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ABSTRACT 

Freezing stress is detrimental to plants, resulting in major crop losses in temperate regions. The 

plant cell wall is a dynamic network of proteins and polysaccharides including cellulose, 

hemicellulose and pectins. It is essential for plant survival, providing structural integrity, strength 

and protection against pathogens. As the cell wall is the site of ice formation, it has also been 

suggested that the wall could contribute towards protection of the plant against freezing 

damage. The cell wall undergoes remodelling during cold acclimation, but it is unclear what 

specific role this restructuring may play in freezing tolerance. 

The sensitive to freezing8 (sfr8) mutant contains less cell wall fucose due do a mutation in the 

fucose biosynthetic gene MUR1. This was shown to result in a decrease in dimerisation of the 

cell wall pectic domain rhamnogalacturonan-II (RG-II), which in wild type plants is predominantly 

dimerised via a borate-ester cross-link. This decrease in dimerisation likely results in the 

observed freezing sensitivity of mur1 mutants, as supplementation of plants with boric acid was 

shown to restore freezing tolerance. Guard cell dynamics were also compromised in the sfr8 

mutant, as stomata were found to be more restricted in their movements than wild type in 

response to ABA, CO2 and changes in humidity.  

The freezing and guard cell phenotypes of sfr8 may be attributed to a decrease in the tensile 

modulus of the cell wall with reduced RG-II dimerisation. This makes the wall more vulnerable 

to deformation during freezing and prevents the guard cells from stiffening to allow an increase 

in stomatal aperture. RG-II dimerisation also mediates certain structural aspects of the cell wall 

that may facilitate supercooling by excluding ice nucleation and preventing ice growth. This 

research reveals the importance of RG-II dimerisation in cell wall dynamics and the impact cell-

wall composition has on freezing and desiccation tolerance. These findings could lead to the 

identification of new targets for crop breeding. 
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CHAPTER 1 

INTRODUCTION 

Environmental stress can have a major impact on plant survival and crop productivity. Plants 

growing in temperate to high latitudes, and at high altitudes, may experience low temperatures 

on a regular basis throughout their developmental lifespan, and due to their sessile nature, 

plants are unable to move to avoid these adverse conditions. Particularly damaging are the low 

temperatures plants may experience before cold hardening has taken place, and after tissues 

have de-hardened i.e. during early autumn and late spring frosts. With the threat of climate 

change, there is predicted to be an increase in the occurrence of these temperature fluctuations. 

There is already evidence that these events can be devastating to agriculture, such as the 2007 

eastern US spring freeze which caused severe and widespread damage to crops, resulting in 

agricultural losses of $111.7 million in one state alone (Gu et al. 2008). It is therefore an 

important endeavour to understand how plants withstand freezing, and how they can be made 

more tolerant in order to survive such future events and maintain crop yield for the increasing 

population. 

This study aims to investigate the role of the plant cell wall as a mechanism for surviving freezing 

events.  This chapter reviews our current knowledge of freezing injury and freezing tolerance in 

plants and looks at this in relation to the structure and dynamics of the plant cell wall. 
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1.1 Freezing Tolerance and Injury 

1.1.1 Ice growth and propagation 

In order to understand how a plant survives freezing events, it is necessary to know what 

processes occur within the plant during these events to cause damage. Different plants respond 

to freezing differently. Tropical plants which rarely, if ever, experience temperatures below 0°C 

often display chilling injury. These plants will experience damage such as chlorosis of leaves and 

loss of turgor and undergo physiological dysfunction at temperatures below 10-12°C (Lyons 

1973). Temperate plants are generally chilling-resistant but can vary in their freezing tolerance. 

Most temperate plants increase their freezing tolerance through a process known as cold 

acclimation (Thomashow 1999), which will be discussed in section 1.2. This study will focus on 

temperate plants, and this section will summarise how they experience freezing and how they 

prevent or survive freezing injury. 

For more information on the first 100 years of research into freezing injury and tolerance, the 

reader is referred to the extensive review by Levitt (1980) which covers many topics. This review 

will be used to reference early work and generalisations that have been established from many 

years of that work, and the reader is referred to references therein for further detail and 

progressions of ideas and discovery. 

1.1.1.1 Ice nucleation 

Freezing stress and cellular damage generally occur following the growth of ice crystals within 

the plant. In a bulk volume of water, ice crystals only form spontaneously in highly supercooled 

water, at temperatures below -40°C (Bigg 1953). Under such conditions, this homogeneous 

nucleation is effectively achieved once the forming crystal nucleus surpasses the critical radius 

of 1.13 nm (Sakai & Larcher 1987). However, in nature ice will readily form at much higher 

temperatures via heterogeneous ice nucleation, catalysed by ice-nucleating particles such as 

organic and inorganic molecules or ice-nucleating bacteria (Lindow, Arny & Upper 1982; Hirano 

& Upper 2000). There is evidence to suggest that in plants, ice nucleates first in the vessels 

(Asahina 1956), the large diameter and dilute solute of which facilitate freezing at higher 

temperatures than in epidermal cells, which have higher solute concentrations. Nucleation 

within the cells has been suggested to occur via nucleation sites associated with the cell wall 

(Salt & Kaku 1967). However, ice may also enter the plant from external sources: via growth of 
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ice nucleated on the outer surface through stomata, hydathodes or cracks in the cuticle surface 

(Wisniewski & Fuller 1999).  

Plants that are able to survive freezing temperatures typically do so by tolerating ice formation 

in their tissues (Burke et al. 1976). There are two main compartments in plants in which water 

resides; the symplast and the apoplast. The symplast encompasses intracellular water of the 

cytoplasm and vacuole, and the apoplast encompasses water in the xylem-lumen space, the cell 

wall and other extracellular areas such as intercellular spaces (Canny 1995). Due to this 

separation, ice can form either intracellularly, in the symplast, or extracellularly, in the apoplast. 

Intracellular and extracellular ice occur under different conditions and have different damaging 

effects on plants. 

1.1.1.2 Intracellular ice  

Intracellular ice formation (IIF) has been observed in plants both in vitro and in vivo for example 

in non-hardy plants, in subepidermal and perivascular tissue (Pearce & Ashworth 1992) or in 

‘deep supercooled’ (see section 1.5.3) tissues of freezing-tolerant plants at very low 

temperature (George & Burke 1976). IIF has also been observed using high-speed microscopy 

(Ninagawa et al. 2016), in which the formation pattern of ice inside the cell was influenced by 

the rate of cooling. It has been suggested that if cooling is rapid enough, ice crystals would form 

at very low temperatures that are small enough to penetrate the plasma membrane and induce 

intracellular freezing (Mazur 1963; Levitt 1980). Larger ice crystals may also damage membranes 

directly through shearing or laceration, disturbing their semi-permeability and resulting in the 

leaking of cell contents (Levitt 1980).  

It has been suggested that intracellular freezing ultimately always results in cell death, likely due 

to the detrimental effects of the freezing of the cytoplasm, as well as subsequent dehydration 

stress and mechanical pressure due to ice formation (Asahina 1956). However, there is some 

evidence that this is not always the case, as IIF in seeds of Acer saccharinum was found to be 

non-lethal (Wesley-Smith et al. 2014), although this system is not necessarily typical of a 

hydrated plant cell. Nevertheless, IIF is believed to be a rare occurrence in nature, since it is 

usually observed during very rapid cooling that plants are unlikely to experience (Weiser 1970; 

Levitt 1980).   
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1.1.1.3 Extracellular ice 

Most of the damage that occurs to plants in nature during freezing is due to extracellular ice 

formation. Ice will spread throughout the plant from nucleation points, forming mainly between 

cells where there is space for ice to grow (Levitt 1980). The hydrophobic lipid plasma membrane 

prevents the growth of ice into the cell at low rates of cooling (contrary to intracellular ice 

formation during fast cooling) (Chambers & Hale 1932). Effective structural ice barriers can also 

prevent the spread of ice through the plant, which may be related to the cell wall (Kuprian et al. 

2014). This is particularly observed in plant organs such as flower buds, where ice is prevented 

from growing due to the presence of ice barriers in order to prevent damage to susceptible 

tissue (Wisniewski, Gusta & Neuner 2014). Ice crystals have frequently been observed to form 

on the surface of the cell wall facing the intercellular space, from water vapour and the surface 

film of water present on cell walls (Asahina 1956; Levitt 1980). Under natural freezing conditions, 

freezing may be gradual enough to prevent ice from spreading throughout the entirety of the 

plant. Ice crystals may be confined to specific regions, particularly if the membrane and cell wall 

structure prevent further ice growth (Ashworth & Abeles 1984). Ice must then grow at the 

expense of water diffusing to it from relatively distant unfrozen regions (Levitt 1980). 

Extracellular freezing is believed to occur in two stages, a phenomenon that has been observed 

via infrared thermography (Pearce & Fuller 2001). An initial, rapid spread of extracellular ice is 

indicated by a low-intensity thermal signal (exotherm), due to the exothermic nature of ice 

nucleation. A small quantity of water moving from the cytoplasm to the apoplast down the 

water potential gradient created is enough to thaw the ice, after which a more intense freezing 

event occurs where water is drawn from cells and freezes extracellularly indicated by a second 

exotherm (Figure 1.1). The initial growth of ice can occur at a rate of between 4 to 40 mm per 

second (Hudson & Idle 1962; Pearce & Fuller 2001). Interestingly, a double freezing point of a 

different nature has also been observed in woody plants, where the first exotherm occurs at the 

beginning of extracellular freezing, and the second occurs at very low temperatures due to 

intracellular freezing of parenchyma cells (Burke et al. 1976). 

It is important to note that the formation of ice within the plant relies on several factors 

including the rate of temperature decrease, the degree of supercooling, the water content of 

the cell and surrounding tissues and the hardiness of the plant (see section 1.2). All of these 

factors play a part in the incidence of ice nucleation, whether intra- or extracellular, and 

ultimately the damage that the plant sustains (Asahina 1956). As previously mentioned, most of 
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the damage sustained from freezing is due to the formation of extracellular ice, the various 

consequences of which will be discussed.  

1.1.2 Mechanisms of freezing damage 

1.1.2.1 Damage due to freeze-induced dehydration 

The formation of extracellular ice within the plant results in a secondary dehydration stress that 

is believed to be the main cause of injury by extracellular ice (Levitt 1956, 1980; Pearce 2001). 

The formation of ice in intercellular spaces lowers the water potential of the apoplast. 

Consequently, cellular water at a higher potential diffuses through the plasma membrane to the 

intercellular ice, resulting in ice crystal growth (Gusta, Burke & Kapoor 1975). This results in the 

contraction or collapse of the cell, also known as cytorrhysis, as it experiences dehydration 

(Pearce 1988; Pearce & Ashworth 1992). If the temperature continues to decrease, water will 

continue to diffuse to points of extracellular ice, as the water potential of ice increases as 

temperature decreases, thus increasing dehydration (Gusta et al. 1975). The solute 

concentration within the cell thus increases, decreasing the freezing point further (Levitt 1941). 

Eventually temperature equilibrium and consequent water potential equilibrium may be 

Figure 1.1: The double freezing point. Observation of two freezing points in leaf blades of 
barley during a typical freezing event, highlighted by the increase in temperature. From Pearce 
and Fuller (2001). 
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reached, and the plant can remain frozen indefinitely at constant temperature without the 

formation of ice occurring within the cell (Levitt 1980).  

The rate of diffusion of water from the protoplasm to the apoplast is dependent upon the 

permeability of the plasma membrane. If the membrane is not permeable enough such that 

water movement is slowed, and the temperature decrease is rapid enough, diffusion cannot 

occur rapidly enough to increase the concentration of the cellular solute. The cell may therefore 

reach a temperature sufficiently lower than its freezing point to induce intracellular freezing 

(Levitt 1980). Studies have shown that the permeability of the cell membrane increases during 

cold acclimation (Yoshida & Uemura 1990; Uemura et al. 2006) which may account for the 

observance of intracellular freezing in non-hardy plants (Asahina 1956).  

There is evidence to suggest that damage sustained during freezing events is mostly as a result 

of freeze-dehydration induced by extracellular ice nucleation and growth. Such dehydration 

results in constriction or even collapse of both the plasma membrane and the cell wall (Molisch 

1897). This causes contraction of the tissues due to cell-cell adhesion, and ice has even been 

observed to split the cell walls of mosses, which typically have no intercellular spaces 

(Modlibowska & Rogers 1955). A particular site of injury is the plasma membrane, the structure 

of which is damaged when dehydration exceeds the tolerance of the cell (Steponkus 1984). This 

dehydration stress leads to a phase separation of the membrane from a bilayer to a non-bilayer 

structure, thus disrupting compartmentalisation and normal cellular function (Stout, Majak & 

Reaney 1980; Pearce & Willison 1985). Other membranes such as the thylakoid membrane 

(Steponkus et al. 1977) and the tonoplast (Murai & Yoshida 1998a) have been shown to incur 

damage, thus affecting photosynthetic and cellular processes. The increase in solute 

concentration has also been shown to damage membranes during freeze-induced dehydration 

due to so called “solution effects” (Levitt 1980; Steponkus 1984). This could occur through the 

direct interaction of solutes with the membrane resulting in the dissociation of proteins, or by 

the dissociation of the bilayer due to interaction of polar membrane components with aqueous 

solutions (Heber et al. 1981).  

1.1.2.2 The effect of freeze-thaw cycles 

Another form of damage due to dehydration presents itself upon thawing of plant tissues. 

During the cell collapse of freeze-induce dehydration, the cell membrane shrinks, and excess 

lipids are removed into endocytotic vesicles in order to maintain tension. The formation of these 
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vesicles is not believed to be a cause of membrane damage (Dowgert & Steponkus 1984). 

However, upon thawing, osmotic expansion causes membrane rupture as the vesicles are not 

able to be incorporated into the membrane quickly enough to reverse the large decrease in area 

(Wiest & Steponkus 1978), a form of injury termed ‘expansion-induce lysis’ (EIL).  

A loss of osmotic responsiveness is another consequence of freeze-induced dehydration, where 

the membrane becomes flaccid and isotropic tension is lost (Yamazaki, Kawamura & Uemura 

2009). This alteration to osmotic responsiveness effects the permeability of the membrane, and 

could occur for several reasons including the effect of toxic solutes, liquid crystal-to-gel phase 

transitions or the effects of dehydration (Steponkus 1984). The dehydration-induced lamellar-

to-hexagonal-II phase transition has been observed in freeze-induced dehydrated protoplasts 

and occurs when the plasma membrane is brought into close contact with other 

endomembranes in the cell such as the chloroplast as it collapses (Gordon-Kamm & Steponkus 

1984a; Nagao et al. 2008). Generally, the osmotic responsiveness of the protoplast is diminished 

during thawing, such that no lysis is observed but the protoplast is unable to return to its original 

size (Uemura et al. 2006). These events are likely the cause of the observation of “frost 

plasmolysis” in freeze killed cells, where the cell wall expands back to its nearly original shape 

during the influx of water after thawing, whilst the dead protoplast remains contracted (Levitt 

1980).  

1.1.2.3 Resistance to collapse and influence of cell tensions 

As described previously, during the formation of extracellular ice, water moves down the 

potential gradient from inside the cell to outside, resulting in freeze-dehydration, which causes 

the membrane and cell wall to collapse. The movement of water allows the cell to reach freezing 

equilibrium where the water potential of the cells is identical to that of the ice (Levitt 1980). 

However, there is also evidence of non-equilibrium freezing resulting in the development of 

negative pressures within the cell. Negative pressures have been measured in an artificial cell 

during freezing (Zhu, Steudle & Beck 1989), and have been proposed in several plant species 

such as Pachysandra terminalis (Zhu & Beck 1991) and Hordeum vulgare (Hansen & Beck 1988). 

Negative pressures are formed due to the resistance of the cell wall to collapse during freeze-

dehydration and can limit the extent of dehydration the cell experiences. The ability of the cell 

wall to resist collapse is believed to be associated with cell-wall strength (Rajashekar & Burke 

1982), which has been shown to increase during cold acclimation (Rajashekar & Lafta 1996). 

Although resistance to collapse may lessen cellular dehydration during freezing events, the 
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formation of negative pressures can lead to cavitation i.e. the formation of vapour cavities in a 

liquid filled space (Tyree & Dixon 1986). Cavitation is mostly observed in xylem vessels during 

water stress, where negative pressures increase, and can lead to embolism where the xylem 

conduits fill with gases that come out of solution in the surrounding tissue to fill the space left 

by the cavitation event (Tyree & Sperry 1989). 

1.1.2.4 Other effects of low temperature 

Although membranes are believed to be the main site of injury during freezing, low 

temperatures and ice can have other detrimental effects on the cell. Such low temperatures 

have been shown to result in the denaturation of proteins due to a decrease in their 

conformational stability, impacting upon normal cellular processes (Guy, Haskell & Li 1998). The 

production of oxygen radicals (ROS) increases during freezing resulting in damage to membranes 

and other cell contents (Kendall & McKersie 1989). The formation of ice in intercellular spaces 

can also form adhesions to cell-wall polysaccharides and the plasma membrane often resulting 

in cell rupture (Olien & Smith 1977). It is clear that there are many aspects of freezing that are 

detrimental to plants, thus it is necessary for plants to have mechanisms in place in order to 

prevent damage from those events. 

1.2 Cold Acclimation  

Many temperate plants have the ability to undergo a process known as cold acclimation, 

through the exposure to low non-freezing temperatures between 0 and 5°C. This process allows 

the plant to gain a higher level of freezing tolerance, permitting it to survive at lower 

temperatures and often preventing injury from some of the events previously described. 

(Thomashow 1999). As early as the late 1800s plants were shown to increase in their freezing 

tolerance after exposure to low temperatures (Levitt 1980). These changes were hypothesised 

to result from metabolic and physiological modifications as a result of gene expression (Weiser 

1970), and eventually it was established that cold exposure induced changes in gene expression 

(Guy, Niemi & Brambl 1985). The focus of this section will be on the regulation of cold 

acclimation, and what processes take place to allow the plant to become more freezing tolerant. 

1.2.1 Cold sensing 

The mechanism via which plants sense cold, and the events following this that occur upstream 

of cold-induced alterations in order for cold acclimation to occur are still uncertain. There is 
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evidence to suggest that the primary event in cold sensing is a change in membrane fluidity, as 

the fluidity of lipid membranes is known to decrease with decreasing temperature (Cossins 

1994). Genetic and chemical alterations to membrane fluidity in cyanobacteria and plants 

respectively resulted in defects in cold-induced gene expression, suggesting fluidity plays an 

essential role in cold signalling (Orvar et al. 2000; Inaba et al. 2003). It has been hypothesised 

that a physical phase transition of the membrane from a liquid-crystal to a gel in response to a 

decrease in temperature may induce a conformational change in a hypothetical temperature 

sensor within the membrane (Murata & Los 1997). In animals, it has been shown that potassium 

channels are necessary for sensing temperature (Peier et al. 2002), although no conserved 

relatives of these proteins have been found in plants. It has been suggested that Ca2+ channels 

may play a role in temperature sensing, although no such channel has yet been identified (Knight 

& Knight 2012). However, there is ample evidence for this in that exposure of plants to low 

temperatures has been shown to result in an increase in cytosolic free Ca2+ concentration (Knight 

et al. 1991; Knight, Trewavas & Knighta 1996; Monroy & Dhindsa 1995), which is blocked by the 

addition of Ca2+ chelators or channel blockers (Monroy & Dhindsa 1995). This Ca2+ influx has been 

suggested to lead to depolarisation of the membrane (Lewis & Spalding 1998), and the degree 

of Ca2+ influx and depolarisation is dependent on the degree and rate of cooling (Plieth 1999). 

Research has shown that the cytoskeleton may also be involved downstream of perception but 

upstream of cytosolic Ca2+ influx, as the destabilisation of actin filaments resulted in cold-

induced gene expression without the need for exposure to cold (Orvar et al. 2000). More 

evidence is required to ascertain the precise mechanism via which plants perceive cold, but this 

research suggests that membrane fluidity and Ca2+ signalling are likely early signalling events 

leading to downstream alterations to gene expression. 

1.2.2 The CBF pathway  

The most well studied pathway initialised during cold acclimation is that of the CBF (C-

repeat/DRE Binding Factor) transcription factors (see Figure 1.2). These factors activate the 

expression of COR (Cold on Regulated) genes, which have roles in cold acclimation. These COR 

genes contain a specific DNA motif in their promotor region designated the CRT/DRE (C-

Repeat/Drought Responsive Element) (Yamaguchi-Shinozaki & Shinozaki 1994), that was found 

to activate genes associated with cold acclimation (Jaglo-Ottosen et al. 1998; Liu et al. 1998). 

The first transcription factor found to bind this motif was CBF1 (Stockinger, Gilmour & 

Thomashow 1997),  
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which when overexpressed in Arabidopsis was found to confer freezing tolerance in non-

acclimated plants (Jaglo-Ottosen et al. 1998). 

It was later discovered that CBF1 was only one of a small gene family of closely related 

transcription factors involved in freezing tolerance. These genes are denoted CBF1, 2 and 3 or 

DREB1B, 1C and 1A respectively and are physically linked on chromosome 4 of Arabidopsis 

(Gilmour et al. 1998; Liu et al. 1998; Shinwari et al. 1998). Evidence gathered from studying the 

overexpression of the three genes suggested that CBF1, 2 and 3 play functionally redundant 

roles during cold acclimation (Gilmour, Fowler & Thomashow 2004). More recently it was shown 

that CBF2 in particular may have a slightly different role than CBF1 and 3 (Novillo, Medina & 

Salinas 2007). This is highlighted by the finding that CBF2 has been shown to regulate CBF1 and 

3 (Novillo et al. 2004), as well as the fact that analysis of single, double and triple cbf mutants 

suggest that CBF2 is the more important of the three (Zhao et al. 2016). Nevertheless, CBF 

expression is essential for full COR gene expression, as shown by the loss of COR gene expression 

despite exposure to cold in a mutant that had decreased activation of CBF proteins, possibly due 

to the loss of post-transcriptional regulation of CBFs (Knight et al. 1999, 2009).  

Expression of the CBF genes themselves is positively regulated by the transcription factors ICE1 

and ICE2 (inducer of CBF expression) (Zarka et al. 2003), which are also regulated by post 

translational modification. ICE1 is ubiquitinated by the E3 ligase HOS1 (high expression of 

osmotically responsive gene) resulting in the degradation of ICE1 under ambient conditions 

(Dong et al. 2006). ICE1 is also sumoylated by the SUMO (small ubiquitin-related modifier) E3 

ligase SIZ1 (sap/miz) which confers stabilization of ICE1 (Miura et al. 2007), allowing binding to 

CBF promotors and consequent transcription leading to cold acclimation. Negative regulation of 

CBFs is achieved through the transcription factor MYB15, which binds to MYB-recognition sites 

in the promotors of CBF genes, as well as interacting with ICE1, possibly as a further control for 

the regulation of CBF expression (Agarwal et al. 2006). The CBF proteins themselves accumulate 

at low temperatures, but are very unstable at ambient temperatures suggesting aberrant 

expression of COR genes cannot take place above a certain temperature (Zarka et al. 2003).  

Calcium has also been shown to be essential for COR gene expression, as described in section 

1.2.1. Treatment of plants with Ca2+ -chelators was found to inhibit the expression of COR genes 

in Arabidopsis (Knight et al. 1996; Tahtiharju et al. 1997) and CAS (cold-acclimation specific) 

genes in Alfalfa (Monroy & Dhindsa 1995). It is unclear from this at what point Ca2+ is involved 

in the cold-acclimation pathway, although more recent research has suggested that Ca2+ is also 
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important downstream of cold-perception, with evidence suggesting that Ca2+ regulates COR 

gene expression via the CRT/DRE promotor motif (Whalley et al. 2011). The induction of CBF 

genes is also gated by the circadian clock; the extent to which CBF genes are expressed during 

cold exposure was found to be dependent upon the time of day (Fowler, Cook & Thomashow 

2005), and in mutants deficient in two core clock genes, cold-induction of CBF genes was greatly 

diminished (Dong, Farré & Thomashow 2011). This suggests that there are various levels of 

regulation of the CBF pathway. This tight regulation of the pathway is necessary for growth, as 

overexpression of CBF genes in Arabidopsis was shown to result in a severe dwarf phenotype 

(Liu et al. 1998; Oakenfull, Baxter & Knight 2013). This is due to the fact that CBF1 reduces the 

amount of the plant hormone gibberellin, thus enhancing the accumulation of DELLA proteins 

which repress growth (Achard et al. 2008). Cold acclimation has also been shown to lead to the 

down-regulation of many growth- and hormone-related genes such as auxin-, gibberellin- and 

brassinosteroid-induced or responsive genes, which is likely related to the decrease in growth 

observed in plants exposed to low temperatures (Hannah, Heyer & Hincha 2005). The plant 

hormone ABA (abscisic acid) also plays a role in the perception and responses to abiotic stress 

(Gusta, Trischuk & Weiser 2005; Penfield 2008) and has been shown to induce an increase in the 

expression of CBF1 (Knight et al. 2004). 

1.2.3 CBF-independent pathways 

Recent research into the targets of CBF genes has shown that approximately 414 genes are up-

regulated and 68 down-regulated by the CBF transcription factors (Zhao et al. 2016). This 

number is much lower than the total number of genes differentially expressed by cold exposure, 

which is likely to be in excess of 10,000 (Hannah et al. 2005). This comparison highlights the fact 

that the CBF-regulon is not the sole pathway induced during cold acclimation for the acquisition 

of freezing tolerance. Some examples include the plant transcription factor ESK1 (eskimo1). 

Mutants of esk1 are constitutively freezing tolerant (Xin & Browse 1998), and display altered 

expression of genes involved in abiotic stress responses that have little overlap with genes 

induced by CBFs. These results suggest that ESK1 is a negative regulator of cold acclimation (Xin 

et al. 2007). Another gene, HOS9 (high expression of osmotically responsive genes9), a 

constitutively expressed homeodomain transcription factor, was shown to regulate genes that 

were not induced by CBFs (Zhu et al. 2004). These examples highlight the fact that there are 

several pathways that regulate the response to cold and thus freezing tolerance. 
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1.2.4 Cellular targets of cold acclimation 

1.2.4.1 Lipid Membranes 

As described in section 1.1.2, one of the most frequent sites of injury during freezing is the 

plasma membrane, brought about by freeze-induced dehydration. Thus, a key step during cold 

acclimation is to stabilise membranes to prevent damage from dehydration (Thomashow 1999). 

A process via which this is achieved is through alterations to the lipid composition of the 

membrane, observed in several different species including Arabidopsis (Lynch & Steponkus 

1987; Yoshida & Uemura 1990; Uemura, Joseph & Steponkus 1995; Uemura et al. 2006). Cold 

acclimation induces an increase in the proportion of phospholipids within the membrane, a 

decrease in the proportion of free sterols and an increase in the proportion of di-unsaturated 

species (Uemura et al. 1995). It was observed that the formation of endocytotic vesicles did not 

occur during freeze-induced dehydration of acclimated cells, and instead the membrane formed 

exocytotic extrusions, meaning that the surface area of the membrane was conserved, and 

expansion-induce lysis did not occur in acclimated plants. This is believed to be associated with 

a higher proportion of phosphatidylcholine within the membrane (Gordon-Kamm & Steponkus 

1984b). The formation of lamellar-to-hexagonal-II phases transitions was also not observed in 

acclimated protoplasts (Gordon-Kamm & Steponkus 1984a), possibly as a result of an increase 

in the proportion of highly hydrated lipid classes to increase bilayer hydration and maintain 

bilayer separation (Uemura et al. 1995). Injury to membranes can still occur in acclimated cells 

and is believed to be associated with ‘fracture-jump-lesions’ which is as a result of the formation 

of interlamellar attachments or the fusion of the plasma membrane with other endomembranes 

(Uemura et al. 1995).  

Changes in lipid composition are key to preventing membrane damage during freeze-induced 

dehydration, but other mechanisms are also used to protect the membrane during freezing. The 

accumulation of sucrose and other simple sugars occurs during cold acclimation of Arabidopsis 

plants (Wanner & Junttila 1999). Sucrose has been shown to protect membranes during freeze-

thawing, possibly by binding to the membrane or affecting adjacent water structure, and 

ultimately preventing membrane fusion and subsequent injury (Strauss & Hauser 1986). Other 

solutes such as proline and trehalose have also been shown to play a role in the maintenance of 

membrane integrity after freezing (Rudolph & Crowe 1985).  

Many cold-induced COR genes encode hydrophilic polypeptides that play a role in mitigating 

injury due to freeze-induced dehydration (Thomashow 1998). An example of one of these genes 
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that has been found to contribute directly to membrane stabilisation during freezing is COR15a, 

a chloroplast stroma-localised protein which when constitutively expressed results in increased 

freezing tolerance of non-acclimated chloroplasts and protoplasts (Artus et al. 1996). This is 

believed to occur through the decrease in the incidence of lamellar-to-hexagonal-II phase 

transitions by the alteration of the intrinsic curvature of the chloroplast inner membrane by 

COR15am (Steponkus et al. 1998). Other proteins induced during cold acclimation also function 

to protect thylakoid membranes during freeze-thaw cycles by reducing membrane permeability 

during freezing and increasing membrane expandability during thawing (Hincha, Heber & 

Schmitt 1990). For example, SFR2 is a galactolipid remodelling enzyme of the outer chloroplast 

membrane that stabilises membranes during freezing events (Moellering, Muthan & Benning 

2010). This gene was discovered after a screen of EMS-mutagenized plants was carried out to 

find mutants that were sensitive to freezing (see section 3.1) (Warren et al. 1996a). 

1.2.4.2 Other cellular components 

Other injury-reducing mechanisms are induced during cold acclimation besides those that 

prevent membrane damage. Analysis has shown that a multigene family of HSP70 (heat shock 

protein 70) genes is induced during cold acclimation (Guy & Li 1998). These function as 

molecular chaperones and have been shown to interact with proteins in order to prevent 

denaturation (Guy et al. 1998). The damaging effects of reactive oxygen species are also reduced 

after cold acclimation by the expression of enzymatic scavengers such as superoxide dismutase 

(Mckersie et al. 1993) and ascorbate peroxidase (Tao, Oquist & Wingsle 1998). 

An increased level of sugars such as sucrose, fructose and glucose observed within the apoplast 

after cold acclimation (Livingston III & Henson 1998) may function to protect membranes against 

ice adhesions. Anti-freeze proteins (AFPs), also known as ice-binding proteins (IBPs) 

(Thomashow 1998; Bredow & Walker 2017) have also been shown to accumulate within the 

apoplast during cold acclimation (Griffith et al. 1992; Zhang 2009). IPBs have a high structural 

and functional diversity (Bar Dolev, Braslavsky & Davies 2016) and evidence suggests that they 

reduce the temperature at which ice forms by adsorbing to the surface of ice nuclei and 

inhibiting growth, possibly by preventing the aggregation of water molecules (Griffith et al. 

2005). It has only very recently been confirmed that AFPs are important for plant freezing 

tolerance through the observation that knockdown of AFPs results in an increase of freezing 

damage (Bredow, Vanderbeld & Walker 2016), and the expression of more than one isoform of 
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AFP expressed in Arabidopsis was found to increase freezing tolerance (Bredow, Vanderbeld & 

Walker 2017). 

1.3 The Plant Cell Wall 

It was not until many years after Robert Hooke’s first observations of living plant cells (Hooke 

1665) that the cell wall was considered a dynamic mosaic of diverse form and function rather 

than a simple static structure. Since then, major discoveries in the components and growth of 

the cell wall have led to models considering the wall to be a three-dimensional continuous 

matrix surrounding plant protoplasts (McNeil et al. 1984; Carpita & Gibeaut 1993; Cosgrove 

1993; Höfte & Voxeur 2017). The plant cell wall plays key roles in structural integrity, strength, 

cell growth, cell differentiation, intercellular communication, water movement and pathogen 

defence (Cosgrove 2005), as well as more recently discovered roles in abiotic stress tolerance 

(Houston et al. 2016). It is essential for plant life, and the ability to carry out these roles is 

through its complex polysaccharide structure. 

1.3.1 Structure of the plant cell wall 

There are generally considered to be two types of cell wall in flowering plants; the type I cell 

wall of dicots and some monocot families, and type II cell walls present in Poaceae and other 

monocot families, which differ slightly in polysaccharide composition and structure (Carpita & 

Gibeaut 1993). This study will focus mainly on the structure of type I cell walls as this is more 

relevant to the dicots studied and researched here, although the stress responses of monocot 

cell walls will also be discussed. 

In growing cells, the wall is a thin flexible layer between 0.1 and 1 µm thick comprising of a 

mixture of fibrous polysaccharides and structural proteins (Cosgrove 2005). The wall is typically 

made of three distinct sections identified via their polysaccharide composition; the primary cell 

wall (PCW), the secondary cell wall (SCW) and the middle lamella (ML). The PCW and the ML are 

secreted from the cell first, with the SCW normally being secreted after growth ceases and is 

usually only present in cells that require structural reinforcement such as xylem (Clarke 1938). 

The PCW is made up of a fibrous network of cellulose microfibrils embedded in a matrix of pectin 

and hemicellulosic polysaccharides as well as some protein. The ML is a shared layer of wall rich 

in pectins that connects two cells together (Brett & Waldron 1996). See figure 1.3 for a simplified 

model of the primary plant cell wall. 
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1.3.2 Growth of the cell wall 

The ability for plant cell walls to expand is driven by wall stress relaxation, which relies on wall 

loosening (Ray, Green & Cleland 1972; Cosgrove 1993; Ortega 2017). This process allows the 

irreversible extension of the cell wall, often referred to as ‘creep’ (Cosgrove 2016a). It also relies 

on cell turgor pressure; during cell growth, cell volume increases as a result of water uptake 

resulting in an increase in wall surface area by the separation of cell wall components (Ray et al. 

1972; Cosgrove 2016b). Cell growth is possible through the action of wall loosening enzymes 

such as expansins, endoglucanases, endotransglucosylases and pectin methyl-esterases (see 

section 1.3.4.1) (Cosgrove 2016a). Extension is also mediated by changes in cell wall pH, which 

is known to modulate the action of expansins (Cosgrove 2015); cell walls extend under acidic 

conditions, a process that supports the acid-growth hypothesis of auxin-induced elongation 

(Rayle & Cleland 1992). Cell growth can only occur under conditions of wall-loosening coupled 

with the action of wall deposition, otherwise the cell wall becomes thin, thus polysaccharide 

synthesis mechanisms are closely correlated to wall loosening (Refregier et al. 2004). It is 

believed that the cytoskeleton also plays a role in guiding wall machinery to supply cell-wall 

components at relevant locations in the cell (Szymanski & Cosgrove 2009). 

1.3.3 The cellulose-hemicellulosic framework 

1.3.3.1 Structure 

Cellulose is common to most cell walls and makes up approximately 20-30% of the dry mass of 

PCWs (McNeil et al. 1984). Cellulose is an unbranched chain of β1,4-D-glucan sugars (Gardner & 

Blackwell 1974), with a degree of polymerisation as high as 15,000 subunits in SCW (Marx-Figini 

1966), although PCWs have a slightly lower degree of polymerisation (Spencer & Maclachlan 

1972). Between 30 and 100 cellulose chains come together to form a microfibril which can wind 

around the circumference of the cell many times in a perpendicular orientation to the axis of 

growth of the cell. This led to the view that cellulose could actually determine the axis of growth 

(McNeil et al. 1984). However, it has been shown in onion epidermal cells that the cell wall 

consists of layers of lamellae, in which microfibril organisation shifts by 30° to 90° between 

lamella, suggesting there are microfibrils with different organisations within the cell wall (Zhang, 

Zheng & Cosgrove 2016b). Recent work using atomic force microscopy (AFM) has visualised an 

alteration of microfibrillar connectivity during wall loosening suggesting dynamic movements of 

microfibrils are required for wall extension (Zhang et al. 2017). Microfibrils also form cellulose-
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cellulose associations that may be mediated by hydrophilic or hydrophobic faces. These two 

faces may also facilitate interaction with other cell-wall polysaccharides (Cosgrove 2018). 

