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Abstract 

The interactions between predators and prey have long been considered to play an 

important role in behaviour, physiology, and evolution. Both predators and prey can 

influence one another’s spatial and temporal patterns in activity and space use. To 

understand such dynamic processes, one must simultaneously assess the behavioural 

ecology of both predator and prey within the same environment. Such analyses have 

been rare in primatology. 

With the aid of behavioural, telemetry, and environmental data collected between the 

years 2012 and 2017, a combination of methods including home range analyses, 

resource selection functions, activity pattern analyses and spatial regression models 

were used to independently test hypotheses relating to space use and activity patterns 

in chacma baboons (Papio ursinus) and their main predator, the leopard (Panthera 

pardus) within the western Soutpansberg Mountains, South Africa. Collectively, the 

results allowed me to test hypotheses about how baboons spatially and behaviourally 

respond to the threat posed by predation. The utilisation of spatial-temporal data 

deriving from two sympatric species provides not only a detailed assessment on how 

such animals independently use their environment yet is a novel approach for 

understanding the complex dynamics of predator-prey interactions.   

My results showed that leopards established home ranges in topographically complex 

and highly vegetated areas while avoiding humans and also preferentially used areas of 

dense vegetation.  Leopards were also less active in these areas, preferentially resting 

in areas of cover and away from human activity.  Although primarily crepuscular, 

leopards shifted their behaviour when in proximity to humans with an increase in 

nocturnal activity, with day length and weather also influencing their activity 

scheduling.  Despite the presence of leopards on the landscape, baboons primarily 

avoided areas that were perceived to be risky from the threat imposed by other baboon 

groups rather than leopards. In contrast, the probability of encountering leopards had 

the biggest influence on spatial variation in vigilance. In confirmation of previous 

studies, risk effects exceeded the importance of food availability in determining range 

use, although baboons selected areas of greater food availability during winter when 

food was shortest suggesting that they trade off an increase in risk for foraging 

opportunities at these times. Despite clear seasonal constraints on behaviour in winter, 

however, the baboons did not appear to compensate with increased nocturnal activity 

at these times.  This study highlights the value of integrating information on both 

predators and prey into studies of primate-predator interactions and suggests 

potential avenues for future research. 
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"Alas," said the mouse, "the world gets smaller every day. At first it was so wide 

that I ran along and was happy to see walls appearing to my right and left, but 

these high walls converged so quickly that I’m already in the last room, and there in 

the corner is the trap into which I must run." 

 

"But you’ve only got to run the other way," said the cat, and ate it. 

 

- Franz Kafka (A Little Fable, Year Unknown) 
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 Chapter 1: Introduction 
 

 Predator-Prey Interactions 

 Defining Predation 

“Predation” in the broadest sense can be defined as an interaction between two 

species when one (the predator) is capable of killing and consuming a portion of 

the biomass of individuals that are predated on (the prey) (Abrams, 2000). 

While the definition of predation can shift depending on the context, and has 

been expanded to include seed consumption and parasitism (although, 

parasites may not directly or instantly kill and consume prey) (Abrams, 2000), 

the definition of “predation” used in this thesis is more representative of the 

familiar relationship found in predator-prey interactions between two different 

species of animals. Therefore, in this context, predation can be described as a 

behavioural act where a predator seeks out, kills, and consumes another animal 

(Briers, 2006) whereas a prey item can be considered an animal species that is 

actively hunted and adapts behavioural strategies to avoid being predated on 

(Briers, 2006). 

 Predator Hunting Modes 

Predators have evolved several different strategies to acquire prey. While these 

hunting modes can be found in nearly all predatory taxa, in this thesis, I will 

primarily address adaptations utilised by large predatory mammals.  Broadly 

speaking, predator hunting modes can be defined into three categories 

(Mclaughlin, 1989; Miller, Ament and Schmitz, 2014). 

1. Sit and wait/ambush predators: predators that remain motionless and 

only attack a prey item after it has moved within catching distance (e.g. 

polar bears, Ursus maritimus (Smith, 1980; Togunov, Derocher and Lunn, 

2017); leopards Panthera pardus (Jenny and Zuberbühler, 2005)  

2. Sit and pursue predators: predators that stalk their prey and may remain 

motionless until a prey item comes close enough for the predator to be 

able to quickly pursue their prey through chasing (also referred to as the 
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“stalk-chase-kill “technique in this thesis) ((lions, Panthera leo (Thaker et 

al., 2011). 

3. Active hunters (also referred to as cursorial predators): predators that 

actively move throughout their environment as a means to track and 

pursue their prey (cheetah, Acinonyx jubatus; African wild dogs, Lycaon 

pictus (Thaker et al., 2011).  

Such hunting modes are generally dependent on a combination of different 

factors ranging from habitat characteristics (Schmitz, Krivan and Ovadia, 

2004; Schmitz, 2007), prey conditions (Pierce, Bleich and Terry Bowyer, 

2000), and morphological adaptations (Figueirido and Janis, 2011) and as a 

result, carnivore species with different hunting modes that overlap in prey 

species and range may also vary in terms of how they utilise their 

environment (Bartnick and Van Deelen, 2013). For example, cursorial 

predators such as wolves (Canis lupis) will often prefer to hunt in open 

habitats where they give chase over long distances until they subdue an 

(often unhealthy or young) individual (MacNulty, Mech and Smith, 2007; 

Wikenros et al., 2009; Gervasi et al., 2013). In contrast, mountain lions 

(Puma concolor) heavily rely on the element of surprise to subdue and kill 

prey items and as a result, primarily rely on habitat characteristics such as 

steep terrain and heavy vegetation coverage to remain undetected (Elbroch 

and Wittmer, 2012; Allen, 2014; Wang, Nickel, Rutishauser, Bryce, et al., 

2015). While both of these predators may coexist and even compete for 

similar prey items, the contrasting hunting modes and habitats utilised by 

each species have been hypothesised to allow them to occupy separate 

niches in the landscape (Bartnick and Van Deelen, 2013). 

Sympatric predator species that reside not only in the same community yet 

also share similar hunting modes may coexist through altering activity levels 

(Hayward and Slotow, 2009; Lucherini et al., 2009; Cozzi, Broekhuis, 

McNutt, et al., 2012), spatial segregation (Durant, 2000; Welch et al., 2015) 

and/or reducing of dietary overlap (Barrientos and Virgós, 2006; Hayward 

and Kerley, 2008). This is perhaps most exemplified in Africa’s large 

carnivore guild which can contain up to five large mammalian carnivores in 
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intact communities ranging from ambush (lion, leopard) and cursorial 

(spotted hyena, Crocuta crocuta; African wild dog, and cheetah) predators. 

For example, despite the latter three species being considered cursorial and 

active hunters, African wild dogs and cheetahs have notably been recorded 

to be more active during diurnal and crepuscular hours compared to spotted 

hyenas (Durant, 2000; Saleni, Gusset, Graf, Szykman, 2007; Hayward and 

Slotow, 2009). As hyenas have been known to steal kills and predate on both 

species, such niche segregation may in part allow such subordinate 

predators to coexist with hyenas while also avoiding encounters. 

Interestingly enough, large ambush predators of different body sizes may 

not necessarily avoid one another spatially (Karanth and Sunquist, 2000), 

yet may simply predate on prey species of different body sizes. This has 

been recorded in sympatric tigers (Panthera tigris) and leopards (Karanth 

and Sunquist, 2000) as well as pumas and jaguars (Panthera onca) (Taber et 

al., 1997).  

Prey have been shown to adapt to the predatory modes utilised by their 

predators and may therefore exhibit different anti-predator strategies 

depending on whether they are in danger from cursorial (often active 

hunters) or ambush carnivores (Schmitz, Krivan and Ovadia, 2004). As 

ambush predators rely on cover to successfully make a kill and are likely to 

hunt in specific locations (“hotspots”), prey items may often exhibit greater 

anti-predator behaviour (i.e. vigilance) toward such carnivores compared to 

cursorial predators (Lima and Bednekoff, 1999; Middleton et al., 2013; 

Donadio and Buskirk, 2016). In contrast, while cursorial predators may 

potentially inhibit such responses (Laundré, Hernández and Altendorf, 

2001; Wikenros et al., 2009; Ghosal and Venkataraman, 2013), the large 

hunting range exhibited by such active predators may promote prey to 

identify areas of high risk throughout the landscape, and as a result, dilute 

such effects (Middleton et al., 2013). Additionally, as cursorial predators 

may ‘test’ their prey before making a kill (and as a result, may be fully 

exposed to prey items) compared to ambush predators that are required to 

be as close as possible before the final attack, anti-predator behaviour such 

as vigilance may not be as necessary (Creel and Creel, 2002). 
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 Defining Risk 

Risk can be defined as the likelihood of encountering and being consumed by a 

predator over time and has been characterised by Lima and Dill (1990) through 

the equation:  

P(death) = 1-e(-αdT) 

In this instance, α represents the probability of an encounter between a prey 

item and their predator, d signifies the chances of the prey item succumbing to 

death as a result of predation, and T indicates the time a prey item spends 

vulnerable (Lima and Dill, 1990). As the various hunting modes influence where 

predators are likely to occur, the probability of an encounter (α) depends on 

components such as habitat type and predator movement. T, can also be 

considered as influenced by the density of predators within an area.  

Risk can be difficult to directly assess and as a result, many researchers have 

relied on other methods to evaluate the level of risk from predation for a prey 

species. For example, several studies have shown that the density of predators 

may directly influence prey through either increased mortality (Piersma, 

Koolhaas and Jukema, 2003) or by altering prey behaviour such as reduced 

foraging time or activity levels (Lima and Dill, 1990; Anholt and Werner, 1998).  

 Researchers have also evaluated risk by assessing where and when predators 

are likely to be active (Hayward and Slotow, 2009; Lucherini et al., 2009; 

Schuette et al., 2013) as well as where predators are likely to kill and consume 

their prey (Quinn and Cresswell 2004; Hebblewhite et al., 2005; Kolowski and 

Holekamp 2006; Gervasi et al., 2013). Studies have also assessed how prey 

items adjust their activity levels (such as foraging rates) in response to 

predation risk (Lima and Bednekoff, 1999; Sih and McCarthy, 2002; Ferrari et 

al., 2008). While all these approaches have provided valuable insights into the 

complexities of predator-prey dynamics, it should be noted that such a system 

is inherently complex and that the methods used to evaluate risk may vary 

between different predator and prey species as well as the environments in 

which they reside in.  
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 Perceived Risk 

Although death is often considered the ultimate cost of a predation event, 

perceived risk may also have an enduring effect on prey (Preisser, Bolnick and 

Benard, 2005). In such instances, the risk imposed by predators can promote 

several costly behaviours in prey items such as increased vigilance (Dehn et al., 

1990; Mooring et al., 2004; Valeix et al., 2009), spatial and temporal avoidance 

(Rettie and Messier, 2000; Thaker et al., 2011; Vanak et al., 2013), and 

increased group aggregation (Landeau and Terborgh, 1986; Creel and Winnie, 

2005), which can impact long term trends in the behavioural ecology of the 

prey. For example, the trade-off between predator avoidance and reduced food 

intake can influence both a decrease in fitness and reproductive output, thereby 

influencing prey population levels (Lima and Dill, 1990; Lima, 1998a). Given 

this, these non-lethal effects can also potentially lead to local shifts in structure 

of ecological communities and trophic cascades (Lima, 1998a; Suraci et al., 

2016) 

Perhaps one of the most well studied concepts regarding how predators can 

shape the behaviour of prey, and the surrounding environment is the landscape 

of fear. First introduced by Laundré (et al., 2001), the landscape of fear was 

presented as a visual model to explain how foraging patterns and space use in 

ungulates was influenced by the risk imposed by newly introduced wolves in 

Yellowstone National Park (USA). As such, the landscape of fear can be defined 

as a visual representation of an animal’s perceived risk throughout the 

landscape (Kohl et al., 2018). Since then, the landscape of fear concept has been 

applied to explain the behaviour in a range of taxa including birds (Rösner et al., 

2014), reptiles (Hammerschlag et al., 2015) and numerous mammalian species 

(Laundré, Hernández and Altendorf, 2001; Berger, 2007; van der Merwe and 

Brown, 2008). 

Although prey items respond to the risk imposed by predation by altering their 

antipredator behaviour through spatial avoidance or increased vigilance, the 

landscape of fear extends such processes by incorporating the fear of predation 

to explain such patterns across time and space (Laundré, Hernández and Ripple, 

2010). In this instance, fear in animals can simply be defined as an immediate 
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reaction to danger and the anticipation of risk (Laundré, Hernández and Ripple, 

2010). Physiologically, the stress induced by fear can be measured in animals 

through increased heart rate or the release of glucocorticoid hormones in faeces 

(Clinchy, Sheriff and Zanette, 2013; Støen et al., 2015). Behaviourally, fear in 

animals has often been found to be associated with an increase in vigilance, a 

reduction in feeding, and the spatial-temporal avoidance of potentially 

dangerous habitats (but see Beauchamp 2017 for a review on the lack of a 

correlation between stress hormones and vigilance).  

The landscape of fear can be defined as how an animal spatially perceives and 

utilises its environment due to the heterogeneous risk imposed by predators 

(Laundré, Hernandez and Ripple, 2010). Given this, animals should be expected 

to forage in specific (low risk) areas, while simultaneously avoiding habitats 

where the risk imposed by predation increases (Hebblewhite and Merrill, 

2009).  

Since both predators and prey are likely to respond differently to various 

habitat and environmental characteristics, the landscape of fear should also be 

considered a dynamic and physical projection of risk. For example, Laundré and 

colleagues (2010) elegantly described the landscape of fear as three-

dimensional, and exhibiting “peaks and valleys” that are related to predation 

risk, which is influenced by environmental characteristics within the habitat 

that can either promote or decrease the effectiveness of a hunting predator.  

Three major factors within predation risk are thought to primarily influence the 

landscape of fear (Brown, Laundre and Gurung, 1999).  The first is that a prey 

animal must choose where to feed while also considering the predator type that 

they are at risk from (Bleicher, 2017). Managing risk as a response to nocturnal 

ambush predators (such as felids) may therefore be considerably different 

compared to cursorial predators (i.e. canids, hyaenids).  Secondly, perceived 

risk may also vary considerably depending on the hunting and consumption 

intensity exhibited by the predator (Bleicher, 2017). Finally, the landscape of 

fear may also be highly influenced by how well the focal prey species can 

predict the likelihood of an attack occurring (Bleicher, 2017). 



7 
 

In addition to the risk imposed by predation, the landscape of fear can also be 

heavily influenced by the availability of essential resources such as food and 

shelter (Laundré, Hernández and Ripple, 2010). Van der Merwe and Brown 

(2008) found that perceived risk in Cape ground squirrels (Xerus inauris) 

significantly decreased when in proximity to refuges such as burrows. Wirsing 

(et al., 2007) found that dugongs (Dugong dugon) chose to forage in safer, yet 

less profitable feeding patches when faced by the risk imposed by tiger sharks 

(Galeocerdo cuvier). In contrast, animals that are physiologically or nutritionally 

stressed, or face seasonal variability in food or water availability, may choose to 

feed or drink in high risk areas, and as such, may attempt to negate potential 

predation opportunities by exhibiting other antipredator behavioural 

modifications. For example, Valeix (et al., 2009) found that buffalo (Syncerus 

caffer) increased their vigilance levels rather than just spatial avoidance when 

attempting to access watering holes where the probability of encountering lions 

is high.  

The landscape of fear has been found to be a powerful tool to understand the 

complex dynamics of how prey items spatially utilise their environment when 

faced with the risk imposed by predators; and ecological factors like resource 

acquisition and seasonality. Both direct and perceived risk are important in 

assessing the influence that predators have on prey behaviour, and they 

potentially have cascading effects on individual fitness and population level 

dynamics. The non-lethal effects induced by predation may also lead to trophic 

level shifts in ecological communities, and consequently, are a fundamental 

component to understanding animals and the ecosystems that they reside in.   

 The Influence of Predator-Prey Systems in Ecology 

Predator-prey interactions are considered to be fundamental in shaping 

ecological communities (Lima, 1998a). Through trophic dynamics, apex 

predators can directly and indirectly influence ecosystems by consuming prey, 

which in turn, controls prey density (Preisser, Bolnick and Benard, 2005). 

Either through consuming prey or excretion, predators have been shown to 

mediate nutrient cycling and enhance localised ecological productivity. For 

example, the transportation of salmon carcasses predated by brown bears 
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(Ursus arctos) promotes the exchange of aquatic based nitrogen (N) into 

riparian forests and which has been shown to act as a nutrient rich fertiliser in 

such edge habitats (Helfield and Naiman, 2001; Quinn et al., 2003). 

Furthermore, Dunham (2008) found that phosphorus (P) levels in soils in Tai 

National Park, Ivory Coast were most likely due to a trophic pathway consisting 

of predators (both mammalian and avian), arachnids, arthropod microbivores, 

and decomposing organic material.  

The non-lethal perceived risk that prey items exhibit while coexisting with a 

predator may also have a profound impact on ecosystems (Lima, 1998b; 

Preisser, Bolnick and Benard, 2005; Clinchy, Sheriff and Zanette, 2013). Non-

consumptive effects can manifest themselves through morphological, physical, 

and behavioural shifts to avoid predation and may be inherently costly and 

have long term consequences in shaping prey abundance and distribution 

(Preisser, Bolnick and Benard, 2005). Additionally, it seems likely that non-

consumptive and consumptive effects may be negatively correlated, since the 

purpose of antipredator behaviour is to reduce direct predation (Creel and 

Christianson, 2008). 

Optimal foraging theory suggests that animals must maximise energy intake 

while avoiding predation (Sih, 1980). As such, by avoiding risky habitats, prey 

may attempt to mediate resource acquisition while simultaneously avoiding 

being predated on (Lima, 1998a). Patch relocation to avoid predation may 

initiate trophic cascading as prey items that move to specific areas in order to 

reduce risk must focus consumption within that patch, consequently promoting 

depletion of resources as a result (Schmitz and Suttle, 2001). For example, Ford 

(et al., 2014) found that the predation risk exhibited by leopard and African 

wild dog impacted where impala were more likely to feed, and subsequently 

influenced the distribution of Acacia plant communities. In this case, areas of 

high risk (where impala avoided) allowed for the growth of Acacia species that 

were poorly defended from consumption due to being less thorny. In contrast, 

areas of low risk (where impala gathered) promoted Acacia species that were 

well defended (Ford et al., 2014).  

Perhaps one of the most hotly debated examples of how behaviourally mediated 

responses can influence habitat structure comes from research deriving from 
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Yellowstone National Park (USA). It has been argued that patches of high risk 

were created as wolves began to hunt elk (Cervus canadensis) after their 

reintroduction into the park. Correspondingly, elk avoided areas where the risk 

of predation is seemingly high and therefore allowed the spread of woody 

plants such as aspen, cottonwood, and willow (Ripple et al., 2001; Ripple and 

Beschta, 2004, 2007; Beschta et al., 2016). The authors then argued that the 

recruitment and recovery of such riparian species was essential to the stability 

of river systems through stabilising eroding streambanks while simultaneously 

allowing for an increase in diversity of numerous songbird species as well as 

keystone species such as beaver (Castor canadensis) (Ripple and Beschta, 2012). 

In contrast, through the use of risk models originating from wolf winter kill 

sites (winter being when aspen are browsed more heavily by elk), Kauffman 

and colleagues (2010) found that there was no correlation between aspen 

recruitment and spatially mediated risk on elk by wolves.  The authors conclude 

that this lack of a correlation may be due to a combination between the hunting 

style found in wolves (cursorial) as well as the fact that the antipredator 

responses found in elk may not be consistent enough to produce long term 

ecological changes (Kauffman, Brodie and Jules, 2010). As such, it may be 

possible that the influence that predator-prey dynamics have in ecosystems 

may vary considerably by habitat, predator hunting mode, and the behavioural 

responses exhibited by prey items.  

 Predation and Primates 

 Predation and Primate Evolution 

Predation has long been considered to be a strong selective force that has 

shaped both the evolution and behavioural ecology of primates, with evidence 

from the fossil record clearly identifying such events as present even in large 

bodied hominins such as Paranthropus robustus  (SK 54) (Lee-Thorp, Thackeray 

and van der Merwe, 2000) and Australopithecus africanus (Berger and McGraw, 

2007). In extant species, there is evidence that primates ranging in size from the 

smallest (Microcebus) to the largest (Gorilla) have experienced mortality due to 

successful predation events (Hart, 2007).  Although primate predators vary 

considerably by both study site and primate species, a meta-analysis conducted 

by Hart (2007) found that felids and avian predators accounted for the majority 
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of predation events on primate species across the globe, with the remaining 

predators including cursorial carnivores (canids and hyaenids), reptilians, and 

particularly in the case of Madagascar, small carnivores (such as the fossa, 

Cryptoprocta ferox).  

The risk imposed by predation is thought to have influenced a variety of 

behavioural, ecological, and morphological adaptations in primates.  For 

example, group living has been hypothesised to alleviate the risk imposed by 

predation by reducing the probability for any individual being consumed (‘the 

dilution effect’) (Turner and Pitcher, 1986; Dehn, Ecology and Dehn, 1990), 

cumulative vigilance (‘the many eyes effect’) (Powell, 1974), as well as the 

potential for groups to retaliate through mobbing (Isbell, 1994; Stanford, 2002). 

Predation may also have the potential to influence group composition. For 

example, a meta-analysis conducted by Hill and Lee (1998) found a positive 

correlation not only between the risk of predation and overall group size, but 

also the number of males within a group. Although group living may provide 

several key advantages for survival (such as protection from predators) it also 

seems likely that sociality may have the potential to impose constraints such as 

reproductive and resource competition.  

Some primates may have evolved specific morphological adaptations to counter 

the risk imposed by predation including increased canine size in males and 

larger body size (Leutenegger and Kelly, 1977). Cheney and Wrangham (1987) 

found that primate species with a larger body size (excluding apes) were less 

likely to be predated on compared to smaller species. Despite this, larger 

species such as chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) have 

been found to be susceptible to predation thus suggesting that a large body size 

alone does not completely negate risk. This is exemplified by research 

conducted by Zuberbühler and Jenny (2002) on predation rates of numerous 

primate species by leopards residing in Taï National Park, Ivory Coast, where 

leopards were more likely to predate on larger and more abundant primate 

species rather than smaller ones. The authors suggested that these contrasting 

findings likely resulted from how smaller species may be able to easily escape 

leopards by being more agile and so having the ability to escape into the canopy 
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during an attempted predation event. Despite this, it should also be noted that 

although a smaller body size combined with a more arboreal lifestyle may be 

effective against larger and terrestrial predators (such as felids), it may not 

necessarily have as much of an impact on the risk imposed by avian predators 

such as raptors.  

 Behavioural Responses of Primates from Predation 

As an increase in group nor body size may not directly prevent predation risk 

from all predators, primates, like other animals, have developed an array of 

behavioural responses in response to the risk imposed by predators. 

 Vigilance 

One of the most widespread antipredator strategies studied in primates 

involves vigilance, or, the act of looking (Allan and Hill 2018). Nevertheless 

there has been a lack of consistency regarding the actual definition and function 

of vigilance across studies (reviewed in Allan and Hill 2018) For example, some 

authors have defined vigilance as being actively wary of a potential threat 

(Boinski et al., 2003; Smith, Kelez and Buchanan-Smith, 2004), while for others 

the act of scanning or gazing (regardless of the presence of a threat or not) has 

been used to define vigilance (Treves, 1998, 1999; Treves and Naughton-

Treves, 1999; Allan and Hill, 2018). In this instance, the act of looking is 

assumed to serve several functions outside of just predator detection including 

visually searching for food, neighbours, or mates (Allan and Hill, 2018). This 

definition does not necessarily assume the exact behavioural state of the 

animal, and it acknowledges that an animal that is looking throughout their 

surroundings may be equally likely to detect threat as an animal that is 

cautiously alert.  

One assumption in vigilance studies is that an animal must trade off foraging as 

a means to enhance vigilance (Metcalfe and Furness, 1984; Brown, 1999) such 

as in eastern grey kangaroos (Macropus giganteus) (Favreau et al., 2014), 

impala (Aepyceros melampus) (Blanchard and Fritz, 2007), and grey squirrels 

(Sciurus carolinensis) (Bachman, 1993). Although this may be the case in other 

taxa, it should be noted that many primate species can feed upright, and 

continuously scan their environment while eating and therefore, reduce such 
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potential costs required to continuously scan (Cowlishaw, Michael J Lawes, et 

al., 2004). This ability to scan and forage simultaneously can potentially allow 

baboons to eat while avoiding a decrease in the efficiency to scan.   

As group size (and group living in general) is often considered to be an 

adaptation to negate the risk imposed by predation, several studies have 

assessed whether vigilance is influenced by the number of members found 

within a group.  Results have varied considerably, with some researchers 

finding group size to either have a positive, negative, or null effect on vigilance 

levels (see Allan and Hill 2018).  Vigilance levels have also been assessed in 

relation to the number of (Cowlishaw, 1998; Busia, Schaffner and Aureli, 2016) 

and distance to nearest neighbours (Robinson, 1981) as well as other factors 

including sex (De Ruiter, 1986), social rank (Alberts, 1994), and affiliation 

(Dunbar, 1983).  

Several studies have also found vigilance levels in primates to vary spatially. In 

relation to lower canopy height (that is, closer to the ground while in trees), an 

increase in vigilance has been uncovered in ursine colobus monkeys (Colobus 

vellerosus) (Teichroeb and Sicotte, 2012), chimpanzees (Kutsukake, 2006), and 

brown capuchin monkeys (Cebus apella) (Hirsch 2002). Such an increase in 

relation to vertical position has often been theorised to relate to the perceived 

threat induced by terrestrial predators. Spatial variation in vigilance has also 

been linked to factors such as a decrease in visibility due to increased foliage 

density (Cords, 1990; Cowlishaw, 1998), and perceived risk from predation 

(Coleman, 2013; Campos and Fedigan, 2014). Campos and Fedigan (2014) 

found that white faced capuchins were more likely to increase visual scanning 

in areas where previous encounters with predators were more likely to occur. 

Furthermore, spatial variability in vigilance is not only limited to perceived risk 

in predation since it has also been found in relation to range overlap with other 

groups (MacIntosh and Sicotte, 2009) as well on the boundaries of home ranges, 

where such encounters are more likely to have occurred (Busia, Schaffner and 

Aureli, 2016). In the latter instance, it may also be likely that such an increase in 

vigilance may be due to the threat imposed by other groups, and the fact that 

the peripheries of home ranges were less familiar.  
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 Vocalisations 

Vocalisations have long been considered to play a prominent role in warning 

other group members of the immediate threat imposed by predators 

(Struhsaker, 1967).  Despite the immediate benefit that vocalisations have in 

terms of warning group members of the presence of dangers, such a behaviour 

is considered energetically costly, and furthermore, it can lead to an increase in 

risk to the animal eliciting the alarm call. In such instances, the individual that 

elicits the alarm call is likely to be most at risk due to driving the attention of 

the predator to itself (Stanford, 2002). Given the costly nature of alarm calls, 

there are three primary theories regarding the evolution of such an 

antipredator strategy despite the obvious risks imposed by the signalling 

animal (Zuberbühler, Jenny and Bshary, 1999). First, as alarm calls often initiate 

responses such as flight in conspecifics, the caller may have a direct advantage 

by being able to strategically position itself during the chaos to avoid being 

caught (Charnov and Krebs, 1975). Second, eliciting an alarm call can be 

indirectly beneficial by enhancing the survivability of close relatives (Smith, 

1965). Third, the caller can indirectly benefit by transmitting predator specific 

knowledge to their offspring (Curio, 1978). 

In addition to warning conspecifics of the impending threat imposed by a 

predator, alarm calls may also alert the predator that they have been detected, 

and as a result, prevent an attack (Zuberbühler, Jenny and Bshary, 1999). Such 

strategies may be particularly effective against ambush predators such as large 

felids, which rely on the element of surprise to attack and will often give up 

targeting a group or individual after being detected (Zuberbühler, Jenny and 

Bshary, 1999; Isbell et al., 2018).  Yet such strategies may not necessarily be 

effective against cursorial predators that are often not deterred, even after 

detection (Zuberbühler, Jenny and Bshary, 1999). Zuberbühler (et al., 1999) 

found that several species of monkeys (Colobus badius, Colobus polykomos, 

Cercocebus atys, Cercopithecus diana, Cercopithecus campbelli, Cercopithecus 

petaurista) were far more likely to induce alarm calls when faced with leopards 

rather than chimpanzees. Leopards (compared to chimpanzees) were more 

likely to flee rather than continue pursuing their prey upon the elicitation of an 

alarm call. In addition, Cäsar (et al., 2013) found that black-fronted titi monkeys 
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(Callicebus nigrifrons) exhibited higher alarm call rates when faced with model 

felids compared to model raptors.  

There is additional evidence to support the idea that the predator deterrence 

function of alarm calls can directly influence felid behaviour. In a controlled 

experiment, Adams and Kitchen (2018) found that ocelots (Leopardus pardalis) 

were far more likely to respond to alarm calls produced by titi monkeys 

(Callicebus toppini) and saki monkeys (Pithecia rylandsi) compared to control 

calls (loud vocalisations not associated with alarm calls). Ocelots were more 

likely to remain stationary during control calls yet responded by moving further 

away during alarm vocalisations. As such, it seems apparent that the 

effectiveness of primate alarm calls in terms of predator deterrence, may be due 

to the predator itself being able to recognise that such vocalisations represent 

being detected.  

Although alarm calls are often elicited (and recorded) during direct encounters, 

such vocalisations have also proven useful in assessing perceived risk in 

primates. Indeed, the assessment of perceived risk in primate species that have 

the ability to elicit predator-specific vocalisations has been particularly useful 

when measuring the levels of risk imposed by different predator types. By 

taking into account the location of predator specific alarm calls, Willems (2007) 

found that perceived risk in vervet monkeys (Chlorocebus pygerythrus) was 

primarily attributed to terrestrial threats such as baboons and leopards, which 

correspondingly influenced space use. In contrast, at the same study site, the 

combined utilisation of predator specific alarm calls and distribution allowed 

Coleman and Hill (2014) to assess perceived risk on space use in the more 

arboreal samango monkey (Cercopithecus albogularis schwarzi). Samango 

monkeys were less likely to venture into areas where they elicited alarm calls in 

response to arboreal predators such as eagles and the effects of fear exceeded 

those of food availability in determining habitat choice. Therefore, alarm calls 

not only provide researchers with a useful understanding of the immediate 

behavioural states of a prey item, they also have the potential to shed light into 

how such vocalisations relate to other behavioural decisions.  
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 Spatial Avoidance 

Animals must traverse the landscape to search for essential resources such as 

food. Many species are required to balance food acquisition while 

simultaneously avoiding the risk imposed by threats such as predators and 

competitors (Sih, 1980; Lima and Dill, 1990; Brown and Kotler, 2004). As a 

result, animals often have to choose to forage in high quality food patches (and 

thus potentially increase the risk imposed by predation) or suffer nutritional 

losses by feeding in relatively safer (yet not as profitable) habitats (Schmidt and 

Kuijper, 2015). Spatial avoidance can be impossible for species that reside in 

habitats that exhibit patchily distributed food sources and where the risk of 

predation is homogeneous across the landscape (Schmidt and Kuijper, 2015). 

As mentioned in the previous section, samango and vervet monkeys have been 

shown to spatially avoid areas that they perceive to be risky (Willems and Hill, 

2009; Coleman and Hill, 2014). In these contexts, the more arboreal samango 

monkeys were observed to avoid areas where the probability of encountering 

avian predators increased (Coleman and Hill, 2014). In contrast, the more 

terrestrial vervet monkeys were recorded to spatially avoid areas that exhibit 

heightened risk from leopards and baboons  (Willems and Hill, 2009). There is 

also evidence that some primate groups may not use spatial avoidance as an 

antipredator strategy. For instance, red colobus monkeys (Stanford, 2002) were 

not recorded to spatially avoid areas that were considered risky due to 

predators being recorded as having predated there in the past.  Interestingly, 

Cowlishaw (1997) found that one group of chacma baboons was actually more 

likely to forage in areas that exhibited high food availability as well as increased 

predation risk. Cowlishaw (1997) theorised that these baboons were most 

likely forced to feed in such high risk areas due to living in larger groups. 

Contrastingly, Cowlishaw (1997) also found that a baboon group that contained 

fewer individuals (and only one male) was also more likely to feed in high risk 

areas. In this instance, he hypothesized that this group was forced into such 

high risk areas as a means to avoid by the threat imposed by  larger rival groups 

(Cowlishaw, 1997) .   
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In addition to predation risk, there is evidence that such spatial avoidance 

strategies are employed when faced with intergroup competition (Cowlishaw, 

1997; Da Cunha and Byrne, 2006; Markham et al., 2013; Kumara et al., 2014). 

Many social primate species exhibit territoriality to some extent and may 

compete for not only essential resources (food, water, and sleeping sites) but 

also reproductive opportunities (Samuel, 1983; Cowlishaw, 1998; Kappeler and 

Fichtel, 2012). In addition, aggressive encounters between groups have the 

potential to lead to physical violence, and death. Given these potential risks, 

spatial avoidance due to reproductive competition in primates has been found 

in baboons (Cowlishaw, 1997; Markham et al., 2013), lion tailed macaques, 

(Macaca silenus) (Kumara et al., 2014), and black howler monkeys (Alouatta 

caraya) (Da Cunha and Byrne, 2006).  Markham (et al., 2013) found that despite 

extreme home range overlap, yellow baboons residing in Ambsoli National Park 

(Kenya) practised short term spatial avoidance strategies particularly during 

periods in which females were fertile (and when aggressive encounters are 

more likely to occur). Therefore, spatial avoidance in primates may primarily be 

effective towards preventing (potentially fatal) conflict between different 

groups as well as reducing the reproductive success of rivals.  

  Furthering Our Understanding of Primate-Predator 

Interactions 
Although predation is considered to play a fundamental role in both the 

behavioural ecology and evolution of primates, the direct assessment on how 

primates respond to the threat imposed by their local predators has been 

understudied.  Most studies that assess primate-predator interactions are 

limited to focusing on the antipredator responses (i.e. spatial avoidance, 

vigilance, and distribution of alarm calls) exhibited by the focal primate species 

with having very little direct knowledge on where the predators are more likely 

to occur (Campos and Fedigan, 2014; Coleman and Hill, 2014). Although such 

research is undoubtedly important, the exclusion of predators in studies whose 

aims are to identify antipredator responses is inherently troublesome. By 

ignoring the whereabouts and direct probability of where local predators are 

likely to occur, researchers have the inability to directly correlate whether 

antipredator strategies used by primates actually reflect direct risk on the 



17 
 

landscape. This is primarily because prey perception of risk may not necessarily 

reflect where their predators are more likely to occur or hunt. As such, failing to 

account of factors such as landscape attributes or predator locations when 

assessing the landscape of fear may lead to inaccurate “mismatching” between 

perceived and actual risk (Gaynor et al., 2019).   

One example where both focal primate and predator species are simultaneously 

monitored came from Isbell and colleagues (2017) research on encounter rates 

between two species of primates (vervet monkeys and baboons) with leopards. 

In this instance, all three species were monitored for a period of 14 months with 

the aid of telemetry equipment (such as GPS collars and accelerometers). 

Although their study provided detailed information on the frequency of 

encounter rates and the overall rarity of predation events on primate species, it 

did not assess how the primate species studies adapted to such risks over long 

periods. An additional example derives from Stanford (2002), who the assessed 

predator-prey dynamics between red colobus monkeys (Piliocolobus 

tephrosceles) and chimpanzees (Pan troglodytes). residing in Gombe National 

Park, Tanzania. In this instance, red colobus monkeys did not spatially avoid 

areas where the risk posed by predation was likely to occur but instead engaged 

in antipredator behaviours such as alarm calling and communal defence.  

This thesis sets out to assess long term antipredator and spatial decisions in 

baboons using not only primate behavioural data but also through a thorough 

understanding of the behavioural ecology from their principal predator, the 

leopard. Unlike previous research, I hoped to understand whether antipredator 

strategies such as vigilance, alarm calls, and spatial avoidance in primates 

directly correlate with the actual probability of encountering their predator. 

Accomplishing this required a complete understanding on activity patterns and 

habitat selection for the leopards at the same study site as the baboons.  The 

introduction of predator data to assess space use and antipredator behaviour in 

primates is not only novel yet also can also provide valuable insight regarding 

how predation risk and fear may potentially overlap with one another (Gaynor 

et al., 2019).   
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While the utilisation of predator data is undoubtedly useful for understanding 

baboon space use, it is also acknowledged that baboon movement patterns may 

also possibly be influenced by other factors ranging from seasonally shifting 

levels of food availability to intergroup competition (and not just predation). By 

accounting for these variables, I hoped to further our understanding of how 

baboon spatial and behavioural patterns may be explained by multiple 

components of their environment.  

 Thesis Aims 

The central aim of this thesis is to independently assess the behavioural ecology 

of chacma baboons as well as their principal predator, the leopard, within the 

western Soutpansberg Mountains, South Africa. To assess the spatial-temporal 

behaviours of both predator and prey is not only rare but is essential towards 

understanding both.  

Although specific aims are presented in their respective chapters, I hoped to 

specifically assess the following: 

1. The factors determining leopard range use (Chapter 3). 

2. The factors that influence leopard movement behaviour and how it is 

distributed throughout the diel cycle (Chapter 4).  

3. The factors influencing baboon space use (Chapter 5).  

4. Factors that influence baboon vigilance (Chapter 5).  

5. Factors that influence baboon behaviour across the diel cycle (Chapter 6).  

To meet these aims, I use a combination of localised environmental data along 

with telemetry and activity data deriving from GPS collars and dual axis 

accelerometers to attain a greater understanding on spatial and temporal 

variation of habitat selection and movement patterns for leopards. The leopard 

data, along with environmental data and spatial and behavioural data from 

chacma baboons allow me to provide a detailed examination of how these 

primates spatially utilise their environment in response to seasonality, 

perceived risk, and food availability. Finally, I assess whether abiotic and biotic 

factors influenced nocturnal activity patterns in baboons.  
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 Thesis Outline 

Chapter 2 focuses on methodology and provides information on the study site 

and the two focal species, as well as detailed overview on the interaction 

between leopards and chacma baboons both at the study site and other 

locations throughout Africa. In chapter 3, I assess resource selection functions 

(RSFs) for leopards within the western Soutpansberg Mountains to determine 

the primary environmental variables that influence where they are likely to 

establish home ranges as well as where they reside and hunt within their home 

ranges. In chapter 4, I use data deriving from both GPS collars and dual axis 

accelerometers to examine how biotic and abiotic factors influence spatial and 

temporal patterns in activity for leopards residing within the study site. In 

chapter 5, I investigate whether baboons spatially avoid areas that they 

perceive to be risky and whether such perceived risk is driven by the 

probability of encountering leopards (through RSFs) and intergroup 

encounters. In addition, I also analyse both annual and seasonal space use 

patterns in baboons following to perceived risk, potential threats (leopards and 

intergroup encounters) and food availability. Finally, with the aid of both spatial 

and behavioural data, I investigate whether vigilance levels in baboons vary 

spatially in response to the probability of encountering leopards, competing 

baboon groups, and the periphery of their home range. In chapter 6, I evaluate 

whether baboons exhibit activity patterns at night and if such patterns are 

influenced by seasonal variation in day length, weather patterns, and lunar 

luminosity. I conclude in chapter 7 by discussing my findings, methodological 

limitations, and presenting suggestions for future research.  
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 Chapter 2: Materials and Methods 
 

 Study Species 

  Chacma Baboons 

The chacma baboon (Papio ursinus) is a large, diurnal, and terrestrial species of 

primate whose range includes numerous habitats throughout most of southern 

Africa (Estes, 1991) (Figure 2.1). Like other members of Papio, chacma baboons 

are extremely sexually dimorphic in terms of body size, with adult males having 

the potential to weigh up to 80% more than adult females (Isaac, 2005). The 

mean weight for wild adult males is typically up to 30 kg, whereas females tend 

to weigh approximately 15 kg (Bulger and Hamilton, 1987). Adult males have 

large canines (3.6 cm for mean canine length) (Hamilton and Bulger, 1990) that 

are often used to display a threatening demeanour towards, or as weapons in 

physically aggressive interactions with, other males (Chevalier-Skolnikoff, 

2006). Females exhibit colourful sexual swellings throughout the perineal area 

that often peak around ovulation (Domb and Pagel, 2001). 
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Figure 2.1 Natural extent of Papio throughout Africa ( (Martinez et al., 2019). 

Baboons of both sexes typically reach sexual maturity by roughly five years of age 

(Altmann, Altmann and Hausfater, 1981). In females, this stage is signified by the 

first occurrence of menarche (Altmann, Altmann and Hausfater, 1981), whereas, 

in males, this is primarily indicated by the enlargement of the testes (Alberts and 

Altmann, 1995). While baboons do not typically have birthing seasons, chacma 

baboons in the Drakensburg Mountains (South Africa) may give birth more often 

during the wet season (Lycett, Weingrill and Henzi, 1999). After approximately 

six months of gestation (Cheney and Seyfarth, 2008), chacma baboons will 

usually produce one offspring biannually. However, such intervals are prone to 

variability due to localised environmental conditions (Hill, Lycett and Dunbar, 

2000), group size (Hill, Lycett and Dunbar, 2000), and dominance rank (Cheney 

et al., 2004; Silk, Willoughby and Brown, 2005). 

Chacma baboons tend to live in complex, multi-male-multi-female groups that 

vary in size from as few as four  (Henzi, Lycett and Piper, 1997) to over a 

hundred individuals (Cheney and Seyfarth, 2008). While female baboons will 
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often remain with their natal troop for the entirety of their lives, males usually 

leave at the onset of adulthood (Barrett and Henzi, 2008). As such, baboon 

societies are primarily structured around females and their closest kin - who 

may form closely-knit matrilineal subgroups within the troop (Silk, Altmann 

and Alberts, 2006). 

