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The evolution of brain size and structure in primates 

Abstract 
 

The pressures and constraints influencing the wide variation in primate brain size and 

composition are hotly contested. Comparative biologists have proposed many alternative 

hypotheses with no consensus yet emerging. This thesis uses phylogenetic comparative 

techniques and new data to explore the core issues in primate brain evolution; examining how 

behavioural ecology is associated with brain size and structure variation and what life history 

correlates reveal about possible developmental mechanisms producing this variation. 

The thesis raises a number of important issues for the field. Firstly, evidence of selection at 

the level of individual structures independently of overall brain size further challenges the 

utility of whole brain size as a meaningful measure in comparative enquiry. Secondly, by 

analysing multiple datasets, I demonstrate that fluctuations in data quality are a major cause 

of inconsistency in results. Finally, the pursuit of explanatory frameworks based on single 

niche dimensions appears to yield unclear results; contributing to the lack of consensus in the 

literature. The concept of adaptive syndromes of correlates, while more difficult to 

operationalise, is likely more meaningful in terms of selection on function.  

The findings demonstrate different patterns of covariation of structures across orders and 

varying correlates of individual structures within primates. This suggests that primate brain 

evolution has been characterised by the mosaic evolution of individual structures in response 

to ecological, social and developmental factors, and that selection on function is the primary 

cause of the observed phenotypic variation. Life history traits were also associated with 

structure size in a manner predicted from their developmental trajectories, suggesting that 

selection induces variation in brain composition by modifying the duration of specific life 

history phases to adjust the relative growth of individual structures. 
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1 Introduction 
 

Relative to body size, primate brains are among the largest in Mammalia (Fleagle, 2013; 

Montgomery et al., 2013) and exhibit a trend towards increased relative size over time across 

the primate phylogeny (Montgomery et al., 2010). Despite this evidence of strong directional 

selection, absolute brain size in extant primates varies almost a thousand-fold across the order 

(Barton, 2012). The adaptive significance of this variation has been the subject of intense 

interest and is the focus of this thesis.  

This thesis examines the large-scale patterns in primate brain evolution, exploring and 

expanding on fundamental ideas proposed to explain these patterns, bringing up to date 

methods and data to bear on key questions: why do primates have large brains? Is a big brain 

linked to some specific functions? How are the costs of a large brain offset? How do large 

brains get large? 

1.1 Background  

 What is a big brain? 1.1.1

Primates have large brains and exhibit behaviours that are regarded as complex. The 

coincidence of these two traits has largely been taken as evidence for a causal, 

unidimensional relationship; so that a large brain is commonly assumed to be a proxy for 

complex cognition (Logan et al., 2017). However, organ size tends to increase with body 

size. Larger animals therefore tend to have larger brains (Jerison, 1973). It was reasoned that 

a larger body requires more neural tissue to maintain somatic systems (Deaner, Nunn and van 

Schaik, 2000; Byrne and Corp, 2004; Chittka and Niven, 2009). Therefore, the large brains of 

large animals may not be indicative of any particularly increased cognitive capacity (Barton, 

2012). 

In response to this issue, Jerison (Jerison, 1973; Jerison and Barlow, 1985) proposed that the 

proportion of the brain that was in excess of that predicted by body size was surplus to the 

basic maintenance requirements of the body and so could be linked to “intelligence”
*
. He 

termed this the “encephalisation quotient” (EQ), with species whose brains were substantially 

                                                 
*
 This term is often avoided by those studying comparative cognition due to its anthropocentric and nebulous 

nature (Deacon, 1990). It is used here only in reference to historic ideas. 



 
2 

larger than that predicted by body size being more “encephalised” than those with more 

modest surpluses. This method of using the residual brain volume from an expected brain to 

body size relationship to examine neural differences across clades became a popular way of 

controlling for brain–body allometry.  

However, the measure is problematic, as follows. To determine how encephalised a taxon is, 

a reference group must be used to provide an expected allometric exponent against which the 

observed values can be compared (Harvey and Krebs, 1990). These exponents have been 

shown to vary, both amongst taxa and according to the method of analysis used (Deacon, 

1990; Harvey and Pagel, 1991; Barton, 2006c; Willemet, 2012). In the absence of a single 

mammalian exponent, the encephalisation quotient of a given taxon is variable depending on 

the reference group used. The EQ, and other indices based on such broad scaling 

relationships, are therefore of limited utility when comparing taxa from diverse taxonomic 

groups (Deacon, 1990; Martin, 1996). Nevertheless, Jerison’s idea suggested that absolute 

brain size was potentially not useful in terms of explaining differences in cognition between 

taxa. Various measures of relative brain size (brain size relative to body size) have therefore 

largely become the measure of choice when seeking to examine meaningful brain size 

variation comparatively (Chittka and Niven, 2009).  

Yet, there is still support for absolute brain size being a functionally meaningful measure. 

This measure has been reported to correlate with a number of (slightly ambiguous) 

behavioural measures such as self-control (MacLean et al., 2012; Stevens, 2014), innovation 

and social learning (Reader and Laland, 2002), and “general cognitive ability” (Deaner et al., 

2007; Reader, Hager and Laland, 2011) (also referred to as “domain general intelligence” or 

simply “g”). The proposed functional reason for this is that absolute brain size represents 

neural complexity; larger brains have more neurons which requires increased modularity to 

maintain speed of connectivity (Marino, 2006). This increased complexity of organisation is 

proposed to give rise to increased cognitive capacity and more functional differentiation 

(Chittka and Niven, 2009; MacLean et al., 2014). Absolute brain size also explains apparent 

differences between clades better than relative brain size (Deaner, Nunn and van Schaik, 

2000; Striedter, 2006; Deaner et al., 2007), but this has often been attributable to a lack of 

phylogenetic correction (Parker, 2015) (explained in “Approach” below). However, despite 

these possible advantages, it remains difficult to see how absolute brain size could be 

meaningful in terms of comparing cognition when compared across a number of taxa with 

different brain-body allometric relationships. This issue is particularly apparent when 
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considering taxa with very small absolute brain sizes but an impressive repertoire of 

cognitive abilities, such as honeybees (Chittka and Niven, 2009). Across large phylogenetic 

distances, cognitively meaningful differences in absolute brain size seem to break down.  

 What are big brains for? 1.1.2

Increasing brain size is accompanied by a variety of costs which must be compensated by 

benefits. Neural tissue is energy-hungry (Aiello and Wheeler, 1995). As a brain gets larger, 

its energetic needs increase. If the energetic needs of the rest of the body are held constant, 

there is an energy deficit to be paid. Aiello and Wheeler suggested that the cost of an increase 

in brain tissue must be traded-off against a decrease in other expensive tissues, in this case 

the gut (Aiello and Wheeler, 1995). A more recent elaboration of this kind of trade-off 

hypothesis is the Expensive Brain Hypothesis (Isler and van Schaik, 2009), which suggests 

that any of a broad range of energetically expensive traits may be traded-off in order to afford 

the cost of an increase in neural tissue, including reproduction and locomotion. Given these 

costs and trade-offs, it is reasoned that increases in brain size must confer some adaptive 

advantage on their owners. In order to discover the nature of these advantages, we can 

examine patterns of correlation between various brain measures and variables which 

represent potential selective pressures on cognitive function. Since we cannot directly 

measure cognitive function, behaviours are used as  proxies (Logan et al., 2017). This is 

common practice in comparative work which examines complex cognitive traits; for 

example, in their 2014 paper MacLean et al. used two behavioural tests based around 

response inhibition as proxies for the cognitive trait of “self-control” (2014).  

The relationship between cognition and behaviour is widely debated in the psychological 

literature. The nature of their relationship is outside the scope of this thesis, but the use of 

both terms throughout this work warrants a brief justification. Recent work has emphasised 

the embodied nature of cognition, where cognition, sensorimotor responses (that might 

commonly be referred to as “behaviour”) and the context in which they take place are 

integrated, and so ultimately cognition, behaviour and the context they occur in are 

indivisible (Barton, 2012; Keijzer and Keijzer, 2017).  

Therefore where “cognition” and “behaviour” are referred to in this thesis, they should be 

understood as different aspects of the same process: one refers to a specific, discrete and 

observable action or collection of actions (behaviour), whereas the other is a more abstract 

term under which a number of overt actions may be defined (cognition). For example, in the 
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case of MacLean et al.  (2014) the success of suppressing the impulse to reach for food (i.e. 

not reaching) is the behaviour, but the wider umbrella term that this action may represent is 

proposed to be “self-control” – a “cognitive” principle. The two are not necessarily distinct. 

The use of the two terms in this thesis should not be taken as support for their conceptual 

separation; rather they are used for ease of reference to these two levels.   

1.1.2.1 Ecological Brains 

Hypotheses seeking to explain the kinds of factors that can influence brain size and 

composition can be broadly broken down in to ecological, social, and developmental.  

Ecological hypotheses (sometimes referred to as foraging hypotheses (Barton, 2006c; Mars et 

al., 2014) suggest that a species' ecological niche may exert selective pressures on brain and 

behaviour (Harvey and Rambaut, 2000). The ecological niche concept was initially defined 

by Hutchison (1957) as a multidimensional space whose parameters are defined by ecological 

variables and delimit the possible habitat for a given species (Basille et al., 2008). A species’ 

niche is therefore a complex interaction of a number of ecological variables. Early 

comparative studies showed that brain size correlates with some of these ecological 

characteristics after accounting for variation associated with body size (Eisenberg and 

Wilson, 1978; Clutton-Brock and Harvey, 1980; Harvey, Clutton-Brock and Mace, 1980; 

Martin, 1984).  

1.1.2.1.1 Diet 

Many of the ecological hypotheses associated with brain size variation are concerned with 

food. Diet has been found to have an effect on brain size in a number of mammalian groups, 

including primates, carnivorans, rodents, lagomorphs and “insectivores” (Harvey, Clutton-

Brock and Mace, 1980; Fish and Lockwood, 2003; Walker et al., 2006; van Woerden, van 

Schaik and Isler, 2010; Swanson et al., 2012; DeCasien et al., 2017). Clutton-Brock and 

Harvey (1980) showed that folivorous primates tended to have smaller relative brain sizes 

than frugivores (and that home range size correlated positively with relative brain size – see 

below). A similar pattern has also been demonstrated in bats (Eisenberg and Wilson, 1978). 

Frugivorous chiropterans had larger relative brain sizes, with insectivorous species having the 

smallest brains relative to body size and the other dietary specialisations falling somewhere 

between the two (Martin, 1984). A pattern of folivorous species having comparatively small 

brains has also been observed in a number of small mammal taxa including Rodentia, 

Soricomorpha and Lagomorpha (Harvey, Clutton-Brock and Mace, 1980). 
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Diet is a large component of ecological hypotheses, but it is embedded in a wider ecological 

context that encompasses a range of other variables which have also been found to influence 

brain size. A number of hypotheses regarding the selection pressures and constraints 

responsible for this correlation between brain size and diet have been suggested. Finding food 

(spatial mapping/cognitive mapping), gaining access to it (extractive foraging), having 

enough of it to fuel the brain (the expensive brain) or coping with its scarcity or 

unpredictability in its distribution (cognitive buffering) are the main hypotheses which have 

been developed to explain this relationship.  

1.1.2.1.2 Finding food 

The ‘spatial mapping hypothesis’ interprets folivores' comparatively smaller brains as being 

due to the lower cognitive demands imposed by the predictable and even distribution of their 

food sources (Milton, 1988). For frugivorous species the increased navigation and spatial 

memory demands associated with unpredictable food distribution and consequent foraging 

strategies may require more neural tissue (Clutton-Brock and Harvey, 1980; Harvey, Clutton-

Brock and Mace, 1980). The positive correlation between relative brain size and home range 

size (Clutton-Brock and Harvey, 1980; Dunbar and Shultz, 2007a) is consistent with this 

interpretation. The spatial mapping hypothesis therefore suggests that the relationship 

between brain size and diet may be indirect, with the direct effect due to the increased 

cognitive demands of navigating a large home range (Milton and May, 1976; Parker, 2015). 

The size of an animal’s home range is largely influenced by its energetic demands; i.e. a 

consequence of the animal’s body size, the type of food sources it exploits and the 

distribution of those sources (Mcnab, 1963). This three-way association between diet, home 

range size and brain size is suggested to support encephalisation as a response to the 

cognitive demands imposed by the environment rather than a constraint of the energetic value 

of the diet (Harvey and Krebs, 1990). It should be noted however that home range size and 

energetic demands do not scale in the same way across all primates due to confounding 

factors like terrestriality/arboreality, diet and home range overlap (Nunn and Barton, 2000).  

1.1.2.1.3 Gaining access to hidden or protected food sources 

Some species specialise in feeding on defended food sources which are difficult to extract, 

such as hard nuts and seeds and nest-dwelling insects. The extractive foraging hypothesis 

suggests that the complex sensorimotor cognitive processes necessary to overcome these 

obstacles and gain access to the consumable items could possibly be associated with brain 

size variation (Parker and Gibson, 1977; Parker, 2015). Extractive foraging, both with and 
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without tools, requires fine manipulation skills. Recent work by Heldstab et al. suggests an 

association between brain size and manipulative complexity which interacts with terrestriality 

(Heldstab et al., 2016). They report that larger brained, terrestrial primate species tended to 

exhibit more complex manipulative skills, as measured by a nested ranking system of food 

processing behaviours. They suggest that the greater variety in available tools on the ground 

and the reduced need for highly specialised forelimb morphology associated with an arboreal 

way of life may be explanatory factors. Substrate use (in terms of arboreality versus 

terrestriality) has been found to have a relationship with relative brain size, with terrestrial 

species tending to have larger brains relative to body size (Sawaguchi, 1990). Terrestriality 

may therefore be indirectly associated with increased brain size through manipulation 

complexity.  

1.1.2.1.4 Predicting food availability 

In addition to the problem of locating and gaining access to food, some species also face the 

problem of unpredictable distribution of food. This is commonly due to seasonal fluctuations 

in abundance. Two hypotheses interpret the effects of unpredictability in food distribution in 

different ways. The Cognitive Buffer hypothesis was postulated to explain correlations 

between brain size and lifespan. It suggests that unpredictability in food availability 

positively selects for larger brains as this allows for increased behavioural flexibility (a 

“cognitive buffer”) which enables the animal to effectively manage fluctuations in food 

availability by utilising defended or cryptic food sources or switching to different 

“microhabitats” (van Woerden, van Schaik and Isler, 2010; van Woerden et al., 2012).  

However, The Expensive Brain Hypothesis (Isler and van Schaik, 2009) takes a different 

perspective; dietary correlates are interpreted as a reflection of constraints on brain size 

(Aiello and Wheeler, 1995; Fish and Lockwood, 2003). This model grew from Martin’s 

Maternal Energy Hypothesis (Martin, 1996) which suggested a link between infant brain size 

and the energetic contribution from the mother (measured by basal metabolic rate and 

gestation length) across mammals (see also Barton & Capellini (2011)). The Maternal Energy 

and Expensive Brain Hypotheses predict that food scarcity will limit brain size (or force the 

animal to make compensatory changes in energy usage, for example in limiting energy 

expenditure on reproduction). Under this hypothesis, the larger brains of frugivores are 

explained by the higher energetic content per unit of fruit relative to that of leaves providing 

more energy for brain growth. Results consistent with these models have been obtained in 

Carnivora, where carnivorous species tend to have larger brains than their insectivorous and 
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omnivorous counterparts whose food sources may not be as energetically rich (Swanson et 

al., 2012), and across mammals (Barton and Capellini, 2011; van Woerden et al., 2012; van 

Woerden, van Schaik and Isler, 2014). 

Models which emphasise energetic costs and cognitive buffering models are not necessarily 

mutually exclusive; it is possible that if unpredictable food distribution drives brain size up, it 

also acts as a limiting factor given the amount of energy that can be extracted from the diet is 

finite. To take an example: Van Woerden et al. (2012) argued that the apparent effect of 

seasonality on catarrhine brain size affected brain size both as a constraint and selective 

pressure. Species in more seasonal habitats had smaller brains, which was interpreted as 

reflecting the energetic costs of seasonal fluctuations in food availability limiting brain size. 

However, larger brained species displayed more behavioural flexibility in overcoming the 

challenges associated with seasonality, suggesting that the unpredictable habitat may select 

for larger brains. This is presented as support for 'The Cognitive Buffer Hypothesis'.  

The issue of distinguishing constraints from selection pressures is important to note. When 

examining correlates across species, we cannot reliably infer the direction of causation. As 

made clear by the example above, we cannot determine whether a correlation between change 

in a certain brain area and a dietary variable is due to the influence of selection acting upon a 

function mediated by that area that is adaptive for that dietary niche, or whether the energetic 

value of that dietary strategy is a constraining factor on neural change. This has been the 

basis of some disagreement over the relative importance of predictors of brain size in the 

literature (Dunbar and Shultz, 2017). The wider issue of causation and its discussion in the 

literature is dealt with in Chapter 6, but it is important for now to note both the distinction 

between pressures and constraints and our inability to differentiate them with only 

correlational analyses.  

1.1.2.1.5 Activity period and the visual brain 

The timing of species’ waking hours also influences brain size and composition. Primates are 

a diverse order in terms of activity patterns, including diurnal, nocturnal and cathemeral 

lineages. Activity period has been shown to relate to brain structure evolution, with olfactory 

structure enlargement in nocturnal lineages and visual system enlargement in diurnal taxa 

(Barton, Purvis and Harvey, 1995). Diurnal primates have larger neocortices than do 

nocturnal primates (Barton, 1996). This pattern is proposed to be linked to the large 

proportion of cortex associated with vision in primates. This led Barton (2007) to formulate a 
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hypothesis which explains variation in primate brain size based on visual specialisation. He 

suggests that a large amount of variation in cortex size, and so brain size, is attributable to 

species’ relative investment in visual adaptations. Primate cortex volume is associated with 

the volume of the parvocellular system of the lateral geniculate nucleus, which facilitates 

colour discrimination and high acuity stereoscopic vision (Barton, 1998, 2004). This, coupled 

with the correlation of frugivory and activity period with the parvocellular system (Barton, 

1998), led Barton to suggest that these visual adaptations served to enable high acuity photic 

vision and thence the capacities to distinguish, identify and process ripe fruit (Barton, Purvis 

and Harvey, 1995; Barton, 1998, 2004).  

1.1.2.2 The Social Brain 

The cognitive demands of managing different social relationships amongst conspecifics has 

been suggested as an important selective pressure on primate intelligence (Jolly, 1966; 

Humphrey, 1976; Whiten and Byrne, 1988). Clutton-Brock and Harvey (1977) had 

acknowledged a potential social influence on primate brain size, including mating system as a 

predictor variable. They reported that monogamous primates have smaller brains than 

polygynous species (Clutton-Brock and Harvey, 1980); a finding later replicated by 

Sawaguchi (1990). These comparative analyses find a corollary in Brothers’ 1990 hypothesis 

that anthropoid primate brains are specialised for social cognition (Brothers, 1990). 

Dunbar (1992) built on these insights, using comparative analysis to argue that it was 

sociality, rather than ecology, that appeared to have been the primary driver of the evolution 

of large brains. He argued that the ecological models had not been robustly compared with 

alternative hypotheses and pointed out that diet and home range size both correlate with 

group size, potentially confounding previous results. He saw a weakness in ecological 

explanations of brain size evolution, in failing to account for large differences in brain size 

between organisms occupying similar niches. Comparing social and ecological hypotheses, 

he examined the relationship between relative neocortex size and ranging, frugivory and 

group size. He chose to focus on the neocortex rather than the whole brain as; a) it makes up 

a large proportion (50 to 80%) of the primate brain, and b) it has changed independently of 

more conserved structures like the medulla (Dunbar, 1998). This choice also appears to have 

been influenced by the commonly held assumption that the neocortex is “..the seat of those 

cognitive processes that we associate with reasoning and consciousness..” (p.181). His study 

found a relationship between sociality and neocortex size, and no such relationship for 
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ecological variables associated with ranging and diet (Dunbar, 1992). This neocortical 

dominance has reigned in comparative brain work ever since. 

Following these analyses, Dunbar and colleagues formally set out the Social Brain 

Hypothesis (Barton and Dunbar, 1997; Dunbar, 1998), which had grown from Brothers’ 

paper (Brothers, 1990) and has dominated discussion of the behavioural ecology of brain size 

since. This hypothesis proposed that increased social complexity imposes larger cognitive 

demands through having to manage and maintain multiple social bonds, therefore exerting a 

selective pressure on brain size.  The hypothesis has been widely supported (Barton, 1996; 

Kudo and Dunbar, 2001; Reader and Laland, 2002; Byrne and Corp, 2004; Walker et al., 

2006; Sallet et al., 2011; Powell et al., 2012; Arsznov and Sakai, 2013), not least by the 

observation that primates which live in larger groups tend to have larger brains (Barton and 

Dunbar, 1997). The relationship has also been found in other mammalian taxa such as 

Ungulates (Shultz and Dunbar, 2006) and Carnivora (Pérez-Barbería, Shultz and Dunbar, 

2007; Swanson et al., 2012; Holekamp et al., 2015). Social complexity has most frequently 

been measured by group size (Barton, 1996; Dunbar, 1998; Kudo and Dunbar, 2001; 

Lehmann, Korstjens and Dunbar, 2007; Dunbar and Shultz, 2007a), but has also been 

represented by deception (Byrne and Corp, 2004), social system (Barton, 2006b), mating 

system (Barton, 2006b), and play prevalence and complexity (Pellis and Iwaniuk, 2002).  

However, recently there has been some disagreement over the broad explanatory value of this 

apparent relationship between sociality and brain size. It is not clear how grade-shifts (van 

Schaik et al., 2012) in brain size, not accompanied by obvious differences in sociality, can be 

readily accommodated by the hypothesis. As Byrne (2006) points out, monkeys often live in 

much larger groups than apes, but their brain size is systematically smaller in absolute size. In 

the same vein, relatively small brained but social animals like spotted hyaenas (Crocuta 

crocuta) and relatively large brained but solitary animals like orangutans (genus Pongo), aye-

ayes (Daubentonia madagascariensis) (Holekamp, 2007), and mustelids (Swanson et al., 

2012) represent significant challenges to the idea that sociality is the primary driver of brain 

size evolution. 

 How brains evolve 1.1.3

The study of brain evolution is concerned with how brains vary between taxa. But by what 

mechanism does this variation occur? Some propose that selective pressures cannot act 

directly on brain structures and systems because they are constrained by developmental 
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factors which govern the composition of the brain. Therefore, selective pressures can only 

change individual structures in concert with others. This “concerted evolution” model was 

advanced by Finlay and Darlington (1995), who emphasised the universality of this pattern 

across mammalian brain evolution.  

However, evidence of specific differences in brain composition between clades has 

undermined this point of view. Such “grade shifts” show that the size of structures relative to 

one another can vary substantially across taxa; an outcome which is arguably not possible in 

the original concerted evolution model, which postulates only approximately two-fold 

variation in component size independent of the global constraint (Finlay and Darlington, 

1995, p. 1580). Furthermore, observations of covariation between the size of individual brain 

components and external factors, independent of the size of the rest of the brain have 

demonstrated that selection can influence parts of the brain separately from the whole. This 

process by which selection pressures may exert themselves differently on different structures 

or groups of functionally or anatomically connected structures leading to their independent 

evolution separate from evolutionary changes in gross brain size is known as ‘mosaic 

evolution’ (Barton and Harvey, 2000). This model holds that, rather than being constrained 

by overall brain size, individual structures vary according to selection. A classic example of 

this model is the relative enlargement of visual structures and diminution of olfactory 

structures in diurnal primates (Barton, Purvis and Harvey, 1995). The converse is observed 

for nocturnal species. This example shows how the pressures associated with a species’ niche 

interact directly with the neural machinery mediating function. Experimental studies have 

also demonstrated that selection can act directly on brain size and structure (Kolb et al., 2013; 

Kotrschal et al., 2013). If primate brains have changed more by a pattern of mosaic evolution 

rather than purely global brain size changes, we should see more pronounced effects of 

selective pressures on individual brain structure than overall brain size (Montgomery, Mundy 

and Barton, 2016). This debate will be examined in more detail in Chapter 2. 

 Brain composition and neocortical domination 1.1.4

An intrinsic problem with examining correlates of brain size is that the brain is composed of 

many structures of heterogeneous morphology and function (Harvey and Krebs, 1990). While 

cognitive functions are often distributed across multiple neural structures and one structure 

may mediate several different cognitive processes (Buckner and Krienen, 2013; Ribeiro et 

al., 2013; Montgomery, Mundy and Barton, 2016), there is some degree of modularity in the 

brain with certain structures or groups of structures displaying some functional specificity 



 
11 

(Kanwisher, 2010; Mars et al., 2013). This presents a challenge to detecting changes in whole 

brain size associated with variables of interest as these functional complexes of structures 

change size at different rates in response to different selective pressures (Barton and Harvey, 

2000). In addition to this, growth in one structure (or set of functionally linked structures) 

may be masked by reduction in another, resulting in no detectable change in overall brain size 

(Barton, Purvis and Harvey, 1995; Barton, 1999; Healy and Rowe, 2007). Therefore, it is 

arguably more valid to explore behavioural correlates of individual structures than of whole 

brain size.  

Since the neocortex accounts for a large proportion of the primate brain and is relatively large 

in comparison to other taxa, it has been a central focus of the study of variation in brain 

structures. The confluence of large neocortices and complex cognition in primates led many 

to assume a causal relationship and hold the neocortex as the seat of so-called “higher” 

cognition and so the pinnacle of brain evolution (Barton, 2012). Dunbar (1992) asserted that 

neocortical variation is the source of most interspecific variation, and that the neocortex is 

“the ‘thinking’ part of the brain” (Dunbar, 1992, p. 473). He therefore treated neocortical 

volume as an “anatomical index for cognitive capacity” (ibid.). It has been heavily linked to 

his Social Brain hypothesis (Dunbar, 1992; Aiello and Dunbar, 1993; Barton, 1996; Dunbar, 

1998; Kudo and Dunbar, 2001; Reader and Laland, 2002; Byrne and Corp, 2004; Shultz and 

Dunbar, 2006), but it has also been the focus of many studies of ecological, technical and life 

history correlates of brain variation (Eisenberg and Wilson, 1978; Barton, 1996, 1998, 2007; 

Deaner, Nunn and van Schaik, 2000; Walker et al., 2006; Padberg et al., 2007; Heldstab et 

al., 2016). The neocortex has therefore long reigned supreme as the structure of primary 

importance in explaining mammalian brain evolution. 

The dominance of the neocortex in the literature is being challenged, however. Changes in 

the neocortex lead to much greater overall change in brain size than other structures as it 

makes up a large proportion of the brain and scales hyperallometrically with it (Logan et al., 

2017). However, cortical expansion is associated with a disproportionate increase in the 

proportion of white matter to grey matter, suggesting that the size increase is more due to 

conservation of neural connectivity rather than an adaptive change (Barton, 2012). 

Neocortical expansion therefore does not necessarily represent a simple linear increase in 

cognitive capacity as implied by some cortico-centric studies.  
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The focus on the importance of this single structure is most notably challenged by its intimate 

connection with the cerebellum. The cerebellum, formerly considered to be “simply” a motor 

structure, is being increasingly linked with cognitive functions previously attributed to the 

cortex (Leiner, Leiner and Dow, 1993; Cantalupo and Hopkins, 2010; Smaers, Steele and 

Zilles, 2011). The mammalian neocortex and cerebellum have undergone correlated 

volumetric evolution (Whiting and Barton, 2003; Barton, 2012) and form a functional 

system, with reciprocal loops between the two (Ramnani, 2006; Kipping et al., 2013; Koziol 

et al., 2013). The coordinated growth of these two structures heavily influences brain size and 

composition variation (Barton, 2006c, 2012; Smaers, Steele and Zilles, 2011). The 

examination of neocortical variation is therefore arguably incomplete without consideration 

of concomitant cerebellar variation, and both structures are of equal importance in the 

discussion of overall brain evolution (Barrett, Henzi and Lusseau, 2012; Barton, 2012).  

 

1.2 Aims 

This thesis aims to re-examine these major issues in brain evolution, which have been 

dominated by whole brain and neocortex studies, in the light of newer ideas about mosaic 

brain evolution using updated techniques and better quality, more recent data. Despite a long 

and prolific history, the literature on the forces which have shaped primate brain evolution 

remains remarkably equivocal, with even the most fundamental issues still somewhat 

polarised. This is exemplified by the debates surrounding ecological versus social and 

concerted versus mosaic explanations of brain evolution. This polarisation has often 

obfuscated debate. 

This work will aim to update and extend the current literature in the following ways: 

1. Acknowledge the heterogeneous nature of the brain, examining the effects of 

pressures/constraints shaping brains by looking at more functionally specific sub-

structures and how their relationships relate to major whole-brain and neocortex 

focused hypotheses 

a. Examine the behavioural-ecological correlates of brain size and composition 

variation  

b. Test hypotheses based on life history correlates of brain size using specific 

structures and their developmental trajectories 
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c. Test predictions of variation in brain composition based on developmental 

constraints and selection on function 

2. Examine possible interdependence between traits related to brain variation which 

have previously been treated as independent 

3. Test for potential variability in results and identify causes of disagreement in the 

literature surrounding ecological and social hypotheses explaining brain size and 

structure variation 

4. Revisit long-standing ideas and apply appropriate phylogenetic comparative 

techniques and size correction.  

 

1.3 Approach 

 Phylogenetic comparative methods 1.3.1

A core assumption of ordinary statistical techniques used to explore the covariation of traits 

such as regression, ANOVA and principal components analysis, is that of the independence 

of data points. Put simply, the data are assumed to have no underlying structure. In 

comparative analyses the data points represent species values. Since all species are 

phylogenetically related to varying degrees, these data cannot be said to be truly independent 

(Freckleton, Harvey and Pagel, 2002). In comparative brain evolution, we are often interested 

in detecting factors which may have influenced a given trait. A shared trait may be due to the 

common influence of an external factor, such as the behavioural, ecological, social and 

developmental variables explored in this thesis, or it could be due to the taxa sharing an 

inherited trait from a common ancestor (Nunn and Barton, 2001). It is therefore necessary to 

control for the degree of phylogenetic relatedness between species. 

Phylogenetic comparative methods enable the user to incorporate a phylogeny in to a model, 

thereby controlling for phylogenetic effects. They can also be used to estimate ancestral 

conditions at specific nodes in a phylogenetic tree, thereby enabling us to test predictions 

about extinct taxa. However, in this thesis, these methods are primarily used to detect 

correlated evolution between traits. This thesis predominantly uses phylogenetic least squares 

regression (PGLS) to achieve this. In PGLS, a variance-covariance matrix is derived from a 

phylogenetic tree which describes not only the topology of relatedness between species but 

also branch lengths which give a measure of phylogenetic distance in terms of time since a 

last common ancestor, or in terms of genetic distance between taxa (Nunn, 2011). This 
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information can then be incorporated in to the error term of the regression model, thereby 

controlling for phylogenetic nonindependence. The degree to which covariance in species’ 

traits reflects their phylogenetic relatedness is estimated by the parameter λ. Principal 

components analysis is also used in this thesis, and phylogeny is corrected for in the same 

way in preliminary transformations (Revell, 2009). These methods are dealt with in more 

detail in the chapters in which they are used. 

 Size correction 1.3.2

As discussed above, body mass and brain mass are (allometrically) correlated (Jerison, 1973; 

Harvey, Clutton-Brock and Mace, 1980; Barton, 2006c). Most of the variation in brain size is 

attributable to body size variation (Jerison, 1973). Since many studies seek to test 

relationships between brain size and a hypothesised predictor variable, this potentially 

confounding variable is controlled for to avoid spurious relationships between predictors and 

body mass rather than the dependent variable (Barrickman et al., 2008).  This has often been 

achieved by using a measure of brain size that is relative to body size, rather than absolute 

size. A number of different methods for size correction have been employed in comparative 

studies of brain size and the literature is equivocal as to which is the most appropriate 

(Deaner, Nunn and van Schaik, 2000).  

Some brain researchers have used ratios or proportions, such as neocortical ratio (Dunbar, 

1992) or “executive brain” ratio (Reader and Laland, 2002). These measures are prone to 

bias, as they cannot distinguish allometric change from selection driven change which is 

independent of size (Barton, 2002). As previously mentioned, a common method is to 

observe how a species’ data point might diverge from the predicted allometric relationship 

between body and brain size and use that value as data (Freckleton, 2002). One variant of this 

method is the analysis of residuals. In order to address the problem of varying allometric 

exponents between taxa, the exponent is estimated empirically for the species in the dataset 

using a least squares regression of log body size on log brain size (Rilling and Insel, 1999; 

Barrickman et al., 2008; González-Lagos, Sol and Reader, 2010; Nunn, 2011). Once the 

exponent is defined and the residuals are obtained, the residuals are then used as data to allow 

subsequent analysis of relationships between relative brain size and traits of interest. 

However, a number of papers reviewing this use of residuals have criticised the practice 

(Garcia-Berthou, 2001; Freckleton, 2002). They point out that in fields such as comparative 

biology, where predictor variables are often collinear, using residuals can lead to systematic 

bias in parameter estimates, misallocation of degrees of freedom and instability of models 
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associated with the order of the entry of predictors. They suggest a more reliable way of 

controlling for body size is to include it as a predictor variable in a multiple regression. 

Including body size as a predictor in the model does not require any a priori estimation of any 

overall scaling exponent (Deaner et al., 2007) which as previously mentioned is not stable 

across taxa. It also includes all of the predictors simultaneously, removing a potential source 

of instability. This thesis will utilise this method.  

Body size itself is a problematic measure as it does not scale linearly with brain size (Logan 

et al., 2017) and varies both between and within individuals due to factors such as life 

history, nutrition, and sex (Harvey and Krebs, 1990; Barrickman et al., 2008). It has been 

suggested that poor estimates of body size can produce false positive or negative results by 

biasing predictors in the same direction as the measurement error (Barrickman et al., 2008). 

