein had deduced that light rays will be deflected by massive

objects. With completion of the mathematical formulation of GR, he was now able to describe the

trajectory of a photon in the presence of matter that distorts spacetime. We will now derive the angular

deflection of light by a point mass, demonstrating how Einstein was able to predict how much the

light of a star grazing past the sun would be deflected. The geometry of spacetime induced by a static,

spherically symmetric mass 𝑀 is described by the Schwarzschild metric

𝑑𝑠2 = −
(
1 − 2𝐺𝑀

𝑟𝑐2

)
𝑐2𝑑𝑡2 +

(
1 − 2𝐺𝑀

𝑟𝑐2

)−1
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃𝑑𝜙2, (1.1.20)

which is the vacuum solution (𝑇𝜇𝜈 = 0) to Einstein’s field equations (equation 1.1.19) under these

assumptions. Light travels along null geodesics in spacetime whose tangent vector must be equal to

zero,

𝑔𝜇𝜈
𝑑𝑥𝜇

𝑑𝜆

𝑑𝑥𝜈

𝑑𝜆
= 0, (1.1.21)

where 𝜆 is an affine parameter. Considering the trajectory of a photon in the equatorial plane (𝜃 = 𝜋/2)

of the Schwarzschild metric, then we have

−
(
1 − 2𝑀

𝑟

) (
𝑑𝑡

𝑑𝜆

)2 (
1 − 2𝑀

𝑟

)−1 (
𝑑𝑟

𝑑𝜆

)2
+ 𝑟2

(
𝑑𝜙

𝑑𝜆

)2
= 0, (1.1.22)

where we have now adopted gemoetrised units 𝑐 = 𝐺 = 1 units. Due to the independence of the metric

(equation 1.1.20) in both 𝑡 and 𝜙, there exists two killing vectors 𝑘 𝑡 = (1, 0, 0, 0) and 𝑘 𝜙 = (0, 0, 0, 1)

that leave the metric unchanged under infinitesimal coordinate changes. Hence, we can define the two

constants

𝑒 =𝑘𝑡
𝑑𝑡

𝑑𝜆
= −

(
1 − 2𝑀

𝑟

)
𝑑𝑡

𝑑𝜆
(1.1.23)

𝑙 =𝑘𝜙
𝑑𝜙

𝑑𝜆
= 𝑟2 𝑑𝜙

𝑑𝜆
, (1.1.24)

which satisfy the geodesic equation (equation 1.1.18). Substituting these into equation 1.1.22 and

rearranging we find
𝑒2

𝑙2
=

1
𝑙2

(
𝑑𝑟

𝑑𝜆

)2
+ 1
𝑟2

(
1 − 2𝑀

𝑟

)
, (1.1.25)

3Somewhat unsurprisingly for a set of no less than ten non-linear equations which must be solved for simultaneously
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Figure 1.1: The trajectory of a photon in the curved spacetime induced by a point mass. The photon
enters right with an impact parameter 𝑏, approaching the mass until the turning point 𝑟1 where it
exits to infinity. The deflection angle 𝛿𝜙def from the photon’s original parallel trajectory is therefore
𝛿𝜙def − 𝜋, where Δ𝜙 is total angle swept out by the photon’s orbit. Figure reproduced from Hartle
(2003).

which takes the form of an energy integral for radial motion.

We now define the constant

𝑏 =

���� 𝑙𝑒 ���� = 𝑟2

−
(
1 − 2𝑀

𝑟

) 𝑑𝜙
𝑑𝑡

, (1.1.26)

which represents the impact parameter since far away from the source of curvature (𝑟 >> 2𝑀) the

light ray will travel in a straight line with a perpendicular distance 𝑏 from the source (see Figure 1.1).

Solving equation 1.1.24 for 𝑑𝜙

𝑑𝜆
and equation 1.1.25 for 𝑑𝑟

𝑑𝜆
and dividing the two we arrive at

𝑑𝜙

𝑑𝑟
= ± 1

𝑟2

[
1
𝑏2 − 1

𝑟2

(
1 − 2𝑀

𝑟

)]−1/2
, (1.1.27)

where we have simplified using 𝑏2 = 𝑙2/𝑒2. We note that the point of closest approach 𝑟1 is the radius

where

𝑏2 =
𝑟2

1(
1 − 2𝑀

𝑟1

) . (1.1.28)

Noting that the magnitude of the total angle Δ𝜙 swept out by the light ray that enters from and emerges

to infinity is just twice the angle swept out from the turning point 𝑟 = 𝑟1 to infinity then we can write

Δ𝜙 = 2
∫ ∞

𝑟1

[
1
𝑏2 − 1

𝑟2

(
1 − 2𝑀

𝑟

)]−1/2
𝑑𝑟. (1.1.29)

We can now use the first order approach

Δ𝜙 ≈ Δ𝜙

����
𝑀=0

+ 𝑀
𝜕Δ𝜙

𝜕𝑀

����
𝑀=0

(1.1.30)
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to calculate the angle swept out by the light ray to first order in 𝑀 . We first make the convenient

change of variables 𝑢 = 1/𝑟 , for which equation 1.1.29 becomes

Δ𝜙 = 2
∫ 1/𝑟1

0

𝑑𝑢

(𝑏−2 − 𝑢2 + 2𝑀𝑢)1/2 . (1.1.31)

The first term in equation 1.1.30 can therefore be straightforwardly evaluated

Δ𝜙
��
𝑀=0 = 2

∫ 1/𝑟1

0

𝑑𝑢

(𝑏−2 − 𝑢2)1/2 (1.1.32)

= 2 sin−1(𝑏/𝑟1). (1.1.33)

Recognising that this is just the case of a flat spacetime where 𝑏 = 𝑟1, then we have

Δ𝜙
��
𝑀=0 = 𝜋, (1.1.34)

where the light travels in a straight line. The second term in equation 1.1.30 therefore represents the

light bending effect due to the Schwarzchild geometry i.e. the angular deflection 𝛿𝜙def in Figure 1.1

(valid to first order in 𝑀). Substituting equation 1.1.28 into equation 1.1.31 we obtain

Δ𝜙 = 2
∫ 1/𝑟1

0

𝑑𝑢

(𝑟−2
1 − 2𝑀𝑟−3

1 − 𝑢2 + 2𝑀𝑢3)1/2
, (1.1.35)

which can be differentiated with respect to 𝑀 at fixed 𝑟1 to find

𝜕 (Δ𝜙)
𝜕𝑀

= 2
∫ 1/𝑟1

0

(𝑟−3
1 − 𝑢3)𝑑𝑢

(𝑟−2
1 − 2𝑀𝑟−3

1 − 𝑢2 + 2𝑀𝑢3)3/2
. (1.1.36)

Hence, we can evaluate the deflection angle

𝛿𝜙def = 𝑀
𝜕 (Δ𝜙)
𝜕𝑀

����
𝑀=0

=2𝑀
∫ 1/𝑟1

0

(𝑟−3
1 − 𝑢3)𝑑𝑢

(𝑟−2
1 − 2𝑀𝑟−3

1 − 𝑢2 + 2𝑀𝑢3)3/2

����
𝑀=0

(1.1.37)

=2𝑀
∫ 1/𝑏

0

(𝑏−3 − 𝑢3)
(𝑏−2 − 𝑢2)3/2 𝑑𝑢 (1.1.38)

=
4𝑀
𝑏

. (1.1.39)

Reinserting the speed of light and the gravitational constant we have the final result

𝛿𝜙def =
4𝐺𝑀

𝑐2𝑏
, (1.1.40)

which predicts a deflection angle of ≈ 1.74′′ for light passing near the Sun. A short time after this

value was first predicted by Einstein, Sir Arthur Eddington observed the Solar eclipse of May 29 1919,

providing verification that the light of stars were deflected by the Sun by exactly the predicted amount

(Dyson & Davidson, 1920). This was not only the first consequence of GR that was confirmed, but

also the first observational use of gravitational lensing, the astrophysical tool that forms the basis of
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this thesis.

Subsequent observational confirmations of GR include the perihelion precession of Mercury(Le Ver-

rier, 1859; Einstein, 1920), the gravitational redshift of light (Adams, 1925), and more recently the

direct observation of black holes (Castelvecchi, 2022) and detection of gravitational waves (Abbott

et al., 2016, 2021). Further testament to the theory’s success is its role in cosmology, the study of

the Universe as a whole, physical system. Since gravity determines the behaviour of all matter on

cosmic scales, GR provides a framework for studying the structure and origin of the Universe, and has

accommodated observational results such as Hubble’s detection of an expanding Universe (Hubble,

1929). The expanding Universe models of GR lead to the prediction of the existence of a singularity

at the very beginning, with infinite temperature and density.

It is here, at some point early in the Universe, where we must note that Einstein’s equations break

down due to the extreme physical conditions present. Einstein himself expressed that one can not

“assume the validity of the equations for very high densities and it is just possible that in a unified

theory there would be no such singularity” (Einstein, 1956). This remains to be seen, gravity is yet to

be reconciled with the three fundamental non-gravitational forces: strong, weak, and electromagnetic,

that are described by the standard model of particle physics. Fortunately, soon after the singularity

GR, in combination with the standard model, can be regarded as an accurate description of the

Universe, providing us with the foundation for the standard model of cosmology that we describe in

the subsequent chapter.

1.2 ΛCDM: our current cosmological model

Under the assumption that GR is the correct description of gravity, to study cosmology we require

a single further assumption known as the cosmological principle. This principle states that on large

scales the Universe is homogeneous and isotropic around any point. Evidently, this is not true on the

small scales we observe in our daily lives and even in our own galaxy. It may seem surprising then

that the cosmological principle has been assumed to be true for decades now. Although in practise it

allows for the simplification of Einstein’s field equations (equation 1.1.19) when applied to the large

scale behaviour of the Universe. Only fairly recently, have we obtained observational evidence that it

does in fact appear to hold true (Fixsen et al., 1996; Wu, 1999)
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1.2.1 Hot Big Bang: our expanding Universe

The most general space-time metric that satisfies the cosmological principle is the Robertson-Walker

(RW) metric

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑎2(𝑡)
[

𝑑𝑟2

(1 − 𝑘𝑟2)
+ 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2))

]
(1.2.1)

(Robertson, 1935; Walker, 1936), where 𝑘 is a constant that describes the curvature of the Universe,

and 𝑎(𝑡) is a time dependent scale-factor that describes how the spatial distance between two events

evolves with time. From a metric like this one, Hubble’s law naturally emerges

v = 𝐻r, (1.2.2)

which describes how the velocity v of a galaxy in the Universe receding from an observer is propor-

tional to its distance r (Hubble, 1929). The constant of proportionality 𝐻 =
¤𝑎 (𝑡 )
𝑎 (𝑡 ) is known as Hubble’s

constant. To understand the expansion history of the Universe one must solve Einstein’s equations

(equation 1.1.19) assuming the RW metric. A full derivation is given by Peebles (1993), the result of

which is the Friedmann equations (
¤𝑎
𝑎

)2
=

8𝜋𝐺
3

𝜌 − 𝑘𝑐2

𝑎2 + Λ

3
(1.2.3)(

¥𝑎
𝑎

)2
= − 4𝜋𝐺

3

(
𝜌 + 3𝑝

𝑐2

)
, (1.2.4)

that describe the evolution of 𝑎(𝑡) and its relation to the pressure 𝑝, density 𝜌, and geometry of the

Universe 𝑘 . Ultimately, the picture that emerges from this mathematical framework is that of the Hot

Big Bang, which took place approximately 13.8 billion years ago. This model for the early Universe

predicts that shortly after its origin the infinitely hot and dense Universe began to expand and cool,

continuing to do so until this day. The cooling allowed for the formation of the first baryons, which

after a few minutes into the expansion, underwent a process called big bang nucleosynthesis (BBN).

Here, neutrons and protons combined to produce the Universe’s first deuterium and helium nuclei.

This process provides strong evidence for the Big Bang since the observed abundances of these light

elements in the Universe are consistent with those predicted from baryon densities assuming BBN

(Boesgaard & Steigman, 1985).

Much later, approximately 400,000 years after the Big Bang, the temperature dropped sufficiently to

undergo recombination. This is when the Universe became transparent to radiation after protons and

electrons first became bound to form atomic hydrogen. The radiation emitted during recombination

can still be observed today as the cosmic microwave background (CMB). The first detection of the

CMB was made by Penzias & Wilson (1965) who measured a homogeneous microwave radiation
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with a temperature close to 3 Kelvins. Today, the CMB has been measured with great precision,

Planck Collaboration et al. (2018) measure a temperature of T=2.725K, and is considered one of the

strongest observational pieces of evidence in favour of the Big Bang. The CMB also provides us with

an independent measurement of the aforementioned baryon density which is consistent with BBN.

Moreover, it allows us to constrain the constituent parts of the energy density of the universe.

1.2.2 Contents of the Universe

The density in equation 1.2.4 refers not just to the mass-density but all forms of energy-density. This

will be illuminated if we first define the density parameter

Ω𝑚 =
𝜌

𝜌𝑐
, with 𝜌𝑐 ≡ 3𝐻2

8𝜋𝐺
, (1.2.5)

which dictates the density of the Universe relative to the critical density 𝜌𝑐 it would need to be flat

(𝑘 = 0) with Λ = 0. Critical energy density parameters for radiation Ω𝑟 , the curvature parameter

Ω𝑘 , and the cosmological constant ΩΛ can be defined in a similar manner that when substituted into

equation 1.2.4, arrives at

𝐻2 = 𝐻2
0 (Ω𝑚,0/𝑎3 +Ω𝑟 ,0/𝑎4 +Ω𝑘,0/𝑎2 +ΩΛ,0), (1.2.6)

where the subscript 0 denotes the value at the present day. These are the components that make up the

ΛCDM Universe.

The Planck satellite’s measurements of the CMB are consistent with a flat UniverseΩ𝑘 = 0.001±0.002,

and measures ΩΛ = 0.6847±0.0073, Ω𝑚 = 0.315±0.007, and Ω𝑟 = 9.1×10−5 (Planck Collaboration

et al., 2018) . Thus, today there is a negligible contribution of radiation to the energy density budget.

However, this was not the case early in the Universe, prior to recombination the Universe was in a

radiation dominated era, after which it began to transition into a matter dominated era. At present

times matter makes up only ∼ 32% of the energy density of the Universe, and only ∼ 5% is baryonic

matter - the visible matter we observe here on Earth and the luminous matter we observe directly in

our observations of galaxies. The other ∼ 27% is Cold Dark Matter (CDM), a form of matter that

interacts only through gravity and not the electromagnetic field. Hence, it does not emit, absorb, or

reflect electromagnetic radiation rendering it invisible.

Although yet to be detected directly, the overwhelming evidence in favour of dark matter (DM) places

it firmly in the standard ΛCDM cosmology. Zwicky (1937) provided the first evidence for DM in

1933 after measuring the total mass of the Coma cluster using the virial theorem and noting that it

was orders of magnitude larger than that of the luminous matter. Since then, many more dynamical
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measurements like these have confirmed that there is a dominant mass component that is unaccounted

for in the luminous matter, although the factor difference in mass has reduced to ∼ 5 Gould (1995).

Many other lines of evidence corroborate this, for example since dark matter is a component of mass

it has a gravitational lensing effect. As we will describe in detail in Section 1.4.1, by measuring the

observed geometries of images that are distorted by an intervening object, for example a cluster, the

mass and the mean density of that cluster can be inferred. These measurements relative to those of

baryonic matter suggest the majority of the lensing effect is due to DM (Massey et al., 2010).

Further evidence comes from the CMB that is in fact not precisely homogeneous. It contains tiny

temperature perturbations of order 10−3% that are thought to trace the density perturbations of matter

in the early Universe that lead to the formation of the structure that we observe today Spergel et al.

(2003); Planck Collaboration et al. (2018). Through evolution of density perturbations it can be

shown that the fluctuations in the CMB are too small to explain the present day overdensities. For

this, DM provides a solution which, in the case of cold dark matter4, decoupled from radiation earlier

in the evolution of the Universe than baryons did allowing its fluctuations to grow independently until

recombination where the baryons fall into the already present DM overdensities. Thus, leading to

larger overdensities as measured today.

The final component of the ΛCDM Universe is the cosmological constant Λ itself, which currently

dominates the energy-density budget of the Universe at ∼ 68%. This so called dark energy can

be thought of as the energy-density of the vacuum itself. It drives an accelerated expansion of the

late time Universe, since unlike matter densities it does not get diluted by cosmic expansion. This

accelerated expansion has been confirmed through observations of the distance-redshift relation of

Type1a supernovae and also the Baryonic Acoustic Oscillations (Astier, 2012; Dawson et al., 2013).

Further evidence for dark energy is in its success at producing the present large scale structure of the

Universe in models of its evolution. Notably, although we have gained an understanding of the effects

of dark energy through empirical evidence, we are yet to understand the fundamental form this energy

takes. This pursuit is an active field of research today.

1.2.3 Inflation and Large Scale Structure

The aforementioned primordial density perturbations are thought to have arisen from a rapid phase

of exponential expansion early in the Universe called inflation (Guth, 1968). This inflationary period

provides a dynamical mechanism that produces an observable Universe that both satisfies the cosmo-

logical principle and is flat. These properties would otherwise permit a very specific set of initial

4Where cold refers to its slow speed compared to the speed of light.
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conditions to be present at the beginning of the Universe. Moreover, inflation theory predicts the exact

one part in 100,000 inhomogeneities that are observed in the CMB.

In a ΛCDM Universe these density perturbations lead to a hierarchical formation of structure where

small overdensities gravitationally collapse first forming small masses that then merge with other

collapsed structures, ultimately producing the large scale structure (LSS) of filaments, clusters, and

galaxies we observe today. Large scale N-body simulations, like the Millenium simulation (Springel

et al., 2005), have been crucial in furthering our understanding of this process, which becomes

nonlinear once the perturbations have grown sufficiently. These simulations, which typically model

of order millions of CDM particles, have been incredibly successful at reproducing the LSS.

They demonstrate the hierarchical growth of the so-called DM haloes through the accretion of smaller

subhaloes in a self similar way. Thus, a key prediction of these N-body simulations is the subtructure

hierarchy – that every dark matter halo has orbiting within it the subhaloes it has accreted (Springel

et al., 2008). This systematic growth leads to a universal DM mass profile (Navarro et al., 1997),

known as the NFW profle, which is another key prediction of these models. On smaller scales, like that

of a single halo, tension arises between these models and our observations of the real Universe. This

may be due to their ignorance to baryonic physics, a mechanism which significantly complicates the

modelling process. Nevertheless, to understand processes such as galaxy evolution baryonic physics

can not be ignored.

1.3 Galaxy formation and evolution

1.3.1 Classifying Galaxies

The observable photometric properties of galaxies provide us with valuable information to study their

evolution histories. Firstly, we use these properties to divide galaxies into different classes, as was

first done by Edwin Hubble in 1926 based on their visual appearance (Hubble, 1926). Hubble’s

classification scheme broadly divides galaxies into two populations based on their morphology; early-

type galaxies (ETGs) and late-type galaxies (LTGs). ETGs are made up of relatively smooth elliptical

and lenticular galaxies, whereas LTGs have a more complex disc-like structure with extended spiral

arms, roughly half of which contain a bar-like structure in the centre.

Today, these morphological classifications are usually quantified through structural parameters defined

in their light distribution. ETGs are often described by a Sérsic profile while LTGs are typically

described by an exponential profile, that is a particular case of the Sérsic profile with an index fixed

to 1 (Sersic, 1968). From these profiles the galaxy’s size can be constrained, often by defining
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the effective radius5(Graham & Driver, 2005) which is the radius which contains half of the total

luminosity of the galaxy. We note that, while useful for broadly classifying types of galaxies and

quantifying structural properties, these simple profiles are not able to truly capture the complexity

of the structure that we observe in these systems. For example, we know that both ETGs and LTGs

may consist of a compact ‘bulge’ component as well as a more extended ‘disc’ component (Oh et al.,

2017; Vika et al., 2014). As well as this ETGs are not strictly elliptical, with isophotal shapes that

can be classified as boxy or discy, as determined by the type of perturbation relative to a true elliptical

isophote (Naab et al., 1999).

ETGs and LTGs can also be classified by their colour, which is indicative of the types of stars that

are found in the galaxy - its stellar population (Strateva et al., 2001; Blanton et al., 2003). ETGs

lie on the red sequence of a galaxy colour-magnitude diagram, a very narrow region of red passive

galaxies. These contain older populations of lower mass stars and have therefore mostly ceased star

formation. LTGs, however, are actively star forming, appearing much bluer in colour as a result of the

ultra-violet/optical emitted from young high-mass stars. They occupy a much broader region of the

colour-magnitude diagram known as the blue cloud (Tojeiro et al., 2013). In between the red sequence

and blue cloud lies an under populated region of galaxies known as the green valley (Salim, 2014;

Eales et al., 2018). Blue galaxies, which are more common at high redshifts, are believed to transition

into red galaxies that become more common at low redshifts. The almost dichotomous behaviour in

the colour evolution suggests the mechanism behind star formation quenching acts relatively quickly.

The question of how galaxies quench their star formation remains one of the fundamental questions of

extragalactic astronomy, for which the green valley may be a useful tool for studying such mechanisms.

We can gain further insight into the evolution of galaxies by combining photometric observables with

spectroscopic parameters. For example, ETGs exhibit a scaling relation known as the fundamental

plane (FP) relation that describes the correlation between the size, surface brightness, and stellar

velocity dispersion of the galaxies, which put tight constraints on models for their formation and

evolution Djorgovski & Davis (1987). Since this thesis is concerned only with ETGs, which are

more likely to act as strong lenses due to their large masses, in the following section we specifically

describe the status of our understanding of these types of galaxies which form the end products of the

hierarchical merging paradigm.

5Also known as the half-light radius
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1.3.2 Structure and evolution of Early-type Galaxies

In ΛCDM the first luminous galaxies formed in the potential wells of the largest DM haloes through

the infall of baryonic material in to these high density regions. For a galaxy to form the gas must

rapidly collapse under gravity to overcome the internal pressure of the gaseous matter. Furthermore,

gas cooling, through the emission of photons, must prevail over the heating that occurs from the

contraction of the gas. However, if this gas cooling is particularly efficient, as it is predicted to be in

the high redshift DM haloes where these galaxies form, then the majority of baryonic material will

cool and form stars, which is not what we observe in the Universe (Schaye et al., 2015; Vogelsberger

et al., 2014). Thus, some kind of feedback mechanism is required to limit the formation of new

stars. To this end, active galactic nuclei (AGN), which are powered by the accretion of material onto

supermassive black holes (SMBH) that reside at the centres of all massive galaxies, are thought to

play a valuable role (Richardson et al., 2021; Torrey et al., 2020; Irodotou et al., 2022).

After the early phases of galaxy formation, hierarchical merging ensues. From this point onwards,

galaxies may follow a wide variety of evolutionary paths depending on the properties of the gas, the

mergers it undergoes and the conditions these occur in. Hence, to successfully understand galaxy

formation and evolution one requires a self-consistent treatment of baryonic physics (such as multi-

phase gas physics and dynamics, radiative transfer, star formation, and feedback), its interaction with

DM through gravity, and its kinematics and evolution within an expanding Universe. A number of

numerical codes with this goal in mind have emerged over the past couple of decades which incorporate

hydro-dynamical gas simulations into the N-body methods that are successful at reproducing the LSS.

Comparing the results from these different codes, which often differ in the types of baryonic physics

they implement and the scales on which they’re simulated, with observations is proving to be invaluable

in furthering our understanding of this complex evolutionary process (Wang et al., 2019, 2020).

As mentioned in the previous section the FP relation of ETGs puts tight constraints on the evolution

of these types of galaxies. This is because, although the FP exhibits no evolution with redshift,

strong evolution is evident in its projection in the size-stellar mass space out to redshifts ∼ 2 (Daddi

et al., 2005; Trujillo et al., 2007). This, along with other observations that indicate these are passive

galaxies, implies they have experienced dramatic growth in size whilst remaining at a constant stellar

mass through a growth mechanism that does not involve the formation or accretion of young stars.

Further to this, observations have shown that the mean distribution of dark plus baryonic matter in the

central few effective radii of ETGs is such that their combined density profile is roughly isothermal,

𝜌(𝑟) ∝ 𝑟−𝛾 , with 𝛾 ∼ 2. This has been consistently observed by many observational techniques:

dynamically modelled local ETGs (Tortora et al., 2014; Serra et al., 2016; Li et al., 2019; Cappellari
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et al., 2013), X-ray studies (Humphrey et al., 2006; Humphrey & Buote, 2010), weak lensing (Gavazzi

et al., 2007), and combined strong lensing and dynamical modelling (Koopmans et al., 2009; Auger

et al., 2010a; Li et al., 2018).

Numerical simulations are beginning to understand the origin of these empirical relations. The

current consensus for the formation of ETGs, often referred to as a ‘two phase’ assembly (Oser

et al., 2010), begins with an initial stage of active star formation and adiabatic contraction at redshift

𝑧 ≳ 2, followed by growth through major and minor merging events to the present (Naab & Ostriker,

2009; Van Dokkum et al., 2010; Remus et al., 2017). However, details of the physical processes

that modify the mass distributions throughout this formation process are yet to be well understood.

Fine-tuning between the baryonic and dark matter distributions would be necessary to produce the

distribution of near-isothermal total mass profiles that are observed, a result hydrodynamic simulations

have been unable to accomplish whilst simultaneously reproducing the observed distribution of dark

matter fractions (Duffy et al., 2010; Dubois et al., 2013; Xu et al., 2017). It is unclear whether this

discrepancy is a result of an inadequacy in the cosmological simulations or a systematic bias in the

determination of the observed mass-density slopes.

1.4 Strong gravitational lensing

As introduced in Section 1.1.3, gravitational lensing is the phenomenon whereby light is distorted by

massive objects. Since light propagates along geodesics in the spacetime metric which is curved in the

presence of matter, although the trajectory of the photon remains straight in its own reference frame,

the light rays appear curved to the outside observer. Although GR provides the correct description of

the curvature of these light rays, most astrophysically relevant scenarios, namely those in this thesis,

can be adequately described by a simple approximation formalised in gravitational lensing theory

(Kochanek, 2004) which we cover in section 1.4.1.

This thesis is mostly concerned with gravitational lensing in the strong regime, where the distortions

are large enough to produce multiple images or arcs. Although Einstein had predicted the multiple

image phenomenon he expected that it was improbable that it would ever be resolvable in observations,

calculating the separation due only to a star (which is of the order milli-arcseconds). It was Fritz

Zwicky who considered the possiblity of larger distortions by galaxies acting as lenses that he estimated

would in fact be observable (Zwicky, 1937). Indeed, in 1979 the first gravitationally lensed object was

observed, the Twin Quasar Q0957+561A (Walsh et al., 1979). Since then many more strong lensing

events have been observed, particularly with the advent of surveys specifically designed to search for

strong lenses which we describe in more detail in section 1.4.4.
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Figure 1.2: The geometry of the single plane lens. A source galaxy in the source plane at a distance
𝐷𝑠 from an observer is deflected by a lens in the lens plane at a distance 𝐷𝑑 from the observer.
The distance 𝐷𝑑𝑠 represents the distance between the lens plane and source plane. All distances
correspond to angular diameter distances. Figure reproduced from Peter Schneider (2006).

With these observations of strong lens systems comes a wealth of astrophysical applications. Since

the effects of gravity are felt by all matter, including dark matter, one can constrain the properties of

dark matter. The Hubble constant, too, can be constrained with lensed quasars, a method known as

time-delay lensing, providing an independent probe (Suyu et al., 2017). Further tests of cosmology

can be made by detecting small substructures, that also perturb the multiple images, that are expected

to exist in different abundances depending on the choice of cosmological model (Gilman et al., 2020;

Miranda & MacCiò, 2007; Hezaveh et al., 2016). The assumption underpinning all of these science

goals is that one can accurately model the strong lens system, constraining the mass distribution of

the object that is doing the lensing, and recovering the distribution of light from the multiple images

as they would appear had they not been lensed. We describe a common mass profile that is assumed

for the lens galaxy, and is used throughout this thesis, in Section 1.4.2 and give an overview of the

methods that could be used to constrain such a profile in Section 1.4.3.

1.4.1 Lensing Theory

The lens equation

Although the actual light rays are curved by the mass of the deflector, if the deflection is small then

one can invoke the geometrically thin lens approximation that the rays are straight lines with a single
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angular deflection in the plane of the mass distribution6. A typical single plane lens system is plotted

in Figure 1.2, where a mass at a distance 𝐷d from the observer deflects the light from a source at a

distance 𝐷s (where the distances quoted are angular diameter distance). To satisfy the condition of a

thin lens the extent of the mass distribution must be much smaller than both 𝐷d and 𝐷ds.

For a surface mass density Σ(ξ) projected on to the plane of the incoming light ray (known as the lens

plane), the deflection angle of the light ray amounts to

α(ξ) = 4𝐺
𝑐2

∫
𝑑2𝜉′Σ(𝜉′) ξ − ξ′

|ξ − ξ′ |2
, (1.4.1)

where ξ = (𝜉1, 𝜉2) is a 2D vector of impact parameters in the lens plane, 𝐺 is the gravitational

constant and 𝑐 is the speed of light. From simple geometric considerations of the system in Figure 1.2,

including the small angle approximation sin 𝜃 ≈ 𝜃 ≈ tan 𝜃, we can write that

η =
𝐷s
𝐷d

ξ − 𝐷dsα(ξ). (1.4.2)

This can be re-written in terms of angular coordinates, by introducing η = 𝐷sβ and ξ = 𝐷dθ, to

produce the well known lens equation

β = θ − α(θ), (1.4.3)

which describes how the observed image positions θ = (𝜃1, 𝜃2) of light rays in the image plane are

deflected from a source at position β = (𝛽1, 𝛽2) in the source plane. Here we have also introduced

the reduced deflection angle α(θ) =
𝐷ds
𝐷s

α(ξ) which can be expressed in terms of a dimensionless

surface mass density 𝜅(θ) as

α(ξ) = 1
𝜋

∫
𝑑2𝜃′𝜅(𝜃′) θ − θ′

|θ − θ′ |2
. (1.4.4)

The dimensionless surface mass density, also known as the convergence, is defined by

𝜅(θ) = Σ(𝐷dθ)
Σcrit

, with Σcrit =
c2

4𝜋G
𝐷s

𝐷d𝐷ds
, (1.4.5)

where we have introduced the critical surface mass density for lensing Σcrit. The lensing properties of

a galaxy with 𝜅 are characterised by the projected gravitational potential 𝜙 that satisfies the Poisson

equation: ∇2𝜓 = 2𝜅. Consequently, the deflection angle field is related to the potential of the lensing

galaxy through α = ∇𝜓.

The critical surface mass density crudely distinguishes between the strong and weak regimes of

lensing. Strong lensing typically occurs in regions where the surface mass density of the lens exceeds

6This corresponds to the Born approximation in atomic and nuclear physics
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that of the critical surface mass density (𝜅 > 1). In this regime, the lens equation (equation 1.4.3) has

multiple solutions corresponding to the number of multiple images that are observed.

Magnification and distortion

Assuming local linearity – that the size of the source is negligible compared to the scales on which

the gravitational field and deflection angle field vary – then the Jacobian of the lens equation can be

defined

𝐴𝑖 𝑗 ≡
𝜕𝛽𝑖

𝜕𝜃 𝑗

= 𝛿𝑖 𝑗 −
𝜕𝛼𝑖

𝜕𝜃 𝑗

, (1.4.6)

which describes the distortions to a source galaxy that produce its lensed appearance. In the case of

the single lens plane, the Jacobian can then be expressed in terms of the convergence

𝐴𝑖 𝑗 = 𝛿𝑖 𝑗 −
𝜕2𝜓

𝜕𝜃𝑖𝜃 𝑗

≡ ©­«
1 − 𝜅 − 𝛾1 −𝛾2

−𝛾2 1 − 𝜅 − 𝛾1

ª®¬ , (1.4.7)

where we have introduced the two components of shear

𝛾1 =
1
2
(𝜓,11 − 𝜓,22), 𝛾2 = 𝜓,12. (1.4.8)

If we re-write the Jacobian (equation 1.4.7) in the following form

𝐴𝑖 𝑗 = (1 − 𝜅) ©­«
1 0

0 1
ª®¬ − 𝛾

©­«
cos2𝜙 sin2𝜙

sin2𝜙 cos2𝜙
ª®¬ , (1.4.9)

where 𝜙 is the angle of the shear pseudo-vector 𝛾 = (𝛾1, 𝛾2), the affect of the shear and convergence

become evident. The convergence is responsible for magnifying the source, the factor (1− 𝜅) does not

affect the shape of the image but performs an isotropic stretching of it. Further, the shear 𝛾 ≡ 𝛾1 + 𝑖𝛾2

can be recognised as the component that distorts the image through a tangential stretching.

Since lensing conserves surface brightness the ratio of the fluxes observed from the image and from

the unlensed source, known as the magnification 𝜇, is the inverse of the determinant of the Jacobian

𝜇 ≡ det𝑀 =
1

det𝐴
=

1
(1 − 𝜅)2 − |𝛾 |2

, (1.4.10)

where the matrix 𝑀 is known as the magnification tensor. The eigenvalues of 𝑀

𝜇𝑡 =
1
𝜆𝑡

=
1

1 − 𝜅 − 𝛾
and 𝜇𝑟 =

1
𝜆𝑟

=
1

1 − 𝜅 + 𝛾
, (1.4.11)

measure the amplification in the tangential and radial directions respectively, where 𝜆𝑡 and 𝜆𝑟 are the

eigenvalues of the Jacobian matrix.
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Figure 1.3: Example critical curves and caustics. The multiplicity of a source at different positions
relative to these curves is demonstrated. The figure is reproduced from Peter Schneider (2006).

The region where the magnification is ideally infinite, i.e. detA = 0, defines two curves in the lens

plane known as the tangential and radial critical curves. The tangential and radial critical curves

occur when 1 − 𝜅 − 𝛾 = 0 and 1 − 𝜅 + 𝛾 = 0, respectively. Images near the tangential critical curve

are tangentially magnified, and those near the radial critical curve are radially magnified. Mapping

the critical curves from the lens plane to the source plane through the lens equation (equation 1.4.3)

defines the caustics. The image multiplicity of a lens system is separated into regions relative to the

caustics. This is demonstrated in Figure 1.3, where a source within the tangential caustic is observed

as four multiple images (filled square points) , a source between the tangential and radial caustic

is doubly imaged (triangular points), and outside of the radial caustic only a single distorted image

appears in the lens plane (open square points)7 The example given in Figure 1.3 is known as the fold

configuration. It demonstrates how a fold merger can occur for an extended source located at the

caustic where, for example, at the radial caustic only the part of the source located within the caustic is

multiply imaged. Here, the images are highly distorted in the direction of the eigenvector and strongly

elongated multiple images merge to produce the giant arcs that are ubiquitous with strong lensing. If

the source is located along the 𝛽1 or 𝛽2 axis, the configuration is known as a cusp.

7Due to the odd number theorem, the number of multiple images that are produced by a bounded transparent lens are in
fact odd. The central, type III, image is typically demagnified and and not detected in observations.
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Observable properties

For axisymmetric lenses the tangential critical curve is circular, corresponding to the Einstein ring.

The radius of this curve defines the Einstein radius 𝑅Ein. The mean surface mass density inside 𝑅Ein

is equal to the critical surface mass density Σcrit of the lens equation (equation (1.4.5)). The Einstein

radius and enclosed Einstein mass

𝑀Ein = 𝜋𝑅2
EinΣcrit, (1.4.12)

are thus uniquely defined in the axisymmetric case, quantifying the size and efficiency of the lens.

For asymmetric, irregular and realistic lenses, the definition of Einstein radius must be generalised.

Several conventions are possible (see Meneghetti et al. 2013 for a good overview) but we choose to

use the effective Einstein radius

𝑅Ein,eff =

√︂
𝐴

𝜋
, (1.4.13)

where 𝐴 is the area enclosed by the tangential critical curve. This definition is self-consistent across

different mass density profiles, and clearly recovers the definition of 𝑅Ein in the case of a circular

critical curve. Unless stated otherwise the Einstein radii calculated in this thesis are effective Einstein

radii, we refer to them as 𝑅Ein at times for brevity.

1.4.2 Mass Profiles

For strong lens systems, gravitational lens theory aims to determine which combination of lens and

source properties can reproduce the observed multiple image configuration. To this end, analytic

mass profiles are crucial in predicting the lensed properties of an assumed source. For some simple

lens models their lensing properties can be derived analytically. The Power-Law Ellipsoidal Mass

Distribution (PLEMD)8 is often assumed to be able to capture the combined mass distribution of both

baryonic and dark matter in ETGs. A number of different acronyms exist in the literature that often

refer to the same profile, for brevity we hereafter refer to the PLEMD as simply PL.