Around the time of ovulation, females will often initiate a short term 

consortship with an adult male. During this period; both individuals frequently 

engage in activities such as copulating and grooming one another (Cheney and 

Seyfarth, 2008). In addition, sexually inactive females may form long-term 

bonds (often known as ‘friendships’) with unrelated adult males (Palombit, 

Cheney and Seyfarth, 2001; Palombit, 2009). In such instances, males and 

females will not only reciprocally groom each other, but males may also handle 

the females' infants (Palombit, 2009). Such friendships with males may benefit 

female baboons by providing the infant with protection from attacks by other 

males, as well as promoting bonds between male friends and offspring (Busse 

and Hamilton, 1981; Lemasson, Palombit and Jubin, 2008; Palombit, 2009). 

Outside of friendships, males do not create bonds with juveniles, infants, or 

other adult males (Palombit, 2009).  

Given their widespread range throughout Southern Africa, chacma baboons 

have been recorded as successfully adapting to a variety of different habitats, 

including mountains (Whiten, Byrne and Henzi, 1987; Henzi, Byrne and Whiten, 

1992), savannahs (Weingrill et al., 2003), deserts (Hamilton III, Buskirk and 

Buskirk, 1976; Hamilton, 1985;  Cowlishaw, 1997), and swamps (Hamilton III, 

Buskirk and Buskirk, 1976). In addition, chacma baboons can also be found 

residing in close proximity to humans in both rural and semi-urban settings 

(Hoffman and O’Riain, 2011). In such instances, they are often regarded as pests 

due to their tendency to raid agricultural areas and are frequently retaliated 

against through either lethal or non-lethal methods (Hill, 2000; Hill and 

Webber, 2010). Despite retaliation against crop-raiding baboons being 

commonplace throughout Southern Africa, chacma baboons are not considered 

to be under threat from extinction and therefore have the conservation status of 

“least concern” by IUCN (Hoffmann and Hilton-Taylor, 2008). 
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It seems likely that the biogeographical range of chacma baboons is partially 

due to their dietary flexibility. Chacma baboons have been observed consuming 

a variety of different food items across their range, including plant (seeds, fruit, 

grasses, leaves, tubers) and animal matter (Buskirk and Buskirk, 1978; Codron 

et al., 2006; Johnson et al., 2013). Despite this, chacma baboons living in the 

most southern parts of Africa are often seasonally constrained by not only day 

length but also food availability, and, as such, they will respond to such 

restrictions in winter months by both maximising foraging time (and efficiency) 

and feeding on lower quality food items (Hill, Barrett, Gaynor, A. Weingrill, et 

al., 2003; Hill et al., 2004; van Doorn, O’Riain and Swedell, 2010). 

Chacma baboons have relatively large home ranges compared to other African 

primates, but, like other species, will often preferentially use certain areas in 

their home ranges (Altmann and Altmann, 1973).The factors that influence how 

baboons use their home ranges include resource distribution (Hoffman and 

O’Riain, 2011), distance to sleeping sites (Anderson, 1998, 2000), and predation 

risk (Altmann, 1974; Cowlishaw, 1997). Additionally, variation in food and water 

availability influence the size of home ranges for baboons living in different 

environments, with those living in more arid or otherwise adverse habitats often 

having larger home ranges and travelling further distances (Cowlishaw, 1997) 

compared to those living in areas with steady or near-constant food supplies, 

such as near human settlements and agricultural areas (Hoffman and O’Riain, 

2012). 

While chacma baboons are not known to be territorial, with some groups sharing 

50% of their home range with other troops (Anderson, 1981), baboons residing 

in habitats that are either scarce in resources (i.e. Namib Desert, Namibia) or 

have high population densities (Okavango Delta, Botswana) defend their home 

ranges' edges from competing groups (Hamilton III, Buskirk and Buskirk, 1976). 

In addition, intergroup encounters tend to vary between toleration while feeding 

in somewhat close proximity to avoidance or antagonism (Cowlishaw, 1995; 

Kitchen, Cheney and Seyfarth, 2004). 

Chacma baboons are susceptible to predation from numerous species across 

their range. Predators such as the African rock python (Python seba) (Tomlin, 
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2016), crowned eagle (Stephanoaetus coronatus) (Mitani et al., 2001), and 

Verreaux's eagle (Aquila verreauxii) (Zinner and Peláez, 1999) primarily pose a 

threat to juveniles, and they are often too small to efficiently hunt adults. In 

contrast, large mammalian carnivores (such as felids) present the biggest threat 

to both juveniles and adults (Busse, 1980; Cowlishaw, 1994; Cheney et al., 2004; 

Jooste et al., 2013; Matsumoto-Oda, 2015). For example, lions (Panthera leo) 

have been found to opportunistically hunt all baboon age-sex classes, despite 

variability in body size and, thus, profitability (Busse, 1980). While spotted 

hyaenas (Crocuta crocuta) occasionally hunt solitary baboons, there is little 

evidence to suggest that they pose as a substantial threat (Cheney et al., 2004). 

This is most likely because hyenas will often forage alone and consequently 

have the potential to be mobbed by a baboon group. Likewise, as baboons sleep 

in either trees or cliffs at night, it is plausible that, without substantial climbing 

adaptations, hyenas may not have access to baboons, who often sleep in 

elevated and insulated places such as cliffs or trees. Similarly, African wild dogs 

have yet to be recorded hunting baboons (Cheney et al., 2004). 

Although baboons are considered to be a primary prey item of leopards, it 

should be noted that the size, aggressiveness, and the ability to mob may act to 

discourage leopards from hunting baboons to avoid incurring substantial risk of 

bodily harm or death (Hayward, Henschel, O’Brien, Hofmeyr, Balme and G. I H 

Kerley, 2006) . As such, baboons appear to be a less significant part of leopards’ 

overall dietary composition compared to prey such as ungulates (Hayward, 

Henschel, O’Brien, Hofmeyr, Balme and Kerley, 2006).  

Nevertheless, leopards still appear to be the primary predators of baboons in 

areas where the two species co-exist (Hayward, Henschel, O’Brien, Hofmeyr, 

Balme and Kerley, 2006), and they have been recorded as being twice as 

successful with hunting baboons compared to lions (Cowlishaw, 1994). Unlike 

lions, who often predate on baboons during the day (Busse, 1980; Cowlishaw, 

1994), leopards are known to hunt baboons throughout the diel cycle and are 

most successful at hunting baboons at dawn, dusk, and night, when the latter 

are in proximity to their sleeping sites (Busse, 1980; Hamilton, 1982; 

Cowlishaw, 1994; Cheney et al., 2004). Such a preference for nocturnal attacks 
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may also be due to leopards being vulnerable to retaliation during diurnal hours 

when baboons are active  (Busse, 1980; Cheney et al., 2004). In contrast, 

nocturnal attacks can be severely debilitating for baboons, as leopards may 

repeatedly attack the same sleeping site at night (Cheney et al., 2004), relying 

on surprise as well as the baboon’s limited night vision and hesitance to 

descend from their sleeping site (Busse, 1980; Cowlishaw, 1994). 

Although most leopard attacks having been recorded at night, several instances 

of diurnal attacks have been reported (Cowlishaw, 1994; Cheney et al., 2004; 

Jooste et al., 2013). For example, Jooste (et al., 2013) found that female leopards 

in the Waterberg Mountains, South Africa were more likely to predate baboons 

during the daylight hours (70%). In this instance, baboons were predated on 

more than usual compared to other sites, which suggests that some leopards in 

the Waterberg Mountains learn to hunt baboons at an early age (Jooste et al., 

2013). 

Unlike lions, leopards have been found to primarily hunt adult baboons 

(Cowlishaw, 1994). Cowlishaw (1994) concluded that leopards in Namibia were 

more likely to predate on adult male baboons than females due to the former's 

habit of sitting on the edge of the group (where they have fewer near 

neighbours) and leaving the troop upon adulthood. Despite this, several other 

studies have found that while adults are still preferred, differences in mortality 

between sex classes are either minimal or non-existent, and, therefore, most 

leopard populations may not necessarily have a direct preference for one sex 

over the other (Cheney et al., 2004; Jooste et al., 2013). As ambush predators, 

leopards primarily rely on coverage to pursue their prey (Sunquist and 

Sunquist 1989; Bailey 1993)  and, consequently, baboons' susceptibility to 

predation may vary depending on the habitat type (Boinski, Treves and 

Chapman, 2000). Since essential resources (i.e. food patches, water sources) 

often overlap with areas that are perceived to be riskier, baboons may decrease 

the amount of time spent in such areas (Altmann and Altmann, 1973; 

Cowlishaw, 1997). For example, baboons in Amboseli National Park (Kenya) 

were known to only utilise high-risk areas (where alarm calling is more 

frequent) when high quality resources are present and avoid such locations 
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otherwise (Altmann and Altmann, 1973). Additionally, Cowlishaw (1997) found 

that baboons in Namibia were also less likely to avoid areas of high risk and low 

visibility, and prefer to engage in social behaviours such as grooming in parts of 

their home ranges that allow for greater visibility. Baboons venturing into high-

risk areas may also minimise group spread as a means to decrease the distance 

between members and the group's periphery, thereby facilitating mobbing 

during an attack (Lima and Dill, 1990; Boinski, Treves and Chapman, 2000). 

Actual attempted predation events by leopards (or other terrestrial carnivores) 

on baboons have been recorded to be highly chaotic with baboons either 

retaliating through mobbing (if during the day), eliciting alarm calls, or running 

to the closest nearby refuge  (Busse, 1980; Cowlishaw, 1994; Cheney et al., 

2004). Baboons may then avoid areas where successful predation events have 

taken place for several days (Matsumoto-Oda, 2015).  The days following an 

attack have been shown to have both physiological and behavioural 

implications for surviving group members, with such effects being especially 

pronounced in the predated baboon's close relatives (Engh et al., 2006). For 

example, female chacma baboons who have recently lost a close companion or 

relative due to predation often exhibit elevated glucocorticoid levels, potentially 

experiencing social isolation, and, as a result, they attempt to establish new 

social bonds by seeking new grooming partners and increasing grooming rates 

(Engh et al., 2006). These results suggest that, like perceived predation risk, 

actual predation events also have physiological and behavioural consequences 

(Engh et al., 2006). 

 Leopards 

Ranging throughout Sub-Saharan Africa, the Middle East, and into East Asia, the 

leopard (Panthera pardus) is one of the most widespread large carnivore 

species (Uphyrkina et al., 2001; Jacobson et al., 2016; Stein et al., 2016) and the 

most widespread large felid on the African continent (J. C. Ray, Hunter and 

Zigouris, 2005) (Figure 2.2). Leopards have successfully adapted to an array of 

environments, such as deserts (Bothma, Van Rooyen and Le Riche, 1997; Perez, 

Geffen and Mokady, 2006), temperate forests  (Karanth and Sunquist, 2000; 

Wang and Macdonald, 2009), rainforests (Henschel, 2007, 2008; Simcharoen et 
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al., 2008) and woodland savannahs (Cavallo, 1991; Bailey, 1993), as well as the 

edges of urban areas (Athreya et al., 2013, 2016). The biogeographical success 

of leopards is likely due, in part, to their extremely catholic diet and elusive 

nature (Hayward, Henschel, O’Brien, Hofmeyr, Balme and G. I H Kerley, 2006). 

 

Figure 2.2 Range of Panthera pardus throughout Africa (Range layer derived from IUCN and 
implemented in ArcGIS). 

Leopards are sexually dimorphic, with males being considerably more robust 

than females (Bailey, 1993). One study on 30 captive adult leopards finds males 

to be up to 70% heavier and 10% longer than females, with older males, on 

average, weighing up to 63 kg, compared to 37 kg for females (Bailey, 1993). In 

addition, the average weight for leopards can vary significantly depending on 

habitat and prey availability; leopard populations that rely on smaller species 

tend to also be smaller in mass and have lower reproductive rates (Grobler and 

Wilson, 1972). 

Female leopards typically reach sexual maturity around the age of three (Bailey, 

1993; Owen, Niemann and Slotow, 2010). They are polyestrous and will cycle 

regularly until conception (Bailey, 1993; Owen, Niemann and Slotow, 2010). 
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During such periods; adult leopards will often pair up and copulate frequently 

for between 4 and 96 days (Bailey, 1993). Gestation length in leopards has been 

recorded to last from 95 to 106 days, with females typically giving birth to 1 to 

6 cubs (Owen, Niemann and Slotow, 2010; Stein and Hayssen, 2013). While 

females can reproduce throughout the year, most births that occur in South 

Africa take place during the rainy season (Bailey, 1993). As lactating and 

rearing cubs is considered to be energetically costly (Clutton-Brock, Albon and 

Guinness, 1989), such birthing peaks can be attributed to abundance of prey 

(Balme et al., 2013). In addition, higher vegetation coverage during such 

periods aids in hunting and provides sufficient coverage for cubs (Bailey, 1993; 

Balme et al., 2013). Cub mortality is relatively high, with Bailey (1993) 

reporting a loss of 41 to 50% of cubs within the first year alone (Bailey, 1993). 

Primary causes of cub mortality include infanticide and predation by other 

predators, (Bailey, 1993; Balme et al., 2013; Stein and Hayssen, 2013). Juvenile 

leopards typically stay with their mother for 12 to 18 months (Bailey, 1993). 

Following this, female offspring will often share a part of their home range with 

their mothers, whereas males will completely disperse (Stein and Hayssen, 

2013). 

While male leopards tend to have larger home ranges than females (Bailey, 

1993; Stein and Hayssen, 2013), space use patterns in leopards may also vary 

depending on habitat and prey abundance, with large home ranges usually 

having low prey availability and small home ranges having good hunting 

coverage and prey densities (Stein and Hayssen, 2013).  The home range for one 

male leopard in the arid Kalahari Desert has exceeded 2000 km² (Bothma and 

Le Riche, 1984), with other large home ranges in Africa recorded in Kaudam 

National Park, Namibia, (451 km² for males and 188 km²  for females) (Stander 

et al., 1997), as well as in the mountains of Cape Provence (South Africa) (388 

km² for males and females) (Norton and Lawson, 1985). Interestingly, leopards 

residing in arid North-central Namibia in Kaudam National Park have relatively 

small home ranges (108 km² for males and 50 km²   for females) (Stein et al., 

2011). The authors attributed the smaller home ranges to the abundance of 

prey such as greater kudu (Tragelaphus strepsiceros) and warthog 

(Phacochoerus aethiopicus) (Stein et al., 2011). The smallest home ranges for 
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leopards often occur in forested and rocky areas or where prey abundance is 

generally high (Stein and Hayssen, 2013). For example, home ranges are 

particularly small in prey-rich areas such as Kruger National Park (38 km² for 

males and 15 km²  for females) (Bailey, 1993), Lolldaiga Hills, Kenya (33 km² 

for males and 14 km²  for females) (Mizutani and Jewell, 1998) and Serengeti 

National Park, Tanzania, (15.9 km²) (Bertram, 1982). Leopard home range sizes 

may also fluctuate seasonally in response to the movement and behaviour of 

their main prey (Bailey, 1993). For example, Bailey observed that leopards in 

Kruger National Park were more likely to fluctuate the size of their home ranges 

in accordance to the seasonal movements of impala (Aepyceros melampus) 

(Bailey, 1993). 

Spatial use patterns in leopards may also vary by reproductive status, with 

adult females shifting their home range sizes in accordance to the age and 

mobility of their cubs (Steyn and Funston, 2009). Additionally, with the 

exclusion of exploratory movements, home range size can be influenced by age, 

with sub-adult males typically having home ranges that are similar in size to an 

adult female's (Bailey, 1993). Leopards have been shown to be selective 

regarding where they choose to establish home ranges, with prey abundance 

(Bailey, 1993), catchability (Balme, Hunter and Slotow, 2007), (Vanak et al., 

2013) and habitat quality (Fattebert et al., 2015) all being considered possible 

factors that influence where leopards choose to reside (Chapter 3). Balme (et 

al., 2007) found that leopards in Phinda Private Game Reserve (South Africa) 

were more likely to reside in areas where intermediate to high vegetation 

provided them with sufficient coverage to stalk prey.  

Although the activity patterns of leopards are generally regarded as crepuscular 

or nocturnal (Hayward, Henschel, O’Brien, Hofmeyr, Balme and G. I H Kerley, 

2006) (Chapter 4), several studies have shown that they, in fact, may be more 

fluid in their movement patterns than previously thought. For example, 

although leopards in Kruger National Park are most likely to exhibit nocturnal 

activity patterns, they have been observed to hunt more frequently in the early 

morning hours and occasionally during the day (Bailey, 1993). Similarly, diurnal 

activity schedules have been recorded in leopards in the Cederberg (Norton and 
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Henley 1987; but see  Martins and Harris 2013) and in Taï National Park (Ivory 

Coast) (Jenny and Zuberbühler, 2005). In contrast, leopards in more open or 

arid areas were found to exhibit nocturnal activity. Indeed, leopards residing in 

the Kalahari (Bothma and Le Riche, 1984), Namibia (Stander et al., 1997), and 

the Maasai steppe (Tanzania) (Kissui, 2008) were predominantly active during 

nocturnal or crepuscular hours. It is likely that the various activity patterns 

exhibited by leopards may be due to specific environmental conditions. For 

example, it has been hypothesised that leopards residing in forested 

environments may be diurnal as a means to hunt during the time periods in 

which their prey are most active (Jenny and Zuberbühler, 2005). Likewise, 

leopards in forested environments can be diurnally active due to the high 

amount of hunting coverage that is characteristic of such habitats (Jenny and 

Zuberbühler, 2005b; Hayward, Henschel, O’Brien, Hofmeyr, Balme and G. I H 

Kerley, 2006). The nocturnal activity patterns of leopards in more open 

environments may be due to either increased stalking coverage during such 

time periods or to avoid competition with dominant carnivores, such as lions 

(Hayward and Slotow, 2009). 

In Africa alone, leopards have been reported to consume up to 92 species, from 

small arthropods and rodents to large ungulates (Hayward, Henschel, O’Brien, 

Hofmeyr, Balme and G. I H Kerley, 2006; Balme, Hunter and Slotow, 2007). 

While the mean weight for prey items ranges between 10 and 40 kg, leopards 

generally prefer small- to medium-sized ungulates ranging between 23 and 25 

kg that primarily live in small herds and thick vegetation (Hayward, Henschel, 

O’Brien, Hofmeyr, Balme and G. I H Kerley, 2006). Leopards are solitary hunters, 

and ungulates within such a body mass range are relatively easy to catch and 

provide very little risk of injury (Hayward, Henschel, O’Brien, Hofmeyr, Balme 

and G. I H Kerley, 2006). 

Although leopards typically prefer to predate on medium-sized ungulates when 

available, they will often compensate in habitats where such species are scarce 

by predating on smaller prey (Hayward, Henschel, O’Brien, Hofmeyr, Balme and 

G. I H Kerley, 2006). This has been observed in other solitary felids, including 

pumas (Puma concolor) (Iriarte et al., 1990) and snow leopards (Panthera 
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uncia) (Schaller, Junrang and Mingjiang, 1988). For example, Schaller (et al., 

1988) found that snow leopards residing in China’s Qinghai province relied on 

marmots (Marmota sp.) for 45% of their food intake during summer months. 

This dietary switch to smaller prey has also been recorded by Ott (2004) who 

finds that rodents make up 9% of the diet for leopards residing in the 

Baviaanskloof Wilderness Area of South Africa where wild ungulates were rare 

yet livestock were common. Additionally, a scat analysis by Ray and Sunquist 

(2001) suggested that leopards living in the heavily forested Dzanga-Sangha 

Reserve (Central African Republic) had a mean prey weight of 7.3 kg and 

primarily relied on small duikers, rodents, monkeys and pangolins. In this 

instance, however, the authors argued that such selectivity may relate to the 

abundance of such fauna rather than the reduction of medium-sized mammals. 

Like most other large felids, leopards are ambush predators and primarily rely 

on stealth and stalking coverage to successfully subdue their prey (Bailey, 1993; 

Marcella, 2004; Stein and Hayssen, 2013). The distance over which leopards 

stalk a prey item may vary depending on habitat type and species. Bothma and 

Le Riche (1989) found that leopards in the arid and relatively open Kalahari 

Gemsbok National Park of South Africa stalked their prey for relatively long 

distances in order to maximise a successful kill, a practice that they refer to as  

“optimal positioning” (Bothma and Le Riche, 1989). In such instances, leopards 

did not only rely on vegetation cover, as they also preferred advantageous wind 

conditions and high vantage points in order to keep track of their prey's 

location from great distances (Bothma and Le Riche, 1989). The mean stalking 

distance for leopards engaging in optimal positioning was recorded as 1542.5 

metres (Bothma and Le Riche, 1989), and optimal positioning was more likely 

to occur when leopards hunted large and especially vigilant or dangerous prey, 

such as gemsbok (Oryx gazella) and ostrich (Struthio camelus) (Bothma and Le 

Riche, 1989). 

As ambush predators, leopards prefer to hunt in densely vegetated areas and, 

therefore, often tend to avoid open habitats where their ability to successfully 

stalk at close range is limited  (Hayward, Henschel, O’Brien, Hofmeyr, Balme 

and G. I H Kerley, 2006). Pitman and colleagues ( 2013) found that 96% of kills 
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taking the Waterberg Mountains occurred in areas with the greatest vegetation 

density, with the leopards avoiding all other habitats to hunt in. Similarly, Bailey 

(1993) shows that leopards in Kruger National Park were more likely to kill 

their prey in either dense riparian vegetation or medium to dense thorn patches 

rather than open areas. 

Despite preferring hunting in areas exhibiting high vegetation coverage, it 

should be noted that such regions may also provide a slight disadvantage for 

stalking leopards. As leopards primarily rely on sight (compared to olfactory 

cues) and stealth while pursuing prey, areas that exhibit incredibly high 

vegetation may obstruct vision while simultaneously alerting prey through 

creating noise (Balme, Hunter and Slotow, 2007). Balme and colleagues (2007) 

observed that leopards in the Phinda Game Reserve of South Africa are more 

likely to hunt in areas featuring intermediate vegetation coverage despite the 

fact that such habitats did not have the highest prey abundance in the study 

area. In this instance, the researchers suspect that leopards at Phinda Game 

Reserve had balanced reduced encounter rates with coverage that is sufficient 

for prey to be stalked undetected from visual obstructions (Balme, Hunter and 

Slotow, 2007). 

Although the “stalk-chase-kill” sequence seems to be a primary hunting method 

for leopards across their range, populations in more closed or heavily forested 

environments have been shown to prefer hunting prey through a second 

method, the “ambush-pounce” (Hart, Katembo and Punga, 1996; Jenny and 

Zuberbühler, 2005b; Balme, Hunter and Slotow, 2007). Hart (et al., 1996) found 

that leopards residing in the Ituri Forest (Democratic Republic of Congo) often 

concealed themselves in vegetation layers close to fruiting trees that attracted 

prey like monkeys, red river hogs (Potamochoerus porcus) and duikers and then 

ambushed once they come within a few metres. This method was also recorded 

among leopards residing in The Ivory Coast (Jenny and Zuberbühler, 2005) as 

well as those living in the dense woodlands found in Londolozi Private Game 

Reserve, South Africa (Hes, 1991). It is quite possible that the diurnal activity 

patterns found in leopards in forested environments may be partially explained 
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by hunting techniques (i.e. ambush-pounce) that require the prey to be active 

and mobile.  

Leopards kill their prey by biting the nape of their neck or by puncturing the 

brain case with their canines (Stein and Hayssen, 2013). In general, it seems 

that leopards are more likely to bite the nape of large prey, as a means to avoid 

horns, whereas puncturing the skull is a method often employed for killing 

smaller or hornless prey (Stein and Hayssen, 2013) (Figure 2.3). Following the 

kill, leopards will either eat the prey immediately or, most frequently, drag their 

kill into a densely covered area to feed undisturbed (Bailey, 1993). Although 

leopards will often drag their prey less than 100 metres away from the kill site 

(Bailey, 1993), distances may vary significantly depending on the environment. 

For example, females with cubs and male leopards in the arid Kalahari have 

reportedly dragged their prey an average of 742, and 410metres, respectively, 

in order to find sufficient coverage to feed (Bothma and Le Riche, 1984). In 

contrast, leopards in the rainforests of Sri Lanka only dragged their prey 11 to 

12 metres (Eisenberg and Lockhart, 1972).     

 

Figure 2.3 Posterior view of four puncture marks found on an adolescent bushpig 
(Potamocherus larvatus) killed by an adult male leopard in the western Soutpansberg 
Mountains, South Africa. Scale unavailable. 

Besides dragging their prey and feeding on the ground, leopards have been 

observed to hoist their prey onto trees as a means to cache their kills (Bailey, 
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1993; Stein, Bourquin and McNutt, 2015; Balme et al., 2017). It has been 

suggested that this behaviour allows them to spatially and temporally overlap 

with dominant carnivores that are less equipped at climbing, such as spotted 

hyenas, without risking kleptoparasitism (Balme et al., 2017). Leopards in 

Kruger National Park, where spotted hyena densities are high, have been 

recorded to hoist their kills (Bailey, 1993). In contrast, leopards found near 

agricultural areas in Namibia (where they are the largest predator in the area) 

only hoist their prey 12% of the time (Stein, Bourquin and McNutt, 2015). 

Leopards found in the Kalahari cache their prey 17% of the time, and primarily 

only after they are interrupted by a dominant carnivore (Bothma and Le Riche, 

1984).  Interestingly, Stein (et al., 2015) record that leopards residing in 

Botswana only hoisted their kills 38% of the time, despite the presence of 

dominant carnivores like spotted hyenas, wild dogs, and lions. As hoisting is 

costly in terms of energy, the researchers theorised that such a low proportion 

of hoisted kills reflects the fact that leopards in the study area only did so in 

areas of immediate risk and high visibility, rather than just the perceived risk 

from kleptoparasitism (Stein, Bourquin and McNutt, 2015). Alternatively, they 

have been recorded caching their prey in dolomite caves when such features 

are available, and they may have contributed to the accumulation of Plio-

Pleistocene faunal remains at hominin bearing sites, such as Sterkfontein (de 

Ruiter and Berger, 2000). 

Bailey (1993) recorded that leopards in Kruger National Park usually consumed 

carcasses in the same sequence, starting from the posterior sections of the 

carcass (i.e. hindquarters, groin, and abdomen) and then moving up to the 

forelimbs, shoulder, and skull. Although varying with prey size, leopards may 

spend up to several days feeding upon a carcass (averaging 2.4 days for 40 

kills). Female leopards with cubs and adult males in poor health are more likely 

to spend more time feeding on carcasses compared to healthy adult males and 

females without cubs (Bailey, 1993). Sickly leopards also consume more skin 

and bones compared to healthy individuals (Bailey, 1993). Time intervals 

between kills have been shown to vary between sex and habitat with males 

typically resuming hunting 7.2 days after the last kill and females spending 

approximately 7.5 days before hunting again (Bailey, 1993). In contrast, adult 
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leopards that stalk over long distances (such as in the Kalahari) tend to kill 

every three days; this is even more reduced in desert females with cubs, who, 

on average, hunt every 1.5 days (Bothma and Le Riche, 1984). 

Despite their adaptability and widespread range, leopards are classified as 

‘vulnerable’ by the IUCN red list and have disappeared from approximately 48% 

of their former range in Africa (Jacobson et al., 2016). Primary threats to 

leopard populations globally include habitat loss and fragmentation (Ray, 

Hunter and Zigouris, 2005; Swanepoel et al., 2013), as well as persecution by 

humans (Treves and Karanth, 2003; Inskip and Zimmermann, 2009; Balme, 

Slotow and Hunter, 2010). In addition, the decline of primary prey species by 

59% between 1970 and 2005 in 78 protected areas throughout Africa due to a 

commercial bush meat trade (Craigie et al., 2010) may contribute to the decline 

of leopard populations throughout the continent. As most leopard populations 

in Africa reside in unprotected areas, it has been suggested that increased 

human encroachment into leopard habitats may significantly influence the 

further decline of the species across its range (Thorn et al., 2013). 

 Study Site 

 Location 

This research project was conducted from data collected at the Lajuma 

Research Centre in the western Soutpansberg Mountains, Limpopo Province, 

South Africa (23°06'45.14"S 29°11'37.10"E) (Figure 2.4). Characterised by its 

high levels of biodiversity, Lajuma was given Natural Heritage Site status in 

1997. In 2009, the Soutpansberg Mountains were integrated into the United 

Nations Educational, Scientific and Cultural Organization’s (UNESCO) Vhembe 

Biosphere Reserve (VBR). At approximately 30,701 km², the VBR includes 

numerous nationally recognised areas of cultural and ecological significance, 

such as the Makgabeng Plateau, Mapungubwe National Park, and World 

heritage site, several natural reserves, the Blouberg Mountains, as well as the 

northern portion of Kruger National Park 

(http://www.unesco.org/new/en/natural-sciences/environment/ecological-

sciences/biosphere-reserves/africa/south-africa/vhembe/). In 2014, the 

western Soutpansberg was incorporated into the province-based Limpopo 
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Leopard Project (LLP), which sought to monitor and sustain leopard 

populations across Limpopo. 

(http://www.welgevonden.org/files/conservation/leopard_research/Leopard

%20Annual%20Report%20Welgevonden%202014.pdf).   

 

Figure 2.4 Image of South Africa (highlighted in dark grey) with the Soutpansberg Mountains 
highlighted in red. The arrow tip points to the study site at the western edge of the mountain 
range. 

 Topography and Geology 

Spanning approximately 210 km from east to west as well as 60 km (at its 

widest) to 15 km (at its most narrow) from north to south, the Soutpansberg 

Mountains have a total surface area of approximately 6,800 km² (Hahn, 2006). 

Altitude in the region varies significantly from 250 m above sea level to its 

highest point, Lajuma, at 1748 m above sea level (Mostert et al., 2008). 

Neighbouring the Soutpansberg Mountains to the west by 30 km are the 

Blouberg Mountains, which sport the highest elevation in the area at roughly 

2,051 metres above sea level (Constant, 2014). Surrounding both mountain 

ranges are undulating lowlands with  altitudes ranging from approximately 400 

to 900 metres above sea level (Kirchhof et al., 2010).   
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The initial strata (basaltic lava and sediments) that formed the Soutpansberg 

mountains were deposited roughly 1,800 million years ago as an east-west 

asymmetrical rift following a major collision between the northern Limpopo 

belt and southern Kaapvaal craton (Hahn, 2006). After a series of tectonic 

events during the Mesozoic, a successive ESE-WSW faulting ranging roughly 

560 km caused a depression that resulted in a north-oriented dip and a south-

oriented rise. As a result, the Soutpansberg Mountains have tall, vertical cliff 

lines facing the south and a 45° incline towards the north (Hahn, 2006). 

The Soutpansberg contains dolerite, quartz sandstone, basalt, quartzite,  

sandstone and other major rock types (Hahn, 2006). Deriving from primarily 

weathered sandstone and quartzite, much of the soil is regarded as nutrient-

poor, sandy and highly acidic (Hahn, 2006). Meanwhile, weathered basalt and 

dolerite comprises much of the nutrient-rich clay soils found in the area, and 

minerals found in Soutpansberg consist of quartz, salt, copper, tin and gold 

(Hahn, 2006). 

 Climate 

The Soutpansberg Mountains have variable levels of precipitation and 

temperature throughout the range as a result of both topography and 

vegetation. However, in general, the climatic conditions exhibited are 

considered to be temperate/mesothermal, and with both cool/dry winters (May 

to August) and relatively wet/hot summers (December to February) (Kabanda, 

2003).  Temperatures in the Soutpansberg Mountains range from 16-40 °C in 

summer and 12-22 °C in winter (Figure 2.5) (Kabanda, 2003). 

Precipitation in the Soutpansberg Mountains varies significantly, with the 

western portion receiving up to 340 mm of rain per year compared to the 

central region, which can receive up to 2,000 mm per year (Kabanda, 2003). 

Likewise, there is considerable variability found between the more arid 

northern slopes of the mountains, which receives approximately 400 mm of 

rain per year, and the south-central, which receive up to 1,800 mm of rainfall 

per year (Schulze et al., 2008). Overall, the precipitation patterns throughout 

the mountain range are considered to be orographic, and result from moisture-

ridden air south-eastern winds from the Indian Ocean that are eventually 
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wedged in the southern portion of the Soutpansberg as mist and rain (Hahn, 

2006; Kirchhof et al., 2010). As a result, the southern section of the mountains is 

considerably moister compared to the north.  

 

Figure 2.5 Combined monthly average temperature (blue column) and averaged sum of total 
rainfall (red kine) from 2012-2017 for the western Soutpansberg Mountains. Derived from an 

on-site weather station. 

Winds in the Soutpansberg Mountains generally blow from east to west (Hahn, 

2006). Convection currents are commonplace due to the difference in 

temperatures between the northern and southern portion of the mountains. 

However, as the severity of such currents is primarily due to the transition of 

the sun, such effects are generally considered to be seasonal (Hahn, 2006). 

Katabatic winds in the Soutpansberg often lead to a substantial drop in ambient 

temperatures; this is especially true after sunset during winter (Hahn, 2006), 

when narrow valleys throughout the range start to rapidly cool.  

 Flora 

As a result of its complex topography, the Soutpansberg Mountains contain a 

diverse range of vegetation communities, and at least 2693 plant species, 

including 593 trees (Mucina and Rutherford, 2006). Due to its accessibility 

online and its compatibility with ArcGIS, vegetation communities classified by 

Mucina and Rutherford (2006) and adapted into the National Vegetation Map 

Project (http://bgis.sanbi.org/vegmap/project.asp) were utilised for this 
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research. Habitats defined by Mucina and Rutherford (2006) that intersect with 

both the study site and the focal animals' home ranges include (but also 

Appendix 1; Figure S1.1): 

1. Mountain Bushveld:  Distributed throughout much of the low-lying and 

elevated areas within the mountain range, this vegetation community 

consists of a mixture between mosaic open and closed woodlands, 

bushveld environments, and moist thickets that vary significantly with 

topography.   

2. Soutpansberg Mistbelt Forest: Primarily located within gorges and at the 

base of vertical cliffs on the southern slopes of the mountain range, this 

habitat type primarily comprises of tree species including Podocarpus 

latifolius, Xymalos monospora, and Podocarpus falcatus (Mucina and 

Rutherford, 2006). 

3. Soutpansberg Summit Sourveld: restricted to altitudes approximately 

1200 m above sea level, this vegetation type is characterised by east-

west facing slopes and is abundant with rocky outcrops, and medium-

sized shrubs like Coleochloa setifera and Maytenus acuminate (Mucina 

and Rutherford, 2006). 

4. Makhado Sweet Bushveld: Primarily occurring on the low-lying plains 

south of the Soutpansberg Mountains, this vegetation type primarily 

consists of a mixed scrubby woodland and shrubby bushveld 

environment. Similarly, this vegetation type is characterised by the high 

presence of small-scale agricultural activities, cattle grazing and private 

game and hunting farms (Mucina and Rutherford, 2006). 

5. Musina Mopane Bushveld: Distributed north of the Soutpansberg 

Mountains and south of the Limpopo River, this area has a rolling terrain 

and consists of mixed open- and closed-shrublands and open savanna. 

Plant communities found in the shrublands include Colophospermum 

mopane and Terminalia prunioides, whereas Terminalia sericea, Grewia 

flava, and Colophospermum mopane dominate the savanna habitats 

(Mucina and Rutherford, 2006). 
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 Fauna 

The Soutpansberg Mountains are considered to be a ‘biodiversity hotspot’ and 

contain roughly 59.9% of South Africa’s mammals, (Gaigher and Stuart, 2003), 

76% of the country's non-oceanic birds  (Berger et al., 2003) and 36% reptile 

species (Berger et al., 2003). Similarly, Lake Fundudzi in the northwest section 

of the mountains is home to approximately 28% of all of South Africa’s 

freshwater fish species (Berger et al., 2003) 

Invertebrates in Soutpansberg include up to 309 species of butterfly, 52 species 

of dragonflies and a diverse range of ant species (Munyai et al., 2015). Similarly, 

the Soutpansberg Mountains are considered to be an arachnid hotspot, with 

over 23 species of scorpions (Foord, Gelebe and Prendini, 2015) as well as 337 

spider species in the 50 km² surrounding Lajuma alone (compared to 139 

species found in Kruger) (Foord et al., 2008) 

There are twenty-five species of non-domesticated ungulates present in the 

Soutpansberg, with relatively common species like bushbuck (Tragelaphus 

scriptus), bushpig (Potamocherus larvatus), warthog (Phacochoerus aethiopicus), 

red duiker (Cephalopus natalensis), mountain reedbuck (Redunca fulvorufula), 

common duiker (Silvicapra grimmia), eland (Taurotragus oryx), and 

klipspringer (Oreotragus oreotragus) (Chase Grey, 2011). There are several 

species that are now restricted to either private game farms or protected areas 

after being locally exterminated (Chase Grey, 2011). These include sable 

antelope (Hippotragus niger), white rhinoceros, plains zebra (Equus quagga), 

buffalo (Syncerus caffer) and nylala (Tragelaphus angasii). As a result of the 

localised extinction of these ungulates and other large herbivores such as 

elephants (Loxodonta africana) and black rhinoceros (Dicero bicornis), much of 

the grasslands surrounding Soutpansberg have been replaced by secondary 

bush encroachments (Hahn, 2006).  

Despite being surrounded by agricultural areas and human settlements, the 

Soutpansberg Mountains are home to an assortment of carnivore taxa. 

Mesocarnivores present include aardwolf (Proteles cristatus), common genet 

(Genetta genetta), the African civet (Civettictis civetta), the African clawless 

otter (Aonyx capensis), caracal (Felis caracal), honey badger (Mellivora 
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capensis), serval (Leptailurus serval) and four species of mongoose (Atilax 

paludinosus, Helogale parvula, Galerella sanguinea and Mungos mungo) (Chase 

Grey, 2011). As cheetahs (Acinonyx jubatus) and lions (Panthera leo) have been 

eradicated from the mountains, although the former are sometimes seen, the 

only two large carnivores resident in the mountains are brown hyaenas 

(Hyaena brunnea) and African leopards. Although it seems likely that a secretive 

nature combined with a generalist diet allowed for the persistence of these two 

species throughout the mountain range, both suffer from local persecution as a 

result of being perceived as threatening to both livestock and private game 

stock (Chase Grey, 2011; Williams, 2017). Finally, both African wild dogs 

(Lycaon pictus) and spotted hyaenas (Crocuta crocuta) are occasionally 

captured on Primate Predator Project (PPP), yet it is not known how common 

these animals are in the region (Chase Grey, 2011).  

The Soutpansberg Mountains contain all five non-human primate species found 

in South Africa, with chacma baboons , samango monkeys (Cercopithecus 

albogularis schwarzi), vervet monkeys( Chlorocebus pygerythrus), thick tailed 

bush babies (Otolemur crassicaudatus) and lesser tailed bush babies (Galago 

moholi) (Chase Grey, 2011). Known primate predators in the Soutpansberg are 

the rock python (Python sebae natalensis) (Willems, 2007; Tomlin, 2016), 

leopards and several species of eagle (crowned and Verreaux’s) (Willems, 2007; 

Coleman, 2013; Tomlin, 2016).  

 Human Communities and Land Use 

The Soutpansberg Mountains, as well as the surrounding low-lying areas, are 

located in the Makhado Local Municipality (MLM). At roughly 8,300 km2, the 

MLM contains five large towns (Makhado, Vleifontein, Vuwani, Waterval and 

Dzanani) and approximately 279 rural villages (Tshilidzi Madzivhandila, 

Sibanda and Gwelo, 2016). The closest community to the study site is Buisdorp 

(Buysdorp), a village located on the south-western periphery of the mountain 

range with a total population, as of 2011, of 629 individuals (Statistics South 

Africa, 2011). 14 km away from Buisdorp is the mining town of Vivo, located in 

the Blouberg Local Municipality, which lies directly west of the Soutpansberg 

Mountains (Statistics South Africa, 2011). 
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A 2011 demographic census states that MLM has a population of approximately 

516,036 individuals (Statistics South Africa, 2011) that has been steadily rising 

since 1996. It is expected that, by 2020, the population in the MLM will increase 

to an estimated 561,343 individuals (Statistics South Africa, 2011). 97.3% of 

people residing in the MLM identify as black African, whereas the remainder of 

the population in the municipality identify as being Indian/Asian (0.4%), 

coloured (0.2%) and White (2.0%) (Statistics South Africa, 2011). Tshivenda is 

the most common language spoken in the municipality (67.3%), followed by 

Xitsonga (21.9%), Sepedi (2.6%), Afrikaans (2.2%) and English (1.2%) 

(Statistics South Africa, 2011). 

The Western Soutpansberg Mountains is comprised of numerous property and 

land use types, such as community and private cattle farms, agricultural areas, 

recreational sites, game ranches, ecotourism zones and conservation preserves  

(Chase Grey, 2011). While the vast majority of the land in the western 

Soutpansberg is owned by Afrikaners who utilise properties for cattle ranching 

and recreational use, the local Venda and Buys communities primarily engage in 

commercial and subsistence livestock (Chase Grey, 2011). Estates dedicated 

ecotourism or game hunting are owned and managed by British South Africans 

(Chase Grey, 2011). Due to a combination of legislative changes and decreased 

profitability, many of the cattle farms found within and around the western 

Soutpansberg have been converted to game ranches (Chase Grey, 2011). 

 Focal Populations 

  Leopards in Western Soutpansberg 

Leopards have been formally monitored in the western Soutpansberg since 

2006, with a permanent array of camera traps for monitoring large predators 

and other local wildlife established in 2011 as part of the Primate & Predator 

Project (PPP). The project's primary objectives encompass assessing the 

behavioural ecology of primate and large predator species within the area 

(including predator-prey interactions), determining the viability of the western 

Soutpansberg Mountains as a location for conservation and attaining a greater 

understanding of local human-wildlife interactions. As the largest carnivore in 

the area, leopards have been closely monitored by PPP staff and researchers 
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through scat analysis, camera trapping and telemetry data (through GPS 

collars) as a means to assess their diet, activity patterns, distribution and 

population dynamics throughout the mountain range (Chase Grey, 2011; Grey, 

Kent and Hill, 2013; Fitzgerald, 2015; Chase Grey, Bell and Hill, 2017; Williams 

et al., 2017).  