The cellulose chains form a crystalline structure that contributes considerably to cell wall 

strength (Cosgrove 2005). This network is strengthened further via the cross-linking of 

microfibrils by polysaccharides known as hemicelluloses (see Figure 1.3). Hemicelluloses vary 

greatly in structure between species and even cell types, and the hemicellulosic fraction can 

consist of xyloglucans, xylans, mannans, mixed-link glucans and arabinogalactan-II among others 

(Brett & Waldron 1996). Xylan and arabinoxylan are the major hemicelluloses present in 

monocot cell walls (Burke et al. 1974), whereas xyloglucan is the main hemicellulosic constituent 

of dicots, comprising approximately 20-25% of the primary walls of sycamore cell cultures 

(McNeil et al. 1984), and approximately 20% in Arabidopsis (Zablackis et al. 1995). Xyloglucan 

consists of a backbone of β-1,4-linked glucose residues, to which various amounts of D-xylose, 

D-galactose and L-fucose are attached (Hayashi 1989). Xyloglucan chains have been shown to 

form hydrogen bonds with cellulose fibres, and can bridge cellulose microfibrils to form a 

strongly tethered network (Mccann, Wells & Roberts 1990). The substitution of different sugar 

side chains on the backbone of xyloglucan is believed to affect conformation and hence the 

ability to cross-link to cellulose (Levy, Maclachlan & Staehelin 1997).   

1.3.3.2 Synthesis 

Cellulose forms the main structural component of the cell wall and is synthesised at the plasma 

membrane by large cellulose synthase complexes (Arioli et al. 1998; Kimura et al. 1999). These 

complexes are formed into hexameric rosettes of different combinations of CESA subunits, each 

containing six CESA proteins (Doblin et al. 2002). There are currently ten known CESA genes in 

Arabidopsis, although there is evidence that there may be more, and that other proteins may 

also form part of the cellulose synthase complex (Richmond & Somerville 2000). Different 

combinations of CESA subunits are required for synthesis of the primary and secondary cell 

walls, for example it has been shown that CES4, 7 and 8 are required for the formation of 

secondary walls in developing xylem tissue (Gardiner, Taylor & Turner 2003). Each CESA protein 

synthesises one β-1,4-glucan chain which through bundling and crystallisation form into a 

cellulose microfibril of many chains (Doblin et al. 2002; Li et al. 2016a). 

CESA genes belong to a larger superfamily of genes known as cellulose synthase-like (CSL), which 

is made up of eight other families of structurally related genes believed to be localised to the 



19 
 

Golgi (Richmond & Somerville 2000). Some of these proteins have been shown to be involved in 

the synthesis of the β-D-glycan backbone of hemicelluloses (Pauly et al. 2013). Xyloglucan 

synthesis, like many other non-cellulosic polysaccharides, has been localised to the Golgi (Moore 

& Staehelin 1988), where it is synthesised by proteins encoded by one or more members of the 

CSLC family of genes (Cocuron et al. 2007; Pauly et al. 2013).  Activated nucleotide sugars are 

transferred to the backbone via the activity of enzymes such as xylosyltransferases (XT) (Pauly 

& Keegstra 2016) and fucosyltransferases (FUT) (Perrin 2003) which may form complexes with 

CSL proteins (Chou, Pogorelko & Zabotina 2012). Once deposited into the cell wall via vesicle 

transport, xyloglucan can associate with cellulose microfibrils (Hayashi, Marsden & Delmer 

1987). 

1.3.4 The pectin matrix 

1.3.4.1 Structure 

Pectic polysaccharides are rich in galacturonic acid (GalA), rhamnose (Rha), arabinose (Ara) and 

galactose (Gal), and along with hemicellulose they form the matrix component of the cell wall. 

They are found in the PCW of dicots and to a lesser extent in monocots and make up a large 

proportion of the ML in dicots. This group of polysaccharides is structurally diverse and is 

composed of homogalacturonan (HG), rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II 

(RG-II) as well as arabinans, galactans and arabinogalactans. Pectins are generally considered to 

form covalent links with each other, resulting in the formation of the complex structure of the 

cell wall (Jarvis 1984; Brett & Waldron 1996; Mohnen 2008; Caffall & Mohnen 2009) (see Figure 

1.3). Pectins may also form non-covalent interactions with cellulose, although the evidence for 

this is still debated and may depend on growth status (Phyo et al. 2017).  

HG linear polymers of α-1,4-linked-D-GalA residues make up approximately 65% of cell wall 

pectin (Caffall & Mohnen 2009), and approximately 23% of the Arabidopsis PCW (Zablackis et al. 

1995). HG chains of up to 100 GalA residues have been found to form (Yapo et al. 2007), and 

these chains can be modified by the addition or removal of O-methyl and O-acetyl esters via the 

activity of pectin methyl-esterase (PME) (Pelloux, Rustérucci & Mellerowicz 2007) and pectin 

acetyl-esterase (PAE) (Philippe, Pelloux & Rayon 2017) enzymes respectively. The de-methyl-

esterification of HG chains is generally believed to be associated with a cessation in growth 

(Goldberg & Prat 1982; Goldberg, Morvan & Roland 1986), as these regions form associations 

with other HG chains via Ca2+ ions to form so called ‘egg-box’ structures (Jarvis 1984). The use 
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of antibodies targeted towards areas of different levels of HG esterification have shown that HG 

in the ML is relatively un-esterified and could play a role in cell-cell adhesion (Willats et al. 2001). 

RG-I is made up of a backbone of the disaccharide repeat [-α-D-GalA-1,2-α-L-Rha-1,4-] (Lau et al. 

1985) with side chains of linear or branched α-L-arabinofuranosyl (Araf) or  β-D-galactopyranosyl 

(Galp) residues, as well as other glycosyl residues, on 20-80% of the rhamnosyl residues 

dependent on species and cell type (Ridley, O’Neill & Mohnen 2001). RG-I represents 

approximately 20-35% of the pectin cell wall content, and makes up 11% of Arabidopsis PCW 

(Zablackis et al. 1995). RG-II, although similarly named, is structurally very different from RG-I. 

It represents approximately 10% of cell-wall pectin (O’Neill et al. 2004) and makes up 8% of the 

Arabidopsis primary cell wall (Zablackis et al. 1995). RG-II has a backbone of α-1,4-linked-D-GalA 

residues and is composed of many different sugars that make it the most structurally complex 

of the pectic polysaccharides (Darvill, McNeil & Albersheim 1978a). The structure of RG-II is 

shown in Figure 1.4 and will be discussed further in section 1.4.2.  

It is generally believed that HG, RG-I and RG-II are all covalently cross-linked within the cell wall, 

since enzyme digestion is required to separate out the distinct domains (Ishii & Matsunaga 2001; 

Akamura et al. 2002). The model of current consensus suggests that the backbones of HG, RG-I 

and RG-II are continuous, thus pectin can be visualised as a tethered network with domains of 

HG, RG-I and RG-II (Caffall & Mohnen 2009; Franková & Fry 2013). There is also evidence that 

the pectic polysaccharides are covalently linked to or certainly associated with, other cell wall 

polysaccharides such as xyloglucans and xylans (Popper & Fry 2008). Figure 1.3 demonstrates 

the possible linkages formed between cell wall polysaccharides and highlights a model for the 

dynamic network formed. 

1.3.4.2 Synthesis 

Like hemicelluloses, pectins are synthesised in the Golgi, packed into vesicles and deposited in 

the apoplastic space (Zhang & Staehelin 1992). Many glycosyltransferases are required for 

pectin synthesis, which rely on the activity of nucleotide sugar interconverting enzymes which 

provide activated sugars (see Caffall & Mohnen (2009) for a list of glycosyltransferases and sugar 

synthesis enzymes). One example of an α-1,4-galactosyltransferase (GalAT) involved in the 

synthesis of HG chains is GAUT1 (Sterling et al. 2006) which transfers GalA from UDP-GalA onto 

endogenous acceptors in the Golgi (Sterling et al. 2018). GAUT1 was found to form part of a 

bigger family of GalAT genes named GalAT-like (GATL), with mutants of these genes having a 
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significant reduction of GalA in cell walls (Sterling et al. 2006). RG-II synthesis is known to be 

much more complex, and only a handful of genes involved in RG-II-specific synthesis have 

currently been identified, namely genes RGXT1-4, which encode Golgi localised 

xylosyltransferases (Egelund et al. 2006, 2008; Petersen et al. 2009). Interestingly, it has been 

shown that  polysaccharides can move a reasonable distance into the cell wall, a process driven 

by turgor pressure (Proseus & Boyer 2005) 

1.3.5 Cell wall proteins 

1.3.5.1 Extensins 

Many of the proteins present in the cell wall are glycoproteins (Showalter 1993). One of the 

most well studied families of these glycoproteins are the hydroxy-proline rich extensins which 

are the major structural protein found in the cell wall (Carpita & Gibeaut 1993). An increased 

content of extensin within the wall is generally correlated with the cessation of growth (Sadava, 

Walker & Chrispeels 1973), and it is thought that binding of extensin to cellulose facilitates the 

‘locking’ of microfibrils (Carpita & Gibeaut 1993). 

1.3.5.2 Cell-wall modifying enzymes 

As stated in section 1.3.2, cell walls can only grow after stress relaxation which requires the 

activity of wall loosening enzymes. The most common enzymes for wall loosening are the 

expansins (Cosgrove 2015). Plants contain two classes of expansins, α-expansin (EXPA) and β-

expansin (EXPB), and their expression is closely correlated with wall expansion (Cosgrove 2000). 

Expansins have been shown to loosen the cell wall to allow growth, without impacting on wall 

strength, suggesting that they do not cut linkages (Yuan 2001). Expansins are also found in 

bacteria, and much that is known about the activity of expansins comes from the study of these 

proteins (Georgelis, Nikolaidis & Cosgrove 2015). The ability of expansins to facilitate wall 

loosening in believed to rely on interactions with cellulose microfibrils (Cosgrove 2015). 

Xyloglucan endotransglycosylase (XTH) enzymes were also originally believed to be important 

for wall loosening (Fry et al. 1992). XTH enzymes cut xyloglucan chains and join the end onto 

that of another xyloglucan, or to water in a hydrolase activity (Cosgrove 2016a). Arabidopsis 

mutants of xth knock-outs eliminated hydrolase activity, but did not result in any discernible 

phenotype, suggesting that XTH enzymes are not imperative for growth (Kaewthai et al. 2013). 
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1.3.5.3 Pectin-modifying enzymes 

Pectins are excreted into the apoplast in a highly methyl-esterified form (Lennon & Lord 2000) 

due to the action of pectin methyltransferases (PMTs) in the Golgi which are necessary for pectin 

biosynthesis (Caffall & Mohnen 2009). Pectin acetyltransferases transfer acetyl groups onto the 

backbone of HG and RG-I and on side chains of RG-II (Whitcombe et al. 1995; Ishii 1997). Once 

inside the cell wall, pectins are subject to modification by PMEs which remove methyl esters and 

affect the patterning of pectin methyl-esterification within the wall (Willats et al. 2001). PMEs 

and PME inhibitors (PMEIs) belong to large multigene families which is likely to reflect the 

diversity of their role in cell-wall modification suggesting pectin de-methylation is a tightly 

controlled process (Pelloux et al. 2007). The activity of polygalacturonase (PG) enzymes is also 

believed to regulate plant development, and are particularly expressed during fruit ripening and 

at abscission zones highlighting their role of pectin disassembly (Hadfield & Bennett 1998). 

1.3.6 The secondary cell wall 

The SCW is not synthesised in all cells but is restricted to those that are no longer expanding and 

require supplementary strength such as sclerenchyma, tracheids and xylem vessels (Meents, 

Watanabe & Samuels 2018). Cellulose makes up approximately 60% of the SCW, and is 

structurally different from PCW cellulose due to a higher degree of crystallinity and 

polymerisation, resulting in microfibrils that are stronger and more rigid (McNeil et al. 1984). 

Hemicelluloses make up from 10 to 40% of the SCW dependent on species and cell type but are 

typically found to be xylan and mannans (Scheller & Ulvskov 2010). The final major component 

of SCWs is lignin comprising approximately 30% of woody cell wall biomass (Campbell & Sederoff 

1996). Lignin is a heteropolymer of 4-hydroxyphenylpropanoids, which forms when three 

monolignols are oxidised to monolignol radicals and undergo coupling within the SCW. 

Monolignols are synthesised in the cytosol and excreted into the cell wall, where oxidative 

enzymes such as laccases and peroxidases carry out the lignification process (Meents et al. 

2018). The shift from primary to secondary wall biosynthesis requires a remodelling of 

biosynthetic machinery, which switch to polysaccharide synthesis for the secondary wall, 

followed by lignification and often programmed cell death (Taylor-Teeples et al. 2015).  
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1.4 The use of mutants to elucidate cell wall polysaccharide function 

1.4.1 The mur1 mutant 

An EMS screen was carried out to find mutants in order to elucidate individual roles of cell wall 

polysaccharides. As elimination of particular cell wall polysaccharides would likely result in 

unviability of plants, alterations to the composition of the polysaccharides via changes to 

monosaccharides was a viable method in order to study this (Reiter, Chapple & Somerville 1997). 

From this screen, a mutation at one locus in particular resulted in plants with a marked reduction 

in cell-wall fucose levels down to 2% in shoot extracts and 60% in root extracts compared to wild 

type (Reiter, Chapple & Somerville 1993). These mutants, designated mur1, displayed some 

interesting visible phenotypes such as dwarfism, a reduction in petiole and internode length and 

reduced apical dominance, traits that could be reversed when grown in the presence of L-fucose. 

Another interesting trait displayed by mur1 mutants was the decrease in force necessary to 

break inflorescence stems, highlighting an impact upon the mechanical properties of the cell 

walls (Reiter et al. 1993). This trait was also shown by Ryden et al. (2003), a study in which the 

tensile modulus and tensile strength of mur1 hypocotyls were shown to be reduced suggesting 

a decreased stiffness and strength of cell walls. 

The mur1 mutation was eventually mapped to a gene that encodes a GDP-D-mannose-4,6-

dehydratase, GMD2, an enzyme involved in the first step of the de novo synthesis of GDP-L-

fucose (Bonin et al. 1997). Interestingly, two genes in Arabidopsis with high sequence similarity 

were identified in this research, designated GMD1 and GMD2 which were found to be 

differentially expressed. GMD1 expression was confined to certain areas of the root, as well as 

stipules and pollen grains, whereas GMD2 (MUR1) was expressed in all other parts of the plant 

(Bonin et al. 2003). The genetic redundancy of these two genes would account for the higher 

level of fucose observed in the roots of mur1 plants (Reiter et al. 1993). 

Fucose is a constituent of several cell-wall components but is predominantly found in 

xyloglucans, rhamnogalacturonans-I and II (RG-I and RG-II) as well as some glycoproteins. 

Investigations into whether alterations to any specific polysaccharide resulted in the observed 

phenotypes were therefore carried out. A mutant that lacked fucose in glycoproteins displayed 

no physiological differences to wild type plants, suggesting glycoproteins were not the culprit 

(Reiter et al. 1993; von Schaewen et al. 1993). Similarly, a mutant of a xyloglucan-specific 

fucosyltransferase gene mur2, displayed none of the morphological phenotypes of mur1 

mutants, despite the fact that 75-80% of fucose residues are found in xyloglucans  (Zablackis et 
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al. 1995; Reiter et al. 1997; Vanzin et al. 2002). In mur1 mutants, it was found that the lost L-

fucose residues were replaced by L-galactose (Zablackis et al. 1996), a substitution that was also 

made in RG-II domains (O’Neill et al. 2001; Reuhs et al. 2004).  

1.4.2 The pectic polysaccharide rhamnogalacturonan-II (RG-II) 

The pectic polysaccharide RG-II is the most complex glycan known and unlike any other cell wall 

components (Figure 1.4A) (Darvill, McNeil & Albersheim 1978b). The latest research suggests it 

is formed of six side chains (A-F) that branch from a homogalacturonan chain that acts as the 

backbone (Ndeh et al. 2017). These side chains are made up of 13 different monosaccharides 

and 21 different glycosidic bonds that link them together to form the side chains (Stevenson, 

Darvill & Albersheim 1988; Pellerin et al. 1996; Ndeh et al. 2017). These sugars comprise mainly 

rhamnose, arabinose and galactose, but also comprise some rarer sugars such as apiose, aceric 

acid and 3-deoxy-manno-octulosonic acid (KDO), as well as methylated sugars (Darvill et al. 

1978a). The backbone can comprise between 7 and 11 1,4-linked-α-D-galactosyluronic acid 

residues of the HG chains, dependent upon species (Whitcombe et al. 1995). The overall 

structure of RG-II is generally conserved throughout several plant kingdoms including dicots, 

monocots, gymnosperms, pteridophytes, bryophytes and lycophytes (Stevenson et al. 1988; 

Thomas, Darvill & Albersheim 1989; Kaneko, Ishii & Matsunaga 1997; Matsunaga et al. 2004), 

although there are slight variations in monosaccharides and methylation between species (Pabst 

et al. 2013). This conservation suggests a fundamental role within the cell wall.  

An interesting structural aspect of RG-II is that 95% of RG-II in plant cell walls exists as a dimer 

covalently cross-linked by a borate-ester (Kobayashi, Matoh & Azuma 1996; O’Neill et al. 1996, 

2001). The occurrence of this cross-link, like the structure of RG-II, is conserved across the plant 

kingdom (Matoh, Kawaguchi & Kobayashi 1996; Kaneko et al. 1997). The borate ester forms 

between two carbon atoms in D-apiose residues of side chain A of two RG-II domains (O’Neill et 

al. 1996; Pellerin et al. 1996; Ishii et al. 1999). The borate ester forms only on the more stable 

side chain A, not on the other apiosyl residue present on side chain B, which could contribute to 

the stability of the dimer and influence mechanics of the cell wall (Figure 1.4B) (Mazeau & Perez 

1998; Ishii et al. 1999). Formation of the dimer is highly influenced by pH, as is the structure of 

the cell wall in general, with formation occurring far more quickly around pH 3.5 and the dimer 

being more stable at around pH 4. The amount of dimer formed in vitro was also shown to 

increase in the presence of large cations, such as strontium, lead and barium under cell wall pH 

conditions (pH 4.8-5.5), or with very high Ca2+ concentrations (O’Neill et al. 1996; Chormova &  
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Fry 2016). These ions were also found to bind and form complexes with dimeric RG-II, but not 

monomeric RG-II (O’Neill et al. 1996).  

There is also evidence that in vivo formation of the dimer requires an enzymatic catalyst, as in 

vitro studies suggest formation in the absence of a catalyst is too slow to account for rapid wall 

expansion (O’Neill et al. 1996). Biological agents such as polyhistidine and wall glycoproteins 

have the ability to promote RG-II dimerisation. These agents could act catalytically to manoeuvre 

RG-II molecules into a position such that boron cross-linking is favourable (Chormova & Fry 

2016). Although the exact mechanism for how this is achieved is not yet known, research 

suggests that membrane bound lipids such as GIPCs may be involved (Voxeur & Fry 2014). It is 

also believed that the process of RG-II dimerisation may occur through the formation of 

intermediates (O’Neill et al. 1996; Chormova & Fry 2016). Recent evidence suggests that 

dimerisation occurs specifically during synthesis of the molecule before secretion into the 

apoplast, possibly in the Golgi or at the plasma membrane. RG-II monomers are not thought to 

be able to dimerise once secreted to the apoplast (Chormova, Messenger & Fry 2014a; b). 

1.4.3 RG-II domains in mur1 mutants 

Further investigation found that although wild type and mur1-1 plants contained the same 

amount of RG-II in their cell walls, dimerisation was reduced from 95% to approximately 50% in 

mur1-1 and mur1-2 mutants (O’Neill et al. 2001). This suggested that a loss of fucose in the side 

chains of RG-II affected the ability to dimerise, an effect that the replacement of fucose with 

galactose was unable to overcome (O’Neill et al. 2001). Supplementing mur1 mutant plants with 

L-fucose had the ability to restore RG-II cross-linking, providing further evidence that fucose is 

essential for dimerisation. RG-II from mur1 plants was found to dimerise less rapidly, irrespective 

of the presence of cations, and stability of the molecule was also reduced (O’Neill et al. 2001). 

The authors suggest that hydrophobic interactions may have a role in the formation of the dimer 

as the only difference between L-fucose and L-galactose is the presence of a methyl group rather 

than a hydroxymethyl group. More recent evidence however, suggests that side chain A may 

actually be truncated due to the loss of L-fucose (Pabst et al. 2013). Interestingly, exogenous 

application of excess boric acid (BA) to mur1-1 and mur1-2 plants was also able to restore cell-

wall RG-II dimerisation, as well as the dwarfism and shortened petiole phenotypes observed in 

untreated mutant plants (O’Neill et al. 2001). This effect was also seen in measurements of cell-

wall strength, in which hypocotyls of mur1-1 and mur1-2 supplemented with BA had restored 

tensile modulus and strength comparable to that of wild type (Ryden et al. 2003). These findings 
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provide evidence that the decrease in RG-II dimerisation following the loss of fucose residues is 

a possible candidate for the various phenotypes observed in mur1-1 mutants, especially as the 

majority of boron within the cell wall is found to be associated with RG-II domains (Matoh et al. 

1996). 

1.4.4 The role of boron within the cell wall 

1.4.4.1 Boron transport 

Boron is an essential nutrient for plants and is necessary for normal growth in many species 

(Warington 1923; Arnon & Stout 1939). The control of boron transport is essential to ensure the 

availability under low boron conditions, but also to prevent the detrimental effects of toxicity 

under high boron conditions (Camacho-cristóbal, Rexach & González-Fontes 2008). Research 

has highlighted several mechanisms via which boron is transported throughout the plant. At 

physiological pH, boron exists in the undissociated form of boric acid (B(OH)3) that is soluble and 

permeable through lipid membranes (Raven 1980; Dordas, Chrispeels & Brown 2000). The 

passive entry of boron through roots is generally the most accepted route of boron uptake in 

higher plants (Brown & Hu 1993; Hu & Brown 1997). As well as diffusion through lipid bilayers, 

BA can also cross membranes passively through channels such as aquaporins (Dordas & Brown 

2001).  

The other mechanism via which boron is transported throughout the plant is through active 

transporters most likely driven by the concomitant movement of H+ ions across the membrane 

(Reid 2014). Many of these dedicated boron-transport channels have been identified; in 

Arabidopsis, BOR1 was the first boron efflux-transporter described and was shown to be 

important for xylem loading under low boron conditions, being expressed in mature endodermal 

cells and root tip cells (Takano et al. 2002). BOR2 is a paralog of BOR1 but is more strongly 

expressed in epidermal cells of the root, suggesting complementary activity to BOR1 (Miwa et 

al. 2013). Interestingly, both of these efflux transporters are degraded under high boron 

conditions (Takano et al. 2005; Miwa et al. 2013). Other efflux transporters have also been 

described including BOR4, which is important for the export of boron from the root to the soil 

under high boron conditions (Miwa et al. 2007), and several other BOR transporters whose 

precise functions are not yet fully understood (Reid 2014). The expression of genes encoding 

several channels are also up-regulated under boron deficiency; NIP5;1 is necessary for boron 

uptake in the roots under boron-deficient conditions (Takano et al. 2006) and NIP6;1 is 
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potentially required for the normal distribution of BA in developing shoot tissues (Tanaka et al. 

2008). Through the use of boron transporter mutants, it has been shown that the regulation of 

boron levels throughout the plant is necessary to prevent the damaging effects of both boron 

deficiency and toxicity.  

1.4.4.2 Boron deficiency and toxicity 

Boron deficiency can be exacerbated under conditions of high rainfall where boron is leached 

from the soil and results in a wide range of symptoms affecting crop yield and quality (Shorrocks 

1997). Boron deficiency has been shown to result in decreased root growth, reduced leaf 

expansion, male sterility and possible abnormal growth of vascular tissues (Dell & Huang 1997). 

Boron deficiency has also been shown to affect the physical properties of the cell wall; rinsing 

of squash and bean roots in boron-free medium resulted in a decrease of cell-wall elastic 

modulus (Findeklee & Goldbach 1996); hypocotyls of boron-deficient squash were shown to 

have decreased extensibility, with typically more brittle and rigid tissues (Hu & Brown 1994); 

boron-deficient pumpkin cells had thickened cell walls concomitant with a reduction in RG-II 

dimerisation (Ishii, Matsunaga & Hayashi 2001a) and growth of Chenopodium album cells in 

boron-deficient medium resulted in cell walls that had decreased RG-II dimerisation and an 

increase in cell-wall pore size (Fleischer, Titel & Ehwald 1998; Fleischer, O’Neill & Ehwald 1999). 

These findings are consistent with the role of boron in cross-linking two domains of the cell-wall 

pectin RG-II (Kobayashi et al. 1996; O’Neill et al. 1996; Ishii et al. 1999). More recent research 

has shown that boron deficiency resulted in a decrease of pectin covalently attached to the cell 

wall, and significantly increased the relative amounts of hemicellulose and cellulose in leaves of 

orange plants (Liu et al. 2014). This could hint at a role for boron other than the cross-linking of 

RG-II domains, or particular secondary effects of the loss of RG-II dimerisation due to boron 

deficiency. 

Indeed there are several other effects that result from boron deficiency including a decrease in 

plasma membrane-bound calcium and subsequent increase in apoplastic calcium content in 

roots and leaves of bean (Muhlung, Wimmer & Goldbach 1998), a reduction in the translocation 

of indole-acetic acid (IAA), possibly linked to alterations of IAA transport genes (Li et al. 2016b), 

and an increase in the amount of actin and tubulin detected in the cytoskeleton (Goldbach et al. 

2001). It is possible that the consequences of boron deficiency may occur as secondary effects 

due to alterations to cell-wall architecture. However, it cannot be ruled out that boron may play 
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a more complex role than just cross-linking of RG-II, and there are hypotheses that boric acid 

may act as a signalling molecule (Goldbach et al. 2001; Redondo-Nieto et al. 2012). 

As well as being detrimental to plants when deficient, boron can also have significant adverse 

effects on plants when present at high concentrations, which occurs especially in semi-arid 

regions where boron can accumulate (Nable, Banuelos & Paull 1997). Boron toxicity results in 

chlorosis and necrosis of leaves and a reduction in shoot and root growth, particularly in the 

younger expanding tissues such as the root tip (Reid et al. 2004). These damaging effects may 

occur as a result of the inhibition of cellular process, as toxicity has been linked to the 

accumulation of intracellular boron (Hayes & Reid 2004), although the exact mechanism via 

which boron toxicity occurs is yet to be elucidated (Reid et al. 2004). 

1.5 Freezing tolerance and the cell wall 

There is contradictory evidence as to the role the cell wall plays in plant freezing tolerance, 

particularly in studies investigating the freezing of protoplasts. Several studies have reported no 

difference in freezing tolerance between intact tissues and isolated protoplasts (Siminovitch 

1979; Singh 1979). Other studies have suggested that the cell wall is actually detrimental during 

freezing events as protoplasts were found to have a higher freezing tolerance than intact cells 

(Tao, Li & Carter 1983; Murai & Yoshida 1998b). Nevertheless, there is increasing evidence to 

suggest that the cell wall is a necessary component for the acquisition of freezing tolerance, and 

could act as a barrier to ice nucleation (Ashworth & Abeles 1984) and growth of ice (Yamada et 

al. 2002). 

1.5.1 Cell wall modifications during cold acclimation 

There are several studies that show modifications occur to the cell wall during cold acclimation 

in a variety of different species. Cell wall thickness was found to increase in cold-hardened cells 

of puma rye (Huner et al. 1981), as well as in oilseed rape (Stefanowska et al. 1999), and was 

hypothesised to be associated with an increase in cell wall pectin content. The limiting pore size 

of cell walls, i.e. the available space between the matrix of cell wall polysaccharides that 

determines the size of molecules that are able to move through the cell wall and interact with 

the cell (Carpita et al. 1979), decreases with cold acclimation. Pore size decreased from 3.5 to 

2.2 nm in cultured cells of grape stems, and from 2.9 to 2.2 nm in cultured apple fruit cells after 

exposure to 4°C for 3 to 5 weeks (Rajashekar & Lafta 1996). This structural characteristic of cell 

walls has been linked to pectins. Treating cell walls of soybean roots with a pectinase resulted 
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in the increase in pore size without affecting cell viability, whereas treatment with protease or 

cellulysin had no effect (Baron-Epel, Gharyal & Schindler 1988). Cell-wall pore size has been 

correlated more specifically with the dimerisation of RG-II domains; cultured cells of 

Chenopodium album grown in a boron-deficient medium had larger pores than those 

supplemented with BA, as the mean size limit decreased from 5.62 to 3.41 nm  in growing cells 

with 100 µM BA (Fleischer et al. 1998). Cells with smaller pore sizes were shown to contain only 

monomeric RG-II domains, whilst supplementing with BA resulted in an increase in the presence 

of dimerised RG-II associated with the decreased pore size (Fleischer et al. 1999). 

The levels and modifications of specific cell-wall contents also exhibit alterations during cold 

acclimation. The pectin content of the cell wall of oil-seed rape was found to increase, along 

with a marked increase of cell wall content in general (Solecka, Zebrowski & Kacperska 2008). 

During cold acclimation in peas, cell-wall content of arabinosyl (a side chain of pectins) and 

hydroxyproline was found to increase, both of which are major components of the glycoprotein 

extensin, and extensin mRNA was found to increase by a factor of three after cold exposure 

(Weiser, Wallner & Waddell 1990). More recently, cold acclimation was shown to affect the 

levels of pectic polysaccharides in peas, with an increase in sugar residues indicative of 

homogalacturonan, xylogalacturonan and RG-I (Baldwin et al. 2014). Studies using antibodies 

against differential levels of pectin methyl-esterification have suggested that cold induces a 

decrease in esterification and thus a probable increase in pectin cross-linking in the pit 

membranes of xylem vessels of peach (Wisniewski & Davis 1995). Contrary to this, pectin 

methyl-esterification was found to increase in peas after cold acclimation, possibly correlated 

with a decrease in PME activity (Baldwin et al. 2014). In chicory roots, PME activity was found to 

be correlated with ambient temperature, with activity decreasing as temperature decreased 

(Thonar, Liners & Van Cutsem 2006). In oil-seed rape plants, PMEI activity was shown to increase 

with exposure to cold temperatures, and overexpression of a PMEI gene resulted in a decrease 

in freezing tolerance, possibly related to the enhanced degree of methylation of pectin chains 

(Chen et al. 2018). In oilseed rape plants, galactose, arabinose and glucose residues of pectic 

cell-wall fractions were found to increase with cold acclimation, along with galactose and 

arabinose in hemicellulosic fractions (Kubacka-Zebalska & Kacperska 1999). 

Other cell-wall localised proteins are found to be regulated with cold exposure, such as XTH 

enzymes and members of the expansin family; the differences in expression of each of the 

members of the XTH and expansin gene families between shoot and root found in this study 
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highlight the differential transcriptional control required in different tissues (Tenhaken 2015). 

This could explain the differences observed in alterations to PME activity with cold exposure 

described above as PMEs and PMEIs are also members of a large gene family (Pelloux et al. 

2007). A similar pattern was observed in wheat crowns as many different cell-wall modifying 

enzymes responded differentially to cold exposure in the shoot apical meristem and the vascular 

transition zone, suggesting cell wall modifications in response to cold are specific to cell type 

(Willick et al. 2018). The authors also showed that these differences in expression of cell-wall 

modifying enzymes resulted in the enhanced methyl-esterification status of pectins in the 

vascular transition zone, but not the shoot apical meristem (Willick et al. 2018). Interestingly, 

recent research has shown that the CBF transcription factors regulate cell-wall modifying 

proteins such as PMEs (Zhao et al. 2016). 

Analysis has also shown that genes associated with lignin biosynthesis in winter barley increase 

after cold acclimation (Janská et al. 2011). Lignin was found to increase in Arabidopsis plants 

overexpressing antioxidant enzymes that were also shown to have increased freezing tolerance 

(Shafi et al. 2014). Interestingly, analysis of a cold-induced nuclear protein TCF1 (Tolerant to 

Chilling and Freezing 1) led to the discovery of a role in regulating lignin biosynthesis in 

Arabidopsis. Loss of TCF1 function resulted in a decrease in lignin content, but an increase in 

freezing tolerance. This was verified by the fact that a pal1pal2 (phenylalanine ammonia lyase) 

double mutant which acts downstream of TCF1 had a 30% decrease in lignin content and an 

increase in freezing tolerance (Ji et al. 2015b). In a similar vein, the esk1 mutant described in 

section 1.2.3 which is constitutively freezing tolerant had altered secondary cell wall 

composition and subsequent xylem malformation (Lefebvre et al. 2011). These findings do not 

necessarily fit with the hypothesis described above that increased cell-wall stiffness 

automatically translates to increased freezing tolerance, as lignin is a major determinant of cell 

wall stiffness (Özparpucu et al. 2017).   

1.5.2 Functional significance of cell wall modifications for freezing tolerance and the process 

of supercooling 

One mechanism for limiting damage from freezing events is by freeze-avoidance, and one way 

this is carried out is by supercooling which is the “depression of the freezing temperature of a 

liquid below its equilibrium freezing point” (Pearce 2001). Some woody plants can ‘deep 

supercool’ to as low as -40°C in the winter allowing the avoidance of freezing in some tissues 

(Burke et al. 1976). Interestingly, research has suggested that the main freezing-resistance 
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mechanism for Arabidopsis is freezing avoidance by the process of supercooling (Reyes-Diaz et 

al. 2006). Supercooling is facilitated by anything that depresses the freezing point of water in 

the plant. For example, the production of AFPs may decrease nucleation temperature in the 

apoplast (Bar Dolev et al. 2016), and the production of compatible solutes may reduce freezing 

temperature in the apoplast (Livingston III & Henson 1998). Supercooling is also associated with 

plant structure for example small cell size, and a lack of intercellular spaces which may partly be 

facilitated by the cell wall (Asahina 1956). Indeed, smaller xylem conduits have been shown to 

be less prone to cavitation and have also been associated with a decrease in ice nucleation 

temperature in the xylem (Lintunen, Holtta & Kulmala 2013). 

There is ample evidence to suggest that cell wall modifications during cold acclimation may 

facilitate supercooling. The decrease in pore size could serve functionally in reducing the 

occurrence of ice nucleation in the cell wall; water in pores with a diameter less than 100 nm 

froze at a lower temperature than bulk water, with the additions of solutes reducing the freezing 

point even further (Ashworth & Abeles 1984). The freezing points measured in pores of different 

sizes were found to agree with the predicted values calculated from previously developed 

equations (Mazur 1965; Homshaw 1980). Using these equations, the authors predicted that in 

pores of diameter less than 4 nm, ice nucleation would occur between -15 and -25°C, thus 

smaller pores could facilitate supercooling (Ashworth & Abeles 1984). The proportion of cells 

that contained intracellular ice was measured to be approximately 4.3% in cells of grape cultures 

that had been cold acclimated, compared to ca. 37.6% in cells that had not. This was correlated 

with a decrease in pore size, supporting the idea of a reduction of ice nucleation events in cell 

walls with smaller pores (Rajashekar & Lafta 1996). The authors, among others, suggest that 

smaller pores may also restrict the growth of ice through the apoplast (Ashworth & Abeles 1984; 

Rajashekar & Lafta 1996). The structure and permeability of walls, particularly in pit membranes, 

have also been hypothesised to determine the rate of water movement and therefore the loss 

of water from cells to sites of extracellular ice during freezing events, which could limit damage 

from freeze-induced dehydration (Wisniewski, Ashworth & Schaffer 1987).  

