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Abstract

Carbon emission reduction is an urgent global task. Renewable energy sources

integration can promote the transformation of cleaner and greener power system.

But the time-varying nature of these sources causes indeterminacy problems. Smart

grid is a powerful tool that can deal with these problems in electricity aspect. One

of the key smart grid technologies is demand side management. How to use demand

side management to regulate and decarbonise the power system is the main point

of this thesis.

In order to integrate renewable energy sources, a day-ahead electricity market

scheme is proposed, involving the utility, the demand response aggregator and cus-

tomers. This model leads to a multiobjective optimization problem, which is solved

by an artificial immune algorithm. The simulation results confirm the feasibility

and robustness of the proposed model. All participants can benefit from it, and the

system power peak to average ratio can be reduced.

In order to realize the carbon emission reduction, a system model for annual

fuel sources scheduling and operational policy making of electricity generation is

established, considering the economic, environmental and social aspects. A mini-

mum Manhattan distance approach is proposed to select the final solution. The

impacts of carbon tax and renewable obligation on carbon emission, generation cost

and electricity bill are examined. These can reveal the proper strategy for deciding

renewable energy source and carbon emission related policies.

After that, a carbon emission flow model is introduced to facilitate the analysis

and assessment of demand side management’s impacts on carbon emission reduction.

The time sensitivity of carbon emission in both generation side and customer side

are obtained. The daily case and seasonal case are presented. The simulation results

show that the load curtailment and load shift approaches can effectively reduce the

carbon emission.
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Chapter 1

Introduction

1.1 Background

Climate change has posed a threat to the sustainable development, which brings

the importance of carbon emission reduction. To reduce carbon emission, the U.K.

government has made significant efforts since 1997, started from the Kyoto Protocol.

The U.K. committed to reducing the carbon emission by all kinds of ways, such as

improving the energy efficiency, utilizing renewable energy sources (RESs), enhanc-

ing the fuel standard, investing low-carbon technologies, and reducing the energy

demand [1]. The U.K. was also the first country that sets a legally-binding limit on

carbon emission amount. In 2008, the Climate Change Act was passed in the U.K.,

and the framework to develop an economically credible carbon emission reduction

path was set up. It aimed to achieve at least 30% carbon emission reductions by

2020, and 80% by 2050 compared with the level of 1990 [2]. In December 2011, the

U.K. government published the Carbon Plan. This plan set out how the country

will transit to the decarbonization while ensuring energy security, and minimizing

consumers’ cost [3].

Overall, the electricity supply plays a significant role in achieving these targets

[4]. It accounts for approximately one-third of the total emission in the U.K. for

the past 15 years. The average carbon emission for electricity generation was 0.7

tonne/MWh in 1990, and decreased to 0.5 tonne/MWh in 2008. The anticipated

aim is just 0.05 tonne/MWh by 2030 [5]. The monitor of fuel source usage in

1
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electricity supply is necessary during this transition process. Firstly, coal was the

dominant source for almost half a century since 1950, contributed to 97% of the

generation at 1950. Oil was generally used in the late 1950’s, and came to a peak in

the early 1970’s, then impacted by the oil crisis at 1973. This gave an opportunity

for the development of nuclear power. The electricity provided by it raised from

9% in 1970 to 28% in 1998. The natural gas was introduced in the 1990’s, and

had a rapid increase. It exceeded the use of coal in 1990, which accounted for 39%

of the generation, while coal accounted for 28%. Recently, the use of RESs scaled

up. Especially, wind and solar had a significant progress, provided 15.5% of the

generation in 2017 [6]. The promotion of RESs impeded the use of fossil fuel. Coal,

oil, and gas experienced gradually declines. The low carbon generation in generation

mix is planned to reach 61% in 2020, compared to 47% in 2015 [7]. The detailed

electricity generation mix by major fuel sources from 2000 to 2017 is shown in Fig.

1.1. The changes of generation mix and evolutions of technologies result in a carbon

emission reduction. The emission from power generation was reduced by 57%, from

242.1 Mtons in 1990 to 110.9 Mtons in 2016. The emission mainly came from the

combustion of coal and gas. It is projected to reduce another 52% of emission till

2020, based on the level of 2015 [8]. The detailed carbon emission from electricity

generation by major fuel sources from 2000 to 2017 is shown in Fig. 1.2. In the

U.K., the Department for Business, Energy & Industrial Strategy (BEIS) and Office

of Gas and Electricity Markets (Ofgem) are primary regulators that are responsible

for the carbon emission reduction.

As mentioned before, the utilization of RESs can help with the carbon emission

issue [9]. More energy is expected to be supplied by RESs in the grid, such as wind,

photovoltaic, and tidal energy. However, these RESs cause intermittent problems

due to their inherent characteristics. The power provided by RESs varies with the

external environment conditions, e.g., season, weather and time period. The man-

agement of RESs requires sophisticated planning and operation scheduling. Smart

grid provides the ability for promoting the penetration of RESs. It is an intelligent

power network that is composed of advanced generation, communication, control

and computation technologies. It can improve the reliability, availability, and effi-



1.1. Background 3

Figure 1.1: Electricity generation mix by major fuel sources in the U.K. from 2000

to 2017 [6].

Figure 1.2: Carbon emission from electricity generation by major fuel sources in the

U.K. from 2000 to 2017 [8].
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ciency of the current system [10]. Demand side management (DSM) is one of the

important technologies in smart grid. It can promote the interaction and respon-

siveness of customers, thus offer a wide range of potential benefits to the system and

enhance the energy efficiency [11].

1.2 Research Motivations

Based on the background above, the motivations of this thesis can be summarized

as follows:

• RESs are important for the electricity generation, but the inherent intermittent

characteristic is the major impediment for their developments. It is a challenge

to integrate RESs into the grid.

• The DSM is considered as one of the key smart grid technologies. It is a chal-

lenge to design a feasible scheme that can efficiently regulate energy generation

and consumption.

• The fuel sources planning of electricity generation for the future plays a vital

role for the sustainable development. It is a challenge to schedule the fuel

sources that to meet both the environmental, economic and social require-

ments.

1.3 Research Objectives

In this thesis, a daily-based demand planning scheme is firstly proposed, which

involving the utility, the demand response (DR) aggregator, and customers. Then,

a system model for annual fuel sources scheduling and operational policy making of

electricity generation is developed, which considering the economic, environmental,

and social aspects. After that, a carbon emission flow model is introduced to assess

the carbon emission caused by power generation. Specifically, the focus is placed on

the following four research objectives in this thesis.

• The day-ahead demand planning with DR aggregators integrating RESs
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• The fuel sources scheduling and operational policy making of electricity gen-

eration

• The effectivenesses of DSM approaches on the carbon emission reduction

• Multiobjective optimization problem (MOP)

1.4 Research Contributions

The main contributions of this thesis are summarised as follows:

• An advanced electricity market scheme is proposed. For the utility, the inher-

ent intermittent problems of RESs can be addressed. For the DR aggregator,

it is modelled as an independent participant. The role and the revenue of it

are analysed. For customers, the social welfare is considered. All participants

can benefit from the proposed design: the utility can reduce the generation

cost and the power peak to average ratio (PAR); the DR aggregator can make

profits by providing DR service; customers can save money on their bill. And

even if there are perturbations to the system, the proposed approach can still

work out an optimal solution.

• A novel system model for fuel sources scheduling and operational policy mak-

ing of electricity generation is developed. Besides economic and environmental

aspects of the electricity generation, the participation of consumers is intro-

duced in the model. The minimum Manhattan distance (MMD) approach is

proposed to select the final optimal solution. The generation plans for both

short-term period and long-term period are presented. The system sensitivity

to carbon tax and Renewable Obligation are analysed. These can give a hint

for formulating carbon emission and RESs related mechanisms and policies.

• A carbon emission flow model is introduced to evaluate the carbon emission re-

duction caused by DSM. The time sensitivity of carbon emission in generation

side and consumption side are obtained by applying the U.K. actual daily data

of electricity generation and demand. The effectivenesses of load curtailment
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and load shift approaches for carbon emission reduction are quantified. These

can indicate how to suggest different DSM programs to different consumers in

the case of carbon emission reduction.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2

In this chapter, a review of smart grid technologies is presented. A brief his-

tory and basic concepts of DSM are introduced. A detailed classification of DR is

discussed. The state-of-the-art models and methodologies are explained.

Chapter 3

In this chapter, a hierarchical day-ahead DSM model is proposed. The model

involves three participants: the utility, the DR aggregator, and customers. This

model leads to a MOP, which is solved by an artificial immune algorithm (AIA).

The U.K. case study and system sensitivity analysis are presented.

Chapter 4

In this chapter, a system model for fuel usage scheduling and operational pol-

icy making of electricity generation, while considering carbon emission reduction is

established. A MMD approach is proposed to process the multiple criteria decision

making (MCDM). The proposed approach is compared with the weighted sum (WS)

approach and the divide & conquer (D & C) approach. The case studies of short-

term period and long-term period are given. The system sensitivity is analysed.

Chapter 5

In this chapter, a carbon emission flow model is introduced. The scope of the

presented model is extended by involving DSM interventions. The time sensitivity

of carbon emission is obtained. The effectivenesses of load curtailment and load

shift approaches on the carbon emission reduction are examined.

Chapter 6

In this chapter, the thesis is summarised and potential research directions for

the future are identified.



Chapter 2

Literature Review

2.1 Introduction

Smart grid technology is a powerful tool that facilitates the process of transforming

conventional grids into green systems. It can offer a two-way flow of information

and a two-way flow of electricity. DSM is a vital part of it. In this chapter, DSM is

investigated from various perspectives. First, a general introduction of smart grid

is presented. Second, a brief history and basic concepts of DSM are introduced.

Next, a detailed classification of DR is discussed. Then, state-of-the-art models and

methodologies are explained.

2.2 Smart Grid

Smart grid is defined by the European Technology Platform as [12]

“an electricity network that can intelligently integrate the actions of all

users connected to it - generators, consumers and those that do both -

in order to efficiently deliver sustainable, economic and secure electricity

supplies”.

From 1998 to 2002, the EU’s Fifth Framework Program funded the “renewable

energy and distributed generation in the European power grid integration” project.

Since then, smart grid has been gained great attention at the first time [13]. During

7
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Table 2.1: Summary of the smart grid projects

Number Budgets Organizations Implementation sites

Total: 950 projects Total: Total: 2900 Total: 800 sites

in 50 countries e 4.97 billion organizations in 36 countries

Average project Average: Average: 6 partners Average: 2.2 sites

duration: 30months e 5.75 million per project per project

Involved in more Largest Involved in more Most sites:

than one country: investments: than one projects: DE (140)

324 projects DE,UK, FR 700 organizations ES (95)

the past decades, there have been remarkable achievements in many countries. From

2002 to 2017, a total of 950 smart grid projects have been launched, amounting to

e4.97 billion investments in 50 countries. These projects always involve more than

one country (324 projects are multinational with an average of 14 countries per

project). Among all, 642 projects have been completed with the budget of e2.82

billion, 308 projects are still ongoing with the budget of e 2.15 billion. Largest in-

vestments are from Germany, the U.K. and France. The U.K. government currently

has 197 projects, in which 73 projects are national. The private investment takes up

a large portion in the U.K., accounting for 83% of the total national investment [14].

The detailed information can be found in Table 2.1.

Smart grid is based on the integrated high-speed bidirectional communication

network, on the basis of advanced sensor and measurement technologies, advanced

equipment technologies, advanced control methods, and advanced decision support

systems [12]. It is made up of several parts, divided into: smart power generation

system, smart substation, smart power distribution network, smart interactive ter-

minal, smart scheduling, smart building electricity, smart city power grid, smart

meter, smart appliance, and the new type of energy storage system [15]. Compared

to the conventional power grid, smart grid has following six advantages [16, 17]:

• Based on the strong power grid system and technical support system, it can

tolerate different kinds of external disturbance and attacks, the stability of the
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grid is reinforced and ascended.

• It can obtain a panoramic view of the information, timely discover/foresee the

possibility of failure. When a fault occurs, the grid can quickly isolate the

fault, realize self-recovery to avoid the occurrence of blackouts.

• The control of the grid is more flexible, and can adapt to a large number of

distributed power supplies, micro power grids, and electric vehicles.

• Through the modern management technologies, it can greatly improve the

efficiency of power equipment, and reduce the loss of transmission, making the

operation of the grid is more economical and efficient.

• The highly integrated real-time and non-real-time information sharing and uti-

lization can show a comprehensive and complete grid operation state, there-

fore providing decision supports, control schemes and corresponding response

plans.

• By means of the two-way interactive service mode, the electric power enterprise

can obtain the user’s electricity information in detail, to provide more value-

added service; users can acknowledge the real-time status of the power supply

ability, power quality, price and power outage information, thus can reasonably

arrange the use of electric equipment.

2.3 Demand Side Management

One of the key smart grid technologies is DSM. Electricity demand always fluc-

tuates dramatically during some short time frames. Generally, to meet the de-

mand, a power system adjusts the supply by increasing/decreasing the generation

or adding/curtailing additional resources (e.g., RESs and energy storages) [10]. The

standby generators can incur additional costs on the budget and yield system insta-

bility, and there may still exist a power shortage during the peak period [18]. For

these reasons, the idea of DSM has emerged.
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2.3.1 Definition

The term “demand side management,” also known as “energy demand manage-

ment,” stands for a variety of activities that are related to the energy consumption.

It includes not only the control and modification of the energy usage, e.g., energy

conservation, energy efficiency and energy storage, but also the behaviours that are

involved in these processes, e.g., device installations, policies and regulation formu-

lation, promotion, and education [10].

2.3.2 History

DSM was originated from the energy crises [19]. The first energy crisis (also called

the “first oil shock”) happened in October 1973. During the fourth Middle East War,

the organization of petroleum exporting countries announced the oil embargo and

exports suspension, causing a rise in oil prices. The crude oil prices increased almost

four times from $3 per barrel to nearly $12, which caused the recession in western

developed countries [20]. This situation brought the energy management into public

consciousness. In response to that, the U.S. Congress legislated the National Energy

Act of 1978. As part of it, the National Energy Conservation Policy Act and Power

Plant and the Industrial Fuel Use Act were enacted, which took the energy demand

management into consideration [21].

The second energy crisis in 1979 and the third energy crisis in 1990 speed up

the development of DSM. The outbreak of Iranian revolution and the Iran−Iraq

War caused a sharp drop in crude oil production. The crude oil price increased

dramatically from about $15 in 1979 to $39 per barrel in 1981. Then, the Gulf War

in 1990 also stimulated the international market [22]. To deal with this, the Energy

Policy Act of 1992 was passed. It addressed the importance of energy efficiency,

energy conservation and energy management, and also prompted the use of RESs.

The DSM became well-known to the public in the 1980’s, popularized by the

Electric Power Research Institute [23]. The California electricity crisis in 2001 has

rung alarm bells to the world-wide, which proved the importance and emergency of

the DSM, especially in the electricity market [24]. Since then, the DSM has become
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a hot issue, drawing more and more attention.

2.3.3 Advantages

DSM has an important role in power industry development, energy planning, and

environmental protection. The introduction of DSM can bring the following advan-

tages into the electricity market:

• It can promote an efficient operation of the market and effectively restrain the

market power;

• It can realize instant information exchanges about the supply and demand,

produce more reasonable and transparent transactions, and speed up and im-

prove the formation of an electricity price mechanism;

• It can effectively relieve demand congestion during peak hours and improve

the reliability of power system;

• It can effectively alleviate the investment pressure of power generation, trans-

mission and distribution;

• It can facilitate opening up new prospects for the realization of energy conser-

vation and emissions reduction.

2.4 Demand Response

2.4.1 Definition

DR mainly refers to the actions taken on the customer side that use the market

price to influence the level and time of the electricity demand. According to the

Federal Energy Regulatory Commission, DR is [25]:

“Changes in electric usage by end-use customers from their normal con-

sumption patterns in response to changes in the price of electricity over

time, or to incentive payments designed to induce lower electricity use
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at times of high wholesale market prices or when system reliability is

jeopardized.”

In general, the introduction of DR into power market requires a precondition:

electricity market must achieve tentative liberalization or full liberalization, which

means some kind of real-time market prices and effective market mechanism exist in

the electricity market. Meanwhile, DR will accelerate the formation of the real-time

market pricing mechanism. And with the high penetration of DR into the market,

it can provide economic incentives to promote other projects like energy efficiency

and energy storage in DSM. But DSM does not need this mechanism. Even without

it, DSM can realize some of its projects. At the same time, DSM can fully boost

and amplify the economic effectiveness of DR [26].

2.4.2 Services category

Typically speaking, DR can provide five services to the system: 1) Peak clipping;

2) Valley filling; 3) Load shifting; 4) Strategic conservation and 5) Strategic load

growth [27, 28]. The first three can be grouped as load-shape change, and the last

two can be grouped as load management. Load management is normally related

to deliberate behaviours enforced by utilities. In contrast, the load-shape change

can be both natural behaviors of customers and deliberate behaviors enforced by

utilities [16].

Peak clipping

When the demand approaches the threshold of the supply capacity or the transmis-

sion system approaches the threshold of the thermal requirements, this peak load

demand must be reduced. This can be realized by the direct load control in the resi-

dential sector, e.g., turn low the thermostat of heaters and turn up the temperature

of refrigerators. This can also be achieved by the interruption in the industrial and

commercial sectors. Fig. 2.1 shows a peak reduction from 12 MW to 10 MW during

18:00-20:00. This service can help to release the stress of system during the peak

period. However, because it curtails the consumption of certain loads, it can cause
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dissatisfaction to customers.

Figure 2.1: Demonstration of peak clipping.

Valley filling

When the demand is manifestly low at off-peak time, which is also not favorable for

the system stability, the demand should be increased. The most common method

is to add storage devices, e.g., the thermal storage for heaters and plug-in electric

vehicles. Fig. 2.2 shows a valley filling from 4 MW to 6 MW during 2:00-6:00. This

service increases the total power consumption of customers, but may not significantly

increase the bill.

Figure 2.2: Demonstration of valley filling.
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Load shifting

When the load is apparently higher than the average level in a certain period,

a certain amount of load must be moved from that period to other periods. It

primarily relies on the deferrable appliances, which can justify the time of usage,

e.g., washing machines. In the short term, load shifting can be achieved on a daily

basis from peak time to off-peak time. Fig. 2.3 shows a daily load shifting in which

part of the peak demand is shifted from 18:00-20:00 to 2:00-6:00. It does not reduce

the total consumption, but only changes the time of usage.

Figure 2.3: Demonstration of load shifting.

Strategic conservation

When the overall load exceeds the supply level, customers are encouraged to reduce

the overall consumption. One basic method is to improve the energy efficiency. It

can be applied at a small scale by replacing traditional devices with energy-efficient

devices, e.g., changing filament lamps to fluorescent lamps. It also can be applied

at a large scale, e.g., weatherization program, which is aimed to reduce the energy

bill for low-income families by improving the energy efficiency of their house [29].