A previous analysis with the utilisation of camera traps determined that 

leopards in western Soutpansberg are active throughout the 24-hour cycle, and, 

within this time span, they are most active during the night and least active at 

midday (L. Fitzgerald, 2015). Fitzgerald (2015) suggested that these activity 

patterns reflect optimal time periods for leopards in the western Soutpansberg 

to hunt, given that their primary prey are also active at such times.  

There have been several studies of the feeding ecology of leopards in the 

western Soutpansberg (Power, 2002; Schwarz and Fischer, 2006; Fitzgerald, 

2015; Chase Grey, Bell and Hill, 2017). While the total number of species being 

consumed has differed between analyses (13 species in Schwarz and Fischer 

2006; 22 species in Fitzgerald 2015; 10 species in Chase Grey et al., 2017 and 28 

species in Williams et al., 2018), all studies complement a previous meta-

analysis conducted by Hayward (et al., 2006), suggesting that leopards have a 

dietary preference for small- to medium-sized prey.  

Species like the bushbuck, common duiker, members of Hyracoidea (hyrax) and 

vervet monkey seem to be of relative importance as the preferred prey of 

leopards in the western Soutpansberg Mountains (Table 2.1) (Chase Grey, Bell 

and Hill, 2017).  
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Table 2.1 Results from the most recent dietary analysis (through relative frequency of 
occurrence and relative biomass consumed) for leopards in the Western Soutpansberg recorded 
by (Chase Grey, Bell and Hill, 2017). 

Species Relative frequency of 

Occurrence (%) 

Relative biomass 

consumed (%) 

Bushbuck (Tragelaphus 

scriptus) 

42.9 49.6 

Hyrax (Procavia capensis) 26.0 21.3 

Vervet Monkey (Chlorocebus 

pygerythrus) 

10.4 8.63 

Porcupine (Hystrix cristata) 5.2 5.12 

Common Duiker (Sylvicapra 

grimmia) 

5.2 5.49 

Chacma Baboon (Papio ursinus) 4.2 4.14 

Red Duiker (Cephalopus 

natalensis) 

3.1 2.91 

Mountain Reedbuck (Redunca 

fulvorufula) 

1 1.16 

Kudu calf (Tragelaphus 

strepsiceros) 

1 0.86 

Thick-tailed Bushbaby 

(Otolemur crassicaudatus) 

1 0.79 

 

While an initial analysis concluded that the Soutpansberg Mountains had the 

highest population density of leopards outside of any protected area in South 

Africa, at approximately 10.7 adult individuals per 100 km² (Chase Grey, Kent 

and Hill, 2013), recent findings suggest that the population has crashed 

dramatically to 6.55 individuals in 2012 and 3.65 individuals per km² as of 

2016 (Williams et al., 2017). At that rate of decline it was extrapolated that the 
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leopard population within the western Soutpansberg Mountains would become 

extinct by 2020 (Williams et al., 2017). It was suspected that such a rapid 

decline is most likely due to a combination of factors, such as isolation from 

immigration due to the confined boundaries of suitable leopard habitats being 

surrounded by anthropogenic habitats  (Chapter 3), as well as direct human 

persecution from snaring, poisoning and shooting (Williams et al., 2017).   

 Baboons in Western Soutpansberg 

Baboons in the western Soutpansberg began to be monitored in 2002, when 

Tom Larimer spent two years (2002-2004) habituating one group (hereon 

known as ‘House Troop’) residing in proximity to the Lajuma property. 

Following this, House Troop were studied intermittently by both students, 

primate research coordinators and assistants (De Raad, 2012; Howlett et al., 

2014; Tomlin, 2016). After a period of absence from human observers, House 

Troop were re-habituated in 2011. Continuous monitoring and data collection 

for House Troop through focal and scan sampling began in early 2014 with the 

aid of a primate research coordinator and volunteers. Female baboons (N= 3) 

were equipped with GPS collars between 2013 and 2015. In 2011, the troop's 

size ranged from approximately 70 to 80 individuals (Tomlin, 2016), but it is 

believed that this number has increased to around 90 since (Allan personal 

communication). 

Baboons in the western Soutpansberg primarily feed on fruits, seeds, leaves and 

grasses from over 40 species of plants (Appendix 1; Table S1.1) but also eat a 

variety of animal material ranging from insects and eggs to younger and smaller 

antelope (bushbuck, red duiker and common duiker), crested guinea fowl 

(Guttera pucherani) and lagomorphs (Tomlin, 2016). Furthermore, baboons in 

western Soutpansberg have predated upon vervet monkeys (Willems, 2007). 

Baboons in Soutpansberg tend to sleep on vertical south-oriented sleeping cliffs 

at night rather than trees, a practice that may provide protection against both the 

elements and leopards. So far, researchers have recorded that 17 sleeping sites 

utilised by the habituated troop, with the majority of sites being within their core 

home range. Seasonality may act as a limiting factor for baboons in the western 
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Soutpansberg, as they have altered their daily travel distances in both winter and 

summer, possibly as a response to food availability (De Raad, 2012). 

 Predation on Baboons 

Leopards are the only predator throughout the study site that poses a threat to 

adult baboons, yet several raptor species, as well as African rock pythons, have 

the potential to not only elicit alarm calls, but also predate on young individuals. 

Since being habituated, several instances of predation and attempted predation 

events have been witnessed by previous researchers and assistants. For 

example, Tomlin (2016) reports the death of a juvenile after sustaining injuries 

from a python attack and witnesses an infant succumb to a failed raptor attack 

within the same year.   

Previous scat analyses have shown that baboons in the western Soutpansberg 

are occasionally predated on by leopards with a relative frequency of 

occurrence found in scats ranging from 4.2% (Chase Grey, Bell and Hill, 2017), 

6.5% (Fitzgerald, 2015) and 6.7% (Schwarz and Fischer, 2006). Since being 

habituated there have also been several interactions between leopards and 

baboons recorded by PPP researchers and assistants. For example, in 2014, a 

primate research coordinator witnessed a failed predation event that eventually 

led to the death of an adult male (Howlett personal communication). In this 

instance, the male was mortally wounded in a highly vegetated area near the 

bottom of a southern oriented facing cliff at around 14:00 LMT. Following the 

attack, the leopard (possibly an adult male) quickly dispersed after being 

mobbed by the remaining troop members. 

Similarly, Allan (personal communication) witnessed several diurnal encounters 

between the habituated group and unknown leopards (Allan, personal 

communication). All of these instances occurred in grassy areas, within close 

proximity to a sleeping site, and resulted in the baboons loudly barking or 

‘wahooing’ while retreating to the safety of a nearby cliff. While not a direct 

encounter, Tomlin (2016) reported three adult females that went missing at 

night on or near sleeping sites. These instances may have been due to successful 

predation events. 
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Radio-collared leopards have proximity loggers attached that interact with 

those of proximity-collared baboons in both baboon groups under a fixed 

distance, so it is possible to record encounters without the presence of a human 

observer. Proximity loggers are designed to record when two (proximity) 

tagged individuals come into a certain distance from one another.  In one 

instance, a male leopard appeared to have stalked the habituated baboon group 

around mid-afternoon and within close proximity to a sleeping site (Figure 2.6). 

However, the data suggest that the baboon group spotted the leopard, as the 

former quickly dispersed down into the safety of their sleeping cliff, at which 

point, the leopard appeared to have moved on.  
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Figure 2.6 Encounter between a male leopard and the baboon troop recorded by GPS collars.  

Two predation events occurred on House Troop in 2017. In one instance, a 

proximity-collared adult female was likely attacked at around 8:00 am on 13 

July 2017 near the same sleeping site where the proximity event occurred 

(Sleeping site 5). The leopard was subsequently scared off, but two days later, a 

known adult male leopard came back to retrieve the remains in the early 

morning (see figure 2.7).  
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Figure 2.7 Camera trap image of adult female baboon being dragged away by an adult male 
leopard two days after the actual kill event. 

Later that year (2 November 2017), an adult male baboon was attacked 

sometime in the late morning and found dead with puncture marks near his 

spine and slashes over his body. It was assumed that the leopard responsible 

fled after being chased away.  

 Human Communities and Focal Species   

Both focal species (leopards and baboons) are mostly viewed negatively by 

ranchers and farmers (Chase Grey, 2011; Chase Grey, Bell and Hill, 2017; Allan 

personal communication). Local livestock ranchers feel threatened by the 

presence of leopards due to the latter's ability to predate on cattle, sheep and 

goats. While leopards in the Soutpansberg have occasionally hunted livestock 

(Williams personal communication), three previous dietary analyses conducted 

in the western Soutpansperg have found no evidence of livestock in faecal 

remains (Schwarz and Fischer, 2006; Fitzgerald, 2015; Chase Grey, Bell and Hill, 

2017). Additionally, Chase Grey (et al., 2017) indicated that leopards residing 

on or near properties containing livestock or valuable game such as nyala, sable 

antelope, and blue wildebeest (Connochaetes taurinus) prefer to consume 

preferred species, such as bushbuck and common duiker, with no evidence of 

valuable game or livestock found in scat. Therefore, it is likely that the perceived 

threat from leopards by livestock owners is greater than it actually is (Chase 

Grey, Bell and Hill, 2017). Despite this, the attitudes held by many livestock 
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ranchers escalate into retaliatory actions as exemplified by the death of an adult 

male killed (via poisoned bait, Table 2.6) by a landowner who suspected that 

the cat was predating on his cattle.  

However, many local game ranchers tolerate the presence of leopards on their 

property despite the fact they occasionally predate on game species such as 

impala, hartebeest (Alcelaphus buselaphus), and blue wildebeest (Chase Grey, 

2011; Chase Grey, Bell and Hill, 2017). It is likely that this tolerance stems from 

how leopards may provide monetary gain through either trophy hunting or 

ecotourism (Chase Grey, Bell and Hill, 2017). 

Baboons are often viewed as pests by farmers, as they frequently raid 

commercial plant crops (Hill, 1997, 2000; Findlay, 2016). In the context of the 

study site, baboons often raid a macadamia farm located within their home 

range (Allan, personal communication). Due to this, local workers attempt to 

scare the baboons away, sometimes with little success. As a result, much of the 

alarm call and vigilance data were collected from within the vicinity of the farm. 

 Data Collection 

 Overview of Fieldwork and Data Collection 

This thesis required the analysis of multiple datasets that were collected at 

different points in time. Given the subject matter of my research, extensive 

fieldwork was not required and my time spent at the field site lasted only from 

October to December 2015. Although brief, this time period was vital to my 

research as it allowed me to attain a crucial understanding of the diverse array 

of environments found within the western Soutpansberg Mountains and also 

experience first hand the daily behaviour and travel routes of the habituated 

focal baboon group. The fieldwork also provided my with direct experience of 

the other data collection methods on site (e.g. phenology). Due to my limited 

time in the western Soutpansberg Mountains, specific data collected by myself 

was limited to leopard kill sites that were used in Chapter 3.  

Although full descriptions of the datasets utilised in this study are listed in the 

subsections below or in their relevant chapter, please see Table 2.2 below for a 

brief list of datasets used in this study.  
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  Table 2.2 Summary of Primary Datasets Used (PPP = Primate Predator Project). 

Dataset Time 
Frame 

Originally Collected By Chapter(s
)  

Leopard GPS Data 2012-
2015 

PPP  3, 4, 5 

Baboon GPS Data 2014-
2017 

PPP 5 

Leopard Accelerometer 
Data 

2012-
2015 

PPP 4 

Baboon Accelerometer 
Data 

2013-
2015 

PPP 6 

Leopard Kill Site Data 2012-
2015 
(collected 
in 2015) 

Myself 3 

Vegetation/Phenologica
l Sampling 

2014-
2017 

PPP 6 

Food Availability 2014-
2017 

Derives from 
Vegetation/Phenologica
l Sampling but Dataset 
created by myself.  

6 

Meteorological Data  Varies by 
Chapter 

Lajuma Research Centre 4,6 

Temporal Data Varies by 
Chapter 

NASA 4,6 

NDVI Varies by 
Chapter 

Landsat 3,4 

Topographic Data Not 
Applicabl
e  

SRTM (Slope and 
Ruggedness Created by 
me) 

3,4 

Waterway Data Not 
Applicabl
e 

Created by me with the 
aid of topographic data.  

3,4,5 

Agricultural Areas Not 
Applicabl
e  

SANBI 3,4 

Buildings Not 
Applicabl
e 

Created by me with the 
aid of Google Maps 

4 

 

 Baboon Behavioural Data 

The behavioural data used for analysis in chapter 6 were collected on ‘House 

Troop’ by PPP staff members and assistants between 2014 and 2017. The data 

collected include 30 minute behavioural scans on individual baboons from the 

time periods during which they depart from and arrive to sleeping sites 
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throughout the day (Table 2.3 and Table 2.4). GPS coordinates were taken 

before the beginning of each behavioural scan with the aid of a Garmin GPS 

device. Activities recorded include events such as feeding (as well as food type 

being consumed), vigilance, height from the ground (to the nearest metre), 

nearest neighbours, movement and social behaviours (grooming, aggression, 

mating, etc). The age, sex and identity of the individual were also recorded if 

possible. Environmental data recorded at the time of the scan include time of 

day, categorical habitat types and weather conditions (cloud coverage, 
precipitation and wind conditions). 

 Table 2.3 Primary activities recorded by PPP staff through baboon scan samples. 

Primary 
Activity 

Qualifier 
(Subtype) 

Description 

Resting 
 
 

Resting sitting 
 
 

Individual is stationary while sitting without 
performing any other activity. 
 

Resting standing 
 

Individual is stationary while standing without 
performing any other activity. 
 

Resting lying 
 

Lying down. 
 

Resting huddled 
 

Huddling with other individuals. 
 

Self-grooming Grooming itself, also referred to as 
autogrooming. 

Feeding Feeding 

 

Searching for, processing, or ingesting food. 
 

Foraging 

 

Actively searching for food that is not obvious 
without ingesting anything. 
 

Feeding (cheek 
pouch) 

Feeding from food items stored in cheek 
pouches. 

Moving Walking 

 

Always 3 limbs touching the ground. Also 
applies to slow climbing. 
 

Running Fewer than 3 limbs always touching the ground. 
Applies to fast climbing. 

Socialising Grooming given 

 

The individual is grooming another individual. 
 

Grooming 

received 

 

The individual is being groomed by another 
individual. 
 

Play 

 

Individual involved in social play. 
 

Aggression 

 

Individual involved in an aggressive display as 
the aggressor. 
 

Submission Submissive in an aggressive display. 
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Mating Self-explanatory. 
Other Other Behaviour not mentioned. 
Drinking Drinking Self-explanatory. 
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Table 2.4 Additional behavioural information recorded during scans. 

Additional 

Information 

Description  

Nearest Neighbour  Number of individuals within 5m of the focal individual (does 

not include dependent infants). 

Height from 

ground 

To the nearest meter 

Vigilance Subtypes Not vigilant. 

Looking upwards. 

Looking downwards. 

Scanning in a horizontal plane. 

Looking at the observer. 

Social vigilance, looking at another monkey.  

Other (e.g. looking at a different species). 

Unknown. 

 

While the data were primarily recorded at 30 minute intervals, primate 

researchers and assistants also noted spontaneous ‘Ad libitum’ events between 

scans (Table 2.5). Notable ‘Ad lib’ events include predation events, interspecific 

interactions (same site feeding or occasional predation by the baboons), 

intraspecific encounters between other troops and alarm calling. The locations 

of all ‘Ad lib’ events were recorded with a Garmin GPS device. 
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Table 2.5 Ad-libitum behaviour recorded between scans. 

Ad-libitum categories Qualifier (Subtype) Description 
Vocalisation Alarm call 

 

Self-explanatory. 

 

Wahoo 

 

Call used in male 

dominance displays. 

 

Lost calls 

 

Made when group is 

separated. 

 

Other Any other relevant 
vocalisation. 

Encounter Inter-specific encounter 

 

The presence of members 

of another species within 

10m of an individual from 

the troop. 

 

Within-specific encounter Interactions with another 

group. Record all details in 

the comments section.  

 

Behaviour Aggression 

 

Aggressive encounters 

involving more than one 

individual. 

 

Mating 

 

Mating (regardless of 

whether it is in a scan or 

not). 

 

Other Any other interesting 
behaviour. 

Predation - Details of any predation 
event. 

 

 GPS Data Collection: Leopards 

Between 2012 and 2014, eight leopards (six males and two females) were 

collared within the study site. After being captured by foot hold traps, leopards 

were sedated with either Zoletil or a Zoletil/Medetomidine combination by a 
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South African registered veterinarian. Collaring was approved by the 

Department of Anthropology ethics committee and the Animal Welfare Ethical 

Review Board at Durham University. All leopards were fitted with Vectronic 

GPS-PLUS collars (VECTRONIC, Aerospace, Berlin, Germany) that were 

programmed to take GPS fixes at 3 hours and 20 minute intervals and were 

designed to fall off 455 days after the collars were put on. Leopard telemetry 

data were downloaded regularly through an Ultra High Frequency (UHF) 

terminal. All leopard collars were designed to take 20 minute GPS fixes when in 

proximity to baboon proximity collars, although the data from these fixes were 

not utilised in this study. 

 

Figure 2.8 Adult male leopard wearing a GPS collar. 

Unfortunately, only two collared leopards (now monitored through camera 

traps) remained as of 2017, as the other six either died due to anthropogenic 

causes or disappeared entirely. While the majority (N=7) of the collared 

leopards primarily resided on the highly vegetated, southern slope of the 

mountain range, one male (‘Drogo’) expanded his home range to the less 

productive and arid northern side. Home range sizes varied significantly with 

the largest belonging to the male residing in the far northern part of the 
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mountain and the smallest belonging to a female living at mountain range's 

southern-most edge (Chapter 3).  
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Table 2.6 Collared leopard information. 

Collar 

ID 

Name Date 

Collared 

Sex Status Notes 

11534 Michel 2012-06-

08 

 

M Deceased Killed by a snare. Photographs 

with snare taken on 07/08/13. 

10001 Drogo 2012-06-

15 

 

M Deceased Killed by local rancher. Probable 

cause of death is poisoned bait. 

Last Photograph taken on 

16/03/13. 

10012 CC 2012-07-

21 

 

F Deceased Killed by a snare in October 2012. 

Gave birth to BB. 

10013 Anni 2013-02-

12 

 

M Unknown Unknown but suspected dead. Last 

photo taken on 16/03/2013. 

10011 BB 2013-06-

12 

 

M Alive Alive but not collared. Mother is 

CC. 

10012 Jenny 2013-09-

19 

 

F Alive Alive but not collared.  

12846 O’Malley 2014-04-

18 

 

M Unknown Unknown but suspected dead. Last 

photograph taken on 24/06/2014. 

10009 Pimms 2014-07-

17 

 

M Deceased Killed by a snare. Most likely died 

on 16/06/15.  
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 GPS Data Collection: Baboons 

Baboons from two different groups, the habituated ‘House Troop’ and an 

unhabituated troop, were collared between the years 2013 and 2015 with 

Vectronic GPS-PLUS collars (VECTRONIC, Aerospace, Berlin, Germany). Since 

male baboons would leave their natal group upon reaching adulthood, only 

adult females were collared. This practice was particularly useful for collecting 

data on ‘House Troop,’ as it allowed both for behavioural data to be collected 

side-by-side with GPS data and for monitoring to occur on days when PPP staff 

members or assistants were absent. To conserve battery life, collars were 

primarily programmed to take GPS fixes during the time periods when the 

baboons were active. As a result, GPS fixes were taken every hour between 

04:00 and 18:00 SAST (South African Standard Time) with the exception of one 

nocturnal fix at 22:00 (in the event that their sleeping site shifted in the middle 

of the night). Baboon telemetry data were downloaded regularly through an 

Ultra High Frequency (UHF) terminal. While several individuals were collared 

with proximity tags that interacted with both leopard and baboon GPS collars, 

such data were not utilised for any analyses in this thesis. The collaring of 

baboons was approved by The Department of Anthropology Ethics  committee 

and the Animal Welfare Ethical Review Board at Durham University.  

Figure 2.9 Adult female baboon wearing a GPS collar. 
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Table 2.7 GPS collared baboon information. 

Collar 

ID 

Name Date 

Collared 

Sex Group Status Notes 

11941 

 

Lobelia 09/03/2013 F Habituated 

Group (House 

Troop) 

Alive - 

11940 Unhab 06/11/2015 F Unhabituated 

Group 

Alive - 

11942 Melissa 07/27/2014 F Habituated 

Group (House 

Troop) 

Alive Was 

pregnant.    

11938 Melissa 

(collared 

twice) 

06/04/2015 F Habituated 

Group (House 

Troop) 

Alive Gave birth to 

infant in 

March 2016 

 

 Accelerometer Data Collection 

Incorporated into both leopard and baboon GPS collars were dual-axis activity 

sensors that continuously recorded acceleration on two different axes, X and Y  

(Berger, Dettki and Urbano, 2014). The Y-axis represented sideward and rotary 

moments, whereas the X-axis recorded forward and backward movements. 

Activity values were continuously taken every four seconds, averaged and then 

stored within a range from 0 (no activity) to 255 (high activity). As 

accelerometers were attached to GPS collars, they were designed to fall off 455 

days after being fitted, with data downloaded regularly through an Ultra High 

Frequency (UHF) terminal.  

In the context of this thesis, 'activity' refers to any movement that is recorded, 

regardless of the animal's position and behavioural state (Scheibe et al., 1998). 

Although specific behaviours have been found to positively correlate with certain 

activity levels (for example, high activity levels found in carnivores may reflect 

subduing prey (Wang, Nickel, Rutishauser, C. Bryce, et al., 2015), it is virtually 

impossible to attribute specific behaviours to activity levels without observing 
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every single movement by the animal. Despite this, accelerometers have been 

proven to be useful for monitoring broad behavioural states and activity patterns 

in both non-human primates (Sellers and Crompton, 2004; Fehlmann et al., 2017) 

and carnivores (Podolski et al., 2013; McClune et al., 2014; Williams et al., 2014). 

 Meteorological and Temporal Data 

All meteorological data utilised in this thesis including wind speed, 

temperature, and precipitation derived from an SAEON (South African 

Environmental Observation Network) weather station based on site. In 

addition, I derived the wind chill equivalent temperature variable (perceived 

environmental temperature) by combining both the windspeed and 

temperature variables. All meteorological data were recorded in half hour 

intervals.  

Temporal data including daily sunrise and sunset, day length, astronomical 

twilight, and lunar luminosity were downloaded from the National Aeronautics 

and Space Administration (NASA) database (http://aa.usno. navy.mil/). Details 

regarding the incorporation of such variables can be found in their appropriate 

chapters (Chapters 4 and 6) 

 Spatial Environmental Variables 

This thesis required the use of spatial environmental data that originally 

derived from satellite imagery.  Using geospatial software (such as ArcGIS) and 

usually in raster format. Raster files are in a grid format, and typically contain 

cells (or pixels) of various resolutions that are presented in columns and rows.  

Rasters deriving from specific satellite imagery (i.e. Landsat) may have colour 

bands (red, green, blue) found on the electromagnetic spectrum that are used 

towards interpreting environmental factors such as vegetation productivity. In 

addition, some raster files may only have one colour band, in which case, often 

represent a continuous geographical variable (such as elevation). Specific 

rasters that were utilised or created for this thesis often vary by analysis, and as 

such, will be discussed in detail in the appropriate chapter.   
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 Vegetation Sampling 

Vegetation data utilised in Chapter 5 were collected through quadrat sampling 

between the years 2014 and 2017 by both PPP staff and assistants. Quadrat 

samples were at randomly generated points distributed throughout the study 

site that overlapped with the ranges for all three diurnal primate species 

(vervet monkeys, samango monkeys, and chacma baboons). Vegetation 

sampling at these random points was from 5m x 5m quadrats, with data 

recorded including tree species, number of saplings, percentage of land cover, 

visibility slope, aspect, as well as canopy cover. DBH (diameter at breast height), 

height, and crown diameter measurements were collected for all identifiable 

tree species. These data were used to assess the availability and distribution of 

fruit bearing tree species throughout the baboons’ range.   

 Phenological Sampling 

Phenological data derived from trees that were important food sources for 

diurnal primate species were tagged and monitored on a monthly basis by PPP 

staff and assistants in order to assess monthly, seasonal, as well as annual 

trends in growth and food availability. Data collected by PPP staff include the 

number of fruits or seeds (when applicable), percentage of unripe fruit, number 

of leaves and branches, as well as number of flowers per tree. These were used 

to assess food availability per tree and tree species for baboons.  

 Food Availability 

 Following the inspection and organisation of both phenology and quadrat data, 

I assessed the scan data collected by PPP staff in order to determine the average 

amount of food items consumed by baboons per month during the study period 

(Chapter 5). By doing so, I was able to assess both annual as well as seasonal 

dietary trends, while simultaneously accounting for species that were not 

consumed during certain time periods. Given that the baboons consumed a 

large variety of food items throughout the year (Appendix 1; Table S1.1), I 

decided to only include tree species that constituted the top 5% of the total diet. 

This was to ensure that species that were rarely consumed were not included in 

the overall analysis, and thus prevented the inflation of food availability 

throughout the study site. 
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It is important to bear in mind that some individual trees recorded in both the 

phenology and quadratic data did not have fruit or seeds. To account for this, a 

simple linear regression was used in order to determine if there was a 

correlation between either DBH, crown or tree height and average fruit 

availability for each tree species(Coleman, 2013). In the end, crown height was 

deemed to be the most significant predictor for determining if a tree species 

bore fruit and seeds and as such, scatter plots were created as a means to 

visually assess a taxon specific cut-off point. Trees that fell below these cut-off 

points were assigned a zero (no available fruit) when fruit availability was 

applied across all habitats.  

Important food bearing trees were averaged annually (throughout the study 

period) or seasonally.  Following, the diameters for each seed or fruit were 

obtained from (Palgrave, 1996) and the volume of an ellipsoid was used as a 

means to determine total food volume per species through the following 

formula: 

𝑉 =
4

3
𝜋 𝑟3 

𝑉 signifies volume whereas 𝑟3 represents the fruit diameters raised to the 

power of three. The formula used for flowers characterised the volume for a 

half ellipsoid: 

𝑉 =
2

3
𝜋 𝑟3 

Fruit and flower availability across taxa were calculated by multiplying the total 

volume of fruit by the average number of annual or seasonal fruit (or flowers) 

(Coleman, 2013). In contrast, seed availability was obtained by multiplying the 

average volume per seed pod (seed volume multiplied by the average number 

of seeds per pod) by the overall average number of seeds per taxon.   

Food availability data for consumed species were then attached to the 

corresponding tree species derived from the quadrat data. All tree species 

within the the 5 x 5 metre radius quads that did not constitute in the 5% of total 

diet as well as individuals below the threshold assigned earlier were given a 
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value of zero. Following, all trees found within the quadrats were summed as a 

means to obtain total food availability per quadrat.  

All quadrat points that were assigned food values were merged with habitat 

types deriving from a categorical land coverage map of South Africa created by 

GeoTerraImage Company ( South Africa) accessed through the South African 

Spatial Data Infrastructure (Dept. of Rural Development and Land Reform, 

Republic of South Africa) website at  http://www.sasdi.net/) that covers the 

entirety of South Africa (including the western Soutpansberg Mountains). 

Created through a composite of over 600 Landsat 8 multi-spectral and multi-

seasonal images, this raster was chosen for the creation of a categorical food 

availability habitat map due to its ability to provide a comprehensive 

classification of habitat types ranging from grasslands, forests, bare earth, as 

well as anthropogenic land types including agricultural areas at a 30 metre 

resolution. Finally, both annual and seasonal food availability for the entirety of 

the study area were obtained by averaging all quadratic points found within 

each habitat category.  

 Statistics 

As statistical analyses differ between objectives, all methods regarding data 

compilation, management and analyses are described in their relevant chapters.  

 Software 

Primary software utilised include ArcGIS Desktop version 10.3.1 (ESRI, 2014), 

QGIS Desktop 2.18.15 (QGIS Development Team, 2015), R Studio version 3.4.3 

(RStudio Team, 2016), Microsoft Excel (Katz, 2010), Geospatial Modelling 

Environment (GME) version 0.7.4.0 (Beyer, 2012), Geoda (Anselin, Syabri and 

Kho, 2006), Google Earth Pro 7.3.1 (Wuthrich, 2006),   SAM (Spatial Analysis in 

Macroecology) version 4.0 (Rangel, Diniz-Filho and Bini, 2010), and Garmin 

Basecamp (Garmin Inc., 2005). Several software packages and toolboxes were 

utilised for different analyses and will be listed within the methodology section 

of the appropriate chapter.       

 

  

http://www.sasdi.net/
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 Chapter 3: Leopard (Panthera pardus) Habitat 

Selection and Home Range Utilisation in a Montane 

Environment 
 

Abstract 

Animals often disproportionally utilise specific habitats within their 

environment as a means to fulfil fitness enhancing opportunities such as 

resource acquisition. Animals must choose not only where to reside, yet also 

how they use specific habitats within their home range. With the aid of 

Resource Selection Functions, I assessed where leopards were likely to 

establish home ranges within the western Soutpansberg Mountains, South 

Africa. I also determined where leopards were more likely to spend time within 

their home ranges, as well as where they are more likely to kill and consume 

prey. My results showed that although the majority of the western 

Soutpansberg can be considered suitable habitat, leopards choose to establish 

home ranges within the mountains and away from anthropogenic habitats in 

the low-lying areas. In addition, leopards chose to spend time in areas within 

their home range that were not only a greater distance away from human 

settlements, but also had greater vegetation productivity, a likely proxy for prey 

density.  Finally, leopards appeared to hunt in proportion to their home range 

use, suggesting that the areas used by leopards are generally suitable for 

hunting and consuming prey. Coupled together, these results show that the 

preservation of preferred habitats should be considered a top priority towards 

conserving a dwindling population. 

 Introduction 

Habitat loss and fragmentation due to anthropogenic factors are considered 

serious threats towards the sustainability of large carnivore populations on a 

global level (Woodroffe, 2000; William J. Ripple et al., 2014). As human 

populations increase and penetrate into previously unaltered ecosystems, large 

carnivores become inherently more susceptible towards localised or regional 

extinction compared to other mammals due to increased anthropogenic factors 

as well as a reduction of primary prey (Fuller and Sievert, 2001; Crooks, 2002; 
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Brashares, 2003; Carbone, Pettorelli and Stephens, 2011). This vulnerability 

towards extinction enhanced due to large carnivores often having large home 

ranges, low population densities, slow reproductive rates, and demanding 

metabolic requirements that come with having a large body size combined with 

pursuing and subduing prey (Gittleman and Purvis, 1998; Purvis et al., 2000; 

Carbone, Teacher and Rowcliffe, 2007). 

Leopards (Panthera pardus) are the most widespread large felid with a 

geographical range extending from southern Africa, across the Middle East, and 

into East Asia (Sunquist and Sunquist, 2002). The wide geographical and dietary 

range of leopards may partially be due to their ability to adapt to an assortment 

of different environments ranging from deserts, alpine forests, and tropical 

rainforests (Nowell and Jackson, 1996). 

The catholic diet of leopards allows them to hunt both large and small game, 

although Hayward and colleagues (2006) found that leopards primarily prefer 

small-medium ungulates ranging between 10-40 kg. Despite their behavioural 

flexibility, leopard populations have been decreasing at a rate comparable with 

other large felids (Ripple et al., 2014) and a recent meta-analysis suggested that 

current leopard populations occupy only 25% of their historical (circa 1750) 

range (Jacobson et al., 2016). Given these declines the International Union for 

the Conservation of Nature (IUCN) have reclassified the status of P. pardus as 

vulnerable from near threatened (Stein et al., 2016). 

Like many other large carnivore species, human persecution (Balme, Slotow 

and Hunter, 2009), habitat loss and fragmentation (Balme, Slotow and Hunter, 

2010; Swanepoel et al., 2013) as well as loss of primary food sources (i.e. prey) 

(Henschel et al., 2011) appear to be primary explanations for either the 

decrease or localised extinction of leopard populations across the globe 

(William J. Ripple et al., 2014). Habitat loss is particularly dramatic in non-

protected areas of South Africa, where human encroachment due to farming has 

often led to unsuitable, patchy habitats while simultaneously increasing the 

probability for human-wildlife conflict (Swanepoel et al., 2013, 2015). 
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Despite 68% of suitable leopard habitat in South Africa occurring in 

unprotected areas (Swanepoel et al., 2013), there have been few studies that 

assessed leopard habitat selection and utilisation outside protected areas 

(although see Balme, Slotow and Hunter, 2010). Additionally, the majority of 

studies on leopard behavioural ecology (including habitat use) in South Africa 

have been restricted to woodland or savannah environments (Bailey 1993; 

Balme et al., 2007; Hayward and Slotow 2009; although see Pitman et al., 2013). 

Natural refugia such as mountains can often act as barriers that have the 

potential to restrict agricultural and urban development, and thus, allow 

carnivore species to persist in areas where human development is in relatively 

close proximity at lower elevations (Chase Grey et al., 2013). However, several 

studies have shown that although animals can persist in protected areas this 

does not necessarily mean that they are optimal for fitness (Noss et al., 1996) 

nor for the localised survival of the species (Novaro, Funes and Walker, 2005). 

Pitman and colleagues (2013) showed that female leopards living in the 

Waterburg Mountains (South Africa) were highly selective in habitat choice 

which was associated with the presence of larger carnivore species such as 

(Panthera leo); leopards preferred to hunt and rest in relatively rugged areas 

where inter-specific encounters were less likely to occur (Ross T. Pitman et al., 

2013). These leopards also preferred to predate on high-risk species such as 

chacma baboons (Papio ursinus) which may have been a result of the same 

ecological pressures (Jooste et al., 2013; Ross T. Pitman et al., 2013). 

Where and how species select specific resources across their biogeographical 

range is important to understanding animal behavioural ecology (Manly et al., 

2002; Chetkiewicz and Boyce, 2009). Understanding the key environmental 

variables and preferred habitats that promote fitness is important in 

conservation strategies based on habitat preservation and supporting species 

viability (Manly et al., 2002). Resource Selection Functions (RSFs) are a habitat 

suitability index that are enhanced through the use of comprehensive datasets 

as well as logistic regression (Boyce et al., 2002). RSFs are employed to 

characterise and predict where animals are likely to utilise their environments 

at different spatial scales (Manly et al., 2002; Boyce et al., 2003). 
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While animals will disproportionately select specific resources within their 

environment as a means to enhance fitness (Manly et al., 2002), it should also 

be noted that resource selection in itself is spatially hierarchal and not uniform 

throughout time and space (Owen, 1972; Johnson, 1980). Thus, species will first 

select to range in a specific geographical region (1st order habitat selection) 

(Wiens, 1973; Johnson, 1980). Following this, individuals will select specific 

areas (i.e. home range) to live within that range (2nd order selection) and then 

will disproportionally utilise parts (i.e. patches) of that specific home range for 

living in (3rd order) and feeding in (4th order) (Johnson, 1980). Avoidance of 

factors that pose the greatest threat to limiting fitness should be stronger at 

larger scales (such as selection of home ranges) whereas factors that pose 

lesser threats towards fitness should be influential at smaller scales (i.e. within 

home ranges and feeding patches) (Rettie and Messier, 2000). For example, 

McLoughlin and colleagues (2002) provided evidence that food availability is 

the primary factor for grizzly bear (Ursus arctos) home range selection in the 

central Canadian arctic whereas both intraspecific predation and foraging 

habitats are decisive limiting factors within their home ranges. 

Very little research has assessed how leopards select specific environmental 

variables in montane environments in the absence of other large carnivores. 

This is particularly important in the context of the Soutpansberg Mountains, 

where the leopard population appears to be in significant decline (Williams et 

al., 2017), despite the area previously supporting one of the highest densities 

reported outside of a state-protected area (Chase Grey, Kent and Hill, 2013). 

This research utilises RSFs to determine if leopards in a montane environment 

prefer specific environmental variables at different spatial scales. 

Landscape attributes were predicted to have an impact on leopard resource 

selection functions at different scales. Many species (including leopards) select 

or avoid specific features in the landscape that have the potential to either 

promote or inhibit fitness (Dickson, Jenness and Beier, 2005; Gavashelishvili 

and Lukarevskiy, 2008; Simcharoen et al., 2008; Fattebert et al., 2015). 

Although habitat selection in large, solitary felids has been found to vary 

between species, several studies have shown that they often prefer to reside or 
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utilise areas that exhibit sufficient vegetation coverage (Balme, Hunter and 

Slotow, 2007; Pitman et al., 2013), and are topographically complex such as 

ruggedness; ( Zeller et al., 2017) and slope (Chundawat, 1990; Monroy-Vilchis 

et al., 2009; Hebblewhite et al., 2011),  and are closer to water sources 

(Simcharoen et al., 2008). Such areas have the potential to provide not only 

sufficient hunting coverage(Marcella, 2004; Balme, Hunter and Slotow, 2007), 

yet may also act as refuges from humans or other predators (Zarco-González et 

al., 2009; Pitman et al., 2013). 

 In contrast, many felids have been shown to actively avoid human settlements 

(Ngoprasert, Lynam and Gale, 2007; Zarco-González et al., 2009; Zeller et al., 

2017) and agricultural areas (Dickson and Beier, 2002; Zeller et al., 2017). 

Given these findings, vegetation coverage (through Normalised Difference 

Vegetation Index), slope, distance from human settlements, agricultural areas, 

water sources and surface ruggedness were used as predictor variables for 

leopard habitat use. Aspect was also included as a predictor due to an increase 

in vegetation coverage on the southern slope (Mucina and Rutherford, 2006). 

Finally, elevation was added as a predictor variable since highly elevated areas 

(on the mountains) are not only more topographically complex yet contain a 

greater abundance of natural habitats.  

The primary objectives for this analysis were to assess leopard resource 

selection functions within western Soutpansberg on three hierarchal spatial 

scales. This includes assessing environmental and anthropogenic factors that 

may impact leopard home range selection within the western Soutpansberg 

Mountains (2nd order), how home ranges are utilised due to such factors (3rd 

order), as well as where leopards choose to hunt within their home ranges (4th 

order).  

It is anticipated that leopards in western Soutpansberg will be highly selective 

towards environmental variables that are characteristic of the mountain range 

on all scales; it is also expected that the significance of these variables will 

decrease as they become more prevalent within smaller spatial scales (i.e. 3rd 

and 4th order). While Soutpansberg may provide suitable habitat for leopards 

(Chase-Grey et al., 2013), a recent analysis by Williams (et al., 2017) permits an 
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expectation that human presence as well as persecution (such as trapping or 

hunting) act as the most limiting factors for leopard habitat suitability. 

 Methods 

 Study Site 

This study was conducted in the western Soutpansberg Mountains (Limpopo 

Province, South Africa) (23°06'45.14"S 29°11'37.10"E). Categorised by a 

topographically complex Afro-Montane environment, the western Soutpansberg 

is part of the Vhembe Biosphere Reserve (UNESCO), and area recognised for its 

biodiversity as well as the presence of numerous endemic species found within 

the region (Van Wyk & Smith 2001; VBR 2012) (Section 2.2). 

 Leopard Collaring Methods 

Eight adult leopards (six males and two females) were captured with foot 

snares between June 2012 and July 2014 and fitted with Vectronic GPS-PLUS 

collars (VECTRONIC, Aerospace, Berlin, Germany).  Captured leopards were 

sedated with either Zoletil or Zoletil/Medetomidine combination and by a South 

African registered veterinarian before being fitted with collars. All collars were 

programmed to take GPS fixes every 3 hours and 20 minutes and were designed 

to fall off 455 days after collars were deployed, with a UHF device used to 

download data at regular intervals (Section 2.4.3). 

 Environmental Variables 

Topographic data (slope, aspect, elevation, ruggedness) were derived from a 30 

meter resolution digital elevation model (DEM) provided by the Shuttle Radar 

Topography Mission (SRTM), downloaded from the United States Geological 

Survey (USGS) Earthexplorer website (http://earthexplorer.usgs.gov/). Slope 

and aspect were created in ArcGIS 10.3.1. (Environmental Systems Research 

Institute, Inc., Redlands, CA, USA) through the slope and aspect tools in the 

Spatial Analysist toolbox. Waterway data were derived through the aid of the 

Optimized Pit Removal Tool extension (Center for Research in Water Sources, 

Austin, TX) for ArcGIS. Ruggedness, being defined as a landscape characteristic 

that exhibits steep and irregular terrain (Sappington et al., 2007)  has been 

shown to be an important predictor variable for leopards (Edgaonkar, 2008; 

Swanepoel et al., 2013) and was therefore included in this analysis. A 

http://earthexplorer.usgs.gov/
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ruggedness layer was created through the Benthic Terrain Modeller toolbox for 

ArcGIS (Rinehart et al., 2004). 

Six Monthly Landsat-8 Operational Land Imager (OLI) and Thermal Infrared 

Sensor (TIRS) images (30 metre resolution) taken from July, October, 

November 2013 and April, June, August 2014 were downloaded from the USGS 

Earthexplorer website to create an NDVI composite. These dates covered the 

time when the majority of the animals were collared and are seasonally divided 

between wet and dry.  NDVI was calculated for each individual month using the 

following equation (Cabral, Freitas and Fiszon, 2007): 

𝑁𝐷𝑉𝐼𝑛 =
𝐼𝑅𝑛 − 𝑅𝑛

𝐼𝑅𝑛 + 𝑅𝑛
 

Where 𝐼𝑅(infrared) represents the 5th spectral band whereas 𝑅(red) represents 

the 4th spectral band. Monthly NDVI images were composed with the use of the 

Image Analysis function in ArcGIS. 

Normalised Difference Vegetation Index (NDVI) serves as an index of both 

primary productivity as well as vegetation structure (Myneni et al., 1995) and 

has been useful in research ranging from movement studies to wildlife 

management (Pettorelli et al., 2011). Specifically, NDVI has also been in 

carnivore research and felid habitat selection (Erfanian et al., 2013; García-

Rangel and Pettorelli, 2013).   

In addition to NDVI, A categorical (vector) habitat map (Vegmap, South African 

National Biodiversity Institutes) was initially used for this analysis and derived 

from the SANBI website (http://bgis.sanbi.org/) (Chapter 2, Section 2.24 for 

habitat descriptions; Appendix 1, Figure S1.1 for visual projection).  