The convergence of the PL distribution is given by

𝜅(𝑥, 𝑦) = Σ(𝑥, 𝑦)
Σcrit

=
3 − 𝛾′

1 + 𝑞

(
𝑏√︁

𝑥2 + 𝑦2/𝑞2

)𝛾′−1
(1.4.14)

(Suyu, 2012), where 𝛾′ is the logarithmic slope of the mass distribution in 3D, 1 ≥ 𝑞 > 0 is the

projected minor to major axis ratio of the elliptical isodensity contours, and 𝑏 ≥ 0 is the angular

8We note that this differs from the Power-Law Ellipsoid Potential (PLEP), which defines the elliptical coordinates in the
radial potential distribution of the lens galaxy as opposed to the convergence. This leads to slightly different properties, such
as peanut shaped isodensity contours for highly elliptical distributions. Kassiolia & Kovner (1993) give a good overview of
the differences between elliptical potential and elliptical mass distributions.
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scale length of the profile. We note that 𝑏 is referred to in some papers as the Einstein radius, but

is distinct from the more robust effective Einstein radius in equation 1.4.13). The special case 𝛾 = 2

recovers the Singular Isothermal Ellipse (SIE) mass distribution, in which the steady-state motions of

particles have constant 1D velocity dispersion 𝜎SIE, when projected along any line of sight. For this

distribution of mass, the critical curve is the ellipse at 𝜅 = 1/2. Our definition of effective Einstein

radius (equation 1.4.13) means that the ellipse is 𝑅Ein,eff = 𝑞𝑥2 + 𝑦2/𝑞, and the velocity dispersion is

𝜎SIE = c
√︂

𝑅Ein𝐷s
4𝜋𝐷l𝐷ls

. (1.4.15)

Given that the convergence profile is elliptical, a number of normalisation conventions may be adopted

to define the surface density contours. Bolton et al. (2008a) adopt an intermediate-axis normalisation

for the SIE profile that is different to the normalisation defined in equation 1.4.14, which in turn leads

to a slightly different form of the analytically tractable deflection angles for the two SIE profiles. In

Appendix A we show that they are in fact equivalent up to a normalisation factor, albeit with different

definitions of coordinates. This motivates the definition of Einstein radius in this work which is

equivalent for both normalisations of the SIE profile.

As described in the previous section, the PL distribution will have an associated shear that is responsible

for the non-isotropic distortion of the light rays. However, the primary lens galaxy is not the only

source of shear in a gravitational lens. Perturbations occur as a result of galaxies or clusters nearby the

lens galaxy, and structures along the ray path. Hence, it is generally considered necessary to account

for these external perturbations in the immediate environment of the lens system. Assuming the mass

distributions do not overlap, a nearby object does not contribute convergence 𝜅 to the deflection of

light. All external perturbations can therefore be characterised by an additional constant external

shear contribution

𝛾ext ≡ 𝛾1ext + 𝑖𝛾2ext = |𝛾ext |𝑒2𝑖𝜙 (1.4.16)

where 𝛾1ext and 𝛾2ext are constants represented by a potential, as in equation 1.4.8, with constant

components.

1.4.3 Methods

There are a variety of approaches to strong lens modelling. These methods constrain the mass

distribution of the deflector lens with the lensing constraints available in the observations. To achieve

this, the goal is always to solve lens equation (equation 1.4.3). For any realistic mass distribution this
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will be a non-linear equation that can only be solved numerically9. Through defining a goodness of

fit statistic, statistical methods must therefore be employed to find the model parameters that best-fit

the data and their associated uncertainties. Lens modelling can be considered either a “forward” or

“inverse” problem, where the image positions are predicted from an assumed source and mass in the

forward problem, or the observed images are used to reconstruct a model of the source and mass in

the inverse problem. Both approaches are often required in the analysis of real lenses.

We first distinguish between point-like and extended sources which differ largely in the complexity

of the method that must be employed to solve the lens equation. Point-like sources, for example

lensed quasars like the Twin Quasar that was first discovered, provide constraints on the potential

of the lens galaxy and its derivatives at discrete positions. The required goodness of fit statistic is

relatively straightforward. If the image is extended, like the galaxy-galaxy strong lenses that we model

in this thesis, the lens equation must be solved for every pixel within the extended image, thereby

reconstructing the distribution of light in the source plane. The relative information between pixel data

provides extra constraints on the potential of the lens galaxy, namely its second derivative (𝛾′ in the

PL distribution - equation 1.4.14). However, the fitting procedure also requires more free parameters

to describe the unknown shape of the source galaxy that, depending on the particular method used,

can significantly increase the complexity of the goodness of fit statistic and the parameter space that

is to be sampled by the numerical solver.

This thesis is concerned with the strong lens modelling of extended images. As such we describe

the methods that exist to do so, which can broadly be split into two categories; parametric methods,

that assume an analytic profile (or sum of profiles) for the source galaxy (Tessore et al., 2016) and,

pixel-based methods, that reconstruct the source galaxy’s surface brightness distribution on a pixel

grid or mesh (Warren & Dye, 2003; Suyu et al., 2006; Dye & Warren, 2005; Vegetti & Koopmans,

2009; Nightingale & Dye, 2015; Nightingale et al., 2018; Joseph et al., 2019; Galan et al., 2021).

Parametric methods are the simplest approach, where the lens and source parameters create the fully

non-linear parameter space for the non-linear method to solve. Owing to their simplicity, they are also

typically the fastest of the methods to converge on a solution. However, increasing the complexity of

the lens models can significantly complicate the parameter space, increasing the chances of incorrect

local best-fit solutions being produced. For applications wishing to constrain only the Einstein radius

or mass of a lens system these methods are sufficient and they have seen extensive use to do this in

the literature (e.g. Bolton et al., 2008b; Gavazzi et al., 2012). However, more complex lens modelling

techniques are required to constrain more complex mass profiles and account for irregularities in the

9although a few simple cases can be solved analytically
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source’s morphology.

Pixel-based methods were developed with this in mind. The source reconstruction is performed

by discretizing the source plane into a grid of pixels. This requires a penalty function, known as

regularisation, to ensure the source appears physical. Here, the forward problem is solved, ray-tracing

source-plane pixels to the image plane to be compared with the data image. Before Warren & Dye

(2003, hereafter WD03) introduced the semi-linear inversion (SLI) method, which writes the lens

equation as a matrix equation, pixel based methods independently varied each of the source pixels

until a threshold goodness of fit was achieved. The SLI method simplifies the problem, allowing the

the best-fit source reconstruction to be obtained in a single linear step.

Since it was introduced, many strong lens modelling software have adopted the SLI method, par-

ticularly since Suyu et al. (2006, hereafter S06) placed the method into a Bayesian framework that

objectively determines the degree of regularisation that is required to reconstruct the source galaxy’s

light distribution. The methods differ mostly in the choice of pixelation that is used in the source

plane. The earliest methods employed a Cartesian square grid (WD03), with extensions to this being

introduced in the form of square grids that split source pixels above a magnification threshold (Dye

& Warren, 2005; Tagore & Keeton, 2014), and rectangular grids that change depending on the size

of the source (S06)(Collett & Auger, 2014). More recent implementations have employed irregular

grids/ tessellations that can adapt to the emission of the source galaxy (Vegetti & Koopmans, 2009;

Nightingale & Dye, 2015; Nightingale et al., 2019), and others have employed a basis of shapelets to

describe the source as opposed to source pixels (Birrer et al., 2015; Shajib et al., 2018). The strong lens

analysis in this thesis is carried out using the strong lens modelling software PyAutoLens, described

by Nightingale et al. (2018). PyAutoLens ultimately reconstructs the source on an adaptive Voronoi

mesh, but uses both parametric and pixel-based methods to do so with an approach termed ‘non-linear

search chaining’ that composes pipelines capable of fitting lens models that gradually increase in

complexity. We describe the specific method we adopt in detail in Section 2.4.

1.4.4 Samples of lenses

In the early years of gravitational lens detection most systems were discovered accidentally. The

majority of these discoveries were lensed quasars, owing to their extreme luminosities increasing the

chances of them being observable at the high redshifts required for lensing. Although the first lens

detected with extended emission was also serendipitous (Hewitt et al., 1988). Around a similar time

the first giant luminous arcs were detected, and later confirmed to be resulting from a cluster-scale lens

(Giraud, 1988; Paczynski, 1987). The launch of the Hubble Space Telescope (HST) was undoubtedly
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a blessing to the field of lensing, allowing for the confirmation and detailed investigation of lenses

with high-resolution imaging. More importantly, the arrival of expansive data-archive surveys like

the Sloan Digital Sky Survey (SDSS) (York et al., 2000; Abazajian et al., 2003) saw a boom in lens

discovery with dedicated teams dedicated to searching for strong lenses in surveys such as these.

Galaxy-galaxy strong lens systems, those with a regular non-active source galaxy, now outnumber

the quasar lens detections. Spectroscopic searches have been hugely successful at detecting these

systems. The approach is typically to examine residual spectra of high mass ETGs for higher redshift

emission lines that are indicative of a source galaxy being present along the line of sight. The largest

sample of lenses detected in this way in the SDSS survey is the Sloan Lens ACS (SLACS) survey

Bolton et al. (2006, 2008b); Auger et al. (2009) which has detected over one hundred strong lenses,

remaining the largest sample to date. A similar search within the BOSS survey lead to 25 lenses

detected in the BOSS Emission Line Lens (BELLS) survey (Brownstein et al., 2012) which was

extended to the BELLS GALaxy-Ly𝛼 EmitteR sYstems (BELLS GALLERY) (Shu et al., 2016b,a)

survey to specifically search for source galaxies that are Lyman-alpha emitters. A similar search for

Lyman-alpha emitter sources was made in the LEnSed laeS in the EBOSS suRvey (LESSER) (Cao

et al., 2020) survey.

Another approach to lens detection is to search for giant arcs and rings in photometric datasets. For

this, the Strong Lensing Legacy (SL2S) survey (Gavazzi et al., 2012) used the algorithm RingFinder

(Gavazzi et al., 2014) to search for lenses in the Canada-France-Hawaii Telescope (CFHT) Legacy

Survey (Cabanac et al., 2007). The code removes the lens galaxy’s light from multi-wavelength

imaging and searches for remaining flux indicative of a higher redshift source galaxy. This technique

usually finds higher redshift lens galaxies with larger Einstein radii than the spectroscopic approach

does, although with the use of deeper spectroscopic data and selection for higher redshift spectra

samples like BELLS GALLERY have similar properties to SL2S. We note that the selection procedure

of the different surveys leads to differences in the biases on the sample of galaxies from the general

population given the probability of multiple imaging being detected in each survey.

These selection effects are further combined with the fact that particular parameters of the lens galaxy

are more likely to produce a strong lens than others, for example the surface mass density must be

larger than the critical surface mass density (equation 1.4.5). Consequently, it is very difficult to

understand how the samples differ from the parent population. Recent work by Sonnenfeld (2021b,a,

2022) has begun to quantify the biases these selection effects have on studies that wish to infer galaxy

properties or cosmological parameters from a population of strong lenses. These investigations are

crucial since population level studies are set to become a particularly powerful tool with the advent
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of next generation wide-field surveys. During the next decade, a couple of hundred thousand strong

lenses are expected to be discovered by surveys like these including Euclid, LSST, and SKA (Collett,

2015), a thousand-fold increase in the data that is available to us now.



Chapter 2

Automated galaxy-galaxy strong lens

modelling: no lens left behind

2.1 Introduction

Galaxy-scale strong lensing is the distortion of light rays from a background source into multiple

images, by the gravitational field of a foreground galaxy along the same line of sight. From the

apparent position, shape and flux of those multiple images, it is possible to infer both the intrinsic

morphology of the background galaxy at magnified resolution, and the distribution of (all gravitating)

mass in the foreground lens.

In combination with kinematic measurements, lensing methods have inferred the mean total density

profile of massive elliptical galaxies and how that evolves with redshift (Gavazzi et al., 2007; Koopmans

et al., 2009; Auger et al., 2010a; Sonnenfeld et al., 2013b; Bolton et al., 2012), and put constraints

on their dark matter content, stellar mass-to-light ratio, and inner structure (Sonnenfeld et al., 2012;

Oldham & Auger, 2018; Nightingale et al., 2019; Shu et al., 2015, 2016c). If the background source

is variable and the mass model known, measurements of time delays between multiple images can

constrain the value of the Hubble constant (Suyu et al., 2017; Wong et al., 2019). If the lens galaxy

contains small substructures, they also perturb the multiple images, and provide a clean test of the

nature of dark matter (Vegetti et al., 2010; Li et al., 2016, 2017; Hezaveh et al., 2016; Ritondale et al.,

2019; Despali et al., 2019; Amorisco et al., 2022; He et al., 2021).

Currently, a couple of hundred strong lensing systems have been observed, by dedicated surveys such

as the Sloan Lens ACS (SLACS) (Bolton et al., 2006; Auger et al., 2010a), BOSS Emission Line Lens

(BELLS) (Brownstein et al., 2012), Strong Lensing Legacy (SL2S) (Gavazzi et al., 2012) surveys,

26
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BELLS GALaxy-Ly𝛼 EmitteR sYstems (BELLS GALLERY) (Shu et al., 2016b,a), the SLACS Survey

for the Masses (S4TM) Survey (Shu et al., 2017), LEnSed laeS in the EBOSS suRvey (LESSER) (Cao

et al., 2020), and the Spectroscopic Identification of Lensing Objects (Talbot et al., 2018, 2021).

During the next decade, a couple of hundred thousand strong lenses will be discovered by wide-field

surveys including Euclid, LSST, and SKA (Collett, 2015). Such large samples of strong lenses will

contain rare ‘golden’ systems such as double or triple source plane systems (Collett & Auger, 2014;

Collett & Bacon, 2016; Collett & Smith, 2020), and unlock considerable scientific potential through

vastly improved statistics (e.g. Birrer et al., 2020; Sonnenfeld & Cautun, 2021; Sonnenfeld, 2021a;

Cao et al., 2020; Orban De Xivry & Marshall, 2009). To tackle the forthcoming thousand-fold increase

in data volume, model inference must be automated, and made robust without human intervention.

Convolutional Neural Networks (CNNs) are a fast approach that have recently been shown to be

successful at lens modelling. Hezaveh et al. (2017) and Levasseur et al. (2017) modelled nine lens

systems observed by the Hubble Space Telescope (HST). However, this approach requires a large, and

significantly varied and unbiased training set of mock lenses to learn from. These are requirements

that can be difficult to guarantee, which could be problematic for source galaxies with irregular

morphologies. Using a different method, Shajib et al. (2021) used the DOLPHIN software to model 23

lenses from an initial sample of 50 SLACS lenses.

We use the PyAutoLens software (Nightingale & Dye 2015, hereafter N15; Nightingale et al. 2018,

hereafter N18), an open-source Bayesian forward-modelling project designed specifically with au-

tomation in mind. We develop an automated data analysis pipeline that models the distribution of

foreground light and mass as a sum of smooth analytic functions, and the background light as either

another sum of analytic functions (e.g. Tessore et al., 2016), or as a pixellated image (Warren & Dye,

2003; Suyu et al., 2006; Dye & Warren, 2005; Vegetti & Koopmans, 2009; Joseph et al., 2019; Galan

et al., 2021). By fitting a mock sample of ∼ 500 lenses we further show that previous versions of

PyAutoLens (like many lens fitting algorithms) underestimated the width of posterior probability

distributions of lens model parameters. We will refer to the corresponding errors estimated from

the credible regions of the posteriors as the ‘statistical uncertainty’ throughout this thesis. A major

component of this is a discretization effect inherent to pixel-based source reconstructions — for which

we provide a solution.

We apply our automated lens modelling pipeline to a uniform sample of 59 SLACS and BELLS

GALLERY lenses that were observed with the Hubble Space Telescope. Our goal is to model every

single lens and therefore leave no lens behind: if we were analysing ∼ 100, 000 lenses, even a low rate

of (unflagged) failures would require unfeasible human intervention, and would bias the increasingly
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tight statistical precision of subsequent scientific analysis. Our first, ‘blind’ analysis achieves a

promising success rate of 85%. We then emphasise trying to understand why some lenses are not well

fit, and improve our pipeline until they are. This mirrors the kind of methodology that will be possible

with future large samples: a fairly fixed initial framework, that is adapted after early results. In this

paper we are trying to establish that first fixed framework.

With the full sample modelled, we investigate the accuracy to which the Einstein radius is recovered.

Cao et al. (2020) recently demonstrated the robustness of the measurement by comparing the Einstein

radii of power-law fits to mock lenses with complex mass distributions, inferred from SDSS-MaNGA

stellar dynamics data, to their true values. They showed that the Einstein radius was recovered to

0.1% accuracy, taking into account both systematic and statistical sources of uncertainty. We examine

how this compares to the statistical uncertainties we infer for the Einstein radii of the SLACS and

GALLERY sample. Further, we compare to previous literature measurements (Bolton et al., 2008a;

Shu et al., 2016a) to verify our results and quantify how the uncertainty varies due to different methods

and assumptions. Our work therefore provides an outlook on the accuracy to which we can anticipate

measuring the Einstein radius in upcoming large samples of tens of thousands of lenses.

This paper is structured as follows. In Section 2.2 we give a brief overview of lensing theory and

provide the mass and light profile parameterisations we adopt. Section 2.3 describes the sample

selection and data reduction procedure for the data images of the SLACS and GALLERY samples.

The method is then explained in detail in Section 2.4 and applied to a sample of mock data in Section 2.5

to investigate problems associated with pixelised source reconstructions. The results of applying the

automated procedure to the SLACS and GALLERY samples are then presented in Section 2.6. Finally

we discuss the implications for the future of automated analyses in Section 2.7 and summarise in

Section 2.8. Throughout this work we assume a Planck 2015 cosmological model Ade et al. (2016).

The results of every fit to the SLACS and GALLERY datasets can be found at the following link

https://zenodo.org/record/6104823.

2.2 Lens Modelling Theory

The aim of this study is to investigate the practicalities of automated extended source modelling to

infer the mass distributions of a large sample of lenses. The theory relevant for this analysis was

given in Section 1.4.1. We will now describe our choice of mass and light profile parameterisations

in Sections 2.2.1 and 2.2.2, respectively.

https://zenodo.org/record/6104823
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Figure 2.1: Lens subtracted data images (left) and their corresponding pixel-grid reconstructions
(right) for the “Gold” sample of lens galaxies (see Section 2.6.1 for a description of our classification
process). Lenses are in order of Right Ascension, with SLACS lenses appearing first, followed by
GALLERY lenses. The full model fits for these lenses, plotted with an indication of scale, are available
in Appendix D.
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2.2.1 Mass profile parameterisation

We model the distribution of mass in the lens galaxy as a Power-Law Ellipsoidal Mass Distribution

(PLEMD), with convergence given by equation 1.4.14. We assume this is able to capture the combined

mass distribution of both baryonic and dark matter. The profile has additional free parameters for the

central coordinates (𝑥c, 𝑦c) and position angle 𝜙, measured counterclockwise from the positive 𝑥-axis,

and external shear. When varying the ellipticity, we actually sample from and adjust free parameters

𝜀1 =
1 − 𝑞

1 + 𝑞
sin 2𝜙 , 𝜀2 =

1 − 𝑞

1 + 𝑞
cos 2𝜙 . (2.2.1)

because these are defined continuously in −1 < 𝜀𝑖 < 1, eliminating the periodic boundaries associated

with angle 𝜙 and the discontinuity at 𝑞 = 0. We further assume external perturbations are captured by

the external lensing shear which are parameterised by components 𝛾1ext and 𝛾2ext (equation 1.4.16).

The external shear magnitude 𝛾ext and angle 𝜙ext are recovered from these parameters by

𝛾ext =
√︃
𝛾2

1ext + 𝛾2
2ext , tan 2𝜙ext =

𝛾2ext
𝛾1ext

. (2.2.2)

2.2.2 Light profile parameterisation

We model the foreground galaxy’s light distribution as the sum of two Sérsic profiles with different

ellipticities but a common centre. This replicates the bulge and disc components that constitute an

Early-type Galaxy (ETG) (Oh et al., 2017; Vika et al., 2014), and significantly increased the Bayesian

evidence compared to a single Sérsic model, in a precursor study of three SLACS galaxies (Nightingale

et al., 2019). The Sérsic profile is

𝐼 (𝑥, 𝑦) = 𝐼eff exp
−𝑘eff


(√︁

𝑞𝑥2 + 𝑦2/𝑞
𝑅eff

) 1
𝑛

− 1

 , (2.2.3)

where 𝐼eff is the surface brightness at the effective radius 𝑅eff , defined here in the intermediate axis

normalisation1, 𝑛 is the Sérsic index, and 𝑘eff is a normalisation constant related to 𝑛 such that 𝑅eff

encloses half of the total light from the model (Graham & Driver, 2005). The axis ratio and position

angle of each component are parameterized during the fitting process, using elliptical components as

in equation (2.2.1). Aside from the two components’ common centre, all free parameters are fitted

independently of each other to allow for more complex light distributions. For example, the flux

ratio of the two Sérsics is unconstrained, and the profiles may be elongated by different amounts and

rotationally offset from one another.

1This definition keeps the area enclosed within a given isophote constant as 𝑞 is varied, and is distinct from ‘major axis
normalisation’ where the term (𝑞𝑥2 + 𝑦2/𝑞) would instead be (𝑥2 + 𝑦2/𝑞2).
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We model the distribution of light in the source galaxy as either a single Seŕsic profile or using a

pixelated source reconstruction depending on the phase of the automated procedure, described in

Section 2.4.3. The source galaxy is ultimately reconstructed on an adaptive Voronoi mesh, for which

the procedure is described in detail in Section 2.4.2.

2.3 Data

2.3.1 Lens sample selection

We analyse strong gravitational lenses around massive elliptical galaxies drawn from the SLACS

(Bolton et al., 2008b) and BELLS GALLERY samples (Shu et al., 2016a). The lenses in the SLACS

sample were identified using SDSS spectroscopy to find higher redshift emission lines after subtracting

a principle component model of the foreground galaxy spectrum (Bolton et al., 2006). This technique

was modified for the GALLERY survey, to specifically select even higher redshift Ly𝛼-emitting (LAE)

source galaxies (Shu et al., 2016a). Spectroscopic redshifts of the lens and source are known, and

follow-up high resolution imaging has been carried out for all systems.

To keep the data quality reasonably uniform (as it would be for a large future survey), we restrict the

SLACS sample to the 43 lenses imaged to at least 1-orbit depth in the HST Advanced Camera for

Surveys (ACS) F814W band. We add the 17 grade-A confirmed LAE lenses from GALLERY, all of

which have been observed to 1-orbit depth in the HST Wide Field Camera 3 (WFC3) F606W band.

Several systems have second or third foreground lenses of low mass. However, for this first attempt at

automation we shall try to fit only a single main lens. Therefore, we have not considered GALLERY

lens J0918+4518, which has two equally bright lens galaxies. We end up with a set of 59 lenses.

2.3.2 Data reduction

HST imaging of both the SLACS and GALLERY samples was reduced using custom pipelines. The

procedure for the SLACS sample is described in Bolton et al. (2008a) and produces images with

0.05”pixels; the procedure for GALLERY is described in Brownstein et al. (2012) and Shu et al.

(2016b), and produces images with 0.04”pixels. The point spread function (PSF) was determined for

both samples using the Tiny Tim software Krist (1993). The aforementioned papers also describe an

optional method to subtract the lens galaxy’s light by fitting it with a b-spline. Our pipeline benefits

from fitting the lens light simultaneously with its mass, so we shall generally not use the b-spline data.

However, our pipeline struggles to automatically deblend the lens and source light of three systems,

so we shall try the b-spline data there.
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2.4 Method

2.4.1 Overview

Our strong lens analysis is carried out using the software PyAutoLens2, which is described in N18,

building on the works of Warren & Dye (2003, hereafter WD03), Suyu et al. (2006, hereafter S06)

and N15.

To fit a lens model to an image, PyAutoLens first assumes a parameterisation for the distribution of

light and mass in the lens, and the distribution of light in the source, using the parametric profiles

described in Sections 2.2.1 and 2.2.2. The parameterised intensity 𝐼 of the lens light is evaluated at the

centre of every image pixel, convolved with the instrumental PSF, and subtracted from the observed

image. The mass model is then used to ray-trace image-pixels from their image-plane positions 𝜃

to source-plane positions 𝛽 (via the lens equation 1.4.3). The source analysis finally follows, which

PyAutoLens performs using one of two approaches: (i) parametric profiles in the source-plane (e.g.

the Sérsic profile) are used to simply evaluate 𝐼 at every value of 𝛽; (ii) a pixelized source reconstruction

is performed on an adaptive Voronoi mesh, where the values of 𝛽 are used to pair image-pixels to

the Voronoi source pixels which reconstruct the source (see WD03, S06, N15 and N18 for a full

description of lensing analyses with pixelized source reconstructions).

The following link (https://github.com/Jammy2211/autolens_likelihood_function) con-

tains Jupyter notebooks that provide a visual step-by-step guide of the PyAutoLens likelihood function

used in this work. The notebooks aims to clarify this and provides links to all previous literature de-

scribing the PyAutoLens likelihood function, alongside an explanation of the technical aspects of the

linear algebra and Bayesian inference. We provide a brief description of the PyAutoLens likelihood

function below, but we recommend these notebooks to the interested reader if anything is unclear.

2.4.2 Source Reconstruction

After subtracting the foreground lens emission and ray-tracing coordinates to the source-plane via

the mass model, the source is reconstructed in the source-plane using an adaptive Voronoi mesh

which accounts for irregular or asymmetric source morphologies (see Figure 2.1). Our results use

the PyAutoLens pixelisation VoronoiBrightnessImage, which adapts the centres of the Voronoi

pixels to the reconstructed source morphology, such that more resolution is dedicated to its brighter

central regions (N18).

2The PyAutoLens software is open source and available from https://github.com/Jammy2211/PyAutoLens

https://github.com/Jammy2211/autolens_likelihood_function
https://github.com/Jammy2211/PyAutoLens
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Pipeline Phase Galaxy
Component Model Varied Prior

Info
Phase

Description

Source
Parametric

SP1 Lens light Sérsic + Exp ✓ - Fit only the lens light model and subtract it from
the data image.

SP2
Lens mass SIE + shear ✓ - Fit the lens mass model and source light profile,

comparing the lensed source model to the lens
light subtracted image from SP1.Source light Sérsic ✓ -

SP3

Lens light Sérsic + Exp ✓ -
Refit the lens light model with default priors and
fit the mass and source models with priors
informed from SP2.

Lens mass SIE + shear ✓ SP2

Source light Sérsic ✓ SP2

Source
Inversion

SI1

Lens light Sérsic + Exp SP3
Fix lens light and mass parameters to those from
the source parametric pipeline and fit pixelization
and regularisation parameters on magnification
adaptive pixel-grid.

Lens mass SIE + shear SP3

Source light MPR ✓ -

SI2

Lens light Sérsic + Exp SP3

Refine the lens mass model parameters, keeping
lens light and source-grid parameters fixed to
those from previous phases.

Lens mass SIE + shear ✓ SP3

Source light MPR SI1

SI3

Lens light Sérsic + Exp SP3 Fit BPR pixelization and regularisation
parameters, using the lensed source image from
SI2 to determine the source galaxy pixel centres.
Lens light and mass parameters are fixed to those
from previous phases.

Lens mass SIE + shear SP3

Source light BPR ✓ -

SI4

Lens light Sérsic + Exp SP3

Refine lens mass model parameters on the BPR
grid, keeping lens light and source-grid
parameters fixed to those from previous phases.

Lens mass SIE + shear ✓ SI2

Source light BPR SI3

Light
Parametric LP1

Lens light Sérsic + Sérsic ✓ -
Fit lens light parameters, with lens mass and
source parameters fixed to the result of the source
inversion pipeline.

Lens mass SIE + shear SI4

Source light BPR SI3

Mass
Total

MT1

Lens light Sérsic + Sérsic LP1 Fit the lens mass parameters, now with the slope
of the density profile free to vary within the
uniform prior [1.5-3.0], all other mass priors are
informed from SI4. The lens and source light are
fixed to those from the LP1 pipeline.

Lens mass PLEMD + shear ✓ SI4

Source light BPR SI3

MT1
ext

Lens light Sérsic + Sérsic LP1 An extension of the MT1 phase to ensure robust
error inference on parameters. The lens mass
parameters are re-fitted, capping likelihood
evaluations to a fixed value (See Section 2.5 for
details.)

Lens mass PLEMD + shear ✓ MT1

Source light BPR ✓ MT1

Table 2.1: Composition of the pipelines that make up our uniform analysis. Where prior info is not
passed from previous pipelines see Table B.2 for the specific priors used on each model parameter.
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The reconstruction computes the linear superposition of PSF-smeared source pixel images which best

fits the observed image. This uses the matrix 𝑓𝑖 𝑗 , which maps the 𝑗 th pixel of each lensed image to

each source pixel 𝑖. Following the formalism of (Warren & Dye, 2003, WD03 hereafter), we define

the vector ®𝐷𝑖 =
∑𝐽

j=1 𝑓𝑖 𝑗 (𝑑 𝑗 − 𝑏 𝑗)/𝜎2
𝑗

and curvature matrix 𝐹𝑖𝑘 =
∑𝐽

j=1 𝑓𝑖 𝑗 𝑓𝑘 𝑗/𝜎2
𝑗
, where 𝑑 𝑗 are the

observed image flux values with statistical uncertainties 𝜎j and 𝑏 𝑗 are the model lens light values. The

source pixel surface brightness values are given by 𝑠 = 𝐹−1𝐷 which are solved via a linear inversion

that minimizes

𝜒2 =

𝐽∑︁
j=1

[ (∑𝐼
i=1 𝑠𝑖 𝑓𝑖 𝑗) + 𝑏 𝑗 − 𝑑 𝑗

𝜎𝑗

]
. (2.4.1)

The term
∑𝐼

i=1 𝑠𝑖 𝑓𝑖 𝑗 maps the reconstructed source back to the image-plane for comparison with the

observed data.

This matrix inversion is ill-posed, therefore to avoid over-fitting noise the solution is regularized using a

linear regularization matrix 𝐻 (see WD03). Regularization acts as a prior on the source reconstruction,

penalizing solutions where the difference in reconstructed flux of these two neighboring Voronoi source

pixels is large. Our results uses the PyAutoLens regularization scheme AdaptiveBrightness, which

adapts the degree of smoothing to the reconstructed source’s luminous emission . This has three hyper

parameters, the inner regularization coefficient, outer regularization coefficient and a parameter that

controls how the outer and inner regions of the source plane are defined for regularization. The degree

of smoothing is chosen objectively using the Bayesian formalism introduced by Suyu et al. (2006).

The likelihood function used in this work is taken from (Dye et al., 2008) and is given by

−2 ln 𝜖 = 𝜒2 + 𝑠𝑇𝐻𝑠 + ln [det(𝐹 + 𝐻)] − ln [det(𝐻)]

+
𝐽∑︁

j=1
ln

[
2𝜋(𝜎 𝑗)2] . (2.4.2)

2.4.3 Automated Procedure

PyAutoLens

PyAutoLens is designed to approach lens modelling in a fully automated way (N18, Nightingale

et al., 2021a). This uses a technique we term ‘non-linear search chaining’, which sequentially fits lens

models of gradually increasing complexity. By initially fitting simpler lens models one can ensure

that their corresponding non-linear parameter spaces are sampled in an efficient and robust manner

that prevents local maxima being inferred. The resulting lens models then act as initialisation in

subsequent model-fits which add more complexity to the lens model, guiding the non-linear search on

where to look in parameter space for the highest likelihood lens models, ensuring the global maximum
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model has the highest chance of being inferred. Non-linear search chaining is performed using the

probabilistic programming language PyAutoFit (https://github.com/rhayes777/PyAutoFit),

a spin off project of PyAutoLenswhich generalises the statistical methods used to model strong lenses

into a general purpose statistics library.

To perform model-fitting PyAutoLens uses the nested sampling algorithm dynesty (Speagle, 2020),

which obtains the posterior probability distributions for a given lens model’s parameters. Nested

sampling’s ability to robustly sample from low dimensional (e.g. fewer than ∼ 30 parameters),

complex parameter space distributions makes it well suited to lens modelling. We use dynesty’s

random walk sampling for every model-fit performed in this work, which we found gave a significant

improvement over other sampling techniques owing to its better accounting of the covariance between

lens model parameters. Since nested sampling starts by randomly sampling from the prior, the size

and choice of priors directly impact the expected number of nested sampling iterations alongside how

likely it is that a local maximum is incorrectly inferred. As such, using more informative priors will

reduce the amount of time needed to integrate over the posterior and guide towards sampling the

highest likelihood global maxima solutions.

Non-linear search chaining allows us to construct informative priors from the results of one dynesty

search and pass them to subsequent model-fits, thereby guiding them on where to sample parameter

space. This uses a technique called prior passing (see N18), which sets the prior of each parameter

as a Gaussian whose mean is that parameter’s previously inferred median PDF (probability density

function) value and its width is a customisable value specific to every lens model and parameter. The

specific order of prior passing used in this study is given in Table 2.1. The prior widths have been

carefully chosen to ensure they are broad enough not to omit valid lens model solutions, but sufficiently

narrow to ensure the lens model does not inadvertently infer local maxima. More quantitatively, the

prior widths are typically greater than ∼ 10 times the errors we ultimately infer on each parameter,

meaning it has negligible impact on the posterior (see Section 2.5).

User Setup

In this work, we use the standardised Source Light and Mass (SLaM) pipelines that are available, and

fully customisable, in PyAutoLens. From these, we construct a pipeline that chains together a total

of 11 dynesty searches which we apply to every lens in our sample, which we describe in detail in

Section 2.4.3. Before we run the SLaM pipelines a few brief pre-processing steps must be carried out;

we describe those here, as well as our chosen pipeline settings.

We define a circular mask centred on the lens galaxy that defines the image pixels we fit to. For the

https://github.com/rhayes777/PyAutoFit
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SLACS and GALLERY lenses we use a standard size of 3.5′′ and 3.0′′ radius, respectively. This is

increased to 4.0′′ for the SLACS lenses J0912+0029 and J0216-0813, and for the GALLERY lens

J0755+3445. All image pixels outside this mask are completely omitted from the analysis, meaning

they are not traced to the source plane and included in the source reconstruction procedure.

We create scalable noise maps, unique to each lens, that define any regions inside the mask that we do

not wish to fit (e.g. unrelated astronomical sources projected by chance along adjacent lines of sight).

In these regions the image values are scaled to near zero and the noise-map values to large values

such that the likelihood calculation effectively ignores them. Such areas of high flux would otherwise

be indistinguishable from the source flux to the fitting procedure. We adopt this noise map approach,

over the complete removal of such regions, since image-pixels are still traced to the source-plane and

included in the source reconstruction procedure. This avoids creating discontinuities or ‘holes’ in

the source pixelisation which can degrade the quality of the overall reconstruction. The maps are

produced in a graphical user interface (GUI) available in PyAutoLens, designed to reduce the human

time necessary for creating each unique map (∼1 minute per lens). We acknowledge this task is overly

time-intensive when considering the incoming samples of tens of thousands of lenses and provide a

discussion of possible routes to automation of this pre-processing step in Section 2.7.1.

Finally, we store an array containing the coordinates of the pixels containing the peak surface brightness

of each multiple image of the source galaxy, again selected by the user via a GUI. These coordinates

are used to remove local maxima from the parameter spaces explored throughout the pipeline. In

practise, this is done by discarding any models where the ray-traced points in the source plane are

not within a positions threshold value of each other. This value is initially set to 0.7′′2. Both the

threshold and the positions themselves are then iteratively updated throughout the SLaM pipeline,

by solving the lens equation using the maximum likelihood mass model estimated in a previous fit.

For each iteration, the value is set to three times the separation of the positions found after solving

the lens equation or a value of 0.2′′, whichever is largest. This ensures that, as we progress from

parametric to pixelised source reconstructions, we avoid the under and over-magnified solutions that

can be problematic for these methods Maresca et al. (2020).

2This choice of arcsecond value reflects a low threshold for what we consider a plausible lens model, removing only
extremely unphysical mass models. For example, without it the mass model could choose to be close to zero by fitting a
source to only one multiple image with its centre aligned directly behind that image. We note this means we do not require
the locations of the multiple images to be extremely accurate.



2.4. Method 37

Uniform Analysis

The uniform analysis ultimately aims to constrain the parameters describing the mass and light

distributions. The lens galaxy’s mass is parameterized as a PLEMD (equation 1.4.14), while the lens

light is modelled as a double Seŕsic profile, which is a sum of two Sérsic profiles (equation 2.2.3)

with a common centre. This is achieved by reconstructing the source galaxy’s light distribution on

an adaptive Brightness-based Pixelisation and Regularisation (BPR) grid. The uniform analysis is

constructed from multiple pipelines that each focus on fitting a specific aspect of the lens model which

we describe below. For an overview of the composition of the overall method see Table 2.1. A scaled

down version of this pipeline was used by Cao et al. (2020) to model fifty simulated strong lenses.

We begin with the Source Parametric (SP) pipeline that fits the foreground lens galaxy’s light profile,

alongside a robust initialisation of less complex models for the mass distribution of the lens and light

distribution of the source galaxy. The lens mass is modelled as an SIE (equation 1.4.14 with 𝛾 = 2)

plus external shear. The lens light is modelled by the sum of a Sérsic and Exponential (equation 2.2.3

with n=1) profile. The source galaxy’s light is described by a single Sérsic profile; this is key to the

initialisation of the model using the SP pipeline, as it allows us to compute an initial estimate of the

mass profile without dynesty getting stuck in a local maximum (as methods with a pixelised source

frequently do; N18, Maresca et al. 2020).

The Source Inversion (SI) pipeline then refines the lens galaxy’s mass distribution by modelling the

source galaxy using an adaptive pixelisation. This allows more realistic morphologies of the source

galaxy to be recognised, which in turn improves the model for the lens galaxy’s mass. The pixelisation

and its pixel-to-pixel regularisation are described by a set of hyper-parameters (see Section 2.4.2

for more details), that are fitted for as free parameters in the fit. These are first initialised using a

Magnification based Pixelisation and Regularisation (MPR) grid. The source model from this fit is

then used to inform the the BPR pixelisation that adapts to the surface brightness of the source galaxy,

thereby reconstructing areas of high flux with higher resolution and lower regularisation relative to

areas of low flux.