1.6 Summary 

There is evidence to suggest that the plant cell wall plays a role in preventing damage from 

freezing events. This role is related to the structure of the cell wall, which is highly dynamic and 

regulated by abiotic stresses. Whilst studies have provided insight into the modifications that 

take place in the wall during cold acclimation, it is not clearly understood what precise details of 
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these alterations provide the mechanism for freezing tolerance. A greater understanding of this 

mechanism would be beneficial not only to increase our understanding of freezing tolerance 

mechanisms in plants, but also to highlight targets for the improvement of crops in the future. 

1.7 Objectives and hypotheses 

The objectives of this study are to increase our knowledge of what aspects of the plant cell wall 

can influence freezing tolerance by utilising a mutant of the model organism Arabidopsis which 

has altered cell-wall structure, and to attempt to understand how cell-wall structure may 

influence the tolerance to low temperature in plants. It is hypothesised that the alteration to 

the cell wall will have a negative impact upon the freezing tolerance of the plants, which will be 

investigated using a combination of electrolyte leakage and whole plant freezing assays. As 

previous studies have revealed that the phenotypic traits observed in the mutant in question 

are related to cell-wall pectin cross-linking (O’Neill et al. 2001), it is hypothesised that restoring 

cross-linking would restore freezing tolerance in these plants. It is possible that the influence 

that the loss of cross-linking has on cell-wall structure is the reason for an alteration in freezing 

tolerance. This hypothesis will be tested by exploring the different mechanisms via which the 

plant increases freezing tolerance, in particular in relation to the cell wall. Other potential 

dynamic impacts of the loss of cell-wall cross-linking and whether these are linked to freezing 

tolerance will also be explored. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Plant Materials and growth conditions 

2.1.1 Seed material 

Arabidopsis thaliana plants used were either of the Columbia (Col-0) or Lansberg erecta (Ler-0) 

background. Complemented lines were made by expressing the MUR1 gene in the sfr8 mutant 

background with a 35S promotor (Skipsey, Knight and Knight, unpublished). The pme6 

transposon insertion line (SGT6342) in a Landsberg background, the pme6 T-DNA insertion line 

(GK278G11) in the Columbia background and the bor1 T-DNA insertion line (SALK_149460C) in 

the Columbia background were obtained from the Nottingham Arabidopsis Stock Centre (NASC). 

Accession numbers are as follows: MUR1 (At3g51160), MUR2 (At2g03220), BOR1 (At2g47160), 

PME6 (At1g23200), PEX4 (At5g25760). 

2.1.2 Growth conditions 

Arabidopsis seeds were surface sterilised by shaking with 70% ethanol in a 1.5 mL centrifuge 

tube for 5 min before being transferred to sterile filter paper and allowed to dry in a laminar 

flow hood. Seeds were then transferred to 9 cm diameter Petri dishes of ½ x Murashige and 

Skoog (MS) medium (Murashige & Skoog 1962) comprising of 0.8% plant tissue culture grade 

agar and ½ x MS with added vitamins (Duchefa Biochemie, Netherlands) with pH adjusted to 5.8 

with 0.1 M KOH before sterilisation. All growth medium was sterilised by autoclaving at 121°C 

for 20 min. Seeds were then stratified at 4°C in the dark for a minimum of 48 h to ensure uniform 

germination and growth before being transferred to a Percival CU-36L5D growth chamber (CLF 

PlantClimatics, Wertingen, Germany) set to 16:8 Light:Dark (LD) cycles at 20°C with a light 

intensity of 150 µmol/m²/s.  

For growth of mature plants, seedlings were transferred to 44 mm diameter Jiffy pellets (LBS 

Horticulture, UK) at 8-11 days old and covered with cling-film to allow acclimation to the change 

in humidity. Clingfilm was removed after 2 days and plants grown in short days, 12:12 LD cycles 

at 20°C, 70% humidity for a further 3 to 5 weeks as necessary. During growth on plugs, all plants 

were watered with deionised water. 
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2.1.2.1 Cold acclimation 

Mature plants were transferred to acclimating conditions of 5°C, 10:14 LD cycles in a MLR-351 

environmental test chamber (Sanyo) at 5 weeks old. Plants were acclimated for 14 days and 

used in experiments at 7 weeks old.  

2.1.2.2 Boric acid supplementation 

Seeds were grown on ½ x MS medium with the conditions as before. Once transferred to plugs, 

plants were watered with deionised water containing 10 mg/mL boric acid (BA) where applied 

throughout growth and cold acclimation. For the updated BA watering regime, seeds were 

grown on ½ x MS agar plates containing 1 mM BA for 8-11 days, then watered with deionised 

water containing 20 mg/mL BA where applied throughout growth and acclimation.  

2.1.2.3 Fucose supplementation 

Seeds were grown on ½ x MS medium with the conditions as before. Once transferred to plugs, 

plants were watered with deionised water and each tray of 22 plugs was sprayed with 60 mL of 

10 mM fucose once a week where applied throughout growth and cold acclimation. 

2.1.2.4 2F-fucose treatment 

Peracetylated 2-fluoro 2-deoxy-L-fucose (2F-fucose, Merck Millipore) was dissolved in DMSO to 

10 mM. For the electrolyte leakage assay with different concentrations, Col-0 wild type seeds 

were grown on ½ x MS medium containing 0.25% DMSO for the control and 2.5 μM, 10 μM and 

25 μM of 2F-fucose for inhibitor treated seedlings. For the boric acid supplemented 2F-fucose 

treated assay, Col-0 seeds were grown on ½ MS medium supplemented with the following for 

the four different treatments; 0.1% DMSO; 0.1% DMSO and 0.75 mM boric acid; 10 µM 2F-

fucose; 10µM 2F-fucose and 0.75mM boric acid. Seeds were grown in a Percival growth chamber 

as before for 14 days.  

2.2 Molecular biology techniques 

2.2.1 gDNA extraction 

DNA extraction was carried out using a modification of the method described by Edward’s 

(Edwards, Johnstone & Thompson 1991). Plant tissue was harvested into a 1.5 mL centrifuge 

tube and placed into liquid nitrogen. Samples were removed from the liquid nitrogen and 
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ground briefly using a micropestle before adding 400 µL of Edward’s extraction buffer (200 mM 

Tris-HCl, pH 7.5/250 mM NaCl/25 mM EDTA, pH 8/0.5% SDS) and homogenising with an electric 

micropestle. Samples were then vortexed briefly and centrifuged for 1 min at 16000 g. 300 µL 

of supernatant was then transferred to a new 1.5 mL centrifuge tube and 300 µL of isopropanol 

added, mixed and incubated for 2 min. Samples were centrifuged for 5 min at 16000 g and the 

supernatant removed. Samples were centrifuged again for 1 min at the same speed and the 

remaining supernatant removed before samples were dried for 5 min in a vacuum desiccator. 

The pellet was re-suspended in 50 µL of TE buffer (10 mM Tris, pH 8, 1 mM EDTA) and incubated 

at 5°C overnight for the DNA to dissolve into solution. DNA was then stored at -20°C. 

2.2.2 Polymerase chain reaction (PCR) 

For amplification of DNA, PCR reactions were carried out using DreamTaq DNA polymerase 

(Thermo Scientific). A 50 µL reaction was made up in a 500 µL centrifuge tube as follows; 10 x 

DreamTaq green buffer, 5 µL; 10 mM dNTPs, 1 µL; forward primer, 0.25 µL; reverse primer, 0.25 

µL; DreamTaq polymerase, 0.25 µL; DNA, 1 µL; nuclease-free H₂O, 42.25 µL. Reagents were 

vortexed and centrifuged briefly before being placed in a 96-well Px2 PCR thermocycler (Thermo 

Electron Corporation, Waltham, Massachusetts, USA) and run on the following programme; 

95°C, 2 min x 1; (95°C, 30 s; Ta, 30 s; 72°C, 1 min) x 35; 72°C, 5 min x 1. The annealing temperature 

(Ta) for each primer pair was chosen to be 5°C lower than the melting temperature of the primer 

with the higher of the two. PCR products were analysed using gel electrophoresis. 

2.2.2.1 Oligonucleotides 

Primers were designed to be a minimum of 20 bp in length and to have a GC content of 40-60% 

for optimal annealing. The program Primer3Plus (https://primer3plus.com/) was used to assist 

with primer design. A full list of oligonucleotides used for PCR can be found in Appendix C. 

2.2.3 Gel electrophoresis 

DNA was separated by size using agarose gel electrophoresis. Gels were prepared by melting 

0.8% molecular grade agarose (Bioline) in 0.5 x TBE buffer (1.1 M Tris, 900 mM borate, 25 mM 

EDTA, pH 8) with 2 µL of MIDORIGreen dye (Nippon Genetics, Europe) per 50 mL of agarose. The 

gel was poured into a gel tank with a comb to create wells and allowed to set. 0.5 x TBE buffer 

was using as running buffer with 10 µL of PCR product loaded into each well and 5 µL of 1 Kb 

Hyperladder 1 (Bioline) loaded into one well for size comparison. Gels were run at 35 mA for 
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approximately 1 h and imaged under UV light using an uvidoc trans-illuminator (Uvitec Limited, 

Cambridge, UK). 

2.2.4 DNA clean-up 

PCR products were cleaned for sequencing using MicroCLEAN (Microzone, UK). Briefly, an equal 

volume of MicroCLEAN and DNA were mixed by pipetting in a 1.5 mL centrifuge tube and left at 

room temperature for 5 min. Samples were then centrifuged at 16000 g for 7 min and the 

supernatant removed. Samples were centrifuged again for 1 min and all liquid removed. The 

pellet was re-suspended in 50 µL TE buffer and left for 5 min to rehydrate DNA. 

2.2.5 Sequencing 

Sequencing of PCR product was carried out after DNA clean-up by the DNA sequencing 

laboratory (Department of Biosciences, Durham University) using one of the primers used for 

amplification (Appendix C). Sequence alignment was carried out using Clustal alignment in 

Jalview (http://www.jalview.org/). 

2.2.6 RNA extraction 

For the assessment of gene expression, RNA extraction was carried out on two-week-old 

seedlings grown as previously described. Samples were placed immediately into liquid nitrogen 

and stored at -80°C until extraction of RNA was carried out according to the Promega ReliaPrep 

RNA Tissue Miniprep System (Promega, Wisconsin, US) protocol for non-fibrous tissue. Tissue 

was harvested into a 1.5 mL centrifuge tube and placed into liquid nitrogen. Samples were 

removed from liquid nitrogen and ground briefly with a micropestle before adding 500 µL of LBA 

with added thioglycerol and using the micropestle to homogenise the material. Samples were 

vortexed briefly and then centrifuged for 3 min at 14000 g, removing the supernatant to a new 

1.5 mL centrifuge tube. 170 µL of isopropanol was then added and samples vortexed for 5 s. The 

lysate was then transferred to a Minicolumn placed into a Collection tube and centrifuged for 1 

min at 14000 g. The flow-through was discarded and 500 µL of RNA wash solution added to the 

Minicolumn before centrifuging for 30 s at 14000 g. The liquid was again discarded, and DNase 

digestion carried out by pipetting 30 µL of DNase 1 incubation mix (24 µL Yellow Core Buffer, 3 

µL 90 mM MnCl2, 3 µL DNase 1) directly to the Minicolumn membrane and incubating at room 

temperature for 15 min. The column was then washed by adding 200 µL od Column Wash 

Solution with added ethanol and centrifuging for 30 s at 14000 g. The flow-through was 
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discarded and 500 µL of RNA Wash Solution with added ethanol added to the samples, which 

were then centrifuged for 30 s at 14000 g. The Minicolumn was placed into a new collection 

tube and the RNA wash step repeated, adding 300 µL of RNA Wash Solution and centrifuging for 

2 min at 16000 g. The Minicolumn was then placed into a 1.5 mL centrifuge tube and 30 µL of 

nuclease-free water pipetted directly onto the membrane. Samples were then centrifuged for 1 

min at 14000 g to elute the RNA into the centrifuge tube. RNA was stored at -80°C. 

2.2.7 cDNA synthesis 

cDNA was synthesised from RNA extracted as above using an Applied Biosystems High Capacity 

cDNA synthesis kit (Applied Biosystems, California, US). For each sample, solutions were made 

up on ice as follows in a 500 µL centrifuge tube; 2 µL 10x RT buffer; 0.8 µL 100 mM 25x dNTP 

mix; 2 µL 10x RT random primers; 1 µL Multiscribe™ reverse transcriptase; 4.2 µL nuclease-free 

H₂O; 2 µg RNA made up in 10 µL nuclease-free H₂O, making a total reaction volume of 20 µL. 

Two controls were also made up; a ‘no reverse transcriptase control’ (NRT) containing 1 µL of 

water in place of reverse transcriptase, and a ‘no template control’ (NTC) containing 10 µL H₂O 

in place of RNA. Samples were vortexed briefly and centrifuged to bring the contents to the 

bottom. Samples were then placed in a PCR machine and run on the following programme; 25°C, 

10 min; 37°C, 120 min; 85°C, 5 s. The resulting cDNA was diluted 1:50 with nuclease free water 

before use in qPCR and stored at -20°C until required.  

2.2.8 Gene expression measurements using qPCR 

The relative transcript level of genes was determined by qPCR using an Applied Biosystems 7300 

real time PCR machine and Go Taq qPCR master mix (Promega). All experiments used triplicate 

wells for each sample and included NTC and NRT controls as described in section 2.2.7. Samples 

were loaded into a 96 well plate (STARLAB UK, Milton Keynes, UK). Each well contained; 7.5 µL 

2 x Go Taq qPCR mastermix; 0.9 µL 5 µM forward primer; 0.9 µL 5 µM reverse primer; 0.7 µL 

nuclease free water; and 5 µL of the appropriate 1:50 dilution of cDNA synthesis from RNA 

extractions. The Go Taq qPCR master mix contains ROX reference dye to account for optical 

differences between the wells. PEX4 was used as an endogenous control (Moffat et al. 2012). 

Primers were designed with an amplicon size of 80-120 bp. Gene expression levels were 

analysed using the ΔΔCt method (Applied Biosystems). The algorithm described in the Applied 

Biosystems user bulletin in 2007 entitled ‘Relative Quantitation (RG) algorithms, Applied 

Biosystems Real-Time PCR Systems Software’ was used for the statistical analysis of the qPCR 
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data (Moffat et al. 2012). Error bars represent RQMIN and RQMAX and constitute the acceptable 

error level for a 95% confidence level according to the student’s t-test. 

2.3 Assessment of freezing and freezing damage 

2.3.1 Electrolyte leakage 

2.3.1.1 Electrolyte leakage of mature plants 

Quantitative assessment of freezing damage to plants was carried out using a modification of 

the method described by Helmsley et al. (2014). Leaf discs were excised from three leaves of 

comparable size from each plant with six replicate test tubes, each with three leaf discs, 

prepared for each measurement. Test tubes were held on ice until all samples had been 

prepared and were then washed in deionised water. The water was removed and leaf discs 

blotted gently on tissue paper to remove excess water. Test tubes were then transferred in a 

randomised order to a freezing bath set at -2°C where they were allowed to equilibrate for 1 h. 

An ice chip made using deionised water was then added to each test tube to initiate freezing, 

and samples incubated at -2°C for a further 2 h. The temperature was then turned down to the 

first temperature and after 30 min at this temperature one set of tubes (six tubes for each plant 

type) were removed and placed on ice before decreasing the bath to the next temperature. 

After 30 min at this temperature the next set of tubes were removed and placed on ice before 

decreasing to the lowest temperature. After 30 min at this temperature the final set of tubes 

was removed and placed on ice and all samples were allowed to thaw overnight in a cold 

chamber at 5°C. Temperatures used were -3°C, -5.5°C and -8°C for non-acclimated plants and -

7°C, -9.5°C and -12°C for acclimated plants. 

The following day 5 mL of deionised water was added to each tube and tubes shaken gently for 

3 h at room temperature. The liquid from each tube was decanted into a respective tube and 

the conductivity (µS/cm) of each sample measured using a hand-held conductivity meter 

(Mettler Toledo). The tubes containing leaf discs were transferred to a -80°C freezer for 1 h to 

allow complete release of ions from the plant tissue. The liquid was then decanted back into 

each respective tube and the tubes shaken again for 3 h at room temperature before the leaf 

discs were removed and the conductivity was measured again. Percentage electrolyte leakage 

could then be calculated by expressing the first reading as a percentage of the second.  
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2.3.1.2 Electrolyte leakage of 2F-fucose treated seedlings 

Seedlings treated with 2F-fucose were used in the electrolyte leakage experiment at 14 days old. 

For seedlings treated with different concentrations of 2F-fucose, seedling size varied so numbers 

were increased so that all samples contained approximately the same mass of tissue. This 

equated to using 3 seedlings in each tube for the DMSO control, 5 seedlings for the 2.5 μM, 10 

seedlings for the 10 μM and 15 seedlings for the 25 μM 2F-fucose treated plants. The experiment 

was carried out as before, but the temperatures used were -3, -5 and -7°C as the seedlings were 

more fragile and had not undergone cold acclimation. For the seedlings supplemented with boric 

acid, seedling size also varied so different numbers of seedlings were used from each treatment 

to obtain a similar mass. This equated to 3 seedlings in each tube for the DMSO and DMSO + BA 

controls, 5 seedlings for the 2F-fucose + BA treated plants and 15 seedlings for the 2F-fucose 

treated plants. The temperatures used were -2, -4 and -6°C. 

2.3.2 Visual freezing assays 

Plants were grown as before and at 5 weeks old were transferred to cold acclimating conditions 

for 14 days, being used in the experiment at 7 weeks old. Plants were then placed randomly on 

to a large tray to deter positional effects and placed into a freezing chamber at -8.5°C in the dark 

for 24 h. After freezing, plants were transferred to an MLR-351 environmental test chamber 

(Sanyo) at 5°C for 24 h to allow defrosting and prevent heat shock. Plants were then moved to 

a growth room at 20°C and watered as necessary with recovery assessed after 7 days. 

2.3.3 Droplet freezing assays 

A droplet freezing assay was carried out as described by Whale et al. (2015) modified for use 

with ground plant samples. Plants were grown as before and used in the experiment at 

approximately 7 weeks old or 5 weeks with 2 weeks of cold acclimation. 0.5 g of leaf material 

was harvested from five plants of each genotype and washed in deionised water, then blotted 

dry. Samples were ground in a pestle and mortar with 10 mL of deionised water added in 2.5 mL 

increments to make sure the samples were as homogenous as possible. Samples were 

transferred to a 50 mL centrifuge tube and stored at 4°C until required. Samples were vortexed 

briefly before use in the assay to make sure plant material was present in the fractions to be 

frozen. For the assay, a 22 mm glass slide was washed with deionised water, followed by 

isopropanol and finally deionised water again and then dried with N2. The slide was placed onto 

an aluminium square attached to the cryo-plate of a VIA Freeze Duo controlled rate freezer 
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(Asymptote). Up to 40 1 µL droplets were pipetted onto the glass slide and the atmosphere 

maintained by enclosing the slide with a plastic chamber via which a camera was attached 

(Figure 2.1A). The cryo-plate was then cooled to 4°C at a rate of 2°C per min, after which nitrogen 

was pumped through the chamber at 0.3 L per min to maintain a dry atmosphere. The plate was 

maintained at 4°C for 2 min before cooling at a rate of 1°C per min. Below 0°C, images were 

taken every second and cooling continued until all the droplets were frozen. For the freezing of 

droplets containing RG-II standards, the procedure was carried out in the same way using 0.1 

and 1 µg/mL solutions of RG-II monomer and dimer from sugar beet provided by the Edinburgh 

Cell Wall Group. Droplets of 1 µL were pipetted onto a slide and frozen as before on a Grant 

EF600 controlled rate freezer. 

For the preliminary droplet freezing assays, plants were approximately 4-5 weeks old and only 

0.3 g of leaf tissue was ground into 10 mL of deionised water using a homogeniser. Droplets 

were frozen on a Grant EF600 controlled rate freezer (Asymptote), but all other technicalities of 

the procedure were the same. For freezing of supernatant, 1 mL of ground leaf sample was 

transferred to a 1.5 mL centrifuge tube and centrifuged at 10000 g for 1 min to collect large 

material in the pellet. Microlitre droplets of supernatant were pipetted onto a glass slide and 

frozen as before on a VIA Freeze DUO controlled rate freezer (Asymptote) as before. The images 

obtained from freezing experiments were used to deduce the temperature at which each 

droplet froze, and these results used to calculate the fraction of droplets frozen with 

temperature (Figure 2.1B).  

2.3.4 Ice nucleation in epidermal peels 

Plants were grown as before and used in the experiment at 4 weeks old with 2 weeks of cold 

acclimation where stated. Epidermal peels were obtained as described in section 2.5.2. Peels 

were placed on a 1 cm diameter glass coverslip, a rubber ‘O’ ring placed on top sealed with high 

vacuum grease and another glass coverslip placed on top of this, also sealed with high vacuum 

grease (Figure 2.2A). Samples were placed onto an Olympus Bx53 microscope stage modified to 

be used as a cold stage (Figure 2.2B), with a seal made between the coverslip and the cold stage 

using high vacuum grease. A plastic chamber was placed between the stage and the microscope 

lens to maintain the atmosphere. Samples were cooled from 20°C to 2°C at 10°C per min, 

followed by cooling to -25°C at 2°C per min, during which stage nitrogen was pumped through 

the chamber to maintain a dry atmosphere and prevent the production of condensation on the 

slide. Ice nucleation occurred during the cooling step and was imaged using a MIRO M310 high  
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Figure 2.1: Experimental set-up of the droplet freezing assay. A) Set-up of the droplet 
freezing assay on the cryocooler. B) Droplets of supernatant from whole plant extracts 
on glass slides used in the droplet freezing assays. Darker droplets indicate frozen status, 
lighter droplets are unfrozen. 
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Figure 2.2: Experimental set-up for the freezing of epidermal peels. Microscope set-
up used for the freezing of epidermal peels. A) Microscope fitted with high-speed 
camera cryoplate cooled with liquid nitrogen. B) Diagram and real-life set up of the 
epidermal peel in a contained environment for freezing. 

Cryo- 
plate 

Epidermal 
peel 

Rubber ‘O’ ring 

Glass 
slides 

A 

B 



44 
 

speed camera (AMETEK) attached to the microscope. The temperature at which nucleation 

occurred was recorded. Videos were edited using Phantom Camera Control (PCC) 2.7 video 

software (AMETEK). 

2.4 Cell wall analysis 

2.4.1 Analysis of cell wall sugars using GC-MS 

Plants were grown on ½ MS medium as before for 14 days. At 14 days old, approximately 100 

mg of tissue was harvested into a 1.5 mL centrifuge tube and placed into liquid nitrogen. Samples 

were removed from liquid nitrogen and ground using a micro-pestle, after which 1 mL of 70% 

ethanol was added, tubes vortexed briefly and the samples incubated at 70°C for 15 min. 

Samples were centrifuged for 5 min at 16000 g and the supernatant discarded. The tissue was 

then washed twice in hot 70% ethanol, homogenising tissue again with a micro-pestle during 

the first wash, centrifuged as before and the supernatant discarded. Two to three holes were 

made in the lid of the centrifuge tube and the samples frozen and dried overnight in a vacuum 

bell. The next day, 500 µL of water was added to each sample and tubes placed into a sonicating 

water bath for 30 min to rehydrate the material. The lids were then replaced and 500 µL of 4 M 

trifluoroacetic acid (TFA) added to the tubes for a final concentration of 2 M. A 100 µg inositol 

internal standard was also added. Tubes were vortexed to break down the material and the 

samples incubated at 110°C for 2 h in a fume hood with heavy blocks on top of the tubes to 

prevent explosions. After incubation, tubes were vortexed briefly and then centrifuged for 15 

min at 14000 g, with 800 µL of the brownish supernatant transferred to a glass sample tube. The 

liquid was then evaporated under N2 at 40°C, after which 400 µL of 1 M MeOH-HCl was added 

and samples incubated at 80°C overnight. The next day, samples were allowed to cool and then 

dried under N2 at 40°C until completely dry, after which 400 µL of TMSI-pyridine was added and 

samples incubated at 80°C for 30 min. After incubation, samples were dried under N2 at 40°C 

and the brownish oil left re-suspended in 1 mL of hexane and vortexed vigorously. Samples were 

then centrifuged for 5 min at 500 g to remove the remaining brown salt formed and the 

supernatant transferred to clean glass sample tubes using a glass pipette. The samples were 

partitioned with an equal volume of water to hexane. Upon addition a white salt is formed, and 

samples were vortexed vigorously to dissolve this and the samples separate into an upper phase 

and a lower phase. The upper hexane phase was then transferred to a GC-MS vial using a glass 

pipette. Samples were run on the GC-MS machine. 



45 
 

2.4.2 Analysis of cell wall rhamnogalacturonan II (RG-II) content 

2.4.2.1 Measurement of cell-wall RG-II content 

2.4.2.1.1 Preparation of alcohol insoluble residue (AIR) and digestion with endo-
polygalacturonase (EPG) 

Plants were grown as before, and leaf tissue was harvested from plants at 5 weeks for non-

acclimated plants and 7 weeks for cold acclimated plants (5 weeks growth and 2 weeks of cold 

acclimation) and placed into liquid nitrogen. To prepare the AIR, tissue was ground in liquid 

nitrogen with a pestle and mortar to a fine powder. From this, 50 mg (+/- 1) of powder was 

placed into a 1.5 mL centrifuge tube with 1 mL of 100% EtOH and samples incubated shaking at 

250 rpm, room temperature for 4 h. Samples were then centrifuged for 3 min at 16000 g and 

the supernatant aspirated off, after which 1 mL of fresh 100% EtOH was added and samples 

incubated shaking as before at 37°C overnight (16 h). Samples were centrifuged as before and 

the supernatant removed, followed by incubation in 350 µL of Na₂CO₃ shaking at 4°C for 16 h. 

Samples were again centrifuged as before, and the supernatant removed. Tissue was then 

neutralised with an excess of acetic acid and washed in 500 µL of EtOH, before drying with 20 

µL of acetone and incubating at 40°C to dry the tissue completely. Once dry, 1 mg of material 

was placed into a new 1.5 mL centrifuge tube and centrifuged to bring the powder to the 

bottom. Then 100 µL of 10 U/mL endo-polygalacturonase (EPG - Merck) in pyridine/acetic 

acid/0.5% chlorobutanol (1:1:98, pH 4.7) was added to each tube and samples incubated at 37°C 

shaking for 16 h.  

2.4.2.1.2 Gel electrophoresis and silver staining 

Samples were centrifuged for 3 min at 16000 g and 8 µL of the supernatant added to 2 µL of 

loading buffer (0.63 M Tris HCl/0.25% w/v bromophenol blue/50% glycerol, pH 8.8). Samples 

were then loaded into the wells of a 26.4% polyacrylamide gel run at 200 V, room temperature 

for 75 min in electrode buffer (50mM Tris/38 mM glycine). A 5 mL gel was made from the 

following; 834 µL 1.5 M Tris, pH 8.8; 3.33 mL 40% acrylamide/bis acrylamide (29:1); 46.7 µL 10% 

APS; 3.9 µL TEMED; 834 µL H₂0. All reagents were added to a 50 mL centrifuge tube and mixed 

by pipetting up and down before being pipetted into the gel apparatus and allowed to dry. Once 

finished, the gel was removed from the glass slides and placed into a tray. The gel was fixed in 

ethanol/acetic acid/water (4:1:5) shaking gently for 30 min and then washed with H2O for 1 min, 

three times. The gel was then treated with 400 µM sodium thiosulphate for 1 min then washed 

with H2O for 1 min, three times. Staining was achieved by adding 6 mM AgNO3/10 mM 
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formaldehyde solution and shaking gently for 20 min, after which the gel was washed with H2O 

for 20 s, two times. For colour development, 0.28 M Na2CO3/8 µM sodium thiosulphate/64 mM 

formaldehyde solution was added, and the gel shaken gently until the desired colour strength 

was reached. Colour development was stopped by adding 0.33M Tris/2% acetic acid and the gels 

scanned. 

2.4.2.2 Measurement of cell-wall RG-II content during cold acclimation 

2.4.2.2.1 Preparation of AIR and EPG digestion 

Plants were grown as before and at 5 weeks were transferred to cold acclimating temperatures 

of 5°C. Tissue was harvested from wild type plants after 3, 12 and 48 h, and 7 and 14 days of 

cold acclimation, frozen in liquid nitrogen and stored at -80°C until required. Sample preparation 

was carried out as described in section 2.4.2.1.1 with a few minor changes. After grinding in a 

pestle and mortar, 500 mg (+/- 5) of leaf tissue was added to a 50 mL centrifuge tube with 10 

mL of 100% EtOH and incubated for 6 h shaking at room temperature. After incubation, tubes 

were centrifuged at 4500 rpm for 3 min and the supernatant removed. 10 mL of fresh 100% 

EtOH was added and the tubes incubated at 37°C shaking for 22 h. Samples were then 

centrifuged at 4500 rpm for 3 min and the supernatant removed, after which 7 mL of Na₂CO₃ 

was added and samples incubated at 4°C shaking for 16 h. After incubation, samples were 

centrifuged as before, and the supernatant removed. Tissue was then neutralised with an excess 

of acetic acid, washed with 5 mL of EtOH, before drying with 1 mL of acetone and incubating at 

40°C to dry the tissue completely. Once dry, 10 mg of material was placed in a 1.5 mL centrifuge 

tube and centrifuged to bring the powder to the bottom. 1 mL of 10 U/mL EPG in pyridine/acetic 

acid/0.5% chlorobutanol (1:1:98, pH 4.7) was added to each tube and samples incubated at 

ambient temperature shaking for 16 h. Gel electrophoresis was then carried out as described 

before. 

2.4.2.2.2 Separation of RG-II monomer and dimer 

AIR was prepared as before and digested in EPG. Approximately 500 µL of EPG digested cell wall 

material was freeze dried and resuspended in 100 µL of 50 mM ammonium formate pH 5. An 

aliquot of 50 µL was injected into a gel filtration column (Superdex peptide, 10 mm x 300 mm 

and Superdex G75, 10 mm x 300 mm) and eluted at 800 µL/min in ammonium formate as above 

using an AKTA Purifier system. 800 µL fractions were collected and freeze dried. 50 µL of sample 

was also run on a Superdex S200, 5 mm x 150 mm with 200 µL fractions eluted at 200 µL/min 
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which were freeze dried as before. Samples were re-suspended in 40 µL of deionised water and 

used in PAGE analysis as described in section 2.4.2.1.2. Briefly, 8 µL of sample was added to 2 µL 

of loading buffer and loaded onto a 26.4% polyacrylamide gel. The gel was run for 4 h before 

fixing in ethanol:acetic acid:water as before and treating with silver nitrate/formaldehyde 

solution to stain RG-II monomer and dimer bands. 

2.4.2.2.3 Quantitative analysis of RG-II  

Quantification of RG-II was performed using a high-performance anion-exchange 

chromatography with a Dionex HPLC system. The system comprised an AS50 autosampler and 

GP50 pump and equipped with an ED50A electrochemical detector fitted with a gold electrode 

and a pH reference cell. The column used was a Dionex PA100 (4.5 mm x 250 mm). The amount 

of sample injected was 25 µL and flow rate was 1 mL/min. Elutents were prepared from 50% 

sodium hydroxide stock solution and from electrochemical-grade sodium acetate (Fisher) using 

degassed HPLC-grade water. Gradients from 100 mM NaOH to 800 mM NaOH, or from 100 mM 

NaOH to 100 mM NaOH + 500 mM sodium acetate were used to try to obtain peaks 

corresponding to RG-II.  

For measurement of RG-II from digested cell wall samples prepared as described in 2.4.2.1.1; 

950 µL of EPG-digested material was transferred to a clean 1.5 mL centrifuge tube and freeze 

dried completely. Samples were re-suspended in 25 µL sodium acetate as above and injected 

into the column to detect carbohydrate peaks as described. For qualitative analysis of samples, 

PAGE analysis of the EPG digested product was carried out as described in 2.4.2.1.2. Briefly, 8 µL 

of sample was added to 2 µL of loading buffer and loaded onto a 26.4% polyacrylamide gel. The 

gel was run for 4 h before fixing in EtOH:acetic acid:water as before and treating with silver 

nitrate/formaldehyde solution to stain RG-II monomer and dimer bands. 

2.4.2.3 Measurement of RG-II synthesis using radiolabelling 

2.4.2.3.1 Radiolabelling 

Plants were grown as previously described and treatments were as follows: 5-week-old plants 

kept at ambient temperature (A); 7-week-old plants kept at ambient temperature (B); 5-week-

old plants placed in the cold (C); 5-week-old plants plus 2 weeks of cold acclimation kept in the 

cold (D). Leaves were excised from plants with as much petiole as possible and placed into 5 µL 

of [¹⁴C]-fructose in 200 µL centrifuge tubes which were put into a glass beaker. The beaker 

containing leaves to be kept cold was placed into a beaker with ice. Samples to be kept at 
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ambient temperature were placed in an identical beaker without ice and both beakers covered 

with Clingfilm and placed in fume hood for 16 h. Leaves were observed during incubation and 

once all the [¹⁴C]-fructose had been taken up, 50 µL of water was added to each tube on an 

individual basis. After incubation, leaves were removed from tubes, washed with deionised 

water and placed into 15 mL centrifuge tubes containing 14 mL of 1 M NaOH in 75% EtOH and 

shaken gently at ambient temperature for 16 h to remove methyl ester groups. Samples were 

washed in 12 mL 75% EtOH for 30 min, then 12 mL 100% EtOH for 30 min and finally 12 mL 100% 

EtOH/0.5% acetic acid for 30 min to neutralise alkaline NaOH.  

2.4.2.3.2 Preparation of AIR and EPG digestion 

Leaves (L) and petioles (P) were transferred to separate 1.5 mL centrifuge tubes. Tissue was 

frozen in liquid nitrogen, ground using a micropestle and incubated in 500 µL 100% EtOH for 30 

min shaking at room temperature. Tubes were centrifuged as before, and the supernatant 

removed before washing in 75% EtOH/0.5% acetic acid, followed by drying in 20 µL acetone and 

drying completely at 40°C. Once dry, 100 µL of 10 U/mL EPG in pyridine/acetic acid/0.5% 

chlorobutanol (1:1:98, pH 4.7) was added to each tube and incubated at ambient temperature 

shaking for 16 h.  

2.4.2.3.3 Chromatography 

To each EPG digested sample, 10 µL of 1% EPG digested homogalacturonan was added as an 

internal marker-mixture containing GalA, GalA2 and GalA3, and 60 µL spot loaded onto Whatman 

No. 20 chromatography paper as 4 x 15 µL spots with a 3 cm centre-to-centre spacing between 

samples. Chromatography papers were run in EAW (ethyl acetate/acetic acid/water) (10:5:6) for 

50 h. GalA, GalA2 and GalA3, the expected products of homogalacturonan digestion migrated 

along the chromatography paper, whereas undigested RG-I and RG-II remained at the origin. 

Autoradiograms were made of the origin spots by exposing the paper chromatograms to film 

which were then developed and imaged. 

 The origin zones of these paper chromatograms were cut out, with pieces averaging 

approximately 40 mg. Each piece was placed into a 15 mL centrifuge tube with 500 µL 2 M TFA 

+ 50 µg each of internal sugar markers comprising GalA, Gal, Glc, Man, Ara, Xyl, Fuc, Rib, Rha 

and Api. Samples were heated at 115°C for 1.33 h. The supernatant was removed and placed 

into a 1.5 mL centrifuge tube. A further 1 mL of ethanol was added to the paper samples, shaken 

and then removed and pooled with the first supernatant. This sample was now expected to 
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contain the monosaccharides released by acid hydrolysis of the rhamnogalacturonans. The 

samples were vacuumed dry overnight and the residue re-suspended in 30 µL of 0.5% aqueous 

chlorobutanol. Samples were then spot-loaded onto Whatman No. 20 chromatography paper 

with a 2.75 cm centre-to-centre spacing between each sample plus external markers of the ten 

sugars previously stated and run in EPW (ethyl acetate:pyridine:water) (8:2:1) for 31 h. 

Autoradiograms were made by exposing the paper chromatograms to film for 2-3 months which 

were then developed and imaged. 