To compare categorical habitats and NDVI, 50 points were generated in each 

available habitat (n=6) found in buffered leopard home ranges. A Kruskal-

Wallis test was performed with the results displaying that there were 

significant differences found between NDVI values (and thus, the amount of 

vegetation) and habitat type (𝑥2(2)= (188.773),𝑑𝑓 =5, 𝑝=<0.0001). A post hoc 

pairwise comparisons showed that out of 15 pairwise comparisons, 9 were 

significantly different (𝑝=<0.0001). 

http://bgis.sanbi.org/
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Urban and agricultural rasters were obtained from The South African National 

Land Cover Map derived from the SANBI website 

(http://bgis.sanbi.org/DEA_Landcover/project.asp) which were derived from 

Landsat-8 imagery at a 30 metre resolution. Urban and agricultural areas were 

isolated and converted into vector format through ArcGIS.  Euclidean distances 

from all leopard GPS locations were derived from the Euclidean Distance 

function within ArcGIS. 

 Second Order Resource Selection Functions 
For second order resource selection functions, I assessed whether leopards 

specifically chose or avoided available areas within the study site to establish 

home ranges. A used/available design was employed where leopard (used) GPS 

points were compared with an equal number of random (available) samples 

(n=7679) (Manly et al., 2002). 

Since the collared leopards had unequal numbers of GPS fixes, I constrained the 

sampling area for second order resource selection to 3km buffers surrounding 

99% isopleths derived from kernel density estimates from individual leopard 

home ranges through Geospatial Modelling Environment (GME ;Beyer 2012; R 

Development Core Team 2012). Buffers constituted the smallest known size of a 

female leopard’s home range (Grassman, 1999), thus depicting areas 

theoretically available to each animal. This method allows for the inclusion of all 

available leopard data while simultaneously permitting control for variable 

sample sizes. 

Random (available) points that were equal in total to each individual leopard’s 

(use) GPS fixes were generated through GME and distributed throughout 

buffered areas in ArcGIS as a means to achieve a 1:1 ratio (Koper and Manseau, 

2012). 

All environmental predictor variables were projected into ArcGIS along with 

each individual’s buffered range, and all used/available data. All environmental 

predictor variables were spatially joined with each corresponding points and 

were subsequently extracted from ArcGIS for analysis. 

http://bgis.sanbi.org/DEA_Landcover/project.asp
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 Third Order Resource Selection Function and Home Range 

Analysis 

The third order RSF had a used/available design where leopard GPS fixes (used) 

were compared to an equal number of randomly generated points (available) 

from within the home ranges of each individual animal (Manly et al., 2002). 

95% home ranges for each leopard were generated through fixed Gaussian 

Kernel Density Estimates (KDE) in Geospatial Modelling Environment. 95% 

KDEs were chosen for this analysis as a means to control for exploratory 

behaviour outside of the main ranging area (Majumder et al., 2012). The Least 

Squared Cross Validation bandwidth (LSCV) was used as a smoothing 

parameter given that such a bandwidth showed minimal discrepancies when 

combined with fixed KDEs (Erran Seaman and Powell, 1996; Simcharoen et al., 

2008). 

Random (available) samples were generated through Geospatial Modelling 

Environment and distributed throughout each leopard’s 95% KDE home range 

with sample sizes matching that for each individual animal. The sum of 

generated random samples was equal to available points derived from leopard 

GPS fixes (total n= 7576) as a means to achieve a 1:1 ratio (Koper and Manseau, 

2012). 

 Fourth Order Resource Selection Functions 

For fourth resource selection functions, it was predicted that leopards would 

choose to hunt and kill prey in specific areas within their home range. For 

cluster identification, Home Range Tools (HRT) (Rodgers et al., 2011) was used 

to identify the distances between consecutive leopard fixes in ArcGIS. While 

leopard collars were programmed to continuously record GPS fixes every 3 

hours and twenty minutes, longer intervals would occasionally occur as a result 

of satellites being unable to communicate with the collar. Such acquisition 

failures were most likely due to the animals being located in an inaccessible 

area (such as rocky shelter, dense vegetation) (Swanepoel, Dalerum and van 

Hoven, 2010).  Microsoft Excel 2013 (Microsoft Corp., Redmond, WA, USA) was 

used to determine the time intervals between all consecutive fixes for each 

individual animal. Following this, conditional statements were used to identify 
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potential clusters for every individual animal based on three or more 

consecutive fixes ≤ 50 metres apart (Pitman, Swanepoel and Ramsay, 2012) 

within a period of ten hours or more. As leopards will often leave their kills only 

to return to resume feeding (Bailey, 1993), clusters appearing ±24 hours within 

50 metres of the previous cluster were classified as one event. The centre for 

each potential cluster (n=170) was given an ID, separated, and compiled into a 

separate CSV file. 

To confirm the location of kills (ground truthing), 50 metre buffers were 

created at the centre fix of each individual cluster as a means to control for 

where extensive search efforts should take place (Blecha and Alldredge, 2015). 

All qualified clusters and their corresponding buffers were imported into a GPS 

device (Garmin 62S GPS) for survey. Search efforts began at the centre of the 

cluster and dispersed out until either the edge of the buffer was reached, or the 

kill was found. Clusters were given a binary indicator signifying either the 

presence (1) or absence (0) of a prey item. Given the rugged terrain, age of 

some clusters, and the inability to access certain properties, it was impossible to 

ground truth every potential kill. 

Unlike second and third order RSFs, where an equal number of points were 

generated randomly throughout the scale of interest (use/available design) 

(Manly et al., 2002), this analysis of 465 metre circular buffers surrounding 

each kill (the average distance between each fix) followed by generating 20 

available fixes from within each buffer (Boyce et al., 2003; Northrup, Stenhouse 

and Boyce, 2012). This intensive spatial and sampling protocol was utilised to 

control for the small sample size of kills (n=170) as well as to allow for a fine-

grained multiscale analysis where kill sites can be assumed to be independent 

from other behaviours that would occur at courser scales. Thus, if leopard kill 

sites are dependent on specific environmental variables then the percentage of 

these attributes should be dissimilar compared to what is found within an 

entire study area. 

 Data Compilation, Analysis, and Validation 

75% of available data (training data) was used for RSFs (Johnson et al., 2006). 

Candidate RSFs were produced through generalized linear mixed-effects 
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models (GLMM) with a binomial error structure and logit link function (lme4, 

2015) in R Studio. In this case, binomial response variables included 1 which 

represents used leopard locations whereas 0 represents available (random) 

locations (Rostro-Garcia et al., 2015). Leopard ID and sex were used as a 

random intercepts for every scale of analysis (second, third, and fourth RSF) to 

control variability in sample sizes due to either collar malfunction or individual 

mortality as well as the lack of spatial independence found between leopard 

home ranges (Gillies et al., 2006). The remaining 25% of the data (test) was 

used to confirm the final resource selection function through cross-validation 

(Johnson et al., 2006). 

The high correlation found between categorical habitat types and NDVI 

promoted the inclusion of only one (NDVI). AIC values from top candidate 

models suggested that NDVI models performed overall better compared to 

candidate models (Appendix 2, Tables S2.1 and S2.2 and S2.3) including 

categorical habitat types. All possible model combinations were generated 

through the MuMin package (Barton, 2015) in R studio (Version 0.98.1103). 

Akaike Information Criteria (AIC) was used to select the most parsimonious 

candidate model with the lowest score.  

The top RSF model was projected in ArcGIS and the raster calculator (Spatial 

Analyst) was used to calculate and spatially project the probability of use for 

each 30 x 30 raster cell. To do this, coefficients from the top log linear model 

(β1) were multiplied by the corresponding raster or vector layers 

representative of predictor variables (xp) (Baigas et al., 2010) through the 

following equation: 

w(x) = exp (β0 +  β1x1 + ⋯ + βpxp) 

Linear stretching was applied to the resulting raster projection to improve 

visual interpretation (Johnson, Seip and Boyce, 2004). In doing so, the smallest 

(wmin) and largest (wmax) RSF values were scaled to values between 0 and 1 

(Johnson, Seip and Boyce, 2004) through the following formula: 

ŵ = (
w(x) − wmin

wmax − wmin
) 
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Where, 𝑤𝑚𝑖𝑛 and 𝑤𝑚𝑎𝑥 signify the smallest and largest RSF values (Johnson, 

Seip and Boyce, 2004; Baigas et al., 2010). The 25% leopard test data was then 

overlaid onto the rescaled RSF layer, and the values extracted (�̂�) were 

separated into ten probability bins (0-0.1, 0.1-0.2, etc.) (Johnson, Seip and 

Boyce, 2004). Spearman’s Rank Correlation was used to compare the frequency 

of points within each bin (Boyce et al., 2002) with a strong positive correlation 

indicating a reliable RSF predictive model with the majority of test data 

approaching the scaled value of 1 (Johnson, Seip and Boyce, 2004). 

 Results 

 Second Order Resource Selection Functions 

The best model contained significant, positive relationships for elevation, slope, 

ruggedness, and NDVI variables (Table 3.1; but see Appendix 2 Figure S2.4 for 

top alternative categorical habitat model). Collectively, these variables highlight 

selection for the mountain range itself in comparison to the relatively flat, low-

lying, and agricultural areas featured off the mountains. There was a significant, 

negative relationship concerning leopard home range selection and urban 

areas, suggesting leopards actively avoid human settlements when establishing 

home ranges within the landscape.  Leopards were more likely to establish 

home ranges in areas with Northern, Western and Southwestern facing aspects 

compared to others, although all estimates were positive in comparison to the 

reference category (flat ground) suggesting further selection for mountainous 

topography. The best model was a significant improvement over the null model 

where habitat selection was in proportion to availability (chi squared test: 𝑝 = 

<0.0001). Projection of the model revealed large areas of suitable habitat within 

the Soutpansberg (Figure 3.1) and model validation suggested very good 

predictive performance for estimating second order leopard RSF’s (𝑟𝑠=0.898, n 

= 10, 𝑝=0.0004). 
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Figure 3.1 Second order resource selection (home range selection) for leopards in western 
Soutpansberg Mountains. 
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Table 3.1 Coefficients for the top binomial GLMM model for leopard home range selection (2nd 
Order) with use/available (leopard presence/absence) as the dependent variable. Bold P values 
represents a significant relationship. 

Fixed Effects Estimate Std. Error z value Pr(>|z|) 

(Intercept) -6.55E+00 6.34E-01 -10.33 <0.001 

Aspect (E) 3.45E-01 5.69E-01 0.61 0.545023 

Aspect (N) 1.00E+00 5.68E-01 1.76 0.078649 

Aspect (NE) 6.28E-01 5.70E-01 1.1 0.270149 

Aspect (NW) 7.33E-01 5.69E-01 1.29 0.197608 

Aspect (S) 7.71E-01 5.67E-01 1.36 0.173887 

Aspect (SE) 4.28E-01 5.68E-01 0.75 0.450666 

Aspect (SW) 9.81E-01 5.68E-01 1.73 0.084397 

Aspect (W) 9.58E-01 5.70E-01 1.68 0.093026 

Elevation 8.37E-04 1.18E-04 7.11 <0.001 

NDVI 7.01E+00 1.92E-01 36.48 <0.001 

Ruggedness 1.60E+01 4.34E+00 3.68 0.000232 

Slope 8.78E-03 2.72E-03 3.23 0.001244 

Distance from Human Settlements 6.03E-05 8.43E-06 7.15 <0.001 

 

  Third Order Resource Selection Functions 

7576 leopard GPS fixes were utilised for Third Order RSFs.  Mean 95% home 

range sizes equated to 29.4 ± 10.3 km² (range: 14.9-50.2 km², n=8) with males 

having larger home ranges than females (males: x̅=33.03 ± 9.02 km², n=6; 

females: x̅=18.6 ± 5.28 km², n=3.2). 

The top candidate model (Table 3.2) for third order selection included NDVI, 

elevation, aspect, and distance from urban areas.  Areas with higher NDVI 

values, an index of vegetation cover, were significantly chosen more by leopards 

compared to less vegetated areas within their home ranges. Replacement of 

NDVI with a categorical habitat variable suggests a strong preference for 

northern mistbelt forest (Appendix 2, Table S2.5). This is despite the fact this 

habitat only accounts for 9.92% of the area found within their merged home 

ranges.  Urban areas were again significantly avoided for home range utilisation 

with leopards having tendency to utilise elevated areas within their home 

range.  
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Additionally, a Chi-Squared test between the top 3rd order RSF model was a 

significant improvement over and the null model rejected the hypothesis that 

the probability of occurrence for leopards was uniform throughout their home 

range (𝑝 = <0.0001) Projection of the model (Figure 3.2) and validation against 

the control data indicated that the top candidate model had a very strong 

predictive performance (𝑟𝑠=0.898, n = 10, p=0.0004). 

 

Figure 3.2 Third order resource selection (utilisation of home ranges) for leopards in western 
Soutpansberg Mountains.  
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Table 3.2 Coefficients for top binomial GLMM model regarding leopard selection within home 
ranges (3rd Order) with use/available (leopard presence/absence) as the dependent variable. 
Bold P values represents a significant relationship. 

Fixed Effects Estimate Std. Error z value Pr(>|z|) 

(Intercept) -2.28E+00 7.97E-01 -2.856 0.00429 

Aspect (E) -2.79E-01 7.71E-01 -0.362 0.71772 

Aspect (N) 4.80E-02 7.70E-01 0.062 0.95024 

Aspect (NE) -6.23E-02 7.71E-01 -0.081 0.93557 

Aspect (NW) 1.62E-01 7.71E-01 0.21 0.83338 

Aspect (S) -2.81E-02 7.69E-01 -0.037 0.97082 

Aspect (SE) -2.59E-01 7.69E-01 -0.336 0.73661 

Aspect (SW) 1.17E-01 7.70E-01 0.152 0.87898 

Aspect (W) 3.36E-01 7.71E-01 0.436 0.66315 

Elevation 1.97E-04 1.21E-04 1.636 0.10191 

NDVI 2.95E+00 1.89E-01 15.647 <0.001 

Distance from 

Human 

Settlements 

2.82E-05 9.51E-06 2.968 0.003 

 

 Fourth Order Resource Selection Function 

For fourth order resource selection functions, leopard kills (170) were assessed 

against 2580 randomly generated (available) points. The top model (Table 3.3 

but see Appendix 2 Table S2.6 for top alternative categorical habitat model) 

contained just a single parameter, NDVI. While non-significant, leopard kill site 

selection was in areas of high NDVI and thus vegetation cover.  Validation 

confirmed the strong predictive ability for the control data (𝑟𝑠=.887, n = 10, 𝑝 = 

0.0006) and the top model for 4th order analysis was significant against the null 

model of leopards hunting and killing prey items uniformly throughout their 

home range (𝑝 = 0.0469) (Figure 3.3). 
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Figure 3.3 Fourth order resource selection (utilisation of home ranges) for leopards in western 

Soutpansberg Mountains. 

Table 3.3 Coefficients for top binomial GLMM model regarding leopard kill site selection (4th 
order) with use/available (leopard kill presence/absence) as the dependent variable. Bold P 
values represents a significant relationship. 

Fixed Effects Estimate Standard 

Error 

Z Value P Value 

Intercept -3.9126 0.4871 -8.033 <0.001 

NDVI 1.4654 0.7530 1.946 0.0516 

 

 Discussion 

There is a hierarchal scale of range selection for leopards residing in western 

Soutpansberg that is likely linked to the availability of environmental 

characteristics that promote fitness within the confines of the mountains as well 

as the avoidance of human dominated landscapes. My results suggest that for 

home range selection, leopards select for environmental variables that are 

positively associated with the mountain range such as high NDVI values, 

ruggedness, elevation and slope.  Leopards also avoid low lying areas where 
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human settlements are abundant. From within their home range, leopards will 

select for forested or densely vegetated areas compared to more open habitats. 

This is may be due to the abundance of preferred prey items, ambush cover, and 

uniform distribution of water that is characteristic of the densely vegetated 

areas within their home range. Leopards also avoid human settlements on the 

periphery of their home range. The results from the 4th order RSF provide 

insight that leopards may not have a specific preference for environmental 

variables when deciding to hunt and consume their prey yet may do so 

homogeneously throughout their home range. 

The eight collared leopards had variable home range sizes with males having 

larger home ranges than females. The largest home range (50.2 km²) was a 

male that lived in the northern part of the mountain range whereas a female 

living in the most southern portion of the mountain had the smallest home 

range (14.2. km²). Mean home range sizes for all males (N=6) living in the 

southern part of the mountain range was 29.5 ± km². In addition, mean home 

range sizes for females (N=2) was 23.25 ± km².  Previous research had 

suggested that leopard population densities in the northern portion of the 

western Soutpansberg may be lower due to the aridity of the environment 

which, in turn promotes a lower abundance of prey (Chase Grey 2011). The 

results from this analysis indeed suggest that leopards are more likely to 

establish home ranges on the southern side of the mountain. It seems possible 

that the greater presence of forests, and overall, moister environment that is 

characteristic of the southern side of western Soutpansberg have an impact on 

the abundance of prey, and as a result, promote higher leopard densities. 

Leopards in western Soutpansberg clearly selected specific environmental 

attributes within the mountain range, including areas featuring high elevation, 

slope, ruggedness, and high NDVI values while choosing home ranges.  These 

results complement previous research which suggests that surface ruggedness 

and NDVI correlate to leopard habitat suitability by providing abundant prey, 

and beneficial vegetation for cover (Swanepoel et al., 2013). 

Leopards significantly avoided human settlements while simultaneously 

selecting for areas exhibiting higher elevations for both second and third order 
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resource selection functions. Leopards have been found to select for refuge 

areas such as mountainous areas when pressured by competition from superior 

predators or humans (Sunquist and Sunquist, 2002; Constant, Bell and Hill, 

2015). Given that leopards in Soutpansberg are frequently persecuted by 

humans through legal or illegal hunting (Chase Grey et al., 2013), it seems that 

leopards will likely avoid human settlements in favour of areas where 

competition with humans is lowered. The presence of unsuitable and heavily 

fragmented habitats, as well as a lack of primary prey within human dominated 

landscapes, may also drive leopards to avoid heavily populated areas while 

simultaneously selecting for more intact and prey rich environments such are 

those that are found within the mountains (Swanepoel et al., 2013). 

Although leopards avoid human settlements, distance from cultivated areas was 

not included in the top models for second, third, and fourth order resource 

selection functions. While it is possible that leopards may avoid such areas to a 

slight degree, only a small number of cultivated areas overlapped with the 

leopard home ranges in the mountains and were surrounded by preferable 

habitat or were located on the periphery of the mountains and thus, on the very 

edge of home ranges for leopards. Despite this, the final projections for both 

second and third RSFs show that agricultural areas located in low lying areas off 

of the mountains to be characteristic of low habitat suitability. Leopards may 

possibly show avoidance when agricultural areas become more homogenous on 

the landscape as well as when human populations increase within the vicinity of 

such areas. 

While previous research found that water was a driving factor behind leopard 

second order resource selection functions (Simcharoen et al., 2008; Mondal, 

Sankar and Qureshi, 2013), the top candidate models in this analysis did not 

include it as a variable. The possible reason for this is the uniformity of water 

sources on the landscape, as well as the lack of migratory prey species that 

would be driven to water sources. Balme (et al., 2007) also found that water 

was not a significant variable for leopards residing in the Phinda Private Game 

Reserve, which may have been due the constant availability of water sources 

and as a result, a lack of congregation of items near these features. 
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While previous studies have found that large felids select specific habitats to kill 

and consume prey at the fourth order (Davidson et al., 2012; Rostro-Garcia et 

al., 2015), the best model (over the null) suggests that no environmental 

variable used in this study was significant for determining where leopards 

consumed their prey. Similar findings have also been reported by Gese, 

Terletzky and Cavalcanti, (2016) who determined that habitat characteristics 

did not define the location of a kill. 

Given their clear selectivity for areas with higher NDVI values (such as forests) 

for both second and third order resource selection, it is possible that leopards 

restrict where they hunt, kill, and consume their prey to densely vegetated 

areas. Additionally, if their primary prey and adequate hunting grounds are 

uniformly distributed throughout the preferred areas of their home range, then 

it is possible that leopards will utilise all available areas to hunt. The vast 

majority of primary prey have a preference for canopied or densely vegetated 

areas such as forests and woodlands. Bushbuck residing in western 

Soutpansberg have a preference for areas with abundant tree canopy cover 

while avoiding both rocky and open grassland areas that are devoid of trees 

(Brock, Nortje and Gaigher, 2003). Equally, common duikers have been shown 

to avoid rocky and bare areas in favour of more densely vegetated areas such as 

tall grasses and “wooded islands” (Abu Baker and Brown, 2014).   

As visual hunters, it has been suggested that leopards may be constrained to 

stalk prey in areas with intermediate vegetation coverage (Balme, Hunter and 

Slotow, 2007). However, several studies have shown that forest dwelling 

leopards may overcome hunting in denser environments by adapting other 

hunting strategies such as waiting for prey items to come close followed by a 

quick ambush (Hart, Katembo and Punga, 1996; Jenny and Zuberbühler, 

2005).Given that the northern side of the western Soutpansberg is more arid 

and likely provides a patchier distribution of prey as well as adequate hunting 

areas, leopards residing there travel greater distances in order to locate suitable 

hunting grounds which, in turn, may lead to a larger home range. 

While this analysis utilised a more conservative method for cluster 

identification compared to previous studies that would often use two or more 
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consecutive fixes at greater distances (i.e. 100 or 200 metres apart) (Anderson 

and Lindzey, 2003; Tambling et al., 2010), the cluster classification chosen for 

this study was favoured for several reasons. The time interval between fixes (3 

hours and twenty minutes) creates a level of ambiguity when identifying 

clusters consisting of only two fixes. Additionally, in some cases, ground 

truthing may be futile due to the amount of time that had passed as it is 

probable that the remains of older prey carcasses would be transported by 

scavengers (such as brown hyaenas; Hyaena brunnea), water, or wind, or 

concealed due to vegetation growth. While utilising three clusters (rather than 

two) may bias this analysis for where leopards choose to hunt, kill, and 

consume medium to large sized prey rather than prey of all sizes, the 

importance of species such as bushbuck and common duiker in leopard diet as 

confirmed through both ground truthing and scat analysis (Schwarz and 

Fischer, 2006; Chase Grey, 2011; Chase Grey, Bell and Hill, 2017; Williams et al., 

2018) is highly suggestive that these methods were appropriate for fourth 

order resource selection in this study. 

The results from the 2nd order resource selection functions suggest that there is 

little to no connectivity between leopard populations in the western 

Soutpansberg and the Blouberg Mountain Reserve despite both areas displaying 

suitable habitats while simultaneously being within close proximity of one 

another. This is likely due to the lack of corridors of suitable habitat that would 

allow leopards to safely move between both ranges. Previous research suggests 

that mortality due to human persecution seems to be greater in low lying areas 

surrounding both mountain ranges (Chase Grey, 2011; Constant, Bell and Hill, 

2015). This is most evident on game farms found in low lying areas where 

suitable habitat for leopards exist, yet, where mortality is high due to human 

persecution (Chase Grey, Kent and Hill, 2013; Constant, Bell and Hill, 2015). In 

this case, the western Soutpansberg may act as a population source for leopards 

where dispersing individuals are likely to succumb to mortality in prey-rich, but 

dangerous areas such as game farms and communal farms outside of the 

mountains.  
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Given the anthropogenic pressures found in areas that are otherwise suitable 

habitats, it seems probable that both the western Soutpansberg and Blouberg 

mountains act as refuges where natural prey are still abundant and yet where 

competition with humans is low. Thus, the results from this analysis should 

only be interpreted as leopard habitat suitability in a human altered landscape 

that does not reflect potentially suitable habitats if anthropogenic pressures 

were depressed. 

By identifying suitable leopard habitat, the results from this analysis have the 

potential to aid in recovery efforts for a declining population (Williams et al., 

2017) living on the periphery of a heavily human modified landscape and may 

be beneficial in developing conservation priorities regarding land use 

management and the protection of key habitats that are advantageous towards 

leopard population sustainability. As apex predators have the potential to 

facilitate ecological stability through trophic interactions (Estes et al., 2011), the 

identification, prioritisation, and overall, protection of viable leopard habitats 

may also be greatly beneficial towards sustaining the biodiversity in the already 

ecologically altered ecosystem (Hahn, 2006). 

Given that the focal animals in this analysis were confined to the Western most 

portion of the Soutpansberg Mountains, it is highly recommended that future 

researchers focus their efforts on the occupancy, density, and behavioural 

ecology of leopard populations located in the central and eastern portions of the 

mountain range. This would allow for the identification and conservation of 

refugia throughout other parts of the mountain range, which can promote 

immigration and population recovery (Pitman et al., 2015).  In addition, by 

doing so would also allow for a greater understanding of the connectivity found 

between subpopulations throughout the Soutpansberg Mountains while 

simultaneously providing insight on whether the western Soutpansberg acts as 

attractive sink. 
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 Chapter 4: Spatial and Temporal Variability in 

Activity levels in Leopards Residing in an 

Afromontane Environment 
 

Abstract 

Animals must expend energy to conduct vital behaviours such as searching for 

food and reproduction. In doing so animals must choose where and when to be 

active in order to enhance foraging opportunities while simultaneously 

avoiding the risks imposed by potential threats. An over expenditure of energy 

has been shown to reduce fitness levels that can lead to a decline in populations 

for certain species. With the aid of dual axis accelerometers, I explored whether 

abiotic and biotic factors led to spatial and temporal variation in activity 

patterns for leopards residing in the western Soutpansberg Mountains, South 

Africa. My results showed that leopards are predominantly crepuscular 

throughout the year, but also shift their activity levels in response to weather 

conditions such as rain, wind speed, and temperature. I also found that leopards 

spatially reduced their activity in topographically complex and highly vegetated 

areas. Finally, leopards temporally shifted their activity patterns while in 

anthropogenic habitats by reducing diurnal activity suggesting that such areas 

may be perceived as potentially dangerous.  

 Introduction 
Animals expend energy during processes such as food acquisition, reproduction 

and sociality (Bailey, Udoh and Young, 2014; Humphries and McCann, 2014). 

Optimal foraging theory suggests that animals should minimize their total 

energy spent in response to total energy acquired as a means to maximise 

fitness levels and survival (Stephens, Brown and Ydenberg, 2007).  As a 

response to such trade-offs, animals adopt activity schedules that allow for the 

maximisation of energy intake throughout time, while simultaneously avoiding 

predation (Schoener, 1974; Kronfeld-Schor and Dayan, 2003). Animals respond 

to a  range of biotic and abiotic factors (Scharf et al., 2016) and a greater 

understanding of such processes has the potential to yield insight into not only 
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how species interact with their environment, but also how animals may 

respond to anthropogenic landscapes.  

Animal activity patterns are most often described throughout the 24-hour cycle 

as a response to light intensity (Bennie et al., 2014). Most animals are 

considered to be active either during the day (diurnal), night (nocturnal), at 

dusk and dawn (crepuscular), and rarely, throughout the 24 hour cycle 

(cathemeral) (Bennie et al., 2014). Such schedules are primarily reinforced 

through behavioural, environmental, and physiological adaptations that 

constrain or enhance when a species is most active (Kronfeld-Schor and Dayan, 

2003). Despite this, many species exhibit some levels of fluidity in their activity 

budgets and may shift the times at which they are most active in response to 

conditions that potentially impact fitness (Kronfeld-Schor and Dayan, 2003). 

Such conditions include predator avoidance (Lima and Dill, 1990), foraging 

efficiency (Pavey et al., 2001) and competition avoidance (Johnston and Zucker, 

1983). For example, Valeix and colleagues (2007) found that several species of 

ungulates in Hwange National Park, Zimbabwe temporarily shifted their activity 

patterns in the dry season as a means to avoid interactions with elephants 

(Loxodont africana) at waterholes. In an experimental study, bank voles 

(Clethrionomys glareolus) in an enclosure that were previously more active at 

dawn, switched their activity levels to both day and night in order to avoid the 

presence of an introduced (and crepuscular) weasel species (Mustela nivalis) 

(Jędrzejewska and Jędrzejewski, 1990).  

A complex interaction between physiology and behaviour often influences 

when animals are active (Kronfeld-Schor and Dayan, 2003), combined with 

extrinsic factors ranging from predator (including human) avoidance (Nelson 

and Vance, 1979; Ditchkoff, Saalfeld and Gibson, 2006), weather (Erickson and 

West, 2002) and the natural diel cycles in light intensity (Daan, 1981). 

Furthermore, movement may spatially fluctuate across the landscape (Shepard 

et al., 2013). This is especially true in terrestrial animals that reside in areas 

which exhibit variable levels of environmental heterogeneity that may differ in 

topography (Wall, Douglas-Hamilton and Vollrath, 2006; Martins and Harris, 

2013) , vegetation cover (Mosser et al. 2014), and even substrate thickness 
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((Wilson, 1991).  Movement in itself is inherently costly (Delong, Hanley and 

Vasseur, 2014; Humphries and Mccann, 2014) and animals must invest in areas 

that provide the greatest energetic gain (through foraging), and are less 

metabolically costly to travel through (Shepard et al., 2013) while 

simultaneously avoiding predation (Lima and Dill, 1990). 

Large carnivores not only have some of the largest home ranges for their body 

size (Carbone, Teacher and Rowcliffe, 2007), they must also traverse through 

widespread areas in pursuit of prey, something which has the potential to be 

considerably more costly than the attack itself (Laundré, 2014). As such, the 

energetic costs of movement for some large carnivores (e.g. Panthera leo, Ursus 

maritumus) were recorded to be two or three times greater compared to other 

mammals of similar size (Carbone, Teacher and Rowcliffe, 2007). As carnivores 

may constantly sustain maximum energy outputs , they may be highly 

susceptible to even the slightest alteration in habit quality or prey abundance 

(Gorman et al., 1998) which has contributed to their vulnerability to extinction 

throughout the world ( Ripple et al., 2014).  

To limit the amount of energy spent in the pursuit of prey, carnivores hunt in 

areas where prey are either more abundant (Murray, Boutin and O’Donoghue, 

1994) or where the probability of catching them is greater (Grant et al., 2005; 

Balme, Hunter and Slotow, 2007). In addition, carnivore movement patterns 

may be influenced by avoiding dominant carnivore species and areas of 

perceived risk (Vanak et al., 2013), as well as ease of transport, (Dickson, 

Jenness and Beier, 2005), and reproduction (i.e. searching for potential mates, 

communicating and denning) (Wilmers et al., 2013). For example, wolves (Canis 

lupis) in Alberta and Saskatchewan (Canada) increased their movement on 

manmade linear features (i.e. roads, railroads) compared to forests, which most 

likely aided in the pursuit of prey or territorial monitoring (Dickie et al., 2017).  

As such, the activity patterns found in carnivores can be considered a dynamic 

process that is heterogeneous throughout the landscape in which they reside. 

Large carnivores are primarily active during time periods in which the 

probability of successfully subduing and capturing prey increases.  The time 

period in which they hunt is often influenced by a combination of factors 
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ranging from prey activity levels (Monterroso, Alves and Ferreras, 2013) to 

when specific abiotic conditions may be beneficial (or disadvantageous) 

towards specific hunting techniques (Cozzi, Broekhuis, Mcnutt, et al., 2012). For 

example, while many cursorial predators such as wolves (Theuerkauf et al., 

2003), cheetahs (Acinonyx jubatus) (Broekhuis et al., 2014), and African wild 

dogs (Lycaon pictus) will often take advantage of increased moonlight to aid in 

capturing their prey (Rasmussen and MacDonald, 2012), such conditions may 

be suboptimal for stalking predators such as lions (Packer et al., 2011) and 

leopards (Panthera pardus) (Martins and Harris, 2013) who primarily rely on 

stealth and the cover of darkness. 

Having the ability to live in an array of different habitats ranging from deserts, 

rainforests, grasslands, and even around urban areas, leopards are one of the 

most geographically widespread felid species (Jacobson et al., 2016). This 

biogeographical characteristic may partially be explained due to their stealthy 

and solitary nature, incredibly catholic diet, and overall behavioural plasticity 

(Jacobson et al., 2016).  

As ambush predators, leopards rely on sufficient hunting coverage to 

successfully stalk and subdue prey (Bailey, 1993). As a result, leopards often 

prefer to hunt in areas exhibiting high or intermediate vegetation where the 

probability of catching prey is greater (Balme, Hunter and Slotow, 2007). In 

addition, leopards may prefer to be active in areas where dominant competitors 

(such as larger carnivores) are relatively absent. For example, Odden (et al., 

2010) found that leopards in Bardia National Park, Nepal were displaced to 

human dominated areas as a means to avoid competition with tigers (Panthera 

tigris). Pitman and colleagues (2013) found that leopards residing in a mixed-

montane environment restricted essential activities (such as resting and 

hunting) to more elevated, rugged areas to avoid lions. Notwithstanding being 

displaced, topographically complex areas may prove to be advantageous for 

stalking predators by providing ample coverage for hunting (Bryce, Wilmers 

and Williams, 2017).  Despite this, there has yet to be a formal assessment of 

how such areas impact activity levels in large felids in the absence of dominant 

carnivore species. 
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Unlike lions and cheetahs, who are primarily active either during the day or at 

night, previous research has found leopard activity patterns to be relatively 

fluid, changing as a response to habitat, prey availability and human presence 

(Jenny and Zuberbühler, 2005; Ngoprasert, Lynam and Gale, 2007; Martins and 

Harris, 2013). For instance, leopards in savannahs have often been documented 

to be nocturnal and/or crepuscular (Bailey, 1993; Balme, Hunter and Slotow, 

2007) whereas leopards in rainforest environments are active throughout the 

day (Jenny and Zuberbühler, 2005). There have been several conflicting 

suggestions of why leopards shift to being primarily diurnal despite being 

considered to be crepuscular and nocturnal throughout much of their 

geographical range. For instance, although Sunquist & Sunquist (2002) 

suggested that leopards residing in predator-free landscapes will often switch 

their activity patterns to become more diurnal, several studies have implied the 

opposite effect; that is, in the presence of superior carnivore species, leopards 

became diurnally active as a means to avoid intraguild competition (Azlan and 

Sharma, 2006; Pitman et al., 2013). Despite this, Martins and Harris (2013) 

found that leopards residing in Cederberg Mountains (South Africa) were still 

primarily nocturnal, despite living in a predator free environment (but see 

Norton and Henley 1987 who found leopards in the Cederberg Mountains to be 

primarily diurnal).  

With the aid of dual axis accelerometers and telemetry data deriving from GPS 

collars, the primary objectives of this analysis were to assess how leopards in 

the western Soutpansberg Mountains (South Africa) vary their activity patterns 

in response to both a heterogeneous landscape as well as fluctuating levels of 

abiotic and meteorological conditions. Following Valeix and colleagues (2012), I 

also explored whether “the landscape of fear” applied to leopards that ventured 

into relatively dangerous human-dominated landscapes and whether such 

individuals modified their activity levels as a means to avoid conflict.  

Previous research deriving from camera trap data determined that leopards in 

the Soutpansberg had crepuscular and nocturnal activity patterns that 

decreased significantly throughout the day (Fitzgerald, 2015). Despite this, the 

use of accelerometers that continuously recorded activity data allowed me to 
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monitor individual activity patterns at a finer spatial and temporal scale that 

permitted assessment of not just activity schedules as a whole, but also how 

leopards responded to both seasonal and meteorological variables. 

Accelerometers have proven useful in monitoring animal activity patterns 

through time and space without causing disturbance that may alter behaviour 

as a result of the presence of an observer (Brown et al., 2013). I hypothesised 

that activity patterns recorded by accelerometers would accurately reflect 

patterns previously recorded by camera traps, and therefore, leopards would 

exhibit crepuscular and nocturnal activity (H1). Furthermore, I hypothesised 

that leopard activity levels would seasonally fluctuate between the seasons 

(H2). 

Weather conditions such as wind speed and rainfall have the potential to mask 

movement and noise, and therefore may be beneficial for stalking predators. 

However, there has been little assessment on how such conditions influence 

activity patterns in solitary felids. Bailey (1993) observed that leopards tend to 

move less in warmer temperatures and significantly more on nights exhibiting 

moderate rainfall (and though were not influenced by wind-speed). I 

hypothesised that leopard activity levels would decrease with warmer 

temperatures and increase with heavier rains and stronger winds (H3).  

As large carnivores will often avoid conspecifics in order to avoid conflict with 

individuals that have the potential to disrupt reproductive success, or harm 

(Klinka and Reimchen, 2002), I hypothesised that female leopards in western 

Soutpansberg would exhibit more diurnal activity compared to males (H4).  

Most felids (including leopards) depend on denser vegetation as a means to 

stalk and subdue prey (Sunquist and Sunquist, 1989) and may often select 

closed habitats. As such, I hypothesised that leopards would spatially alter their 

activity levels in response to variables (e.g. vegetation structure, elevation, 

slope, and ruggedness) that enhance sufficient hunting coverage, as well as prey 

availability (H5). A recent analysis found the leading cause of death for leopards 

in the western Soutpansberg was due to retaliatory killing by humans in the 

form of snaring, poisoning and shooting (Williams et al., 2017). As felids may 

move more rapidly through areas that are either less dense or that may cause 
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discomfort (such as urban areas) (Dickson, Jenness and Beier, 2005),  I 

hypothesised (H6) that leopards would change their activity levels when in 

proximity to anthropogenic features including agricultural areas and proximity 

to human settlements.  

 Methods 

 Study Site 

I conducted the study in the western Soutpansberg Mountains (Limpopo 

Province, South Africa) (central coordinates: 23°06'45.14"S 29°11'37.10"E). 

Considered to be a ‘biological hotspot’, the Soutpansberg Mountains is home to 

approximately 76% of South Africa’s non oceanic birds  (Berger et al. 2003), 

36% of the country’s reptile species  (Berger et al. 2003) and 59.9% of South 

Africa’s mammalian species (Berger et al. 2003). The Soutpansberg Mountains 

are temperate and have two seasons including a rainy season lasting from 

December to February and a dry season that lasts from May to August. In 

addition, average precipitation throughout the mountain range is highly 

variable, with the arid northern side of the mountain receiving roughly 367 mm 

of rainfall and the southern side experiencing roughly 3000 mm annually 

(Hahn, 2002) (Section 2.2.) 

 Leopard Collaring Methods, GPS and Activity Data 

Collection 

Between June 2012 and December 2014, eight leopards (six males and two 

females) were captured with foot snares and sedated with either Zoletil or a 

Zoletil/Medetomidine combination by a South African Registered Veterinarian 

before being fitted with Vectronic GPS-PLUS collars (VECTRONIC, Aerospace, 

Berlin, Germany). Collars were programmed to take GPS fixes every three hours 

and twenty minutes and were designed to fall off 455 days after the collars 

were fitted (Section 2.4.3). Incorporated into the GPS collars were dual-axis 

sensors that constantly recorded activity on two different axes (X and Y) 

(Berger, Dettki and Urbano, 2014). As there was a positive correlation between 

the X and Y axis data, only the X-axis data were utilised in analysis (following 

Heurich et al. 2014). Activity values derived from sensors ranged from 0 (no 

activity) to 255 (high activity). In this instance, activity is referred to any 
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movement that was recorded, regardless of the position and behavioural state 

of the animal (Scheibe et al., 1998) (Section 2.4.5) All data were downloaded 

regularly through an Ultra High Frequency (UHF) terminal.  

 Meteorological and Temporal Predictor Variables 

In order to assess activity levels throughout the 24-hour diel cycle (H1), activity 

data were split into three categorical variables: diurnal (between sunrise and 

sunset on a single day), crepuscular (data that fell between 1 hour before and 

after sunrise and sunset) and nocturnal (falling one hour after sunset and one 

hour before sunrise) (Gutiérrez-González and López-González, 2017). In 

addition, as I hypothesised that leopards in the western Soutpansberg are 

primarily crepuscular (H1), the time difference found between each 

accelerometer signature and the closest sunrise/sunset (from http://aa.usno. 

navy.mil/) was calculated and utilised as a predictor variable. Day length 

(originating from http://aa.usno. navy.mil/) and meteorological variables (from 

an on-site SAEON (South African Environmental Observation Network) weather 

station) were used to determine if leopards shifted their activity as a response 

to fluctuating and seasonal shifts in light availability (H2) as well as weather 

conditions (H3). Accelerometer data were then averaged into half hour 

intervals (N=43447) and then synchronized with available weather and 

temporal data (time of day, day length, etc.) for analysis.  

 Landscape Predictor Variables 

Several rasters (NDVI (Normalized Difference Vegetation Indices), slope, 

elevation, surface ruggedness) and vectors (distance from human settlements, 

agricultural areas, and rivers) were created and exported to ArcGIS10.3.1. 

(Environmental Systems Research Institute, Inc., Redlands, CA, USA) to assess 

whether physical environmental variables influenced leopard activity levels 

(H5).  

All buildings within the study area were digitised with the aid of high resolution 

satellite imagery using Google Maps. In addition, agricultural areas (from 

Landsat imagery at a 30 metre resolution) were derived from the South African 

National Land Cover Map (2014) provided by the SANBI website 
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(http://bgis.sanbi.org/DEA_Landcover/project.asp).  Urban and agricultural 

areas were isolated and converted into vector format through ArcGIS.  

Topographic and waterway data (slope, elevation, rivers, and ruggedness) were 

created from a 30 metre resolution digital elevation model (DEM) provided by 

the Shuttle Radar Topography Mission (SRTM) and downloaded from the 

United Stated Geological Survey (USGS) Earth Explorer website 

(http://earthexplorer.usgs.gov/). Waterway data were created with the 

utilisation of the Optimized Pit Removal Tool extension (Centre for Research in 

Water Sources, Austin, TX) in ArcGIS. In addition, a ruggedness raster layer was 

created through the Benthic Terrain Modeller toolbox for ArcGIS (Rinehart et 

al., 2004). A slope raster layer was created through the Spatial Analyst toolbox 

in ArcGIS.  

NDVI has been proven useful in assessing how vegetation structure can impact 

wildlife activity levels (Pettorelli et al., 2011; Mosser et al., 2014). It was used in 

this analysis to assess how leopard activity levels fluctuate across the relatively 

heterogeneous vegetation communities of the western Soutpansberg.   