Besides the technical improvements, the information supports are also important.

In general, providing consumption and cost details to customers can facilitate the

power reduction. Fig. 2.4 shows strategic conservation from a high power level to a

low level.
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Figure 2.4: Demonstration of strategic conservation.

Strategic load growth

When the demand falls below the normal level of supply, customers are encouraged

to increase the overall consumption. The electrification technology has the potential

for this service, e.g., the popularization of electric vehicles. Fig. 2.5 shows strategic

load growth from a low power level to a high level.

Figure 2.5: Demonstration of strategic load growth.

2.4.3 Customers category

DR is primarily focused on the Customers side. Detailed analysis of customers can

facilitate the understanding and design of it. Generally, customers can be classified

into four sectors: 1) Industrial sector; 2) Residential sector; 3) Commercial sector

and 4) Transportation sector [30]. Fig. 2.6 shows the portion of electricity con-
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sumption about each sector in the U.K. in 2017. As for the DR, industrial sector,

residential sector and commercial sector are mainly concerned.

Figure 2.6: The electricity market share by sectors in the U.K. in 2017 [29].

Residential sector

The usage patterns in the residential sector are more complicated than the other two.

Firstly, the quantity of customers is much higher. The distribution of customers is

wide and scattered. Secondly, the types of appliances used by customers are diverse.

Even for the same type of appliances, the power consumption of different brands

can vary. Thirdly, every customer has his or her own personal preference of usage.

That means each customer needs to be treated specifically rather identically [31].

Customers can be divided into five types based on the rationality [32]: 1) Long-

range customers: their elasticity of electricity is relatively high. They are able to

modify the usage in a wide range of time. 2) Real world-postponing customers:

they consider the current and future electricity prices, and give certain responses

to utilities. 3) Real world-advancing customers: they focus on the past and future

electricity prices, and also give certain responses to utilities. 4) Real world-mixed

customers: they are a combination of both postponing customers and advancing cus-

tomers. 5) Short-range customers: they only pay attention to the current electricity

price. Therefore, they are not willing to change their consumption pattern.
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Industrial sector

It has a high electricity consumption, especially at a high voltage level. In addition,

the peak load of it is significant. However, the adaption of DR in this sector is

challenging [33]. Firstly, the information of the usage pattern and the operation

of the appliances is confidential in some cases. To some extent, It can reflect the

process of the manufacture, which is classified in a few industries. Therefore, the

access to this information is limited. Secondly, even if there is sufficient information,

the modification of electricity usage is still tough because many procedures are time-

sensitive. They require a precise order and duration, which means they are less likely

to be shifted. In this situation, a proper choice for industries is to improve the energy

efficiency.

Commercial sector

The usage pattern in the commercial sector is quite typical and identical. The

common and main loads for commercial customers come from the use of heating,

ventilation, air-conditioning systems and lighting systems. The modification of these

systems is relatively easy. Firstly, in general, these systems are autonomously con-

trolled according to the preset requirements. This makes the systems able to quickly

respond to the DR signals. Secondly, the effect of the external factors, e.g., temper-

ature, humidity, and illumination, to these systems are predictable. For example, a

light system consumes more electricity in winter than in summer [34].

Among these three sectors, the commercial sector and the industrial sector are

relatively easier to realize the DR programs. Commercial and industrial customers

are distributed regionally and intensively, and the power consumption of these cus-

tomers is relatively high. What’s more, the appliances and control systems for these

customers are more advanced. In addition, in case of the emergency, most of these

customers are equipped with the backup on-site generator. These appliances also can

be used as auxiliary facilities of the DR programs [35]. Furthermore, the commercial

and industrial sectors have a larger capacity of potential peak load reduction [36].
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2.4.4 Loads category

Based on the operation characteristics of appliances, the loads can be classified by

two standards: 1) whether the occupied time duration of appliances can be modified

or not; 2) whether the total electricity consumption of appliances can be modified

or not. For the first standard, loads can be divided into deferrable loads and non-

deferrable loads [37]. For the second standard, loads can be divided into adjustable

loads and nonadjustable loads [38].

Deferrable loads and non-deferrable loads

The activation time of deferrable loads can be stopped, re-started, and shifted to

other time slots, e.g., washing machine and electric vehicles. Generally, most of

the wet loads belong to the deferrable loads. These loads can be scheduled by a

DR program. Based on the electricity price or the monetary incentive, they can be

shifted from peak-hour to off-peak hours, therefore reducing the peak load demand

[32]. The modification of these loads needs to abide by the predefined requirements,

e.g., deadlines and operation times. On the contrary, the non-deferrable loads need

to finish the schedule at specified time, e.g., lighting systems and kitchen systems

[39]. These loads do not allow the time shift and interruption. As such, these loads

are not suitable for the DR program.

Adjustable loads and nonadjustable loads

For the adjustable loads, the consumption can be adjusted to a lower level, e.g.,

in winter heaters can be set at 23oC rather than 25oC [40]. Normally, most of

the thermal loads are part of the adjustable loads. These loads can be involved

in the DR program. The total consumption can be brought down on the base of

electricity price or the monetary incentive. However, reducing the consumption can

affect customers’ comfortability described by the quality of experience (QoE) [41].

QoE refers to the valuation of customers’ experiences or satisfaction degree during a

service. When a DR program is designed, this QoE must be taken into consideration

to make sure that the DR program is executable theoretically and practically [42].

In contrast, for the nonadjustable loads, the total consumption is settled, e.g., TVs
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and computers [43]. Same as the non-deferrable loads, nonadjustable loads cannot

be scheduled by a DR program either.

2.4.5 Approaches category

There are a number of motivation methods that encourage customers to participate

in a DR program. These methods can be divided into two groups: time-based DR

and incentive-based DR [44,45].

Incentive-based DR

In these methods, incentives are offered to customers depending on their behaviour in

the DR programs. Normally, customers are voluntary to change their consumption.

However, in some cases, the failure of meeting the requirements will result in a

penalty for customers. Generally, there are five types of incentive-based DR [46]:

1) Direct load control; 2) Interruptible/Curtailable service; 3) Demand bidding; 4)

Capacity market program and 5) Ancillary service market .

• Direct load control: According to the advanced agreement between customers

and utilities, utilities can remotely control some customers’ appliances, e.g.,

air-conditioners and water heaters. The notices of the operation are normally

announced at a short time ahead. To participate in this method, customers

need to be equipped with a remote control switch system so that utilities can

shift, turn on or turn off the appliances [47]. Direct load control is primarily

applied to the residential sector or small-scale commercial sector. It is not

suitable for the industrial sector because the industrial sector needs a precise

process.

• Interruptible/Curtailable service: Compare to the direct load control, this

method is normally applied to the industrial sector and large-scale commer-

cial sector. When the system is congested, customers are asked to reduce

some loads to a certain level. By participating in it, customers can receive a

rate discount or bill discount. However, if customers failed to respond in the
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predefined time period, they could receive a penalty [48]. In this method, the

operation frequency and the duration are limited.

• Demand bidding: Instead of being asked by the utilities to take part in the DR

programs, customers can make decisions by themselves in this method. Based

on the generation and demand situation, utilities announce the total amount

of electricity that must be curtailed. Customers can bid for the amount based

on their own situation and wholesale market. Once the bid is accepted, they

must provide the specified curtailment, otherwise, they will get the penalty

[49]. This method is also suitable for large-scale customers. For small-scale

customers, they can be integrated by aggregators and involved in as a unity.

• Capacity market program: When the system is short of the reserve, customers

are required to reduce the pre-defined consumption. The announcement is

normally released one day ahead. These curtailments are treated as system

capacity to replace the conventional generation and delivery resources. By

proving the ability for the curtailment, customers can get reservation payment.

And by providing the reduction, customers can get an incentive. In contrast,

if they failed to provide it, they could receive a penalty [46].

• Ancillary service market: Similar to the demand bidding, customers also bid

for the electricity curtailments. These bids are offered to independent system

operator/regional transmission organization [46]. These curtailments are used

as the operational reservation. If the bid was accepted, customers need to

abide by a standby standard. In this situation, they are paid by the market

price. Once the curtailments are really called, customers are paid by the spot

price.

Time-based DR

In these methods, electricity prices vary according to the cost of generation and

demand of electricity. Based on these prices and other information, customers can

decide their consumption. Generally, there are four types of pricing schemes [35]:
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1) Flat pricing; 2) Time-of-use (ToU) pricing; 3) Critical peak pricing and 4) Real

time pricing .

• Flat pricing: This is the most traditional and widely used price scheme. The

electricity price is constant all the time. In this situation, the only way to

reduce the bill is to reduce the total consumption. The prices can be designed

seasonally. Within a season, it is fixed. And for another season, a different

price is used.

• ToU pricing: It is an improvement from flat pricing. The prices are different

in different time slots. Within each slot, a flat price is applied. Fig. 2.7 shows

an example of ToU pricing. Usually, prices are pre-defined for one day [35]. In

this scheme, customers tend to shift their demand to a lower price period. In

this way, the ability to reduce the total electricity demand is narrowed. For

example, in the U.K., an Economy 7 tariff is applied in some area. It offers a

cheap electricity price for the off-peak time, typically the night. This off-peak

time lasts 7 hours in total, as the “7” implied, normally from 0:00 to 07:00.

The price for day-time is higher, around 13-16p per kWh, while the price for

night-time is lower, around 5-7p per kWh. This tariff was first introduced

in 1978. To apply for the Economy 7, customers need to be equipped with

a particular meter that can show two different readings: one for day-time

electricity consumption and the other for night-time electricity consumption.

• Critical peak pricing: This scheme is derived from the ToU pricing scheme.

The extreme peak demand period is picked out. During this period, a much

higher electricity price is announced [31]. Fig. 2.8 shows an example of critical

peak pricing. This scheme can effectively bring down the peak demand [31].

The critical peak price can be designed by the demand level or the time of the

day. Three types of pricing are considered: fixed-period critical peak pricing,

variable-period critical peak pricing and variable critical peak pricing. For

fixed-period critical peak pricing, a specific period in one day is selected and a

fixed high electricity price is applied based on the experience accumulation. For

variable-period critical peak pricing, the application period is not fixed. The
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Figure 2.7: Demonstration of ToU pricing.

utilities can choose to trigger the critical peak pricing based on the pre-defined

criteria. In this situation, the operation frequency and duration are limited.

For variable critical peak pricing, the period is fixed, but the electricity price

can vary on the basis of the current demand situation [50].

Figure 2.8: Demonstration of critical peak pricing.

• Real time pricing: The electricity price fluctuates frequently, normally by

hours. Fig. 2.9 shows an example of real time pricing. The change of price

can indicate the relationship between supply and demand in the wholesale

market [51]. It requires effective two-way communication between utilities
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and customers. Sometimes, market aggregators also take part in this scheme

to deal with the data collection and speed up the efficiency. Customers are

involved mostly in this scheme and notified of these prices in a day-ahead man-

ner, hour-ahead manner or 15-minutes ahead manner. Based on the price and

the own situation, customers can decide their consumption pattern. Based on

the total generation situation, total demand situation and customers reactions

for the former price, utilities can decide the prices for the next period. This

scheme is more acceptable by the industrial and commercial sectors than by

the residential sector. There are two main difficulties for the application of

this scheme. Firstly, it relies on continuous real-time data exchange, which

is not favorable for customers [35]. Secondly, the large-scale data processing

increases the complexity of the whole system [44].

Figure 2.9: Demonstration of real time pricing.

2.5 Review of the Existing Theories, Models, and

Methodologies

In this section, state-of-the-art models and methodologies are reviewed. The role

of DR aggregator in electricity market is introduced at first. Then, the economic

and environmental scheduling of electricity generation is presented. After that, the

carbon emission tracing in power system is provided.
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2.5.1 Demand response aggregator in electricity market

Although the development of DSM has a great future, the application of it is still

a challenging task. If the generation side directly communicates with customers,

there will be numerous information exchanges, which can delay the system response

time. Meanwhile, the generation side is designed for large scale. The effect of

individual’s pattern is almost negligible to the system. The generation side is not

able to negotiate directly with each customer. In this context, an intermediary/

representative is needed [52,53].

Figure 2.10: Functionality of the DR aggregator in a power grid [54].

Aggregator, as the name implies, bundle a group of customers into a cluster,

therefore becomes an important aspect to the grid and occupies a certain weight

in the trade [54]. As shown in Fig. 2.10, DR aggregator can bring several benefits

into the system [55]. For distribution system operators (DSOs), it can achieve peak-
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load shaving and distributed generation (DG) supply optimization; For retailers, it

can help with the internal portfolio balancing; For the market, it can deliver day-

ahead/hour-ahead optimization, frequency control and power reservation [56,57]. In

the U.K., DR aggregator is a booming entity. It is allowed and supported by the

government in the power network. There are already many DR aggregators exist

in the market from different companies, e.g., U.K. Power Reserve Ltd; KiWi Power

Ltd; Npower Ltd; ESP Response Ltd [58].

The interactions between the generation side and the DR aggregator can be

categorised into two different types:

• Mutual interaction: The network information is provided by the generation

side in advance, DR aggregator then acts as a retailer buying electricity energy

in the day-ahead market biding on the bulk and price of it.

• Directed interaction: The generation side announces that power adjustment re-

quirement in the particular time slot, DR aggregator then attempts to achieve

the goal, and if so, being rewarded by the generation side.

To introduce the aggregator into the system, a two-stage market model was

proposed in [59]. For the first stage, the utility acted as the leader, setting the

price for buying a certain power capacity from aggregators at particular time slot.

Aggregators acted as followers, determining the supply capacity. The tatonnement

process was used to achieve the equilibrium. For the second stage, aggregators acted

as leaders, setting the price for buying power capacity from customers. Customers

acted as followers, determining the supply capacity. The supply function bidding

was used to maximize aggregators’ profit. This work was designed for a certain time

period and mainly focus on the aggregators’ side.

In [60–63], the time horizon was extended. The dynamic electricity price over

time was implemented in [60, 61]. The aggregator would give rewards to customers

if they schedule their appliances according to the signal. The appliances were cate-

gorized into shiftable loads, thermal loads and interruptible loads. A mixed integer

linear programming and a heuristic allocation algorithm were proposed to maximize

aggregators’ profit [60], and minimize the overall energy cost while considering cus-
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tomers’ QoE [61]. The critical peak pricing was applied in [62]. The aggregator

decided the time to employ the critical peak price. The regulatory, economic and

technical perspectives of critical peak price were examined. In [63], the aggregator

coordinated the regulation service on supply side and the DR service on consumer

side. The regulation service could have a frequent control but a relatively slow up-

date, while the DR service could have a quick response but could not change the

control repeatedly. A multi-rate model predictive control approach was used to the

capture the imbalance. When the imbalance occurred, an indirect signal was given,

and then the DR aggregator solved a quadratic problem at each time slot.

In [52, 64, 65], a layered settlement mechanism was proposed. In [64], the inde-

pendent system operator was at the first layer, announcing the power curtailment

requirement in advance. The aggregator was at the second layer, committing to

achieve the target. Customers were at the third layer, bidding their ancillary ser-

vices to the aggregator. With the precondition of meeting the curtailment require-

ment, the mechanism aimed at minimizing customers’ supply function, that is the

incurred disutility minus the compensation. The model in [52] included the utility,

DR aggregators, and customers. The utility provided rewards to aggregators for

providing DR services, and customers can receive monetary compensation from DR

aggregators for their demand adjustment. In [65], the aggregator was an agent, com-

municating with transmission system operator and residential storage space heating.

It helped customers to minimize the electricity payment and maximize the bonus.

In [66, 67], the concept of virtual power plant was mentioned, which gathering

distributed energy resources (DERs) to make them more manageable when partic-

ipating in the real-time operating system. In [66], a direct load control approach

was applied to schedule thermostatically controlled appliances in the virtual power

plant, for the purpose of minimizing the demand. The aggregator bided the load

reduction capability to electricity market, assisting the reduction of congestion and

deviation between generation and demand. In [67], the aggregator provided services

to the primary and secondary reserve markets. It could continuously modify the

operation schedule of appliances to maximize the portfolio. This could solve the

restriction issues of energy limitations and inaccurate baselines information in the
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virtual power plant.

In [68], the aggregator provided variety of DR strategies for consumers and DR

service punchers. The aim of the aggregator was to maximize its profit. For cus-

tomers, the aggregator implemented a ToU electricity price and a stepwise reward

price for the load reduction. For DR service purchasers, the aggregator offered a

fixed DR contract and an optional DR agreement. In fixed DR contract, the aggre-

gator would provide a certain amount of load curtailment for a given time period.

In optional DR agreement, the aggregator would provide the service only if it is

profitable. The case study on the Australian national electricity market showed

that the uncertainty on power consumption had a significant effect on the strategy,

and should be considered. Therefore, the research in [69] took this uncertainty into

consideration, a wind power offering strategy was proposed. A bi-level problem was

formulated. The decision maker for the upper-level problem was wind power pro-

ducer, setting its DR price. The decision maker for the lower-level problem was

the DR aggregator, determining its market share. This problem is then linearised

into a single level problem and be solved. And in [70], uncertainties were detailed

classified, that caused by power demand, customers preferences, external environ-

mental conditions, house thermal requirements and wholesale market. The Monte

Carlo simulation method was applied to model these uncertainties. The DR aggre-

gator represented customers to bid energy in the market. Customers were willing

to modify their consumption profile according to the electricity price, in which the

distribution locational marginal price in a real-time distribution market was used.

In [71–73], multiple utilities were involved, and the role of DR aggregator that

balances the generation and demand was studied. Utilities aimed to maximize the

profit, while customers aimed to maximize their individual welfare. A Stackelberg

game was established based on that to solve the problem. In [73], utilities were

divided into two types, fossil-fuel based and RESs based. The uncertainty of supply

was considered. A utility selection program which can minimize customers’ costs

was proposed.
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Research Challenges

In [61,64,65], only the objective for customers was considered. In [62,63,67,70], the

role of the DR aggregator was involved, but the utility function was not explicit.

Only benefits for the generation side and the customer side were considered, while

the benefit for the DR aggregator was neglected. In [52,60,64,70], only the conven-

tional generation was considered. In [66, 71–73], the inconvenience caused by DR

program for customers was not detailed. A day-ahead demand planning with DR

aggregators integrating RESs is proposed in Chapter 3 to address these challenges.

2.5.2 Economic/Environment scheduling of electricity gen-

eration

The fuel source scheduling of electricity supply plays an important role in the sus-

tainable development. The analysis of fuel sources usage of electricity generation

can elementally mitigate the carbon emission from the very beginning. A great num-

ber of researches were carried out on that [74–76]. Fig 2.11 illustrates the general

structure of fuel source scheduling problems [77,78].

In the beginning, only the economic scheduling of generation was considered.

It was used to dispatch the committed generators’ outputs so as to meet the load

demand most economically. It mainly focused on minimizing the generation cost

or maximizing the generation profit under variety system operation constraints.

