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Stephan Wojtowytsch – Phase-Field Models for Thin Elastic Membranes

In this dissertation, I develop a phase-field approach to minimising a geometric energy

functional in the class of connected structures confined to a small container. The functional

under consideration is Willmore’s energy, which depends on the mean curvature and area

measure of a surface and thus allows for a formulation in terms of varifold geometry. In

this setting, I prove existence of a minimiser and a very low level of regularity from simple

energy bounds.

In the second part, I describe a phase-field approach to the minimisation problem and

provide a sample implementation along with an algorithmic description to demonstrate that

the technique can be applied in practice. The diffuse Willmore functional in this setting

goes back to De Giorgi and the novel element of my approach is the design of a penalty term

which can control a topological quantity of the varifold limit in terms of phase-field functions.

Besides the design of this functional, I present new results on the convergence of phase-fields

away from a lower-dimensional subset which are needed in the proof, but interesting in their

own right for future applications. In particular, they give a quantitative justification for

heuristically identifying the zero level set of a phase field with a sharp interface limit, along

with a precise description of cases when this may be admissible only up to a small additional

set.

The results are optimal in the sense that no further topological quantities can be con-

trolled in this setting, as is also demonstrated. Besides independent geometric interest, the

research is motivated by an application to certain biological membranes.
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Chapter 1

Introduction

Geometric energy functionals have been studied extensively by mathematicians at least in

the last century, most prominently the area functional (for example as occurring in Plateau’s

problem as early as 1760) as well as non-local or non-isotropic variations thereof in recent

years. While the area functional can be written as the integral of a constant function over

the surface in question, physically meaningful energies may also depend on the geometry

of the surface itself, for example its normal direction (anisotropic perimeter functionals in

crystal grain growth) or its curvatures (elastic membranes). This is expressed through more

complicated energy integrands.

In this dissertation, the focus will lie on the case of curvature-dependent energies. The

model energy we will investigate is the Willmore functional, which associates to a surface

the total integral of its squared mean curvature. Since the total integral of the Gaussian

curvature of a surface is determined by its genus, this is arguably the simplest geometric

second order energy functional with non-trivial behaviour. Interestingly, this energy is also

related to the theory of minimal surfaces in the 3-sphere and to mean curvature flow.

Besides its geometric appeal, Willmore’s energy also occurs in the modelling of thin

elastic structures as the energy contribution of out-of-plane bending. The energy of a thin

structure is usually decomposed into two parts: in-plane stretching and out-of-plane bend-

ing. Since the first term in the energy completely dominates the second one for very thin

sheets, one can minimise Willmore’s energy in a class of isometric embeddings to find good

approximations of physical energy minimisers.

An interesting special case of thin elastic structures are so called lipid bilayers which are

thin liquid membranes. Being liquid, in-plane stretching does not contribute to the energy

at all in this application and the isometry constraint in the minimisation problem turns

into an area constraint (since the fluid is virtually incompressible). Thus the objective is to

4



CHAPTER 1. INTRODUCTION 5

minimise Willmore’s energy among surfaces with prescribed area. Implicit in this minimi-

sation problem is a selection of a class of surfaces. Generally, the following assumptions are

reasonable.

1. All surfaces are embedded in a bounded domain Ω ⊂ R3. If the domain is meant to

have no influence, it could be chosen large enough to make the minimisation problem

independent of this constraint.

2. All surfaces are connected. Otherwise, we could just consider connected components

separately.

3. All surfaces are smooth. Biological membranes typically do not exhibit sharp edges,

and the energy would in fact be infinite for a large class of singular behaviours. This

condition will be relaxed later to surfaces which can be suitably approximated by

smooth surfaces.

4. All surfaces are closed (compact and without boundary) or more generally, they have no

boundary inside Ω. This assumption is natural for biological membranes and necessary

when using a phase-field approach.

Geometric energies always lead to a technical difficulty in controlling the regularity of

parametrisations. Namely, the fact that they depend only on the shape of a space implies an

invariance under tangential diffeomorphisms which translates into a lack of compactness for

energy minimising sequences of embeddings. In this sense, the liquid membrane problem is

mathematically distinct from the corresponding minimisation problem for thin solid sheets.

Due to the tangential invariance, we will pursue an extrinsic approach rather than a

parametrised one and use the techniques of geometric measure theory. In this setting, the

existence of an energy minimiser becomes easy to establish. On the other hand, the structure

of such objects is less obvious, and especially the constraint that surfaces be connected is

a new feature. In the first part of the thesis, we will demonstrate that the minimisation

problem is also well-posed in the class of connected surfaces, and that it is not well-posed

in any class of surfaces of fixed genus g ∈ N.

The second part of the dissertation focuses on an explicit approach to finding minimisers

of Willmore’s energy under the constraints described above. While existence can be estab-

lished with the direct method of the calculus of variations, explicitly finding these surfaces

is an entirely different matter.

A common approach to finding (local) minimisers of functionals is (numerically) following

a gradient flow evolution until it becomes stationary. In the case of Willmore’s energy, this

leads to several problems.

5



6 CHAPTER 1. INTRODUCTION

1. Since the energy is of second order, the corresponding evolution equation is of fourth

order and thus numerically difficult to treat.

2. As a fourth order evolution equation, Willmore flow does not allow a maximum prin-

ciple. In fact, it is known that smooth embedded initial surfaces can be driven to

self-intersection in finite time, and this situation is stable under perturbations. They

can also be driven out of even convex domains Ω. Thus a gradient flow could po-

tentially take us out of our class of admissible surfaces. A constraint is difficult to

implement.

The second observation exposes the structure of the minimisation problem we are dealing

with a bit better as a geometric second order double obstacle problem where the obstacles are

given by the surface itself through a non-self-penetration constraint and by the boundary of

the embedding domain Ω. This structure also rules out the use of Euler-Lagrange equations.

We approach this problem via phase-fields, which goes well together with the extrinsic

approach to the existence problem. Namely, instead of solving a highly non-linear geometric

problem on a surface, we can solve relatively simple partial differential equations on the

domain Ω which then give us some information about a diffuse version of the surface. The

price we have to pay for this convenience is solving equations in three dimensions rather

than two.

The phase-field approach is – like the varifold approach – by nature extrinsic, and similar

difficulties occur. In particular, it is not a priori clear how to understand the topological

concept of connectedness on the phase-field level and how to enforce it in simulations. This

is the key problem of the second part of this dissertation. There, an energy functional is

developed which converges to Willmore’s energy in a suitable sense, but enforces connect-

edness of surfaces on a phase-field level. Evidence of the effectiveness of this method is also

presented.

Also presented in the second part are technical results on the convergence of phase-fields

and their regularity properties near the boundary of Ω. These results are of independent

interest for future applications in related problems. In particular, it is shown that a sharp

interface surface might not be well approximated by level sets of phase-fields in general, but

that this is true if the phase-fields are in addition minimisers of certain energy functionals.

While it would be desirable to write this dissertation from first principles, the scope of

the topic does not allow for a complete exposition. In the following, it will be assumed that

the reader is familiar with general functional analysis as well as common function spaces and

their properties. This includes Lp-spaces, Sobolev spaces W k,p of integer order and their

trace and embedding theorems, functions of bounded variation and spaces of continuous and

6



CHAPTER 1. INTRODUCTION 7

differentiable functions as well as the Riesz-representation theorem and the characterisation

of the dual space of continuous function as Radon measures. Further knowledge of measure

theory in Rn is also assumed, as well as knowledge of Calderon-Zygmund regularity theory

for elliptic equations of second order and elementary topology. Good sources on these topics

are [Bre11, EG92, GT83, Giu84]. Introductions to non-standard topics such as varifolds and

phase-fields will be provided.

The thesis is split into two parts. Part I is dedicated to sharp interface models for

Willmore’s energy, while in Part II diffuse interface models will be studied. Chapters 2 and

4 are used to review known results on sharp and diffuse interface models for Willmore’s

energy respectively and to introduce the specific problems and notations of the respective

part of the dissertation. New results on the sharp interface model for Willmore’s energy and

the topology of energy minimising sequences are presented in Chapter 3. Original results

on phase-field models for Willmore’s energy are presented in Chapters 5 through 9.

1.1 Notation

The notation is standard and follows the sources above. Let us fix the following conventions.

A sequence indexed by ε > 0 can be a countable family indexed by k ∈ N and parametrised

by an associated sequence εk → 0 or an uncountable family. The results remain the same and

we do not distinguish here. The notations D and ∇ will be used equivalently to denote the

gradient of a smooth function, the measure-valued gradient of a BV-function will be denoted

by D only. D2 denotes the Hessian of a function and ∆ its Laplacian. We abbreviate

Br = Br(x) if the centre of a ball is clear from the context and Br = Br(0) otherwise

without comment. Occasionally, we will omit the domain of integration for a measure µ

when we integrate over its entire domain. Weak convergence of Radon measures (which is

weak* convergence in the dual space of continuous functions if the measures have uniformly

bounded supports) will be denoted both by ⇀ and
∗
⇀. For convenience we write A b Rn to

mean that A ⊂ Rn has compact closure. The letters U,Ω will be used only for open sets,

which will be understood implicitly from the notation. We denote

| · |k,A = || · ||Ck(A), || · ||p,Ω = || · ||Lp(Ω), || · ||k,p,Ω = || · ||Wk,p(Ω).

The scalar product of a Hilbert space (in particular, Rn) will be denoted as 〈·, ·〉. As usual,

C will denote a constant whose value may change from line to line, but which does not

depend on the quantities being investigated (usually a function u and its derivatives, in

some instances a variable domain). Further conventions will be introduced when needed.

7
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Chapter 2

Background

2.1 Willmore’s Energy

2.1.1 Basics

Geometric energy functionals have received attention both in pure and applied mathematics.

Such energies arise naturally in the study of geometric problems as well as applications in

physics, biology and materials science. A famous example is Willmore’s energy

W(Σ) =

∫
Σ

H2 dHk (2.1.1)

where Σ ⊂ Rn is an embedded k-dimensional manifold, H denotes its mean curvature and

Hk is the k-dimensional Hausdorff measure. Often, one may reserve the term ‘Willmore’s

energy’ for the case of surfaces in 3-space and denote the same energy on plane curves (or

occasionally space curves) as Euler’s elastica energy. The main goal of this thesis is solving

the following problem.

Problem 1. Minimise Willmore’s energy among all connected boundaries ∂E ∈ C2 of sets

E b Ω such that H2(∂E) = S for some given Ω b R3 and S > 0.

This problem is of independent mathematical interest, but can be used to characterise

equilibrium shapes of spatially constrained lipid bilayers, for example inner mitochondrial

membranes.

The only minimiser ofW in the class of closed immersed C2-surfaces is the round sphere

(although there is a plethora of critical points and local minimisers). AsW is scale-invariant,

it becomes apparent that we need both the confinement to Ω and a prescribed area to induce

a non-trivial constraint. We imagine S as being very large compared to Ω.

9



10 CHAPTER 2. BACKGROUND

In the next chapter, we will show that this problem admits a solution in a suitably

generalised sense. We will further show that it is not possible to prescribe a particular

topological type in the minimisation problem. In the second part of this thesis we will

develop a method to computationally approximate solutions of the minimisation problem.

Similarly famous is the generalised version of Willmore’s energy known as the Canham-

Helfrich functional

ECH(Σ) =

∫
Σ

χH (H −H0)2 + χK K dH2

where χH , χK and H0 are functions on Σ which may be taken to be constant in the simplest

case. Several results in this dissertation will be valid for Canham-Helfrich functionals in a

certain regime of χH , χK and H0.

We note that for convenience, we consider a normalisation in which the mean curvature

is the sum of the principal curvatures rather than their average, as this is more natural in

the context of varifolds. In this normalisation, it is customary to consider the functional

given by

W(Σ) =
1

4

∫
Σ

|H|2 dH2

as Willmore’s energy. We will still consider the functional given by (2.1.1), so that our

normalisation of Willmore’s energy differs from the original functional by a factor of 4.

This normalisation simplifies expressions in the second part of the dissertation, where a

phase-field approximation is discussed.

2.1.2 Biological Membranes

Both the Willmore and the Canham-Helfrich energy are widely used in the modelling of thin

elastic structures. The first mention in that context goes back to Sophie Germain [Ger21].

Later, their importance has been suggested heuristically [Hel73] based on the principle that

when a membrane is represented as a graph over its tangent space, only derivatives of at

most second degree should occur in at most quadratic expressions at the base point. Another

biological motivation in the context of red blood cells is given in [Can70].

The application we have in mind is to inner mitochondrial membranes, which are lipid

bilayers of large area confined to a small container. A lipid bilayer is a liquid membrane

composed of two layers of molecules with hydrophilic heads and hydrophobic tails held

together by electric forces between the tails. A bilayer is typically less than 10nm thick, so

its lateral dimensions (several microns) are about 103 times larger than its thickness and we

can reasonably well idealise it as a surface.

A Helfrich type functional has also been obtained as a macroscopic limit of certain

mesoscale models for lipid bilayers [PR09, LPR14]. Here bilayers are modelled using func-

10



CHAPTER 2. BACKGROUND 11

tions u, v ∈ BV (Rn, {0, 1}) to express locations of hydrophilic heads and hydrophobic tails

of lipid molecules. These functions are coupled through a Monge-Kantorovich distance to

be close together, constrained to satisfy uv ≡ 0, and the perimeter of {u = 1} is penalised.

This energy prefers a bilayer structure and suitably rescaled versions Γ-converge to a Hel-

frich functional with H0 = 0, χH = 1/2 and χK = 1/3 (for a definition of Γ-convergence,

see Definition 4.1.1).

A heuristic way to motivate the occurrence of Willmore’s energy in this context comes

from thin shell theory. In [FJM02b, FJM02a] Friesecke, James and Müller proved Γ-

convergence of non-linear three-dimensional elasticity to geometric bending energies includ-

ing those of Willmore- or Helfrich-type in the vanishing thickness limit of thin plates. The

admissible class here are isometric embeddings of domains in R2. The restriction to isome-

tries stems from the fact that in-plane stretching energy scales linearly with the thickness

of the plate and dominates out of-plane bending, which scales with the third power of the

thickness parameter. Thus in the (second order) vanishing thickness limit, we are led to min-

imise Willmore’s energy in a class of isometric immersions. The case of shells (i.e. non-flat

structures) has been treated in [FJMM03].

Lipid bilayers differ from shells in that they are liquid, not solid, and thus do not have

a reference configuration. Assuming inextensibility (which matches observations), we must

therefore also minimise over the space of Riemannian metrics on the bilayer with fixed area

and the isometry constraint turns into the fixed area constraint.

2.1.3 A Brief History

Without any claim of completeness, let us give a bit more context of our topic. Willmore’s

energy is named for T.J. Willmore who studied it in a series of publications [Wil65, Wil71,

Wil92, Wil00] and popularised it in his textbook [Wil93]. Independently of Willmore’s work,

the energy had already been considered as a bending energy for thins plates in [Ger21] and

as a conformal invariant of surfaces embedded in R3 in [BT29, Tho23].

Stationary points (in particular, local minimisers) of the Willmore functional are of

interest in models for biological membranes, but they also arise naturally in differential

geometry as the stereographic projections of compact minimal surfaces in S3, see e.g. [PS87],

also for examples. A smooth stationary point is a solution of the Euler-Lagrange equation

[Tho23, Wei78]

∆H + (H2 − 2K)H = 0.

11
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The functional also occurs as the energy source of mean curvature flow through

d

dt
Hn−1(Mt) = −

∫
Mt

|H|2 dHn−1

for a family of surfaces Mt evolving smoothly by mean curvature flow (see e.g. [Hui84]).

From the point of view of the calculus of variations, a natural approach to energies as

the ones above is via varifolds [All72], [Hut86b], where existence of minimisers for certain

curvature functionals can be proved. The existence of smooth minimising tori was proved

by Simon [Sim93], and later generalised to surfaces of arbitrary genus in [BK03].

The long-standing Willmore conjecture thatW(T ) ≥ 4π2 for all tori embedded in R3 was

recently established in [MN14], and the large limit genus of the minimal Willmore energy for

closed orientable surfaces in R3 has been investigated in [KLS10]. The existence of smooth

minimising surfaces under isoperimetric constraints has been established in [Sch12]. A good

account of the Willmore functional in this context can be found in [KS12].

The case of surfaces constrained to the unit ball was studied in [MR14] and a scaling

law for the Willmore energy was found in the regimes of surface area just exceeding 4π and

in the large area limit. A parametrised approach to Willmore’s energy has been developed

in [Riv14] and related papers. In [KMR14] this framework is used to solve the Willmore

minimisation problem with prescribed genus and prescribed isoperimetric type. [DGR15]

gives a study of the Willmore functional on C2-graphs and its L1-lower semi-continuous

envelope.

Other avenues of research consider Willmore surfaces in more general ambient spaces

[LMS11, LM10, MR13].

In the class of closed surfaces, if χK is constant, the second term in the Helfrich functional

is of topological nature due to the Gauss-Bonnet theorem. So if the minimisation problem

is considered only among surfaces of prescribed topological type it can be neglected. The

spontaneous curvature is realistically expected to be non-zero in lipid bilayers due to the

inhomogeneity of the bilayer and the presence of different molecules and can have tremendous

influence. It should be noted that the full Helfrich energy depends also on the orientation of

a surfaces for H0 6= 0 and not only on its induced (unoriented) varifold. Große-Brauckmann

[GB93] gives an example of (non-compact) surfaces Mk of constant mean curvature H ≡ 1

converging to a doubly covered plane. This demonstrates that, unlike the Willmore energy,

the Helfrich energy need not be lower semi-continuous under varifold convergence for certain

parameters.

Recently, existence of minimisers for certain Helfrich-type energies among axially sym-

metric surfaces under an isoperimetric constraint was proved by Choksi and Veneroni [CV13].

12
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Lower semi-continuity for the Helfrich functional on C2-boundaries with respect to the L1-

topology of the enclosed sets was established by means of Gauss graphs in [Del97b].

Short time existence for the L2-gradient flow of the Willmore functional (‘Willmore flow’)

for sufficiently smooth initial data has been shown in [Sim01, KS02] (see also [MS03]) and

long time existence for small initial energy and convergence to a round sphere has been

demonstrated in [KS01, KS12]. Kuwert and Schätzle’s lower bound on existence times in

terms of initial curvature concentration in space has been generalised to Willmore flow in

Riemannian manifolds of bounded geometry in [Lin13]. It has been shown that Willmore

flow can drive smooth initial surfaces to self-intersections in finite time in [MS03]. This issue

seems to be prevented by our connectedness functional on the phase-field level, although we

do not have a rigorous statement on this. Numerical simulations suggest that singularities

can occur in Willmore flow in finite time [MS02]. [DW07, Figure 2] gives a numerical

example of a disc pinching off to a torus. A level set approach to Willmore flow is discussed

in [DR04].

Willmore flow has been studied numerically for example in [BGN08, Dzi08, DE07] and

[BR12], where a two-step time-discretisation is proposed which computes an implicit mean

curvature from following a time-step of mean curvature flow. A numerical implementation

of the Helfrich functional can be found in [CHM06].

2.1.4 Curves and Euler’s Elastica

Let γ : [0, L] → Rn for n ≥ 2 be a C2-closed curve parametrised by arc-length, then the

general Willmore functional can be written as

W(γ) =

∫
γ

κ2 dH1 =

∫ L

0

|γ̈|2 dt

where κ is just the ordinary geodesic curvature of γ. This energy has been studied as a

model for thin elastic rods when n = 3 and in image segmentation when n = 2. Stationary

points of the functional under length constraint solve the Euler-Lagrange equation

κ′′ +
κ3

2
= λ

with λ = 0 if no constraint is posed. Solutions of the unconstrained equation on the whole

real line are often called elasticae and have been studied and completely classified in two

dimensions already by Euler in [Eul52]. The only stationary points of prescribed length are

the circle of that length and a suitable figure eight curve (Bernoulli’s lemniscate).

The behaviour of Euler’s elastica energy differs from that of Willmore’s energy in certain
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aspects, most importantly through scaling – while W(λ · Σ) =W(Σ) for all surfaces Σ and

λ 6= 0, a curve γ satisfies

W(λ · γ) =
W(γ)

|λ| ∀ λ 6= 0. (2.1.2)

A family of C2-curves γn which satisfies uniform bounds on length and elastica energy

has a limit point γ ∈ W 2,2((0, L),Rn) if its traces are contained in some domain Ω b Rn.

Due to Sobolev embeddings, we see that in particular γ ∈ C1,1/2([0, L],Ω). The case of

systems of curves has been studied in [BDMP93, BM04, BM07], where the relaxation of the

elastica energy on sets with C2-boundary with respect to the strong L1-topology is studied.

In particular, it is shown that a curve γ which is the W 2,2-weak limit of embedded C2-curves

γn with

lim sup
n→∞

(L+W) (γn) <∞

can also be approximated by embedded C2-curves in the strong W 2,2-sense (L denotes the

arc-length of the curve). Since the class of embedded curves is far from being convex, this

is not at all immediate and the problem of whether an integral 2-varifold µ arising as the

weak limit of embedded C2-surfaces Mk can be approximated by a different sequence of

embedded C2-surfaces M̃k such that additionally

W(M̃k)→W(µ),

is still open. In other contexts, such ‘Lavrentiev gap’ type phenomena are known to occur.

2.2 A Brief Note on Geometric Measure Theory

2.2.1 Introduction to Varifolds

When proving the existence of minimisers of an energy functional, an invaluable tool is the

direct method of the calculus of variations. The method only requires lower semi-continuity

and coercivity for a functional in some topology to conclude that a sequence of almost

minimisers has an accumulation point which is in fact a minimiser. Integral energies usually

do not control the regularity of minimising sequences well, so that weaker topologies with

better compactness properties are needed. When weakening the topology, we may need to

enlarge the space to obtain a type of closure of the original space in order to obtain a large

class of compact sets. The most prominent example of this process is the Sobolev space

W 1,2 for the study of the Dirichlet energy.

Geometric energies like Willmore’s energy by definition only depend on the shape of a

manifold. This means that the energy associated to two different embeddings of a manifold

14
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M into an ambient Euclidean space

f1, f2 : M → Rn, f2 = f1 ◦ ψ, ψ ∈ Diffeo(M,M)

is equal. Since tangential reparametrisation is not controlled by the geometric functional,

no compactness of a minimising sequence of embeddings can be expected. Indeed, when we

denote by φ : C → S2 ⊂ R3 the inverse of the stereographic projection and define a family

of maps by

fk : C→ S2 ⊂ R3, fk(x) = φ
(x
k

)
,

we see that

fk(C) = S2 ∀ k ∈ N, lim
k→∞

fk(x) =

(0, 0, 1) x 6=∞

(0, 0,−1) x =∞

pointwise. In this way, geometric energies are not well suited for a parametrised approach.

These issues can be solved (using arc-length parametrisation for curves or see [Riv16, Riv13,

Riv14] for surfaces), but for us, it will be easier to use the extrinsic approach described

below.