The Light Parametric (LP) pipeline re-fits the lens galaxy’s light profile. This produces a more

accurate estimate of the lens galaxy’s light than previously, because the lensed source galaxy’s light is

now reconstructed using the Voronoi pixelisation, thereby reducing residuals which otherwise impact

the lens light model fit. The lens light model is now composed of two Sérsic profiles (the second

component now has a free Sérsic index). This fit is performed using broad uninformative priors

and thus does not use any information about the lens galaxy’s light profile estimated by the previous

pipelines.
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Finally, the Mass Total (MT) pipeline extends the complexity of the model of the lens galaxy’s mass

to that of the PLEMD (equation 1.4.14), whereby the slope of the density profile (𝛾) is now a free

parameter in the model. A uniform prior between 1.5 and 3 is assumed on the slope. To ensure robust

error inference on the parameters of our final model, the MT phase is extended by re-running the same

model with a ‘likelihood cap’ applied (see Section 2.5 for details). The term ‘Mass Total’ is used to

distinguish this pipeline from the ‘Mass Light Dark’ SLaM pipeline which is not used in this work.

Instead of fitting a mass model that represents the total mass distribution this pipeline fits one that

separately models the light and dark mater (Nightingale et al., 2019).

Results Database

Upon completion of a uniform pipeline there are dynesty samples of 11 different model-fits, alongside

additional metadata describing quantities such as each parameter’s estimate, their errors and the

PyAutoLens settings. Across our sample of 59 strong lenses this creates over 500 lens modelling

results, necessitating tools to automate their processing and inspection. PyAutoFit outputs all

modelling results to a queryable SQLite database (Hipp, 2020) such that they can be easily loaded into

a Jupyter notebook or Python script post-analysis. By adopting PyAutoFit, all PyAutoLens results

support this SQLite database which is the primary tool we use for analysing lens modelling results.

2.5 Dealing with noise in likelihood evaluations

N15 demonstrated that pixelised source reconstructions can be subject to a discretization bias that

ultimately leads to the underestimation of errors calculated by a typical non-linear search (N15). This

is a result of discrete jumps in the likelihood as the lens model parameters are smoothly varied, which

hinders convergence and parameter marginalisation. N15 suggests this may be a common problem

for methods that employ pixelised sources. Here, we investigate the effects of the bias further using a

large sample of mock observations.

2.5.1 Mock data sample

We create 59 synthetic lenses similar to our SLACS and GALLERY lenses, to approximately resemble

the real data but with known truths. The mass distribution of each synthetic lens is a PLEMD; we set

the radius 𝑏 and ellipticity parameters 𝜀1 and 𝜀2 to those of the SIE lens model measured in previous

lensing analyses (see Table 5 of Bolton et al. (2008b) and Table 2 of Shu et al. (2016b) for SLACS

and GALLERY parameters, respectively). We set the slope 𝛾 of the density profiles to the lensing and
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Figure 2.2: We create a sample of mock lenses that closely resemble each of the 59 SLACS and
GALLERY lenses in our observed data sample, which we use for testing for data discretization bias.
We show eight of these mock images (right panel) alongside the real data image they were simulated
to represent (left panel with lens name). The mock images are simulated without light from the lens
galaxy, as such we compare to the data images where the lens galaxy’s (double Seŕsic) light profile
has been subtracted.

dynamics measurements of Auger et al. (2010a) (SLACS) and Shu et al. (2016b) (GALLERY). Where

the slope of the density profile is not available, we instead use the values inferred by preliminary runs

of our own strong lensing-only analysis. The surface brightness of each source galaxy is simulated

as an elliptical Sérsic, the parameters of which are set to those inferred during preliminary runs of

our Source Parametric Pipeline1. The redshifts of the lens and source are set to those known for the

corresponding real strong lens.

For every synthetic lens configuration, we create six mock observations, each with different realisations

of observational noise. To mimic the HST observations the lensed image of the source is generated

with a pixel scale of 0.05′′ (SLACS) and 0.04′′ (GALLERY) and convolved with the instrumental

point spread function (PSF) modelled from the actual image of the strong lens we are simulating.

The synthetic images include a flat sky background of 37.5 (SLACS) and 31.5 electrons per second

(GALLERY) and six different realisations of Poisson noise. We choose not to simulate light from

the lens galaxy since this has the potential to introduce systematic effects that we are not interested

in investigating with this sample (see Section 2.5). Across the resulting suite of 354 synthetic

observations, the S/N of the brightest pixel in each image ranges from 4 to 68. Figure 2.2 compares a

subset of simulated mock lenses with their real data counterparts.

1The Sérsic source parameters were optimised for an SIE mass profile but simulated with a PLEMD, leading to a
difference in magnification of the source galaxy in the mock data. As a result, some lensed sources were simulated with
lower signal-to-noise ratio (S/N) values than observed. In these cases we manually adjust their intensity value to give a peak
S/N≳3.
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Figure 2.3: Comparison of the log likelihood as a function of density profile slope when using a para-
metric source (pink curve) or Brightness-based pixelisation and Regularisation (BPR) pixelisations
to fit to mock data. All model parameters other than the slope are fixed to their true values. The
yellow line reveals the full level of noise in the likelihood due to the particulars of the source plane
pixelisation, by using a new random seed for the 𝑘-means algorithm that pixelates the source plane for
every likelihood evaluation. The other three colours use fixed 𝑘-means seeds, as is done throughout
the rest of this paper.

2.5.2 The origin of discretization bias and error underestimation

First, we investigate how discretization bias manifests in PyAutoLens, whose source pixelisation

differs in its implementation from N15 and N18. This is illustrated in Figure 2.3, which plots the

variation of the log likelihood of a lens model when changing only the slope parameter 𝛾 of the mass

distribution (fixing all other parameters to their true values). The parametric source model produces

a smooth likelihood curve. The BPR pixelisation methods produce a higher likelihood, but one that

is subject to seemingly random noise. These ‘spikes’ in log likelihood occur over small ranges in the

slope parameter; at least an order of magnitude smaller than the errors one infers for 𝛾 when fitting this

lens with a parametric source. This confuses the nested sampler, which converges to positive spikes

in likelihood that are tiny volumes of the multi-dimensional parameter space, and thus significantly

underestimate the total statistical uncertainty.

To perform a source reconstruction using a pixelised source, one must first define a procedure that

determines the shape and locations of the source-plane pixels, its discretization. For example, in the

case of PyAutoLens, one can alter the random seed that determines the centres of the Voronoi source

pixels. This element of choice makes the likelihood ill-determined, as is demonstrated in Figure 2.3

by the three different realisations of noise that are uncovered for the differently seeded grids (the only
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difference between the fits that produces the blue, orange, and purple likelihood surface is the choice

of k-means seed that determines the source-pixel centres). If we choose to pass a random k-means

seed to each individual fit (the yellow curve in Figure 2.3) the full scale of the noise due to different

source discretizations is revealed, likelihood evaluations of almost identical lens models can yield

very different likelihood values when the source pixelisation changes. Sampling the parameter space

when using a random k-means seed is therefore prohibitively slow, ultimately leading to the non-linear

search becoming stuck and being unable to converge.

In fact, repeat likelihood evaluations of an identical lens model also yield different likelihood values

if the source pixelisation’s discretization changes. Figure 2.4 shows the result of doing exactly this,

where log likelihood values are computed using an identical lens model 500 times (we use the best

fit lens model parameters from our fitting procedure to do this), with each computation using only a

different Voronoi mesh to reconstruct the source. The three different coloured histograms show the

results of this procedure for three of the six noise realisation images of a lens, that arrive at three

different best fit lens models. In all cases, the histograms of log likelihood values show that changes

in log likelihood of order ∼ 50 are possible by just changing the source pixelisation. To perform

parameter estimation, changes in log likelihood of order ∼ 10 define how precisely a parameter is

estimated at ∼ 3𝜎 confidence. Thus, if our log likelihoods can fluctuate by of order ∼ 50 in a

seemingly arbitrary way, this will be detrimental to parameter and error estimation.

Why does the log likelihood vary when we change the source pixelisation? For a given lens model,

there are certain source pixelisations where the centres of their Voronoi source pixels line up with the

locations of the traced image-pixels mapped from the image data in a ‘preferable’ way. Their alignment

allows the source pixels to reconstruct the image data more accurately, in a way that is penalised less

by regularisation (see S06). This produces what we consider an artificial ‘boost’ in likelihood.

Conversely, other pixelisations have a less fortuitous alignment, such that their reconstruction of the

image data is worse and they are more heavily penalised by regularisation, producing an artificial

‘drop’ in log likelihood. Figure 2.4 shows that the distribution of log-likelihoods appears to be

Gaussian, a property we will use when we put forward a solution to this problem.

We are now in a position to explain the spiky likelihood surface shown for the fixed seed BPR

pixelisations in Figure 2.3. Let us first consider in more detail the BPR pixelisation implemented in

PyAutoLens. To construct the source-pixel centres, the BPR pixelisation applies a weighted k-means

algorithm in the image plane to determine a set of coordinates that are adapted to the lensed source’s

surface brightness. This k-means algorithm is seeded such that the same image-plane coordinates are

inferred if the procedure (using the same inputs) is run multiple times (thus the completely random
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Figure 2.4: Histogram of log-likelihood values from re-fitting the best-fit model with a new 𝑘-means
seed 500 times, while keeping the model parameters fixed. The dashed line is the fitted Gaussian
curve to these values. The vertical line shows the maximum likelihood value of the best-fit parameters
found without a likelihood cap, which is always boosted by noise to extremely high likelihood. For
clarity we show three of the six distributions from different noise realisation images of the mock lens,
the same behaviour is evident in the three distributions not shown here.

changes to the source pixelisation used to construct the histograms shown in Figure 2.4 cannot explain

these likelihood spikes). These image-plane coordinates are then ray-traced via the mass model to the

source-plane and are used as the centres of the source pixels of the Voronoi mesh. To produce the blue,

orange, and purple curves shown in Figure 2.3, the coordinates that construct the source pixelisation

are therefore fixed in the image-plane, but vary smoothly with the mass model in the source plane. The

spiky likelihood surface can therefore be explained by how the continuous change in the positions of

the source pixels generating the Voronoi pixelisation produces discrete changes in the Voronoi mesh

(either creating new cells or changing the value of flux across cell boundaries - these changes may

occur less frequently with interpolation of the source pixel grid). The reconstruction then receives

boosts and drops in log likelihood as for certain mass models (values of 𝛾) since the positions of the

source pixels align more or less favourably with the data.

2.5.3 Testing for error underestimation in lens modelling

In the context of a full non-linear search which varies every lens model parameter, we expect that

likelihood spikes due to this preferable alignment of the source pixelisation with the data will be

present, negatively impacting our inference on each parameter’s PDF. To investigate this, we fit the
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full sample of 354 mock images (see section 2.5.1) with a uniform pipeline constructed from the

SLaM pipelines in PyAutoLens. The pipeline is the equivalent of that described in Section 2.4.3

but created for fitting images without the lens galaxy’s light distribution (see Appendix B.1 for an

overview of the pipeline). The pipeline, then, infers the mass parameters of the lens galaxy described

by a PLEMD, while reconstructing the source galaxy on a BPR pixelisation. We choose not to fit for

an external shear (which is not present in the lens models of the simulated data) in order to simplify

our investigation of likelihood boosts. Our main goal, here, is to determine if the error estimates

inferred by the non-linear search are being underestimated as a result of the data discretization bias.

Figure 2.5 shows the posterior PDFs obtained for individual runs of two lenses in our mock sample.

For each lens, six realisations of the image data with different noise maps were simulated and fitted,

which correspond to the six individual PDFs shown on each panel of Figure 2.5. Not only do the

PDF contours rarely contain the true parameter (represented by the grey dashed lines) they also rarely

overlap with each other. To verify this is due to data discretization bias, for each of the 354 synthetic

images we now produce 500 new likelihood evaluations — fixing all lens and source model parameters

to the best-fit values, but randomising the 𝑘-means seed used to pixelate the source plane. For 94.6%

of these 177,000 calculations, the new likelihood is lower than the best-fit model likelihood, indicating

that the likelihood values inferred by dynesty were systematically boosted relative to the majority

of possible source pixelisations. Figure 2.4 shows this for three example cases, where the solid lines

show the maximum log likelihood model inferred via dynesty compared to a histogram of these 500

models drawn using random 𝑘-means seeds.

The likelihood boosted solutions inferred by dynesty occupy a tiny volume of parameter space,

such that parameter marginalisation significantly underestimates the width of the posterior PDF. For

each of the lens model parameters we calculate the percentage of the 354 model fits that recover the

true parameter within their 1D marginalised 68.7%, 95%, and 99% credible regions (blue bars in

Figure 2.6). On average for all lens model parameters the truth is recovered only 30% or 50% of the

time at the 68.7% and 95% credible regions. These coverage probabilities are significantly smaller

than the percentage credible regions they were calculated for — the reported uncertainties are too

small.

2.5.4 Likelihood Cap for improving sample statistics

We now investigate the efficacy of placing a ‘log likelihood cap’ on the non-linear search, where this

cap is estimated in a way that seeks to smooth out likelihood spikes in parameter space. The cap

is computed by taking the maximum likelihood lens model of the non-linear search inferred by the
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Figure 2.5: For two typical synthetic lenses, the posterior PDF of model parameters inferred from
mock observations. With a likelihood cap (yellow), these PDFs have sufficient width to include
the true value (crossed lines). Without a likelihood cap, the PDFs from mock data with different
realisations of observational noise (six other colours) are too narrow because of noise in the likelihood
evaluations. Fitted parameters shown are the mass-density slope (𝛾), mass normalisation (𝑅al), and
two components of ellipticity (𝜀1, 𝜀2); all other free parameters are marginalised over.
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Figure 2.6: Coverage probabilities of the lens model parameters with (pink) and without (blue) a
likelihood cap applied to the non-linear search. The thin bars give the coverage probabilities of
individual lens model parameters as labelled, and the wider bars represent the average of these values.

MT1
ext search in the SLaM pipeline and computing 500 likelihood evaluations using this model but

each with a different 𝑘-means seed. This process produces the histograms shown in figure 2.4, which

are fitted with a Gaussian whose mean then acts as the log likelihood cap. We then repeat the final

MT1 search of the pipeline (with identical parameters, hyper-parameters, 𝑘-means seed, etc.), but any

log likelihood evaluation now returns no more than this value. If a log likelihood is computed above

this cap, it is rounded down to the cap’s value before it is returned to dynesty. We note that this

assumes that dynesty has not converged on a local maximum in MT1. The yellow shaded contours

in Figure 2.5 show the PDFs inferred by MT1
ext using this log likelihood cap, which now appear larger,

smoother, and do not have undesirable properties such as islands and discontinuities that are seen for

the PDFs inferred without this cap.

When performed on our 354 synthetic images, the final parameter estimation now converges more

consistently for different realisations of noise (for the sake of visual clarity, Figure 2.5 only shows

one PDF, but all six PDFs do now overlap for each dataset). The coverage probabilities for the 1D

marginalised 68.7% or 95% and 99% credible regions have increased significantly for all lens model

parameters with the use of the likelihood cap (see Figure 2.6 for the comparison with and without the

likelihood cap). On average the true lens model parameters are recovered 61% and 80% of the time

at the 68.7% or 95% credible regions, respectively. Although we do not obtain full coverage, this is a

significant improvement in error estimation compared to not including the likelihood capped phase.

Furthermore, for each lens model parameter we compare the mean of the best fit values of the six
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noise realisations, and find that these are recovered 74% of the time at the 68.7% credible region on

average for all parameters. This suggests that the likelihood cap is producing errors that are consistent

with the uncertainty due to random noise in the image, and that our posteriors recover the true values

slightly less frequently than hoped due to systematic biases in particular lens configurations that offset

the inferred parameters from the truth.

Further testing is necessary to understand the systematics that result from the source discretization

bias as well as any systematic offsets in inferred lens parameters in particular lens configurations.

This would require a larger set of mocks than was simulated for this study (see Section 2.7.4 for

more discussion) and is beyond the scope of this work. At present, it appears that the likelihood

cap is effective at improving the coverage probability of the 68.7% credible region (only 7% shy of

achieving coverage for lens models parameters on average). Since the mock data was simulated to be

representative of the observed data, we assume this will be true of the errors on the data adopting the

same approach. As such, all errors quoted in this work are those at the 68.7% credible region of the

PDFs inferred by the likelihood capped MT1
ext phase.

2.6 Results

2.6.1 Automation

We now inspect the results of our automated modelling procedure on the SLACS and BELLS

GALLERY samples and quantify what fraction of lenses were fitted with a reliable lens model

without human intervention. To facilitate this, we visually inspect every lens model, first after the SP

pipeline and then again on completion of the uniform procedure. We label the final model of every

lens in one of four categories:

• Gold (54/59): The fit represents a physically plausible model of the lens and source.

• Silver (4/59): The fit represents a physically plausible model of the lens and source. However,

achieving this required changes to data pre-processing that may not be easy to automate (e.g.

masking, lens light subtraction), and may degrade the quality of the inferred lens model.

• Bronze (1/59): The fit represents a physically plausible model of the lens (with the correct

number of multiple images), but other features in the data (e.g. residuals from lens light

subtraction) visibly degrade the quality of the source model.

• Failure (0/59): The fit produces a physically implausible lens model (e.g. with an incorrect

number of multiple images).
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After a first blind run, we find 9 galaxies outside the “Gold” sample. In 8/9 cases, they went wrong

during the first SP pipeline. We determine what went wrong, describe simple interventions, and rerun

the pipeline. Our interventions successfully move all of these lenses into the “Bronze”, “Silver” or

“Gold” categories. Through this process, we suggest ways to reduce the failure rate in analyses of

future large samples of lenses. For future analysis of large lens samples, one can anticipate undergoing

this process on a subset of lenses before modelling the full sample.

If a lens ends up in the “Gold”, “Silver”, or “Bronze” categories, we consider its effective Einstein

Radius 𝑅Ein,eff to be measured accurately. If a lens is in the “Gold” or “Silver” categories, we also

consider more detailed quantities of the mass model (e.g. the slope 𝛾) to be reliable. Indeed, we shall

find our best-fit models broadly consistent with those from previous literature, in Sections 2.7.2 and

2.7.3.

Fully automated success

We immediately place 50/59 lenses (85%) in the “Gold” sample after the first, blind run of our

uniform pipeline. These models show low levels of residuals and physically plausible source galaxy

morphologies. Best-fit model parameters are listed in Tables 2.2 (SLACS) and 2.3 (GALLERY), and

reconstructions are shown in Appendix D.

Semi-automated success

Fits to 4/59 lens systems converge to models with the wrong number of lensed images. In all four

cases, the fits incorrectly converge to a highly elliptical mass distribution early in the SP pipeline, and

could not recover the better solution in the SI or subsequent pipelines. The model of J1451−0239

fits 4 images to what is (by eye) a 2 image system (Figure 2.7). Fits to J0237−0239 and J0856+2010

converge to single-image models, each missing a central counter-image that is close to the centre of

the lens galaxy and therefore difficult to disentangle from the lens galaxy’s light (Figure 2.8). The

model of J0841+3824 is multiply imaged, but its very faint counter image is in the wrong location

(Figure 2.9).

We fixed this by rerunning the pipeline for these lenses, but restricting the SP2 phase to more circular

mass models, via a uniform prior 𝜀𝑖 ∈[−0.2, 0.2], instead of a Gaussian with 𝜎 = 0.3. To better find

the global maximum likelihood solution for lenses J0237−0239, J0841+3824, and J0856+2010, we

also increased the number of dynesty live points to 600 from 200 in SP2 (this was not necessary for

J1451-0239, where a change has no consequences other than increased runtime). With these settings,
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Class Lens Name 𝑅Ein,eff 𝛾 q 𝜙 𝛾ext 𝜙ext

Gold

J0008-0004 1.15+0.007
−0.009 2.08+0.08

−0.07 0.72+0.03
−0.03 42+5.1

−6.1 0.023+0.018
−0.014 96+15

−23
J0029-0055 0.934+0.007

−0.008 2.32+0.13
−0.13 0.78+0.06

−0.07 22+9.3
−12 0.013+0.019

−0.012 11+32
−44

J0157-0056 0.912+0.013
−0.012 2.23+0.08

−0.09 0.56+0.07
−0.05 112+4.8

−7.6 0.182+0.021
−0.027 102+3.0

−3.2
J0216-0813 1.183+0.014

−0.011 1.99+0.05
−0.06 0.8+0.04

−0.03 75+9.2
−6.3 0.009+0.012

−0.011 2+37
−55

J0252+0039 1.024+0.004
−0.002 1.92+0.08

−0.11 0.89+0.02
−0.02 111+3.5

−4.0 0.024+0.005
−0.003 117+6.1

−6.4
J0330-0020 1.088+0.009

−0.012 2.15+0.02
−0.02 0.79+0.07

−0.08 94+11
−14 0.041+0.021

−0.018 54+12
−15

J0728+3835 1.244+0.012
−0.008 1.99+0.12

−0.1 0.68+0.05
−0.04 65+3.4

−3.4 0.068+0.015
−0.021 61+5.5

−6.3
J0737+3216 0.976+0.003

−0.002 2.28+0.07
−0.07 0.86+0.04

−0.03 96+5.4
−5.6 0.109+0.007

−0.011 10+1.7
−1.4

J0822+2652 1.129+0.011
−0.018 2.1+0.08

−0.07 0.54+0.04
−0.05 75+4.9

−4.3 0.1+0.021
−0.018 72+6.6

−6.3
J0841+3824 0.956+0.096

−0.063 2.27+0.2
−0.16 0.69+0.15

−0.14 117+24
−28 0.144+0.047

−0.031 117+6.8
−7.2

J0903+4116 1.261+0.005
−0.005 2.23+0.05

−0.05 0.88+0.04
−0.03 52+12

−7.6 0.062+0.01
−0.012 63+5.6

−4.9
J0912+0029 1.393+0.011

−0.007 2.14+0.05
−0.05 0.79+0.04

−0.04 27+8.1
−6.9 0.033+0.011

−0.012 126+12
−9.3

J0936+0913 1.081+0.004
−0.005 2.13+0.08

−0.08 0.79+0.05
−0.05 134+4.9

−5.8 0.061+0.013
−0.011 105+6.6

−7.4
J0946+1006 1.409+0.001

−0.001 2.06+0.03
−0.03 0.9+0.0

−0.01 68+1.8
−2.2 0.09+0.004

−0.003 68+0.79
−0.65

J0956+5100 1.314+0.002
−0.001 2.05+0.02

−0.02 0.79+0.01
−0.01 143+1.0

−1.3 0.066+0.003
−0.005 53+1.4

−0.97
J0959+0410 0.985+0.014

−0.017 2.08+0.07
−0.07 0.52+0.07

−0.1 59+5.3
−6.2 0.038+0.024

−0.025 60+18
−33

J1020+1122 1.065+0.011
−0.009 2.15+0.11

−0.12 0.54+0.04
−0.04 131+3.3

−2.8 0.159+0.023
−0.024 131+3.2

−4.3
J1023+4230 1.411+0.009

−0.009 1.95+0.16
−0.12 0.92+0.05

−0.04 177+14
−17 0.023+0.01

−0.009 68+18
−25

J1029+0420 0.947+0.01
−0.01 1.43+0.05

−0.06 0.62+0.02
−0.03 111+3.4

−3.4 0.152+0.02
−0.02 100+2.3

−4.5
J1032+5322 1.03+0.011

−0.007 2.11+0.02
−0.03 0.69+0.07

−0.05 143+5.5
−6.3 0.039+0.019

−0.019 167+13
−19

J1142+1001 0.908+0.024
−0.027 2.03+0.1

−0.1 0.49+0.11
−0.06 144+4.7

−4.7 0.21+0.04
−0.05 148+5.0

−6.3
J1143-0144 1.611+0.013

−0.014 2.15+0.03
−0.03 0.73+0.04

−0.04 116+5.6
−4.5 0.038+0.01

−0.01 166+13
−9.1

J1205+4910 1.218+0.008
−0.008 1.92+0.07

−0.09 0.74+0.08
−0.06 149+6.8

−5.6 0.019+0.011
−0.019 99+33

−28
J1213+6708 1.322+0.018

−0.023 2.8+0.07
−0.07 0.92+0.07

−0.11 3+74
−49 0.045+0.018

−0.019 9+15
−15

J1218+0830 1.217+0.01
−0.008 2.35+0.07

−0.06 0.35+0.03
−0.02 144+1.4

−2.0 0.353+0.011
−0.021 140+1.3

−0.96
J1250+0523 1.144+0.006

−0.005 1.84+0.04
−0.04 0.91+0.03

−0.04 129+7.2
−7.6 0.024+0.014

−0.01 132+15
−9.9

J1402+6321 1.349+0.005
−0.007 2.00+0.18

−0.13 0.72+0.04
−0.04 63+3.1

−2.6 0.030+0.019
−0.014 1+14

−9.9
J1420+6019 1.075+0.002

−0.002 1.94+0.04
−0.04 0.43+0.02

−0.02 111+0.45
−0.60 0.118+0.009

−0.009 110+1.1
−1.0

J1430+4105 1.481+0.002
−0.002 2.02+0.01

−0.01 0.91+0.01
−0.01 120+2.1

−1.9 0.088+0.002
−0.002 22+0.64

−0.53
J1432+6317 1.284+0.01

−0.009 1.79+0.06
−0.04 0.88+0.05

−0.05 102+12
−11 0.099+0.016

−0.016 115+3.8
−5.0

J1451-0239 0.96+0.017
−0.015 2.29+0.1

−0.11 0.54+0.06
−0.07 30+3.7

−4.5 0.193+0.042
−0.025 27+3.6

−3.1
J1525+3327 1.29+0.012

−0.007 1.92+0.06
−0.05 0.59+0.04

−0.04 117+2.8
−3.1 0.14+0.01

−0.011 87+3.1
−3.2

J1627-0053 1.217+0.002
−0.002 2.08+0.08

−0.09 0.84+0.03
−0.01 8+2.6

−3.2 0.019+0.005
−0.004 6+6.8

−7.9
J1630+4520 1.791+0.006

−0.004 1.96+0.09
−0.08 0.83+0.01

−0.01 70+2.7
−2.5 0.023+0.006

−0.004 59+7.6
−9.8

J2238-0754 1.268+0.004
−0.003 2.07+0.09

−0.07 0.83+0.03
−0.04 137+5.8

−6.0 0.004+0.007
−0.006 3+52

−35
J2300+0022 1.219+0.008

−0.005 2.55+0.07
−0.16 0.62+0.05

−0.04 74+3.8
−3.7 0.094+0.012

−0.018 9+4.0
−3.3

J2303+1422 1.628+0.007
−0.005 2.09+0.04

−0.04 0.53+0.05
−0.05 34+1.6

−1.4 0.002+0.007
−0.005 171+44

−49
J2341+0000 1.338+0.009

−0.005 2.12+0.06
−0.05 0.8+0.03

−0.03 81+3.7
−3.5 0.027+0.009

−0.014 167+8.9
−10.

Silver

J0959+4416 0.972+0.023
−0.02 2.5+0.19

−0.23 0.67+0.14
−0.1 83+16

−9.8 0.027+0.037
−0.026 88+57

−29
J1016+3859 1.004+0.026

−0.02 2.23+0.15
−0.2 0.56+0.13

−0.13 92+11
−10. 0.217+0.05

−0.042 113+6.1
−4.9

J1153+4612 1.029+0.007
−0.005 1.72+0.08

−0.1 0.61+0.03
−0.03 104+1.9

−1.6 0.181+0.013
−0.013 101+1.9

−2.1
J1416+5136 1.246+0.014

−0.018 2.0+0.01
−0.01 0.73+0.11

−0.09 103+7.9
−3.9 0.152+0.025

−0.032 108+4.7
−2.8

Bronze J1103+5322 1.065+0.007
−0.007 1.79+0.01

−0.01 0.53+0.04
−0.04 49+1.8

−1.5 0.103+0.013
−0.009 0+3.2

−2.2

Table 2.2: Best-fit physical parameters for SLACS lenses. These are derived quantities, obtained from
the varied parameters of the lens mass model (Table C.1). Lens light model parameters are presented
in (Table C.4).
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Class Lens Name 𝑅Ein,efff 𝛾 q 𝜙 𝛾ext 𝜙ext

Gold

J0029+2544 1.347+0.014
−0.012 2.05+0.12

−0.15 0.65+0.07
−0.08 128+6.7

−7.6 0.029+0.033
−0.018 149+40.

−31
J0113+0250 1.329+0.006

−0.005 1.77+0.15
−0.11 0.75+0.02

−0.02 178+2.8
−4.4 0.079+0.014

−0.012 15+3.9
−5.9

J0201+3228 1.713+0.011
−0.005 2.09+0.09

−0.1 0.78+0.03
−0.02 125+5.4

−3.6 0.063+0.016
−0.014 53+4.7

−5.7
J0237-0641 0.619+0.02

−0.025 1.91+0.18
−0.1 0.79+0.12

−0.09 131+30.
−17 0.027+0.044

−0.033 6+36
−55

J0742+3341 1.241+0.01
−0.013 2.21+0.06

−0.08 0.29+0.04
−0.04 56+3.4

−3.0 0.107+0.016
−0.023 44+6.4

−8.7
J0755+3445 2.073+0.005

−0.004 1.77+0.08
−0.05 0.53+0.01

−0.01 15+1.9
−1.5 0.24+0.006

−0.006 28+1.6
−1.1

J0856+2010 0.951+0.035
−0.04 2.23+0.08

−0.09 0.36+0.09
−0.06 45+5.9

−4.3 0.153+0.023
−0.03 93+6.5

−7.2
J0918+5105 1.645+0.005

−0.009 2.38+0.16
−0.18 0.78+0.04

−0.06 95+18
−9.4 0.259+0.034

−0.02 125+0.60
−1.3

J1110+2808 0.904+0.027
−0.026 2.03+0.09

−0.07 0.82+0.08
−0.07 77+22

−16 0.123+0.043
−0.028 55+7.1

−6.3
J1110+3649 1.151+0.001

−0.001 2.23+0.07
−0.08 0.77+0.02

−0.02 174+1.4
−1.5 0.025+0.005

−0.005 64+5.6
−5.8

J1116+0915 0.811+0.053
−0.054 2.22+0.16

−0.17 0.21+0.05
−0.05 86+4.3

−3.5 0.393+0.053
−0.046 88+3.6

−2.8
J1141+2216 1.283+0.027

−0.019 2.13+0.09
−0.11 0.58+0.09

−0.09 57+5.5
−7.6 0.043+0.026

−0.022 38+23
−30.

J1201+4743 1.171+0.004
−0.002 2.74+0.05

−0.21 0.82+0.06
−0.06 130+14

−7.8 0.069+0.004
−0.01 42+3.7

−3.4
J1226+5457 1.398+0.004

−0.003 2.24+0.07
−0.1 0.86+0.02

−0.02 130+6.6
−7.9 0.189+0.012

−0.012 156+0.76
−0.75

J2228+1205 1.21+0.024
−0.024 2.2+0.14

−0.1 0.51+0.1
−0.05 116+5.7

−8.0 0.202+0.026
−0.023 141+5.7

−3.3
J2342-0120 1.091+0.006

−0.004 2.34+0.07
−0.09 0.44+0.05

−0.03 114+3.6
−2.5 0.13+0.009

−0.016 94+4.4
−2.6

Table 2.3: Best-fit physical parameters for BELLS GALLERY lenses. These are derived quantities,
obtained from the varied parameters of the lens mass model (Table C.2). Lens light model parameters
are presented in (Table C.3).

J1451-0239

1”

Subtracted Image

0.0 0.1

1”

Model Image

0.0 0.1

1”

Residuals

−2 0 2

(a) Unsuccessful model fit in the Source Paramet-
ric pipeline.
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Figure 2.7: (a) Model fits for the system that misses the counter image. (b) After tightening the
prior on the elliptical components of the mass distribution to 𝜀𝐼 ∈[−0.2, 0.2], the system is fitted
successfully, and is classified as a “Gold” model.
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(a) Unsuccessful model fit in the Source Paramet-
ric pipeline.
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(b) Successful model fit on completion of the
pipeline.

Figure 2.8: (a) Model fits for the systems that fail to fit the counter image in the Source Parametric
phase. (b) After tightening the prior on the elliptical components of the mass distribution to 𝜀𝐼 ∈[−0.2,
0.2], the systems are fitted successfully, and are classified as “Gold” models.
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(a) Unsuccessful model fit in the Source Paramet-
ric pipeline.
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(b) Successful model fit on completion of the
pipeline.

Figure 2.9: (a) Model fits for the system that misses the counter image. (b) After tightening the
prior on the elliptical components of the mass distribution to 𝜀𝐼 ∈[−0.2, 0.2], the system is fitted
successfully, and is classified as a “Gold” model.
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(a) Unsuccessful model fit in the Source Paramet-
ric pipeline.
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pipeline.

Figure 2.10: (a) Model fits for the lens systems that fail to fit successful models in the Source
Parametric pipeline as a result of bad lens light subtractions. The model reproduces lens light
emission that remains in the subtracted image and significant residuals can be seen where the source
emission is being ignored by the model. (b) For these systems we replace the data with b-spline
subtracted data and use custom masks to arrive at successful model fits classified as “Silver” models.

the automated modelling procedure is a success and the models (also shown in Figure 2.1) are moved

into the “Gold” sample.

These fits can be easily fixed by a more restrictive (or an all-round better) early initialisation. Our

solution of forcing fairly circular models works well for early-type galaxy lenses, but would need to

be rethought if the sample could include late-type galaxies with (edge-on) discs. Since spectroscopic

lens detection techniques also identify the lens galaxy type, a different prior could be used for each.

For now, we conclude that the biggest challenge of scaling up lens modelling to large samples is fitting

an initial, physically plausible lens model. Once a simple lens model is correctly initialised, nothing

prevents subsequent convergence of increasingly complex distributions of source light and lens mass.

We shall discuss this further in Section 2.7.1.

Success with human intervention

Fits to 3/59 lens systems converge to a model in which imperfect lens light subtraction has left a

spurious, residual ring of lens light that becomes considered part of the source. This again happens

during the early SP pipeline, after which the Sérsic model of the source is too large (Figure 2.10a).

Subsequent pixelised source models also include the residual lens light. Unlike the previous failure
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(a) Unsuccessful model fit in the Source Paramet-
ric pipeline.
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(b) Successful model fit on completion of the
pipeline.

Figure 2.11: (a) Model fits for the lens system that misses the counter image, instead fitting a counter
image to lens light residuals. (b) The lens requires rerunning with our own double Sérsic subtracted
data using the without lens light pipeline, as well as a custom mask, to arrive at the successful “Silver”
model fit.

modes, we could not find small changes to the automated pipeline that fix these model fits.

For lenses J1153+4612, J1016+3859, and J0959+4416, we instead use the b-spline subtracted data

(Section 2.3.2). These versions pre-subtract the lens galaxy’s light more cleanly than our double Sérsic

fit. Even then, we mask small remaining residuals near the centre of J1153+4612 and J1016+3859.

We finally refit all three lenses using the version of the pipeline (which was also for the mock data)

that does not fit the lens light. This results in successful models, as assessed by our visual inspection

criteria (Figure 2.10b). Although we arrive at successful model fits, we categorise these lenses in the

“Silver” sample, because the lens light was not fitted in a Bayesian manner.

The fit to 1/59 lens systems includes a counter-image that reproduces a residual knot of lens light

emission instead of the adjacent but fainter true counter-image (Figure 2.11). It can be fixed by

masking the knot of lens light and rerunning the pipeline. However, this process would be difficult to

automate with monochromatic imaging, so we place J1416+5136 in the “Silver” sample.

Remaining problematic lens

The lens J1103+5322 is the only system that is unable to pass our visual inspection criteria on

completion of the uniform pipeline. In the SP pipeline the model fits an appropriate model that fits

the global lensed structure of the source, however significant residuals are present in the fit. The

lens light subtraction leaves a quadrupole-like feature in the centre of the subtracted image as well

as flux extending past the Einstein-ring feature. The SP pipeline is able to fit a model that fits solely

to the source light, however continuation of the pipeline leads to a final model that reconstructs the

lens light residual structure, which in Figure 2.12 can be seen to extend far beyond the emission

from the source. This feature could impact the measurement of parameters which depend on the

gradient of the flux in the lensed source, like the slope of the mass model. Replacing the data with
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(a) Successful model fit in the Source Parametric pipeline.
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(b) Unsuccessful model fit on completion of the pipeline.

Figure 2.12: (a) The single lens J1103+5322 is successful on completion of the Source Parametric
pipeline, the parametric source avoids fitting to lens light residuals that remain in the subtracted image.
(b) However, on completion of the pipeline the pixelised source reconstruction is unable to avoid fitting
to these residuals, leading to this lens’s classification of “Bronze”.

the b-spline subtracted data resulted in similar residual lens light emission being reconstructed by the

source galaxy. Nevertheless, we believe that this model estimates 𝑅Ein,eff accurately, our measurement

is within 5% of previous literature measurements (see Section 2.7.2 for a discussion on the expected

uncertainty between these methods). As a result, we place this lens in our “Bronze” sample.

Model
Parameter

Mean Error Median Error
cap without cap cap without cap

b 0.036 0.010 0.027 0.005
𝛾 0.087 0.014 0.079 0.002
𝜀1 0.039 0.010 0.028 0.005
𝜀2 0.038 0.025 0.031 0.015
𝛾1ext 0.018 0.005 0.016 0.003
𝛾2ext 0.019 0.009 0.017 0.004
𝑥c 0.016 0.006 0.014 0.003
𝑦c 0.016 0.004 0.013 0.004

Table 2.4: Summary of the average 68% credible region errors inferred for all mass model parameters
with and without a likelihood cap applied to the non-linear search.
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Figure 2.13: Comparison of the distribution of inferred slopes (left) and their associated 1𝜎 credible
region (right) with and without a likelihood cap applied to the non-linear search.