Amount of approaches were introduced, such as non-linear programming [79], se-

quential quadratic programming [80], hierarchical decentralized method [81], particle

swarms algorithm [82] and genetic algorithm [83].

However, with the rising concerns of climate change and air pollution, the simplex

consideration of economic scheduling was not enough. Utilities were requested to

gradually reduce the carbon emission from power plants [84, 85]. Diverse strategies

were proposed and discussed for the environmental protection, such as installing

post combustion cleaning equipment, switching to low emission fuels, replacing the

aged fuel burners with cleaner ones, and emission dispatching [86]. The most direct

way to quantify and regulate the carbon emission in electricity generation was the
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Figure 2.11: Structure of fuel source scheduling problems [76,77].
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last strategy. The pure emission scheduling was similar to the economic scheduling,

with the objective to be minimized being emission instead of generation cost. But

still, this approach was onefold for the system.

The basic way to take both economic and environmental aspects into consid-

eration was to set the carbon emission as a constraint for the scheduling problem,

which leads to an emission constrained economic scheduling problem [87–89]. In [87],

the total generation cost was minimized with a pre-specified carbon emission limit.

In [88], two scenarios were analysed. The first scenario modelled cost function in

a quadratic form. And the second scenario modelled cost functions in the form of

quadratic summed with a sine term, in order to incorporate the valve-point effect

for actual power system operation. The second scenario showed a higher cost than

the first one. In [89], the total generation profit was maximized while fulfilling elec-

tricity demands and carbon emission mitigation. The financial risk of uncertainties,

i.e. carbon emission mitigation operating costs, carbon credit prices and electricity

prices, were imposed to the objective function by a penalty factor. The case study

suggested replacing petroleum-fired power plants with coal-fired ones in Korea. And

nuclear plants showed a great potential for the future market. But these work only

took the carbon emission as a constraint, therefore can not reveal the relationship

between generation cost and carbon emission.

Another simple way to involve both economic and environmental aspects was to

combine these two objectives into one single objective, which brings the concept of

environmental/economic scheduling. In [90–92], these two objectives were linearly

combined. In [92], the emission constrained economic scheduling problem was com-

pared with the economic emission scheduling problem. In the second problem, the

total carbon emission was taken as an individual objective. For the first problem,

as the total carbon emission allowance increased, the total power generation and

profit were increased. For the second problem, an emission control cost factor was

introduced to assign the weight between emission function and fuel costs function.

As the importance of carbon emission increased, the total power generation and

profit were decreased. However, in these approaches, the priori weight/preference

need to be given between the generation cost and carbon emission.
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The multi-objective optimization can treat these two objectives separately and

competitively [78,93–98]. Several approaches were implemented to acquire the trade-

off curve, such as the differential evolution algorithm [93], artificial bee colony al-

gorithm [94], nondominating sorting genetic algorithm [95], and strength pareto

evolutionary algorithm [96]. In [99], the influence of energy price on the eco-

nomic/environmental scheduling was studied. In [100], instead of taking the total

emission as one objective, different types of emission were modelled individually. In

this case, four objectives were considered: minimization of fuel cost, minimization

of nitrogen emission, minimization of carbon emission and minimization of sulphur

emission. This model could provide the targeted schedule for specific emission re-

quirement. In [101], three power plants, i.e., gas-fired power plant, petroleum-fired

power plant, and coal-fired power plant, were considered as major carbon emission

sources. In each power plant, two mitigations methods, i.e., carbon capture and

storage and carbon emission trading, were used to reduce the amount of carbon

emission. The environmental aspect of generation was represented by an emission

cost function, which is the sum of emission trading cost and facility cost. The model

can determine where and how much electricity to be generated and distributed in

the Korea. In [97], a small autonomous hybrid power system was examined. The

life cycle analysis of system’s components was used to calculate the carbon emission.

Two energy storage technologies, i.e., lead-acid batteries and hydrogen tanks, were

considered. It showed that large sizes of biodiesel-fuelled generators would lead to

less carbon emission and higher cost, while large sizes of diesel-fuelled generators

would lead to vice verse. Natural gas was not recommended due to its high cost

and high carbon emission. Lead-acid batteries were preferred than hydrogen tanks

for both economic and environmental aspects.

Besides, the smart grid innervations and RESs supported policies can benefit the

carbon emission reduction. The policy about RESs and carbon emission reduction

was presented in [102]. The importance of DSM for carbon emission reduction was

demonstrated in several aspects [78, 103–105]. In [103], a unit commitment model

was presented, considering the electric vehicle, DR, DG as well as carbon emission

trading. The impacts of DR and carbon emission trading were analysed in the
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model. The total cost and the total emission decreased obviously by applying DR.

Generators with low emission intensity and DR approaches were more likely to be

dispatched if carbon emission trading was carried out. In [78], compromise pro-

gramming was used to provide the possible operational strategy for the distributed

energy system while considering both objectives. The effects of electricity buy-back,

carbon tax and fuel switching were analysed as well. The consideration of envi-

ronmental aspect suggested a larger share of DERs, and resulted in a lower carbon

emission and higher generation cost. When the electricity buy-back was introduced

to the system, the share of DERs was increased. While the introduction of car-

bon tax had marginal impact on the system, unless it is extremely high. Moreover,

switching from gas to bio source brought a great effect on environmental. In [104],

the price-based and quantity-based measures considering RESs utilization and car-

bon mitigation were studied. The quantity-based measure could effectively reduce

demand and stimulate energy efficiency, while the price-based measure was highly

influenced by the price of carbon certificate or carbon allowance. And in both cases,

nuclear was the suggested source to meet both RESs and carbon emission require-

ment. In [105], three DR resources, i.e., schedulable load, electric vehicle batteries

and autonomous microgrid were involved in the power system. Carbon emission

trading was used to encourage customers to participate in carbon emission quotas.

Carbon emission would reduce in quantity with the application of DR resources and

carbon emission trading. Generation side, power system operator and demand side

were all benefited from it.

Research Challenges

These articles mainly focused on the performance of the generation side. Even

if DSM approaches were mentioned, the consumers’ involvement and the QoE on

demand side were not included. The consumers’ behaviour is pivotal to the power

supply, and need to be considered as well. A fuel sources scheduling scheme, which

considering the economic, environmental, and social aspects, is proposed in Chapter

4 to address these challenges.



2.5. Review of the Existing Theories, Models, and Methodologies 33

2.5.3 Carbon emission flow in power network

The carbon footprint from generation to consumption varies spatially and tempo-

rally. Hence, it presents a challenge to accurately estimate the carbon intensity from

the electricity aspect. The assessment of carbon emission has an important impact

on both evaluating the potential of smart grid technologies and formulating policies

for carbon emission reduction [85].

The common carbon emission quantification methods were production-based.

One basic method was to calculate emission factors [9,106]. These factors depended

on the type of fossil fuel used and can be derived from historical data or experi-

ments. Another method was to use life cycle assessment, which traces the whole

lifetime of carbon emission from raw materials to final combustion [107,108]. A few

of research paper explored the carbon emission assessment based on these methods,

while considering smart grid intervention. In [109], the major low-carbon technolo-

gies in power systems were investigated, including DSM, low-carbon generation tech-

nologies, utilization of low-carbon energy and low-carbon power scheduling. These

factors were subsequently evaluated quantitatively through an assessment model.

In [110], energy conservation and carbon reduction performance are investigated,

by dividing the power value chain into upstream, midstream and downstream. The

upstream was related to energy supply, the midstream was related to energy conser-

vation and the downstream is related to energy utilization. In [111] the electricity

grid carbon factor was calculated based on historical data. And the ensemble based

closed-loop optimization scheme was applied to estimate the carbon savings in smart

grids.

Even though the majority of the carbon emission is produced at generation side,

the electricity demand is the key that affects the supply. The understanding of

the relationship between consumption and carbon emission is important. There-

fore, consumption-based emission analysis was proposed. Marginal emission factor

(MEF) was an effective tool for estimating incremental changes in carbon emission

as a result of the change in demand [112, 113]. In [112], the linear regression coef-

ficients of change in total emission rate versus the change in total system demand

were calculated to estimate the MEF. The effect of demand-side interventions was
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studied based on the U.K. case. In [113], a method to estimate MEF in power sys-

tems based on merit order dispatch was illustrated. It revealed how MEF estimation

would change with different fuel price. In [114], the concept of consumption mix

was put forward. It can provide a more accurate information of demand in life cycle

assessment. A transportation linear programming model was implemented, to pro-

vide further analysis of carbon emissions estimation considering interstate electricity

exchange. In [115], the comparison of three different methods for accounting carbon

emissions intensity was presented, that is measuring carbon at the sites of electricity

production, electricity consumption and integrated approach. However, these meth-

ods were based on either the observed historical utilization factor of generators or a

set of possible criteria for activation of each plant in the system.

Based on this, in [116–118] a carbon emission flow (CEF) model to quantify

the carbon emission accompanying the power delivery process was proposed. It can

virtually allocate the emission from generation side to consumption side, specific to

each component in the network. Hence, the transmission characteristic of electricity

supply and locational energy mix was clearly reflected.

Research Challenges

These articles mainly considers the conventional generation process rather than the

contributions of smart grid intervention. Therefore, there are still obstacles in the

investigation of the carbon flow tracing method considering smart grid intervention.

The effectiveness of DSM approaches on the carbon emission reduction by using

carbon flow tracing method is analysed in Chapter 5 to address these challenges.

2.6 Chapter Summary

This chapter gave a brief introduction of the smart grid and DSM at first. Next,

the DR was explained in detail on the basis of the services category, customers

category, loads category, and control category. Then, existing system models were

introduced, focusing on the DR aggregator, economic/environmental scheduling and

carbon emission tracing.



Chapter 3

Day-ahead Demand Planning with

Demand Response Aggregators

3.1 Introduction

DSM plays an important role in smart grids. In this chapter, a hierarchical day-

ahead DSM model is proposed. The model involves three participants: the utility,

including RESs, the DR aggregator, and customers. The utility seeks to minimize

the operation cost and gives part of the revenue to the DR aggregator as a bonus.

The DR aggregator acts as an intermediary, receiving the bonus from the utility and

giving compensation to customers for modifying their energy usage pattern. The aim

of the DR aggregator is maximizing its net benefit. Customers desire to maximize

their social welfare, i.e., the received compensation minus the dissatisfactory level.

To achieve these objectives, a MOP is formulated. An AIA is used to solve this

problem, leading to an optimal solution set. Using a selection criterion, the solution

which does not favour any particular participant can be selected, to ensure the

overall fairness. Simulation results confirm the feasibility of the proposed method:

the utility can reduce the operation cost and the power PAR; the DR aggregator can

make a profit for providing DSM services; and customers can reduce their bills. After

that, the system sensitivities are examined. Both the sensitivity to perturbation of

optimal variables and system coefficients are analysed. It shows that even there are

perturbations to the system, the proposed method can still work out an optimal

35
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solution. With different system coefficients, the system performance would change

accordingly. Overall, the main contributions of this chapter can be summarized as

below:

• A novel DSM scheme is proposed. For utility, the inherent intermittent prob-

lems of RESs can be addressed. For the DR aggregator, it is modelled as an

independent participant. The role and the revenue of it are analysed. For cus-

tomers, the social welfare is considered, i.e., the received compensation minus

the dissatisfactory level caused by the DSM.

• The U.K. actual daily data of electricity generation and demand from Grid

Watch are applied to prove the feasibility and effectiveness of the proposed

model.

• The system sensitivity to perturbations and coefficients are examined.

The chapter is organized as follows. Section 3.2 introduces a hierarchical model

for the day-ahead market, which includes the utility, the DR aggregator and cus-

tomers. Section 3.3 formulates a MOP, and proposes the AIA and selection criterion.

It can work out a Pareto optimal set and select an optimal solution. Section 3.4

provides a practical case study. Section 3.5 presents the system sensitivity analysis.

Finally, Section 3.6 concludes this chapter.

3.2 System Model

In this chapter, the day-ahead market is considered and a hierarchical framework

is introduced. This framework can help to define the specific role and goal of each

participant, and make the system transparent. The system operation model is shown

in Fig. 3.1. The utility is at the upper layer to supply electricity; the DR aggregator

is at the middle layer to communicate with both the utility and customers; customers

are at the lower layer to consume electricity provided from the utility [52,61].
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Figure 3.1: System operation model.

3.2.1 The role of the utility

In the electricity market, the daily demand of electricity fluctuates with the time

according to customers’ behaviour. What’s more, the time-varying nature of RESs

causes indeterminacy problems to the electricity supply. In order to balance the

demand and the supply, generation side needs to adjust the production, activate

the standby power plants, or even purchase power from third parties [119,120]. The

term PAR is introduced to describe the stability of the system [121]:

PAR =
Peak Load

Average Load
. (3.2.1)

The cost of generation consists of two parts: conventional generation cost and

maintenance cost of RESs. For the conventional generators, the cost function c(·)

should follow the listed three assumptions based on practical situation [71, 73, 122,

123]. A quadratic equation, which satisfies all assumptions, is considered to present

the cost function in this chapter.

• Assumption 1: The total generation cost should correspondingly increase as
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the total supplied electricity increased. Therefore, the cost function should be

monotonically increasing,
∂c(x)

∂x
> 0. (3.2.2)

• Assumption 2: The marginal cost should be positive to the total supplied

electricity. The marginal cost means the incremental cost of each new unit of

production. Therefore, the cost function should be strictly convex,

∂c2(x)

∂x2
> 0. (3.2.3)

• Assumption 3: There exists a differentiable function f(x) with x ∈ [0 +∞),

in which, f(x) ≥ 0 holds true for all x and as x → ∞, f(x) → ∞. And the

function c(x) can be expressed as

c(x) =

∫ x

0

f(z)dz. (3.2.4)

For RESs, as there is no expense for resources, the marginal cost is nearly

zero [124]. The generation cost is mainly caused by the maintenance. Thus the

cost function cres(·) is simplified as a constant value and independent of supplied

electricity [125]. (Note: The installation of conventional generators and RESs gen-

erators are not considered.)

Let q denotes the selling price of per unit electricity. For the day-ahead market,

the daily generation vectors are gc = {gct : t ∈ T} for conventional generators and

gres = {grest : t ∈ T} for RESs. The utility aims to maximize the net revenue.

Without the use of DSM, the objective of the utility can be given by

max
gc,gres

:
∑
t∈T

ql0t − [
∑
t∈T

c0(gct ) +
∑
t∈T

cres(grest )] (3.2.5)

where l0t denotes the aggregated consumption at time slot t without the DSM, c0

and cres denote the generation cost for conventional generators and RESs without

the DSM, respectively. There are four general constrains for power system that need

to be considered.

• Power balance constraint: the power generated should be able to cover the

demand requirement and the real power loss in the transmission,

grest + gct = lt + losst. (3.2.6)
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• Power capacity constraint: the power generated by each method must be

restricted in certain limits,

grest,min 6 grest 6 grest,max, gct,min 6 gct 6 gct,max (3.2.7)

where grest,max and gcont,max denote the maximum power can be provided from

RESs and conventional generators, grest,min and gcont,min denote the minimum initial

power from RESs and conventional generators, respectively.

• Ramp rate constraint: if the generator remains operated in successive time,

change of power generation should be restrained in a proper range, either the

ramp up rate or the ramp down rate [113].

gct − gct−1 6 gup, as generation increases

gct−1 − gct 6 gdown, as generation decreases
(3.2.8)

where gt denotes the generation output for the current time slot, gt−1 denotes

the generation output for the previous time slot, gdown and gup denote the

power ramp down limit and power ramp up limit, respectively.

• Spinning reserve constraint: in case of the emergency situation, the power

system requires an operating reserve capacity,

grest,max + gct,max ≥ lt + S (3.2.9)

where S is the spinning reserve requirement.

When the DSM is applied to customers, the peak demand and the total genera-

tion cost could be reduced to a certain degree. In this chapter, the DR aggregator

is considered as the operator to implement the DSM. The utility will be willing to

share part of the saved cost as a bonus to the DR aggregator as an incentive. The

bonus can be calculated as [52]

fbon(gct ) = ∆c(gct ) = µ
∑
t∈T

[c0(gct )− c1(gct )] (3.2.10)

where c1 denotes the generation cost for conventional generators with the DSM, and

µ ∈ (0, 1] denotes the bonus coefficient.
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In order to ensure the basic needs, there is no curtailment in demand. The flat

price is chosen in this chapter, therefore the total revenue from customers is fixed.

The aim of the utility can be defined as minimizing the operational cost. Hence, the

objective function of utility becomes

min
gc

: fu(gc) =
∑
t∈T

[
c1(gct ) + ∆c(gct )

]
(3.2.11)

s.t. : grest + gct > lt, grest,min 6 grest 6 grest,max, gct,min 6 gct 6 gct,max,

grest,max + gct,max ≥ lt + S, gct − gct−1 6 gup or gct−1 − gct 6 gdown.
(3.2.12)

The first term of (3.2.11) corresponds to the generation cost for conventional gen-

erators, and the second term corresponds to the bonus given to the DR aggregator.

3.2.2 The role of the demand response aggregator

As stated before, it is difficult for the utility to give full consideration of each cus-

tomer. On this occasion, the DR aggregator can group a number of individual

customers into a cluster for the purpose of carrying more weight in the market. The

DR aggregator acts as a mediator between the utility and customers. It undertakes

dual responsibilities: on the one hand, ensuring the DSM service can be provided

to the utility, therefore obtaining the bonus; on the other hand, guaranteeing there

will be a reduction in the electricity bill for customers, encouraging customers to

actively participate in the DSM program. By performing the duty, DR aggregator

can help with the security and efficiency of the supply.

The DR aggregator tries to adjust customers’ consumption pattern to smooth

the peak and follow the generation pattern. The ideal scenario is the demand com-

pletely following the generation. Because of the participation of DSM, customers

can receive compensation from the DR aggregator for the inconvenience it may

cause. The compensation scheme depends on the difference between the aggre-

gated consumption vector l1 = {l1t : t ∈ T} and the generation expectation vector

g = {gt : t ∈ T}. Suppose the expected power from conventional generators is a

constant value G at each time slot, and the generated power from RESs is time-
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varying represented by gres = {grest : t ∈ T}. Thus, the expected generation vector is

g = {gt = G+ grest : t ∈ T}. To make demand follow supply, the difference between

generation and consumption should be reduced. A compensation function fcom(·) is

introduced at that point to promote the DSM. There are four assumptions for the

compensation function that need to be considered [52,122].