The mobile regions from the chromatograms run in EAW displayed a large number of mobile 

spots. Two representative tracks (P1C1 and P3A1) were therefore taken in the form of the 24 

zones highlighted from the run. Each of the 24 zones was cut out and placed into a 15 mL 

centrifuge tube with 1.5 mL 2 M TFA for 2-3 days. The papers were removed, and the remaining 

solution heated at 120°C for 1 h so that the oligosaccharides would be converted to 

monosaccharides and then vacuum dried. The residue was re-suspended in 50 µL 0.5% 

chlorobutanol and spot-loaded onto Whatman No. 20 chromatography paper along with 

external sugar markers (excluding fucose), which was then run in EPW (8:2:1) for 33 h.  The 

radioactivity of the paper chromatograms was measured in counts per 10 min per 0.576 cm 

using a LabLogic AR2000 radioactivity scanner.  

2.5 Stomatal analysis 

2.5.1 Measurement of water loss from leaves 

Plants were grown as before and used in the experiment at 5 weeks old. The day before the 

experiment was carried out, plants were covered with a plastic bag to provide an approximate 

100% humidity environment. One leaf was harvested from each of seven plants, blotted dry, 

weighed immediately and then placed in a weighing boat with the abaxial side facing upwards. 

Leaves were kept at an ambient temperature of approximately 22°C and 50% humidity and 

weighed every hour for eight hours to gain a measurement of percentage mass. Leaves were 

then weighed at 24 h and finally at 7 days. Each measurement was expressed as a percentage 

of the original mass. 

2.5.2 Stomatal aperture measurements using epidermal peels 

Plants were grown as before and used in the experiment at 4 weeks old as younger leaves were 

easier to obtain epidermal peels from. One leaf was excised from each plant and placed adaxial 
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side down on a microscope slide with a few drops of water to hold the leaf in place and assist 

peeling of the epidermis. The top and one edge of the leaf were removed with a scalpel and an 

incision made near the bottom of the leaf from the cut edge to the vein. Tweezers were used to 

grip the top of the cut section and pull the leaf down parallel to the slide to peel the epidermis 

away from the rest of the tissue. The peel was then placed into 10 mM MES/50 mM KCl₂ solution, 

pH 6.15 with the outside face of the peel facing upwards and incubated at 20°C for 2 h (Gonzalez-

Guzman et al. 2012). After incubation, peels were carefully transferred to a microscope slide 

with a little MES solution and a coverslip placed on top. Samples were imaged using a light 

microscope with attached camera at 20x magnification, with 15 stomata imaged on each peel 

using a scanning method across the sample. Images were analysed using ImageJ to measure the 

aperture of each stoma imaged. Each experiment was repeated three times. 

2.5.2.1 Treatment with Abscisic acid 

The experiment was carried out as before but after the first incubation step in MES/KCl₂, abscisic 

acid (ABA) was added to a final concentration of 5 µM, the solution mixed gently, and samples 

incubated for a further 2 h before transferring the peels to microscope slides and imaging 

stomata. 

2.5.3 Stomatal density/index 

Epidermal peels were obtained as described in section 2.5.2 from 4-week-old plants grown as 

before. Images of leaf epidermis were taken on a light microscope with attached camera at 10x 

magnification. Stomatal density was measured as the number of stomata per unit area of leaf. 

Stomatal index was measured using the following equation where I = stomatal index, S = stomata 

per unit area of leaf and E = epidermal cells per unit area of leaf; 

𝐼 =  
𝑆

𝑆 + 𝐸
 𝑥 100 

Density and index were measured from 15 images obtained from 3 different leaves, and each 

experiment was repeated twice. 

2.5.4 Stomatal conductance measurements 

Plants were grown as before and used in the experiment at 6 weeks old. Stomatal conductance 

was measured using a LICOR-6400 photosynthetic system with attached leaf chamber. One leaf 

was placed into the chamber and allowed to acclimate at 400 ppm for 30 min, after which the 
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reference CO₂ value was decreased to 50 ppm for 1 h, and then increased to 1000 ppm for 1 h. 

The machine was matched between every reference CO₂ change and a measurement taken 

every 60 s (calculated as 15 s averages). Flow rate was maintained at 300 µmol/s; leaf 

temperature at 20°C and humidity at 45-50%. Six repeats were carried out for each genotype 

and the experiment was carried out twice. 

2.5.5 Thermal Imaging 

2.5.5.1 Excised rosette imaging 

Plants were grown as before and used in the experiment at 5 weeks old. Rosettes were excised 

from the root at the base of the rosette and placed on a matte white surface and allowed to 

desiccate. Thermal images were obtained using a FLIR T1030sc infrared camera (FLIR systems, 

USA) that operates in the spectral range of 7.5–13 µm and has a focal plane array (FPA) uncooled 

microbolometer detector with a spatial resolution of 1024 x 768 pixels (Figure 2.3). Images were 

taken from a distance of 1 m from rosettes, with images taken every 1 min. Emissivity was set 

at 0.95, ambient temperature at 23°C and humidity at 50%. 

2.5.5.2 Whole plant imaging 

2.5.5.2.1 Whole plants in plugs 

Plants were grown as before and used in the experiment at 5 weeks old. Plants were watered 

and placed in a clear bag to create a high humidity environment the evening before the 

experiment. Plants were removed from the bag, set up randomly in small petri dishes on a matte 

white surface and allowed to acclimate to the change in humidity for 40 min (see Figure 2.3 for 

set-up). A thermal imaging camera was set up to image plants at a distance of 1 m every 30 min 

for 4 days in constant light. Emissivity was set at 0.95, ambient temperature at 23°C and 

humidity at 50%. Four plants of each genotype were imaged, with two of each watered morning 

and evening and the other two given no further water. 

2.5.5.2.2 Whole plants in pots 

Plants were grown as before and used in the experiment at 5 weeks old. Netting was removed 

from plugs and plugs placed into small pots to protect the roots from droughting. Plants were 

watered well the evening before the experiment and then removed from water and weighed. 

At the start of the experiment, plants to be watered were given water, whilst plants to be  
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Figure 2.3: Experimental set-up for the thermal imaging of droughted plants in plugs. Plants 
were imaged under constant light, with or without water, with images taken every 30 minutes.  



53 
 

droughted were not. Pots were set up randomly on a metal bench in a greenhouse of 

approximately 16:8 LD cycles with temperatures ranging from 21°C during the day to 13°C during  

the night.  A thermal camera was set up to image plants at a distance of 1 m every 30 min for 4 

days. Emissivity was set at 0.95, ambient temperature at 21°C and humidity at 50%. Plants were 

subsequently weighed every morning and evening, and watered plants given water morning and 

evening. Eight Col-0 plants were used in the experiment; 4 droughted, 4 watered, and 4 sfr8 

mutant plants; 2 droughted, 2 watered. 

2.6 Statistical analyses 

All statistically significant results are shown using asterices, where * indicates P ≤ 0.05, ** 

indicates P ≤ 0.01 and *** indicates P ≤ 0.001. 

2.6.1 Electrolyte leakage assays 

All statistical analysis was carried out using R software (R-Core-Team 2016). For electrolyte 

leakage experiments, percentage electrolyte leakage values from three biological replicate 

experiments were arcsine-transformed so they followed a normal distribution. A linear mixed 

effects model (Kuznetsova, Brockhoff & Christensen 2016) with genotype and any treatment 

(i.e. BA or fucose supplementation) specified as fixed terms, and experiment specified as a 

random effect. For the fucose and BA supplemented experiments, results were analysed by a 

two-way ANOVA at each temperature point with an interaction term specified between 

genotype and fucose/BA. For other electrolyte leakage experiments, a one-way ANOVA was 

carried out to determine the effect of genotype on the level of electrolyte leakage. Significant 

differences in leakage between genotypes and/or treatments was assessed using a least-squares 

means comparison (Lenth 2016) at each temperature point. 

2.6.2 Stomatal aperture measurements 

Statistical differences between stomatal aperture measurements were ascertained by carrying 

out a one-way ANOVA followed by a post-hoc Tukey test for pairwise comparisons. 

2.6.3 Stomatal conductance measurement 

Slopes of lines were compared using an analysis of covariance (ANCOVA).  
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2.6.4 Root growth assays 

Differences in root growth were assessed by carrying out a two-sample student’s t-test. 
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CHAPTER 3  

THE SENSITIVE TO FREEZING8 MUTANT IS DEFICIENT IN 
RHAMNOGALACTURONAN-II DIMERISATION 

3.1 Introduction 

In earlier studies, a population of EMS-mutagenized plants was screened to assess sensitivity to 

freezing temperatures after a period of cold acclimation. This screen highlighted a number of 

mutants that were designated sensitive-to-freezing (sfr) that were affected in the development 

of freezing tolerance (Warren et al. 1996b). Mapping of the mutations to the chromosome in 

several of these mutants (Thorlby et al. 1999) led to the discovery of specific roles for SFR genes 

in freezing tolerance. For example, SFR2 is involved in the protection of the chloroplast 

membrane during freezing (Fourrier et al. 2008; Moellering et al. 2010), whilst SFR6 is a subunit 

of the plant mediator complex which plays a role in the control of gene expression during cold 

acclimation as well as other abiotic stresses (Hemsley et al. 2014). 

The Arabidopsis sfr8 mutation was mapped to the MUR1 gene (Skipsey, Knight and Knight, 

unpublished) which encodes a GDP-D-mannose-4,6-dehydratase enzyme involved in the 

production of GDP-L-fucose; the activated form of L-fucose. Specifically, MUR1 converts GDP-

deoxy-D-mannose to GDP-deoxy-L-galactose within the fucose biosynthetic pathway (Bonin et 

al. 1997). GDP-L-fucose is incorporated into several cell wall polysaccharides such as hemi-

cellulosic xyloglucan (XyG), and pectic rhamnogalacturonans-I and -II (RG-I and RG-II) (Bauer et 

al. 1973; Darvill et al. 1978a; Lau et al. 1985), as well as arabinogalactan proteins (AGPs) (van 

Hengel & Roberts 2002) and N-linked glycans (Rayon et al. 1999). Previous studies have shown 

that mur1 mutants are thus deficient in cell-wall fucose (Reiter et al. 1993). This deficiency has 

been shown to result in several morphological phenotypes such as dwarfism, shortened petioles 

and early flowering time that can be reversed with exogenous application of L-fucose (Reiter et 

al. 1993). The leading hypothesis for these phenotypic traits is thus the impact that the loss of 

fucose residues has on cell-wall polysaccharides.  

Xyloglucan makes up approximately 20% of Arabidopsis primary plant cell walls, whilst RG-I 

constitutes 11% and RG-II makes up approximately 8% (Zablackis et al. 1995). Despite 

constituting a relatively small part of the wall, RG-II is perhaps the most structurally complex 
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polysaccharide known with its structural attributes being regularly revised (Ndeh et al. 2017). 

Unlike XyG and RG-I, whose fucose residues typically occur at the end of branched chains, RG-II 

domains contain intrinsic fucose residues that have been shown to be necessary for their 

structure. As described in Chapter 1, the loss of fucose in mur1 mutants has an impact on the 

dimerisation status of RG-II domains within cell walls (O’Neill et al. 2001). Either by replacement 

of the lost L-fucose residue with L-galactose (Reuhs et al. 2004) or the complete truncation of 

side chain A due to L-fucose deficiency (Pabst et al. 2013), the mur1 mutation results in the 

inability of RG-II monomers to cross-link via a borate-ester linkage between apiose residues of 

that side chain (O’Neill et al. 1996, 2001). Evidence for the decrease in RG-II dimerisation 

resulting in the phenotypes observed in mur1 mutants comes from the fact that supplementing 

plants with boric acid (BA) has the ability to reinstate the majority of dimerisation of RG-II in the 

cell walls of mutants, as well as restoring wild-type traits such as petiole length and plant size 

(O’Neill et al. 2001). This suggests that RG-II dimerisation controls several phenotypic traits, 

including some aspects of plant growth. This phenomenon has also been observed in L-galactose 

deficient tomato plants (Voxeur et al. 2011), and L-galactose deficient Arabidopsis (Sechet et al. 

2018), both of which display a decrease in RG-II dimerisation that is restored with BA application. 

RG-II dimerisation has also been shown to control other structural aspects of the plant cell wall 

such as pore size (Fleischer et al. 1999) and cell wall strength (Ryden et al. 2003). In this chapter, 

the hypothesis that RG-II dimerisation is required for freezing tolerance is addressed 

experimentally, and the damage that results from the loss of that dimerisation explored. 

3.2 Results 

3.2.1 Phenotypic assessment of mur mutants 

The visible appearance of mutants was examined and compared to Col-0 wild type plants under 

non-stress conditions. The mur1-1 mutant displayed clear differences to wild type plants in the 

form of dwarfism and shortened petioles (Figure 3.1A). Plants exhibited an early flowering 

phenotype (data not shown), with dwarfed inflorescence stems, as has been previously 

described (Reiter et al. 1993). mur1-1 plants displayed an obvious difference in leaf shape which 

although observed is rarely alluded to in previous literature; leaves were squat, rounded and 

crumpled, a trait possibly exaggerated by the shortening of the petioles. Interestingly, sfr8 plants 

exhibited similar visible differences to wild type as mur1-1, but not to the same extent. Petioles 

were shortened but not to the extent of mur1-1 plants, and leaves were rounder but not as short 

and did not crumple (Figure 3.1A). This could suggest that the amino acid change caused by the  
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base substitution in the MUR1 gene of sfr8 mutants was less detrimental than that in mur1-1 

(see Appendix A). 

In plants of a sfr8 mutant background complemented with the MUR1 gene (sfr8-C), the 

appearance of mature plants was similar to wild type, although leaves displayed a slightly more 

toothed edge, a contrasting appearance to the rounder leaves of sfr8 and mur1-1 (Figure 3.1A). 

A mutant of the xyloglucan specific fucosyl-transferase gene MUR2 (Vanzin et al. 2002) was also 

assessed as this mutation also resulted in a decrease in cell-wall fucose due to a lack of fucose 

residues of xyloglucan (Reiter et al. 1997). These plants were very similar in appearance to wild 

type, showing none of the visual phenotypes observed in sfr8 and mur1-1 (data not shown), 

suggesting that xyloglucan fucosylation was not the cause of the visual appearance of sfr8 and 

mur1-1 plants. 

3.2.2 Assessment of freezing tolerance 

3.2.2.1 Visual assessment of freezing damage 

Freezing damage was visually assessed by subjecting mature plants that had been cold 

acclimated at 5°C to temperatures of -8.5°C for 24 h, with recovery assessed after 7 days. Both 

the sfr8 and mur1-1 mutants showed decreased survival after exposure to freezing, whilst Col-

0 wild type and mur2 plants still showed signs of growth (Figure 3.1B). Assessment of the 

complemented line of sfr8, sfr8-C, showed similar freezing tolerance to wild type, as sfr8-C 

plants also maintained signs of growth after freezing (Figure 3.2A). These results suggested that 

a mutation in the MUR1 gene was detrimental to freezing tolerance. Thus, a more quantitative 

assessment was carried out to assess the extent of freezing damage via an electrolyte leakage 

assay. 

3.2.2.2 Electrolyte leakage  

Electrolyte leakage (EL) assays were carried out on mature plants to quantitatively assess the 

damage incurred from exposure to freezing temperatures. Leaf discs were excised from plants 

and frozen at three different temperatures, and the percentage of electrolytes that leaked from 

cells taken as a measure of damage. A one-way ANOVA followed by a least-squares means (LSM) 

comparison was used to assess the significance in differences of EL and thus freezing sensitivity. 

Results showed that the sfr8 mutant had a significantly increased leakage of electrolytes than 

wild type plants at all three temperatures This sensitivity was reversed in the complemented  
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line, sfr8-C, which had leakage levels significantly lower than sfr8 and much closer to that of 

wild-type values (Figure 3.2B; one-way ANOVA/LSM, ***, P ≤ 0.001, *, P ≤ 0.05).  

An increase in EL and thus freezing sensitivity was also observed in mur1-1 plants, which showed 

significantly higher EL levels than wild type at exposure to -8°C (Figure 3.3A; one-way 

ANOVA/LSM, ***, P ≤ 0.001). An EL assay carried out on mur2 plants showed no increase in 

leakage compared to wild-type plants at two of the three temperature measured, and only a 

slight increase in leakage at -7°C (Figure 3.3B, one-way ANOVA/LSM, P = 0.047). This significance 

was much lower than that observed in sfr8 and mur1-1 mutant plants, suggesting that the mur2 

mutation did not impact on freezing tolerance to the same extent that the mur1 mutation did. 

Following this finding that plants with a mutation in the MUR1 gene displayed a freezing-

sensitive phenotype, experiments were carried out to assess what attributes of sfr8 and mur1-

1 were the cause of this. 

3.2.3 Cell-wall fucose 

3.2.3.1 Measurement of cell-wall fucose in mur mutants 

Previous analysis of mur1 and mur2 mutants highlighted a decrease in cell-wall fucose content 

(Reiter et al. 1997). Thus, the cell-wall fucose levels of sfr8 mutant plants were assessed in 

comparison to wild type, mur1-1, mur2 and the complemented line to highlight any possible 

links with freezing sensitivity. A plant cell-wall extract was obtained from two-week-old 

seedlings and hydrolysed to monosaccharides with trifluoracetic acid. The concentration of 

fucose was measured using GC-MS and values expressed as percentages of wild-type cell-wall 

fucose. Results showed that both sfr8 and mur1-1 had decreased cell-wall fucose levels in 

comparison to wild type, with a decrease to approximately 27% for sfr8 and 20% for mur1-1. A 

decrease is also seen in the mur2 mutant, although not to the same extent as the mur1 mutants, 

with approximately 40% of wild-type fucose levels (Figure 3.4A). Cell-wall fucose levels were 

much closer to wild-type levels in the complemented line, containing approximately 80% fucose 

of wild-type levels (Figure 3.4B). 

3.2.3.2 Fucose supplementation of sfr8 

In order to assess if the decrease in fucose observed in sfr8 plants affected the increase in 

freezing sensitivity, an EL leakage assay was carried out on plants that had been supplemented 

with fucose during growth. Wild type and sfr8 plants were sprayed with 10 mM fucose  
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throughout five weeks of growth and two weeks of cold acclimation to replace that lost as a 

result of the mutation. This supplementation had the ability to reverse the increased EL of sfr8 

at -9.5°C, as supplemented plants had significantly lower leakage levels than non-supplemented 

sfr8 plants. No significant effect on EL was seen in wild type plants supplemented with fucose. 

A two-way ANOVA was used to test significance in order to account for the interacting effects 

of genotype and fucose treatment on EL (Figure 3.5; two-way ANOVA/LSM, *, P ≤ 0.05, ***, P ≤ 

0.001). These results suggest fucose levels are in some way linked to freezing tolerance, as a 

decrease in fucose is correlated with an increase in freezing sensitivity. 

3.2.3.3 2F-fucose treatment of wild type seedlings 

A chemical approach to decrease cell-wall fucose content was undertaken through the use of an 

inhibitor of fucosylation to support the initial genetics-based approach used. The small molecule 

2-fluoro-L-fucose (2F-fucose) competitively inhibits the fucosylation of polysaccharides resulting 

in a reduced cell-wall fucose content (Villalobos, Yi & Wallace 2015). This inhibitor was used on 

wild type seedlings to simulate the decreased cell wall fucose content observed in sfr8 plants. 

Wild type seedlings were grown on MS agar plates supplemented with DMSO as a control (the 

inhibitor was dissolved in DMSO) and varying concentrations of 2F-fucose for two weeks. EL 

assays showed a dose-dependent increase in EL with treatment of the inhibitor at all three 

temperatures (Figure 3.6A). A significant increase in EL was seen at -3°C for the two higher 

concentrations of 2F-fucose (one-way ANOVA/LSM, P ≤ 0.001), and for all three concentrations 

at the two lower temperatures (one-way ANOVA/LSM P ≤ 0.001 or 0.01) (Figure 3.6A). This 

provided further evidence that fucose is essential for normal plant freezing tolerance. 

3.2.3.4 Assessment of root growth 

Previous studies have shown that plants treated with the 2F-fucose inhibitor of fucosylation 

display a decrease in root growth and root morphology (Dumont et al. 2015; Villalobos et al. 

2015). This phenotype was also observed in this study, with a concentration-dependent 

decrease in root growth (data not shown). Since chemically decreasing cell-wall fucose content 

resulted in a decrease in root growth, the growth of sfr8 roots was measured to see if the 

decrease in fucose had the same effect. Seven-day-old seedlings of wild type and sfr8 were 

transferred to 1.2% agar and grown vertically for 5 days. Results showed a significant decrease 

in root growth in sfr8 seedlings compared to wild type (Figure 3.6B, two-way t-test, P ≤ 0.001), 

suggesting a decrease in cell-wall fucose does affect root growth.  
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3.2.4 Cell-wall rhamnogalacturonan-II dimerisation 

Assessment of mur1 mutants in earlier studies highlighted a significant impact of the decrease 

in fucose for the pectic polysaccharide rhamnogalacturonan-II. As described in section 3.1, RG-

II contains a fucose residue that is essential for dimerisation of RG-II domains within the cell wall, 

as mur1-1 mutants display a decrease in RG-II cross-linking that can be reversed by 

supplementing plants with L-fucose during growth (O’Neill et al. 2001). The dimerisation status 

of plant cell-wall RG-II was therefore assessed in sfr8 plants via the method of polyacrylamide 

gel electrophoresis (PAGE) previously described (Chormova et al. 2014a). A cell-wall extract was 

obtained from leaves of 5-week-old wild type, sfr8 and mur1-1 plants. The extract was digested 

with endo-polygalacturonase (EPG) and the RG-II monomer and dimer separated via PAGE 

analysis and visualised by silver staining. RG-II monomer and dimer standards purified from 

sugar beet were used for comparisons. The results showed that the majority of RG-II in the cell 

walls of wild type plants was dimerised. The sfr8 lane showed an increase in the presence of RG-

II monomer, and a slight decrease in the size of the RG-II dimer band, suggesting that the loss of 

cell-wall fucose resulted in a decrease of RG-II dimerisation within the cell wall (Figure 3.7). 

Analysis of the mur1-1 mutant also showed a decrease in the size of the dimer band, consistent 

with previous observations (O’Neill et al. 2001). There was also a monomer band present but 

interestingly not at the intensity of that seen for sfr8 (Figure 3.7A).  

As described in section 3.1, the observed decrease in RG-II dimerisation in mur1 mutants was 

shown to be reversible by supplementing plants with boric acid (BA) (O’Neill et al. 2001). To see 

if this was possible in sfr8 plants, PAGE analysis of digested cell-wall extracts was carried out on 

wild type, sfr8 and mur1-1 plants that had been supplemented with BA during growth. The 

results showed that BA was able to restore the presence of primarily dimerised RG-II in the sfr8 

mutant, as the monomer band had almost disappeared (Figure 3.7A). This did not appear to be 

the case for the mur1-1 plants supplemented with BA, as the size and intensity of the RG-II 

monomer and dimer bands did not differ from those of the non-BA-supplemented plants (Figure 

3.7A). This could suggest that RG-II from the sfr8 and mur1-1 mutants differed in their ability to 

dimerise with BA supplementation. 
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3.2.5 Assessment of freezing damage with boric acid supplementation 

3.2.5.1 BA supplementation of sfr8 plants 

With the finding that BA supplementation could restore RG-II dimerisation in the sfr8 mutant, 

EL assays were carried out on plants that had been supplemented with BA during growth to 

assess the necessity of dimerised RG-II for freezing tolerance. Assays carried out on non-

acclimated plants showed no significant difference between sfr8 and sfr8 supplemented with 

BA, although a significant difference between WT and sfr8 was still observed (Figure 3.8A; two-

way ANOVA/LSM, ***, P ≤ 0.001).  Assays were then carried out on wild type and sfr8 plants 

with and without BA supplementation that had also been cold acclimated for two weeks at 5°C. 

Interestingly, these experiments did show a difference in EL, with leakage of BA supplemented 

sfr8 plants significantly lower than those that were not treated with BA at all three temperatures 

(Figure 3.8B; two-way ANOVA/LSM, **, P ≤ 0.01, ***, P ≤ 0.001). This showed that BA 

supplementation was able to reverse the freezing-sensitive phenotype in sfr8 plants, but only 

after a period of cold acclimation. Interestingly, analysis of the dimerisation status of RG-II in 

wild type and sfr8 plants after cold acclimation, with and without BA supplementation suggested 

that RG-II monomer accumulated during cold acclimation, as a monomer band was present in 

the sfr8 sample even when plants were supplemented with BA (Figure 3.7B). This may hint that 

RG-II monomer is important for freezing tolerance, perhaps as a borate-ester cross-link between 

the cell wall and plasma membrane, which has been shown to occur (Voxeur & Fry 2014). It may 

be that up-regulation of the monomer during cold acclimation is required for freezing tolerance. 

3.2.5.2 BA supplementation of 2F-fucose treated seedlings 

In sfr8 mutant plants, BA was able to restore RG-II dimerisation and freezing tolerance. Previous 

research into fucosylation inhibitors showed that treatment with BA was able to restore the root 

growth phenotype of 2F-fucose treated plants, suggesting that the phenotypic defects observed 

are as a result of a loss of RG-II dimerisation, similar to the sfr8 mutant (Dumont et al. 2015; 

Villalobos et al. 2015). Thus, it was tested whether BA could reverse the freezing sensitivity 

observed in 2F-fucose treated seedlings. The concentration of 10 µM 2F-fucose was chosen as 

this was the lowest inhibitor concentration that showed a significant increase in electrolyte 

leakage at all three temperatures (Figure 3.6A). Treatments were as follows; 0.1% DMSO, 0.1% 

DMSO + 0.75 mM BA, 10 µM 2F-fucose and 10 µM 2F-fucose + 0.75 mM BA. DMSO-treated wild-

type seedlings were used as the control as DMSO was the solvent for the fucosylation inhibitor  
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and thus the concentration of DMSO also present in the 2F-fucose treated seedlings. Analysis of 

root growth showed that BA supplementation was able to partially reverse the decrease in root 

length resulting from 2F-fucose treatment (Figure 3.9E), as previously described (Dumont et al. 

2015; Villalobos et al. 2015). Following this pattern, an initial EL experiment carried out showed 

that the increase in EL observed in 2F-fucose treated plants was reversible with BA treatment, 

as EL was reduced to wild-type levels in 2F-fucose and BA treated seedlings (Figure 3.9A). 

However, the assay was repeated a further three times, and although EL of 2F-fucose + BA 

treated seedlings was shown to be less than that of 2F-fucose treated seedlings in all 

experiments, an increase in EL of the DMSO treated seedlings as well as the 2F-fucose treated 

ones was also observed, even though seedlings treated with DMSO and BA did not show an 

increased EL (Figure 3.9B-D).  

The increase in EL observed in seedlings treated with DMSO could be a result of the increased 

membrane permeability effect of DMSO (Notman et al. 2006). To see if DMSO’s suggested 

effects on membrane permeability resulted in an increased EL after freezing, an EL assay was 

carried out on seedlings with and without DMSO treatment. A third treatment of autoclaved 

DMSO was also used to see if this process affected DMSO stability or mode of action. However, 

no differences in EL were observed between the three treatments, suggesting that DMSO 

treatment did not impact upon EL from seedlings after freezing (Figure 3.10A).  

3.2.5.3 RG-II dimerisation status in 2F-fucose treated plants 

To see whether freezing sensitivity was correlated with a decrease in the dimerisation of RG-II 

in fucosylation inhibitor-treated plants, RG-II gel analysis was carried out on WT seedlings with 

the four different treatments described in section 3.2.5.2. A cell-wall extract was obtained from 

the same batch of two-week-old seedlings as those used in the EL for Figure 3.9D, digested with 

EPG and run on a polyacrylamide gel. The bands present after silver staining show that all 

samples contained RG-II dimer, although perhaps slightly less dimer was present in the two 

treatments with 2F-fucose (Figure 3.10B). The only sample to show clear presence of the RG-II 

monomer was that derived from 2F-fucose plus BA treated seedlings. This is contrary to findings 

by Dumont et al. (2015) who showed that treatment with 2F-fucose resulted in a loss of 

dimerised RG-II and an increase in the RG-II monomer. These discrepancies may have arisen due 

to differences in the experimental protocol – further analysis is required to verify if RG-II 

dimerisation is disrupted in 2F-fucose-treated plants, and if this is reversible with BA 

supplementation. 
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3.2.6 Assessment of a bor1 mutant 

3.2.6.1 Electrolyte leakage 

The necessity of boric acid for freezing tolerance was assessed by carrying out an electrolyte 

leakage assay on plants with a mutation in BOR1, a gene encoding a boron efflux transporter 

involved in loading boron ions into the xylem under boron-limiting conditions. As boron is 

essential for RG-II dimerisation, a mutation that reduces the amount of boron available to the 

plant should also reduce RG-II dimerisation, as has been previously observed in the bor1-1 

mutant (Noguchi et al. 2003). However, an electrolyte leakage assay showed no significant 

differences between wild type and bor1-1 mutant plants at any of the three temperatures tested 

(Figure 3.11A). To ensure that the mutation had the hypothesised effect on RG-II i.e. a decrease 

in cross-linking due to the absence of boron, PAGE analysis was carried out on wild type and 

bor1-1 plant cell walls. 

3.2.6.2 RG-II dimerisation status 

The RG-II dimerisation status of the bor1-1 mutant was assessed via PAGE analysis. A cell wall 

extract was obtained from wild type and bor1-1 plants, digested with EPG and run on a 

polyacrylamide gel. The RG-II dimer band was present in both samples, as was a small RG-II 

monomer band. The size and intensity of the bands for both samples was very similar, suggesting 

that there was no decrease in RG-II dimerisation in the bor1-1 mutant (Figure 3.11B). This 

suggests that the plants did not experience a great enough boron deficiency, as under non-

limiting boron conditions, bor1-1 mutants had near wild type levels of dimerised RG-II (Noguchi 

et al. 2003), similar to that shown here. If RG-II dimerisation and freezing tolerance are 

correlated, this could explain why no increase in freezing sensitivity was observed.  



74 
 

 



75 
 

3.2.7 Genotyping the sfr8 mutant  

An observation that some of the sfr8 plants did not display the phenotypic traits associated with 

a mutation in the mur1 gene led to an investigation into the sfr8 seed stock. As shown in Figure 

3.12A, some plants (1 to 3) did not display the distinctive leaf shape and shortened petiole length 

normally observed (e.g. plants 4 to 7). It was possible that there was some phenotypic variation 

between the mutants, as plants 4 to 7 did display differences in the intensity of the leaf shape 

phenotype. To see if this was the case, the seven plants chosen along with a wild type plant were 

genotyped by sequencing part of the MUR1 gene. The sfr8 mutation is identified as a base 

change from G to A at nucleotide 629 of the gene (Bonin et al. 1997) (Appendix A). This base 

change was observed in the four plants exhibiting a typical sfr8 appearance, but not in the three 

plants that were within the sfr8 stock but did not resemble sfr8 plants (Figure 3.12B). This 

highlighted a possible contamination within the sfr8 seed stock. 

To measure the extent of this contamination, bulk sequencing was carried out using 50 seedlings 

from the sfr8 stock used for most of the experiments in this study (A), and a previous stock that 

was used in earlier experiments (such as the non-acclimated BA supplementation EL assay) and 

for bulking (i.e. it is the parent of A) (B). Sequencing of Col-0 wild type plants shows that base 

629 is a G, whilst sequencing of sfr8 stock B shows that the nucleotide present at base 629 is an 

A (Figure 3.13A and B). However, sequencing of sfr8 stock A shows a mixture of bases A and G 

at position 629, suggesting either that a mixture of wild type and sfr8 plants were present in the 

50 seedlings used for analysis, or that they are all heterozygous (this is unlikely due to 

sequencing of individual plants displaying no heterozygosity) (Figure 3.13C). This suggests that 

experiments carried out using stock A of sfr8 seeds would have wild type plants present at 

around 50%. Experiments comparing wild type and sfr8 plants are unlikely to have been 

significantly affected by this contamination, as plants carrying the mutation were identifiable 

due to the morphological traits of sfr8. Even if wild type plants were chosen for EL assays, results 

still show significant differences between wild type and sfr8, so it may even be the case that 

these significances are underestimated. In experiments where reversal of the phenotype was 

possible, e.g. in fucose and BA supplemented experiments, it is difficult to say whether those 

plants appearing to show a reversed phenotype were actually wild type plants. 

To verify if this was the case, RG-II analysis was carried out on known sfr8 plants from stock B 

supplemented with BA using the same watering regime as that used for the previous BA treated 

experiments i.e. Figure 3.7 and 3.8. The analysis showed that in fact, the BA watering regime  
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was unable to reverse the presence of monomer in sfr8 plant cell walls (Figure 3.14A). Wild type 

and sfr8-C plants had mainly dimerised RG-II in their cell walls both with and without BA 

supplementation. These results show that it is likely that the “sfr8” plants used in BA 

supplementation electrolyte leakage measurements were contaminated with wild type plants 

and could explain the difference observed between cold acclimated and non-acclimated plants. 

It is likely that the non-acclimated EL (Figure 3.8A) used seed stock B which was not 

contaminated, and that the cold-acclimated EL (Figure 3.8B) used seed stock A which was 

contaminated with wild type seeds. Thus, the decrease in EL observed in ‘sfr8 + BA’ in Figure 

3.8B was as a result of the presence of wild type plants, since BA was not able to reinstate a 

majority of dimerised RG-II in sfr8 cell walls (Figure 3.14A). It is also possible that the fucose-

supplemented EL used the contaminated seed stock and did not show a true reversal of leakage 

in sfr8 mutants (Figure 3.5). This finding could also explain why RG-II dimerisation status was not 

changed in mur1-1 plants supplemented with BA (Figure 3.7A). 

3.2.8 Reassessing RG-II dimerisation and freezing damage of BA supplemented plants 

It was possible that the BA watering regime used was unable to re-instate RG-II dimerisation 

because there was not enough boron present to overcome the effect of the loss of fucose, since 

BA supplementation has been shown to reinstate RG-II dimerisation in previous studies (O’Neill 

et al. 2001). In previous studies that found a reversal of mur1-1 phenotypes with BA treatment, 

seeds were germinated on plates containing BA as well being provided with supplementation 

throughout growth (Reiter et al. 1993), which was not initially done in this study. Thus, the BA 

watering regime was modified, and seeds grown on 1 mM BA-supplemented agar and watered 

with 20 mg/L of BA once transferred to soil pellets. RG-II dimerisation was assessed as before by 

carrying out PAGE analysis of EPG digested cell wall extracts. Interestingly, this watering regime 

also did not appear to be able to alter the dimerisation status of RG-II in five-week-old plants as 

no difference was seen in the RG-II bands of sfr8 and mur1-1 plants with and without BA 

supplementation (Figure 3.14B). However, the visual phenotypes observed in mur1-1 were less 

apparent in plants treated with BA as petioles appeared to be longer and leaves less rounded 

(Figure 3.15A). Thus, an electrolyte leakage assay was carried out to assess freezing sensitivity. 

An EL assay carried out on the same set of mur1-1 plants as those used in the RG-II analysis again 

highlighted the increase in leakage of mur1-1 plants compared to wild type as was observed in 

Figure 3.3A. The experiment also showed that BA was able to reverse the leakage of mur1-1 

plants closer to levels of wild type at all three temperatures (Figure 3.15B). There was no 
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consistent decrease in leakage of wild type plants supplemented with BA compared to those 

that were not, and leakage was even higher in wild type plus BA plants compared to wild type 

at the lowest temperature. This may have been a result of the BA toxicity observed in the wild 

type plants after 7 weeks of BA supplementation of yellowing and chlorosis of the leaves (not 

shown) (Nable et al. 1997). This effect was also seen in BA supplemented mur1-1 plants, 

however, the rescuing effects of BA supplementation appear to have outweighed any 

detrimental effects that BA toxicity may have had on freezing tolerance.  