This has led some to seek structures whose size variation is relatively evolutionarily 

conserved such as the brain stem (Dunbar, 1992; Reader and Laland, 2002) and spinal cord 

(Willemet, 2013) for size correction. However, comparative data on these structures are still 

relatively sparse and do not afford the taxonomic breadth required for large scale comparative 

analyses. Therefore, whilst acknowledging its possible shortcomings, body size is used for 

size correction in this thesis.  

 Volumetric measures 1.3.3

Volumetric measures are the foundation of comparative brain studies. They have been 

extensively, and until relatively recently, exclusively used to investigate correlated change 

between brains and behaviour. However, they are problematic as there is often no explicit, 

definitive explanation of what an increase or decrease in the volume of a structure means 

functionally (Healy and Rowe, 2007). The (most often tacit) assumption from which brain 

size studies proceed is that the adaptive advantage of a larger brain is some form of increased 

cognitive potential; larger brains are assumed to have greater computational and cognitive 

capacity (Healy and Rowe, 2007; Weisbecker et al., 2015). Brain size is therefore treated as 

“an anatomical proxy for cognitive ability” (MacLean et al., 2012).  

Further, examining aspects of a species' lifestyle which correlate with brain or brain structure 

size is thought to illuminate the selection pressures responsible for their variation. Put 

differently, the differences between species in terms of their brain composition is deemed to 

reflect adaptation to their respective niches. Consequently, size increase in a brain area is 

deemed to be the manifestation of increased computational power in that region, which is 
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assumed to be necessary to cognitively manage the challenge imposed by the correlated 

aspect of the niche. Jerison termed this ‘the principle of proper mass’ (Jerison, 1973). 

However, the relationship between the volume of a structure and its neuronal density is 

variable across the brain and across species (Herculano-Houzel, 2012; Herculano-Houzel, 

Manger and Kaas, 2014). Thus, an increase in the size of two different structures (or the same 

structure in two different species) does not necessarily indicate an identical increase in 

computational power. It is therefore likely that much more informative variation can be 

uncovered with more direct measures of computation like neuron density or number (Roth 

and Dicke, 2005). This subject is dealt with in more detail in Chapter 6.  

Despite these caveats, the examples given in “Background” above demonstrate that 

volumetric measures have been shown to correlate with behaviour in line with predicted 

relationships. This suggests that volumetric measures are still useful for identifying large 

scale patterns. In addition, the scarcity of comparative data for neuroanatomical measures at 

finer scales such as neuron number precludes their inclusion in large scale comparative 

analyses like those undertaken in this thesis. Since this thesis also endeavours to re-visit 

previous results and hypotheses, using volumetric measures facilitates comparison with these 

sources.  

 

1.4 Structure of thesis 

Chapter 2 begins the thesis with an examination of the multivariate structure of mammalian 

brain size. Phylogenetic principal components analysis and least squares regression are 

employed to examine commonalities and divergences in brain composition between three 

mammalian orders. It identifies primates as a taxon with a pattern of brain composition that is 

distinct from the other taxa analysed and justifies the focus of rest of the thesis on this order.  

Chapter 3 explores the two main umbrella hypotheses which have dominated the discussion 

of primate brain evolution; the ecological brain and the social brain. It scrutinises the reasons 

for the ongoing lack of consensus in this area, comparing results from different datasets and 

modifying samples to simulate different sources of variation. This chapter has been published 

as a research paper (Powell, Isler and Barton, 2017).   

Chapter 4 builds on the previous chapter’s findings at a finer scale by evaluating the 

behavioural-ecological correlates of variation in brain structure volume. New brain volume 
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data which updates and augments an existing well-known dataset is incorporated and 

differences in results between datasets is again examined.  

Chapter 5 concludes the empirical component of the thesis by investigating how the costs and 

benefits of variation in brain size and composition are balanced in terms of life history. The 

life history correlates of brain composition are analysed in the context of the developmental 

scheduling of individual structures and major hypotheses relating to energetic constraints and 

cognitive buffering.   

A summary and conclusions chapter ends the thesis, bringing together the major threads, 

examining the limitations of the findings and providing reflections for future research. 
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2  The position of primates within the multivariate structure of the 

mammalian brain 
 

2.1 Introduction 

The volume of brain structures and their relative size in proportion to total brain volume varies 

widely between mammalian species. What causes brain structure sizes to vary in this way? Previous 

work addressing this question has broadly addressed two models; concerted and mosaic evolution. 

The concerted evolution model proposes a universal mammalian pattern of brain composition in 

which brain structures vary together according to allometric scaling defined by developmental 

constraints, characterising the brain as a “coordinated processing device” (Kaskan et al., 2005; 

Yopak et al., 2010) . In contrast, the mosaic evolution model suggests that individual structures 

and/or systems can vary in size independently of each other and the rest of the brain according to 

selection on specific functions.  

 Concerted brain evolution 2.1.1

Concerted brain evolution emphasises the conserved nature of developmental processes on the brain. 

This ontogeny focused theory was popularised by Finlay and Darlington (1995). Their paper argued 

for a conserved pattern of structure growth in mammals, constrained by overall brain development 

mechanisms. This hypothesis grew from the observation that the size of a given gross brain structure 

is strongly predicted by overall brain size (Finlay and Darlington, 1995; Yopak et al., 2010). The 

hypothesis suggests that structure size change is primarily generated by changes in allometric scaling 

(Striedter, 2006), and not due to direct selection on structure size or individual functional systems 

(Kaskan et al., 2005; Barton, 2007). Therefore, evolutionary changes in structure size tend not to 

occur independently of the size of the rest of the brain. Finlay and Darlington argued that structures 

which increase in the proportion of brain that they comprise as overall brain size gets larger do so 

because the peak of their neurogenesis is later (than that of structures which are proportionally 

smaller), allowing more time for progenitor cell pools to generate. This larger “founder” pool 

generates more neurons and so causes the structure to grow disproportionately large (Charvet and 

Finlay, 2012). In this hypothesis, selection on cognitive function causing the size of the structure(s) 

to increase must be mediated by increasing the size of the whole brain.  
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 Mosaic brain evolution 2.1.2

The size of a mammal’s brain can be predicted with reasonable accuracy from the size of its body 

(Barton and Harvey, 2000; Roth and Dicke, 2005; Smaers and Soligo, 2013), such that larger 

animals tend to have larger brains than their smaller relatives (Buckner and Krienen, 2013). 

However, this scaling does not explain all of brain size variation (Barton and Harvey, 2000; Smaers 

and Soligo, 2013), as individual structures within the brain also vary in size. While individual 

structures have been found to scale with total brain size, they can also vary independently of overall 

brain size and of each other. It is suggested that this independent variation represents adaptive 

specialisation (Barton, 2007), in which changes in the size of structures are naturally selected based 

on their functional capacities (Harvey and Krebs, 1990; Healy and Harvey, 1990; Barton and 

Harvey, 2000). This has been observed in comparative studies of primates (Barton and Harvey, 

2000; Smaers and Soligo, 2013), wasps (O’Donnell et al., 2018), lizards (Hoops et al., 2017) and 

experimentally tested in mice (Kolb et al., 2013). Support has also come from genetic studies, 

demonstrating that structures’ developmental scheduling is likely scheduled by structure-specific 

genes rather than genes coordinating global brain growth (Harrison and Montgomery, 2017; Li et al., 

2017). 

Mosaic brain evolution also emphasises the role of selection in the coevolution of functionally 

related structures (Montgomery, Mundy and Barton, 2016). Function is often mediated by more than 

one structure and distributed across a number of areas (Buckner and Krienen, 2013). If selection on 

function drives volumetric changes in structures, then functionally linked systems of structures 

should change in tandem. This has indeed been observed: some structures show correlated 

volumetric change independent of changes in the size of the whole brain and other composite brain 

structures (de Winter and Oxnard, 2001; Barton, 2002; Whiting and Barton, 2003; Barton, 2012; 

Barton and Harvey, 2000). Mosaic brain evolution can therefore act at two levels: the level of 

individual anatomical structures and the level of the functionally linked systems of structures 

(Montgomery, Mundy and Barton, 2016).  

One such functionally linked system is that of the corticocerebellar complex (Whiting and Barton, 

2003). Discussion of brain evolution has been historically dominated by the neocortex, likely due to 

the fact that it appears to contribute most to the “encephalisation” (Jerison and Barlow, 1985) (i.e. 

brain volume in excess of that predicted by an allometric brain-to-body size exponent) of highly 

encephalised species, although this is likely due to the fact that change in larger structures result in 

larger changes in absolute brain size (Willemet, 2013). However, the literature is increasingly finding 

that a) the neocortex is neither functionally nor anatomically independent of subcortical areas, and b) 
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variation in subcortical structures has been just as important a force in brain evolution as variation in 

the neocortex. A structure that appears to have a particularly close relationship with the neocortex is 

the cerebellum. These structures have undergone correlated size evolution in the primates (Whiting 

and Barton, 2003) and in mammals more widely (Barton, 2012). 

 The divergence of concerted and mosaic perspectives 2.1.3

A major point of difference between concerted and mosaic brain evolution is arguably the role of 

function (Barton, 2006a). The concerted evolution hypothesis holds that selection on function does 

not influence structure sizes independently of the whole (Striedter, 2006). Function is therefore 

somewhat decoupled from a structure’s (eventual) size (Charvet and Finlay, 2012). In the case of the 

cortex at least, some proponents even suggest that function is possibly only linked to structure after 

developmental processes have already determined structure composition (Kaskan et al., 2005). 

Conversely, the mosaic brain evolution hypothesis holds function to be central to the shaping of the 

brain and its composite structures, with selection on function directly modifying the structures and 

systems which mediate it (Barton and Harvey, 2000; Montgomery, Mundy and Barton, 2016).  

2.1.3.1 Explaining taxonomic differences 

So-called “grade shifts” are relationships which differ in magnitude but not nature across clades. 

When plotted, they have the same slopes but differ in their intercepts according to taxonomic 

differences (Nunn and Barton, 2001). The larger volume of the cerebellum relative to the neocortex 

in apes than in non-apes (Barton and Venditti, 2014) is an example of such a grade shift. These shifts 

have been used as supporting evidence for the mosaic evolution perspective as they demonstrate that 

animals of a comparable body size, yet inhabiting different niches display different patterns of brain 

composition. The importance of grade shifts in brain composition was played down in the original 

1995 incarnation of the concerted evolution model (Finlay and Darlington, 1995), which emphasised 

a possible role of intra-specific variation and measurement error in apparent large taxonomic 

differences (p. 1580). Since then, some elaborations of the hypothesis have incorporated grade shifts 

(referred to as “taxonomic differences”), but explain these with reference to differing rates of 

neurogenesis across taxa (Charvet, Striedter and Finlay, 2011; Charvet and Finlay, 2012) rather than 

functional selection. Thus, mosaic changes in brain composition which differ between clades are 

explained by selection acting to extend or curtail the duration of neurogenesis. Instead of interpreting 

developmental processes as consequences of selection on function, they are interpreted as causes of 

or constraints on structure variation. However, proponents still largely hold these clade-level changes 

in neurogenesis to be relatively rare and inconsequential in comparison to wider developmentally 
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constrained regularities (Striedter, 2006), and in some instances still appear to be sceptical of the 

existence of grade shifts (Kaskan et al., 2005). 

2.1.3.2 Correlated evolution of structures 

The position of the concerted evolution hypothesis on the correlated volumetric evolution of 

structures is slightly difficult to characterise. On one hand, proponents suggest that structures vary 

only according to variation in developmental processes and so correlation between the evolutionary 

growth of structures is a result of allometric scaling (Finlay and Darlington, 1995; Kaskan et al., 

2005). On the other, they suggest that selection on function may have a role in modifying 

developmental processes, and so in the ultimate size of structures. The position of the mosaic 

hypothesis is much clearer; selection for function acts on functionally linked structures in concert. 

 Principal components analysis in the exploration of brain evolution 2.1.4

Principal components analysis (PCA) PCA is a dimension reduction method which finds a number of 

linear components present in a group of variables (Field, Miles and Field, 2012). These components 

are orthogonal to one another, meaning they are uncorrelated. The first component encompasses the 

largest amount of variance in the data. The second represents the largest amount of the remaining 

variance. The contribution of the original variables to these new components is then revealed through 

loadings, allowing interpretation of the meaning of the component. These properties allow large, 

multivariate datasets to be summarised by a few components which encompass the majority of the 

variance. PCA has been widely used to explore comparative brain structure and results have been 

used to support both concerted and mosaic perspectives (Finlay and Darlington, 1995; de Winter and 

Oxnard, 2001; Yopak et al., 2010; Smaers and Soligo, 2013). 

The PCA-based investigation of Finlay and Darlington uncovered evidence supportive of the 

concerted evolution model in mammals. This approach has since also been used to support extending 

the suggested universal conserved pattern from just the mammals to all of Gnathostomata (jawed 

vertebrates) (Yopak et al., 2010). In contrast, Oxnard and de Winter (de Winter and Oxnard, 2001) 

used the same method but found different patterns of variation in different clades; species separated 

in the subspace according to taxonomy and ecological factors (e.g. diet, locomotion etc.). Their 

analysis showed the three investigated orders (primates, bats and insectivores) were well 

differentiated, stretching along almost orthogonal axes from each other (p. 710). However, like 

Finlay and Darlington, this study did not properly account for species' phylogenetic relatedness. 

Smaers and Soligo (2013) also used a PCA approach to examine primates in particular. They 

reported results which supported a mosaic evolution interpretation. Components reflected linked 
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groups of structures, notably including the cortex and cerebellum. However, they used residuals from 

a phylogenetically controlled regression in order to control for allometric effects of body size on 

brain size and brain size on brain structure size. This approach can lead to systematic biases in 

parameter estimates, particularly in cases such as this where the controlled variables and the 

dependent variables are collinear and has been cautioned against (Freckleton, 2002, 2009; Nunn, 

2011).  

 The present study 2.1.5

This chapter is an exploratory study, re-examining the evolutionary architecture of the mammalian 

brain with updated methodology. It explores similarities and differences in the dimensionality of 

brain structure across 3 eutherian mammal orders
†
 using appropriate phylogenetic analysis and size 

correction methods. The data are explored using a phylogenetic principal component analysis 

(pPCA). This method should reveal whether species have radiated independently in terms of their 

brain composition, or whether they are constrained by size-related developmental parameters. If the 

former, the taxa should form independent groupings in the subspace. If the latter, they should all lay 

along one axis of variation which reflects size. If differences between orders are revealed, component 

loadings should allow the characterisation of the dimensions along which the taxa differ. 

The pPCA is conducted in two conditions; one controlling for size by including body size (hereafter 

referred to as “relative condition”) as a covariate and one with no size control (hereafter referred to 

as “absolute condition”). The relative condition should reveal how the dimensions of brain 

composition vary independently of body size. The absolute condition, having no size correction, 

should reveal change which is not independent of overall changes in size. The pPCA which includes 

body size is predicted to reveal a first component on to which all structures load heavily, 

representing an overall size dimension. Subsequent components should then reveal groups of 

structures which covary in their size evolution independently of body size. The difference in 

conditions should not affect results if brain composition evolves according to the principles of 

concerted evolution, since the inclusion of body size should make no difference as the model 

suggests that there is no meaningful variation left after size is accounted for. According to the 

concerted evolution model, in both conditions, the first component should represent size and there 

should be no other significant components. If brain evolution is mosaic, it is expected that the first 

component in the body size-controlled condition will again be size, but subsequent components 

should reveal loadings from structures which have evolved in a mosaic fashion, independently of 

                                                 
†
 The dataset includes the now defunct order Insectivora. This order has been shown to be polyphyletic but is still a 

useful grouping for discussion in this instance. 
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overall size. In the absolute condition, the components subsequent to the first should reveal loadings 

from structures which have coevolved but do not vary outside of allometric scaling. 

Since the neocortex has undoubtedly been the most researched gross structure in brain evolution, and 

in the light of recent advances in our understanding of its relationship with the cerebellum, these two 

structures are analysed further using phylogenetic least squares regression (PGLS) to explore their 

patterns of correlated evolution with structures and how this might differ across clades. If certain 

structures have undergone correlated size evolution, a PGLS controlling for body size should recover 

a significant partial regression coefficient between them, while no such association should be present 

with other areas.  

 

2.2 Methods 

 Data sources 2.2.1

Volumetric data was sourced from a widely used dataset (Stephan, Frahm and Baron, 1981) which 

describes brain structures for primates, bats and “insectivores”
‡
. While this dataset is not recent and 

has possible issues with the representation of some clades (Powell, Isler and Barton, 2017), it still 

offers the largest comparative mammalian sample of volumetric brain structure data collected by one 

group with a uniform methodology. The 3 orders were divided in to nine subtaxa. The primates were 

divided in to Hominoidea, Cercopithecoidea, Tarsiidae and Strepsirrhini, the bats in to 

Yinpterochiroptera and Yangochiroptera, and the insectivores in to Scandentia, Eulipotyphla and 

Afrotheria. As this exploratory analysis endeavoured to examine large-scale patterns in brain 

composition, the variables chosen where those for which data were available for the largest number 

of species. Three species were excluded due to missing records; both rodent species Nannospalax 

ehrenbergi and Rattus norvegicus, and the yinpterochiropteran (formerly megachiropteran) 

Macroglossus minimus. The resulting dataset included 9 neurovolumetric variables (mm
3
) and body 

size (g) for a sample of 301 mammalian species. The neurovolumetric variables were whole brain, 

main olfactory bulb (MOB), medulla, hippocampus, amygdala, cerebellum, neocortex, striatum and 

septum. The phylogeny used in all analyses was the Bininda-Emonds mammalian supertree 

(Bininda-Emonds et al., 2007). Taxonomic mismatches were resolved using synonym searches on 

the IUCN Red List of threatened species website (International Union for Conservation of Nature 

                                                 
‡
 The dataset includes the now defunct order “Insectivora”. This order has been shown to be polyphyletic but is retained 

in this analysis for the purposes of comparison with previous studies which have used it. 
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and Natural Resources., 2017) and the 10k Trees taxonomic translation table (C. Arnold, Matthews 

and Nunn, 2010). 

 Statistical analysis 2.2.2

The multivariate structure of the data was explored through a phylogenetically controlled principal 

components analysis (hereafter pPCA). Previous well-known studies using PCA have failed to 

control for phylogenetic relationships (Finlay and Darlington, 1995; de Winter and Oxnard, 2001). 

The phylogenetic relatedness of species in a sample gives the data an underlying structure where 

more recently diverged taxa are likely to share more phenotypic similarities, which therefore renders 

them non-independent, violating the assumption of independent data (Harvey and Pagel, 1991). All 

data were log10 transformed prior to analysis to satisfy assumptions of normality. Lambda was 

estimated by maximum likelihood. The PCA was applied to a correlation matrix of standardised data 

using the package “phytools” (Revell, 2012) in R (R Development Core Team, 2015). 

The size of brain structures varies with the overall size of the brain and body. Since this study seeks 

to test for mosaic change which is independent of these allometric effects, it is necessary to remove 

this variance so that change independent of size may be examined. Previous work has frequently 

used ratios or residuals to correct for size. There are a number of issues with these methods which 

make them inappropriate. The use of residuals as data can introduce bias (Garcia-Berthou, 2001; 

Freckleton, 2009), while ratios or proportions conflate independent change in structure sizes with 

allometric scaling effects (Albrecht, Gelvin and Hartman, 1995; Barton, 2002; Barton and Venditti, 

2013). The arguably least controversial method of achieving size correction is to include a size 

variable in the PCA as a covariate. Analysis was therefore run in two conditions; one controlling for 

body size by including it as a covariate, and one with no size control to capture patterns of change 

that are not independent of size.  

PCA extracts as many components as there are variables. A major issue with PCA is that the criteria 

for retention and interpretation of the components is to some extent subjective. Although the 

loadings characterise the component, it is down to the experimenter to ascribe meaning to it. There is 

also some disagreement over how to rationalise the number of components to retain. A commonly 

used method is Kaiser’s Criterion, where a component is only retained if it has an eigenvalue of more 

than 1. A component with an eigenvalue of less than 1 indicates that it explains less variance than 

one of the original variables, and so does not exceed the explanatory power of the original observed 

variables. However, this criterion has been criticised as the variance accounted for by a component 

with a given eigenvalue varies with the number of variables; decreasing as more variables are added 
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(Field, Miles and Field, 2012). With this in mind, only those components which had a clear 

biological meaning were extracted in the current analysis.  

When interpreting what each component might represent, it is necessary to determine a cut-off point 

for correlations between the original variables and the component. Below this cut-off the original 

variable is deemed not to make sufficient contribution to the component to be of explanatory utility. 

This study followed Tabachnick and Fidell’s suggestion that component loadings of less than .32 

should be disregarded as below this the original variable shares less than 10% variance with the 

component (Tabachnick and Fidell, 2012).  

As an alternative way to examine potential differences in brain composition across clades, patterns of 

correlated evolution amongst the brain structures were analysed using PGLS. PGLS analysis was 

conducted in R (R Development Core Team, 2015) using the package “caper” (Orme et al., 2013). 

Neocortex and cerebellum volume were used as outcome variables in two separate regressions, with 

each of the other 8 structures as predictors. Consistent with the PCA relative condition, body size 

was included as a predictor variable in order to control for its effect on brain structure size (Nunn, 

2011). Since this chapter is exploratory, no explicit predictions are made, apart from a positive 

association between neocortex and cerebellum size in all three orders as these structures have 

previously been found to correlate in mammals (Barton, 2012). 

 

2.3 Results 

 pPCA – Mammalia 2.3.1

All loadings on the first component in both size corrected and non-size corrected PCAs are negative 

and large (Table 2.3-1). This, coupled with the large percentage of variation it explains suggests that 

this component represents size. After the first component which accounts for the vast majority of the 

variance in the data (almost 93% in both conditions) and consequently has a very large eigenvalue, 

no other component’s eigenvalue exceeds 1. However, as discussed in the Methods section above, 

Kaiser’s criterion is not necessarily the most appropriate way of deciding how many components to 

extract. The second component has one large loading from the main olfactory bulb. The loadings 

from the rest of the structures are all very small, with only the neocortex and cerebellum reaching 

loadings above 0.1. The second component therefore has a fairly clear biological meaning, linked to 

the size of the main olfactory bulb. Components subsequent to the first two had low loadings, 
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explained very little variance, and had no obvious biological meaning. They were therefore 

disregarded. 

 

The PCA results closely mirror those of Finlay and Darlington (1995), both in terms of the 

component loadings and the amount of variance explained by the components, despite the absence of 

phylogenetic correction in their analyses. The body size covariate condition and no size correction 

condition show near identical results. The bivariate plots (Figures 2:a & 2:b) show that the primates 

appear to be grouped in to a cluster which is quite distinct from the other mammals. Their position 

along both components contributed to this separation, suggesting that the primates are distinct from 

the other clades in terms of having overall larger brain structures and also smaller olfactory bulbs 

(both absolutely and relative to body size). 

 

Table 2.3-1 - Mammal pPCA summary 

  
Covariate = body size No size correction 

  PC1 PC2 PC1 PC2 

 Body -0.96 -0.04 - - 

Lo
ad

in
gs

 

MOB -0.87 0.49 -0.87 0.5 

Septum -0.98 0.02 -0.98 0.02 

Striatum -0.98 -0.05 -0.98 -0.05 

Amygdala -0.96 -0.01 -0.97 -0.01 
Hippocampus -0.96 -0.02 -0.96 -0.03 

Neocortex -0.98 -0.14 -0.98 -0.14 

Cerebellum -0.98 -0.13 -0.98 -0.13 

Medulla -0.98 -0.08 -0.98 -0.08 

Variance explained (%)  92.58 3.21 92.7 3.6 

Eigenvalue  8.3 0.29 7.4 0.3 
Phylogenetic principal components analysis applied to all three mammalian orders. Dashes signify instances where 
variable was not included in the model. MOB = main olfactory bulb 
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Figure 2:a – pPCA of Mammalian brain structures relative to body size 

Phylogenetic principal components analysis applied to all three mammalian 
orders. Body size was included as a covariate to control for brain-body allometry. 

 

Figure 2:b -  - pPCA of mammalian brain structures with no size correction 

Phylogenetic principal components analysis applied to all three mammalian 
orders. Body size was not included in the model.
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 pPCA – Primates  2.3.2

As was found in the mammal-wide analysis, in the primates, after the very strong first 

component, no other component reaches the threshold of Kaiser’s criterion (Table 2.3-2). 

Again, the loadings show a very strong first component on to which all structures load 

approximately equally, suggesting this component represents a general size factor. The 

second component is very heavily loaded by the main olfactory bulb. This second component 

represents around 7% of the variance in the primate sample, an increase on ~3.5% in the 

mammal-wide analysis. In both the primate and mammal-wide analyses, the olfactory bulb 

also loads substantially less heavily on to the first component than all the other structures. 

This suggests that variation in this structure is more independent of overall body or brain size 

than the other structures. 

There is clear separation of the haplorhines and strepsirrhines along the second component in 

both conditions (Figures 2:c & 2:d). Apes are at the extreme of the first component which is 

unsurprising given this largely represents overall size.  Strepsirrhines cluster more towards 

the positive end of component 2, while the haplorhines score negatively, reflecting their 

decreased dependence on olfaction and increased reliance on vision (Barton, Purvis and 

Harvey, 1995; Barton, 1998). 

 

Table 2.3-2 - Primate pPCA summary 

  
Covariate = body size No size correction 

  PC1 PC2 PC1 PC2 

 Body -0.95 0.06 - - 

Lo
ad

in
gs

 

MOB -0.66 0.75 -0.66 0.75 
Septum -0.98 -0.08 -0.98 -0.07 
Striatum -0.98 -0.08 -0.98 -0.07 
Amygdala -0.97 -0.02 -0.97 -0.01 
Hippocampus -0.98 -0.15 -0.96 -0.14 
Neocortex -0.98 -0.13 -0.98 -0.12 
Cerebellum -0.99 -0.08 -0.99 -0.08 
Medulla -0.99 -0.02 -0.98 -0.01 

Variance explained (%)  89.21 6.93 89.1 7.75 
Eigenvalue  8.03 0.62 7.13 0.62 
Phylogenetic principal components analysis applied to the order Primates. Dashes signify instances where variable 
was not included in the model. MOB = main olfactory bulb 
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Figure 2:c – pPCA of primate brain structures relative to body size 

Phylogenetic principal components analysis applied to the order Primates. Body 
size was included as a covariate to control for brain-body allometry. 

 

Figure 2:d – pPCA of primate brain structures with no size correction 

Phylogenetic principal components analysis applied to the order Primates. Body 
size was not included in the model.
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 PGLS – associations between neocortex and cerebellum volume 2.3.3

In Mammalia, when body size and the other brain structures are controlled for, there is a 

strong positive partial correlation between the cerebellum (as the outcome variable) and 

neocortex volume (Table 2.3-4, phylogenetic least squares (PGLS); λ = 0.98, t8,289 = 7.16, p < 

0.0001). There are also positive correlations between cerebellum volume (as the outcome 

variable) and the size of the medulla (t8,289 = 6.8072, p < 0.0001) and the hippocampus (t8,289 

= 2.4757, p < 0.05). 

Overall, the phylogenetic least squares regression shows quite different patterns of 

coevolution of brain structures between the three orders. The only relationship which is 

consistently evident across all three orders is that between neocortex and striatum volume. 

The correlation between the cerebellum (as outcome variable) and neocortex seen in the 

Mammalia analysis endures when primates (λ = 1, t8,35 = 4.89, p < 0.0001) and bats ((λ = .95, 

t8,192 = 4.49, p < 0.0001) are analysed independently (Table 2.3-4). For the primates, the 

neocortex is the only brain structure whose size correlates with cerebellum size. Primates are 

also the only order whose cerebellum volume does not correlate with medulla volume (Table 

2.3-4). In bats, both the medulla (t8,192 = 6.29, p < 0.001) and the hippocampus (t8,192 = 3.37, p 

< 0.001) are also correlated with cerebellum size. Cerebellum and neocortex volume are 

unrelated in insectivores (λ = 1, t8,44 = 1.32, p > 0.05). Instead cerebellum size is correlated 

with medulla (t8,44 = 4.93, p < 0.001) and striatum size (t8,44 = 2.69, p < 0.05). A notable 

difference between primates and the other two orders is their pattern of associations with the 

medulla. Primates exhibit a positive association between neocortex and medulla volume, 

which is absent in bats and insectivores (Table 2.3-3). Conversely, bats and insectivores 

exhibit a positive association between cerebellum and medulla volume, which is absent in 

primates (Table 2.3-4).   
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Table 2.3-3 – PGLS regression of neocortical volume on other brain structures 

 Mammalia 
(n=298) 

Primates 
(n=44) 

Chiroptera 
(n=201) 

“Insectivora” 
(n=53) 

Predictor t289 (p) t35 (p) t192 (p) t44 (p) 

(Intercept) 4.5 ‡ 4.86 ‡ 3.66 ‡ 2.2 * 
Cerebellum 7.2 ‡ 4.27 ‡ 4.44 ‡ 1.32 (0.19) 
MOB -4.77 ‡ -2.84 † -0.92 (0.36) -3.51 † 
Septum 0.17 (0.87) 3.62 ‡ -2.04 * 1.26 (0.21) 
Striatum 10.07 ‡ 3.57 † 8.4 ‡ 4.13 ‡ 
Amygdala 4.71 ‡ -0.14 (0.89) 4.33 ‡ 1.37 (0.18) 
Hippocampus 0.05 (0.96) -3.68 ‡ 1.64 (0.1) 0.72 (0.47) 
Medulla -0.4 (0.69) 2.21 * -0.33 (0.74) 0.16 (0.87) 
Body size 0.97 (0.33) -1.92 (0.06) 2.72 † 0.32 (0.75) 
     

λ .97 .81 .90 1 
r2 .97 .99 .97 .97 
Bold denotes significance at at least the α<0.05 level. Degrees of freedom are indicated in subscript after “t” 
* = p <0.05, † = p <0.01. ‡ = p <0.001 
 

 

Table 2.3-4 – PGLS regression of cerebellar volume on other brain structures 

 Mammalia 
(n=298) 

Primates 
(n=44) 

Chiroptera 
(n=201) 

“Insectivora” 
(n=53) 

Predictor t289 (p) t35 (p) t192 (p) t44 (p) 

(Intercept) -0.003 -1.24 (0.22) 1.07 (0.29) -1.47 
Neocortex 7.16 ‡ 4.89 ‡ 4.49 ‡ 1.32 (0.19) 
MOB -1.97 (0.05) 0.56 (0.58) -0.69 (0.49) -1.4 (0.17) 
Septum -0.12 (0.9) -0.63 (0.54) -1.09 (0.28) 0.15 (0.88) 
Striatum 1.65 (0.1) 0.01 (0.99) 0.48 (0.64) 2.69 * 
Amygdala 0.92 (0.36) 1.72 (0.09) 0.39 (0.7) -1.05 (0.3) 
Hippocampus 2.48 * 1.2 (0.24) 3.37 ‡ 1.89 (0.07) 
Medulla 6.81 ‡ -0.72 (0.48) 6.29 ‡ 4.93 ‡ 
Body size 1.22 (0.22) 2.07 * 1.36 (0.17) -2.04 * 
     

λ .98 1 .95 1 
r2 .97 .98 .96 .98 
Bold denotes significance at at least the α<0.05 level. Degrees of freedom are indicated in subscript after “t” 
* = p <0.05, † = p <0.01. ‡ = p <0.001 
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2.4 Discussion 

 Evidence supporting concerted brain evolution 2.4.1

Overall size is undoubtedly a major element in the variation in brain composition across 

species. Across mammalian species, almost 93% of the variance in brain structure volumes is 

accounted for by the first principal component, representing overall size (whether this 

represents overall brain or body size is unclear as these cannot be distinguished in this 

analysis). The lack of any major differences in loadings or graphical patterns according to 

whether size is accounted for or not further demonstrates that the majority of the variance in 

brain composition in absolute and relative terms is size-linked. The pPCA results very closely 

resemble those of Finlay and Darlington (1995), despite the application of phylogenetic 

correction (Table 2.3-1). Kaiser’s criterion (see “Methodology” above for problems with this 

threshold) would dictate that only the first principal component can be extracted, suggesting 

that there is no meaningful variation left over after accounting for size. Also, after the first 

two components which appear to describe a general size factor and olfactory bulb, the 

loadings of the original variables are very low and show relatively little variation. This stands 

in contrast to what was predicted if brains evolved in a mosaic fashion, where structures 

which have undergone correlated evolution were expected to load on to common 

components. One possible interpretation of the pPCA results therefore could be a concerted 

evolution perspective which holds size (and the presumed developmental constraints linked 

to it) to be the significant factor in brain composition and that any selection for function 

causes an increase in overall brain size rather than an increase in a specific structure or 

network that mediates said function (Finlay and Darlington, 1995). 

This separation of the main olfactory bulb (MOB) from the rest of the structures in the PCA 

also echoes previous findings. Finlay and Darlington found that this structure had a much 

lower correlation with overall brain size than any of the others. The lower loading of the main 

olfactory bulb on to the first component seems to suggest a pattern of size variation in this 

structure which has some independence relative to the others examined. This relative 

independence of the size of the olfactory system from that of the rest of the brain has been 

reported in a number of studies (Finlay and Darlington, 1995; Yopak et al., 2010; Smaers and 

Soligo, 2013), but the reason underlying its independence are not always clearly articulated. 

It has been suggested, in anthropoid primates at least, that the olfactory system has been 
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relatively conserved during the course of the clade’s evolution, and so the size of the rest of 

the brain has been comparatively much more variable (Smaers and Soligo, 2013). 