• Assumption 1: The compensation should always be nonnegative,

fcom(x) ≥ 0. (3.2.13)

• Assumption 2: The total compensation should correspondingly increase as the

total difference between generation and consumption decreased. Therefore, the

compensation function should be monotonically decreasing,

∂fcom(x)

∂x
< 0. (3.2.14)

• Assumption 3: The marginal compensation should be negative to the total

difference between generation and consumption. Therefore, the compensation

function should be strictly concave,

∂f 2
com(x)

∂x2
< 0. (3.2.15)

• Assumption 4: When the consumption totally follows generation, the com-

pensation should be maximum,

if lt = gt, fcom = fmax
com . (3.2.16)

A quadratic equation, which satisfies all assumptions, is modelled as the compensa-

tion in this chapter [52].

fcom(l1t ) =
∑
t∈T

[
−α
(
l1t − gt

)2
+ β

]
(3.2.17)

s.t. : α > 0, β > 0, (3.2.18)

where α and β are compensation coefficients.
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The objective of the DR aggregator is to maximize its net payoff. Since the aggre-

gator receives the bonus from the utility and provides compensations to customers,

the objective function can be given by

max
gc,l1

: fa(g
c, l1) =

∑
t∈T

{µ∆c(gct )− [−α(l1t − gt)2 + β]} (3.2.19)

s.t. : α > 0, β > 0, l1t > 0 ∀t ∈ T, lt,min 6 l1t 6 lt,max. (3.2.20)

The first term of (3.2.19) corresponds to the received bonus from the utility, and

the second term corresponds to the compensation to customers.

3.2.3 The role of customers

Typically, customers intend to consume electricity on the basis of their most conve-

nience, causing a peak demand around 17:00 to 22:00 and a valley demand around

0:00 to 6:00 [126]. As explained before, a single customer’s behaviour is trivial to

the system, a group of customers is organized as a cluster. The reference aggregated

electricity demand at the time slot t is defined as l0 = {l0t : t ∈ T}, and the total

demand for one day is
∑

t∈T l
0
t = L.

Smart meters can provide customers with detailed information about their elec-

tricity consumption. By equipping them, customers can have a comprehensive

understanding of their usage. And customers are assumed to be price-sensitive.

With the financial incentive, they are willing to modify their consumption pattern

by adjusting deferrable appliances to some extent. After the negotiation with the

DR aggregator, the aggregated consumption vector becomes l1 = {l1t : t ∈ T}, and∑
t∈T l

1
t ≥ L. (Note: The energy conservation approach is not considered.)

Clearly, DSM would cause inconvenience on customers’ daily life. The incurred

discomfort should be considered. It depends on the difference between the actual

consumption and the reference consumption. There are three assumptions that need

to be satisfied for the dissatisfactory function fdis(·) [52].

• Assumption 1: The dissatisfactory level should correspondingly increase as

the difference between the actual consumption and the reference consumption
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increased. Therefore, the dissatisfactory function should be monotonically

increasing,
∂fdis(x)

∂x
> 0. (3.2.21)

• Assumption 2: The marginal dissatisfactory level should be positive to the

total incurred difference. Therefore, the dissatisfactory function should be

strictly convex,
∂f 2

dis(x)

∂x2
> 0. (3.2.22)

• Assumption 3: When the actual consumption is same as the reference con-

sumption is zero, there is no dissatisfactory caused for customers,

if l1t = l0t , fdis = 0. (3.2.23)

Hence the dissatisfactory function should be increasing convex and can be modelled

by a quadratic equation [52]

fdis(l
1
t ) = ε

(
l1t − l0t

)2
, (3.2.24)

s.t. : ε > 0, lt,min 6 l1t 6 lt,max, (3.2.25)

where ε is the inelasticity coefficient of demand. For different customers, ε is different

as a matter of the appliance used and personal preference. A relatively small ε illus-

trates the demand-insensitive that consumption modify will cause an insignificant

discomfort; Otherwise, a relatively large ε characterizes the consumption modifica-

tion will result in a greatly dissatisfactory. The objective of customers is to maximize

their social welfare. The problem thus can be formulated as

max
l1

: fc(l
1) =

∑
t∈T

{[−α(l1t − gt)2 + β]− ε(l1t − l0t )2} (3.2.26)

s.t. : α > 0, β > 0, ε > 0, lt,min 6 l1t 6 lt,max,
∑
t∈T

l1t > L. (3.2.27)

The first term of (3.2.27) corresponds to the received compensation from the DR

aggregator, and the second term corresponds to the dissatisfactory level.
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3.3 Methodology - Artificial Immune Algorithm

In this section, a MOP is formulated for maximizing the benefits of all participants.

An AIA is then proposed to solve the problem. To stabilize the normal operations of

the electricity market, it is important to maintain the fairness among all participants.

3.3.1 Problem formulation

To maintain fairness, three objectives are considered. The objective of utility is

to minimize the operation cost, i.e., the generation cost plus the bonus to the DR

aggregator. The objective of the DR aggregator is to maximize the net income, i.e.,

the bonus from the utility minus the compensation to customers. The objective of

customers is to maximize the social welfare, i.e., the compensation from the DR

aggregator minus the dissatisfactory level. By considering the day-ahead market,

the resultant MOP can be formulated as

min
gc

: fu(gc) =
∑
t∈T

[
c1(gct ) + µ∆c(gct )

]
(3.3.28)

min
gc,l1

: −fa(gc, l1) =
∑
t∈T

[−µ∆c(gct )− α
(
l1t − gt

)2
+ β] (3.3.29)

min
l1

; −fc(l1) =
∑
t∈T

[
α
(
l1t − gt

)2 − β + ε
(
l1t − l0t

)2]
(3.3.30)

s.t. : grest + gct > lt, grest,min 6 grest 6 grest,max, gct,min 6 gct 6 gct,max,

grest,max + gct,max ≥ lt + S, gct − gct−1 6 gup or gct−1 − gct 6 gdown,

lt,min 6 l1t 6 lt,max,
∑
t∈T

l1t > L, fa(g
c, l1) > 0, fc(l

1) > 0,

(3.3.31)

which is solved hourly. An additional function fr(x) is introduced to simplify several

constraints in (3.3.31).

fr(g
c, gres, l1) =

∑
[max(−fa(gc, l1), 0) + max(L−

∑
t∈T

l1t , 0)

+ max
(
−fc(l1), 0

)
+ max

(
l1t − grest − gct , 0

)
]

(3.3.32)
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The constraints hold true if and only if fr(x) = 0. Using (3.3.32), the resulting

MOP can be written as:

min
gc,l1

: F (gc, l1) =
[
fu(gc), −fa(gc, l1), −fc(l1)

]
(3.3.33)

s.t. : fr(g
c, gres, l1) = 0, grest,min 6 grest 6 grest,max, gct,min 6 gct 6 gct,max,

gct − gct−1 6 gup or gct−1 − gct 6 gdown, lt,min 6 l1t 6 lt,max.
(3.3.34)

If the MOP is feasible, there should be a possible consumption schedule satisfying

all the requirements. To address the process, Pareto optimality is used [127].

Definition 1 (Pareto optimality): A state of allocation procedure, in which

it is impossible to improve one participant’s situation without making at least one

participant’s situation worse.

Definition 2 (Pareto dominance): For a strategy set with H as the minimum

objective function, each vector in the set means a possible strategy. For two different

vectors u and k, k is Pareto dominated by u if H(u)i ≤ H(k)i holds true for all i

and at least one inequality exists, where i is the ith element of objective vector.

It means the strategy u can make at least one participant better without making

anyone worse than the strategy k .

Definition 3 (Pareto optimal solution): A strategy u is a Pareto optimal

solution if u is feasible and there are no other strategies dominate it.

Definition 4 (Pareto set): The collection of Pareto optimal solutions is termed

a Pareto Set.

Definition 5 (Pareto front): When plotted in the objective space, the image

of Pareto set is termed Pareto Front.

Fig. 3.2 shows an example of a Pareto set and a Pareto front. Every point in

the decision variable space can map to a point in the objective function space. The

Pareto set is in the decision variable space, and the Pareto front is in the objective

function space. Fig. 3.3 shows an example of Pareto optimality of a minimization

problem. In Fig. 3.3, all points are assumed to be feasible. Point N is dominated

by point P and point Q. With the same objective value of f1, point P can provide a

smaller objective value of f2 than point N . Similarly, with the same objective value
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Figure 3.2: Example of a Pareto front.

Figure 3.3: Example of a Pareto optimality.
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of f2, point Q can provide a smaller objective value of f1 than point N . For points

P and Q, they are not dominated by others. A Pareto front can then be obtained

by collecting all nondominated points.

3.3.2 Algorithm

To attain the Pareto set for the proposed problem, the AIA can be used [127–129].

The AIA is originated from the theory of immunity system in biology, which is an

efficient self-defense system to prevent foreign antigens or pathogens [130]. The AIA

is a global search method that uses an iterative process. It has been approved that

the AIA is abele to generate a well-distributed set of solutions, and can be effectively

used to solve MOP [131,132]. It is globally convergent, thus can avoid catching the

local optimal [133]. Compared to traditional search algorithms, AIA is easy to use,

robust, fast and suitable for parallel processing. In using the AIA, the terminology

antibody is used to describe the point in the decision variable space.

Fig. 3.4 shows a flowchart of the AIA algorithm used to solve the MOP in

(3.3.33). The antibody p represents the decision variables gc and l1 in the MOP.

A group of antibodies are first randomly generated over the interval [Pmin, Pmax]

following the uniform distribution, where Pmin and Pmax are the minimum and

maximum values of the decision variables, respectively. Dominated antibodies are

removed gradually. Next, gene operation is applied to the nondominated antibod-

ies. The antibodies then mutate in order to produce a diversified population. The

dominated antibodies are removed as well. After that, the condition fr(p) = 0 is

used to eliminate the infeasible antibodies. If the population size is still too large,

the antibody population update operation will be adopted till the population size

reduces to Nnom. The above process repeats until the maximum number of iteration

is reached. At this stage, a Pareto optimal set is obtained. According to the selec-

tion criterion, the fittest antibody is chosen as the output, which can maximize the

minimum improvement in all dimensions. This solution can maintain the fairness,

and does not favour any particular participants. Detailed search steps are described

as follows.

• Step 1: Generate the initial population of antibodies randomly at the nominal
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Figure 3.4: Flowchart of the AIA algorithm.
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size. Let nc = 0 and

A(0) = {p1, p2, p3, ...pnom} (3.3.35)

where nc denotes the iteration time, Nnom denotes the nominal population size,

A(.) denotes the antibody set, and pi is a random vector from [Pmin, Pmax].

• Step 2: Remove dominated antibodies and maintain the nondominated anti-

bodies.

• Step 3: Mutate the remaining nondominated antibodies. The current popula-

tion size is

Np(nc) = ‖A(nc)‖ . (3.3.36)

Define the clone rate as

r (nc) = b Nmax

Np(nc)
c (3.3.37)

where r (nc) denotes the current clone rate, and b.c is a floor function. The

clone and mutation operation is implemented to each element p in the set

A(nc), according to the equation

pji = θpi + (1− θ)p′

i (3.3.38)

where pji denotes the mutated antibody, θ is randomly chosen from [0, 1], and

p
′
i is a random vector belonging to [Pmin, Pmax]. Through the mutation, a new

set of antibodies is produced

C =
{
p11, p

2
1, ..., p

r(nc)−1
1

}
∪
{
p12, p

2
2, ..., p

r(nc)−1
2

}
∪ ... ∪

{
p1Np(nc), p

2
Np(nc), ..., p

r(nc)−1
Np(nc)

}
.

(3.3.39)

Let A(nc) := A(nc) ∪ C.

• Step 4: Repeat Step 2, and remove the dominated antibodies from the new

population.

• Step 5: The remaining antibodies are all nondominated, but not all of them

are feasible. The antibodies with fr(p) > 0 are not applicable for the MOP

formulated in this paper. The antibodies with the largest fr(p) will be removed
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first. If fr(p1) > fr(p2) > 0, then p1 is removed first. The process continues

until the condition fr(p) = 0 holds true for all antibodies.

• Step 6: After Step 4 and Step 5, if the population size is still larger than the

nominal size, the antibody population update procedure needs to be applied

to normalize the antibodies. For a crowded region, a fitness value is allocated

to antibodies

ffit(pn) =
J∑

j=1

F (pn)j − F (pn−1)j

F nc,up
j − F nc,low

j

(3.3.40)

where J is the number of objectives, F nc,up
j = max

p∈A(nc)
F (p)j and F nc,low

j =

min
p∈A(nc)

F (p)j [127]. The antibody with the smallest fitness value will be removed

first. If ffit(p1) > ffit(p2), then p2 is removed first. The procedure stops when

the current population size is no large than the nominal size. It is noted that

this procedure will not be carried out for extreme vectors in F (P ), where

extreme vector means at least one element in this vector reaches its extreme

value, i.e, F (p′) is an extreme vector if there exists j such that F (p′)j =

maxp∈A(nc) F (p)j or minp∈A(nc) F (p)j.

• Step 7: Let nc = nc + 1 and A(nc + 1) = A(nc). Repeat Step 3 to Step 7, until

nc = nmax.

• Step 8: As the iteration counter nc increases gradually, A(nc) forms an ap-

proximate Pareto optimal set (APS). All vectors in it are possible solutions

to F (P ). A solution that can maximize the minimum improvement in all

dimensions is selected as the output [127]. This output can guarantee the

fairness among all participants rather than give advantage to one particular

participant. The criterion can be written as

p? = arg max
p∈A(nmax)

min
j=1...J

F up
j − F (p)j

F up
j − F low

j

(3.3.41)

where F up
j = max

p∈A(nmax)
F (p)j and F low

j = min
p∈A(nmax)

F (p)j. The denominator

F up
j − F low

j means the objective domain of jth objective. The numerator

F up
j − F (p)j means the improvement of jth objective that the solution p can

provide. The equation min
j=1,...,J

Fup
j −F (p)j

Fup
j −F low

j
means the minimum improvement of J
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objectives that solution p can provide. Therefore, the selected p∗ represents

the solution that can maximize the minimum improvement in all dimensions

among all possible solutions.

3.4 Simulation Results

In this section, the practical case studies are presented. The simulation is conducted

by using the software MATLAB. The modelled system consists of one utility, one DR

aggregator and one cluster of customers. The utility manages 2500 wind turbines

with the rating of 2.75MW, which is simplified by considering the average wind

turbine output rate and the total wind generation capacity in the U.K. [6]. In

the day-ahead market, a calendar day is equally divided into 24 time slots, i.e.,

T = 24 hours. The U.K. actual electricity generation and demand daily data from

Grid Watch, and the wind speed data from Wind Finder is fed into the model. The

U.K. average electricity price 0.13 £/kWh is applied.

For conventional generators, the cost function is given as [134]

c(gct ) = 1.2(gct )
2 + 3gct + 2 M£/GWh. (3.4.42)

For RESs, wind power is considered. The wind speed v in m/s can be predicted

in advance. The output power w in MW can be calculated based on v by the

equation below

w = σ(τ, ψ)
ρς

2
v3 (3.4.43)

where the performance coefficient σ(τ, ψ) can be calculated from experiential arith-

metic, based on the blade tip speed ratio τ and blade pitch angle ψ. The air density

and swept area are set as ρ = 1.225 kg/m3 and ς = 1257 m3 [135].

Fig. 3.5 shows the relationship between the output power and wind speed. The

rated wind speed and maximum wind speed are specified as: vrate = 15 m/s and

vmax = 30 m/s. When vt > vmax, vt = 0, since the extremely fast speed will produce

an undesirable large moment on the blade, which may damage the wind turbine, so

the turbine will be forced to stop for safety. When vrate < vt < vmax, vt = vrate, since

the turbine is already fully operated when the wind speed reaches the rated speed.

Even with a faster wind speed, the turbine is not able to generate more power.
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Figure 3.5: The wind turbine output performance [130].
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Figure 3.6: The wind turbine output for the selected day.
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Fig. 3.6 shows the predicted wind power output gres for the day-ahead market.

It fluctuates dramatically during one day. A number of factors, e.g., air pressure,

temperature, jet streams, humidity, Rossby waves, weather and season, can influence

the wind speed and, therefore, influence the output power. The electricity generated

from wind turbines will be consumed first. The remaining electricity demand will

be satisfied by the conventional power generators.

For the utility, the bonus coefficient µ = 0.7 in (3.2.10) has been set, indicating

70% of the DSM gain will be given to the DR aggregator.

For the DR aggregator, the compensation strategy is defined as [52]

fcom =
∑
t∈T

[−2(l1t − gt)2 + 80]. (3.4.44)

For customers, it is assumed 10% of the load profile can be deferred with lt,max =

1.1lt and lt,min = 0.9lt. The dissatisfactory function is assumed as

fdis = 3(l1t − l0t )2. (3.4.45)

Using the AIA, the approximate Pareto front (APF) and the APS for the day-

ahead market model can be generated. Fig. 3.7 gives an example of the APF. It

illustrates the trade-off between three objectives. These benefits of three participants

are mutually associated, interacted and restricted. For a solution p, if an arbitrary

element yields an extreme objective value F (p)j = F up
j or F (p)j = F (p)lowj , it means

this solution advantages a particular participant, and is not favoured by the market.

To ensure the fairness, an optimal solution p∗ can be chosen by using (3.3.41), which

can maximize the minimum improvement in all dimensions. As shown in Fig. 3.7,

the selected optimal solution p∗ is located in the centre of the APF graphically. This

means all objectives can be balanced improved. It proves that through the proposed

multiobjective approach, a fair design can be obtained.

Fig. 3.8 shows the optimized load profile and the reference load profile in the

U.K. for the selected day, 5th May 2017. The optimized load profile is more gentle

than the referenced one. It is clearly shown that after the optimization, during the

off-peak time (i.e., 0:00-5:00), the demand increases. While during the peak-time

(i.e., 16:00-21:00), the demand decreases. That is, part of the demand is shifted

from peak time to the off-peak time.
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Figure 3.7: The APF for the proposed MOP.
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Figure 3.8: The optimized usage pattern for the day-ahead market.
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Fig. 3.9 shows the net conventional generation in the U.K. for the selected day,

5th May 2017. The net conventional generation becomes flatter after the optimiza-

tion. Because the peak demand is decreased, the peak generation is also reduced

from 30.21 GW to 29.22 GW, about 3.3%; while the valley generation is increased

from 19.46 GW to 20.13 GW, about 3.4%. This can indicate a more stable genera-

tion system. And the generation cost can be accordingly saved.
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Figure 3.9: The net conventional generation for the day-ahead market.

The utility, the DR aggregator, and customers can benefit from using the pro-

posed approach. The detailed information can be found in Table. 3.1 below. For

that day, the utility can save £ 44418 for the generation cost, about 0.15% of the

total generation cost. The PAR is reduced about 1.7%, from 1.182 to 1.162. By

providing the DSM, the DR aggregator can make a profit of £ 96893. For customers,

the electricity bill can be cut down by £ 1098 in total.