Considering energies like Willmore’s energy in the class of embedded surfaces leads to

the problem of constructing a class of surfaces in which a bound on the area and a suitable

integral of mean curvature implies compactness. The most suitable class for this purpose is

the class of integral varifolds.

Definition 2.2.1. Let 1 ≤ k ≤ n and U ⊂ Rn be open. A k-varifold on U is a Radon mea-

sure V on the product space U ×G(n, k) of U with the Grassmannian G(n, k) of unoriented

k-planes in Rn.

So a general varifold can be thought of as a measure generalisation of a k-surface which

has a location (the projection µ of the measure V onto U) and a direction (the component

of the measure which lives on G(n, k), ‘slices’ of V with respect to µ). For a varifold V , the

projected measure

µ = µV = π]V, µ(B) = V (π−1(B)) = V (B ×G(n, k))

under the canonical projection π : U × G(n, k) → U is called the mass measure of the

varifold V . General varifolds still bear too little resemblance to a classical surface to be a

satisfactory class for minimisers.

Definition 2.2.2. Let 1 ≤ k < n and L ⊂ Rn be a Hk-measurable. Then L is called

15
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countably k-rectifiable if there exists a countable collection of Lipschitz maps

fi : Rk → Rn

such that

Hk
(
L \

∞⋃
i=1

fi(Rk)

)
= 0.

Thus a countably k-rectifiable set can be thought of as a far reaching generalisation of an

embedded manifold. Restricting the domain of the Lipschitz maps to the whole of Rk is not

a real restriction due to Kirszbraun’s theorem [Fed69, Section 2.10.43] (or [EG92, Theorem

1] for a weaker sufficient statement) and Lipschitz maps could be replaced by C1-maps in

the definition due to Whitney’s extension theorem [EG92, Section 6.5]. Making the maps

injective, one could even replace f(Rm) by a C1-manifolds Mk and a null set M0:

L ⊂
∞⋃
k=0

Mk. (2.2.1)

Definition 2.2.3. Let 1 ≤ k < n. A measure µ on Rn is called k-rectifiable if there exists

a k-rectifiable set L ⊂ Rn and a function θ ∈ L1
loc(Hk|L) such that

µ = θ · Hk|L. (2.2.2)

By the above notation we mean that

µ(B) =

∫
B∩L

θ dHk

which is also sometimes written as µ = Hk|θ in the literature, assuming that we have set

θ = 0 outside L. We will use the notation of (2.2.2) which seems more intuitive. The space

L1
loc(Hk|L) consists of all functions f such that

∫
K∩L

|f |dHk <∞

for all compact subsets K of Rn. In particular, a rectifiable measure is always a Radon

measure.

Note that the support of the measure µ may be significantly larger than the set L which

may fail to be closed and even lie dense in Rn. By Rademacher’s theorem, Lipschitz maps

are differentiable almost everywhere, which generalises to rectifiable sets in the following

sense.

16
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Theorem 2.2.4. [Sim83, Theorems 11.6 and 11.8] A measure µ on Rn is k-rectifiable if

and only if for µ-almost every x ∈ Rn there exists a space S ∈ G(n, k) and a number

θ(x) ∈ (0,∞) such that

lim
λ→0

λ−k
∫
f

(
y − x
λ

)
dµ(y) = θ(x)

∫
S

f dHk ∀ f ∈ Cc(Rn)

and such that θ ∈ L1
loc(Hk|{θ>0}). The space S is called the weak tangent space to µ at x

and denoted by Txµ.

The function θ is automatically Hk-measurable, and if it is also integrable, then

µ = θ · Hk|{θ>0}.

The density θ obtained above agrees with the function in (2.2.2). For two measurable

functions θ1, θ2 on a rectifiable set L, the weak tangent spaces exist and agree Hk-almost

everywhere on the set where both functions are positive. In particular for x ∈ L the tangent

space TxL can be calculated as a classical tangent space when the point x lies in a unique C1-

manifold in the decomposition of rectifiable sets (2.2.1). Approximating the characteristic

function χB1(0) from above and below by continuous functions, we have

θ(x) = Θk(x) = lim
r→0

µ(Br(x))

ωk rk

for µ-almost every x ∈ Rn where ωk is the volume of the unit ball in k dimensions. This could

also be seen as an analogue of Lebesgue’s differentiation theorem for rectifiable measures or

a type of Radon-Nikodym theorem. If {θ > 0} has locally finite Hk-measure, then also

Θk(x) = 0 for Hk-almost every x ∈ Rn \ {θ > 0}

by [EG92, Section 2.3]. Theorem 2.2.4 allows us to define the class of surfaces which we are

going to use.

Definition 2.2.5. A varifold V over U is called rectifiable if its mass measure µ is rectifiable

and if additionally

V (f) =

∫
U

f(x, Txµ) θ(x) dHk|L

for all f ∈ Cc(U × G(n, k)). It is called an integral varifold if the density θ is N-valued

Hk|L-almost everywhere.

Thus a rectifiable varifold lives on a rectifiable set and the associated direction agrees

with the direction given by the tangent space of the rectifiable set. An integral varifold

17
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additionally has integer multiplicity.

While generally the varifold V determines the mass measure µ, for a rectifiable varifold

the mass measure µ also uniquely determines the varifold V . We will therefore not usually

distinguish between µ and V for rectifiable varifolds and also call µ a rectifiable varifold.

We do, however, emphasise that the modes of convergence are different. We say µk

converges to µ as Radon measures if µk converges to µ in the weak* topology in the dual

space of continuous functions on Rn, i.e.

∫
Rn
f dµk →

∫
Rn
f dµ ∀ f ∈ Cc(Rn)

(or f ∈ Cc(U) for a suitable U ⊂ Rn), while we say that µk converges to µ as varifolds if the

convergence holds in the finer sense of Radon measures on Rn×G(n, k) (or U×G(n, k)). The

modes of convergence can be thought of as analogue to C0- and C1-convergence respectively.

Since we are interested in connected surfaces, we make the following definition.

Definition 2.2.6. A Radon measure µ on Rn is called connected if its support is connected.

A varifold is called connected if (the support of) its mass measure is connected.

This convention agrees well with the identification of an integral varifold with its mass

measure. The class of connected measures contains surfaces which are only connected in a

very weak sense, such as spheres overlapping in only one point

Σ = ∂B1(0, 0, 1) ∪ ∂B1(0, 0,−1).

Later we will see that this is indeed the strongest concept of connectedness we can guarantee.

Our concept of connectedness for measures agrees with that of previous work in [DMR14]

as shown in the next Lemma.

Lemma 2.2.7. A measure µ is disconnected if and only if there are two open sets U1, U2

such that µ(Ui) > 0 for i = 1, 2, µ(Rn \ (U1 ∪ U2)) = 0 and U1 ∩ U2 = ∅.

Proof. Assume that spt(µ) is connected, but there are sets U1, U2 with the properties above.

Then spt(µ) ∩ Ui 6= ∅ for i = 1, 2, so

spt(µ) ∩
(
Rn \ (U1 ∪ U2)

)
6= ∅

since spt(µ) cannot be non-trivially decomposed into two disjoint closed setsKi = spt(µ)∩Ui.
Since U1 ∪ U2 = U1 ∪ U2, there is x ∈ spt(µ) \ U1 ∪ U2. Taking r > 0 such that Br(x) ⊂

18
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Rn \ U1 ∪ U2, we deduce that

µ
(
Rn \ U1 ∪ U2

)
≥ µ(Br(x)) > 0

since x ∈ spt(µ), reaching a contradiction.

Now assume that spt(µ) is disconnected. Then spt(µ) = K1 ∪ K2 has a non-trivial

decomposition into relatively closed sets, which are closed also in Rn since spt(µ) is closed

by definition. We set

U1 =

{
x ∈ Rn | dist(x,K1) <

dist(x,K2)

2

}
, U2 =

{
x ∈ Rn | dist(x,K2) <

dist(x,K1)

2

}

and observe that K1 ⊂ U1, K2 ⊂ U2 since dist(x,K2) > 0 for all x ∈ K1 due to the

closedness of K2 and vice versa. Now assume that x ∈ U1 ∩ U2, then

dist(x,K1) ≤ dist(x,K2)

2
≤ dist(x,K1)

4

which is true only if dist(x,K1) = 0, i.e. x ∈ K1 since K1 is closed. The same argument

shows that x ∈ K2, so we have reached a contradiction since K1 ∩K2 = ∅.

2.2.2 Mean Curvature and Compactness

The set of varifolds with bounded mass is compact by the compactness theorem for Radon

measures, or alternatively by the Banach-Alaoglu and Riesz representation theorems. Clearly,

the subset of rectifiable or integral varifolds does not have good compactness properties –

we can easily imagine a surface of given area in R3 curling up into a small neighbourhood

of a point, so that any point measure (thus in fact any Radon measure on R3) can be ap-

proximated by integral varifolds. Just as control over a gradient term is needed for useful

bounds in W 1,2, we need control over a higher order quantity.

In our geometric setting, the natural quantity is mean curvature. Let Mt be a smooth

family of compact C2-manifolds of dimension k in Rn, parametrised by t ∈ (−ε, ε) via

φ : (−ε, ε)×M → Rn,
d

dt

∣∣∣∣
t=0

φ(t, x) = X ∈ C1(M,Rn).

We can compute the variation of area of Mt = φ(t,M) as

d

dt

∣∣∣∣
t=0

Hk(Mt) =

∫
M0

divTxM X dHk = −
∫
M0

〈H,X〉dHk

where divTxM X is the divergence of the vector field X with respect to the tangent space
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TxM0 of M0 = φ(0,M) at x [Sim83, Section 12]. Here the normalisation of mean curvature

may differ from more geometric texts, where H/k is considered as the mean curvature. In

our normalisation, the (scalar) mean curvature of the standard n− 1-sphere is

HSn−1 = 〈HSn−1 , νSn−1〉 ≡ n− 1 > 0.

We choose the inner normal for the orientation of a boundary wherever it occurs – note that

Willmore’s energy depends only on the modulus of the mean curvature vector and not its

orientation.

Definition 2.2.8. A rectifiable varifold V in U ⊂ Rn is said to have locally finite first

variation if there exist a Radon measure δV on U and a δV -measurable vector field ν : U →
Sn−1 such that ∫

divTxµX dµ = −
∫
〈ν,X〉dδV

for all X ∈ C1
c (U,Rn). If δV � µ, then we write

∫
divTxµX dµ = −

∫
〈H,X〉dµ (2.2.3)

and call H the mean curvature (vector) of V .

The mean curvature of a smooth embedded manifold when expressed in terms of a

local parametrisation uses second derivatives, but the variational identity above allows us

to define mean curvatures for much less smooth objects. The mean curvature provides us

with a useful compactness criterion. The following theorem is a special case of Allard’s

compactness theorem [All72] which is sufficient for our purposes.

Theorem 2.2.9. Let 1 ≤ k < n, U b Rn, 1 < p <∞ and C <∞. Then the set of integral

k-varifolds V with mean curvature H ∈ Lp(µ) which satisfy

spt(µ) ⊂ U, µ(U) + ||H ||pLp(µ) ≤ C

is compact in the weak* topology on the dual space of C0(U×G(n, k)). Since C0(U×G(n, k))

is separable, the weak* topology is locally metrisable and a sequence with these uniform

bounds has a sub-sequence which converges in the varifold sense to an integral varifold with

p-integrable mean curvature.

We notice that this is precisely the type of curvature-quantity which we can control by

Willmore’s energy. Thus we can extend the Willmore functional to integral varifolds by
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Figure 2.1: Any compact k-manifold which is C2-immersed into Rn induces a varifold
with mean curvature H ∈ Lp(µ) for all p. Points which are covered several times by the
immersion have higher multiplicity. Objects with large segments of higher multiplicity can
arise as the limits of embedded boundaries.

setting

W(µ) =W(V ) =

∫
|H|2 dµ.

For the convenience of terminology, we make the following definition.

Definition 2.2.10. We call an integral 2-varifold in R3 with finite mass measure µ and

mean curvature H ∈ L2(µ) a Willmore varifold.

We can think of Willmore varifolds as a weak closure of compact surfaces with finite

Willmore energy. There are surfaces in this class which are not the limit of a sequence of

embedded C2-surfaces with uniform bounds on area and Willmore energy due to problematic

self-crossings – an example is the figure eight space (compare also Section 8.1.2).

2.2.3 Oriented Varifold Hyper-Surfaces

An integral varifold has, by definition, an un-oriented tangent space. When working with

embedded hyper-surfaces which bound a compact domain, on the other hand, we can give

a natural orientation to the tangent space by specifying an orientation on its normal space

(i.e. choosing either the inner or the outer normal as positively oriented). We extend this

definition, for simplicity using the dual correspondence between unit vectors and oriented

n− 1-dimensional subspaces of Rn.

Definition 2.2.11. An oriented varifold hyper-surface V o is a Radon measure on Rn×Sn−1.

Using the canonical projection

π : Sn−1 → G(n, 1), v 7→ 〈v〉 = {λv | λ ∈ R}

and the Grassmannian duality diffeomorphism

δ : G(n, 1)→ G(n, n− 1), P 7→ P⊥
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an oriented varifold hypersurface V o induces a varifold V through the push-forward under

the map

idRn × (δ ◦ π) : Rn × Sn−1 → Rn ×G(n, n− 1)

or in explicit terms

V (f) =

∫
Rn×Sn−1

f(x, δ ◦ π(v)) dV o(x, v) ∀ f ∈ Cc(Rn ×G(n, n− 1)).

The mass measure and mean curvature of V o are given by those of V . An oriented varifold

is called rectifiable if it can be written as

V o(f) =

∫
L

f(x, ξ1(TxL)) θ1(x) + f(x, ξ2(TxL)) θ2(x) dHn−1(x)

where ξi : G(n, n − 1) → Sn−1 are measurable selection maps for the oriented normal

vector to a given space, ξ1 = −ξ2 pointwise, and L is a rectifiable set, θi are functions in

L1
loc(Hn−1|L). The oriented varifold is called integral if both θ1 and θ2 are integer-valued

almost everywhere. To avoid technicalities, we only give a very partial compactness theorem

which is however sufficient for our purposes.

Theorem 2.2.12. Let Ek b Ω b Rn such that ∂Ek ∈ C2 and

lim sup
k→∞

(W +Hn−1)(∂Ek) <∞.

Denote by V ok the oriented varifold induced by ∂Ek and the outer normal vector. Then there

is an oriented integral varifold V o such that

V ok ⇀ V.

A more general version of the Theorem is proven in [Hut86b]. We only consider the

co-dimension 1 case to avoid Grassmannians of orientable sub-spaces and only considered

globally oriented surfaces without boundary to avoid currents (see Remark 2.2.13).

2.2.4 The Second Fundamental Form

For simplicity, we restrict ourselves to the case of orientable hyper-surfaces. Here the normal

vector ν is uniquely defined up to a choice of sign and the classical second fundamental form

II is defined by

II : TxM → TxM, II(v) = ∇vν
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where ∇ is the Levi-Civita connection of the ambient space (so for us, the usual derivative

in Rn). A different definition A will be given for varifolds.

By using the first variation identity (2.2.3) on vector fields X(x) = Y (x, TxM) for a

suitable Y on smooth manifolds, Hutchinson [Hut86b] introduced a concept of a second

fundamental form A ∈ L1(V,Rn×n×n) on varifolds. Namely, by an abuse of notation we

identify P ∈ G(n, k) with the orthogonal projection P : Rn → P ⊂ Rn and thus embed

G(n, k) into the space of linear mappings from Rn to itself, or equivalently the matrix space

Rn×n. For φ ∈ C1(U × Rn×n) we denote the spatial derivatives of φ by Djφ and the

derivatives in the tangent space directions by D∗jkφ. Then the second fundamental form A

in the sense of Hutchinson is defined uniquely by the identity

0 =

∫ (
PijDjφ+AijkD

∗
jkφ+Ajijφ

)
dV (x, P ) ∀ i = 1, . . . , n.

Varifolds with weak second fundamental form are called curvature varifolds. Note that the

second fundamental form is defined on U ×G(n, k), not on U like the mean curvature.

The definition of second fundamental form differs slightly from the usual normalisation

of the second fundamental form II which measures the oscillation of a normal field ν to the

manifold M , while A measures the oscillation of the its unoriented tangent space (or rather,

the orthogonal projection onto it) – also see [Hut86b] for a more detailed explanation. The

two notions are of course equivalent and the coefficients Aijk of A and the coefficients Bijk of

the classic second fundamental form are related by an explicit formula [Hut86b, Proposition

5.2.6].

From the explicit expression, it can be seen that the existence of II and A is equivalent

and A ∈ Lp(V ) if and only if II ∈ Lp(V ). If A ∈ Lp(V ), then the mean curvature vector

satisfies Hi(x) = Ajij(x, Txµ) ∈ Lp(µ) [Hut86b, Remark 5.2.3]. Furthermore, curvature

varifolds with second fundamental form in Lp(V ) for p > k are locally graphs of multi-valued

C1,1− kp -functions [DLS11, Hut86a] similarly to the regularity given by Morrey’s embedding

theorem (and Calderon-Zygmund theory) for Sobolev functions u with ∆u ∈ Lp for p > n.

The analogue statement for embedded surfaces is given in [Lan85].

Embedded surfaces in R3 are orientable for topological reasons. The second fundamental

form is a symmetric map II : TxM → TxM with two eigenvalues λ1, λ2 (the principal

curvatures). The mean curvature is given by

H =
1

2
tr(II) =

λ1 + λ2

2
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as the actual mean of the principal curvatures (geometric normalisation) or

H = tr(II) = λ1 + λ2

(analytic normalisation). Because it simplifies the first variation formula (2.2.3), we choose

the analytic normalisation of mean curvature. The Gaussian curvature of the surface is

K = det(II) = λ1λ2.

Since the principal curvatures are eigenvalues to orthogonal directions v1, v1 ∈ TxM (or at

least can be chosen such, even if λ1 = λ2), the Frobenius norm | · | = || · ||F of the second

fundamental form is

| II |2 = λ2
1 + λ2

2 = (λ1 + λ2)2 − 2λ1λ2 = H2 − 2K.

Using this identity, we can define the Gaussian curvature of an integral varifold with weak

second fundamental form A ∈ L2(µ) and thus extend the Canham-Helfrich functional (with

parameter H0 ≡ 0) to the class of curvature varifolds with square integrable second funda-

mental form. To include a parameter H0 6= 0, we would need oriented curvature varifolds

since the functional depends on the orientation of the surface in that case.

We remark that the results which we will present in the next chapter do not depend

on the specific extension of the Gaussian curvature to curvature varifolds, but only on the

fact that the Gaussian curvature of a smooth surface equals that of an integer multiple.

This is given for our definition since A agrees for all integer multiples of a given varifold

as the density θ cancels out in the defining equation. The property is very sensible and

automatically given in a parametrised approach when we consider immersed surfaces which

have multiple coinciding segments. Thus the only sensible assumption is that the Gaussian

curvature of θ · µ agrees with the Gaussian curvature of µ.

Remark 2.2.13. There are further concepts of measure theoretic generalised surfaces which

will not be used in this text, most prominently currents [KP08, Sim83]. Currents are con-

structed in analogy to distributions rather than to measures. They have a simpler algebraic

structure and a natural boundary operator, which is lacking for varifolds, but they are

prone to extinction phenomena when surfaces with opposite orientations approach each

other, making them less suitable for our purposes.

A special case of currents are Gauss graphs [Del96, Del01, Del97a, Del97b] which gener-

alise a point pair (x, νx) in R3 × S2 which can be defined for C1-surfaces in R3. Currents

also play a role in the theory of oriented varifolds [Hut86b] in arbitrary dimension and
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co-dimension. A notion of boundary for varifolds is discussed in [Man96].

Another short but comprehensive introduction to varifolds can be found in [LM09], along

with a locality property for the weak mean curvature of varifolds under certain conditions.

A stronger result and further properties of varifolds can be found in [Men09, Men10, Men12,

Men13, Men16]. A very brief introduction to varifolds is given in the recent review article

[Men17].
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Chapter 3

The Topology of Constrained

Minimisers

3.1 Introduction

In this chapter, we will show that Problem 1 has a solution in the class of integral varifolds

that arise as weak limits of C2-boundaries of sets E b Ω with connected boundary ∂E of

area Hn−1(∂E) = S. We will further show similar existence and non-existence results for

more general Canham-Helfrich functionals and investigate the influence of the parameter

χK . Finally, we demonstrate that the minimisation problem is not well-posed if in addition

to the connectedness of ∂E also its topological type is prescribed. First we prove a structure

theorem for Willmore varifolds.

Theorem 3.1.1. Let µ be a Willmore varifold. Then spt(µ) is a rectifiable subset of R3 and

has at most N ≤ W(µ)/16π connected components. Every connected component induces a

measure µ1, . . . , µN which is a Willmore varifold in itself and the mean curvatures Hµk and

Hµ agree µk-almost everywhere. We have

2

√
µk(Rn)

W(µk)
≤ diam(spt(µk)) ≤ 1

π

√
µk(Rn)W(µk) ∀ k = 1, . . . , N.

Theorem 3.1.1 seems to be known albeit slightly scattered over the current research.

We have included its proof due to its relevance in this thesis and since we could not find a

suitable single reference.

Note that the theorem is far from obvious and wrong for integral k-varifolds in Rn with

mean curvature in Lp for p < k, see Example 3.2.7. Very similar methods can be used to
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prove a statement on the convergence of Willmore varifolds.

Theorem 3.1.2. Let K,M > 0 and Ω b Rn open and µk be Willmore varifolds such that

spt(µk) ⊂ Ω, µk(Ω) ≤M, W(µk) ≤ K ∀ k ∈ N.

Then there exists a Willmore varifold µ such that (up to a subsequence) µk converges to µ

in the sense of varifolds and

spt(µk)→ spt(µ) ∪ {x1, . . . , xN}

in the sense of Hausdorff convergence for a collection of points x1, . . . , xN ∈ Ω. The number

N is bounded in terms of lim supk→∞W(µk) and N = 0 if one of the following conditions

is met.

1. spt(µk) is connected for all k ∈ N and µ 6= 0,

2. lim supk→∞W(µk) <W(µ) + 16π and µ 6= 0,

3. the mean curvatures Hk of µk satisfy a uniform bound on ||Hk||Lp(µk) for some p > 2.

The condition µ 6= 0 is satisfied if limk→∞ µk(Ω) > 0 along the subsequence which

satisfies µk
∗
⇀ µ. The second condition is met for example if W(µk)→W(µ). In particular,

this means that connectedness is stable in the minimisation problem.

Corollary 3.1.3. Let K,M > 0 and Ω b Rn open. The class of integral 2-varifolds V in

Rn satisfying

1. spt(µV ) ⊂ Ω, the mass µV (Ω) ≤M , W(V ) ≤ K and

2. spt(µV ) is connected

is (sequentially) compact under the convergence of varifolds. The same holds for the closure

with respect to varifold convergence of connected manifolds which are C2-embedded into Ω

with surface area bounded by M and Willmore energy bounded by K.

This has a direct implication for minimising Willmore’s energy in a suitable topological

class.