When comparing the results of the present study with a previous PCA study in mammals 

which found support for a mosaic pattern of brain structure variation, that of de Winter and 

Oxnard (2001), there is clearly major divergence. Where they were able to extract a number 

of components with clear biological meaning which split taxa by ecological niche, the current 

study found no such components. Accounting for phylogenetic relatedness by using 

phylogenetic comparative statistical methods has contributed to this discrepancy, but more 

significant is the manner in which each study deals with allometry. As mentioned in the 

introduction, since de Winter and Oxnard use proportional measures of one structure relative 

to another, they conflate independent change in structures with allometric scaling. Therefore, 

change in the volume of a structure that occurs independently of the rest of the brain cannot 

be distinguished from change that occurs due to overall brain size change. Accounting for 

allometry in the study of comparative brain composition variation is complex. Firstly, grade 

shifts in relative structure sizes can obscure the true nature of their allometric scaling (Nunn 

and Barton, 2001). Barton and Harvey (2000) reported that without the confounding effect of 

such shifts, the neocortex scaled near isometrically with brain size. Without accounting for 

grade shifts, the variation in the size of this structure had been attributed entirely to a single 

universal mammalian allometric trajectory (Finlay and Darlington, 1995). Second, the 

relationship of brain structures to overall brain size, and of brain size to body size is also 

variable (Montgomery et al., 2013). Since these are the most commonly used metrics for 

controlling for size, this variability presents a problem for comparison across clades. This has 

led some researchers to prefer structures whose relationship with both brain and body size is 

thought to be highly conserved, like the medulla (de Winter and Oxnard, 2001) or spinal cord 

(Willemet, 2013).  

 Evidence supporting mosaic brain evolution 2.4.2

While the PCA loadings appear to support a concerted brain evolution pattern, the separation 

of the taxa in the PCAs (Figures 2:a – 2:d) and different patterns of correlated evolution 

between structures in the PGLS indicate that different patterns of brain composition evolution 

exist across taxa. The PGLS results show that these taxa have independent patterns of 

relationships between structures, suggesting that they have undergone different selection 

pressures which have shaped their brains in different ways (Tables 2.3-3 & 2.3-4). This 

stands in contrast to the concerted/linked regularities hypothesis which would have seen all 3 
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orders following the same pattern, stretching out along a single component related to size. 

Therefore, these results do not support a universal mammalian pattern of brain evolution in 

these taxa. Additionally, in both the mammal-wide and primate only PCA analyses, the 

second component clearly differentiates the Haplorhini from the other taxa, including the 

Strepsirrhini. The clustering of the haplorhines towards the negative end of the second 

component and the heavy loading of the main olfactory bulb on to this component reflects the 

diminished role of olfaction in this taxon (Barton, 2006b).  

The results of the PGLS analysis are also in clear agreement with previous work which has 

demonstrated that the volume of the cerebellum and neocortex are correlated both in primates 

and mammals at large (Whiting and Barton, 2003; Smaers, Steele and Zilles, 2011; Barton, 

2012). The relationship is apparent in the full analysis incorporating all 3 orders and also in 

individual analyses of the primates and bats. However, the relationship does not hold for the 

“insectivores”. As mentioned above, this grouping in paraphyletic and so it could be 

misleading to analyse these species together in an analysis like this. However, this grouping 

was necessary to facilitate clear comparison with previous analyses which have used it.  

 A false dichotomy? 2.4.3

Taken together, the pPCA and PGLS results ultimately support the consensus in the 

literature; both concerted and mosaic influences combine to change brain composition 

(Barton, 2006a; Herculano-Houzel, Manger and Kaas, 2014; Hoops et al., 2017; O’Donnell 

et al., 2018). Both processes have been observed in individual taxa (Gutiérrez-Ibáñez et al., 

2014; Herculano-Houzel, Manger and Kaas, 2014; Hoops et al., 2017). There is no doubt that 

development and evolution are linked (Montgomery, Mundy and Barton, 2016). Rather, there 

is disagreement about the relative contribution of each to the variation in comparative brain 

composition (Striedter, 2006).  Proponents of concerted evolution maintain that mosaic 

evolution is rare (Striedter, 2006), but have suggested developmental mechanisms under 

which it can occur. They suggest that selection may act directly upon developmental 

scheduling mechanisms (Charvet and Finlay, 2012), but this only helps us understand the 

mechanics of mosaic changes, not whether or not mosaic evolution is a major force shaping 

brain composition. Some propose that allometric constraints dominate until selection forces a 

change, so that mosaic changes can overcome constraints in an otherwise concerted brain 

when the species is under direct selective pressure (O’Donnell et al., 2018). The relative 

dominance of one model over the other may even be clade specific. For example, Hoops et al. 
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(2017) suggests that brain evolution in the cartilaginous and bony fishes exhibits mostly 

concerted and mostly mosaic patterns respectively. 

As detailed above, mosaic brain evolution has been observed and experimentally induced in a 

wide range of taxa. Genetic evidence is also supportive of a significant role of mosaic 

evolution in brain composition, with developmental constraints, while present, not a strong 

factor (Hager et al., 2012; Harrison and Montgomery, 2017). The PGLS results above 

support the predictions of a mosaic model; showing specific correlations between structures 

which are independent of overall size and reflective of connectivity. If the evidence for 

mosaic change is so strong, then why does the pPCA recover no evidence of it? It is possible 

that patterns of mosaic evolution are not detected by an approach like PCA for the following 

reasons. A principal component analysis necessarily finds axes of variation which are not 

related to each other (i.e. are orthogonal to one another). For coevolved groups of structures 

to be represented by individual components, groups of structures which have coevolved 

would need to be uncorrelated with other coevolved systems. Given the distributed nature of 

functions across groups of structures and the resulting non-independence of these groups, one 

might expect that no one structure or group of structures would load heavily on to a 

component. In addition, the data analysed here are based on traditional grossly anatomically 

defined structures which do not represent functional systems very well, as distributed systems 

cut across these gross structures (Buckner and Krienen, 2013). Dividing the brain in to these 

anatomical structures may therefore not reflect biological reality in terms of how selective 

pressures influence the relative sizes of structures. 

 Setting the scene 2.4.4

The pPCA analysis shows a clear separation of the primates from the other orders. This 

separation occurs along the two major axes of variation in brain composition in the 

mammalian taxa analysed – namely: overall size and the size of the olfactory bulb. The 

primates therefore constitute an important and appropriate taxon for the key questions in 

brain evolution. This order has been the subject of intense research interest and so a large 

amount of detailed neurovolumetric, ecological, behavioural and developmental data are 

available. The inclusion of the other mammalian taxa discussed in this chapter is largely 

prohibited by both availability of data and the scope of the project. The following chapters 

investigate the mosaicism in brain evolution discussed in this chapter, focusing on the order 

Primates. 
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3  Re-evaluating the link between brain size and behavioural 

ecology in primates 
 

3.1 Introduction 

Absolute brain size varies almost a thousand-fold across the order Primates (Barton, 2012), 

and the adaptive significance of this variation has been the subject of intense interest. As 

neural tissue imposes costs (Aiello and Wheeler, 1995), evolutionary increases in brain size 

are assumed to confer benefits in terms of enhanced cognitive abilities (Healy and Rowe, 

2007; Weisbecker et al., 2015). Although this assumption has received support from studies 

demonstrating positive associations between brain size and cognitive performance (MacLean 

et al., 2012, 2014, Kotrschal et al., 2013, 2015; Benson-Amram et al., 2016), the selection 

pressures responsible are still poorly understood.   

 Ecological or social brains? 3.1.1

A classic approach to this problem is to examine which specific aspects of lifestyle correlate 

with brain size across species. In primates, two broad categories of hypothesis have been 

tested in this way; ecological and social. Ecological hypotheses mainly relate to the foraging 

demands of a species’ ecological niche (Harvey and Rambaut, 2000; Barton, 2006c; Mars et 

al., 2014; Parker, 2015). Effects of diet (Clutton-Brock and Harvey, 1980; Harvey, Clutton-

Brock and Mace, 1980; Fish and Lockwood, 2003; Walker et al., 2006; van Woerden, van 

Schaik and Isler, 2010; Swanson et al., 2012; DeCasien et al., 2017), home range size 

(Milton and May, 1976; Clutton-Brock and Harvey, 1980; Parker, 2015), terrestriality  

(Sawaguchi, 1990) and activity period  (Barton, Purvis and Harvey, 1995; Barton, 1996) on 

brain or brain component size have been reported, and explanations for such effects invoke a 

range of information-processing capacities, including spatial or spatio-temporal memory and 

visual processing (Clutton-Brock and Harvey, 1980; Milton, 1988; Barton, Purvis and 

Harvey, 1995; Barton, 1998). In contrast, the Social Brain Hypothesis (SBH) proposes that 

the principal selection pressure responsible for variation in primate brain size is the cognitive 

demands of managing social relationships within bonded groups  (Jolly, 1966; Humphrey, 

1976; Whiten and Byrne, 1988; Dunbar, 1992; Barton and Dunbar, 1997; Dunbar and Shultz, 

2007a), a hypothesis that has received considerable empirical support  (Dunbar, 1992; Barton 

and Dunbar, 1997; Dunbar and Shultz, 2007a). Relationships between sociality and brain size 
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have also been reported in other mammalian taxa such as Ungulates (Shultz and Dunbar, 

2006, 2007), Cetacea (Fox, Muthukrishna and Shultz, 2017)and Carnivora (Pérez-Barbería, 

Shultz and Dunbar, 2007; Shultz and Dunbar, 2007; Swanson et al., 2012; Holekamp et al., 

2015).  

 Questioning the Social Brain 3.1.2

Nevertheless, some studies have failed to find a statistical link between brain size and 

sociality (Clutton-Brock and Harvey, 1980; Swanson et al., 2012; Holekamp et al., 2015; 

DeCasien et al., 2017), and apparent exceptions, in terms of large-brained but not 

conspicuously social taxa, suggest that factors other than sociality may have been influential  

(Byrne, 2006; Swanson et al., 2012; van Schaik et al., 2012). In particular, a recent analysis 

by DeCasien et al. (2017) found that diet, and not social group size, correlates with brain size 

in primates. DeCasien et al. point to several possible explanations for the correlation with diet 

that invoke the cognitive basis of foraging skills. Shultz & Dunbar (2007) had earlier 

acknowledged that primate brain size correlates with diet but argued (a) that this reflects 

energetic constraints on brain size rather than selection on foraging skills, and (b) that brain 

size correlates with sociality independently of diet. The regression models supporting the 

latter conclusion were based on relatively small sample sizes, and, using a larger sample size, 

DeCasien et al.  (2017) failed to find an independent effect of social group size after 

accounting for body size and diet, as well as for phylogenetic uncertainty. On the other hand, 

Shultz and Dunbar (2007) incorporated a wider range of ecological variables into their model. 

Here we combine the strengths of these studies and evaluate the possible effects of their use 

of different data sets; that is, we use phylogenetic comparative analysis applied to large 

sample sizes, we incorporate all the key behavioural-ecological predictors examined in 

previous studies, and we account for phylogenetic uncertainty. Error variance in predictors 

theoretically has a major impact on the results of regression analyses and is likely to be 

considerable in the case of behavioural measures collated from field studies conducted by 

different researchers using different methods on different populations. However, almost 

nothing is known about the effects of this problem on determining the behavioural correlates 

of brain size. A novel feature of our study is therefore that we assess the robustness of results 

by replicating analyses across datasets. A lack of such robustness would have significant 

implications for attempts to infer selection pressures from analyses that neglect this issue. 

 



 
38 

3.2 Materials and Methods 

 Data sources 3.2.1

Brain size (endocranial volume) and body mass were obtained from previously published 

compilations (Isler et al., 2008; van Woerden, van Schaik and Isler, 2010, 2014; van 

Woerden et al., 2012). Whilst it might be argued that the SBH specifically invokes the 

neocortex as the relevant brain structure  (Barton and Dunbar, 1997; Shultz and Dunbar, 

2006; Dunbar and Shultz, 2007a), proponents of the SBH refer to the hypothesis as an 

explanation for brain size and have used both overall brain and neocortex size  (Shultz and 

Dunbar, 2006, 2010) arguing that brain size and neocortex size are closely related, because 

the neocortex comprises a large proportion of whole brain volume  (Shultz and Dunbar, 2007; 

Dunbar and Shultz, 2017). Using brain size markedly increases sample sizes and statistical 

power. Nevertheless, we recognise that these two measures could theoretically give different 

results (see 3.4 Discussion). 

Two datasets on primate behavioural ecology were analysed. The first (hereafter referred to 

as ‘dataset 1’) is a previously unpublished dataset compiled from the literature by Isler, 

providing updated, high quality data on primate behavioural ecology; favouring wild samples 

over captive, larger samples over smaller, original contributions over compilations, and more 

recent sources over older ones (Isler et al., 2008; van Woerden, van Schaik and Isler, 2010, 

2014; van Woerden et al., 2012). For sexually dimorphic species (size difference > 10%), 

female values for endocranial volume (hereafter “ECV”) and body mass were used. For all 

other species, means were calculated across males and females. If available, body mass was 

taken from the same specimens as ECV. Otherwise, the largest available sample of wild body 

mass data was used. Dataset 1 includes information on diet composition (the percentage of 

time spent feeding on different dietary items), size of sleeping groups and of foraging groups, 

day ranges, and home range sizes.  Dataset 2 was compiled from the literature by Nunn and 

van Schaik (2002). It provides values for female body mass, activity period, substrate use, 

and diet. As body size in dataset 2 is derived only from female specimens, for comparability 

we also ran an analysis on dataset 1 using only female body size estimates (Appendix 13). 

Datasets 1 and 2 are not independent, as their sources overlap. Therefore, in order to test for 

robustness of results across strictly independent datasets, we also created subsets of the data 

by randomly selecting different species from each original dataset.  
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 Selection of ecological variables 3.2.2

Five behavioural-ecological variables were selected for analysis, based on the previous 

literature  (Milton and May, 1976; Clutton-Brock and Harvey, 1980; Milton, 1988; Dunbar, 

1992; Dunbar, 1998; Barton, 1999; Dunbar and Shultz, 2007a): two continuous variables 

(home range size (ha) and social group size) and three dichotomous categorical variables: 

activity period (nocturnal/diurnal), substrate use (terrestrial/arboreal) and diet (folivore/non 

folivore). Rather than presenting quantitative estimates, Nunn and van Schaik (2002) 

classified species’ diet categories based on the food type that occupied the largest proportion 

of feeding time. We therefore used the same criterion to categorise diet in dataset 2. 

However, diet is subject to marked intraspecific variation in relation to seasonal and local 

differences in the relative abundance of different food types (Melin et al., 2014). Hence, 

categorising species’ diet according to percentage of feeding time can create anomalies, in 

which closely related species with similar foraging niches are placed in different categories 

due simply to the quantitative estimates being based on insufficient or inaccurate samples. 

We therefore ran an additional separate analysis for dataset 1 in which folivores were more 

strictly defined as only those species with clear physiological specialisations for folivory 

(Appendices 19 & 20) (Hladik, 1978; Chivers and Hladik, 1980). As in previous analyses 

(Barton, Purvis and Harvey, 1995; Barton, 1996, 2006c), diurnal species were defined as 

those that regularly forage and are active during the day, therefore including the few 

cathemeral lemurs which are more diurnal than their strictly nocturnal close relatives (Griffin, 

Matthews and Nunn, 2012; Donati et al., 2013).   

 Selection of group size data 3.2.3

Dataset 2 (Nunn and van Schaik, 2002) provides both ‘population group size’ and ‘foraging 

group size’. The authors define population group size as “…the animals that come together 

frequently, usually to sleep together and among which foraging units have highly overlapping 

ranges.” (p. 202), whereas foraging group sizes include the smaller, temporary parties or 

subgroups that form in response to immediate daily foraging conditions. Since the SBH 

relates to communities of individuals that associate habitually, we used population group size 

from Dataset 2. Dataset 1 (Isler, no date) recorded both sleeping and foraging group size. A 

third group size measure (“Combi Group Size”) takes the largest of the sleeping and foraging 

group figures. Combi Group Size therefore reflects the number of individuals who regularly 

associate and is thus essentially definitionally the same as population group size from Dataset 

2. We therefore used Combi Group Size in our primary analyses of dataset 1. However, we 
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also reran the analyses with sleeping group size only (where available) and found no 

qualitative difference in results (Appendix 12). While group size may be a relatively indirect 

measure of primate social complexity  (Dunbar, 1998; Fischer et al., 2017), it is the one that 

forms the foundation of work on the SBH (Dunbar, 1998; Dunbar and Shultz, 2007a), and as 

we intended to revisit the conclusions of that work  it is necessary to use the same metrics as 

used in those papers. 

 Statistical analysis 3.2.4

Both analyses used the same endocranial volume data; only the behavioural-ecological data 

differed. We used phylogenetic generalised least squares regression (PGLS) to analyse the 

correlated evolution of the five behavioural-ecological variables and endocranial volume. 

Data were analysed in the R (R Development Core Team, 2015) packages “ape” (Paradis, 

Claude and Strimmer, 2004), “picante” (Kembel et al., 2010), “caper” (Orme et al., 2013) 

and “nlme” (Pinheiro et al., 2015). Pagel’s ʎ (Pagel, 1999) is a scaling parameter, used to 

scale the variance co-variance matrix according to the expected variance given a phylogenetic 

tree, thus accounting for the confounding effect of phylogenetic relatedness in comparative 

studies (Nunn, 2011).  ʎ was estimated by maximum likelihood. For the PGLS analyses, the 

phylogeny used was the consensus tree incorporating branch length estimates from the 10k 

Trees project (Arnold, Matthews and Nunn, 2010). Body mass was included as a covariate in 

the regression to control for its effects on endocranial volume following Freckleton (2002), 

Smith (1999), and Garcia-Berthou (2001). This method of body size correction is preferred 

over analysis of residuals as it avoids biased parameter estimates (Freckleton, 2002). 

Including body mass as a covariate also has the benefit of controlling for any effects of body 

mass on other predictors, which is likely to be a particular issue for home range size. The 

granularity of the environment as perceived by the animal is likely to be dependent upon its 

size. For example, an increase of 1 hectare would likely have very different implications for a 

50g mouse lemur than for an 85kg gorilla. 

All continuous variables (endocranial volume, body mass, group size, and home range size) 

were log10 transformed prior to analysis to satisfy the assumption of normality. Prior to the 

analysis, we inspected the distribution of the response and predictor variables and found them 

to be approximately symmetrically distributed. We inspected diagnostic plots for the model 

and found no evidence of violation of the assumptions of normality or homogeneity of 

residuals (Quinn and Keough, 2002). Models were checked for outliers with a studentised 

residual with an absolute value >3 (Field, Miles and Field, 2012). None were found. We 
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checked for collinearity between predictors in our models. Although statistically significant 

partial correlations were present for all predictors, none were above 0.67. Absolute 

correlations of less than .8 are deemed not to represent significant collinearity issues 

(Garland, 2012). Variance inflation factors (VIFs) (Quinn and Keough, 2002) were less than 

1.4 in all cases which further reassured us that collinearity was not a significant problem in 

this case (Mundry, 2014). 

 Model comparisons 3.2.5

To assess the fit of the PGLS models, we constructed models which varied in complexity; 

from an allometric model in which body size was the sole predictor, models including body 

size and each predictor alone, and then added parameters to the model according to their p 

value (low to high). We then compared the AIC (Akaike’s Information Criterion) (Akaike, 

1974) for each model using the native “AIC” function in R (R Development Core Team, 

2015). The AIC takes in to account the size of the sample and the number of predictors; 

penalising complex, over-paramaterised models (Quinn and Keough, 2002). Lower values of 

the AIC indicate better fitting, more parsimonious models.  We also used log likelihood ratio 

tests to assess fit (Burnham and Anderson, 2002), run using the “lrtest” function in the lmtest 

package (Zeileis and Hothorn, 2002) in R  (R Development Core Team, 2015). 

 Accounting for phylogenetic uncertainty 3.2.6

The PGLS analyses are based on a single consensus tree of the primates, but phylogenetic 

relationships are not known with certainty. To account for this issue and to additionally test 

whether this potential source of error in comparative studies has a significant impact on 

identifying correlates of brain size, we performed Bayesian phylogenetic regressions (Pagel, 

1999) accounting for shared ancestry by integrating over a posterior sample of 1000 primate 

phylogenetic trees taken from the 10k trees project website (Arnold, Matthews and Nunn, 

2010). We conducted these analyses using BayesTraitsV3 (Pagel and Meade, 2016). To 

account for the level of phylogenetic signal in our data we estimated the tree scaling 

parameter ʎ (Pagel and Meade, 2016). We used a uniform prior of -100 to 100 for all 

regression coefficients and a uniform prior of 0 to 1 for ʎ. We ran the analyses for 1,010,000 

iterations, sampling every 1000 iterations removing the first 10,000 iterations as burn-in. To 

determine the significance of our regression coefficients we used pMCMC values which can 

be interpreted in a similar way to frequentist p-values (Hadfield, 2010). 
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3.3 Results 

 PGLS  3.3.1

 

Table 3.3-1 - Phylogenetic Least Squares (PGLS) regressions examining the effects of five 
behavioural-ecological variables on endocranial volume. 

 Dataset 1 (n=144)  Dataset 2 (n=104) 

Predictor t137 p  t97 p 

Intercept -5.5 <0.001‡  11.3 <0.001‡ 

Body Size 18.6 <0.001‡  13.3 <0.001‡ 

Activity period 2.5 <0.05*  1.9 0.06 

Terrestriality 0.4 0.69  -0.3 0.8 

Folivory -1.7 0.08  0.1 0.9 

Group Size 1.7 0.1  0.1 0.9 

Home Range Size 2.4 <0.05*  2.8 <0.01† 

Model summary:    

ʎ .988  .997 

R2 .8  .75 

Predictor variable = endocranial volume. Bold denotes significance at at least the α<0.05 level. Degrees of freedom are 
indicated in subscript after “t” 
* = p <0.05, † = p <0.01. ‡ = p <0.001 

 

 

Table 3.3-1 presents the results of PGLS analyses on the two full datasets. In all cases ʎ was 

close to 1, indicating that the data are consistent with a Brownian motion model of trait 

evolution (Barton and Venditti, 2014). A simple allometric model regressing endocranial 

volume on body size alone explained 77% of the variation in dataset 1 and 73% in dataset 2. 

The full model (comprising all five behavioural-ecological variables) was highly significant 

in both dataset 1 (ʎ=0.99, r2=0.8, p <0.0001) and dataset 2 (ʎ=1, r2=.75, p <0.0001).  

In dataset 1 home range size and activity period were both associated with endocranial 

volume after accounting for the effects of body size (positive associations between brain size 

and HRS and diurnality respectively) (ʎ=0.99, t6,108=2.1, p <0.05). The model based on 

dataset 2  (Isler, no date) also showed a significant positive partial correlation with home 

range size, ( ʎ=0.99, t6,97=2.8, p <0.01), but the partial correlations with activity period did 

not reach significance (p=0.06), and no other behavioural-ecological variables were 

significantly correlated with brain size while accounting for these effects. 
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Table 3.3-2 - Phylogenetic Least Squares (PGLS) regressions examining the effects of five 
behavioural-ecological variables on endocranial volume with datasets matched for species. 

 Dataset 1 (n=99) Dataset 2 (n=99) 

Predictor t92 p t92 p 

Intercept -5.8 <0.001‡ 11 <0.001‡ 

Body Size 16.9 <0.001‡ 13 <0.001‡ 

Activity period 1.8 0.1 1.9 0.1 

Terrestriality 0.3 0.8 -0.2 0.8 

Folivory -2.2 <0.05* 0.1 0.9 

Group Size 1 0.3 0.1 0.9 

Home Range Size 1.3 0.2 2.5 <0.05* 

Model summary:   

ʎ .99 1 

R2 .81 .75 

Predictor variable = endocranial volume. Bold denotes significance at at least the α<0.05 level. Degrees of freedom are 
indicated in subscript after “t” 
* = p <0.05, † = p <0.01. ‡ = p <0.001 

  

When each dataset was matched to include the same species and the same endocranial 

volume data, results changed, and again differed between datasets. Table 3.3-2 indicates 

significant partial correlations for diet in dataset 1 and for home range size in dataset 2. In 

both cases, the effect of activity period was now non-significant.  

We next performed PGLS analyses on the datasets (i) after they had been made completely 

independent from each other, and (ii) after they had been reduced to include only species that 

appeared in Stephan et al.’s 1981 brain component volumes dataset (Stephan, Frahm and 

Baron, 1981). Again, results differed between the datasets and from the results reported 

above (see Appendices 4 & 9 for full results). Folivory showed a significant negative 

association with brain size in independent dataset 1, whereas there were no significant 

predictors after accounting for body mass in independent dataset 2. Similarly, no significant 

associations were found in the full multiple regressions on either dataset when they were 

matched to the Stephan et al.  (Stephan, Frahm and Baron, 1981) species list. However, 

because the sample sizes in these analyses were small relative to the number of predictors, we 

used model comparisons to determine which combinations of predictors are best supported 

(see below). 
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 Model Comparison  3.3.2

To establish which combination of variables model endocranial volume best in each dataset, 

we employed a model comparison approach using Akaike’s Information Criterion (Akaike, 

1974) and log likelihood ratio tests (Burnham and Anderson, 2002). We first subjected the 

full datasets to model comparison (Appendices 2 & 3). 

AIC values indicate that the model offering the best and most parsimonious explanation of 

dataset 1 was one which included activity period, home range size, diet and group size. 

(model ix, Appendix 2). Following Burnham and Anderson (2002), an AIC difference (Δi) of 

less than 2 was considered to indicate substantial empirical support (p. 70). The best model 

was therefore not a significantly better fit to the data than models vii, viii and x (Δi < 2). AIC 

differences between the models fitted to dataset 2 (Table S3) showed that a model containing 

home range size and activity period was the best fit to the data, but model vi which included 

only body size (the covariate) and home range size provided a comparable fit (Δi < 2). Model 

viii (home range size, activity period and terrestriality) also gave a comparable fit according 

to the Δi < 2 rule, but a log likelihood ratio test showed that this addition of terrestriality did 

not significantly improve the fit (Appendix 3). In summary, these results show that 

endocranial volume is best modelled by different combinations of variables in the two 

datasets. Home Range Size was consistently present in the best models (Δi < 2) across the 

two datasets, appearing in all seven of the best models. Group size appeared in only two of 

the seven best models and only when accompanied by home range size, folivory and activity 

period.  

As described above, the inclusion of different species in each dataset may result in the 

composition of the best models varying between datasets. We therefore also subjected the 

species matched datasets to model comparison, as detailed in Appendices 5 & 6. 

The model comparisons for the species matched datasets show broad agreement with those of 

the non-matched, full datasets in Appendices 2 & 3. The best models still consistently 

included home range size, appearing in every model with substantial support (i.e. where Δi < 

2) save one (model viii, Appendix 5). Group size appeared in only one of the best models, 

again together with home range size, folivory and activity period.  

PGLS model comparisons for the Stephan et al. (1981) sample of species identified social 

group size as a significant predictor: in both datasets, group size and folivory were included 
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in the best model. The addition of home range size was found not to improve the fit in either 

dataset (Appendices 10 & 11). 

 Accounting for phylogenetic uncertainty 3.3.3

A Bayesian phylogenetic regression of the full datasets replicated the qualitative results of the 

PGLS analyses. In dataset 1, Home range size (posterior mean = 0.0247, 95%CI = 0.0241 to 

0.0253, pMCMC=0.0066) and activity period (posterior mean=0.1327, 95%CI = 0.1293 to 

0.262, pMCMC=0.0154) both had pMCMC values of less than 0.05 (Appendix 14), 

indicating that these traits were well supported (Pagel and Meade, 2016). Home range size 

was the only predictor with strong support in dataset 2 (posterior mean=0.0426, 95%CI = 

0.0416 to 0.0436, pMCMC = 0.0007, Appendix 17). Appendices 15, 16 and 18 show the 

posterior distributions of estimates of those traits that had pMCMC < 0.05.  

 

3.4 Discussion 

We have re-examined the correlates of brain size in primates, using two large comparative 

datasets, and incorporating multiple potentially relevant behavioural variables within 

phylogenetic statistical models.  Our results indicate that, even holding constant statistical 

methods, phylogeny, set of predictor variables, response variable data, and species sample, 

the behavioural and ecological correlates of brain size are sensitive to the use of different 

predictor datasets. Accounting for phylogenetic uncertainty did not affect this outcome.  

 Support for the Ecological Brain 3.4.1

This lack of robustness raises doubts about inferences from behavioural-ecological correlates 

of brain size based on analyses of single datasets and may help to explain divergent results 

between studies. To the extent that we find stability, there is stronger evidence for 

correlations with ecological factors, notably home range size, than for social group size, as 

found in Clutton-Brock and Harvey’s pioneering study (Clutton-Brock and Harvey, 1980). 

Our results are also broadly in line with the more recent study of DeCasien et al. (2017), in 

finding stronger and more robust associations with ecological factors related to foraging than 

with social group size. However, our inclusion of additional variables and datasets also 

reveals differences. DeCasien et al. identified frugivorous diets as the key correlate of large 

brain size but did not examine home range size. In contrast, we found home range size rather 

than diet to be the most consistent correlate of brain size, but note that this varied between 
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datasets, suggesting their effects are hard to separate, perhaps because diet and ranging 

together form an adaptive ‘syndrome’: more frugivorous and (less folivorous) diets are 

strongly associated with more patchily distributed resources and larger home ranges (Nunn 

and van Schaik, 2002). The manner in which diet is categorised also appears to have an 

impact; when only species with biological adaptations to leaf processing are classified as 

folivorous, diet additionally becomes a significant predictor of brain size (Appendices 19 & 

20). We also found some evidence for an association between activity period and large brain 

size, though this effect was small and variable across datasets, the potential reasons for which 

we discuss below. 

 Social Brain Hypothesis is not well supported 3.4.2

Evidence for a correlation between brain size and social group size after accounting for 

effects of other variables was weak. We found that this well-known correlation appears 

largely dependent on the particular sample of species in the Stephan dataset (Stephan, Frahm 

and Baron, 1981). One elaboration of the Social Brain Hypothesis accounts for dietary 

correlates of brain size in primates as a reflection of energetic constraints (Dunbar and Shultz, 

2007a; Shultz and Dunbar, 2007; Dunbar and Shultz, 2017) . In this view, sociality selects for 

bigger brains and diet must become more frugivorous to provide the additional energy 

required to meet the costs. However, this hypothesis would presumably predict stronger 

correlations with diet than with home range size, which we do not find. In addition, we do not 

find support for the claim that social group size and brain size are robustly correlated after 

accounting for the effects of ecological variables (Shultz and Dunbar, 2007; Dunbar and 

Shultz, 2017). We agree with Dunbar & Shultz (Dunbar and Shultz, 2017) that, in principle, 

comparative analysis should differentiate between selection pressures and constraints, but it 

remains unclear how this can be achieved in practice. While path analysis has been suggested 

as a possible solution (Dunbar and Shultz, 2007a; Dunbar and Shultz, 2017), it is essentially a 

protocol for arranging a set of regression coefficients according to some causal hypotheses; it 

cannot be used to discover causality from correlational data  (Denis and Legerski, 2003), it 

cannot solve the problem of instability across datasets, and it is as vulnerable to underlying 

issues with the data as are the regression analyses on which it is based. In summary, while it 

remains plausible that sociality is related to cognitive evolution in primates, we suggest that 

this can no longer be claimed on the basis of a strong or robust correlation between brain size 

and group size that remains after controlling for other variables. 
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 Sources of instability 3.4.3

Why are results unstable, and what implications does this have for using them to infer 

selection on cognitive abilities? We highlight three empirical issues (data quality, statistical 

power and intrinsic intra-specific variability) as well as theoretical difficulties with brain size 

as a global measure of cognitive capacities. Data quality and replicability are major issues for 

comparative studies because of the diversity of sources and of the methods used by different 

researchers to collect the primary data (Borries et al., 2013, 2016; Patterson et al., 2014).  

Furthermore, many behaviours vary extensively within and between populations of the same 

species, and comparative studies routinely collapse this intra-specific variation into species-

specific means. The validity of these mean values depends on the extent to which the 

variation has been sampled to a comparable extent across species, and on the assumption that 

inter-specific variation is substantial by comparison. For example, group size in different 

populations of terrestrial or semi-terrestrial cercopithecine species varies widely, depending 

on habitat, reflecting facultative adjustment of behaviour to local ecological conditions. 

Group size in yellow baboons (Papio cynocephalus) was found to vary between 8 and 44 

within one study population (Stacey, 1986); the contrasts between Papio populations or sub-

species is even more marked, with estimates of group size varying approximately 20-fold 

(Dunbar, 1992) and of home range size approximately 100-fold (Barton et al., 1992). 

Phylogenetic methods which control for intra-specific variation by incorporating the 

uncertainty in to the error term are now available (Ives, Midford and Garland, 2007). Future 

work could exploit this development, if and when sufficient reliable data for sampling 

intraspecific variance become available for a large sample of species. However, this would in 

one sense only make the problem we have highlighted worse: the inflation of error terms that 

inevitably result can be expected to reduce the likelihood of finding significant correlations. 

The point we wish to emphasise here, however, is that current inferences in the literature 

about the selection pressures driving the evolution of brain size made using the standard 

approach of analysing single datasets appear to be unreliable. This point has important 

implications both for interpreting the existing literature, and for the design of future studies. 

Where variables are prone to measurement error and/or extensive intraspecific variation, such 

as is particularly likely to be the case with many behavioural variables, we recommend 

careful attention to data quality, testing the stability of results across datasets and/or 

incorporation of uncertainty in estimation of species-typical mean values.  
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In addition, statistical power is a serious issue where a range of predictors are considered with 

moderate or small numbers of species, as is not uncommonly the case in published 

comparative studies. In this situation (model overfitting) we can expect models with high 

coefficients of determination but poor generalizability from one dataset to another. This is a 

particular issue with the relatively small dataset of Stephan et al.  (Stephan, Frahm and Baron, 

1981), which has been the main empirical foundation for the claim that social group size is 

the strongest predictor of brain and/or neocortex size (Dunbar, 1992; Kudo and Dunbar, 

2001; Dunbar and Shultz, 2007a; Dunbar and Shultz, 2017). When datasets 1 and 2 were 

matched to the species in the Stephan et al. data, the best models identified by our model 

comparisons did include group size (Appendices 10 & 11), in contrast with our results for the 

larger datasets. Hence, in accord with the suggestion of Parker that this dataset may be biased 

in favour of the SBH (Parker, 2015), we recover a clear correlation with group size only 

when analysis is restricted to these species. It therefore seems that the differences in patterns 

of correlations between studies (Dunbar and Shultz, 2007a; DeCasien et al., 2017) are at least 

partly due to different species sampling and/or different predictor variables, rather than 

simply to use of different brain measures (overall brain size versus neocortex size).  