Taking into consideration the results from the RG-II analysis and the assessment of freezing 

damage, it may be that it is not RG-II dimerisation that is correlated with freezing tolerance, but 

some other trait that BA influences within the plant. It may also be the case that gel analysis of 

RG-II dimerisation is not a robust enough way to observe if RG-II dimerisation is restored in sfr8 

and mur1-1 plants. It would also be necessary to analyse RG-II dimerisation after cold 

acclimation, as it may be that the two weeks of acclimation altered the RG-II dimerisation status 

and may hint at an association after all. 
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3.3 Discussion  

3.3.1 Discovery of contamination of sfr8 seed stock 

As described in section 3.2.1, mur1-1 and sfr8 plants display a clear visible phenotype of 

shortened petioles and rounded leaves compared to wild type plants. After the somewhat 

confusing results from the acclimated and non-acclimated EL assays of sfr8 with and without BA 

supplementation and concomitant RG-II analysis (Figures 3.7 and 3.8), a critical analysis of the 

plants highlighted the fact that some plants that were supposedly sfr8 looked more like wild 

type plants in their leaf shape and petiole length. Thus, a selection of these plants were 

individually genotyped; three plants that resembled wild type, and four that resembled sfr8 and 

compared to known wild type plants (Figure 3.12A). Sequencing of the MUR1 gene showed that 

plants that resembled wild type were in fact wild type plants, suggesting a contamination of the 

sfr8 seed stock used to carry out experiments in this study (Figure 3.12B). Indeed, further 

analysis of this seed stock compared to an earlier one along with wild type showed that the stock 

likely consisted of up to 50% wild type seeds (Figure 3.13). It is likely then that the experiments 

carried out using the contaminated sfr8 stock display false results. As previously stated, this is 

likely to have impacted more on the plants that had undergone fucose or BA supplementation 

such as the fucose and BA supplemented electrolyte leakage assays, and the assessment of RG-

II dimerisation with BA supplementation (Figures 3.5, 3.7 and 3.8), where it would have been 

difficult to assess whether plants that displayed wild type characteristics were sfr8 that had 

successfully been rescued, or were simply wild type. The fact that a decrease in leakage was only 

seen after a period of cold acclimation could highlight where the new (contaminated) stock 

began to be used (Figure 3.8). Although it is possible that the other experiments contained wild 

type plants, particularly those using seedlings where it would have been more difficult to identify 

wild type plants, the differences observed between sfr8 and wild type were still found to be 

significant (Figures 3.2, 3.4 and 3.7). It may even have been the case that the increase in EL was 

underestimated (Figure 3.2), and the decrease in fucose was overestimated, and fucose levels 

may even be decreased to the extent of mur1-1 plants (Figure 3.4). In order to verify if the 

decrease in RG-II dimerisation observed in sfr8 plants could indeed be reversed with BA, PAGE 

analysis of digested cell-wall extracts (Chormova et al. 2014a) was carried out on plants from 

the known sfr8 stock. Interestingly, the results were the same for the sfr8 plants with and 

without BA supplementation, suggesting that BA was not able to rescue the RG-II phenotype 

(Figure 3.14A). 
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3.3.2 Cell-wall fucose content is correlated with freezing tolerance 

Despite the discovery of contamination, the results that display clear differences between wild-

type and sfr8 plants, and the results that do not use sfr8 plants still stand true. The mur1 

mutation has previously been described to result in certain phenotypic traits such as shortened 

petioles, dwarfed stature and early flowering (Reiter et al. 1993). These traits were also 

observed in sfr8 mutant plants (Figure 3.1A) and genetic analysis showed that the sfr8 mutation 

is identical to that of mur1-4 (Reiter et al. 1997, Skipsey, Knight and Knight unpublished, 

Appendix A). Interestingly, mur1-1 mutants seem to display a stronger visible phenotype than 

sfr8 in the shortening of petioles and rounding of leaves (Figure 3.1A), suggesting that the amino 

acid change in mur1-1 is more detrimental than that of sfr8. However, there is little discussion 

in the literature of the different effects of each allelic mutation, and most research has centred 

around mur1-1 or mur1-2 mutants (Reiter et al. 1993, 1997). 

Using two mutant alleles, mur1-1 and sfr8 (mur1-4), and a complemented line (sfr8-C) genetic 

linkage was shown between the MUR1 gene and plant freezing tolerance. Electrolyte leakage 

assays and visual assessment of plants exposed to freezing temperatures highlighted a 

significant increase in electrolyte leakage and freezing damage in both mur1-1 and sfr8 plants 

(which may have been underestimated for sfr8) that was reversed in the complemented line 

(Figures 3.1B, 3.2 and 3.3A). The MUR1 gene encodes an enzyme functional in the fucose 

biosynthetic pathway (Bonin et al. 1997) and analysis has shown that mur1 mutant plants are 

deficient in cell-wall fucose content (Reiter et al. 1997). Fucose was decreased to 2% of wild-

type levels in mur1-1 leaf material, and 40% in the roots (Reiter et al. 1993, 1997). The cell-wall 

fucose content of sfr8 and mur1-1 plants was measured in this study and showed a decrease to 

27% and 20% respectively of wild-type levels (Figure 3.4A). The slight discrepancy with respect 

to the literature is likely because whole seedlings i.e. both shoot and root material were used in 

this study. This decrease in fucose was reversed in sfr8-C plants which had cell-wall fucose levels 

much closer to wild type at 80% (Figure 3.4B). These results suggest that cell-wall fucose content 

is correlated to plant freezing tolerance, and that a decrease in cell-wall fucose is associated 

with an increase in freezing sensitivity. Due to the contamination, the fucose supplementation 

experiments would need to be repeated to explicitly verify that freezing sensitivity can be 

reversed with fucose application, but fucose has previously been showed to reverse the 

morphological phenotypes of mur1-1 (Reiter et al. 1993). 
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This association between fucose and freezing sensitivity was further evidenced by treating 

plants with a fucosylation inhibitor 2-fluoro-L-fucose (2F-fucose). Treatment with 10 µM 

inhibitor was shown to reduce cell-wall fucose in seedlings to less than 50% of wild-type levels 

in the shoots and less than 10% in the roots (Dumont et al. 2015). Electrolyte leakage assays of 

seedlings treated with 2F-fucose showed a significant concentration-dependent increase in 

leakage and thus freezing damage (Figure 3.6A). Interestingly, 2F-fucose treatment also resulted 

in a decrease in root length of seedlings (Dumont et al. 2015; Villalobos et al. 2015). Assessment 

of wild type and sfr8 seedling roots showed a decrease in root growth in sfr8 seedlings, 

suggesting that cell-wall fucose is also correlated with root growth (Figure 3.6B). This decrease 

in root growth has been observed previously in mur1-1 mutants, and has been suggested to be 

as a result of alterations to arabinogalactan proteins (AGPs) in the roots due to L-fucose 

deficiency (van Hengel & Roberts 2002). AGPs have previously been shown to play a role in root 

elongation (Willats & Knox 1996). However, there is also evidence that RG-II may play a role in 

this phenotype, as mutations in the RGXT4 gene involved in RG-II synthesis led to lethal root 

growth defects (Liu et al. 2011). Root cell-wall integrity was also decreased in another mutant 

that had a decrease in RG-II dimerisation (Sechet et al. 2018). Indeed, the finding that the 

decrease in root growth of 2F-fucose treated plants could be partially reversed with BA 

supplementation lends further evidence to this (Figure 3.9E) (Dumont et al. 2015). 

Recent research has shown that GDP-L-fucose also plays a specific role in leaf development 

(Gonçalves et al. 2017) which could account for the differences in leaf shape observed in mur1-

1 and sfr8. There are several hypotheses for how L-fucose influences leaf shape. One of these 

hypotheses is that MUR1 acts in the same pathway as the transcription factor cup-shaped 

cotyledon 2 (CUC2), which controls plant boundary formation and is required for leaf serration 

(Hasson et al. 2011), and that post-translational fucosylation of proteins may affect the 

upstream regulation of CUC2 expression (Gonçalves et al. 2017). Another hypothesis is that 

modifications of cell-wall polysaccharides as a result of L-fucose deficiency may indirectly impact 

CUC2 expression, or that cell-wall properties may affect leaf growth independently or 

downstream of CUC2 expression (Gonçalves et al. 2017). It is still unclear therefore, exactly why 

mur1-1 and sfr8 mutants display this leaf shape phenotype, but evidence suggests that fucose 

has an important role to play. 
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3.3.3 The sfr8 mutant has decreased RG-II dimerisation 

As previously discussed in section 3.1, there are several components of the cell wall that contain 

L-fucose residues including XyG, RG-I, RG-II, AGPs and N-linked glycans. The loss of fucose in any 

of these polysaccharides or proteins could potentially be a major cause for the freezing-sensitive 

phenotype of sfr8. One of the most common fucosylated polysaccharides in the cell wall is the 

hemicellulose xyloglucan, which accounts for approximately 20% of Arabidopsis cell walls 

(Zablackis et al. 1995). The Arabidopsis mur2 mutant contains less than 50% of wild-type cell-

wall fucose levels (Reiter et al. 1997). This value agrees with measurements taken in this study 

where mur2 mutant seedlings were found to have a reduced cell-wall fucose content of 42% 

that of wild type (Figure 3.4A). The mur2 mutation was found to reside in the fucosyl-transferase 

gene FUT1 (Vanzin et al. 2002), which encodes an enzyme that catalyses the addition of L-fucose 

onto XyG molecules (Perrin et al. 1999; Sarria et al. 2001). XyG is believed to function primarily 

in a structural capacity as part of the cellulose-xyloglucan framework of the cell wall (Hayashi 

1989). EL assays carried out on mur2 mutants showed that, although there was a small 

significant increase in leakage at one temperature, overall there was little effect on freezing 

tolerance (Figure 3.3B). This suggests that a loss of L-fucose residues on XyG molecules, which 

has been shown to be replaced with L-galactose in mur2 mutants (Zablackis et al. 1996), did not 

affect XyG in a way that would result in increased freezing sensitivity, despite the fact that 

xyloglucan comprises more than 50% of the fucose content of the cell wall. The organisation of 

different sugar residues on the xyloglucan backbone is believed to affect the conformation of 

binding to cellulose (Levy et al. 1997); this study suggests that the loss of fucose side chains may 

not affect that link. However, recent analysis of a xyloglucan-deficient double mutant xxt1/xxt2 

that did not display detrimental cell-wall defects suggests xyloglucan may not be a main load-

bearing wall component as previously thought (Cosgrove 2016b). Interestingly, it appears to 

take only a further 15% decrease in cell-wall fucose to result in the significant increase in freezing 

sensitivity observed in the sfr8 mutant (Figure 3.2B, 3.4A). This would suggest that it is the loss 

of another fucose containing cell-wall component that is necessary for full freezing tolerance.  

It is possible that loss of L-fucose residues on N-linked glycans could result in reduced freezing 

tolerance, although mutants that lack L-fucose on glycoproteins display none of the 

morphological characteristics of mur1-1 mutants (von Schaewen et al. 1993). It is also possible 

that a loss of fucose in AGPs may be a contributing factor, as this has been shown to affect the 

root length of mur1-1 plants (van Hengel & Roberts 2002), although mutants deficient in 
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arabinose that specifically alter AGP structure do not display a dwarf phenotype (Reiter et al. 

1997). However, previous analysis of mur1 mutants has shown that a major consequence of 

fucose deficiency is the decrease in dimerisation of the cell-wall pectin domain 

rhamnogalacturonan-II (O’Neill et al. 2001). The structure of RG-II described in section 1.4.2 and 

shown in Figure 1.4, is a complex branched network of many different sugar residues, with RG-

II monomers being dimerised via a borate ester cross-link between the apiose residues of side 

chain A (Ishii & Matsunaga 1996; Matoh et al. 1996; O’Neill et al. 1996). Research has shown 

that a loss of the L-fucose residue in side chain A decreases the ability of RG-II monomers to 

cross-link, possibly due to structural and conformational changes that reduce the stability of the 

borate cross-link, resulting in a decrease in RG-II dimerisation in mur1-1 and mur1-2 mutants 

(O’Neill et al. 2001).  

The RG-II dimerisation status was analysed in sfr8 mutant cell walls by carrying out PAGE analysis 

of digested cell-wall extracts. The results showed that the cell wall of the sfr8 mutant does 

contain more RG-II monomer than wild type plants, as well as appearing to contain less dimer 

(Figures 3.7A and 3.14A), a phenotype also observed in mur1-1 plants (Figure 3.7A). This is 

comparable to previous analysis of mur1-1 mutants which have been shown to contain 

approximately 56% dimerised RG-II compared to 95% in wild-type cell walls, a trait that can be 

reversed by supplementing plants with L-fucose (O’Neill et al. 2001). This phenotype can also be 

reversed by expressing the MUR1 gene in the sfr8 mutant background, as results for sfr8-C plants 

show that they contain primarily dimer, as is observed in wild type plants (Figure 3.14A). 

3.3.4 BA can reverse the freezing sensitivity of mur1-1 but cannot restore RG-II dimerisation 

Studies have shown that providing plants with excess BA has the ability to restore RG-II 

dimerisation; mur1-1 plants treated with BA had near similar petiole length, plant size and leaf 

shape to wild type, and the amount of dimerised RG-II in the cell wall was increased to 

approximately 78% (O’Neill et al. 2001). These experiments provide evidence that it is the loss 

of RG-II dimerisation that results in the phenotypes observed. However, in this study, BA did not 

have the ability to reverse the RG-II phenotype observed in sfr8 and mur1-1 mutant plants 

(Figures 3.7A and 3.14A), even after the amount of BA provided during growth was increased 

(Figure 3.14B). Despite this, an EL assay showed that mur1-1 plants supplemented with BA had 

leakage levels closer to that of wild type plants after freezing (Figure 3.15B), and morphological 

phenotypes of mur1-1 were also partially reversed with BA supplementation (Figure 3.15A). 
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It was also tested whether BA had the ability to reverse the freezing-sensitive phenotype of 

plants treated with the fucosylation inhibitor 2F-fucose. BA was previously shown to rescue the 

decrease in root length observed with 2F-fucose treatment (Villalobos et al. 2015), and this 

result was also observed in this study as although roots of seedlings treated with 2F-fucose and 

BA were shorter than the control treated seedlings, they were consistently longer than seedlings 

treated with 2F-fucose alone (Figure 3.9E). These results could suggest that 2F-fucose has an 

effect on RG-II synthesis, leading to a decrease in dimerisation that can be overcome via 

treatment with BA (see discussion on roots in section 3.3.2). Indeed, it has been shown that 

treatment of 10 µM 2F-fucose is enough to decrease the occurrence of dimeric RG-II and 

increase monomeric RG-II within the cell wall, and treatment with 25 µM had an even greater 

impact on RG-II dimerisation  (Dumont et al. 2015). However, analysis of RG-II dimerisation of 

2F-fucose treated seedlings in this study did not show the same results. Although there 

appeared to be slightly less RG-II dimer in 2F-fucose treated seedlings, there was no evidence of 

RG-II monomer, which only appeared in 2F-fucose and BA treated seedlings (Figure 3.10A). 

Despite these results, an initial EL leakage experiment carried out on 2F-fucose treated seedlings 

supplemented with BA showed that leakage was much closer to wild type levels (Figure 3.9A), 

suggesting that BA was able to reverse the effects of the fucosylation inhibitor that resulted in 

freezing sensitivity (Figure 3.9A). However, three repeat experiments consistently showed that 

DMSO treated seedlings also had increased leakage of electrolytes (Figure 3.9B-D). It is known 

that DMSO can cause an increase in membrane permeability (Notman et al. 2006) so it was 

possible that DMSO treatment was having some adverse effects on the seedlings. However, 

analysis of the effects of DMSO on electrolyte leakage as a result of freezing damage showed no 

significant increases in leakage with DMSO treatment (Figure 3.10B). It is unknown, therefore, 

as to why an increase in leakage was so consistently seen in the DMSO treated seedlings and 

thus further experiments would be needed to be carried out to determine the cause of this. 

Analysis of the freezing tolerance of a bor1-1 mutant was not able to link BA and RG-II with 

freezing tolerance. BOR1 is a boron efflux transporter involved in xylem loading that is essential 

for the plant during boron deficiency (Takano et al. 2002). The  bor1-1 mutant was shown to 

contain lower levels of boron than wild type (Noguchi et al. 1997), and also had reduced 

dimerisation of RG-II to 40% under boron limiting conditions (Noguchi et al. 2003). However, an 

EL showed no significant difference between leakage of wild type and bor1 plants (Figure 3.11A). 

Analysis of the RG-II dimerisation status suggested there was no decrease in RG-II dimerisation, 

as no significant increase in RG-II monomer was observed (Figure 3.11B). This is likely because 
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there was sufficient boron available to the plant, as under non boron-limiting conditions, it was 

shown that 85-90% of RG-II present in the cell wall of bor1-1 plants was dimerised (Noguchi et 

al. 2003). Further analysis would need to be carried out on truly boron deficient plants that 

therefore have decreased RG-II dimerisation to assess if this does indeed result in increased 

freezing sensitivity. 

The results described here could suggest one of two things; 1. that there is another role that BA 

is playing within the plant in relation to freezing tolerance or 2. that the method for visualising 

the presence of RG-II monomer and dimer in the cell wall via gel electrophoresis is not robust 

enough for analysis with sfr8 and mur1-1 mutants. RG-II domains from mur1-1 mutant plants 

have been shown to be much less stable that RG-II from wild type plants (O’Neill et al. 2001). It 

is thus possible that the process of cell-wall extraction and EPG digestion is detrimental to any 

borate ester cross-links formed between RG-II domains of mur1-1 and sfr8 plants, and that the 

gel analysis carried out in this study is not truly representative of the RG-II levels in plant cell 

walls. No previous studies have attempted to measure dimerisation of RG-II in mur1-1 plants via 

gel electrophoresis, and only a handful of studies directly show that RG-II can be forced to 

dimerise with excess BA application in mutants where RG-II structure effects dimerisation ability 

(O’Neill et al. 2001; Voxeur et al. 2011; Sechet et al. 2018). It is important to note that the RG-II 

analysis in Figure 3.14B was carried out on five-week-old non-acclimated plants, thus it would 

also be necessary to measure RG-II dimerisation in the same seven-week-old acclimated plants 

on which the EL leakage analysis was performed to ensure cold acclimation does not induce 

changes to RG-II structure, although cold acclimation was not required for the rescue of RG-II 

dimerisation in previous studies (O’Neill et al. 2001; Voxeur et al. 2011; Sechet et al. 2018). Thus, 

it would be necessary to carry out analysis of RG-II dimerisation using different techniques such 

as those used in the studies mentioned where analysis has been successful, or by in vivo 

techniques such as antibodies directed against monomeric RG-II (Matoh et al. 1998), in order to 

assess if RG-II dimerisation is indeed rescued and thus correlated with freezing tolerance. 

3.3.5 What roles does boron play within the plant? 

It is generally believed that the primary role of boron is as a structural component of the cell 

wall. This comes from the finding 90% of boron in the plant is localised to the cell wall (Loomis 

& Durst 1992). Indeed the first symptoms of boron deficiency include abnormalities in the cell 

wall (Hu & Brown 1994; Liu et al. 2014). It was later discovered that boron formed a complex 

with a pectic polysaccharide, to which up to 80% of cell-wall boron was localised (Matoh et al. 
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1993). This pectin was eventually shown to be RG-II, which was dimerised via a borate-ester 

cross-link (Ishii & Matsunaga 1996; Kobayashi et al. 1996; O’Neill et al. 1996), and it was 

suggested that RG-II was the sole boron-binding molecule within the plant cell wall (Matoh et 

al. 1996). However, it has been suggested that boron may bind to other biomolecules (Goldbach 

& Wimmer 2007), and that it may even bind to transcription factors and thus regulate plant 

transcription (González-Fontes et al. 2008). Evidence for this comes from the fact that boron 

seems to exert effects on a number of different plant processes including root and pollen tube 

growth, plasma membrane function (Blevins & Lukaszewski 1998), nitrogen fixation and 

carbohydrate metabolism (Camacho-Cristobal & Gonzalez-Fontes 1999), and even cytoskeletal 

processes (Bassil 2004). 

Interestingly, boron has also been shown to form a complex with RG-II and the plasma 

membrane sphingolipid GIPC (Voxeur & Fry 2014). This interaction could influence membrane 

processes and even be part of a cell wall-plasma membrane-cytoskeletal continuum that could 

be important for signalling between extracellular and intracellular compartments (Goldbach & 

Wimmer 2007). This would still involve the binding of boron to RG-II, suggesting it may be cell 

wall-plasma membrane connections that are important for freezing tolerance (see Chapter 5). 

Indeed, many of the processes affected by boron deficiency have also been linked to RG-II 

dimerisation, including root and pollen tubes growth (Liu et al. 2011; Dumont et al. 2014). Many 

of the phenotypic traits of boron-deficient plants are also observed in mutants deficient in RG-

II dimerisation. For example, boron deficiency in roots of squash and bean was shown to reduce 

the cell-wall tensile elastic modulus (Findeklee & Goldbach 1996; Findeklee, Wimmer & 

Goldbach 1997), and these findings are concurrent with the decrease of tensile modulus in 

mur1-1 and mur1-2 hypocotyls measured by Ryden et al. (2003). Boron-deficient plants have 

been shown to have brittle leaves (Loomis & Durst 1992; Hu & Brown 1994), a phenotype of 

mur1-1 tissues initially reported by Reiter et al. (1993). RG-II existed principally in monomer form 

in boron-deficient C. album cells, which resulted in a decrease in the limiting cell-wall pore size. 

Supplementing cells with BA restored RG-II dimerisation and also cell-wall pore size (Fleischer et 

al. 1998, 1999). Boron-deficient cells were also mechanically unstable, as cells ruptured due to 

overexpansion (Fleischer et al. 1998).  

Although it cannot be ruled out that boron may play a signalling role in plants, it is still the case 

that most of the boron within the plant is located in the cell wall as a cross-linking molecule. It 

is also the case that some of the cell wall structures that have been shown to be influenced by 
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boron cross-linking of RG-II molecules such as pore size and cell wall strength, are also correlated 

with freezing tolerance mechanisms (Ashworth & Abeles 1984; Rajashekar & Burke 1996; 

Rajashekar & Lafta 1996). How these mechanisms may be influenced in the sfr8 mutant will be 

discussed further in Chapter 5. 

3.4 Conclusions 

The results of the experiments carried out here demonstrate a significant effect of cell-wall 

fucose deficiency on freezing tolerance. There are several cell-wall polysaccharides that contain 

fucose residues, alterations to which could result in the freezing-sensitive phenotypes of sfr8 

and mur1-1 observed. The mur2 mutant did not show a consistently significant increase in 

electrolyte leakage, suggesting it is not alterations to xyloglucan chains that result in freezing 

sensitivity. Although previous analysis has shown that N-linked glycans and AGPs do not display 

the same morphological phenotypes as mur1-1, it would be necessary to verify that alterations 

to these cell-wall components do not result in freezing sensitivity, as it may be possible that 

these traits are independent of each other. Little attention is given to RG-I in previous studies of 

mur1 mutants, possibly because fucose residues tend to exist terminally and are unlikely to 

result in any severe structural changes. Also, there is compelling evidence that many of the 

morphological traits observed in sfr8 and mur1-1 mutants are linked to RG-II dimerisation, which 

is shown to be affected by fucose deficiency, both in this and previous studies. Although RG-II 

dimerisation was not restored with BA supplementation in this study, it has been observed in 

other studies, and the decrease in freezing sensitivity of BA-treated mur1-1 plants suggests a 

correlation between RG-II dimerisation and freezing tolerance given the role of boron described 

in the literature. Taking these results into account, the initial hypothesis that the cell-wall 

influences freezing tolerance within the plant can be accepted. There is also strong evidence to 

suggest that the structure of the RG-II cross-linking influences this as reversing the loss of the 

cross-link with BA is able to reverse the increase in freezing sensitivity in mutant plants.   
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CHAPTER 4  

SFR8 MUTANTS DISPLAY ALTERED GUARD CELL 
DYNAMICS 

4.1 Introduction 

4.1.1 Stomata and stomatal regulation 

Stomata are small pores located mainly on the lower epidermis of leaves that allow gaseous 

exchange between the plant and the environment. They are essential for plant life, allowing the 

influx of CO2 for photosynthesis, and the efflux of waste products such as O2 and water vapour, 

as well as playing a major role in the transpiration stream that allows the movement of water 

and other molecules through the plant (Zeiger 1983). In monocots the guard cells are dumb bell-

shaped and are surrounded by subsidiary cells (Franks & Farquhar 2007), whilst in dicots, the 

stomatal complex consists of two kidney-shaped guard cells which are surrounded by epidermal 

cells or sometimes subsidiary cells. The guard cells control the opening and closing of the 

stomatal pore to regulate gas exchange as well as plant-water relations. Several environmental 

signals induce changes to stomatal aperture i.e. the width of the stomatal pore, including light, 

CO2 concentration, water content, humidity and temperature (Araújo, Fernie & Nunes-Nesi 

2011). 

Stomata open via the action of ion channels localised at the plasma membrane and the 

integration of many stomata-regulating signals (Schroeder et al. 2001a; Araújo et al. 2011; 

Kollist, Nuhkat & Roelfsema 2014). During opening of the stomata, H+-ATPases pump H+ ions out 

of the guard cells resulting in a hyperpolarisation of the membrane (Shimazaki & Kondo 1987), 

which provides a driving force for the passive uptake of K+ and Cl- ions and in some cases malate2- 

into the guard cells (Gotow et al. 1985; Schroeder 1988). This results in a decrease in the osmotic 

potential of the guard cells leading to an influx of water and an increase of turgor and cell volume 

that contributes to the opening of the pore. Conversely, stomatal closure is driven by a decrease 

in guard cell turgor due to efflux of K+ ions (Hosy et al. 2003). There is also evidence to suggest 

that sucrose plays a role in the regulation of stomatal opening and closing (Daloso & Fernie 

2016). There are different guard cell signalling pathways that regulate stomata, for example, 

stomatal opening is initiated by the blue-light activation of H+-ATPase pumps (Shimazaki et al. 
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2007). Abscisic acid (ABA) is also an important guard cell signalling component, and is induced 

in response to abiotic stresses such as drought, causing the stomata to close (Schroeder, Kwak 

& Allen 2001b). ABA activates a complex signalling network involving the influx of Ca2+ ions into 

the cytosol and a decrease in cytosolic pH that ultimately induce the efflux of K+ through 

membrane channels, thus resulting in a decrease of guard cell turgor and stomatal closure (Li, 

Assmann & Albert 2006). As well as inducing stomatal closure, ABA also prevents opening by 

Ca2+-regulated inhibition of H+-ATPase channels (Kinoshita, Nishimura & Shimazaki 1995). The 

complex signalling network induced by ABA and the many other cellular components involved 

has been reviewed by various groups (Hetherington 2001; Li et al. 2006; Daszkowska-Golec & 

Szarejko 2013; Pantin et al. 2013). Ca2+ signalling plays a central role in the regulation of stomatal 

movement, with cytosolic Ca2+ increases being induced not only by ABA, but also other stimuli 

that induce stomatal closure such as CO2 and pathogens (Webb et al. 1996; Klusener et al. 2002). 

4.1.2 Guard cell walls 

A distinctive feature of guard cells that is essential for stomatal-regulation is the guard cell wall. 

Early studies of stomata led to the observation that the inner radial walls of guard cells are 

thickened, leading to a stiffening of the wall that allows the cells to bend and successfully open 

the stomatal pore  (Mohl 1856; Zeiger 1983). More recently, modelling of stomatal movements 

has taken into account cell wall mechanics in an effort to better understand the mechanism via 

which the cell wall influences stomata opening and closure (Rui et al. 2016). Immuno-

histochemical studies and microscopy techniques have led to the observation that guard cell 

walls contain a specific polysaccharide make-up compared to other cells (Majewska-Sawka, Mu 

& Rodriguez-Garcia 2002; Verhertbruggen et al. 2009; Rui & Anderson 2016), that can also vary 

between species (Shtein et al. 2017). This led to the hypothesis that these components are 

important for guard cell function. Indeed, research has shown that altering guard cell-wall 

composition results in aberrant guard cell dynamics, and several pectin modification enzymes in 

particular have been implicated as necessary for proper stomatal function (Amsbury et al. 2016; 

Huang et al. 2017; Rui et al. 2017). In this chapter, it is hypothesised that the sfr8 mutants display 

altered guard cell dynamics and that this may be related to the loss of RG-II cross-linking 

described in Chapter 3. Possible reasons for this guard-cell phenotype are discussed in relation 

to cell-wall structure and mechanics. 
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4.2 Results 

4.2.1 Leaf water loss  

A leaf drying assay was carried out where single leaves were excised from mature wild type, sfr8, 

mur1-1, mur2 and sfr8-C plants and left to dry at ambient temperature and humidity with the 

abaxial side facing upwards. The mass of the leaves was measured every hour for eight hours 

then at 24 hours and 7 days and decrease in mass used as a measure of water loss. The results 

showed that both sfr8 and mur1-1 leaves lost a greater proportion of their original mass than 

wild type, mur2 and sfr8-C, suggesting a greater water loss in plants with a mutation in the mur1 

gene (Figure 4.1). Upon initial excision, wild type, sfr8-C and mur2 leaves lost mass at a 

comparable rate to sfr8 and mur1-1. However, after this first measurement, the mass of wild 

type, sfr8-C and mur2 leaves decreased at a much steadier rate and leaves even decreased in 

mass between 24 h and 7 days. Contrary to this, sfr8 and mur1-1 leaves decreased in mass at a 

continually high rate and reached almost complete dryness after only 6 h.  

To assess if this was a result of a decrease in RG-II dimerisation, plants were supplemented with 

boric acid (BA) during growth and the experiments carried out as before. Interestingly, both wild 

type and sfr8-C plants show an increased water loss when grown with BA supplementation 

(Figure 4.2), whereas water loss appeared to be partially reversed in mur1-1 and sfr8 leaves 

(Figure 4.3). Although the differences seen for sfr8 could be due to the contamination with wild 

type seeds described in Chapter 3, this would not be the case for the difference seen in mur1-1 

plants. It is possible that because the opposite difference is seen in wild type and sfr8-C plants, 

that it is simply within the margin of error of the experiment and BA does not affect water loss. 

However, as reported in Chapter 3, the BA watering regime used did not appear to be enough 

to reform RG-II borate-ester linkages. Further experiments utilising the new BA supplementation 

regime that was shown to alter freezing tolerance in mur1-1 plants (Figure 3.14) are required to 

ascertain if the water loss phenotype is due to a loss of RG-II dimerisation (although further 

proof is also required that RG-II domains are dimerised in BA treated mutants – see Chapter 3). 

As described in previous chapters, there are several effects of a loss of RG-II dimerisation in the 

cell wall that could result in this phenotype if it is indeed as a result of this. An increase in cell 

wall pore size concomitant with a loss of RG-II dimerisation (Fleischer et al. 1999) could mean 

that water is able to move through the apoplast quicker, or changes to water binding properties 

of RG-II could also result in an increased rate of water movement. However, the pattern of water 

loss described earlier, and the immense difference in water loss observed in mur1-1 and sfr8  
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hinted at the involvement of stomata, as this is the easiest and quickest way that plants lose 

water. This hypothesis was investigated further using several different experimental methods. 

4.2.2 Stomatal analysis 

4.2.2.1 Stomatal density, index and size 

To assess if stomata were involved in the increased water loss from sfr8 plants, the first step 

was to measure stomatal density and index to assess if this was affected by the mur1 mutation. 

Epidermal peels were taken from wild type and sfr8 plants and measurements of stomatal 

density and stomatal index measured by counting the number of stomata, and the number of 

stomata in relation to the number of cells respectively for a given area. Results showed that 

there was no significant difference between wild type and sfr8 for both stomatal density and 

index (two-sample T-test, Figure 4.4A and B). This suggested it could be the stomatal dynamics 

that are affected in sfr8 and mur1-1 mutants, which was assessed by measuring stomatal 

aperture. 

4.2.2.2 Stomatal aperture after incubation in opening buffer 

To assess if the mur1 mutation affected stomatal dynamics, stomatal aperture was measured by 

taking epidermal peels from the abaxial side of mature leaves and imaging using a light 

microscope. Epidermal peels were incubated in a stomatal opening buffer (MES/KCl) for 2 h as 

previously described (Gonzalez-Guzman et al. 2012) to give a baseline of maximal stomatal 

aperture. The aperture of the stomatal pore was then measured in ImageJ. A one-way ANOVA 

and post-hoc Tukey test showed that there was no significant difference between wild type and 

sfr8 stomatal aperture (Figure 4.5A). There was, however, significance observed between wild 

type and sfr8-C (P ≤ 0.05), and sfr8 and sfr8-C stomatal aperture (P ≤ 0.001, Figure 4.5A). This 

could be a result of an observed difference in stomatal size in which sfr8-C stomata appeared 

much smaller than wild type, but further analysis would need to be carried out to verify this. 

There was also no significant difference found between wild type and mur1-1 stomatal aperture, 

or wild type and mur2 aperture (Figure 4.5B). These results suggest that mur1-1, sfr8 and wild 

type plants are able to reach the same maximal aperture when incubated in opening buffer. It 

was possible that differences may only occur when stomata of mur1 mutants were exposed to 

a closure signal, as was the case in the leaf drying experiment as with the excision of leaves and 

concurrent loss of the transpiration stream, stomata would receive a signal to close. 
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4.2.2.3 Stomatal aperture after incubation with ABA 

Although no differences were seen with incubation in opening buffer, it was possible that a 

difference could be observed after the stomata have been stimulated by a closure signal. Thus, 

abscisic acid (ABA), a well-known stomata closure signal (Walton 1980), was used as a chemical 

signal to induce stomatal closure. Epidermal peels were obtained as before and incubated in 

opening buffer for 2 h, followed by incubation in 5 µM ABA for 2 h. Images were taken as before 

on a light microscope and analysed in ImageJ. A one-way ANOVA followed by a post-hoc Tukey 

test showed a significant difference between wild type and sfr8 stomatal aperture, as well as 

between sfr8 and sfr8-C (Figure 4.6A, P ≤ 0.001). Similarly, mur1-1 stomatal aperture was found 

to be significantly greater than both wild type and mur2 (Figure 4.6B, P ≤ 0.001). No significant 

difference was found between wild type and sfr8-C and wild type and mur2 aperture (Figure 

4.6A and B). These results show that under conditions where stomata are required to decrease 

their stomatal aperture, such as in the presence of ABA, sfr8 and mur1-1 plants are not able to 

respond to the same extent as wild type plants, and this phenotype was reversable in the sfr8 

complemented line. The results also show that a loss of xyloglucan fucosylation did not appear 

to impact upon guard cell dynamics as mur2 stomata responded in the same way as wild type, 

as was observed in the water loss assay. In order to assess if the phenotype observed in sfr8 and 

mur1-1 is as a result of a decrease in RG-II dimerisation, measurements would need to be carried 

out on plants supplemented with BA during growth. 

4.2.3 Infrared thermography 

4.2.3.1 Imaging of excised rosettes 

Several studies have utilised infrared thermography for analysing differences in stomatal 

responses (Merlot et al. 2002; Wang et al. 2004; Amsbury et al. 2016). Infrared thermography 

was therefore used in this study to measure the temperature of plants as a way of observing 

differences in evaporative cooling and thus stomatal responses. In order to observe the effect 

of cutting leaves, as was done in the leaf drying assay, imaging was first carried out on cut 

rosettes. Mature wild type and sfr8 plants were cut at the base of the plant just above the soil 

and placed on an even white surface. Images were taken every minute until plants showed clear 

signs of desiccation. In Figure 4.7A, both wild type and sfr8 plants are reasonably cool compared 

to the ambient temperature, showing that the stomata were open, and the plants were carrying 

out evaporative cooling. A difference began to be observed approximately 25 minutes after the  
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rosettes were cut as the wild type plants showed a higher temperature compared to sfr8 (Figure 

4.7B). This difference is even greater 40 minutes after cutting as wild type plants were clearly 

warmer than sfr8 plants (Figure 4.7C), suggesting that in response to being cut and losing the 

transpiration stream, the stomata closed to conserve water and plants were no longer carrying 

out evaporative cooling. This was not the case in the sfr8 plants, which although appeared 

warmer than the initial temperature measured after cutting as shown in Figure 4.7C, were not 

able to respond as quickly as wild type. These results concur with those seen in the leaf drying 

assay. 