Corollary 3.1.4. Let Ω b Rn be open and S > 0. Then there exists a 2-varifold V with

mass measure µV such that

(i) spt(µV ) ⊂ Ω is connected, µV (Ω) = S and
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(ii) V minimises W among the varifolds satisfying (i).

The same holds if we add the assumption that V is a varifold limit of connected embedded

C2-surfaces with uniformly bounded Willmore energy and surface area S in (i).

Corollary 3.1.4 follows directly from the Corollary 3.1.3, the definition of varifold con-

vergence and the lower-semicontinuity of Willmore’s energy under varifold convergence. A

version phrased directly for C2-boundaries and adapted to phase-field applications can be

found in Section 3.2.4.

Now let g ∈ N0, S > 0 and Ω ⊂ R3 open. Denote by Mg,S,Ω the space of closed connected

orientable genus g surfaces which are C2-embedded in Ω with surface area S and by MS,Ω

the union of all Mg,S,Ω over g ∈ N0. The second main result of this chapter is the following.

Theorem 3.1.5. Let m ∈ N, m ≥ 2, g ∈ N0 and ε > 0. Then there exists M ∈Mg,4πm,B1(0)

such that

W(M) < 4πm+ ε.

For the proof, we show that we can connect two concentric spheres with almost equal

radii by a large number of catenoids. This does not change the area or Willmore’s energy

much since catenoids are minimal surfaces, but changes the topology to arbitrary genus.

A further perturbation with small Willmore energy adds a sufficient amount of area. The

argument is similar to [MR14], where two spheres were connected by one catenoid. Our

construction is more analytic than geometric and allows for any finite number of catenoids,

whereas the construction of [MR14] requires (almost) a whole hemisphere per catenoid.

This has important implications for curvature energies.

Corollary 3.1.6. Let g ∈ N0,m ∈ N,m ≥ 2 and consider Ω = B1(0), S = 4mπ. Then

every sequence Mk ∈Mg,S,Ω such that

W(Mk)→ inf {W(M) |M ∈Mg,S,Ω} = 4πm

converges to an m-fold covered unit sphere as varifolds, independently of g.

This result differs from the unconstrained case [BK03] or minimisation among C2-

boundaries with prescribed isoperimetric ratio [KMR14]. In both cases, there exists a

smooth embedded (i.e. multiplicity 1) surface of genus g which minimises Willmore’s en-

ergy among all surfaces of genus g (which bound a domain with certain isoperimetric ratio,

in the second case).

Corollary 3.1.7. Denote by E the Canham-Helfrich energy with constant parameters χK <

0 < χH and H0 = 0. Let m ∈ N,m ≥ 2 and specify Ω = B1(0), S = 4mπ. Then every
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sequence Mk ∈MS,Ω such that

E(Mk)→ inf {E(M) |M ∈MS,Ω} = 4π (4χHm− χK)

converges to a higher multiplicity unit sphere µ = m ·H2|S3 as varifolds and we have E(µ) <

lim infk→∞ E(Mk). If M ∈MS′,B1(0) for some S′ > 0 and

E(M) ≤ 4χHS
′

holds, then M is a topological sphere. Furthermore, if χK < −4χH , then for any open

Ω b R3, S > 0, C > 0 the functional E is bounded from below in the class of smooth

manifolds MS,Ω and in the varifold closure of

BS,Ω,C := {M ∈MS,Ω | E(M) < C},

but not in the union of the closures
∞⋃
k=1

BS,Ω,k .

The theorem has some implications for the use of Canham-Helfrich energy in the mod-

elling of lipid bilayers. The multiple covering of a single sphere is unphysical since a biological

membrane separating two domains is usually the location of chemical exchange. The higher

multiplicity does not increase effective surface area; on the contrary, it would make the

transport of any exchanged species more difficult. Obviously, the situation of the corollary

is highly idealised, but probably similar phenomena could be observed under more generic

conditions.

We also suggest that it might be more appropriate to consider the lower semi-continuous

envelope with respect to varifold convergence of the Canham-Helfrich energy in the class of

C2-boundaries rather than its direct extension to curvature varifolds.

The case χK > 0 is entirely unphysical. Here we can consider non-constant material

parameters. Assume that there are measurable functions χH , χK and H0 associated to each

surface M ∈MS,Ω.

Corollary 3.1.8. Let Ω ⊂ R3 open and r > 0 such that Br(x) ⊂ Ω for some x ∈ R3, r > 0.

Let E be the Canham-Helfrich energy with parameters χH , χK and H0 satisfying the bounds

||χH ||L∞(M) ≤ C, ||H0 ||L2(M) ≤ C, δ ≤ χK ≤ C

for some C, δ > 0 independent of M ∈MS,Ω. Assume that µ = 4πr2 · δx is a point measure
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or µ = H2|∂Br(x). Then there exists a sequence Mk ∈ M4πr2,Ω such that H2|Mk

∗
⇀ µ as

Radon measures and E(Mk)→ −∞. In the second case, even varifold convergence holds.

Corollaries 3.1.6, 3.1.7 and 3.1.8 easily follow from Theorem 3.1.5 and the reverse estimate

given in Lemma 3.2.3.

3.2 Proofs

3.2.1 Technical Lemmas

In this section, we establish a few geometric properties of varifolds which will be used in the

following.

Lemma 3.2.1. Let µ be a finite Radon measure on Rn and x ∈ Rn a point. Then

µ(∂Br(x)) = 0

for all but countably many r ∈ R.

Proof. Assume that µ(∂Br(x)) > 0 for uncountably many r ∈ R. Since

{r ∈ R | µ(∂Br(x)) > 0} =

∞⋃
k=1

{
r ∈ R | µ(∂Br(x)) >

1

k

}

at least one of the sets on the right hand side must be infinite since otherwise the left hand

side could only be countable. But then the measure µ is automatically infinite.

Recall the following localised Li-Yau inequality originally due to L. Simon [Sim86]. The

proof below follows [Top98, Lemma 1] in a formulation adapted to apply to varifolds. In

Part II we will give analogue statements for phase-fields in (5.2.4) and (5.2.5).

Lemma 3.2.2. Let µ be a Willmore varifold and r > 0. Then

Θ2(x) := lim sup
s→0

µ(Bs(x))

πs2
≤ µV (Br)

πr2
+

1

16π

∫
Br

|H|2 dµ (3.2.1)

at µ-almost every point in Rn. The classical Li-Yau inequality [LY82]

Θ2(x) ≤ 1

16π
W(µ) (3.2.2)

follows by r →∞.

Note that the equality is usually found with 4π in the place of 16π due to a different

normalisation of Willmore’s energy or mean curvature. We do not need that the dimension
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of the embedding space is equal to n = 3, while the dimension of the varifold has to be

k = 2 for the following proof. For a phase-field version of this theorem, see Lemma 5.2.5

and Remark 5.2.6.

Proof of Lemma 3.2.2. We will obtain the inequality by inserting a suitable Lipschitz con-

tinuous vector field into the first variation inequality. This is justified by approximating

the Lipschitz function by C1-functions. Let x0 ∈ spt(µ) and 0 < r < R. Without loss of

generality we assume that x0 = 0 and denote Bρ := Bρ(0). Set

xr = max{|x|, r}, X(x) =

(
1

x2
r

− 1

R2

)
+

x

and calculate the tangential divergence of this field to apply the first variation identity

∫
divTxµX dµ = −

∫
〈X,H〉dµ.

If |x| < r, we have

divTxµX(x) =

(
1

r2
− 1

R2

)
divTxµ x = 2

(
1

r2
− 1

R2

)
,

since the divergence of the field x 7→ x is 2 on all two-dimensional vector spaces. For

r < |x| < R

divTxµX(x) = 〈∇Txµ|x|−2, x〉+

(
1

|x|2 −
1

R2

)
divTxµ x

= 〈(−2) |x|−4x‖, x〉+ 2

(
1

|x|2 −
1

R2

)
=
−2 |x‖|2
|x|4 + 2

(
1

|x|2 −
1

R2

)
= 2

( |x⊥|2
|x|4 −

1

R2

)

where x‖ = πTxµ(x) is the tangential component of x (i.e. the orthogonal projection of x

onto Txµ) and x⊥ = x− x‖ is the orthogonal component. Finally

divTxµX(x) = 0

if |x| > R. Thus, assuming that µ(∂BR) = µ(∂Br) = 0 (which holds for all but countably

many radii due to Lemma 3.2.1) we have

0 =

∫
divTxµX dµ+

∫
〈X,H〉dµ
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=

(
2

r2
− 2

R2

)
µ(Br(0)) +

∫
BR\Br

(
2 |x⊥|2
|x|4 − 2

R2

)
dµ+

∫
〈X,H〉dµ

=
2µ(Br)

r2
+

∫
BR\Br

2
|x⊥|2
|x|4 + 〈X,H〉dµ− 2µ(BR)

R2
+

∫
Br

〈X,H〉dµ. (3.2.3)

The last identity follows since X ≡ 0 outside BR. Rearranging, we obtain

µ(Br)

r2
=
µ(BR)

R2
− 1

2

∫
BR\Br

2
|x⊥|2
|x|4 + 〈X,H〉dµV −

1

2

∫
Br

〈X,H〉dµ. (3.2.4)

The last term on the right hand side goes to zero due as r → 0 due to the continuity of

measures from above. Due to [Bra78, Chapter 5], the part of the weak mean curvature of

an integral varifold µ which is absolutely continuous with respect to µ is perpendicular to

its tangent space. This is automatically the case since we assumed H ∈ L2(µ), so we have

〈H,x〉 = 〈H,x⊥〉. For x ∈ BR \Br we have the pointwise estimate

2
|x⊥|2
|x|4 + 〈X,H〉 ≥ −1

8
|H|2

for trivial reasons if 〈x⊥, H〉 ≥ 0 and

2
|x⊥|2
|x|4 + 〈X,H〉 = 2

|x⊥|2
|x|4 +

(
1

|x|2 −
1

R2

)
〈x⊥, H〉

= 2

∣∣∣∣ x⊥|x|2 +
1

4
H

∣∣∣∣2 − 1

R2
〈x⊥, H〉 − 1

8
|H|2

≥ −1

8
|H|2

if 〈x⊥, H〉 ≤ 0. Finally, we remark that the condition µ(∂Br) = 0 can be removed by

considering a C1-approximation of f . Hence, altogether

Θ2(x) = lim sup
r→0

µ(Br)

πr2
≤ µ(BR)

R2
+

1

16

∫
BR

|H|2 dµ.

Let us prove the following result about k-varifolds supported in the unit ball B = B1(0) ⊂
Rn which generalises [MR14, Theorem 1] to general p > 1.

Lemma 3.2.3. Let V be an integral k-varifold with weak mean curvature H ∈ Lp(µ), p > 1

such that spt(µ) ⊂ B and µ(B) <∞. Then we have

∫
B

|H|p dµ ≥ kp µV (B). (3.2.5)

If k = 2 and n = 3, then equality holds if and only if µ = θ ·Hn−1|Sn−1 for an integer θ ∈ N.
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The last statement could be extended to k = n− 1 and n ≥ 2 since all that is needed is

that the function θ is constant. A non-constant density however would lead to a singular,

tangential part of the first variation. Since the argument below is simpler in this form and

covers the case needed for applications, we do not prove the extension.

Proof of Lemma 3.2.3. Use the first variation identity

∫
divTxµ v dµ = −

∫
〈H, v〉dµ

with v(x) = x. Then divTxµ v ≡ k independently of Txµ and we have

k µ(Rn) =

∫
divTxµ v dµ = −

∫
〈H, v〉dµ ≤

(∫
|H|p dµ

) 1
p
(∫
|x| p

p−1 dµ

) p−1
p

(3.2.6)

Using |x| ≤ 1, we arrive at

k µ(Rn) ≤
(∫
|H|p dµ

) 1
p

µ(Rn)1− 1
p (3.2.7)

which is equivalent to the statement of the Lemma. If equality holds, then necessarily

∫
B

|x| p
p−1 dµ = µ(B)

and thus |x| = 1 µ-almost everywhere, so spt(µ) ⊂ Sn−1. Further, equality holds in Hölder’s

inequality, so there exist α, β 6= 0 such that

α |H|p = β |x| p
p−1 = β,

i.e. |H| is constant and in particular bounded. Knowing that |H| is constant, (3.2.7) imme-

diately tells us that |H| = k. When k = 2, we deduce that µ is a Willmore varifold (even if

1 < p < 2 initially) and obtain the bound

θ = Θ2 ≤ 1

16π
W(µ) =

|H|2
16π

µ(B1(0)) =
1

4π
µ(B1(0))

at least µ-almost everywhere. When we integrate this inequality over S2, we see that

θ ≡ 1

4π
µ(B1(0))

(at least H2-almost everywhere) since H2(S2) = 4π.

This result is optimal in two ways:
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Remark 3.2.4. If k < n− 1, the uniqueness statement is not true anymore – for example for

n ≥ 3 and k = 1, we can take an arbitrary finite union of great circles in Sn−1 as an example

of a 1-varifold satisfying the energy identity. If n ≥ 4, we can even choose the great circles

to be disjoint in different ways and the varifold to be a C∞-manifold. The most we can

hope for is that these superpositions of k-spheres (with multiplicity) are the only varifolds

satisfying identity in (3.2.5).

Remark 3.2.5. The inequality (3.2.5) remains true for p = 1, or even for the more natural

functional

W̃1(V ) = δV (Rn),

but we cannot apply Hölder’s inequality and only reach

2µ(B) = −
∫
〈n, x〉dδV ≤ δV (Rn)

which only shows that |x| = 1 δV -almost everywhere, not µ-almost everywhere. Indeed, the

disc

D = {x3 = 0, x2
1 + x2

2 ≤ 1} ⊂ B1(0) ⊂ R3

induces an integral 2-varifold in R3 supported in the unit ball whose weak mean curvature

is given by the unit normal of the circle lying in the x1x2−plane and pointing out of the

disc, due to Gauss’ theorem. This disc satisfies

W̃1(D) = H1(∂D) = 2π = 2H2(D),

which corresponds to equality in (3.2.5). Superpositions of discs in different planes retain

the same property, so that the uniqueness and regularity assertions break down. Again, the

most we can hope for is that the only varifolds satisfying the energy identity are given as

superpositions of a unit sphere with higher multiplicity and discs in different planes and

with multiplicities.

Finally, we give a simple structure result for compact sets.

Lemma 3.2.6. [DLW17, Lemma 3.16] Let (X, d) be a metric space and K ⊂ X is compact.

If K is not connected, then there exist two open sets U1, U2 ⊂ X such that

K ⊂ U1 ∪ U2, K ∩ Ui 6= ∅ for i = 1, 2 and dist(U1, U2) > 0.
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Proof. Assume that K is not connected. Then there exist relatively open non-empty sets

W1,W2 ⊂ K such that

K = W1 ∪W2.

By definition of the subspace topology, W1 and W2 are also relatively closed. Since K is

compact, they are even compact, so δ := dist(W1,W2) > 0. We set U1 = {dist(·,W1) < δ/3}
and U2 = {dist(·,W2) < δ/3}.

If K is the support of a measure µ, we can pick xi ∈ K ∩Ui for i = 1, 2 since neither set

is empty. As Ui is a neighbourhood of xi, we see directly from the definition of the support

of a measure that µ(Ui) > 0 for i = 1, 2.

3.2.2 Structure Theorem

The key idea in the proof of the structure theorem is the scale invariance of Willmore’s

energy. In that sense the dimension k of a varifold appears to be the point where Lp-

integrability of the mean curvature begins to regularise the support. The structure theorem

appears to be known, but a concise statement with an elementary proof could not be found.

Proof of Theorem 3.1.1. We know that µ = θ · H2|L where L is a 2-rectifiable set (and thus

defined up to a set of H2-measure zero). We fix any representative of θ and pass to

L′ = {x ∈ L | θ(x) ≥ 1}.

Since θ ≥ 1 H2-almost everywhere on {θ > 0}, we see that µ(Rn \ L′) = 0. In particular,

for x ∈ R3 \ spt(µ), there is r > 0 such that µ(Br(x)) = 0, thus L′ ⊂ spt(µ). Furthermore,

since µ is rectifiable, the limit density

Θ2(x;µ) = lim
r→0

µ(Br(x))

πr2
= θ ≥ 1

exists for H2-almost every x ∈ L′, see Theorem 2.2.4. Due to the Li-Yau inequality (3.2.2),

we have

θ = Θ2 ≤ W(µ)

16π
,

so H2|L′ ≤ µ ≤ W(µ)
16π · H2|L′ . Now, by [EG92, Section 2.3], for H2-almost every x ∈ R3 \ L′

we have

Θ2(x;µ) = lim sup
r→0

µ(Br(x))

π r2
≤ W(µ)

16π
lim sup
r→0

H2(Br(x) ∩ L′)
πr2

= 0.

In summary, we can take a representative of L which is densely contained in spt(µ) and
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satisfies Θ2(µ, x) ≥ 1 for all x ∈ L. Now take x ∈ spt(µ), δ > 0 and take r > 0 so small

that Θ2(µ;x) ≥ µ(Br(x))
πr2 − δ. There exists a sequence of radii r for which the upper limit

is attained, and we can take slight perturbations of those, so there exists an uncountable

family. For technical reasons, we assume that µ(∂Br(x)) = 0, which holds for all but

countably many r > 0 by Lemma 3.2.1. We take a sequence xk ∈ L with Θ2(xk;µ) ≥ 1. It

follows that

Θ2(µ;x) ≥ µ(Br(x))

πr2
− δ

= lim
k→∞

µ(Br(xk))

πr2
− δ

≥ lim sup
k→∞

(
Θ2(µ;xk)− 1

16π

∫
Br(xk)

|H|2 dµ− δ
)

since the translations of the Radon measure µ by xk − x converge weakly to the original

Radon measure. By taking r, δ → 0 we obtain Θ2(µ;x) ≥ lim supk→∞Θ2(µ;x) ≥ 1. Thus

spt(µ) = {x |Θ2(x) ≥ 1}, so spt(µ) has finite H2-measure and is rectifiable.

Now assume that spt(µ) is not connected. Then by Lemma 3.2.6, there are two open

sets U1, U2 such that

spt(µ) =
(

spt(µ) ∩ U1

)
∪
(

spt(µ) ∩ U2), dist(U1, U2) > 0

and neither term is empty. It is easy to see that µi = µ|Ui is an integral varifold for i = 1, 2

with mean curvature given by the mean curvature of µ due to the positive separation of the

sets. Thus, by the Li-Yau inequality (3.2.2) we have

W(µ) ≥ W(µ1) +W(µ2) ≥ 16π + 16π.

If µ1 and µ2 are connected, µ has finitely many connected components, otherwise we iterate

this procedure. Since Willmore’s energy is bounded, there are at most

N ≤ W(µ)

16π

connected components. Since there are only finitely many connected components, they are

relatively closed, hence compact, hence they have a positive distance and they induce Will-

more varifolds by themselves. The diameter bounds are due to Simon [Sim86] for immersed

surfaces with an explicit constant due to Topping [Top98]. We adapt the proof to varifolds.

The lower diameter bound follows easily from the first variation identity and Hölder’s

inequality. Abbreviate diam(µ) := diam(spt(µ)). Now assume that 0 ∈ spt(µ) so that
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|x| ≤ diam(µ) for µ-a.e. x ∈ Rn and thus

2µ(Rn) =

∫
divTxµ xdµ

= −
∫
〈x,H〉dµ

≤
(∫
|x|2 dµ

) 1
2
(∫
|H|2 dµ

) 1
2

≤ diam(µ)
√
µ(Rn)W(µ) .

Now we prove the upper diameter bound. By restricting ourselves to one component,

we can assume that µ is connected. First assume that d := diam(µ) < ∞. Then spt(µ) is

compact and there exist two points x, y ∈ spt(µ) such that d = |x− y|. We can assume that

x = 0 and y = d · e1. Since spt(µ) is connected, for any t ∈ [0, d] there exists an x ∈ spt(µ)

such that x1 = t. Fix r > 0 and points x1, . . . , xN with x1
i = 2i r for 0 ≤ i ≤ N and take a

maximal such collection, i.e.

N ≤ diam(spt(µ))

2r
≤ N + 1.

Then the balls Br(xi) are disjoint, so

µ(Rn) ≥
N∑
i=0

µ(Br(xi))

≥ π r2
N∑
i=0

(
Θ2(xi)−

1

16π

∫
Br(xi)

|H|2 dµ

)

≥ π r2

(
N + 1− 1

16π
W(µ)

)
≥ π r2

(
diam(µ)

2r
− 1

16π
W(µ)

)

since by the first part of the proof Θ2(µ, xi) ≥ 1. This implies that

π

2
diam(µ) ≤ µ(Rn)

r
+
W(µ)

16
r.

The real-valued function f(r) = a
r + br takes its minimum on the positive half-axis at

rmin =
√

a
b (for a, b > 0) and f(rmin) = 2

√
ab, so the optimal bound we can derive with

this procedure is

π

2
diam(µ) ≤ 2

√
µ(Rn)

W(µ)

16
.

Thus we have shown the bound on the diameter in the case that already diam(spt(µ)) <∞.
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If the diameter is unbounded, we can choose the number N arbitrarily large and r = 1. The

same estimate as before in the form

µ(Rn) ≥ πN − W(µ)

16

leads to a contradiction with the assumption that µ(Rn) < ∞. This establishes the upper

diameter bound and thus compactness.

We give a counterexample to the structure theorem for k-varifolds in Rn which have

mean curvatures in Lp for p < k.

Example 3.2.7. Let k ≤ n− 1 and Σ = ∂BRk+1

1 (0)×{0} be an inclusion of the k-sphere into

Rn and let qi be a dense sequence in Rn, ri a sequence of real numbers such that ri → 0 and

∞∑
i=1

1

| log ri|
<∞.

Then define

µ =

∞∑
i=1

Hk|qi+ri·Σ.

Every truncated sum is a varifold corresponding to an immersed manifold for which we

can easily compute volume and mean curvature, so taking the limit and using the lower

semi-continuity of the Lp-norm of mean curvature, we get

µ(Rn) = (k + 1)ωk+1

∞∑
i=1

rki <∞,
∫
Rn
|H|p dµ ≤ (k + 1)ωk+1 k

p
∞∑
i=1

rk−pi <∞

where ωd is the volume of the unit ball in d dimensions, so µ is an integral varifold with

mean curvature H in Lp(µ) for all p < 2 but H /∈ L2(µ) since clearly spt(µ) = Rn. To see

this, take any point x ∈ Rn and r > 0. It suffices to show that µ(Br(x)) > 0. All but finitely

many ri satisfy ri < r/2 and there since qi is a dense sequence in Rn, there is i ∈ N such

that

ri < r/2, |x− qi| < r/2 ⇒ µ(Br(x)) ≥ Hk(qi + ri · Σ) > 0.

Alternatively, if instead we take qi = i e1 and make sure that ri < 1/2 for all i ∈ N, we

obtain an integral varifold µ with mean curvature H ∈ Lp(µ) for all p < 2 for which spt(µ)

has infinitely many connected components.
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3.2.3 Convergence and Connectedness

Similar methods as in the proof of the structure theorem can be used for the proof of the

convergence result. An alternative proof of Theorem 3.1.2 using phase-field methods instead

of geometric measure theory can be found in Section 5.3.3.