 Difficulties of a singular explanation of brain size variation 3.4.4

The fact that an effect of home range size emerges through two different types of analysis and 

two different (albeit not independent) datasets may make it tempting to interpret ranging as 

the “true” correlate of primate brain size, and to suggest, as others have done, that large 

brains reflect selection on spatial memory  (Shultz and Dunbar, 2006; Dunbar and Shultz, 

2007b). We, however, urge caution in this respect. First, we cannot unambiguously separate 

the effects of home range size, diet and activity period. Second, and in our view more 

importantly, overall brain size does not necessarily reflect the ways in which different 

selection pressures acted on different neural systems (Barton, Purvis and Harvey, 1995; 

Barton and Harvey, 2000; Healy and Rowe, 2007). For example, we found evidence that 

diurnality is associated with larger brains, but this result was weak and lacking consistency 

across datasets. Evolutionary transitions between nocturnal and diurnal niches are known to 

correlate with the relative size of visual and olfactory brain regions (Barton, Purvis and 

Harvey, 1995). Crucially, visual and olfactory regions show opposite evolutionary patterns 

(the former being relatively large and the latter relatively small in diurnal species), so that 

overall brain size fails to adequately capture the influence of sensory niche on information-

processing capacities (Barton, Purvis and Harvey, 1995). In this case, the relatively weak and 
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variable effects of activity period on overall brain size can only be interpreted by 

understanding the divergent responses of underlying neural systems. Similarly, recent 

evidence reveals a striking difference in the pattern of brain component evolution in apes 

compared to other anthropoid primates, with increased cerebellar relative to cortical 

expansion in the former (Barton and Venditti, 2014). These different neural causes of brain 

size variation in different clades can be presumed to have different cognitive implications, 

presenting a difficulty for the attempt to relate overall brain size to individual selection 

pressures (Healy and Rowe, 2007) or to some general cognitive ability.  While large brain 

regions such as the mammalian neocortex and avian pallium inevitably have a relatively 

strong impact on overall brain size (Sayol, Lefebvre and Sol, 2016), these components 

themselves consist of multiple functional systems that evolve in a mosaic fashion in response 

to different selection pressures (Barton, Purvis and Harvey, 1995; Barton, 2007; 

Montgomery, Mundy and Barton, 2016; Sayol, Lefebvre and Sol, 2016; Carlisle et al., 2017; 

Logan et al., 2017; Moore and DeVoogd, 2017). Making sense of the behavioural and 

ecological correlates of brain size will therefore depend on the difficult task of understanding 

the complex and clade-specific ways in which brain size reflects variation in specific neural 

systems.  
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4  The behavioural ecology of primate brain structures 

4.1 Introduction 

 Mosaic change and the problem of linking function to whole brain size 4.1.1

Much of the early comparative work on the selection pressures that shape brains focused on 

whole brain size (Eisenberg and Wilson, 1978; Clutton-Brock and Harvey, 1980; Harvey, 

Clutton-Brock and Mace, 1980; Martin, 1984). This measure is still the metric of choice in 

many recent studies examining neural evolution in relation to ecological and behavioural 

specialisations (Shultz and Dunbar, 2006; Pérez-Barbería, Shultz and Dunbar, 2007; Dunbar 

and Shultz, 2007a; Kotrschal et al., 2013, 2015; Benson-Amram et al., 2016; Heldstab et al., 

2016; Sayol, Lefebvre and Sol, 2016; DeCasien et al., 2017). Using a cognitive measure 

derived from a meta-analysis of the literature on “intelligence” and “cognitive ability”, 

Deaner et al. demonstrated that “general cognitive ability”, a composite measure derived 

from multiple cognitive tests, correlated best with measures of whole brain size rather than 

measures of individual structures like the neocortex (Deaner et al., 2007). However, brain 

size has been criticised as a measure, as it potentially masks informative variation within the 

brain, and it is unclear by what mechanism changes in brain size translate in to changes in 

behaviour (Healy and Rowe, 2007; Logan et al., 2017). A number of studies have found that 

volumes of individual structures are more closely linked to function than is overall brain size 

(Dechmann and Safi, 2009; Swanson et al., 2012; Logan et al., 2017). Change in particular 

structures may not always be positively correlated and therefore not necessarily reflected in 

overall brain size measures. Barton et al. (Barton, Purvis and Harvey, 1995) found such a 

pattern in the olfactory and visual systems of primates; enlargement in visual systems is 

matched by a reduction in olfactory structure sizes. Inappropriately treating the brain as a 

functionally and anatomically homogeneous organ may therefore frustrate studies which seek 

to examine functional brain variation. Rather, the brain is composed of a number of 

anatomically distinct structures and evidence suggests these have undergone change 

independently of one another. Examining variation in brain structures may therefore reveal 

more robust correlations.   
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 Mosaic brain evolution: structure level and system level  4.1.2

Around 10% of size change at the level of major structures is independent of size change in 

the rest of the brain (Barton, 2009). Hence, “mosaic evolution” (Barton and Harvey, 2000; de 

Winter and Oxnard, 2001; Kolb et al., 2013; Herculano-Houzel, Manger and Kaas, 2014; 

Moore and DeVoogd, 2017) of these major brain structures is thought to take place “in the 

context of otherwise concerted scaling” (Herculano-Houzel, Manger and Kaas, 2014). 

Selection on behaviour can cause change in the specific structures which underpin its 

function (Jerison, 1973), causing mosaic change independent of other structures and of the 

rest of the brain.  This pattern is perhaps most strikingly manifest in distantly related taxa 

which have converged in aspects of their brain structure due to sharing a common lifestyle. 

One such example is demonstrated by de Winter and Oxnard (de Winter and Oxnard, 2001), 

who found that a number of Old and New World bat species that had independently become 

nectivorous had also converged on similar brain structure proportions. Evidence of mosaic 

brain evolution has also been shown in taxa with divergent lifestyles and divergent brain 

composition: fossorial mammals have reduced visual structures, while aquatic mammals have 

undergone a reduction in olfactory structure sizes (Barton, Purvis and Harvey, 1995). An 

interesting experimental example comes from a study on mice which were selectively bred 

for a high rate of wheel running. The midbrains of these mice were larger relative to the rest 

of the brain than the non-selectively bred control group, demonstrating that selection for a 

behaviour had influenced the volume of a specific brain area (Kolb et al., 2013).  

This mosaic pattern can operate at two levels: at the level of individual structures and of 

neural systems formed of groups of anatomically and functionally linked structures 

(Montgomery, Mundy and Barton, 2016). Firstly, individual structures can change 

independently of the rest of the brain. This is apparent in the differences in brain composition 

between clades (de Winter and Oxnard, 2001; Herculano-Houzel, Manger and Kaas, 2014). 

Barton and Harvey demonstrated these grade shifts in relative (to the rest of the brain) 

neocortex size between insectivores, strepsirrhine primates and haplorhine primates, 

indicating that the relationship between the neocortex and the rest of the brain varies both 

within and between orders (Barton and Harvey, 2000). Similarly, the relative size of the 

cerebellum is larger in apes than in non-apes (Rilling and Insel, 1998; Barton and Venditti, 

2014), and despite having near equal brain sizes, the tectum of the squirrel is around 10 times 

larger than that of a rat (Kaas and Collins, 2001).  
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While these examples show that structures do to some extent evolve independently, they do 

not function entirely in isolation. These are densely interconnected and functionally 

specialised systems that are distributed across multiple areas (Buckner and Krienen, 2013). 

Such functionally linked systems are the second level at which mosaic brain evolution 

operates. Functionally and anatomically linked structures can coevolve independently of 

change elsewhere in the brain (Harvey and Krebs, 1990; Barton and Harvey, 2000; Barton, 

2009) in response to selective pressures and constraints. This is most notably observed in the 

primate cortico-cerebellar system. The neocortex has long been at the centre of the discussion 

of primate brain evolution due to its large size relative to the rest of the brain (Dunbar, 1992). 

The cerebellum has been relatively neglected and had long been thought of as simply a 

“motor structure”, responsible for the management of motor learning and balance (Sultan and 

Glickstein, 2007; Barton, 2012). However, increasingly sophisticated imaging techniques 

have shown that the cerebellum has connections not only with the primary motor cortex but 

also to prefrontal, superior temporal and posterior parietal lobes (Ramnani, 2006; Cantalupo 

and Hopkins, 2010); cortical areas with a breadth of functionality. The increasingly apparent 

role of the cerebellum in diverse types of cognition (MacLeod et al., 2003; Whiting and 

Barton, 2003; Ramnani, 2006; Cantalupo and Hopkins, 2010; Herculano-Houzel, 2010; 

Barton, 2012; Hall, Street and Healy, 2013; Koziol et al., 2013; Stoodley and Schmahmann, 

2016) should therefore be understood through its relationship with the neocortex. 

Anatomically distinct loops exist between the two structures (Ramnani, 2006), indicating 

integrated information processing across the two structures. The clearest indication of the 

neocortex, cerebellum and intermediate nuclei forming a functional system is the correlated 

evolution of the two structures (Whiting and Barton, 2003; Herculano-Houzel, 2010), 

changing size in concert with each other in part independently of other structures (but see 

Barton & Venditti (2014) for a different pattern in apes). The shared functional capacity 

between these two structures suggests that their shared volumetric variation may correlate 

independently with behavioural ecological variables. This is explored in the coming analyses.  

 Hypotheses for the evolution of whole brain size: implications for specific 4.1.3

structures 

4.1.3.1 Ecological hypotheses 

The hypotheses relating to variation in whole brain size explored in Chapter 2 also have 

implications for specific neural structures. Ecological hypotheses emphasise the role of the 

ecological niche in brain size variation. As discussed in Chapter 2, diet is arguably the 
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variable most central to ecological hypotheses of brain evolution. Its effect on brain size was 

identified early in the literature by Clutton-Brock and Harvey (1980) and has again been 

implicated in more recent work using up-to-date Bayesian phylogenetic analysis and much 

larger sample sizes (DeCasien et al., 2017). There is some disagreement as to whether diet is 

a pressure or a constraint on brain size; for example it has been suggested that frugivores 

have larger brains than folivores because fruit is less predictably distributed and so imposes a 

greater cognitive load requiring larger brains (Harvey, Clutton-Brock and Mace, 1980; 

Milton, 1988), but it has also been suggested that diet constrains brain size because neural 

tissue is energetically expensive and different diets have different energy densities (Aiello 

and Wheeler, 1995). Home range size also features in ecological hypotheses and has direct 

links to diet, as species whose preferred food type is widely dispersed require a larger home 

range to acquire sufficient energy (Milton and May, 1976; Milton, 1988). Home range size 

correlates with relative brain volume (Clutton-Brock and Harvey, 1980), in support of 

spatial/foraging hypotheses which posit that large brains are linked to the spatial cognition 

and memory demands associated with navigating a large home range (Milton and May, 1976; 

Clutton-Brock and Harvey, 1980; Milton, 1988; Parker, 2015). Ecological hypotheses are 

often associated with whole brain size rather than explicitly linked to specific structures 

(Harvey and Krebs, 1990; Dunbar, 1992), but spatial/foraging hypotheses have implicated the 

hippocampus in particular  (Harvey and Krebs, 1990; Hopkins, Lyn and Cantalupo, 2009) as 

its size has been shown to correlate with spatial cognition and memory (Healy and Krebs, 

1992; Sherry, Jacobs and Gaulin, 1992; Clayton, Reboreda and Kacelnik, 1997; Parker, 

2015). The neocortex and cerebellum are also involved in visuo-spatial processing (MacLeod 

et al., 2003; Glickstein, Sultan and Voogd, 2011; Koziol et al., 2013) and so may be 

predicted to relate to ranging in terms of orientation in and movement through space.  

4.1.3.2 The Social Brain Hypothesis 

Perhaps the most well-known relationship between a brain structure and behaviour is the oft-

cited correlation between neocortex and group size that formed the basis of the Social Brain 

Hypothesis (SBH) (Dunbar, 1992; Dunbar, 1998; Dunbar and Shultz, 2007b). As described in 

previous chapters, the SBH suggests that managing social relationships requires complex 

computation and thus larger brains. Group size has been shown to correlate with both whole 

brain (Shultz and Dunbar, 2006, 2010; Pérez-Barbería, Shultz and Dunbar, 2007) and 

neocortex size (Barton and Dunbar, 1997; Shultz and Dunbar, 2006; Dunbar and Shultz, 

2007a). In contrast to the early incarnation of the SBH by Brothers (1990), Dunbar (mostly) 
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focused specifically on the neocortex, suggesting it was “the ‘thinking’ part of the brain” and 

so its volume was an appropriate “index of cognitive ability” (Dunbar, 1992, p. 473). He 

suggested that the cognitive demands of managing complex and numerous relationships 

requires a large brain or neocortex (Dunbar and Shultz, 2007a). He found that neocortex 

volume and group size were highly correlated (Dunbar, 1992; Dunbar and Shultz, 2007b); a 

finding which has been both supported (Barton, 1996; Kudo and Dunbar, 2001; Reader and 

Laland, 2002; Byrne and Corp, 2004; Walker et al., 2006; Sallet et al., 2011; Powell et al., 

2012; Arsznov and Sakai, 2013) and disputed (Clutton-Brock and Harvey, 1980; Swanson et 

al., 2012; Holekamp et al., 2015) since.  

4.1.3.3 The Visual Brain 

The “Visual Brain Hypothesis” (Barton, 1998) emphasises the role of primates’ visual 

specialisation; suggesting that a large proportion of the variance in primate brain size can be 

attributed to visual adaptations. For example, 50% of the neocortex of macaques is comprised 

of visual areas (Barton, 1996, 1998). The cortex receives visual information from the lateral 

geniculate nucleus (LGN) of the thalamus which, along with the visual cortex, is 

disproportionately enlarged in large-brained primates, and in diurnal primate taxa (Barton, 

Purvis and Harvey, 1995; Barton, 2006b). 

4.1.3.3.1 The eco-visual brain 

The enlargement of the primate neocortex is specifically associated with the expansion of the 

parvocellular pathway of the LGN, which is principally associated with high acuity photic 

vision and colour discrimination (Barton, 1998). The volume of the parvocellular layers of 

the LGN correlate with frugivory (Barton, 1998). This, coupled with the known positive 

association between frugivory and relative brain size (Clutton-Brock and Harvey, 1980), has 

led to suggestions that this visual specialisation is in part an adaptation in diurnal frugivorous 

primates for discerning appropriate food sources (Barton, 1998). This sub-hypothesis of the 

Visual Brain which interprets visual specialisation as adaptive for ecological reasons in 

hereafter referred to as the “eco-visual brain”.  

4.1.3.3.2 The socio-visual brain 

The parvocellular LGN volume also correlates with activity period (diurnal species have 

larger LGNs) and group size (species with larger LGNs tend to live in larger groups). Diurnal 

taxa tend to have larger group sizes (Barton, 1996). Barton has suggested that the specific 

association of the parvocellular layers of the LGN (which project to the visual areas of the 
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cortex) and group size might explain the correlation between neocortex size and group size 

which formed the basis of Dunbar’s Social Brain Hypothesis (Dunbar, 1992; Dunbar, 1998; 

Dunbar and Shultz, 2007b). He suggests that processing socio-visual cues such as facial 

expression and body language requires the fine discrimination afforded by the parvocellular 

pathway (Barton, 1998, 2009). In support of a role for sociality in the evolution of the visual 

brain, Dobson and Sherwood (2011) reported evidence of correlated evolution between facial 

motor control, group size and the volume of area V1 (the primary visual cortex) in Catarrhini. 

More recently, Hiramatsu and colleagues have reported that trichromacy facilitates the 

recognition of primate facial signals (Hiramatsu et al., 2017). This interpretation of the Visual 

Brain is hereafter referred to as the “socio-visual brain”. 

 Predictions for associations between structures and behavioural-ecological 4.1.4

variables 

The hypotheses giving rise to these predictions are given in parentheses. 

Group size 

1. Neocortex volume is predicted to correlate positively with group size (Social Brain) 

2. LGN volume is predicted to correlate positively with group size (Socio-visual brain).  

Diet 

3. LGN is predicted to correlate negatively with folivory (Eco-visual brain).  

Home range size 

4. Hippocampus volume is predicted to correlate positively with home range size 

(Ecological - spatial memory). 

5. Neocortex volume is predicted to correlate positively with home range size 

(Ecological). 

6. Cerebellum volume is predicted to correlate positively with home range size 

(Ecological). 

Activity period 

7. Neocortex and LGN volume predicted to correlate positively with diurnality (Eco-

visual brain). 

 

Since the thalamus and striatum both form part of feedback loops with the neocortex, they 

were predicted to follow the same patterns of behavioural-ecological correlations. Despite 
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not having independent predictions, it was reasoned that they were structures of 

significant importance to the systems of interest (most notably the cortico-cerebellar 

system) and so warranted inclusion in the analyses. 

 This study 4.1.5

This chapter will refine the analyses of the previous chapter by examining changes in the 

brain at finer scale using volumetric data on individual structures rather than whole brain 

measures. The analyses will again explore the relationships between behavioural-ecological 

data drawn from two sources and structure size, but this time using a new, more up-to-date 

volumetric dataset gathered with modern methods. A composite variable combining the 

neocortex and cerebellum will also be included to assess whether this functional complex is 

more sensitive to changes in behaviour and ecology than the individual structures. Analyses 

are performed firstly with body mass (g) as a covariate to control for overall size. This 

analysis allows examination of whether structures vary similarly with behavioural correlates, 

allowing for the possibility of functionally linked complexes of structures to be accounted 

for. The second phase of analysis includes a measure of the volume of the rest of the brain 

(the volume of the brain excluding the structure of interest) as well as body mass, which 

allows examination of how each structure varies in relation to remaining brain size. For 

clarity in the later discussion, only results pertinent to the hypotheses examined above are 

discussed. 

 

4.2 Methodology 

 Volumetric brain structure data 4.2.1

Volumetric data for primate brain structures were obtained from a new dataset collected by 

Navarette (pers. comm.). This dataset was collected to update and augment an existing widely 

used comparative dataset published by Stephan, Frahm and Baron (1981), using post mortem 

MRI scans to take volumetric measurements. The Navarette data were combined with the 

Stephan data to form one large updated dataset. Where figures were available in both 

datasets, a mean was taken. The structures included were neocortex, cerebellum, 

hippocampus, thalamus, striatum, lateral geniculate nucleus (LGN) and a composite variable 

“cortex + cerebellum” which is the sum of neocortex and cerebellum volume. This cortex + 

cerebellum measure is included as these two structures exhibit particularly strongly correlated 
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volumetric evolution (Whiting and Barton, 2003). Although sample size and missing data 

precluded the inclusion of other structures involved in this system such as the thalamus, pons 

and vestibular nuclei, this measure included the two largest structures in the system and so is 

likely to show the same correlations as the whole complex (Whiting and Barton, 2003). The 

structures chosen for analysis were based on their relevance to major brain evolution 

hypotheses, whilst balancing data availability and sample size. The selected structures had 

good sample sizes (62 species) and representation of important functional areas.  Paired t-

tests on species that appeared in both datasets revealed no significant difference between the 

Navarette data and the Stephan data except in the case of the medulla and pons (Appendix 

21). These structures were therefore excluded from the analyses 

 .Behavioural-ecological data 4.2.2

As in Chapter 3 we used two behavioural-ecological datasets in order to assess stability of 

results. The first, collected by Isler (Powell, Isler and Barton, 2017) will hereafter be referred 

to as dataset 1. The second, collected by Nunn and van Schaik (2002) will be referred to as 

dataset 2. Data on four behavioural ecological variables and body size were drawn from these 

two datasets.  A combined dataset was also constructed, taking the mean of values reported in 

datasets 1 and 2 and filling gaps in the data with figures from additional literature in order to 

create a larger, more representative dataset. This combined dataset (hereafter referred to as 

dataset 3) represents the largest sample (n=62). Datasets 1 and 2 are analysed for the purposes 

of comparing their results to assess the robustness of results to alternative datasets, whereas 

dataset 3 serves as the larger and more comprehensive dataset and so is used to give more 

definitive results.  

The behavioural-ecological variables selected for analysis were diet (folivory vs non 

folivory), activity period (diurnality vs nocturnality), group size and home range size (ha). 

Diet is highly variable, changing within species from one population to another, and also 

within individuals with seasonal availability. It was therefore reasoned that the most 

biologically grounded way to categorise diet was by folivores versus non folivores, as 

folivory is a dietary strategy which requires specialist gut and dental adaptations (Hladik, 

1978; Chivers and Hladik, 1980; Fleagle, 2013) and so is invariant between and within 

individuals.  In datasets 1 and 2, diet was categorised by the food type that comprised the 

largest proportion of a species’ intake. In dataset 3, folivores were more strictly defined as 

only those species with anatomical and physiological adaptations to processing non-

reproductive plant matter, such as complex sacculated stomachs and enlarged colons (Chivers 
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and Hladik, 1980), and well developed molar shearing crests (Fleagle, 2013). This was done 

to avoid possible issues associated with dietary categorisation based on behavioural data, 

such as biases from inadequate assessment of seasonal fluctuations and other sources of 

intraspecific variation. 

Activity period was treated as a categorical variable with two levels: diurnality and 

nocturnality. As in the previous chapter, cathemeral species are incorporated in the diurnal 

category. The diurnal category therefore encompassed all taxa which exhibit any substantive 

diurnal behaviour. Home range size and group size are treated as continuous variables. As 

discussed in the “Ecological Hypotheses” section above, home range size has a relationship 

with diet as the distribution of resources has a direct impact on the necessary size of an 

animal’s range.  Therefore, including home range size in the current analyses is required both 

to analyse its independent effect on the volumes of structures but also to control for its effect 

on other behavioural ecological variables.   

Statistical power is a major issue for comparative studies where sample sizes are often small. 

This, coupled with the need to include large numbers of parameters (either for predictive or 

control purposes) can make results difficult to interpret (Borries et al., 2016). As terrestriality 

did not show any significant relationships with overall brain size or feature in any of the 

models selected by model comparison in the previous chapter, it was omitted to reduce the 

number of parameters.   

 Statistical analysis 4.2.3

Allometric effects were controlled for by including body size (g) as a covariate in the first set 

of regressions. If a brain structure is part of a distributed system, the other structures in the 

system may undergo the same size change as the structure of interest. If brain size is then 

controlled for, the structure may appear not to have changed size relative to the rest of the 

brain. Thus, including a set of analyses which control for size by only using body size allows 

for the possibility of associations between functionally linked structures and behavioural 

ecological variables – mosaic brain evolution at the level of the system. This condition is 

hereafter referred to as the “body size corrected” condition. A second set of analyses 

including the “rest of brain” volume (i.e. the volume of the structure of interest subtracted 

from the total brain volume) as covariate was then also included to examine whether 

structures vary independently of the rest of the brain – mosaic brain evolution at the level of 
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the structure. This condition is hereafter referred to as the “RoB corrected” condition; 

meaning rest of brain (RoB) is included as a covariate along with body mass. 

As mentioned in the introductory chapter, when controlling for size some comparative 

neuroanatomists have preferred structures which are thought to be relatively conserved across 

evolutionary time such as the brain stem (Dunbar, 1992; Reader and Laland, 2002) and spinal 

cord (Willemet, 2013). Using these structures has the advantage of being able to use the same 

control structure for every test, rather the RoB which necessarily changes each time. 

However, few species have complete data for these structures, so their inclusion would 

dramatically reduce sample size. Phylogenetic least squares (PGLS) regression was employed 

to analyse the relationships between behavioural-ecological variables and brain structure 

volumes while controlling for the confounding effects of phylogeny. The phylogeny used was 

the consensus tree from 10k Trees (Arnold, Matthews and Nunn, 2010). Data were analysed 

in R (R Development Core Team, 2015) using the ‘ape’ (Paradis, Claude and Strimmer, 

2004), ‘caper’ (Orme et al., 2013), ‘geiger’ (Harmon et al., 2008), ‘nlme’ (Pinheiro et al., 

2015) and ‘lmtest’ (Zeileis and Hothorn, 2002) packages. Regression models were subjected 

to model comparisons using AIC (Aikaike’s Information Criterion) values and log likelihood 

ratio tests. Only dataset 3 was subjected to model comparisons as it had the largest sample 

and was a composite of dataset 1 and 2 which were analysed separately for comparative 

purposes. AIC was utilised as it penalises overparameterised models. This comparison 

indicates whether more complex models are warranted by assigning each model a criterion 

value by which each model’s fit can be compared to the rest. Lower AIC values indicate a 

better model in terms of fit and parsimony (Burnham and Anderson, 2002). Log likelihood 

ratio tests were also used, as these allow comparison of each model to a null hypothesis, 

therefore giving an absolute measure of fit. This is in contrast with the AIC which provides a 

measure of fit which is relative to the other tested models, meaning if all models constitute a 

poor fit, AIC alone will not reveal this (Maydeu-Olivares and García-Forero, 2010).  Models 

ranging from least to most complex (in terms of numbers of variables) were compared, with 

variables entered in to log likelihood ratio tests in order of their p value (smallest to largest) 

derived from simple models including each variable alone with body size.  

Variance Inflation Factors (VIFs) were calculated using the R package ‘car’ (Fox and 

Weisberg, 2011) to check for cases of high multicollinearity. Multicollinearity can render 

results difficult to interpret as highly collinear variables share a lot of variance, making it 

difficult to assess their relative importance and reducing statistical power (Field, Miles and 
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Field, 2012). There is currently no package for calculating VIFs phylogenetically, so these 

were performed without correcting for the non-independence of data points. This is actually a 

more conservative test for collinearity as correlations would be larger without accounting for 

phylogeny (Freckleton, Harvey and Pagel, 2002), increasing VIF values. Including a rest of 

brain measure in an analysis together with body size is problematic as the two are highly 

correlated. This was confirmed in the datasets used in this study by very large VIFs (>16). 

However, as these were covariates rather than predictors, it seems likely that their collinearity 

did not affect interpretation of the effects of the behavioural ecological correlates. Size was 

controlled for, but the collinearity of the two size measures meant we could not interpret their 

independent correlations with structure volumes. Excluding the covariates, VIFS were less 

than 4.1 in all cases. The largest correlation was between home range size and body size in 

dataset 3 at .75. However, collinear predictors with absolute correlations under .8 are not 

thought to be problematic in PGLS (Garland, 2012). Although the correlation was quite large, 

the VIF of 4.1 was small enough to warrant keeping this predictor in the analyses (Quinn and 

Keough, 2002). 
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4.3 Results 

 Home range size and diet 4.3.1

The body size corrected analyses of the neocortex, cerebellum, and cortex + cerebellum show 

a pattern of substitution between home range size (HRS) and diet; with diet reaching 

significance in dataset 1 (the relationship with cerebellum volume narrowly misses 

significance in PGLS analyses but is supported by model comparisons in Appendix 25) and 

HRS reaching significance in dataset 2. Home range size was the only predictor which 

significantly improved the fit of models of cerebellum and neocortex + cerebellum relative to 

allometric models (Appendices 25 & 26).  

In dataset 3, model comparisons for the neocortex showed that diet was an informative 

predictor, but HRS just missed significance (p=0.06, Appendix 22). Home range size and diet 

therefore seem to have a relationship which results in this switching pattern (although as the 

bivariate correlations (Appendices 36, 37 & 38) reveal no correlation between these two 

variables, this relationship may be indirect). This mirrors the results of the previous chapter 

where a similar pattern of mutual substitution was observed in the relationships of diet and 

home range size with whole brain size.  

 Home range size 4.3.2

In the RoB corrected analyses HRS was no longer a significant predictor of any structure’s 

volume and did not form part of any of the “best” models in model comparisons, except in 

the case of the striatum in dataset 3 (Table 4.3-6 & Appendix 31). The pattern of substitution 

between diet and home range size was not evident in the RoB corrected analyses (Tables 4.3-

4, 4.3-5 & 4.3-6).  

 Activity period 4.3.3

Activity period overall showed a fairly consistent association with lateral geniculate nucleus 

and neocortex volume, as predicted. In the body size controlled condition, the lateral 

geniculate nucleus was positively associated with activity period (diurnality) in dataset 1 as 

predicted but did not reach significance in datasets 2 and 3 (Tables 4.3-1 – 4.3-3. However, 

model comparisons on dataset 3 show activity period does improve the fit of a model of LGN 

volume over body size alone (Appendix 28).  
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Despite not always reaching significance in PGLS, neocortex and activity period appear to 

show a fairly consistent relationship, with diurnal species tending to have larger neocortices. 

In dataset 3, the log likelihood ratio tests showed that both activity period and diet 

significantly improved fit of a model of neocortex volume in both the body size corrected and 

brain size corrected analyses. However, neither reached significance in the PGLS analyses of 

dataset 3 (Tables 4.3-3 & 4.3-6). Activity period was a significant predictor when body size 

was controlled for in dataset 2, but not when RoB was controlled for. Diet was a significant 

predictor of neocortex volume across both covariate conditions in dataset 1.  

 Group size 4.3.4

The most consistent result for group size was the positive relationship with thalamus volume, 

which was present across all three datasets when the rest of brain volume was not controlled 

for (Tables 4.3-1 – 4.3-3). When the rest of brain volume was included, this relationship 

failed to reach significance in datasets 1 and 2 but was present in dataset 3, possibly due to 

the increased sample size and statistical power (dataset 3: n=62; dataset 1: n=52; dataset 2: 

n=47). The model comparisons for both body size corrected and RoB corrected conditions 

showed that group size was the only predictor whose inclusion improved the fit of the 

thalamus volume model relative to a purely allometric model (Appendices 27 & 34).  