Six 30-day Landsat-8 Operational Land Imager (OLI) and Thermal Infrared 

Sensor images (30 metre resolution) from within the collaring period (July, 

October, November 2013 and April, June, and August 2014) were downloaded 

from the USGS Earth Explorer website in order to create an NDVI composite. 

The dates utilised were seasonally divided between winter (June-August) and 

summer (November-January). NDVI was calculated for each month using the 

following equation (Tucker et al., 2005) 

𝑁𝐷𝑉𝐼𝑛 =
𝐼𝑅𝑛 − 𝑅𝑛

𝐼𝑅𝑛 + 𝑅𝑛
 

 

In this instance, 𝐼𝑅(infrared) represents the 5th band whereas 𝑅(red) 

represents the 4th band. Monthly NDVI images were compiled with the use of 

the Image Analysis function in ArcGIS. 

To evaluate whether activity levels varied spatially across the landscape, 

accelerometer data (through the X axis) deriving from collars were synced with 

http://bgis.sanbi.org/DEA_Landcover/project.asp
http://earthexplorer.usgs.gov/
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available GPS points (Berger, Dettki and Urbano, 2014). As accelerometers 

continuously stored data in two minute intervals, all averaged activity data 

falling between ten minutes before and after a GPS fix (recorded every 3 hours 

and twenty minutes) were utilised in this analysis. A portion of GPS data could 

not be synced with activity data as the accelerometer for one leopard 

malfunctioned; as a result, only 6279 samples (out of 7679) were utilised in this 

analysis.  All synced GPS/activity points were projected into ArcGIS, spatially 

joined with environmental predictor variables and extracted for analysis.  

 Statistical Analysis 

Activity data were separated into two different datasets. The first model (Model 

A) consisted of average activity separated into half hour intervals (N=43447) 

that were used to assess when leopards are active throughout the diel cycle 

(H1), how they responded to both seasonality (H2) and to meteorological 

variables (H3) and whether activity schedules varied by sex (H4). I developed a 

model consisting of combined GPS/ averaged activity data (N=6279) in 

intervals of 3 hours and twenty minutes that was used to assess how activity 

levels spatially fluctuated as a response to specific landscape attributes (H5 and 

H6). A post-hoc analysis was used to determine if leopards that went off the 

mountain (and into human dominated landscapes) shifted their activity 

schedules compared to individuals on the mountain. 

  Wind speed, temperature, and rainfall were included in the temporal analysis 

(Model A, N=43447) to measure whether leopards residing in an Afromontane 

environment responded to specific meteorological conditions. Day length was 

included in order to evaluate whether leopards altered their activity patterns in 

response to seasonally changing light conditions. Two variables were used to 

address when leopards were active throughout the diel cycle: 1) time of day 

(categorical factor consisting of diurnal, crepuscular, and nocturnal) and 2) the 

difference found between each accelerometer time signature and the closest 

sunrise/sunset. In addition, sex of the individual was included as a predictor 

variable to assess if the activity schedules for males and females differed. 

Random effects for this model included individual ID (N=8), as well as the day 

number (N=835). 
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Elevation, slope, and surface ruggedness were included in the spatial model to 

assess if activity levels were influenced by heterogeneous topography. In 

addition, such variables were used to address if leopards responded to 

relatively low lying and flat areas off the mountains by shifting their behaviour. 

NDVI and distance from rivers were additional environmental variables 

included in Model B. Furthermore, distances from agricultural and urban areas 

were included in the model to assess if leopards reduced their activity levels 

when in proximity to human settlements. Given the variability in sample sizes 

between individuals, sex (N=2), and individual ID (N=8) were included as 

random effects.  

Although the spatial analysis (Model B) was used to measure if leopards 

responded to human occupied areas both on and off the mountain, a more 

refined analysis was conducted to determine if the activity of leopards in more 

populated and heavily utilised (farming and ranching) areas differed from those 

that stayed in the mountains. To test whether leopards shifted their activity 

schedules to be more nocturnal as a means to avoid humans, all leopard data 

points were categorised as either being on the mountain (N=4216) or off of the 

mountain (N =2063) based on elevation and location. Mean elevation for 

leopards on the mountain was 1173.8 metres compared to 1049.5 metres for 

those off the mountain.  

Included in this analysis were an interaction between the time of day 

(crepuscular, diurnal, and nocturnal) and whether the leopard was on or off the 

mountains, as well as the significant predictor variables from the full spatial 

model - NDVI and slope – but excluding distance from urban areas. Similar to 

the previous spatial model (Model A), random effects were sex and ID.  

Three generalised linear mixed models (GLMM) with a gamma error structure 

and log link function (Bates et al., 2015) were used to assess how activity levels 

varied spatially and temporally. Activity data were transformed by adding 1 to 

all values to fulfil the requirements for a gamma GLMM. All models were run in 

R studio (Version 0.98.1103; RStudio, Inc). 
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 Results 

Model A (temporal) assessed overall activity schedules (H1), how they differed 

by sex (H4), as well as how activity may fluctuate due to seasonal (H2) and 

meteorological (H3) conditions. A likelihood ratio test found the full model to be 

significant over the null model which only included random effects individual ID 

and day number (likelihood ratio test:𝑥2 = 739.29, 𝑑𝑓 = 7, 𝑝 =< 0.0001). As 

predicted (H1), leopards increased their activity at night and significantly 

decreased activity levels during daytime hours (Table 4.1). In addition, while 

day length had no significant effect on activity levels, leopards still responded to 

seasonally fluctuating changes in sunrise and sunset times by shifting activity to 

coincide with such periods. In addition, leopards were significantly more active 

during periods with heavy winds and rain but moved significantly less during 

warmer temperatures (H3). Lastly, male leopards were found to be more 

nocturnal compared to females who were more active during the day (H4) 

(Figure 4.1)

 

Figure 4.1 Boxplots (median, lower and upper quartiles, and one standard error) for female 
(white) and male (grey) leopard activity across the 24 hour cycle. Activity values range from 0 
(low activity) to 255 (high activity). 
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Table 4.1 Coefficients for factors influencing leopard temporal activity from gamma error 
GLMM with leopard temporal leopard activity value as dependent variable. Bold P values 
represents a significant relationship. 

Fixed Effects Estimate Std. Error t Value Pr(>|z|) 

Intercept 3.643 0.232 15.698 <0.001 

Wind speed 0.003 0.001 1.975 0.048 

Rain 0.065 0.015 4.316 <0.001 

Temperature -0.020 0.002 -9.649 <0.001 

Hours from Sunrise/Sunset -1.931 0.103 -18.699 <0.001 

Day Length 0.523 0.432 1.210 0.226 

Sex (male) -0.246 0.107 -2.300 0.021 

Time Period (Nocturnal) 0.139 0.016 8.499 <0.001 

 

The spatial model (Model B) included slope, surface ruggedness, elevation, 

distance from rivers, NDVI, as well as distance from agricultural and human 

settlements as predictor variables and assessed whether leopard activity levels 

vary spatially across the landscape (H5) (Table 4.2). The full model was a 

significant improvement over the null model which only included the random 

effects individual id and sex (likelihood ratio test: 𝑥2 = 102.5, 𝑑𝑓 = 7, 𝑝 =<

0.0001). Of the topographic variables, leopards were significantly more likely to 

decrease activity on steeper slopes compared to relatively flatter areas, yet in 

contrast to my original predictions for hypothesis 5, elevation and surface 

ruggedness had no significant effect on leopard activity levels.  Leopards were 

significantly less active in areas with denser vegetation. Distance from river 

systems and agricultural areas had no effect on activity. Leopards were 

significantly more active close to human settlements.  
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Figure 4.2 Projected leopard activity levels across the western Soutpansberg Mountains. 
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Table 4.2 Coefficients for trends in leopard spatial activity from gamma error GLMM (spatial 
activity values as dependent variable). Bold P values represents a significant relationship. 

Fixed Effects Estimate Std. 

Error 

t Value Pr(>|z|) 

Intercept 4.224 2.349 17.978 <0.001 

Slope -1.004 2.343 -4.286 <0.001 

Surface Ruggedness -7.334 3.831 -0.191 0.848 

Distance from 

Agricultural Areas 

-9.998 2.172 -0.460 0.645 

Distance from Human 

Settlements 

-1.245 3.548 -3.509 <0.001 

Distance from River 

Systems 

1.714 2.901 0.591 0.554 

Elevation 5.764 1.210 0.476 0.633 

NDVI -1.171 1.766 -6.632 <0.001 

 

As Model A showed that leopards in western Soutpansberg were primarily 

crepuscular and Model B demonstrated that focal leopards responded to human 

settlements by increasing activity levels, I assessed if leopard activity schedules 

shifted after they went off the mountains and into human dominated areas. 

Predictor variables included slope, an interaction between time of day and 

whether the animal was on or off the mountain as well as NDVI. A likelihood 

ratio test found the full model to be significant improvement over the null 

model which included slope, NDVI and the random effects individual ID and sex 

(likelihood ratio test:𝑥2 = 128.95, 𝑑𝑓 = 11, 𝑝 =< 0.0001). Leopards increased 

their crepuscular and nocturnal activity while off the mountain and close to 

human dominated areas such as towns, game farms, cattle ranches and 

agricultural areas (Table 4.3). In addition, an interaction between time of day 

and leopard presence (on/off the mountain) suggests that leopards that are 

physically off the mountain were more likely to increase their nocturnal and 

crepuscular activity levels compared to those on the mountain (and at a greater 

distance away from humans).  
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Figure 4.3 Boxplots comparing leopard activity both on (blue) and off (red) the mountain 
(mean (dotted lines) median (50% quantile), lower and upper quartiles, and standard error 
bars. 
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Table 4.3 Coefficients for trends in assessing leopard activity both on and off the mountain 

from gamma error GLMM (leopard activity values as dependent variable). Bold P values 

represents a significant relationship. 

Fixed Effects Estimate Std. Error T Value Pr(>|z|) 

Intercept 3.911 0.1690 23.143 <0.001 

Slope -0.010 0.0020 -5.159 <0.001 

NDVI -1.187 0.1744 -6.807 <0.001 

On Mountain 0.2447 0.0623 3.929 <0.001 

Time of Day: 

Nocturnal 

0.3431 0.0676 5.072 <0.001 

Time of Day: 

Crepuscular 

0.7273 0.0873 8.322 <0.001 

Interaction: Presence 

on Mountain/ Time of 

Day: Nocturnal 

-0.3194 0.0813 -3.925 <0.001 

Interaction: Presence 

on Mountain/ Time of 

Day: Crepuscular 

-0.3235 0.1059 -3.053 <0.001 

 

 Discussion 

Leopards in the western Soutpansberg show fluctuating levels of activity in 

response to environmental and anthropogenic conditions. Temporally, leopards 

in the western Soutpansberg are predominantly crepuscular and more active 

close to sunrise and sunset although males were more nocturnally active than 

females and transient males. In addition, the temporal model showed that 

leopards increased their activity levels during rainy and windy conditions and 

decreased activity when temperatures were higher. A spatial model found that 

leopards altered their activity levels throughout the landscape in response to 

vegetation structure (NDVI), slope, and distance from human settlements. 

Leopards ranging off the mountain and into anthropogenic habitats were more 

active at night compared to individuals that stayed on the mountains.   

Temporally, leopards in the western Soutpansberg displayed primarily 

crepuscular activity and become more active around sunrise and sunset and at 

night and were least active around midday. These results complement data 
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collected from camera traps placed on the mountains which also suggest that 

leopard activity peak at crepuscular and nocturnal hours (Fitzgerald, 2015). 

Although leopards did not shift their activity schedules in response to day 

length, they altered their activity schedule in conjunction with seasonal shifts in 

sunrise and sunset times. Interestingly, these results contrast with the activity 

schedules found in leopards residing in the Cederberg Mountains (South Africa) 

that did not display fluctuating seasonal levels in activity (Martins and Harris, 

2013). It seems likely that by seasonally shifting the time in which they are 

active to align with sunrise and sunset in the Soutpansberg, leopards may be 

able to continue to temporally overlap with the activity levels of their primary 

prey such bushbuck and common duiker (Fitzgerald, 2015) with the former 

prey species also exhibiting primarily crepuscular activity regardless of season 

(Wronski, Apio and Plath, 2006).  These results complement the fluidity found 

in leopard activity patterns from other populations (Jenny and Zuberbühler, 

2005; Bothma and Bothma, 2006). 

Females were more active than males and while all leopards in this study were 

primarily crepuscular, there was variability between the sexes, with females 

being more diurnal than males (Figure 4.1). It is possible that females switched 

to diurnal activity in order to avoid conflict with larger males. Similar temporal 

avoidance has also been recorded in leopards in Bardia National Park, Nepal 

(Odden and Wegge, 2005) where females with relatively small home ranges 

and/or cubs switched their activity patterns to be more active throughout the 

day. Although neither collared female (N=2) was recorded with cubs during the 

study period; the small home ranges for females in the area (mean home range 

size = 18.9. km²) coupled by substantial overlap with males most likely 

increased the chance of encounters between the sexes and therefore, promoted 

avoidance.  

Leopards decreased their activity levels in response to warmer temperatures 

and responded to stronger winds and higher precipitation by increasing their 

activity. The negative relationship found between temperature and activity is 

most likely due to the fact they are less active during the hottest periods in the 

day (noon to late afternoon), something that has been reported for leopards 
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(Martins and Harris 2013) and other felid species including lions (Hayward and 

Hayward, 2007) and lynx (Heurich et al., 2014).  

One possible explanation for why leopards are more active during periods of 

heavier winds and higher precipitation may be due to the fact that both weather 

conditions have the potential to enhance hunting conditions.  As sedentary 

ambush predators, leopards primarily rely on stealth and the element of 

surprise in order to successfully hunt. As such, times with moderate to heavy 

rainfall and stronger wind speeds may be advantageous by masking both 

auditory and olfactory senses in animals (Muñoz, Kapfer and Olfenbuttel, 2014; 

Cherry and Barton, 2017) and so decrease detectability. Such beneficial hunting 

conditions may be enhanced by the fact that leopards’ primary prey (medium 

sizes ungulates) (Hayward, Henschel, O’Brien, Hofmeyr, Balme and G. I H 

Kerley, 2006) ruminate during such conditions to maintain homeostasis 

(Moquin et al., 2010; Cherry and Barton, 2017) and therefore, may be less 

vigilant and more susceptible to predation (Cherry and Barton, 2017). 

In support of hypothesis 5, the structure of the landscape influenced where 

leopards were most likely to be active or inactive. Leopards responded to 

thicker vegetation, heavily sloped areas, and greater distances from human 

features by reducing their activity levels (Figure 4.2). Leopards prefer to 

establish home ranges and utilise areas that are both topographically complex 

and densely forested (Chapter 3) and there are several possible explanations 

for why activity levels also decline in these habitats. 

Previous scat analysis has shown that leopards prefer to hunt forest and thicket 

dwelling species such as common duiker(Silvicapra grimmia), bushbuck 

(Tragelaphus scriptus), vervet monkeys (Chlorocebus pygerythrus) and 

members of Hyracoidea (hyrax) (Stuart and Stuart, 1993; Schwarz and Fischer, 

2006; Chase Grey, 2011). As forests only make up only 9.92% of the area found 

within the home ranges, leopards in my analysis most likely moved between 

forest patches in pursuit of prey.  

Once in forest patches, however, they likely provide sufficient coverage to stalk 

and ambush potential prey while simultaneously minimising energy 
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expenditure. Previous research on accelerometer fitted mountain lions that 

exhibited low acceleration during ‘the pre-kill phase’(i.e. ambushing or waiting 

for prey) ( Williams et al., 2014). As leopards also primarily rely on such 

techniques to hunt and subdue prey, it may be that such low activity levels in 

heavily forested and sloped areas are partially explained by having to remain 

relatively still while hunting in areas that exhibit not only a sufficient amount of 

prey, and hunting coverage.  

Additionally, a common behaviour amongst carnivores is to seek out safe 

habitats as a means to avoid intraguild, intraspecific, and anthropogenic threats 

in order to engage in vital behaviours such as cub rearing or resting (Pettorelli 

et al., 2009; Martin et al., 2010; May et al., 2012; Oriol-Cotterill et al., 2015). As 

leopard activity levels significantly decrease during the hottest part of the day, 

it is also possible that forested and sloped areas provide cooler refuge. While 

these areas may increase hunting success, lower activity levels therein may also 

result from leopards being able to conceal themselves while feeding or resting 

without interruption from larger carnivores (in this case, other leopards) as 

well as anthropogenic factors such as vehicles, humans, and domesticated dogs.  

Such results may also explain why leopard activity levels were significantly 

lower as distances to human infrastructure Increased.Although leopards are 

more likely to be inactive away from man-made structures (both on and off the 

mountain), subsequent analysis showed that leopards that went into 

agricultural, pastoral, and residential areas were significantly more active at 

night compared to those on the mountain (Figure 4.3). Leopards that went off 

the mountain supressed their diurnal activity. 

While it is possible that higher activity levels in low lying areas may be due to 

other factors including moving through less densely vegetated and 

topographically complex terrain, given the relatively high mortality rates found 

in leopards in western Soutpansberg (Williams et al., 2017), as well as the open 

hostility that many land owners have towards leopards (Chase Grey, Bell and 

Hill, 2017), it is conceivable that such activity levels may also reflect leopards 

moving more quickly through an environment that they perceive to be riskier. 

The notion that leopards may be aware of the risks involved with venturing 
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near human settlements is also exemplified by the analysis conducted in my 

previous chapter (Chapter 3) which found that leopards avoided establishing 

home ranges near human settlements despite the fact that such areas would 

otherwise provide suitable habitats.  

Although temporal avoidance of dominant predators through altering activity 

levels has been recorded in smaller carnivore species (Durant, 2000), similar 

strategies have also been seen in larger carnivores inhabiting areas that are 

close to humans (Oriol-Cotterill et al., 2015). As such, the results from this 

analysis show that leopards exhibit similar activity patterns as seen in other 

carnivore populations by reducing diurnal activity levels (while increasing 

nocturnal activity) when in close proximity to humans  (Boydston et al. 2003 

Carter et al. 2015 Ordiz et al. 2011 Valeix et al. 2012). 

Overall, focal individuals that ventured off the mountain (N= 7) did so 

approximately 38% of the time throughout the study period. The fact that these 

leopards did not fully avoid anthropogenic habitats, but simultaneously 

modified their activity levels, suggests that although they perceive such areas as 

risky, the prevalence of both naïve and wild prey may outweigh the cost of 

complete avoidance.  

The use of both GPS collar fixes and accelerometers allowed me to reveal 

complex trends regarding spatial-temporal variability in activity patterns in 

leopards. Having a greater understanding of the variability of activity patterns 

has the potential to not only identify areas that may be seemingly important for 

the focal species, but can potentially explain long term changes in population 

dynamics (Ripple et al., 2014).  My results have the potential to help understand 

the rapid decline in leopards in the Soutpansberg (Williams et al., 2017), but 

also provide suggestions to mediate such a decline. The habitats where leopards 

have lower activity patterns (and are likely to be important rest sites) are the 

same areas where they prefer to establish home ranges (highly vegetated, 

topographically complex areas) that are characteristic of the southern portion 

of the western Soutpansberg Mountains (Chapter 3). Conservation efforts 

should to be prioritised in protecting habitats such as the northern mistbelt 
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forest. By doing so, would not aid in the survivability of leopards but also their 

primary prey.  

Finally, understanding the temporal activity patterns of leopards off the 

mountain has the potential to help reduce human-carnivore interactions 

directly outside of the Soutpansberg Mountains. The results from my analysis 

show that when leopards that go off the mountain they are primarily nocturnal. 

One possible solution to mitigate conflict is to use such findings to assist in 

livestock management. For example, corralling domestic species at night may 

potentially minimise the risk imposed by leopards and other nocturnal 

carnivore species (Chase Grey, Bell and Hill, 2017). This may not only prevent 

livestock losses, yet may also allow for the coexistence between humans, and a 

dwindling leopard population.   
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 Chapter 5: Foraging in Fear: Spatial Variation in 

Range Use, Vigilance, and Perceived Risk in Chacma 

Baboons (Papio ursinus) 
 

Abstract  

Animal space use patterns are influenced not only by resource acquisition but 

also the risk imposed by potential threats. Spatial variation in predation risk 

can lead to behavioural modifications ranging from increased vigilance to 

spatial avoidance to alleviate such risks. With the aid of spatial autoregressive 

models, I determined if perceived risk in chacma baboons was influenced by the 

probability of encountering leopards or intergroup encounters. I also assessed 

whether long term annual and seasonal space use was influenced by both the 

distribution of resources and the probability of encountering threats. Finally, I 

assessed whether vigilance varied spatially in response to not only potential 

threats, but also on the periphery of their home range. Results demonstrated 

that perceived risk in baboons is primarily related to intergroup encounters 

rather than predators. Baboons annually and seasonally modified their range 

use in relation to the probability of intergroup encounters. Vigilance rather than 

avoidance was found to be the main antipredator strategy when faced with the 

probability of encountering leopards. These results highlight that other baboon 

groups, rather than predation have a bigger influence on space use in baboons. 

In addition, I found that baboons use different long term strategies to alleviate 

the risk to baboons imposed by different threats.  

 Introduction 
Non-sedentary animals move throughout their environment (i.e. home range) in 

order to acquire essential resources (i.e. foraging and reproductive 

opportunities) (Mosser et al., 2014). While doing so, animals may utilise their 

spatial memory to safely manage the acquisition of resources while 

simultaneously avoiding the risk associated with predation and/or interspecific 

competition (Fagan et al., 2013). Animals may trade off energy gains from 

foraging in food rich yet potentially risky areas as a means to prevent predation 

(Lima, 1998b).  In addition, animals may invest in costly antipredator 



110 
 

behaviours such as vigilance or alarm calling when traversing through areas 

that are perceived to be dangerous to alleviate risk (Brown and Kotler, 2004; 

Creel and Christianson, 2008; Laundré, Hernández and Ripple, 2010). 

Understanding how animals behaviourally respond under both the risk of 

predation and interspecific competition while simultaneously maintaining 

resource acquisition has the potential to provide valuable information on 

animal decision making processes and to movement ecology more generally.  

Space use patterns are often driven by the distribution of essential resources 

such as food, water, and in some species, the location of refuges such as 

burrows or sleeping sites (Mysterud and Ims, 1998; Manly et al., 2002). In 

addition, space patterns may also be driven by social factors such as the search 

for mates and territorial defence (Burt, 1943; Mills, 1983; Lehmann et al., 2008; 

Markham et al., 2013). Many animal often restrict their movement patterns to a 

distinct area on the landscape that contains the requirements needed to 

maintain fitness levels (i.e. a home range) (Burt, 1943; Powell and Mitchell, 

2012).  

One of the most prominent factors that influences an animal’s space use is the 

variable levels of perceived risk that they experience due to the presence of 

threats, from predators. Coined ‘the landscape of fear’, perceived predation risk 

may not necessarily be homogeneous throughout the landscape yet can be 

viewed as “peaks and valleys”, with some areas considered relatively safer than 

others (Laundré, Hernandez and Ripple, 2010). For example, areas of dense 

vegetation that are beneficial for a hunting predator and so may be perceived as 

riskier compared to areas that provide efficient escape routes and greater 

visibility. Given such risks, prey should choose to forage in areas where risk 

from predation is low, even if that requires a trade off in food abundance or 

quality (Edwards, 1983; Sih, 1984). In contrast, in habitats where the risk from 

predation is relatively constant throughout the landscape and avoidance is near 

impossible, prey may have little choice but to feed at such optimal foraging 

sites, and develop other traits (such as vigilance) to mediate risk (Schmidt and 

Kuijper, 2015). 
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Despite being one of the most well studied mammalian taxa, there have been 

few studies on how perceived risk influences spatial patterns in primates. This 

is especially surprising since most primate species (including the largest) have 

been recorded predated on (Isbell, 1994; Hart, 2007) and the importance that 

predation may have had on primate evolution and behavioural ecology (Isbell, 

1994; Hill and Lee, 1998; Treves, 1999; Boinski, Treves and Chapman, 2000; 

Zuberbühler and Jenny, 2002). 

Willems and Hill (2009) and Coleman and Hill (2014) assessed how perceived 

risk influenced space use by semi-terrestrial vervet monkeys and arboreal 

samango monkeys (Cercopithecus albogularis schwarzi) , respectively, in the 

Soutpansberg Mountains, South Africa. Perceived risk on space use varied 

dramatically between the two species with the perceived risk of arboreal 

predators such as eagles having a greater influence on space use in samango 

monkeys compared to terrestrial predators (Coleman and Hill, 2014) while 

space us in vervet monkeys was negatively influenced by the perceived risk 

from terrestrial predators such as baboons and leopards, with aerial predators 

having no effect. In both cases, the landscape of fear had greater effect on space 

use compared to food availability, highlighting the importance of the landscape 

of fear.  

Ranging throughout most of southern Africa, chacma baboons (Papio ursinus) 

live in large, complex, groups that contain both multiple males and females 

(Barrett and Henzi, 2008). Like other primate species, home ranges in baboons 

are often constrained to areas that contain essential resources such as water, 

food availability, and sleeping sites (Altmann and Altmann, 1973) and home 

range size, as well as day journey length, are dependent on the spatial 

distribution of such resources (Cowlishaw, 1999).  

In addition to the availability of essential resources, several studies have also 

shown that baboon range use may also be affected by predation risk. Cowlishaw 

(1997) found that baboons in Tsaobis Leopard Park, Namibia were more likely 

to forage and engage in activities such as grooming in habitats that are 

perceived to be safer from predation (i.e. greater visibility). In addition, similar 

patterns of habitat avoidance in areas exhibiting lower visibility has also been 
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found in yellow baboons (Papio cynocephalus) in Amboseli National Park, Kenya 

(Altmann, 1974). Such avoidance of areas with lower visibility may likely be 

explained by the fact that baboons are primarily vulnerable to predators (such 

as large felids) that rely on stealth to ambush prey. Although baboons are 

occasionally predated on by lions (Panthera leo) (Busse, 1980), most recorded 

predation events have been by leopards, who not only have the ability to hunt 

baboons during the day, but pose a threat at night due to their ability to access 

sleeping sites (Altmann and Altmann, 1973; Busse, 1980; Cowlishaw, Behaviour 

and Dec, 2015; Matsumoto-Oda, 2015; Isbell et al., 2018). As such, although 

baboons are generally not considered to be a large part of the diet of leopards 

(Hayward, Henschel, O’Brien, Hofmeyr, Balme and G. I.H. Kerley, 2006) (but see 

(Jooste et al., 2013)) they may still pose a great enough threat to be avoided 

(Altmann and Altmann, 1973).  

In addition to both predation and the availability of resources, space use in 

baboons may also be influenced by other groups. Chacma baboons are not 

known to be completely territorial, and as such, home ranges between groups 

have the potential to substantially overlap with one another. Intergroup 

interactions have been shown to more likely occur on home range boundaries 

and in the presence of essential resources (such as food or water) (Cowlishaw, 

1995) and have been observed to vary considerably between tolerance and 

aggression, with some encounters having been fatal (Shopland, 1982).  

Although intergroup encounters often occur in areas exhibiting the presence of 

essential resources, Cowlishaw (1995) found that the quality and availability of 

such resources did not necessarily influence the magnitude of aggression 

between chacma baboon groups in Namibia. Instead, he suggested that 

aggressive and competitive behaviours between different groups (i.e. 

aggression, female herding, and infanticide) may represent male reproductive 

tactics for defending prospective mating opportunities. Kitchen and colleagues 

(2004) found that chacma baboons residing in Okavango Delta (Botswana) 

were more likely to engage in aggressive or competitive intergroup encounters 

when oestrous females were present (Kitchen, Cheney and Seyfarth, 2004) 
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Markham (et al., 2013) found spatial avoidance may act as a strategy to 

minimise reproductive opportunities in competing groups. Avoidance and 

overlap in neighbouring yellow baboon groups in the Amboseli Basin (Kenya) 

varied considerably over different time scales (weekly, bi-weekly, and monthly) 

with baboon groups more likely to overlap with one another when feeding. In 

contrast, the probability of overlap decreases as the numbers of fertile females 

increased (Markham et al., 2013), suggesting that short term avoidance in 

baboons was most likely in response to reproductive strategies than resource 

displacement.  This analysis did not consider, however, how baboons balance 

food acquisition and predator avoidance while simultaneously avoiding the risk 

imposed by other groups. 

Animals have also been found to use vigilance to detect potential threats, with 

the proportion of time an animal spends vigilant reflecting their susceptibility 

to predation (Mooring et al., 2004).  Vigilance has thus been a useful tool in 

assessing perceived risk (Lima and Dill, 1990; S. Lima and Bednekoff, 1999). 

Given that predation risk may vary considerably across habitat types, vigilance 

levels have been found to vary spatially throughout the landscape. Increased 

vigilance levels in response to heightened predation risk have been found in 

numerous mammalian taxon including elk (Creel et al., 2005; Liley and Creel, 

2008), big horn sheep (Ovis canadensis) (Mooring et al., 2004), squirrels (sp.) 

(Arenz and Leger, 2000; Makowska and Kramer, 2007), and even brown bears 

(Ursus arctos) (Nevin and Gilbert, 2005). Increased vigilance has also found to 

vary in prey items in response to the hunting method utilised by the predator. 

For example, Makin (et al., 2018) found that ungulates such as warthog, 

gemsbok, and red hartebeest significantly increased their vigilance levels when 

faced by the risk imposed by ambush predators such as lions compared to 

cursorial predators such as African wild dogs (Lycaon pictus) or cheetahs 

(Acinonyx jubatus). Such variable behavioural responses between predator 

hunting types may be due to the fact that heightened vigilance (and thus early 

detection) may not necessarily be useful when faced with predators that rely on 

chasing and subsequently, ‘testing’ their prey, rather than ambushing (Makin, 

Chamaillé-Jammes and Shrader, 2018). In addition to predation, vigilance levels 

in animals have been shown to increase when faced with intraspecific threats. 
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For example, impala (Aepyceros melampus) have been found to increase their 

vigilance levels towards conspecifics when faced with a perceived change in 

resource abundance (Smith and Cain, 2009). 

Vigilance in primates has been found to serve multiple functions ranging from 

predator detection (Cords, 1995; Rose and Fedigan, 1995; Cowlishaw, 1998; 

Coleman, 2013), intraspecific threat detection (Steenbeek et al., 1999; 

MacIntosh and Sicotte, 2009), to social monitoring (Hirsch 2002; Gaynor and 

Cords 2012). In addition, primate vigilance levels have been shown to also vary 

both vertically and horizontally throughout space. For example, vigilance has 

been shown to decrease when higher in the canopy in brown capuchin monkeys 

(Cebus apella) ( Hirsch 2002), white colobus monkeys (Colobus vellerosus) 

(MacIntosh and Sicotte, 2009), wedge capped capuchin monkeys (Cebus 

olivaceus) (De Ruiter, 1986), and blue monkeys (Cercopithecus mitis) (Gaynor 

and Cords, 2012). Being on the ground exposes primates to threats from 

terrestrial predators such as snakes or felids and may offer fewer escape 

options. Interestingly, De Ruiter (1986) found that wedge capped capuchin 

monkeys scanned less when actually on the ground, which may be due to an 

increase in foraging opportunities.  

Although prey species may be most often at risk from ambush predators in 

areas exhibiting limited visibility (such as increased foliage density), several 

studies show that habitat characteristics may either have no effect (Alberts, 

1994; Hill and Cowlishaw, 2002) or lead to a decrease in primate vigilance 

(Gaynor and Cords, 2012). Although increased vigilance in areas exhibiting 

lower visibility (due presumably to predation risk) is found in other taxa, it has 

been hypothesed that the opposite effect found in many primates may be due to 

the fact that habitats exhibiting greater visibility may also allow primates to 

visually scan more of their environment (Gaynor and Cords, 2012). 

Vigilance levels in primates can be influenced by intergroup relationships 

(MacIntosh and Sicotte, 2009; Busia, Schaffner and Aureli, 2016). Although 

vigilance levels have been recorded to increase during direct interactions 

(MacIntosh and Sicotte, 2009), they also has the potential to increase in areas 

where intergroup encounters are more likely. For example, black and white 
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colobus monkeys are likely to increase their vigilance in areas where 

substantial overlap occurs between groups. (MacIntosh and Sicotte, 2009). They 

also found that the increase in vigilance rates regardless of whether there was 

an encounter or not, suggests that the probability of an interaction alone is 

enough to cause an increase in vigilance (MacIntosh and Sicotte, 2009). 

Additionally, spider monkeys (Ateles geoffroyi) increased their vigilance on the 

periphery of their home range (Busia, Schaffner and Aureli, 2016). In this 

instance, an increase in vigilance may be due to not only the probability of 

encountering other groups, yet also the potential risks associated with traveling 

through relatively unused areas (i.e. predation risk).   

Although Willems (2008) and  Coleman (2013) assessed the landscape of fear in 

vervet and samango monkeys (respectively) by recording and assessing where 

predator specific alarm calls are more likely to be elicited, it should be noted 

that these studies did not assess where the predators are likely to be 

encountered, and if perceived risk in these primates is directly influenced by 

the probability of encountering their predators.  By assessing the spatial 

perception of risk exhibited by the primates alone, they could not determine 

whether such responses are also a reaction to actual risk. Given such 

limitations, I opted to integrate the results pertaining to my previous analysis 

on 3rd order leopard resource selection functions (Chapter 3) to determine 

whether the spatial and behavioural responses exhibited by baboons can be 

explained by the probability of encountering leopards within their home range. 

The incorporation of carnivore data when assessing spatial variation in range 

use and vigilance provides an exciting and important opportunity when 

attempting to address whether perceived risk in primates can be directly 

explained by the probability of directly encountering their primary predator, or, 

whether perceived risk can be explained by other factors.   

 I hypothesised that the probability of encountering leopards (H1) and the 

probability of encountering other baboon groups (H2) would have a significant 

impact on space use of chacma baboons in the western Soutpansberg 

Mountains.  



116 
 

In contrast, I hypothesise that overall, baboon range use will be positively and 

significantly influenced by areas exhibiting higher food availability (H3) but that 

baboons may trade off safety with the abundance of food (H4).  As the western 

Soutpansberg has a seasonal environment with fluctuating levels of food 

availability (Willems, Barton and Hill, 2009), I explore whether the risk-foraging 

trade-off varies seasonally.  

I also hypothesised that vigilance should increase in areas where the probability 

of intergroup encounters increases (H5) as well on the periphery of their home 

range (H6). Finally, I predicted that baboons will behaviourally respond to 

increased predation risk by heightening vigilance levels in areas where the 

probability of encountering leopards increase (H7). 

  Methods 

 Study Site 

Data were collected in the western Soutpansberg Mountains (Limpopo 

Province, South Africa) (central coordinates: 23°06'45.14"S 29°11'37.10"E). 

The Soutpansberg Mountains run roughly 250 km from east to west as well as 

15-60 km from north to south and has a maximum elevation of 1758 metres, 

with the highest peak, Mt. Lajuma, located at the study site (Section 2.2).  

Currently, the only large carnivore species that still reside in the western 

Soutpansberg include the brown hyaena (Hyaena brunnea) and the leopard 

(Chase Grey, 2011), with the latter  having been recorded predating on primates 

including chacma baboons (Chase Grey, Bell and Hill, 2017). 

 Home Range Analyses 

 Data utilised for this analysis derived from a habituated chacma baboon group 

between the years 2014 and 2017. I used coordinates that were collected every 

twenty minutes on Garmin GPS devices by Primate Predator Project (PPP) staff 

and assistants before every behavioural scan for all home range analyses.  

Before calculating home ranges for each year, all individual scan points 

(N=6890) were checked for geographical errors (i.e. individual points that were 

clearly out of range). Following, Local Convex Hulls analysis (T-LoCoH) (Lyons, 

Turner and Getz, 2013a) was used to calculate home range and space use 
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intensity for each year individually at 99% isopleths. LoCoH analysis was 

chosen over kernel density estimation (KDE) for this specific analysis due to its 

superior ability to not only define hard boundaries (such as cliffs), but also to be 

able to better handle clumped or overlapping points (Ryan, Knechtel and Getz, 

2006; Getz et al., 2007; Scull et al., 2012; Signer et al., 2015). These were 

characteristic of the dataset due to repeated scans at common locations such as 

sleeping sites.  

The a (Adaptive) method was employed for the construction of home ranges 

due to its ability to construct smaller hulls in clustered regions (Getz et al., 

2007; Lyons, Turner and Getz, 2013a, 2013b), which in turn provides a more 

comprehensive output in areas that are utilised more frequently.  

Utilisation distribution polygons were uploaded into ArcGIS (10.3.1) and 

transformed into yearly rasters.  Values were inverted to ensure higher values 

reflected intensively used areas (Appendix 4; Figures S4.5 and S4.8) and then 

the cell statistics tool in ArcGIS was used to combine all yearly UDs thus 

allowing for the creation of a raster which represents the utilisation distribution 

for focal baboons throughout the entirety of the study period (Figure 5.1). The 

creation of seasonal utilisation distributions used similar methods by 

combining May to August for winter and November to January for summer) 

(Appendix 4; Figures S4.9 and S4.10). 
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Figure 5.1 Annual utilisation distribution of focal baboon group between 2014-2017. 

Table 5.1 Annual information regarding home range size and number of scans per year. 

Year Start/End 

Dates 

Number of 

Scans 

Furthest Distance 

Between Points 

(metres) 

99% Home Range 

Size (square 

kilometres) 

2014 15-04-2014 to 

13-12-2014 

950 9078 14.76 

2015 21-01-2015 to 

22-10-2015 

1403 8254 13.42 

2016 06-01-2016 to 

17-11-2016 

2486 10487 17.29 

2017 13-01-2017 to 

21-09-2017 

2051 7025 14.25 
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 Landscapes of Fear 

Although chacma baboons do not necessarily make predator-specific alarm 

calls, baboons do exhibit variation in alarm call type depending on age and sex 

(Fischer, Hammerschmidt, et al., 2001; Fischer et al., 2004). For example, 

females (and juveniles) elicit high shrill barks when encountering predators 

(regardless of the predator species) (Fischer, Hammerschmidt, et al., 2001), 

whereas males respond by producing loud two-syllable barks known as 

‘wahoos’ (Fischer et al., 2002). In addition, the ‘wahoo’ call produced by males’ 

functions not only as an anti-predator defence, but also as a response to intra 

and intergroup aggression and competition between other males. While alarm 

calls are often produced during direct encounters (Fischer et al., 2004; Kitchen, 

Cheney and Seyfarth, 2004), several studies have found that baboons, like other 

primate species (Willems, Hill and Willems, 2009; Coleman and Hill, 2014) are 

also likely to produce alarm calls while in areas that are perceived to be riskier 

(Altmann and Altmann, 1973; Cowlishaw, 2010). As a result, it is possible to 

generate a landscape of fear for baboons based off on vocalisations to assess 

whether perceived risk influences spatial distribution.   

Both alarm calls and wahoos deriving from adult baboons collected by PPP staff 

and assistants during the study period (15-04-2014 to 20-09-2017) were used 

generate the risk maps. Alarm calls and wahoos were first visually inspected for 

any geographic or data entry errors and then combined for each year. All alarm 

calls and wahoos that were directly prompted due to encountering 

domesticated dogs (Canis lupis familiaris) and vehicles were omitted from this 

analysis. Alarm calls and wahoos were combined into the same dataset because 

it was generally not possible for the observer to determine the exact cause of 

the call and any alarm call, regardless of the specific context, can be interpreted 

as a measure of risk. 

Gaussian kernel density estimates (KDEs) were used to assess the yearly 

distribution of alarm calls in Geospatial modelling environment (Beyer, 2012). I 

used the PLUGIN bandwidth (Gitzen, Millspaugh and Kernohan, 2006) since it 

not only provided more reasonable and consistent outputs across all four years 

by not over or under smoothing, but has also been shown to outperform LSCV 
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in studies where points are very clustered (Gitzen, Millspaugh and Kernohan, 

2006; Walter et al., 2011; King et al., 2016; Tri et al., 2016) or on the periphery 

(McGeachy, Hamr and Mallory, 2017). Using the raster calculator tool in ArcGIS, 

yearly KDEs were divided by their corresponding utilisation distributions in 

order to create annual landscapes of fear. Finally, the cell statistics tool in 

ArcGIS was used merge all yearly landscapes of fear while retaining the mean 

for overlapping areas in order to obtain a layer that represented perceived risk 

over the study period (Figure 5.2).  

 

Figure 5.2 Map representing the annual probability for chacma baboons to elicit vocalisations 
throughout their home range. 

 Intergroup Encounters 

Intergroup encounters recorded ad libitum from 2014-2017 (N=108) by PPP 

staff along with the utilisation distribution were used to create a spatial layer 

that represented the probability of an intergroup encounter.  All recorded 

intergroup encounters were inspected for errors, and then uploaded by year 

into GME. I chose the PLUGIN bandwidth for the creation of KDE’s due to 

relatively small sample sizes and several instances of point clustering (Gitzen, 

Millspaugh and Kernohan, 2006; Walter et al., 2011; King et al., 2016; Tri et al., 

2016). Each annual intergroup KDE was divided by their corresponding 

utilisation distribution to create annual intergroup probability layers. Lastly, all 
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annual intergroup probability layers were merged with the cell statistics tool 

within ArcGIS to create a probabilistic landscape of intergroup encounters that 

encompassed the entirety of the study period while simultaneously retaining 

the mean for all overlapping years (Figure 5.3). These same methods were also 

utilised for the creation of seasonal intergroup encounter layers (Appendix 4; 

Figures S4.11 and S4.12).  

 Leopard Resource Selection Functions (RSFs) 

In chapter 3, I assessed the probability of occurrence (RSF) for leopards within 

the western Soutpansberg on three different spatial scales: where leopards are 

likely to establish home ranges (2nd order RSF), where they are likely to occur 

within their home ranges (3rd order RSF), and where they are likely to hunt and 

kill their prey (4th order RSF) (Johnson, 1980). The projection from the 3rd 

order RSF was selected for the current analyses as all of the leopards utilised in 

the study shared overlapping home ranges with the focal baboon group, and as 

a result, areas preferred by such individuals on a localised scale were also most 

likely to also represent areas where baboons are more likely to encounter 

leopards.  