2.6.2 Statistical uncertainty on measurements

Effect of the Likelihood Cap

In Section 2.5 we demonstrated the necessity of a likelihood capped phase (MT1
ext) to increase the

formal statistical errors inferred by the non-linear search such that they better recovered the true

parameters on mock data. We now quantify the affect this phase has on the uncertainties inferred on

real data (see Figure 2.13 for its affect on the density profile slope errors). On average, we find that

this approach has increased the inferred non-linear search errors by a factor of ∼ 5, as assessed by the

median of individual factor increases for all mass model parameters. We quote the median increase to

avoid bias from 5 lenses whose errors increase by a factor of over 1000 upon introduction of the log

likelihood cap. On investigation, we found these lenses correspond to those with the largest difference

between the likelihood inferred in MT1 and the likelihood cap applied to MT1
ext (defined as the mean

of 500 repeated likelihood evaluations with the same mass model, but different data discretizations).

Hence, these lenses are the ones that were in the most “likelihood-boosted” regions of parameter space

and as a result significantly underestimated the error. In the most extreme example, J0755+3445, the

error inferred on the slope parameter with a likelihood cap is 64453 times larger than that inferred

without a cap (see Ritondale et al., 2019, for a discussion of this lens). This highlights the scale

at which the certainty of parameters can be incorrectly inferred without consideration of the source

discretization bias. Further quantification of the average errors inferred at the 68% credible region for

each mass model parameter with and without a likelihood cap is given in Table 2.4.

Of all the mass model parameters, the likelihood cap has the largest effect on the density profile slope.
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Figure 2.14: Comparison of the distribution of inferred Einstein radii (left) and their associated
percentage error at the 1𝜎 credible region (right), with and without a likelihood cap applied to the
non-linear search.

The median factor increase in the error size before and after the cap is 24. The distribution of the 68%

credible region errors with and without the cap are plotted in the right panel of Figure 2.13. Notably

there are two extreme outliers in the distribution of errors inferred without a cap, that are the two largest

errors inferred across both distributions. For the lenses J1016+3859 and J0959+4416, both of which

were replaced with b-spline subtracted data as an intervention to achieve model fits, the error actually

decreases when the likelihood cap is applied. Although the uncertainty on the slope measurement is

in general, as expected, significantly increased in MT1
ext relative to MT1, the distribution of slopes

inferred does not change significantly (left panel of Figure 2.13). The mean increases from 2.08 to

2.12, and the standard deviation increases from 0.21 to 0.24.

We derive errors on the effective Einstein radius by calculating a posterior PDF from all possible

effective Einstein radii given the accepted non-linear search samples and their weights. We find the

inclusion of the likelihood cap increases the mean 68% credible region error on the effective Einstein

radius from 0.3% to 1.1%, and does not affect the distribution of 𝑅Ein,eff we infer (see Figure 2.14).

This suggests that, on average, the Einstein radius can be measured to ∼ 1% uncertainty, taking into

account uncertainties in the noise and source discretization. We note that this does not account for

any systematic error that would result from discrepancies between the assumed mass model and the

underlying mass distribution. However, although the mean uncertainty on 𝑅Ein,eff is low, two lenses

(J0841+3824 and J1116+0915) have anomalously large uncertainties of 8.6% and 6.6% respectively.

Hence, for some lens configurations it appears the Einstein radius can not be determined with such

certainty. This may be an indication that the underlying mass distribution for these lenses is more
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Figure 2.15: Inferred percentage errors on the Einstein radii at the 68% credible region as a function
of observable properties of the lens galaxy, and the S/N of the source. Parameters for linear fits to
these data are given in Table 3.2.

complex than the PLEMD that we assume in our model fits. This seems reasonable for these two

lenses since J0841+3824 is one of the few disky galaxies in the sample, with obvious extended spiral

features in the data, and J1116+0915 contains a visible mass clump to the North of the lens that we

do not fit for with our uniform approach.

What drives the precision of a lens model?

To investigate what properties of the lens or data (if any) drive the precision of the lens model, we

measure correlation coefficients between statistical uncertainty on the effective Einstein radius and

observable properties of the lens galaxy: including the Einstein radius itself, the ratio of the Einstein

radius to the effective radius, the lens redshift, the velocity dispersion of the lens, and the peak S/N

of the source (Figure 2.15). Linear fits show no clear trend with most of these parameters. The only

non-negligible correlation (defined as a non-zero gradient with >3𝜎 significance) is with the Einstein

radius. The correlation remains when we repeat the linear fit removing the two uncertainties that

are larger than 5% that could bias the relation, although the effect size does reduce by over a third
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Parameter Gradient Intercept
𝑅Ein,eff (′′) −0.027 ± 0.007 0.044 ± 0.008

𝑅Ein,eff (′′) [> 5% removed] −0.017 ± 0.004 0.029 ± 0.004
peak source S/N (0.0 ± 1.0) × 10−4 0.011 ± 0.004
𝑅Ein,eff/𝑅eff (−6.4 ± 4.0) × 10−4 0.015 ± 0.004

𝑧lens 0.0 ± 0.01 0.010 ± 0.004
𝜎

(
𝑘𝑚𝑠−1) (−3.4 ± 3.7) × 10−5 0.020 ± 0.010

Table 2.5: Linear fit results for the correlations with the uncertainty on the Einstein radius. Errors
quoted on the gradient and intercept are the 1𝜎 confidence intervals.

(Table 3.2).

2.7 Discussion

2.7.1 Can we truly leave no lens behind?

The success of our uniform pipeline makes us optimistic for the future of automated strong lens

analysis. We initially fitted 50/59 (85%) lenses in a blind run. We increased this to 54/59 (92%)

“Gold” lenses after tweaking model priors, 58/59 (98%) “Gold” or “Silver” lenses with some pre-

fitting and masking of lens light, and 59/59 (100%) including one successful model of the lens whose

model of the source includes poorly-subtracted residuals of lens light. With just one pipeline, we have

inferred parameters for 59/59 lenses that measure the lens galaxy’s Einstein radius and other mass

distribution parameters (of the power-law profile with an external shear we assume) that depend on

only the first derivative of the potential of the lens galaxy. For 58/59 systems, we measure parameters

describing their mass (including the parameters that depend on the gradient of the source flux such

as 𝛾). As well as this, we reconstruct a de-lensed image of the source galaxy, enabling study of its

morphology. For 54/59 systems, we measure parameters describing their mass distribution and light

distribution (as a double Sérsic profile) as well as reconstructing a de-lensed image of the source

galaxy.

The most challenging step in automating lens modelling is in the initial estimation of a simple lens

model (in this work, we use an SIE plus shear). Notably, once our early SP phases arrived at a

successful fit to this model, the rest of our pipeline always ran to completion, successfully increasing

the model complexity. We therefore recommend that effort to further improve automation should focus

on ‘lens model initialisation’ and find ways to avoid or flag the problematic solutions that occur at early

stages of the analysis. Provided that our sample of lenses is representative of the larger population

of lenses that will be discovered by future surveys, this strategy will lead to a high success rate for
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even complex mass fits and reduce the need for visual inspection of the results. An obvious starting

point to improve lens model initialisation by PyAutoLens would be to further simplify the non-linear

parameter space of the SP pipeline, for example by assuming models for the lens and source light with

fewer parameters (e.g. Massey & Refregier, 2005; Birrer et al., 2015; Tagore & Jackson, 2016; Bergé

et al., 2019).

Convolutional Neural Networks (CNNs) have also been suggested as a fast method for automated

lens fitting (Hezaveh et al., 2017; Levasseur et al., 2017; Morningstar et al., 2018). They provide a

particularly compelling solution to the problem of lens model initialisation. For example, Pearson et al.

(2021) combined a CNN with PyAutoLens, using models from the CNN to initialise the mass model

priors of a PyAutoLens model-fit. In the majority of cases tested on mock data, the authors argued

that a combination of the two methods outperformed either method individually. Indeed, the strengths

of a CNN (fast run-times, avoidance of unphysical solutions) complement the weaknesses of Bayesian

inference approaches like PyAutoLens. It is conceivable that a CNN could replace PyAutoLens’s

initial lens model fits altogether and allow the method to focus entirely on fitting more complex lens

models with well characterised errors: a task better suited to PyAutoLens’s fully Bayesian approach

than a CNN. At least, a CNN might be able to identify and isolate which lenses will eventually make

the gold sample, and reduce manual intervention Maresca et al. (2020). CNNs will also have an as-yet

unquantified fraction of failures. If the lenses where a CNN fails are different to where traditional

model-fitting approaches fail, combining the two may be key to maximising the success rate of lens

model initialisation.

The second major challenge for automated lens modelling is deblending the foreground lens light.

Within our sample, PyAutoLens could not deblend the lens and source light in 3/59 systems, and

required visual inspection to recognise these bad fits. In these cases, we instead used b-spline fits that

were created via a time-consuming manual process. This issue will be more prevalent in Euclid, owing

to its lower spatial resolution than HST and lens samples with smaller Einstein radii (Collett, 2015)

— both of which move the source’s light closer to that of the lens. Furthermore, our analysis included

pre-processing steps that manually removed the light of foreground stars and interloper galaxies via a

GUI, a task which is overly time-intensive for an individual scientist to perform on larger samples of

lenses.

We propose two directions for future work that could improve automatic deblending, CNNs being

the first approach. There are CNN architectures dedicated to the task of image deblending and

segmentation (these architectures do not attempt to estimate the lens model parameters). These have

been applied successfully on galaxy catalogues (Burke et al., 2019; Hausen & Robertson, 2020)
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and in studies of strong lenses (Rojas et al., 2021), with multi-wavelength imaging seen to improve

debelending quality. Furthermore, Pearson et al. (2021) showed that lens modelling with a CNN is

viable with the lens light still present. Alternatively, this task seems well suited to citizen science

(Küng et al., 2015; Marshall et al., 2016; More et al., 2016), whereby members of the public could use

a GUI to mark-out regions of the data they believe correspond to the lens, source and other objects.

The desired outputs of either approach are pixel-level masks describing where the source, lens and

other objects are in the image data, which could be used for the automated removal or masking of

contaminating light before lens modelling begins.

2.7.2 Einstein radius measurements and uncertainty

The statistical precision with which the Einstein radius can be measured is promising for many

possible scientific studies. For example, Sonnenfeld & Cautun (2021)’s proposed method to constrain

the population-level parameters of lens galaxies relies on being able to accurately measure the Einstein

radii of the sample of galaxies. Previous studies have attempted to account for the very small formal

statistical uncertainties on model parameters (in particular those inferred with parametric source

methods) and associated systematic uncertainties by comparing the fractional difference of parameter

estimates using different approaches. Bolton et al. (2008b) and Sonnenfeld et al. (2013a) reported a

typical expected systematic uncertainty on the Einstein radius of ∼2–3%. This value of uncertainty

is often adopted over (or combined with) those determined from the non-linear search. Furthermore,

given the Einstein radius is expected to be a model-independent quantity (E. E. Falco, M. V. Gorenstein

& I.I.Shapiro, 1985; Unruh et al., 2017; Cao et al., 2020), it is typically assumed that this amount of

uncertainty accounts for differences in the assumed parameterisation of the mass model.

Einstein radii compared to previous measurements

In a similar fashion to Bolton et al. (2008b) and Sonnenfeld et al. (2013b) we now compare our

measurements of Einstein radii with those that exist in the literature (see Figure 2.16) and estimate the

uncertainty introduced as a result of the different methods. The full SLACS and GALLERY samples

have previously been modelled with SIE profiles to measure the Einstein radii for supplementing a

dynamical analysis of the lenses (SIE models of SLACS by Bolton et al. 2008a and SIE or SIE+shear

models of GALLERY by Shu et al. 2016b). In this comparison, therefore, not only are the lensing

methods very different, but we have also assumed the more complex PLEMD plus external shear

(PL+ext) mass distribution for the lens galaxy. Compared to these previous measurements, we find
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Figure 2.16: The Einstein radii measured by PyAutoLens (𝑅AL
Ein) are generally consistent with those

measured by previous analyses of the SLACS (Bolton et al., 2008a) and GALLERY (Shu et al., 2016b)
lenses (𝑅lit

Ein). This shows the fractional difference between new and old measurements, as a function
of PyAutoLens axis ratio, 𝑞AL.
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Einstein radii with root mean square (RMS) fractional difference of 7.4%. This is larger than the

(empirically motivated) ∼ 2–3% uncertainty that is typically assumed.

Several differences between the methods could lead to variation between their inferred Einstein radii.

Bolton et al. (2008a) and Shu et al. (2016b) model the background source using either a single or

multiple Sérsic ellipsoid components, and both choose different approaches to the lens light subtraction

procedure than the one we adopt. While Bolton et al. (2008b) and Sonnenfeld et al. (2013b) investigated

differences like these, neither were concerned with differences in the assumed mass model. Indeed,

for a subset of 14 lenses that were also analysed by Shajib et al. (2021) assuming a PL+ext model, the

RMS fractional difference is only 1.6%, it may be that the reduced uncertainty is a result of fitting the

same mass model. Although, this is not of concern if the Einstein radius is indeed model-independent.

For this Cao et al. (2020) provide good evidence, showing that the assumption of the PL+ext exhibits

only 0.05 ± 0.17% systematic error on the Einstein radius relative to complex “MaNGA” mock data.

Notably, though, we find that five of the six lenses whose 𝑅Ein differ by over 10% in the SLACS and

GALLERY samples, are accompanied by extremely large values of external shear magnitude (ranging

from 0.16 to 0.39) when fitted with our PL+ext models. If these high shear lenses are removed from

the comparison, the RMS fractional difference drops to 4.2%. Cao et al. (2020) also demonstrated that

the asymmetry in complex mass distributions can lead to the inference of spurious external shears. On

average, they inferred an external shear magnitude of 0.015, despite the mock data being generated

without external shear. In this work, we infer an average of 0.096 shear magnitude for the SLACS and

GALLERY lenses. These large shear values may be partly a result of the additional complexity in the

asymmetry of real lenses. Cao et al. (2020) required the Multiple Gaussian Expansion components,

that represented the stellar mass, to share a common axis ratio and position angle — this may not be a

realistic representation of the angular structure of real lenses (Nightingale et al., 2019). Given that it

is the lenses with high external shears that differ most from previous literature measurements of 𝑅Ein,

we speculate that the assumption of a different mass model (in particular the assumption of external

shear) may drive the larger fractional uncertainty. This would imply that the Einstein radius is more

model-dependent than is often assumed. Further work to test this hypothesis would be valuable.

Statistical uncertainty on Einstein radii

We now consider the size of the errors we measure on the Einstein radius, based entirely on our

own PL+ext models. Our likelihood cap method (Section 2.5) addressed the small formal statistical

uncertainties on the mass model parameters and allows us to infer uncertainties that account for

differences in possible noise realisations and the choice of data discretization. Moreover, since pixel-
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grid methods have the flexibility to reconstruct the source with as much complexity as the data needs,

they are not subject to the overfitting that occurs in parametric source methods due to overly simplistic

source assumptions. With this approach, we measure a mean uncertainty on the inferred Einstein

radius of ∼1%, albeit with a wide range of outliers, and 2/59 lens configurations exceeding 5%.

Adopting a uniform uncertainty could therefore be problematic for some statistical inferences.

For example, determining the population level parameters of hundreds of thousands of lenses, as

described by Sonnenfeld & Cautun (2021); Sonnenfeld (2021a); Sonnenfeld et al. (2013b) might

suffer from such inaccurate individual posteriors as those with up to 5% uncertainty on the Einstein

radius. The increase in the width of the posteriors inferred as a result of the likelihood cap approach

demonstrated in this work should avoid biases in the population level parameters constrained in studies

such as these. However, they will in turn increase the amount of lenses required to be able to make

such a constraint. Moreover, the coverage probabilities of the lens model parameters with a likelihood

cap (see Figure 2.6) did not quite reach the expected level, potentially indicating an under confidence

in the posterior. Under confidence in the posterior could lead to biases in estimates of the population

parameters such as an overestimate in the scatter of the population (Wagner-Carena et al., 2021).

We discuss the importance of further testing of the confidence of the individual posteriors further in

Section 2.7.4.

For comparison, Cao et al. (2020) inferred an average of 0.01% statistical uncertainty on the Einstein

radius when fitting to mock data simulated using “MaNGA” galaxies without the use of a likelihood

cap. This order of magnitude difference from the uncertainties inferred in this study is likely a

combination of the use of the likelihood cap increasing the errors in this work, and differences in

the quality of the data. Cao et al. (2020)’s mock lensed sources are simulated with S/N of 50 and

have visible extended arcs (or complete Einstein rings) that the lenses with the largest errors on 𝑅Ein

inferred in this work do not, often appearing closer to point-like. Furthermore, they do not include the

lens galaxy’s light, a component which we have shown in this study can hinder the lens model fitting

procedure.

Based on the empirical relations we derived in Section 2.6.2, the certainty to which one can measure

the Einstein radius is remarkably independent of a number of data properties and galaxy observables.

For example, it might be expected that a higher S/N source galaxy image would tighten the constraints,

however this does not appear to be the case for the Einstein radius measurement. This is encouraging

for future surveys that will not achieve as high S/N as the HST data used in this study.

The only parameter we investigate that exhibits a statistically significant correlation with measurement

uncertainty on the Einstein radius is the Einstein radius itself. Measurements of the Einstein radius
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Figure 2.17: The statistical uncertainty on a galaxy’s total mass, when measured from its effective
Einstein radius, does not degrade with lens redshift 𝑧 ≲ 0.7 (top panel). This is in stark comparison to
most astrophysical observables. For example, the uncertainty on a galaxy’s total mass when measured
from stellar dynamics (velocity dispersion) increases for more distant galaxies because of cosmological
dimming and beam smearing (bottom panel).

become less certain for small Einstein radii, and therefore low mass galaxies. This could also be

relevant for surveys such as Euclid that are forecast to detect samples of lenses with smaller Einstein

radii (typically ∼0.5”according to Collett 2015). Interpolating from our empirical relationship, fitted

to the sample excluding the two with anomalously large uncertainty, a lens with this Einstein radius

should be measurable to ∼ 2.1% accuracy. However, since the pixel-scale and PSF of the Euclid VIS

instrument are roughly twice that of HST, this should be considered a lower limit.

Implications for studies of galaxy evolution

Notably, there does not appear to be a correlation between the lens redshift and measurement uncer-

tainty on the Einstein radius. This highlights the power of strong lensing as a tool for investigations

into galaxy evolution. If the lensing measurements do not degrade with redshift, then inferences of

how galaxy properties evolve will be well constrained even to high redshift. This is in contrast to

e.g. stellar dynamics data, where cosmological dimming effects reduce the certainty of the stellar

velocity dispersion (and therefore dynamical mass) of distant galaxies. The increase in fractional

uncertainty of the velocity dispersion, 𝜎e𝑟𝑟/𝜎, within our SLACS and GALLERY samples is shown

in Figure 2.17. Within both samples 𝜎err/𝜎 increases with redshift (the difference in fibre apertures

used for SLACS and GALLERY means direct comparison of their errors is not straightforward, albeit

they still highlight that in general higher redshift galaxy measurements are lower S/N).

This creates an interesting dichotomy between using strong lensing to study galaxy evolution and
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Figure 2.18: Our measurements of the density profile slope (left) and the magnitude of external shear
(right) in SLACS lenses, compared with previous, independent measurements by Shajib et al. (2021).

other methods. In lensing, provided we are able to find the lenses at the highest redshifts (surveys

such as Euclid and the Vera Rubin Observatory will observe lenses at redshift of up to ∼ 2 (Collett,

2015)) we can anticipate that we will be able to measure their properties as well as those at lower

redshifts. Issues that plague comparisons between the properties of low and high redshift galaxies

via a technique like stellar dynamics, for example beam smearing Tiley et al. (2019), will therefore

be less problematic. However, whilst comparing their properties may be more straightforward, strong

lens samples will have complicated selection effects Sonnenfeld (2022) that a carefully constructed

dynamics sample can more easily mitigate. The reduced lensing efficiency of lower mass galaxies

may also restrict the high redshift samples to only the most massive galaxies, albeit this is a limitation

for most observing techniques. A strength of lensing, therefore, is that it offers a different means by

which to study galaxy evolution that complements the strengths and weaknesses of other techniques.

2.7.3 Measurements of other lens model parameters

In addition to the total mass enclosed within the Einstein radius, strong lensing information also

constrains quantities like gradients of the distribution of mass, and the amount of external shear. This

is captured in a model-dependent way via the parameters of our PL+ext mass model (see Sonnenfeld

& Cautun 2021 for a model-independent expression of this information). We shall now compare our
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measurements of radial density gradient 𝛾 and shear magnitude 𝛾ext, to measurements made using

previous, independent analyses of overlapping sets of lenses.

Shajib et al. (2021) modelled 23 SLACS lenses, including 14 in our sample. Like us, they used a

uniform pipeline that simultaneously modelled the distribution of mass and light. They too described

the lens galaxy’s light as a double Sérsic profile whose centres are aligned. However, unlike us, they

fixed the Sérsic index of each to values of 𝑛 = 1 and 𝑛 = 4 (the exponential and de Vaucouleurs profiles

respectively) and join the axis ratios of the two profiles. A major difference in the two techniques lies

in the source reconstruction; Shajib et al. (2021) reconstructed the source using a Sérsic profile and

shapelet basis functions.

For all but one lens, Shajib et al. (2021) and our measurements of 𝛾 and 𝛾ext are consistent (Figure 2.18).

For the discrepant lens J2300+0022, PyAutoLens infers 𝛾 = 2.55 and 𝛾ext = 0.08, compared to Shajib

et al. (2021)’s 𝛾 = 1.85 and 𝛾ext = 0.03. We believe this discrepancy could be a result of the different

order of operations in a model fit. Shajib et al. (2021) initialise their lens model assuming 𝛾ext = 0.0

and relax this assumption once other components of the model are fit. In contrast, the first mass

model we fit in our analysis assumes priors on the shear parameters that allow values up to 𝛾ext = 0.2.

Indeed, for J2300+0022 our search yields a best-fit shear of 𝛾ext = 0.07. Discarding this lens, we find

a mean difference of −0.07 ± 0.07 between the slopes inferred by the two methods, where the error

is propagated from the standard error on the means of the two samples. On average, PyAutoLens

measures slightly shallower slopes than Shajib et al. (2021), although this is not a significant difference

– the mean discrepancy for the sample is consistent with zero at the current uncertainty level. A larger

sample of measurements may be able to discern if there are systematic differences introduced on the

density slope as a result of the lensing technique. We note that we measure a scatter of 0.17 between

the slope measurements suggesting there may be systematic uncertainty between the two methods.

Ritondale et al. (2019) modelled 17 GALLERY lenses, including 15 in our sample. Although they

do not adopt a uniform analysis pipeline, their lens modelling technique more closely resembles ours,

because they reconstruct the source galaxy using a pixelisation. On average, PyAutoLens measures

a 0.13 ± 0.21 steeper density slope (Figure 2.19). The scatter in this difference is comparable to the

average uncertainty that we infer for the GALLERY lenses (0.11) but an order of magnitude larger

than the average uncertainty inferred by Ritondale et al. (2019) (left panel of Figure 2.20). In fact,

the uncertainties inferred by Ritondale et al. (2019) more closely resemble those from PyAutoLens

before we used a likelihood cap to avoid source discretization bias (Section 2.5). This suggests that

discretization bias may also affect the pixelised-source method of Ritondale et al. (2019). Conversely,

the uncertainties derived by Shajib et al. (2021), whose analytic approach to source reconstruction
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Figure 2.19: Our measurements of the density profile slope (left) and the magnitude of external
shear (right) in BELLS GALLERY lenses, compared with previous, independent measurements by
Ritondale et al. (2019).

Figure 2.20: The statistical uncertainty on measurements of the radial gradient of the total lens
mass, reported by PyAutoLens are similar to those found by Shajib et al. (2021) for SLACS lenses
(left). However, the uncertainty reported by Ritondale et al. (2019) for GALLERY lenses (right) is an
order of magnitude smaller. That method uses a pixelised source, and may be subject to the source
discretization bias that we discuss in Section 2.5.
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can not be affected by discretization bias, are similar to ours with the likelihood cap (right panel of

Figure 2.20).

It is reassuring that independent analyses yield results that are consistent in many ways. However, the

relatively small number of lens systems in common to multiple analyses prevents much more detailed

comparison between codes or modelling assumptions. The inconsistencies in other aspects of results

highlights an urgent need for larger-scale tests.

2.7.4 Large-scale tests of lens modelling

A vital but unintended consequence of this paper, is a solution to, and better understanding of the

source discretization bias that previously caused parameter uncertainties to be underestimated. This

occurred in both synthetic and real lenses, as a result of noise in the likelihood evaluations of methods

using a pixelised source reconstruction (due to particular alignments of source pixels being arbitrarily

more or less penalised by regularisation). Our likelihood cap solution successfully reduced noise

and smoothed posterior PDFs. It increased the size of our uncertainties such that they had roughly

the expected level of coverage, and improved the recovery of all parameters in our synthetic data.

Although the likelihood cap was determined in an empirical way, the size of the inferred errors is

inherently linked to this choice of likelihood cap. It may be that a different choice of likelihood cap

could provide better coverage probabilities than the one we adopted. Further investigation would be

warranted to understand at a deeper level what causes these spikes in likelihood in pixelised source

reconstructions, as improvements may be possible by changing the approach to pixelising the source

plane, or regularising the pixelised source.

Our work shows the importance of testing strong lens modelling methods on larger samples than

previously attempted. Even our mock sample comprising 6 noise realisations of 59 lens configurations

yields insufficient statistics to determine whether the inferred central values and statistical uncertainty

on mass model parameters are consistent with the expectations of drawing each measurement from

a normal distribution. Equally, whilst there is evidence for small systematic biases in the estimates

of certain mass model parameters, we do not have enough unique lens configurations to determine

the primary causes. Given that we are just a few years away from modelling samples of tens of

thousands of lenses, tests of strong lens modelling methodology on synthetic data with complex mass

distributions (e.g. Mukherjee et al., 2018; Enzi et al., 2019; Cao et al., 2022; He et al., 2022) must

now scale up to ensure that error estimates are robust and systematic biases understood.
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2.7.5 Computational Costs

Every SLACS and GALLERY lens modelled in this work was analysed using a single 2x Intel Xeon

Gold 5120 x @ 2.20GHz CPU, on the Distributed Research Utilising Advanced Computing (DiRAC)

Data-Centric System on the COSMA7 machine at Durham University. Run times depend primarily

on the number of image pixels fitted after masking, which due to the standard 3.5” circular mask

used to fit most lenses is fixed. The lower resolution of SLACS lenses (0.05 ” pixel−1) means they

contain fewer image pixels than GALLERY lenses (0.04 ” pixel−1) and the fits were therefore faster.

For SLACS lenses, the source parametric pipeline takes between 10 − 24 hours, the source inversion

pipeline 10 − 36 hours, the light pipeline 10 − 72 hours and mass pipeline 6 − 48 hours. GALLERY

lenses take longer on average, where the source parametric pipeline takes between 10 − 36 hours, the

source inversion pipeline 10 − 48 hours, the light pipeline 12 − 144 hours and mass pipeline 12 − 72

hours. The scatter in run times is due to many factors: lens galaxy S/N, source galaxy S/N, lens

configuration, lens morphology, source morphology, etc.

Based on the longest GALLERY run times, the upper limit for the overall run time is 300 CPU hours.

For 100 000 strong lenses this would require 30 000 000 CPU hours over the 5 − 10 year lifetime of a

survey like Euclid, producing an upper limit of∼ 6 000 000 CPU hours per year. For the recent DiRAC

resources allocation call, this amount of CPU time is a ‘small’ project. We therefore anticipate that

the analysis performed in this work will not be limited by CPU resources in the near future. Based on

profiling of PyAutoLens, we anticipate the run time of a single lens will reduce by a factor of four

or above when fitting lower resolution wide-field imaging data (e.g. the resolution of Euclid data is

0.1 ” pixel−1). The 3.5” circular masks assumed throughout this work are also unnecessarily large for

many lens systems, and reducing the mask size to 2.5” speeds up the analysis by factors of three and

above.

2.8 Summary

Tens of thousands of strong gravitational lenses will be imaged in the next few years, but current

analysis techniques are labour-intensive. We use open source software PyAutoLens to develop a

fully automated, Bayesian analysis of all 59 strong galaxy-galaxy lenses that have been observed by

the Hubble Space Telescope (HST) under certain conditions. Adopting the open source software

PyAutoLens provides an optimistic outlook for the future of automated analysis: for 54/59 lenses

(92%) we achieved successful model fits (determined via visual classification) with no human inter-

vention. We illustrate why other fits initially went wrong, and present solutions that allowed us to
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infer accurate models for all 59/59 lenses (100%) and recommend steps necessary for analysing the

larger incoming samples. Notably, the difficulties primarily happen at the beginning of the analysis

when attempting to determine an initial, approximate, lens model — and often reflect confusion

between light from the foreground lens and background source. Once a simple model is initialised,

our pipeline worked flawlessly to automatically fit a sequence of more complex models that measure

more detailed properties of the lens galaxy. We therefore discuss how combining a Convolutional

Neural Network with a Bayesian approach like PyAutoLens could increase the automation success

rate whilst extracting maximum physical information from each strong lens.

We also use synthetic observations of ∼ 500 lenses to explain and solve a problem common to

pixel-based strong lensing methods that causes the statistical uncertainty on model parameters to be

underestimated. This is fundamentally due to noise in likelihood evaluations, caused by discretization

effects in pixelised reconstructions of the source galaxy. We implemented an empirical correction

that ‘caps’ the likelihood value to suppress noise. This significantly improves the measurement of

the synthetic lens parameters, and leads to error estimates on different noise realisations of identical

datasets that are more consistent with one another. On the real data we found this empirical correction

(using the likelihood cap) gave a five fold average increase in the inferred uncertainties on model

parameters. Comparing to previous literature results, we suggested this bias may be leading to

uncertainty under estimation in other studies that use similar methods. Given the incoming samples

of tens of thousands of strong gravitational lenses, we believe more detailed study of such systematics

on larger mock samples is key.

Accurately knowing the systematic uncertainty on measurements of Einstein radius (total galaxy mass)

will become vitally important for large samples of lenses, which beat down statistical uncertainty.

Previous studies often assume a constant uncertainty of 2–3%. We find substantial variation between

lenses, with a mean of 1% and 57/59 lenses with < 3%, but 2/59 lenses with > 5%. Future analysis of

large samples, where careful control of systematics is paramount, must therefore adopt more rigorous

errors. Our Einstein radii measurements assumed only a single type of parametric mass model and we

do not investigate the degree of uncertainty that results from making different mass model assumptions.

Notably, the uncertainty on our measurements of Einstein radii (and those of the lens models in

general) do not increase with redshift. That is, we learn as much about the strong lenses at redshift

∼ 0.7 as those at redshift ∼ 0.1. This is in stark contrast to other astrophysical probes of a galaxy’s

structure (e.g. dynamics, morphology), where cosmological dimming effects and beam smearing

degrade measurements of distant galaxies. Nor does uncertainty on Einstein radii depend strongly

upon the signal-to-noise ratio of our data. This makes strong lensing a compelling technique to study



2.8. Summary 70

galaxy evolution: once high redshift strong lenses are found, it should be straight forward to measure

their properties. Of course, the technique has its own challenges, for example complicated selection

effects, but it should nevertheless provide an invaluable tool for studies of galaxy evolution over the

next decade.



Chapter 3

Beyond the bulge-halo conspiracy?

Density profiles of Early-type galaxies

from extended-source strong lensing

3.1 Introduction

Early-type galaxies (hereafter ETGs) are the end product of the hierarchical merging paradigm central

to the Λ-Cold Dark Matter (CDM) cosmological model (White & Rees, 1978; Cole et al., 1994). They

are built from the successive mergers between more and more massive objects, and hence provide

tests of the entire process of galaxy formation and evolution. The distribution of mass in their baryon-

dominated inner regions are especially sensitive, because baryonic physics significantly redistributes

mass at various stages of evolution. The inner mass-density profile may become steeper as a result

of higher baryon densities from dissipative gas cooling processes and the inflow of gas (Blumenthal

& Faber, 1986; Silk, 1993; Velliscig et al., 2014). They may become softened by outflows of gas

driven by feedback processes such as active galactic nuclei and supernovae (Velliscig et al., 2014;

Dubois et al., 2013). Measurements of ETG inner mass-density profiles are therefore fundamental in

understanding the relative strength and timing of these physical processes.

Observations have shown that the mean distribution of dark plus baryonic matter in the central few

effective radii of ETGs is such that their combined density profile is roughly isothermal, 𝜌(𝑟) ∝ 𝑟−𝛾 ,

with 𝛾 ∼ 2. This has been consistently observed by many observational techniques: dynamically

modelled local ETGs (Tortora et al., 2014; Serra et al., 2016; Li et al., 2019; Cappellari et al., 2013),

X-ray studies (Humphrey et al., 2006; Humphrey & Buote, 2010), weak lensing (Gavazzi et al.,

71
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2007), and combined strong lensing and dynamical modelling (Koopmans et al., 2009; Auger et al.,

2010a; Li et al., 2018). The latter is the most prevalent of these results, with the ‘standard’ procedure

developed by Treu & Koopmans (2002) constraining the total mass inside two different radii: the

galaxy light’s effective radius from measurements of the velocity dispersion, and the galaxy mass’s

Einstein radius from lensing. In this way, Auger et al. (2010a) measured a mean logarithmic density

slope ⟨𝛾⟩ = 2.078 ± 0.027, with intrinsic scatter between galaxies of 𝜎𝛾 = 0.16 ± 0.02, for the largest

single sample of strong lenses that make up the Sloan Lens ACS (SLACS) survey (Bolton et al.,

2008a).

The near-isothermality of mass in ETGs is often termed the ‘bulge-halo conspiracy’, referring to the

apparent coincidence that despite diverse assembly histories, and although neither their baryonic nor

dark matter components follow a single power law, their sum approximately does (Treu et al., 2006;

Humphrey & Buote, 2010). The galaxies’ homogeneity is further evident in the well-known ETG

scaling laws such as the fundamental plane relations (Djorgovski & Davis, 1987) and the 𝑀BH − 𝜎c

relation (Hyde & Bernardi, 2009). Furthermore, the total mass-density slopes correlate with a number

of galaxy parameters including effective radius, stellar surface mass density, and central dark matter

fraction, as well as being observed to mildly soften with increasing redshift up to 𝑧 ∼ 1.0 (Auger et al.,

2010a; Ruff et al., 2011; Sonnenfeld et al., 2013a; Li et al., 2018).

Numerical simulations are invaluable in understanding the origin of these empirical relations, and are

now beginning to account for the physical processes involved in their formation. The current consensus

for the formation of ETGs, often referred to as a ‘two phase’ assembly (Oser et al., 2010), begins

with an initial stage of active star formation and adiabatic contraction at redshift 𝑧 ≳ 2, followed by

growth through major and minor merging events to the present (Naab & Ostriker, 2009; Van Dokkum

et al., 2010; Remus et al., 2017). However, details of the physical processes that modify the mass

distributions throughout this formation process are yet to be well understood. Fine-tuning between

the baryonic and dark matter distributions would be necessary to produce the distribution of near-

isothermal total mass profiles that are observed, a result hydrodynamic simulations have been unable

to accomplish whilst simultaneously reproducing the observed distribution of dark matter fractions

(Duffy et al., 2010; Dubois et al., 2013; Xu et al., 2017). It is unclear whether this discrepancy is a

result of an inadequacy in the cosmological simulations or a systematic bias in the determination of

the observed mass-density slopes.

Comparing observed and simulated mass-density slopes is difficult. Wang et al. (2019) demonstrated

that IllustrisTNG reproduces many of the observed mass-density slope correlations, assuming the best

fit total power-law density slope within the radial interval [0.4R1/2, 4R1/2] of their simulated sample
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of ETGs. Although tensions do exist, the authors find a negative correlation with central velocity

dispersion (𝜎) for the simulated galaxies whereas observational datasets tend towards a positive

correlation. This is the case for both strong lensing and dynamical observations. Li et al. (2019) show

that both IllustrisTNG and EAGLE simulations are unable to reproduce the 𝛾−𝜎 trend observed from

a dynamical analysis of over 2000 galaxies in the SDSS-IV (Sloan Digital Sky Survey IV) MaNGA

survey; both simulations typically predict shallower slopes than those observed for the high velocity

dispersion galaxies in their sample.

Furthermore, cosmological simulations typically exhibit a mild steepening of the density slope with

redshift up to 𝑧 ∼ 2.0, in contrast with the mild softening observed (Johansson et al., 2012; Remus

et al., 2017; Xu et al., 2017). Xu et al. (2017) and Remus et al. (2017) demonstrated the Illustris and

Magneticum simulations show better agreement with the observations when using a different estimator

for the power-law slope that better resembles the observational methods. However, the estimator differs

between the two studies, and a direct comparison to observations must still be approached with caution.

For example, Xu et al. (2017) note that their observational slope estimator results in a sampling bias

whereby the simulated sample have relatively lower mean slopes due to a larger fraction of systems

with lower mass and/or smaller normalised Einstein radii. An appropriate comparison would require

strictly adopting observational criteria to estimate the slopes and select the simulated samples. Further

to this, the necessary observational data for a large sample of galaxies out to high redshifts would

allow for a more complete comparison to the simulations.