Proof of Theorem 3.1.2. Since the measures are supported in a bounded domain, a Haus-

dorff limit K = limk∞ spt(µk) exists up to a subsequence [KP08, Theorem 1.6.6]. Take

x ∈ spt(µ). Then for all r > 0, we have µ(Br(x)) > 0 and since

0 < µ(Br(x)) ≤ lim inf
k→∞

µk(Br(x))

by the definition of Radon measure convergence, we find µk(Br(x)) > 0 for all sufficiently

large k. This means that spt(µk) ∩ Br(x) 6= ∅ and since the property holds for all r > 0,

there exists a sequence xk ∈ spt(µk) such that xk → x. This implies that x ∈ K and thus

spt(µ) ⊂ K.

Now take x ∈ K \ spt(µ). We choose a further subsequence such that the measures

αk(B) =

∫
B

|H|2 dµk

which localise the Willmore energy of µk have a limiting measure α, as the measures are

uniformly bounded and we can use the compactness theorem for Radon measures. Now we

can take a sequence of points xk ∈ spt(µk) such that xk → x and Θ2(µk, xk) ≥ 1. Then

(3.2.1) shows that

1 ≤ µk(Br(xk))

π r2
+

1

16π

∫
Br(xk)

|Hk|2 dµk

≤ µk(B2r(x))

πr2
+

1

16π
αk(B2r(x)).

Choosing r so small that µ(B3r(x)) = 0, and taking r such that α(∂B2r(x)) = 0, we find

that the first term on the right vanishes as k →∞ and are left with

α(B2r(x)) = lim
k→∞

αk(B2r(x)) ≥ 16π.

We can now take r → 0 and are left with α({x}) ≥ 16π. Since α is a finite Radon measure,

there are only finitely many such points and thus K \ spt(µ) is finite. Let us now consider

the three cases in which we claimed that K = spt(µ).

If spt(µk) is connected for all k ∈ N, then also its Hausdorff limit K is connected. Thus

there cannot be any isolated points and thus spt(µk)→ spt(µ) in Hausdorff distance. If we
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allowed µ = 0, then the Hausdorff limit could be a single point. In the second case, we take

U = {x ∈ Ω | dist(x, spt(µ)) < δ} ∪
N⋃
i=1

Bδ(xi)

for some δ > 0 so small that all sets in the union are disjoint. Since spt(µk) → K in

Hausdorff distance, we know that spt(µk) ⊂ U for all sufficiently large k. Now we take the

modified sequence

µ̃k = µk|{dist(·,sptµ)<δ}

which satisfies µ̃k
∗
⇀ µ. The above arguments combined with the lower semi-continuity of

Willmore’s energy show that

W(µk) ≥ W(µ̃k) + 16Nπ,

thus

W(µ) + 16π > lim sup
k→∞

W(µk) ≥ lim inf
k→∞

W(µ̃k) + 16Nπ ≥ W(µ) + 16Nπ

whence N = 0. Finally, assume that Hk ∈ Lp(µk) uniformly in k for some p > 2. Then take

an isolated point x ∈ K \ spt(µ) and calculate as before

16π ≤ lim inf
k→∞

∫
Br(x)

|Hk|2 dµk

≤ lim inf
k→∞

(∫
Br(x)

|Hk|p dµk

) 2
p

µ(Br(x))1− 2
p .

Since the first term is uniformly bounded and the second one goes to zero as r → 0 (since

µ does not have atoms), we have reached a contradiction.

It is easy to give an example µk
∗
⇀ µ with additional points in the Hausdorff limit.

Namely, Take Mk ≡ M ∪ ∂Brk(x) for some M , x /∈ M and rk → 0. Then, if µ denotes the

varifold induced by M , we have

µk ⇀ µ, spt(µ) = M, lim
k→∞

Mk = M ∪ {x}, W(Mk) ≡ W(M) + 16π.

A diffuse analogue of this example will be discussed in Example 5.4.2.

Proof of Corollaries 3.1.3 and 3.1.4. The compactness of varifolds satisfying these area and

energy bounds with respect to varifold convergence is given by Allard’s theorem. The

equivalence of compactness and sequential compactness follows from the fact that varifolds

can be interpreted as objects in the dual space of continuous functions on Ω × G(n, k),
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which is separable. Thus the weak* topology, which is the topology of varifold convergence,

is metrisable. The closedness of the class of varifolds with connected support follows from

the previous theorem. The existence of a minimiser follows by the direct method of the

calculus of variations. The subclasses are closed by definition.

The Corollaries could easily be extended to p ≥ 2. The Hausdorff convergence result

does not hold for 1 < p < 2 as the following example shows for general 1 ≤ d ≤ n − 1 and

p < k. Let Σ be an inclusion of the d-sphere into Rn and define

µk =
∑

1≤i1,...i1≤k

Hk|(i1/k,...,ik/k)+rk·Σ

for some rk � 1/k. Then we have

µk(Rn) = kn(d+ 1)ωd+1 r
d
k, W(µk) = (d+ 1)ωd+1k

nrd−pk

which, for suitably chosen rk satisfies

µk → 0, spt(µk)→ [0, 1]d.

However, the non-convergence result is due to small components collapsing away, and

it seems that the class of varifolds with connected support should still be closed, even for

k−1 < p < k since this would still prevent thin pipes from collapsing away as in the example

below, which shows that the class of integral varifolds with connected support is not closed

if only a uniform bound on the total variation measure δV (Rn) ≤ C is assumed.

Example 3.2.8. For k = 2, it is not enough to assume that δV is bounded. We construct a

sequence of dumbbell figures with thin middle segments that collapse away. The measure-

limit consists of two (almost) spheres with positive spatial separation and has disconnected

support while every single approximating manifold was connected. The total mean curvature

of the sequence remains bounded.

Take two spheres of radius 1 centred around (0, 0,−2) and (0, 0, 2) in R3. Make the

spheres flat in a C2-way at the inward points (0, 0,−1) and (0, 0, 1) like in the proof of

Lemma 3.2.11. Now pick some manifold M which satisfies the following properties:

1. M is contained in a slice of R3: M ⊂ R3 ∩ {0 < x3 ≤ 2},

2. the left half of M is a cylinder:

M ∩ {x3 < 1} = {x ∈ R3 | 0 < x3 < 1, x2
1 + x2

2 = 1},
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3. outside a cylinder, M is a flat plane:

M ∩ {x2
1 + x2

2 > 2} = {x3 = 2, x2
1 + x2

2 > 2} and

4. M ∩ {0 < x3 ≤ 2, x2
1 + x2

2 ≤ 3} is C2-smooth and compact.

Now we construct the surfaces Σk by connecting the modified spheres S±. Consider only

k so large that B4/k(0, 0,±1) ∩ S± is flat. Then we can replace

B3/k(0, 0, 1) ∩ S+ by
1

k
· (M ∩B3(0)) + (0, 0, 1− 2/k)

and do the same thing on the opposite side. Now we may connect the ends of the two open

cylindrical ends using the cylinder

Zk = {−1 + 2/k ≤ x3 ≤ 1− 2/k, x2
1 + x2

2 = 1/k}.

Observe that

∫
Σk

|H|dH2 = 2

∫
S+

|H|dH2 +
2

k

∫
M

|H|dH2 +

∫
Zk

|H|dH2.

The first term is independent of k, the second one vanishes asymptotically since the mean

curvature of the rescaled surface H 1
k ·M

= k ·HM becomes large linearly, but the surface area

measure becomes small quadratically in 1/k since M has dimension 2:

∫
1
k ·M
|H 1

k ·M
|dH2 =

1

k
·
∫
M

|H|dH2.

The mean curvature of the cylinder Zk is the principal curvature k at every point and its area

is 2π/k · (2−2/k), so the curvature integral is bounded by 4π and in total,
∫

Σk
|H|dH2 ≤ C

where C is a constant slightly bigger than 36π (the Willmore integral of a sphere being 16π).

So the total energy along the sequence remains bounded. It is easy to see that

H2|Σk → H2
S+∪S−

in the sense of Radon measures, so that we approximate a measure with disconnected support

by integral varifolds with connected support and uniformly bounded first variations.
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{θ = 2}

Figure 3.1: Three interpretations of the same picture. Left: An immersed curve γ with only
tangential self-contact. Middle: A varifold with a segment of multiplicity two. Right: The
boundary of a Caccioppoli set. The segment of higher multiplicity is a ghost interface in the
right picture and cannot be seen in the BV -framework.

3.2.4 Limits of C2-boundaries

To facilitate the transition into a phase-field setting and shift the focus on varifolds which

arise as the limit of C2-boundaries, we give a version of Theorem 3.1.6 which is adapted to

this setting. Without the connectedness, it has also been formulated in [DMR14, Proposition

1].

Theorem 3.2.9. Let Ek b Ω b Rn be a sequence of sets with boundaries ∂Ek ∈ C2 such

that

Hn−1(∂Ek)→ S > 0, lim inf
k→∞

W(∂Ek) <∞.

Denote the characteristic functions χEk by uk and the unit-density varifolds associated to

∂Ek (i.e. the Radon measures |∇χEk |) by µk. Then there exist u ∈ BV (Ω, {0, 1}) and an

integral (n− 1)-varifold µ such that up to a subsequence

1. uk → u strongly in L1(Ω),

2. µk ⇀ µ as varifolds,

3. |∇u| ≤ µ

4. spt(µ) ⊂ Ω and µ(Ω) = S and

5. W(µ) ≤ lim infk→∞W(µk).

If n = 2, 3 and the boundaries ∂Ek are connected, then also spt(µ) is connected.

The theorem follows directly from Allard’s compactness theorem in the disconnected case

and Corollary 3.1.3 and the compactness theorem for BV -functions. Since uk is uniformly

bounded in L∞(Ω), convergence actually holds for all p < ∞. The connection between

|∇u| and µ follows by localising the result to any open set Ω′ ⊂ Ω and using the properties

of BV -functions and Radon measures. In the BV -setting, extinctions can occur between

different parts of the gradient when boundaries with opposite orientation meet, while these
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sum up to multiplicity two in the varifold setting. We establish a stronger connection, which

we believe to be new.

Theorem 3.2.10. Assume the conditions of Theorem 3.2.9. Then u = χE is the charac-

teristic function of a set E ⊂ Ω and we have

∂∗E ≈ {x ∈ spt(µ) | θ(x) ∈ 2Z + 1}.

Here ∂∗E denotes the reduced boundary of E [Giu84] and ≈ means that we may add a

set of Hn−1-measure zero on both sides.

Proof. The theorem follows from the compactness theorem for oriented varifold hypersur-

face. Every boundary ∂Ek induces an oriented varifold V ok with the orientation canonically

given by the outer normal. Thus there exists an oriented varifold V o such that V ok ⇀ V o.

By projection of the convergence, we see that µ is the mass measure of the associated

(unoriented) varifold. If we pick an orienting normal vector field ξ on spt(µ), we find that

V o(f) =

∫
f(x, ξ) θ+ + f(x,−ξ) θ− dHn−1

for integer valued densities θ±. Inserting functions f for which f(x,−ξ) = f(x, ξ), we

observe that the oriented varifold has density θ = θ+ + θ− and using test functions f given

by

f(x, ξ) = 〈vx, ξ〉

we observe that θ+−θ− is the density associated with the essential boundary, which is either

1 if x ∈ ∂∗E or 0 otherwise. Since both θ+, θ− are integer-valued and either θ+ = θ− or

θ+ − θ− ∈ {−1, 1}, the theorem is proven.

The statement that θ+ = θ− on spt(µ) \ ∂∗E is actually stronger than what we claimed.

3.2.5 Genus

In this section, we will prove Theorem 3.1.5. First we flatten the unit sphere slightly to have

a flat segment on which we can easily glue two surfaces together. We denote by Dr = Br(0)

the disc of radius r around the origin in R2.

Lemma 3.2.11 (“flattening a sphere”). Let ε > 0. Then there exists δ0 > 0 such that for
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every 0 < δ < δ0 there exists a convex closed C∞-sphere Mε ⊂ B1(0) in R3 such that

Mε ∩ [D2δ × (0, 1)] = {x3 = 1− 3δ} ∩ [D2δ × (0, 1)] ,

Mε \ [D4δ × (0, 1)] = S2 \ [D4δ × (0, 1)]

and

W(Mε) < 4π + ε.

Proof. Take f ∈ C∞(−1, 1), f(t) =
√

1− t2 and

fδ : B1(0)→ R, fδ(x) = f ◦ rδ(|x|) =
√

1− r2
δ(|x|)

where rδ ∈ C∞[0, 1] satisfies

rδ(t) =

3δ t ≤ 2δ

t t ≥ 4δ

, 0 ≤ r′δ ≤ 1, 0 ≤ r′′δ ≤
4

δ
.

Then

∂ifδ(x) = (f ′ ◦ rδ) r′δ
xi
|x| (3.2.8)

∂2
ijfδ(x) = (f ′′ ◦ rδ) (r′δ)

2 xixj
|x|2 + (f ′ ◦ rδ) r′′δ

xixj
|x|2 + (f ′ ◦ rδ) r′δ

[
δij
|x| −

xixj
|x|3

]
. (3.2.9)

It is easy to see that D2fδ is negative semi-definite since all three terms in the sum in (3.2.9)

are negative semi-definite, so fδ is concave. Thus

M δ := {x ∈ S2 | x3 ≤ 0} ∪ {(x, f(x)) | x ∈ D1}

is a convex sphere. The topological type can also be found through the Gaussian curvature

integral which coincides for f and fδ since their boundary values agree (Gauss-Bonnet

Theorem).

When we denote f0(x) =
√

1− |x|2 , we observe that |fδ − f0| ≤ 3δ and

|∂ifδ − ∂if0| =
[
(f ′ ◦ rδ) r′δ − (f ′ ◦ r0)

] xi
|x|

|∂2
ijfδ − ∂2

ijf0| =
[
(f ′′ ◦ rδ) (r′δ)

2 − (f ′′ ◦ r0|)
] xixj
|x|2 + (f ′ ◦ rδ) r′′δ

xixj
|x|2

−
[
(f ′ ◦ rδ)r′δ − (f ′ ◦ r0)

] [xixj
|x|3 −

δij
|x|

]

The first term is small since xi/|x| is bounded and f ′(0) = 0, so we can choose δ small
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enough to make fδ and f0 close in C1(B1(0)). Curvature prevents us from making them

C2-close, but they are clearly W 2,2-close since∣∣∣∣∣∣∣∣[(f ′′ ◦ rδ) (r′δ)
2 − (f ′′ ◦ r0)

] xixj
|x|2

∣∣∣∣∣∣∣∣
L2

≤ 2 ||f ′′||L∞(−4δ,4δ)

√
π (4δ)2

∣∣∣∣∣∣∣∣(f ′ ◦ rδ) r′′δ xixj|x|2
∣∣∣∣∣∣∣∣
L2

≤ ||f ′||L∞(−4δ,4δ)

(∫
B4δ(0)

(4/δ)2 dx

)1/2

∣∣∣∣∣∣∣∣[(f ′ ◦ rδ)r′δ − (f ′ ◦ r0)
] [xixj
|x|3 −

δij
|x|

]∣∣∣∣∣∣∣∣
L2

≤ 2

(∫
B4δ(0)

(
2

|x|

)2

· 2
[
||f ′′||L∞(−4δ,4δ)|x|

]2
dx

)1/2

all become small linearly with δ. Since mean curvature Hf , volume element dsf and Will-

more integrand wf of the graph

Γf = {(x, f(x)) | x ∈ B1(0) ⊂ R2}

of f are given by

Hf =
(1 + f2

y ) fxx − 2 fxfy fxy + (1 + f2
x) fyy

(1 + f2
x + f2

y )3/2
,

dsf =
√

1 + f2
x + f2

y and

wf = H2
f dsf , we see that ||wf −wg||L1 is small if |f − g|C1 and ||f − g||W 2,2 are both small

for some g ∈ W 2,2(D1). So we can chose δ small enough to make this as small as we need

for g = fδ.

Remark 3.2.12. The radial symmetry of the sphere simplifies the calculations above, but in

fact any C2-surface can be locally flattened around a point when written as a graph over its

tangent space. This might be useful for a more general argument when minimising varifolds

have double points.

Next we create the handles by which we will connect spheres.

Lemma 3.2.13 (“flattening a catenoid”). Let R � 1. Then there exists a connected ori-

entable C∞-manifold Σ ⊂ R3 such that

Σ \ ZR =
(
{x3 = R+ 1/2} ∪ {x3 = −(R+ 1/2)}

)
\ ZR

where ZR is the cylinder ZR = Dcosh(R+1) × (−R+ 1/2, R+ 1/2) and furthermore

W(Σ) = O(e−2R),

∫
Σ

K dH2 = −4π
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where K denotes the Gaussian curvature of Σ.

Proof. Define the surface of revolution

Σ =



f(t) cosφ

f(t) sinφ

g(t)


∣∣∣∣∣∣∣∣∣ t, φ ∈ R

 .

If f(t) = cosh(t) and g(t) = t, Σ is the usual catenoid. We consider f = cosh and an even

C∞-function g satisfying

g(t) =

t |t| ≤ R

R+ 1/2 R ≥ R+ 1

, 0 < g′(t) ≤ 1 for |t| < R+1, −4 ≤ g′′(t) ≤ 0 for t ≥ 0.

Then clearly Σ is connected as the continuous image of a connected set and given as the

union of two planes outside the cylinder ZR. The volume element ds and the mean curvature

of Σ are

ds = f
√

(g′)2 + (f ′)2,

H =
ff ′′g′ − ff ′g′′ − g′(f ′)2 − (g′)3

f [(f ′)2 + (g′)2]
3/2

=
g′(ff ′′ − (f ′)2 − 1) + g′(1− (g′)2)− ff ′ g′′

f [(f ′)2 + (g′)2]
3/2

=
g′(1− (g′)2)− ff ′ g′′

f [(f ′)2 + (g′)2]
3/2

since ff ′′ − (f ′)2 − 1 = 0 for f = cosh. Thus

W(Σ) = 2π

∫ ∞
0

[
g′
(
1− (g′)2

)
− ff ′ g′′

]2
f [(f ′)2 + (g′)2]

5/2
dt

≤ 4π

∫ R+1

R

(g′)2(1− (g′)2)2

f [(f ′)2 + (g′)2]
5/2

+
f (f ′)2(g′′)2

[(f ′)2 + (g′)2]
5/2

dt

≤ 4π

∫ R+1

R

1

f (f ′)5
dt+ 4π

∫ R+1

R

f (g′′)2

|f ′|3 dt

= O(e−2R).

It remains to show that the total Gaussian curvature is −4π. When we orient Σ by choice
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of the normal vector

ν =
1

f
√

(f ′)2 + (g′)2


−f g′ cosφ

−f g′ sinφ

f f ′


we see that every unit vector ν = (sin θ)eφ + (cos θ)ez 6= (0, 0,±1) is the normal νx at the

unique point x ∈ Σ determined by the φ-coordinate and t given by

tan θ = − g
′(t)

f ′(t)
.

This is uniquely solvable except for tan θ = 0 by construction of g. We know that

K =
−(g′)2f ′′ + f ′g′g′′

f [(f ′)2 + (g′)2]
2 ≤ 0 (since f ′′ ≥ 0, f ′g′′ ≤ 0)

is the determinant of the Gauss map G : Σ→ S2, G(x) = νx, so

4π = H2(S2) = H2(G(Σ)) =

∫
Σ

|K|dH2 = −
∫

Σ

K dH2.

Now we are ready to prove this section’s main statement.

Proof of Theorem 3.1.5. We first give the proof for m = 2. Let β > 0 to be chosen later

depending on ε, δ > 0. Take Mβ constructed like in Lemma 3.2.11, δ > 0 such that Mβ

coincides with the plane {x3 = 1 − 3δ} inside the cylinder D2δ × (0, 1). We may specify

δ to be taken sufficiently small later. Take 0 < ρ < δ/2 such that there are g + 1 points

x1, . . . , xg+1 in Dδ/2 such that the discs Dρ(xi) are pairwise disjoint.

Choose R > 0 and Σ like in Lemma 3.2.13 such thatW(Σ) = O(e−2R) < β. Then choose

η > 0 such that η cosh(R+ 1) < ρ and ηR < δ3. Finally, define

r =
1− 3δ − (2R+ 1)η

1− 3δ
< 1, M̃ = Mβ ∪ r ·Mβ .

Since Mβ is convex, this is a smooth embedded manifold. By construction, inside the

cylinders

Zi := Dρ(xi)× {0 < z < 1}, i = 1, . . . , g + 1

M̃ is given by the union of the planes {z = 1−3δ} and {z = 1−3δ− (2R+ 1)η} which have

separation (2R+ 1)η. Since the Zi are disjoint, we can replace M̃ inside each cylinder by

xi +
1 + r

2
ez + η ·

(
Σ ∩ ZR

)
.
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We call the resulting manifold M . It is clear that M is a connected surface. Since both

the total curvature integral and Willmore’s energy are invariant under spatial rescaling and

since M is flat on the remaining segments, we have

W(M) = 2W(Mβ) + (g + 1)W(Σ) < (g + 3)β∫
M

K dH2 = 2

∫
Mβ

K dH2 + (g + 1)

∫
Σ

K dH2 = 2 · 4π + (g + 1) · (−4π) = 4π (1− g)

so that M is a closed smoothly embedded orientable genus g surface with small Willmore

energy. Unfortunately, M 6⊂ B1(0) and it is not clear after our modifications whether

H2(M) = 8π. If H2(M) > 8π, we only need to choose β = ε/(g + 3) and set

Mg =

√
8π

H2(M)
·M. (3.2.10)

The more complicated case is H2(M) ≤ 8π. Then at least

H2(M) ≥
(
1 + r2

)
H2
(
S2 \ [D4δ × (0, 1)]

)
≥ 8π − C δ2

since ηR < δ3 and thus r ≥ 1 − δ2. Now consider only the inner sphere, which is still

spherical around its south pole. Take a function h ∈ C∞c (Dr) on a small disc such that

h ≥ 0 and h 6≡ 0. Then we may replace a neighbourhood of the south pole of the inner

sphere by

Σ̃t =

{(
x,−

√
r2 − |x|2 + t h

(
x

α
√
t

)) ∣∣∣∣ x ∈ Br(0)

}
.

The resulting surface is denoted by M t. Again, this does not change the topological type,

but it changes the area and the Willmore functional by

H2(M t) ≥ H2(M) + c t2, W(Mt) ≤ W(M) + C t

as is computed in the proof of [MR14, Proposition 2], at least for suitable spherically sym-

metric h. Thus we can take t = O(δ) such that H2(M t) > 8π and define Mg again by

(3.2.10), this time choosing both β and δ small enough depending on ε > 0.

In the case of m ∈ N, m ≥ 3, we simply consider m concentric spheres and connect them

by m + g − 1 catenoids. The modification at the south pole can always be done only for

the innermost sphere. To picture that this procedure induces the correct topology, consider

first connecting the outer spheres by g + 1 catenoids. Then we connect the third sphere to

the second by one catenoid. This, however, only blows up a small topological disc to a large

one since the union of a catenoid and a sphere is homeomorphic to a sphere with a small
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disc around the north pole removed, i.e. a disc.