Eventually sfr8 rosettes did increase in temperature as shown in Figure 4.7D, indicating that 

evaporative cooling was no longer taking place. However, it is likely that this was because of the 

rosettes drying out due to extensive water loss rather than a response of the stomata. These 

images support the results obtained from measuring water loss and stomatal aperture in 

suggesting that sfr8 stomata are unable to respond in the same way as wild type when exposed 

to a closure signal. They also allow for observation of the whole plant response and infer 

consequences for plant-water relations in sfr8 plants that are unable to properly regulate 

stomata. To gain more insight into these consequences however, it was necessary to see how 

drought affected intact wild type and sfr8 plants under normal conditions of growth.  

4.2.3.2 Imaging whole plants in plugs 

A more authentic response of stomata and overall plant responses to drought was measured via 

thermal imaging using whole plants growing in soil pellets. To accelerate the stomatal response, 

a change in humidity was applied as has been previously used when measuring stomatal 

responses with infrared thermography (Wang et al. 2004). Plants were watered and placed at 

ca. 100% humidity for 16 h the night before imaging began. Approximately 40 minutes before 

the first image was taken, plants were transferred from ca. 100% to ca. 50% humidity and 

arranged as shown in Figure 4.8G (see also Figure 2.4), after which water was withheld from 

droughted plants, and watered plants were given water twice daily. Seventy minutes after 

transfer from high to low humidity, the leaf edges of sfr8 plants showed a slight difference in 

temperature to wild type (Figure 4.8A). This was clearer after a further six hours, when wild type 

plants appeared significantly warmer than sfr8 plants (Figure 4.8B), suggesting that wild type 

plants responded to the decrease in humidity by closing their stomata, whereas the sfr8 plants 

were unable to respond as quickly and so were still carrying out evaporative cooling. sfr8 plants 

did eventually respond; after 24 hours (Figure 4.8C) and more clearly after 72 hours (Figure 
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4.8D), the temperature of wild type and sfr8 plants was more comparable. This was likely 

because sfr8 plants were able to respond to signals, but at a slower rate. Therefore, under 

normal conditions when not exposed to a specific closure signal, sfr8 stomata were able to open 

and close in a similar way to wild-type. However, a slight difference in temperature was always 

visible, suggesting that sfr8 stomata were not able to reach the extent of closure that wild type 

stomata did (Figure 4.8D-F). 

Another observation made during the imaging was that sfr8 plants desiccated earlier than wild 

type plants (Figure 4.7E), with droughted sfr8 plants beginning to wilt 20 hours before wild type 

plants showed signs of desiccation (Figure 4.7F). This suggests that the inability of sfr8 plants to 

fully close their stomata has an impact on desiccation of plants under drought conditions. One 

observation that was not made, however, was any clear difference in leaf temperature between 

watered and droughted wild type plants. It was expected that droughted wild type plants would 

be warmer as the plants respond to a lack of water by closing their stomata. One hypothesis as 

to why this was not seen was because the soil plugs that the plants were grown in were open to 

the environment. Thus, although the watered plants appeared to be well watered, their roots 

may have experienced drought conditions through exposure to dry air. Other factors such as the 

transfer from high to low humidity and imaging in constant light may also have masked 

differences between watered and droughted wild type plants. For these reasons the experiment 

was repeated using conditions that represented a more realistic environmental setting.  

4.2.3.3 Imaging of whole plants in pots 

Whole plant imaging under drought conditions was repeated but without transferring plants 

from high to low humidity and observing light dark cycles of a normal British summer’s day. 

Plants were grown in soil plugs as before, but the day preceding the start of imaging, the outer 

netting of the plugs was removed, and the pellet placed into a pot with extra soil where required. 

Plants to be watered were given water twice daily by standing in water and directly applying to 

the soil surface to assure saturation, whereas water was withheld from plants to be droughted 

after the last watering the evening before imaging began. Twice as many wild type plants were 

used to increase the probability of observing drought responses in wild type. After 19 hours with 

no additional water, there did not appear to be any differences between watered and droughted 

wild type plants (Figure 4.9A). Neither were differences observed between wild type and sfr8 

plants. Temperatures appear to differ between wild type and sfr8 in Figure 4.9B which could be 

indicative of the transition between light and dark states where stomata were closing more 



104 
 

quickly in wild type plants than in sfr8. However, a simpler explanation could be that the leaves 

of the sfr8 plants were much closer to the soil, and thus the temperature of the leaves appeared 

lower due to the cool temperature of the soil. Wild type leaves were held much higher above 

the soil, likely experiencing more turbulent air conditions, and no particular differences in 

temperature were observed in the morning in transition from dark to light (Figure 4.9C).  

The first observable differences between watered and droughted wild type plants were seen 

approximately 138 hours after last watering of the droughted plants (Figure 4.9D). This 

difference can be seen more clearly in Figure 4.9E, 162 hours after the last watering. This image, 

taken in the morning, suggests that as the stomata of watered plants were opening, the stomata 

of the droughted wild type plants were not as they had reached a point where it was necessary 

to conserve water. None of the plants, including sfr8, reached a point where the leaves wilted 

or looked desiccated in any way during the course of the experiment. The most obvious 

conclusion from these results is that the experimental design when using infrared thermography 

is highly important, and perhaps further modification is necessary to observe the hypothesised 

results, i.e. differences between sfr8 and wild type, and differences between droughted and 

non-droughted plants, within one experiment. Although the stomatal response to drought was 

observed in wild type plants, it was not clear in sfr8 plants as no difference in temperature was 

seen between watered and droughted sfr8 during the experiment. One factor that may have 

masked any differences was the closeness of the sfr8 leaves to the soil, amplified by the transfer 

from plugs to pots. The shortened petiole length of sfr8 plants may also have had an impact here 

(see Chapter 3), as wild type leaves had the ability to move upwards and be held further away 

from the soil, whilst sfr8 leaves did not. The effect of this was two-fold – the soil temperature 

impacted upon the temperature measurements of sfr8 leaves, but not wild type, and the wild 

type leaves were more exposed to turbulent airflow, which would result in an increase in 

evaporative cooling where water was plentiful (Costa, Grant & Chaves 2013). Alternatively, it 

could be that under normal conditions, where there are no changes in humidity, sfr8 stomata 

are able to function at close to wild-type levels. Although thermal imaging provides insights into 

stomatal movements, the results obtained in this particular experiment were too variable to 

conclude that alterations to stomatal dynamics was detrimental to plant-water relations under 

drought conditions compared to wild type. In order to gain a more quantitative measure of 

stomatal aperture, it was necessary to employ a technique that would provide more detail of 

the dynamic process of the opening and closing of stomata. 
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4.2.4 Stomatal conductance 

To quantitatively assess stomatal responses in a more representative system than epidermal 

peels, and in a more robust experimental set-up than the thermal imaging, a LICOR portable 

photosynthesis system that could measure stomatal conductance in mature intact plants was 

used. Changes in CO₂ concentration were used as a stimulus; an increase in environmental CO2 

concentration is a signal for plants to close their stomata, whereas a decrease in CO2 is a signal 

to open them (Heath 1948; Xu et al. 2016). One leaf still attached to a mature plant was placed 

into a leaf chamber attached to the LICOR photosynthesis system and allowed to acclimate at 

400 ppm CO2 (approximate to ambient concentrations) for ca. 25 mins. The CO₂ concentration 

was decreased to 50ppm for ca. 60 mins, then increased to 1000ppm for ca. 60 mins. Analysis 

of results showed that sfr8 plants were able to respond to changing CO2 concentrations by 

opening and closing their stomata, but not to the extent of wild type plants (Figure 4.10). 

Conductance measurements at the higher concentration of CO2 were similar for wild type and 

sfr8, suggesting they were both able to close their stomata to the same extent. Results for sfr8-

C show that conductance levels were higher than that for sfr8 but did not reach values obtained 

by wild type plants. Interestingly, the conductance level started lower than wild type, and 

appeared to follow a similar pattern but at values that were shifted downwards by about 0.05 

mol m-2 s-1. The rates of opening and closing were analysed by measuring the slope of the first 

fifteen minutes of the increase and decrease in stomatal conductance after the decrease and 

increase in CO2 concentration respectively and carrying out an ANCOVA (Figure 4.11A and B). 

This analysis showed that the rates of opening and closing for wild type and sfr8-C did not 

significantly differ, whereas sfr8 had a slower rate in both instances, highlighted by the 

significant difference of the slope (Figure 5.11A and B, P ≤ 0.005). These results show that sfr8 

stomata are able to open and close, but at a rate that is significantly slower than that of wild 

type stomata. 
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4.3 Discussion 

4.3.1 Guard cell dynamics are compromised in plants with a mutation in the MUR1 gene 

A preliminary investigation into water loss from sfr8 leaves suggested that the mutant may 

exhibit a desiccation phenotype. Further experiments in the form of a leaf drying assay 

confirmed that both sfr8 and mur1-1 leaves decreased in mass much more quickly than wild 

type, a complemented line, and the mur2 mutant (Figure 4.1). This decrease in mass suggested 

that leaves of mur1 mutants were experiencing an increased water loss. It is well-known that 

the main pathway of water loss in plants is via transpiration through stomata (Maercker 1965), 

but water can also be lost via evaporation from the cuticle (Lendzian & Kerstiens 1991). 

Alterations to these structures could result in increased water loss. It is also possible that 

alterations to how water moves through the plant could affect water loss. The main routes of 

water movement are apoplastic (extracellular) and symplastic (intracellular) routes (House 

1974). Taking into consideration that a mutation in the MUR1 gene was shown to result in a 

decrease in RG-II dimerisation (see Chapter 3), it could be that alterations to cell wall structure 

impact upon water movement via the apoplast. A decrease in RG-II dimerisation results in an 

increased cell wall pore size (Fleischer et al. 1999), which may allow water to move more rapidly 

through the cell wall and thus be lost from the plant more quickly. It is possible that RG-II 

monomer could bind water differentially to the dimer, again allowing more rapid movement of 

water through the cell wall, however there are no specific studies to support this hypothesis.  

Considering stomata are the principal site of water loss from the plant, an investigation into 

whether stomata were modified in sfr8 plants in any way was carried out. One way in which this 

could occur is as a result of an increase in stomatal density which has been shown to affect gas 

exchange (Yoo et al. 2010). However, analysis of this showed no difference in stomatal density 

(Figure 4.4A), or the number of stomata per cell i.e. stomatal index (Figure 4.4B) between wild 

type and sfr8 plants. As no difference was seen in the number of stomata, it was then 

investigated as to whether the stomatal pore size was altered and thus the guard cell dynamics. 

Several different approaches were taken in order to measure this. Firstly, measurements of 

stomatal aperture were carried out on epidermal peels obtained from leaves of mature plants 

using a method previously described by Gonzalez-Guzman et al. (2012). Incubation in an opening 

buffer gave a measurement of the maximum stomatal aperture, as the stomata would have 

been open when the peels were taken, and the opening buffer would maintain them this way. 

These measurements would show if there were any intrinsic differences in stomatal aperture in 
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the absence of a closure stimulus. Results showed that there was no significant difference 

between wild type, sfr8 and mur1-1 mutants, suggesting the stomata were able to reach the 

same maximal opening (Figure 4.5A and B). There was, however, a significant difference in 

aperture found between sfr8 and sfr8-C, and wild type and sfr8-C stomata. This could be a result 

of the decrease in size of the guard cell pair which was observed in sfr8-C plants, although further 

analysis would need to be carried out to verify this. Interestingly, research has shown that plants 

that have higher rates of response to stomatal stimuli often have smaller stomatal size (Drake, 

Froend & Franks 2013). Thus, it could be hypothesised that that stomata of sfr8-C respond faster 

because they are smaller. However, this was not observed in the conductance experiments, as 

sfr8-C stomata responded at the same rate as wild type to changing CO2. Stomatal size has also 

been correlated with stomatal density (Drake et al. 2013), so it may be that stomatal density is 

increased in sfr8-C plants, possibly in relation to fucose content, but this would need to be 

measured.  

Although no intrinsic increase in stomatal pore size was observed in the sfr8 mutant, treatment 

with abscisic acid (ABA), a well-known stomatal closure stimulus (Trejo, Carlos, Davies & Ruiz 

1993), resulted in a significant difference in aperture between sfr8 and wild type, and sfr8 and 

sfr8-C (Figure 4.3). This suggests that in the two-hour incubation period, wild type and sfr8-C 

stomata were able to respond to the closure signal elicited by ABA, whereas the sfr8 stomata 

were not. This result was also observed between mur1-1 and wild type stomata. Infrared 

thermography was also carried out as a less invasive method to imply stomatal aperture from 

temperature measurements of whole plants and allowed further insight into the desiccation 

phenotype observed from the leaf drying assay. Infrared thermography has previously been 

used to identify Arabidopsis mutants compromised in stomatal dynamics by observing changes 

in temperature as a measure of evaporative cooling (Merlot et al. 2002; Wang et al. 2004). 

Results showed a clear difference in temperature and therefore evaporative cooling between 

wild type and sfr8 plants in response to excision of whole rosettes, providing evidence that the 

behaviour seen in the leaf drying assay was as a result of the inability of stomata to close in the 

sfr8 mutant (Figure 4.6). Imaging plants after changes to humidity, a method used by Wang et 

al. (2004), provided further evidence of the reduced ability of sfr8 plants to close their stomata, 

but showed that eventually, sfr8 and wild type plants had very similar temperatures, suggesting 

that the stomata are able to close (Figure 4.7). Plants in this experiment were also subjected to 

drought and results highlighted that the inability of sfr8 to control stomatal aperture resulted in 

earlier desiccation of sfr8 plants.  
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Thermal imaging clearly showed differences between sfr8 and wild type plants in terms of 

stomatal dynamics, and provided evidence that stomata were not ‘stuck’ open. Jones et al 

(1999) demonstrated that thermal imaging could even be used to estimate stomatal 

conductance, as leaf temperature varies with evaporation and is thus a function of stomatal 

conductance (Tanner 1963). However, It was clear especially from the final thermography 

experiment, that there are potential areas of error with the technique, and it has been suggested 

that estimations of conductance from thermal imaging are sensitive to errors in reference 

surface temperatures (Jones 1999). Thus, direct measurements of stomatal conductance using 

a LICOR photosynthesis system were also carried out to analyse in more detail the patterns of 

opening and closing in mutant and wild type plants.  

The stimulus chosen was CO₂ as this was easy to modify and observe changes in conductance in 

response to this, as has been shown in previous studies (Farquhar, Dubbe & Raschke 1978; 

Engineer et al. 2017). The results showed a clear difference in the response of wild type, sfr8 

and sfr8-C stomata to increases and decreases in CO₂ concentration (Figure 4.9). Most 

importantly, it is clear that sfr8 stomata are able to open and close their stomata and shows that 

they are not impeded from closing as the aperture measurements after incubation with ABA 

may have suggested. This also suggests that the mutants are not unresponsive to ABA like other 

mutants with altered stomatal dynamics have been shown to be (Merlot et al. 2002), as ABA 

stomatal signalling pathways have been shown to be required for CO2 induced stomatal 

responses (Chater et al. 2015). Interestingly, wild type stomata appear to be able to reach a 

much higher conductance than sfr8, which plateaus at about 0.25 mol m-2 s-1 whilst both reached 

a similar lower level of conductance in response to increased CO2, suggesting that the range of 

movement of sfr8 stomata is more restricted. These differences in maximal aperture observed 

are contrary to those seen when measuring aperture in epidermal peels after incubation in 

opening buffer, as in these experiments, apertures were shown to be the same. This could be a 

consequence of obtaining the epidermal peel, as environmental factors such as the temperature 

and humidity the peel was taken in can affect results (Zeiger 1983). Further artefacts could occur 

with the removal of the mesophyll layer or rupture of epidermal cells, as guard cell dynamics 

are also influenced by neighbouring cells (Starlfelt 1966). Although taking conductance 

measurements can impact upon leaf behaviour as stated earlier, it is more likely that the 

conductance measurements are closer to the ‘true’ values of stomata openness, since they are 

taken from guard cells in an in vivo environment. 



114 
 

Another observation apparent from these results is that stomata from sfr8-C plants were not 

able to reach the same level of conductance as wild type but were more open than sfr8 and 

showed a similar range of movement to wild type that appeared to be shifted down. This could 

be another consequence of the difference in stomatal size observed between wild type, sfr8 and 

sfr8-C (data not shown), which could mean that the conductance levels of wild type are not 

achievable by sfr8-C because the pore simply cannot open wide enough (Drake et al. 2013). As 

well as demonstrating that sfr8 stomata are not stuck open, the conductance results also 

indicate that there is a difference in the rates of opening and closing between wild type and sfr8. 

Analysis of the first fifteen minutes of conductance after changes in CO₂ showed a significant 

difference in the slope and therefore the rate of increase and decrease in stomatal conductance 

(Figure 4.10). This suggests that sfr8 guard cells are much slower to adapt from turgid to flaccid 

and vice versa, a process that is reversed in the complemented line, which shows rates similar 

to that of wild type. 

4.3.2 Why do sfr8 stomata have a decreased rate of movement? 

There are several factors affecting the rapidity of guard cell movements that have previously 

been categorised into anatomical (e.g. size and density), biochemical (e.g. activity of ion 

channels) or structural (e.g. cell wall elasticity) (Lawson & Vialet-Chabrand 2018). In terms of 

anatomical, factors, as previously stated smaller stomata have been suggested to have increased 

rate of movement (Drake et al. 2013), which may be related to a more rapid change in solutes 

due to an increased surface area to volume ratio (Hetherington & Woodward 2003; Raven 2014). 

Although the observation was made that sfr8-C stomata were slightly smaller than wild type and 

sfr8, there were no obvious differences in size between wild type and sfr8, although this would 

of course need to be explicitly verified. Measurements of stomatal density and index also 

showed no significant difference between wild type and sfr8, suggesting anatomical factors 

were not influencing differences in stomatal conductance.  

Stomatal opening relies on changes in guard cell turgor pressure stimulated by the movement 

of ions across the membrane to induce osmotic adjustments (Blatt 2000). Several studies have 

shown that the rapidity of stomatal movements is linked to the capacity for solute transport 

across the plasma membrane, and how quickly components such as ion channels are able to 

respond to environmental stimuli (Lawson & Blatt 2014). Indeed, in grass species, the rapid 

transport of ions between guard cells and subsidiary cells allows fast and efficient stomatal 

movements (Cai et al. 2017; Jezek & Blatt 2017). However, although sugars such as sucrose are 
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suggested to play a role in stomatal movements (Daloso & Fernie 2016), there is no evidence 

that fucose is involved, which if it were, could result in alterations to stomatal dynamics as seen 

in sfr8 and mur1-1 mutants. It is also generally accepted that most L-fucose in the plant is used 

up in fucosylation (see Chapter 3). It cannot be ruled out that fucosylation of proteins involved 

in ion transport or osmotic regulation of stomata may be affected in the sfr8 mutant but again, 

there is little evidence to suggest fucosylation is important for stomatal movements. Considering 

the primary role of fucose within the plant as a component of cell wall polysaccharides (see 

Chapter 3), it is more likely that the alterations to stomatal dynamics observed in sfr8 mutants 

is as a consequence of structural alterations to the cell wall. One way to verify that biochemical 

factors i.e. ion transport, are not altered in the mutant would be to observe volume changes in 

guard cell protoplasts that are unhindered by any influences of the cell wall (Zhu et al. 2015). 

4.3.3 How does the cell wall influence guard cell dynamics? 

Recently, more and more research is emerging that highlights the necessity of guard cell wall 

pectins for normal stomatal function. In work by Atkinson et al. (2002), overexpression of a fruit 

polygalacturonase enzyme (catalyses the breakdown of galacturonic acid chains) in leaves of 

apple trees resulted in aberrant stomatal responses to dark and ABA stimuli, although this also 

resulted in perturbations to cell adhesions around the guard cells which may have influenced 

the findings. In Arabidopsis, the loss of a polygalacturonase enzyme prevented normal stomatal 

closure, and conversely overexpression of that enzyme accelerated stomatal opening (Rui et al. 

2017). Another study has shown that arabinan is essential for guard cell function as digesting 

cell walls with arabinase resulted in a reduced ability of Commelina communis stomata to open 

in response to fusicoccin treatment. Interestingly, treating cell walls with pectin methyl-esterase 

(PME) and endo-polygalacturonase (EPG) resulted in stomata that were more open than wild 

type (Jones et al. 2003). The same observations were made in stomata of other plant species, 

including Zea mays, a monocot which is known to have a cell wall that generally contains less 

pectin than dicots (Jones et al. 2005). In Arabidopsis, cellulose also appears to play a role in 

stomatal movements, as a mutant of the cellulose synthase locus AtCesA7 had smaller stomatal 

apertures than wild type both with and without ABA induction (Liang et al. 2010). Work by 

Amsbury et al (2016) has shown that Arabidopsis plants with a mutation in a pectin methyl-

esterase, pme6, which is highly expressed in the guard cells, have stomata with a smaller range 

of movement in response to changing CO₂ conditions, display a more restricted response to ABA 

treatment and an inability to prevent evaporative cooling by closing stomata under drought 
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conditions, as shown via thermal imaging. The authors show that a reduction in PME6 expression 

results in guard cell walls with increased homogalacturonan (HG) methyl-esterification, whilst 

under normal conditions guard cell HG chains are relatively un-esterified (Amsbury et al. 2016). 

Methylation status is generally believed to influence HG cross-linking; with a decrease in methyl-

esterification, HG chains are able to cross-link via Ca2+ cations, bringing the chains closer 

together (Jarvis 1984; Willats et al. 2001).  

These findings could be summarised in a recent model developed by Woolfenden et al (2017) 

that attempts to elucidate the mechanism via which the guard cell wall influences turgor 

changes and thus stomatal opening and closing. The findings of the model suggest that guard 

cell dynamics rely on certain properties, namely anisotropy of the cell wall in the form of 

reinforced microfibril hoops, and strain-stiffening of the cell wall matrix. The model predicts that 

a stoma will be less open when the cell wall matrix is stiffer, and conversely will open more when 

the matrix is less stiff. This is because the cell-wall matrix must stiffen significantly as strain 

increases to limit the aperture of the pore with increasing pressure. Thus if the cell wall is less 

stiff, the size of the obtainable aperture will increase (Woolfenden et al. 2017). The authors go 

on to suggest that pectins that contribute to the stiffness of the matrix can be identified by 

degrading pectins and comparing the effects on stomatal dynamics. This was demonstrated by 

showing that stomatal apertures in two mutants that have an increased pectin content, namely 

arabinan, were larger than those of wild type stomata, suggesting that this is because the cell 

walls had reduced stiffness (Woolfenden et al. 2017). This hypothesis can be applied to research 

described earlier; for example, in Jones et al. (2003), a decrease in arabinan resulted in a smaller 

stomatal aperture, suggesting that the guard cells have become stiffer. The authors suggest that 

arabinan may maintain pectin fluidity by hindering the direct interaction of HG chains, whereas 

treatment with arabinase allows HG chains to come together and associate via Ca2+ cross-links, 

making cells stiffer. Conversely, treating cell walls with PME and EPG which results in the 

breakdown of pectins, causes the cell walls to become less stiff and the stomata to be more 

open.  

This model does not seem to agree with work by Amsbury et al. (2016) in which a decrease in 

pme6 expression results in an increase in HG methyl-esterification and a subsequent 

hypothesised decrease in Ca2+ cross-linking. This should technically result in less stiff cells, as it 

is the opposite to the observation of that in Jones et al. (2003). However, there are other 

consequences of a decrease in HG methylation, as de-methyl-esterification can also result in a 
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softening of the cell wall due to susceptibility to degradation by cell wall enzymes (Hocq, Pelloux 

& Lefebvre 2017), and de-methyl-esterification was also shown to result in an increase in 

elasticity during shoot meristem initiation (Peaucelle et al. 2011). Thus, it is unclear what the 

effects of the pme6 mutation are without direct measurements of cell wall stiffness (Amsbury 

et al. 2016). 

If the findings of Woolfenden et al’s. (2017) model are applied to results observed in sfr8, an 

observation that stomatal pores are smaller than wild type when given an opening signal as seen 

in the conductance measurements, would suggest that guard cell walls are stiffer in the mutant. 

This is logical as the stomata have a smaller dynamic range, as well as a slower rate of 

movement. Although the model does not go into detail about how rate of movement may be 

affected by stiffness, it is reasonable to expect that an increased stiffness would result in slower 

movements (Lawson & Vialet-Chabrand 2018). This could result from a similar pattern seen in 

Jones et al. (2003) where, like with the removal of arabinans, which are hypothesised to keep 

HG chains apart, the eradication of the boric acid cross-link could allow HG chains to come 

together and associate via Ca2+ cross-links. However, there is no evidence to support this, and 

this hypothesis also does not fit with measurements of tensile properties made by Ryden et al. 

(2003). In this study, mur1-1 mutants were shown to have a decreased tensile strength and 

decreased tensile modulus, suggesting that the cell walls were less stiff than wild type. This 

would perhaps agree with a scenario in which the loss of RG-II dimerisation resulted in the HG 

chains being held further apart from each other, which agrees with findings that a decrease in 

cell-wall RG-II dimerisation results in thickened cell walls (Ishii, Matsunaga & Hayashi 2001b).  

Without understanding the structural consequence of the loss of RG-II dimerisation on HG 

chains, it is difficult to hypothesise what effect this has on the mechanics. It may be that a 

decrease in RG-II dimerisation does result in less stiff guard cell walls, and that stiffness is an 

important factor necessary for guard cell dynamics. This hypothesis is supported by the finding 

that pectin-regulated polar stiffening of guard cells is important for guard cell opening, as this 

helps to hold the stomatal poles in place and fix stomatal complex length during opening. Guard 

cell poles have also been shown to have specific pectin make-up suggesting they are important 

for stomatal dynamics (Carter et al. 2017; Woolfenden et al. 2018). In sfr8 guard cells, a 

decreased stiffness may prevent the poles from being fixed, thus when turgor increases, the 

guard cells elongate without the concomitant opening of the stomata, exacerbated by a 

decreased stiffness in the surrounding cells. This would agree with the finding that sfr8 stomata 
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do not reach the same level of openness as wild type in the conductance experiments (Figure 

4.10). It is possible that both an increase and a decrease in guard cell wall stiffness may result in 

alterations to guard cell dynamics. 

4.3.4 Consequences for plant growth 

Although the reason for the alterations to stomatal dynamics in sfr8 and mur1-1 mutants require 

verification, there is evidence to suggest that cell wall alterations in the mutant result in aberrant 

stomatal movements. As discussed in section 4.1, stomata are essential for the life of the plant 

allowing for the movement of gases for photosynthesis and respiration and the evaporation of 

water to create the transpiration stream, essential for transporting sugars and metabolites, as 

well as water, throughout the plant (Zeiger 1983). Stomatal regulation is necessary to ensure 

metabolic processes can take place within the plant, whilst controlling overall plant water status. 

Indeed early work suggested a close relationship between photosynthesis and stomatal 

conductance (Wong, Cowan & Farquhar 1979). More recently, it has been shown that the speed 

of stomatal opening can result in nonsynchronous behaviour between photosynthesis and 

conductance, with knock-on effects for water-use-efficiency (Lawson & Blatt 2014; Vialet-

Chabrand et al. 2017; Lawson & Vialet-Chabrand 2018). Research has shown that a slow increase 

in conductance can limit photosynthesis, whilst a slow decrease can result in unnecessary water 

loss for a limited carbon gain due to a lag between the drop in photosynthesis and the stomatal 

response to closure stimulus, thus reducing water-use-efficiency  (Hetherington & Woodward 

2003; Franks & Farquhar 2007; Mcausland et al. 2016; Lawson & Vialet-Chabrand 2018). This is 

observable in sfr8 plants during droughting as plants were quicker to desiccate than wild type. 

It is also possible that growth and development are impacted by a decrease in stomatal 

responsiveness. Interestingly, growing pme6 plants at high CO2 was able to overcome the dwarf 

phenotype observed in these plants (Amsbury et al. 2016), suggesting slower stomatal 

movements limit carbon assimilation. It would be interesting to grow sfr8 mutant plants under 

increased CO2 conditions to see if this has an impact upon plant growth. 

4.4 Conclusions 

sfr8 and mur1-1 mutants display a clear alteration to guard cell dynamics in response to several 

stimuli including ABA and CO2 meaning that the hypothesis stated in section 4.1.2 can be 

accepted. Although verification is required that these changes are as a result of a decrease in 

RG-II dimerisation, there is evidence to suggest that cell-wall structure, particularly that of 
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pectins, is integral to guard cell mechanics. Additional analysis is required to assess if the 

decrease in stomatal responsiveness is due to an increase or a decrease in cell-wall stiffness, 

possible through the use of atomic force microscopy as has been previously employed (Carter 

et al. 2017). Still, it is likely that the decreased responsiveness observed has consequences for 

water use efficiency and growth of sfr8 plants, highlighting further the importance of cell-wall 

structure.  
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CHAPTER 5  

HOW DOES CELL-WALL CROSS-LINKING INFLUENCE 
PLANT FREEZING TOLERANCE? 

5.1 Introduction 

The results presented in Chapter 3 identified a freezing-sensitive phenotype in plants with a 

mutation in the MUR1 gene (Reiter et al. 1993). These plants exhibited a decrease in cell-wall 

fucose, resulting in a decrease in the dimerisation of pectic polysaccharide rhamnogalacturonan-

II (RG-II) domains within the cell wall (O’Neill et al. 2001). Freezing sensitivity was found to be 

reversable with the addition of boric acid (BA) in the mur1-1 mutant, but PAGE analysis did not 

reveal a reversal in the RG-II dimerisation phenotype. It is known however that RG-II is the 

primary site of boron binding in the cell wall (Matoh et al. 1996),  suggesting that  PAGE analysis 

is not a reliable technique to measure RG-II dimerisation in these mutants. Therefore, it is 

investigated here whether RG-II dimerisation is important for freezing tolerance. As the most 

complex glycan present in the cell wall, RG-II has been shown to impact upon several different 

aspects of cell wall structure. However, it is not clear what the consequences of altering that 

structure may have for freezing tolerance, so much so that damage from freezing increases 

when RG-II dimerisation is lost. 

5.1.1 Roles of rhamnogalacturonan-II in the cell wall 

Although RG-II is only a relatively small component of the plant cell wall (Zablackis et al. 1995), 

it has been shown to have several possible roles. Several studies have researched into the 

impacts of the loss of RG-II dimerisation in order to study these roles. The cell wall was shown 

to be swollen in boron-deficient Cucurbita pepo plants, concomitant with a decrease in RG-II 

dimerisation in the wall. Supplementing plants with BA resulted in rapid formation of dimerised 

RG-II and a decrease in the thickness of the cell wall (Ishii et al. 2001a). The authors suggest that 

this swelling is thus due to a lack of RG-II borate ester cross-linking. RG-II dimerisation has been 

shown to regulate pore size, i.e. the mean size limit (Carpita et al. 1979), of the cell wall. 

Chenopodium album cells grown in boron-deficient medium had a pore size of 5.1-6.2 nm, 

whereas cells grown with boron had a pore size of 3.3-3.7 nm (Fleischer et al. 1998). This 

observation was correlated with the formation of dimerised RG-II, which accounted for 85% of 
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RG-II in boron grown cells but was absent in boron deficient cells. Other factors that influence 

the ratio of mRG-II to dRG-II such as pH and divalent cation activity also influenced cell wall pore 

size (Fleischer et al. 1999). There is evidence that RG-II may form borate-ester cross-links with 

plasma membrane localized proteins, thus facilitating cell wall-membrane adhesion (Voxeur & 

Fry 2014). 

These structural aspects that relate to the dimerisation status of RG-II may influence the 

mechanical properties of the cell wall. Indeed, inflorescence stems of mur1-1 plants require less 

force and energy input to break (Reiter et al. 1993), whilst hypocotyls of mur1-1 have decreased 

tensile strength and tensile modulus, which is reversible with boric acid treatment (Ryden et al. 

2003). There is evidence that these mechanical aspects are crucial for freezing tolerance in order 

for the plant to survive freezing events (Rajashekar & Burke 1996). 

5.1.2 The cell wall is essential for mediating freezing tolerance 

As discussed in Chapter 1, freezing is a multi-factorial stress which can cause damage via several 

different mechanisms including ice nucleation, ice growth and cellular dehydration (Levitt 1980). 

The plant thus utilises structural aspects to prevent damage from freezing events. Studies have 

shown that water in small pores freezes at a lower temperature than bulk water (Ashworth & 

Abeles 1984). The authors, among other researchers, also suggest that smaller pores may 

impede the spread of ice through the cell wall (Ashworth & Abeles 1984; Wisniewski & Davis 

1995), which may limit the likelihood that ice will damage cell membranes as well as slowing the 

rate of cellular dehydration by water moving out of the cell. Interestingly, cold acclimation has 

been shown to induce a decrease in cell wall pore size in cells of Vitis spp and Malus domestica, 

resulting in a decrease in the presence of intracellular ice (Rajashekar & Lafta 1996). For ice to 

spread in the plant it must first nucleate. Studies have shown that plants can prevent ice 

nucleation through the expression of ice-binding proteins (Bredow & Walker 2017), and it has 

even been suggested that plant polysaccharides may influence ice nucleation and growth (Olien 

& Smith 1981). 

Cell wall rigidity has also been shown to increase during cold acclimation (Rajashekar & Lafta 

1996; Solecka et al. 2008; Scholz et al. 2012; Arias et al. 2015), and several studies have 

suggested that plants with more rigid cell walls are able to resist collapse during freezing events 

and thus withstand freezing to lower temperatures (Rajashekar & Burke 1996; Scholz et al. 2012; 

Zhang et al. 2016a). There is increasing evidence that the presence of pectins within the cell wall 
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has a major role in determining its stiffness (Jones et al. 2003; Amsbury et al. 2016) and the 

finding that modifications and increases in pectin in the cell wall occurs during cold acclimation 

(Weiser et al. 1990; Kubacka-Zebalska & Kacperska 1999; Solecka et al. 2008; Domon et al. 2013; 

Baldwin et al. 2014; Bilska-Kos et al. 2017; Chen et al. 2018) could provide further evidence that 

rigidity afforded by pectic polysaccharides is an important characteristic of the cell wall to 

provide tolerance to freezing. 

This chapter begins the investigation into why RG-II dimerization-deficient mutants are freezing-

sensitive. Considering the structural aspects of the cell wall such as pore size and rigidity that 

RG-II has been shown to mediate, and the correlation of these factors with freezing tolerance, 

there is evidence that RG-II is necessary for freezing tolerance and it is hypothesised that 

structural aspects imposed by RG-II cross-linking influence the ability for plants to withstand 

freezing temperatures. It is possible that a combination of particular phenotypes bought about 

by the loss of RG-II dimerisation may influence the sensitivity to freezing events observed. It is 

also possible that RG-II could be specifically targeted for modification or upregulation during 

cold acclimation in order to increase freezing tolerance. Although studies have shown that cell-

wall pectins are modified during the cold e.g. (Baldwin et al. 2014), there is as yet no clear 

evidence that RG-II in particular is targeted as a way to increase freezing tolerance.  

5.2 Results 

5.2.1 Electrolyte leakage of pme6 mutants 

5.2.1.1 Freezing sensitivity of pme6 in the Ler-0 background 

As well as resulting in a freezing-sensitive phenotype, the sfr8 mutation had an effect on 

desiccation tolerance due to the inability to control guard-cell dynamics under different 

conditions such as drought and ABA treatment (see Chapter 4). The consequence of this was the 

inability of stomata to close to the same degree as wild type plants when given a closure signal. 