3.5 Sensitivity Analysis Results

A feasible approach should be general and robust when dealing with various sit-

uations. In this section, sensitivities of the approach are analysed. The system

performances are studied for two kinds of scenarios, one scenario is when there are

perturbations to variables, and the other one is when system coefficients change.
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Table 3.1: Comparison of the reference and the optimal system performance

System performance Referenced

profile

Optimized

profile

Improvement

or Difference

Total generation(GWh) 723.193 723.235 0.01%

Average generation(GW) 30.133 30.135 0.01%

PAR 1.182 1.162 1.7%

Generation cost (M£) 29.609 29.565 0.15%

Bonus to DR aggregator (£) – 96893 –

Compensation to customers (£) – 1098 –

3.5.1 Sensitivity to perturbations

Firstly, the sensitivity of the optimal solution to perturbations of the variables is

examined. It provides how robust the optimal strategy is when the consumption

vector deviates from the suggested. Four case studies are conducted. The first two

cases consider situations when there are deviations between the estimated and actual

benchmark consumption vector. The remaining two cases consider situations when

the optimal solution cannot be fully operated as designed.

• Case 1 A normal distribution perturbation with the mean of 0 and the standard

deviation of 0.5, in the unit of GW, is added to the benchmark consumption

vector l0. The optimized usage pattern is shown in Fig. 3.10, and detailed

system information is listed in Table. 3.2.

• Case 2 A normal distribution perturbation with the mean of 0 and the standard

deviation of 1, in the unit of GW, is added to the benchmark consumption

vector l0. The optimized usage pattern is shown in Fig. 3.11, and detailed

system information is listed in Table. 3.2.

• Case 3 A normal distribution perturbation with the mean of 0 and the standard

deviation of 0.5, in the unit of GW, is added to the optimized consumption

vector l1. The original optimal usage pattern and disturbed optimal usage

pattern are shown in Fig. 3.12, and detailed system information is listed in



3.5. Sensitivity Analysis Results 57

Table. 3.3.

• Case 4 A normal distribution perturbation with the mean of 0 and the standard

deviation of 1, in the unit of GW, is added to the optimized consumption vector

l1. The original optimal usage pattern and disturbed optimal usage pattern

are shown in Fig. 3.12, and detailed system information is listed in Table. 3.3.
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(a) The optimized usage pattern for the day-ahead market in Case 1.
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(b) The net conventional generation for the day-ahead market in Case 1.

Figure 3.10: The comparison of optimization results and benchmark in Case 1.

In Case 1, the utility can save £ 43911 for the generation cost. The PAR is

reduced about 1.4%, from 1.175 to 1.159. The DR aggregator can make a profit of

£ 97407. For customers, the electricity bill can be cut down by £ 1055 in total. In

Case 2, the utility can save £ 42833 for the generation cost. The PAR is reduced

about 2.9%, from 1.219 to 1.183. The DR aggregator can make a profit of £ 97338.

For customers, the electricity bill can be cut down by £ 1091 in total. Case 1 and

Case 2 prove if the system cannot have accurate information of the benchmark load

profile l0, the optimal strategy can still find a solution. All participants can still

benefit from it and the power system can still have a better performance.
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(b) The net conventional generation for the day-ahead market in Case 2.

Figure 3.11: The comparison of optimization results and benchmark in Case 2.

Table 3.2: Results of the system performance in Case 1 and Case 2

Case1 Case 2

Load profile Referenced Optimized Referenced Optimized

Total generation (GWh) 723.479 725.503 725.761 725.770

Average generation (GW) 30.145 30.229 30.240 30.240

PAR 1.175 1.159 1.219 1.183

Generation cost (M£) 29.609 29.565 29.609 29.566

Bonus to DR aggregator (£) – 97407 – 97338

Compensation to customers (£) – 1055 – 1091
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Figure 3.12: The comparison of original optimal and disturbed optimal results in

Case 3 and Case 4.

Table 3.3: Results of the original optimal and disturbed optimal system performance

in Case 3 and Case 4

Optimal Strategy Original Case 3 Case 4

Total Generation (GWh) 723.235 724.723 725.618

Average Generation(GW) 30.135 30.197 30.234

PAR 1.162 1.170 1.176

Generation Saving (£) 43282 40523 38702

Bonus to DR aggregator (£) 96893 96372 94758

Compensation to Customers (£) 1098 1088 1087
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In Case 3, the utility can save £ 40523 for the generation cost. The PAR is

reduced about 1.0%, from 1.182 to 1.170. The DR aggregator can make a profit of

£ 96372. For customers, the electricity bill can be cut down by £ 1088 in total. In

Case 4, the utility can save £ 38702 for the generation cost. The PAR is reduced

about 0.51%, from 1.182 to 1.176. The DR aggregator can make a profit of £ 94758.

For customers, the electricity bill can be cut down by £ 1087 in total. Case 3 and

Case 4 prove if the actual consumption deviates from the optimal l1, the system can

still have a better performance than the benchmark. But compared to the original

optimal solution, the disturbed solutions have slightly worse levels of performance

in all aspects. And the larger the disturbance, the more deterioration of the system

performance. This encourage all participants to follow the original optimal plan as

close as possible.

3.5.2 Sensitivity to coefficients

Secondly, the sensitivity of the system performance to system coefficients is exam-

ined. It reveals interactions of three objective functions. Three system coefficients,

which relates to optimization variables, are analysed in a certain range: the bonus

coefficient µ, the compensation coefficient α, and the inelasticity coefficient of de-

mand ε.

Sensitivity to bonus coefficient µ

The bonus coefficient µ indicates how would utility share the cost saving with the

DR aggregator, where µ ∈ (0, 1]. When µ = 0, it means there is no bonus to the DR

aggregator, therefore indicates no DSM is implemented in the system. When µ = 1,

it means the utility does not focus on the cost saving from DSM, but concerns the

improvement of power system. To analyse it, the bonus coefficient µ is increased

from 10% to 100% by the step of 10%, and other coefficients remain the same as

stated in Section 3.4.

Table 3.4 shows the detailed beneficial of three participants. It is clear that, as µ

increases, the utility’s saving decreases, while the DR aggregator’s profit increases.

However, the bill reduction for customers does not change apparently with µ, which
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Table 3.4: The system performance with the change of bonus coefficient µ

µ Utility’s Saving(£) Aggregator’s profit(£) Bill Reduction(£)

10% 133257 8057 1098

20% 118471 22873 1096

30% 103025 37628 1100

40% 88845 52075 1098

50% 73992 67271 1101

60% 59227 82087 1097

70% 44418 96893 1098

80% 29631 111785 1100

90% 14813 125848 1096

100% 0 141328 1099

means the bonus coefficient would not influence customers’ behaviour. Therefore

the demand profile would not change apparently with µ, neither does the generation

schedule. So µ only reflects the interaction between the utility and the DR aggrega-

tor, while the power system would not respond to it. If µ increases, it simply implies

the utility is willing to share more of the cost saving to the DR aggregator. Even if

the utility gives out all the cost saving, it could not boost the market and result in

an improvement of the power system.

Sensitivity to compensation coefficient α

The compensation coefficient α indicates how would the DR aggregator encourage

customers to involve in the DSM, where α > 0. To analyse it, the compensation

coefficient α is increased from 0 to 10, and other coefficients remain the same as

stated in Section 3.4. Between the range of 0 to 1, the coefficient is increased by the

step of 0.2, while between the range of 1 to 10, the coefficient is increased by the

step of 1.
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Figure 3.13: The system performance with the change of compensation

coefficient α
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Fig. 3.13 shows the detailed beneficial of three participants and the power system

PAR. At the same level of demand adjustment, a larger α means a less compensation

would be paid to customers. At the same amount of compensation, a larger α means

a higher level of demand adjustment from customers is needed. As α increases, cus-

tomers’ bill reduction decreases. Between the range of 0.2 to 1, the utility’s saving

and the DR aggregator’s profit increases, while the power PAR decreases. The drop-

ping of PAR indicates the extent of demand shift from peak time to off-peak time

is raising. Between the range of 1 to 10, the utility’s saving and the DR aggrega-

tor’s profit decreases, while the power PAR increases. The raising of PAR indicates

the extent of demand shift from peak time to off-peak time is dropping. Based on

simulation results, paying less to customers would not help the DR aggregator to

increase its net profit. To promote the normal operation of the market, a suitable

compensation rate should be designed.

Sensitivity to inelasticity coefficient ε

The inelasticity coefficient ε indicates how would customers react to the inconve-

nience that caused by the DSM, where ε > 0. The inelasticity coefficient is related to

customers’ preference and the installed appliance. To analyse it, the compensation

coefficient µ is increased from 1 to 10 by the step of 1, and other coefficients remain

the same as stated in Section 3.4.

Fig. 3.14 shows the detailed beneficial of three participants and the power system

PAR. At the same level of demand adjustment, a larger ε means customers are more

sensitive, that a higher level of inconvenience would be caused. The inelasticity

coefficient varies for customers. For the extreme case, some customers are mainly

focused on the QoE and would resist to the demand adjustment. As ε increases, the

utility’s saving, the DR aggregator’s profit and bill reduction decrease, while PAR

increases. When the inconvenience caused by the DSM is significant, customers are

reluctant to take part in the market, thus the DSM is hard to implement. In this

situation, the adjustable ability of demand is restricted, and the system improvement

is limited.
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Figure 3.14: The system performance with the change of inelasticity coefficient ε
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3.6 Chapter Summary

This chapter proposed a hierarchical framework for the electricity market. The

framework consisted of the utility, the DR aggregator, and customers. The role of

the DR aggregator was defined as an intermediary communicating with both the

utility and customers. The modelled system led to a MOP, which can be solved by

the AIA. Through the proposed AIA, the APS was obtained. After that, a Pareto

optimal solution was selected that maximizes the minimum improvement in all di-

mensions. The simulation results showed that all participants can benefit from the

proposed design: the utility can reduce the generation cost and the power PAR;

the DR aggregator can make a profit by providing DSM service; customers can save

money on their bill. Even if there were perturbations to the system, the proposed

approach can still work out an optimal solution. As the bonus coefficient µ increased,

the DR aggregator’s net income also increased, while the utility’s generation cost

saving decreased. As the compensation coefficient α increased, customers’ bill re-

duction decreased. When the power PAR decreased, the utility’s saving and the

DR aggregator’s profit increased, and vice verse. As the inelasticity coefficient ε in-

creased, the utility’s saving, the DR aggregator’s profit and customers’ bill reduction

decreased, while the power PAR increased.



Chapter 4

Power Generation Scheduling and

Operational Policy Making

4.1 Introduction

To effectively achieve the carbon emission reduction, a system model is established in

this chapter, which consists of policy makers, utilities and consumers. Policy makers

aim for minimizing the carbon emission, and making sure a certain penetration of

RESs is reached. Utilities try to maximize the net profit of electricity supply, on

the premise of system stability. Consumers seek to minimize the electricity bill, and

receive an acceptable quality of electricity service. This model leads to a MOP. After

obtaining the APF, a MMD approach is proposed to select the final solution. This

proposed method is then compared with existing approaches, i.e., the WS approach

and D & C approach. The case studies of short-term period and long-term period are

presented. These case studies prove that these three approaches can work out a same

solution. But the proposed MMD approach does not require priority information

before selection, and does not need to differentiate objective functions, which make

it can be widely used. The selected solution in short-term period case study suggests

reductions in the use of coal and gas, while raises in nuclear and wind. For long-term

period case study, the use of wind, nuclear and bioenergy are suggested to take the

dominant status, while the use of coal, oil and gas are negligible. Then, system

sensitivities to several coefficients are analysed. Overall, the main contributions of

66
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this chapter can be summarized as below:

• Besides economic and environmental aspects of the electricity generation, the

participation of consumers is introduced in the system model.

• A MMD approach is proposed to process the MCDM, compared with D & C

approach and WS approach.

• The practical U.K. case studies are conducted to illustrate the proposed model

and approach. The generation plans for both short-term period and long-term

period are presented.

• The impact of carbon tax and Renewable Obligation on carbon emission, gen-

eration cost and electricity bill are examined. These can reveal the proper

strategy for deciding RESs and carbon emission related policies.

The chapter is organized as follows. Section 4.2 introduces a system model,

which includes policy makers, utilities and customers. Section 4.3 illustrates the

proposed MMD approach for MCDM, compared with D & C approach and WS

approach. Section 4.4 provides the comparative analysis among three approaches.

Section 4.5 presents the simulation results. Section 4.6 tests the system sensitivity.

Finally, Section 4.7 concludes this chapter.

4.2 System Model

In this section, the system operational model is introduced. The framework is

presented in Fig. 4.1. Policy makers set the carbon allowance and the RESs re-

quirement. Utilities provide the electricity to consumers, and carry out the carbon

emission reduction. They also encourage consumers to participate in DSM programs.

Consumers use the electricity and are involved in the energy market [52].
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Figure 4.1: The system operation model.

4.2.1 The role of policy makers

The role of policy makers is to ensure the carbon emission reduction and stable the

energy market. They support all kinds of emission reduction approaches, and enact

a series of obligations. The Renewable Obligation for utilities is one of them, for the

sake of promoting the utilization of RESs [136]. It sets the minimum penetration

requirement of RESs, defined as R. If utilities can not meet the requirement, they

need to pay for the substandard part. The extra generation cost fro, due to the

Renewable Obligation, can be calculated as

fro(gi, gi,r) =

 0
∑n

i=1 gi,r∑n
i=1 gi

> R

h
∑n

i=1(Rgi − gi,r)
∑n

i=1 gi,r∑n
i=1 gi

< R
(4.2.1)

where gi denotes the generation from source i, gi,r denotes the generation from

RESs, and h denotes the price for each unit of the generation that does not meet the

Renewable Obligation, which also known as the renewable energy certificate [136].

Besides the Renewable Obligation, policy makers also have the right to formulate
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the carbon tax. The carbon tax is imposed on the total amount of carbon emission.

The total carbon tax levied from utilities can be calculated as

fct(si) = m
n∑

i=1

siei (4.2.2)

s.t. : smin ≤ si ≤ smax (4.2.3)

where ei denotes the coefficient that transfers the fuel usage into the carbon emission,

si denotes the fuel usage of source i, m denotes the carbon tax rate, smin and smax

denote the minimum and the maximum capacity for source i, respectively.

Clearly, the aim of policy makers is to minimize the carbon emission rather than

maximize the tax collection. By adjusting the fuel sources used for generation, the

total carbon emission can be reduced. Hence, the objective function of policy makers

can be defined as

max
s1i

: fp(s
1
i ) =

n∑
i=1

s0i ei −
n∑

i=1

s1i ei (4.2.4)

s.t. smin ≤ s0i , s
1
i ≤ smax (4.2.5)

where s0i and s1i denote the fuel usage before and after generation adjustment, re-

spectively. The first term corresponds to the benchmark carbon emission, and the

second term corresponds to the carbon emission after generation adjustment.

4.2.2 The role of consumers

As stated in Chapter 3, consumers are assumed to be price-sensitive and would

participate in the DSM. The total electricity demand before and after the DSM

is defined as d0 and d1, respectively. According to the extent of carbon emission

reduction owing to the DSM program, consumers can receive compensation as an

incentive. The compensation can be calculated as

fcom(d1) = α(fe(d
0)− fe(d1))2 (4.2.6)
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s.t. : α > 0, dmin ≤ d0, d1 ≤ dmax (4.2.7)

where α denotes the compensation coefficient, dmin denotes the minimum demand

that need to be met, dmax denotes the maximum demand that can be provided,

and fe(·) denotes the CEF function which will be introduced in next chapter. The

CEF function can virtually allocate the carbon emission that caused by generation

to specific consumers.

Also as stated Chapter 3, the inconvenience caused by the DSM can be described

as a dissatisfactory function. The incurred dissatisfactory depends on the level of

demand change [52]. The dissatisfactory function can be modelled by a convex

quadratic equation as

fdis(d
1) = ε(d0 − d1)2 (4.2.8)

s.t. : ε > 0, dmin ≤ d0, d1 ≤ dmax (4.2.9)

where ε denotes the dissatisfactory inelasticity coefficient, which represents con-

sumers’ personal favour.

The aim of consumers is to maximize their bill reduction, thus paying least.

Hence, the objective function of consumers can be defined as

max
d1

: fc(d
1) = d0q − [d1q − α(fe(d

0)− fe(d1)) + ε(d0 − d1)2] (4.2.10)

s.t. : α, β > 0, dmin ≤ d0, d1 ≤ dmax (4.2.11)

where q denotes the price of per unit electricity. The first term corresponds to the

original electricity bill, and the second term corresponds to the current electricity

bill.

4.2.3 The role of utilities

The basic responsibility of utilities is to provide electricity to consumers. Due to the

restriction of carbon emission allowance, utilities are suggested to adjust their gener-

ation method from preference method. Therefore, the generation cost is constituted

of two parts: the basic cost of fuel sources fbas(·) and the additional operating cost

fope(·) because of generation adjustment. These two costs can be calculated as
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fbas(gi) =
n∑

i=1

bigi, gi = uisi (4.2.12)

fope(gi) =
n∑

i=1

γ(g0i − g1i )2 (4.2.13)

s.t. : γ > 0, gi,min ≤ g0i , g
1
i ≤ gi,max (4.2.14)

where bi denotes the basic cost of source i, ui denotes the coefficient that transfers the

fuel usage si into the electricity generation gi, γ denotes the additional operating cost

coefficient, gi,min and gi,max denote the minimum and maximum generation capacity

for source i, respectively. Except these two costs, the aforementioned carbon tax

and extra cost due to the Renewable obligation should be included. Thus, the total

generation cost fgene before and after adjustment can be calculated as

fgene(g
0
i ) =

n∑
i=1

(big
0
i +ms0i ei) + fro(g

0
i , g

0
i,r) (4.2.15)

fgene(g
1
i ) =

n∑
i=1

[big
1
i + γ(g0i − g1i )2 +ms1i ei] + fro(g

1
i , g

1
i,r) (4.2.16)

s.t. : γ > 0, gi,min ≤ g0i , g
1
i ≤ gi,max. (4.2.17)

On the condition of securing an adequate supply, the aim of utilities is to max-

imize their net profit. The net profit can be described as the difference between

received electricity bill from consumers and total generation cost. Hence, the objec-

tive function of utilities can be defined as

max
g1i

: fu(g1i ) = [d1q − fgene(g1i )]− [d0q − fgene(g0i )] (4.2.18)

s.t. : γ > 0, gi,min ≤ g0i , g
1
i ≤ gi,max,

n∑
i=1

g1i > d1. (4.2.19)

The first term corresponds to the net profit after generation adjustment, and the

second term corresponds to the original net profit.
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4.2.4 Problem formulation

Based on the described model, a MOP can be formulated. Three objectives are con-

sidered here. Firstly, policy makers try to maximize the carbon emission reduction.

Secondly, consumers try to maximize their bill reduction while considering the QoE.