The striatum showed a similar relationship with group size but was not quite as consistent, 

only reaching significance in dataset 1 but also narrowly missing it in dataset 3. Model 

comparisons based on log likelihood ratios showed the same pattern as the thalamus; group 

size was the only informative predictor (Appendix 24). The PGLS results did not show any 

associations between group size and neocortex size in either size correction condition.
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Table 4.3-1 - Body size corrected PGLS regressions of brain structure volumes on behavioural-ecological variables in dataset 1 (n=52) 

 
 

Neocortex Cerebellum 
Cortex + 

cerebellum 
Hippocampus Striatum Thalamus LGN 

Predictor t46 p t46 p t46 p t46 p t46 p t39 p t43 p 

Intercept 7.13 <0.001‡ 7.75 <0.001‡ 10 <0.001‡ 7.6 <0.001‡ 4.44 <0.001‡ 5.39 <0.001‡ 0.43 <0.001‡ 

Body Size 10.57 <0.001‡ 14.89 <0.001‡ 13.58 <0.001‡ 9.7 <0.001‡ 12.17 <0.001‡ 9.94 <0.001‡ 9.45 <0.001‡ 

Diurnality 1.9 0.06 0.79 0.44 1.74 0.09 -2.14 <0.05* 0.6 0.55 0.67 0.5 2.51 <0.05* 

Folivory -2.69 <0.01† -1.99 0.05 -2.65 <0.05* 0.43 0.67 -1.61 0.11 -1.08 0.29 -1.13 0.26 

Group Size 0.8 0.43 1.13 0.26 1.13 0.27 -1.44 0.16 2.83 <0.01† 2.62 <0.05* 1.86 0.06 

HRS -0.07 0.95 0.48 0.63 -0.26 0.79 0.75 0.46 -1.31 0.2 -0.16 0.88 -0.12 0.91 

Model Summary               

λ .36 .91 .58 .00 .92 .94 .73 
r2 .83 .89 .88 .83 .82 .80 .80 
Bold denotes significance at at least the α<0.05 level. Degrees of freedom are indicated in subscript after “t” 
* = p <0.05, † = p <0.01. ‡ = p <0.001 
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Table 4.3-2 - Body size corrected PGLS regressions of brain structure volumes on behavioural-ecological variables in dataset 2 (n=47) 

 
 

Neocortex Cerebellum 
Cortex + 

cerebellum 
Hippocampus Striatum Thalamus LGN 

Predictor t41 p t41 p t41 p t41 p t41 p t34 p t38 p 

Intercept 14.73 <0.001‡ 12.47 <0.001‡ 15.2 <0.001‡ 10.5 <0.001‡ 10.31 <0.001‡ 7.34 <0.001‡ 3.06 <0.001‡ 

Body Size 1.58 <0.001‡ 2.01 0.05 1.65 0.11 0.26 0.8 1.3 0.2 1.65 0.11 5.26 <0.001‡ 

Diurnality 2.14 <0.05* 1.89 0.07 2.1 <0.05* 1.01 0.32 1.75 0.09 2.89 <0.01† 0.58 0.57 

Folivory -0.1 0.92 -0.4 0.69 -1.15 0.88 0.57 0.58 -0.21 0.83 -0.47 0.64 -1.84 0.07 

Group Size 0.15 0.88 -0.09 0.93 0.14 0.88 -0.29 0.77 0.74 0.47 2.12 <0.05* 1.49 0.14 

HRS 3.14 <0.01† 3.35 <0.01† 3.16 <0.01† 3.16 0.01† 2.51 <0.05* 1.79 0.08 2.02 0.05 

Model Summary 
              

λ .96 1 .97 .90 .98 1 .88 
r2 .35 .36 .36 .21 .27  .68 
Bold denotes significance at at least the α<0.05 level. Degrees of freedom are indicated in subscript after “t” 
* = p <0.05, † = p <0.01. ‡ = p <0.001 
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Table 4.3-3 - Body size corrected PGLS regressions of brain structure volumes on behavioural ecological variables in dataset 3 (n=62) 

 
 

Neocortex Cerebellum 
Cortex + 

Cerebellum 
Hippocampus Striatum Thalamus LGN 

Predictor t56 p t56 p t56 p t56 p t56 p t46 p t52 p 

Intercept 9.18 <0.001‡ 9.24 <0.001‡ 11.99 <0.001‡ 7.68 <0.001‡ 5.85 <0.001‡ 6.12 <0.001‡ 3.01 <0.01† 

Body Size 9.43 <0.001‡ 11.5 <0.001‡ 11.32 <0.001‡ 8.44 <0.001‡ 10.8 <0.001‡ 8.71 <0.001‡ 5.27 <0.001‡ 

Diurnality 1.76 0.08 0.74 0.46 1.49 0.14 -1.84 0.07 0.54 0.59 0.74 0.46 1.94 0.06 

Folivory -1.8 0.08 -0.16 0.88 -1.36 0.18 1.44 0.17 -1.08 0.28 -0.08 0.93 -1.24 0.22 

Group Size 0.55 0.61 0.13 0.75 0.74 0.46 -1.25 0.22 1.89 0.06 3.2 <0.001‡ 0.66 0.51 

HRS 1.3 0.2 2.28 <0.05* 1.5 0.13 2 0.28 0.6 0.55 0.41 0.68 1.92 0.06 

Model Summary 
              

λ .38 91 .59 .00 .75 .95 .92 
r2 .82 .82 .35 .81 .80 .73 .68 
Bold denotes significance at at least the α<0.05 level. Degrees of freedom are indicated in subscript after “t” 
* = p <0.05, † = p <0.01. ‡ = p <0.001 
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Table 4.3-4 - Body and rest of brain size corrected PGLS regressions of brain structure volumes on behavioural-ecological variables in dataset 1 

 
 

Neocortex Cerebellum 
Cortex + 

cerebellum 
Hippocampus Striatum Thalamus LGN 

Predictor t45 p t45 p t45 p t45 p t45 p t38 p t42 p 

Intercept 3.85 <0.001‡ -2.73 <0.01† 7.09 <0.05* 2.58 <0.05* -4.04 <0.001‡ -1.84 0.07 -4.74 <0.001‡ 

Body Size 5.09 <0.001‡ 1.37 0.18 9.94 <0.001‡ 3.07 <0.01† 0.01 0.99 0.07 0.95 0.68 0.5 

RoB -0.91 0.37 8.59 <0.001‡ -2.47 <0.05* -0.2 0.84 7.23 <0.001‡ 5.04 <0.001‡ 5.34 <0.001‡ 

Diurnality 1.93 0.06 -0.65 0.52 1.92 0.06 -2.03 <0.05* -0.82 0.42 -0.86 0.39 2.25 <0.05* 

Folivory -2.66 <0.05* 0.29 0.78 -2.21 <0.05* 0.27 0.79 0.35 0.73 0.54 0.59 0.61 0.55 

Group Size 0.84 0.4 -0.21 0.83 1.57 0.12 -1.28 0.21 1.65 0.11 1.66 0.1 1.37 0.18 

HRS 0.004 1 1.36 0.18 -0.95 0.35 0.74 0.46 -0.99 0.33 0.57 0.57 -0.34 0.73 

Model Summary 
              

λ .47 .8 .97 .00 .7 .82 .75 
r2 .81 .96 .81 .82 .94 .9 .88 
Bold denotes significance at at least the α<0.05 level. * = p <0.05, † = p <0.01. ‡ = p <0.001 
Degrees of freedom are indicated in subscript after “t”. RoB = rest of brain (total brain volume minus response structure) 
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Table 4.3-5 - Body and rest of brain size corrected PGLS regressions of brain structure volumes on behavioural-ecological variables in dataset 2 including 
rest of brain 

 
 

Neocortex Cerebellum 
Cortex + 

Cerebellum 
Hippocampus Striatum Thalamus LGN 

Predictor t40 p t40 p t40 p t40 p t40 p t33 p t37 p 

Intercept 0.88 0.38 -5.47 <0.001‡ 2.33 <0.05* -1.33 0.19 -7.53 <0.001‡ -4.6 <0.001‡ -1.07 0.29 

Body Size -0.13 0.9 0.94 0.35 0.46 0.65 -1.36 0.18 -2.19 <0.05* -0.74 0.47 0.51 0.61 

RoB 12.86 <0.001‡ 24.93 <0.001‡ 10.44 0.001‡ 7.2 <0.001‡ 21.68 <0.001‡ 13.37 <0.001‡ 2.75 <0.01† 

Diurnality 1.63 0.11 -1.14 0.26 1.12 0.27 -1.06 0.3 -1.28 0.21 0.09 0.93 0.41 0.68 

Folivory 1.01 0.32 0.34 0.74 1.29 0.2 1.29 0.2 0.41 0.68 0.68 0.5 -0.6 0.55 

Group Size 0.84 0.4 -0.04 0.97 0.58 0.57 -0.42 0.68 1.19 0.24 1.53 0.13 1.34 0.19 

HRS 0.75 0.46 -0.28 0.78 0.89 0.38 0.21 0.83 -1.54 0.13 -0.98 0.33 1.35 0.18 

Model Summary               

λ .00 .85 .00 .51 .49 .76 .91 
r2 .95 .96 .93 .68 .95 .92 .72 
Bold denotes significance at at least the α<0.05 level. * = p <0.05, † = p <0.01. ‡ = p <0.001 
Degrees of freedom are indicated in subscript after “t”. RoB = rest of brain (total brain volume minus response structure) 
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Table 4.3-6 - Body and rest of brain size corrected PGLS regressions of brain structure volumes on behavioural-ecological variables in dataset 3 including 
rest of brain 

 
 

Neocortex Cerebellum 
Cortex + 

Cerebellum 
Hippocampus Striatum Thalamus LGN 

Predictor t55 p t55 p t55 p t55 p t55 p t45 p t51 p 

Intercept 3.44 <0.01† -3.74 <0.001‡ 5.85 <0.001‡ 0.56 0.57 -5.64 <0.001‡ -2.54 <0.05* -2.15 <0.05* 

Body Size 3.96 <0.001‡ 1.94 0.06 6.2 <0.001‡ 1.29 0.2 0.29 0.77 1.81 0.08 0.56 0.58 

RoB 1.09 0.28 12.88 <0.001‡ 1.15 0.25 2.68 <0.01† 11.05 <0.001‡ 7.15 <0.001‡ 4.11 <0.001‡ 

Diurnality 1.75 0.08 -0.72 0.47 1.44 0.15 -2.46 <0.05* -0.53 0.6 -0.24 0.81 1.44 0.16 

Folivory -1.68 0.1 1.23 0.22 -1.22 0.23 2.26 <0.05* -0.2 0.84 0.08 0.94 -1.33 0.19 

Group Size 0.58 0.56 -0.76 0.45 0.8 0.43 -1.84 0.07 3.02 <0.01† 3.03 <0.01† 0.53 0.6 

HRS 0.99 0.33 0.08 0.94 1.19 0.24 0.58 0.56 -2.43 <0.05* -1.61 0.11 0.28 0.78 

Model Summary 
              

λ .28 85 .50 .00 .80 .92 .97 
r2 .84 .96 .86 .83 .93 .88 .65 
Bold denotes significance at at least the α<0.05 level. * = p <0.05, † = p <0.01. ‡ = p <0.001 
Degrees of freedom are indicated in subscript after “t”. RoB = rest of brain (total brain volume minus response structure) 
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4.4 Discussion 

I have examined the behavioural-ecological correlates of brain structure volumes. I used two 

comparative datasets of behavioural-ecological data and have used new, updated neuro-

volumetric data.  As in the previous chapter, there was variation in results across alternative 

datasets, likely due to issues of overparameterisation and data quality. Given these 

inconsistencies, any relationships discovered must be treated with a note of caution. 

However, despite this there were some results that showed some stability across or within 

datasets, and emergent patterns which are important for directing future work in this area. 

 Unexpected group size associations 4.4.1

4.4.1.1 Thalamus 

The most consistent result across data sets was an unpredicted one; a relationship between 

group size and thalamus volume. This is the only relationship that shows good consistency 

across all three datasets, and both with and without the rest of brain measure, suggesting that 

this association is both robust and is independent of variation in the size of other brain 

regions. The relationship is also demonstrated in the model comparisons on dataset 3 which 

show that a model predicting thalamus volume from only body size and group size best 

describes the data, and that adding any further variables to the model did not improve the fit 

(Appendices 27 & 34). One might expect that the thalamus had a relationship with group size 

through its role in the corticocerebellar complex, but this is not the case since the association 

persists when the volume of the rest of the brain is controlled for (Table 4.3-6). There is some 

evidence in the comparative literature of a thalamic role in sociality; Armstrong, Clarke and 

Hill’s 1974 study (Armstrong, Clarke and Hill, 1987) found that volumes of the anterior 

thalamic nucleus were larger in species that lived in single male groups than those in multi 

male groups, although the direction of this relationship is not consistent with the present 

results as single male groups are usually smaller than multi-male groups. The 

neuropsychological literature offers some more direct evidence of a link. For example, 

thalamic activation has been observed in response to social rejection as well as to physical 

pain (Hsu et al., 2013). This study also suggested the striatum, along with the thalamus, 

formed parts of a system which modulated mood and motivation in response to social cues. 

4.4.1.2 Striatum 

In the current study, in the body size corrected condition, the striatum is also correlated with 

group size in dataset 1 (Table 4.3-1), and while it just fails to reach significance in dataset 3 
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(Table 4.3-3, p=0.06) the model comparisons show that group size alone contributes 

significantly to the fit in the striatum model in dataset 3 (Appendix 24). A similar picture 

emerges from the RoB controlled condition, where striatum again correlates with group size 

in the combined dataset 3 (Table 4.3-6). Abnormalities in the striatum and the thalamus are 

associated with generalised social anxiety disorder (van der Wee et al., 2008). The model 

comparisons in the present study (Appendices 24, 27, 31 & 34) suggest that the volume of 

these structures may be linked to group size. These results seem to indicate that the 

relationship between the thalamus and the striatum with group size is reliable, although the 

striatum association is less robust. However, since these relationships were unpredicted these 

are post-hoc explanations further investigation is needed to establish whether and how these 

structures are related to sociality. A simple way to test this would be a PGLS regression with 

thalamus or striatum volume as the response variables and group size and rest of brain 

volume as predictors. 

 Group size: part of an adaptive syndrome? 4.4.2

There is some evidence of a substitution of group size and home range size effects on 

striatum volume across datasets. In datasets 1 and 2, the two variables switch places as the 

significant variable (when rest of brain is not controlled for). In dataset 3 when rest of brain is 

controlled for, there is a significant effect of both group size and home range size in the 

PGLS analysis. However, the log likelihood tests show that the inclusion of group size alone 

does not improve the fit over a purely allometric model (including only body size and RoB). 

The inclusion of home range size along with group size constitutes a significantly better fit 

(Appendix 31). The AIC model comparisons also show that the group size and home range 

size only models are not significantly different to each other. Other studies have also reported 

difficulty in separating the effect of home range size and group size on (whole) brain size 

(Deaner, Nunn and van Schaik, 2000; Walker et al., 2006). The difficulty in separating 

effects of these predictors may be in part due to the fact that group size, home range size and 

diet are interlinked. Group size and home range size are correlated (as indicated in the 

bivariate correlations in Appendices 36, 37 and 38): larger groups tend to have larger home 

ranges, likely in order to have access to sufficient food sources to meet the group’s energy 

demands (McNab, 1963; Clutton-Brock and Harvey, 1977; Nunn and van Schaik, 2002).  

The pattern of home range size associations and group size “flipping” in this manner implies 

that associations may be caused by the relationship of both with diet. Frugivores tend to have 

larger home ranges and larger group sizes than folivores (Clutton-Brock and Harvey, 1977). 
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These multi-way relationships have been described as “syndromes” in which niche 

dimensions are correlated and their influence on brain size fluctuates according to their 

relative values (Nunn and van Schaik, 2002; Grueter, 2015). Indeed, the spatial mapping 

hypothesis (Clutton-Brock and Harvey, 1980; Milton, 1988) suggests that home range size 

affects brain size due to the cognitive demands of navigating a larger area, but also that the 

size of a range is linked to dietary demands (Deaner, Nunn and van Schaik, 2000). Home 

range size, diet and body size may form one such syndrome (Milton and May, 1976; Nunn 

and van Schaik, 2002). It is also possible that group size and home range size together 

represent a latent variable such as population density. This was suggested by Walker et al., 

who found that collapsing these variables in to one population density variable countered the 

problem of collinearity and uncovered clear relationships with life history variables (Walker 

et al., 2006).  

I found no support for the SBH as defined by Dunbar (Dunbar, 1992; Dunbar, 1998;  Dunbar 

and Shultz, 2007a). Neocortex volume showed no relationship with group size in PGLS 

analysis across the three datasets when the rest of the variables were included, with or 

without the rest of brain as a covariate. Log likelihood ratio tests showed that its inclusion did 

not significantly improve the model’s fit relative to a model comprising activity period and 

diet (Appendices 22 & 29). In Chapter 3, I found evidence to suggest that the Social Brain 

Hypothesis was only supported when using a specific dataset by Stephan and colleagues 

(1981). However, the results in the current chapter are partly based on the Stephan dataset, 

but do not show any associations which would support the SBH. It is likely that this is due to 

the inclusion of new data from Navarrete (pers. comm.) which has improved the dataset in 

terms of representation of important taxa and more up to date measurement methodology 

(issues with the original Stephan dataset are reviewed by Parker (Parker, 2015)). There is 

some evidence of a similar switching effect between diet and activity period in the neocortex 

models. Both are significant predictors in the body size controlled analyses, but never in the 

same model. Diet alone reaches significance in the RoB corrected condition, but model 

comparisons reveal that both improve the fit of a neocortex volume model in both body size 

and RoB corrected conditions. The Visual Brain Hypothesis (Barton, 1998) suggests that both 

diet and activity period are related to the size of the neocortex due to their individual 

relationships with visual adaptations (Barton, 1998). Therefore, these traits may also form a 

“syndrome” where their combined influence on neocortex volume is more potent than their 

individual effects.  
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 A possible global brain size association with home range size 4.4.3

The pattern of switching between HRS and diet in body size corrected models of neocortex, 

cerebellum and cortex+cerebellum volume lend support to the possibility of their 

membership of a syndrome. This substitution pattern is not evident in the RoB corrected 

condition (Tables 4.3-4 – 4.3-6). This could possibly be due to functionality related to home 

range size being distributed across a number of brain structures, for which there is some 

evidence. In dataset 2 in the body size corrected condition, home range size is correlated with 

the volume of most brain structures, apart from the thalamus and the LGN. In the RoB 

corrected condition, home range size has no significant partial correlations with any structure 

apart from the striatum in dataset 3 (Table 4.3-6). This pattern suggests that home range size 

is not linked to the size of a particular structure independently of the rest of the brain 

(possibly apart from striatum); rather it is related more to global brain size. This potentially 

suggests that the cognitive functions associated with ranging are distributed widely across a 

number of structures, contrasting with the possibly more focal distribution of those associated 

with other behavioural-ecological correlates. The previous chapter demonstrated a strong 

effect of home range size on whole brain size emerging through two datasets. It was 

anticipated that structures implicated in route planning and locomotion, such as the 

cerebellum (MacLeod et al., 2003; Cantalupo and Hopkins, 2010) and hippocampus 

(Hopkins, Lyn and Cantalupo, 2009) would show specific associations with home range, and 

that these associations might partly contribute to the whole brain size association. However, 

neither cerebellum volume nor hippocampus volume is correlated with HRS independently of 

other brain structures (Tables 4.3-4 – 4.3-6), contrary to predictions. 

 Disentangling the effects of home range size, body size and sexual dimorphism 4.4.4

The absence of any correlations with home range size in dataset 1 in the RoB corrected 

condition (Table 4.3-4) may be explained by the use of different body size estimates. Dataset 

2 reported only female body size, whereas Dataset 1 averaged across the sexes apart from in 

sexually dimorphic species (size difference >10%) where only females were used. The 

correlation matrices (Appendices 36, 37 & 38) showed that home range size was more highly 

correlated with body size in the two datasets where males were included (datasets 1 and 3). 

Home range size was positively correlated with body size, as was sexual body size 

dimorphism (Cheverud, Dow and Leutenegger, 1985; Abouheif and Fairbairn, 1997; Smith 

and Cheverud, 1999; Borries et al., 2013). Datasets 1 and 3 (which consist of mean measures 

from datasets 1 and 2) may therefore show increased variation in body size which may 
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obscure a relationship with home range size (which is correlated with body size) when it is 

included with it in a model.  

The way sexual size dimorphism is accounted for in body size data could therefore have 

major implications for comparative work. Arguments have been made for using only female 

body size in order to overcome the potential confounding effects of size dimorphism, 

suggesting that the burden of maternal investment renders them more dependent on access to 

resources, making them the “ecological sex” (Nunn and van Schaik, 2002). It is interesting to 

note that the correlation of group size with a number of brain size metrics (relative brain size, 

neocortex volume, frontal lobe volume, etc.) was reported to be improved by using a female 

only sample (Dunbar and Shultz, 2017), which the authors suggested may indicate that 

female grouping patterns have driven primate brain evolution. Could the results of the current 

analyses on dataset 2 similarly suggest that female ranging has influenced primate brain 

evolution (as opposed to ranging in both sexes)? Possibly, but as we have not explicitly 

controlled for sex and there are a number of other potential sources of variation between the 

datasets, the evidence as yet does not allow us to speculate and a more prosaic explanation, 

such as the confounding effect of body size on home range size cannot be ruled out. 

 Cortico-cerebellar system 4.4.5

There is a tension between results shown in Chapter 2 which demonstrate the correlated 

evolution of the neocortex and cerebellum in agreement with the literature (Whiting and 

Barton, 2003; Barton, 2012) and the results of this chapter which fail to identify any 

behavioural-ecological correlates which might suggest functional independence of the 

cortico-cerebellar system. The analyses did not detect any clear or consistent correlations 

between the cortex+cerebellum measure and any of the behavioural-ecological variables. The 

inclusion of the rest of brain variable in the cortex+cerebellum models appears to remove all 

significant correlations that are present when RoB is not controlled for (apart from diet in 

dataset 1). The fact that the correlations between the volume of the cortex+cerebellum and 

both HRS and activity period are not present when the model includes RoB may suggest that 

the system is not wholly functionally isolated. However, the fact that the association between 

cortex+cerebellum and folivory persists (in dataset 1; Table 4.3-4) even when RoB is 

included in the model suggests that it would be premature to reject the notion of a complex 

that is (to some extent at least) functionally distinct from the rest of the brain.  
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The corticocerebellar complex also receives and sends projections from and to other brain 

structures and is comprised of more than just the cerebellum and the cortex. Input from the 

cortex reaches the cerebellum via the pontine nuclei and the cortex receives output from the 

cerebellum via the thalamus (Glickstein and Doron, no date; Whiting and Barton, 2003; 

Ramnani, 2006). Unfortunately, missing data and small sample size prohibited the inclusion 

of volumetric data from these structures in the corticocerebellar variable in this study without 

greatly reducing the sample size. Their inclusion might reveal a more functionally distinct 

system which can be demonstrated through correlations with behavioural-ecological 

variables. In addition, the corticocerebellar system may not be specialised for the types of 

functionality represented by the behavioural-ecological variables used in this study. The 

tension between previous results and those in this chapter may therefore be resolved by 

considering a different kind of selection pressure. The reciprocal loops between the two 

structures (Ramnani, 2006) have frequently been implicated in motor planning, but more 

recently has become associated with sequential processing necessary for extractive foraging, 

tool use (MacLeod et al., 2003; Barton, 2012; Barton and Venditti, 2014) and even language 

(Leiner, Leiner and Dow, 1993). The predictor variables in this study did not represent this 

kind of function, which may be why no functional specialism was detected for this structural 

complex. 

 Limitations of the study 4.4.6

4.4.6.1 Overparameterisation 

Overparameterisation is a potential problem for this study. While there is no hard and fast 

rule for the minimum number of cases per parameter, 10 is commonly used as a rule of thumb 

(Mundry, 2014). Taking in to account estimating lambda and the intercept, the total number 

of parameters for the largest models in this study is 8 (intercept, lambda, body size, rest of 

brain, activity period, diet, home range size and group size). The smallest sample size for a 

model of this size should therefore be 80. The largest dataset used in this study is dataset 3 

which has a sample size of 62. The models presented above may therefore be characterised as 

overparamaterised which could be a factor in causing instability in results. 

Overparameterisation is addressed through either an increase in sample size or a decrease in 

parameter number. In this case, the sample used was the largest available while still using 

recent data obtained with modern techniques. The predictors used were those most germane 

to the question. Terrestriality was removed as it was not a significant predictor of brain size 

in any of the analyses in the previous chapter. Data reduction techniques such as principal 
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components analysis would have helped to reduce the number of predictors further but as 

these variables all form part of an animal’s niche they are often linked (directly or indirectly) 

(Nunn and van Schaik, 2002) and so the specific biological syndromes represented by 

components may not be interpretable. Also, a PCA would not allow the clear examination of 

association between structures and specific behavioural-ecological variables. Testing these 

associations is necessary to test the predictions of the ecological, visual and social hypotheses 

of brain evolution, which was the aim of this chapter. Gathering more data (particularly 

neuroanatomical) to give a larger and more representative sample is the optimal way to 

ameliorate this issue.  

4.4.6.2 Small, specialised clades with disproportionate influence 

Another potential source of variation between datasets is the diversity of the primate order. 

Different clades can exhibit different patterns and rates of correlated evolution. For example, 

apes have been shown to break with the wider primate pattern of the close correlated 

evolution of neocortex and cerebellum, with ape cerebella undergoing accelerated expansion 

in comparison to neocortices (Barton and Venditti, 2014). Thus, a specialised clade which 

deviates from the overall pattern may introduce variation which can obscure relationships. 

Including clade as a factor in the models would ameliorate this issue, however due to the 

small number of extant ape species, even a comparative dataset which included every one 

would still not provide a sample large enough to avoid highly overparameterised models. The 

relationships between structure sizes and behavioural traits have also been shown to vary 

between clades. For example, Walker et al.’s 2006 findings suggested that home range size is 

a more important factor in brain size in Cercopithecoidea than in platyrrhines (Walker et al., 

2006).  

4.4.6.3 System-level mosaic evolution may be critical to understanding the influence of 

behavioural ecology on the brain 

Although there is good evidence to show that structures evolve in a mosaic fashion; changing 

size independently of one another, they are also highly interconnected and functions are 

highly distributed amongst them (Buckner and Krienen, 2013; Montgomery, Mundy and 

Barton, 2016). Therefore, a specific selection pressure may induce volumetric changes across 

a number of structures simultaneously. This may explain the apparent absence of 

relationships between neocortex volume and the behavioural-ecological variables included in 

this study. The neocortex is densely connected to other parts of the brain and is functionally 

heterogenous (Buckner and Krienen, 2013). Areas of the neocortex have also undergone their 
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own mosaic evolution (Barton, 2007). Groups of structures which form functional complexes 

like the corticocerebellar complex in this study may be usefully explored in future work.  

 Concluding remarks 4.4.7

The behavioural ecology of primate brain structures has been demonstrated to be complex, 

both in terms of the relationships between brain structures and behavioural correlates and 

between the structures themselves. Results are very sensitive to small differences between 

datasets as found in the analysis of whole brain size in the previous chapter. Possible causes 

of this instability range from the methodological: the sample size is too small, the collinearity 

of the predictors is too large; to the theoretical: the variables are not representative, the 

structures are still too functionally heterogeneous to detect a signal, or volume is too 

dissociated from actual computation and the premise that larger structure means more 

computation is faulty (Deacon, 1990; Chittka and Niven, 2009; Herculano-Houzel, 2009, 

2010). Future work can take steps towards identifying the underlying causes and producing 

more stable results by developing larger comparative neuroanatomical datasets using modern 

imaging techniques to take more reliable measures, using functionally linked complexes of 

structures rather than the traditionally anatomically defined structures and using a more direct 

measure of computational capacity such as neuron number or density.  

Despite the lack of stability in results, it is possible to draw a number of conclusions. The 

correlation between thalamus volume and group size is remarkably robust, but relatively 

unexplored in the literature. This, coupled with tantalising neuropsychological evidence for a 

link with sociality suggests more focused work specific to potential social functions of the 

thalamus is warranted. There is a potentially important relationship between home range size 

and brain and brain structure size that possibly confounds the relationship of the same with 

group size (Walker et al., 2006) and thus should not be overlooked in comparative brain 

work. There is some signal of functional specialism for some structures, namely the thalamus, 

striatum, and lateral geniculate nucleus, but also evidence of both syndromes and the 

functional heterogeneity of individual structures, particularly in the model comparisons 

(Appendix 22 Appendix 35). Disentangling these effects from each other is not possible in 

the current analysis as regressions cannot reveal the direction of causality. Researchers are 

increasingly using path analysis in an effort to confront this problem (Lehmann, Korstjens 

and Dunbar, 2007; Dunbar and Shultz, 2007a; Hardenberg and Gonzalez-Voyer, 2013). 

Unfortunately, this technique cannot determine causal relationships as path analyses are a 

series of regression models, revealing only partial correlations which cannot tell us about the 
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direction of causality in a relationship (Denis and Legerski, 2003). Evidence for the 

functional specialism of the corticocerebellar complex was not found, but this may be due to 

the fact that the measure used did not represent the entire system.   

Overall, the findings of this chapter have demonstrated that the behavioural-ecological 

correlates of brain structure sizes vary according to how size is controlled for and between 

different comparative datasets. The change in results when the volume of the rest of the brain 

is controlled for suggests that there is a degree of mosaic evolution occurring at the level of 

the neural system, as well as at the level of the individual structure. This chapter also 

underlines the difficulties of ascertaining the effects of individual behavioural-ecological 

traits when they all contribute to a common set of ecological niche dimensions and so are 

connected to one another, even if not always highly correlated. Ultimately, it is too simplistic 

to attribute a behaviour to the volume of an individual structure. As more comparative data 

on neuronal densities is published, we may begin to see more conclusive relationships 

emerging between behaviours and their neural substrates. 
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5  Life history correlates of primate brain structure volumes 
 

5.1 Introduction 

 The role of ontogeny in primate brain evolution 5.1.1

While selective pressures like those examined in previous chapters have been shown to play a 

role in brain size and composition, these factors must interact with ontogenetic schedules that 

govern brain development. Brains that are large relative to body size take a long time to grow 

and reach maturity (Casey, Galvan and Hare, 2005; Barrickman et al., 2008; Barton and 

Capellini, 2011). Large brained taxa like primates also tend to have longer lives (González-

Lagos, Sol and Reader, 2010) and slower life histories with extended juvenile periods and 

later sexual maturity (Kaplan et al., 2000; Charnov and Berrigan, 2005; Charvet and Finlay, 

2012). This has led to a large body of comparative work examining the possible coevolution 

of these two traits (big brains and slow life histories), with mixed results (Barrickman et al., 

2008; Sol, 2009; van Woerden, van Schaik and Isler, 2010; Weisbecker et al., 2015; Fristoe, 

Iwaniuk and Botero, 2017). Opinion is divided over whether this extension of life history is 

due to an elongated period of maternal investment in order to grow a larger brain (Martin, 

1996; Isler and van Schaik, 2009), or whether a large brain promotes a longer life by 

providing the owner with increased behavioural flexibility to overcome life-limiting obstacles 

(Barrickman et al., 2008; Sol, 2009). The two positions are not necessarily mutually 

exclusive.  

Since the brain is composed of functionally and anatomically heterogeneous structures, it is 

possible that they vary independently according to either their developmental costs or the 

behavioural flexibility advantages they provide. Allman and colleagues presented evidence in 

support of this contention, reporting that structure volumes differentially correlated with 

lifespan and reproductive age (Allman, Mclaughlin and Hakeem, 1993). Their study, 

however, was not corrected for phylogeny, had a limited sample size and tested only two 

aspects of life history (lifespan and age at first reproduction). The present study examines the 

life history correlates of volumetric variation in primate structure sizes in more depth using 

appropriate comparative phylogenetic techniques.   
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 Big, expensive brains: costs and benefits 5.1.2

5.1.2.1 Cost based hypotheses: the Maternal Energy Hypothesis & the Expensive Brain 

Hypothesis 

Big brains are energetically costly (Aiello and Wheeler, 1995; Isler and van Schaik, 2009) 

and so require a great deal of metabolic investment. Since most of brain growth (in 

volumetric terms) occurs prenatally and during infanthood (Leigh, 2004), the energetic costs 

are met by the mother during this time. Cost based hypotheses assert that life history 

correlates of brain size reflect the duration of brain growth. Martin (1981, 1996), proffered an 

early incarnation of such a hypothesis, suggesting that the basal metabolic rate (BMR) of the 

mother determines the energy available for the offspring during gestation and lactation and so 

dictates its brain growth. This “Maternal Energy Hypothesis” therefore predicts that 

mammalian brains grow as large as allowed by the constraints of gestation and lactation 

duration, which are governed by maternal BMR. Martin also suggested that since these 

developmental constraints govern brain size, behavioural-ecological correlates of relative 

brain size do not reflect direct selection on cognitive specialisations.  

The Maternal Energy Hypothesis has been both supported and contradicted by various work 

since (Isler and van Schaik, 2009; Barton and Capellini, 2011). Recent work suggests that 

maternal BMR does have a (weak) prenatal effect on offspring brain size (Barton and 

Capellini, 2011). However, maternal investment in terms of energy provision to offspring 

occurs both pre and postnatally. During gestation, energy is provided directly from the 

maternal circulation to the foetus via the placenta. Postnatally, neonatal energy must be 

sourced via the digestion of maternal milk. While both represent maternal energetic 

investment, the energy transfer systems are quite different in terms of how directly available 

energy is to the infant. Consequently, they appear to be subject to different selective 

pressures, varying between altricial and precocial species. The Expensive Brain Hypothesis 

(Isler and van Schaik, 2009) is a later expansion of the Maternal Energy Hypothesis. It 

suggested that brain size in multiparous precocial mammal species was reported to be 

positively correlated with gestation and lactation, with a decrease in annual fertility (offspring 

or litters per year) to balance the metabolic cost, Multiparous altricial mammals differed, 

however, as gestation length was not related to brain size, rather litter size was reduced to 

provide more maternal energy per offspring (Isler and van Schaik, 2009) (this latter finding 

was subsequently contradicted by Barton and Capellini (2011)). The timing of the point of 

cessation of gestation and commencement of lactation within the wider maternal investment 
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period appears to be influenced by different factors to those that govern the overall duration 

of maternal investment (Dubman, Collard and Mooers, 2012). The Maternal Energy and the 

Expensive Brain hypotheses explain this apparent dual system by suggesting that brain size 

can be modified by selection on both maternal BMR and the duration of maternal investment. 

This model helps to resolve apparently paradoxical findings such as the delayed prenatal 

neurodevelopment in precocial mammals (Workman et al., 2013).   

5.1.2.2 Benefit based hypotheses: The Cognitive Buffer Hypothesis 

The Cognitive Buffer Hypothesis (hereafter “CBH”) explains life-history correlates of brain 

size from a different perspective. It emerged primarily from the finding that large brains are 

associated with longer lives (Sacher, 1959; Allman, Mclaughlin and Hakeem, 1993; 

González-Lagos, Sol and Reader, 2010) as well as slower life histories overall (Kaplan et al., 

2000; Charnov and Berrigan, 2005; Charvet and Finlay, 2012). Developing a large brain is 

costly in terms of delayed reproduction (both in terms of individuals taking longer to reach 

sexual maturity and in terms of mothers having longer interbirth intervals). This fitness cost 

should be balanced by a fitness benefit in order to be selected (González-Lagos, Sol and 

Reader, 2010). There are two variants of the CBH. The original iteration argues that larger 

brains bestow adaptive benefits on their owners in the form of behavioural flexibility which 

reduces extrinsic mortality by enabling the animal to behaviourally adapt to novelty or 

complexity in its environment, promoting longevity by “enhancing survivability” (Allman, 

Mclaughlin and Hakeem, 1993, p. 3562). In terms of the specific mechanism by which fitness 

is increased, some comparative biologists suggest that larger brained animals benefit from a 

longer reproductive life (adulthood) which balances the costs of delayed reproduction 

necessary for development of a large brain and the risks associated with being a subadult for 

a long period of time, such as increased chance of infant/juvenile mortality  (Barrickman et 

al., 2008; Sol, 2009; González-Lagos, Sol and Reader, 2010). This variant of the CBH is 

hereafter referred to as the “longevity payoff CBH”. 

Longer life histories extend juvenile periods as well as reproductive lifespans. Some 

biologists have emphasised the importance of this long juvenile period, which affords 

increased opportunity for social learning as a subadult (Ross and Jones, 1999), thus likely 

extending the reproductive lifespan (Barrickman et al., 2008). This variant of the CBH is 

hereafter referred to as “juvenile learning payoff CBH”. The two interpretations are not 

mutually exclusive; rather they differ over whether the time required to learn skills which 

“buffer” against mortality or the time available for deployment of those skills is the most 
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important force in shaping post weaning life history. It has been demonstrated that social 

learning (based on a measure which counted reported instances of this behaviour in the 

literature, corrected for a measure of research effort (Reader, Hager and Laland, 2011) 

correlates with both brain volume and reproductive lifespan, supporting the idea that a larger 

brain supports increased rates of social learning, which in turn promotes a longer 

reproductive life or adulthood (Street et al., 2017). In this scenario, both interpretations are 

equally valid.  

 Developmental scheduling in the mosaic brain 5.1.3

The hypotheses discussed so far relate to whole brain size. However, brain structures show a 

degree of heterochronicity in their development (Huttenlocher and Dabholkar, 1997; Charvet 

and Finlay, 2012; Workman et al., 2013; Sherwood and Omez-Robles, 2017). While some 

large-scale patterns suggest an overarching size-dependent scaling in brain development 

(Finlay and Darlington, 1995; Clark, Mitra and Wang, 2001; Yopak et al., 2010), there is 

variation in the scaling of individual structures that appears to be a) independent of these 

global scaling factors and b) associated with selection on function. It has also been 

demonstrated that structures’ developmental scheduling is likely scheduled by structure-

specific genes rather than genes coordinating global brain growth (Harrison and 

Montgomery, 2017).  

Literature describing developmental growth of individual brain regions in non-humans or 

volumetric changes spanning birth in any taxon is sparse. There are some indications of broad 

scale patterns that are shared between primate species; for example, the brain of the brown 

capuchin (Cebus apella) is reported to show a rapid increase in total brain volume and 

specifically white matter volume early in postnatal life, similar to humans (Phillips and 

Sherwood, 2008). However, this study also reports differences between primate taxa in terms 

of brain maturity at birth, with rhesus macaques’ (Macaca mulatta) neonatal brain volume a 

larger percentage of their adult volume in comparison to capuchins and chimpanzees (p. 661).  