In this work, we build on the results presented in Chapter 2, where we used strong gravitational

lensing alone to measure the total mass-density profiles of 59 lenses from the SLACS (Bolton et al.,

2006) and BELLS GALLERY (Shu et al., 2016a) samples. Previous lensing and dynamical analyses

exploited only one lensing observable, the Einstein radius, and inferred the logarithmic density slope

by combining this with measurements of stellar kinematics. However, in Chapter 2 we used the fact that

light rays emitted from opposite sides of an extended source are deflected by different amounts. Using

the lens modelling software PyAutoLens (Nightingale et al., 2018, 2021a), we fitted the full surface

brightness profile of observed arcs to constrain the total mass-density profile of these 59 lens galaxies.

The measurement was automated, to ensure that it will also be able to exploit the tens of thousands of

lenses expected to be observed by LSST and Euclid (Collett, 2015). Since this measurement uses only

imaging data, and does not require expensive spectroscopy for stellar kinematics, it has the potential to

measure the formation and accumulation of mass around galaxies out to redshift 𝑧 = 2.0 and beyond

(Sonnenfeld & Cautun, 2021; Sonnenfeld, 2021a, 2022).

We introduce the samples of lenses that we study in this work which have total mass density slopes
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Figure 3.1: Various galaxy quantities plotted as a function of redshift for the complete lens-
ing&dynamics sample. Stellar masses (hence stellar surface mass densities) have not been measured
for BELLS, GALLERY, or LSD samples. Where necessary throughout this study we instead use total
masses, derived from equation 3.2.2.

derived from either lensing-only, lensing and dynamics, or both, in Section 3.2. In Section 3.3 we

investigate the assumption of the power law mass distribution by comparing to what extent the two

methods infer the same slope. We then quantify the dependence of the slopes, measured with both

methods, on redshift in Section 3.4, before discussing the results in Section 3.5, and concluding in

Section 3.6. Throughout this work we assume a Planck 2015 cosmological model (Ade et al., 2016).

3.2 Observational Samples of Galaxies

3.2.1 Complete sample: Lensing & Dynamics (L&D) measurements from the litera-

ture

Hundreds of galaxy-scale strong lenses have been discovered by dedicated surveys during the past two

decades, with measurements of their mass profiles by e.g. Treu et al. (2006); Koopmans et al. (2006);

Auger et al. (2010a); Sonnenfeld et al. (2013a) and Li et al. (2018). The method, initially developed by
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Treu & Koopmans (2002), models the stellar plus dark matter distribution of total mass in each galaxy

as 𝜌 ∝ 𝑟−𝛾 . By further assuming a stellar density profile (treated as a massless tracer of the total

density profile), with effective radii fixed to those observed (typically from de Vaucouleurs models),

the spherical Jeans equations can be solved to calculate the velocity dispersion for a given model. The

total mass-density slope 𝛾 can then be constrained using the mass within the Einstein radius and the

stellar velocity dispersion by comparing the model values to those observed – the Einstein radius is

typically measured from fits to imaging data assuming a singular isothermal ellipse mass model (SIE)

(Kormann et al., 1994).

We have collated a “complete Lensing & Dynamics sample” of 123 lens galaxies from Sloan Lens ACS

(SLACS), (Bolton et al., 2006; Auger et al., 2010a), BOSS Emission Line Lens (BELLS) (Brownstein

et al., 2012), BELLS GALaxy-Ly𝛼 EmitteR sYstems (GALLERY) (Shu et al., 2016b,a), Strong

Lensing Legacy (SL2S) (Gavazzi et al., 2012) surveys, and Lenses Structure and Dynamics (LSD)

surveys Treu & Koopmans (2004) for which measurements of the total-mass density slope from the

combined lensing and dynamics (L&D) analysis have previously been carried out. Lens galaxies were

selected in the following different ways in the various surveys:

• SLACS (50 lenses): spectroscopic search within the SDSS database, using a 3′′ fibre, examining

residual spectra for higher redshift emission lines1.

• BELLS (25 lenses): spectroscopic search within the BOSS database, using a 2′′ fibre, examining

residual spectra for higher redshift emission lines.

• GALLERY (15 lenses): same technique as BELLS with an additional selection for higher

redshift, compact Lyman-𝛼-emitting (LAE) source galaxies.

• SL2S (25 lenses): imaging data is analysed for an excesses of blue features that indicate the

presence of lensed features (Gavazzi et al., 2014).

• LSD (5 lenses): systems selected from the CfA-Arizona Space Telescope Lens Survey (CAS-

TLeS)2 sample of known galaxy-scale systems for their morphology (E/S0) and brightness (I ≲

22).

To our knowledge, this is the first time all these observations have been studied in one analysis. As well

as L&D total mass density slopes, we gather literature measurements of a number of galaxy observables

1Auger et al. (2010a) find that six of the SLACS galaxies are significant outliers of the fundamental hyper-plane relation
(the relationship between the effective radius, velocity dispersion, central stellar mass, and central total mass), which may
be a a result of significantly underestimated velocity dispersion errors Jiang & Kochanek (2007). In keeping with previous
studies we remove those from our sample.

2see the CASTLeS web-page at http://cfa-www.harvard.edu/castles/

http://cfa-www.harvard.edu/castles/
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including velocity dispersions, effective radii, Einstein radii (which we normalise by the effective radii

throughout this study), stellar masses, and stellar surface mass densities (Σ∗ = 𝑀∗/(2𝜋R2
eff)), which

are plotted as a function of redshift of the lens galaxy in Figure 3.1.

Total-mass density slopes have been shown to correlate with both total and stellar surface mass-

densities (Auger et al., 2010b; Sonnenfeld et al., 2013a). We must account for this relationship if we

wish to study how the density profile depends on redshift, because stellar density also evolves with

redshift. Notably, stellar masses (hence stellar surface mass densities) have not been measured for

BELLS, GALLERY, or LSD samples. Following (Auger et al., 2010a), we therefore calculate total

surface mass densities

Σtot =
𝑀tot

𝑅2
eff

, (3.2.1)

where 𝑅eff is the effective radius of the galaxy and

𝑀tot = Σcrit𝜋𝑅
𝛾−1
Ein

(
𝑅eff
2

)3−𝛾
(3.2.2)

is the total projected mass within half the effective radius inferred from power-law models with

Einstein radii 𝑅Ein and total mass-density slope 𝛾. The total projected mass is calculated within

half the effective radius, which typically closely resembles the Einstein radius, to reduce errors from

extrapolating the power law model.

3.2.2 Complete sample: new measurements using Lensing-only

If a lensed galaxy is spatially resolved, the apparent shape of the arc can be used to infer the distribution

of total mass-density around a foreground lens, without any spectroscopic information about stellar

kinematics. The source flux in every image pixel can be ray-traced back to the source plane, and the

shape of the source galaxy is modelled as a sum of analytic functions (Tessore et al., 2016), possibly

combined with a basis of shapelets (Birrer et al., 2015; Shajib et al., 2018), or a pixelised source (Warren

& Dye, 2003; Suyu et al., 2006; Dye & Warren, 2005; Vegetti & Koopmans, 2009; Nightingale &

Dye, 2015; Nightingale et al., 2018; Joseph et al., 2019; Galan et al., 2021). The configuration of

ray-tracing required to map multiple images in the lens plane onto consistent morphologies in the

source plane constrains parameters of the mass model, including its logarithmic density slope 𝛾.

In chapter 2 we used this approach to model a sub-sample of 43 SLACS and 15 GALLERY lenses.

Here we consider only the 53 “Gold” and 4 “Silver” lenses for which an automated analysis reliably

fitted the data without residuals (see section 2.6.1 for the details of the categories). We refer to this

sample of 57 lenses as the “complete lensing-only sample”. We note that, with the lensing-only

technique, the density profile constraints from compact LAE sources in the GALLERY sample are not
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Figure 3.2: Measurement uncertainties on the slopes from lensing only and lensing & dynamics as a
function of redshift of the lens galaxy.

as tight as constraints from the more extended sources in the SLACS sample. However, the slopes of

GALLERY lenses are still better constrained than the slopes measured for the same lenses using the

L&D analysis (Figure 3.2).

3.2.3 Overlapping sample: new measurements using Lensing-only, as well as Lensing

& Dynamics

For a direct comparison between the two methods we select the lenses that have measurements of the

density slope from both the lensing-only and L&D analyses. This requires excluding 1 GALLERY

and 6 SLACS lenses from the complete lensing-only sample whose mass slopes have not previously

been measured using the L&D method. As in the complete sample, we also exclude 3 SLACS lenses

suspected to have anomalous measurements of velocity dispersion. We shall refer to the remaining 48

lenses as the “overlapping sample”.

As for the complete L&D sample we gather literature measurements of a number of galaxy observables

including velocity dispersions, effective radii, and normalised Einstein radii (plotted as a function of

redshift in Figure 3.3). We also calculate total masses (equation 3.2.2) and surface mass densities

(equation 3.2.1). Note that the effective radius of all galaxies in the overlapping sample has been

measured at least twice: assuming de Vaucouleurs surface brightness profiles in L&D analyses (e.g.

Auger et al., 2010a) and double Sérsic profiles in our lensing analysis (see Table 3.1). Since the L&D

mass density slopes were calculated using de Vaucouleurs effective radii, we use these for consistency
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Figure 3.3: Galaxy observables as a function of lens redshift for the overlapping sample. From top
to bottom panel the quantities are as follows: lensing only total mass density slope (𝛾lensing), de
Vaucouleurs effective radius 𝑅eff in units of kpc, Einstein radius normalised by the effective radius
(log[REin/Reff]), total mass within half the effective radius (log[𝑀tot]), and total surface mass density
(log[Σ𝑡𝑜𝑡 ]). The total masses and total surface mass densities plotted here are those derived from the
lensing quantities (𝛾lensing and 𝑅PL

Ein in equations 3.2.2 and 3.2.1), we note that they do not change
significantly when derived from L&D quantities (see Table 3.1 for both values).
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with previous literature whenever we quote an effective radius. The lensing-only analyses do not use

their measurements of effective radius.

3.3 Do the lensing-only and lensing & dynamics methods measure the

same density slopes?

Although the lensing-only and L&D methods aim to measure the same quantity 𝛾, the assumption

of the power-law profile is critical in this endeavour. The L&D analysis is averaged between mass

measurements at the Einstein and effective radii, whereas the lensing method is constrained by the

pixel information of the source galaxy that, by definition, occurs near the Einstein radius. Any

deviation of the galaxy’s true mass-density profile from a power law could therefore lead to biases in

𝛾 that behave differently between the two methods (e.g. Schneider & Sluse 2013b; Kochanek 2020;

Cao et al. 2020). We therefore investigate to what extent the methods infer the same slope, first by

comparing the sample averages in Section 3.3.1, measurements of individual galaxies in Section 3.3.2,

then correlations between galaxies’ slopes and other observable quantities in Section 3.3.3.

3.3.1 Sample distribution of total-mass density slopes

We assume that each individual galaxy’s mass-density slope 𝛾𝑖 belongs to an underlying Gaussian

distribution of slopes with mean ⟨𝛾⟩ and intrinsic scatter 𝜎𝛾 . The likelihood function of ⟨𝛾⟩ and 𝜎𝛾 is

ℒ(⟨𝛾⟩, 𝜎𝛾 |{𝛾𝑖}) =
∏
𝑖

exp
[
− (𝛾i−⟨𝛾⟩)2

2(𝜎2
𝛾+𝜎2

𝛾i )

]
√︃

2𝜋(𝜎2
𝛾 + 𝜎2

𝛾𝑖 )
, (3.3.1)

where 𝜎𝛾𝑖 is the uncertainty on the individual slope measurements 𝛾𝑖 . One can then infer the posterior

probability distribution function (PDF) of ⟨𝛾⟩ and 𝜎𝛾 using Bayes’ theorem

𝑝(⟨𝛾⟩, 𝜎𝛾 |{𝛾𝑖}) ∝ 𝑝(⟨𝛾⟩, 𝜎𝛾)ℒ(⟨𝛾⟩, 𝜎𝛾 |{𝛾𝑖}), (3.3.2)

where 𝑝(⟨𝛾⟩, 𝜎𝛾) is the prior. We assume uniform priors on ⟨𝛾⟩ and 𝜎𝛾 and fit for them using the

nested sampling algorithm dynesty (Speagle, 2020) via an implementation using the probabilistic

programming language PyAutoFit (Nightingale et al., 2021b). Note that lensing-only analysis uses a

non-linear fitting procedure that yields asymmetric and non-Gaussian uncertainties on lensing slopes

𝜎𝛾𝑖 . We approximate these as a split normal distribution, i.e. Gaussian uncertainty with

𝜎𝛾𝑖 = 𝜎ue
𝛾𝑖

if 𝛾𝑖 < ⟨𝛾⟩, (3.3.3)
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Sample Lens Name 𝑧lens 𝑧source 𝜎 𝑅PL
Ein 𝑅SIE

Ein 𝛾lensing 𝛾L&D 𝑅Sérsic x2
eff 𝑅dev

eff 𝑀
lensing
tot 𝑀L&D

tot Σ
lensing
tot ΣL&D

tot

SLACS

J0216-0813 0.332 0.523 319 1.183+0.014
-0.011 1.16 1.99+0.05

-0.06 2.09 ± 0.2 9.1+4.59
-0.81 12.74 11.76 11.75 9.55 9.53

J0252+0039 0.280 0.982 170. 1.024+0.004
-0.002 1.04 1.92+0.08

-0.11 1.57 ± 0.12 3.43+0.09
-0.06 5.90 11.05 11.00 9.51 9.46

J0330-0020 0.351 1.071 213 1.088+0.009
-0.012 1.10 2.15+0.02

-0.02 1.91 ± 0.18 1.99+0.03
-0.03 5.94 11.17 11.11 9.62 9.57

J0728+3835 0.206 0.688 210. 1.244+0.012
-0.008 1.25 1.99+0.12

-0.1 1.86 ± 0.1 11.32+1.28
-1.01 6.01 11.16 11.14 9.60 9.58

J0822+2652 0.241 0.594 254 1.129+0.011
-0.018 1.17 2.1+0.08

-0.07 2.12 ± 0.14 9.16+0.59
-0.58 6.93 11.26 11.28 9.58 9.60

J0912+0029 0.164 0.324 304 1.393+0.011
-0.007 1.63 2.14+0.05

-0.05 1.98 ± 0.09 6.93+0.24
-0.23 10.89 11.59 11.68 9.51 9.60

J0936+0913 0.190 0.588 236 1.081+0.004
-0.005 1.09 2.13+0.08

-0.08 2.24 ± 0.12 5.29+0.17
-0.12 6.69 11.16 11.16 9.51 9.51

J0946+1006 0.222 0.609 253 1.409+0.001
-0.001 1.38 2.06+0.03

-0.03 2.01 ± 0.18 4.51+0.17
-0.19 8.41 11.41 11.39 9.56 9.54

J0956+5100 0.241 0.470 323 1.314+0.002
-0.001 1.33 2.05+0.02

-0.02 2.3 ± 0.09 6.9+0.27
-0.24 8.33 11.49 11.51 9.65 9.67

J0959+0410 0.126 0.535 196 0.985+0.014
-0.017 0.99 2.08+0.07

-0.07 2.05 ± 0.15 2.55+0.08
-0.07 3.14 10.74 10.73 9.74 9.74

J1020+1122 0.282 0.553 279 1.065+0.011
-0.009 1.20 2.15+0.11

-0.12 2.08 ± 0.12 10.02+2.1
-1.9 6.78 11.32 11.37 9.66 9.71

J1023+4230 0.191 0.696 238 1.411+0.009
-0.009 1.41 1.95+0.16

-0.12 2.01 ± 0.11 4.31+0.1
-0.11 5.63 11.16 11.17 9.65 9.67

J1029+0420 0.104 0.615 208 0.947+0.01
-0.01 1.01 1.43+0.05

-0.06 2.28 ± 0.1 1.75+0.06
-0.04 2.98 10.60 10.71 9.65 9.76

J1142+1001 0.222 0.504 216 0.908+0.024
-0.027 0.98 2.03+0.1

-0.1 1.9 ± 0.23 5.48+0.45
-0.36 6.83 11.17 11.21 9.50 9.54

J1143-0144 0.106 0.402 247 1.611+0.013
-0.014 1.68 2.15+0.03

-0.03 1.92 ± 0.06 3.87+0.15
-0.14 9.32 11.40 11.45 9.46 9.52

J1205+4910 0.215 0.481 269 1.218+0.008
-0.008 1.22 1.92+0.07

-0.09 2.16 ± 0.12 8.6+0.64
-0.51 9.04 11.43 11.42 9.52 9.51

J1218+0830 0.135 0.717 207 1.217+0.01
-0.008 1.45 2.35+0.07

-0.06 1.82 ± 0.11 5.9+0.27
-0.26 7.61 11.14 11.26 9.37 9.50

J1250+0523 0.232 0.795 247 1.144+0.006
-0.005 1.13 1.84+0.04

-0.04 2.3 ± 0.12 8.11+1.99
-1.78 6.69 11.15 11.19 9.50 9.54

J1402+6321 0.205 0.481 255 1.349+0.005
-0.007 1.35 2.0+0.18

-0.13 1.97 ± 0.14 11.82+0.0
-0.3 9.08 11.46 11.46 9.54 9.54

J1420+6019 0.063 0.535 199 1.075+0.002
-0.002 1.04 1.94+0.04

-0.04 2.28 ± 0.07 2.57+0.06
-0.05 2.50 10.59 10.58 9.80 9.78

J1430+4105 0.285 0.575 309 1.481+0.002
-0.002 1.52 2.02+0.01

-0.01 2.06 ± 0.18 11.46+0.82
-1.06 10.96 11.65 11.66 9.57 9.58

J1451-0239 0.125 0.520 214 0.96+0.017
-0.015 1.04 2.29+0.1

-0.11 2.24 ± 0.19 6.29+0.25
-0.39 5.56 10.93 10.98 9.44 9.49

J1525+3327 0.358 0.717 150. 1.29+0.012
-0.007 1.31 1.92+0.06

-0.05 1.77 ± 0.2 10.66+0.57
-0.62 14.54 11.73 11.74 9.40 9.41

J1627-0053 0.208 0.524 283 1.217+0.002
-0.002 1.23 2.08+0.08

-0.09 2.33 ± 0.1 14.67+2.45
-1.46 6.74 11.27 11.30 9.61 9.64

J1630+4520 0.248 0.793 269 1.791+0.006
-0.004 1.78 1.96+0.09

-0.08 1.97 ± 0.09 6.27+0.43
-0.28 7.62 11.42 11.42 9.66 9.66

J2238-0754 0.137 0.713 191 1.268+0.004
-0.003 1.27 2.07+0.09

-0.07 1.79 ± 0.12 5.8+4.97
-7.44 5.65 11.07 11.06 9.57 9.56

J2300+0022 0.228 0.463 273 1.219+0.008
-0.005 1.24 2.55+0.07

-0.16 2.06 ± 0.13 4.7+0.3
-0.2 6.68 11.40 11.35 9.75 9.70

J2303+1422 0.155 0.517 240. 1.628+0.007
-0.005 1.62 2.09+0.04

-0.04 1.86 ± 0.13 5.97+0.31
-0.27 8.81 11.43 11.43 9.54 9.54

J2341+0000 0.186 0.807 196 1.338+0.009
-0.005 1.44 2.12+0.06

-0.05 1.62 ± 0.12 6.15+0.2
-0.16 9.81 11.35 11.41 9.37 9.42

GALLERY

J0029+2544 0.587 2.450 240. 1.347+0.014
-0.012 1.34 2.05+0.12

-0.15 2.03 ± 0.27 45.05+23.89
-23.89 9.46 11.43 11.42 9.47 9.47

J0201+3228 0.396 2.821 245 1.713+0.011
-0.005 1.70 2.09+0.09

-0.1 1.96 ± 0.17 8.1+1.11
-1.11 13.88 11.61 11.59 9.33 9.31

J0237-0641 0.486 2.249 295 0.619+0.02
-0.025 0.65 1.91+0.18

-0.1 2.32 ± 0.54 26.27+23.57
-23.57 6.31 10.86 10.92 9.26 9.32

J0742+3341 0.494 2.363 221 1.241+0.01
-0.013 1.22 2.21+0.06

-0.08 1.98 ± 0.2 7.51+17.87
-17.87 6.49 11.26 11.17 9.63 9.54

J0755+3445 0.722 2.635 302 2.073+0.005
-0.004 2.05 1.77+0.08

-0.05 1.72 ± 0.28 195.47+20.94
-20.94 1.95 10.68 10.62 10.10 10.04

J0856+2010 0.507 2.234 337 0.951+0.035
-0.04 0.98 2.23+0.08

-0.09 2.55 ± 0.23 4.86+1.03
-1.03 7.07 11.17 11.26 9.47 9.56

J0918+5105 0.581 2.403 289 1.645+0.005
-0.009 1.60 2.38+0.16

-0.18 2.14 ± 0.26 6.62+0.97
-0.97 13.70 11.74 11.67 9.46 9.40

J1110+2808 0.733 2.400 207 0.904+0.027
-0.026 0.98 2.03+0.09

-0.07 1.88 ± 0.3 6.66+0.52
-0.52 2.91 10.81 10.74 9.88 9.81

J1110+3649 0.587 2.502 546 1.151+0.001
-0.001 1.16 2.23+0.07

-0.08 2.56 ± 0.32 25.22+12.2
-12.2 5.82 11.23 11.37 9.70 9.84

J1116+0915 0.550 2.454 280. 0.811+0.053
-0.054 1.03 2.22+0.16

-0.17 2.23 ± 0.25 35.01+56.93
-56.93 6.09 11.04 11.17 9.47 9.60

J1141+2216 0.586 2.762 299 1.283+0.027
-0.019 1.27 2.13+0.09

-0.11 2.22 ± 0.26 16.46+3.17
-3.17 4.16 11.10 11.15 9.86 9.91

J1201+4743 0.498 2.126 234 1.171+0.004
-0.002 1.18 2.74+0.05

-0.21 2.09 ± 0.27 21.68+2.84
-2.84 11.15 11.49 11.42 9.39 9.33

J1226+5457 0.587 2.732 251 1.398+0.004
-0.003 1.37 2.24+0.07

-0.1 2.06 ± 0.21 14.93+4.58
-4.58 7.41 11.40 11.32 9.66 9.58

J2228+1205 0.530 2.832 263 1.21+0.024
-0.024 1.28 2.2+0.14

-0.1 2.13 ± 0.28 17.73+2.54
-2.54 5.16 11.16 11.16 9.73 9.73

J2342-0120 0.527 2.265 274 1.091+0.006
-0.004 1.11 2.34+0.07

-0.09 2.3 ± 0.31 16.3+7.64
-7.64 8.28 11.33 11.33 9.49 9.49

Table 3.1: Lens parameters for the overlapping sample.
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Figure 3.4: Logarithmic slopes 𝛾 of galaxies’ total mass density 𝜌(𝑟) ∝ 𝑟−𝛾 , measured using Lensing-
only and Lensing & Dynamics techniques, for a common “overlapping” sample of 48 galaxies. The
two high Gaussian curves and dashed lines illustrate the best-fit mean and intrinsic scatter fitted
via Equation 3.3.1. Lower curves show the posterior PDFs of individual lensing measurements, to
illustrate their additional measurement uncertainty.
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Figure 3.5: Logarithmic total mass-density slopes measured using the lensing & dynamics method
for the “complete” sample of 123 galaxies, but split into the SLACS, BELLS, GALLERY, SL2S, and
LSD samples. Coloured curves show the best-fit mean and intrinsic scatter of galaxies in each survey,
calculated as in figure 3.4. The grey curve shows the best fit to all 123 galaxies.
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𝜎𝛾𝑖 = 𝜎le
𝛾𝑖

if 𝛾𝑖 > ⟨𝛾⟩, (3.3.4)

where 𝜎ue
𝛾𝑖

and 𝜎le
𝛾𝑖

correspond to the upper and lower uncertainties at the 68.7% credible region of

the individual 𝛾lensing PDF.

For galaxies in the overlapping sample, we measure mean logarithmic density slope ⟨𝛾⟩ = 2.075+0.023
−0.024

and intrinsic scatter 𝜎𝛾 = 0.172+0.022
−0.032 (purple curve in figure 3.4). Errors quoted are at the 68%

credible region. This is consistent with Lensing & Dynamics measurements from the literature for the

same sample, ⟨𝛾L&D⟩ = 2.050+0.0232
−0.031 and 𝜎L&D

𝛾 = 0.156+0.030
−0.026 (orange curve in figure 3.4).

Robustly for different methods, we thus confirm a slightly super-isothermal distribution of mass around

galaxies in our overlapping sample. This is consistent with Auger et al. (2010a)’s original Lensing &

Dynamics analysis of the entire SLACS sample, ⟨𝛾⟩L&D = 2.078 ± 0.027 and 𝜎L&D
𝛾 = 0.16 ± 0.02,

which has been verified in repeat analyses (Ruff et al., 2011; Li et al., 2018). We confirm that this result

is also reproduced in an analysis of L&D measurements for our complete sample ⟨𝛾L&D⟩ = 2.030+0.019
−0.020

and 𝜎L&D
𝛾 = 0.184+0.020

−0.019 (grey curve in figure 3.5).

Splitting our complete sample into its parent surveys (figure 3.5), we note that the (high redshift)

GALLERY lenses are the only sample with a mean logarithmic slope steeper than the (low redshift)

SLACS sample. This remains true for the sub-samples of SLACS and GALLERY lenses that go

into our overlapping sample. The posterior PDF contours in figure 3.6 show that lenses in the

GALLERY sample have steeper slopes with smaller intrinsic scatter, for both lensing-only (dark

green) and Lensing & Dynamics (dark purple) measurements, than for the SLACS sample (light green

and purple). Something may be unusual in the selection technique used to find GALLERY lenses (see

Sections 3.5.3 and 3.5.4 for further discussion).

3.3.2 Comparison of total mass-density slopes inferred by lensing and dynamics and

lensing only

To further test whether the lensing-only and Lensing & Dynamics methods are measuring the same total

mass-density slopes, Figure 3.7 compares their measurements for the 48 galaxies in the overlapping

sample. Assuming the measurement errors are correct, we investigate to what extent the true underlying

slope measurements for this sample of galaxies are correlated. To do this we assume that the

combination of 𝛾lensing and 𝛾L&D can be described by a bi-variate Gaussian distribution with likelihood

ℒ(𝜇,𝚺int |𝛾𝑖) =
∏
𝑖

exp
(
− 1

2 (𝛾𝑖 − 𝜇)𝑇𝚺−1
𝑖
(𝛾𝑖 − 𝜇)

)
√︁
(2𝜋)2 |𝚺𝑖 |

, (3.3.5)
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Figure 3.6: Posterior PDFs from fitting the mean 𝛾 and intrinsic scatter 𝜎𝛾 of the SLACS and
GALLERY overlapping sample of lenses assuming a Gaussian parent distribution. The GALLERY
lenses have on average steeper density slopes than SLACS with both the lensing and dynamics (L&D)
and lensing only approach.
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Figure 3.7: Logarithmic mass-density slopes of 48 individual galaxies in our “overlapping” sample,
measured using lensing and stellar kinematics 𝛾L&D or lensing-only 𝛾lensing methods. The identity
line is plotted solely to guide visualisation. In the legend 33 SLACS lenses are listed first, followed
by 15 GALLERY lenses.
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where 𝜇 = [⟨𝛾lensing⟩, ⟨𝛾L&D⟩] is the vector mean, 𝚺𝑖 = 𝚺int + 𝚺err, i is the covariance matrix, and

𝛾𝑖 = [𝛾lensing
𝑖

, 𝛾L&D
𝑖

] are the individual slope measurements. The vector mean 𝜇 and the covariance

matrix

𝚺int =


(𝜎lensing

𝛾 )2 𝜌𝜎
lensing
𝛾 𝜎L&D

𝛾

𝜌𝜎
lensing
𝛾 𝜎L&D

𝛾 (𝜎L&D
𝛾 )2

 , (3.3.6)

together describe the intrinsic distribution of the lensing-only and L&D slopes, where 𝜌 is the intrinsic

correlation between 𝛾lensing and 𝛾L&D. We assume the two measurement errors are uncorrelated such

that the covariance matrix 𝚺err, i is given by

𝚺err, i =


(
𝜎

lensing
𝛾,𝑖

)2
0

0
(
𝜎L&D
𝛾,𝑖

)2

 , (3.3.7)

where 𝜎
lensing
𝛾,𝑖

and 𝜎L&D
𝛾,𝑖

are the individual measurement errors on 𝛾lensing and 𝛾L&D, respectively.

Note that in this case we approximate the asymmetric lensing-only measurement errors as Gaussian

with 𝜎𝛾,𝑖 = (𝜎ue
𝛾,𝑖

+ 𝜎le
𝛾,𝑖

)/2.

Using Bayes’ theorem (equation 3.3.2) we infer the PDFs of the independent parameters ⟨𝛾lensing⟩,

⟨𝛾L&D⟩, 𝜎
lensing
𝛾 , 𝜎L&D

𝛾 , and 𝜌 in equation 3.3.5. We fit for these parameters with an MCMC

sampling process using the Python implementation emcee (Foreman-Mackey et al., 2013).The means

⟨𝛾lensing⟩ = 2.085+0.031
−0.030 and ⟨𝛾L&D⟩ = 2.050+0.034

−0.033, and intrinsic scatters 𝜎
lensing
𝛾 = 0.191+0.027

−0.023

and 𝜎L&D
𝛾 = 0.159+0.031

−0.027 inferred with this bi-variate model agree with those fitted separately in

Section 3.3.1. We infer a correlation co-efficient 𝜌 = −0.150+0.223
−0.217, consistent with no correlation at

the 68% credible region. At 2𝜎 confidence the model implies a wide range of correlation coefficients,

both negative and positive (-0.554 - 0.276), are consistent with the data. With this level of measurement

uncertainty, we cannot definitively detect a correlation between the slopes measured with lensing and

those measured with L&D. There is, however, no obvious systematic offset between the two methods:

the mean difference is ⟨𝛾lensing−𝛾L&D⟩ = 0.031±0.042 and the data points appear scattered randomly

either side of the identity line.

3.3.3 Correlations with the total-mass density slope

Since it is difficult to quantify for individual galaxies whether the (lensing-only and Lensing & Dynamics)

methods are measuring the same slope, we instead investigate whether they infer the same global de-

pendence with other observable properties of galaxies. We continue to assume that the slopes are

drawn from a parent Gaussian distribution, but we now assume the mean of the distribution (in
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Figure 3.8: Correlation between total mass-density slopes 𝛾 and other properties of a lens galaxy.
Measurements with lensing-only or Lensing & Dynamics techniques are consistent, except for the
correlation with total mass density Σtot. Numerical parameters of the best-fit lines are listed in
Table 3.2.
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Covariate (𝑥) ⟨𝑥⟩ Gradient ( 𝜕⟨𝛾⟩
𝜕𝑥

) Intercept (⟨𝛾0⟩) Scatter (𝜎𝛾)
𝛾lensing 𝛾L&D 𝛾lensing 𝛾L&D 𝛾lensing 𝛾L&D

𝑧lens 0.319 0.248+0.174
-0.178 0.043+0.215

-0.224 2.077+0.029
-0.028 2.058+0.031

-0.039 0.173+0.026
-0.022 0.165+0.034

-0.028
𝑅eff 7.27 0.017+0.009

-0.009 −0.02+0.01
-0.013 2.076+0.024

-0.027 2.054+0.024
-0.029 0.169+0.027

-0.02 0.155+0.029
-0.033

log[𝑀tot] 11.2 0.254+0.082
-0.088 −0.12+0.118

-0.108 2.076+0.032
-0.029 2.054+0.038

-0.037 0.165+0.026
-0.022 0.158+0.033

-0.028
𝑅Ein/𝑅eff 0.91 −0.036+0.025

-0.023 −0.026+0.046
-0.041 2.076+0.027

-0.026 2.049+0.036
-0.033 0.173+0.031

-0.024 0.162+0.024
-0.026

𝜎e2 260 0.001+0.0
-0.0 0.002+0.001

-0.001 2.072+0.03
-0.024 2.073+0.032

-0.025 0.172+0.024
-0.023 0.138+0.033

-0.021
log[Σtot] 9.6 −0.304+0.167

-0.152 0.631+0.221
-0.285 2.078+0.024

-0.028 2.049+0.03
-0.025 0.167+0.024

-0.019 0.131+0.033
-0.027

Table 3.2: Correlations between galaxies’ total mass-density slopes 𝛾 and other galaxy observables,
as visualised in Figure 3.8. Uncertainties are the 1𝜎 credible regions on the gradient, intercept, and
scatter on the covariate 𝑥, as in Equation (3.3.8).

Equation 3.3.1) is described by

⟨𝛾⟩(𝑥) = ⟨𝛾⟩0 +
𝜕⟨𝛾⟩
𝜕𝑥

(𝑥 − ⟨𝑥⟩), (3.3.8)

where 𝑥 is the galaxy observable. The free parameters in the model are now the mean slope ⟨𝛾⟩0

at the average of the chosen galaxy observable ⟨𝑥⟩, the intrinsic scatter of the distribution of slopes

𝜎𝛾 , and the linear correlation coefficient 𝜕⟨𝛾⟩
𝜕𝑥

. We again use dynesty to fit these free parameters,

in successive analyses where 𝑥 represents the redshift of the lens galaxy, its effective radius, its total

mass (equation 3.2.2), its normalised Einstein radius, its velocity dispersion, or its total surface mass

density. The best fit parameters from this procedure are listed in Table 3.2 and visualised in Figure 3.8.

For most galaxy observables, we find correlations with the logarithmic density slope that are consistent

(at 2𝜎 confidence) for the lensing-only and L&D analyses. The only exception is the dependence upon

total surface mass density. The L&D slopes imply a positive correlation of 𝜕⟨𝛾⟩
𝜕Σtot

= 0.631+0.434
−0.492 (2𝜎

uncertainty), which is in agreement with previous L&D slope measurements for larger samples (Auger

et al., 2010a; Sonnenfeld et al., 2013a), whereas the lensing slopes imply zero or slightly negative

correlation 𝜕⟨𝛾⟩
𝜕Σtot

= −0.304+0.358
−0.357. This may indicate that the methods are measuring different slopes,

and we shall investigate this further in Section 3.4.1.

We find that ⟨𝛾L&D⟩ has non-zero correlation (at > 2𝜎 statistical significance) with only two lens

observables: total mass density, and velocity dispersion. Whereas, ⟨𝛾lensing⟩ has non-zero correlation

with only total mass. Given that our analysis does not account for uncertainty on the 𝑥 variable, we

caution that these coefficients may be overestimated – particularly for the dependence with velocity

dispersion, for which typical measurements have ∼ 10% uncertainty.
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3.4 Dependence of the total-mass density slope on redshift

The logarithmic density slope of mass in a galaxy is governed by the relative amounts of stellar and

dark matter, and the physical processes that modify their distribution as the galaxy evolves. Studying

how ⟨𝛾⟩ depends upon redshift can therefore constrain universal models of galaxy formation.3

To quantify the dependence of the mean density profile slope on redshift, it is necessary to account

for any other confounding variables by including them as covariates in the model. We investigate

variables that are well motivated from previous L&D analyses (Sonnenfeld et al., 2012; Auger et al.,

2010a; Li et al., 2018), the total surface mass density and normalised Einstein radius. These two

variables are strongly correlated (with a Pearson correlation coefficient of 0.66), to the degree that

including both of them as covariates would yield degenerate and unphysical coefficients. Therefore

we fit only one of these covariates at a time, modelling the mean logarithmic density slope

⟨𝛾⟩(𝑧lens, 𝑥) = ⟨𝛾⟩0 +
𝜕⟨𝛾⟩
𝜕𝑧

(𝑧lens − 0.3) + 𝜕⟨𝛾⟩
𝜕𝑥

(𝑥 − ⟨𝑥⟩), (3.4.1)

where the free parameters to be fitted are ⟨𝛾⟩0, the mean slope at 𝑧lens = 0.3 and 𝑥 = ⟨𝑥⟩, as well as
𝜕⟨𝛾⟩
𝜕𝑧

and 𝜕⟨𝛾⟩
𝜕𝑥

, the linear coefficients of covariates 𝑧lens and 𝑥. We again perform fits using the nested

sampling algorithm dynesty via the probabilistic programming language PyAutoFit.

3.4.1 Allowing for dependence on surface mass density

Previous studies have shown that a galaxy’s logarithmic density slope measured using L&D (Auger

et al., 2010b; Sonnenfeld et al., 2013a) correlates with both its total and stellar surface mass density.

In Section 3.3.3 we confirmed this for the L&D slopes but found that lensing-only slopes were

consistent with zero correlation at 2𝜎. We investigate whether this discrepancy persists when we

fit the density slopes of galaxies in the overlapping sample, but allowing for simultaneous variation

with both redshift and total mass density (equation (3.4.1)). When fitting to lensing-only results, we

use covariate 𝑥 = Σ
lensing
tot , which uses 𝑅PL

Ein in equation (3.2.1). When fitting to L&D results, we use

covariate 𝑥 = ΣL&D
tot , the power law density profiles inferred by L&D analyses in the literature, but

using 𝑅SIE
Ein in equation (3.2.1).