Thirdly, utilities aim to maximize the net profit increment. These objectives result

in a MOP as below

min
s1i

: −fp(s1i ) =
n∑

i=1

(s1i ei − s0i ei) (4.2.20)

min
d1

: −fc(d1) = [d1q − α(fe(d
0)− fe(d1)) + ε(d0 − d1)2]− d0q (4.2.21)

min
g1i

: −fu(g1i ) = [d0p− fgene(g0i )]− [d1p− fgene(g1i )] (4.2.22)

s.t. : α, ε, γ > 0, dmin ≤ d0, d1 ≤ dmax, gi,min ≤ g0i , g
1
i ≤ gi,max,

fp(s
1
i ) > 0, fc(d

1) > 0, fu(g1i ) > 0,
n∑

i=1

g1i > d1.
(4.2.23)

A forth function is proposed to simplify constraints in (4.2.23). It can ensure all

constraints are strictly satisfied, if and only if fr = 0 holds true.

fr(d
1, s1i , g

1
i ) =

∑
[max(d1 −

n∑
i=1

g1i , 0) + max(−fp(s1i ), 0) + max(−fu(g1i ), 0)

+ max(−fc(d1), 0)]

(4.2.24)

The resultant MOP can be summarized as

min
g1i ,s

1
i ,d

1
: f(g1i , s

1
i , d

1) =
[
−fp(s1i ), −fc(d1), −fu(g1i )

)
] (4.2.25)

s.t. fv(g
1
i , d

1, s1i ) = 0. (4.2.26)
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4.3 Multiple Criteria Decision Making Process

The AIA introduced in Section 3.3.2 is used here to proceed the Pareto optimization.

Every vector in APS represents a Pareto optimal solution for the MOP. The selection

of a final solution is proceeded by the MCDM. The MMD approach is proposed

for MCDM, because of its advantageous properties [137]. The WS approach [138]

and D & C approach [139], which are two of the most basic and simplest MCDM

approaches [140, 141], are also presented for comparison. he detailed explanations

are presented in the following sections.

Generally, there are three types of MCDM: before, during, and after the opti-

mization process [142,143]. In this chapter, the third type is applied and the MMD

approach is proposed [137].

For a MOP f(x) in (4.3.27), the APS in (4.3.28) and APF in (4.3.29) can be

available by using AIA.

m
x
in f(x) = {fj(x); n = 1, 2, ..., J} (4.3.27)

APS = {xm; m = 1, 2, ...,M} (4.3.28)

APF = {f (xm) ;m = 1, 2, ...,M} (4.3.29)

where J denotes the number of objectives, x denotes the vector of decision variables,

and M denotes the number of vectors in APS and APF.

The vector lies in the knee region of the APF is considered as the final solution.

To simplify the explanation, a MOP with two minimum objective functions and

eight vectors in APS, i.e., J = 2, M = 8, is shown in Fig. 4.2. Comparing x1

with x2, it can be seen that x1 provides a smaller value of f2(x) and a larger value

of f1(x) than x2. The difference of f1(x) between x1 and x2 is significant, while

the difference of f2(x) between x1 and x2 is insignificant. This means x2 can give

a remarkable improvement in f1(x) while a unremarkable regression in f2(x) than

x1. Therefore, between the trade of two objectives, x2 is preferred to the MOP. By

evaluating the performance of all vectors from x1 to x8, x5 is selected as the final
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solution, which is also known as the knee solution. The process of finding the knee

solution by aforementioned approaches is detailed explained in following sections.

Figure 4.2: An example of the knee solution.

4.3.1 Minimum Manhattan distance approach

Firstly, the MMD approach is introduced. The MMD approach is able to find the

solution which can minimize the Manhattan distance from a normalized ideal vector.

The normalized ideal vector I is defined as

I = {ij; j = 1, 2, ..., J} (4.3.30)

ij =
min fj(x)

max fj(x)−min fj(x)
.

The MOP f(x) in (4.3.27) can also be normalized as a new MOP g(x) in (4.3.31)

min g(x) = {gj(x); j = 1, 2, ..., J} (4.3.31)

gj(x) =
fj(x)

max fj(x)−min fj(x)
.
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The vector x∗ in (4.3.32) has the MMD to the normalized ideal vector

x∗ = arg min
x∈APS

‖g(x)− I‖1 (4.3.32)

‖g(x)− I‖1 :=
J∑

j=i

|gj(x)− ij| (4.3.33)

where ‖ ‖1 denotes the Manhattan norm/Taxicab norm, := denotes the assignment

operator.

In the geometric way, the process for a problem with two objectives can be

presented in Fig. 4.3. A parameter r is defined as

r = ‖g(x)− I‖1. (4.3.34)

A rhombus with centre in I and radius of r is inserted. The r is enlarged until there

is a nonempty intersection with the normalized APF, the minimum value of r can

be achieved and the solution x∗ can be obtained

rmin = min
x∈APS

‖g(x)− I‖1 . (4.3.35)

Generally, the MMD approach has following advantages [137]:

• First, it does not require underlying information before selection, thus the

heuristic subjective priority can be avoided.

• Second, it does not need to differentiate objective functions, thus can be widely

used in various cases.

• Third, it has a rich geometric and algebraic interpretation.

4.3.2 Weighted sum approach

Secondly, the WS approach is introduced. According to the importance of each

objective, the decision maker gives each objective function a corresponding weight

coefficient. Then objectives are linearly combined into a new objective that can be

used to solve the MOP.



4.3. Multiple Criteria Decision Making Process 76

Figure 4.3: Demonstration of MMD approach to MCDM.

For the MOP f(x) in (4.3.27), a coefficient ωj is assigned to each objective

function, then a new problem h(x) in (4.3.36) is formulated. The solution x∗∗ in

(4.3.38) is the solution for the new problem h(x), which is also the solution for f(x).

min h(x) =
J∑

j=1

ωjfj(x) (4.3.36)

s.t. ωn ≥ 0,
J∑

j=1

ωj = 1 (4.3.37)

x∗∗ = arg min
x∈APS

h(x) (4.3.38)

In the geometric way, the process for a problem with two objectives can be

presented in Fig. 4.4. A parameter b is defined as

b =
J∑

j=1

ωjfj(x). (4.3.39)

A line is inserted and moved in a direction of decreasing value of b. When there

is no nonempty intersection with the APF, the minimum value of b can be achieved
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and the solution x∗∗ can be obtained

bmin = min
x∈APS

J∑
j=1

ωjfj(x). (4.3.40)

Figure 4.4: Demonstration of WS approach to MCDM.

4.3.3 Divide & Conquer approach

Thirdly, the D & C approach is introduced. The basic idea of D & C approach is

recursively decomposing a problem of size J into smaller sub-problems in the size

of K, which are independent and identical to the original problem. By solving the

sub-problems, the solution to the original problem can be obtained. Generally, there

are three steps to realize the approach.

• Step 1: Divide the original problem into sub-problems recursively.

• Step 2: Work out the solution for lowest-level sub-problems.

• Step 3: Combine solutions suitably for the original problem.

The concept of net improvement percentage (NIP) is used to illustrate this pro-

cess. For a MOP demonstrated in Fig. 4.2, the NIP of objectives when moving from

solution xa to xb can be expressed as
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NIP (xa → xb) =
J∑

j=1

fj(xa)− fj(xb)
max fj(x)−min fj(x)

(4.3.41)

where xa → xb denotes the process that moves from solution xa to solution xb.

As described before, solution x2 is preferred to the MOP than solution x1. The

NIP from solution x1 to solution x2 is positive. It can be expanded as solution xb is

preferred to the MOP than solution xa if the NIP for process xa → xb is positive.

That is

xb is preferred than xa, if NIP (xa → xb) > 0. (4.3.42)

This preference strategy is not affected by the direction of movement. The NIP

from solution xa to solution xb is opposite to the NIP from solution xb to solution

xa

NIP (xb → xa) =
J∑

j=1

fj(xb)− fj(xa)
max fj(x)−min fj(x)

= −
J∑

j=1

fj(xa)− fj(xb)
max fj(x)−min fj(x)

= −NIP (xa → xb).

(4.3.43)

Therefore, for the situation stated in (4.3.42), the following preference strategy

is equivalent

xb is preferred than xa, if NIP (xb → xa) < 0. (4.3.44)

Based on the statements before, the process of D & C approach can be simplified

as iterations of pairwise comparisons. The process is presented in Fig. 4.5. The

vectors in APS are divided into pairs for comparing till one final solution is left. For

each iteration of pairwise comparison, the number of vectors is decreased by half.

Three iterations are conducted for the demonstrated problem. Normally, for a MOP

problem with M vectors in the APF, log2M time of iterations is needed.

4.4 Comparative Analysis

In this section, the U.K. practical case is presented to demonstrate these approaches.

The simulation is conducted by using the software MATLAB. Eight fuel sources are

considered: coal, oil, gas, nuclear, hydro, wind, bioenergy and solar. The U.K. an-

nual data of fuel usage for electricity generation and electricity consumption in 2017
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Figure 4.5: Demonstration of D & C approach to MCDM.

is selected as a benchmark. The unit Mtoe means the million tons of oil equivalent.

The current U.K. carbon tax £18 for per tonne of carbon emission and average

electricity price £0.13/kWh are used [144]. And according to Ofgem, the current

U.K. Renewable Obligation 34.8% is used as the minimum penetration requirement

of RESs. If the requirement is not met, £44.77/MWh need to be paid for substan-

dard part [136]. The additional operating coefficient, compensation coefficient and

dissatisfactory inelasticity coefficient are set as 0.2, 1 and 3, respectively. The basic

generation cost coefficient bi in equation (4.2.12), the carbon emission coefficient ei

in equation (4.2.2), and the fuel source generation coefficient ui in equation (4.2.12)

are listed in Table 4.1. These data are obtained from [8, 145]. As for the carbon

emission coefficients, BEIS considers the life-cycle assessment of fuel sources, there-

fore they are not zero for RESs. As for the generation coefficients, BEIS takes the

fuel used in tonnes, multiplies by the calorific values for the fuel and the conversion

factor to oil equivalent. The high calorific values and conversion factors of RESs

result in high generation coefficients. The detailed information can be found from [8]

and Annex A in [145].

The proposed model leads to a 3-D problem. For MMD approach, a regular

octahedron is needed instead of a rhombus, while for WS approach, a hyperplane

is needed instead of a line. To clearly show the process of MCDM, the size of APS
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Table 4.1: Coefficients for the proposed model

Fuel type Basic generation

cost bi (M£/TWh)

Carbon emission

ei (Mton/Mtoe)

Fuel source generation

ui (TWh/Mtoe)

Coal 141 3.66 4.16

Oil 91 2.49 3.39

Gas 113 2.26 5.41

Nuclear 93 0.11 4.45

Hydro 96 0.34 11.63

Wind 82 0.30 11.57

Solar 80 0.99 11.63

Bioenergy 87 0.16 3.50

is set as 16, i.e., M = 16. Fig. 4.6 - Fig. 4.8 present the principles of these three

approaches. It can be seen that all three approaches yield the same final solution.

Fig. 4.6 shows the process of MMD approach. The radius of a regular octahe-

dron, which is centered at normalized ideal vector yopt, is increased until nonempty

intersection with the normalized APF. The intersection is labelled by y(x6), the

solution x6 is selected as final optimal solution.

Fig. 4.7 shows the process of WS approach. A hyperplane is moved in a decreas-

ing direction till there is no nonempty intersection with the APF, thus the minimum

WS is achieved. The intersection is labelled by y(x6), the solution x6 is selected as

final optimal solution.

Fig. 4.8 shows the process of D & C approach. Solutions are randomly allocated

into pairs for comparison till only one solution is selected. NIP = NIP (xa → xb),

where xa and xb denote the upper and lower solution, respectively. When NIP > 0,

the lower solution is preferred. While whenNIP < 0, the upper solution is preferred.

As shown in the figure, two random comparing orders result in the same solution.

The solution x6 is selected as final optimal solution for both situations. It proves

that the comparing order would not affect the result.

Table 4.2 summarizes the computation time for WS, D & C and MMD ap-

proaches, in the unit of second. Note that, this computation time is only for MCDM.
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(a)

(b)

Figure 4.8: The D & C approach in two random comparing orders for the MOP.
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Table 4.2: Computation time for WS, D & C and MMD approaches

Approach WS D & C MMD

Number of

solutions

Number of

simulation

Total

time

Average

time

Total

time

Average

time

Total

time

Average

time

50 100 0.0073 7.3221e-05 0.0525 5.2523e-04 0.0066 6.6116e-05

50 500 0.0280 5.5946e-05 0.1111 2.2220e-04 0.0126 2.5282e-05

50 1000 0.0300 3.0026e-05 0.2269 2.2687e-04 0.0248 2.4786e-05

50 2000 0.0537 2.6830e-05 0.4283 2.1413e-04 0.0430 2.1516e-05

50 3000 0.0775 2.5826e-05 0.5722 1.9072e-04 0.0625 2.0833e-05

50 4000 0.1006 2.5156e-05 0.6926 1.7316e-04 0.0773 1.9328e-05

100 2000 0.0620 3.0986e-05 0.4764 2.3821e-04 0.0433 2.1638e-05

200 2000 0.0628 3.1396e-05 0.5462 2.7311e-04 0.0454 2.2697e-05

500 2000 0.0656 3.2810e-05 0.9367 4.6833e-04 0.0467 2.3358e-05

The time spent on finding APF is not included, therefore the number of iteration for

each simulation run would not affect the result. When solution size is set as 50, 2000

simulation runs can lead to a relatively stable average computation time. Obviously,

D & C approach takes much longer than the other two. The average time for WS

approach is a little bit higher than MMD approach. So, MMD approach is the most

computational efficient one among these three approaches. When the solution size

increases, the computation time for D & C approach increases significantly than

the other two, because D & C approach needs iterations of pairwise comparisons.

Increasing number of solutions would directly increase the number of comparisons,

thus would apparently increase the computation time.

4.5 Case Studies

In this section, the system performance is examined. Two scenarios are introduced:

the generation adjustment plan for short-term period and long-term period. The

detailed fuel usage suggestions are presented.
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4.5.1 Case study for short-term period

For the short-term period, the fuel usage of each source can not have a dramatic

change. The adjustable range is set at 20% of the benchmark. The size of APS is

set as 500. Other system coefficients remain the same as stated in previous section.
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Figure 4.9: The APF for the proposed MOP.

Table 4.3: System performance for different solutions

Carbon Emission

(Mtons)

Generation

Profit (M£)

Electricity

Bill (M£)

Benchmark 74.16 5871 35576

Selected 62.89 6449 35237

Carbon Opt 62.71 6415 35115

Utilities Opt 63.61 6486 35445

Consumer Opt 62.79 6412 35115

Fig.4.9 and Table 4.3 illustrate the system performance. Four representative

solutions are marked in Fig.4.9: consumers optimal, utilities optimal, policy makers
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optimal and selected optimal solution. The detailed information of three objectives

is listed in Table 4.3. It can be seen that the selected solution fairly distribute

benefits to three participants. For the selected one, the total electricity generated is

273.5 TWh. 11.27 Mtons of carbon emission can be reduced. Utilities can increase

£578M for the net profit. Customers can have a bill reduction of £339M.

Fig. 4.10 and Fig. 4.11 present the fuel usage and accordingly electricity gen-

eration of the benchmark, selected solution, carbon emission optimal solution and

utilities optimal solution. Firstly, the benchmark and selected solution are com-

pared. With the boundary limit, changes of fuel usage in oil, hydro and solar are

insignificant. The use of coal and gas decrease noticeably from 5.441 Mtoe to 4.473

Mtoe, and from 22.152 Mote to 18.690 Mtoe, respectively. And the accordingly

electricity generation from coal and gas decrease from 22.641 TWh to 18.617 TWh,

and from 119.920 TWh to 101.190 TWh, respectively. The reduced part is mainly

replenished by nuclear and wind. The use of nuclear and wind increase from 15.124

Mtoe to 18.077 Mtoe, and from 3.511 Mtoe to 4.118 Mtoe, respectively. And the

accordingly electricity generation from nuclear and wind increase from 67.329 TWh

to 80.497 TWh, and from 40.593 TWh to 47.630 TWh, respectively.

Secondly, the selected solution and carbon emission optimal solution are com-

pared. Among these eight sources, nuclear has the lowest emission rate for per unit

electricity generation, that is 0.0247 Mton/TWh. Wind ranks the second lowest

place with the emission rate as 0.0259 Mton/TWh. While coal has the highest

emission rate for per unit electricity generation, that is 0.879 Mton/TWh. Oil is

following by, which has the emission rate as 0.733 Mton/TWh. To minimize the

carbon emission, the low emission sources are favoured. The use of nuclear and

wind in carbon emission optimal solution are a little bit higher than in the selected

solution, which are 18.111 Mtoe and 4.207 Mtoe. Oppositely, the use of coal and oil

are relatively lower, which are 4.423 Mtoe and 0.132 Mtoe.
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Thirdly, the selected solution and utilities optimal solution are compared. For

utilities, to minimize the generation cost, the source expenditure should be as low as

possible. Besides, the total carbon emission amount also needs to be considered be-

cause of the carbon tax. By taking both the basic source cost and the corresponding

carbon tax into account, coal is the most expensive source for per unit electricity

generation, that is 156.837 M£/TWh. Gas ranks the second highest place with the

cost as 120.519 M£/TWh. While solar is the cheapest source for per unit electricity

generation, that is 81.532 M£/TWh. Wind is following by, for which the cost is

82.467 M£/TWh. Therefore, the use of solar and wind in utilities optimal solution

are relatively higher than in the selected solution, which are 0.257 Mtoe and 4.154

Mtoe. Oppositely, the use of coal and gas become lower, which are 4.419 Mtoe and

18.542 Mtoe.

For customers, they mainly care about whether the total electricity generation

amount can meet their demand and how much do they need to pay for it. Therefore,

they do not have a specific preference on fuel sources that be used for electricity

generation.

In a word, compared to the benchmark, all of the selected optimal solution,

carbon emission optimal solution, utilities optimal solution and customers optimal

solution can improve the performance of the system. But only the selected optimal

solution can balance improvements among three participants. Compared to the

selected optimal solution, carbon emission optimal solution and utilities optimal

solution have different preferences on fuel sources, because of the priority for their

own interests.

4.5.2 Case study for long-term period

For the long-term period, it is assumed there is no up boundary limit for each source.

This gives a pointing plan for the future. Except for the range of eight sources, other

system coefficients remain the same as stated in the previous section.
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Fig. 4.12 and Fig. 4.13 present fuel usage and accordingly electricity generation

in the long-term period. Without the boundary limit, the use of nuclear, bioenergy

and wind begin to predominate. The generation from wind ranks first, that is 32%

of the total amount. The use of wind takes 17% of the total fuel usage. Nuclear is

suggested to account for 43% of the total fuel usage, and contribute to 31% of the

total electricity generation. The generation from bio, solar and hydro are relatively

low, occupying 14%, 10% and 10%, respectively. The use of traditional fuel sources,

i.e., coal, oil and gas, experience a dramatic decline. The total amount of electricity

generated from these sources only holds 3%. This trend do follow the U.K.’s target.