Third order resource selection functions were created through a used/available 

design where collared leopard GPS fixes (N= 7576) were paralleled to an equal 

number of generated points that were randomly distributed throughout each 

individual home range (Section 3.2.5). The top candidate 3rd order RSF model 

was selected by AIC through the use of the Mumin package in R (Barton, 2015) 

with normalized difference vegetation index (NDVI) and distance from human 

settlements having positive and significant effects on the probability of leopard 

occurrence. The raster calculator (ArcGIS) was used to calculate and spatially 

project the top 3rd order resource selection function model (Figure 5.3). To 

improve visual interpretation, linear stretching was applied to the resulting 

raster projection and were scaled to values between 0 and 1 (Johnson, Seip and 

Boyce, 2004). See chapter 3 for further details.  
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Figure 5.3 Risk maps representing the probability of encountering other baboon groups or 
leopards. 

 Environmental Variables 

Waterway data were created with the aid of the Optimized Pit Removal Tool 

extension (Centre for Research in Water Sources, Austin, TX) and then 

converted into a Euclidean distance raster in ArcGIS. (Figure 5.4). Sleeping sites 

(N= 34) recorded by PPP staff and assistants were uploaded as point shapefiles 

in ArcGIS and the Euclidean distance tool in ArcGIS was used to create distance 

from sleeping site layers. (Figure 5.4)  

Phenological and vegetation quadrat data collected by PPP staff and assistants 

between 2014 and 2017 were used to assess fruit availability throughout the 

entirety of the baboons’ home range.  Vegetation quadrat data (N= 905) 

consisted of randomly generated points that were distributed in an area that 

overlapped with all three diurnal primate species (baboons, samangos, and 

vervets). Vegetation sampling in 5m x 5m quadrats collected visibility, number 

of trees and saplings and percentage cover. All tree species found within the 

quadrat were identified, along with their corresponding DBH (diameter at 

breast height), height, and crown diameter measurements.  
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Only tree species constituting 5% or more of the baboons’ diet were included in 

analysis. Given the small number of plant species included at this threshold on 

an annual basis (N= 4), I also included all species consumed in winter and 

summer which exceeded the threshold resulting in 12 species overall.   

 A simple linear regression was used to determine a correlation between crown 

height with average fruit availability for each tree species deemed important for 

consumption. Crown height was deemed to be an important predictor in 

determining whether trees bore fruit or seeds across taxa, and scatterplots 

were created in GGplot2 (Wickham, 2009) as a means to visually explore cut off 

points, with trees below a certain threshold being excluded from averaging total 

food availability. Trees that did not bear fruit were assigned a zero when 

applied towards food availability across all habitats.  

All fruit and seeds from food bearing trees averaged on an either an annual 

(throughout the study period) or seasonal level. Fruit and seed diameters were 

obtained from Palgrave (1996) and the volume of an ellipsoid was used in order 

to obtain food volume per tree species:  

𝑉 =
4

3
𝜋 𝑎𝑏𝑐 

In this instance, 𝑉 represents the volume where 𝑎, 𝑏 and 𝑐are the radiuses of the 

fruit or seed (obtained through the diameters). The formula used for flowers 

represented the volume for a half ellipsoid: 

𝑉 =
2

3
𝜋 𝑎𝑏𝑐 

Fruit and flower availability across species were calculated by multiplying fruit 

volume by average number of fruit (or flowers) on either an annual or seasonal 

level, whereas seed availability was calculated by multiplying the average seed 

pod volume (seed volume multiplied by average number of seeds in a pod) by 

the average number of seeds per tree taxon. 

Finally, the food availability data for highly consumed species were attached to 

all corresponding tree species (at or above the food bearing threshold) that 
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were recorded in the vegetation quadrats and summed to provide overall food 

availability per quadrat.  

All quadratic points with assigned food values were then synced with habitat 

types derived from a categorical land coverage map of South Africa created by 

GeoTerraImage (Inc.) and accessed through the South African Spatial Data 

Infrastructure (Dept. of Rural Development and Land Reform, Republic of South 

Africa) website at  http://www.sasdi.net/) that covers the entirety of the study 

site. Food availability for the study area (on both an annual and seasonal level) 

was finally obtained by averaging all quadratic points (with food availability 

values attached) found within each specific habitat type (Appendix 4; Figures 

S4.2-S4.4 and Tables S4.1-S4.3). 

 

Figure 5.4 Annual distribution of food availability, water sources and sleeping sites. 

 Spatial Vigilance 

Vigilance data were collected through instantaneous scan sampling by PPP staff 

and assistants between 2014 to 2017 (Section 2.4.2). For this analysis, vigilance 

was defined as any form of ‘looking’ where the focal baboon could visually 

detect stimuli from a distance, regardless of whether it was a potential threat or 

not (Allan and Hill, 2018). In contrast, non-vigilance in this analysis refers to 

when eyes are closed as well as any kind of looking where vision is clearly 

obstructed or visual stimuli from a distance cannot be observed because the 

animal is paying attention to a specific object (i.e. looking at a food item or 

http://www.sasdi.net/
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paying attention to a grooming partner). Overall ‘looking’ was selected to be the 

most appropriate indicator of vigilance for this analysis compared to traditional 

definitions (pre-emptive and reactionary) since the act of looking may be 

equally as efficient at detecting threats compared to being actively vigilant 

(Treves, 2000; Allan and Hill, 2018). 

All scan data were manually inspected for any kind of geographical or data 

collection errors. Given sex differences in vigilance (Cheney and Wrangham, 

1987; Cowlishaw, 1998), I used vigilance data from adult females only for this 

analysis (Hill and Cowlishaw, 2002). I used the percentage of female baboons 

vigilant per scan by dividing the number of vigilant individuals by the total 

number of scans (De Ruiter, 1986; Isbell and Young, 1993b). Only scans that 

contained five females or more were included into the final vigilance dataset so 

that proportions were not biased by values derived from small sample sizes. 

 Statistical Analysis 

Five models (through four datasets) (Appendix 4; Table S4.4) were used to fully 

address landscapes of fear and vigilance in baboons. These four datasets varied 

primarily by variables utilised for analysis. 

The first model (Model A; dataset A) was used to assess if the perceived risk 

(through alarm calls), as well as the distribution of essential resources were 

primary drivers of range use in baboons in the western Soutpansberg 

Mountains. 

The second model (Model B; dataset A) assessed if perceived risk in baboons 

(through alarm calls) was driven by either intergroup encounters or the 

probability of encountering leopards. Model C assessed if predation risk, 

intergroup encounters, and food availability influenced range use in baboons.  

As the western Soutpansberg experiences seasonal fluctuations in food 

availability, I assessed whether specific variables influenced range use during 

the peak of either summer (Model D; dataset B) or winter (Model E; dataset C) 

months. For each seasonal model, 1000 points were randomly generated across 

the home range. Food availability, as well as distance from sleeping sites and 

water, were used to assess if baboons seasonal range is driven by essential 
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resources. Additionally, the probabilities of encountering leopards as well as 

other groups were included in order to assess if seasonal range use was 

influenced by the avoidance of specific threats. The last model (Model F) 

consisted of proportion of individuals vigilant and was used to assess whether 

baboons exhibited spatial variation in vigilance. 

For each model, 1000 points were randomly generated across the home range. 

Then, food availability as well as distance from sleeping sites and water were 

used to assess if baboons’ seasonal ranges were driven by essential resources. 

Moreover, probabilities of encountering leopards as well as other groups were 

included in order to assess if seasonal range use was influenced by avoiding 

specific threats. 

Spatial autocorrelation amongst variables can potentially lead to problems such 

as Type 1 Errors, when conducting analyses that have a spatial component 

(Dormann et al., 2007). As such, all variables were independently inspected 

with the use of the univariate Moran’s I tool in Geoda (Anselin, Syabri and Kho, 

2006) to determine if spatial autocorrelation was present (Moran, 1950). 

Moran’s I ranges between -1 and +1 with values of or near -1 representing 

negative spatial autocorrelation (perfect dispersion), value of or near 0 

represents random dispersion (Ripa, 2000) and values close or at 1 signify high 

autocorrelation with perfect clustering (Ripa, 2000). All the variables displayed 

some level of spatial autocorrelation (Appendix 4; Table S4.4). and as such, 

models that accounted for spatial structure were favoured over traditional 

methods. 

Spatial autoregressive models were used for models A-D to accommodate the 

spatial dependence found within and between observations (LeSage, 2008). 

Spatial autoregressive models are used to control for spatial auto correlation by 

taking the relationships between neighbouring values (through spatial weights) 

as well as a spatial autocorrelation parameter (𝜌) into account, thereby 

allowing for spatial independence in the model residuals. Spatial autoregressive 

models have been shown to outperform traditional regression models which 

may not be able to control for spatial autocorrelation, thus leading to 

ambiguous results (Pace and LeSage, 2010). 
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To account for spatial autocorrelation, row standardised weight matrices (𝒲) 

set at the min-max distance (largest distance between neighbours) between all 

points were created in Geoda for each separate dataset. Inverse-distance based 

weights were specifically chosen over traditional distance based weight 

matrices due to the assumption that as distance increases, the similarity 

between individual points decreases (Thornton, Running and White, 1997).  

After the construction of spatial weights, ordinary least squares (OLS) models 

were to assess the relationship between chosen predictors and response 

variables in a non-spatial context (Anselin, 1988). Although OLS models do not 

have a spatial component, they are typically regarded as a first step in any 

spatial analyses (Anselin, 1988).  

Residuals from all OLS models were tested for autocorrelation using Moran’s I 

(Appendix 4; Table S4.4). The presence of autocorrelation in the residuals for all 

OLS models suggested that a model that accounted for spatial structure would 

be more appropriate compared to standard regression. 

I hypothesized that predictor values would only influence the response at a 

localised level, and as a result, the effect of Χ will only influence the values of 

neighbouring points of Y (local spillover effect) (LeSage, 2014). For example, a 

spatial point that is attributed to the higher probability of encountering 

leopards or other groups should not necessarily influence alarm call values at 

all other locations (global spillover). However, it is likely that a spatial point 

that is attributed to a higher probability of encountering threats may influence 

the alarm call patterns of neighbouring points. 

To account for both spatial autocorrelation and local spillover between 

neighbouring points, a hierarchal modelling approach was utilised through the 

construction and analysis of three spatial models. Following Lesage and Pace 

(2014; 2009), these were the spatial lag of X model (SLX), spatial error model 

(SEM), and spatial durbin error model (SDEM). 

The simplest of these models (SLX), can be considered to be an extension of a 

simple linear regression with the inclusion of spatially weighted independent 
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variables (𝑤𝓍𝜃)(Lacombe, Holloway and Shaughnessy, 2014) and is expressed 

as: 

𝑦 = 𝑋𝛽 + 𝑤𝓍𝜃 + 𝜀 

Since the SLX model contains a spatial lag term, coefficients cannot be inferred 

as effects on the dependent variable. Instead, to account for autocorrelation, 

direct, indirect, and total effects are used to interpret results. Direct effects 

simply represent the impact on a predictor on its outcome (and are like 

traditional regression interpretation), whereas the total effect is the change in 

response to the direct impact and neighbour spillovers. Finally, indirect 

(spatial) impacts represent the spatial spillover between neighbours, and 

represents the difference between the total and direct impacts (LeSage and 

Pace, 2009). 

An SEM model follows the formula derived from an OLS regression with the 

inclusion of vector of autocorrelated disturbance (u), an error term  (ε) as well 

as autocorrelation parameters (𝜆) for the error (Wegener, 2014) and is 

expressed as: 

𝑦 = 𝑋𝛽 + 𝑢 

𝑢 = 𝜆𝑊𝑢 + 𝜀 

Spatial error models assume that spatial dependence can be attributed to the 

error term (Wu) within the model, which is most likely to occur if spatial 

autocorrelation cannot be directly explained by the predictor variables 

included.  

Finally, the spatial durbin error model (SDEM) incorporates spatial dependence 

in predictor variables (but not in the response) by including a spatial lag in the 

error term. The SDEM model is expressed as: 

𝑦 =  𝑋𝛽 +  𝑊𝑥𝜃 +  𝑢 

𝑢 =  𝜆𝑊𝑢 +  𝜀 

Like the SLX model, the SDEM model is considered appropriate for localised 

analyses by incorporating the term 𝜃, and thus allowing for localised spillover 
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effects that only impact immediate neighbouring points (LeSage and Kelley 

Pace, 2014). However, unlike the SLX model (which only includes spatially 

lagged predictor variables (𝑊𝑥𝜃), the SDEM model also includes spatially 

lagged error terms (𝑊𝑢) (Gaughan, Gravelle and Siciliani, 2015; Burridge, 

Elhorst and Zigova, 2016).  

 

 Model Selection for Datasets A-D 

Several decision-making processes were undertaken in order to determine 

whether the appropriate model should be reduced from a SDEM to a simpler 

spatial model (SEM, SLX). 

Akaike Information Criterion (AIC) was used to rank all models created. In all 

cases, higher order spatial models such as the spatial error models and the 

spatial durbin error model had lower AIC compared to the simpler SLX model, 

as well as the non-spatial OLS. Following LeSage and Pace (2009), Likelihood-

ratio tests were used to assess if top models (through AIC) should be restricted 

to a simpler model (Table 5.2). In all instances, a spatial durbin error model or a 

spatial error model were found to be the most appropriate for analysis. 

Table 5.2 AIC values for all competing models per analysis. 

Analysis OLS SLX SEM SDEM 

Vocalisations (Model A) -192.70 -192.49 -1271.43 -1282.94 

Perceived Risk (Model B) -936.26 -992.21 -2489.10 -2500.71 

Annual Space Use (Model C) -902.53 -970.09 -2358.87 -2397.86 

Summer Space Use (Model D) -779.69 -878.00 -3244.55 -3246.60 

Winter Space Use (Model E) -1298.75 -1308.98 -3109.51 -3149.73 

Vigilance (Model F) 542.57 525.55 474.52 473.82 

 

Then, the distributions of residuals for all top models were visually inspected 

for clustering in R studio. A Breusch-Pagan test was used to determine in model 

residuals had heteroskedasticity. While all models still exhibited some 

heteroskedasticity, this should not lead to bias in the coefficients (Romero and 

Burkey, 2011, Burkey, personal communication) and as a result, did not 

influence model selection.  
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 Results 

AIC values for all candidate models for assessing how perceived risk and 

resource distribution influenced space use (Model A) identified that the SDEM 

was the top candidate model compared to nested spatial models (SEM and SLX), 

as well as the non-spatial model (OLS). A likelihood ratio test confirmed that the 

SDEM was preferred over the restricted SEM model (likelihood ratio = 

−19.607 , 𝑑𝑓 = 4, 𝑝 = 0.000). As predicted, results derived from total impacts 

show a significant negative relationship between range use and the vocalisation 

landscape of fear (Table 5.3). Overall range use was not influenced by food 

availability, but baboons did choose to range within proximity to sleeping sites 

and water sources.  

Table 5.3 Coefficients for baboon space use (as the dependent variable) in conjunction with 

perceived risk and distribution of sources (Model A; SDEM model). 

Effects Estimate Standard 

Error 

Z value Pr(>|z|) 

Direct 

Landscape of Fear 

Water Availability 

Sleeping Site 

Food Availability 

 

-2.711 

6.749 

-1.271 

2.347 

 

2.306 

3.395 

3.672 

3.431 

 

 

-11.756 

-1.987 

-3.461 

0.068 

 

<0.001 

0.046 

<0.001 

0.945 

Indirect 

Landscape of Fear 

Water Availability 

Sleeping Site 

Food Availability 

 

-2.471 

-2.647 

-2.871 

9.323 

 

0.007 

0.000 

4.687 

0.000 

 

-3.519 

-2.611 

-0.612 

0.080 

 

<0.001 

0.009 

0.540 

0.936 

Total 

Landscape of Fear 

Water Availability 

Sleeping Site 

Food Availability 

 

-5.183 

-3.322 

-1.558 

1.167 

 

0.007 

0.000 

2.987 

0.000 

 

-6.579 

-3.010 

-5.216 

0.085 

 

<0.001 

0.002 

<0.001 

0.932 

 

AIC scores found the SDEM model to be the top candidate model for 

determining how perceived risk (through alarm calls) are influenced by the 
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probability of encountering threats (Model B). In addition, a likelihood ratio test 

confirmed that the more complex SDEM model was preferred over the nested 

SEM (likelihood ratio test:𝑥2 = 15.516, 𝑑𝑓 = 2, 𝑝 = 0.000).  The total impacts 

from the SDEM model show that the vocalisation landscape was positively 

related to intergroup encounters but there was no relationship with the 

probability of encountering leopards (Table 5.4). The direct and indirect 

impacts showed that baboons are not only likely to experience heightened 

perceived risk directly in areas where intergroup encounters are likely to occur 

(direct impact) but are also likely to do so when they are nearby such areas 

(indirect impacts).  

Table 5.4 Coefficients for factors that influence the distribution for eliciting alarm calls (alarm 
call values as the dependent variable) (Model B; SDEM model). 

Effects Estimate Standard 

Error 

Z value Pr(>|z|) 

Direct  

Leopard 

Intergroup 

 

-0.008 

0.105 

 

0.608 

0.004 

 

-0.133 

24.329 

 

0.893 

<0.001 

Indirect 

Leopard 

Intergroup 

 

-0.253 

0.054 

 

0.179 

0.014 

 

-1.407 

3.801 

 

0.159 

<0.001 

Total 

Leopard 

Intergroup 

 

-0.261 

0.160 

 

0.206 

0.016 

 

-1.263 

9.861 

 

0.206 

<0.001 

 

Both AIC as well as a likelihood ratio test against the next candidate model 

(likelihood ratio test:𝑥2 = −48.99, 𝑑𝑓 = 5, 𝑝 = 0.00000000223), found the 

SDEM to be the most appropriate fit for determining how annual space use is 

influenced by resource distribution and the probability of encountering threats 

(Model C) (Table 5.5). Total impacts complement the two previous analyses and 

show that baboon range use is negatively and significantly influenced by the 

probability of encountering other groups while the probability of encountering 

leopards had no effect. Food availability had no effect on annual range use, but 
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baboons were more likely to range in proximity to both sleeping sites and water 

sources.    

Table 5.5 Coefficients for variables that influence annual space use (annual space use value as 

the dependent variable) in chacma baboons (Model C; SDEM model). 

Effects Estimate Standard 

Error 

Z value Pr(>|z|) 

Direct 

Leopard 

Intergroup  

Water Availability 

Sleeping Site 

Food Availability 

 

-0.050 

-0.036 

-0.000 

-10.011 

0.000 

 

0.045 

0.002 

0.000 

3.869 

0.000 

 

-1.100 

-14.619 

-2.654 

-2.587 

1.121 

 

0.271 

<0.001 

0.007 

0.009 

0.262 

Indirect 

Leopard 

Intergroup 

Water Availability 

Sleeping Site 

Food Availability 

 

-0.179 

-0.048 

0.000 

4.905 

0.000 

 

0.144 

0.008 

0.000 

4.905 

0.000 

 

-1.240 

-5.515 

-2.823 

-1.259 

0.943 

 

 

0.214 

<0.001 

0.004 

0.207 

0.345 

Total 

Leopard 

Intergroup 

Water Availability 

Sleeping Site 

Food Availability 

 

-0.229 

-0.085 

-0.000 

-16.187 

0.000 

 

0.170 

0.010 

0.000 

3.080 

0.000 

 

-1.345 

-8.506 

-3.396 

-5.255 

1.064 

 

0.178 

<0.001 

<0.001 

<0.001 

0.287 

 

AIC scores for all candidate models found that an SDEM (Model D) performed 

better than nested spatial models (SEM and SLX) and non-spatial models for 

assessing space use in summer months. In addition, a log likelihood test found 

the SDEM to outperform the nested SEM (likelihood ratio test:𝑥2 =

−12.05, 𝑑𝑓 = 5, 𝑝 = 0.03411) (Table 5.6). Total impacts for Model D found that 

summer range use in baboons was significantly negatively influenced by 

intergroup encounters, with distance to sleeping sites also significant.  



133 
 

Probability of encountering leopards, food availability and distance to water 

sources had no effect on baboon range use in summer.  

Table 5.6 Coefficients for variables that influence summer space use (summer space use values 
as the dependent variable) in chacma baboons (Model D; SDEM model). 

Effects Estimate Standard 

Error 

Z value Pr(>|z|) 

Direct 

Leopard 

Intergroup  

Water Availability 

Sleeping Site 

Food Availability 

 

0.015 

-0.164 

-0.000 

-8.020 

0.000 

 

 

 

0.024 

0.006 

0.000 

2.637 

0.000 

 

0.626 

-23.553 

-1.707 

-3.041 

0.748 

 

 

0.531 

<0.001 

0.087 

0.002 

0.453 

Indirect 

Leopard 

Intergroup 

Water Availability 

Sleeping Site 

Food Availability 

 

0.044 

-0.194 

-0.000 

-6.248 

0.000 

 

0.085 

0.019 

0.000 

4.799 

0.000 

 

0.514 

-1.544 

-0.927 

-1.301 

1.980 

 

 

 

 

0.606 

0.122 

0.353 

0.192 

0.047 

Total 

Leopard 

Intergroup 

Water Availability 

Sleeping Site 

Food Availability 

 

0.059 

-0.194 

-0.000 

-14.268 

0.000 

 

0.098 

0.021 

0.000 

3.900 

0.000 

 

0.607 

-8.865 

-1.371 

-3.658 

1.868 

 

0.543 

<0.001 

0.170 

<0.001 

0.061 

 

AIC scores found the SDEM to be the parsimonious model for winter range use 

(Model E). In addition, a likelihood ratio test found the SDEM to be more 

appropriate for interpretation compared to the nested SEM (likelihood ratio 

test:𝑥2 = 50.221, 𝑑𝑓 = 5, 𝑝 =< 0.000) (Table 5.7). As predicted, baboon range 
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use in winter months was significantly and negatively influenced by the 

probability of encountering other groups. Baboons also chose to utilise areas in 

winter months with a greater abundance of food. In addition, range use in 

winter was still influenced by distance to sleeping sites, but not by water.  

Table 5.7 Coefficients for variables that influence winter space use (winter space use values as 
the dependent variable) in chacma baboons (Model E; SDEM model). 

Effects Estimate Standard 

Error 

Z value Pr(>|z|) 

Direct 

Leopard 

Intergroup  

Water Availability 

Sleeping Site 

Food Availability 

 

0.015 

-0.109 

-0.000 

-12.587 

0.000 

 

 

 

0.030 

0.003 

0.000 

3.191 

0.000 

 

 

0.512 

-27.641 

-0.688 

-3.943 

0.112 

 

 

 

0.608 

<0.001 

0.491 

<0.001 

0.910 

 

Indirect 

Leopard 

Intergroup 

Water Availability 

Sleeping Site 

Food Availability 

 

-0.026 

-0.050 

-0.000 

2.506 

0.001 

 

 

0.142 

0.009 

0.000 

6.336 

0.000 

 

 

-0.188 

-5.220 

-1.364 

0.395 

2.548 

 

 

 

0.850 

<0.001 

0.172 

0.692 

0.010 

Total 

Leopard 

Intergroup 

Water Availability 

Sleeping Site 

Food Availability 

 

-0.011 

-0.159 

-0.000 

-10.080 

0.001 

 

 

 

0.153 

0.011 

0.000 

5.117 

0.000 

 

-0.071 

-14.405 

-1.529 

-1.969 

2.340 

 

 

0.942 

<0.001 

0.126 

0.048 

0.019 

 

AIC as well as a likelihood ratio test, found the spatial error model (SEM) to be a 

better fit over the more complex SDEM (likelihood ratio test:𝑥2 =
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−6.6922, 𝑑𝑓 = 3, 𝑝 = 0.082) for determining if spatial vigilance is influenced by 

the probability of encountering potential threats as well as on the periphery of 

the home range (Model F; Table 5.8). As predicted, there was a highly significant 

and positive relationship between baboon vigilance and the probability of 

occurrence of leopards. In addition, baboons were significantly more likely to be 

vigilant in areas where intergroup encounters are likely to occur. Finally, 

baboons were found to be more vigilant on the periphery of their home range.  

Table 5.8 Coefficients for variables that influence spatial variation in vigilance patterns 
(vigilant values as the dependent variable) (Model F; SEM model). 

Fixed Effects Estimate Std. Error z Value Pr(>|z|) 

Intercept 0.258 0.055 4.680 <0.001 

Leopard  0.326 0.064 5.086 <0.001 

Intergroup 0.054 0.016 3.313 <0.001 

Utilisation Distribution -0.080 0.032 -2.501 0.012 

 

 Discussion 

Results from spatial autoregressive models showed that perceived risk was the 

most important factor to influence range use of baboons within the western 

Soutpansberg. Such perceived risk was primarily driven by intergroup 

encounters rather than the probability of encountering leopards, however, such 

that range use in baboons is driven more by social drivers. These factors 

outweighed food availability on an annual basis. A seasonal analysis found that 

although range use throughout both seasons was negatively influenced by 

intergroup encounters, baboons select areas with high food availability in 

winter. Interestingly, although vigilance did increase in areas where intergroup 

encounters are more likely to occur, as well as on the periphery of their home 

range, results show that predation risk (the probability of encountering a 

leopard) had the biggest influence on spatial vigilance in baboons. Together, 

these results show that chacma baboons adapt different behavioural strategies 

as a response to separate threats that are found throughout the landscape.  
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The landscape of fear had the biggest effect on space use, with baboons avoiding 

areas where they are more likely to elicit alarm calls. These results directly 

contrast those found by both Willems (2007) and Coleman (2013) who found 

that perceived risk in samango (Cercopithecus albogularis schwarzi)  and vervet 

monkeys were primarily driven by the probability of encountering their 

predators and not by intergroup encounters.  

Although baboons do not make predator-specific alarm calls, they do elicit 

different vocalisations in specific contexts, with female baboons shown to 

produce alarm calls that range on a continuum.  Harsh (towards the end of this 

continuum and defined as louder and shrill-like) alarm calls were most often 

elicited under the direct risk from predation, and usually only when the 

predator was in proximity (Fischer, Hammerschmidt, et al., 2001). In addition, 

harsher alarm calls (compared to contact calls) were rarely induced under 

natural conditions. (Fischer, Metz, et al., 2001). Combined, these factors may 

explain why alarm calls were not only rarely recorded (compared to wahoos), 

yet also why the probability of a predator encounter did not influence the 

elicitation of such vocalisations. In contrast, male baboons elicit loud 

vocalisations described as ‘wahoos’, which have been hypothesised to have 

been evolved to be projected from great distances (Fischer et al., 2002). 

Although wahoos are elicited in response to predators, they are also used far 

more often during competitive encounters (direct or indirect) between males 

(Fischer et al., 2002).  During long distance communication, wahoos have been 

shown to relay information regarding not only how far away the call is coming 

from, yet also the physical condition of the caller (Fischer et al., 2004).  

Range use in baboons is primarily driven by avoiding intergroup encounters 

rather than predation. These results contrast with previous work conducted on 

range use in primates within the western Soutpansberg. For example, Coleman 

and Hill (2014) found that perceived risk of aerial predators such as eagles has 

the biggest influence on space use in semi-arboreal samango monkeys 

compared to intergroup encounters as well as potential terrestrial predators. In 

addition, although Willems did not directly assess if between group competition 

influences space use in the more terrestrial vervet monkeys, he did find that 
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vervets actively avoided areas that were perceived to be riskier due to baboons 

or leopards (but not eagles) (Willems and Hill, 2009). 

In contrast to predation risk, intergroup avoidance had the strongest effect not 

only on the probability of eliciting alarm calls, but also space use, with baboons 

avoiding areas where other groups are more likely to be present regardless of 

the time of year. The results from my analyses not only complement those 

found by Markham (et al., 2013), but are also the first to show that spatial 

avoidance, at least in chacma baboons, also occurs over a longer period than 

previously recognised. There are several explanations for why chacma baboons 

exhibit spatial avoidance over long term scales. Unlike samango groups residing 

in the area, the home range of the focal baboon group overlaps considerably 

with neighbouring groups in all directions, which therefore may reinforce long 

term avoidance strategies. In addition, unlike samangos, who primarily 

reproduce during the dry season, baboons can mate and reproduce throughout 

the entire year. As aggressive encounters in baboons are more likely to occur 

when females are in oestrus (Cowlishaw, 1995), it seems probable that the 

threats imposed by other groups are relatively constant across the year.  Given 

that direct intergroup encounters not only have the potential to escalate into 

costly and aggressive interactions yet also allow rival males to identify 

prospective reproductive opportunities (Cowlishaw, 1995; Markham et al., 

2013), spatial avoidance may be the most effective as well as least costly 

strategy to utilise in the long term.   

Food availability did not affect space use annually or in summer, yet 

significantly influenced range use during winter months. The lack of an effect of 

food availability throughout the entirety of the year as well as summer is most 

likely due to the overall abundance of food per habitat during such time periods. 

As such, baboons may not necessarily be driven to allocate their time in specific 

areas, if most habitats throughout their range contain enough food. In contrast, 

baboons chose to range in habitats exhibiting a greater abundance of food 

during winter months. Baboons in the western Soutpansberg must not only face 

the costs of thermoregulation during cold winter months yet are also 

constrained to feed for a reduced period (compared to summer) due to limited 
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daylight hours and food availability. As such, it may be likely that such 

conditions not only force baboons to forage in patches that exhibit the highest 

quality food items (despite the risk associated with them), yet also reduce the 

time it takes to get to such locations by travelling more efficiently (De Raad, 

2012).  

Baboons did not spatially avoid areas where the probability of encountering 

leopards increased but instead increased their vigilance while at such locations. 

It is likely that baboons cannot fully avoid leopards, who are not only present 

throughout the entirety of their home range, yet also may have to traverse 

through areas where the probability of encountering such predators are quite 

high while avoiding other groups or in search of food. Given such 

circumstances, it may be possible that the only effective anti-predator tactic 

that can be employed by baboons that does not directly interfere with a 

reduction in food acquisition is to simply remain vigilant when at such 

locations. 

 Such a behavioural strategy has been found in other mammals that must opt to 

trade off an increase in risk from predators to acquire resources when no other 

option is given. For example, Valeix (et al., 2009) found several ungulate species 

to increase their vigilance when in proximity of sparsely located watering holes 

due to the increased risk of predation from lions. Perhaps one of the most 

famous examples that assessed spatial variation in vigilance derives from the 

assessment of elk (Cervus elaphus) and bison (Bison bison) antipredator 

strategies after the reintroduction of wolves in Yellowstone National Park (USA) 

(Laundré, Hernández and Altendorf, 2001). In this instance, female elk and 

bison were initially found to increase their vigilance levels in areas where 

wolves were present. Female elk vigilance increased as the years went by and 

the wolves were able to fully establish themselves on the landscape (Laundré, 

Hernández and Altendorf, 2001). The authors also found a decrease in foraging 

effort (20% for female elk with and without calves) due to the trade off between 

foraging and remaining vigilant while in areas occupied by wolves (Laundré, 

Hernández and Altendorf, 2001). Such a trade off can potentially lead to not 

only a reduction in fitness, but a reduced reproductive output, which can 
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ultimately have population level effects (Laundré, Hernández and Altendorf, 

2001). Despite this, baboons (unlike ungulates) may have the ability to scan 

while foraging and therefore they may necessarily have to trade-off energetic 

costs in order to remain vigilant through large portions of their home range 

(Cowlishaw et al., 2004).  

Baboon vigilance also increased in areas where the probability of intergroup 

encounters increased as well as on the periphery of their home range. 

Unfamiliar areas may be deemed risky since such locations may exhibit a higher 

risk from potential predators and as such, baboons may act accordingly by 

increasing vigilance levels. An increase in scanning at home range edges may 

simply be because baboons may have to put more effort into finding food. 

Unfamiliar areas have been shown to not only heighten vigilance in primates 

(Allan and Hill, 2018) yet may also be more dangerous in the event of a direct 

encounter. For example, Markham (et al., 2012) found that a ‘winning’ outcome 

during competitive intergroup encounters in baboons in Amboseli were most 

likely to be in favour to groups that are more familiar with the area, regardless 

of how many males are present. That is, successful displacement of another 

group was likely to occur when one group is more familiar with an area than the 

other.  As such, spatial avoidance may solely reflect a least costly means to 

prevent direct encounters, yet also alleviate the risks associated with traversing 

through areas where the probability of losing a direct encounter increases.  This 

is exemplified by the fact that baboons’ vigilance also increases where 

intergroup encounters are likely to occur.   

Baboons within the western Soutpansberg Mountains increased their alarm call 

frequencies and decreased range use in areas where other groups are likely to 

occur, thus suggesting active avoidance. Although baboons may attempt to 

avoid areas on the periphery of their home range, complete avoidance may be 

impossible due to having to share home range boundaries on all sides with 

different groups. As such, baboons may attempt to minimise the risk associated 

with direct conflicts with other groups through early detection by increasing 

their vigilance both on the periphery of their home range as well in areas where 

such encounters are likely to occur.  Similar behaviours have been observed in 
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other primate species where intergroup encounters have the potential to 

become aggressive. MacIntosh and Sicotte (2009) found that ursine colobus 

monkeys (Colobus vellerosus) were likely to increase vigilance during 

intergroup encounters as well in areas where home ranges overlap between 

two groups. In addition, spider monkeys (Ateles geoffroyi) were more likely to 

increase vigilance on the periphery of their home range, most likely as a means 

to prevent aggressive interactions between groups (Busia, Schaffner and Aureli, 

2016).  

This research is the first to utilise localised spatial autoregressive models to 

assess spatial variation in range use and antipredator behaviour in baboons 

while not only accounting for the probability of encountering different types of 

threats (i.e. the probability of encountering other groups and leopards), but also 

the distribution of resources. Although complex localised spatial autoregressive 

models are primarily utilised in fields such as spatial econometrics (LeSage and 

Pace, 2009), the results presented here show that such analyses can (and 

should) be applied to behavioural-ecological studies that have a spatial 

component.  

Spatial autoregression offers several key advantages over traditional methods 

(although see Lichstein et al., (2002) for a review on how such methods can be 

applied to ecological data). Firstly, by accounting for spatial autocorrelation, 

spatial autoregressive models have the potential to allow for spatial 

independence between model residuals (Fotheringham, 2009). This is 

important when considering that data points that are confined to space are also 

often spatially dependent, and as such, points that are closer to one another will 

typically have similar values compared to those that are farther away (LeSage, 

2008). Accounting for spatial autocorrelation in a spatially explicit model can 

potentially prevent uncertain or even inaccurate results (Pace and LeSage, 

2010).  

In addition, spatial regression models can allow researchers to understand how 

specific underlying explanatory variables influence the geographical patterns of 

a dependent variable of interest (Anselin, Syabri and Kho, 2006). Observed 

spatial patterns (such as clustering) can be accurately explained by the 
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conditions in which they are found (Anselin, Syabri and Kho, 2006). Given the 

reasons discussed above, as well as the ability to account for localised spillover 

effects between neighbours (LeSage, 2009), spatial autoregressive models are a 

powerful tool that can help us understand complex geospatial patterns found in 

nature.  

Finally, this is the only study to date that has used resource selection functions 

from data derived from leopards to assess long term trends on how primates 

spatially and behaviourally respond to the actual probability of encountering 

their primary predator (but see Frair et al., (2005); Hebblewhite, Merrill and 

McDonald, (2005); Hebblewhite and Merrill, (2007) for examples involving 

ungulates as well as Isbell et al., (2018)  for an assessment of short term 

predation risk in primates). Given the rarity of predation events in primates, it 

seems likely that such long term behavioural adjustments in response to 

predation would be difficult to assess with anecdotal observations of predator 

encounters alone. Resource selection functions provide a valuable method to 

investigate the environmental factors that influences preferred habitat type (in 

this case, for leopards) over large scales, which, in turn, predicts where an 

animal (predator) is likely to occur (Manly et al., 2002) and where a prey item is 

likely to encounter them (Hebblewhite, Merrill and McDonald, 2005).  

These results not only show that perceived risk can dramatically influence 

range use in baboons, but that such risks are possibly driven by the fear of other 

groups rather than predation. Finally, and perhaps more importantly, the 

results from these analyses highlight that baboons engage in different 

behavioural strategies when faced with risks imposed by both predators and 

other baboon groups in roughly the same environment. These suggest that 

spatial avoidance or increased vigilance to prevent conflict can be employed 

when faced not only with intergroup competition, but also with a threat that is 

spatially predictable, but which can also be detected with relative ease. In 

contrast, heightened vigilance alone may be the only antipredator behaviour 

baboons can afford to use when faced with a predator that not only relies on 

stealth to attack but is also located throughout the entire home range.  
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 Chapter 6: Illuminating Movement? Nocturnal 

Activity Patterns in Chacma Baboons (Papio ursinus) 
 

Abstract 

Recent analyses have shown that typically diurnal primates may occasionally 

exhibit some levels of activity at night. Despite this, there have been few studies 

that have explored whether diurnal primates living in temperate environments 

will extend their activity budgets to the nocturnal phase as a response to 

seasonal constraints. Using dual-axis accelerometers, I explored whether 

chacma baboons (Papio ursinus) residing in the western Soutpansberg 

Mountains, South Africa, responded to environmental variables including 

seasonally fluctuating levels of day length, lunar illumination, wind-speed, 

precipitation, and temperature, by heightening or lowering nocturnal activity 

levels. Our results show that chacma baboons engaged in low levels of activity 

at night throughout the year. Although baboons had heighted nocturnal activity 

as a response to shorter days, moonlit nights, and lower temperatures, these 

responses were most likely due to disturbed sleeping patterns rather than more 

active movement. Nocturnal activity significantly dropped in a female baboon 

throughout the course of her pregnancy and remained low after giving birth 

suggesting that females with infants must increase resting. My results 

complement previous analyses which suggest that although diurnal primates 

may occasionally be active at night, there is limited evidence for strategic use of 

the nocturnal phase even in highly seasonal environments.  

 Introduction 

While most mammals are active at night (nocturnal), several taxa have evolved 

to be active during daylight hours only (diurnal) or at intermediate light 

conditions (such as at dawn and dusk: crepuscular), or throughout the 24 hour 

cycle (cathemeral) (Bennie et al., 2014). Although activity patterns are generally 

constrained by physiology, morphology, and behaviour, many mammals exhibit 

remarkable flexibility in switching between nocturnal or diurnal activity 

patterns in relation to biotic or abiotic cues (Kronfeld-Schor and Dayan, 2003). 

Factors that have the ability to mask temporal shifts in activity include 
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competition avoidance (Carothers and Jaksić; 1984), predation (Lima and Dill, 

1990), thermoregulation (Chappell and Bartholomew, 1981), and lunar 

luminosity (Kronfeld-Schor et al., 2013). Since behaviour is generally 

constrained to the active period, it is essential to understand how extrinsic 

(environmental) variables enhance or constrain activity budgets and the 

potential for activity to extend into other phases of the 24-hour cycle. 

Animals often react to intensified moonlight by supressing their activity levels 

(Price, Waser and Bass, 1984; Hecker and Brigham, 1999; Prugh and Golden, 

2014) with such lunar-phobic behaviour hypothesised to be an anti-predator 

defence (Clarke, 1983; Saldaña-Vázquez and Munguía-Rosas, 2013). In contrast, 

while diurnal mammals typically supress activity at night, there is increasing 

evidence that some species may exhibit heightened nocturnal behaviour as a 

response to intensified moonlight (Kronfeld-Schor et al., 2013). Among 

carnivores, increased activity on moonlit nights has been suggested to aid 

hunting efficiency (Cozzi, Broekhuis, McNutt, et al., 2012; Rasmussen and 

MacDonald, 2012; Broekhuis et al., 2014), while among cathemeral primates, 

increased activity on brighter nights may enhance foraging opportunities and 

predator detection (Kappeler and Erkert, 2003; Fernández-Duque, de la Iglesia 

and Erkert, 2010).  

Climatic variables including weather patterns such as wind-speed, rain, and 

temperature have the potential to place thermal constraints on animals by 

altering their core body temperature (Stelzner and Hausfater, 1986; Hill, 2006; 

Webster et al., 2008). As a response to harsh climatic conditions, endothermic 

animals (including primates) will alter their behaviour and activity budgets as 

an attempt to maintain homeothermy (Hill, 2006; Donati et al., 2011; Majolo et 

al., 2013; Gestich, Caselli and Setz, 2014). Behavioural plasticity in relation to 

climatic conditions is perhaps best illustrated in species that live in seasonal 

environments where fluctuating climatic conditions coupled with limited 

daylight hours have the potential to alter activity budgets (Dunbar, 1992; Hill et 

al., 2003; Hill et al., 2004). For example, ungulates and rodents living in 

environments with high summer temperatures will often switch to foraging at 
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night as a means to avoid thermal stress (Herman, 1977; Dussault et al., 2004; 

Bourgoin et al., 2011; Hetem et al., 2012).  

In primates, seasonal shifts in activity have been notably recorded in 

cathemeral species. Mongoose lemurs (Eulemur mongoz) living in seasonally 

dry forests became more diurnal during the wet season when there is lower 

night time light intensity and yet became chiefly nocturnal during the dry 

season when day length was shorter (Curtis, Zaramody and Martin, 1999). In 

less predictable environments that are characteristic of south-eastern 

Madagascar, brown collared lemurs (Eulemur collaris) shifted their activity 

levels in response to food availability and thus became more diurnally active 

when ripe fruit was more readily available (Donati et al., 2007). Despite this 

remarkable seasonal plasticity, there has been no formal investigation to date of 

whether such flexibility extends to the use of the nocturnal phase in diurnal 

primates and whether such species can compensate for diurnal time budget 

constraints, particularly in winter, through nocturnal activity. 

Due to practical constraints ranging from inadequate visibility to 

unintentionally altering natural sleeping habits, previous research on nocturnal 

activity patterns in diurnal anthropoids has been primarily limited to anecdotal 

observations (Vessey 1973; Anderson and McGrew 1984; Stelzner and 

Hausfater 1986; although see Isbell et al., 2017 and Tan et al., 2013). However, 

recent advances in radio-telemetry have allowed for the collection of activity 

data through dual axis accelerometers attached to GPS (Global Positioning 

System) collars. Accelerometers have been especially useful in allowing 

researchers to monitor the behaviour of cryptic species such as pumas (Puma 

concolor) (Terrie M Williams et al., 2014), badgers (Meles meles) (McClune et al., 

2014) and lynx (Lynx lynx) (Podolski et al., 2013) as well as activity patterns 

during time periods when behavioural observations are difficult (Cooke et al., 

2004; Brown et al., 2013). Accelerometers have also proven effective on 

primates (including baboons; Markham and Altmann 2008; Fehlmann et al. 