Best-fit parameters for lensing-only and L&D analyses of the overlapping sample are listed in Table 3.3,

3As emphasised by Sonnenfeld et al. (2013b), these measurements represent how the population mean density slope
depends on the population parameters of the galaxies included in the model, and not how the mass-density slope evolves
for an individual galaxy. By combining their measurements with literature values for the evolution of the mass and size
of early-type galaxies, Sonnenfeld et al. (2013b) measured the average redshift evolution of an individual galaxy to be
consistent with zero 𝑑𝛾L&D

𝑑𝑧
= 0.10 ± 0.12.
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Sample ⟨𝛾⟩0 𝜎𝛾
𝜕⟨𝛾⟩
𝜕𝑧

𝜕⟨𝛾⟩
𝜕Σtot

complete: LD 2.024+0.019
-0.021 0.126+0.023

-0.015 −0.259+0.084
-0.082 0.423+0.068

-0.075

overlapping: LD 2.051+0.031
-0.037 0.127+0.028

-0.024 0.045+0.217
-0.177 0.659+0.250

-0.264

overlapping: lensing 2.071+0.027
-0.026 0.159+0.028

-0.018 0.345+0.144
-0.167 −0.432+0.175

-0.191

complete: lensing 2.097+0.032
-0.029 0.202+0.023

-0.023 0.147+0.174
-0.154 −0.225+0.181

-0.151

Table 3.3: Best-fit values of free parameters in a two-covariate model (equation 3.4.1) describing the
correlation between the sample mean of galaxies’ logarithmic density slopes, ⟨𝛾⟩, with redshift 𝑧 and
total surface mass density Σtot. The total surface mass density is calculated inside the effective radius
of a de Vaucouleurs fit to the stellar emission (equation 3.2.1). The intrinisic dispersion of the sample
of galaxies 𝜎 is also a free parameter in the fit.

and the full posterior probability distributions are shown in Figure 3.9. The coefficient for variation

with redshift is consistent between the two methods at 2𝜎. Surprisingly, however, our lensing-only

analysis suggests that 𝜕⟨𝛾⟩
𝜕𝑧

= 0.345+0.144
-0.167 is greater than zero at 2𝜎 confidence. L&D analysis of

the same galaxies implies that 𝜕⟨𝛾L&D ⟩
𝜕𝑧

= 0.045+0.217
-0.177 is consistent with zero. Fitting the complete

sample of L&D slopes (blue contours in Figure 3.9) yields a value less than zero at 4𝜎 confidence
𝜕⟨𝛾L&D ⟩

𝜕𝑧
= −0.259+0.084

-0.082 , (in better agreement with measurements in the literature Auger et al., 2010a;

Bolton et al., 2012; Sonnenfeld et al., 2013a; Li et al., 2018, see Table 3.5).

Coefficients describing the dependence of density slope on surface mass density are inconsistent

between lensing-only and L&D analyses. For the overlapping sample of galaxies, the lensing-only

coefficient is 𝜕⟨𝛾⟩
𝜕Σtot

= −0.432+0.175
-0.191 , while L&D suggests 𝜕⟨𝛾L&D ⟩

𝜕Σtot
= 0.659+0.250

-0.264 . Note that these results

come from reasonably small populations of galaxies, and may be subject to outliers. For the complete

lensing only sample, the increase in sample size leads to correlation coefficients with both redshift and

surface mass density that are consistent with zero at 2𝜎 confidence (see Table 3.3). Nonetheless, the

coefficient with Σtot remains inconsistent with those inferred for both the complete and overlapping

L&D samples.

3.4.2 Allowing for dependence on the radius where measurements are made

If measurements of the density slope are sensitive to the radius at which the measurement is con-

strained, this could bias our inference about redshift dependence of the mean slope. Because the

normalised Einstein radius REin/Reff typically increases with redshift for geometric reasons, one should

simultaneously fit variation with REin/Reff and 𝑧lens so as to not bias either result. Indeed, Li et al. (2018)

demonstrated that L&D slopes display an increasing trend with radius, whilst still inferring a negative

trend with redshift, for the BELLS, GALLERY, and SL2S samples. We now fit the two-covariate
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Figure 3.9: The 68% (dark) and 95% (light) marginalised confidence limits on posterior probabilities
of the mean, intrinsic scatter, and linear coefficients for the dependence of slope on redshift and total
surface mass density for both lensing-only (orange contours) and lensing&dynamics slopes (purple
contours).



3.4. Dependence of the total-mass density slope on redshift 91

Figure 3.10: The 68% (dark) and 95% (light) marginalised confidence limits on posterior probabilities
of the mean, intrinsic scatter, and linear coefficients for the dependence of slope on redshift and
normalised Einstein radius for both lensing-only (orange contours) and lensing&dynamics slopes
(purple contours).

model (Equation 3.4.1), with 𝑥 = REin/Reff. Best-fit parameters for lensing-only and L&D analyses

of the overlapping sample are listed in Table 3.4, and the full posterior probability distributions are

shown in Figure 3.10.

Best-fit parameters of the lensing-only and L&D models are consistent at 2𝜎 confidence for the

overlapping sample. Albeit, for logarithmic density slopes measured with a lensing-only analysis,

we infer relationships with redshift 𝜕⟨𝛾⟩
𝜕𝑧

= 0.812+0.252
-0.263 and normalised Einstein radius 𝜕⟨𝛾⟩

𝜕REin/Reff
=

−0.539+0.160
-0.191 at over 2𝜎 confidence, whereas the L&D inference 𝜕⟨𝛾⟩

𝜕𝑧
= −0.002+0.303

-0.265 and 𝜕⟨𝛾⟩
𝜕REin/Reff

=

0.074+0.194
-0.294 is consistent with no correlation at 2𝜎. Note that, as for the Σtot model, the coefficients

for the complete lensing-only sample are both consistent with zero (see Table 3.4). The complete

L&D sample infers coefficients 𝜕⟨𝛾⟩
𝜕𝑧

= −0.428+0.119
-0.127 and 𝜕⟨𝛾⟩

𝜕REin/Reff
= 0.21+0.114

-0.100 that are consistent with

measurements in the literature.
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Sample ⟨𝛾⟩0 𝜎𝛾
𝜕⟨𝛾⟩
𝜕𝑧

𝜕⟨𝛾⟩
𝜕𝑅Ein/𝑅eff

complete: LD 2.056+0.023
-0.022 0.163+0.016

-0.019 −0.428+0.119
-0.127 0.210+0.114

-0.100

overlapping: LD 2.053+0.033
-0.028 0.165+0.027

-0.025 −0.002+0.303
-0.265 0.074+0.194

-0.294

overlapping: lensing 2.063+0.028
-0.023 0.156+0.027

-0.021 0.812+0.252
-0.263 −0.539+0.160

-0.191

complete: lensing 2.095+0.03
-0.029 0.199+0.027

-0.025 0.331+0.216
-0.228 −0.276+0.176

-0.156

Table 3.4: Best-fit values of free parameters in a two-covariate model (equation 3.4.1) describing the
correlation between galaxies’ logarithmic density slope, 𝛾, with redshift 𝑧 and normalised Einstein
radius 𝑅Ein/𝑅eff . The effective radius 𝑅Eff is are literature values of de Vaucouleurs fits to the stellar
emission.

3.5 Discussion and Comparison With Previous Studies

3.5.1 Bulge-halo conspiracy?

That the total mass-density profiles of massive elliptical galaxies is nearly isothermal has been observed

in X-ray emission (Humphrey et al., 2006), dynamical modelling (Serra et al., 2016; Poci et al., 2017),

and lensing and dynamical analyses (Koopmans et al., 2006; Barnabè et al., 2009; Auger et al., 2010a;

Sonnenfeld et al., 2013a). Given that neither the stellar nor dark matter components are individually

described by a single power law, this remarkable observation about their sum is known as the “bulge-

halo consipracy”. On average, taking into account current measurement uncertainties, our analysis is

consistent with this result. By fitting to only the imaging data of a sample of 48 strong lenses from the

SLACS and GALLERY surveys, we measure slightly super-isothermal total-mass density slopes, with

mean ⟨𝛾⟩ = 2.075+0.023
−0.024 and intrinsic scatter 𝜎𝛾 = 0.172+0.022

−0.032. Previous L&D analyses of exactly the

same galaxies yield consistent measurements ⟨𝛾L&D⟩ = 2.050+0.023
−0.031 and 𝜎L&D

𝛾 = 0.156+0.030
−0.026.

If the true density profiles of massive elliptical lens galaxies are indeed power-law distributions, then

one would expect a perfect correlation between the slopes constrained with the different methods. For

a sample of 21 SLACS systems analysed using a similar lensing-only method, Shajib et al. (2021)

were unable to detect a correlation between slopes measured using lensing only and L&D. They

measured a bi-weight mid-correlation of 0.01 ± 0.16, where the errors on the correlation coefficient

were calculated from the 68% confidence interval of the coefficients calculated from 1000 random

draws of their lensing-only and L&D slopes from the posterior PDFs. With more than double the

number of systems, if we adopt the same approach as Shajib et al. (2021), we continue to find no

correlation between the lensing and L&D slopes (bi-weight mid-correlation 0.08+0.11
−0.12). Moreover,

using our own approach that takes into account the covariance between the intrinsic distributions of

slopes (described in Section 3.3.2), we measure a correlation coefficient of −0.150+0.223
+0.217, suggesting
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an even wider range of correlation coefficients are consistent with the data. Therefore, although we

can not rule out the existence of a global power law given the measurement uncertainties, the lack of

an obvious correlation between the slopes measured using the different methods may be indicating

that some of the systems deviate from a strict power law.

3.5.2 Are the lensing and dynamics and lensing-only methods constraining the same

quantity?

Although lensing-only and L&D analyses yield consistent mean values of logarithmic density slopes

for a population of galaxies, this does not necessarily imply that the two analyses constrain the same

quantity for each individual galaxy. Lensing-only analyses are sensitive to the profile at the Einstein

radius (e.g. Koopmans et al., 2006; Treu, 2010; Suyu et al., 2017), whereas L&D analyses (combining

measurements of velocity dispersion and Einstein radius) probe the integrated profile between the

effective and Einstein radii. If galaxies’ total density profiles deviate from a power law, measurements

of the logarithmic slope at different radii will yield different results. Shankar et al. (2017) report

a connection between the observed dependence of 𝛾L&D on stellar mass and effective radius (hence

stellar surface mass density) and the relative amounts of stellar and dark matter in the region of the

mass density profile that is being probed. They find that steeper 𝛾L&D are inferred from the inner

profile where the stellar component steepens. Similarly, with models of early-type galaxies built

from analytic stellar and dark matter profiles, Dutton & Treu (2014) showed that the strength of the

correlation between 𝛾L&D and dark matter fraction largely determines the strength of the correlation

between 𝛾L&D and stellar density (among other galaxy variables).

We found in Section 3.4 that measurements of a galaxy’s logarithmic density slope can be made

independently of most of its observable properties. The main complications are caused by variations

in a galaxy’s total surface mass density, Σtot. For a lensing-only analysis, we obtain negative values

of 𝜕⟨𝛾⟩
𝜕Σtot

, while L&D analyses are consistently positive (Table 3.3). A negative coefficient seemingly

runs counter to the expectation (also demonstrated with stellar kinematics methods Poci et al. 2017)

that galaxies with higher stellar densities have higher central densities, and hence steeper total mass-

density slopes. This disagreement may therefore indicate that the L&D and lensing-only methods are

constraining different quantities. Indeed, it is notable that the multivariate model we fit to the lensing-

only analyses (overlapping and complete) with normalised Einstein radius as a second covariate, infer

similar coefficients 𝜕⟨𝛾⟩
𝜕REin/Reff

to the coefficients 𝜕⟨𝛾⟩
𝜕Σtot

in the models fitted with surface mass density as a

covariate (see Tables 3.4 and 3.3). Since these quantities are strongly correlated, and can therefore not

be fitted for simultaneously, it is difficult to interpret the coefficients individually. It may be that the
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Figure 3.11: Analytic model of an azimuthally-symmetric lens, which reproduces and explains
behaviour observed in the data. The distribution of mass is described as the sum of Hernquist (stellar)
and NFW (dark matter) profiles. As the stellar surface mass density increases from the top to bottom
panel, the slope of the total mass-density profile constrained between the Einstein radius and effective
radius (cyan dash-dotted line) steepens, mimicking the lensing and dynamics positive relationship
with surface mass density. Conversely, the slope constrained locally at the Einstein radius (dark blue
dash-dotted line) flattens, reproducing the negative relationship with surface mass density observed for
the slopes measured using lensing only. The top and bottom panel represent the mass density-profiles,
and their fitted L&D and local slopes, for the first and last points plotted in the middle panel which
shows how these quantities behave as the stellar surface mass density increases.
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negative relationship we infer with total surface mass density is a consequence of a more fundamental

dependence on the radius at which the lensing slope is measured.

We now put forward a toy model that can explain the observed behaviour. We first construct a model

of the distribution of mass in an early type galaxy, comprising baryons in a spherically-symmetric

Hernquist profile, and dark matter in a spherically-symmetric NFW profile (Figure 3.11). In line

with previous studies (Dutton & Treu, 2014; Shankar et al., 2017), we found Salpeter-like values

were necessary to produce values of total-mass density slope that were representative of the L&D

observations. We fix the total stellar mass (at 11.64 log[𝑀∗/𝑀⊙]), then adjust the NFW parameters

to obtain a dark matter fraction within half the effective radius representative of observations of

early-type galaxies (these are small such that at this radius the stellar and total masses, hence surface

densities, are similar). Following Dutton & Treu (2014) we then approximate the L&D mass-density

slope measurement as the mass-weighted density slope within the effective radius

𝛾L&D
proxy(𝑟) =

1
𝑀 (< Reff)

∫ Reff

0
−𝛾(𝑟)4𝜋𝑟2𝜌(𝑟)𝑑𝑟, (3.5.1)

where 𝑀 (< Reff) is the total mass within the effective radius, and −𝛾(𝑟) ≡ 𝑑log𝜌/𝑑log𝑟 is the local

logarithmic slope of the given density profile 𝜌(𝑟). We then assume that the lensing-only method

measures the local logarithmic slope at the Einstein radius. In this model, increasing the stellar surface

mass-density from Σ∗ = 8 log[𝑀⊙kpc−2], (left panel) to Σ∗ = 10.5 log[𝑀⊙kpc−2], (right panel) by

decreasing the effective stellar radius, raises the inferred L&D slope (cyan dot-dashed line) from 2.08

to 2.28 but reduces the inferred local logarithmic slope at the Einstein radius (navy dot dashed line)

slope from 2.26 to 1.76 – similar to our observations of real galaxies.

The negative relationship of the local slope at REin in this model (middle panel Figure 3.11) appears

to occur at larger values of normalised Einstein radius. The effective radius is typically in a heavily

baryon-dominated regime; the Einstein radius near an inflection point in the total density profile,

created by the transition from baryon- to dark matter-domination. As we increase the stellar density,

the steepening stellar profile strengthens the inflection point (deviating further from a power-law), and

the Einstein radius moves out farther towards the inflection point and a shallower slope. However, all

this is averaged over by a L&D measurement. That we observe the same behaviour in real galaxies

suggests their total density profile might also contain a detectable inflection point. If further work

supports this hypothesis, that the inflection is detected by a lensing-only measurement, but averaged

over by a L&D measurement, future analyses that combine measurements may be able to constrain

deviations from the bulge-halo conspiracy.

We acknowledge that it is a strong assumption that the lensing only measurement constrains the local
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Study Samples ⟨𝛾⟩0 𝜎𝛾
𝜕⟨𝛾⟩
𝜕𝑧

𝜕⟨𝛾⟩
𝜕Σ

𝜕⟨𝛾⟩
𝜕𝑅Ein/𝑅eff

Bolton et al. (2012) SLACS &
BELLS 2.11 ± 0.02 0.14 ± 0.06 −0.60 ± 0.15 - -

Sonnenfeld et al. (2013a) SLACS,
SL2S, & LSD 2.08+0.02

−0.02 0.12+0.02
−0.02 −0.31+0.09

−0.10 0.38+0.07
−0.07 -

Li et al. (2018) SL2S, BELLS,
& GALLERY 1.981+0.024

−0.024 0.168+0.021
−0.017 −0.309+0.092

−0.083 - 0.194+0.092
−0.083

Table 3.5: Comparison of the coefficients inferred for models in previous studies that have constrained
the redshift dependence of lensing and dynamics total mass-density slopes.

slope at the Einstein radius. This neglects the constraining power of the positions of the arcs in the

image (i.e. the Einstein radius) that are fit for simultaneously with the gradients of the deflection

angle field that constrain the slope in a real lensing analysis. Kochanek (2020) emphasise that the

only two quantities determined by lens data are the Einstein radius and the dimensionless and mass-

sheet invariant quantity 𝜉2 = REin𝛼
′′(REin)/(1 − 𝜅Ein) where 𝛼′′(REin) is the second derivative of the

deflection profile at REin. They argue that power law models have a one to one mapping between this

quantity and the mass-density slope 𝛾 = 𝜉2/2+2. With 𝛾 calculated in this way for the Hernquist+NFW

profiles plotted in Figure 3.11, we do not find a negative relationship between total mass-density slope

and stellar surface mass density. This may be implying that the mass-density profiles that make up

our toy-model are too simplistic, that the way we induce an increase in stellar surface mass density is

different to how this increase occurs in real galaxies, or that 𝛾 = 𝜉2/2+ 2 does not well represent what

we measure with lensing only in real galaxies.

Understanding what slope lensing constrains when the underlying profile deviates from a power law

will be invaluable in interpreting the results presented in this work. Cao et al. (2020) showed that the

true profile’s mass weighted slope within the Einstein radius better matched the total mass-density

slope of lensing only fits to mock images, simulated with complex multiple Gaussian expansion +

NFW profiles, than the mass weighted slope between 0.8 - 1.2 REin. For these mock systems the

mismatch between the power-law and the true density profiles can be compensated by a mass-sheet

transformation (see Figure 8 of Cao et al. (2020)), which results in a fitted lensing only slope that

resembles more closely the true density profiles’ average slope over a local measurement as suggested

in this work. Nonetheless, the 2𝜎 disagreement between the lensing only and L&D surface mass

density coefficients implies a deviation of the underlying profile from a power law distribution, and

the negative relationship of the lensing only slopes with normalised Einstein radius may well be the

result of an inflection zone like that described in the toy-model put forward in this work.
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3.5.3 Evolution of massive elliptical galaxies

Although measurements of 𝜕⟨𝛾⟩
𝜕𝑧

reflect the evolution of galaxy populations rather than individual

galaxies, they can still inform models of the overall processes. For example, Shankar et al. (2018)

found their observations could be reproduced only if the Sérsic index of stellar components vary

with redshift. Our L&D analysis confirms previous measurements in the literature, that galaxies’

logarithmic density slopes decrease with increasing redshift, i.e. they steepen with cosmic time (see

Table 3.5). Interestingly, most cosmological simulations instead show a mild increase in density

slopes with increasing redshift (Wang et al., 2020, 2019; Remus et al., 2017), which is inconsistent

with L&D measurements but matches our lensing-only results. Typically, the density slope of a

simulated galaxy is calculated to be the average mass density slope within some radial range. At

present, it is not clear whether this discrepancy with L&D density slope measurements indicates a

limitation of the simulations, systematics in the observations, or additional complexity in the physics,

such as deviations from a power law profile. Notably, adjusting the method used to calculate density

slopes in the Illustris simulation so it better represents the L&D observational technique suggests a

mild shallowing of slopes with redshift, 𝜕⟨𝛾⟩
𝜕𝑧

= −0.03 ± 0.01 (Xu et al., 2017). Nonetheless, those

authors caution that the method still suffers from systematic biases and does not account for sampling

bias that will be present in the observational data.

Galaxy selection effects are important. Both lensing-only and L&D analyses of our overlapping

sample yield positive values of 𝜕⟨𝛾⟩
𝜕𝑧

that do not match the results of larger samples (see Tables 3.3

and 3.4). The positive coefficients are driven by the GALLERY lenses, which constitute most high

redshift lenses in the overlapping sample, and have the steepest mean slopes. The unusual properties of

GALLERY systems may even explain the differences between the lensing-only and L&D coefficients.

Because the constraining power of L&D analyses degrade at high redshift (see Section 3.5.4), the

GALLERY sample does not contribute as much to the overall fit, and 𝜕⟨𝛾⟩
𝜕𝑧

is not as significantly

positive.

If lensing-only and L&D techniques measure different aspects of galaxies’ mass distributions, as we

suggested they might in Section 3.5.2, it is unclear whether we should expect the dependence of these

measurements on redshift to agree. Nevertheless, with the current level of statistical precision, the

lensing-only and L&D measurements are consistent when we model the same samples of lenses.

3.5.4 Benefits of lensing-only analyses

Measurements using our lensing-only method do not degrade at high redshift. This is illustrated in

Figure 3.2, which compares the statistical uncertainty of lensing-only or L&D measurements of each
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slope, 𝛿𝛾, as a function of redshift. For the L&D analysis of galaxies in the overlapping sample, we find

a strong linear relationship between uncertainties and lens redshift, with slope 0.37±0.05 (1𝜎 errors,

i.e. significant at >3𝜎). However, for lensing-only measurements, we measure much less degradation,

with slope 0.06±0.04 (1𝜎 errors, i.e. consistent with zero at 2𝜎). Note that lensing-only measurements

of (high redshift) GALLERY lenses have greater uncertainty than lensing-only measurements of (low

redshift) SLACS lenses. This appears to be unrelated to the lens redshift, as we detect no correlation

between measurement uncertainties and redshift for the SLACS and GALLERY samples separately.

It is instead expected because the GALLERY lenses were selected due to Lyman-alpha emission from

their source galaxies, which makes them inherently compact and less well resolved.

Despite this selection effect, which disfavours only the lensing method, the lensing-only measure-

ments of the GALLERY sample are better constrained than L&D measurements, which degrade

due to increasing uncertainty on velocity dispersion measurements at high redshift. This highlights

the potential of the lensing-only method to extend this analysis to higher redshifts without losing

constraining power. Deviations from a global power law, as discussed in Section 3.5.2, may compli-

cate the interpretation of analyses like that presented in this study. In future, constraining how the

parameters of more complex stellar plus dark matter distributions depend on redshift may be more

appropriate to further our understanding of the evolution of ETGs, a problem well suited to strong

lensing (Nightingale et al., 2021a). Sonnenfeld & Cautun (2021) demonstrated the ability of strong

lensing alone to calibrate stellar masses and constrain the inner dark matter density profile of galaxies

with a hierarchical approach.

In the next couple of decades, lensing-only analyses could be possible at redshifts up to 𝑧 ∼ 2, through

surveys such as Euclid and the Vera Rubin Observatory that will discover large populations of high

redshift lenses (Collett, 2015). Furthermore, the lensing-only measurements were constrained from

the imaging data alone and can therefore scale to the hundreds of thousands of lenses that these surveys

will observe, without requiring deep spectroscopic observations. Photometric redshifts (Sonnenfeld,

2022) and fully-automated analyses (Shajib et al., 2021) will be key in this endeavour.

3.6 Summary

We measure the distribution of mass around 48 early type galaxies in the SLACS and GALLERY

strong lens surveys, to test the ‘bulge-halo conspiracy’ that stellar and dark matter together produce

a power-law radial density profile with index 𝛾. We compare two methods: a traditional Lensing

& Dynamics (L&D) technique that combines the Einstein radius from lensing with stellar kinematic
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data; and a new, lensing-only technique that fits every pixel in imaging data. The two methods yield

consistent measurements of the parent distribution. Our lensing-only technique measures a population

average ⟨𝛾⟩ = 2.075+0.023
−0.024 with intrinsic scatter between galaxies 𝜎𝛾 = 0.172+0.022

−0.032

Two results hint that the conspiracy breaks down. First, although the two methods yield consistent

population-averaged measurements, they appear to differ for individual galaxies. If every galaxy has a

single, well-defined power-law slope, although we can not rule out a global power law with the current

level of measurement uncertainty, it is surprising that we infer a statistically insignificant correlation

coefficient of −0.150+0.223
+0.217. Second, although both methods can infer 𝛾 independently of most galaxy

properties, measurements are correlated with total surface mass density (even when we fit multivariate

models including redshift as a covariate). The lensing-only method yields negative correlation

𝜕⟨𝛾⟩/𝜕Σtot = −0.432+0.404
-0.348 , whereas the L&D method yields positive correlation 𝜕⟨𝛾L&D⟩/𝜕Σtot =

0.659+0.481
-0.474 .

We discuss a hypothesis that explains these results. The L&D method measures a galaxy’s mean

density profile between the Einstein radius and its effective radius. This averages out deviations from

a power law, indicating the ‘bulge-halo conspiracy’. However, the lensing-only method is sensitive

to the local slope at the Einstein radius. For galaxies in which the Einstein radius is larger than the

effective radius, the Einstein radius typically occurs near the transition between stellar-dominated core

and dark matter-dominated outskirts – an inflection point where the total mass profile deviates from a

power law. The inflection gets stronger as the stellar mass density increases. Further studies (e.g. Cao

et al., 2020; Kochanek, 2020) will be useful to test this hypothesis and to understand how deviations

from a power-law could affect previously-obtained inferences about galaxy evolution.

Any study of galaxy evolution must deal with selection effects. Our results suggest that galaxy redshift

and stellar surface density affect the mass profile inferred by lensing methods (partly because they

usefully change the Einstein radius, so probe deviations from a power law mass distribution). If

selection effects can be understood, the lensing-only method will be able to analyse the large samples

of lenses expected from surveys such as Euclid. This is because it requires only imaging data, and

can be automated. Its analysis will also be possible to higher redshifts than L&D techniques, whose

statistical precision degrades with redshift due to difficulties obtaining spectroscopy.

In this study we measured a redshift dependence of 𝜕⟨𝛾⟩/𝜕𝑧 = 0.345+0.322
−0.296 at fixed surface mass

density for the lensing-only slopes, consistent with the same sample of L&D slopes but in tension

with the complete L&D sample. A large sample of lenses from a single lens survey like Euclid will

provide a tighter constraint on this result and remove any biases from the different selection effects of

the combined surveys. This will offer new insights into the formation and evolution galaxies, out to
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redshift 2.0 and beyond.



Chapter 4

Investigating strong lensing “external”

shears

4.1 Introduction

So far in this thesis we have taken advantage of gravitational lensing in the strong regime to constrain

the mass distribution of the lens galaxy from the multiple images that are produced. Gravitational

lensing occurs along most lines of sight in the Universe in the weak regime, where the distortions

occur primarily as small perturbations to galaxy shapes. These perturbations are known as cosmic

shear when they are due to the large scale structure of the universe, but also occur in the outskirts

of massive clusters or galaxies. Since the weak lensing shear causes coherent distortions in the

images of background galaxies, wide-field galaxy surveys can be used to measure the lensing signal

by correlating observed galaxy shapes of large number of objects.

Constraining the cosmic shear has become a powerful probe of cosmology, allowing us to infer the

properties of dark energy, putting tight constraints on cosmological parameters (Kilbinger, 2015).

This is possible since the growth of structure and the evolution of the LSS that is probed by weak

lensing is inherently linked to the cosmological model. Recently, methods to combine the constraints

from both strong and weak lensing to accurately infer the line of sight shear have been proposed (Birrer

et al., 2017; Kuhn et al., 2020; Fleury et al., 2021).

Since strong and weak lensing probe different regions of the same matter density field, together the

two methods provide independent constraints on the same distribution of matter. Although most

regularly used as stand alone probes, this complementarity provides useful insight into the systematic

uncertainties inherent to the individual methods. In our strong lensing models of the SLACS and

101
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GALLERY samples in Chapter 2 we included two additional ‘external shear’ parameters in the model

for the mass distribution, thus constraining the weak shear distortions in the environment of each lens

galaxy.

Including external shear parameters in the model is commonplace in strong lensing methods, indeed

it is a necessity if one wishes to account for all possible perturbations to the deflection angle field.

However, the assumption that they account for perturbations from matter only external to the lens

galaxy should possibly be approached with caution. Studies of quad lenses have shown that the

models prefer values of external shear that are too large to be a result of cosmic shear or galaxy-scale

perturbations alone (Keeton et al., 1997; Witt & Mao, 1997). More recently, Cao et al. (2022, hereafter

C22) demonstrated using a mock sample of lenses that false inferences of external shear can be made

if the model for the mass distribution is missing complexity that is in the true mass distribution.

To test the hypothesis that fitted values of external shear do not reflect the true shear along that line of

sight, we study the subset of SLACS lenses for which we have sufficiently high S/N data to measure

the weak lensing shear distortions. We shall compare these environmental shears measured using the

weak lensing method to the external shears measured in our strong lensing analysis. We note that

these would not be expected to arrive at identical results due to the different scales that they probe,

however we would expect them to be strongly correlated. Kuhn et al. (2020) recently developed

a self-consistent formalism for combining strong and weak lensing line of sight shears, taking into

account covariances. The strong and weak lensing covariance they measured from three lenses in the

COSMOS field was smaller than the difference observed for the individual systems, indicating more

data was required for a detection. In this work, with a much larger sample of galaxies, we simply aim

to detect a correlation between the two probes.

To gain further understanding of the external shears inferred using the strong lensing method we

compare the results of the observed SLACS and GALLERY lenses to those from a mock sample of

galaxies simulated by C22 to be similar to the SLACS population. These lenses were simulated with

complex multiple elliptical gaussian (MGE) and NFW mass distributions that represent the stellar and

dark matter respectively. No external shear was simulated in the mock data and yet C22 demonstrated

that an external shear is recovered when they are fitted with a PL+ext profile. We will compare the

behaviour of these shears to those inferred in real galaxies. Further, we carry out and investigate the

results that are inferred in both the real and mock samples when the mass distribution is assumed to

be just a PL, removing the external shear parameters from the fit.

We begin by recapping the gravitational lens theory in Section 4.2, specifically describing the weak

lensing regime and the method to constrain the weak lensing shear. We then give an overview of
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the observed and mock data in Section 4.3 and the strong and weak lensing analysis procedures in

Section 4.4. The results are presented in Section 4.5 and discussed in Section 4.6, before we finally

conclude in Section 4.7

4.2 Regimes of gravitational lensing

In Section 1.4.1 we covered strong gravitational lensing theory. In this strong regime, where (𝜅 > 1),

the lens equation (equation 1.4.3) has multiple solutions corresponding to the number of multiple

images that are observed. Thus, assuming a model for the distribution of mass in the lens plane

and the distribution of light in the source plane, the multiple images provide constraints on these

distributions by solving the lens equation. In strong lensing studies it is common to assume that the

mass distribution (and its associated shear) of the primary lens galaxy, which are typically Early-type

galaxies, can be well approximated by an elliptical power law distribution (equation 1.4.14). The

primary lens galaxy is not the only source of shear in a gravitational lens. It is generally considered

necessary to allow for external perturbations caused by galaxies or clusters near the lens galaxy, or

along the ray path. It is these external shear parameters (equation 1.4.16), that were constrained in

Chapter 2, we will investigate in this chapter. We will compare these shear distortions from the strong

lensing regime to those from the weak lensing regime, where the distortions and magnifications are

small such that they can not be identified in individual sources, only statistically.

In the weak lensing regime, where 𝜅 ≪ 1, the Jacobian (equation 1.4.6) is very close to the unit

matrix, and only small magnifications and distortions occur. Under this definition of weak lensing the

lens mapping can be linearised and the Jacobian can be expressed in terms of the convergence and

the two components of shear (equation 1.4.7). The most readily observable effect in this regime are

the shear distortions. Although, due to the invariance of the Jacobian matrix under the transformation

A → 𝜆A (known as the mass sheet degeneracy Schneider & Sluse (2013b)), only the reduced shear

𝑔 =
𝛾

1 − 𝜅
, (4.2.1)

is measurable through observation and not the convergence 𝜅 or shear 𝛾 individually. Like 𝛾, the

reduced shear is a complex number 𝑔 = 𝑔1 + 𝑖𝑔2 and it’s components describe the deformations that

occur between the source and the image plane. Moreover, since the unlensed shape of a background

source galaxy is unknown (and not circular), the measured ellipticity observed on the sky is

𝜖 = 𝜖int + 𝐺𝑔 (4.2.2)

where 𝜖int is the intrinisic ellipticity of the source galaxy, 𝑔 is the reduced shear, and 𝐺 is the shear
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‘susceptibility’ or ‘responsivity’ factor(Rhodes et al., 2000). The measured ellipticities do not usually

change linearly with an applied shear. The shear responsivity factor encodes how these ellipticities

respond to a small shear, allowing for an unbiased estimator of the reduced shear.

It is possible to measure the mean reduced shear in a patch of sky, by averaging galaxies’ apparent

shapes 𝜖 , under the assumption that their intrinisic shapes are randomly oriented, i.e. ⟨𝜖int⟩ ≈ 0 (and

after applying a correction for their shear susceptibility).

⟨𝑔⟩ =
〈 𝜖
𝐺

− 𝜖int

〉
≈ ⟨𝜖⟩

⟨𝐺⟩ (4.2.3)

In the weak lensing limit 𝜅 ≪ 1, the reduced shear approximates the shear itself 𝑔 ≈ 𝛾. Although

the galaxy-scale lenses we are interested in are not in the weak lensing regime, we assume this

approximation still holds since the vast majority of line of sights within the surrounding patch of sky

will not be strongly lensed. Thus, the weak lensing shear measurements are statistical in nature, limited

by the randomness in the distribution of the unknown intrinsic ellipticites termed ‘shape noise’.

4.3 Data

4.3.1 Mock sample of galaxies

We shall compare the results from observations to a strong lensing analysis of a mock sample of 50

lens galaxies, generated to be well representative of SLACS lenses. The mock sample of lenses were

generated by C22 for an investigation into the systematic errors induced by the elliptical powerlaw

model in strong lens modelling. The authors give a detailed description of the simulation procedure

in Section 2.4. We give a brief overview of the procedure below.

The surface mass density of the lens galaxy is described by two components: a dark matter halo,

parameterised by the spherical generalised Navarro, Frenk & White (gNFW) profile (Cappellari

et al., 2013), and; visible stellar matter, parameterised by a Multiple Gaussian Expansion (MGE)

(Cappellari, 2002). The model parameters of the gNFW and MGE profiles of each lens galaxy are

set to the best-fit parameters from fits of these distributions to SDSS-MaNGA stellar dynamics data,

derived by Li et al. (2019) using the Jeans Anisotrpoic model (JAM) method. The position angle of

each Gaussian component in the MGE is fixed, however their axis ratios are free to vary allowing for

elliptical gradients in the mass distribution.

The light distribution of the source galaxy is modelled by a single Seŕsic profile (Graham & Driver,

2005) with effective radius 𝑅eff = 0.15′′, Seŕsic index 𝑛 = 1, axis ratio 𝑞 = 0.7. The position in the
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source plane (𝑥𝑠, 𝑦𝑠) is drawn from a Gaussian distribution with mean 0′′ and standard deviation 0.1′′,

and the position angle is uniformly selected between 0◦ − 180◦. The light from the source galaxy

is ray-traced from the source plane to the image plane through the lens equation (equation 1.4.3), to

simulate it’s lensed appearance. Further, to mimic observational effects, the image is convolved with a

Gaussian PSF with 0.05′′ standard deviation, and sampled by 0.05′′ square pixels. A flat background

sky of 84 electrons per second is added, as well as Poisson noise. The signal to noise ratio of brightest

pixel in the synthetic images is set to ∼50, by adjusting the intensity of the Sérsic source accordingly.

No external shear was simulated in the mock data sample.

4.3.2 Observed sample of galaxies

In this chapter, we choose to analyse the 42 SLACS and 15 GALLERY lenses that our automated

analysis reliably fits without residuals (see chapter 2). These correspond to the combined ‘Gold’ and

‘Silver’ samples. On these galaxies, we will be running another strong lensing pipeline and analysing

the wide-field images with a weak lensing analysis. The imaging data on which we perform the weak

lensing analysis was reduced as described by (Tam et al., 2020) and the final spatial resolution is 0.03”.

The weak lensing procedure will be applied to the SLACS lenses for which, unlike the GALLERY

sample, higher wavelength imaging is available. We necessarily remove the lenses J1143-0144 and

J1420+6019 from the sample, which due to telescope scheduling issues only have one exposure

available. As a result, the final reduced images are not deep enough to detect sufficient background

sources for the weak lensing analysis. The remaining 39 SLACS lenses make up our weak lensing

sample.

4.4 Method

4.4.1 Weak Lensing analysis

The shapes of galaxies in the HST/ACS imaging mosaic, identified with the SExtractor photometry

package (Bertin & Arnouts, 1996), were measured using the shape measurement method of Rhodes

et al. (2000), implemented in practice as PyRRG code by (Harvey et al., 2019). This measures the

apparent ellipticity and shear susceptibility of every galaxy from its weighted multipole moments,

correcting them for blurring by the point spread function (PSF) using the TinyTimmodel Krist (1993).

More details of the source detection and weak lensing shape measurement procedures are given by

Tam et al. (2020).
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We calculate the weak lensing shears averaged inside radii of 45, 60, and 90 arcseconds from the

centre of the strong lens galaxy (no weights are applied to the galaxies that are averaged). For brevity

we present only the results within an aperture of 60′′, which on average include contributions from

∼140 galaxies. The uncertainties on the weak lensing shears are similar to those on the strong lensing

measurements when averaged within this aperture. We have confirmed that the results do not change

significantly if a different aperture is used.

When averaging over 𝑁 galaxies that are all subject to the same shear, the uncertainty on the mea-

sured distortion from the true shear is 𝜎int/
√
𝑁 , where 𝜎int is the standard deviation of the intrinsic

ellipticity. For the weak lensing measurements made within 60” we individually measure 𝜎int and

the corresponding RMS uncertainty on each component of shear for the 39 lenses. As expected from

the literature we measure 𝜎int ∼ 0.3 (Leauthaud et al., 2007), which for each lens leads to an RMS

uncertainty of ∼ 0.02 on each component of shear.

Although we will measure the shear due to the PL mass profile of the strong lens galaxy, we choose not

to subtract this shear measurement from the weak lensing shear measurements. Our investigations into

the external shears of the strong lens models will also have implications on the mass model parameters

and their associated shear. It is therefore unclear if we would be removing the correct amount of shear

upon subtraction from the weak lensing measurements. To avoid this, we will simply compare the

weak lensing shear parameters that include the shear from the strong lens to the external shears from

strong lensing. We will keep this in mind when making inferences from these results.