4.6 Sensitivity Analysis Results

In this section, sensitivities of the model to several system coefficients are analysed.

The system performance varies with the change of coefficients. These can give

a suggestion that how to appropriately design the compensation mechanism and

RESs related policies.

4.6.1 Sensitivity to compensation coefficient

Firstly, the sensitivity to compensation coefficient α is examined. The compensation

coefficient α indicates how would utilities encourage customers to involve in the

market, where α > 0. To analyse it, the compensation coefficient α is increased

from 0.5 to 5 by the step of 0.5, and other coefficients remain the same as stated in

Section 4.5.1.

Fig. 4.14 shows the detailed system performance. As α increases, the utilities’

net profit and customers’ bill reduction have a reciprocal relationship, and the car-

bon emission reduction decreases in a quadratic way. At the same level of carbon

emission reduction, a larger α means more compensation would be paid to cus-

tomers. Therefore, the increase in α is conducive to customers. Customers bill

reduction is increased as compensation coefficient α increases. Because this com-

pensation directly comes from utilities, utilities net profit decreases correspondingly.
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With regard to the carbon emission reduction, for the same amount of compensation,

a larger α means a less level of carbon emission reduction is required. Therefore,

the increases in α would result more carbon emission. Based on simulation results,

paying more to customers could not guarantee to achieve a better carbon emission

reduction. But paying too little to customers could not persuade them to posi-

tively participant in the market. To promote the normal operation of the market, a

suitable compensation rate should be designed.
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Figure 4.14: The system performance with the change of compensation

coefficient α.
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4.6.2 Sensitivity to additional operating cost coefficient

Secondly, the sensitivity to additional operating cost coefficient γ is examined. The

additional operating cost coefficient γ indicates how the change of fuel source would

affect the generation cost, where γ > 0. To analyse it, the additional operating

cost coefficient γ is increased from 0.2 to 2 by the step of 0.2, and other coefficients

remain the same as stated in Section 4.5.1.

0  0.2 0.4 0.6 0.8 1  1.2 1.4 1.6 1.8 2  

Addotional operating cost coefficient γ

0

100

200

300

400

500

600

U
t
il
it
ie

s
 
n

e
t
 
p

r
o

f
it
 

in
c
r
e

m
e

n
t
 
[
M

£
]

(a) Utilities’ net profit increment VS γ

0  0.2 0.4 0.6 0.8 1  1.2 1.4 1.6 1.8 2  

Addotional operating cost coefficient γ

310

320

330

340

B
il
l 
r
e

d
u

c
t
io

n
 
[
M

£
]

(b) Bill reduction VS γ

0  0.2 0.4 0.6 0.8 1  1.2 1.4 1.6 1.8 2  

Addotional operating cost coefficient γ

7

8

9

10

11

12

C
a

r
b

o
n

 
e

m
is

s
io

n
 

r
e

d
u

c
t
io

n
 
[
M

t
o

n
s
]

(c) Carbon emission reduction VS γ

Figure 4.15: The system performance with the change of additional operating cost

coefficient γ.
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Fig. 4.15 shows the detailed system performance. As γ increases, the utilities’

net profit, customers’ bill reduction and the carbon emission reduction all decrease

in a quadratic way. At the same level of generation change for a certain source, a

larger γ means more additional cost would be caused. To avoid raising the total

cost, utilities would adjust the usage of fuel source on a smaller scale. Therefore, the

increase in γ urges utilities to stick to the original plan. In this case, policy makers

can not have carbon emission reduction for full-scale implementation effort. And

customers would be required less involvement and receive less compensation from

utilities. The bill reduction for customers would consequently be less. In a word,

the increase in γ would have a negative effect on the whole system. However, to be

noticed, with the progress of science and technology, the additional operating cost

should be reduced gradually.

4.6.3 Sensitivity to carbon tax rate

Thirdly, the sensitivity to carbon tax rate m is examined. The particular policy

about carbon tax in the U.K. is called carbon price floor (CPF) [144]. When it was

first introduced in 2013, the government projected to increase the carbon tax every

year till £30/ton in 2020. But in 2014, the government declared to maintain a cap

price at £18/ton until 2020. This is because the U.K. had a higher carbon price

than other E.U. countries at that time due to the CPF. This price frozen can help

to restrict competitive disadvantages for energy-intensive industries [144]. And this

period was prolonged to 2021 in 2016. For short-term, the carbon tax rate would

remain the same. And for long-term, RESs would dominate the fuel mix, and the

carbon emission should be effectively reduced. The carbon tax would have a limit

effect on the generation cost at that time. Given that, the sensitivity to carbon tax

rate m is analysed at mid-term. The adjustable range of fuel source is set at 50%

of the benchmark. The carbon tax rate m is increased from 18 to 30 by the step of

1, and other coefficients remain the same as stated in Section 4.5.1.

Fig. 4.16 shows the detailed system performance. As m increases, the utilities’

net profit drops dramatically. Between the range of £18/ton to £25/ton, customers

bill reduction and carbon emission reduction increase, while between the range of
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(c) Carbon emission reduction VS m

Figure 4.16: The system performance with the change of carbon tax rate m.
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£25/ton to £30/ton, customers bill reduction and carbon emission reduction de-

crease. Comparing three objectives, the carbon tax has a significantly effect on

utilities’ net profit than the other two. The carbon emission could be further re-

duced in a small scale with the carbon tax increased in a certain range. The carbon

tax should be deliberately set by policy makers that can both facilitate the carbon

emission reduction and maintain the market stability.

4.6.4 Sensitivity to Renewable Obligation

Fourthly, the sensitivity to Renewable Obligation R is examined. For short-term,

fuel usage of each source can not have a dramatic change and generation from RESs

cannot experience an enormous increase. And for long-term, the penetration of RESs

should reach a relatively high level. Because of these, the sensitivity to Renewable

Obligation R is also analysed at mid-term. The adjustable range of fuel source is

also set at 50% of the benchmark. The Renewable Obligation R is increased from

36% to 80% by the step of 2%. And other coefficients remain the same as stated in

Section 4.5.1.

Fig. 4.17 shows the detailed system performance. Between the range of 36%

to 56%, the system performance does not change. This means at that time the

penetration of RESs is higher than the Renewable Obligation. Therefore the change

of Renewable Obligation would not influence utilities. Between the range of 56%

to 68%, the carbon emission reduction increases obviously, while the utilities’ net

profit decreases. This indicates utilities would use more RESs to reach the Obli-

gation. Between the range of 68% to 80%, the carbon emission reduction remains

the same, while utilities net profit decreases at a more rapid rate. With the limit

of each fuel source, utilities could not adjust the usage any more at that time. The

carbon emission reduction is maximized at that situation. Because the Renewable

Obligation is not achieved, utilities need to pay extra for it. Hence the generation

cost is raised and the net profit is accordingly reduced.
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Figure 4.17: The system performance with the change of Renewable Obligation R.
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4.7 Chapter Summary

This chapter introduced a system model that consists of consumers, utilities, and

policy makers. Consumers aimed to minimize the bill, utilities aimed to maximize

the net profit, and policy makers aimed to minimize the carbon emission. This model

formed a MOP. The MMD approach for MCDM was proposed to select the final

solution, compared with WS approach and D & C approach. Simulation results

showed that these three approaches can yield a same solution. But MMD was

more efficient in computational time. Both the short-term period and long-term

period case studies suggested a larger portion of RESs, especially nuclear, wind

and bioenergy, and a less portion of traditional sources. Compared to the selected

optimal solution, carbon emission optimal solution preferred nuclear and wind, and

utilities optimal solution preferred solar and wind. After that, the system sensitivity

was examined. As the compensation coefficient α increased, utilities’ profit and

customers’ bill decreased, while the carbon emission increased. As the additional

operating cost coefficient γ increased, the whole system had a worse performance.

As the carbon tax rate m increased, the utilities’ net profit decreased significantly.

As the Renewable Obligation R increased in a certain range, the carbon emission

can be effectively reduced.



Chapter 5

Assessment of the Demand Side

Management’s Impacts on Carbon

Emission Reduction

5.1 Introduction

This chapter introduces a CEF model to facilitate the analysis and assessment of

carbon emissions in power networks [117, 118]. It can virtually allocate the carbon

emission from the generation side to the consumption side. This enables a sensible

measure to mitigate the carbon emission according to network’s specific information.

This chapter extends the scope of presented model by considering smart grid tech-

nologies intervention. Using CEF model, the impacts of DSM approaches on carbon

emission can be precisely obtained. The IEEE 30-bus system is used to demonstrate

the framework of CEF, involving the U.K. actual daily data of electricity generation

and demand. Three levels of load curtailment (5%, 10%, and 15%) and load shift

approach proposed in Chapter 3 are examined by the model, for the purpose of

evaluating carbon emission. Simulation results confirm the effectiveness of load cur-

tailment and load shift approaches for the carbon emission reduction. In the case of

load curtailment, a higher level of curtailment can result in a higher carbon emission

reduction. In the case of load shift, the carbon emission can be effectively reduced,

particularly during the peak time. In addition, winter day shows a better carbon

99
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emission reduction than summer day with proposed DSM approaches. Compared

with existing researches, the main contributions of this chapter can be summarised

as follows:

• The time sensitivity of carbon emission can be obtained by applying the U.K.

actual daily data of electricity generation and demand to the model.

• The effectiveness of load curtailment and load shift approaches for carbon

emission reduction can be precisely quantified.

• The typical winter day and summer day are selected to extend the analysis of

carbon emission reduction with DSM approaches.

The chapter is organized as follows. Section 5.2 introduces the CEF model,

including two concepts and four types of the CEF. Section 5.3 presents the static

case study, which is based on the IEEE 30-bus system. Section 5.4 provides the

daily case study. The effectiveness of several DSM approaches is analysed. Section

5.5 gives the seasonal case. Finally, Section 5.6 concludes this chapter.

5.2 Carbon Emission Flow Model

This section defines two concepts and four types of the CEF, and then explains how

to calculate the CEF from power flow. The CEF is defined as a virtual network flow

that describes the carbon emission from power network [117]. The CEF concepts

and types are explained as follows.

5.2.1 Definition

In power flow model, the node that is connected with power generators can be

defined as an outflow node. The transmission line between two nodes can be defined

as a branch. And the node that is connected with consumers can be defined as an

inflow node. These definitions are used to explain the CEF model.
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• Ejected CEF (ECEF): The ECEF is the carbon emission outflow produced

from generators to node because of the combustion of fossil fuel. It can be

analogous to the power generation in the power flow.

• Branch CEF (BCEF): The BCEF is the CEF through the branch. It can be

analogous to the power transmission in the power flow.

• Injected CEF (ICEF): The ICEF is the carbon emission inflow obtained from

branches to the node. It can be analogous to the power consumption at node

in the power flow.

• Branch carbon emission loss (BCEL): The BCEL is the carbon emission caused

by the power offset due to transmission loss. It can be analogous to the branch

loss in the power flow.

• CEF rate: The CEF rate describes the amount of CEF in the network for per

unit of time.

• CEF intensity: The CEF intensity describes the amount of CEF in the network

for per unit of active power.

A typical IEEE 5-bus system is presented here to demonstrate four types of the

CEF. It consists of 2 generators, 4 loads and 5 buses.

5.2.2 Calculation Model

In this section, the CEF calculation model proposed from [117] is briefly presented

based on aforesaid definitions. The calculation for the CEF rate and intensity are

illustrated at first. Both the CEF rate and intensity can be applied to four types of

the CEF. Suppose the network consists of G generators, L loads and B buses. And

generators can be classified according to the used fuel source.

CEF rate

The CEF rate indicates the velocity of CEF that come across the node/branch. It

is denoted by R and can be expressed as
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Figure 5.1: Demonstration of the CEF model by an IEEE 5-bus system.

R =
dE

dt
(5.2.1)

in the unit of tonne of CO2 per hour (tCO2/h), where E is the CEF in the unit of

tonne of CO2 (tCO2), and t is the time index.

CEF intensity

The CEF intensity indicates the relationship between CEF and active power. It is

denoted by I and can be expressed as

I =
R

P
(5.2.2)

in the unit of tonne of CO2 per MWh (tCO2/MWh), where P is the active power

flow.

ECEF

The intensity of ECEF is determined by the type of generators and can be obtained

directly. If the node only connects to one type of generators, the ECEF of this
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outflow node is equal to the generation carbon emission intensity. It depends on the

type of used fuel source, and can be easily calculated based on the carbon emission

coefficient and generation coefficient that introduced in Section 4.2, as below

IG =
en
un

(5.2.3)

where en denotes the coefficient that transfers the fuel usage into the carbon emis-

sion, ui denotes the coefficient that transfers the fuel usage into the electricity gen-

eration. If the node connects to more than one type of generators, the ECEF of this

outflow node depends on all operated generators and can be calculated as

IG =

∑Nf

n=1 ensn∑Nf

n=1 unsn
(5.2.4)

P =

Nf∑
n=1

unsn (5.2.5)

where Nf denotes the types of fuel sources that connected generators used, and sn

denotes the fuel usage of source n.

Once the ECEF intensity is available, the ECEF rate can be calculated as

RG = PG · IG (5.2.6)

where RG is a B dimensional column vector of ECEF rate, IG is a G dimensional

column vector of ECEF intensity composed by IG, and PG is a B×G active power

ejection matrix. The matrix PG can reveal the position of generators. When the

ath node is connected with the bth generator/genrators at capacity P , PG(a, b) = P ;

otherwise PG(a, b) = 0.

BCEF

The proportional sharing principle for electricity is used here for tracing the CEF

mix from node to different branches [146]. It is an assumption that can build a

physical link between inflow power and outflow power. The node is assumed to be a

perfect “mixer” to distribute the power flow. At any node, the inflow power is shared
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proportionally by the outflow power. Fig. 5.2 is presented here to demonstrate the

principle.

Figure 5.2: Demonstration of proportional sharing principle.

The power provided from generators into the node is defined as PG =
{
PG
a : a ∈ A

}
,

the power flow from branches into the node is defined as P in = {P in
c : c ∈ C},

the power flow out of the node is defined as P out = {P out
b : b ∈ B}. The power

lost/consumed at the node is also regarded as the outflow power. The proportional

sharing principle can be expressed as

P out
b,a

P out
b

=
PG
a∑A

a=1 P
G
a +

∑C
c=1 P

in
c

(5.2.7)

P out
b,c

P out
b

=
P in
c∑A

a=1 P
G
a +

∑C
c=1 P

in
c

(5.2.8)

where P out
b,a is the share of power in the bth branch that comes from the ath generator,

and P out
b,c is the share of power in the bth branch that comes from the cth branch.

Abiding by the principle, the power flow in the bth branch can be regarded as

a hybrid of power that comes from branches in C and generators in B. Therefore,

the CEF rate for the bth branch can be expressed as
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Rb =
A∑

a=1

P out
b,a · IG +

C∑
c=1

P out
b,c · Ic (5.2.9)

where IG is the ECEF intensities for generators, and Ic is the CEF rate for the cth

branch. The CEF intensity for the bth branch can be then obtained as

Ib =
Rb

P out
b

=

∑A
a=1 P

out
b,a · IG +

∑C
c=1 P

out
b,c · Ic

P out
b

=

∑A
a=1 ( PG

a∑A
a=1 P

G
a +

∑C
c=1 P

in
c
· P out

b ) · Ia +
∑C

c=1 ( P in
c∑A

a=1 P
G
a +

∑C
c=1 P

in
c
· P out

b ) · Ic
P out
b

=

∑A
a=1 P

G
a · Ia +

∑C
c=1 P

in
c · Ic∑A

a=1 P
G
a +

∑C
c=1 P

in
c

=
RG +RC

PG + P in

(5.2.10)

According to the equation (5.2.10), the BCEF intensity for the bth outflow branch

is independent of itself, but dependent on branches in C and generators in A. There-

fore, the BCEF intensity is the same for every branch in B.

Figure 5.3: Relationship between branch power flow and node power flow.

It is noted that the node inflow power is the branch outflow power as shown

in Fig. 5.3. Expanding the equation (5.2.10) to the whole network, the following

equation can be obtained

IB =
RG + PT

B · IB
PN

(5.2.11)

where IB is a B dimensional column vector of BCEF intensity, PN is a B × B

node power flow diagonal matrix, and PB is a B × B branch active power outflow

distribution matrix. For matrix PN, the ath diagonal element is the total inflow

power at the ath node. For matrix PB, it reveals the power transmission between

nodes. When there is power straightly flowing from the ath node to the bth node
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at the quantity of P , the power outflow for this branch is P , that is PB(a, b) = P ;

otherwise PB(a, b) = 0.

Thus, the BCEF intensity vector is derived. It is related to the branch power

outflow and the node active power inflow. It can be calculated as

IN = (PN −PB
T)−1 ·RG (5.2.12)

The BCEF rate can be calculated on the basis of BCEF intensity as

RB = diag(IN) ·PB (5.2.13)

where diag denotes the diagonal matrix operator, and RB is a B × B BCEF rate

matrix.

ICEF

The ICEF for a given node should be the total of BCEF that flows from connected

branches into the connected load, as the equation (5.2.14) expressed.

EICEF =
∑
n∈B

EBCEF,n −
∑
n∈B′

EBCEF,n (5.2.14)

where B represents inflow branches, and B′ represents outflow branches.

The ICEF rate should also abide this rule, and can be expressed as

RI =
∑
n∈B

RB,n −
∑
n∈B′

RB,n (5.2.15)

In the power system, the power load at node can be regarded as an outflow

branch. And according to the previous section, the BCEF intensity is the same for

every outflow branch that connected to a given node. Therefore, the ICEF intensity

should be the same as the BCEF intensity and can be also calculated as

II = (PN −PB
T)−1 ·RG (5.2.16)

where II is a B dimensional column vector of ICEF rate.

The ICEF intensity can be used to calculate the ICEF rate. It can be expressed

as
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RI = diag(II) ·PI (5.2.17)

where RI is a B×L ICEF rate matrix, and PI is a B×L injection power distribution

matrix. The matrix PI can reveal the position of loads. When the ath node is

connected with the bth load/loads at capacity P , PI(a, b) = P ; otherwise PI(a, b) =

0.

BCEL

Same as the load, the branch loss can also be regarded as an outflow branch. The

BCEL intensity has the same value as the BCEF intensity and can be used to

calculate the BCEL rate. It can be expressed as

IL = (PN −PB
T)−1 ·RG (5.2.18)

RL = diag(IB) · (P1
B −PB) (5.2.19)

where IL is a B dimensional column vector of BCEL rate, RL is a B × B BCEL

rate matrix, and P1
B is a B ×B branch active power inflow distribution matrix.

Analogous to the power conservation, the CEF also leads to the emission con-

servation, and can be expressed as

∑
n∈G

EECEF,n =
∑
n∈L

EICEF,n +
∑
n∈B

EBCEL,n (5.2.20)

Procedure

According to the presentation above, the process to calculate the CEF for power

network can be divided into 5 steps as below.