Remark 3.2.14. If we fix a genus g, then we can even find a C2-smooth map f : (0, ε)×M →
R3 which maps (t,M) to Mt constructed above. In particular, f(t,M) is a C∞-smooth

manifold for all t ∈ (0, ε). Clearly, the images converge as varifolds to an m-fold covered

sphere as t ↘ 0. We can continue the evolution past the m-fold covered sphere in various

ways. This describes a singularity in a geometric flow which may occur with decreasing

Willmore energy in finite time. It is unclear whether such singularities may appear in the

gradient flow of the Willmore functional.

Remark 3.2.15. It is a simple exercise to re-write the calculations above for any 1 < p <∞.

It is also easy to approximate the varifold induced by

∂B1(0, 0, 1) ∪ ∂B1(0, 0,−1)

by connected surfaces in the same way as above. This shows that no stronger notion of con-

nectedness for µ than topological connectedness of spt(µ) can be enforced, as the connection

can go through a single point in this case. By Hölder’s inequality, we see that connectedness

is stable at least for p ≥ 2, and we have seen in Example 3.2.8 that it is not stable for

p = 1. The Hausdorff-convergence result in the case p = 2 ceases to be valid for 1 < p < 2

(a counterexample is constructed as in Example 3.2.7), but we conjecture that the stability

of connectedness should be true in this range as well.

3.2.6 Application to Curvature Energies

Let us use Theorem 3.1.5 to illustrate phenomena occurring when we minimise curvature

energies under area constraint in the unit ball.

Proof of Corollary 3.1.6. By Theorem 3.1.5, there exists a sequenceNk ∈M := Mg,4mπ,B1(0)

such that W(Nk) < 4mπ + 1/k. So

inf
{
W(M)

∣∣M ∈M
}
≤ 4mπ.

Now let Mk be a minimising sequence in M . Take a subsequence of Mk. Due to Allard’s

compactness theorem [All72], there exists an integral varifold V with square integrable mean

curvature H such that a further subsequence converges to V as varifolds and

W(V ) ≤ lim sup
k→∞

W(Mk) = inf
{
W(M)

∣∣M ∈M
}
≤ 4mπ.
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The convergence of varifolds implies the convergence of their mass measures as Radon mea-

sures, so µV (B1(0)) = 4mπ and µV (Rn \ B1(0)) = 0, whence µV = m · H2|S2 by Lemma

3.2.3. Since every subsequence has a further subsequence which converges to the same limit

and varifold convergence is topological (as a convergence of Radon measures), we see that

the whole sequence converges.

Proof of Corollary 3.1.7. Since
∫
M
|H|2 dH2 > 4H2(M) by Lemma 3.2.3 for manifolds in

B1(0), a manifold M satisfying

4χHH2(M) ≥ E(M) = χH

∫
M

|H|2 dH2 + 4π χK

∫
M

K dH2 ≥ 4χHH2(M) + 4πχK (1− g)

has genus g = 0. As before

inf
{
E(M) |M ∈M4πm,B1(0)

}
= 16πmχH − 4π |χK |

is realised by smooth spheres converging to a multiplicity m sphere. As noted before, a

smooth multiplicity m-sphere V := m · H2|S2⊗TS2 has total Gaussian curvature
∫
K dV =

4πm. Thus

E(V ) = 4πm (4χH − |χK |) < 16πmχH − 4π |χK | = lim
k→∞

E(Mk).

If χK < −4χH , then multiplicity m-spheres illustrate that E is not bounded below on the

varifold closure of smooth surfaces, since m · H2|S2 can be approximated with finite energy

E .

Assume that Mk is a sequence of smooth surfaces with energy E bounded by C and Mk

converges to a varifold V . This implies that their genera and Willmore energies are bounded

by

g ≤ C

4π |χK |
+ 1, W(Mk) ≤ E(Mk) + 4π |χK |

so

∫
Mk

|A|2 dH2 =

∫
Mk

|H|2 − 2K dH2 ≤ 4 [ E(Mk) + 4π |χK | ] + 8π

[
C

4π |χK |
+ 1

]
.

This is uniformly bounded in k, so V is a curvature varifold [Hut86b]. Clearly

E(V ) ≥ χHW(V )− |χK |W(V ) ≥ −|χK |
∫
|A|2 dV

is a uniform bound from below in BS,Ω,C .
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The discontinuity is mathematically meaningful. As the catenoid collapses away, two

spheres remain in the limit. The Gaussian integral does not see that these spheres happen

to coincide.

Proof of Corollary 3.1.8. To approximate a multiplicity one-sphere by manifolds Mk, insert

a sphere of radius 1/k into a sphere of radius ≈ r and connect the two by gk catenoids,

gk →∞. Willmore’s energy is close to 8π, so the total energy is

E(Mk) =

∫
Mk

χkH(H −Hk
0 )2 dH2 +

∫
Mk

χkK K dH2

≤ C
∫
Mk

2
(
|H|2 + |Hk

0 |2
)

dH2 + δ

∫
Mk∩{K<0}

K dH2 + C

∫
Mk∩{K>0}

K dH2

≤ 2C
(
8π + 1 + C2

)
+ δ

∫
Mk

K dH2 +
C

4

∫
Mk∩{K>0}

H2 dH2

≤ 2C
(
8π + 1 + C2

)
+ 4πδ(1− gk) + C3/4

since K = λ1λ2 ≤ (λ1 + λ2)2/4 = H2/4 if λ1 and λ2 have the same sign. Clearly, this

goes to −∞ as gk → ∞. To approximate a Dirac measure, we approximate a multiplicity

m-sphere of radius rm = r/
√
m with genus g-manifolds M̃m, g � m.

3.3 Summary and Prospects

We have proven that a solution of Problem 1 exists in a generalised sense (Corollary 3.1.4

or Theorem 3.2.9) and satisfies very mild regularity properties (Theorem 3.1.1). We have

furthermore demonstrated that Problem 1 does not generally have a solution in a prescribed

topological class, so that the prescription of genus in the minimisation process is not possible

(Corollary 3.1.6). We have applied these results also to more general functionals of Canham-

Helfrich type and ruled out a certain parameter regime as physically not sensible.

The minimisation problem structurally resembles an obstacle problem with the additional

complication that the obstacle is given by the manifold itself and the boundary of the domain

Ω, as well as carrying a volume constraint. For this reason, high regularity of minimisers

cannot be expected, although the results of Theorem 3.1.1 are not expected to be optimal

for minimisers.

The fact that genus cannot be preserved rules out a parametric approach in the min-

imisation process (or at least poses a significant challenge). The structure as an obstacle

problem means that an Euler-Lagrange equation cannot be used to find a minimiser. The

non self-penetration constraint and the confinement to Ω pose serious problems as well,

since neither is preserved under Willmore flow, which is a fourth order equation (and thus
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does not support a maximum principle). Furthermore, a numerical implementation even of

non-constrained Willmore flow is challenging.

Having solved the existence problem, the second part of this thesis will focus on a phase-

field approach to finding minimisers in practice. We remark that the existence of minimisers

could also be deduced purely with phase-field methods. We will see phase-field analogues

of several sharp interface results below, which can also be used to partly recover the sharp

interface versions.
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Part II

Phase-Field Models for Thin

Elastic Structures
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Chapter 4

Preliminaries

4.1 Phase-Fields and Γ-convergence

A phase-field approach can be seen as a method which lifts problems posed for (n − 1)-

dimensional sets which are the boundaries of open subsets of Rn to a sequence of approx-

imating problems of smooth scalar fields on Rn. It is clear that any problem involving an

open set E and its boundary ∂E can equally well be written as a problem involving only

its characteristic function χE . To simplify notation, we take a step away from notational

convention from now on and let the characteristic function be +1 inside a set and −1 (not

0) outside.

Often, technical problems arise from considering sets imbued with the L1-topology of

their characteristic functions, which leads to issues in defining the boundary. This is over-

come using the concept of the reduced boundary ∂∗E and related geometric techniques

[Giu84]. Sets where this works well are known as Caccioppoli sets or sets of finite perimeter

and are characterised by χE ∈ BVloc(Rn) (or sometimes as appropriately χE ∈ BV (Ω) for

some Ω b Rn). They include all sets with Lipschitz boundaries and are the largest class of

sets on which we can define a perimeter functional or on which we have a version of Gauss’

theorem. For C1-sets, the boundary and reduced boundary agree.

Assuming that we can re-write problems involving both an open set and its boundary

into problems involving functions taking the values ±1, we can go one step further and

introduce a small parameter ε > 0, a length scale for a regularised transition instead of the

jump that χE makes on ∂E. A phase-field approach rewrites a minimisation problem

F(E) = min{F (U) | U ∈ O}
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for some energy F and a class O ⊂ TRn of open sets into a series of regularised minimisation

problems

Fε(uε) = min{Fε(w) | w ∈ Xε}

for suitable function spaces Xε. The idea behind this is that as ε → 0, uε should converge

to a function u, which we then hope will contain information about the minimising set E,

and Fε(uε) should approach F(u). Thus we need the minimisers uε of the ε-problems to

converge to a minimiser of the sharp interface problem in a suitable sense. The topology

of choice for this convergence is often the strong L1-topology, which is the same topology

we expect on the class O. In this setting, the appropriate notion of convergence for the

functionals Fε → F is Γ-convergence.

Definition 4.1.1. Let (X, τ) be a topological space, Fε,F : X → (−∞,∞] functions,

x ∈ X. Then we say that Fε Γ-converges to F at x and write

[
Γ− lim

ε→0
Fε
]

(x) = F(x)

if the following two conditions are met.

1. For every sequence xε → x, we have lim infε→0 Fε(xε) ≥ F(x).

2. There exists a sequence xε → x such that lim supε→0 Fε(xε) ≤ F(x).

We say that Fε Γ-converges to F if it Γ-converges at every point.

Occasionally, the topology τ on the space X may not be obvious; in that case we may

write Γ(τ)-convergence. For notational purposes, we remark that by Γ(Lp)-convergence we

mean convergence with respect to the strong (norm) topology of the Lp-space. The sequence

in the lim sup-inequality is usually referred to as a recovery sequence.

This notion of convergence is related to the phase-field regularisation of our original

sharp interface problem by the following observation.

Lemma 4.1.2. If Γ− limε→0 Fε = F and xε → x0 is a sequence such that

lim
ε→0
Fε(xε) = lim

ε→0
inf
x∈X
Fε(x),

then F(x0) = infx∈X F(x).

In other words, the limit of (almost) minimisers of Fε is a minimiser of F (if it exists).

To employ this argument, usually the topology τ is chosen in a way that provides a suitable

compactness for the sequence xε. The sum of Γ-convergent functionals is not necessarily
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Γ-convergent (as recovery sequences need not be compatible), but this is true if one of the

sequences converges uniformly. For these and more properties of Γ-convergence, see [Bra02].

If we wish to simplify a problem involving a sharp boundary between two phases in

Rn (which is generally hard to solve both analytically and numerically), we expect two

ingredients in the energies Fε:

1. A strongly penalised term depending on a potential W with exactly two absolute

minimisers at ±1, for example W (s) = (s2 − 1)2. This is needed for minimisers uε to

converge to a function taking only these two values.

2. A singular perturbation which regularises the ε-problem but disappears in the limit,

often a term involving an integral of a power of the gradient. This ensures that we

gain regularity so that the ε-problem becomes easier to solve, but disappears in the

limit so that the original singular problem is recovered.

Obviously, phase-fields may be used in much more general contexts. Phase-fields may

be vector valued and describe either hyper-surfaces or lower-dimensional objects, depending

on the vanishing set of the potential W . The introduction above sketched how a phase-

field may be used to approximate a complicated sharp-interface problem by more regular

phase-field problems, but often, the process is reversed. In many physical applications,

sharp boundaries are an idealisation of transition layers which are small in one dimension

compared to the size of the domain, but do have finite extension (thin membranes, fluid

mixtures). The phase-field approach to the Willmore problem presented in the first part of

this dissertation falls into the first category, while another project of mine [DKW17] (joint

work with P. W. Dondl and M. Kurzke) belongs to the second.

This chapter is used to review known results which will either be used in the following or

facilitate the understanding of later parts of the thesis. As such, the results of this Chapter

are not new. Unless referenced to the contrary, the proofs were written by myself, but the

same or similar arguments can be found in the literature referenced throughout the chapter.

4.2 The Example of Modica and Mortola

The simplest conceivable energy satisfying the above conditions is probably

Fε(u) :=

∫
Ω

ε

2
|∇u|2 +

1

ε
W (u) dx
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for some open set Ω b Rn with a function W ∈ C0(R) satisfying

W (±1) = 0, W (z) > 0 ∀ z ∈ R \ {−1, 1}, lim inf
|z|→∞

W (z) > 0.

A prominent example is W (z) = (z2−1)2

4 . The energy Fε is usually known as the Modica-

Mortola functional. It contains two competing quantities: While the gradient term favours

functions to be essentially constant, the potential term forces them to remain close to the

potential wells in most places. Assuming that both terms have the same order of magnitude

in the limit, we are lead to conjecture that sequences uε along which Fε(uε) remains bounded

have large sets where uε ≈ ±1 separated by transition layers of width ∼ ε where |∇uε| =

O(ε−1).

This observation suggests that an area-segment of this transition should contribute a

fixed amount of energy, and that a suitable limit for Sε would be a multiple of the relative

perimeter functional

Per(E,Ω) =


1
2

∫
Ω

d|DχE | χE ∈ BV (Ω)

∞ else.

Sets E ⊂ Ω such that χE ∈ BV (Ω) are called sets of finite perimeter or Caccioppoli sets.

The perimeter functional is a generalised measure for the size of the boundary ∂E inside Ω,

specifically Per(E) = Hn−1(∂∗E). Again, ∂∗E denotes the reduced boundary of E [Giu84].

Note that this differs from the usual notation (but not normalisation) by a factor of 1/2

which is due to the fact that our characteristic functions have a jump of height two at the

boundary, not of height one.

This intuition was made rigorous by Modica and Mortola in [Mod87, MM77]. To simplify

matters, let us assume that

1. W ∈ C2(R) and W ′′(±1) > 0,

2. W is monotone and satisfies the growth-condition W (s) ≥ s2 on (−∞,−R] ∪ [R,∞)

for some large R > 0 and

3. ∫ ∞
R

1√
W (s)

+
1√

W (−s)
ds <∞. (4.2.1)

In particular, this is obviously true for the potential W (s) = 1
4 (s2 − 1)2 which we will use

in the following.
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Theorem 4.2.1. Let Ω b Rn and set

Fε : L1(Ω)→ R, Fε(u) =


∫

Ω
ε
2 |∇u|2 + 1

ε W (u) dx u ∈W 1,2(Ω)

∞ else.

Then

Γ(L1)− lim
ε→0
Fε = c0 Per(·,Ω), c0 =

∫ 1

−1

√
2W (s) ds.

If uε is any sequence such that lim supε→0 Fε(uε) is bounded, then there exists u ∈ BV (Ω, {−1, 1})
such that uε → u strongly in Lp(Ω) for all p < 2 (up to a subsequence).

We give a brief proof since ideas from it will be used in the remainder of this dissertation.

For the standard potential W (s) = (s2−1)2

4 we can compute directly c0 = 2
√

2
3 .

Proof. Step 1. Let us first prove the compactness result. Take any sequence uε ∈W 1,2(Ω)

such that

lim sup
ε→0

Fε(uε) <∞.

Then

Fε(uε) =

∫
Ω

ε

2
|∇uε|2 +

1

ε
W (uε) dx

=

∫
Ω

1

2ε

(
ε |∇uε| −

√
2W (uε)

)2

dx+

∫
Ω

√
2W (uε) |∇uε|dx (4.2.2)

≥
∫

Ω

√
2W (uε) |∇uε|dx.

Thus when we take G to be any primitive function of
√

2W , we see that the sequence

wε := G(uε) satisfies

lim sup
ε→0

∫
Ω

|∇wε|dx <∞.

Furthermore

lim sup
t→∞

G(t)

W (t)
= lim sup

t→∞

1

W (t)

(
C +

∫ t

R

√
2W (s) ds

)
≤ lim
t→∞

∫ t

R

√
2W (s)

W (t)
ds

≤
√

2

∫ ∞
R

1√
W (s)

ds <∞.

The same holds for t → −∞, so there exists C > 0 such that G ≤ C (1 + W ). It follows

that also

lim sup
ε→0

∫
Ω

|wε|dx ≤ lim sup
ε→0

C (Ln(Ω) + εF(uε)) <∞,
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so in total that wε is bounded in BV (Ω). Using the BV -compactness theorem and the

compact embedding into Lp(Ω) for 1 ≤ p < n/(n−1), we deduce that there exists w ∈ BV (Ω)

such that (up to a subsequence) wε → w strongly in Lp(Ω) for all p < n/(n− 1) with

|Dw|(Ω) ≤ lim inf
ε→0

∫
Ω

|∇wε|dx ≤ lim inf
ε→0

Fε(uε). (4.2.3)

Since G(uε)→ w in L1(Ω), a subsequence converges pointwise almost everywhere. As G is

strictly monotone increasing, we can take its inverse function and obtain that uε → G−1(w)

pointwise almost everywhere. Using W (s) ≥ s2 for all sufficiently large |s|, the bound on∫
Ω
G(uε) dx implies that uε is bounded in L2(Ω). By a standard result on concentrations and

weak compactness (see e.g. [Bre11, Exercise 4.16]) we have that (1) uε → G−1(w) pointwise

and (2) uε is bounded in L2(Ω) together imply that uε → u = G−1(w) strongly in Lp(Ω)

for all 1 ≤ p < 2.

Step 2. If uε → u strongly in L1(Ω) and lim supε→0 Fε(uε) <∞, then w = G(u) almost

everywhere, since L1-convergence implies convergence pointwise almost everywhere for a

subsequence. Clearly u only takes the values ±1 and w only the values G(−1), G(+1), thus

one can easily relate their gradient measures by the difference in the height of the jump:

|Du| = 1− (−1)

G(1)−G(−1)
|Dw| = 2∫ 1

−1

√
2W (s) ds

|Dw|

as measures and thus

c0 Per(∂{u = 1}) =
c0
2
|Du|(Ω) = |Dw|(Ω) ≤ lim inf

ε→0
Fε(uε)

due to (4.2.3). This concludes the proof of the lim inf-inequality.

Step 3. For now we assume E b Ω such that Per(E,Ω) = Per(E,Rn) = Per(E). We

imagine the phase-field uε as an approximation of the characteristic function of a set E

which makes a smoothed out transition on a length-scale ε at the boundary ∂E. Let us for

the moment assume that ∂E ∈ C2. Then we approximate the signed distance function

sdist(x, ∂E) =

dist(x, ∂E) x ∈ E

−dist(x, ∂E) x /∈ E

by a function r such that

1. there exists a neighbourhood Uδ = {dist(x, ∂E) < δ} of ∂E such that r(x) = sdist(x, ∂E)

for all x ∈ U ,
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2. r ≥ δ outside Uδ,

3. r ∈ C2(Rn) and

4. |∇r| ≤ 1.

Since ∂E ∈ C2, sdist is C2-smooth in a neighbourhood of ∂E and satisfies

∇ sdist(x) = ν∂E,π(x), in particular |∇ sdist | ≡ 1

on Uδ, where the closest point projection π : Uδ → ∂E is C2-smooth and uniquely defined

(for small δ > 0). We then set

uε(x) := q

(
r(x)

ε

)
where q : R→ R is a function satisfying limx→±∞ q(x) = ±1. To get the optimal transition

profile which will give us the minimal energy, we choose q as a solution of the optimal profile

problem in one dimension, which is a solution of the Euler-Lagrange equation

q′′ −W ′(q) = 0, lim
x→±∞

q(x) = ±1, q(0) = 0

of the functional Sε in one dimension with length scale ε = 1. The function q will be

constructed in detail below in Lemma 4.3.1. We will use two properties in the following:

1. |q′|2 = 2W (q) and

2. 1− C e−αx ≤ q(x) ≤ 1 for all x ∈ R for some suitable C,α > 0.

Now, using the co-area formula [EG92, Section 3.4] and the first identity, we see that for

every 0 < β < δ we have

∫
Ω

ε

2
|∇uε|2 +

1

ε
W (uε) dx− C ε−2 exp(−δ/ε) ≤

∫
Uδ

ε

2
|∇uε|2 +

1

ε
W (uε) dx

=

∫
Uβ

1

2ε
(q′)2

(
sdist

ε

)
+

1

ε
W

(
q

(
sdist

ε

))
dx

=

∫
Uβ

1

ε

√
2W

(
q

(
sdist

ε

))
q′
(

sdist

ε

)
· 1 dx

=

∫ β

−β

(∫
{sdist=z}

1

ε

√
2W

(
q

(
sdist

ε

))
q′
(

sdist

ε

)
dHn−1

)
dz

=

∫ β

−β

1

ε

√
2W

(z
ε

)
q′
(z
ε

)
Hn−1 ({sdist = z}) dz

=

∫ β/ε

−β/ε

√
2W (q) q′

(
Hn−1(∂E) + o(1)

)
dz
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→ c0H
n−1(∂E)

= c0Per(E)

where the term o(1) is uniformly small for small β. If E is not compactly contained, then

we can use the same construction as before on compact sets Ω′ b Ω and then let Ω′ → Ω.

This gives precisely the relative perimeter.

Step 4. It remains to show that Caccioppoli sets E contained in Ω can be approximated

by sets En with C2-boundaries in the strong L1-topology such that

|DχEn |(Ω)→ |DχE |(Ω).

Then a diagonal sequence of the recovery sequences for En can be used as a recovery sequence

for E. Since all our sets will be limits of C2-boundaries by assumption (with the further

property that the approximating surfaces have uniformly bounded Willmore energy), we will

skip this part of the proof and refer the interested reader to [Giu84, Theorem 1.24].

We note that the proof is entirely analytic, hiding the geometry behind embedding

theorems, the co-area formula and, crucially, the chain rule. For this reason, the proof does

not generalise to the case when the gradient term is replaced by a fractional Sobolev norm.

A different proof is presented in [Bra02] using slicing arguments can be generalised to more

general situations, see the remarks at the end of this chapter.

Obviously, potentials growing faster at ±∞ give better bounds on uε. In particular, for

W (u) = 1
4 (u2− 1)2, we get strong convergence in Lp(Ω) for all p < 4. From now on, we will

consider the normalised functional Sε = 1
c0
Fε, which approximates the perimeter-functional.

Remark 4.2.2. If E b Ω, a slight additional modification shows that we could restrict Sε to

−1+W 1,2
0 (Ω) or even −1+W 2,2

0 (Ω) and obtain the perimeter-functional as the Γ-limit. The

lim inf-inequality trivially remains in tact, and the recovery sequence can easily be modified

like this since q, q′ approach 1, 0 exponentially fast away from ∂E, such that the boundary

conditions are almost satisfied anyway. The exponential decay is shown in Lemma 4.3.1

for q and implied by the equality |q′|2 = 2W (q) also for q′ since W (±1) = W ′(±1) = 0

and W ′′(±1) > 0. The equation q′′ = W ′(q) also implies exponential decay for the second

derivative.