It is possible that another consequence of this alteration to guard cell dynamics could be the 

increase in freezing sensitivity observed in sfr8 and mur1-1. Stomata have been identified as a 

point of entry for ice to grow into the leaf and thus cause damage (Pearce & Ashworth 1992; 

Pearce & Fuller 2001). It would thus be favourable for the plants to be able to close their stomata 

quickly under these situations to prevent such events. However, in plants that are not able to 

regulate their stomata as quickly, an increase in the occurrence of ice growth through stomata 

could result in more damage within the leaf, rendering them freezing sensitive.  
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To test this hypothesis, the freezing sensitivity of a mutant that displayed a decreased response 

to closure signals similar to sfr8 plants was tested via an electrolyte leakage assay. A mutation 

in the PECTIN METHYLESTERASE6 (PME6) gene resulted in increased homogalacturonan 

methylation, which had knock-on effects for guard cell dynamics that the authors suggest was 

due to an increase in cell-wall stiffness (Amsbury et al. 2016). The results showed that electrolyte 

leakage did not differ significantly between wild type and pme6 plants (Figure 5.1), which may 

suggest that alterations to guard cell dynamics in pme6 did not increase freezing sensitivity. 

However, before drawing conclusions from this, a mutational analysis of the supposed pme6 

mutant was carried out. 

5.2.1.2 Mutant analysis  

Although the freezing tolerance of pme6 was shown to be the same as wild type, there were 

some attributes that suggested the mutant was not compromised in guard cell dynamics as 

previously reported (Amsbury et al. 2016). Thermal imaging was carried out on rosettes that 

were cut at the base of the plant and left to dry. As described in Chapter 4, and shown in Figure 

5.1A and B, wild type and sfr8 plants had similar temperatures 5 min after excision. However, 

after 45 min, wild type plants were warmer than sfr8 plants due to a decrease in evaporative 

cooling as the stomata closed to conserve water. This response was not seen in sfr8 which 

remained cool, suggesting evaporative cooling was still taking place (see Chapter 4). As pme6 

was postulated to display a guard cell phenotype similar to that of sfr8, the same pattern should 

have been observed between wild type and pme6 plants. However, although a small difference 

in temperature was observed between wild type and pme6 rosettes in the thermal imaging 

analysis, the difference was incomparable to that seen between wild type and sfr8 and was 

mainly concentrated around the apical meristem (Figure 5.2A and B). This is also inconsistent 

with thermal imaging carried out by Amsbury et al. (2016) which clearly showed differences 

between wild type and pme6 plants. 

To verify this finding, a leaf drying assay was carried out on wild type and pme6 plants, with 

results demonstrating no visible difference in water loss between leaves of wild type and those 

of pme6 (Figure 5.2C). Taking these results into account, it seemed plausible that these plants 

did not contain the insertion in the PME6 gene that would result in a mutational response. To 

investigate this hypothesis, DNA analysis was carried out on wild type and mutant plants to 

assess the presence of the insertion, results from which suggested that it was indeed not present 

(see Appendix D). Expression levels of the PME6 gene were also analysed in wild type and in  
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the mutant to assess if the mutants did display a decrease in transcript expression which would 

be expected if the insertion was present. qPCR analysis showed similar levels of PME6 transcript 

expression in both wild type and pme6 plants (Figure 5.2D), suggesting that PME6 was 

unaffected in these plants, which would explain why no guard-cell phenotypes were observed 

as described in Amsbury et al. (2016). 

5.2.1.3 Freezing sensitivity of pme6 in the Col-0 background 

Because the Landsberg pme6 insertion line displayed no decrease in transcript levels and no 

clear guard cell phenotype, a set of putative pme6 insertion lines was obtained in the Colombia-

0 background. DNA analysis carried out identified a potential homozygous insertion line that 

was taken forward for analysis (see Appendix D). Despite DNA analysis showing presence of the 

putative insertion, qPCR showed a marked increase in pme6 expression in the Col-0 pme6 

insertion line (Figure 5.3A). A repeat analysis is required to verify this is the case, but as the 

insertion was found in the promotor, it may be the case that regulation of the gene was 

diminished, resulting in a massive increase in gene expression. Considering this finding, analysis 

was carried out to determine if overexpression of the PME6 resulted in the opposite effects to 

guard cell dynamics to that described in Amsbury et al. (2016) for a mutant. A leaf drying assay 

showed no difference in water loss between wild type and plants with the insertion line (Figure 

5.3B). Similarly, an electrolyte leakage assay showed no particular differences between wild type 

and insertion line; there appeared to be a slight decrease in leakage in the insertion line at the 

middle temperature, but repeat experiments are required to show if this is significant (Figure 

5.3C). These results suggest that overexpression of the PME6 gene does not affect guard cell 

dynamics or freezing tolerance. 
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5.2.2 Electrolyte leakage of IPCS RNAi lines 

There is evidence that as well as forming borate bridges between two monomeric domains, RG-

II can also form boron-mediated cross-links with plasma membrane embedded proteins known 

as glycosylinositol phosphorylceramides (GIPCs) (Voxeur & Fry 2014). GIPCs are the major 

sphingolipids in the plant membrane and are an integral component of lipid rafts (Gronnier et 

al. 2016). It is possible that if RG-II domains bind GIPCs via a borate-ester linkage the same way 

that they bind other RG-II domains (i.e. via the apiosyl residue of side chain A), that these cross-

links could also be disrupted in sfr8 and mur1-1 mutants. This could then have some influence 

on the decrease in freezing tolerance observed in sfr8, as the plasma membrane and wall-

membrane interactions are suggested to be an important aspect in mediating freezing tolerance 

(Murai & Yoshida 1998b; Yamada et al. 2002).  

Unfortunately, the precise GIPC protein/proteins that RG-II is hypothesised to form cross-links 

with are unknown, therefore it was not possible to find mutants in which the GIPC-RG-II cross-

linking was likely to be disrupted. However, the availability of RNA interference (RNAi) lines of 

inositol phosphoryl ceramide synthase (IPCS), the first enzyme in the GIPC synthesis pathway, 

were an interesting starting point. In these lines,  the expression of one or more of the three 

isoforms of IPCS was significantly decreased (Pinneh 2017). Phenotypic analyses of these lines 

also found that leaves were smaller and inflorescence stems were weaker (Pinneh 2017), 

however, this was only observed in the At2 RNAi 1 line (Figure 5.4Aiii), whereas the other two 

lines had similar or perhaps larger rosettes that wild type plants (Figure 5.3A). 

An electrolyte leakage assay was carried out on three different RNAi lines targeting ICPSs. Of the 

three lines chosen which targeted each of the three IPCS isoforms differentially, only one 

displayed a significantly different leakage compared to wild type plants. At1 RNAi 7 plants had 

significantly reduced electrolyte leakage compared to wild type, whereas the other two lines did 

not (one-way ANOVA/LSM, *, P ≤ 0.05, Figure 5.4B). This suggests that At1 RNAi 7 was more 

freezing tolerant. If GIPC-RG-II cross-links are indeed inhibited in these RNAi lines, this could 

suggest that wall-membrane attachments are detrimental to freezing tolerance, and that 

removing these attachments increases freezing tolerance.  
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5.2.3 Droplet freezing assay 

5.2.3.1 Freezing of RG-II monomer and dimer fractions 

Studies have shown that dimerisation of RG-II decreases the limiting pore size of plant cell walls 

(Fleischer et al. 1999), and that smaller pore size decreases the temperature at which ice can 

nucleate (Ashworth & Abeles 1984). It is possible that RG-II could play some role in the 

nucleation of ice within these pores, whether to prevent it or induce it, and there are suggestions 

that polysaccharides may influence ice nucleation and growth (Olien & Smith 1981). In order to 

test this, a droplet freezing assay was carried out using the method described by Whale et al. 

(2015) to assess the ice nucleation capabilities of monomeric and dimeric RG-II by observing at 

what temperature ice nucleation occurred.  

Microlitre droplets of 0.1 µg/µL of RG-II monomer and dimer solutions were pipetted onto a 

glass slide and placed into a cryocooler which was cooled at a controlled rate. The temperature 

at which each droplet froze was recorded and results expressed as the fraction of droplets frozen 

at a specific temperature. The results showed that RG-II monomer and dimer did not differ from 

each other in relation to freezing temperature. Moreover, the temperature did not differ from 

that of pure water, suggesting there was nothing additional in the solution capable of nucleating 

ice (Figure 5.5). The experiment was repeated using a higher concentration of 1 µg/µl monomer 

and dimer solution, however, the results were the same as at the lower concentration (data not 

shown). These results would suggest that RG-II itself does not act as a nucleator, either in 

monomer or dimer form.  

It was possible that the solution still did not contain a biologically relevant amount of RG-II and 

did not necessarily rule out the possibility that RG-II may act as a nucleator in vivo. More likely, 

however, it is the structures that are created from RG-II dimerisation along with interactions 

with other polysaccharides that could influence nucleation. For this reason, the droplet assay 

was carried out again on ground plant tissue to measure freezing in an in vivo environment, 

using a modification of the method that had not previously been explored. 

5.2.3.2 Freezing of whole leaf extracts 

To assess ice nucleation in whole plant extracts that represented a more realistic RG-II structure, 

a known weight of plant leaves was ground in a pestle and mortar with 10 mL of deionised water 

to form a semi-homogenous mixture of plant material. Microlitre droplets were cooled on a 

cryocooler as before and the temperature at which each droplet froze recorded. The initial  
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experiment carried out showed a difference in the freezing point of the samples; the acclimated 

wild type sample froze at a higher temperature than the non-acclimated wild type, and the sfr8 

sample froze at a much lower temperature than both of these. There was also some difference 

observed in the way that each froze; wild type and acclimated wild type followed a very steady 

rate of freezing, whereas the freezing of sfr8 droplets was much more sporadic and 

encompassed a greater range of temperatures (Figure 5.6A). All samples did freeze at a higher 

temperature than that of pure water (nucleation of water in the droplet freezing assay is shown 

in Figure 5.4) suggesting that something in these preparations was initiating ice nucleation. 

A repeat experiment carried out showed the opposite pattern to that observed in Figure 5.6A. 

The sfr8 solution froze at the highest temperature, followed by wild type, and then cold 

acclimated wild type. There was also a greater difference in the temperature at which the 

droplets of wild type and cold acclimated wild type samples froze. All samples began to freeze 

at higher temperatures than in the first experiment (Figure 5.6B). 

5.2.3.3 Troubleshooting 

In order to assess what may have been the cause for the differences in patterns observed 

between the repeat droplet freezing experiments, some test experiments were carried out. 

Firstly, repeat freezing experiments were carried out on wild type and sfr8 preparations from 

the second set of experiments to make sure the results were repeatable between different 

cooling cycles. Results showed that although the samples froze at approximately the same 

temperature, there were variations in droplet freezing, which may have resulted from the 

differences in amount of ground tissue present in each droplet (Figure 5.7A). This hypothesis is 

supported by the freezing of the supernatant of wild type and sfr8 samples, which had solid 

material removed via centrifuging, freezing at comparable temperatures (Figure 5.7B). The 

freezing temperatures of wild type and sfr8 supernatant were more comparable than the 

freezing temperatures of a repeat of the same sample, highlighting the difficulty in obtaining 

true results of freezing from ground tissue samples in this method. The results of the freezing of 

supernatant also suggest that there was nothing in the water-soluble component of plant 

material of wild type and sfr8 that differs in nucleation ability. 

It was concluded that unless it were possible to achieve an extract of ground plant tissue that 

contained exactly the same amount and size of homogenous material, the droplet freezing assay 

is not the most ideal method to measure differences in nucleation due to changes in cell wall  
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structure. The next step was to therefore look at a more relevant material of intact cells in 

epidermal peels. 

5.2.4 Ice nucleation in epidermal peels 

In order to observe and analyse ice nucleation in intact cells, a new method was designed for 

the freezing of epidermal peels. The epidermis was peeled from leaves and placed onto a glass 

slide in a similar method to that carried out in Chapter 4. A compartment was constructed to 

maintain atmosphere and moisture content to prevent the peel drying out (see Figure 2.2A). 

This was then placed onto a cryoplate attached to a microscope with a high-speed camera as 

shown in Figure 2.2B. The temperature of the plate and thus the sample was decreased at a 

controlled rate, and the point of freezing captured with a high-speed the camera. Freezing was 

indicated by a colour change in the cells which become darker (Figure 5.8A and B), as observed 

in the droplet freezing assay. This phenomenon has previously been described in the freezing of 

plant cells (Levitt 1980). 

The temperature at which ice nucleated and spread was recorded for each sample, and results 

showed that there was a much larger range for wild type and cold acclimated wild type samples 

than sfr8. The mean nucleation temperature for sfr8 peels was lower than that of both wild type 

and wild type cold acclimated peels, of which the cold-acclimated was lower than the non-

acclimated (Figure 5.8C). This finding does not fit with the hypothesis that a smaller pore size 

reduces freezing temperature, as this would have seen wild type plants freeze at lower 

temperatures than sfr8, if indeed a loss of RG-II dimerisation does increase pore size in the sfr8 

mutant as the literature would suggest.  

The process of ice nucleation in each of the samples was analysed, considering how and where 

the ice was seen to nucleate (if this could be deduced), how fast it spread throughout the cells, 

and whether there were any other outstanding differences between genotypes/treatments. In 

general, freezing was observed to take place in a number of stages. In the first stage, a darkening 

occurred that seemed to follow the outline of the cells, which could suggest ice nucleation and 

growth in the apoplast and intercellular spaces. This was followed by a darkening of the whole 

cells which could suggest either intracellular freezing (a possibility if the cells were damaged 

during peeling) or plasmolysis/cytorrhysis of the cell. There were some differences observed 

between samples, for examples, during the first freezing stage in wild type, ice appeared to form 

in larger globules, whereas in sfr8 and acclimated wild type, the first stage happened very  
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quickly, and large globules were not observed. In these samples, attributes of the second stage 

of freezing also seemed to happen much quicker, overlapping with the first stage. In all samples 

ice appeared to grow from several different areas. These results could suggest that wild type 

plants were able to maintain ice growth in the apoplast for longer, however the similarities 

between sfr8 and acclimated wild type samples do not hint at any differences functionally 

significant for freezing tolerance (see attached CD-ROM). 

Interestingly, at lower temperatures of approximately -25°C, ice was observed to grow and 

crystallise out of the stomata (Figure 5.8B). This may suggest that the substomatal cavity is a 

space in which ice is able to grow, since it is likely that ice is largely excluded from the cell wall 

due to small pore size. This could explain the finding of ice in the substomatal cavity shown by 

Pearce and Ashworth (1992), perhaps providing evidence against ice growing through stomata 

triggering nucleation within the leaf. 

5.2.5 Radiolabelling of wild type leaves to measure synthesis of RG-II during cold 

acclimation 

The freezing-sensitive phenotype of mur1-1 was correlated with a decrease in RG-II 

dimerisation, due to the finding that BA was able to restore wild-type levels of electrolyte 

leakage. If RG-II dimerisation is important for freezing tolerance, it may be the case that the 

amount of RG-II in the cell wall is increased during cold acclimation as a mechanism to increase 

freezing tolerance. In order to assess whether the plant up-regulates RG-II production during 

cold acclimation, two approaches were taken. The first was measuring the level of RG-II 

synthesis after transfer to cold temperatures, and the second was the measurement of cell wall 

RG-II content after exposure to cold temperatures for varying lengths of time. 

The first approach utilised [14C]-fructose as a source of carbon for the synthesis of sugar residues 

within the plant that would then be incorporated into cell wall polysaccharides such as RG-II. 

The level of radioactivity present in cell wall extracts would then give a measure of how much 

new cell wall synthesis had taken place during the initial transfer to 5°C. Looking at RG-II specific 

sugars such as apiose (see Figure 1.4) would provide an indication of whether RG-II synthesis 

had increased after exposure to the cold when compared to samples kept at ambient 

temperature.  

A new method was designed in which leaves of wild type plants were fed with [14C]-fructose (see 

section 2.4.2.4). The treatments were as follows: 5-week-old plants kept at ambient 
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temperature (A); 7-week-old plants kept at ambient temperature (B); 5-week-old plants placed 

in the cold (C); 5-week-old plants plus 2 weeks of cold acclimation kept in the cold (D), four 

leaves were used in each treatment (designated A1, A2 etc. see Figure 5.9). Separate cell wall 

extracts were then obtained from leaves (L) and petioles (P) and digested with endo-

polygalacturonase (EPG). Chromatography was then carried out on the digested products and 

autoradiograms of the migrated products were made by exposing the paper chromatograms to 

film which were then developed and imaged (Figure 5.9). The experiment was carried out three 

times, denoted by the number following the L or P. The expected galacturonic acid products 

(GalA, GalA2 and GalA3) of homogalacturonan digestion migrated along the chromatography 

paper, indicated by the yellow lines, whereas undigested RG-I and RG-II should have remained 

at the origin. However, acid hydrolysis of the origins did not yield monosaccharides 

characteristic of RG-II (especially apiose) (data not shown), suggesting that RG-II had been 

partially degraded during the prolonged incubation in EPG. Thus, further analysis was carried 

out on the mobile regions (Figure 5.9). Two representative tracks were chosen (P1C1 and P3A1) 

and each zone cut out and oligosaccharides acid hydrolysed. The monosaccharide products were 

run on chromatography paper and the radioactivity assessed (Figures 5.10 and 5.11). Many of 

the zones yielded [14C]-galacturonic acid and some of them in addition gave some or all of [14C]-

Gal, [14C]-Ara and [14C]-Rha, supporting the idea that they arose from rhamnogalacturonans. 

However, all samples yielded [14C]-glucose, which is not found in pectins, and some of them gave 

[14C]-xylose, which is not a major monosaccharide of pectins, indicating that zones 1–24 included 

non-pectic oligosaccharides. None of the zones on acid hydrolysis gave [14C]-apiose, so there 

was no evidence for fragments of RG-II. 
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5.2.6 Measurement of RG-II levels after cold acclimation 

5.2.6.1 Separation of monomer and dimer using peptide columns 

The second approach used to assess RG-II cell wall content with cold induction was the direct 

measurement of RG-II within the cell wall after various stages of cold acclimation. Previous 

studies have measured levels of RG-II monomer and dimer using size exclusion chromatography 

methods followed by mass spectroscopy procedures (Fleischer et al. 1999; O’Neill et al. 2001; 

Séveno et al. 2009). Wild type plants were grown for five weeks as previously described and 

then acclimated at 5°C for 3, 12 and 48 hours, and 7 and 14 days. Leaves were harvested from 

these plants along with control plants of the same age maintained at ambient temperature. Cell-

wall material was isolated via the production of AIR and digested with endo-polygalacturonase 

(EPG) as previously described (see Chapter 3). These samples were then vacuum dried and 

resuspended in water and used in the high-performance liquid chromatography (HPLC) column 

detection method using a Dionex system described in Chapter 2 and previously used to measure 

cell-wall xyloglucan content (Vanzin et al. 2002). To see which peaks related to RG-II, monomer 

and dimer standards were also run through the system. However, traces showed that both the 

RG-II monomer and dimer eluted at the same time (Figure 5.12), meaning values could not be 

obtained for them separately. Therefore, it was tested whether RG-II monomer and dimer could 

be separated via gel filtration.  

A concentrated solution of digested cell wall product was run though several different gel 

filtration columns designed to separate molecules by size; Superdex S200, Superdex peptide and 

Superdex G75. Eluted fractions were collected and freeze-dried and resuspended in 40 µL of 

water. PAGE analysis was carried out on the samples to determine which fractions contained 

RG-II monomer and which contained the dimer. Unfortunately, the gels showed that none of 

the columns were successful in separating the monomer and dimer domains of RG-II, as both 

products appeared in the same fractions (Figure 5.13A-C). Although previous research has used 

Superdex-75 (Fleischer et al. 1999) and Sephadex G-75 (Séveno et al. 2009) columns to separate 

monomer and dimer successfully, these were unavailable for the research carried out here. For 

this reason, the decision was taken to carry out quantification of samples using the Dionex HPLC 

system but take the combined measurement of RG-II monomer and dimer obtained and assess 

if any differences were apparent between ambient and cold treated samples. 
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5.2.6.2 Measurements of RG-II with a Dionex 

Although attempts to separate RG-II monomer and dimer proved unsuccessful, it may have been 

possible to measure the combined levels of RG-II monomer and dimer to see if any differences 

in total RG-II could be observed between samples. Therefore, the extracted cell wall products 

were digested in EPG as before, vacuum dried and re-eluted in 25 µL of water and quantification 

carried out. The traces of fractions obtained showed the presence of monosaccharide and di-

saccharide peaks when compared to sugar standards (not shown). However, consistent peaks 

for RG-II were not observed, as shown in Figure 5.14. This was exacerbated by the high baseline 

that increased with ionic strength, a consequence that does not seem to have hindered previous 

studies (as previously referred to). It was therefore not possible to gain a quantitative measure 

of RG-II within the cell wall under various cold treatments. It was thus attempted to gain a 

qualitative measure of RG-II levels by PAGE analysis of the digested cell wall samples.  

5.2.6.3 Measurements of RG-II monomer and dimer using PAGE analysis 

Despite the inability to quantitatively measure cell wall RG-II content, a qualitative 

measurement could be obtained using the PAGE analysis techniques used in Chapter 3. This was 

carried out by running the samples on a polyacrylamide gel and staining with silver nitrate to 

visualise RG-II monomer and dimer bands as previously described. From the staining, it is clear 

that comparisons between samples was difficult to carry out, and even qualitative analysis is 

unlikely to highlight any differences as patterns were not repeatable between repeat 

experiments (Figure 5.15A and B).  
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5.3 Discussion 

5.3.1 Guard cell dynamics may not be correlated with freezing tolerance 

There is some evidence to suggest that alterations to guard cell dynamics (Chapter 4), and the 

freezing-sensitive phenotype observed in the sfr8 mutant (Chapter 3) could be correlated. 

Studies utilising infrared thermography to visualise ice nucleation events in plants have 

suggested that the stomata could act as an entry point for ice, thus allowing ice growth and 

concomitant damage within the plant (Wisniewski & Fuller 1999; Pearce & Fuller 2001). Studies 

to assess freezing in leaves also arrived at this hypothesis due to the presence of ice in 

substomatal cavities of frozen leaves (Pearce & Ashworth 1992). It has been shown that 

exposure to cold temperatures can induce stomatal closure (Allen et al. 2000), suggesting it is 

favourable for plants to close their stomata if freezing events are likely to occur. This may also 

be beneficial to prevent water loss to mitigate damage due to freeze-induced dehydration as 

well as regulating other plant processes, as photosynthesis and respiration are reduced in cold 

temperatures (Decker 1944; Keys et al. 1977), meaning stomata do not need to be as open for 

the transfer of gases. 

In order to test the hypothesis that open stomata could allow ice entry and thus result in greater 

freezing damage, a mutant with alterations to guard cell dynamics was obtained. The PME6 gene 

is highly expressed in guard cells (Yang et al. 2008), and  a mutant with an insertion in the PME6 

gene was shown to have a decrease in methyl-esterification of homogalacturonan pectin chains 

believed to lead to a decrease in the stomatal closure response, similar to that seen in sfr8 upon 

treatment with ABA, CO2 and drought. The study showed that pectin modifications in the mutant 

were guard cell specific, thus unlike sfr8, other cells would not be affected (Amsbury et al. 2016). 

An electrolyte leakage assay showed no significant difference in leakage between wild type and 

pme6 plants, suggesting that the alterations in guard cell dynamics had no effect on freezing 

tolerance (Figure 5.1). However, analysis suggested pme6 did not have the same alterations to 

guard cell dynamics as sfr8; a leaf drying assay and infrared thermography of cut rosettes 

suggested that the pme6 mutation did not affect guard cell dynamics on the scale that the sfr8 

and mur1-1 mutations did (Figure 5.2). This may have been due to the finding that PME6 

expression was not decreased in the insertion line, contrary to the findings of Amsbury et al. 

(2016) and may in fact not have contained an insertion at all (Appendix D). This led to 

investigations using a different putative insertion line of pme6 in a Columbia background, which 

rather than showing decreased expression of PME6, actually showed a large increase in 
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transcript expression. It could be suggested that increased expression would have resulted in 

observations opposite to those described by Amsbury et al. (2016) in the mutant; namely an 

increase in pectin methyl-esterification and thus a decrease in cross-linking, perhaps resulting in 

guard cells that are more sensitive to closure signals than wild type plants. However, as no 

significant difference was observed in leaf drying characteristics, guard cell dynamics are 

inferred to be insensitive to PME6 levels above that of the wild type. An electrolyte leakage 

assay may hint at a slight decrease in leakage compared to wild type, but repeat experiments 

are needed to verify this (Figure 5.3). Thus, it is not possible from these experiments to form a 

definitive link between enhanced guard cell dynamics and freezing tolerance. 

As previously suggested, it is certainly possible that open stomata provide an entry for ice 

nucleation into the plant – water frozen on the surface of the leaf may spread through 

nucleation of surrounding water vapour, including water vapour in the substomatal cavity, thus 

allowing ice growth into the leaf. However, there are other factors that would affect this process, 

such as the probability that ice will nucleate on the surface of the leaf. This is related to the 

presence of ice-nucleation active substances (INAS) such as ice-nucleating bacteria (Maki et al. 

1974; Hirano & Upper 2000) and the amount of water captured and retained on leaf surfaces, 

also known as wettability. Interestingly, leaf wettability has been correlated with nucleation 

temperature; making leaf surfaces hydrophobic reduced the nucleation temperature by 

delaying entry of ice into the leaf (Fuller et al. 2003), and the presence of a water droplet on 

tomato leaves resulted in freezing at -2°C compared to -6°C of dry tomato leaves (Wisniewski, 

Glenn & Fuller 2002). Plants that are more likely to experience freezing such as those at high 

altitudes have also been shown to frequently have reduced leaf wettability (Aryal & Neuner 

2010). In order to directly correlate the freezing sensitivity of sfr8 and mur1-1 mutants with the 

observed alteration to guard cell dynamics, it would be necessary to analyse the freezing 

tolerance of other open stomata mutants. Care would need to be taken when choosing such 

mutants, as often this is due to an insensitivity to ABA (Murata et al. 2001). As ABA is also 

associated with cold acclimation (Gusta et al. 2005), results would mask or exacerbate any 

correlation between guard cell dynamics and freezing tolerance. 

5.3.2 IPCS RNAi lines display no increase in sensitivity to freezing 

A significant decrease in freezing tolerance was observed in an RNA interference line of IPCS 

(inositol phosphoryl ceramide synthase) – the first enzyme in the synthesis pathway of plasma 

membrane sphingolipids, GIPCs (Bromley et al. 2003). GIPCs have been shown to form 
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connections with RG-II molecules via a borate diester linkage in cultures of Rosa cells (Voxeur & 

Fry 2014), which could suggest a role for GIPCs and RG-II in wall-membrane attachment. A 

decrease in IPCS expression is predicted to alter GIPC structure and thus function within the 

plasma membrane (Pinneh 2017). It is likely in these lines that the amount of GIPCs within the 

plasma membrane would decrease resulting in a decrease in the number of GIPC-RG-II cross-

links. This would then suggest that wall-membrane attachments are detrimental to freezing 

tolerance as an increase in freezing tolerance was observed in one of the IPCS RNAi lines (Figure 

5.4). This agrees with data obtained from experiments using cells of Jerusalem artichoke tubers, 

in which tight attachments of the plasma membrane to the cell wall resulted in whole cell 

collapse and irreversible damage to the membrane, possibly due to mechanical stress imposed 

by the cell wall (Murai & Yoshida 1998b). It is also possible that rather than acting as a point of 

wall-membrane attachment, GIPCs facilitate the transfer of RG-II to the apoplast, perhaps acting 

as an intermediate for the dimerisation of two RG-II molecules, as addition of GIPCs was found 

to increase the rate of cross-linking (Voxeur & Fry 2014).  

A problem thus presents itself; neither of these proposed roles fits with the freezing sensitivity 

observed in sfr8 and mur1-1 mutants. A decrease in GIPCs in the membrane would decrease the 

number of attachments to the cell wall. As this is suggested to be beneficial in freezing tolerance, 

sfr8 plants should display an increase in freezing tolerance as the disruption of RG-II dimerisation 

would also more than likely result in disruption of GIPC-RG-II cross-links. This is, however, not 

the case. Similarly, if GIPC acted as an intermediate for RG-II dimerisation, a decrease in GIPCs 

would likely result in a decrease of dRG-II within the cell wall. If RG-II dimerisation is indeed 

important for freezing tolerance, this would likely result in more freezing-sensitive plants, but 

this is not observed here. This could suggest that the disruption of GIPC-RG-II cross-links either 

does not occur in sfr8 mutants, or that other disruptions out-way any beneficial consequences. 

The decrease in electrolyte leakage was only observed in one RNAi line, which showed a 

reduction in IPCS isoform 2 expression in particular, and a slight increase in isoform 1 compared 

to wild type. However, no particular conclusions can be drawn from this, as the At2 line also had 

decreased expression of isoform 2 and a slight increase of isoforms 1 and 3 (Pinneh 2017). 

Without knowing the exact consequences of reducing IPCS expression, it is only possible to 

speculate as to what the consequences are for cell-wall structure. One way to begin rectifying 

this would be to assess the amount of mRG-II and dRG-II within the cell wall of the RNAi lines, 

which may also hint as to what role GIPCs play in relation to the cell wall. Although Voxeur and 

Fry (2014) show that GIPCs can bind RG-II via a borate ester bond in vitro, confirmation is still 
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required that this cross-link occurs in vivo. There is partial evidence for this, in that RG-II in the 

cell wall is found predominantly located next to the plasma membrane (Matoh et al. 1998). 

5.3.3 Experiments suggest that ice nucleation may differ in wild type and sfr8 plants 

Droplet freezing assays carried out on whole plant extracts were inconclusive, and it was difficult 

to draw conclusions from experiments using epidermal peels (Figures 5.5 to 5.8). The recorded 

temperature of freezing point in the epidermal peels would suggest, however, that nucleation 

is impacted in the sfr8 mutant that may be related to RG-II dimerisation, since BA in particular 

was found to reverse the freezing-sensitive phenotype of mur1-1 plants (see Chapter 1). There 

is evidence that cell-wall structures play a role in inhibiting ice nucleation, as RG-II dimerisation 

has been shown to affect cell wall pore size (Fleischer et al. 1999) which is a determinant of ice 

nucleation temperature (Ashworth & Abeles 1984). Fleischer et al. (1999) reported that pore 

size of boron-deficient C. album cells decreased from 5.1-6.2 nm to 3.3-3.7 nm with the addition 

of BA, concomitant with an increase in the dimerisation of RG-II. In their calculations of freezing 

temperatures of water occupying pores of different sizes, Ashworth and Abeles (1984) predicted 

that pores with a diameter less than 4 nm would depress the freezing temperature to between 

-15 and -25°C, suggesting wild type plants would freeze at lower temperatures. This range agrees 

with the freezing temperatures observed in droplet freezing assays and freezing of epidermal 

peels. 

However, contrary to these predictions, the sfr8 plants were observed here to nucleate at lower 

temperatures than wild type. It is possible that the temperature of the point of ice nucleation 

measured in peels is an artefact of the experimental set-up. Freezing in cells is influenced by 

several factors such as water availability, cell packing and the presence of intercellular spaces 

(Pearce 2001). The peeling of the epidermis from the leaf is likely to have altered cell structure 

and is of course not representative of the whole leaf (Roelfsema & Hedrich 2002). In preliminary 

experiments where a chamber was not constructed around the peel it was observed that the 

drying out of the leaf affected freezing temperature (data not shown). The water content of the 

peel is likely to be altered with the removal from the leaf, so may well have affected the results 

even when contained inside a chamber. Further investigation is required to determine whether 

ice nucleation in sfr8 plants is altered and whether this is as a result of a decrease in RG-II 

dimerisation. Pore size would also need to be assessed in wild type and sfr8/mur1-1 mutant 

plants as this has not yet been measured in Arabidopsis.  
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There are specific factors within the plant that can inhibit ice nucleation or growth; ice-binding 

proteins (IBPs, also known as anti-freeze proteins or AFPs) adsorb to ice crystals and prevent 

growth of ice-nuclei, as well as preventing ice nucleation by bacteria (Griffith et al. 2005; Bredow 

& Walker 2017). There is also evidence that plants may contain intrinsic INAS in the form of 

proteins or even polysaccharides (Zachariassen & Kristiansen 2000; Wisniewski et al. 2014). 

Some examples include ice nucleating properties of a polysaccharide in the wood of Prunus 

(Gross, Proebsting & Maccrindle-Zimmerman 1988), and more recently a polysaccharide from 

birch pollen that displayed both ice-nucleating and ice-binding properties (Dreischmeier et al. 

2017). Interestingly, the addition of borate diminished both of these functions, although the 

authors do not speculate that this could link the ice-nucleating/binding properties to RG-II, but 

it is certainly possible that this is the case. It would be interesting to carry out infrared 

thermography on sfr8 plants under freezing conditions, as this has previously been used to much 

success to show the point at which ice nucleation occurs (Wisniewski, Lindow & Ashworth 1997; 

Fuller & Wisniewski 1998; Wisniewski & Fuller 1999; Pearce & Fuller 2001). This would highlight 

any differences in ice nucleation between wild type and sfr8 on a whole plant scale that is less 

likely to be subject to artefacts that may have occurred in the droplet and epidermal peel 

freezing assays. These experiments may also contribute to verifying the hypothesis that guard 

cell dynamics influence ice nucleation and thus freezing damage in sfr8 by measuring nucleation 

of leaves with and without the presence of water droplets on the leaf (Wisniewski et al. 2002).  

5.3.4 Measurements of RG-II synthesis and cell-wall content during and after cold 

acclimation were inconclusive 

Two different approaches were taken in order to assess the possibility that RG-II synthesis and 

levels of RG-II in the cell wall are increased during cold acclimation. If this were observed, it 

would support the hypothesis that RG-II plays a particular role in the cell wall to protect against 

freezing damage. Unfortunately, quantitative analysis using size-exclusion chromatography and 

HPLC techniques was unsuccessful in this study (Figures 5.12-5.14), and qualitative analysis of 

poly-acrylamide gels was nearly impossible due to effects of differential staining and possibly 

inaccurate measurements of RG-II (Figure 5.15). Previous studies have successfully measured 

cell-wall RG-II content or ratios of RG-II monomer and dimer (Fleischer et al. 1999; O’Neill et al. 

2001; Séveno et al. 2009), suggesting further investigation may yield these measurements. 

Radiolabelling and subsequent chromatography also showed no differences between RG-II 

synthesis of ambient and cold treated leaves (Figures 5.9-5.11). This arose mainly due to the 
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inability to detect apiose in the chromatography assays, which may have been as a result of a 

limited amount of tissue. As this was a new method, modification of the technique may yet yield 

interesting results. 

Previous studies have reported the increase of pectin or pectin modifying enzymes in the cell 

walls of various species including Pisum sativum (Weiser et al. 1990; Baldwin et al. 2014), 

Brassica napus (Kubacka-Zebalska & Kacperska 1999; Solecka et al. 2008), Miscanthus spp. 

(Domon et al. 2013) and Triticum sp. (Willick et al. 2018), after exposure to cold temperatures. 

The increase of side chains such as arabinan and galactan indicative of RG-I and RG-II, could 

suggest that RG-II cell wall content is increased during cold acclimation (Baldwin et al. 2014), but 

there is no direct evidence of this as yet. If direct measurement of RG-II domains is not yet 

possible, it would be conceivable to assess the levels of RG-II specific sugars in the cell wall such 

as apiose or D-KDO which have successfully been identified in early analysis into the structure of 

RG-II domains (Darvill et al. 1978a). This would provide evidence as to whether cell-wall RG-II 

content is increased during cold acclimation. 