• Step 1: Carry out the power flow analysis. Obtain the power ejection matrix

PG, power injection matrix PI, node power flow matrix PN, branch power

outflow matrix PB and branch power inflow matrix P1
B.

• Step 2: Find out nodes that connect with generators, known as ejection nodes.

Calculate the ECEF intensity IG based on carbon emission coefficients and

generation coefficients. Derive the ECEF rate RG from the ECEF intensity.
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• Step 3: Calculate the BCEF intensity IB by following the proportional sharing

principle. Derive the BCEF rate RB from the BCEF intensity.

• Step 4: Derive the ICEF intensity II from the BCEF intensity. Find out nodes

that connect with loads. Calculate the ICEF rate RI by considering power

consumption.

• Step 5: Derive the BCEL intensity IB from the BCEF intensity. Calculate the

BCEL rate RI by considering power loss.

5.3 Static Case

A typical IEEE 30-bus system is used to demonstrate the model. The simulation is

conducted by using the software MATLAB and MATPOWER. The system consists

of 6 generators, 21 loads, 30 buses and 41 branches. The static case is first presented.

The default optimal power flow data from MATPOWER and the emission factor

from [134] are applied to testify the calculation model and analysis four types of the

CEF. For one hour, the total power generation of 6 generators is 191.75MW, the

total consumption of 21 loads is 189.30MW, and the total power loss of 41 branches

is 2.45MW. As for the carbon emission, the total ECEF is 177.715 tCO2, the total

ICEF is 175.542 tCO2, and the total BCEL is 2.173 tCO2. These results obey the

principle described in (5.2.20).

Table I presents the ECEF rates and intensities. The ECEF intensities depend

on the types of generators and can be calculated straightforward. By considering

the generation capacity of each generator, the corresponding ECEF rate can be

calculated according to equation (5.2.6).

The remaining CEF rates and intensities can be obtained on the basis of ECEF

rate and power flow data. Fig. 5.4 shows the IEEE 30-bus system model. The BCEF

rates (tCO2/h) between each bus are marked to illustrate the CEF distribution. The

simulation results from bus 21 to bus 24 are selected in Table II and Table III to

demonstrate the model. The ”→” symbol in Table III indicates the direction of

power flow. Several investigations can be obtained from it.
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Table 5.1: ECEF calculation for generators

Node Generator Generation ECEF intensity ECEF rate

[MW] [tCO2/MWh] [tCO2/h]

Bus 1 G1 26.077 1.186 30.927

Bus 2 G2 60.970 1.186 72.310

Bus 22 G3 21.590 1.186 25.606

Bus 27 G4 26.910 0.434 11.679

Bus 23 G5 19.200 0.434 8.333

Bus 13 G6 37.000 0.78 28.860

Table 5.2: ICEF results for buses

Node Load Capacity ICEF intensity ICEF rate

[MW] [tCO2/MWh] [tCO2/h]

Bus 21 17.45 1.119 19.527

Bus 22 0 1.119 0

Bus 23 3.20 0.434 1.389

Bus 24 8.70 0.430 3.741

Table 5.3: BCEF & BCEL results for branches

Branch BCEF/BCEL intensity BCEF rate Power loss BCEL rate

[tCO2/MWh] [tCO2/h] [MW] [tCO2/h]

Bus 22 → Bus 21 1.119 22.140 0.093 0.104

Bus 23 → Bus 24 0.434 3.047 0.066 0.029

Bus 24 → Bus 22 0.430 0.914 0.078 0.034

Bus 21 → Bus 10 1.119 2.506 0.044 0.049
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Figure 5.4: The CEF model of an IEEE 30-bus system.
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• For bus 21, the inflow power only comes from bus 22. Therefore, it has the

same ICEF intensity as bus 22.

• For bus 22, the inflow power comes from G3 and bus 24. The ICEF intensity

of bus 22 is a little bit lower than that of G3, because bus 24 has a relatively

lower intensity. If the inflow power from bus 24 reduces, the ICEF intensity

of bus 22 increases, but cannot be higher than that of G3. The ICEF rate of

bus 22 is 0 because there is no load connected to it.

• For the branch that connects bus 22 and bus 21, the high BCEF intensity,

large power transmission, and large power loss result in a high BCEF rate and

a high BCEL rate.

• For any given node, the emission conversation also holds true. Bus 21 gets

power from bus 22, then consumes part of the power and transfers the remain-

ing part to bus 10. The BCEF rate of the branch that connects bus 22 and

bus 21 subtracts the BCEL of it equals to the sum of ICEF rate of bus 21 and

BCEF rate of the branch that connects bus 21 and bus 10.

5.4 Daily Case of the U.K. Data

In this section, the U.K. actual daily (5th May 2017) fuel sources usage, electricity

generation and demand data from the Grid Watch are fed into the IEEE 30-bus

system. These data cover an entire day with 24 time slots. Generators of IEEE 30-

bus system and fuel sources of the U.K. actual data are ranked by their generation

capacity. Then each generator represents one fuel source by the corresponding order.

The detailed ECEF intensity and daily ECEF for 6 generators can be found in Table

5.4. For one day, the total ECEF is 141.162 ktCO2, the total ICEF is 137.693 ktCO2,

and the total BCEL is 3.469 ktCO2. With the high ECEF intensity and large power

generation, gas turbines contribute to most of the carbon emission.

The simulation results of bus 3 and bus 30 are selected, which have the similar

level of power consumption. The ICEF rate and power load of these two buses are

presented in Fig. 5.5. It can be seen that the ICEF rates fluctuate with time, which
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Table 5.4: ECEF calculation for generators

Generator Source Type ECEF intensity Daily generation ECEF

[tCO2/GWh] [GWh] [tCO2]

G1 Bioenergy 45.69 62.574 2859.006

G2 Gas 417.74 307.261 128355.210

G3 Coal 879.38 2.018 1774.589

G4 Wind 25.94 142.503 3696.527

G5 Hydro 29.25 3.580 104.715

G6 Nuclear 24.70 177.019 4372.369
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Figure 5.5: Daily ICEF for bus 3 and bus 20.



5.4. Daily Case of the U.K. Data 113

means a different amount of carbon emission for each time period. For bus 20, the

trend of its ICEF rate is consistent with its power consumption. For consumers at

bus 20, there are high carbon emission periods, that is 09:00 - 12:00 and 15:00 - 18:00.

While during 0:00 - 6:00, when the power consumption is low, the carbon emission

is insignificant. However, for bus 3, the trend of its ICEF rate is inconsistent with

its power consumption. For consumers at bus 3, the normal demand during 9:00 -

11:00 results in a significant level of carbon emission. But with the similar demand

during 12:00 - 15:00, the carbon emission is markedly low. Comparing the carbon

emission for both buses during 0:00 - 6:00, bus 20 has higher power consumption,

but a lower carbon emission. These bring the importance of CEF model. For

different consumers, a higher demand does not necessarily mean a higher carbon

emission. With the CEF information available, consumers could know exactly how

would their consumptions give rise to the carbon emission for each time period.

These also indicate how to suggest DSM programs to different consumers in case of

the carbon emission reduction.

Taking the whole system into consideration, three scenarios are examined here

to analysis the effectiveness of DSM for carbon emission reduction.

• S1: Three levels of load curtailments, 5%, 10%, and 15%, are applied to each

hour of the day. This scenario indicates how would load conservation approach

influence the carbon emission.

• S2: The optimized load profile proposed at Section 3.4.1 is applied to the

model. This scenario indicates how would load shift approach influence the

carbon emission.

• S3: Both the load shift proposed at S2 and 5% of load curtailment are applied

to the model. This scenario indicates how would load shift approach and load

curtailment worked together to influence the carbon emission.

Table 5.5 provides the detailed system performance for these three scenarios.

Fig. 5.6 shows the daily ECEF rate with respect to various levels of load curtail-

ment for the selected day. The ECEF patterns have a similar trend as electricity
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Figure 5.6: Daily ECEF performance with respect to load curtailments on 5th May.

2017.
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Figure 5.7: Daily ECEF performance with respect to load shift and curtailment on

5th May. 2017.
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Table 5.5: CEF performance on 5th May. 2017

Scenario Original S1 (5%) S1 (10%) S1 (15%) S2 S3

ECEF [tCO2] 160842 152821 144801 136781 157855 149983

ICEF [tCO2] 157406 149419 141429 133439 154467 146628

BCEL [tCO2] 3436 3402 3372 3342 3388 3355

demand. There is a peak emission period during 16:00 - 20:00, and a valley emis-

sion period during 0:00 - 6:00. As the penetration of load curtailment increases,

the ECEF decreases accordingly. The total ICEF are reduced of 7988 tCO2, 15977

tCO2 and 23967 tCO2 for 5%, 10%, and 15% load curtailment, respectively. And

the corresponding total ECEF reductions are 8021 tCO2, 16041 tCO2, and 24061

tCO2, respectively. The ICEF reduction and ECEF reduction are proportional to

the level of load curtailment.

Fig. 5.7 shows the daily ECEF with load shift and load curtailment. For scenario

2, the total ICEF is reduced of 2939 tCO2, and the corresponding total ECEF is

reduced of 2987 tCO2. During the period of 0:00 - 8:00, the carbon emission is

increased in a small scale. This is because the ECEF intensity is relatively lower

during that period, when the demand is shifted to these time slots, the occurred

ECEF is unapparent. While during the period of 09:00 - 12:00 and 17:00 - 20:00, the

carbon emission reduction is markedly. During these periods, the ECEF intensity is

relatively higher. The load shift from these periods can effectively mitigate carbon

emission. For scenario 3, the trend of ECEF is the same as in scenario 2. With the

load curtailment, the carbon emission can be further reduced.

5.5 Seasonal Case of the U.K. Data

To extend the analysis, the U.K. actual power generation and demand data on 14th

Jan. 2017 (typical winter day) and 14th Jul. 2017 (typical summer day) is fed

into the IEEE 30-bus system. The proposed CEF model and scenario 3 are applied

to the system. Fig. 5.8 and Fig. 5.9 show the daily ECEF performance for the
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Figure 5.8: Daily ECEF performance on 14th Jan. 2017.
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Figure 5.9: Daily ECEF performance on 14th Jun. 2017.
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Figure 5.10: Difference of daily ECEF on 14th Jan. 2017 and 14th Jun. 2017.
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selected days. For 14th Jan. 2017, the total original ECEF is 180582 tCO2, the

total ECEF after DSM is 165252 tCO2. For 14th Jul. 2017, the total original ECEF

is 133156 tCO2, the total ECEF after DSM is 125642 tCO2. And Fig. 5.10 shows

the difference of ECEF between the original ECEF and ECEF after DSM for both

days. For 14th Jan. 2017, the total ECEF is reduced of 15330 tCO2, 8.5% of the

original. For 14th Jun. 2017, the total ECEF is reduced of 7514 tCO2, 5.6% of the

original.

In comparison with the selected two days, the DSM has a better level of per-

formance on Jan. 14th than on Jul. 14th. These results correspond to situations

in summer season and winter season. Firstly, the electricity demands are generally

higher on winter days than summer days, 19% higher on average [147]. Therefore,

with the same penetration of load curtailment, the electricity demand would reduce

more on winter days, subsequently influencing the ECEF. Secondly, the peak de-

mands on summer days are much lower than that on winter days. This is because

more lighting and heating are needed for winter days during the night. As such,

the DSM could have a larger effect during the peak time on winter days. Thirdly,

among all the RESs used for electricity generation, wind energy has the largest share

around 50%, while solar energy has a lower share around 10% [148]. From 2002 to

2017, the wind speeds in winter season and summer season are 10.3 knots and 7.7

knots on average, respectively [149]. Even though winter days have less solar en-

ergy because of the shorter sunshine duration, they still have more RESs available

because of the faster wind speed. Therefore, winter days lead to a better carbon

emission reduction performance than summer days.

5.6 Chapter Summary

This chapter used a CEF model to calculate carbon emission derived from power

flow. Two concepts, CEF intensity and rate, and four CEF types, ECEF, BCEF,

BCEL, and ICEF, were introduced. This model can accurately quantify and assess

the carbon emissions for each component in power networks. The IEEE 30-bus

system with default data was applied to illustrate the framework of this model.
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Furthermore, to demonstrate the practical use of CEF model, real data in the U.K.

was applied. The CEF rate fluctuated with time, which means a different amount

of carbon emission for each time period. For the ECEF, gas turbines contributed to

most of the carbon emission. For the ICEF, a higher demand does not necessarily

mean a higher ICEF rate. Several DSM approaches were analysed for the purpose of

carbon emission reduction, including three levels of load curtailment and load shift

proposed in Chapter 3. In the load curtailment case, the carbon emission reduction

had the similar trend as the electricity demand. With the increasing penetration of

load curtailment, the carbon emission reduction increased accordingly. In the load

shift case, with the load moved from peak time to off-peak time, the carbon emission

can be effectively mitigated. What’s more, with DSM approaches available, winter

day can provide a better carbon emission reduction than summer day.



Chapter 6

Conclusions and Future Work

This thesis contributed to the application of DSM in the smart grid and the carbon

emission reduction in electricity generation. In this concluding chapter, a summary

of the key contributions from different chapters are given in Section 6.1. Several

suggestions for future research areas are presented in Section 6.2.

6.1 Conclusion

In order to integrate RESs, chapter 3 proposed a hierarchical DSM model for day-

ahead electricity market. The utility was in the upper layer, seeking to minimize

the generation cost. The DR aggregator was in the middle layer, communicating

with both the utility and customers. Customers were in the lower layer, aiming to

maximize their social welfare. This model formulated a MOP, which can be solved

by the AIA. A Pareto optimal solution that maximizes the minimum improvement

in all dimensions was selected. This solution can fairly improve the performance

of all participants: the utility can reduce the power PAR and save generation cost;

the DR aggregator can make a profit by providing DSM service; customers can save

money on their bill. The system sensitivity analysis proved the proposed model is

robust against perturbations. If the system could not have accurate information of

the load profile, the proposed model could still find out an optimal solution. If the

optimal solution could not be fully operated as designed, the system could still have

a better performance than the benchmark, but the system improvement would be

120
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deteriorated. Furthermore, the change of bonus coefficient would only influence the

share of generation saving between the utility and the DR aggregator. Neither the

demand profile nor the generation schedule would be affected. The increase of the

compensation coefficient would raise customer’s bill. And the increase of the inelas-

ticity coefficient had an unfavourable impact on the whole system improvement.

In order to effectively achieve the carbon emission reduction, chapter 4 estab-

lished a system model for power system scheduling, considering the economic, envi-

ronmental and social aspects of power generation. Eight fuel sources were consid-

ered: coal, oil, gas, nuclear, hydro, wind, bioenergy and solar. For policy makers,

to minimize the carbon emission, wind and nuclear were preferred. For utilities, to

minimize the generation cost and carbon tax, solar and wind were preferred. For

customers, they mainly focused on the electricity bill and did not have a specific

preference on fuel sources. The optimal solution selected by MMD approach can

balance these three objectives. The short-term case study suggested a higher use

of nuclear and wind. And the long-term case study suggested a higher use of wind,

nuclear and bioenergy. Moreover, as compensation increases, customers would pay

less electricity bill, but utilities’ net profit and carbon emission would increase. As

the additional operating cost decreased, the whole system had a better performance.

As the carbon tax rate increased, the utilities’ net profit decreased significantly. As

the Renewable Obligation increased in a certain range, the carbon emission could

be effectively reduced.

In order to assess the impact of DSM on carbon emission, chapter 5 introduced

a CEF model. It can accurately quantify the carbon emission from the generation

side to the consumption side. The U.K. daily generation and demand data was

applied to the model. Gas turbines contributed to the most of the carbon emission.

The trend of daily carbon emission consisted with the electricity demand. The

carbon emission was significant during the peak-time, and insignificant during the

off-peak time. But for different customers, a higher demand did not necessarily

result in a high carbon emission. Three levels of load curtailment were applied to

the model. As the level of load curtailment increased, the total carbon emission

decreased accordingly. With the load shifted from peak time to off-peak time, the
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carbon emission can be evidently reduced. The carbon emission reduction during

the peak time was remarkable, while the carbon emission increment during the off-

peak time was unapparent. What’s more, the simulation results showed that winter

days could have better carbon emission reductions than summer days with DSM

intervention.

6.2 Future Work

As discussed in the previous section, the work introduced in this thesis brings some

potential new research directions. Thus some future works are identified as follows.

6.2.1 Allocation mechanism

Customers agree to adjust the consumption pattern in order to reduce the bill. To

weight more in the market, customers are aggregated as a cluster. Therefore, the

actual consumption schedule is an aggregated number for the cluster. The next

question is how to allocate the electricity power among all customers. Customers

are assumed to be self-interested. Based on the signed contract, they need to pro-

vide the usage information about next-day consumption schedule, the percentage

of deferrable load and the willingness of adjustment. According to the provided

information, each customer can have a unique objective function.

6.2.2 Privacy protection

As stated in the above section, customers need to provide the required information

to the DR aggregator. This brings the safety and privacy concerns. From the de-

tailed electricity usage information, much other information can be derived, i.e. how

many people live in the house, when will the people leave the house/come back to the

house. Therefore, the detailed information exchange has potential security risks to

the system. To avoid the unnecessary hazards and the exposure of private informa-

tion, two methods may be used: 1) Coordination with neighbours. The customers

can have an agreement with adjacent neighbours, sharing the usage patterns with

each other. Then the small group provides joint information to the aggregator. 2)
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Use of the storage device. With the auxiliary of the storage devices, the customers

can buy the electricity at off-peak time and use it at peak time. Therefore, the cus-

tomers are more flexible and the actual usage pattern is unknown to the aggregator.

Both of these methods need to be tested in the model to verify their feasibility.

6.2.3 Market competition

In the proposed model, there is only one aggregator serves customers. In the real

market, there are a group of aggregators that competing with each other to maximize

their profits. When there are multiple aggregators join the market, the compensation

rate set by them would be affected by others. The interaction between aggregators

can be modelled by non-cooperative game theory to achieve a Nash equilibrium

point.

6.2.4 Data exchange

Besides the day-ahead market, the proposed framework is capable of running within

seconds, which means that has the potential to be applied in a real-time electricity

market. On one hand, the real-time operation requires shorter time slot of dispatch,

and more frequent decision-making from scheduling. On the other hand, a shorter

time slot of framework operation requires a larger data storage capability and less

communication delay. The distributed cloud storage system and higher bandwidth

of 5G network provide the possibility for this issue.

6.2.5 Uncertainty prediction

From the aspect of macro-environment, the electricity market is influenced by a lot

of uncertainties, such as the variation of fuel prices, electricity prices, population

sizes and climate conditions. From the aspect of micro-environment, customers’

electricity demand is also influenced by a lot of elements, such as the equipment of

electric vehicles, the installation of self-production facilities like photovoltaic. The

trend of electricity market development and the pattern of customer’ consumption

can be predicted by the behaviour learning.
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