4.4.2 Strong Lensing analysis

The strong lens analysis, performed on both the observed and mock data images, was carried out using

the strong lens modelling software PyAutoLens described in detail by Nightingale et al. (2018). As

described in Chapter 2, PyAutoLens uses a technique termed ‘non-linear search chaining’ to compose

pipelines capable of fitting complex lens models by initially fitting simpler models, that gradually

increase in complexity. Each individual model fit is performed using the nested sampling algorithm

dynesty, which determines the posterior probability distributions of the model fit parameters. The

results of a single dynesty search are used to construct informative priors that are passed to subsequent

model fits, guiding the non-linear search towards the highest likelihood lens models. Details of the

pipelines constructed to fit the observed and mock data samples are given in section 2.4 and C22,

respectively.

Ultimately, we model the distribution of mass in both real and mock data using an elliptical power law

(equation 1.4.14) plus external shear (equation 1.4.16). We model the distribution of light in the lens
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galaxy (for the real data only) using a double Sérsic profile, and for the source galaxy using an adaptive

Voronoi mesh. C22 performed two model fits on the mock data sample; one which reconstructs the

source galaxy on an adaptive voronoi mesh, and one that models it as an elliptical Sérsic profile. In

this chapter we will analyse the results from the elliptical Sérsic model fits. Since the mock data were

simulated with a Sérsic source for the light galaxy these models can perfectly describe the source.

Thus, any systematics we observe will be solely due to the mismatch in the assumed model of the

mass distribution from that of the underlying truth, which is the point of interest in this chapter.

We further perform a strong lensing analysis that assumes the deflection of light is a result of only the

power-law distribution of the lens galaxy. The procedure for this analysis applied to the observed and

image data is identical to the pipelines described in the previous paragraph but without the parameters

for external shear.

4.4.3 Multipole fitting

In Section 4.5.2 we will investigate if the strong lensing external shears depend on elliptical deviations

of the mass profile. Specifically, we will quantify the multipole deviations of two types of contour;

the iso-convergence contour at 𝜅 = 1 of the gNFW+MGE mock mass distributions, and the critical

curves of both the mock galaxies and the observed galaxies. These contours are stored as a 2D array

of points in polar coordinates [𝜙contour, 𝑅contour]. We calculate the deviations of the contour from the

true ellipse

𝑅el(𝜙) =
𝑏√︁

1 − 𝜖 cos2(𝜙 − 𝜙el)
, (4.4.1)

where 𝑏 is the minor axis, 𝜙el is the major axis orientation, and 𝜖 is the eccentricity. The deviations

are then parameterised using multipoles

𝛿𝑅𝑚(𝜙) =
∑︁

𝑎𝑚 cos(𝑚(𝜙 − 𝜙el)) + 𝑏𝑚 sin(𝑚(𝜙 − 𝜙el)) , (4.4.2)

where 𝑚 is the order of the multipole, and 𝑎𝑚 and 𝑏𝑚 are the magnitude of the deviations with

symmetry along or at 45◦ to the major and minor axes, respectively. We then perform a non-linear

search to fit the model

𝑅(𝜙) = 𝑅el(𝜙) + 𝛿𝑅𝑚(𝜙), (4.4.3)

to the radial values of the contour. We assume uniform priors on the free parameters in the fit over

a reasonable range and fit for them using the nested sampling algorithm dynesty. We assume the
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Figure 4.1: Measurements of weak lensing shear components (𝛾WL
1 , 𝛾WL

2 ) as a function of the inferred
strong lensing shear component 𝛾SL

1 . To aid comparison, all shear components have been translated
by the inferred strong lensing shear position angle 𝜙SL

ext of each system, such that 𝛾SL
1 = 𝛾SL

ext > 0 , and
𝛾SL

2 = 0. The external shears inferred by strong lensing are consistently larger than those inferred by
weak lensing.

residual errors can be described by a Gaussian distribution and maximise the likelihood

ℒ(𝑅, 𝜎 |𝑅𝑖) =
∏
𝑖

exp
[
− (R(𝜙i )−Ri )2

2𝜎2

]
√

2𝜋𝜎2
, (4.4.4)

where 𝑅𝑖 are the radial values of the contour and 𝑅(𝜙𝑖) are the model predicted values from equa-

tion 4.4.3 at each angular coordinate in the contour 𝜙𝑖 . The uncertainty 𝜎 on the contour’s radial

values is ill-defined since, at least in the case of the mock sample, the values are just known quantities.

We therefore set this arbitrarily to 0.02 which is approximately equal to the pixel scale of the sub-grid

that the contours are calculated on.

4.5 Results

4.5.1 Do the external shears from different regimes agree?

We wish to compare the external shear components inferred by the strong lensing analysis (𝛾SL
1 , 𝛾SL

2 )

with the shear components inferred from weak lensing (𝛾WL
1 , 𝛾WL

2 ). We will first use symmetries to
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reduce these four numbers to just three in order to aid the comparison. This will require fewer plots

to portray the necessary information. We rotate the shear components by an amount corresponding to

the inferred strong lensing shear position angle for each lens system 𝜙ext. This transformation orients

the strong lensing shears such that all 𝛾SL
1 components are positive and equal to the inferred external

shear magnitude 𝛾SL
1 = 𝛾SL

ext, and all 𝛾SL
2 = 0. If the methods are detecting shears with a similar

strength and orientation, then we expect a correlation between the 𝛾SL
1 and 𝛾WL

1 components, and 𝛾WL
2

to be scattered around zero. As can be seen from Figure 4.1, which plots the inferred weak lensing

shear components as a function of 𝛾SL
1 , this is not the case.

The second components of the inferred weak lensing shears have a mean consistent with zero ⟨𝛾WL
2 ⟩ =

0.003 ± 0.003, where the error is the standard error on the mean. However the large scatter (0.02)

indicates that the weak lensing shears are not consistently aligned with those inferred by the strong

lensing analysis. Further, we do not infer a significant correlation between the first components of

strong and weak lensing shear. We perform a linear fit (𝛾SL
1 = 𝑚𝛾WL

1 +c) to shears inferred from

strong lensing and weak lensing, taking into account only the larger weak lensing errors, which infers

a gradient of 𝑚 = 0.05 ± 0.07. Similarly, the Pearson correlation coefficient inferred is 0.17 ± 0.30.

Notably, the external shears inferred by strong lensing are significantly larger than those inferred

by weak lensing. This is despite the fact that the shears measured from weak lensing have not

had the shear component from the strong lens subtracted, implying the discrepancy may be even

larger than we measure here. The mean difference between the inferred 𝛾SL
1 and 𝛾WL

1 components

is ⟨𝛾SL
1 − 𝛾WL

1 ⟩ = 0.08 ± 0.01, and the mean difference between the inferred shear magnitudes is

⟨𝛾SL
ext − 𝛾WL

ext ⟩ = 0.06 ± 0.01. In fact, the average magnitude of the strong lensing shears for the

full SLACS and GALLERY sample ⟨𝛾SL
ext⟩ = 0.09 (9%) is much larger than the typical ∼ 1 − 3%

external shear perturbations expected in the universe (Keeton et al., 1997). In the following sections

we investigate the origin of these anomalously large external shears inferred by strong lensing.

4.5.2 Behaviour of strong lensing “external” shears

Mock tests

Despite the mock sample of galaxies being simulated without any external shear perturbations, in

their study investigating systematic errors pertinent to the power-law profile, C22 demonstrated that

the PL+ext model consistently inferred an external shear with an average of ⟨𝛾SL
ext⟩ = 0.015 shear

magnitude. The authors revealed that the inferred external shears could be attributed to the lens

galaxy, an “internal” shear, that results from the shears ability to mimic the deviations from elliptical
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Figure 4.2: Difference between the orientation angle of the mass distribution and the shear (𝜙PL+ext
mass −

𝜙PL+ext
ext ) as a function of inferred external shear magnitude (𝛾ext) for the mock (a) and real (b) lenses.

The grey dashed lines delineate the regions where we classify the shears as ‘aligned’ (0◦ − 30◦ offset)
and ‘anti-aligned’ (60◦ − 90◦ offset) with the mass distribution The points are coloured by the inferred
axis ratio of the fitted power-law mass distribution. For both samples the mass distribution is typicallly
more elliptical when higher external shear is inferred.
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symmetry that are present in the true underlying (gNFW+MGE) mass distributions of the mock

galaxies. In this work, we extend these results by investigating how these internal shears behave, and

compare them to the unusually large strong lensing shears inferred in observations of real galaxies.

We find that the internal shears inferred in the mock data can be separated into two groups with

very little scatter (top Figure 4.2 a): some aligned with the major axis of the mass distribution,

and those perpendicular (‘anti’-aligned) to it. We will classify the external shears as ‘aligned’ with

the mass distribution when the angular offset lies between 0◦ ⩽ 𝜙PL+ext
mass − 𝜙PL+ext

ext ⩽ 30◦ (bottom

third of Figure 4.2) and ‘anti-aligned’ with mass distribution when the angular offset lies between

60◦ ⩽ 𝜙PL+ext
mass − 𝜙PL+ext

ext ⩽ 90◦ (top third of Figure 4.2). Although these classifications are somewhat

arbitrary they will be useful in describing the behaviours of the inferred external shears.

Most (85% of) external shears are anti-aligned with the mass distribution with very little scatter; we

measure a mean of ∼ 3◦ with a scatter of only ∼ 5◦. The 14% of external shears that are aligned

with the mass distribution, have a mean of ∼ 85◦ and a similar scatter of ∼ 6◦. Only one system (2%

of the sample) has a best-fit external shear that is neither aligned nor anti-aligned according to our

classifications. This system infers the lowest shear magnitude (0.0003) of the whole sample of mock

galaxies. We note that for all the measurements of external shear, 𝜙ext becomes ill-defined and noisy

when 𝛾ext is low. Thus, we expect the distribution of shear alignments to be noisy in this region; the

distinct groupings here are more arbitrary and uncertain. We notice that the inferred axis ratios of the

power-law mass distribution tend to decrease (becoming more purple in colour in Figure 4.2) as the

inferred external shear increases. We measure a Pearson correlation coefficient of −0.63 between the

inferred axis ratios and external shears.

C22 demonstrated that the inclusion of ‘external’ shear parameters allows a mass model to better

represent the deflection of light rays of the true underlying mass profile, and dubbed them ‘internal’

shears. For an example system, they showed that the critical curve inferred for the PL+ext profile

more closely resembled the critical curve of the true underlying profile than any PL alone could (see

Figure 6 therein). Therefore, we will now investigate if the true mass profiles deviations from elliptical

symmetry can explain the dichotomous behaviour of aligned and anti-aligned ‘internal’ shears.

One type of deviation from elliptical symmetry is boxiness and diskyness (see Figure 4.4), which

is quantified by the fourth order cosine perturbations (𝑎4 in equation 4.4.2) from a true ellipse. To

quantify the boxiness and diskyness of the true mass distributions of the mock galaxies we measure

the fourth order multipole deviations of the iso-convergence contour at 𝜅 = 1. This will be close to

the Einstein radius, in the region where the lensing fitting procedure is expected to be most sensitive.

On average the magnitude of the cosine perturbations are measured to be ⟨|𝑎4/𝑎 |⟩ = 0.01, two orders
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Figure 4.3: Difference between the orientation angle of the mass distribution and the shear (𝜙PL+ext
mass −

𝜙PL+ext
ext ) as a function of inferred external shear magnitude (𝛾ext) for the mock sample of galaxies that

were simulated without an external shear. Points are coloured by the magnitude of the inferred critical
curves deviation from elliptical symmetry 𝑎4/𝑎, values of 𝑎4/𝑎 < 0 correspond to boxy critical curves
and 𝑎4/𝑎 > 0 to disky ones.

of magnitude larger than the average sine perturbations ⟨|𝑏4/𝑎 |⟩ = 0.0005. Since the 𝑏4 perturbations

are almost zero, we consider the measured 𝑎4 perturbations to correspond to pure boxy and disky

profiles. We find that the 𝑎4 perturbations typically increase in magnitude with the external shear

magnitude, we measure a Pearson correlation coefficient of 0.45. The 𝑎4 perturbations also exhibit

a strong correlation with the inferred axis ratio of the galaxy. We measure a Pearson correlation

coefficient of −0.73.

The simulation procedure has only produced galaxies with mass distributions that are significantly

disky and none that are significantly boxy. Only three galaxies are measured to be boxy (𝑎4/𝑎 < 0)

and the magnitude of these boxy perturbations ⟨𝑎4/𝑎⟩ = −0.0003 are two orders of magnitude smaller

than the disky perturbations ⟨𝑎4/𝑎⟩ = 0.012. Notably, all mass profiles that are anti-aligned with the

inferred external shear measure disky 𝑎4 components (red points in Figure 4.3) in the convergence, and

the three mock lenses that are measured to be boxy infer shears aligned with their mass distribution.

This may be tentative evidence that the dichotomy of aligned and anti-aligned shears is due to disky

and boxy profiles. However, due to the noise and lack of a sample of galaxies with significant boxy

perturbations we can not determine from these tests whether such a dichotomy exists.

We will now test if the fourth order perturbations of the mass distribution are well traced by the fourth

order perturbations of the critical curve of the lens system. This will become useful in the following

section. Consistent with the 𝜅 = 1 results, we do not measure any significant 𝑏4 perturbations in
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Figure 4.4: Examples of the appearance of boxy (blue dashed curve) and disky (pink dashed curve)
deviations from a true elliptical contour (orange curve). Both the boxy and disky curves are ‘pure’
meaning that 𝑏4 = 0 in equation 4.4.2 and they have the same magnitude |𝑎4 | = 0.1 deviations. When
𝑎4 is negative the deviations are classified as boxy and when 𝑎4 is positive they are disky.

the critical curve - the average magnitude is ⟨|𝑏4/𝑎 |⟩ = 0.0001. The majority of 𝑎4 perturbations

measured in the critical curves are captured well by the perturbations in the mass distribution (see

Figure 4.5). In particular, for the mass distributions that are significantly disky, the 𝑎4 perturbations

measured from the critical curves are strongly correlated with those measured from the convergence.

However, we did not measure any significantly boxy distributions in the iso-convergence contour, and

yet we measure two systems with boxy perturbations 𝑎4/𝑎 < −0.01 that are much greater than their

perturbations measured in the mass distribution. With such few galaxies measured to be boxy in the

𝜅 = 1 convergence contour, we cannot be certain if this is just noise or a systematic bias whereby the

critical curve measures boxiness that does not exist in the mass distribution.

Observations from real galaxies

We see a similar distribution of shear alignments for the SLACS and GALLERY lenses as for the

mock data, albeit with more scatter (Figure 4.2). The inferred external shears anti-align with the

mass distribution 68% of the time, are aligned 20% of the time, and 12% fall into neither category.

If the external shears were truly measuring external perturbations, then one would expect a random

distribution of shear orientations. The preference for anti-aligning with the mass distribution indicates

that inferred external shears may be internal in nature (making up for deficiencies in the ability of the

mass model to represent the distribution of mass in real galaxies), like those inferred in the mock data.
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Figure 4.5: Comparison between the 𝑎4/𝑎 perturbations as measured from the iso-convergence
contour 𝜅 = 1 with those measured from the crticical curves. The values have been transformed by
log[𝑎4/𝑎+0.01] to better visualise the correlation between the points. The grey dashed lines represent
where 𝑎4/𝑎 = 0 which separates the measurements into boxy and disky perturbations. The disky
(𝑎4/𝑎 > 0) perturbations in the 𝜅 = 1 contour are well recovered by those measured in the critical
curves. This is not the case for the boxy 𝑎4/𝑎 < 0 perturbations, where the critical curve measures
some significantly boxy perturbations whereas 𝜅 = 1 measures none greater than 0.001.

We note that the coherent aligning of galaxies under tidal forces exerted by the same matter structure,

such as the matter over-density of a filament in the large scale structure, could cause some preferential

aligning of the shear and mass profile. However, these so-called ‘intrinsic alignments’ are expected

to have only a small effect (Blazek et al., 2012).

Notably, at lower shear magnitudes (𝛾ext ≲ 0.05) the shears appear more randomly distributed than

at high values, and the 12% of shears that we classify as being neither aligned nor anti-aligned do

not exceed 0.04 in magnitude. It may be that these shears are detecting (at least partially) genuine

external perturbations to the system. Interestingly, for the subset of galaxies with shear magnitudes

less than 0.05 we measure a linear correlation coefficient of 0.5 ± 0.41 between the 𝛾1 components

from strong and weak lensing. Although this correlation is only detected at 1𝜎 significance, this may

be tentative evidence that the shears are at least in part measuring external perturbations to the lens.

Low values of strong lensing external shears may better represent the true external shear. However,

we do not detect a significant correlation between the subset of strong lensing external shears that

have 30 < 𝜙PL+ext
mass − 𝜙PL+ext

ext < 60◦ and those inferred by the weak lensing.

In comparison to the mock data sample, the scale of the inferred strong lensing external shears is much

larger, measuring an average shear magnitude of 0.09 for SLACS and GALLERY lenses compared to
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Figure 4.6: Same as for Figure 4.3 but for the observed sample of SLACS and GALLERY lenses. The
inferred external shears have a similar distribution of aligned and anti-aligned shears as the mock data
sample, indicating they too may be acting internally. Note the increase in the scale of shear magnitude
𝛾ext and elliptical deviations 𝑎4/𝑎 compared to the mock data sample.

0.015 for the mock sample. This may, in part, be due to genuine external perturbations to the lens

system; however, as we demonstrated in Section 4.5.1, there is no correlation between these shears

and those detected by weak lensing, as one would expect if this were the case. We instead suspect

that these larger shears are in fact larger measurements of internal shear, a result of more complex

underlying mass distributions than were simulated in the mock data sample. A similar correlation

between the inferred external shear magnitude and axis ratio of the PL mass distribution is present in

the observations as in the mock data, we measure a Pearson correlation coefficient of -0.60. Despite

the inferred external shears being an order of magnitude larger in the observations than in the mock

data, the axis ratios are not significantly smaller. The SLACS and GALLERY lenses infer an average

axis ratio 0.69 ± 0.17, compared to 0.77 ± 0.17 in the mock sample.

We now wish to quantify the boxiness and diskyness of the mass distributions of the SLACS and

GALLERY lenses. The PL+ext profiles we fitted have profiles that are truly elliptical in the iso-

convergence contours, since the external shear is assumed to have zero convergence. However,

the external shear does perturb the critical curve of the lens system. In the previous section we

showed that measurements of the fourth order multipole perturbations of the critical curves do a

reasonable job of tracing the perturbations to the mass distribution of our mock sample. We therefore

assume measurements of the fourth order multipole perturbations of the PL+ext critical curves tell us

something about the elliptical deviations of the true underlying mass profile, although we note this

may break down for boxy mass distributions.
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Unlike the mock data sample the multipole perturbations are not typically purely boxy and disky

(𝑏4 = 0); the sine perturbations in real galaxies are similar in magnitude ⟨|𝑏4/𝑎 |⟩ = 0.012 to the

cosine perturbations ⟨|𝑎4/𝑎 |⟩ = 0.016. The 𝑏4 perturbations are two orders of magnitude larger in the

observations than they are in the mock data sample.

In the previous section we proposed that the alignments of the shears with the mass distribution could

be being driven by boxy and disky underlying mass distributions. From our measurements of 𝑎4/𝑎 in

the critical curves the orientations of the inferred external shears with the mass distributions do not

appear to be due solely to boxy and disky profiles (see Figure 4.6). However, for the majority (79%) of

the galaxies with shears that anti-align with the mass distribution we do measure disky critical curves,

and for the majority (70%) of the shears that are aligned with the mass distribution we measure boxy

critical curves. Moreover, the largest perturbations occur for the shears that anti-align with the mass

distribution, and these tend towards the largest external shears that are inferred. We measure Pearson

correlation coefficient of 0.48 (0.65) between the 𝑎4 (𝑏4) perturbations and the shear magnitude.

We note that for the PL+ext profile to produce critical curves that are not true ellipses, three parameters

control the deviations from a true ellipse; the density profile slope, and the two parameters of shear.

We demonstrate how these deviations from an SIE critical curve (which is a true ellipse at the Einstein

radius) appear when changing the slope and shear parameters in Figure 4.7. Therefore one would

possibly expect the shear to correlate with the measurements of 𝑎4/𝑎 that also represent a deviation

from a true elliptical contour. However, the shear is a second order perturbation, and clearly does not

perturb the critical curve in the same manner as which the 𝑎4 parameter does in Figure 4.4. Thus,

it is somewhat surprising that the shear, in combination with the slope, is producing measurable

fourth order perturbations to the critical curves. Further, the difference of the inferred slope from

being isothermal is not as strongly correlated with the perturbations as the shear magnitude is. We

measure a Pearson correlation coefficient of 0.02 and 0.21 for the 𝑎4 and 𝑏4 perturbations respectively,

suggesting the shear plays a stronger role in causing the fourth order perturbations than does the slope.

Similar to the mock data sample, we find that the fourth order perturbations increase the more

elliptical the mass distribution is inferred to be. We measure a correlation coefficient of −0.70 and

−0.66 between the axis ratio and the 𝑎4 and 𝑏4 perturbations respectively. Although, given the

degeneracy between the shear and the axis ratio, and the aforementioned correlation of the shear with

the fourth order perturbations, it is difficult to determine if more elliptical galaxies are inherently more

boxy/disky.
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Figure 4.8: Orientation angle offset of the external shear from the PL+ext mass distribution (𝜙PL+ext
mass −

𝜙PL+ext
ext ) as a function of the difference in orientation angle when the mass distribution is fitted with

and without an external shear (𝜙PL+ext
mass − 𝜙PL

mass) for the mock data sample. Scatter points are coloured
by the difference in power-law slope inferred between the models fitted with and without an external
shear (𝛾PL+ext − 𝛾PL). Systems that have shears that are anti-aligned with the mass distribution when
the model includes an external shear systematically increase in power-law slope when the external
shear is removed from the model (blue points). Aligned shears exhibit the opposite behaviour (red
points).

4.5.3 Inference without shear parameters

Mock tests

To gain further insight into the significance of the external shear parameters, we compare the values

of other parameters we infer for the power-law mass distribution, with and without the assumption

of external shear. We do this first for the mock sample of galaxies. The orientation angle of the

power-law is measured consistently, the average difference between inferred orientation angles with

and without shear is ⟨𝜙PL+ext
mass − 𝜙PL

mass⟩ ∼ 1◦ with only ∼ 1◦ of scatter. However, the slope of the

power-law distribution changes systematically depending on the alignment of the shear with the mass

distribution. For shears that are anti-aligned, removing the external shear parameters from the model

increases the best-fit power-law slope (red points in Figure 4.8). Whereas, for shears that prefer to

align with the mass distribution their inferred power-law slope decreases when the shear parameters

are removed from the fit (blue points in Figure 4.8).

Notably, due to the degeneracy between slope and Einstein radius, a similar systematic behaviour

occurs for the inferred Einstein radii, although at a much lower level. For the aligned shears the

Einstein radii decrease by −0.08 ± 0.1% on average when the shear parameters are removed from
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Figure 4.9: Orientation angle offset of the external shear from the PL+ext mass distribution (𝜙PL+ext
mass −

𝜙PL+ext
ext ) as a function of the difference in orientation angle when the mass distribution is fitted with

and without an external shear (𝜙PL+ext
mass − 𝜙PL

mass) for the observed SLACS and GALLERY samples.
Scatter points are coloured by the difference in axis ratio of the models fitted with a PL+ext and a PL
(𝑞PL+ext − 𝑞PL).

the model, and the anti-aligned shears increase by 0.2 ± 0.3%. C22 demonstrated that the Einstein

radius of the true underlying mass distributions could be well recovered by the PL+ext models, with

a relative systematic error of only 0.05 ± 0.17%. For the models fitted without any external shear

parameters in this work, we find that the relative systematic error is −0.2% ± 0.4%. Although the

true Einstein radii are still well recovered when we do not include an external shear in the model, the

systematic error is four times greater than when one is included. The assumption of external shear

appears to allow the model to better recover the true Einstein radius. We note that, despite there too

being a degeneracy between shear and ellipticity, the axis ratio of the models with and without shear

do not exhibit the systematic behaviour that we observe for the slope and Einstein radius parameters.

The mean difference in the inferred axis ratio for the PL+ext and the PL models is 0.01 ± 0.05.

Observations from real galaxies

The PL+ext and PL models are less consistent for real SLACS or GALLERY data, than they were for

mock data. First, the orientation angle of the mass distribution is no longer recovered consistently by

the two models, with a mean difference ⟨𝜙PL+ext
mass − 𝜙PL

mass⟩ ∼ 27◦ and scatter ∼ 27◦ (note the difference

in scale in the 𝑥-axis between Figures 4.8 and 4.9). We suspect this result is an indication that the

underlying mass distributions are more complex than those that were simulated for the mock sample

of galaxies. The mock systems were simulated with a spherical gNFW plus an MGE with gaussian
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components that are fixed to the same position angle. Hence, there is a well defined position angle

for these systems that the model accurately recovers (to within ∼ 1◦ on average) regardless of the

assumption of external shear. This is likely not the case for the SLACS and GALLERY systems: if

real galaxies consist of multiple elliptical components that are rotationally offset from one another

then this could explain the large increase in the mean difference (and scatter) of the orientation angle

for the PL+ext and the PL models in the observed data compared to the mock data.

In the mock galaxies we saw that when the external shear parameters were removed from the fit there

was a systematic steepening of the power-law slope for galaxies that had shears that were anti-aligned

with the mass distribution, and a systematic shallowing of the slope for those that had shears that

were aligned with the mass distribution. This systematic behaviour of the power-law slope does not

appear to be present in the SLACS and GALLERY samples. There is, however, a reasonable amount

of scatter in the best-fit slopes of models with and without external shear (the mean difference is

⟨𝛾PL+ext − 𝛾PL⟩ = −0.09 ± 0.28). Although the slopes do not appear to change systematically, at least

not in the same way as we observe in the mock data, they are not consistently recovered for the two

models we fit with and without external shear parameters.

Instead, the dominant behaviour we observe in the real lenses is a change in axis ratio of the power-law

mass distribution when the external shear is removed from the model (see Figure 4.9). On average,

the systems that infer shears that align with the mass distribution become more elliptical, decreasing

the axis ratio by −0.18± 0.016, without the assumption of external shear (bottom third of Figure 4.9).

Whereas, the systems that infer shears that anti-align with the mass distribution tend to become more

spherical, increasing in axis ratio by 0.08 ± 0.10, when the assumption of external shear is removed

(top third of Figure 4.9). The systems that are neither aligned nor anti-aligned do not show consistent

systematic behaviour, with exactly half of them increasing in axis ratio and the other half decreasing

when the external shear is removed from the fit – the average change in axis ratio is −0.02 ± 0.04 for

these systems.

The Einstein radii of the PL+ext and PL models do not appear to change systematically for the SLACS

and GALLERY samples. In the mock tests the Einstein radii systematically increased (decreased) for

the sample of lenses that inferred shears that were aligned (anti-aligned) when the shear parameters

were removed from the fit. This behaviour is not observed in real galaxies. However, the scale of

the fractional differences inferred in SLACS and GALLERY samples is an order of magnitude larger

than in the mock sample, with a root mean square (RMS) fractional difference of 4.5% compared to

0.03%. Notably, although there does not appear to be a strong linear correlation between the fractional

difference of PL+ext and PL Einstein radii and the shear magnitude, the scatter does appear to increase
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with increasing external shear magnitude (see Figure 4.10).

4.6 Discussion

4.6.1 What are strong lensing external shears measuring?

External shear, as measured by strong lensing, does not correlate with the true shear along the line

of sight, as measured independently from weak lensing (Figure 4.1). Rather, the external shear

is compensating for the lack of azimuthal degrees of freedom in the mass distribution of the lens

galaxy (assumed to be a power-law in this work). It appears that in some lenses the missing azimuthal

asymmetry is, at least partly, boxiness and diskyness in the mass distribution (Section 4.5.2). However

we suspect that isophotal twists, elliptical gradients, and offsets in the centres and alignments of dark

and stellar matter components will all contribute to the scatter inferred in the external shear parameters.

Although a fraction of the shear will be due to the true shear, the high values that are routinely inferred

in the strong lensing analysis demonstrate this can indeed only be a fraction. Moreover, we can not

determine what fraction this is.

This result is important for many scientific uses of strong lensing. The external shear parameters are

rendered physically meaningless, since they do not solely account for external perturbations to the lens

or azimuthal asymmetries of the mass distribution. Furthermore, these parameters are degenerate with

other model parameters such as the density profile slope and the Einstein radius. We have shown that

the Einstein radius is biased by ∼ 4.5% on average when the shear parameters are removed from the

fits to observations (Section 4.5.3). This could have repercussions on studies of galaxy stellar-to-halo

mass, the Hubble constant, and other methods that use the Einstein radius as a principle constraint in

the models.

The implications of these meaningless external shears are crucial to strong lensing studies, it is critical

we understand these results. An important next step in this analysis, which will not be carried out

in this thesis, is to perform a control test whereby the mock MGE+NFW data are simulated with an

external shear. A set of mock data generated in this way will provide two test cases. First, when they

are fitted with the true MGE+NFW+ext profile, i.e. when the model has the correct level of azimuthal

complexity, are the external shears recovered correctly? Second, when fitted with a PL+ext profile,

what is the behaviour of the inferred external shears? Do they now recover the input external shear,

or are they still biased due to the insufficiency of the PL to fit the MGE+NFW profile? This latter test

will provide a better comparison to the observed lens galaxy results that by nature have a real external

shear component.
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Figure 4.10: Fractional difference between Einstein radii inferred for models with and without the
assumption of external shear plotted as a function of the magnitude of the inferred external shear.
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4.6.2 Comparison with literature results

The external shears of SLACS and GALLERY lenses inferred from strong lensing are systematically

larger than the weak lensing measurements, almost an order of magnitude larger on average (Section

4.5.1). Reaching up to 0.35 at their maximum, these estimates are larger than any external shears one

would expect to measure in the universe. This is similar to the result of Keeton et al. (1997), who

showed that a sample of four quads prefer models, in a chi-squared sense, with two independent shear

axes (the ellipticity of the lens galaxy and an external shear) that require external shear perturbations

of 10 − 15% that are larger than shear along typical lines of sight through the Universe of 1 − 3%.

Our results confirm that these unusually large external shears are inferred for a much larger sample of

lenses, persisting when modelling extended light sources. Keeton et al. (1997) suggest this implies the

second source of shear must be dominated by the primary lens galaxy and not external perturbations,

with misalignments between the light and dark matter components being a possible cause of the extra

asymmetry required by the models. Witt & Mao (1997) come to a similar conclusion, stating that the

modelling of the lens potential is too simplistic, after deriving an analytical formalism to predict the

required amount of shear by an elliptical potential to fit quadruple images. They apply the formalism

to 7 quadruple lenses, finding results that are consistent with Keeton et al. (1997).

The PL mass density profile is indeed too simplistic. The inferred external shears show a very similar

distribution of shear alignments in the observed data as they do in the mock data (Figure 4.2). Since

the external shears in the mock data sample can only be due to the primary lens, being simulated

without any external shear, the similarity of these results suggests the external shears inferred for the

SLACS and GALLERY lenses are also internal in nature.

The ‘internal’ shears in the mock data sample result from the inability of the PL to represent the

azimuthal asymmetries present in the gNFW+MGE mass distribution, as demonstrated by C22. Since

the elliptical components of the MGE profile are allowed to vary in axis ratio when fitting to the

MaNGA data, elliptical gradients are present in the convergence profiles of the mock data sample that

can not be modelled by the PL alone. The consequences of elliptical gradients in lens modelling has

since been further quantified by Van De Vyvere et al. (2022b). In their study, they created mock data

with slices of decreasingly elliptical convergence at different radii and an external shear. When fitting

these data with a a PL+ext model, they find the inferred external shears increase in magnitude by 0.01

and change in orientation by 11◦, relative to the fiducial case, when the elliptical gradients are outside

the Einstein radius. Elliptical gradients inside or at the Einstein radius were found to mainly affect the

recovery of the density slope, a result anticipated by Kochanek (2020).

We provide further evidence for the bias described by Kochanek (2020). When we remove the
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external shear parameters from the model fit, reducing the azimuthal degrees of freedom, we observe

a systematic change in the density profile slope (Figure 4.8). More generally, this means that the

radial information in a lens can be incorrectly constrained by the angular structure of the gravity, if too

few degrees of freedom are assumed for the model of the angular structure itself. Kochanek (2020)

provides the example of fitting a PL model to a lens that increases in ellipticity with radius forces

the density slope to shallower values to balance out the shear inside the Einstein radius relative to the

shear outside of it. With this in mind, the results of the mock sample fits with and without an external

shear suggest that the shears that align with the mass density profile correspond to underlying mass

distributions that radially increase in ellipticity, and those that are anti-aligned radially decrease (see

Figure 4.8). Although we did investigate a number of quantities derived from the axis ratios of the

MGE components, we were unable to confirm that this is the underlying cause of the shear alignments.

Another possible deviation from elliptical symmetry that could falsely infer external shear is boxiness

and diskyness in the mass distribution. We measured 𝑎4 components in the convergence contours of

our mock data and the critical curves of real galaxies that correlate with the external shear magnitude,

implying these types of perturbations - like elliptical gradients - can too be absorbed by the shear

parameters. Van De Vyvere et al. (2022a) found that this was only the case when the lens mass is

aligned with the multipole, as it is in our mock data, and not for other test cases when they fitted an

SIE+multipole+ext with an SIE+ext profile. Therefore, we suspect boxiness/diskyness is not the only

type of elliptical deviation that causes the inference of external shear, although it evidently plays a

role.

4.6.3 Evidence for extra complexity in real galaxies

The mass profiles of the SLACS and GALLERY sample appear to be more complex than was simulated

in the mock data. The observations from real galaxies point towards twists in the mass distribution –

multiple mass components that are rotationally offset from one another. The mock data inferred only

cosine (boxy/disky) perturbations 𝑎4 in the mass distribution, whereas the observations inferred both

cosine 𝑎4 and sine 𝑏4 perturbations (as measured from the inferred PL+ext critical curve). Further,

the lack of a consistently measured position angle when the observations are fitted with and without

an external shear (see Figure 4.9) suggests some sort of twisting that is not present in the consistently

measured position angles of the mock data. Van De Vyvere et al. (2022b) found that twists in the

underlying mass distribution are typically absorbed by changes in orientation of the mass distribution

and shear in a PL+ext profile, which supports our hypothesis that the changes in orientation are due

to these type of features present in the data.
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The mean difference and scatter of PL parameters inferred with and without an external shear is larger

in the observations for all but the slope parameter (see Figure 4.11) – another indication of extra

complexity in the observations. Notably, the slopes inferred for the mock data fitted with an external

shear better recover the global slope of the true underlying mass distribution, defined as the mass

weighted density slope within the Einstein radius (equation 3.5.1), than the slopes inferred from fitting

a PL alone. The mean difference is −0.017 ± 0.102 compared to −0.142 ± 0.196 when the shear is

removed from the fit. As discussed in Section 4.5.3 the Einstein radii, although well recovered, are

slightly better recovered when the external shear parameters are present in the fit. These results suggest

the external shear parameters may have added sufficient angular degrees of freedom to account for the

azimuthal asymmmetries present in the gNFW+MGE profiles that were simulated. However, the false

inference of external shear remains problematic for methods that aim to use strong lensing to measure

cosmic shear (e.g. Birrer et al., 2017; Fleury et al., 2021). Hogg et al. (2022) recently showed that

the minimal line-of-sight model, which parametrizes the shear in a way that is less degenerate with

lens model parameters than the conventional method, is also subject to biases in the shear parameters

when simplifying assumptions are made for the lens model. We therefore recommend that lens models

attribute extra angular degrees of freedom to the lens potential itself.

Although it appears the shear parameters allow for a more accurate recovery of the mass distribution

parameters in the mock data, we can not be certain that the PL+ext has sufficient angular degrees

of freedom to account for the extra complexity evident in the observed data sample. Two of our

results suggest this is likely not the case. First, the centre of the mass distribution moves on average
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by −0.031 ± 0.061′′ when the shear parameters are introduced in the model, and the centres remain

an unphysical 0.05 ± 0.06′′ from the centre of the light distribution on average. This is an order

of magnitude more than is measured in the mock data sample on both accounts. Second, the 4.5%

RMS fractional difference on the Einstein radii, a supposed model independent quantity, measured

with and without external shear implies something more obscure about the data, one would typically

expect to recover the Einstein radius to within ∼ 2% (Bolton et al., 2008b; Sonnenfeld et al., 2013b).

Further, since the external shears, which are reaching extreme values in the observations, contribute

zero convergence, it is impossible to determine which of these Einstein radii (hence Einstein masses)

better represent that of the underlying mass distribution without further testing. Further work (e.g.

Cao et al., 2022; Van De Vyvere et al., 2020, 2022b) to understand the types of asymmetries that

must be accounted for in the lens modelling, and the possibility of constraining such models, will be

invaluable.

4.6.4 Impact on science cases

Accurate models of the mass density profile of galaxies are required for a number of science goals

that are attainable through strong gravitational lensing. If, as we suspect, the large external shears

inferred in this work are an indication that the PL+ext mass profile is not an accurate description of

real galaxies, this could be detrimental to methods that assume this profile as part of the measurement

process. We discuss the implications of this for two astrophysical problems that are essential to our

understanding of cosmology; the determination of the Hubble constant, and the detection of dark

matter substructures.