The growth of different brain structures varies during gestation and infancy. An early study 

examining these patterns in Macaca nemestrina demonstrated that most of the brain 

undergoes roughly linear volumetric growth over much of the gestation period. This 

contrasted with the cerebellum and diencephalon which had a relatively slow rate of early 

growth, accelerating later in gestation (DeVito, Graham and Sackett, 1989). Postnatally, there 

is a pronounced divergence in the rates and even direction of volumetric change in the gross 
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structures. The diencephalon, mesencephalon, pons and medulla all either plateaued or 

decreased in volume after birth. In contrast, the cerebellum and telencephalon continued to 

gain volume, with the cerebellum continuing to grow once telencephalic growth had begun to 

level out (DeVito et al., 1986).  

The development of the cerebellum in humans is notably distinctive; appearing to follow a 

quite protracted growth trajectory compared to other gross structures. It undergoes a large 

amount of postnatal volumetric growth, growing by around 240% in absolute size in the first 

year postnatally, while the cerebral hemispheres show a more modest ~87% increase 

(Knickmeyer et al., 2008). Other subcortical regions are also increasing in volume during this 

time but to a smaller degree than the cerebellum (around 132%). Indeed, the largest 

proportion of growth in the cerebellum occurs postnatally, within the first two years (Wu, 

Chen and Shen, 2011). This is in part due to the postnatal proliferation of cerebellar granule 

cells; 85% of which are generated between birth and one year (Kiessling et al., 2014). The 

cerebellum attains its peak volume at around 13.5 years (females peak earlier than males; 

11.8 and 15.5 years respectively), later than the cerebrum (Tiemeier et al., 2010). It has been 

suggested that it is amongst the latest of the structures to attain peak volume (Giedd, Schmitt 

and Neale, 2007). Later juvenile cerebellar growth (post 8 years) is mostly attributable to 

increasing white matter volume (Ostby et al., 2009). There is some evidence to suggest that 

primates have relatively large cerebella in comparison to other mammalian taxa (Yopak et 

al., 2010; Barton, 2012), and ape cerebella are larger than those of non-apes (Rilling and 

Insel, 1998; Marino et al., 2000; Barton and Venditti, 2014). Apes also have extended 

juvenile periods (Kelley, 2004), pointing to a potentially revealing link between this and their 

large, late maturing cerebella. 

In a study of volumetric changes in humans aged 8 – 30 years, the cerebral cortex and 

components of the striatum (pallidum, putamen and accumbens area) showed the largest 

decrease in volume across this age range (Ostby et al., 2009). The hippocampus shows no 

significant size changes during the second postnatal year (the earliest it can be reliably 

isolated using MRI) (Knickmeyer et al., 2008) and does not appear to vary significantly in 

size later in life (Ostby et al., 2009).  

 Questions and predictions addressed in the current study 5.1.4

In order to further examine the relationship between brain evolution, development and life 

history, the present study examines life history correlates of brain structure sizes; testing 
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predictions arising from both cost and benefit based hypotheses. Can variation in brain 

structure sizes be attributed to developmental costs or the buffering benefits they provide, or 

both? The different hypotheses regarding the relationship between primates’ elongated life 

histories and their large brains make different predictions with regard to how the size of 

individual structures relate to specific life history traits. The CBH would predict a correlation 

between structure volumes and lifespan. However, this does not discount a role of 

developmental costs. If structures also correlate with maternal investment and do not 

correlate with lifespan or fail to correlate with it once maternal investment is controlled for, 

then it suggests that the relationship between lifespan and structure size is a product of the 

costs of development (Barton and Capellini, 2011). If a positive association with longevity 

persists after maternal investment is included, it suggests that the increased size of the 

structure confers some adaptive advantage which buffers against mortality. If the 

reproductive lifespan is correlated with structure volume, then it would support the 

hypothesis that larger brain components evolved due to the benefits of the learned skills 

which prolong life.  As outlined above, the juvenile learning payoff CBH would suggest that 

it is the length of the period during which the skills are learned that should show a 

relationship with size. Therefore, if juvenile period correlates with a structure size 

independently of maternal investment, it would support the juvenile learning payoff CBH. 

Examining the relationships between structure volumes and life history traits should reveal 

whether the mosaic growth of individual structures can be explained in terms of 

developmental costs or cognitive buffering benefits. The predicted associations between 

structures and life history traits are detailed below. 

5.1.4.1 Neocortex and hippocampus volume predicted to correlate with prenatal maternal 

investment 

Based on the developmental scheduling of structure growth as described above, I derived a 

set of predictions regarding the life history correlates of adult structure volumes. Neocortex 

and hippocampus volumes were predicted to follow the predictions of the developmental 

costs hypotheses, correlating with prenatal maternal investment due to a larger proportion of 

their growth occurring prenatally. Since all brain structures grow prenatally (to varying 

extents), one might expect all brain structure volumes to correlate with the duration of 

prenatal investment. However, since prenatal and postnatal maternal investment duration are 

positively correlated, when both are included in a model it is likely that only the measure 

which is most strongly related to the structure volume in question will correlate. 
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5.1.4.2 Striatum and cerebellum volume predicted to correlate with postnatal maternal 

investment 

Postnatal brain growth is positively associated with lactation duration independently of 

gestation duration (Barton and Capellini, 2011). It is therefore reasonable to predict that 

volumes of individual structures which undergo significant postnatal growth will show a 

specific relationship with postnatal maternal investment (lactation). Therefore, cerebellum 

and striatum volume were predicted to correlate with postnatal maternal investment due to 

the demonstrated postnatal expansion of the cerebellum and caudate nucleus (a component of 

the striatum).  

5.1.4.3 Cerebellum volume predicted to correlate with duration of juvenile period 

Cerebellum volume was additionally predicted to correlate with juvenile period as the 

cerebellum continues to increase in volume well in to juvenility, in humans at least (Wu, 

Chen and Shen, 2011) (post lactation, pre first parturition). If juvenile period is correlated 

with cerebellum volume independently of the duration of maternal investment, this would 

suggest that postponing cerebellar maturation is an adaptive trait, rather than a by-product of 

the extension of life history due to developmental costs. The late maturation of the 

cerebellum might indicate that environmental exposure is important for its development. 

Cerebellum volume was therefore predicted to support predictions of both developmental 

costs hypotheses and the CBH.  

5.1.4.4 Cerebellar associations with postnatal life history variables predicted to be 

particularly associated with the apes 

As detailed above, cerebellum volume is particularly large in the apes (Barton and Venditti, 

2014). Two predictions are derived from this observation: a) if found, a correlation between 

relative cerebellum volume and lactation or juvenile period may be particularly associated 

with the apes, so that the correlation is not present when apes are removed from the analysis 

and b) that lactation duration (relative to body size) might be elongated in the apes.  
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5.2 Methods 

 Brain structure variables 5.2.1

The brain structures chosen for analyses were neocortex, cerebellum, hippocampus and 

striatum. These four structures were included in a study by Knickmeyer and colleagues 

(Knickmeyer et al., 2008) which provided a longitudinal comparison of the volumetric 

development of several human brain structures from birth to two years: a stage in which there 

is reportedly divergence in structural growth trajectories (DeVito et al., 1986). This study 

therefore presented clear comparisons between structure volumes over time using a single 

method (MRI), which allowed clear predictions about their life history correlates to be 

derived. Brain volume was also analysed to allow comparison with previous work addressing 

the role of life history in brain size which has primarily investigated the whole brain. It also 

gives context to structure analyses in terms of how relationships between structure sizes and 

life history may be related to brain size.  

  Life history variables 5.2.2

Life history data were taken from Pantheria (Jones et al., 2009): a large online repository of 

physical and behavioural data for a wide range of mammalian taxa. The variables extracted 

for analysis were gestation duration (days), weaning age (days), age at first parturition (days) 

and maximum longevity (months). Some variables were then further modified for analysis. In 

addition to being analysed separately, gestation and lactation periods were summed to create 

an overall measure of duration of maternal investment. Juvenile period was defined as the 

period between weaning and age at first parturition. This was operationalised by subtracting 

weaning age from age at first parturition. Age at first parturition was subtracted from 

maximum longevity to give a measure of reproductive lifespan. Post-infancy period 

combined juvenile period and reproductive lifespan. 

Gestation and weaning age (hereafter referred to as lactation duration) were included to give 

measures of pre and postnatal maternal investment. Juvenile period is particularly relevant to 

the juvenile learning payoff CBH, which proposes that the elongation of this phase facilitates 

the learning of complex skills. Age at first parturition represents the beginning of adulthood. 

This period is of importance to this study as it represents the cessation of dependence and the 

period where skills learned socially during juvenility may be implemented (Kaplan et al., 

2000; Street et al., 2017). The composite variables maternal investment period and post-

infancy period give more global measures. These were particularly relevant for testing for 
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effects of the totality of maternal investment as the total duration of investment may be more 

relevant to structure growth than whether it is pre or postnatal. The life history variables are 

nested within each other, starting with overall lifespan, then dividing into duration of 

maternal investment and duration of post-infancy period, and finally dividing maternal 

investment into pre and postnatal investment (gestation and lactation) and post-infancy into 

juvenile period and reproductive period. Figure 5:a below illustrates this hierarchy. 

 

Figure 5:a - Hierarchical organisation of predictor variables 

 

 Statistical analyses 5.2.3

Phylogenetic least squares (PGLS) regressions were employed to test for correlated evolution 

between the life history predictors and structure volumes. λ was estimated by maximum 

likelihood and the consensus phylogeny from 10k trees (Arnold, Matthews and Nunn, 2010) 

was used. All continuous variables were log10 transformed to satisfy assumptions of 

normality, and all PGLS models controlled for body mass by including it as a predictor to 

control for its effect on structure volumes (Smith, 1999; Garcia-Berthou, 2001; Freckleton, 

2002). PGLS models were also compared using log likelihood ratio tests and Akaike’s 

Information Criterion (AIC) (Akaike, 1974) to determine which variables significantly 

improved fit relative to a purely allometric model (body size as the only predictor). As 

discussed in previous chapters, both methods of model comparison are included as they offer 

the opportunity for slightly different interpretation. Log likelihood ratio tests compare a 
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model to a null model, giving a measure of absolute fit. The AIC on the other hand compares 

models relative to each other, so that if all models constitute a poor fit, this is not apparent 

when only AIC is used (Maydeu-Olivares and García-Forero, 2010). 

Following Barton and Capellini (2011), gestation length was controlled for (in addition to 

body size,) in the postnatal investment model to distinguish between the two phases of 

maternal investment and ensure that any effect found was independent of prenatal investment 

and so specific to the postnatal phase of investment. Juvenile period was controlled for (in 

addition to body size) in the models examining the effect of reproductive period to 

distinguish whether any effect found was independent of juvenile period or whether it could 

be attributed to the duration of overall post-infancy, possibly representing a period of feeding 

independence. Inspection of the variance inflation factors (VIFs) suggests that reproductive 

period and post infancy period are highly collinear with longevity, with values in excess of 

173 in the latter. This is unsurprising as the post infancy period comprises the majority of the 

overall lifespan. Longevity therefore cannot be included in models which included these two 

variables. VIFs for all other variables in any of the combinations used in the experimental 

models are less than 3.01 and so collinearity is not deemed to be a problem (Garamszegi, 

2014).  

To assess the potential influence of the difference between apes and other primates on results, 

the apes (n=4) were removed from the dataset and the analyses rerun. Phylogenetic 

ANCOVA was employed to test for a significant difference between apes and non-apes in 

lactation duration accounting for body size. Relative gestation duration was also analysed 

with this method to ascertain whether there was a wider change in overall maternal 

investment in this taxon, rather than an independent change in lactation. Models with same 

and different slopes for each taxon were compared using Akaike’s Information Criterion 

(AIC) (Akaike, 1974) to determine which provided the best fit.  Data were again sourced 

from Pantheria (Jones et al., 2009). As there was better data availability for gestation and 

lactation duration than the other variables in the main analysis, it was possible to assemble 

larger samples for the ANCOVA analyses. For gestation, the dataset comprised 146 primate 

species, of which 13 were apes. For lactation, the dataset comprised 119 primate species, of 

which 10 were apes.   
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5.3 Results 

 Relative brain size 5.3.1

Relative whole brain volume (brain size controlled for by the addition of body size as a 

covariate in PGLS) correlated with lifespan (t43=2.11, p<0.05), but when maternal investment 

period was included, longevity no longer reached significance (Table 5.3-1). Longer periods 

of maternal investment were positively associated with relatively larger brains, controlling for 

longevity and body mass (t43=2.7, p<0.01). Post-infancy lifespan was not a significant 

predictor of relative brain size (t43=1.89, p=0.07). Exploring the maternal investment period 

in more detail, gestation period was positively correlated with brain size (t43=2.07, p<0.05) 

independently of the relationship between longevity and brain size, which remained 

significant. However, when lactation was included neither it nor gestation reached 

significance, and longevity also fell below the threshold. Log likelihood ratio tests revealed 

that the inclusion of both gestation and lactation improved a model of longevity only and 

longevity + gestation respectively. Neither juvenile period nor reproductive period 

(controlling for juvenile period in the latter) was correlated with brain volume, however 

juvenile period did improve the fit over an allometric model. Model comparisons using AIC 

(Table 5.3-1) showed that the postnatal maternal investment model (gestation plus lactation 

duration including body size as covariate) provided the best and most parsimonious fit.  

 Neocortex volume 5.3.2

Longevity was not correlated with neocortex volume; however, the duration of maternal 

investment showed a significant positive association (t43=2.56, p<0.05) (Table 5.3-3). Post 

infancy lifespan was not a significant predictor of neocortex volume. Gestation showed a 

significant correlation, but this association failed to reach significance when lactation was 

included in the model, indicating its relationship with neocortex volume was not independent 

of lactation duration. Lactation was not a significant predictor. A log likelihood ratio test 

showed that gestation significantly improved the fit of a purely allometric (body size only) 

model, but the addition of lactation did not improve the fit further (Table 5.3-4). There was a 

positive association with juvenility, but this was non-significant after the inclusion of 

reproductive period in the model. A log likelihood ratio test showed that juvenile period 

significantly improved fit over an allometric model, but the inclusion of reproductive period 

did not improve fit. Whilst the postnatal maternal investment (lactation) model had the lowest 

AIC value, prenatal maternal investment, juvenility and reproductive lifespan models showed 
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a comparable fit to the data (Table 5.3-3). As the prenatal maternal investment and juvenility 

models were equally parsimonious, one cannot be supported over the other.  

 Cerebellum volume 5.3.3

Cerebellum volume did not show an association with lifespan (Table 5.3-5). Maternal 

investment had a significant positive relationship with cerebellum volume (t43=3.52, p<0.01), 

but post infancy lifespan showed no such association (t43=1.3, p=0.2). Gestation duration was 

positively correlated with cerebellum volume, but this relationship ceased to reach 

significance when lactation was included in the model. As predicted, lactation predicted 

cerebellum volume (t42=2.48, p<0.05) independently of gestation duration. Juvenile period 

duration also showed a significant positive association (t42=2.6, p<0.05) which was 

independent of reproductive lifespan. Log likelihood ratio testing further demonstrated that 

reproductive lifespan did not improve fit (Table 5.3-6). Model comparisons using AIC values 

showed that postnatal maternal investment and juvenile period models (separately) had the 

best support (Table 5.3-5).  

 Hippocampus volume 5.3.4

Lifespan was not a significant predictor of hippocampus volume, and neither maternal 

investment duration or length of post-infancy period showed a significant correlation either 

(Table 5.3-7). The AIC values of the two models were virtually identical (maternal 

investment AIC=-20.52, post-infancy AIC=-20.5) and so neither could be deemed a better fit 

than the other. Prenatal investment, postnatal investment, juvenile period duration and 

reproductive lifespan were not correlated with hippocampus volume and log likelihood ratio 

tests showed that none of these variables improved fit over a purely allometric model (Table 

5.3-8). AIC values showed that no model had better support than the allometric (body size 

only) model.  

 Striatum volume 5.3.5

Lifespan was also not a significant predictor of striatum volume (Table 5.3-9). The duration 

of maternal investment was significantly associated with striatum volume (t43=2.38, p<0.05), 

post-infancy period was not. Gestation was correlated with striatum volume independently of 

lactation. Log likelihood ratio tests showed that including lactation in a body size + gestation 

model did not significantly improve the fit of the model. Juvenile period showed a significant 

correlation when it was the sole predictor (along with the covariate body size) but was non-

significant when reproductive period was included (Table 5.3-10). Comparison of AIC values 
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indicated that the pre and postnatal investment models were equally supported as the best 

model.  

 Taxonomic differences between apes and non-apes  5.3.6

Hominoidea (n=4 with data on both lactation and gestation length) were removed from the 

sample to examine the effect their absence might have on results. When the PGLS analyses 

was rerun without the apes, the association between lactation and cerebellum volume was no 

longer present (t38=1.6, p=0.12). Similarly, juvenile period was no longer a significant 

predictor. AIC values showed that no model had better support than the purely allometric 

model. For comparative purposes, the PGLS analyses on hippocampus volume were also 

rerun. The hippocampus was chosen for this purpose as the neocortex, striatum and 

cerebellum are part of an anatomically and functionally integrated network (Bostan, Dum and 

Strick, 2010) which also makes up a large proportion of total brain size. The hippocampus 

results were not qualitatively changed by the removal of the apes.  

The results of the phylogenetic ANCOVA on lactation duration showed some evidence of a 

difference between apes and non-apes (Table 5.3-11). The different slopes model had the 

lowest AIC value, but could not be separated from the same slopes models as the AIC 

difference was less than 2 (1.69). The different slopes model showed that the slope for apes 

was significantly different to that for non-apes, but as the model projects beyond the range of 

the ape data it would be unwise to attribute much significance to this. The phylogenetic 

ANCOVA on gestation duration showed no evidence of any difference between the apes and 

the non-apes in either the same slopes or different slopes model (Table 5.3-12). The ape-non-

ape difference did not reach significance in either case, and there was no interaction with 

body size.  
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Table 5.3-1 - PGLS analysis of the life history correlates of brain volume 

 Lifespan 
Total maternal 

investment 
duration 

Post-infancy 
lifespan 

Prenatal maternal 
investment 

Postnatal 
maternal 

investment 
Juvenility Adulthood 

 t43 (p) t42 (p) t43 (p) t42 (p) t41 (p) t42 (p) t41 (p) 

Intercept 4.4 (<0.001‡) 2.98 (<0.01†) -0.52 (0.6) 0.95 (0.35) 1.34 (0.19) 2.76 (<0.01†) 1.78 (0.08) 
Body Mass 15.38 (<0.001‡) 11.59 (<0.001‡) 15.85 (<0.001‡) 11.32 (0.001‡) 10.08 (<0.001‡) 12.11 (<0.001‡) 11.4 (<0.001‡) 
Maternal investment - 2.7 (<0.01†) - - - - - 
Post-weaning - - 1.89 (0.07) - - - - 
Longevity 2.11 (<0.05*) 1.68 (0.1) - 2.06 (<0.05*) 1.76 (0.09) 1.72 (0.09)  
Gestation  - - - 2.07 (<0.05*) 1.51 (0.14) - - 
Lactation - - - - 1.99 (0.05) - - 
Juvenile period - - - - - 1.59 (0.12) 1.94 (0.06) 
Reproductive lifespan - - - - - - 1.6 (1.12) 

Lambda .7 .57  .62 .6 .59 .57 
R2 .9 .92  .91 .92 .91 .91 
AIC model comparison -64.68 - - -67.05 -69.3 (AICmin) -65.2 -64.8 
Variables not included in models are indicated with a dash (-).  Longevity is included in these models as it had a significant association with brain volume. Longevity was not included in 
post infancy lifespan and adulthood models due to high VIFs. Degrees of freedom are indicated in subscript after “t”.  
Bold denotes significance at at least the α<0.05 level. * = p <0.05, † = p <0.01. ‡ = p <0.001 
 
 

Table 5.3-2 -Log likelihood ratio test of life history models of brain volume  

 Predictors (response variable = brain volume) Log likelihood ꭓ2 p 

Maternal investment  
models 

Body size 33.11   
Body size + longevity 35.34 4.47 <0.05* 
Body size + longevity + gestation  37.52 4.37 <0.05* 
Body size + longevity + gestation + lactation 39.65 4.25 <0.05* 

     

Post weaning modelsa 
Body size + juvenile period 35.01 3.99 <0.05* 
Body size + juvenile period + reproductive period 36.4 2.6 0.11 

a
Longevity could not be included in the post weaning models due to high VIFs. Bold denotes significance at at least the α<0.05 level. * = p <0.05 
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Table 5.3-3 - PGLS analysis of the life history correlates of neocortex volume 

 Lifespan Total maternal 
investment 

duration 

Post-infancy 
lifespan 

Prenatal 
maternal 

investment 

Postnatal 
maternal 

investment 

Juvenility Adulthood 

 t43 (p) t43 (p) t43 (p) t43 (p) t42 (p) t43 (p) t42 (p) 

Intercept 1.91 (<0.05*) 3.774 (<0.001‡) -0.82 (0.41) 0.83 (0.41) 1.04 (0.3) 2.63 (<0.05*) 0.4 (0.69) 
Body Mass 12.27 (<0.001‡) 10.18 (<0.001‡) 12.68 (<0.001‡) 11.03 (<0.001‡) 8.83 (<0.001‡) 10.67 (<0.001‡) 9.62 (<0.001‡) 
Maternal investment  - 2.56 (<0.05*) - - - - - 
Post-weaning - - 1.76 (0.09) - - - - 
Longevity 1.91 (0.06) - - - - - - 
Gestation  - - - 2.26 (<0.05*) 1.72 (0.09) - - 
Lactation - - - - 1.61 (0.12) - - 
Juvenile period -  - - - 2.1 (<0.05*) 1.98 (0.05) 
Reproductive lifespan - - - - - - 1.42 (0.16) 

Lambda .70 .48 .69 .51 0.52 .47 .56 
R2 .86 .89 .85 .88 .89 .89 .88 
AIC model comparison -43.54 - - -44.88 -45.62 (AICmin) -44.05 -44.1 

Variables not included in models are indicated with a dash (-).  Degrees of freedom are indicated in subscript after “t”.  
Bold denotes significance at at least the α<0.05 level. * = p <0.05, † = p <0.01. ‡ = p <0.001 

 
 
 

Table 5.3-4 - Log likelihood ratio test of life history models of neocortex volume  

 Predictors (response variable = brain volume) Log likelihood ꭓ2 p 

Maternal investment  
models 

Body size 22.94   
Body size + gestation 25.44 5 <0.05* 
Body size + gestation + lactation 26.81 2.75 0.1 

     

Post weaning models 
Body size + juvenile period 25.03 4.18 <0.05* 
Body size + juvenile period + reproductive period 26.05 2.05 0.15 

Bold denotes significance at at least the α<0.05 level. * = p <0.05 
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Table 5.3-5 - PGLS analysis of the life history correlates of cerebellum volume 

 Lifespan Total maternal 
investment 

duration 

Post-infancy 
lifespan 

Prenatal maternal 
investment 

Postnatal 
maternal 

investment 

Juvenility Adulthood 

 t43 (p) t43 (p) t43 (p) t43 (p) t42 (p) t43 (p) t42 (p) 

Intercept 1.66 (0.1) -2.38 (<0.05*) -0.65 (0.52) 1 (0.32) 1.47 (0.15) 1.44 (0.16) -0.05 (0.96) 
Body Mass 20.27 (<0.001‡) 16.64 (<0.001‡) 21.42 (<0.001‡) 23.22 (<0.001‡) 15.25 (<0.001‡) 15.73 (<0.001‡) 14.27 (<0.001‡) 
Maternal investment  - 3.52 (<0.01†) - - - - - 
Post-weaning - - 1.3 (0.2) - - - - 
Longevity 1.58 (0.12) - - - - - - 
Gestation  - - - 2.13 (<0.05*) 1.19 (0.24) - - 
Lactation - - - - 2.48 (<0.05*) - - 
Juvenile period - - - - - 2.65 (<0.05*) 2.6 (<0.05*) 
Reproductive lifespan - - - - - - 0.92 (0.36) 

Lambda .00 .00 .00 .00 .00 .00 .00 
R2 .96 .97 .96 .96 .97 .97 .97 
AIC model comparison -67.44 - - -69.45 -73.73 (AICmin) 71.83 -70.74 

Variables not included in models are indicated with a dash (-).  Degrees of freedom are indicated in subscript after “t”.  
Bold denotes significance at at least the α<0.05 level. * = p <0.05, † = p <0.01, ‡ = p <0.001 

 
 

Table 5.3-6 - Loglikelihood ratio tests of life history models of cerebellum volume 

 Predictors (response variable = brain volume) Log likelihood ꭓ2 p 

Maternal investment  
models 

Body size 35.43   
Body size + gestation 37.73 4.6 <0.05* 
Body size + gestation + lactation 40.87 6.28 <0.05* 

     

Post weaning models 
Body size + juvenile period 38.91 6.98 <0.01† 
Body size + juvenile period + reproductive perio
d 

39.37 0.91 0.34 

Bold denotes significance at at least the α<0.05 level. * = p <0.05, † = p <0.01 
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Table 5.3-7 - PGLS analysis of the life history correlates of hippocampus volume 

 Lifespan Total maternal 
investment 

duration 

Post-infancy 
lifespan 

Prenatal maternal 
investment 

Postnatal maternal 
investment 

Juvenility Adulthood 

 t43 (p value) t43 (p value) t43 (p value) t43 (p value) t42 (p value) t43 (p value) t42 (p value 

Intercept 2.14 (<0.05*) -2.31 (<0.05*) -0.65 (0.52) 0.01 (1) 0.05 (0.96) 2.05 (<0.05*) 1.42 (0.16) 
Body Mass 8.69(<0.001‡) 6.77 (<0.001‡) 8.92 (<0.001‡) 6.78 (<0.001‡) 5.98 (<0.001‡) 7.23 (<0.001‡) 6.85 (<0.001‡) 
Maternal investment - 0.31 (0.76) - - - - - 

Post-weaning - - -0.27 (0.79) - - - - 
Longevity -0.33 (0.75) - - - - - - 
Gestation  - - - 1.39 (0.17) 1.46 (0.15) - - 
Lactation - - - - -0.49 (0.63) - - 

Juvenile period - - - - - -0.04 (0.96) -0.03 (0.98) 
Reproductive lifespan - - - - - - -0.36 (0.73) 

Lambda .46 .45 .46 .45 .45 .45 .46 
R2 .72 .73 .72 .74 .73 .72 .72 

AIC model comparison -20.53 - - -22.45 (AICmin) -20.71 -20.42 -18.56 

Variables not included in models are indicated with a dash (-).  Degrees of freedom are indicated in subscript after “t”.  
Bold denotes significance at at least the α<0.05 level. * = p <0.05, † = p <0.01. ‡ = p <0.001 

 

Table 5.3-8 - Log likelihood ratio tests of life history models of hippocampus volume 

 Predictors (response variable = brain volume) Log likelihood ꭓ
2 

p 

Maternal investment  
models 

Body size 13.21   
Body size + gestation 14.25 2.03 0.15 
Body size + gestation + lactation 14.35 0.26 0.61 

     

Post weaning models 
Body size + juvenile period 13.21 0.00 0.96 
Body size + juvenile period + reproductive period 13.28 0.14 0.71 

Bold denotes significance at at least the α<0.05 level. * = p <0.05 
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Table 5.3-9 - PGLS analysis of the life history correlates of striatum volume 

 Lifespan Total maternal 
investment 

duration 

Post-infancy 
lifespan 

Prenatal 
maternal 

investment 

Postnatal 
maternal 

investment 

Juvenility Adulthood 

 t43 (p) t43 (p) t43 (p) t43 (p) t42 (p) t43 (p) t42 (p) 

Intercept 0.78 (0.44) 0.96 (0.34) -0.94 (0.35) -1.07 (0.29) -0.9 (0.37) 0.07 (0.94) -0.58 (0.56) 
Body Mass 11.77 (<0.001‡) 11.31 (<0.001‡) 12.12 (<0.001‡) 16.67 (<0.001‡) 10.9 (<0.001‡) 10.83 (<0.001‡) 9.29 (<0.001‡) 
Maternal investment  - 2.38 (<0.05*) - - - - - 

Post-weaning - - 1.41 (0.17) - - - - 

Longevity 1.47 (0.15) - - - - - - 
Gestation  - - - 3.08 (<0.01†) 2.54 (<0.05*) - - 
Lactation - - - - 0.87 (0.39) - - 
Juvenile period -  - - - 2.38 (<0.05*) 2 (0.05) 
Reproductive lifespan -  - - - - 0.98 (0.33) 

Lambda .77 .00 .77 .00 .00 .00 .65 
R2 .83 .93 .83 .94 .93 .93 .86 
AIC model comparison -44.2 - - -51.31 (AICmin) -50.13 -47.85 -45.44 

Variables not included in models are indicated with a dash (-).  Degrees of freedom are indicated in subscript after “t”.  
Bold denotes significance at at least the α<0.05 level. * = p <0.05, † = p <0.01, ‡ = p <0.001 

 

Table 5.3-10 - Log likelihood ratio tests of life history models of striatum volume 

 Predictors (response variable = brain volume) Log likelihood ꭓ
2 

p 

Maternal investment  
models 

Body size 24.1   
Body size + gestation 28.66 9.12 <0.01† 
Body size + gestation + lactation 29.07 0.82 0.37 

     

Post weaning models 
Body size + juvenile period 26.93 5.66 <0.05* 
Body size + juvenile period + reproductive period 26.72 0.41 0.52 

Bold denotes significance at at least the α<0.05 level. * = p <0.05, † = p <0.01 
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Table 5.3-11 - ANCOVA of lactation duration in apes and non-apes 

 Different slopes Same slopes 
 t111 (p) t111 (p) 

Intercept 5.64 (<0.001***) 6.15 (<0.001***) 
Body size 9.15 (<0.001***) 8.63 (<0.001***) 
Ape 2.22 (<0.05*) 1.69 (0.09) 
Body size * ape -1.92 (0.06) - 
   
Lambda .60 .64 
R2 .47 .44 
AIC -64.87 -63.18 
ANCOVA model: response variable = lactation duration, predictors = body size (covariate) + ape.  n=119, apes 
n=10. 
 

Table 5.3-12 - ANCOVA of gestation duration in apes and non-apes 

 Different slopes Same slopes 
 t134 (p) t134 (p) 

Intercept 30.41 (<0.001***) 31.47 (<0.001***) 
Body size 5.12 (<0.001***) 5.37 (<0.001***) 
Ape 0.48 (0.63) 1.52 (0.13) 
Body size * ape -0.11 (0.92) - 
   
Lambda .92 .92 
R2 .19 .20 
AIC -429.33 -431.32 
ANCOVA model: response variable = lactation duration, predictors = body size (covariate) + ape.  n=146, apes 
n=13. 
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Figure 5:b - Different slopes ANCOVA of lactation duration in apes and non-apes 

 

Figure 5:c - Same slopes ANCOVA of lactation duration in apes and non-apes 
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Figure 5:d - Different slopes ANCOVA of gestation duration in apes and non-apes

 

Figure 5:e - Same slopes ANCOVA of gestation duration in apes and non-apes 
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5.4 Discussion 

 Cognitive Buffer Hypothesis largely unsupported 5.4.1

Scant evidence was found to support a CBH interpretation of the evolution of brain or brain 

structure volumes. The central finding upon which the CBH was predicated, an independent 

correlation between brain size and longevity, was not found in this study. Rather, the 

apparent correlation between the two appears to be a by-product of a relationship between 

relative brain size and the duration of maternal investment, as previously found across 

Mammalia by Barton & Capellini (Barton and Capellini, 2011), but in contrast with more 

recent work on primates (Street et al., 2017), which had a larger sample, but cruder 

neuroanatomical measurements (whole brain size) than the present study. Some proponents 

of the CBH have suggested that it is specifically the reproductive lifespan that should 

correlate with brain size, as this period is one of independence and the time during which 

behavioural flexibility, purportedly afforded by a large brain, should be relevant (Barrickman 

et al., 2008). This study found no evidence to support this interpretation of the CBH either. 

Rather than a general extension of lifespan in large brained species, this study found specific 

aspects of life history correlated with the volumes of different structures according to their 

developmental trajectories. Relative brain size appears to be governed primarily by 

developmental costs. Longevity is correlated independently of gestation duration, but this 

correlation is no longer present when lactation is controlled for. The absence of a specific 

correlation with either pre or postnatal investment and the log likelihood ratio test results 

showing that both gestation and lactation improve model fit could indicate there is 

insufficient statistical power to separate these effects, but it could also suggest that it is the 

totality of maternal energy provision which relates to whole brain size. This finding may be 

explained by the findings of Dubman et al. (Dubman, Collard and Mooers, 2012), who 

suggested that the overall duration of maternal investment is governed by metabolic rate, but 

the ratio of time within this period devoted to gestation or lactation is related to other “as yet 

unidentified, body size related” factors. An interaction between body size and lactation 

duration on cerebellum volume in the apes as suggested by the different slopes ANCOVA 

possibly supports their suggestion that this ratio is governed by constraints associated with 

body size, but the ANCOVA should be interpreted cautiously due to the lack of statistical 

power caused by the small number of apes.   
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Maternal investment, specifically prenatally, has an independent relationship with the relative 

volume of the whole brain and of 3 of the 4 structures investigated. This finding supports the 

contention that the size of neural structures is primarily governed by developmental factors, 

and that these constraints are related to the duration of gestation. However, there is variation 

in the life history correlates of structure volumes, which is explored below.  

 Neocortex 5.4.2

As predicted, only prenatal maternal investment showed a correlation with neocortical 

volume. Since the neocortex is composed of many heterogeneous systems, it is possible that 

other life history traits correlate with certain neocortical components, but these may not be 

well recovered when it is treated as a single structure. Indeed, developmental scheduling 

varies across the neocortex, with occipital grey matter maturing earlier than that in the 

prefrontal areas (Gilmore et al., 2007). It is possible that those areas and tissues which 

continue to grow postnatally are associated with other life history variables like lactation and 

juvenile period. The disparity between the life history correlates of the cerebellum and 

neocortex is perhaps surprising given their demonstrated coevolution (Whiting and Barton, 

2003; Herculano-Houzel, 2010; Smaers, Steele and Zilles, 2011; Barton, 2012; Lent et al., 

2012; Barton and Venditti, 2014).  