Often, the limit u of a finite energy sequence uε is not overly instructive since there

may be ‘ghost interfaces’ where two interfaces meet and disappear in the limit. This stems

from the fact that the gradient of a BV-function resembles a current, while we work more

naturally in a varifold setting. For this reason, it may be more instructive to consider
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associated measures which are stable in the limit. Thinking of Sε as an approximation of

a perimeter functional, we can localise this to a diffuse surface area Radon measure defined

through

µuε (U) =
1

c0

∫
Ω∩U

ε

2
|∇u|2 +

1

ε
W (u) dx (4.2.4)

on open sets U ⊂ Rn. We call µuε a diffuse surface measure and note that Sε(u) = µuε (Rn).

By the compactness Theorem for Radon measures, if lim supε→0 Sε(uε) < ∞, then there is

a subsequence ε→ 0 (not relabelled) and a Radon measure µ such that

µε := µuεε
∗
⇀ µ

as Radon measures (i.e. in the weak* topology when interpreting Radon measures as dual

to continuous functions on Ω).

4.3 The Stationary Allen-Cahn Equation

In the proof of Theorem 4.2.1, we have used the existence and properties of the optimal

profile q, which we will now prove. The profile is governed by the one-dimensional version

of the stationary Allen-Cahn equation

∆u = W ′(u). (4.3.1)

Lemma 4.3.1. Let W ∈ C1(R) with W (−1) = W (1) = 0 and W > 0 in (−1, 1). Then

there exists a unique solution q ∈ C2(R) of the equation

q′′ −W ′(q) = 0 (4.3.2)

satisfying

lim
x→−∞

q(x) = −1, q(0) = 0, lim
x→∞

q(x) = 1.

The function q satisfies

|q′|2 = 2W (q) (4.3.3)

pointwise and if W ∈ C2(R) and W ′′(1) > 0, then there exist C,α > 0 such that

1− C e−αx ≤ q(x) < 1 ∀ x ∈ R.

If W (s) = W (−s), then q(−x) = −q(x). Equations (4.3.3) and (4.3.2) also imply exponen-

tial decay for q′ and q′′ respectively.
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For the standard example W (z) = (z2−1)2

4 , the optimal profile q is a rescaled version of

the hyperbolic tangent, which serves to illustrate the properties in a specific case.

Proof. Assume that q solves (4.3.2), then we also have

d

dx

( |q′|2
2
−W (q)

)
= q′q′′ −W ′(q) q′ = (q′′ −W ′(q)) q′ = 0,

so
|q′|2

2
−W (q) ≡ c ∈ R.

We wish to find a transition between −1 and +1, so it is clear that c cannot be positive,

since otherwise |q′| ≥ √c does not have bounded C1-solutions. If c is negative, on the other

hand, |q′|2 < 0 at the zeros of W , so we cannot reach ±1. Thus only c = 0 is admissible. So

instead of solving (4.3.2) with conditions at ±∞ and 0, we solve

q′+ =
√

2W (q+), q+(0) = 0 (4.3.4)

forwards in time, for which a unique solution q ∈ C1[0, L+) exists by the Picard-Lindelöff

theorem for some maximal L+ > 0 – the Lipschitz continuity of
√
W follows from the

smoothness of W . Similarly, we solve

q′− = −
√

2W (q−), q−(0) = 0

and then define

q(t) =

q+(x) x > 0

q−(−x) x < 0

.

Clearly, q is C1-smooth on the interval (L−, L+) and due to the C1-smoothness and positivity

of W also C2-smooth, except possibly at the origin. By construction, q′ > 0 and q is

monotone increasing. Taking the square of the first order ODE (4.3.4) and differentiating

with respect to time, we obtain

0 =
d

dx

(
(q′+)2 − 2W (q+)

)
= 2

(
q′′+ −W ′(q+)

)
q′+

which implies q′′+−W ′(q+) = 0 since q′+ > 0. The same holds for q−, and by continuity, q is

C2-smooth also at the origin and a solution of (4.3.2). Let us now show that limx→±∞ q(x) =

±1.

Since q′ > 0, the limit q∞ := limx→L+ q(x) exists (but might be infinite). But since

W (1) = 0 and
√
W is Lipschitz-continuous, we immediately see that q∞ ≤ 1. If q∞ < 1,
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then q′ ≥
√
W (q∞) > 0 and thus L+ <∞, but then we could continue q by

q̃′+ =
√

2W (q), q̃+(L+) = q∞,

so L+ would not have been maximal. We deduce that q∞ = 1. Applying the same argument

for negative x, we see that q transitions between −1 and 1 on (L−, L+). Now assume that

W is C2-smooth and W ′′(1) > 0. When x is large, q is close to 1 and we observe that

(1− q)′ = −q′ = −
√

2W (q)

≈ −
√

2W (1) + 2W ′(1) (q − 1) +W ′′(1) (q − 1)2 = −
√
W ′′(1) |q − 1|

since W (1) = W ′(1) = 0 in the potential well. Thus (1 − q)′ ≤ −C (1 − q) for a slightly

smaller constant C and we obtain the exponential decay of 1− q.

If W behaves differently around ±1, we can observe different behaviour of q and tran-

sitions between ±1 in finite time. The proof above illustrates that the optimal profile q is

the only interesting solution of the stationary Allen-Cahn equation in one dimension. In n

dimensions, we can give a trivial solution by

u(x) = q(〈v, x〉+ b), v ∈ Sn−1, b ∈ R,

but other bounded smooth solutions are known to exist. In two dimensions, examples are

known which approximate saddle configurations [DFP92, dPKPW10]. The most prominent

solution in this class has a zero level set given by the coordinate axes in R2 and is positive

in the first and third quadrants and negative in the second and fourth. Other solutions exist

with alternating positive and negative sectors whose borders are asymptotic to a union of

lines intersecting in the origin. Solutions asymptotic to minimal surfaces in three dimensional

space are also known to exist [dPKW13].

For the solutions described above, clearly∇u(0) = 0, so the identity |∇u|2 = W (u) which

we used to construct the optimal profile in one dimension cannot hold anymore. However,

it does hold as an inequality which is often referred to as a Modica-type gradient bound.

Theorem 4.3.2. [Mod85] Let W ∈ C3(R) and u ∈ W 2,2
loc (Rn) ∩ L∞(Rn) be a solution of

(4.3.1). Then

|∇u|2 ≤ 2W (u). (4.3.5)

Furthermore, −1 < u < 1 or u ≡ ±1.

In fact, if equality holds everywhere in (4.3.5), then u is automatically the special solution
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described by extending an optimal profile. The following result is presumably very classical

and well-known, but I have not found a reference for it.

Lemma 4.3.3. Let n ≥ 2 and u ∈W 2,2
loc (Rn) ∩ L∞(Rn) such that

−∆u+W ′(u) = 0 and
|∇u|2

2
= W (u).

Then either u ≡ ±1 or u(x) = q(〈v, x〉+ b) for some v ∈ Sn−1, b ∈ R.

Proof. From the elliptic equation we immediately obtain that u ∈ C∞(Rn) and due to

Theorem 4.3.2, we see further that |u| < 1 or u ≡ ±1. If u is not constant, we can write

u = q ◦ (q−1 ◦ u) = q ◦ r

for a function r ∈ C∞(Rn). We compute

∇u = (q′ ◦ r)∇r

∆u = (q′′ ◦ r) |∇r|2 + (q′ ◦ r) ∆r

and deduce from

0 =
1

2
|∇u|2 −W (u) =

1

2
|q′ ◦ r|2 |∇r|2 −W (q ◦ r)

that |∇r|2 ≡ 1, so

0 = ∆u−W ′(u) = (q′′ ◦ r) + (q′ ◦ r) ∆r −W ′(q ◦ r) = (q′ ◦ r) ∆r.

This implies that ∆r = 0 on the whole space since q′ > 0. So r is a harmonic function with

|∇r|2 ≡ 1. It follows that ∂ir is a bounded harmonic function on Rn for all i = 1, . . . , n.

Thus ∂ir is constant by Liouville’s theorem and

∇r ≡ v ⇒ r(x) = 〈v, x〉+ t0.

In general, solutions to the Allen-Cahn equation u : Rn → (−1, 1) can be written in this

form and satisfy

0 = (q′′ ◦ r) (|∇r|2 − 1) + (q′ ◦ r) ∆r
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and |∇r| ≤ 1 due to the Modica gradient bound. The stationary Allen-Cahn equation

is the fundamental object for work relating to energies of Modica-Mortola type since it

characterises blow-ups of energy minimisers. For simplicity, we only prove the following

theorem for the standard potential

W (u) =
(u2 − 1)2

4

which satisfies (
W ′(u)

)2 ≤ 4 ||u||2∞W (u).

Theorem 4.3.4. Let Ω b Rn, uε : Ω → R a sequence of minimisers of Sε under the

condition that
1

|Ω|

∫
Ω

uε dx = θ ∈ (−1, 1).

Assume additionally that the sequence uε is uniformly bounded in L∞(Ω). Then for any

Ω′ b Ω and any sequence xε ∈ Ω′, the functions

ûε : Br/ε(0)→ R, ûε(y) = uε(xε + εy)

converge to a function û as ε→ 0 weakly in W 2,p(U) for all p <∞ and U b Rn where û is a

smooth solution of the stationary Allen-Cahn equation. Here r is such that dist(Ω′, ∂Ω) > r.

Proof. We can take variations uε + tφ where
∫

Ω
φ dx = 0 to obtain the Euler-Lagrange

equation −ε∆uε + 1
ε W

′(uε) = λε in Ω

∂νuε = 0 on ∂Ω.

where λε is not yet determined and arises from the fact that we cannot vary in directions

with non-zero integral. However, we can estimate

λε =
1

|Ω|

∫
Ω

λε dx

=
1

|Ω|

∫
Ω

−ε∆uε +
1

ε
W ′(uε) dx

=
1

|Ω|√ε

∫
Ω

1√
ε
W ′(uε) dx

≤ 1

|Ω|√ε
√
|Ω|
(∫

Ω

1

ε
W ′(uε)

2 dx

) 1
2

≤ 1√
|Ω| ε

(∫
Ω

1

ε
4 ||uε||2∞W (uε) dx

) 1
2
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≤
√

4 ||uε||2∞ µε(Ω)

|Ω| ε

Thus λε ≤ C ε1/2 and

(−∆ûε +W ′(ûε)) (y) =
(
−ε2∆uε +W ′(uε)

)
(xε + εy)

= ε

(
−ε∆uε +

1

ε
W ′(uε)

)
(xε + εy)

= ε λε.

The right hand side goes to zero at least like
√
ε. Using that ûε is uniformly bounded in

L∞(U), we see that ∆uε is uniformly bounded in Lp(U) and thus by Calderon-Zygmund

theory uε is bounded uniformly in W 2,p(U) for for all p < ∞ and all U b Rn (passing to

some larger U ′ for the regularity argument). The weak limit û satisfies the equation

−∆û+W ′(û) = 0

since the Laplacian converges weakly and the non-linear term converges as ûε → û strongly

in C0(U) due to Morrey’s embedding theorem.

In the next chapter, we will see an analogue of this statement also for the Willmore

case. The theorem above is somewhat crude and can be improved significantly (see e.g.

[LM89]), but it serves to illustrate the importance of the Allen-Cahn equation. As a simple

consequence, we see that the L∞-bound can be improved to

max
x∈Ω′

|uε(x)| → 1.

4.4 Equi-Partition of Energy

Since ‘good’ sequences uε are well-described by the Allen-Cahn equation on small scales and

solutions to the Allen-Cahn equation satisfy the Modica gradient bound, we can hope that

they also satisfy a similar property. We see in (4.2.2) that any recovery sequence for the

Modica-Mortola functional also needs to have an asymptotic equipartition of energy in a

suitable sense, since the lim sup-property can only hold if

lim sup
ε→0

∫
Ω

1

2ε

(
ε |∇uε| −

√
2W (uε)

)2

dx ≤ 0.
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To measure failure of the equi-partition of energy in the Modica-Mortola functional we

introduce the following discrepancy measures:

ξε(B) =
1

c0

∫
B

ε

2
|∇uε|2 −

1

ε
W (uε) dx

ξε,+(B) =
1

c0

∫
B

(
ε

2
|∇uε|2 −

1

ε
W (uε)

)
+

dx

|ξε|(B) =
1

c0

∫
B

∣∣∣∣ε2 |∇uε|2 − 1

ε
W (uε)

∣∣∣∣ dx.

The equi-partition property needed for the lim sup-construction in the Modica-Mortola func-

tional implies |ξε| → 0 since

lim sup
ε→0

∫
Ω

∣∣∣∣ε2 |∇uε|2 − 1

ε
W (uε)

∣∣∣∣ dx

= lim sup
ε→0

∫
Ω

∣∣∣∣∣
√
ε

2
|∇uε|+

√
W (uε)

ε

∣∣∣∣∣ ·
∣∣∣∣∣
√
ε

2
|∇uε| −

√
W (uε)

ε

∣∣∣∣∣ dx

≤ lim sup
ε→0

∫
Ω

(√
ε

2
|∇uε|+

√
W (uε)

ε

)2

dx

 1
2
∫

Ω

(√
ε

2
|∇uε| −

√
W (uε)

ε

)2

dx


≤ lim sup

ε→0

√
4 c0 µε(Ω)

(
1

2ε

∫
Ω

(
ε |∇uε| −

√
2W (uε)

)2

dx

) 1
2

= 0.

Note that ξε ≤ 0 for the recovery sequence of the Modica-Mortola functional since

|∇r| ≤ 1 for our approximation r of sdist(·, ∂E) (compare Lemma 4.3.3) and that |ξε| → 0

exponentially fast in ε. Indeed, it is generally true that |ξε| ∗⇀ 0 as Radon measures in the

Willmore case [RS06, Proposition 4.9]. The importance of the discrepancy measures will

become apparent in the next chapter, but intuitively it is already clear that |ξε| is related

to how badly blow-ups of uε can behave and that ξε,+ is somewhat more problematic than

ξε,− since ξε,+ needs to vanish for behaviour similar to the stationary Allen-Cahn equation,

while ξε,− just needs to vanish to ensure that blow ups are in fact optimal profiles.

4.5 Willmore’s Energy

It is well known that mean curvature is the L2-gradient of the area functional – in fact, this

variational principle serves to define the mean curvature in the class of varifolds. When we

think of the Modica-Mortola functional Sε as an approximation of the area functional on
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hyper-surfaces, it is natural to think of its gradient

δSε(u;φ) =

∫
Ω

ε 〈∇u,∇φ〉+
1

ε
W ′(u)φ dx

=

∫
Ω

(
−ε∆uε +

1

ε
W ′(uε)

)
φdx

as an analogue of mean curvature. The mean curvature of a level set Mα := {u = α} of a

C2-function u : Ω→ R at x ∈Mα is given by

H(x) = − div

( ∇u
|∇u|

)
(x),

(see e.g. [ES91]), so H(x) = ∆u(x) if |∇u| ≡ 1 in a neighbourhood of x, see also [GT83,

Section 14.6]. Thus we see

∆ sdist(x, ∂E) = −Hπ(x) + o(1)

in Uδ, also using the C2-smoothness of sdist (if sdist > 0 inside the compact set E and

negative outside for sign convention). Now we can easily compute

−ε∆uε +
1

ε
W ′(uε) = −1

ε
q′′
(r
ε

)
|∇r|2 − q′

(r
ε

)
∆r(x) +

1

ε
W ′
(
q
(r
ε

))
= q′

(r
ε

) [
Hπ(x) + e(x)

]
. (4.5.1)

inside Uδ where e(x) → 0 as sdist(x, ∂E) → 0, using the same identities as in Lemma

4.3.3. Outside of Uδ, the optimal profile vanishes exponentially quickly, so the integral is

not affected. Again, we could equally well consider Wε to be defined only on −1 +W 2,2
0 (Ω)

if we are interested in E b Ω. Thus, after dividing by c0ε for normalisation purposes, we

see that
1

c0ε

∫
Ω

(
−ε∆uε +

1

ε
W ′(uε)

)2

dx→W(∂E)

arguing exactly as for the Modica-Mortola functional. This is the lim sup-inequality for the

Γ-convergence Wε →W for

Wε(u) =
1

c0ε

∫
Ω

(
−ε∆u+

1

ε
W ′(u)

)2

dx

and has been established in [BP93]. The lim inf-inequality is a lot harder to establish and

has been proven in dimension n = 2 in [NT07] and in dimensions n = 2, 3 in [RS06]. The

proof of the lim inf-inequality is quite difficult and we give only a very brief sketch here.

Several results of [RS06] are improved in the main text so that the methods are instructive
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also for our purposes.

Theorem 4.5.1. [RS06] Let n = 2, 3, Ω b Rn and uε ∈W 2,2(Ω) such that

lim sup
ε→0

(Sε +Wε)(uε) <∞.

Then the associated mass measures µε converge weakly as Radon measures to a measure

µ supported in Ω (up to a subsequence). There is an integral varifold V in Ω with square

integrable mean curvature H such that µ is its mass measure and

µ(Ω) = lim
ε→0

µε(Ω), W(µ) ≤ lim inf
ε→0

Wε(uε).

If µ ≥ |DχE | with ∂E ∈ C2, then W(µ) ≥ W(∂E).

Regularity of µ up to the boundary holds only if boundary conditions are assumed, as

will be shown in Chapter 6.

Sketch of Proof: 1. A quantitative estimate for the positive part of the discrepancy mea-

sures is established only from bounds on (Sε +Wε)(uε) without any assumption of

minimality. This estimate also plays an important role for us and can be found in

Lemma 5.2.7 in this thesis. This and other technical points (see Lemmas 5.2.2 and

5.2.8 for improved versions as well as Corollary 5.2.3) are the content of the third

section of [RS06].

2. A monotonicity formula (Lemma 5.2.4) in suitably estimated form (Lemma 5.2.5) and

a result on the local behaviour close to spt(µ) (compare Lemmas 7.2.2 and 7.2.4) is

used to establish a lower bound on the n − 1-dimensional density of µ. This implies

further |ξε| → 0 by a Radon-Nikodym argument and that the varifolds

Vε(φ) =

∫
Ω

φ (x, νε(x)) dµε(x),

converge to a rectifiable varifold V with mass measure µ in the varifold sense. Here

νε = ∇uε
|∇uε| if ∇uε 6= 0 and νε = 0 otherwise is the diffuse normal direction. This is the

content of the fourth section of [RS06].

3. A blow up argument and a diffuse version of Allard’s multi-layer proposition are used

together with a result on the behaviour of transition layers (compare Lemma 7.2.2)

to establish the integrality of µ. This is the content of the fifth and final section of

[RS06].
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4. When it is established that µ is an integral varifold with mean curvature H ∈ L2(µ),

under the assumption that uε → χE with ∂E ∈ C2, a result from [Sch09] implies that

W(∂E) ≤ W(µ) ≤ lim inf
ε→0

Wε(uε).

This is explained in the first section of [RS06].

As before, we localise Wε using associated Radon-measures. Denote

hε = −ε∆uε +
1

ε
W ′(uε)

and

αε(B) :=
1

c0ε

∫
B

h2
ε dx.

4.6 Summary, Notation, Assumptions

For a sequence uε, we have introduced the following Radon measures: The mass measures

µε(B) =
1

c0

∫
B

ε

2
|∇uε|2 +

1

ε
W (uε) dx

which localise the Modica-Mortola energy, the diffuse Willmore measures

αε(B) =
1

c0ε

∫
B

(
ε∆uε −

1

ε
W ′(uε)

)2

dx =
1

c0ε

∫
B

h2
ε dx

which localise the diffuse Willmore functional and the discrepancy measures

ξε(B) =
1

c0

∫
B

ε

2
|∇uε|2 −

1

ε
W (uε) dx.

The measures ξε are signed (expected to be non-positive) and we also consider the positive

measures ξε,+ associated with their Hahn-decomposition and their total variation measures

|ξε|.
We will always assume that uε is a sequence such that

sup
ε>0

(Sε +Wε)(uε) <∞

and such that u ∈ BV (Ω) and Radon measures µ, α exist which satisfy uε → u in L1(Ω)

and µε
∗
⇀ µ, αε

∗
⇀ α in the weak* topology of Radon measures. We may later impose more
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restrictive conditions, and we will usually only consider so small ε that

(Sε +Wε)(uε) ≤ (µ+ α)(Ω) + 1.

This is always possible by choosing an appropriate subsequence. Later we will also consider

the functional

Fε(u) :=Wε(u) + ε−σ (Sε(u)− S)2 : −1 +W 2,2
0 (Ω)→ [0,∞)

for some σ > 0, which approximates Willmore’s energy in the following sense. Note the

reduced domain in definition due to modelling assumptions.

Theorem 4.6.1. Let E b Ω b Rn with n = 2, 3 such that ∂E ∈ C2 and Hn−1(∂E) = S.

Then there exists a sequence uε → χE in L1(Ω) such that

Fε(uε)→W(∂E).

If uε is any sequence such that lim supε→0 Fε(uε) <∞, then there exist limits u = limε→0 uε

in L1 and µ = limε→0 µε as Radon measures where

|Du| ≤ 2µ, spt(µ) ⊂ Ω, µ(Ω) = S

and µ is an integral varifold with square-integrable mean curvature satisfying

W(µ) ≤ lim inf
ε→0

Fε(uε).

In particular, this means that

Γ(L1)− lim
ε→0
Fε =W

at χE with E b Ω, ∂E ∈ C2 and Hn−1(∂E) = S when we interpret the Willmore functional

of a BV-function as acting on the essential boundary.

Proof. The usual recovery sequence can be used, potentially for a set

Eε = (1 + ρε)E

to fix Sε(uε) ≡ S so that the penalisation disappears in the limit, independently of the power

σ. A slight modification suffices to ensure uε ∈ −1 + W 2,2
0 (Ω) since E b Ω. By Theorem

4.5.1, µ exists and the relation between u and µ is readily established since it holds for finite

73



74 CHAPTER 4. PRELIMINARIES

ε and is compatible with the different ways of taking limits for measures and BV-functions.

The energy inequality is obvious since Fε ≥ Wε and finite energy sequences have uniformly

bounded diffuse area Sε.

Using the energy bound from [BM10, Theorem 4.1], we could take Bellettini and Mugnai’s

approximation of the Helfrich energy

EHel
ε (u) =

∫
Ω

2 + χ

2ε
h2
u,ε −

χ

2ε

∣∣∣∣ε∇2u− W ′(u)

ε
νu ⊗ νu

∣∣∣∣2 dx

for χ ∈ (−2, 0) in place of the diffuse Willmore energy Wε. Here hu,ε is the usual Willmore

density associated with u and νu = ∇u/|∇u| is the diffuse normal direction. This extends

our results for phase-field approximations of Willmore’s energy to certain Canham-Helfrich

functionals.