2017; Isbell et al. 2017) and have been employed to assess intragroup (Mann et 

al., 2005) as well as seasonal variability in activity patterns (Erkert and 
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Kappeler, 2004; Muñoz-Delgado et al., 2005; Eppley, Ganzhorn and Donati, 

2015). 

Through the aid of dual axis accelerometers, this research assessed whether 

temporal, environmental, and physiological factors impact nocturnal activity 

patterns in chacma baboons (Papio ursinus) found in the western Soutpansberg 

Mountains, Limpopo Province, South Africa. Living in large complex multi-

male/multi-female groups, baboons are some of the most widespread primates 

in Africa (Henzi and Barrett, 2005) inhabiting a variety of different 

environments that vary significantly in terms of seasonality, food availability, 

and habitat types (Dunbar, 1992). Chacma baboons respond to environmental 

pressures including seasonal changes in food availability, temperature, and day 

length by not only altering their diet, but also by reallocating their time spent 

engaging in necessary tasks including resting, feeding, and socialising (Dunbar, 

1992; Hill et al., 2003) 

Despite being considered diurnal, baboons have been recorded shifting activity 

levels throughout the night as a response to lunar luminosity. For example, 

yellow baboons (Papio cynocephalus) at Amboseli, Kenya, had periods of 

frequent alarm calling with increased nocturnality  (Altmann and Altmann, 

1973), whereas Guinea baboons (Papio papio) in Sengal were found to regularly 

move throughout the night and to leave sleeping sites earlier in the morning 

during the dry season when nocturnal illumination was greater (Anderson and 

McGrew (1984). Using accelerometers and GPS collars, Isbell and colleagues 

(2017) found low levels of nocturnal activity in a group of olive baboons (Papio 

anubis) in Laikipia, Kenya, with movement found to occur on 15% of nights, but 

there was no clear indication that baboons responded to increased moonlight. 

Although nocturnal activity may be marginal in equatorial baboons, there has 

yet to be a formal assessment whether populations living in a non-equatorial 

latitudes exhibit nocturnal behaviour. Such populations are likely to experience 

significant ecological constraints on time at certain times of year (Hill et al., 

2003) such that the adaptive use of the nocturnal phase may allow them to 

compensate for limits in the diurnal activity period at these times.  



146 
 

Following an assessment that baboons exhibit quantifiable activity levels at 

night within the Soutpansberg Mountains, South Africa, I then test the following 

hypotheses: 

H1: Baboons will respond to shorter day lengths in winter by extending their 

activity into the nocturnal phase. 

H2: Nocturnal activity will increase on nights exhibiting greater lunar 

luminosity (i.e. during a full moon) due to increased visual acuity.  

H3: Environmental variables will impact nocturnal activity levels due to 

thermoregulatory constraints. Specifically, activity will decrease as temperature 

and the wind-chill equivalent temperature decreases and wind-speed increases, 

and as precipitation increases. 

 Methods 

 Study Site 

This study was based at the Lajuma Research Centre in the western 

Soutpansberg Mountains, Limpopo Province, South Africa (23°06'45.14"S 

29°11'37.10"E) between September 2013 and October 2015. The study site has 

a mean annual rainfall of 724 mm with a summer rainy season (December to 

February) and a winter dry season (May to August) (Willems, Hill and Willems, 

2009). Mean daily minimum and maximum seasonal temperatures throughout 

the study period ranged from 16.8-17.6°C in winter to 21.2-22.0°C in summer. 

Mean nightly minimum and maximum temperatures ranged from 12.8-13.4 °C 

(winter) and 18.6-19.1 °C (summer).  Day length fluctuates from approximately 

eleven hours in winter to over thirteen hours in summer (Section 2.2). 

 Baboon Collaring Methods and Activity Data Collection 

Baboons (N=3) from two groups were fitted with Vectronic GPS-PLUS collars 

(VECTRONIC, Aerospace, Berlin, Germany) (N=4) between September 2013 and 

November 2015. one individual was fitted twice over the study period. Collars 

were programmed to take GPS fixes every hour between 06:00 and 20:00 SAST 

except for one nocturnal fix at 22:00 (Section 2.4.4). The GPS collars 

incorporated dual-axis activity sensors which captured acceleration on two 

axes (X-axis and Y-axis) in two minute intervals. In this case, the X-axis 
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represents forward and backward movements and the Y-axis sideward and 

rotary movements (Berger, Dettki and Urbano, 2014). Given the strong positive 

correlation found between the X-axis and the Y-axis (Pearson’s r = 0.953, p= < 

0.0001), only the X-axis data were utilised in analysis (following Heurich et al., 

2014). Activity values derived from sensors range from 0 (no activity) to 255 

(high activity). All GPS collars were designed to fall off 455 days after the collars 

were fitted, with data downloaded regularly through an Ultra High Frequency 

(UHF) terminal (Section 2.4.5.) 

 Predictor Variables 

Data from between 20 minutes after the onset and 20 minutes before the 

conclusion of astronomical twilight were extracted for analysis in order to 

completely ensure that only nocturnal data were included (Bearder, Nekaris 

and Curtis, 2006). Astronomical twilight defines a time range when the sun 

(disc) is 18° below the horizon such that the data selection ensured that 

baboons could not see without additional illumination. Times for the onset and 

conclusion of astronomical twilight across the duration to this study derived 

from the National Aeronautics and Space Administration (NASA) database 

(http://aa.usno. navy.mil/). 

Local climatic data including rain, temperature, wind speed and wind chill 

equivalent temperature were collected from an on-site SAEON (South African 

Environmental Observation Network) weather station. The wind chill 

equivalent temperature combines temperature and wind speed to estimate the 

perceived environmental temperature (Hill et al., 2004).  

Lunar luminosity, defined as the percentage of the lunar sphere that is visible 

due to illumination by the sun was used to assess whether moonlight influenced 

baboon nocturnal activity. Lunar luminosity, daily moonrise and set times and 

day length (being the period in which the Earth receives illumination from the 

sun) were downloaded from NASA’s data services (https://data.nasa.gov/) and 

synchronized to the dataset. Lunar luminosity was continuous with values 

ranging between 0% (moon not visible) to 100% (fully visible). Since lunar 

luminosity is constrained to times in which the moon is visible in the night sky 
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(above the horizon), lunar luminosity values were limited by moonrise and set 

times each night.  

 Statistical Analysis 

In order to test the three hypotheses, nocturnal activity data were separated 

into two different datasets (i) average activity throughout each night within the 

study period (dataset A) (N=777); or (ii) average activity within a half hour 

interval (i.e. the average activity within every half hour for each individual 

night) (dataset B) (N= 14019). The utilisation of two datasets allowed for both a 

coarse and fine scaled analysis of nocturnal activity. While a broad scale 

analysis (Model A) allowed for an overall analysis of seasonal trends, a fine 

scaled model (Model B) permitted the inclusion of environmental variables that 

may shift throughout the night. 

A generalized linear mixed model (GLMM) with a gamma error structure and 

log link function (Bates et al., 2015) was used to assess total activity levels 

across nights in RStudio (Version 0.98.1103; RStudio, Inc.). Activity data were 

transformed by adding a 1 to all values to fulfil the requirements for a gamma 

GLMM. 

Day length was included in both coarse and fine-grained models to address 

whether baboons responded to shorter days by extending their nocturnal 

activity levels throughout the night (H1). To assess the impact that the lunar 

cycle had on baboon activity levels (H2), lunar luminosity was included in the 

coarse grained model (Model A), with the luminescence value corrected for the 

presence of the moon combined in Model B (fine grained model). Mean nightly 

wind chill temperatures and precipitation levels were included in Model A to 

assess the impact of weather variables (H3). Temperature, wind speed (and the 

interaction between the two), and precipitation levels at half hour intervals 

were included to assess whether fluctuating environmental variables had a fine-

grained influence on baboon nocturnal activity levels. 

To account for intergroup, individual, and nightly variability, collar identity 

(N=4) specific groups (N=2), night (N=777), sleeping site identity (derived from 

the nocturnal GPS fix and ground-truthed with observational data, N=19) were 
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included as random effects. One collared female gave birth during data 

collection. The presence of an infant was thus included as a factor to account for 

the costs of maternal care such as infant carrying, suckling and increased 

vigilance (Altmann and Samuels, 1992; Rendall, Cheney and Seyfarth, 2000; 

Maestripieri, 2011) impacting on nocturnal activity. Subsequent results were 

analysed in RStudio and visualised with the aid of the ggplot2 package 

(Wickham, 2009).  

 Results 

Although nocturnal activity levels were below those observed during the day 

(Diurnal, N = 777, x̅= 64.57, SE= 0.379; Nocturnal, N=777, x̅= 1.76, SE = 0.029), 

consistent, but low levels of activity were observed during the nocturnal phase, 

with more intermediate levels of activity in the twilight phases (Figure 6.1). 

Model A included lunar luminosity, wind-chill equivalent temperature, 

precipitation and day length as predictor variables (Table 6.1) and represented 

a significant improvement over the null model (the control variables, presence 

of an infant, day length, and random effects (likelihood ratio test: 𝑥2 = 80.42, 𝑑𝑓 

= 4, 𝑝= < 0.0001). In support of hypothesis 1, a significant negative relationship 

between day length and nocturnal activity levels suggests that baboons increase 

nocturnal activity as day length declines. In support of hypothesis 2 there was a 

significant positive relationship between baboon activity levels and lunar 

luminosity with baboons more active on nights exhibiting greater light 

intensity. There was no support for hypothesis 3 that lower perceived 

temperature (through wind chill) as well as higher levels of nightly 

precipitation impacted baboon activity patterns throughout the night. 

Nocturnal activity significantly decreased with the presence of a dependent 

infant. 
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Figure 6.1 Boxplots (median, lower and upper quartiles, and one standard error) of activity 
levels across the 24-hr cycle under conditions of A) maximum day length/minimum night 
length in summer (December; mean day length: 13h 31m). Activity levels range from 0 (low 
activity) to a maximum of 255 (high activity). B) minimum day length/maximum night length in 
winter (June; mean day length: 10h 44m). 

  

A. 

B. 
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Table 6.1 Coefficients for coarse grained analysis from gamma error GLMM of seasonal 
nocturnal activity (dependent variable is average activity values across the night) random 
effects include individual, night, sleeping site, and baboon group). 

Fixed Effects Estimate Std. Error t value Pr(>|z|) 

(Intercept) 2.0286 0.1665 12.179 < 0.0001 

Lunar 

luminosity 

0.0741 0.0259 2.859 0.0042 

Wind chill -0.0010 0.0024 -0.421 0.6734 

Precipitation 0.0526 0.0407 1.292 0.1964 

Day length -2.2643 0.3176 -7.129 < 0.0001 

Infant presence -0.3312 0.0399 -8.288 < 0.0001 

 

Model B assessed a fine scale analysis of activity throughout the night and 

included combined moon presence and lunar luminosity, and temperature and 

wind speed and their interaction (Table 6.2). Overall, the full model was highly 

significant compared to the null model (including random effects, day length, 

and presence of an infant) (𝑥2 = 17.52, 𝑑𝑓 = 5, 𝑝= 0.003). In support of 

hypothesis 2, lunar light intensity had a significant positive effect on baboon 

nocturnal activity levels, with activity increasing with higher nocturnal 

illumination. There was no support for wind speed or precipitation impacting 

nocturnal activity levels, nor the interaction between temperature and wind-

speed. In contrast to expectations, there was a significant negative relationship 

between temperature and activity levels, with activity increasing when night 

time temperatures were coldest. The reduction in activity levels in the presence 

of an infant remained significant, as was the relationship with day length. 
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Table 6.2 Coefficients for fine grained analysis from gamma error GLMM of trends in activity 
throughout the night (dependent variables being nightly activity level values averaged in half 
hour intervals; random effects include individual, night, sleeping site, and baboon group). 

Fixed Effects Estimate Std. Error t value Pr(>|z|) 

(Intercept) 2.3390 0.1662 14.071 < 0.0001 

Lunar luminosity 0.0483 0.0210 2.297 0. 0216 

Temperature -0.0079 0.0029 -2.661 0.0077 

Wind-speed -0.0042 0.0050 -0.843 0.3992 

Precipitation -0.0084 0.0163 -0.516 0.6061 

Temperature:wind speed interaction 0.0005 0.0003 1.574 0.1154 

Day length -2.4552 0.3468 -7.079 < 0.0001 

Infant presence -0.3021 0.0369 -8.168 < 0.0001 

 

 Discussion 

A coarse grained model (Model A) indicated varying levels of daylight hours and 

lunar light intensity may alter activity patterns in baboons residing in the 

western Soutpansberg Mountains. Subsequently, a fine scale analysis 

demonstrated that temperature, the presence of the moon (coupled with lunar 

light intensity), as well as day length impacted baboon activity levels 

throughout the course of the night, in support of all three hypotheses. For both 

analyses, the presence of an infant had a significant negative effect on the 

nocturnal activity levels of the adult female. Although baboons show low, yet 

consistent levels of nocturnal activity throughout the year, it seems possible, 

that such patterns may reflect minimal sleep disturbances rather than specific 

behaviours.  

In support of hypothesis 1, baboons increased their nocturnal activity levels in 

response to shorter day lengths in winter. As previous studies have described 

the importance of day length in constraining the activity budgets of diurnal 

primates living in seasonal environments (Hill et al., 2003; Ménard et al., 2013), 

it is possible that baboons may engage in social activities that may otherwise be 

severely constrained by shorter day lengths and increased diurnal foraging in 

winter. However, given the low nocturnal activity in general it is far more likely 

such an increase may possibly be due to longer nights during winter exceeding 
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the time needed for sleep.  As such, although baboons exhibited higher activity 

levels during these periods, they more likely reflect that the animals are awake 

and shifting position slightly rather than more active activity bouts after dark. 

Lunar luminosity had a positive effect on nocturnal activity levels in both 

models, supporting hypothesis 2. Baboons were more active on nights 

exhibiting greater lunar light intensity, but only at times when the moon was 

visible above the horizon. Baboons did not travel or forage with increased lunar 

luminosity and remained on their relatively narrow sleeping cliffs at night. 

Although baboons in the western Soutpansberg Mountains have been recorded 

being predated on by leopards on their sleeping sites at night, it seems possible 

that lunar luminosity may inhibit leopards from attacking. This is primarily 

because ambush predators (such as felids) are generally less successful at 

hunting at such times due a reduction in ambush cover that would otherwise be 

provided on darker nights (Sunquist and Sunquist, 1989).  

While many nocturnal and cathemeral primates exhibit higher activity levels on 

full moons (Gursky, 2003; Kronfeld-Schor et al., 2013) it seems likely that for 

many species, nights exhibiting greater light intensity may simply have a 

stimulating effect that supersedes standard circadian activity patterns (i.e. 

positive masking) (Donati et al., 2013). Such an effect may be especially true in 

primate species such as chacma baboons that lack a specialised visual structure 

that aids in nocturnal vision (tapetum lucidum). Although baboons in western 

Soutpansberg exhibited greater nocturnal activity patterns compared to those 

in equatorial Amboseli (Isbell et al., 2017), there is still no evidence for any 

significant movement This is reflected in the average distance moved between 

20:00 and 00:00 as captured by GPS collars (avg: 35.86 m, N=623).  As such, an 

increase in nocturnal activity with increased moonlight possibly reflects 

disturbed sleep patterns resulting from the increased nocturnal luminosity. 

Female baboons in the western Soutpansberg increased their activity on nights 

with cooler temperatures, which supports hypothesis 3. Baboons, like other 

primates and mammals, are known to respond to thermoregulatory constraints 

by huddling with one another (Gilbert et al., 2010).While such a strategy allows 

for heat conservation, previous research on Guinea baboons suggests that 
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individuals may often alter their positions throughout the night as a response to 

changing climatic conditions (such as wind speed and rain) (Anderson and 

McGrew 1984). The significant effect of temperature on baboon activity in the 

western Soutpansberg may possibly reflect localised conditions and sleeping 

site preference and a response to colder conditions by changing huddling 

positions throughout the night. Although Anderson and McGrew (1984) did not 

find temperature to have an effect on postural adjustments, it should be noted 

that the relatively warmer conditions that are characteristic of Niokolo Koba 

National Park, Senegal may negate the need for such behaviours. 

An interesting outcome of the analysis was that nocturnal activity levels for one 

female dropped significantly after giving birth (Figure 6.2). While this might be 

in contrast to predictions that infant presence may increase activity, it should 

be noted that with the exception of one non-human primate study (Fite et al., 

2003), such expectations were driven primarily from research involving 

maternal sleep disturbances in human mothers (Nishihara and Horiuchi, 1998; 

Dennis and Ross, 2005; Goyal, Gay and Lee, 2007). In the context of baboons, 

there have been several studies highlighting the costly demands associated with 

infant rearing (Dunbar and Dunbar, 1988; Altmann and Samuels, 1992). 

Interestingly, Barrett and colleagues (2006) found that baboons at De Hoop did 

not increase time spent feeding as a response to infant rearing but instead 

suppressed their diurnal activity levels by resting more frequently during the 

day (possibly due to general fatigue after giving birth). The results here suggest 

that females with infants may also increase resting and inactivity at night. It 

should be noted, however, that the activity sensors utilised in this study were 

not able to pick up subtle behaviours associated with infant suckling. 

Nevertheless, the fact that nocturnal activity also declines across pregnancy 

(Figure 6.2) suggests that there are energetic consequences of pregnancy and 

infant rearing that are reflected in increased resting requirements at night. 



155 
 

 

Figure 6.2 Relationship between nightly nocturnal activity levels and the presence of an infant 
(one activity value per night). 

Despite having been effective in the assessment of primate movement 

(Papailiou, Sullivan and Cameron, 2008; McFarland et al., 2013), the data 

derived from accelerometers in this analysis can only be utilised to assess how 

overall trends in nocturnal activity are impacted by a specific attribute. Since 

the GPS collars attached to the focal baboons only collected a single fix at night 

it was not possible to supplement this information with additional behavioural 

data. While the rise in nocturnal activity after shorter days and on moonlit 

nights probably points to baboons making small adjustments, additional date 

are needed to assess whether baboons reallocate specific behaviours to the 

nocturnal period. Infrared cameras have successfully been utilised to assess 

nocturnal behaviours in diurnal species (Barrett et al., 2004; Gula et al., 2010; 

Thuppil and Coss, 2015) and may therefore be valuable for remotely 

determining temporal trends in nocturnal activity. In addition, fine-scale GPS 

data in conjunction with accelerometers should also permite more refined 

analysis (Fehlmann et al., 2017). 

Baboons exhibit a consistent, yet very low increase in nocturnal activity when 

days are shorter, lunar luminosity is greater, and when temperatures are lower. 

Given that the effect sizes of the relationships are modest, it seems likely that 

sleep is simply more interrupted under conditions of long winter nights, high 
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lunar illumination and at cold temperatures. Future research should thus focus 

on identifying the precise behaviours exhibit during heightened activity during 

the nocturnal phase to better understand how diurnal primates living in 

temperature latitudes respond to fluctuating environmental conditions. 
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 Chapter 7: Discussion 
 

 Introduction 

Predator-prey interactions are a fundamental component of the behavioural 

ecology for most living taxa. In particular, the risk of predation has been 

hypothesised to be an important selective force regarding the physical and 

behavioural evolution found in primates (Isbell, 1994).  To minimise the risk of 

predation, primates have been found to adopt a range of behavioural 

modifications including group living (Hill and Lee, 1998), spatial avoidance 

(Willems and Hill, 2009; Coleman and Hill, 2014), alarm calls (Zuberbühler, 

Jenny and Bshary, 1999; Arnold, Pohlner and Zuberbühler, 2008; Cowlishaw, 

2010; Isbell and Bidner, 2016), and vigilance (Campos and Fedigan, 2014; 

Busia, Schaffner and Aureli, 2016). In addition, primates may also have to 

spatially and temporally modify their behaviour due to other challenges such as 

seasonality, food availability, and intergroup conflict while simultaneously 

avoiding the risk from predation.  Although the behavioural responses under 

the face of predation have been well documented in a range of primate species 

(Ramakrishnan and Coss, 2001; Willems and Hill, 2009; Coleman, 2013; Bidner, 

2014; Campos and Fedigan, 2014), there have surprisingly few studies that 

have incorporated behavioural data deriving from carnivores on site while 

assessing long term antipredator responses. This is also despite the suggestions 

made by Isbell (1994) who recommends that the incorporation of predator 

studies are fundamental towards understanding predator-primate interactions.   

This is startling considering the fact that most predators are not uniformly 

distributed on the landscape, and they must also make behavioural decisions 

regarding where to reside and forage as well as when to be active as means to 

enhance their own fitness (Hebblewhite, Merrill and Mcdonald, 2005; Balme, 

Hunter and Slotow, 2007; Davidson et al., 2012; Dellinger et al., 2013). As such, 

in order to attain a comprehensive understanding of predator-prey interactions 

between two different species residing in the same system, one should ideally 

also invest in the understanding of the behavioural ecology of the predator as a 
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means to also understand the antipredator and spatial responses induced by 

prey.   

My primary aims for this thesis were to independently examine long term 

trends in space use and activity patterns in both chacma baboons (Papio 

ursinus) and their primary predator, the leopard (Panthera pardus), as a means 

to understand how their behavioural ecology is influenced by factors including 

habitat characteristics, seasonality, and perceived risk. With this knowledge, I 

then ultimately aimed to assess the spatial variability in perceived risk in 

baboons in response to my understanding of the specific behavioural 

characteristics derived from leopards residing at the same study site.  

 Summary of Findings 

In chapter 3, with the aid of GPS collars deployed on leopards (N=8), I assessed 

resource selection functions (RSFs) at three different spatial scales throughout 

the mountain range.  I measured how specific environmental factors influenced 

where leopards are likely to establish home ranges throughout the western 

Soutpansberg Mountains (2nd order), how such factors influence where 

leopards are likely to occur within their home range (3rd order) and finally, 

where leopards are more likely to consume their prey (4th order).  

Results from 2nd order RSFs showed that leopards are likely to establish home 

ranges in elevated, sloped areas that are characteristic of the mountain range. In 

addition, leopards selected areas that had increased surface ruggedness as well 

as high vegetation productivity (NDVI). Combined, these results complement 

previous research which suggests that habitat suitability in leopards is 

positively influenced by the presence of both rugged and heavily vegetated 

areas which may not only contain an abundance of prey, yet also sufficient areas 

to hunt (Edgaonkar, 2008; Gavashelishvili and Lukarevskiy, 2008; Pitman et al., 

2013; Fattebert et al., 2015). Similar to large felid populations, leopards in the 

western Soutpansberg chose to establish home ranges at greater distances from 

human settlements, thus suggesting active avoidance (Ngoprasert, Lynam and 

Gale, 2007; Zarco-González et al., 2009; Zeller et al., 2017). 
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In addition, results from 3rd order RSFs suggested that leopards are more likely 

to occur in areas within their home range that are heavily vegetated. It seems 

likely that leopards prefer to utilise highly vegetated areas due to the 

abundance of preferred prey (particularly small to medium sized ungulates) as 

well as the fact that such areas likely aid in hunting by providing sufficient 

ambush coverage. Additionally, leopards were likely to avoid areas within their 

home range that were in proximity to human settlements.  

Remarkably, leopards hunted uniformly throughout their home range (4th 

order). Although seemingly contradictory given the fact that leopards, like other 

felids, rely on specific habitat characteristics in order to successfully subdue 

prey (Sunquist and Sunquist, 1989), it is also possible that the most preferable 

areas within their home range (i.e. rugged areas exhibiting high vegetation 

productivity) already provide both a sufficient abundance of prey as well as 

adequate stalking conditions.  

In chapter 4, I assessed how leopard activity levels altered spatially as well as 

temporally with the aid of dual-axis accelerometers within the GPS collars. I 

also assessed if leopards that went off the mountains, and into anthropogenic 

habitats (i.e. agricultural areas) were likely to shift their activity levels in 

response to an increase in the presence of humans. 

Temporally, leopards within the western Soutpansberg Mountains are likely to 

exhibit crepuscular activity patterns and, as such, are more likely to become 

more active during twilight hours in the morning and evening than during the 

day or night. These activity patterns were exhibited year round, suggesting that 

leopards respond to the seasonal variability in sunrise and sunset times by 

shifting their activity to coincide with such periods. While all leopards were 

more likely to be active during twilight hours, there was some variation 

between the sexes with females being more active during the day. Leopard 

activity patterns were also influenced by weather conditions; they were found 

to decrease their activity under warmer temperatures and increase their 

activity patterns during periods exhibiting heavier precipitation and stronger 

winds. The increase in activity during heavy rain and strong winds may be due 

to enhanced hunting conditions, as such weather patterns can potentially mask 
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the ability for prey items to detect ambush predators  (Muñoz, Kapfer and 

Olfenbuttel, 2014; Cherry and Barton, 2017). 

Spatially, leopards were found to decrease their activity at greater distances 

away from human settlements as well as in sloped and heavily vegetated areas.  

As the results from the resource selection functions show that leopards also 

prefer to reside in such areas, it seems likely that such a decrease in activity 

may be due to such areas acting as refuges. As forested and sloped areas may be 

ideal to hunt in, it may be possible that such lower activity levels reflect the 

hunting mode utilised by leopards, who must often remain still while waiting to 

ambush prey.  

Interestingly, leopards were more active in low lying areas outside of the 

mountains and into human dominated areas. In addition, leopards were also 

found to shift their activity patterns when in anthropogenic habitats by 

decreasing diurnal activity and increasing nocturnal activity. As land owners 

have been found to persecute leopards on their property due to the perceived 

risk that such carnivores may impose on livestock (Chase Grey, Bell and Hill, 

2017) , it seems likely that behavioural adjustments found in my analysis show 

that although anthropogenic habitats may have a sufficient amount of prey, 

leopards may possibly be aware of the risk imposed when venturing into such 

locations.  

In chapter 5, I examined whether space use in baboons was negatively 

influenced by areas that they perceived to be riskier (through the probability of 

eliciting vocalisations). In addition, as baboons do not give threat-specific alarm 

calls, I also examined whether such vocalisations were related to the probability 

of encountering leopards or other groups. Following this, I assessed the 

influence predation risk, intergroup encounters, and food availability had on 

both annual and seasonal space use patterns Finally, I assessed whether 

vigilance varied spatially on the periphery of their home range as well as in 

relation to the risk imposed by leopards and intergroup encounters. 

Baboon space use was negatively influenced by the probability of eliciting alarm 

calls, thus suggesting that they spatially avoid areas that they perceived to be 
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riskier. However, this landscape of fear in baboons was only related to 

intergroup encounters, and as such, baboons were more likely to vocalise when 

in areas where the probability of intergroup encounters was high. In addition, a 

subsequent analysis found that annual space use in baboons was also related to 

intergroup encounters and not to predation nor food availability. Seasonal 

space use showed similar trends with the exception of winter months, when 

range use was positively influenced by food availability, suggesting that 

baboons will possibly trade off safety for greater foraging opportunities when 

food availability is limited.  

Finally, the probability of encountering leopards had the greatest effect on the 

spatial variation in vigilance patterns in female baboons. Vigilance levels also 

increased on the periphery of their home range, as well in areas where the 

probability of intergroup encounters increased. Combined, these analyses 

suggest that baboons may adapt different behavioural strategies when faced 

with different threats. Spatial avoidance may act as a long term strategy in 

males as a means to reduce the reproductive success of potential rivals. In 

contrast, an increase in vigilance may be particularly useful in response to the 

risk of predation from a predator that primarily relies on stealth to successfully 

subdue prey.  

In chapter 6, I assessed whether female chacma baboons (who are primarily 

diurnal) exhibited periods of nocturnal activity in response to abiotic conditions 

such as seasonal changes in daylength, weather conditions (temperature, wind 

speed, and rain), as well as moonlight.  While overall, baboons exhibited low 

levels of nocturnal activity throughout the year, they were likely to increase 

their activity during winter, when daylight hours decreased. In addition, 

baboons also increased their nocturnal activity on nights exhibiting greater 

lunar luminosity, and decreased activity on cooler nights. In addition to abiotic 

factors, I also found that a female baboon’s activity level dropped significantly 

in the months after giving birth. The minimal activity patterns found here 

suggest that variables such as moonlight may simply disturb sleep patterns 

rather than promote specific behaviours (such as grooming) after dark.  
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 Implications of my Findings 

To my knowledge, the content in this thesis represents one of the few studies 

that has utilised a combination of long term spatial, activity, and behavioural 

data to assess the behavioural ecology of a predator, and its prey 

(independently) in the same habitat.  In addition, this is one of the few studies 

that has utilised important environmental (such as food availability, water, 

refuges) and intraspecific competitor data, as well as site specific information 

directly deriving from the predator to assess long term patterns in space use 

and perceived risk within a prey species. The results from these analyses show 

that the behavioural patterns in space and activity use are inherently complex 

in both species and as such, are driven by a combination of resource acquisition 

and risk avoidance. In addition, my findings give further support that one 

should ideally understand both trophic actors to study the predator-prey 

interactions between them.  

 The Landscape of Fear: And the Importance of Bringing 

Back Predators to Predator-Prey Studies.  

How carnivores modify their activity and spatial behaviour in response to biotic 

and abiotic conditions allows for a greater understanding of how they respond 

to environmental conditions, as well as where and when prey items are more 

likely to be at risk. Although spatial variation in perceived risk (through alarm 

calls or increased vigilance) has been assessed in primates before (Willems and 

Hill, 2009; Coleman and Hill, 2014), there have been very few studies which 

have used data deriving from the predators themselves in order to assess if 

such antipredator strategies are a direct reflection on the probability of being 

attacked. In addition, many studies have assessed the effects that predators 

have on primates through experimental work (i.e. using model predators (Coss, 

Ramakrishnan and Schank, 2005; Arnold, Pohlner and Zuberbühler, 2008)  or 

audio recordings (Friant, Campbell and Snowdon, 2008)) or directly, through 

the rare opportunity when a researcher is able to observe predation attempts, 

and the behavioural modifications following.  In addition, previous studies on 

primates that have incorporated “the landscape of fear”, that is, how primates 

behaviourally and spatially modify themselves on the landscape due to 
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perceived predation, have often relied on the location of alarm calls (some of 

which are predator specific (Willems and Hill, 2009; Coleman and Hill, 2014). 

While useful, all of these studies neglect one major component regarding 

predator-prey interactions: the behavioural ecology of the predator!   

In addition to the threat posed by predation, many primate species may also 

occasionally be at risk from encountering other groups within conspecifics, and 

such encounters have the ability to escalate to violence (Shopland, 1982; 

Wilson, Wallauer and Pusey, 2004). Knowing where such threats such as 

predators and other groups are more like likely to occur on the landscape 

allows for a greater understanding of the actual effectiveness of antipredator 

strategies (Lima, 2002), and also if the prey use different behavioural strategies 

that vary depending on the specific type of threat.    

The results of my analysis show that baboons in western Soutpansberg not only 

increase vigilance and vocalisations in areas where encounters with other 

groups are likely to occur, but also adopt long term spatial avoidance strategies 

to prevent such encounters from occurring. In contrast, as baboons may not be 

able to avoid leopards throughout the landscape, they choose instead to greatly 

enhance their vigilance levels when in areas where leopards are likely to occur. 

The results from these studies are important for several different reasons.  

Firstly, although prey do not always know where their predators are located in 

their environment, it seems plausible that the baboons studied here, may to 

some extent, understand the areas in their home range that are potentially 

dangerous and adjust their behaviour accordingly through increased vigilance 

or direct avoidance. Although it is highly likely that baboons have a greater 

understanding of where other groups are likely to occur due to both range 

overlap and direct cues (such as visual or auditory signalling), the increased 

vigilance found in areas where the probability of encountering leopards is high 

also suggests that they possibly have the cognitive ability to spatially recall 

areas on the landscape that are potentially dangerous from predators and, 

developed long term strategies to prevent such attacks from occurring. As such, 

these findings not only show that an increase in scanning may potentially reflect 

actual risk (rather than perceived risk) when faced with an ambush predator, 
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but also that baboons exhibit long term spatial memory that allows them to 

adjust their behaviours in such areas.  

Before assessing whether baboons responded to leopard resource selection 

functions, I tested whether diurnal leopard activity levels influenced their 

spatial patterns in range use, vigilance, and perceived risk (Appendix 3; Figure 

S3.1).  Diurnal patterns in leopard activity had no effect on the spatial variation 

found in vigilance, perceived risk, or spatial avoidance of the baboons. There are 

several explanations for why baboons might respond to the probability of 

encountering a leopard on the landscape compared to where leopards are more 

likely to be active. For one, the lack of an effect could simply be because where a 

leopard is active is of little importance to baboons (and ultimately unknowable) 

outside of an immediate encounter. This is particularly likely given both the 

hunting style of the predator, as well as the study system. For example, as 

ambush (and cryptic) predators that prefer to range in dense habitats (Sunquist 

and Sunquist, 1989), leopards most likely do not exhibit heightened activity in 

front of baboons outside of a direct attack. Another possibility may also simply 

be because leopards primarily exhibited lower activity levels during daylight 

hours in areas where they also prefer to reside (and are likely to be 

encountered) (Chapter 4). As such, the lack of an effect may also be due to such 

low activity values being attributed to where leopards are likely to occur. 

However, as I also found that leopards increased their activity under weather 

conditions such as strong winds and heavy precipitation (which may also aid in 

hunting), I predict that it is possible for baboons to be more at risk under such 

conditions during the day. Future research on predator-prey interactions 

should therefore assess if risk may fluctuate under different weather patterns.  

The ability to recall where predators are likely to occur, and as such, respond 

accordingly may have been particularly useful as a terrestrial primate species 

evolved and radiated throughout the Plio-Pleistocene in habitats that contained 

a greater array of ambush predators (such as sabretooth cats and false sabre 

tooth cats) than found throughout Sub-Saharan Africa today (Arribas, 1999). In 

addition, spatial memory pertaining to the probability of encountering 

predators may have also been found in early hominins, who not only evolved 
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under similar conditions as baboons (Codron et al., 2008), yet may have 

eventually extended such an adaptation from vigilance or spatial avoidance, to 

also include food acquisition through the scavenging of carnivore kills. 

An additional important finding from my analysis is that baboons adopt 

different strategies when faced with different types of threats.  For example, 

they will use an array of strategies ranging from spatial avoidance to increased 

vigilance when faced with competition from other groups that has the potential 

to escalate into aggression and may also induce reproductive constraints. In 

contrast, vigilance seems to be used when faced with a predator that not only 

depends on ambush to subdue prey but is also present throughout their home 

range. These different strategies suggest that baboons are not only more 

behaviourally complex than previously thought yet must also trade off specific 

fitness enhancing opportunities when faced with different threats. For example, 

although baboons increase their vigilance levels when in areas where leopards 

are more likely to occur, they must still balance risk with food acquisition in 

such areas. In contrast, baboons seem to exhibit several behaviours, including 

active avoidance when faced with competition with other groups. While 

avoidance may limit the reproductive success of rival males while 

simultaneously preventing potentially dangerous interactions, such strategies 

might also have negative consequences. For example, such long term avoidance 

strategies may not only prevent baboons from accessing potentially important 

sources (sleeping sites, food patches), but may simultaneously force them to 

feed in areas that are riskier due to the presence of leopards. In addition, the 

long term perceived risk induced by other groups may potentially lead to both 

energetic and physiological consequences which in itself can influence 

reproduction output, survival, and ultimately population dynamics.  

Finally, the combined results presented by myself, as well as Coleman and Hill 

(2014) and Willems and Hill (2009) represent some of the only studies to 

assess the influence that perceived risk and resource distribution has on space 

use in different primate species (vervet, (Chlorocebus pygerythrus), samango 

(Cercopithecus albogularis schwarzi), chacma baboon) at the same study site. 

Results from these analyses suggest that despite inhabiting a similar area, the 
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factors that affect space use in these primate species vary considerably and are 

possibly influenced by body size, terrestriality (or arboreality), and behaviour. 

For example, perceived risk through spatial avoidance in chacma baboons 

seems to primarily be explained by intergroup encounters rather than direct 

predation. These results contrast those found by  Coleman and Hill (2014) who 

found that intergroup encounters had little effect on space use compared to the 

risk imposed by arboreal predators. In addition, primates exhibiting a more 

terrestrial lifestyle were more likely to respond to terrestrial threats such as 

leopards (avoidance in vervets, vigilance in leopards) as well as other primates 

(primarily other baboons). Even then, vervets and baboons exhibit some 

different (as well as same) antipredator strategies when faced with threats such 

as leopards or baboons. In this case, baboons opt to utilise vigilance (compared 

to spatial avoidance) when faced with leopards, whereas both vervet monkeys 

and baboons spatially avoid baboons. It seems likely that the difference in 

response to threats such as predation is likely to be due to the different levels of 

pressure imposed on these species. While all three species may be technically at 

risk from predation by leopards, it seems likely that vervet monkeys are 

predated on more frequently due to their small body size and terrestrial 

lifestyle. This is complemented by the fact that previous analyses on leopard 

diet within the Soutpansberg found that vervet monkeys accounted for 12.2% 

of the relative frequency of prey being consumed compared to baboons (4.3%) 

and samango monkeys (2.1%) (Chase Grey, Bell and Hill, 2017). In addition, the 

lack of an effect that intergroup encounters had on samango monkeys 

(compared to baboons) may be explained by the fact that out of all three diurnal 

primates within western Soutpansberg , baboons are the only species to be 

directly surrounded by other groups. As such, direct encounters are not only 

more likely, but baboons may additionally have to adopt a range of strategies 

including long term avoidance to alleviate any potential conflict. Combined, 

these results highlight how primate species residing within the same 

geographical area not only face different types of threats, but also respond in 

various ways providing valuable insight regarding the behavioural ecology of 

primate species.  
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 Limitations of the Study 

There were several limitations to my study that must be noted. For one, 

although it is likely that 4th order resource selection in leopards are uniform 

throughout their home range due to the sufficient amount of prey as well as 

areas to ambush, it should be noted that I was unable to directly confirm the 

locations of all kills. As such, it is possible that 4th order resource selection 

functions found here may not be as accurate as the previous scales (2nd and 3rd 

order). The inability to confirm kill sites was partially due to financial and time 

constraints that prevented me from spending an adequate amount of time 

searching for kills in western Soutpansberg. In addition, I discovered through 

personal experience that many kills did not remain on the landscape by the time 

I began this study. This is most likely because many were not only relatively old 

(2-3 years old), but also due to the presence of brown hyenas (Hyaena brunnea) 

who actively scavenge kills and consume bone (Owens and Owens, 1978).  

An additional limitation that should also be noted is that the leopard GPS data 

utilised to create resource selection functions did not fully temporally overlap 

with the baboons data (leopard data stopped recording in July 2014). 

Therefore, the probability of occurrence for leopards within their home range 

can technically only apply to the years 2012 and 2014 (and not 2014-2017).  As 

such, it would have been ideal to have utilised leopard resource selection 

functions that temporally overlapped with the time periods that baboon spatial 

and behavioural data were collected. Despite this, it should also be noted that 

the increase in vigilance found in the baboons in response to the probability of 

encountering leopards combined with the continuous trend for leopards to 

utilise areas exhibiting heavily vegetation suggests that home range utilisation 

in leopards changed little over the study years.  

This concern over the lack of temporal overlap between data from the two 

species can also be extended to seasonal space use in baboons. Seasonal 

resource selection functions in leopards were not assessed and as such, I do not 

know if home range use in leopards varied between summer and winter. 

Seasonal space use in leopards has been known to vary, with some populations 

shifting their space use in response to the seasonal distribution of prey 
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(Grassman, 1999; Odden and Wegge, 2005), and others remaining relatively 

stationary throughout the year (Marker and Dickman, 2005; Fattebert et al., 

2016). It is therefore possible that the lack of an effect for spatial avoidance in 

baboons due to perceived risk from predators during summer and winter may 

be because leopard RSF do values not accurately reflect risk from these 

predators during the same time periods.  Future studies that aim to incorporate 

the effect predation has on seasonal space use in prey should also thoroughly 

investigate whether seasonality influences habitat use in predators.  

Although the focal baboons spatially avoid areas where the probability of 

intergroup encounters increased as well as increased their vigilance in such 

areas, as well as on the periphery of their home range, I unfortunately had very 

little spatial data directly deriving from the other baboon groups.  Such data 

would have been useful for a variety of reasons. For one, it would allow me to 

assess if focal baboons directly avoided the home ranges for other groups 

outside of the contexts of the probability of direct encounters as utilised in my 

study. Additionally, it would allow me to assess if different groups residing in 

the area exhibit similar (or different) patterns of space use in response to food 

availability as well as perceived risk both from other groups and predation.  

Such findings would be particularly interesting given the fact that predation risk 

and food availability in particular, most likely varies throughout the western 

Soutpansberg.  

An additional limitation that could not be prevented is the fact that the focal 

baboons are habituated. Although there is evidence that behaviour (including 

ranging behaviour) may not be heavily influenced by the presence of a human 

observer (Crofoot et al., 2010), there is also evidence suggesting that humans 

may have the potential to influence perceived risk (Nowak et al., 2014), and 

predation rates (Isbell and Young, 1993), as well as the outcome between 

intergroup encounters (Zinner, Hindahl and Kaumanns, 2001). Although the 

focal baboon group are occasionally predated on, it may be possible that 

predation rates are actually lower compared to other groups due to the 

presence of a human observer. As such, this may partially explain why both 

spatial avoidance and alarm calls were not attributed to the probability of 
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encountering leopards. In addition, although baboons were found to respond to 

other groups through an increase in alarm calls, spatial avoidance, and 

heightened vigilance, it may be possible that direct encounters occurred less 

than they would have without the presence of an observer. Given these 

possibilities, it seems likely that assessing the perceived risk for both a 

habituated and unhabituated group would address these issues.  