 Striatum 5.4.3

Striatum volume was not associated with postnatal maternal investment, contrary to the 

predictions based on the postnatal growth of some of its composite structures in humans. This 

could be due to different developmental scheduling in other parts of the striatum making a 

signal for the whole structure hard to detect, or it might suggest that the human pattern of 

striatal development on which the predictions were predicated are not generalisable across the 

primate order. Ernst and colleagues (Ernst et al., 2014) found that humans generate striatal 

interneurons in to adulthood in a way which they suggest is unique to humans. This could 

explain the reported postnatal increase in caudate nucleus volume (Knickmeyer et al., 2008), 

but the reported decrease in the relative (to brain size) volume of other striatal structures 

between 8 and 30 years (Ostby et al., 2009) suggests that either this adult neurogenesis is not 

reflected by an increase in volume, or variability in the volume of these structures is different 

to that in other parts of the striatum, such as the caudate nucleus and olfactory tubercle. It is 

difficult to get a picture of overall striatum development as the literature frequently only 
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examines some of its constituent structures, so it is difficult to say whether observed 

developmental schedules are generalisable to the whole striatum.  

The possible relationship between striatum volume and juvenile period is interesting given 

the late growth of the caudate nucleus referenced above (Knickmeyer et al., 2008) and its role 

in movement; both traits that it shares with the cerebellum. Such a relationship may indicate 

that the growth of this structure is particularly sensitive to environmental exposure and social 

learning (see section 5.4.5.1 below). It is interesting to note the lack of an association with 

lactation coupled with the positive direction of the juvenility association, despite the reported 

increase in caudate volume in early postnatal life and the decrease in other striatal structure 

volumes later in life. On balance, the striatum results probably suggest that there is currently 

insufficient comparative literature on the volumetric pattern of development in the striatum as 

a whole to draw reliable predictions about its life history correlates, so a focus on this 

structure in future research may be valuable  

 Hippocampus 5.4.4

The hippocampus did not show any significant life history associations. Since there was 

evidence to show that the human hippocampus did not vary significantly in size postnatally 

(Knickmeyer et al., 2008), it was reasoned that the growth of this structure was mostly 

completed prenatally, and so its volume was predicted to correlate with gestation duration. 

Previous work on the developmental and life history correlates of the hippocampus present a 

mixed picture. Amrein and colleagues found an association between hippocampal 

neurogenesis cessation and lifespan across a range of rodent and primate taxa, and thus across 

a range of life history patterns (Amrein, Isler and Lipp, 2011). In contrast, an early 

examination of the life history correlates of structure sizes found that hippocampus volume 

correlated with female age at first parturition but not longevity in primates (Allman, 

Mclaughlin and Hakeem, 1993), however these early analyses were non-phylogenetic and 

used residuals as data to correct for allometry, either of which can skew findings (Freckleton, 

2002, 2009). In addition, there is some discord in the literature regarding the extent or even 

existence of adult hippocampal neurogenesis in humans; historically disregarded, then 

supported (Snyder, 2018), then very recently again discredited (Sorrells et al., 2018). The 

overall picture of growth in the hippocampus is therefore difficult to characterise. The results 

of this study which found no hippocampal life history correlates may reflect the existence of 

different patterns of growth in different taxa according to as yet unclear neurodevelopmental 

factors. 
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 Cerebellar associations  5.4.5

Cerebellum volume shows a different profile to the other structures. An extended juvenile 

period seems to be a significant correlate of the evolution of enlarged cerebellar size. Its 

relationship with postnatal maternal investment and juvenile period and lack of independent 

relationship with gestation period stands in contrast to all other structures examined and 

relative brain size. This fits with evidence indicating late volumetric maturation of the 

cerebellum, extending through infancy and beyond in humans (Knickmeyer et al., 2008; 

Tiemeier et al., 2010; Wu, Chen and Shen, 2011). As the cerebellum is quite small relative to 

whole brain size, it seems unlikely that the postnatal growth of the cerebellum is necessary to 

overcome obstetric constraints. Rather, it suggests an adaptive reason for the cerebellum to 

undergo postnatal maturation.  

5.4.5.1 Juvenile period  

The positive association between juvenile period and cerebellum volume was independent of 

the duration of adulthood (reproductive period). This, coupled with the lack of a correlation 

with longevity, supports specifically the juvenile learning payoff interpretation of the CBH in 

that it is specifically juvenility which demonstrates a relationship, rather than a general 

elongation of life or an elongation of adulthood during which unpredictability is buffered.  

The cerebellar associations are therefore specifically postnatal but pre-maturational. This 

could suggest that exposure to the extrauterine environment is important for cerebellar 

development. The postnatal genesis of the majority of cerebellar granule cells indicates high 

functional plasticity during this time, making environmental stimuli all the more potent in the 

shaping of this structure (Kiessling et al., 2014). The cerebellum is increasingly being shown 

to mediate a wide range of cognitive functions (Ramnani, 2006; Barton, 2012). The postnatal 

maturation of this structure may allow for environmental influence on the development of 

these kinds of faculties. Joffe suggested that primates’ extended juvenile period has been 

selected for by pressures associated with (amongst other factors) social learning of foraging 

skills, and play-facilitated learning specifically (Joffe, 1997). Infancy and (probably to a 

greater extent) juvenility are periods of social learning, practice and play in an environment 

of reduced risk (Burghardt, 2010). Social play has been shown to correlate with cerebellum 

(Lewis and Barton, 2001) and neocortex ratio (Lewis, 2000). Kerney et al. reported a positive 

association between the relative volume of the largest components of the corticocerebellar 
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system and the proportion of a spcies’ time budget spent in play, and also found significant 

differences in specific component volumes between the most and least playful species 

(Kerney et al., 2017). Play has also been shown to correlate positively with both postnatal 

brain growth and behavioural flexibility (Montgomery, 2014). This represents an in vivo test 

of the assumptions of the juvenile learning payoff CBH: skills gained pre-adulthood translate 

in to benefits in adulthood. The specific association of cerebellum volume with juvenile 

period therefore points towards the potential importance of this early social exposure. A 

number of studies have emphasised the role of postnatal environmental and social stimuli in 

shaping neural connectivity (Sakai et al., 2011; Miller et al., 2012).  

5.4.5.2 Cerebellum and adult lifespan 

The absence of an association between cerebellar volume and adult lifespan suggests that 

behavioural flexibility gained from extended learning opportunities during juvenility do not 

necessarily translate directly into a longer lifespan, contrary to the central thesis of the 

juvenile learning payoff CBH. While it could be argued that we wouldn’t necessarily expect 

an effect of adulthood to be independent of juvenile period if the extension of the latter begets 

the extension of the former, the additional absence of a correlation between cerebellum 

volume and post weaning lifespan suggests the two phases are somewhat independent. The 

question then follows; with no accompanying extension of either total lifespan or adulthood, 

what is the fitness benefit of a coevolved extended juvenile period and enlarged cerebellum? 

Perhaps the skills learned during an extended juvenile period might foster higher fertility 

through improved foraging or social skills, but a more parsimonious explanation might be 

that this pattern is just an extension of the developmental costs hypotheses. The fact that the 

association with juvenile period just misses significance after lactation duration is controlled 

for (p=0.06) suggests that developmental costs are still important. It is possible that any 

benefits in terms of increased opportunity to learn or deploy skills afforded by an enlarged 

cerebellum are still subject to constraints by fundamental developmental ceiling effects 

associated with brain and body size (Finlay and Darlington, 1995). Maternal costs may also 

not be confined to pre-weaning. Juvenility represents a time when primates are not fully 

independent; relying on provisioning and protection from others (Kaplan et al., 2000; Leigh, 

2004). The provisioning of a subadult who is not yet an efficient forager is a further maternal 

cost that seems to be largely overlooked in the literature examining life history correlates of 

brain size 
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5.4.5.3 Differences between apes and non-apes 

When apes were removed from the PGLS analyses, the effects of lactation and juvenile 

period duration on cerebellum volume were absent. The results of the phylogenetic 

ANCOVA on lactation duration tentatively suggest apes have a different lactation profile to 

the non-apes. There is also potential evidence for an interaction between clade and body size. 

This is difficult to interpret as the apes in the sample are few in number, have a restricted 

range of body sizes (i.e. they are all relatively large), and the interaction just misses 

significance (p=0.058). It is not simply the case that apes have longer lactation durations for 

any body size, but within the range of the data where apes are sampled, they appear to have 

longer lactation durations relative to body size than non-apes (Figure 5:b). The model has 

limited explanatory power and these results must be treated as a preliminary treatment of the 

question given the available data. Taken together, these results may suggest that the 

relationship between cerebellar size and postnatal maternal investment is unique to the ape 

clade. The absence of any suggestion of difference in relative gestation duration between the 

ape and non-ape clades contrasts with the lactation duration results and somewhat strengthens 

support for a different lactation strategy in the apes which is independent of other aspects of 

life history. Apes have unusually large cerebella (Barton and Venditti, 2014) and particularly 

extended periods of immaturity (Kelley, 2004) with delayed locomotor independence (Young 

and Shapiro, 2018). This clade also shows high levels of social learning (van Schaik and 

Burkart, 2011) and play (Ramsey and McGrew, 2005). These findings may also suggest that 

rather than being born with relatively larger cerebella, the duration of postnatal growth of this 

particular structure is extended in Hominoidea.  

 Life history and ecology may be confounded  5.4.6

Some life history correlates may not be immediately evident in this analysis because they are 

masked by intermediary variables.  As explored earlier in the thesis, social and behavioural-

ecological variables show complex, interdependent correlations with brain structure sizes. 

Behavioural ecology could potentially drive associations between life history and brain size 

by influencing both. Effects of cognitive buffering are difficult to separate from the effects of 

behavioural-ecological variables as both often largely affect an animal during independence 

(i.e. post sexual maturity). One such variable is diet. Although diet undoubtedly has effects 

on brain size and composition across the life history, its role as a selective pressure on brain 

size arguably becomes significant post-weaning when some degree of independence in 

feeding is reached. Prior to this, the effect of diet is primarily as a constraint, as during 
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lactation and gestation there is a provision of energy which is free of cognitive demands 

(sourcing, processing, competition etc.). A number of researchers have assessed this issue 

(Ross and Jones, 1999; Deaner, Barton and van Schaik, 2002) and found no evidence for 

relationships between socioecological variables and life history traits which could confound 

life history – brain relationships. However, these studies are not recent and use techniques 

which have since been superseded such as independent contrasts and residuals as data (refer 

to Chapter 1 for discussion of issues surrounding this) 

 Limitations of the study 5.4.7

A limitation of this study in terms of examining the relationship between life history and 

neurodevelopment is the use of adult structure volumes, as rate of growth rather than size at 

maturity may be the important factor. Barton and Capellini (Barton and Capellini, 2011) 

found that precocial mammal species have a higher rate of brain growth than their altricial 

counterparts, indicating that the duration of growth is not the only variable which can 

contribute to brain structure size. Unfortunately, available comparative neurodevelopmental 

data at the level of individual structures is currently very limited.  

Volumetric measures can provide only a very broad picture of growth in the brain. A major 

question that bedevils all volumetric brain analysis is: what does an increase in volume 

actually mean? Changes in rate of neurogenesis or myelination, the size of neurons, and the 

ratios of white to grey matter can all cause variation in volume. Volumetric expansion and 

shrinkage can also occur heterogeneously across different areas of a structure across its 

development, as seen in the neocortex (Brown et al., 2012) . In the context of the present 

study, extended growth duration of a structure in one taxon does not necessarily translate to a 

larger volume than a taxon with shorter growth duration. More detailed histological 

investigations across the range of development in a number of species will allow for more 

specific hypotheses to be formed about the timing and nature of mosaic growth in the primate 

brain (Huttenlocher and Dabholkar, 1997).  

 Concluding remarks 5.4.8

Overall, developmental costs seem to best explain the pattern of correlations between primate 

brain structures and life history. Most structures followed a common pattern of development 

shared with relative brain size, but there is also evidence of variation in their life history 

correlates. Most notably, the cerebellum is linked specifically to infanthood and juvenility, 

perhaps signalling that exposure to the environment is important for growth in this structure. 
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Overall, the variation in the life history correlates of structure sizes suggests than selection on 

particular functional capacities causes developmental shifts which facilitates neural changes. 
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6  Summary and conclusions 
 

This thesis sought to re-examine the big ideas in brain evolution, which have been dominated 

comparative analyses of whole brain volume, in the light of newer ideas about mosaic brain 

evolution using updated techniques and better, more recent data. To this end, I used 

phylogenetic comparative techniques to examine the evolution of the primate brain and the 

behavioural, ecological, social, and developmental correlates of brain size and composition. 

The aims and major findings of each chapter are summarised below, followed by discussion 

of the limitations of this work, reflections for further work, and final concluding remarks. 

 

6.1 Summary of empirical chapters 

 Chapter 2 – the multivariate structure of the mammalian brain 6.1.1

Chapter 2 was an exploratory investigation of how individual brain structures vary in the 

mammals. Phylogenetic principal components analysis and phylogenetic least squares 

regression were employed to examine the similarities and differences in brain composition 

between primates, bats, and “insectivores” (now recognised to be a polyphyletic taxon). This 

chapter explored possible patterns with reference to the concerted (Finlay and Darlington, 

1995) versus mosaic (Barton and Harvey, 2000) evolution debate. The pPCA results could 

not distinguish between the two models. In the pPCA analyses of both mammals and 

primates, a first component representing size explained the vast majority of the variance 

(~93%), supporting a concerted evolution interpretation. However, there were different 

patterns of variation in structure volumes between the three orders, contradicting Finlay and 

Darlington’s claim that all mammals lie along the same allometries (Finlay and Darlington, 

1995). The grouping of the primates in the morphospace was quite distinct from the other two 

orders, occupying a position which represented large body size and small main olfactory 

bulb. PGLS analyses of neocortex and cerebellum volume further demonstrated the 

differences between the orders, with different partial correlations in each order. The 

previously reported correlated evolution between the neocortex and cerebellum in mammals 

(Barton, 2012) was recovered, however when each order was analysed separately, the 

association was not evident in the “insectivores”. Overall, these differences among clades did 
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not support a universal mammalian pattern of brain structure volume variation according to 

body size, but size related variation was certainly a significant force in shaping brain 

composition. Therefore, this chapter showed broad agreement with the literature in 

supporting a mosaic pattern of brain evolution with developmental aspects playing a smaller 

role in ultimate brain composition. 

 Chapter 3 – Re-evaluating the link between brain size and behavioural ecology 6.1.2

in primates 

Chapter 3 sought to re-examine the major hypotheses concerning the behavioural-ecological 

correlates of brain size with new data and improved methods. To examine the role of data 

quality and causes of disagreement in the literature, two large behavioural-ecological datasets 

were analysed in the same way whilst maintaining the same response variable, phylogeny and 

methods. This formally tested a proposed (Borries et al., 2016) major cause of equivocality in 

comparative studies; instability resulting from variable data quality. PGLS and subsequent 

model comparisons showed a divergence in results between the two datasets, even when the 

species sample was identical. Analysis of the Stephan (1981) dataset which has been so 

widely utilised in comparative brain evolution enquiry suggested that the correlation between 

group size and brain size which formed the basis of Dunbar’s SBH was dependent on using 

this sample. Little support was found for the Social Brain Hypothesis as defined by Dunbar 

(Dunbar, 1998; Dunbar and Shultz, 2007a). Overall, more support was found for ecological 

correlates of brain size than social, particularly in the case of a positive association with home 

range size. However, it was difficult to isolate their independent effects, possibly due to their 

combined influence in the form of “adaptive syndromes” (Nunn and van Schaik, 2002).  

 Chapter 4 – The behavioural ecology of structure sizes 6.1.3

Whole brain size has been criticised as a measure of limited utility due to the functional 

heterogeneity of the brain (Healy and Harvey, 1990; Logan et al., 2017). Chapter 4 therefore 

attempted to examine the behavioural-ecological correlates of brain variation at a finer scale 

by focusing on specific brain structures, testing whether and how they are more functionally 

specific. A new dataset which augments and updates the Stephan (1981) dataset was used, 

providing data collected with more modern methods and a more representative sample. Six 

brain structures were chosen for analysis based on data availability to give the largest 

possible comparative sample. A composite variable of combined neocortex and cerebellum 

volume was also included to examine the correlates of this coevolved (Whiting and Barton, 
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2003) system. As in Chapter 3, stability was also examined across two behavioural-ecological 

datasets. Predictions for associations between structures and behavioural-ecological variables 

were made based on three prominent brain evolution hypotheses: the Ecological Brain 

(Clutton-Brock and Harvey, 1980; DeCasien et al., 2017), the Social Brain (Dunbar, 1992; 

Dunbar, 1998; Dunbar and Shultz, 2007a) and the Visual Brain (Barton, 2007).  

The instability uncovered in the previous chapter remained, with results varying across the 

datasets. Despite this, there was evidence of some stable effects. A remarkably stable and 

independent association between the thalamus and group size was an unpredicted outcome of 

this chapter.  A pattern of swapping of significant effects between home range size and group 

size was discussed as possible evidence for their membership of an adaptive syndrome or 

possibly their correlation with a latent population density variable. Home range size results 

were again notable; this time showing associations with multiple structures. Results also 

varied, however, depending on correction for remaining brain size: one of the datasets 

showed associations between a number of structures and home range size when the size of 

the rest of the brain was not corrected for, which were absent when it was. This was 

discussed as possible evidence for a role of distributed functional systems associated with 

ranging.  

 Chapter 5 - Life history correlates of primate brain structure volumes 6.1.4

Chapter 5 examined the life history and ontogenetic correlates of volumetric structure 

change. Four structures were chosen for analysis based on whether clear predictions could be 

derived from the literature on their developmental scheduling. Predictions from energy costs 

based hypotheses (Martin, 1996; Isler and van Schaik, 2009) and cognitive buffering 

hypotheses (Barrickman et al., 2008; Sol, 2009; González-Lagos, Sol and Reader, 2010) were 

tested. Little evidence was found in support of the cognitive buffer hypotheses. The 

correlation between longevity and brain size or brain structure size which forms the basis of 

cognitive buffer hypothesis (Allman, Mclaughlin and Hakeem, 1993; Allman, Mclaughlin 

and Hakeem, 1993) was not apparent once maternal investment duration was accounted for. 

Prenatal maternal investment was associated with the adult volume of 3 out of the 4 brain 

structures. 

Previous work on the developmental scheduling of the human cerebellum had shown that it 

undergoes a period of intense volumetric growth postnatally, increasing by around 280% in 

absolute terms in the first year of life (Knickmeyer et al., 2008). Based on this pattern of 
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strong postnatal growth, the cerebellum was predicted to correlate with postnatal maternal 

investment duration independently of overall maternal investment duration and lifespan. This 

prediction was supported; lactation was significantly associated with adult cerebellum 

volume, independently of gestation duration, demonstrating that cerebellum size is linked 

primarily to postnatal investment, rather than overall maternal investment. An association 

with the duration of the juvenile period (defined as the period between weaning and first 

parturition) was also recovered. The association was independent of the duration of the 

reproductive lifespan. This was supportive of an interpretation of the cognitive buffering 

hypothesis which emphasised the importance of the extension of the juvenile period for 

learning (Barrickman et al., 2008), rather than the extension of the adulthood for either 

deployment of the learned skills or increased reproductive opportunities. 

Since apes have been shown to have significantly larger cerebella than expected from their 

neocortex size relative to other anthropoid primates (Barton and Venditti, 2014), and also 

extended postnatal maturation (Leigh, 2004; Isler and van Schaik, 2012) their possible 

position as outliers and their consequent influence on these results was evaluated. Their 

removal from the PGLS investigations led to the absence of the lactation and juvenile period 

associations. An ANCOVA suggested that apes may exhibit a different lactation strategy 

from the rest of the primate order in line with their cerebellar expansion, but these results 

should be interpreted with caution due to the small number of ape species and resulting lack 

of statistical power. 

 

6.2 Limitations  

 Volumetric data and distributed systems 6.2.1

This thesis has relied upon volumetric measures of brain and brain structure “size” due to the 

relative scarcity of comparative data on more fine-grained neuroanatomical measures such as 

neuron number. As previously discussed in the thesis introduction, the “size” of the brain has 

long been tacitly accepted as a proxy for cognitive or computational capacity (Healy and 

Rowe, 2007). However, what “size” means in terms of computation is not straightforward. 

The most fundamental unit of computation is generally thought to be the neuron (Herculano-

Houzel, 2010; Mota and Herculano-Houzel, 2014), and larger brains or structures have been 

assumed to have greater numbers of neurons, and so greater computational capacity. This is 



 
111 

accurate for primates in absolute terms (Herculano-Houzel et al., 2007), however brain and 

brain structure size may not scale with neuron number in the same way across clades 

(Herculano-Houzel, 2009, 2011). Scaling of neuron number with size also varies across 

structures within the same species (Herculano-Houzel, Manger and Kaas, 2014) and across 

areas of the same structure (Herculano-Houzel et al., 2008; Ribeiro et al., 2013). Neuron size 

also varies (Herculano-Houzel, Manger and Kaas, 2014; Mota and Herculano-Houzel, 2014), 

so that fewer, larger neurons may occupy more space than a greater number of smaller cells, 

reducing neuron density but possibly increasing the volume of the structure. Variation in the 

volume of a structure is therefore difficult to interpret. A unit change in the volume of a 

structure in two different clades does not necessarily indicate a common change in 

cytoarchitecture, capacity or computation.  

 

In addition to uncertainty regarding the meaning of volumetric size, the way in which we 

commonly divide the brain may also be obstructing our efforts to understand its variation. 

Anatomically defined structures like those investigated in this thesis are potentially of limited 

utility in investigating the selective pressures and constraints which have contributed to their 

relative size. This is because the systems which mediate the functions upon which selection 

acts are distributed across these structures (Smaers, Steele and Zilles, 2011; Buckner and 

Krienen, 2013; Mars et al., 2013). Therefore, even at the level of the structure, functional 

specificity is still lacking. Variation in these functionally distinct systems is therefore likely 

to be more robustly linked to specific behavioural, ecological and social correlates 

(Montgomery, Mundy and Barton, 2016). This was anticipated and somewhat parried by 

examining the covariation of structures and correlates of a compound cortico-cerebellar 

variable. 

 

Incorporating distributed systems and more valid measures of computational or cognitive 

capacity like neuron density and size in to future work will doubtless yield more stable and 

reliable results than volumetric analyses. However, to achieve the sort of large scale 

comparative analyses necessary to give sufficient statistical power to give meaningful results 

requires large samples. Collection of such data would represent a huge research effort. Whilst 

comparative data on neuron densities and functional systems is emerging, it is still limited in 

its taxonomic scope (for example, neuron number estimates using consistent methods are 

available for around 40 mammal species (http://www.suzanaherculanohouzel.com/, 2018)).  
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 Correlated predictors and syndromes of traits 6.2.2

Predicted relationships between behavioural-ecological variables and brain or brain structure 

size were largely not supported in Chapters 3 and 4. While this may be because the 

predictions are false, we must also consider possible evidence to suggest that the predictor 

variables used were not sufficiently representative of the concepts tested or that they were not 

sufficiently distinct from each other. A major issue for comparative studies of brain evolution 

is that predictors of brain size are frequently correlated (Barton, 1996; Walker et al., 2006; 

Barrickman et al., 2008; Schillaci, 2008; Swanson et al., 2012; Weisbecker et al., 2015), 

rendering their individual explanatory power difficult to ascertain (Healy and Rowe, 2007) 

and potentially leading to spurious correlations (Walker et al., 2006). An example of the latter 

was demonstrated by Nunn and Barton (Nunn and Barton, 2001) who found that the apparent 

relationship between group size and body size was mediated by the relationship of each with 

activity period and substrate use (p .87). This example also highlights the problem of 

disentangling an individual predictor’s influence on the dependent variable from the other 

predictors it correlates with.   

Taking a relevant example from this thesis; despite an apparent wealth of evidence in support 

of a relationship between brain size or neocortex size and social group size across mammal 

species  (Dunbar, 1992; Barton and Dunbar, 1997; Pérez-Barbería, Shultz and Dunbar, 2007; 

Dunbar and Shultz, 2007a; Shultz and Dunbar, 2007), scant evidence of either was found in 

the analyses carried out in this thesis. Chapters 3 and 4 showed some evidence of a link 

between home range size and group size, which suggests their influence on brain evolution 

may also be linked. The two variables have been suggested to covary in the form of 

population density (Walker et al., 2006). The number of animals per unit of space has 

obvious implications for food availability, competition for mates, predation, and terrestriality 

versus arboreality. It may therefore be variation in this joint variable, rather than the two 

individual variables, which has a stable influence. 

Some of these variables may form syndromes of traits (Nunn and van Schaik, 2002); groups 

of interdependent, covarying variables which may have a combined influence on brain size 

and composition. This idea was proposed by Nunn and van Schaik (2002), who, in their work 

to reconstruct the lifestyles of extinct primate taxa, observed that certain trait values often co-

occur in a species, whilst some combinations of traits never coincide. They give an 

illustrative example (p. 170); species which specialise in eating tree gum are always arboreal, 

tend to be small and live in wooded habitats. Large bodied, terrestrial gummivores living in 
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open environments do not occur. This example demonstrates how traits co-occur and co-vary, 

but only within certain parameters, which means that they remain useful for examining 

general patterns.  

A possibly more valid way of examining the behavioural-ecological traits of a species, then, 

is to cease to treat them as independent of each other and instead interpret them as 

syndromes. The challenge is how these syndromes can be meaningfully defined and 

measured, as it is difficult to objectively characterise the biological meaning of such 

ecological dimensions. Arguably the most appropriate way to examine the possible presence 

and influence of an adaptive syndrome is to use variable reduction techniques like PCA and 

Factor Analysis. In addition to the objectivity issue raised above, another difficulty is that 

every species occupies a niche that is unique in some aspect. Even sympatric species occupy 

different parts of the same niche. Therefore, a factor analysis may reveal a highly dispersed 

distribution of species across the morphospace rather than any pattern of grouping, which 

does not enable us to derive common rules or make predictions based on their relative 

positions.  

 Multiple testing 6.2.3

When a hypothesis is tested multiple times, the chance of a Type I error (false positive) can 

increase (Field, Miles and Field, 2012). This is because the probability of obtaining a result 

by chance accrues cumulatively with each test, as each independent test introduces a new 

possibility to find a positive result by chance. In chapters 4 and 5, the same response 

variables were subjected to several PGLS analyses with various combinations of predictors 

and using different predictor data sets. Ecological and life history variables were regressed 

against brain structure volumes, and each test was repeated for a different dataset. It was 

therefore necessary to consider whether correction for multiple testing was appropriate in 

these cases. 

The logic of correction for multiple testing is based on the increased risk of making a Type 1 

error where each test introduces a new, independent chance to obtain significance by chance. 

However, the PGLS tests carried out in chapters 4 and 5 are not independent of one another, 

and so the Type 1 error does not increase in this way. The response variables are not 

independent of each other as they are brain structure volumes which are correlated due to 

being part of (a) common system(s) which is(are) anatomically, functionally and 

developmentally linked. Similarly, the predictor variables are also non-independent because 
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they are the exact same ecological/life history variables across each model.  The risk of an 

inflated Type 1 error rate is therefore reduced, as the less independent the tests are of each 

other, the less the error rate will increase. Further, the analyses in chapters 4 and 5 tested for 

stability across datasets and examined incidences where significant results were stable. 

Therefore, this replication reduces the probability of finding significant results. Based on the 

above, it was not clear whether any correction for multiple testing should be made, and if one 

were to be made, how it should be applied. As there is no unequivocal solution to this 

particular issue, no correction was applied. 

 Data quality and replicability 6.2.4

The most pressing and fundamental issue facing the kind of comparative work undertaken in 

this thesis is arguably that of data quality and replicability. As uncovered by the analyses in 

Chapter 3 and 4, results tend to be unstable in the face of minor changes to the data. To 

adequately test hypotheses whilst controlling for confounding factors often requires large 

sample sizes. The difficulty of composing large datasets of brain measures and behavioural, 

ecological, physiological and social variables for multiple species has meant heavy reliance 

on just a few studies (Healy and Rowe, 2007). The creation of new larger datasets very 

commonly means the aggregation of many smaller datasets from many different sources, all 

with individual biases (Smith and Jungers, 1997). This overlap in sources means replicating 

analyses using such new datasets risks replicating inherent biases.  

The composition of the sample in terms of taxonomic range is the first potential source of 

variability. To take an example from the literature; home range size is reportedly a more 

significant pressure on brain size in Old World monkeys than in New World monkeys 

(Walker et al., 2006). Analysis of a dataset with a disproportionately large number of Old 

World monkeys could therefore have a greater chance of recovering a relationship between 

brain size and home range size than one using a more evenly distributed dataset.  Parker 

(Parker, 2015) points out taxonomic biases in Stephan's 1981 dataset (Stephan, Frahm and 

Baron, 1981), which includes only one (juvenile) gorilla specimen and no orangutans or 

bonobos (p.2). Chapter 3 supported Parker’s criticism, finding that the sample was 

insufficiently representative to produce reliable results. Although Chapter 4 and 5 use a 

volumetric dataset which has been augmented with more up to date and reliable measures 

(Navarrete, pers. comm.), it is still heavily reliant on the earlier Stephan work. This was 

unfortunately unavoidable due to the lack of available data for taxonomic breadth of sample 

required.  
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A second challenge is that, as is common in comparative ecological work, this thesis does not 

account for intra-specific variation, collapsing this variation to a mean. The validity of these 

means would be questionable if the within-species variance for a particular trait was large 

relative to that between species. The example of activity period in Lemur catta is illustrative 

of the problem. Lemur catta has been uncontroversially recorded as diurnal in many datasets, 

including the two used in Chapters 3 and 4. However, evidence is emerging that suggests this 

categorisation may be due to an overreliance on captive samples or studies that do not sample 

across seasons (Parga, 2011; Donati et al., 2013). This example shows the potential for 

variability within a species in a single variable and the consequent variable validity of a 

categorical allocation of a species’ activity period.  

This simplification can also cause statistical problems; the practice of reducing complex traits 

to single numbers makes finding spurious correlations much more likely (Deacon, 1990). The 

issue is not confined to the socioecological variables; brain size is treated as a fixed value, but 

it does vary across individuals and also within them under the influence of developmental and 

experiential factors (Healy and Rowe, 2007). Phylogenetic methods which allow for within 

species variation by incorporating the uncertainty in to the error term are available, but this 

inflation of the error term can cause problems with underestimating patterns of correlation in 

data (phylogenetic and between traits) (Ives, Midford and Garland, 2007). It also still 

ultimately relies on species means which, as discussed above, are potentially lacking in 

biological meaning. New methods which can explicitly incorporate multiple values for an 

individual species are in preparation, but data availability is still lagging behind. 

Given these difficulties, comparative work stands to gain much from better data and methods. 

In the short term, the verification of results by testing multiple datasets, as in chapters 3 and 

4, can flag replicability issues and bolster confidence in the robustness of results. In the 

longer term, comparative work must become much more collaborative in spirit, by improving 

data provenance information (metadata) and moving towards standardisation of methods of 

data collection and definitions of variables (Borries et al., 2016). Finally, incorporating intra-

specific variation in to comparative datasets will enable researchers to account for this 

variation when the tools to do so become reliable and accepted. 
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6.3 Future research 

 Hypotheses 6.3.1

It is possible to draw a number of specific hypotheses from the findings of this thesis for 

future research: 

1. The thalamus has an independent association with group size 

The surprising finding in Chapter 4 that both absolute and relative thalamus size 

shows a robust positive association with group size warrants further investigation. 

Firstly, the independence of this relationship from other functionally linked areas 

should be tested. While the association found between thalamus volume and group 

size was independent of any such association with the neocortex, the neocortex is so 

large and functionally heterogeneous that such an association may be present but not 

evident when the neocortex is examined as a whole. It would be illuminating therefore 

to explore whether specific thalamo-cortical circuits show evidence of an association 

with sociality.  

2. Increased postnatal maternal investment is necessary for growing large cerebella 

This hypothesis is supported by the findings of Chapter 5, but this may be a pattern 

which is unique to apes. Examining other taxa which have been shown to have large 

cerebella, such as odontocete cetaceans (Marino et al., 2000; Montgomery et al., 

2013) and elephants (Maseko et al., 2012; Herculano-Houzel et al., 2014), would 

enable us to explore the possible way in which allometric constraints are overcome to 

achieve this mosaic expansion. Both of these taxa have not only large cerebella but 

also long juvenile periods and lactation durations (Lee, 1996; Oftedal, 1997) and so a 

link between the two as demonstrated in the apes seems possible. This would make an 

interesting addition to the concerted versus mosaic evolution debate, showing how 

developmental traits can be modified to allow for mosaic volumetric change in a 

specific structure. 

3. The relatively large ape cerebellum is a result of a prolonged period of postnatal 

cerebellar growth which is facilitated by an elongated postnatal maternal investment 

period 

Although the analyses carried out in Chapter 5 gave results which were suggestive of 

the positive association between lactation duration and cerebellum volume, their lack 
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of statistical power due to a small sample precluded drawing firm conclusions. 

Obtaining data for a larger sample of apes (great and small) would give more reliable 

results and help to establish whether the apes have a significantly different lactation 

duration for their body size than the rest of the primates, and whether this is 

associated with the expansion of the cerebellum in this clade.  

 Wider areas for further investigation 6.3.2

In addition to the specific hypotheses above, the findings of this thesis also flag a number of 

wider issues which should be considered in future work. 