4.7 Concluding Remarks

This introduction has been tailored to include the relevant properties and examples of phase-

fields for this thesis, which is dedicated to minimising Willmore’s energy. In other research by

the author [DKW17], a different application is discussed where the gradient term is replaced

by a fractional Sobolev H1/2-norm. Functionals of this type arise in physical modelling

when Dirichlet’s energy is minimised over a half-space given certain boundary values, which

can in the stationary (or quasi-stationary) case be treated solely in terms of the boundary

values. The limits of functionals of this type can be local or non-local perimeter functionals

depending on the power s of the fractional Sobolev space Hs in the functional

Es,ε(u) =
1

cε

(
1

2
[uε]

2
Hs(Rn) +

∫
Rn

1

ε
W (u) dx

)
.

In the case s ≤ 1/2, the optimal profile solution of

−(−∆)su = W ′(u), u′ > 0, lim
x→±∞

u(x) = ±1

on R does not have finite energy. In fact, any function on the real line having two different

limits at +∞ and −∞ cannot have finite energy due to the non-locality of the norm. The

case s < 1/2 is thus known as properly non-local, and the operator −(−∆)s bears some

resemblance to an integral rather than a differential operator as the singularity at 0 is mild

and the decay is slow. A function with finitely many jump discontinuities and compact
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support u ∈ BV ((0, 1), {0, 1}), however, has finite energy. Thus we choose

cε =


1 s < 1/2

| log ε| s = 1/2

ε(2s−1)/(2s) s > 1/2

.

For s ≥ 1/2, (a slightly modified version of the functionals) Es,ε converges to the ordinary

perimeter functional, for s ≤ 1/2, the limit is a non-local perimeter functionals introduced

in [CRS10] as shown in [SV12]. The non-local perimeter functionals on the other hand Γ-

converge to the usual perimeter as s→ 1/2 as shown in [ADPM11]. With this normalisation

the transition length for s ≤ 1/2 is proportional to ε and proportional to ε1/(2s) if s ≥ 1/2,

a more useful normalisation in less unified notation is

E ′ε,s(u) =
ε2s−1

2
[u]2s +

∫
Rn

1

ε
W (u) dx.

For the sake of completeness, we will list a few further properties of phase-fields in this

context which will not be relevant in this dissertation, but help place it in the wider context

or current research. The review aims only at the illustration of interesting related results

and makes no claim of historical or mathematical completeness, which lies far beyond the

scope of a brief chapter.

1. Minimisers uε of the Modica-Mortola functional on bounded domains with prescribed

integral 1
|Ω|
∫

Ω
uε dx ≡ S ∈ (0, 1) constraint converge (up to the choice of a sub-

sequence) uniformly to ±1 away from a hypersurface which is the boundary of a

Caccioppoli set which is locally area minimising with prescribed volume [Mod87] and

[CC95, Theorem 2] under the assumption that a priori −1 < uε < 1. The sequence of

Lagrange multipliers remains bounded and plays the rôle of constant mean curvature

[LM89].

This result has been extended in [HT00] to not necessarily minimising stationary points

uε of the Allen-Cahn functional under total integral constraint without any a priori

bound on uε, i.e. for solutions of

−ε∆uε +
1

ε
W ′(uε) = λε

under the condition that the sequence of Lagrange multipliers λε is uniformly bounded.

Along a subsequence, we obtain limits λε → λ0, µε
∗
⇀ µ where µ is an integral varifold
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with mean curvature λ0. A rate of convergence

∣∣ |uε| − 1
∣∣ ≤ CΩ′ε

for Ω′ b Ω \ spt(µ) has been established. The proof is given only for convergence

from outside [−1, 1], but the result holds more generally with an only slightly modified

proof.

2. Local minimisers of the Modica-Mortola functional near local minimisers of the perime-

ter functional in Ω (without integral constraint) have been constructed in [KS89].

3. In [Sav10], a conjecture of de-Giorgi was settled that solutions of the stationary Allen-

Cahn equation on Rn for n ≤ 8, which are monotone in one direction, are necessarily

one-dimensional. More precisely, if

∆u = W ′(u), |u| ≤ 1, ∂x1u > 0 on Rn, and lim
x1→±∞

u(x) = ±1,

then u(x) = q(〈v, x〉 + b) for some v ∈ Sn−1. Furthermore, a global minimiser of

S1 on Rn is one-dimensional if n ≤ 7. Counterexamples in higher dimensions exist

[dPKW09], analogous to the change of behaviour in minimal surfaces.

4. Solutions to the Allen-Cahn equation [AC79]

εut = ε∆u− 1

ε
W ′(u),

(which is the time-normalised L2-gradient flow of the Modica-Mortola energy) with

well-prepared initial conditions for a surface M = ∂E converge to solutions of mean

curvature flow in a suitable sense, which is the L2-gradient flow of the perimeter

functional [Ilm93].

More precisely, an initial condition u0
ε is chosen such that u0

ε → χE in L1(Ω), Sε(u
0
ε)→

Per(E) and such that |u0
ε| ≤ 1, ξ0

ε ≤ 0, then the associated measures

µtε =

(
ε

2
|∇uε(t, ·)|2 +

1

ε
W (uε(t, ·))

)
· Ln

converge as Radon measures to a motion by mean curvature in the sense of Brakke

[Bra78], and for non-fattening initial conditions the zero level sets approach level set

mean curvature flow [ESS92]. Non-uniqueness of Brakke flow at four-junctions can be

recovered for different well-prepared initial conditions. Results for the related Allen-

Cahn action functional or volume-preserving mean curvature flows are also available,
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see [MR11, MR08] and [Tak15] respectively.

The question whether this holds for multi-phase flows (where for example W has three

wells in R2) is still open and related to the properties of the discrepancy measures. In

the scalar case, the non-positivity of the discrepancy measures is propagated in time,

while it is not even clear whether an initial condition with non-positive discrepancy

measure exists at a triple junction in the vector valued case. In fact, non-positivity

fails for solutions of a stationary vector valued Allen-Cahn equation

∆u = Wu(u)

when u : R2 → R2 and W is chosen to vanish on the unit circle (Ginzburg-Landau

model). Similarly, it fails for the fractional case. It is not clear whether it can be

attained in the classical case with when W has three zeros in the plane. Multi-phase

flows are used for example in the modelling of crystal grain growth and would be a

valuable extension of the theory.

5. The ε in front of the time-derivative in the Allen-Cahn equation is included to obtain

the right time-normalisation. The asymptotic expansion (4.5.1) shows that

(
ε∆uε −

1

ε
W ′(uε)

)
(x) ≈ Hπ(x) q

′
(

sdist(x, ∂E)

ε

)

if uε(x) = φ(sdist(x, ∂E)) and π : Ω → ∂E is the nearest point projection. The

interface of uε has slope proportional to ε−1, so to have an interface translating in

normal time, we need ut = O(ε−1), which means that we need to rescale time as above

– the same is obtained by a formal analysis making the ansatz

uε(t, x) = q′
(

sdist(x, ∂E(t))

ε

)

where E(t) is a family of sets moving smoothly by mean curvature. The procedure

should be complemented by a constant ansatz far away from the interface.

We can consider the terms in the Allen-Cahn equation separately. The first half,

ut = ∆u is the usual heat equation and describes the diffusion of the interface. It acts

on a unit time-scale and wants to ‘melt’ the steep bump to make uε flatter. The heat

flow out of the interface is proportional in second order to the mean curvature. The

second half of the equation, ut = − 1
ε2W

′(u) is an ODE which sorts u ∈ (0, 1) into the

potential well at 1 and u ∈ (−1, 0) into the potential well at −1 on a very fast time-

scale. Splitting these two parts formally into solving the heat equation for a short time
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and then sorting u ∈ [0, 1) to 1 and u ∈ (−1, 0) to −1 and repeating the procedure is

the idea of the thresholding scheme [MBO92]. The thresholding scheme also converges

to mean curvature flow, but to level set flow, not Brakke flow [ES91, Eva93].

6. As the Allen-Cahn equation approximates mean curvature flow and interfaces in di-

mension 1 are collections of points which do not have any curvature, it is clear that

solutions of Allen-Cahn equation for well-prepared initial data in dimension n = 1

should become stationary in the limit ε → 0 on the usual time-scale. In fact, more

quantitative statements hold. In [CP89a] and [FH89] it is shown that solutions of the

Allen-Cahn equation

e−1/εεut = εuxx −
1

ε
W ′(u), x ∈ (0, 1), ux(0) = ux(1) = 0

with well-prepared initial data for jumps at position h0
j , 1 ≤ j ≤ n converges to a

function u as ε → 0 which takes only the values −1, 1 and jumps at locations hj(t)

governed by an explicit system of ODEs.

A heuristic motivation for this behaviour can be found in [CP89b]. Thus the dy-

namics of solutions to the Allen-Cahn equation in one dimension are exponentially

slow in one dimension – in technical terms, well-prepared initial conditions for tran-

sitions at a finite number of points are dynamically metastable. Algebraic slowness

has also been obtained by energy methods [BK90] (also for Dirichlet boundary val-

ues in {−1, 1}) which were extended in [Gra95] to prove exponential slowness, also

for the related Cahn-Hillard equation (see below) and its vector-valued version, the

Cahn-Morral system. The energy method has been generalised in [OR07] to more

generic systems exhibiting dynamic metastability and applied as an example to the

Allen-Cahn equation.

Considerations on different time-scales for not well-prepared initial data (phase-separation

and formation of meta-stable patterns on short scales), or potentials W with two-wells

of different depth can be found for example in [Che92, Che04]. A more extensive

review than this can be found in the introduction of [MR16].

The situation is entirely different if the gradient term is replaced by a fractional Sobolev

norm. While solutions to the local Allen-Cahn equation in one dimension become

exponentially slow as ε → 0, they are only logarithmically slow if the H1/2-semi-

norm is used instead. This surprisingly fast motion has been described for example in

[GM12, PV15, PV16] and plays a key role in the author’s work on crystal dislocations

[DKW17].
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7. While in the case of the Allen-Cahn equation, the limit of solutions to the gradient

flow is a solution to the gradient flow of the limit in an appropriate sense, this is not

immediate – consider for example the ‘wiggly’ potentials

fε : R→ R, fε(x) = x2 + 2ε sin(x2/ε).

The sequence fε converges uniformly to f0(x) = x2, thus also in the sense of Γ-

convergence, but a solution to the gradient flow of the limit f0 approaches the ab-

solute minimum at x = 0 exponentially fast as t → ∞ independently of its initial

condition, while solutions to the gradient flows of fε never move more than ±
√

2πε

from their initial value. This phenomenon also arises in practical applications, leading

to interesting dynamic behaviour which is not captured by energy limits [DKW17].

8. The Modica-Mortola energy also plays a role in two-phase fluids where u represents

the concentration of one of the two phases. There the energy is usually rescaled and

also known as the Cahn-Hilliard energy

E(u) =

∫
Ω

W (u) +
ε2

2
|∇u|2 dx.

The dynamics here are usually described by the Cahn-Hillard equation

ut = ∆
(
W ′(u)− ε2∆u

)
which is the H1-gradient flow of E . The Cahn-Hilliard equation has the advantage

of being volume preserving (given suitable boundary conditions) which is physically

sensible in this context. For perturbations of a constant or very rough initial conditions,

this models phase-separation over time given a small surface tension. Solutions of the

Cahn-Hillard equation converge to solutions of the non-local evolution law know as

Mullins-Sekerka motion (or two-phase Hele-Shaw flow) [Peg89, ABC94, Che96].

9. The title ‘On a modified conjecture of De Giorgi’ of [RS06] refers to the fact that the

functional proposed by De Giorgi in [DG91] does not integrate h2
ε with respect to the

suitably normalised Lebesgue measure, but with respect to the diffuse curvature mea-

sure µε itself. While this may be conceptually more satisfying, the modern functional

Wε has analytic and numerical advantages. In particular, Wε is quadratic in the high-

est order derivatives, namely the Laplacian. Thus the associated evolution equation is

linear in these with constant coefficients, which is significantly more tractable than the

highly non-linear coupling that would occur in the original functional. The modified
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energy is due to Bellettini and Paolini [BP93].

The simple structure of the functional (especially compared to the highly non-linear

Willmore functional) is one of its main advantages. On the other hand, the linearisation

also leads to a certain non-convergence phenomenon. Namely, the Γ-limit of Wε is W
at C2-boundaries and thus by diagonal approximation

Γ(L1)− lim
ε→0
Wε ≤ W̃

where W̃ is the lower semi-continuous envelope of Willmore’s energy with respect to

the L1-topology of open sets. Unfortunately, equality does not hold. For example,

strict inequality holds at a figure eight configuration in R2 where a saddle solution to

the stationary Allen-Cahn equation is used around the singular point. On the other

hand, the figure eight cannot be approximated by smooth boundaries with uniformly

bounded energy since the smoothness at the singularity forces a curvature blow up,

see [BP93, BDMP93].

Note, however, that any figure eight given by an immersed smooth curve is an integral

varifold with square-integrable mean curvature. Alternative functionals have been

proposed which do not have this deficiency by controlling the mean curvatures of the

individual level sets, see e.g. [Bel97]. On the other hand, this leads to very non-linear

energies which do not lend themselves to numerical implementation.

10. The phase-field approximation of Willmore’s energy described above and others as well

as their L2-gradient flows are reviewed in [BMO13]. A convergence result for a diffuse

approximation of certain more general Helfrich-type functionals has also been derived

by Belletini and Mugnai [BM10].

Numerical implementations of phase-field models can be found for example in [BKM05,

DLRW05, DLW05, DLW06, DW07, DLRW07, DLRW09, Du10, WD07]. The two-step

time-stepping algorithm of [BR12] was adapted for phase-field evolutions in [FRW13].
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Chapter 5

On the Uniform Convergence of

Phase-Fields

5.1 Introduction

This chapter is dedicated to the study of how phase-fields uε for Willmore’s energy approach

their limit u away from the set spt(µ) where uε makes a fast transition. It is clear that L1-

convergence holds; in fact, it is easy to show that Lp-convergence holds for all p < ∞. We

will show that L∞-convergence does not hold in three dimensions, but will give a strong

substitute which we name essentially uniform convergence. The chapter focuses on technical

properties of phase-fields, which will be needed in the applications in Chapter 7. In this

chapter, we will always make the following non-restrictive assumptions:

1. The sequence uε has finite energy, i.e. lim supε→∞ Eε(uε) := (Wε + Sε)(uε) <∞,

2. all quantities have a limit, i.e. uε → u in L1(Ω), µε ⇀ µ and αε ⇀ α and

3. ε is small enough for the phase-fields to resemble the limit in the sense that we assume

that µ(Rn) = µ̄, α(Rn) = ᾱ and µε(Rn) ≤ µ̄+ 1, αε(Rn) ≤ ᾱ+ 1.

We can take a continuous representative of uε ∈ W 2,2(Ω) ↪−→ C0,1/2(Ω) if Ω is regular

and uε ∈ C0,1/2
loc (Ω) else. For u we take the representative that is constant ±1 on Ω \ spt(µ)

(which exists since |Du| ≤ 2µ). Then the following hold.

Theorem 5.1.1. 1. Let Ω′ b Ω. Then there exists C > 0 such that |uε| ≤ C on Ω′ for

all ε < dist(Ω′, ∂Ω)2 and uε ∈ C0,1/2(Bε(x)) for all x ∈ Ω′ with

|uε(y)− uε(z)| ≤
C

ε1/2
|y − z|1/2 ∀ y, z ∈ Bε(x).
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2. Let Ω′ b Ω. Then uε → u in Lp(Ω′) for all 1 ≤ p <∞.

3. Let n = 2, Ω′ b Ω. Then there exist ε̄ > 0, C > 0 such that

sup
x∈Ω′

|uε(x)| ≤ 1 + C ε1/2 ∀ ε < ε̄.

4. Let n = 2, Ω′ b Ω \ spt(µ). Then there exist ε̄ > 0, C > 0 such that

sup
Ω′
|uε − u| ≤ C ε1/2 ∀ ε < ε̄

5. Let n = 2, I b (−1, 1) not empty. Then there exists a compact set K ⊂ Ω and a

subsequence ε → 0 (not relabelled) such that u−1
ε (I) → K in Hausdorff distance. K

satisfies

K ∩ Ω = spt(µ) ∩ Ω.

6. Let n = 3, τ > 0. Then there are only finitely many points x ∈ Ω with the following

property:

∃ xε → x such that lim sup
ε→0

|uε(xε)| ≥ 1 + τ.

The number of points can be bounded in terms of µ̄, ᾱ and τ .

7. Let n = 3, τ > 0. Then there are only finitely many points x ∈ Ω \ spt(µ) with the

following property:

∃ xε → x such that lim sup
ε→0

∣∣uε(xε)− u(x)
∣∣ ≥ τ.

The number of such points can be bounded in terms of µ̄, ᾱ and τ .

8. Let n = 3, Ω′ b Ω \ spt(µ). If α has no atoms in Ω′, then uε → u uniformly on Ω′.

In particular, if V is an integral varifold supported in Ω with mass measure µ such

that µε → µ and additionally αε(Ω)→W(µ), then uε converges to u uniformly on all

Ω′ b Ω \ spt(µ).

9. Let n = 3, I b (−1, 1). Then there exists a compact set K ⊂ Ω and a subsequence

ε→ 0 (not relabelled) such that u−1
ε (I)→ K in Hausdorff distance. K satisfies

K ∩ Ω = (spt(µ) ∩ Ω) ∪ {x1, . . . , xN}

for finitely many points x1, . . . , xN ∈ Ω. The number N can be bounded in terms of µ̄,

ᾱ and I. If α has no atoms outside spt(µ), then K ∩ Ω = spt(µ) ∩ Ω.
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10. There exists a countable set ∆ ⊂ Ω \ spt(µ), such that uε → u pointwise everywhere

on Ω \ (spt(µ)∪∆). In particular, for C b Ω \ spt(µ), s > 0 such that Hs(C) <∞ we

have that uε → u Hs|C-almost everywhere. Since uε is uniformly bounded in L∞(C),

furthermore uε → u in Lp(Hs|C) for all p <∞.

11. If Ω1 b Ω2 b Ω and |uε| ≥ 1/
√

2 on Ω2, then there exists C > 0 such that

µε(Ω1) ≤ C ε2.

The condition |uε| ≥ 1/
√

2 is always satisfied for small enough ε if either n = 2 or if

n = 3 and all atoms of α are sufficiently small.

The statement and the proof are split over Corollaries 5.2.3, 5.2.23, Lemma 5.2.8, The-

orems 5.2.12, 5.2.13, 5.2.18, 5.2.21 and 5.2.27.

Under the same assumptions, Nagase and Tonegawa [NT07] proved (3) and uniform

convergence in two dimensions. For the sake of completeness, we repeat their argument

in the proof of Theorem 5.2.12 here and apply their techniques to establish the rate of

convergence, which was only partly established there.

The differences between the cases n = 2 and n = 3 arise from the sharp interface problem,

not the phase-field approximation. Namely, due to the fact that Willmore’s energy is scale

invariant, the sequence of manifolds

Mk = ∂B1(0) ∪ ∂B1/k(0)

has Willmore energy W(Mk) ≡ 32π in n = 3 dimensions. It satisfies Mk → ∂B1(0) in

the measure sense, but Mk → ∂B1(0) ∪ {0} in Hausdorff distance. Such a sequence can

be used to show that uniform convergence cannot hold for the phase-field problem. The

analogue of Willmore’s energy on curves (Euler’s elastica energy) is not scale invariant since

the exponent of the mean curvature p = 2 is higher than the dimension n − 1 = 1 of the

manifold.

It is an important feature of our analysis that we only assume that Eε(uε) is bounded

and not necessarily that uε is a local minimiser or stationary point of a related functional

under suitable side conditions. This is of central importance for applications in biology,

where Willmore’s energy is usually not the only term contributing to the total energy in a

model.

We will give an example of a sequence of functions demonstrating that β = 1/2 is the

optimal rate of convergence. Also in three dimensions, our result is sharp. While the
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formulation is new, it is geometrically intuitive. Namely, the sets

∆τ := {x ∈ Ω \ spt(µ) | ∃ xε → x such that lim sup
ε→0

|uε(xε)− u(x)| ≥ τ}

and ∆ :=
⋃
τ>0 ∆τ =

⋃∞
k=1 ∆1/k encode how far uε is from converging uniformly to u. Since

u is locally constant on Ω\spt(µ), it is easy to see that uε → u locally uniformly on Ω\spt(µ)

if and only if ∆ = ∅. We show that the τ -distant sets ∆τ are finite for all τ > 0, but may

be non-empty. So while uniform convergence cannot be achieved in general, the set where

it fails by any given positive amount is as small as can be.

This is still a strong statement, and we shall call such functions converging essentially

uniformly on Ω\spt(µ). Essentially uniform convergence is especially suited for investigating

functionals that depend on individual level sets and can be used to deduce uniform conver-

gence for certain minimising sequences, see Section 5.3. The new technique is particularly

useful in fourth order problems where energy competitors cannot be constructed as easily

as in generalised Modica-Mortola functionals.

The chapter is organised as follows. In Section 5.2.1, we collect a few helpful results

that will us allow to deal with the boundedness and Lp-convergence of uε in Section 5.2.2,

uniform convergence in two and three dimensions in Sections 5.2.3 and 5.2.4 respectively

and Hausdorff convergence of the level sets of uε to spt(µ) in Section 5.2.5. Applications

to uniform convergence for minimisers, the stationary Allen-Cahn equation and varifold

geometry in three dimensions will be discussed in Section 5.3. We conclude the chapter with

examples demonstrating that our results are sharp in Section 5.4.

5.2 Proofs

5.2.1 Auxiliary Estimates

In this section, we will collect a few improved estimates. The first Lemma is essentially

obvious from the energy estimates, but important in controlling the Sobolev norms of uε

from the control over Eε(uε).

Lemma 5.2.1. Let uε ∈ W 2,2(Ω). Then there is a constant C depending on Eε(uε) and Ω

such that

||uε||2,Ω ≤ C, ||∇uε||2,Ω ≤
C√
ε
, ||∆uε||2,Ω ≤

C

ε7/2
.

If ∂Ω ∈ C0,1, we may use the Sobolev embeddings to see that uε ∈ C0,1/2(Ω). On irregular

sets, uε is still regular in the interior.

Proof. The first two estimates follow directly from the bound on Sε as above. The bound
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on ∆uε follows from an application of Young’s inequality to obtain

ε

2

∫
Ω

(∆uε)
2 dx ≤ αε(Ω) +

∫
Ω

1

ε3
W ′(uε)

2 dx

together with the estimate

1

ε3

∫
Ω

W ′(uε)
2 dx ≤ C

ε3

(
1 + ||uε||66,Ω

)
≤ C

ε3

(
1 + ||uε||61,2,Ω

)
≤ C

ε3+6/2
. (5.2.1)

Obviously, the Laplacian estimate is far from being optimal. When we have uniform

L∞-bounds over a set Ω′, the integral can be dominated by 4 ||uε||2∞
∫

Ω′
W (uε) dx instead,

so ||∆uε||2,Ω′ = O(ε−3/2). This is indeed the growth rate for optimal interfaces.