Although accelerometers were useful in assessing activity levels in baboons at 

night, it seems likely that such an analysis could be improved with the use of 

spatial data at such time periods. Unlike the leopard GPS collars, baboon fixes 

were taken predominately between sunrise and sunset with the exception of 

one nocturnal fix that occurred at night. As such, it was impossible to assess if 

the baboons engaged in physical movements such as walking during such time 

periods. In addition, as most predation events during the study period 

happened at night or in the early morning, the incorporation of GPS collars that 

continuously recorded nocturnal activity may allow for an assessment of 

nocturnal risk. Such data may improve our understanding of not only sleeping 

site selection, but also whether range use is, in part, influenced by the events 

that occur at night.  In addition, it would have been ideal to have been able to 

assess whether the increase in activity levels during winter months was due to 

the baboons having to maintain social bonds through activities such as 

grooming during time periods exhibiting limited day length. Although 

accelerometers can pick up broad levels of activity, it should be noted that it is 

possible that they are unable to record stationary behaviours such as grooming. 

As such, it is highly recommended that future research that aims to assess 

nocturnal activity in a diurnal species should incorporate not only 

accelerometers, but also video cameras, which would allow researchers to 

determine the exact behaviours conducted at night.  

Future Research 

The content in this thesis addressed my primary aims and objectives and the 

results found have the potential to give way to future research on not only 

predator prey interactions, but also the behavioural ecology of both carnivores 

and primates independently.  
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Although 2nd order resource selection functions found that the neighbouring 

Blouberg mountains may have as suitable habitat for leopards, there has yet to 

be a formal assessment regarding habitat selection on a finer spatial scale (3rd 

and 4th order RSFS) in such populations. Such a comparative study between 

leopards in both western Soutpansberg and the neighbouring Blouberg 

mountains may indicate whether these populations are influenced similarly by 

specific environmental and anthropogenic variables. In addition, such research 

can also be extended towards assessing activity patterns in leopards residing in 

the Blouberg mountains as a means to not only assess whether such patterns 

are similar to leopards residing in the western Soutpansberg, but also if 

leopards residing in the Blouberg mountains shift their activity patterns when 

in anthropogenic habitats.  

An additional avenue for future research involves implementing resource 

selection functions deriving from carnivores to assess perceived risk in other 

mammalian species. The combined implementation of both antipredator data 

derived from the prey, as well as the probability of encountering carnivores 

residing in the area, may permit a greater understanding of long term trends in 

behaviours such as spatial avoidance, vigilance, and vocalisations rather than 

the immediate effect after a direct encounter. Such an analysis may also aid in 

assessing how much of an understanding a prey species actually has regarding 

the whereabouts of their primary predators.  The latter factor could be 

particularly compelling given that it is often assumed that prey have an 

imperfect knowledge of the whereabouts of their predators (Laundré, 2010). 

Although baboons within the western Soutpansberg (and elsewhere) are 

occasionally predated on by leopards (Busse, 1980; Chase Grey, Bell and Hill, 

2017; Williams et al., 2018), it should be noted that they are not considered 

primary prey in themselves, with leopards preferring to target small to medium 

sized ungulates or smaller primates (Chase Grey, Bell and Hill, 2017). Given this, 

it would be interesting to know if the probability of directly encountering a 

carnivore (through resource selection functions) elicits a greater response in 

prey species that may suffer higher rates of predation from carnivore species 

that is also studied. In the context of primates in the western Soutpansberg, the 
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utilisation of leopard RSFs may be particularly interesting when assessing 

perceived risk in species that both have the ability to elicit predator specific 

calls, yet also experience different rates of predation (samango and vervet 

monkeys in particular). Such research would not only allow for one to assess if 

such predator-specific vocalisations are omitted in areas where their primary 

predators are likely to occur, but also if direct spatial avoidance is e likely to be 

more prevalent in species that are predated on more.  

One interesting finding from this thesis regards the different behavioural 

strategies exhibited by baboons when faced with two different types of threats. 

In this case, the probability of encountering an ambush predator (the leopard) 

had the greatest effect on vigilance (with no effect on space use), whereas 

spatial avoidance was primarily utilised when faced with the threat imposed by 

other baboon groups. Given these findings, it would be interesting to assess 

how baboons residing in a multi-predator system must balance a combination 

between resource acquisition while simultaneously avoiding several predator 

species in addition to other groups.   

For example, one can ask: do baboons spatially vary their avoidance strategies 

or vigilance levels when faced with cursorial predators (such as spotted 

hyaenas or African wild dogs) that do not rely on stealth? Cursorial predators 

are generally considered to be less predictable regarding where they hunt 

compared to ambush hunters that rely on habitat features when stalking prey 

(Schmidt and Kuijper, 2015). Therefore, it is has been hypothesised that 

predation cues from cursorial predators may also be less predictable compared 

to ambush predators (where risk can be associated with specific visual 

features) (Schmidt and Kuijper, 2015). Although leopard activity levels had no 

effect on baboon avoidance, alarm call distribution, or vigilance levels, it may be 

possible that primates (among other prey items) recognise spatial patterns in 

activity in predators that rely on pursuit (and a heavy expenditure of energy) 

when hunting (such as cursorial predators). Although there are several studies 

that provide evidence that prey may temporally avoid when their predators are 

active (Kotler et al., 2002; Atwood, Gese and Kunkel, 2009; Tambling et al., 

2015) there are few studies that have assessed if such avoidance strategies also 
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apply to where they are active. Such prospective work has the potential to shed 

light regarding if recognised risk (and antipredator strategies utilised) may vary 

depending not only on the likelihood of encountering predators, yet also on the 

hunting method utilised by the carnivore itself.  

 Since baboons are most often at risk from ambush predators (such as large 

felids), it would be interesting to assess if the spatial patterns found here 

(increased vigilance, yet not spatial avoidance) are also found when faced with 

two species within the same study system that exhibit similar hunting strategies 

(such as lions and leopards) (Sunquist and Sunquist, 1989). If assessed, would 

one predator have a greater effect on space use or vigilance than the other? 

Likewise, would factors such as the presence of resources in high risk areas or 

possibly even differences in predator pressure influence such effects on baboon 

vigilance patterns?  

It would also be important to assess how long and short term space use trends 

in response to other groups are also influenced by the presence of multiple 

predators on the landscape. In this instance, baboons would not only have to 

face the risk imposed by different species of predators yet may also have to 

simultaneously avoid intergroup encounters. Baboons residing in such 

conditions may therefore adopt additional strategies to maximise energy intake 

while simultaneously avoiding the risk imposed by different threats.  

Finally, although using predator specific data to assess spatial patterns and 

avoidance strategies has the potential to provide an accurate understanding 

how prey items respond to the actual probability of encountering their 

predator, it should also be stated that as the focal group was habituated, it is 

possible that predation pressure may either be lower due to the presence of a 

human during the day (Isbell and Young, 1993a), or, that leopards will simply 

choose to primarily hunt baboons at night (Altmann and Altmann, 1973; Busse, 

1980). As such, although behavioural observations (and as such, habituation) 

were required to assess spatial patterns in vigilance, they may not necessarily 

be needed when assessing spatial use alone, and in fact, may even lower the 

probability for baboons encountering leopards. Therefore, it is recommended 

that future studies should also consider the impact that habituation may have 
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and, as such, aim to study populations whose behavioural ecology (including 

predation risk) is not influenced by humans.  

 Conclusion 

This is the first study that used a combination of long term spatial, activity, and 

behavioural data to assess the behavioural ecology of a predator (leopard), and 

its prey (chacma baboon) within the same environment (Although see Isbell et 

al., 2018 for an assessement of short term risk of baboons from leopards). In 

addition, this is one of the few studies that have used data directly deriving 

from the principal predator to assess long term spatial trends in avoidance and 

vigilance of a prey species with the aid of spatial autoregressive models.  

This thesis highlights the fact that both baboons and leopards alter their space 

use and activity levels throughout the landscape in response to abiotic, 

anthropogenic, and biotic conditions. In addition, it lends support that an 

understanding of the predator species is a fundamental (yet often forgotten) 

component in understanding the complex decision making processes required 

to maintain fitness through food acquisition while avoiding the risk imposed by 

specific threats.  
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Appendix 1: Chapter 2 Supplementary Material 
 

 

 Figure S1.1 Categorical (vector) habitat types in the western Soutpansberg mountains. 
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Table S1.1 Plant species consumed by chacma baboons in the western Soutpansberg 
mountains. 

Code Scientific Nomenclature Common Name 

A.at Senegalia ataxacantha Flame thorn 
A.ka Vachellia karroo Sweet thorn 
A.si Vachellia sieberiana var. woodii  Paper thorn 
C.ed Carissa edulis Climbing num num 
C.fa Capparis fascicularis Caper bush 
C.mu Canthium mundianum Rock alder 
C.sy Croton sylvaticus Forest fever berry 
D.ci Dichrostachys cinerea subsp. 

africana 
Sickle bush 

D.ge Drypetes gerrardii Forest iron plum 
D.ze Dovyalis zeyheri Apricot sourberry 
E.ca Ekebergia capensis Cape ash 
E.ly Erythrina lysistemon Sacred coral tree 
E.ma Englerophytum magalismontanum Stem fruit 
F.bu Ficus burkei Common fig 
F.cr Ficus craterostoma Forest fig 
F.in Ficus ingens Red-leaved rock fig 
F.su Ficus sur Broom-cluster fig 
H.am Hyperacanthus amoenus Thorny gardenia 
L.ca Lantana camara Tick-berry 
L.dr Lagynias dryadum Woodland pendant medlar 
M.ze Mimusops zeyheri Transvaal red milkwood 
O.eu Olea europaea subsp. africana Wild olive 
O.fi Opuntia ficus-indica Prickly pear cactus 
P.af Peltophorum africanum African wattle 
P.an Pterocarpus angolensis Bloodwood/teak tree 
P.gu Psidum guajava Common guava 
R.ca Rauvolfia caffra Quinine Tree 
R.to Rhoicissus tomentosa Forest grape 
S.ch Sersia chirindensis Red currant 
S.co Syzygium cordatum Common water-berry 
S.ge Syzigium gerradii Forest water-berry 
S.le Syzygium legatii Mountain water-berry 
S.lu Searsia lucida lucida Glossy crow berry 
S.pe Searsia pentheri Crow-berry 
Se.pet Senna petersiana Monkey pod 
St.coc Strychnos cocculoides Corkey-barked monkey 

orange 
T.dr Trichilia dregeana Forest mahogany 
V.gl Volkameria glabra Smooth tinderwood 
V.in Vangueria infausta Wild medlar 
V.pa Vangueria parvifolia Mountain wild medlar 
Z.mu Ziziphus mucronate subsp. 

mucronata 
Buffalo thorn 
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Appendix 2: Chapter 3 Supplementary Material 

 

Table S2.1 Top ten candidate models for 2nd order resource selection functions. 

Model Deviance AICc BIC Delta 

AIC 

Aspect + Elevation + NDVI + Ruggedness + 

Slope + Human Settlements  

13874 13906 14023 0.00 

Aspect + Agricultural + Elevation + NDVI + 

Ruggedness + Slope + Human Settlements  

13874 13908 14033 1.93 

Aspect + Elevation + NDVI + Ruggedness + 

Slope + 

Human Settlements + Distance from Water 

13874 13908 14033 2.00   

Aspect + Agricultural + Elevation + NDVI + 

Ruggedness + Slope + 

Human Settlements + Distance from Water 

13874 13910 14042 1.93 

Aspect + Elevation + NDVI + Ruggedness + 

Human Settlements  

13884 13914 14024 8.38 

Aspect +Agricultural + Elevation + NDVI + 

Ruggedness + Human Settlements  

13884 

 

13916 

 

14034 

 

10.38 

Aspect + Elevation+ NDVI+ Ruggedness+ 

Human Settlements + Distance from Water 

13884 

 

13916 

 

14034 

 

10.39 

Aspect + Elevation+ NDVI+ Slope+ Human 

Settlements  

13887 

 

13917 

 

14027 

 

11.39 

Aspect +Agricultural+ Elevation+ NDVI+ 

Ruggedness+ Human Settlements + 

Distance from Water 

13884 

 

13918 

 

14043 

 

12.39 

Aspect + Elevation+ NDVI + Slope+ Human 

Settlements + Distance from Water 

13887 

 

13919 

 

14037 

 

13.36 
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 Table S2.2 Top ten candidate models for 3rd order resource selection functions. 

Top Model Deviance AICc BIC Delta 

AIC 

Aspect + Elevation + NDVI + Human 

Settlements  

 

15446 

 

15474 

 

15577 

 

0.00 

 

Aspect + Agricultural + Elevation + NDVI + 

Human Settlements  

15444 

 

15474 

 

15584 

 

0.16   

Aspect + Agricultural + NDVI + Human 

Settlements  

 

15446 

 

15474 

 

15577 

 

0.22 

 

Aspect + NDVI + Human Settlements  

 

15449 

 

15475 

 

15570 

 

0.69 

 

Aspect + Agricultural + Elevation + NDVI + 

Slope + Human Settlements  

 

15443 

 

15475 

 

15593 

 

1.09 

 

Aspect + Elevation + NDVI + Slope + Human 

Settlements  

 

15445 

 

15475 

 

15585 

 

1.22 

 

Aspect + Elevation + NDVI + Ruggedness + 

Human Settlements  

 

15446 

 

15476 

 

15586 

 

1.55 

 

Aspect + Agricultural + NDVI + Ruggedness 

+ Human Settlements  

 

15446 

 

15476 

 

15586 

 

1.55 

 

Aspect + Agricultural + Elevation + NDVI + 

Ruggedness + Human Settlements  

 

15444 

 

15476 

 

15593 

 

1.78 

 

Aspect + NDVI + Ruggedness + Human 

Settlements  

 

15448 

 

15476 

 

15579 

 

1.85 
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Table S2.3 Top ten candidate models for 4th order resource selection functions. 

Model Deviance AICc BIC Delta 

AIC 

NDVI  1033 1041 1064 0.00 

NDVI+ Human Settlements 1032 1042 1072 1.39 

NDVI+ Agricultural 1033 1043 1072 1.91   

NDVI + Ruggedness  

 

1033 1043 1072 1.94 

(Intercept) 1037 1043 1060 1.94 

NDVI + Elevation 

 

1033 

 

1043 

 

1072 

 

1.98 

NDVI + Distance from Water 1033 

 

1043 

 

1072 

 

2.01 

NDVI+ Slope  1033 

 

1043 

 

1072 

 

2.01 

NDVI+ Human Settlements + Elevation 1032 

 

1044 

 

1080 

 

3.29 

NDVI + Human Settlements + Ruggedness 1032 

 

1044 

 

1080 

 

3.36 
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 Table S2.4 Coefficients for top alternative (habitat) model for 2nd Order RSF (AIC = 14267). 

Fixed Effects Estimate Std. 

Error 

z 

value 

P Value 

(Intercept) -

1.85E+0

0 

1.04E+00 -1.783 0.074 

Aspect (E) 4.38E-01 5.55E-01 0.788 0.430 

Aspect (N) 7.11E-01 5.54E-01 1.282 0.199 

Aspect (NE) 6.26E-01 5.56E-01 1.126 0.260 

Aspect (NW) 6.13E-01 5.55E-01 1.105 0.269 

Aspect (S) 9.40E-01 5.53E-01 1.7 0.089 

Aspect (SE) 7.18E-01 5.53E-01 1.297 0.194 

Aspect (SW) 1.03E+0

0 

5.54E-01 1.849 0.064 

Aspect (W) 9.38E-01 5.56E-01 1.685 0.092 

Elevation  -1.24E-

03 

1.66E-04 -7.47 <0.001 

Habitat (Makhado Sweet Bushveld) 3.49E-01 8.51E-01 0.41 0.681 

Habitat (Musina Mopane Bushveld) -

1.73E+0

0 

1.05E+00 -1.647 0.099 

Habitat (Northern Mistbelt Forest) 2.84E+0

0 

8.56E-01 3.321 0.000 

Habitat (Soutpansberg Mountain 

Bushveld) 

2.01E+0

0 

8.54E-01 2.35 0.018 

Habitat (Soutpansberg Summit 

Sourveld) 

7.62E-01 8.64E-01 0.882 0.377 

Ruggedness 8.22E+0

0 

4.66E+00 1.765 0.077 

Slope 5.20E-03 2.75E-03 1.891 0.058 

Distance from Human Settlements 8.07E-05 8.37E-06 9.633 <0.001 

Distance from Distance from Water 9.22E-05 3.69E-05 2.5 0.01242

2 
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Table S2.5 Coefficients for top alternative (habitat) model for 3rd Order RSF (AIC = 15635). 

Fixed Effects Estimate Std. Error z Value P Value 

(Intercept) -2.26E+00 1.30E+00 -1.735 0.082 

Aspect (E) -1.44E-01 7.66E-01 -0.187 0.851 

Aspect (N) 3.18E-02 7.66E-01 0.042 0.966 

Aspect (NE) 1.45E-02 7.67E-01 0.019 0.984 

Aspect (NW) 2.02E-01 7.66E-01 0.264 0.791 

Aspect (S) 1.43E-01 7.65E-01 0.187 0.851 

Aspect (SE) -5.25E-02 7.65E-01 -0.069 0.945 

Aspect (SW) 2.41E-01 7.65E-01 0.315 0.752 

Aspect (W) 4.10E-01 7.67E-01 0.534 0.593 

Distance from 

Agricultural Areas 

4.51E-05 2.28E-05 1.981 0.047 

Habitat (Makhado 

Sweet Bushveld) 

2.02E+00 1.05E+00 1.919 0.054 

Habitat (Musina 

Mopane Bushveld) 

1.59E+00 1.21E+00 1.315 0.188 

Habitat (Northern 

Mistbelt Forest) 

2.58E+00 1.06E+00 2.435 0.014 

Habitat 

(Soutpansberg 

Mountain 

Bushveld) 

2.41E+00 1.06E+00 2.279 0.022 

Habitat 

(Soutpansberg 

Summit Sourveld) 

1.73E+00 1.06E+00 1.626 0.103 

Distance from 

Human Settlements 

3.76E-05 9.35E-06 4.017 <0.001 

Elevation -4.79E-04 1.56E-04 -3.063 0.002 
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 Table S2.6 Coefficients for top alternative (habitat) Model for 4th Order RSF (AIC = 1043). 

Fixed Effects Estimate Std. Error z 

value 

P Value 

(Intercept) -2.99573 0.09022 -33.2 <0.001 
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Appendix 3: Chapter 4 Supplementary Material 

 

  

Figure S3.1 Projected diurnal leopard activity levels across the western Soutpansberg. 
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Figure S3.2 Projected crepuscular leopard activity levels across the western Soutpansberg. 
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Figure S3.3 Projected nocturnal leopard activity levels across the western Soutpansberg. 
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Appendix 4: Chapter 5 Supplementary Material 

 

 

 Figure S4.1 Habitat (raster) types found within the baboon utilisation distribution. 
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Table S4.1 Annual average food availability per raster habitat type. 

Habitat Value N 

Indigenous Forest 269.889 316 

Thicket 269.478 244 

Woodland 109.265 145 

Grassland 110.314 69 

Agricultural 8.173 16 

Bare Rock 0 3 
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Table S4.2 Average summer food availability per raster habitat type. 

Habitat Value N 

Indigenous Forest 370.785 316 

Thicket 506.557 244 

Woodland 202.577 145 

Grassland 284.659 69 

Agricultural 0 16 

Bare Rock 0 3 
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Table S4.3 Average winter food availability per raster habitat type. 

Habitat Value N 

Indigenous Forest 68.341 316 

Thicket 73.972 244 

Woodland 14.114 145 

Grassland 0 69 

Agricultural 20.785 16 

Bare Rock 0 3 
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Figure S4.2 Average food availability annually and per season. 
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 Figure S4.3 Average winter food availability. 
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Figure S4.4 Average summer food availability. 
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Table S4.4 Moran’s I value for every variable utilised per dataset. 

Dataset/Variable Moran’s I Value 
Annual (Dataset A) 
Distance to Water 
Distance to Sleeping Site 
99% Annual Utilisation Distribution 
Probability of Intergroup Encounter 
Leopard Resource Selection Functions 
Food Availability 
Landscape of Fear 

 
0.510 
0.982 
0.836 
0.518 
0.536 
0.380 
0.392 
 

Winter (Dataset B) 
Distance to Water 
Distance to Sleeping Site 
99% Annual Utilisation Distribution 
Probability of Intergroup Encounter 
Leopard Resource Selection Functions 
Food Availability 
 

 
0.530 
0.934 
0.806 
0.708 
0.505 
0.377 

Summer (Dataset C) 
Distance to Water 
Distance to Sleeping Site 
99% Annual Utilisation Distribution 
Probability of Intergroup Encounter 
Leopard Resource Selection Functions 
Food Availability 
 

 
0.571 
0.983 
0.916 
0.813 
0.495 
0.217 

Vigilance (Dataset D) 
Percent Vigilant  
99% Annual Utilisation Distribution 
Probability of Intergroup Encounter 
Leopard Resource Selection Function 

 
0.031 
0.779 
0.268 
0.215 
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 Figure S4.5 Utilisation distribution for focal group in 2014. 
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Figure S4.6 Utilisation distribution for focal group in 2015. 
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Figure S4.7 Utilisation distribution for focal group in 2016. 
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Figure S4.8 Utilisation distribution for focal group in 2017. 
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Figure S4.9 Summer utilisation distribution of focal baboon group.   
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Figure S4.10 Winter utilisation distribution of focal baboon group.   
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Figure S4.11 Probability of encountering other baboon groups in summer. 
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Figure S4.12 Probability of encountering other baboon groups in winter. 
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Appendix 5: Primate Predator Project’s Baboon Protocol 
 

Background information  

Chacma baboons (Papio hamadryas ursinus) are located primarily in Southern Africa, 

and are distributed across Botswana, South Africa, Mozambique, Zimbabwe, Angola, 

Namibia and Zambia. They are the largest baboon subspecies and are a primarily 

terrestrial primate. According to the IUCN red list, baboons are currently of least 

concern. However, a rapidly growing human population has increased contact between 

humans and baboons. This has lead to escalated hunting, killing, and snaring of 

baboons. Development of agriculture in Southern Africa has also lead to a treacherous 

interest in crop raiding. Due to these human-baboon conflicts, baboons are viewed as 

vermin across Southern Africa.  

Baboons are often known as the “adaptable monkey,” meaning that they can live in a 

wide variety of different habitats. These include semi-arid deserts, tropical forests, 

savannas, open woodlands, and mountainous environments. A reliable water source 

and safe sleeping sites are the major requirements for a baboon‟s habitat. This troop of 

chacma baboons, known as the House Troop, inhabits an afromontane habitat. 

Approximately 80 individuals reside in this troop and each individual can be 

distinguished based on unique characteristics.  

More information can be found on the IUCN red list website 

(http://www.iucnredlist.org/details/16022/0).  

Your responsibilities  

As a baboon research volunteer you will have a range of different responsibilities. Your 

main responsibility will be helping to complete our baboon follow days. Each month we 

aim to complete a minimum of 8 dawn-dusk follow days with our habituated group. 

During these follow days we attempt to collect data using one of two methods, scan 

sampling and focal sampling. Another important responsibility will be helping to 

complete our vegetation sampling. This will involve collecting data from our 

phenological transects and through vegetation plots, we aim to complete 15 vegetation 

plots each month. All of these responsibilities will be explained to you in more detail by 

the Primate Coordinator.  

Rules towards the monkeys  

In respect of the monkeys and for your safety, we ask you to adhere to the following 

rules when in the presence of the baboons.  

Do not feed the monkeys. This includes throwing waste food into the forest. Human 

food can make the monkeys ill and also causes them to associate humans with food, 

this can lead to them becoming aggressive in the future.  

Be inconspicuous with your food. This applies both in the field and at camp. 

Whenever possible try not to eat food within sight of the monkeys (try to hide behind 

vegetation). When in camp ensure that no food is left outside and if possible store all 

food within cupboards or fridges.  

Do not leave your belonging unattended.  
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Do not touch or attempt to touch the monkeys. We are a neutral presence and these 

are wild animals who do not want to be touched. They may respond aggressively and 

should a monkey attack a human that individual may have to be put down.  

Avoid eye contact. Eye contact is an aggressive dominant behaviour in baboons, so 

please don‟t stare at any individuals for long periods of time.  

Be as quiet as possible. The baboons will be prefer it if researchers walk/talk as 

quietly as possible during a follow day.  

Safety recommendations  

A minimum of 2 people are required on a baboon follow day. Ensure all researchers 

have 2 fully charged radios with them before beginning the day.  

Due to the cliffs, radios do not always work. Therefore, please take a mobile phone with 

you. The emergency code is 112 and we also suggest you store the numbers of a few 

members of the team, especially Ian.  

Always take a GPS which has the camps marked on it, should you need to quickly find 

people.  

Many of the rocks in Lajuma have lichen growing on them, which when wet becomes 

very slippery. Be aware of this if it has been raining or if it is misty.  

If a thunderstorm is approaching find shelter in one of the camps, even if this means 

ending your follow day (only applies if the storm is near/above you).  

You will leave the monkeys at dusk and may be several km from camp. Always 

therefore ensure you take a torch with you as you will have to walk back in the dark.  

We recommend taking a minimum of 3 litres of water (4 on a hot day). This is not just 

for drinking, but may be important for first aid reasons (e.g. problem with spitting 

cobra).  

DO NOT PUT YOURSELF AT RISK. Please don‟t attempt to follow the monkeys 

through terrain you are not comfortable with.  

Equipment  

PDA  

When in the field please use one of the PDA covers. The cover will only protect against 

very light rain. In heavier rain please try to keep the PDA within waterproof clothing as 

much as possible.  

To access the data collection spreadsheet:  

Press “Start” (Windows icon)  

Press “File Explorer” (Folder with a magnifying glass icon)  

Press Baboon scans template should appear  

The baboon spreadsheet has 3 different tabs: Scan, Ad libitum, Codes.  
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There is an occasional problem with the spreadsheet where the sheet suddenly 

becomes too full or the options at the top disappear. If this happens tap the keyboard 

icon (bottom right) twice, and it should return to normal.  

GPS  

Familiarise yourself with the GPS. The most important function will be “Mark” which 

you will need to mark locations for the behavioural sampling.  

To find the dawn and dusk times go to the Calendar option and they will be listed.  

Please make sure that the GPS is set on Decimal Degrees. To do this go to the main 

menu and select “Setup, then “Units” and it is the top most option “hddd.ddddd”  

If you require help with any of the equipment or the software we use, please see the 

Primate Coordinator.  

Data collection  

Finding the troop  

The night before a follow day find the troop. GPS waypoints of sleeping sites are all 

recorded on baboon GPSs and a waypoint file exists on the Primate Hard drive named 

„baboon sleeping sites frequent‟ in the Masterfiles folder. You can see the sleeping sites 

mapped out on this and there are also direction and tips for reaching the more remote 

ones.  

Below are some of the most common sleeping sites for the baboons:  

Sleeping Site 1 – Cliffs above Ian‟s house and at Lookout.  

Sleeping Site 2 – Cliffs South of where the Leopard and Klipspringer trails meet (Above 

the Barn).  

Sleeping Site 3 – At the diagonal rock, before the Leopard trail leads into the bush.  

Sleeping Site 4 – Cliffs East of the Leopard trail chimney into Ottosdahl.  

Sleeping Site 5 - Cliffs behind Oldrich and Judy‟s house. Follow the trail behind house 

for about 200 meters, the sleeping site is south of the trail, on cliffs just past a plateau.  

Sleeping Site 6 – Cliffs below Wilderness Camp.  

Sleeping Site 7 – Porcupine trail sleeping site.  

Sleeping site 8: In Ottosdahl, above field.  

Sleeping site 9: Bergplaas cliffs. Large sleeping site, baboons often very spread out 

across these cliffs.  

Sleeping Site 10a and 10b: Diepkluf, cliffs behind and west of rondervaals; take St.13 

trail.  

Sleeping Sites 11/12: Sigurwana sleeping sites. Baboons can be followed here but it is 

too far to reach the next day.  

Sleeping Sites 13/14: 14 is in the big gorge at Ont Moet, 13 is on the cliffs above the 

road.  
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Sleeping site 15: Buysdorp near Camera Station 12.  

Sleeping Site 16: This sleeping site is far into Buysdorp. Baboons can be followed here 

on a follow day but it is not safe to try to reach them there the next morning as there is 

not trail and the bush is very thick.  

Sleeping Site 17: This is in a property called Scott. The baboons only went here once 

during a thunderstorm and hopefully won‟t go back again. Again it is to distant and 

inaccessible to reach.  

Waypoints for locations of all these sleeping sites are located on the primate hard drive 

in the baboon research file in a mapsource file labelled „baboon sleeping sites 

frequent‟. There are top and bottom locations for most of them and also marked are 

trails to get to the top and bottom of SS9 in Bergplaas, SS13&14 in Ont Moet and SS15 

in Buysdorp. In the morning you must arrive at the sleeping site a minimum of 10 

minutes before dawn. We use the dawn dusk times found in the calendar of the Garmin  

GPS. On misty days, the baboons often start moving later than on sunny days. Keep this 

in mind for finding them on these days.  

Scan sampling  

We currently perform scan samples every 10 minutes (at 00, 20 and 40 minutes past 

the hour). Each scan should last a maximum of 10 minutes, where you aim to sample as 

many individuals as possible. Please try to ensure you don‟t sample the same 

individual twice in one scan sample.  

With each different scan sample please try to move about the group. This is to ensure 

you are not sampling the same individuals each time.  

Just before the scan sample time you can fill out the first bits of information within the 

“Scan” tab. These are:  

Date – Stick to the format DD/MM/YYYY (this is extremely important!)  

Observer – Your name  

Time – Write the appropriate time.  

Weather:  

S – Clear sky  

S/C - <50% cloud cover  

C/S - ≥50% cloud cover  

C – 100% cloud cover  

M - Mist  

LR – Light rain  

HR – Heavy rain  

Wind:  

C – Calm  
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B – Light breeze (leaves moving)  

W – Windy (twigs and small branches moving)  

VW – Very windy (larger branches moving)  

Scan comments – Anything that might affect the group‟s behaviour.  

In addition to the information recorded in the spreadsheet, you have to MARK A 

WAYPOINT ON THE GPS FOR EACH SCAN. The waypoint should be named in the 

follow way: Time (4 digits, no spaces, no colon), space, Date (day with 2 digits, month 

with first 3 letters in capitals, last 2 digits of year), space, first letter of group name. For 

example: 0615 25SEP13 B.  

REMEMBER TO HIT OK AFTER TYPING THE WAYPOINT NAME OTHERWISE IT WON‟T 

SAVE!  

Then you can proceed with the scan. It is important that you do not sample the same 

individual more than once in a sample. Try to be aware of which individuals you have 

already sampled. You can record data on individuals which weren‟t visible at the start 

of the scan but do not do so until they have been in sight for at least 15 seconds. You 

can also move around during the scan to try to sample as many individuals as possible, 

but again, for newly found individuals allow 15 seconds. This reduces the potential for 

bias of locomotive behaviours.  

Listed below are the data you must record for each individual during a scan sample:  

Age-sex class  

This will be difficult at first to distinguish, and takes some practice. If you are struggling 

the Primate Coordinator may be able to give you some tips. The categories are:  

AM (Adult male) – All secondary sexual characteristics fully grown, musculature (most 

noticeably in chest and rump) expands to full adult size.  

AF (Adult female) – Attainment of full body size, either cycling regularly, pregnant or 

lactating. Nipples also enlarge and elongated from suckling infants.  

ADM (Adolescent Male) – Massive growth in secondary sexual characteristics; testes 

expand, canines and mane grow longer, body size increases to near that of an adult 

male.  

ADF (Adolescent Female) – Nearly adult female size, with the onset of the first sexual 

swellings. If visible, nipples are much smaller and button-like than that of an adult 

female.  

J3M (Juvenile 3 Males Only) – Body size that of an adult female, muzzle further 

extended to nearly that of an adult male. Testes start to expand and are clearly visible. 

Mane becomes noticeable.  

J2M/F (Juvenile 2) – Little demarcation from previous period, with greater body size. 

Hair becomes darker, changing to a more adult grey/brown colouration  

J1M/F (Juvenile 1) – Little demarcation from previous period, but fully weaned and 

nutritionally independent. Muzzle starts becoming more elongated and pronounced. 

Pelage is still lighter than in adults.  
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INF2M/F (Infant 2) – Pelage fully yellow/brown. Ears and muzzle are completely grey. 

Nutritionally dependent on lactating mother, but undergoing weaning.  

INF1M/F (Infant 1) – Pelage initially black, transitioning to yellow/brown. Ears and 

muzzles turning from pink through to gray. Nutritionally dependent on lactating 

mother.  

 If unsure of an infant or juvenile‟s sex put „unk‟ after the age class e.g. J1UNK, 

INF2UNK.  

 

UNK – unless completely sure of an individual ID write „unk‟ (unknown) in column for 

individual.  

Habitats  

WO (woodland): Woodland: can see sky overhead,; canopy is more open; allows 

sunlight to penetrate between the trees, limiting shade. Woodlands may support an 

understory of shrubs, herbs, or grasses. Mostly consists of acacia.  

FO (Forest): largely closed canopy; trees tall; the branches and foliage interlock 

overhead to provide extensive and near continuous shade  

RD (Road): Self explanatory  

RO (Rocks): area where ground predominantly consists of rocks and boulders, rather 

than dirt.  

FM (Farm): self explanatory. Ottosdal Macadamia farm or area around Ottosdal Farm 

House.  

BU (Bush): area where shrubs are the dominant vegetation. A shrub is a woody 

perennial plant,  

smaller than a tree, with several major branches arising near the base of the stem.  

GR (Grassland): a large, open area covered predominantly with grass.  

MA (Marshland): vegetation components of marshlands include reeds, sedges, and 

grasses. Exclusively found in flat regions along permanent water streams on peat.  

Activity  

For each individual record the first activity lasting at least 5 seconds.  

F (Feeding) – Searching for, processing or injecting food  

M (Moving) – Moving without any obvious sign they are searching for food  

S (Socialising) – Any social activity, e.g. fighting, playing, being groomed by another  

R (Resting) – Sitting, lying or standing, without engaging in any specific behaviour  

OT (Other) – Any other activity, e.g. drinking, self play.  

Qualifier  
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Each activity type has qualifiers which will allow you to more precisely define the 

activity.  

Feeding - searching for, processing, or ingesting food.  

Fe (Feeding) – Chewing, processing or ingesting food. You will need to further record 

Food Item and Plant Species where possible.  

Fo (Foraging) – Actively searching for food that is not obvious without ingesting 

anything (putting anything into their mouth). A forage must last 5 seconds or more for 

the behaviour to be recorded as a forage.  

Fcp (cheek pouch) – Feeding from food items stored in cheek pouches.  

Moving – locomotion on ground, bush or tree for 5 seconds or more, without picking 

up any food items.  

Wa (Walking) – Always 3 limbs touching the ground. Also applies to slow climbing.  

Ru (Running) – Fewer than 3 limbs always touching the ground. Again, applies to fast 

climbing.  

Socialising - includes grooming, play, affiliation, mating, and aggression. All of these 

behaviours have recipients (individual receiving the behaviour) that must also be 

recorded in addition to the recipient‟s activity.  

Gg (Grooming given) – The individual is grooming another individual. In this case, the 

individual receiving the grooming should be recorded under “recipient” and “recipient 

behaviour”.  

Gr (Grooming received) – The individual is being groomed by another individual. The 

individual performing the grooming should then be recorded under “recipient” and 

“recipient behaviour”.  

Pl (Play) – Individual involved in social play (this differs from environmental play, 

which is not recorded).  

Ag (Aggression) – Individual involved in an aggressive display as the aggressor.  

Su (Submission) – Submissive in an aggressive display  

Ma (Mating) – Self explanatory (although make sure it isn‟t just a mount-dominance  

display)  

Resting - individual is sitting, laying, or standing without performing any other activity 

for 5 seconds or more.  

Rs (Resting sitting) – Individual is stationary while sitting without performing any 

other activity.  

Rst (Resting standing) – Individual is stationary while standing without performing 

any other activity.  

Rl (Resting lying) – Lying down  

Rh (Resting huddled) – Huddling with other individuals  

Sg (Self-grooming) – Grooming itself, also referred to as autogrooming.  
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Other  

Ot (Other) – Write in “comments” what was observed  

Dr – drinking  

 If a female is carrying/suckling an infant record this in the comments box.  

 

Recipients Activity – If involved in a social activity, put here the partner. Will usually 

be the sex-age class. Also a place for individual ID if known. If not, fill in with (UNK) 

“unknown”.  

Plant species – Only put here if you are sure of the plant species being consumed. Once 

sure of the plant species, you will then enter the part of the plant that is being 

consumed in the Food Item category.  

Trees  

A.at- Acacia ataxacantha. Flame thorn  

A.ka- Acacia karoo. Sweet thorn  

A.si- Acacia sieberiana. Paper thorn  

C.mu- Canthium mundianum. Rock alder  

C.af- Celtis africana. White stinkwood  

D.ze- Dovyalis zeiheri. Apricot sourberry  

E.ca- Ekebergia capensis. Cape ash  

E.ma- Englerophytum magalismontanum. Stem fruit  

E.tr- Erytrococca trichogyne. Twin red-berry  

E.ly- Erythrina lysistemon. Sacred Coral Tree  

F.bu- Ficus burkei. Common fig  

F.cr- Ficus craterostoma. Forest fig  

F.su- Ficus sur. Broom-cluster fig  

H.am- Hyperacanthus amoenus. Thorny gardenia  

M.ze- Mimusops zeiheri. Transvaal rel milkwood  

O.eu- Olea europaea. Wild olive  

R.to- Rhoicissus tomentosa. Forest grape  

R.ca- Rauvolfia caffra. Quinine tree  

R.ch- Rhus chiridiensis. Red currant  

R.pe- Rhus pentheri. Crowberry  

S.co- Syzygium cordatum. Common waterberry  
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S.le- Syzygium legatii. Mountain waterberry  

T.dr- Trichilia dregeana. Forest mahogany  

Z.mu- Ziziphus mucronata. Buffalo thorn  

OT (Other species) – If it is not one of these species and you can ID it then put the 

species  

in the comments section. If you cannot ID it, collect a sample  

and try to ID it later.  

Grasses – being updated (see ground vegetation list on hard drive)  

Other - other plant species baboons regularly feed on (see ground vegetation list on 

hard drive).  

O.fi – Opuntia ficus indica. Prickly pear cactus.  

M.se – Mundulea sericea. Cork bush.  

D.vi – Dioscorea villosa. Wild Yam.  

A.ha – Aloe hahnii. Aloe vera.  

P.an – Pterocarpus angolensis. Wild Teak tree or Bloodwood.  

Food item  

FR – Fruit  

SE – Seeds, includes Acacia seed pods  

FL – Flowers  

LE – Leave of trees and bushes  

LL – Leaf litter, but cannot tell what item  

GR – Plants without bark and with parallel venation on leaves (grasses)  

HE – Plants without bark and without parallel venation on leaves (herbs)  

RO – Underground roots  

BK – Bark  

INV – Invertebrates  

UNK – Unknown  

OT – Other, put what item in comments, e.g. milk suckling  

Height from ground – To the nearest metre. There is a code >10 for anything higher 

than 10m  

Vigilance – Is the animal looking around?  

NT – Not vigilant  

LU – Looking upwards  
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LD – Looking downwards  

SC – Scanning in a horizontal plane  

ME – Looking at the observer  

SO – Social vigilance, looking at another monkey  

OT – Other (e.g. looking at a different species)  

UNK – Unknown  

Number of nearby individuals (nearest neighbours) – Number of individuals within 

5m of the focal individual (does not include dependent infants).  

After completing the information for each individual, you have to copy and paste the 

general information to all the individuals of that particular scan. After this, make 

sure you have saved the spreadsheet.  

Focal Sampling  

For focal sampling, you must follow one individual for 10 minutes. A seven-minute rule 

has been put in place where if you lose the individual after seven minutes you may 

keep the focal. Record each instance of a change in behaviour. For example, if a baboon 

feeds, then walks, then grooms, then rests, there should be four behaviours in the focal. 

However, if a baboon spends all ten minutes walking, there should only be one 

behaviour included in the entire focal. In order to record focals, you must first be able 

to tell the individuals in the troop apart from each other. This is because for each focal, 

you must record:  

Age-sex class (same as for scans)  

Individual  

Activity and sub-activity (same as scans)  

Neighbours ASC and ID (all individuals that are within 5 meters of the focal individual)  

Ad libitum sampling  

Not all relevant data can be collected using the scan samples, so there are certain 

behaviours we record as and when they happen (ad libitum). There is a separate tab in 

the spreadsheet for such recordings.  

The following categories are used:  

V – (vocalisation):  

A - Alarm call  

WH – Wahoo – call used in male dominance displays  

L – Lost calls, made when group is separated  

OT (Other) – Any other relevant vocalisation  

E - (Encounter):  
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IE (Inter-specific encounter) – The presence of members of another species within 10m 

of an individual from the troop. Do not count domestic animals/people unless the 

monkeys are seen to react to their presence. If they are present during a scan, then that 

information should also go in the scan comments section.  

WE (Within-specific encounter) – Interactions with another group. Record all details in 

the comments section  

BE - (Behaviour)  

AG (Aggression) – Aggressive encounters involving more than one individual. Record 

details of the encounter, including age-sex classes, in the comments.  

MA (Mating) – If you see mating (even if recorded in the scan) put details of it here  

OT (Other) – Any other interesting behaviour  

PR (Predation) – Details of any predation event  

OT (Other) – Anything not categorised above, e.g. injured animal, another male in troop  

TE (Technical problems) – GPS ran out of batteries, lost/found monkeys  

In addition to the data above, you will need to mark a waypoint for each ad libitum 

recording. The names that you must use are the codes of the subtype (AG, IE, WE, MA, 

AG), except when this is OT in which case you must use the code of the type (V, BE, PR, 

OT). Use PR for predation events. Then, with no space and with 2 digits, write the 

appropriate number (Ex. PR01 27SEP14 B, IE01 04SEP14 B).This is the name that you 

must write into the 'GPS ID' column of the spreadsheet.  

Downloading data  

At the end of each follow day you will need to download your data from both the PDA 

and the GPS onto the Primate hard drive. 

 

 