The power-law mass density profile is often employed in studies that use the time-delay strong lensing

technique to infer the Hubble constant 𝐻0 (Wong et al., 2019; Birrer et al., 2019; Suyu et al., 2017).

The assumption of a mass-density profile artificially breaks the mass-sheet transformation which,

given the invariance of the product of the Hubble constant and the time delay, can lead to systematic

biases on the determination of 𝐻0. Studies investigating the bias on 𝐻0 associated with assuming the

PL profile vary in their estimates, reaching up to 20-50% (Xu et al., 2016; Gomer & Williams, 2019;

Kochanek, 2019; Schneider & Sluse, 2013a). Our mock tests (Section 4.5.3) highlight the coupling

between angular and radial structure, described by Kochanek (2020), can significantly effect the slope,

and hence the Hubble constant, that is inferred when angular degrees of freedom are removed from the

model. Moreover, for a sub-sample of 37 lenses in this mock sample, C22 estimated a bias of ∼ 9%

on the Hubble constant using time delays inferred from the PL+ext lens models, demonstrating that

the angular degrees of freedom allowed by the external shear are not sufficient to avoid these biases
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for gNFW+MGE profiles.

Given that the SLACS and GALLERY observations appear to require more angular degrees of freedom

than was simulated in the mock data, such as twists in the mass distribution, we suspect these biases will

be stronger for real lensing systems. Indeed, Van De Vyvere et al. (2022b) find that the effect of twists

and elliptical gradients in a single lens are just the sum of the effects of the two individually, increasing

the biases on the shear orientation and strength, ultimately biasing 𝐻0 up to 10kms−1MPc−1 on an

individual lens basis. Interestingly, they found that the azimuthal variations average out at a population

level, for two mock samples based on observations and hydrodynamical simulations, allowing for an

unbiased estimate of 𝐻0. Van De Vyvere et al. (2022a) found the same result at a population level

for biases induced by boxy and disky perturbations to the mass profile. These results require that

an overpopulation of a particular subsample of azimuthal asymmetries is not present in the lensing

sample to accurately infer 𝐻0. It is not clear this is true of our SLACS and GALLERY lenses, the

fourth order multipoles we infer for the PL+ext critical curves suggest an overpopulation of (71%)

disky galaxies, although it is unclear how well these represent the perturbations to the underlying mass

profiles. Further, we suspect the alignment (and anti-alignment) of the shear with the mass profile

is a result of a particular feature in the underlying mass distribution, and we find a preference for

anti-aligned shears (70% of the sample). It is plausible these sub-samples would be biased in opposite

directions, that would not average out at a population level. Finally, Van De Vyvere et al. (2022a) did

not investigate the effect of fourth order sine perturbations 𝑏4, which our results suggest are present

in the observed galaxies. Further testing is required to understand if the complexities in the mass

distribution of real lenses can safely be ignored in the inference of the Hubble constant, by averaging

over the biases on individual lenses.

Biases on an individual lens basis will undoubtedly be problematic for substructure detection, where

an accurate macro model for the lens galaxy is key to avoiding false detections and correctly inferring

the mass of real detections (He et al., 2022; Nightingale et al., 2022). Given the results of the observed

data sample in this work, we suspect more complex mass profiles than the PL+ext will be necessary

to accurately describe the macro model of real lens galaxies for these types of analyses. In particular,

the large external shears, that we demonstrate to be internal in nature, may be able to account for

missing angular structure in the lens galaxy, but the fact they contribute zero convergence (therefore

mass) will almost certainly be problematic for a method that is attempting to detect missing mass in

the lens model. Indeed, Nightingale et al. (2022) find that increasing the model complexity renders 11

detections with the PL+ext as being false detections, when applying their substructure procedure to 54

SLACS and GALLERY lenses. Further, He et al. (2022) demonstrated that correctly accounting for

azimuthal asymmetries in the lens model can avoid false detections and correctly recover the subhalo
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mass of a simulated system that appears disky in its convergence projection.

4.7 Summary

By independently constraining the environmental shears of a sample of SLACS lenses with both

strong lensing and weak lensing methods we demonstrated that the strong lensing external shears are

systematically larger than those inferred by the weak lensing. By comparing these results to those

from a sample of mock data generated with complex gNFW+MGE profiles but fitted with a much

simpler PL+ext profile, we have shown that this is driven by the strong lensing shears acting internally

as opposed to externally. The inferred orientations of the strong lensing external shears show a strong

preference (70% of the sample) for being anti-aligned with the orientation of the lens galaxy itself,

replicating the behaviour of the spurious external shears inferred in the mock data that were in fact

simulated without external shear.

Three results suggest that the underlying mass distributions of the observed SLACS and GALLERY

lenses require complex mass models to avoid biases in the inference of model parameters. In particular,

we suspect the mass model will require the freedom to produce twists in the mass distribution. First,

the magnitude of the inferred external shears are much larger. On average they are six times greater,

in the observations than in the mocks. Given the indication that these external shears are internal

in nature, this implies the observed sample’s mass distributions deviate more from a PL distribution

than the mocks do. Although we acknowledge that some of the inference may be due to genuine

external perturbations. Second, we measure both 𝑎4 and 𝑏4 perturbations in the observed lenses

whereas we only measure significant 𝑎4 perturbations in the mock sample. Finally, the behaviour of

the PL orientation angle when the shear parameters are removed from the fit suggests there is not a

well defined orientation angle in the observed sample of lenses, perhaps indicative of multiple mass

components that are orientationally offset from one another.

We discuss the implication of these results being that we require more complex mass profiles than

the PL distribution in order to adequately describe the mass distribution of observed ETGs. Further

work is necessary to determine the appropriate form these complex mass profiles would take. One

suggestion would be to decompose the stellar and dark matter distributions with constraints from the

stellar distribution coming from the light profile of the galaxy itself. It may be that simply including

fourth order multipoles to allow for boxiness and diskyness in the mass distribution will be sufficient.

Notably, the azimuthal degrees of freedom must be defined appropriately to avoid the bias described

by Kochanek (2020) on the radial constraint. This was highlighted in our mock data sample which
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showed systematic behaviour on the inferred slope parameter when the shear parameters were removed

from the fit. This could be a concern for studies that use the inferred macro model of the lens galaxy

to study cosmology by inferring 𝐻0 or searching for substructure. In light of the complexity that

the observed data seem to require in this study, we suggest more studies (e.g. Cao et al., 2022; Van

De Vyvere et al., 2020, 2022b) to quantify the impact these simplifying assumptions may have on

these types of inference are necessary.

These results also allude to the possibility of constraining the boxy and disky populations of ETGs

through their mass distribution. The inferred 𝑎4 and 𝑏4 perturbations in the critical curves of the

observed data sample and their correlation with the inferred external shear magnitude is an indication

that the shear parameters may be in part absorbing azimuthal asymmetries in the mass distribution

of this form. Although with the use of mock data Van De Vyvere et al. (2022a) suggest that the

detectability of multipole perturbations actually decreases if the shear parameters are able to absorb

the multipole structure. However, their work indicates that it should be possible to detect multipole

structure in the mass distribution of ETGs. Indeed, if our work is indicative of measurable multipole

perturbations in the mass distribution, that trace those in the light distribution, then one could study

these populations of galaxies at high redshift with relative ease.



Chapter 5

Conclusion

Despite huge efforts to collect high quality imaging data in ongoing and upcoming surveys, which

are forecasted to discover three orders of magnitude more galaxy-scale strong lens systems than have

currently been observed, efforts to improve the automation of strong lensing methods capable of

exploiting this amount of data have been relatively few and far between. Studies (e.g. Sonnenfeld &

Cautun, 2021; Sonnenfeld, 2021a,b, 2022) investigating the prospects of taking advantage of these

statistical samples have demonstrated the power of a hierarchical Bayesian analysis to constrain

population level parameters of the mass distribution of lens galaxies and also the Hubble constant.

However, this is provided the lens selection function can be well-known and more importantly that the

necessary individual parameters (such as the Einstein radius) can be modelled for such large samples

of lenses. This will undoubtedly require some level of automation to be realised.

CNNs provide a promising approach to modelling large samples of lenses quickly, but few of these

methods have been applied to observational data. Among the more traditional strong lensing tech-

niques, Shajib et al. (2021)’s study fitting 23 lenses from the SLACS sample with a uniform approach

is encouraging. Furthermore, Pearson et al. (2021)’s success combining CNNs with PyAutoLens on

simulated data demonstrates how the two methods could in fact be complementary. In this thesis, we

use PyAutoLens to model the largest sample of observed galaxy-scale strong lenses with a uniform

procedure to this date. This process highlighted the strengths and weaknesses of taking an automated

approach to strong lens modelling. Ultimately allowing us to recognise what questions we need to be

asking to prepare for the influx of data that will soon be here. We conclude by recapping what we

have learnt from such a large undertaking.

In Chapter 2 we began by introducing the uniform method. We used PyAutoLens, which takes

advantage of nonlinear search chaining, to create a pipeline that was suitable for automation. We gave

a detailed account of the pipeline that models the mass distribution of the lens galaxy as a PL+ext
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profile simultaneously with its light profile, modelled as a double Sérsic profile, while reconstructing

the source galaxy on an adaptive voronoi mesh. In testing we recognised that the uncertainties on

the mass profile parameters were overconstrained as a result of the discretization bias described by

(Nightingale & Dye, 2015).

To investigate this further we simulated a large sample of mock galaxies similar to our observed sample,

creating multiple noise realisations of each lens configuration. We described in detail the mechanism

behind the underestimation of errors, which results from stochastic peaks of log-likelihood in the

sampling procedure, and used our mock data sample to test to what extent they were underestimated.

We developed a likelihood cap method that significantly improved the coverage probabilities of every

parameter in the non-linear search when tested on mock data, allowing us to recover the true input

values close to the accepted rate. We note that larger mock samples would be necessary to quantify

any systematics that could be induced by the discretization effect. This is the first area of further study

that we believe future large scale samples would benefit from, since underestimated errors on large

samples could lead to very precise but inaccurate inferences.

With this final likelihood cap phase of the method developed we applied the uniform pipeline to a

sample of 59 SLACS and BELLS GALLERY lenses with an incredible success rate of 85%. However,

from here we set out to learn from the 15% of models that do not initially arrive at a good model fit.

Ultimately we arrive at successful model fits for 100% of the sample that we classify into varying

degrees of quality. More importantly, we establish that the two most prevalent barriers to automation

are cleanly subtracting the foreground lens light of the galaxy, and initialising the first approximate

lens model. Thus illuminating two further areas of study to prioritise that would improve future

automated studies.

With the mass models of the SLACS and GALLERY lenses constrained, in Chapter 3 we investigated

the properties of the sample of galaxies and how they evolve with redshift. We focused mainly

on the density profile slope, and compared the slopes constrained in this work to those constrained

for a sub-sample of the same lenses using an independent lensing and dynamics technique that

combines measurements of the Einstein radius with stellar kinematic constraints (Bolton et al., 2008b;

Li et al., 2018). We found that our lensing only technique measures a population average density

slope that is slightly steeper than isothermal ⟨𝛾⟩ = 2.075+0.023
−0.024 with intrinsic scatter between galaxies

𝜎𝛾 = 0.172+0.022
−0.032, consistent with traditional lensing and dynamic methods. However, we were unable

to detect a correlation between the slopes constrained using the independent methods, suggesting that

the assumption of a global powerlaw may not be accurate, potentially breaking down the ‘bulge-halo

conspiracy’. Although a larger sample would be necessary to quantify this with the current level of
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uncertainty.

Notably, tension arises when we model how the population mean density slope depends on redshift and

other galaxy population parameters. In particular, the correlation coefficient of the slopes measured

via lensing only with total surface mass density is constrained to be negative whereas it is positive for

the slopes measured using the lensing and dynamics technique. We propose that this could be due to

an inflection zone in the true mass distribution of the galaxies that the lensing only method is more

sensitive to. We demonstrated how this behaviour could arise if the lensing only method is constrained

locally at the Einstein radius using a one-dimensional axisymmetric toy model.

Future samples will provide us with an unprecedented view of the evolution of the mass profiles of

early type galaxies. We showed that the lensing only method will be particularly powerful for such

studies given that the measurement uncertainties on the density profile slope do not appear to degrade

with redshift like they do for methods that rely on dynamical constraints. However, quantifying the

apparent deviations of the true underlying mass profiles from a true PL will be a necessary means to

this end.

Finally, in Chapter 4 we measured the weak lensing shears of a sub-sample of our SLACS lenses and

compared them to the external shears that were constrained in the strong lensing analysis. We found

that on average the shears measured from strong lensing are six times greater than those constrained

in the weak lensing analysis. Averaging a shear magnitude of 0.09, these are larger than one would

typically expect to measure in the Universe. This implied the origin of the shears could be intrinsic

to the lens galaxy, a possibility we explored further by comparing the results to a sample of mock

galaxies that were simulated with a gNFW+MGE profile (no external shear was simulated) but fitted

with a PL+ext. Further to this, we explored the behaviour of the PL mass distributions of both the

observed and mock data samples when we removed the external shear parameters from the fit.

This process confirmed that the inferred external shears in the SLACS and GALLERY lenses are,

at least in part, being driven by perturbations internal to the lens galaxy. The external shears in the

observations share a very similar distribution of shear orientations to those falsely inferred in the

mock data sample which result from the lack of freedom in the PL alone to account for the azimuthal

asymmetries that are present in the complex gNFW+MGE profiles. Moreover, the much larger external

shears inferred in the observations than in the mocks, the presence of 𝑏4 perturbations only in the

observations, and the inconsistency of the observed PL orientation angle when the shear is removed

from the fit, strongly suggest that the underlying mass distributions of the observed lens galaxies are

more complex than the mocks were simulated to be. These results add merit to the conclusions of

Chapter 3 that suggested the inconsistencies between the analysis of the lensing only and lensing and
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dynamics slope measurements is a result of the underlying mass distributions not following a single

power law.

We discussed the necessity for mass models to include the correct azimuthal degrees of freedom in

order to avoid the bias described by Kochanek (2020). We observed this effect most clearly in the

mock data sample when the external shears were removed from the fit. Determining what mass model

will provide the required azimuthal asymmetries is left for future work. It would be interesting to

investigate if the external shears in the strong lens models become consistent with those from weak

lensing when the mass models are assumed to be more complex. In fact, this should be a requirement

of the lens models if we wish to use the external shears from strong lensing to constrain cosmic shear

or combine these shears with weak lensing constraints (Kuhn et al., 2020).

Overall, we have demonstrated the power of automated strong lensing methods to constrain the mass

distributions of a large sample of observed galaxy-scale lenses and investigate their evolution. Soon,

this will be possible on a much larger scale, allowing for extraordinary insight into not only these

types of galaxies and their evolution but also the study of cosmology. This is provided we have

the means to take advantage of these systems. The work carried out in this thesis has illuminated

areas of future study that we believe will accelerate our ability to appropriately model the incoming

thousand fold increase of lenses. These include; ways to cleanly subtract the lens galaxy’s light profile

of complex lenses, large scale mock studies to quantify and investigate mitigation strategies for the

discretization bias inherent to pixel-based methods, and understanding the deviations of the underlying

mass distributions of ETGs from a single power law.



Appendix A

SIE model conventions

A number of axis conventions have been used in the literature (Kassiolia & Kovner, 1993; Kormann

et al., 1994; Keeton & Kochanek, 1998) to describe an SIE mass profile. This is potentially confusing,

but here we show that they are equivalent up to a normalization factor, albeit with different definitions

of coordinates. For example the parameterisation of the SIE used internally within PyAutoLens code,

following from equation 1.4.14, is

𝜅(𝑥, 𝑦) = 1
1 + 𝑞

𝜃√︁
𝑥2 + 𝑦2/𝑞2

, (A.0.1)

that describes an ellipse of minor to major axis ratio 𝑞 centred on the origin and aligned with the major

axis along the x-axis. This choice reflects a simplification of the parameter space that is sampled

during the model fitting process, since the scale factor (1+𝑞) makes the 𝜃−𝑞 degeneracy appear more

orthogonal (Nightingale et al., 2018). The analytic deflection angles, that determine the parameters

during the model fitting procedure, are given by the following simple form

𝛼𝑥 =
2𝜃

1 + 𝑞

𝑞√︁
1 − 𝑞2

arctan
(
𝑥
√︁

1 − 𝑞2√︁
𝑞2𝑥2 + 𝑦2

)
, (A.0.2)

𝛼𝑦 =
2𝜃

1 + 𝑞

𝑞√︁
1 − 𝑞2

arctanh
(
𝑦
√︁

1 − 𝑞2√︁
𝑞2𝑥2 + 𝑦2

)
. (A.0.3)

Following Kormann et al. (1994), Bolton et al. (2008a) adopt an intermediate-axis normalization,

writing the surface mass density profile as

𝜅(𝑥′, 𝑦′) =
𝑅Ein

√
𝑞

2
√︁
𝑥′2 + 𝑞2𝑦′2

, (A.0.4)

where 𝑅Ein is the angular Einstein radius equal to that defined from the area within the tangential
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critical curve in equation 1.4.13. The corresponding deflection angles are then

𝛼𝑥′ =
𝑅Ein

√
𝑞√︁

1 − 𝑞2
arcsinh

(√︁
1 − 𝑞2

𝑞

𝑥′√︁
𝑥′2 + 𝑦′2

)
, (A.0.5)

𝛼𝑦′ =
𝑅Ein

√
𝑞√︁

1 − 𝑞2
arcsin

(√︃
1 − 𝑞2 𝑦′√︁

𝑥′2 + 𝑦′2

)
. (A.0.6)

We will now show that both pairs of deflection angles are in fact identical. Assuming the normalization

factor

𝑅Ein ≡
2𝜃√𝑞
1 + 𝑞

, (A.0.7)

we see that the 𝑥 component of the deflection angle given by Equation A.0.2 is

𝛼𝑥 =
𝑅Ein

√
𝑞√︁

1 − 𝑞2
arctan

(
𝑥
√︁

1 − 𝑞2√︁
𝑞2𝑥2 + 𝑦2

)
. (A.0.8)

Changing coordinates 𝑥 = 𝑦′ and 𝑦 = 𝑥′, this becomes

𝛼𝑥 =
𝑅Ein

√
𝑞√︁

1 − 𝑞2
arctan

(
𝑦′

√︁
1 − 𝑞2√︁

𝑞2𝑦′2 + 𝑥′2

)
, (A.0.9)

a translation that reflects the difference in which axis the SIE is defined along. That adopted by

PyAuytoLens is defined with major axis along the x-axis, while Kormann et al. (1994) define the

major axis along the y-axis. Using the trigonometric identity arctan(𝛼) = arcsin
(

𝛼√
1+𝛼2

)
, we see that

𝛼𝑥 =
𝑅Ein

√
𝑞√︁

1 − 𝑞2
arcsin

(√︃
1 − 𝑞2 𝑦′√︁

𝑥′2 + 𝑦′2

)
≡ 𝛼𝑦′ , (A.0.10)

recovering the result of Kormann et al. (1994) in Equation A.0.6. Similarly, assuming the same normal-

ization factor (Equation A.0.7) and using the trigonometric identity arctanh(𝛼) = arcsinh
(

𝛼√
1−𝛼2

)
,,

it can be shown that

𝛼𝑦 =
𝑅Ein

√
𝑞√︁

1 − 𝑞2
arcsinh

(√︁
1 − 𝑞2

𝑞

𝑥′√︁
𝑥′2 + 𝑦′2

)
≡ 𝛼𝑥′ . (A.0.11)

Hence, the deflection angle equations for the SIE adopted by PyAutoLens (Equations A.0.2 and A.0.3)

are identical to those for the SIE with intermediate axis normalization (Equations A.0.5 and A.0.6) up

to the normalization factor in Equation A.0.7.



Appendix B

Without Lens Light Pipeline

The pipelines that make up the uniform analysis for modelling a lensed image that does not contain the

lens galaxy’s light are presented in Table B.1. This pipeline was used to analyse the mock data in this

work. As well as this, a variation on this analysis, that also includes external shear in the mass model,

was used to fit the four lenses that required lens subtracted data to arrive at successful model fits. The

initial model fit priors, and those used when we choose not to inform priors with prior passing, are

given in Table B.2.
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Pipeline Phase Galaxy
Component Model Varied Prior info Phase Description

Source
Parametric SP1

Lens mass SIE ✓ - Fit the lens mass model and source light profile,
comparing the lensed source model to mock image.

Source light Sérsic ✓ -

Source
Inversion

SI1
Lens mass SIE SP3 Fix lens mass parameters to those from the source

parametric pipeline and fit pixelization and
regularisation parameters on magnification adaptive
pixel-grid.Source light MPR ✓ -

SI2
Lens mass SIE ✓ SP3 Refine the lens mass model parameters, keeping

source-grid parameters fixed to those from previous
phase.Source light MPR SI1

SI3
Lens mass SIE SP3 Fit BPR pixelization and regularisation parameters,

using the lensed source image from SI2 to determine
the source galaxy pixel centres. Lens mass
parameters are fixed to those from previous phase.Source light BPR ✓ -

SI4
Lens mass SIE ✓ SI2 Refine lens mass model parameters on the BPR grid,

keeping lens light and source-grid parameters fixed
to those from previous phases.Source light BPR SI3

Mass
Total MT1

Lens mass PLEMD ✓ SI4 Fit the lens mass parameters, now with the slope of
the density profile free to vary within the uniform
prior [1.5-3.0], all other mass priors are informed
from SI4.Source light BPR SI3

Table B.1: Pipeline model components for the analysis which fits to a lensed image which does not
contain emission from the lens galaxy.

Model Parameter Prior

Elliptical 𝑏 (′′) U(0, 8)
Power-Law (PL) 𝛾 U(1.5, 3)

𝜀1 N(0, 0.3)
𝜀2 N(0, 0.3)
𝑥c (′′) N (0, 0.05)
𝑦c (′′) N (0, 0.05)

Sersic 𝑅eff (′′) U(0, 30)
𝑛 U(0.5, 5)
log10 𝐼0(𝑒−𝑠−1) U(−6, 6)
𝜀1 N(0, 0.5)
𝜀2 N(0, 0.5)
𝑥c (′′) N (0, 0.1)
𝑦c (′′) N (0, 0.1)

Shear 𝛾1ext U(−0.2, 0.2)
𝛾2ext U(−0.2, 0.2)

Table B.2: The initial priors on every parameter of every light and mass profile fitted in this work.
Column 1 gives the model component name. Column 2 gives the parameter. Column 3 gives the
prior, where U(𝑎, 𝑏) is a uniform prior between 𝑎 and 𝑏, and N(𝜇, 𝜎) is a Gaussian prior with mean
𝜇 and variance 𝜎2. Note that due to prior passing the final priors used to fit a model, corresponding
to the results given in this work, will be updated from the above values. The priors of every fit can be
found at the following link https://zenodo.org/record/6104823.

https://zenodo.org/record/6104823
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Inferred Model Parameters

We present the best fit model parameters for all SLACS and GALLERY lenses. The PLEMD+ext mass

model parameters are given in Tables C.1 (SLACS) and C.2 (GALLERY). The double Sérsic light

model parameters for the Gold sample are presented in Tables C.4 (SLACS), and C.3 (GALLERY).

We present the light parameters only for the “Gold” sample since the “Silver” and “Bronze” samples

either do not fit the lens light or provide models we do not trust. All errors quoted are those derived

from the 68% credible region of the PDF output from dynesty.

Class Lens Name 𝑏 (′′) 𝛾 𝜀1 𝜀2 𝛾1ext 𝛾2ext 𝑥c (′′) 𝑦c (′′)

Gold

J0008-0004 1.178+0.021
-0.015 2.08+0.08

-0.07 0.16+0.028
-0.025 0.014+0.031

-0.033 −0.006+0.011
-0.015 −0.023+0.017

-0.017 −0.015+0.012
-0.012 0.034+0.012

-0.014

J0029-0055 0.971+0.026
-0.015 2.32+0.13

-0.13 0.089+0.05
-0.044 0.089+0.062

-0.04 0.005+0.021
-0.017 0.012+0.019

-0.023 −0.019+0.014
-0.02 −0.017+0.014

-0.016

J0157-0056 0.999+0.033
-0.034 2.23+0.08

-0.09 −0.198+0.067
-0.049 −0.199+0.054

-0.06 −0.077+0.022
-0.02 −0.165+0.023

-0.027 −0.137+0.026
-0.02 0.031+0.026

-0.026

J0216-0813 1.188+0.013
-0.013 1.99+0.05

-0.06 0.056+0.034
-0.035 −0.097+0.024

-0.029 0.001+0.02
-0.019 0.009+0.016

-0.016 0.009+0.008
-0.006 0.011+0.008

-0.008

J0252+0039 1.021+0.005
-0.006 1.92+0.08

-0.11 −0.041+0.01
-0.01 −0.045+0.01

-0.008 −0.02+0.005
-0.005 −0.013+0.005

-0.005 0.0+0.006
-0.005 −0.005+0.006

-0.006

J0330-0020 1.113+0.022
-0.022 2.15+0.02

-0.02 −0.017+0.052
-0.046 −0.119+0.042

-0.043 0.039+0.018
-0.02 −0.013+0.019

-0.018 −0.051+0.017
-0.026 −0.021+0.017

-0.026

J0728+3835 1.274+0.029
-0.024 1.99+0.12

-0.1 0.145+0.03
-0.028 −0.122+0.027

-0.027 0.056+0.015
-0.02 −0.037+0.012

-0.013 −0.006+0.013
-0.012 0.004+0.013

-0.012

J0737+3216 0.982+0.009
-0.008 2.28+0.07

-0.07 −0.017+0.017
-0.014 −0.072+0.021

-0.02 0.038+0.007
-0.007 0.103+0.009

-0.01 −0.008+0.004
-0.004 −0.006+0.004

-0.004

J0822+2652 1.235+0.034
-0.035 2.1+0.08

-0.07 0.147+0.041
-0.043 −0.264+0.039

-0.038 0.057+0.025
-0.025 −0.082+0.017

-0.024 −0.014+0.022
-0.016 −0.103+0.022

-0.028

J0841+3824 1.005+0.158
-0.139 2.27+0.2

-0.16 −0.149+0.089
-0.096 −0.104+0.175

-0.12 −0.118+0.043
-0.04 −0.083+0.049

-0.052 −0.25+0.046
-0.043 −0.204+0.046

-0.034

Table C.1: Mass distribution model fit parameters for the first ten SLACS lenses.
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Class Lens Name b (′′) 𝛾 𝜀1 𝜀2 𝛾1ext 𝛾2ext 𝑥c (′′) 𝑦c (′′)

Gold

J0029+2544 1.395+0.074
-0.039 2.05+0.12

-0.15 −0.203+0.055
-0.078 0.014+0.045

-0.055 −0.025+0.03
-0.031 −0.049+0.025

-0.027 0.09+0.023
-0.026 0.036+0.023

-0.026

J0113+0250 1.293+0.037
-0.028 1.77+0.15

-0.11 −0.006+0.017
-0.019 0.068+0.013

-0.017 0.041+0.013
-0.013 0.14+0.012

-0.012 0.031+0.009
-0.011 0.008+0.009

-0.008

J0201+3228 1.727+0.022
-0.018 2.09+0.09

-0.1 −0.114+0.026
-0.02 −0.02+0.019

-0.012 0.06+0.015
-0.012 −0.039+0.016

-0.008 0.002+0.016
-0.014 0.026+0.016

-0.013

J0237-0641 0.615+0.117
-0.078 1.91+0.18

-0.1 −0.117+0.033
-0.018 0.026+0.075

-0.101 0.006+0.051
-0.06 −0.015+0.068

-0.04 0.146+0.033
-0.033 0.021+0.033

-0.027

J0742+3341 1.684+0.134
-0.097 2.21+0.06

-0.08 0.506+0.053
-0.049 0.001+0.061

-0.061 0.107+0.018
-0.024 −0.217+0.026

-0.025 0.136+0.018
-0.048 −0.062+0.018

-0.015

J0755+3445 2.0+0.071
-0.055 1.77+0.08

-0.05 0.156+0.016
-0.014 0.131+0.016

-0.012 0.201+0.008
-0.009 0.268+0.007

-0.011 0.069+0.004
-0.011 −0.159+0.004

-0.005

J0856+2010 1.157+0.071
-0.087 2.23+0.08

-0.09 0.474+0.079
-0.079 −0.151+0.069

-0.098 −0.021+0.032
-0.032 −0.014+0.027

-0.023 0.171+0.021
-0.039 −0.063+0.021

-0.018

J0918+5105 1.642+0.035
-0.037 2.38+0.16

-0.18 −0.024+0.057
-0.064 −0.081+0.023

-0.041 −0.246+0.023
-0.033 −0.122+0.007

-0.007 −0.019+0.027
-0.014 0.004+0.027

-0.016

J1110+2808 0.902+0.029
-0.026 2.03+0.09

-0.07 0.041+0.053
-0.081 −0.045+0.056

-0.058 0.114+0.042
-0.037 −0.09+0.025

-0.029 −0.106+0.03
-0.023 −0.141+0.03

-0.035

J1110+3649 1.188+0.011
-0.012 2.23+0.07

-0.08 −0.024+0.007
-0.008 −0.016+0.013

-0.013 0.019+0.003
-0.003 0.129+0.007

-0.006 −0.0+0.003
-0.003 −0.009+0.003

-0.002

J1116+0915 1.247+0.188
-0.156 2.22+0.16

-0.17 0.071+0.097
-0.101 −0.393+0.069

-0.072 0.016+0.034
-0.045 −0.653+0.041

-0.053 −0.034+0.047
-0.032 0.086+0.047

-0.044

J1141+2216 1.381+0.067
-0.071 2.13+0.09

-0.11 0.243+0.058
-0.069 0.009+0.072

-0.085 0.042+0.032
-0.033 −0.117+0.032

-0.031 0.088+0.04
-0.033 −0.035+0.04

-0.028

J1201+4743 1.221+0.023
-0.018 2.74+0.05

-0.21 −0.095+0.019
-0.032 0.007+0.035

-0.043 0.069+0.0
-0.017 −0.016+0.007

-0.009 −0.046+0.001
-0.004 0.025+0.001

-0.011

J1226+5457 1.385+0.008
-0.009 2.24+0.07

-0.1 −0.074+0.011
-0.015 0.127+0.014

-0.016 −0.139+0.01
-0.007 −0.011+0.009

-0.01 0.023+0.004
-0.004 0.006+0.004

-0.003

J2228+1205 1.338+0.072
-0.063 2.2+0.14

-0.1 −0.262+0.049
-0.08 0.048+0.079

-0.057 −0.196+0.03
-0.035 −0.198+0.033

-0.022 −0.057+0.026
-0.026 −0.005+0.026

-0.031

J2342-0120 1.313+0.048
-0.044 2.34+0.07

-0.09 −0.298+0.06
-0.034 −0.129+0.036

-0.025 −0.019+0.014
-0.021 −0.254+0.015

-0.008 0.051+0.013
-0.01 0.02+0.013

-0.014

Table C.2: GALLERY mass distribution model fit parameters.

lens noise Sérsic 𝑅eff (′′) 𝑛 𝐼0
(
×10−3) 𝜙 𝑞 𝜀1 𝜀2 𝑥c

(
×10−3′′) 𝑦c

(
×10−3′′)

J0029+2544 0.11+0.11
-0.045

I 16.84+3.89
-6.68 3.9+0.58

-0.5 0.04+0.01
-0.02 −2+4

-4 0.33+0.09
-0.14 −0.04+0.07

-0.07 0.5+0.16
-0.18 0.49+0.63

-0.8 −0.71+0.51
-1.02

II 0.59+0.04
-0.02 3.5+0.04

-0.04 17.93+0.61
-1.19 −43+3

-3 0.82+0.01
-0.0 −0.1+0.0

-0.0 0.01+0.01
-0.01

J0113+0250 0.00032+0.0012
-0.00018

I 2.43+0.82
-0.6 1.0+0.28

-0.23 1.5+0.36
-0.35 −71+3

-3 0.35+0.07
-0.08 −0.29+0.06

-0.05 −0.38+0.09
-0.09 5.0+1.41

-1.5 −2.03+1.76
-1.55

II 1.72+0.24
-0.2 3.9+0.21

-0.24 2.15+0.5
-0.38 −3+0

-0 0.54+0.01
-0.02 −0.04+0.01

-0.01 0.29+0.01
-0.01

J0201+3228 160+370
-130

I 2.12+0.59
-0.35 1.4+0.19

-0.18 7.65+1.47
-1.69 −47+2

-3 0.79+0.02
-0.02 −0.12+0.01

-0.01 −0.01+0.01
-0.01 0.68+0.63

-0.56 3.2+0.63
-0.61

II 1.09+0.08
-0.08 4.9+0.06

-0.08 9.03+0.75
-0.69 −85+4

-4 0.91+0.01
-0.01 −0.01+0.01

-0.01 −0.04+0.01
-0.01

J0237-0641 1.4+15
-1.4

I 10.62+12.78
-7.09 3.5+1.3

-0.8 0.15+0.45
-0.12 3+26

-17 0.64+0.31
-0.19 0.03+0.2

-0.07 0.22+0.12
-0.21 0.48+0.7

-0.83 −2.23+0.71
-0.73

II 0.91+0.11
-0.14 4.8+0.11

-0.47 6.92+1.71
-0.82 80+20

-316 0.98+0.02
-0.05 0.0+0.01

-0.01 −0.01+0.01
-0.01

J0742+3341 1.1+28
-1.1

I 10.31+8.57
-8.83 3.1+1.28

-0.95 0.24+2.42
-0.14 27+7

-7 0.53+0.14
-0.11 0.25+0.09

-0.1 0.18+0.09
-0.13 −0.19+0.58

-0.63 1.35+0.59
-0.68

II 1.04+0.25
-0.11 4.6+0.16

-0.23 9.12+1.38
-2.27 62+1

-2 0.71+0.01
-0.18 0.14+0.01

-0.01 −0.1+0.02
-0.01

Table C.3: Light model parameters for the first five GALLERY lenses in order of Right Ascension.

lens noise Sérsic 𝑅eff (′′) 𝑛 𝐼0
(
×10−3) 𝜙 𝑞 𝜀1 𝜀2 𝑥c

(
×10−3′′) 𝑦c

(
×10−3′′)

J0008-0004 1500+210
-460

I 27.25+1.2
-22.87 2.2+2.65

-0.94 0.01+0.0
-0.0 46+3

-15 0.63+0.11
-0.23 0.23+0.2

-0.19 −0.02+0.04
-0.03 −3.25+0.0

-2.21 4.05+0.0
-1.36

II 1.69+0.69
-0.09 4.3+0.28

-0.1 27.93+0.0
-11.49 26+3

-1 0.9+0.0
-0.01 0.04+0.01

-0.0 0.03+0.0
-0.0

J0029-0055 470+120
-100

I 0.33+0.02
-0.02 2.8+0.1

-0.09 905.32+0.08
-80.08 22+0

-0 0.9+0.0
-0.0 0.04+0.0

-0.0 0.04+0.0
-0.0 −5.57+0.0

-0.26 1.92+0.0
-0.25

II 3.0+0.22
-0.17 1.6+0.11

-0.11 49.4+0.0
-5.06 27+1

-1 0.79+0.01
-0.01 0.09+0.01

-0.01 0.07+0.01
-0.01

J0157-0056 120+30.
-26

I 1.86+0.56
-0.34 0.8+0.28

-0.13 7.3+0.0
-1.09 −58+5

-6 0.72+0.05
-0.07 −0.15+0.04

-0.04 −0.07+0.04
-0.04 −5.09+0.0

-0.14 1.65+0.0
-0.31

II 1.04+0.02
-0.06 4.9+0.04

-0.07 66.77+0.01
-1.89 68+0

-0 0.67+0.0
-0.0 0.13+0.0

-0.0 −0.14+0.0
-0.0

J0216-0813 850+52
-70.

I 1.54+0.33
-0.2 3.9+0.32

-0.24 115.98+0.03
-28.97 85+0

-0 0.81+0.0
-0.0 0.02+0.0

-0.0 −0.11+0.0
-0.0 −7.13+0.0

-0.39 3.76+0.0
-0.44

II 3.75+2.41
-0.49 0.8+0.27

-0.13 16.96+0.01
-10.44 50+3

-5 0.66+0.07
-0.13 0.2+0.14

-0.05 −0.04+0.04
-0.04

J0252+0039 210+52
-43

I 0.94+0.03
-0.03 0.9+0.05

-0.05 125.89+0.0
-3.86 −65+1

-1 0.77+0.01
-0.01 −0.1+0.01

-0.01 −0.09+0.01
-0.01 −6.69+0.0

-0.38 −1.61+0.0
-0.42

II 0.62+0.05
-0.04 4.9+0.06

-0.1 132.34+0.01
-11.09 54+20

-22 0.99+0.01
-0.01 0.0+0.0

-0.0 −0.0+0.0
-0.0

Table C.4: Light model parameters for the first five SLACS lenses in order of Right Ascension.



Appendix D

Model fits

In this study we categorised the model fits into “Gold”, “Silver”, and “Bronze” depending on the

quality of the model fit. The “Gold” fits are presented in Figure D.2 for SLACS lenses and Figure D.1

for GALLERY lenses. The “Silver” lenses are then presented in Figure D.3 and the “Bronze” lens in

Figure D.4.
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Figure D.1: Model fits for the first five GALLERY lenses in order of Right Ascension. Residuals are
the normalised residuals.
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Figure D.2: Model fits for the first five SLACS lenses in the “Gold” sample in order of Right Ascension.
Residuals are the normalised residuals.
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Figure D.3: SLACS “Silver” model fits. Residuals are the normalised residuals.
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Figure D.4: SLACS “Bronze” model fit. Residuals are the normalised residuals.
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