5.3.5 Functional significance of increased cell wall RG-II content 

Considering the roles RG-II has been found to play in the cell wall, there is evidence for functional 

significance if the cell-wall content of RG-II is indeed increased during cold acclimation. This 

includes not only the effect on pore size discussed previously, but also the effect of pectins on 

cell wall stiffness which has been previously alluded to (Jones et al. 2003; Ryden et al. 2003; 

Moore, Farrant & Driouich 2008; Amsbury et al. 2016). Evidence for alterations to cell-wall 

stiffness and strength come from a study by Ryden et al. (2003), who showed that tensile 

strength and tensile modulus were decreased in hypocotyls of mur1-1 and mur1-2 mutants. This 

suggests that stiffness and strength are decreased in mutant cell walls. There are some studies 

that have shown that cold acclimation induces an increase in cell-wall strength (Rajashekar & 

Lafta 1996; Solecka et al. 2008), but whether this is related to an increase or decrease in stiffness 

is unclear. In apple and grape cells, an increase in cell-wall strength after cold acclimation 

resulted in an increase in the pressure required to rupture cells, suggesting these cells could 

resist collapse during freezing events (Rajashekar & Lafta 1996). Indeed, it has been 

hypothesised that increased rigidity of cell walls allows plants to resist freeze-induced 

dehydration which may limit cellular damage during freezing (Rajashekar & Burke 1996). It could 

be suggested then that cell-wall strength is an important factor for freezing tolerance, and that 

a decrease in strength and/or stiffness of the cell wall in sfr8 mutants results in the freezing 
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sensitivity observed. It is important to note, however, that resistance to cell collapse during 

freezing has been suggested to lead to the development of negative pressures within the cell 

(Hansen & Beck 1988; Zhu et al. 1989; Zhu & Beck 1991), and negative pressures have been 

correlated with cavitation which can lead to cell death (Tyree & Dixon 1986; Tyree & Sperry 

1989). Although cavitation is generally limited to xylem tissues, this observation provides 

evidence that more rigid tissues do not automatically infer increased freezing tolerance, and it 

may be that having cell walls that are too stiff actually results in decreased freezing tolerance. It 

is possible that cell-wall stiffness is highly regulated during freezing events in order to reduce 

damage from freeze-induced dehydration but also prevent damage from cavitation. 

Interestingly, pore size has also been linked to cell-wall strength, as C. album cells cultured in 

boron deficient medium were more likely to rupture than those supplemented with BA 

(Fleischer et al. 1998), suggesting that smaller pores make the cell wall stronger. Since this was 

later linked to RG-II dimerisation (Fleischer et al. 1999) it is possible that both characteristics 

(RG-II dimerisation and cell-wall pore size) influence cell-wall strength as a consequence of being 

linked. These measurements need to be carried out in cells of mature plants of sfr8 in order for 

a direct link to be made to experiments carried out in this research. 

5.4 Conclusions 

This section has explored some of the possible mechanisms that may result in the freezing-

sensitive phenotype observed in sfr8 and mur1-1 mutants. The impact of the guard cell 

phenotype observed in sfr8 (see Chapter 4) was investigated via electrolyte leakage assessment 

of other putative guard cell mutants. However, no conclusion could be drawn from these 

experiments thus, it is not yet possible to accept or reject the hypothesis that structural aspects 

of RG-II influences plant freezing tolerance. The impact of a decrease in RG-II dimerisation on 

nucleation temperature was also assessed, and results suggest that a decrease in RG-II 

dimerisation may depress the freezing temperature of plant tissues. Further study is required to 

ascertain if this is applicable to whole plants. It was not possible to conclude whether RG-II 

synthesis or cell content increases in the cold, but there is evidence to suggest that an increase 

would be functionally significant for freezing tolerance.  
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CHAPTER 6  

DISCUSSION AND CONCLUSIONS 

6.1 Implications of the work 

The cell wall is an integral component of plant cells, contributing to cell strength, integrity and 

growth (Cosgrove 2005). It has long been believed, and there is some evidence to show that, the 

cell wall is also necessary for freezing tolerance in the plant. There are suggestions that the cell 

wall can act as a barrier to ice nucleation and growth, perhaps through the control of cell-wall 

pore size (Ashworth & Abeles 1984; Wisniewski, Davis & Schaffer 1991; Yamada et al. 2002). 

There is also research to show that cell-wall composition is modified during cold acclimation, 

and that this can lead to increased cell-wall stiffness (Solecka et al. 2008), which may be 

functionally significant to protect cells during freezing events (Rajashekar & Burke 1996). 

However, the precise mechanisms via which the cell wall influences freezing tolerance are not 

yet fully understood. Mutants deficient in cell-wall monosaccharides have proven a useful tool 

for studying cell-wall polysaccharide function (Reiter et al. 1997), and through the use of such a 

mutant, this study has provided a link and suggested a possible mechanism via which the cell 

wall regulates freezing tolerance. A possible link has also been made between cell-wall structure 

and guard cell dynamics, with implications for drought tolerance and growth. This study 

therefore highlights the cell wall as an important target for modification to enhance response 

to abiotic stresses in order to protect crop yield in the future. 

6.2 sensitive to freezing8 mutants are deficient in cell-wall fucose and RG-II 

dimerisation 

As has been shown previously in mur1-1 mutants, sfr8 plants displayed a decrease in cell-wall 

fucose (Reiter et al. 1993), stemming from a mutation in the MUR1 gene which encodes an 

enzyme active in the GDP-L-fucose biosynthesis pathway in plants (Bonin et al. 1997). In this 

study, the freezing-sensitive phenotype of sfr8 was correlated with cell-wall fucose deficiency 

by the finding that plants treated with a fucosyl-transferase inhibitor were also freezing 

sensitive. Fucose is mainly found as a component of cell-wall polysaccharides such as xyloglucan, 

RG-I and RG-II, as well as in N-linked glycans and glycolipids (Ebert, Rautengarten & Heazlewood 

2017). There is little evidence to suggest that free fucose has any specific role within the plant, 
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and it is likely that any free L-fucose would be incorporated into a salvage pathway and formed 

into the active form of GDP-L-fucose (Bar-Peled & O’Neill 2011). Direct measurements showed 

that fucose residues were lost from polysaccharides in mur1-1 mutants (Zablackis et al. 1996; 

Pabst et al. 2013), suggesting that the freezing-sensitive phenotype of sfr8 and mur1-1 could 

occur as a result of fucose-deficiency in any of these cell-wall components.  

Previous studies have shown that supplementing mur1-1 plants with boric acid has the ability to 

reverse the morphological phenotypes of mutants, and that this was correlated with the rescue 

of RG-II dimerisation in the cell wall, which was decreased in mur1-1 mutants due to loss of the 

L-fucose residue in side chain A (O’Neill et al. 2001). BA treatment was also able to restore cell-

wall tensile strength and modulus, which were both decreased in mur1-1 and mur1-2 hypocotyls 

(Ryden et al. 2003). Other studies have shown that a deficiency in cell wall L-galactose also 

decreases the ability of RG-II to dimerise in tomato and Arabidopsis, and supplementing these 

plants with BA had the ability to restore RG-II dimerisation (Voxeur et al. 2011; Sechet et al. 2018 

respectively). As RG-II domains are believed to be the exclusive binding site for boron (Matoh et 

al. 1996), it is likely that the phenotypes that are reversible with BA occur as a result of a 

decrease in RG-II dimerisation.  In this study, sfr8 and mur1-1 plants were also shown to contain 

primarily monomeric RG-II. However, BA-supplemented plants  were not directly observed to 

recover RG-II dimerisation, although this may have been due to aberrant techniques and the 

instability of the sfr8/mur1-1 RG-II molecule (O’Neill et al. 2001). It may be that the mass-

spectroscopy detection methods used in these studies was more reliable at measuring the 

extent of RG-II dimerisation in fucose and galactose-deficient mutants than the PAGE analysis 

utilised here.  

Despite the uncertainty in the efficacy of BA to restore cell-wall RG-II dimerisation, in this study 

BA was shown to have the ability to return electrolyte leakage to wild type levels in mur1-1 

mutants (sfr8 was not used here due to the discovery of contamination with wild type in the 

seed stock). By taking into consideration the structural role that boron plays within the plant 

(see section 1.4.4 and 3.3.5), this provides a key link between RG-II dimerisation and freezing 

tolerance. BA supplementation also appeared to partially reverse the morphological phenotypes 

of mur1-1 such as the rounded leaves and shortened petioles, but not to the extent of that seen 

in the study by O’Neill et al. (2001), where mur1-1 plants treated with BA were almost identical 

to wild type. This may be due to BA application methods, as in this study BA was applied with 

water direct to the roots, whereas in O’Neill et al. (2001), BA was applied by spraying. Also, in 
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this study, plants exhibited boron toxicity, which was not apparent in O’Neill’s study even though 

the morphological phenotypes were fully reversed. 

Interestingly, boron-deficiency has been linked to the inability to acquire freezing tolerance in 

Norway Spruce trees, which the authors have linked to the possibility that increased pore size 

of boron-deficient cell walls limits the capacity of plants to supercool (Raisanen et al. 2006; 

Räisänen, Repo & Lehto 2007). Cell-wall pore size has been linked to extracellular ice nucleation, 

as well as RG-II dimerisation, providing evidence that dimerisation is important for freezing 

tolerance. 

6.3 Cell-wall structure is important to attain normal freezing tolerance 

6.3.1 Cell-wall pore size 

Ice nucleation experiments using droplets and epidermal peels suggested that nucleation 

temperature may differ in sfr8 plants compared to wild type. The epidermal peel experiments 

showed that nucleation of wild type peels occurred at higher temperatures than in sfr8 plants, 

which could suggest that RG-II dimerisation preferentially nucleates ice in specific areas of the 

cell wall, perhaps in order to restrict ice damage. Previous studies have highlighted the presence 

of nucleation factors in plant leaves (Kaku 1973), and recent work has even highlighted a 

polysaccharide with ice-nucleating properties in pollen that were diminished with the additions 

of borate (Dreischmeier et al. 2017). However, if this were related to RG-II, it would suggest that 

the monomer has ice-nucleating properties, which does not fit with the results from ice 

nucleation in epidermal peels. These findings are also contradictory to the idea that plants, 

including Arabidopsis, generally limit ice nucleation by supercooling to prevent damage from 

freezing (Reyes-Diaz et al. 2006), for example by producing ice-binding proteins (Bar Dolev et al. 

2016). Ashworth and Abeles (1984) showed that water in small pores froze at lower 

temperatures than water in larger pores, and that smaller pores may also impede the spread of 

ice. This would reduce damage to the plant from ice growth and dehydration during freezing 

events, if the freezing point is depressed. Cell-wall pore size has been linked to dimerisation of 

RG-II, as treatment of boron-deficient cells with BA led to rapid RG-II dimerisation and a 

concomitant decrease in pore size (Fleischer et al. 1999). Pore size has also been shown to 

decrease during cold acclimation, suggesting it is functionally significant for freezing tolerance 

(Rajashekar & Lafta 1996). From this information, it would be logical to observe nucleation at an 

increased temperature in sfr8 plants if indeed the decrease in RG-II dimerisation does result in 
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increased pore size, but this is not observed in epidermal peels. However, it is possible that the 

epidermal peels did not represent a typical in vivo cell wall environment, as the very process of 

peeling the epidermis can affect cell structure and water content (Zhu et al. 2015). This can be 

a determinant of freezing temperature (Mazur 1963), and may mask the singular effect of 

changing cell-wall pore size. Cell-wall pore size, particularly that of the pit membranes whose 

structure was shown to be regulated by pectins (Wisniewski & Davis 1995), has also been shown 

to influence water movement and may limit water loss during freezing events, thus limiting 

freeze-induced dehydration (Wisniewski et al. 1987). 

The contradictions may arise in this argument due to the fact that it is not certain whether plants 

specifically initiate or prevent ice nucleation within their tissues. It is highly likely that different 

species and even different tissues employ different mechanisms to prevent freezing injury, 

either preventing ice nucleation, or initiating ice nucleation in specific areas of the plant that will 

limit damage. It is unlikely that one cover-all mechanism can be applied to all plants, and this 

must be taken into account when investigating freeze survival mechanisms.   

6.3.2 Cell wall-plasma membrane attachments 

Alterations to the freezing sensitivity of RNAi lines affecting GIPC synthesis suggests that RG-II 

monomer may be important for freezing tolerance. Research has shown that RG-II may form 

boron cross-links with plasma membrane localised GIPCs; this could be functionally significant 

for tethering the plasma membrane to the cell wall, or act as a platform to catalyse RG-II 

dimerisation, as the addition of GIPCs to RG-II monomer was shown to increase dimer formation 

(Voxeur & Fry 2014). An observation of weakened inflorescence stems in RNAi lines affecting 

GIPC synthesis (Pinneh 2017) suggested that cell walls may also be weakened in these lines in a 

similar way to mur1-1 mutants. However, analysis of freezing tolerance displayed no difference 

compared to wild type, with one line even displaying slightly decreased electrolyte leakage. This 

could suggest that either PM-cell wall adhesion is detrimental for freezing tolerance which has 

been suggested by previous work (Murai & Yoshida 1998b), or that it is better to have less RG-II 

dimer in the cell wall if GIPCs do facilitate cross-linking, which does not necessarily fit with the 

freezing sensitivity observed in sfr8 and mur1-1 mutants. However, the exact role of GIPCs in 

RG-II cross-linking in vivo is not fully understood, nor is the impact of altered GIPC synthesis on 

GIPC-RG-II cross-links, so further research is necessary to determine the nature of these 

connections and what impacts they have on freezing tolerance. Again, it is necessary to ask the 

question of whether it is better for the plasma membrane to stay in close contact with the wall 
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during freezing, or whether it is better for it to be able to pull away. There is still debate as to 

whether  plasmolysis actually occurs during in vivo freezing events (Levitt 1980; Oparka 1994). 

It is also still unclear as to which event would cause damage, as the surface area changes that 

occur during observed plasmolysis is known to result in membrane injury (Oparka 1994), but 

tight adhesions of the wall to the membrane are thought to impart a mechanical stress that is 

also damaging (Murai & Yoshida 1998b). Once again, it may be that different species utilise 

different mechanisms for preventing membrane injury, which may be dependent on the lipid 

modifications made during cold acclimation (see section 1.2.4.1). 

6.3.3 Cell-wall composition 

Although it was not possible to directly show that RG-II synthesis and dimerisation is modified 

during cold acclimation in this study, there is ample evidence to show that cell-wall composition 

of other polysaccharides is altered during cold acclimation (Solecka et al. 2008; Domon et al. 

2013; Baldwin et al. 2014; Bilska-Kos et al. 2017; Willick et al. 2018). Although there is some 

discrepancy between these studies as to what cell-wall components are increased or decreased, 

particularly in terms of cell-wall remodelling enzymes (see section 1.5.1) there is a consensus 

that cell-wall pectin content in particular increases during cold acclimation. This provides further 

evidence that pectins, which could include RG-II, are a necessary component of freezing 

tolerance. These modifications likely alter cell-wall structure and may form part of the 

mechanism for the resistance of freezing damage in terms of pore size and cell strength. 

6.4 Alterations to cell-wall stiffness in sfr8 mutants may impact upon both 

freezing tolerance and guard cell dynamics 

6.4.1 Freezing tolerance 

In order to understand the mechanical consequences of changing cell wall structure and 

composition, it is useful to begin by defining a set of measurable cell-wall tensile properties. 

These are commonly probed by measuring the tensile force per unit area (stress) required to 

achieve a given fractional elongation (strain), illustrated in Figure 6.1. Two common regions 

observed in cell wall stress-strain behaviour are the elastic region, where removal of the applied 

stress results in complete recovery of the original cell-wall shape, and the plastic region, where 

after removal of the applied force, the cell wall has been permanently elongated. The elastic and 

plastic modulii are the gradients of the stress-strain curve in each respective region and 

represent the stiffness of the cell wall: a larger modulus means the cell wall is stiffer, and harder 
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to deform. The maximum stress which can be applied to the cell wall is termed the tensile 

strength, and the point at which the cell wall ruptures is called the break point. 

Previous evidence suggests that cell-wall stiffness may be correlated with the level of RG-II 

dimerization, which may be modified during freezing events. Stiffer tissues have been shown to 

reduce damage from freeze-induced dehydration (Rajashekar & Burke 1996). RG-II has been 

related to both of these properties, with mur1-1 mutants displaying a decrease in both cell-wall 

tensile strength and tensile modulus that was reversible with BA supplementation (Ryden et al. 

2003). One of the first descriptions of mur1-1 tissues was an increase in brittleness (Reiter et al. 

1993), referring to the break point occurring after only small plastic deformations. Boron-

deficient tissues have been described as having similar properties to those with a decrease in 

RG-II dimerisation. Boron-deficient C. album cells were shown to rupture as they aged due to 

overexpansion (Fleischer et al. 1998), suggesting a decrease in cell-wall tensile strength as walls 

required less force to break. Boron deficiency in roots of squash and bean was shown to reduce 

the cell-wall elasticity modulus (Findeklee & Goldbach 1996; Findeklee et al. 1997), and 

hypocotyls of boron-deficient squash were shown to have more brittle and rigid tissues (Hu & 

Brown 1994). In this study, the authors also demonstrated that tissues had reduced elastic and 

plastic extensibilities (the inverse of the elastic modulii), suggesting boron-deficiency also 

impacted on cell wall growth, and not just its ability to resist mechanical force. It is unclear 

exactly how these properties may influence freezing tolerance of the cell as there are conflicting 
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Figure 6.1: Stress-strain graph. A stress-strain graph showing the regions of elastic 

modulus, plastic modulus and tensile strength. 
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theories as to whether stiffness is beneficial or detrimental for freezing tolerance (see section 

6.5). 

6.4.2 Guard cell dynamics 

This study has revealed a link between fucose-deficiency and guard cell dynamics, suggested to 

be due to a decrease in RG-II dimerisation. Utilising measurements of stomatal aperture in 

response to ABA treatment, thermal imaging under changes in humidity and drought stress, and 

stomatal conductance changes in response to changing CO2 concentrations, sfr8 stomata were 

shown to have a reduced response to opening and closure signals (Chapter 4). The fact that this 

phenotype is observed in response to several different stimuli suggests it is not a signalling 

problem, but rather a mechanical problem, providing further evidence that cell-wall structure is 

important for normal guard cell function. Mutants deficient in homogalacturonan methyl-

esterification and normal arabinan structure have also displayed aberrant guard cell dynamics 

(Jones et al. 2003; Amsbury et al. 2016). This is suggested to occur due to an increased stiffness 

of the cell wall (Woolfenden et al. 2017), causing a resistance to deformation. However, there is 

now an inherent discrepancy between the model presented from the guard cell measurement 

data which suggests increased stiffness, and measurements in the literature on RG-II and 

freezing stress that suggest mutants cell walls have a decreased stiffness. It is of course possible 

that the stomatal phenotype of sfr8 is not linked to a decrease in RG-II and BA supplementation 

is proposed as an experiment to elucidating this, but the fact that other mutants with modified 

pectin structure display a similar phenotype adds credence to this theory. There are thus two 

competing theories; the mutant cell walls have either increased or decreased stiffness, but the 

successful theory must be consistent with both the observations of decreased freezing 

tolerance, and reduced rate of guard cell dynamics.  

If cell walls are stiffer, it may be that the guard cell phenotype impacts upon freezing tolerance 

by allowing ice growth through the stomatal pores. However, in the context of the electrolyte 

leakage assay, the fact that discs are cut from the leaf automatically provides a wounded 

entrance for ice to enter into the leaf, which would likely mask any effects of open stomata. 

Assessment of freezing tolerance of pme6 mutants unfortunately did not provide any answers 

to this hypothesis. It is possible that a stiffer cell wall that is able to resist collapse could result 

in cell cavitation during freezing events, however this is typically seen in rigid xylem vessels 

which are unlikely to be affected by changes in RG-II dimerisation (see section 6.5) (Tyree & 

Dixon 1986).  
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If the walls are less stiff, it is possible that this decrease in stiffness affects guard cell dynamics, 

by preventing the guard cell poles from being able to stiffen and allow the stomatal pore to open 

(Carter et al. 2017). This recent work by Carter et al. (2017) proposed that polar stiffening of 

guard cells was mediated at least in part by the accumulation of de-esterified pectins. Stiffening 

limited extension of the stomatal complex under opening conditions, which allowed the 

acquisition of a greater response in pore aperture per change in guard cell turgor. The authors 

also demonstrated that treating guard cell walls with polygalacturonase led to a loss of polar 

stiffening and a decrease in aperture for a given pressure (Carter et al. 2017). These findings 

compliment the phenotypes observed in sfr8 mutants and provide a theory for the loss of guard 

cell dynamics. This suggestion also highlights a potential target for engineering of enhance 

stomatal regulation in order to improve water loss under water-limited conditions. 

6.5 Limitations of the work 

Although mutants deficient in monosaccharides are useful tools for studying cell-wall function, 

they are likely to contain structural alterations in several different polysaccharides. This makes 

it difficult to pin-point the specific structures responsible for the exhibited phenotypes, as has 

been the case for the sfr8 and mur1-1 mutants. Although the influence of RG-II dimerisation is 

implied when BA is able to rescue mur1-1 phenotypes, it does not provide a direct correlation. 

Another problem that is recently gaining more attention, is the possibility that the plant 

attempts to overcome alterations to cell-wall integrity (CWI) that would confound the direct 

effects of cell wall defects (Cosgrove 2018). Research has shown that plants can monitor cell-

wall architecture and induce compensatory changes in the cell wall (Voxeur & Höfte 2016). For 

example, a mutant with defects in cellulose synthesis was also shown to have alterations to 

methyl-esterification status of pectins (Sorek et al. 2015). In another study, inhibition of pectin 

de-methyl-esterification in the cell wall was shown to result in compensatory brassinosteroid 

signalling (Wolf et al. 2014). If compensatory mechanisms similar to this are induced in sfr8 and 

mur1-1 plants, this could go some way to explaining the observed growth phenotype. These cell 

wall integrity mechanisms may stem from the trade-off between growth and protection from 

abiotic stress (Bechtold & Field 2018). Indeed, it is possible that mur1-1 plants do display some 

form of compensatory mechanism, as the mutant was recently shown to have increased 

expression of genes involved in lignin synthesis that led to altered lignin structure in stem 

tissues, as well as defects in cell-cell adhesions associated with the induction of lignified tissues 

(Voxeur et al. 2017). The authors do attribute the observed phenotype to RG-II as a similar 
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phenotype was observed in a mutant of the boron transporter bor1-3 (Voxeur et al. 2017). It is 

difficult to hypothesise what impact these alterations may have on freezing-tolerance, although, 

as described in Chapter 1, the knock down of genes involved in lignin synthesis resulted in a 

decrease in cell wall lignin content and an increase in freezing tolerance (Lefebvre et al. 2011; Ji 

et al. 2015a). It could thus be speculated that the increase in lignin observed in mur1-1 plants is 

correlated with the decrease in freezing tolerance. However, it is likely that the alterations to 

cell-cell adhesion may also impact upon freezing tolerance, among the other theories already 

discussed in relation to a loss of RG-II dimerisation. Further investigation is therefore necessary 

to understand what structural attributes contribute to the freezing sensitivity of sfr8 and mur1-

1.  

6.6 Future work 

6.6.1 Verification of the link between RG-II dimerisation and freezing tolerance 

Although analysis of electrolyte leakage of BA supplemented mur1-1 plants showed that 

freezing tolerance could be restored, further analysis is needed to ascertain if RG-II dimerisation 

is restored in these tissues and thus cement the link between RG-II dimerisation and freezing 

tolerance. PAGE analysis showed that BA was not able to restore RG-II dimerisation in mur1-1 

plants, but it is possible that because RG-II dimers from mur1-1 plants are known to be less 

stable (O’Neill et al. 2001), that this is an artefact of the technique. Indeed, in this study by 

O’Neill et al. (2001), dimerised RG-II was monomerised with the addition of 1 M HCl, showing 

that the borate-ester is sensitive to acidic conditions. It may be that the acetic acid used to 

neutralise the cell wall extract during the extraction procedure, was enough to break some of 

the borate-ester bonds (see section 2.4.2.1). Measurements of the level of cell-wall RG-II 

dimerisation have previously been carried out via size exclusion chromatography and mass 

spectroscopy techniques (O’Neill et al. 2001; Voxeur et al. 2011; Sechet et al. 2018). Although 

this was attempted in this study, lack of the correct column for RG-II separation meant 

measurement was not possible. This method could be used to provide evidence for the link 

between RG-II dimerisation and rescue of the freezing-sensitive phenotype. Although 

experiments assessing the effects of BA supplementation suggest that it is RG-II that impacts 

upon freezing tolerance, there is evidence that boron has other roles within the cell (as discussed 

in Chapter 1). Thus, it would be necessary to eliminate the possibility that a loss of fucose on 

other cell-wall polysaccharides results in freezing sensitivity. 
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Another level of verification would come from assessing the freezing tolerance of plants 

deficient solely in RG-II cross-linking. The process of RG-II biosynthesis has not yet been fully 

characterised, although a set of RG-II synthesis enzymes have been described. Interestingly, a 

mutation in one of these genes led to lethal root and pollen tubes defects (Fangel et al. 2011; 

Liu et al. 2011), suggesting it may not be possible to assess freezing sensitivity in wholly RG-II 

deficient plants. It would be necessary to know which specific enzyme or suite of enzymes is 

important for cross-linking in order to assess this directly in a mutant, and until these have been 

discovered it would not be possible to utilise mutants for this purpose. Recent advances into the 

metabolism of human gut bacteria have led to the discovery of novel enzymes that catalyse the 

breakdown of specific bonds of RG-II (Ndeh et al. 2017). One or several of these enzymes could 

be expressed in plants to phenocopy the sfr8/mur1-1 mutation, without affecting other cell-wall 

polysaccharides. A resulting freezing-sensitive phenotype would provide strong evidence that 

RG-II cross-linking via a borate-ester in particular is necessary for freezing tolerance. 

Another interesting area of enquiry would be to investigate what the consequences of a 

decrease in the dimerisation of RG-II in mur1-1 mutants (as alluded to in section 6.5). A study 

using mutants deficient in cell-wall arabinan suggested that a consequence of this was the cross-

linking of homogalacturonan chains that reduced cell-wall flexibility (Jones et al. 2003). It is 

possible that a decrease in RG-II dimerisation may also result in similar consequences, allowing 

homogalacturonan chains to come together and cross-link, although alterations to cell-wall 

thickness and increase in pore size would suggest that a loss of cross-linking results in HG chains 

that are further apart in the mur1-1 mutant (Fleischer et al. 1999; Ishii et al. 2001a). Assessing 

freezing sensitivity of pme or pmei  mutants could reveal whether HG cross-linking is important 

for freezing tolerance, although recent research suggests that a decrease in methyl-

esterification status does not necessarily result in increased HG cross-linking (Hocq et al. 2017). 

It is likely that CWI mechanisms may confound hypothesised alterations to cell wall structure in 

cell wall mutants. Thus, a general assessment of structure and polysaccharide orientation within 

the cell wall may be necessary to understand the overall alterations. This could be achieved via 

the use of polysaccharide-specific or pectin modification-specific antibodies (Knox 2008; 

Pattathil et al. 2010; Lee, Marcus & Knox 2011) or possibly via AFM, which has previously been 

used to gain insight into cell-wall structural attributes and could highlight specific attachments 

between cell-wall polysaccharides (Zdunek et al. 2014; Zhang et al. 2016b). 
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6.6.2 How does a loss of RG-II dimerisation result in freezing-sensitivity? 

If RG-II is indeed necessary for freezing tolerance, it is still unclear what structural properties of 

the cell wall that RG-II dimerisation influences may be important. Assessment of Norway spruce 

buds suggests boron-deficiency may influence freezing tolerance by preventing the supercooling 

of buds (Räisänen et al. 2007), which could be controlled by RG-II dimerisation, perhaps via pore 

size (Ashworth & Abeles 1984). Refined ways of assessing differences in ice nucleation 

temperature between wild type and sfr8 are required, and this could be achieved through the 

use of infrared thermography (Fuller & Wisniewski 1998). This could suggest whether RG-II 

dimerisation depresses the freezing point in plants, perhaps by maintaining small cell-wall pores, 

or if nucleation occurs earlier in mutant plants due to the presence of open stomata. Assessment 

of other open stomata mutants would also further suggest if alterations to guard cell dynamics 

are detrimental to freezing, although care must be taken when choosing these mutants as some 

are as a result of an insensitivity to ABA, which would also impact upon cold acclimation and 

thus freezing tolerance (Merlot et al. 2002). 

Visualisation or measurement of ice growth, such as that carried out in Chapter 5 with increased 

resolution, could suggest if ice growth is prevented in wild type compared to mutants, and may 

reveal whether a decrease in pore size inhibits the growth of ice and thus reduces damage from 

freezing (Ashworth & Abeles 1984). There is a suggestion that pit membranes may also play a 

role in preventing the spread of ice, and also slowing water movement to sites of extracellular 

freezing (Wisniewski et al. 2004). Given the possibly that RG-II is believed to affect xylem cell-

wall structure (Voxeur et al. 2017), it would be interesting to observe if ice growth or water 

movement through the vascular tissue is more or less prevalent in the mutant compared to wild 

type. 

6.6.3 Measurements of cell-wall stiffness 

There are several studies that highlight the changes to the mechanical properties of the cell wall 

with alterations to RG-II dimerisation or associated boron-deficiency (Hu & Brown 1994; 

Findeklee & Goldbach 1996; Findeklee et al. 1997; Ryden et al. 2003). These studies report that 

tissues deficient in RG-II dimerisation have decreased tensile strength and decreased tensile 

modulus. This hypothesis is supported by the theory that the alterations to guard cell dynamics 

occur as a result of the inability for the guard cell poles to stiffen during opening (Carter et al. 

2017). 
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In the past decade, the process of atomic force microscopy (AFM) has gained more and more 

interest, and many different measurements can now be obtained from their use. It would thus 

be interesting to use AFM to take measurements of cell-wall mechanical parameters such as 

elasticity i.e. tensile modulus (Peaucelle et al. 2011; Braybrook, Hofte & Peaucelle 2012) to  

verify the theory that tensile modulus is decreased in the stomata thus preventing opening. It 

may also be possible to correlate the tensile modulus with freezing tolerance and may highlight 

whether the increased lignin content has an effect on wall stiffness. It may be that 

measurements are different in different tissues, as it has been shown that different cells contain 

different levels of pectins (Hadfield & Bennett 1998; Caffall & Mohnen 2009). It may be 

necessary therefore, to first understand which tissues are damaged during freezing events; 

electrolyte leakage assays would suggest that damage does occur in leaf tissue, which rules out 

the possibility that damage is restricted to root, reproductive or apical tissue. Verifying the effect 

of RG-II dimerisation in cell wall mechanics could imply whether an increased stiffness is 

beneficial for freezing tolerance, as has previously been implied (Rajashekar & Burke 1996; 

Rajashekar & Lafta 1996), or detrimental.  It may still prove difficult to directly link changes in 

cell-wall tensile modulus to sfr8 freezing sensitivity, especially considering the various other 

consequences of a decrease in RG-II dimerisation. It may be necessary to assess freezing 

tolerance of various mutants or enzyme treated plants that also have altered wall tensile 

modulus to correlate these two properties. 

It is also important to be aware of the drawbacks of AFM; although micro-scale indentation 

techniques can provide measurements of tensile modulus, these are not comparable to the 

stress-strain assays typically used, for example by Ryden et al. (2003). In these assays, a tensile 

force in the plane of the wall is resisted by cellulose microfibrils, whereas this is not the case in 

indentation assays which probe smaller areas of the wall (Cosgrove 2016b). This may not hinder 

the comparison of two tissues with altered pectin structure, but there are other limits that need 

to be considered when using AFM techniques, such as the effect of turgor pressure, the size and 

shape of the tip used, and the force applied which is important in terms of knowing whether the 

wall is being deformed locally or whether indentation alters the whole cell shape globally. These 

parameters would need to be assessed and controlled for to obtain the most relevant 

measurements for the question being asked (Braybrook 2015). 
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6.6.4 Is RG-II synthesis or dimerisation up-regulated during cold acclimation? 

Analysis of RG-II content in the cell wall after cold acclimation would provide further evidence 

that RG-II is utilised during freezing tolerance if it is found to increase. This could be carried out 

as described in several studies (O’Neill et al. 2001; Voxeur et al. 2011; Sechet et al. 2018). 

However, it may also be possible to measure sugars that are specific to RG-II such as apiose or 

D-KDO using the method described in section 2.4.1. Analysis of the ratio of monomer to dimer 

would be very interesting, as this would provide evidence as to whether RG-II monomer plays 

any role in freezing tolerance, if the ratio of monomer:dimer is found to increase, perhaps as an 

element of cell wall-plasma membrane attachments (Voxeur & Fry 2014). A modification of the 

radiolabelling method could still show whether RG-II synthesis is increased. One improvement 

may be to use cell cultures rather than leaf tissue which has been used in previous investigations 

into RG-II dimerisation (Chormova et al. 2014a), as this would allow better access of the [14C]-

fructose, which may have been a limiting factor in the technique used in this study. Analysis of 

gene expression of RG-II specific synthesis genes RGXT1-4 would also suggest whether there is 

an up-regulation of RG-II synthesis with cold exposure. 
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APPENDIX A 

Nucleotide and amino acid sequence of MUR1 showing the SNPs and amino acid substitutions 

on the mutants of mur1-1, mur1-2, mur1-3 and sfr8 (mur1-4). (Skipsey, Knight and Knight, 

unpublished). 

 



II 
 

APPENDIX B 

List of the primers used for DNA analysis and RT-qPCR analysis of pme6 and mur mutants. All 

primers were obtained from IDT (Integrated DNA Technologies). 

  

No. Target Sequence (5' to 3') Purpose 

1 Transposon TCTGAGTCGTGTAAACGAGCC To confirm presence of the transposon 
insertion in pme6 (Ler-0 background) 2 PME6 CCTCTTCGTATTCAAAGTATTTCCC 

3 
PME6 

promotor TGTGGCATTACGGGAAAGGT To confirm presence of the T-DNA 
insertion in pme6 (Col-0 background) 

4 
PME6 

promotor TGGGAGGTGTTAGTAGGATTTTGT 

5 
GK Left 
border 

ATATTGACCATCATACTCATTGC 
To verify GK insertion line in pme6 (Col-0 

background) 

6 MUR1 GGATCAACTCCTCCTCCACA To verify presence of base change in sfr8 
shown in Appendix A 7 MUR1 CCTCTGTTGCCACAACGTAA 

8 PME6 GGAACGTTCAAGATGGCACG For gene expression measurements of 
PME6 (Ler-0 and Col-0 background) 9 PME6 TGATGTTTCTCCGGTCCTGC 

10 MUR1 ATCTCACGTCGCTGTCTCCT For gene expression measurements of 
MUR1 in mutants shown in Appendix C 11 MUR1 GAGATCTGACGGCTTCAAGG 
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APPENDIX C 

Relative transcript expression of the MUR1 gene in two-week-old seedlings of Col-0 wild type 

(WT), sfr8, mur1-1, mur2 and sfr8-C. Error bars represent RQMIN and RQMAX and constitute the 

acceptable error level for a 95% confidence level according to a student’s t-test. 
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APPENDIX D 

DNA analysis of putative Columbia-0 pme6 insertion lines (1-12) using PCR and gel 

electrophoresis. Lane 1 contains 1 kb Hyperladder. A) Amplification of pme6 DNA using primers 

3 and 4 (Appendix B). Lines 1-12 were compared to Col-0 wild type (WT). A diminished band 

suggests presence of insertion. B) Amplification of pme6 DNA using primers 3 and 5 (Appendix 

B). Lines 2,4,5,10 and 12 were compared to Col-0 wild type (WT). Presence of a band suggests 

presence of the insertion. DNA analysis was carried out on the Ler-0 pme6 insertion line using 

primers 1 and 2 as in Amsbury et al. (2016), but no bands were observed for either wild type or 

pme6 (data not shown). 
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