6.3.2.1 Pressures associated with the expansion of the cortico-cerebellar system 

While not the main focus of this thesis, the cortico-cerebellar system has been discussed and 

analysed in three of the empirical results chapters. This system was not found to be reliably 

associated with any of the explored behavioural-ecological or life history variables. To the 

contrary; the neocortex and cerebellum often correlated with different behavioural variables 

(Chapters 3 and 4), and the two had a divergent pattern of life history correlates (Chapter 5), 

suggesting they have different developmental scheduling as shown in the 

neurodevelopmental literature (Knickmeyer et al., 2008; Wu, Chen and Shen, 2011) There 

are a number of possible explanations for this apparent lack of functional or developmental 

specificity, including the functional and anatomical heterogeneity of the system.  

However, it is also possible that the pressures influencing the size and composition of the 

cortico-cerebellar system were not adequately captured in the variables examined in this 

thesis. The cerebellum has been linked with the temporal and spatial organisation of 

behaviour (Leggio et al., 2001; Ramnani, 2006), and its volume has been shown to correlate 

with extractive foraging (Barton, 2012). Some species make use of food sources that have 

defensive adaptations; such as fruits encased in hard, indigestible shells, leaves with 

defensive spines, or insects that live in fortified nests. The extractive foraging hypothesis 

(Parker and Gibson, 1977; Parker, 2015) posits that the cognitive challenge posed by the 

processing of these protected food sources is linked to the elaboration of complex 

sensorimotor processes and enlarged brains.  

The cerebellum’s dense connectivity with the neocortex allows for the assimilation and 

processing of the variety of sensory and motor information required to carry out complex 

sequential behaviour (Leiner, Leiner and Dow, 1993; Ramnani, 2006). Sequential, 

syntactically organised, complex behaviours have been proposed as a major reason for brain 
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size increases and have been linked with the cerebellum (Reader and Laland, 2002; Leiner, 

2010; Heldstab et al., 2016). These behaviours are most often associated with food 

processing, either manually or through the use of tools (Parker and Gibson, 1977; Byrne, 

Corp and Byrne, 2001; Byrne, 2006, 2007; Sabbatini et al., 2014). The relative expansion of 

the ape cerebellum in comparison to other primates and their more frequent use of tools and 

extractive foraging is suggestive of a link (Barton, 2012). A reasonable next step in 

determining the possible behavioural-ecological correlates of the corticocerebellar complex 

would therefore be to examine its relationship with extractive foraging and tool use. A future 

study may incorporate some measure of dexterity (Byrne, Corp and Byrne, 2001; Mangalam 

and Fragaszy, 2015; Benson-Amram et al., 2016; Heldstab et al., 2016) or forelimb use 

(Iwaniuk, Pellis and Whishaw, 2000; Sacrey, Alaverdashvili and Whishaw, 2009; Swanson et 

al., 2012) (if appropriate to the taxon in question) to further understand the possible cognitive 

and neuroanatomical links between fine motor skills and the sequential organisation of 

behaviour. Examining the possible technical cognition correlates of variation in specific 

cerebellar nuclei and regions with different functionality and connectivity would also allow 

examination of the fine-scale, system-level changes associated with this kind of behaviour. 

6.3.2.2 Causality 

The analyses carried out in this thesis have been correlative, which has firm conclusions 

about the direction of causality. As discussed in Chapter 3, path analysis is becoming 

commonly used and results are often described using causal language (Lehmann, Korstjens 

and Dunbar, 2007; Dunbar and Shultz, 2007a; Fox, Muthukrishna and Shultz, 2017). 

However, since path analysis is also correlational, it too is precluded from assessing causality 

(Denis and Legerski, 2003). It is a tool for testing different hypotheses based on identifying 

direct and indirect relationships between predictor variables. One model may fit the data 

better than another, but we still cannot infer a causal relationship from a correlation. A 

possible solution lies in ancestral trait reconstruction (Schluter et al., 1997; Pagel, 1999, 

1999). This method can estimate trait values at ancestral nodes, enabling the user to estimate 

which traits preceded or succeeded which, thus giving a way of estimating causality (while 

acknowledging that temporal order is a necessary but insufficient condition required to 

conclusively demonstrate causality) (Fabre et al., 2013). This approach could expand our 

understanding in terms of whether changes in brain size or composition preceded or 

succeeded changes in behavioural ecology or life history.  For example, correlational data 

may tell us that invasion success is linked to a larger brain (Sol et al., 2008), but it cannot tell 
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us whether an existing larger brain causes an animal to be more successful in terms of 

invasion, or whether invasion causes a subsequent increase in brain size, perhaps due to the 

need for behavioural flexibility in a new niche. One possible promising target for this method 

would be hypothesis 3 above; reconstructing the evolution of the possible elongation of 

lactation duration in the apes alongside their rapid cerebellar expansion (Barton and Venditti, 

2014) may help to illuminate the possible developmental aspects of mosaic change in brain 

structures. For example, if the extension of postnatal maternal investment is necessary to 

provide sufficient energy to grow a large cerebellum, we might expect the modification of the 

former trait to have succeeded the latter temporally. 

 

6.4 Concluding remarks 

In broad summary, the investigations carried out in this thesis show that primate brain 

evolution has been characterised by mosaic changes associated with behavioural-ecological 

pressures against a background of size-linked developmental constraints. This mosaicism is 

also observable in the way in which developmental traits are associated with brain and brain 

structure size, as demonstrated in Chapter 5 by the distinct pattern of life history correlates in 

the cerebellum. Analysing the major hypotheses in brain evolution at the finer level of the 

structure has revealed that these hypotheses have specific implications for specific parts of 

the brain, and so whole brain analyses, while sometimes useful, only give us part of the 

picture. It is necessary to consider changes in individual brain structures and systems of 

structures to get full picture of how behaviour, ecology, sociality, and development truly 

interacts with the brain. 

With regard to the correlates of neural variation; the highly correlated nature of behavioural-

ecological variables makes their relative influences difficult to tease apart and perhaps 

suggests that treating them as independent predictors is not meaningful. It is clear that many 

social and ecological pressures have interacted with each other, exerting a combined pressure 

on structures which themselves have co-evolved as well as undergoing their own independent 

evolution. By statistically treating these variables as though they are independent of each 

other, we have perhaps not been asking the right questions in order to understand how 

evolution has shaped brains. In terms of correlates that describe a taxon’s niche, syndromes 

of linked correlates with linked outcomes may be more appropriate. This non-independence 

of behavioural-ecological correlates of neural variation, the distributed nature of the systems 
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which mediate function and the complex influence of development suggests that attempting 

to carve up the factors shaping brain evolution in to singular pressures exerting their 

influence on singular dimensions of brain size is likely misguided. 

As Barton (2012) points out; 

“The idea that there likely to have been a wide variety of selection pressures on 

cognitive abilities, and a corresponding variety of neural evolutionary responses, 

has been rather lost in the current enthusiasm for monolithic explanations for the 

evolution of large brains,..” 

(p. 2097) 

The picture that is emerging is more nuanced and much less polarised. Future comparative 

work on the factors influencing brain evolution should consider this more integrated, 

continuous structure of both selective pressures and the neural machinery they affect.  
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Appendices 
 

Appendix 1 - PGLS regression examining the effects of five behavioural-ecological variables on 
endocranial volume with home range size excluded 

 Data set 1 (n=144)  Data set 2 (n=104) 

Predictor t138 p  t98 p 

Intercept -6 <0.001***  1.6 0.1 

Body Size 20.2 <0.001***  7.2 <0.001*** 

Diurnality 2.5 <0.05*  -0.9 0.4 

Terrestriality 0.4 0.7  1.3 0.2 

Folivory -2.3 <0.05*  0.3 0.8 

Group Size 2.1 <0.05*  1.1 0.3 

Model summary:    

ʎ .986  1 

R2 .8  .42 

Home range size was removed from the full models to see if it would have any effect on group size. 
 *p<0.05, **p<0.01, ***p<0.001 

 

 

Appendix 2 - Model comparisons based on AIC and the log likelihood ratio test for dataset 1 

Model AIC Δi Log 
likelihood 

ꭓ2 p 

i) Null/Allometric (body size only) -372.73 >2 190.37   

ii) Home Range Size  -381.58 >2    

iii) Group Size  -375.92 >2    

iv) Folivory -375.85 >2    

v) Terrestriality -370.8 >2    

vi) Activity Period  -377.73 >2 193.87 7 <0.01** 

vii) Activity Period & Home Range Size -386.43 1.49 199.22 10.7 <0.01** 

viii) Activity Period, Home Range Size & 
Folivory 

-386.92 1 200.46 2.49 0.11 

ix) Activity Period, Home Range Size, 
Folivory & Group Size  

-386.92 (AICmin) 201.96 3 0.08 

x) Full -386.06 1.86 202.03 0.14 0.71 

All models included logged body mass as a covariate. Δi represents the difference between the minimum model 
AIC (AICmin) and the model (i). Figures in bold denote models with a Δi between 0 and 2 and so are considered 
to have substantial empirical support (Kenneth P. Burnham and Anderson, 2002).  
*p<0.05, **p<0.01, ***p<0.001 

Appendix 3 - Model comparisons based on AIC and the log likelihood test for dataset 2 

Model AIC Δi Log ꭓ2 p 
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likelihood 

i) Null/Allometric (body size only) -209.66 >2 108.83   

ii) Group Size  -209.01 >2    

iii) Activity Period  -211.43 >2    

iv) Folivory -207.67 >2    

v) Terrestriality -207.68 >2    

vi) Home Range Size  -216.35 1.95 113.17 8.68 <0.01** 

vii) Home Range Size & Activity 
Period 

-218.29 (AICmin) 115.15 3.95 <0.05* 

viii) Home Range Size, Activity 
Period & Terrestriality 

-216.38 1.91 115.19 0.09 0.77 

ix) Home Range Size, Activity 
Period, Terrestriality & Folivory 

-212.4 >2 115.20 0.01 0.91 

x) Full -212.4 >2 115.20 0.01 0.91 

All models included logged body mass as a covariate. Δi represents the difference between the minimum 
model AIC (AICmin) and the model (i). Figures in bold denote models with a Δi between 0 and 2 and so are 
considered to have substantial empirical support  (Kenneth P. Burnham and Anderson, 2002).  

*p<0.05, **p<0.01, ***p<0.001 

 

 

Appendix 4 - PGLS regression examining the effects of five behavioural-ecological variables on 
endocranial volume with independent data sets 

 Data set 1 (n=49)  Data set 2 (n=48) 

Predictor t42 p  t41 p 

Intercept -5 <0.001***  10.4 <0.001*** 

Body Size 12.3 <0.001***  11 <0.001*** 

Diurnality 1.8 0.1  1.4 0.2 

Terrestriality 0.9 0.4  0.7 0.5 

Folivory -2.5 <0.05*  -1.1 0.3 

Group Size 1.9 0.1  -0.4 0.7 

Home Range Size 1.5 0.1  1.1 0.3 

Model summary:    

ʎ .92  1 

R2 .87  .82 

Each dataset was made completely independent by selecting species at random and including it in one and excluding 

it from the other. *p<0.05, **p<0.01, ***p<0.001 

 

 

  



 
123 

Appendix 5 - Model comparisons for the dataset 1 when species matched with dataset 2 

Model AIC Δi 

i) Full -226.94 >2 

ii) Null/Allometric (body size only) -222.81 >2 

iii) Home Range Size  -225.48 >2 

iv) Group Size  -223.28 >2 

v) Activity Period  -224.45 >2 

vi) Folivory -227.47 >2 

vii) Terrestriality -220.82 >2 

viii) Folivory & Activity Period -228.93 0.8 

ix) Folivory, Activity Period and Home Range 
Size 

-229.69 (AICmin) 

x) Folivory, Activity Period, Home Range Size 
& Group Size 

-228.87 0.82 

All models included logged body mass as a covariate. Δi represents the difference between the minimum model AIC 
(AICmin) and the model (i). Figures in bold denote models with a Δi between 0 and 2 and so are considered to have 
substantial empirical support  (Kenneth P. Burnham and Anderson, 2002). 

  

Appendix 6 - Model comparisons for dataset 2 when species matched with dataset 1 

Model AIC Δi 

I) Full -196 >2 

ii) Null/Allometric (body size only) -195.81 >2 

iii) Home Range Size  -200.16 1.75 

iv) Group Size  -194.56 >2 

v) Activity Period  -197.66 >2 

vi) Folivory -193.92 >2 

vii) Terrestriality -193.82 >2 

viii) Home Range Size & Activity Period -201.92 (AICmin) 

ix) Home Range Size, Activity Period & 
Terrestriality 

-199.96 1.95 

x) Home Range Size, Group Size, Activity 
Period and Folivory 

-196 >2 

All models included logged body mass as a covariate. Δi represents the difference between the minimum model AIC 
(AICmin) and the model (i). Figures in bold denote models with a Δi between 0 and 2 and so are considered to have 
substantial empirical support  (Kenneth P. Burnham and Anderson, 2002). 
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Appendix 7 - Model comparisons for data set 1 after being made independent 

Model AIC Δi 

i) Full -98.88 1.1 

ii) Null/Allometric (body size only) -84.4 >2 

iii) Home Range Size  -92.39 >2 

iv) Group Size  -94.7 >2 

v) Activity Period  -86.37 >2 

vi) Folivory -88.75 >2 

vii) Terrestriality -82.71 >2 

viii) Folivory & Group Size -99.14 0.85 

ix) Folivory, Group Size & Diurnality -99.75 0.23 

x) Folivory, Group Size, Diurnality & Home 
Range Size 

-99.98 (AICmin) 

All models included logged body mass as a covariate. Δi  represents the difference between the minimum model AIC 
(AICmin) and the model (i). Figures in bold denote models with a Δi between 0 and 2 and so are considered to have 
substantial empirical support  (Kenneth P. Burnham and Anderson, 2002). 

 

 

Appendix 8 - Model comparisons for the data set 2 after being made independent 

Model AIC Δi 

I) Full -85.01 >2 

ii) Null/Allometric (body size only) -89.49 0.04 

iii) Home Range Size -88.91 0.63 

iv) Group Size  -87.54 >2 

v) Activity Period  -89.54 AICmin 

vi) Folivory -88.97 0.57 

vii) Terrestriality -87.95 >2 

viii) Diurnality & Home Range Size -89.33 0.21 

ix) Diurnality, Home Range Size & Folivory  -88.46 1.08 

x) Home Range Size, Group Size, Diurnality 
and Folivory 

-86.85 >2 

All models included logged body mass as a covariate. Δi represents the difference between the minimum model AIC 
(AICmin) and the model (i). Figures in bold denote models with a Δi between 0 and 2 and so are considered to have 
substantial empirical support  (Kenneth P. Burnham and Anderson, 2002). 
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Appendix 9 - PGLS regression examining the effects of five behavioural-ecological variables on 
endocranial volume with species matched with the Stephan data set (Stephan, Frahm and Baron, 
1981) 

 Data set 1 (n=34)  Data set 2 (n=32) 

Predictor t27 p  t25 p 

Intercept -5.7 <0.001***  9 <0.001*** 

Body Size 11.9 <0.001***  10 <0.001*** 

Diurnality 1 0.3  0.1 0.9 

Terrestriality -0.4 0.7  -0.6 0.5 

Folivory -1.2 0.3  -1.7 0.1 

Group Size 1.8 0.1  1.8 0.1 

Home Range Size 0.5 0.6  1.1 0.3 

Model summary:    

ʎ 1  1 

R2 .91  .89 

To determine whether previous results may have been affected by biases in Stephan’s data set, the analysis was 

confined to only those species included in Stephan’s original data set. *p<0.05, **p<0.01, ***p<0.001 

 

 

Appendix 10 - Model comparisons based on AIC and the log likelihood ratio test for dataset 1 when 
species matched with the Stephan dataset (Stephan, Frahm and Baron, 1981) 

Model AIC Δi Log 
likelihood 

ꭓ2 p 

i) Null/Allometric (body size only) -43.97 >2 23.984   

ii) Home Range Size  -45.4 >2    

iii) Activity Period  -45.5 >2    

iv) Folivory -49.36 >2    

v) Terrestriality -42.03 >2    

vi) Group Size  -51 >2 28.503 9.04 <0.01** 

vii) Group Size & Folivory -53.02 (AICmin) 30.512 4.02 <0.05* 

viii) Group Size, Folivory and Home 
Range Size 

-51.44 1.59 30.719 0.41 0.52 

ix) Group Size, Folivory, Home 
Range Size & Terrestriality 

-49.45 >2 30.727 0.02 0.9 

x) Full -48.91 >2 31.456 1.46 0.23 

All models included logged body mass as a covariate. Δi represents the difference between the minimum 
model AIC (AICmin) and the model (i). Figures in bold denote models with a Δi between 0 and 2 and so are 
considered to have substantial empirical support  (Kenneth P. Burnham and Anderson, 2002).  

*p<0.05, **p<0.01, ***p<0.001 
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Appendix 11 - Model comparisons based on AIC and the log likelihood ratio test for dataset 2 when 
species matched with the Stephan dataset (Stephan, Frahm and Baron, 1981) 

Model AIC Δi Log 
likelihood 

ꭓ2 p 

i) Null/Allometric (body size only) -32.97 >2 18.489   

ii) Home Range Size  -36.78 >2    

iii) Activity Period  -32.29 >2    

iv) Folivory -38.49 >2    

v) Terrestriality -31.11 >2    

vi) Group Size  -39.7 >2 22.852 8.73 <0.01** 

vii) Group Size & Folivory -43.24 AICmin 25.622 5.54 <0.05* 

viii) Group Size, Folivory and Home 
Range Size 

-42.15 1.1 26.073 0.9 0.34 

ix) Group Size, Folivory, Home Range 
Size & Terrestriality 

-62.96 >2 26.361 0.58 0.45 

x) Full -38.73 >2 26.366 0.01 0.93 

All models included logged body mass as a covariate. Δi represents the difference between the minimum model 
AIC (AICmin) and the model (i). Figures in bold denote models with a Δi between 0 and 2 and so are considered 
to have substantial empirical support (Kenneth P. Burnham and Anderson, 2002).  

*p<0.05, **p<0.01, ***p<0.001 

 

Appendix 12 - PGLS regression examining the effects of five behavioural-ecological variables on 
endocranial volume for data set 1 using sleeping group size where available 

 (n=144) 

Predictor t137 p 

Intercept -5.4 <0.001*** 

Body Size 18.7 <0.001*** 

Diurnality 2.7 <0.01** 

Terrestriality 0.6 0.6 

Folivory -1.6 0.1 

Group Size 1.1 0.3 

Home Range Size 2.6 <0.05* 

Model summary:  

ʎ .99 

R2 .8 

As the group size variable in data set 1 was a composite variable which was considered both foraging and 
sleeping group size, we ran the analysis again using only sleeping group size where it was recorded in the data 

set. *p<0.05, **p<0.01, ***p<0.001 
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Appendix 13 - PGLS regression examining the effects of five behavioural-ecological variables on 
endocranial volume for data set 1 using only species where body sizes were drawn from female 
animals 

 (n=72) 

Predictor t66 p 

Intercept 1.4 0.17 

Body Size 10.8 <0.001*** 

Terrestriality 1.9 0.07 

Folivory -1 0.05 

Group Size 0.9 0.4 

Home Range Size 1.5 0.1 

Model summary:  

ʎ 1 

R2 .72 

As the body size data in data set 2 was drawn from exclusively female animals (in contrast to data set 1 which 
used means from males and females in some cases), we ran the PGLS analysis on the data set 1 again, using 
only the species with female body sizes. Activity period could not be included as all species were diurnal and so 
the variable had zero variance. *p<0.05, **p<0.01, ***p<0.001 
 

 

 

Appendix 14 - Data set 1 MCMC analysis diagnostics (n=145) 

Predictor Posterior mean 95% CI (lower) 95% CI (higher) pMCMC 

Body Size 0.5639 0.4991 0.6160 0 

Diurnality 0.1327 0.0323 0.2174 0.0154 

Terrestriality 0.008 -0.0267 0.0388 0.6725 

Folivory -0.0313 -0.0658 -0.0029 0.0637 

Group Size 0.03567 -0.0133 0.0765 0.1408 

Home Range Size 0.0247 0.0053 0.0406 0.0066 
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Appendix 15 - Posterior distribution of trait estimates for dataset 1- Activity period (diurnality) 

 

 

 

Appendix 16 - Posterior distribution of trait estimates for dataset 1- Home range size 
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Appendix 17 - Data set 2 MCMC analysis diagnostics (n=104) 

Predictor Posterior mean 95% CI (lower) 95% CI (higher) pMCMC 

Body Size 0.5396 0.4499 0.6076 0 

Diurnality 0.1401 -0.0106 0.2705 0.0571 

Terrestriality -0.0075 -0.0572 0.0347 0.7538 

Folivory 0.0017 -0.0386 0.0345 0.9319 

Group Size 0.0017 -0.0674 0.0557 0.9341 

Home Range Size 0.0426 0.0141 0.0674 0.0066 

 

 

 

Appendix 18 - Posterior distribution of trait estimates for dataset 2- Home range size 
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Appendix 19 - PGLS regression on data set 1 examining the effects of five behavioural-ecological 
variables on endocranial volume when a more strict definition of folivory is used 

 (n=144) 

Predictor t138 p 

Intercept -6.1 <0.001*** 

Body Size 20.4 <0.001*** 

Diurnality 2.6 <0.01** 

Terrestriality -0.1 0.9 

Folivory -3 <0.01** 

Group Size 1.7 0.1 

Home Range Size 2.6 <0.05* 

Model summary:  

ʎ .983 

R2 .82 

Gorillas were not classified as folivores. Although Gorilla diet can include relatively large proportions of fruit, 
it is arguably a specialised folivore as its large size enable it to subsist on a leaf-rich diet when and where fruit 
is less available. We therefore ran two analyses, with Gorilla classified as non-folivore and folivore 

respectively. *p<0.05, **p<0.01, ***p<0.001 

 

Appendix 20 - PGLS regression on data set 1 examining the effects of five behavioural-ecological 
variables on endocranial volume when a more strict definition of folivory is used 

 (n=144) 

Predictor t138 p 

Intercept 6.3 <0.001*** 

Body Size 20.5 <0.001*** 

Diurnality 2.6 <0.05* 

Terrestriality -0.1 1 

Folivory -3.2 <0.01** 

Group Size 1.5 0.1 

Home Range Size 2.6 <0.05* 

Model summary:  

ʎ .981 

R2 .82 

Gorillas classified as folivores. *p<0.05, **p<0.01, ***p<0.001 
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Appendix 21 - paired t-test: Navarrete vs Stephan data 

 t11 p 

Body size -1.67 0.12 
Brain volume -1.8 0.1 
Neocortex volume -2.0 0.07 
Hippocampus volume -1.72 0.11 
Striatum volume -2.17 0.05 
Cerebellum volume -1.23 0.24 
Medulla volume -3.28 0.01** 
*p<0.05, **p<0.01, ***p<0.001 
 

Appendix 22 - Model comparisons for neocortex volume in dataset 3 – body size corrected condition 

 AIC
a
 Log likelihood ꭓ

2
 p (ꭓ

2
)

b 

Allometric (body size only) -21.03 12.52   
Body size + activity period -24.22 15.11 5.19 <0.05* 
Body size + diet -25.20    
Body size + home range size -27.18    
Body size + group size -24.08    
Body size + activity period + diet -28.42 18.21 6.2 <0.05* 
Body size + activity period + diet + home 
range size 

-29.92 19.96 3.5 0.06 

Body size + activity period + diet + home 
range size + group size 

-28.21 20.11 0.29 0.59 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 
 
 
 

Appendix 23 - Model comparisons for hippocampus volume in dataset 3 – body size corrected 
condition 

 AIC
a
 Log likelihood ꭓ

2
 p (ꭓ

2
)

b 

Allometric (body size only) -33.25 18.62   
Body size + activity period -34.47 20.23 3.22 0.07 
Body size + diet -32.08    
Body size + group size -32.82    
Body size + home range size -31.31    
Body size + activity period + diet -34.15 21.08 0.74 0.19 
Body size + activity period + diet + group size -32.89 21.45 0.74 0.39 
Body size + activity period + diet + group size 
+ home range 

-32.21 22.11 1.32 0.25 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 
 
 
 
 

Appendix 24 - Model comparisons for striatum volume in dataset 3 – body size corrected condition 

 AIC
a
 Log likelihood ꭓ

2
 p (ꭓ

2
)

b 

Allometric (body size only) -61.56 32.78   
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Body size + group size -67.55 36.78 7.99 <0.01** 
Body size + diet -64.65    
Body size + home range size -65.26    
Body size + activity period -60.76    
Body size + group size + diet -67.38 37.69 1.82 0.18 
Body size + group size + diet + home range 
size 

-64.41 37.21 0.96 0.33 

Body size + group size + diet + home range 
size + activity period 

-64.08 38.04 1.67 0.2 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 

 

Appendix 25 - Model comparisons for cerebellum volume in dataset 3 – body size corrected 
condition 

 AIC
a
 Log likelihood ꭓ

2
 p (ꭓ

2
)

b 

Allometric (body size only) -78.21 41.1   
Body size + home range size -84.91 45.46 8.71 <0.01** 
Body size + activity period -77.34    
Body size + group size -79.13    
Body size + diet -77.57    
Body size + home range size+ activity 
period  

-83.57 45.78 0.66 0.42 

Body size + home range size + activity 
period + group size 

-81.67 45.84 0.1 0.75 

Body size + home range size+ activity 
period + group size + diet 

-79.7 45.85 0.03 0.87 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 

 

Appendix 26 - Model comparisons for cortex+cerebellum volume in dataset 3 – body size corrected 
condition 

 AIC
a
 Log likelihood ꭓ

2
 p (ꭓ

2
)

b 

Allometric (body size only) -51.96 27.98   
Body size + home range size -59.7 32.85 9.73 <0.01** 
Body size + activity period -54.41    
Body size + diet -55.16    
Body size + group size -56.56    
Body size + home range size + activity period -60.65 34.33 3 0.09 
Body size + home range size + activity period 
+ diet   

-60.49 35.25 1.84 0.18 

Body size+ home range size + activity period 
+ diet + group size 

-59.06 35.53 0.57 0.45 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 

Appendix 27 - Model comparisons for thalamus volume in dataset 3 – body size corrected condition 

 AIC
a Log likelihood ꭓ

2 p (ꭓ
2
)

b 

Allometric (body size only) -60.59 43.4   
Body size + group size -62.96 34.48 17.84 <0.001*** 
Body size + activity period -58.67    
Body size + home range size -60.42    
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Body size + diet -59.39    
Body size + group size + activity period -61.66 34.83 0.7 0.4 
Body size + group size + activity period + home 
range size 

-59.87 34.93 0.21 0.65 

Body size + group size + activity period + home 
range size + diet 

-57.87 34.94 0.01 0.93 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 

 
 

Appendix 28 - Model comparisons for lateral geniculate nucleus volume in dataset 3 – body size 
corrected condition 

 AIC
a Log likelihood ꭓ

2 p (ꭓ
2
)

b 

Allometric (body size only) -52.05 28.02   
Body size + activity period -56.18 31.09 6.13 <0.05* 
Body size + home range size -60.32    
Body size + diet -53.4    
Body size + group size -55.96    
Body size + activity period + home range size -62.95 35.47 8.77 <0.01** 
Body size + activity period + home range size + 
diet 

-62.5 36.25 1.55 0.21 

Body size + activity period + home range size + 
diet + group size 

-60.96 36.58 0.47 0.5 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 
 

Appendix 29 - Model comparisons for neocortex volume in dataset 3 – RoB corrected condition 

 AIC
a Log likelihood ꭓ

2 p (ꭓ
2
)

b 

Allometric 1 (body size only) -21.03 12.52   
Allometric 2 (body size + RoB) -22.72 14.36 3.68 0.05 
Body size + RoB + activity period -25.6 16.8 4.88 <0.05* 
Body size + RoB + diet -25.43    
Body size + RoB + home range size -26.53    
Body size + RoB + group size -25.05    
Body size + RoB + activity period + diet -28.61 19.31 5.01 <0.05* 
Body size + RoB + activity period + diet + home 
range size 

-29.01 20.5 2.4 0.12 

Body size + RoB + activity period + diet + home 
range size + group size 

-27.39 20.69 0.38 0.54 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 

Appendix 30 - Model comparisons for hippocampus volume in dataset 3 – RoB corrected condition 

 AIC
a Log likelihood ꭓ

2 p (ꭓ
2
)

b 

Allometric 1 (body size only) -33.25 18.62   
Allometric 2 (body size + RoB) -39.19 22.6 7.95 <0.01** 
Body size + RoB + activity period -38.4 23.2 1.21 0.27 
Body size + RoB + diet -39.47    
Body size + RoB + group size -39.02    
Body size + RoB + home range size -37.65    
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Body size + RoB + activity period + diet -39.3 24.65 2.9 0.09 
Body size + RoB + activity period + diet + group size -39.43 25.71 2,13 0.14 
Body size + RoB + activity period + diet + group size + 
home range 

-37.81 25.91 0.38 0.54 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 
 

Appendix 31 - Model comparisons for striatum volume in dataset 3 – RoB corrected condition 

 AIC
a Log likelihood ꭓ

2 p (ꭓ
2
)

b 

Allometric (body size only) -61.56 32.78   
Allometric 2 (body size + RoB) -133.83 69.92 74.27 <0.001*** 
Body size+ RoB + group size -134.17 71.09 2.34 0.13 
Body size + RoB + diet -132    
Body size + RoB + home range size -133.24    
Body size + RoB + activity period -131.95    
Body size + RoB + group size + home range size -138.14 74.07 5.97 <0.05* 
Body size + RoB + group size + home range size + activity 
period 

-136.45 74.23 0.31 0.57 

Body size + RoB + group size + home range size + activity 
period + diet 

-134.5 74.25 0.04 0.83 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 
 

Appendix 32 - Model comparisons for cerebellum volume in dataset 3 – RoB corrected condition 

 AIC
a
  Log likelihood ꭓ

2 p (ꭓ
2
)

b 

Allometric (body size only) -78.21 41.1   
Allometric 2 (body size + RoB) -168.52 87.26 92.32 <0.001*** 
Body size + RoB + diet -168.06 8.03 1.54 0.21 
Body size + RoB + activity period -167.2    
Body size + RoB + group size -167.45    
Body size + RoB + HRS -166.86    
Body size + RoB + diet + group size -167.02 88.51 0.95 0.31 
Body size + RoB + diet + group size + 
activity period 

-165.58 88.79 0.57 0.45 

Body size + RoB + diet + group size + 
activity period + home range size 

-163.59 88.8 0.01 0.93 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 

Appendix 33 - Model comparisons for cortex+cerebellum volume in dataset 3 – RoB corrected 
condition 

 AIC
a
 Log likelihood ꭓ

2
 p (ꭓ

2
)

b 

Allometric 1 (body size only) -51.96 27.98   
Allometric 2 (body size + RoB) -54.19 30.1   
Body size + RoB + activity period -56.3 32.15 4.11 <0.05* 
Body size + RoB + diet -55.93    
Body size + RoB + home range size -59.28    
Body size + RoB + group size -58.06    
Body size + RoB + activity period + diet -58.01 34.01 3.71 0.05 
Body size + RoB + activity period + diet + home range size -59.74 35.87 3.73 0.05 
Body size + RoB + activity period + diet + home range size -58.43 36.21 0.69 0.41 
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+ group size 
a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 

 
Appendix 34 - Model comparisons for thalamus volume in dataset 3 – RoB corrected condition 

 AIC
a Log likelihood ꭓ

2 p (ꭓ
2
)

b 

Allometric 1 (body size only) -60.59 32.3   
Allometric 2 (body size + RoB) -96.31 51.12 37.72 <0.001*** 
Body size + RoB + group size -98.29 53.15 3.98 <0.05* 
Body size + RoB + activity period -94.37    
Body size + RoB + home range size -94.38    
Body size + RoB + diet -94.54    
Body size + RoB + group size + home range size -99.11 54.55 2.81 0.09 
Body size + RoB + group size + home range size + activity 
period 

-97.17 54.59 0.06 0.8 

Body size + RoB + + group size + home range size + activity 
period + diet 

-95.18 54.59 0.01 0.94 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level 

*p<0.05, **p<0.01, ***p<0.001 
 

Appendix 35 - Model comparisons for lateral geniculate nucleus volume in dataset 3 – RoB corrected 
condition 

 AIC
a Log likelihood ꭓ

2 p (ꭓ
2
)

b 

Allometric 1 (body size only) -52.05 28.02   
Allometric 2 (body size + RoB) -77.03 41.51 26.98 <0.001*** 
Body size + RoB + activity period -77.47 42.74 2.44 0.12 
Body size + RoB + home range size -75.49    
Body size + RoB + diet -77.21    
Body size + RoB + group size -75.88    
Body size + RoB + activity period + diet -77.71 43.86 2.24 0.13 
Body size + RoB + activity period + diet + group size -76.21 44.1 0.49 0.48 
Body size + RoB + activity period + diet + group size + 
home range size  

-74.13 44.13 0.06 0.81 

a
 Bold denotes best model and models with an AIC difference from the best model <2 

b
 Bold denotes statistically significant model at the α<0.05 level  

*p<0.05, **p<0.01, ***p<0.001 
 

Appendix 36 - correlation matrix of predictor variables in dataset 1 (non-phylogenetic) 

 

Bold denotes statistically significant model at the α<0.05 level 

 

 Body size Activity 
period 

Group Size Diet 
(folivory) 

Home range 
size 

Body size      
Activity period .49     
Group Size .52 .56    
Diet (folivory) .33 .05 .06   
Home range size .7 .49 .7 -.07  
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Appendix 37 - correlation matrix of predictor variables in dataset 2 (non-phylogenetic) 

 

Bold denotes statistically significant model at the α<0.05 level 
 

 

Appendix 38 - correlation matrix of predictor variables in dataset 3 (non-phylogenetic) 

 

 

 

  

 Body size Activity 
period 

Group Size Diet 
(folivory) 

Home range 
size 

Body size      
Activity period .23     
Group Size .24 .55    
Diet (folivory) .31 .08 -.05   
Home range size .5 .43 .73 -.04  

 
Body size 

Activity 
period 

Group Size 
Diet 
(folivory) 

Home range 
size 

Body size      
Activity period .51     
Group Size .51 .57    
Diet (folivory) .22 -.07 -.13   
Home range size .75 .55 .7 -.17  

Bold denotes statistically significant model at the α<0.05 level 
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