The next Lemma is a sharpened version of [RS06, Propositions 3.4 and 3.5] concerning

how much mass the measures µε can create while the phase-fields remain close to ±1 or even

outside [−1, 1].

Lemma 5.2.2. Let Ω0 b Ω∞ ⊂ Ω, and δ := dist(Ω0, ∂Ω∞). Then for any N ≥ 1 we have

∫
Ω0∩{|uε|>1}

2ε |∇uε|2 +
1

2ε
W ′(uε)

2 dx

≤
1−

(
(N+2) ε

2 δ

)N
1− (N+2) ε

2 δ

ε2

2
αε(Ω∞ ∩ {|uε| > 1})

+

(
(N + 2) ε

2 δ

)N ∫
Ω∞∩{|uε|>1}

2ε |∇uε|2 +
1

2ε
W ′(uε)

2 dx

and for 0 < τ < 1− 1/
√

2 we have

µε(Ω0 ∩ {1− τ ≤ |uε| ≤ 1})

≤
(

4τ +
4 (N + 2) ε

δ

)1−
(

2 (N+2) ε
δ

)N
1− 2 (N+2) ε

δ

µε(Ω∞ ∩ {|uε| ≤ 1− τ})

+
ε2

2

1−
(

2 (N+2) ε
δ

)N
1− 2 (N+2) ε

δ

 αε(Ω∞ ∩ {|uε| < 1})

+

(
2 (N + 2) ε

δ

)N
µε(Ω∞ ∩ {1− τ ≤ |uε| ≤ 1}).

To understand these complicated estimates better, let us first deduce a few easy conse-

quences in the limit ε→ 0.
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Corollary 5.2.3. 1. Assume that r > 0 and Br(x) b Ω. Then

lim sup
ε→0

4µε(Br ∩ {|uε| > 1})
ε2

≤ α(Br).

2. Assume that |uε| ≥ 1/
√

2 on Br+δ for some r, δ > 0 and all sufficiently small ε > 0.

Then

lim sup
ε→0

2µε(Br ∩ {|uε| < 1})
ε2

≤ α(Br).

3. Assume that Ω′ b Ω′′ and that |uε| ≥ 1/
√

2 on Ω′′. Then there exist ε0, C > 0 such

that

µε(Ω
′) ≤ C ε2 ∀ ε < ε0.

4. Assume that Ω′ b Ω′′. Then there exist ε0, C > 0 such that

µε (Ω′ ∩ {|uε| > 1}) ≤ C ε2 ∀ ε < ε0.

5. Let x ∈ Rn, r > 0, 0 < τ < 1− 1/
√

2. Then

lim sup
ε→0

µε
(
{uε ≥ 1− τ} ∩Br(x)

)
≤ 4 τ µ

(
Br(x)

)
.

Proof. The statement is essentially obvious from Lemma 5.2.2 with the complicated terms

all vanishing as ε→ 0. For the first point, we use Lemma 5.2.2 with N ≥ 10 and Br, Br+δ

for small δ > 0 in conjunction with

∫
Br+δ

1

ε
W ′(uε)

2 dx ≤ Cµ̄,ᾱ,r,n ε−4

from (5.2.1) to bound
∫
{|uε|>1}

1
ε W

′(uε)
2 dx over Br+δ. Note that W ′(u)2 ≥ 4W (u) for

u ≥ 1 and take first ε→ 0 and subsequently δ → 0.

For the second point, N = 3 suffices. Here the key feature is that µε(B ∩ {|uε| <
1/
√

2}) = 0 for all B ⊂ Br+δ(x) since |uε| ≥ 1/
√

2. The third and fourth points follows

very similarly.

The fifth point is proven by considering balls Br(x) and Br+δ(x) first and then taking

ε→ 0 and subsequently δ → 0.
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Proof of Lemma 5.2.2. Take g ∈ C0,1(R) and η ∈ C0,1
c (Ω) and calculate

∫
Ω

hε g(uε) η dx =

∫
Ω

(
−ε∆uε +

1

ε
W ′(uε)

)
g(uε) η dx

=

∫
Ω

ε g′(uε) |∇uε|2 η + ε g(uε) 〈∇uε,∇η〉+
1

ε
W ′(uε) g(uε) η dx.

We specify either

g(u) =

W
′(u) |u| ≥ 1− τ

W ′(1−τ)
1−τ u |u| ≤ 1− τ

and Aτ := {1− τ ≤ |uε|}, Bτ := {|uε| < 1− τ}

where |uε| lies above (respectively below) 1− τ or

g(u) =


W ′(1−τ)

1−τ u |u| ≤ 1− τ

W ′(u) 1− τ ≤ |u| ≤ 1

0 |u| ≥ 1

and Aτ := {1−τ ≤ |uε| ≤ 1}, Bτ := {|uε| < 1−τ}.

In both cases we can write

∫
Ω

hε g(uε) η dx =

∫
Aτ

W ′′(uε) ε |∇uε|2 η +
1

ε
W ′(uε)

2 η dx

+
W ′(1− τ)

1− τ

∫
Bτ

ε |∇uε|2 η +
1

ε
W ′(uε)uε η dx

+

∫
Ω

ε g(uε) 〈∇η,∇uε〉dx

≥
∫
Aτ

(3 (1− τ)2 − 1) ε |∇uε|2 η +
1

ε
W ′(uε)

2 η dx

− τ (1 + τ)

∫
Bτ

ε |∇uε|2 η +
1

ε
(u2
ε − 1)u2

ε η dx

+

∫
Ω

ε g(uε) 〈∇η,∇uε〉dx.

This can be rearranged to

∫
Aτ

(3 (1− τ)2 − 1) ε |∇uε|2 η +
1

ε
W ′(uε)

2 η dx+ τ (1 + τ)

∫
Bτ

1

ε
(1− u2

ε)u
2
ε η dx

≤ τ (1 + τ)

∫
Bτ

ε |∇uε|2 η dx+

∫
Ω

hε g(uε) η dx−
∫

Ω

ε g(uε) 〈∇η,∇uε〉dx.
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We will further estimate the last two terms on the right hand side. Observe that∣∣∣∣∫
Ω

hε g(uε) η dx

∣∣∣∣ ≤ ∫
Ω

(
1

2ε
g(uε)

2 +
ε

2
h2
ε χ{g 6=0}

)
η dx

=

∫
Aτ

1

2ε
W ′(uε)

2 dx+

∫
Bτ

1

2ε
τ2(1 + τ)2 u2

ε dx+
ε

2

∫
{g 6=0}

h2
ε η dx.

Inserted in the previous inequality (with two terms on the left hand side), this gives

∫
Aτ

(3 (1− τ)2 − 1) ε |∇uε|2 η +

(
1

ε
− 1

2ε

)
W ′(uε)

2 η dx

+
τ (1 + τ)

ε

∫
Bτ

(
1− u2

ε −
τ (1 + τ)

2

)
u2
ε η dx (5.2.2)

≤ τ (1 + τ)

∫
Bτ

ε |∇uε|2 η dx+
ε2

2

∫
{g 6=0}

1

ε
h2
ε η dx+

∫
Ω

ε g(uε) 〈∇η,∇uε〉dx.

Finally, we consider the term involving the gradient of η, which we now specify. First, we

choose a sequence of sets Ω0 b Ω1 b . . . b ΩN−1 b Ω∞ such that dist(∂Ωk, ∂Ωk+1) ≥
δ/(N + 1) and dist(∂ΩN−1, ∂Ω∞) ≥ δ/(N + 1). Now, we take a cut-off function 0 ≤ η ≤ 1

satisfying η ≡ 1 on Ω0, η ≡ 0 outside Ω1 and |∇η| ≤ (N + 2)/δ. First consider

g(u) = W ′(u) · χ{|u|>1}

which corresponds to the first type of function g for τ = 0. Then (5.2.2) simplifies to

∫
{|uε|>1}

(
2ε |∇uε|2 +

1

2ε
W ′(uε)

2

)
η dx ≤ ε2

2

∫
{|uε|>1}

1

ε
h2
ε η dx+

∫
Ω

ε g(uε) 〈∇η,∇uε〉dx

which implies the weaker estimate

∫
Ω0∩{|uε|>1}

2ε |∇uε|2 +
1

2ε
W ′(uε)

2 dx

≤ ε2

2
αε(Ω1 ∩ {|uε| > 1}) +

(N + 2) ε

2 δ

∫
Ω1∩{|uε|>1}

2ε |∇uε|2 +
1

2ε
W ′(uε)

2 dx.

We perform this estimate iteratively for pairs Ωk,Ωk+1 and ΩN−1,Ω∞ to obtain

∫
Ω0∩{|uε|>1}

2ε |∇uε|2 +
1

2ε
W ′(uε)

2 dx

≤ ε2

2

(
N−1∑
k=0

(
(N + 2) ε

2 δ

)k)
αε(Ω∞ ∩ {|uε| > 1})

+

(
(N + 2) ε

2 δ

)N ∫
Ω∞∩{|uε|>1}

2ε |∇uε|2 +
1

2ε
W ′(uε)

2 dx.

Simplifying the sum by a geometric series gives the correct formula. Now we may focus on
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the case τ ∈ (0, 1− 1/
√

2). In this situation, take g for general τ with g ≡ 0 above 1. Then

clearly the following inequalities hold and may be used to simplify (5.2.2):

1. 3 (1− τ)2 − 1 ≥ 3
(
1/
√

2
)2 − 1 = 3/2− 1 = 1/2,

2. 1
2W

′(uε)
2 = 1

2 u
2
ε (u2

ε − 1)2 ≥ 1
4 (u2

ε − 1)2 = W (uε) for uε ≥ 1− τ ≥ 1/
√

2,

3. τ2 u2
ε ≤ τ2(1− τ)2 ≤ τ2(2− τ)2 = 4W (1− τ) ≤ 4W (uε) for |uε| ≤ 1− τ and

4. 1− u2
ε − τ(1 + τ)/2 ≥ 1− (1− τ)2 − τ(1 + τ)/2 = 3τ(1− τ)/2 ≥ 3τ/8 for |uε| ≤ 1− τ .

Thus, when we simplify the constants, (5.2.2) implies that

∫
{1−τ<|uε|<1}

(
ε

2
|∇uε|2 +

1

ε
W (uε)

)
η dx+

3 τ2

8

∫
{|uε|≤1−τ}

1

ε
u2
ε η dx

≤ 2τ

∫
{|uε|≤1−τ}

ε |∇uε|2 η dx+
ε2

2

∫
{|uε|<1}

1

ε
h2
ε η dx+

∫
Ω

ε g(uε) 〈∇η,∇uε〉dx.

Again we use Young’s inequality to deal with the boundary integral.

∫
Ω

ε g(uε) 〈∇η,∇uε〉dx ≤
∫
{1−τ≤|uε|≤1}

ε |W ′(uε)| |∇uε| |∇η|dx

+

∫
{|uε|≤1−τ}

ε τ (1 + τ) |uε| |∇uε| |∇η|dx

≤ (N + 2) ε

δ

∫
{1−τ<|uε|≤1}∩Ω1

ε

2
|∇uε|2 +

1

2ε
W ′(uε)

2 dx

+
(1 + τ) (N + 2) ε

δ

∫
{|uε|≤1−τ}∩Ω1

ε

2
|∇uε|2 +

1

2ε
τ2u2

ε dx

≤ 2 (N + 2) ε

δ
µε(Ω1 ∩ {1− τ ≤ |uε| < 1})

+
2 (1 + τ) (N + 2) ε

δ
µε(Ω1 ∩ {|uε| ≤ 1− τ}).

Thus overall

µε(Ω0 ∩ {1− τ ≤ |uε| ≤ 1}) ≤
(

4τ +
4 (N + 2) ε

δ

)
µε (Ω1 ∩ {|uε| ≤ 1− τ})

+
ε2

2
αε(Ω1 ∩ {|uε| ≤ 1})

+
2 (N + 2) ε

δ
µε(Ω1 ∩ {1− τ ≤ |uε| ≤ 1}).
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Again we can iterate the estimate to find that

µε(Ω0 ∩ {1− τ ≤ |uε| ≤ 1})

≤
(

4τ +
4 (N + 2) ε

δ

)(N−1∑
k=0

(
2 (N + 2) ε

δ

)k)
µε(Ω∞ ∩ {|uε| ≤ 1− τ})

+
ε2

2

(
N−1∑
k=0

(
2 (N + 2) ε

δ

)k)
αε(Ω∞ ∩ {|uε| < 1})

+

(
2 (N + 2) ε

δ

)N
µε(Ω∞ ∩ {1− τ ≤ |uε| ≤ 1}).

Before we move on, let us recall two results. A key tool in our argument is a simplified

monotonicity formula. We will first give the exact version, which is a phase-field analogue

of the varifold monotonicity formula

d

dρ

(
ρ−kµ(Bρ(x))

)
=

d

dρ

∫
Bρ(x)

|D⊥r|2
rn

dµ+ ρ−(k+1)

∫
Bρ(x)

〈y − x,Hν〉dµ(y)

which holds for k-varifolds in Rn in the distributional sense [Sim83, Chapter 17] (where D⊥

is the gradient orthogonal to Txµ and r(y) = |x− y|). Note that this reduces to

d

dρ

(
ρ−kµ(Bρ(x))

)
=

∫
∂Bρ(x)

|D⊥r|2
rn

dµ+ ρ−(k+1)

∫
Bρ(x)

〈y − x,H〉dµ(y)

for almost all radii ρ (namely all ρ > 0 such that µ(∂Bρ(x)) = 0), compare also (3.2.4).

Lemma 5.2.4. [RS06, Lemma 4.2] For x ∈ Ω we have

d

dρ

(
ρ1−n µε(Bρ(x))

)
= −ξε(Bρ(x))

ρn
+

1

c0 ρn+1

∫
∂Bρ(x)

ε 〈y − x,∇uε〉2 dHn−1(y)

+
1

c0 ρn

∫
Bρ(x)

hε 〈y − x,∇uε〉dy.

Proof. We assume x = 0 and write Bρ := Bρ(0) for ρ > 0. Then for h > 0 we introduce the

cut-off function

η : [0,∞)→ R , η(r) =


1 r ≤ ρ

1− (r − ρ)/h r ∈ (ρ, ρ+ h)

0 r ≥ ρ+ h

and for later use the vector field V (x) := η(|x|) · x. Note that η = ηh does depend on the

small parameter. As usual, we abbreviate r := |x|. This means
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µε(Bρ+h)− µε(Bρ)
h

=

∫
Bρ+h\Bρ

1

h
dµε

= −
∫
Rn
η′(r) dµε

= −1

ρ

∫
Rn
ρ η′(r) dµε

=
1

ρ

∫
Rn
− (r η′ + n η) + (r − ρ) η′ + n η dµε

=
1

ρ

∫
Rn
− div(V ) + (r − ρ) η′ + n η dµε .

When we take h→ 0 later, the second term drops out because the integrand is bounded and

µε is absolutely continuous with respect to Ln. The first of the three terms is computed as

follows.

−
∫
Rn

div(V ) dµε = −
∫
Rn

div(V )

(
ε

2
|∇uε|2 +

1

ε
W (uε)

)
dx

=

∫
Rn

ε

2
〈∇ |∇uε|2, V 〉+

1

ε
W ′(uε) 〈∇uε, V 〉dx

=

∫
Rn
ε V i (∂i∂juε) ∂juε +

1

ε
W ′(uε) 〈∇uε, V 〉dx

=

∫
Rn
−ε ∂jV i ∂iuε ∂juε − ε V i ∂iuε ∂j∂juε +

1

ε
W ′(uε) 〈∇uε, V 〉dx

=

∫
Rn
−ε
(
η′
xi xj

|x| + η δij

)
∂iuε ∂juε +

(
−ε∆uε +

1

ε
W ′(uε)

)
〈∇uε, V 〉dx

=

∫
Rn
−ε η′(r) 〈x,∇uε〉

2

|x| − η ε |∇uε|2 + hε 〈∇uε, x〉 η dx .

Now we can take h→ 0 and obtain (with η = ηh)

lim
h↘0

µε(Bρ+h)− µε(Bρ)
h

=
1

ρ2

∫
∂Bρ

ε 〈x,∇uε〉2 dHn−1 +
1

ρ

∫
Bρ

(−2)
ε

2
|∇uε|2 + hε 〈∇uε, x〉dx

+
n

ρ

∫
Bρ

ε

2
|∇uε|2 +

1

ε
W (uε) dx

=
1

ρ2

∫
∂Bρ

ε 〈∇uε, x〉2 dHn−1 +
1

ρ

∫
Bρ

hε 〈∇uε, x〉dx+
1

ρ

∫
Bρ

1

ε
W (uε)−

ε

2
|∇uε|2 dx

+
n− 1

ρ

∫
Bρ

1

ε
W (uε) +

ε

2
|∇uε|2 dx

=
1

ρ2

∫
∂Bρ

ε 〈∇uε, x〉2 dHn−1 +
1

ρ

∫
Bρ

hε 〈∇uε, x〉dx+
n− 1

ρ
µε(Bρ)−

1

ρ
ξε(Bρ) .
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A similar computation can of course be done for h < 0 so the function f(ρ) := µε(Bρ) is

differentiable with the derivative given above. Furthermore

d

dρ

(
ρ1−nf(ρ)

)
= (1− n) ρ−nf(ρ) + ρ1−nf ′(ρ)

=
1− n
ρn

f(ρ)− ξε(Bρ)

ρn
+
n− 1

ρn
f(ρ) +

1

ρn+1

∫
∂Bρ

ε 〈∇uε, x〉2 dHn−1

+
1

ρn

∫
Bρ

hε 〈∇uε, x〉dx

Cancelling out the two equal terms proves the result.

In low dimensions n = 2, 3, the second and third term in the monotonicity formula can

easily be estimated after integration to a localised Li-Yau type formula (3.2.1). The proof

is a slightly corrected version of that of [RS06, Proposition 4.5].

Lemma 5.2.5. [RS06, Proposition 4.5] Let 0 < r < R <∞ if n = 3 and 0 < r < R ≤ 1 if

n = 2, then

r1−nµε(Br(x)) ≤ 3R1−nµε(BR(x)) + 2

∫ R

r

ξε,+(Bρ(x))

ρn
dρ

+
1

2 (n− 1)2
αε(BR(x)) +

r3−n

(n− 1)2
αε(Br(x))

+
R2

0 R
1−n

(n− 1)2
αε(BR(x)) (5.2.3)

where R0 := min{R,RΩ} and RΩ is a radius such that Ω ⊂ B(0, RΩ/2)

Proof. Without loss of generality we may assume that x = 0 and write Bρ := B(0, ρ),

f(ρ) = ρ1−nµε(Bρ). Observe that for any function g : BR → R we have

∫ R

r

ρ−n
∫
Bρ

g(x) dxdρ =

∫
BR

g(x)

∫ R

max{|x|,r}
ρ−n dρdx

=
1

n− 1

∫
BR

g(x)

(
1

max{|x|, r}n−1
− 1

Rn−1

)
dx

and

∫ R

r

ρ−(n+1)

∫
∂Bρ

g(x) dHn−1 dρ =

∫
BR\Br

g(x)

|x|n+1
dx.
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Using this to integrate the derivative and using Young’s inequality with λ ∈ (0, 1) we obtain

f(R)− f(r) =

∫ R

r

f ′(ρ) dρ

=

∫ R

r

− ξε(Bρ)
ρn

dρ+
1

c0

∫
BR\Br

ε 〈∇uε, y〉2
|y|n+1

+
1

n− 1

hε 〈y,∇uε〉
|y|n−1

dy

+
1

(n− 1) c0 rn−1

∫
Br

hε 〈y,∇uε〉dy −
1

(n− 1) c0Rn−1

∫
BR

hε 〈y,∇uε〉dy

≥
∫ R

r

− ξε,+(Bρ)

ρn
dρ

+
1

c0

∫
BR\Br

ε 〈∇uε, y〉2
|y|n+1

− 1

n− 1

(
(n− 1) ε

〈y,∇uε〉2
|y|2(n−1)

+
1

4 (n− 1) ε
h2
ε

)
dy

− 1

c0 rn−1

∫
Br

λ
ε 〈y,∇uε〉2

2 |y|2 +
1

2λ

|y|2 h2
ε

(n− 1)2 ε
dy

− 1

c0Rn−1

∫
BR

λ
ε 〈y,∇uε〉2

2 |y|2 +
1

2λ

|y|2 h2
ε

(n− 1)2 ε
dy

≥
∫ R

r

− ξε,+(Bρ)

ρn
dρ− 1

4 (n− 1)2

∫
BR\Br

1

ε
h2
ε dy

− λ f(r)− 1

2λ

r2

(n− 1)2 rn−1

∫
Br

h2
ε

ε
dy

− λ f(R)− 1

2λ

R2
0

(n− 1)2Rn−1

∫
BR

h2
ε

ε
dy.

In the second inequality, we used that |y| ≤ R0 wherever h0 6= 0 and that 2(n− 1) ≤ n+ 1

in dimensions n = 2, 3, so that |y|n+1 ≤ |y|2(n−1) for all |y| if n = 3 and for |y| ≤ 1 if n = 2.

This allows us to cancel the singular integrals containing 〈∇uε, y〉 which we cannot control.

When we bring all the relevant terms to the other side, this shows that

(1 + λ) f(R)− (1− λ) f(r) ≥ −
∫ R

r

ξε,+(Bρ)

ρn
dρ− 1

4 (n− 1)2
αε(BR \Br)

− r3−n

2λ (n− 1)2
αε(Br)−

R2
0

2λ (n− 1)2Rn−1
αε(BR).

Setting λ = 1/2 and multiplying by two proves the Lemma.

Remark 5.2.6. If n = 3, we may let R → ∞ and subsequently ε → 0, r → 0 and finally

λ→ 0 in the proof so that we have

lim sup
r→0

r1−nµ(Br(x)) ≤ 1

4 (n− 1)2
α(Ω)

at every point x ∈ R3 such that α({x}) = 0 (i.e. when limr→0 α(Br) = 0) since |ξε| → 0.

Using the results of [RS06], µ is an integral varifold, so this yields a Li-Yau-type [LY82]
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inequality

θ∗(µ, x) = lim sup
r→0

µ(Br(x))

π r2
≤ 1

16π
α(Ω) (5.2.4)

which we had obtained in the sharp interface limit directly with W(µ) in place of α in

(3.2.2).

In n = 2 dimensions, we had to assume R ≤ 1. Indeed, an inequality of this type cannot

hold since circles with large enough radii have arbitrarily small elastic energy. Still, setting

R = 1, a similar bound on the multiplicity in terms of ᾱ and µ can be obtained.

The version of the monotonicity formula (5.2.3) which we will use is the simplified ex-

pression

r1−nµε(Br(x)) ≤ 3R1−nµε(BR(x)) + 3αε(BR(x)) + 2

∫ R

r

ξε,+(Bρ(x))

ρn
dρ. (5.2.5)

This holds generally if n = 3, and when R ≤ 1 if n = 2. We can think of this as a

diffuse analogue of the localised Li-Yau inequality (3.2.1) with error terms stemming from

the phase-field level.

Furthermore, we have the following estimate for the positive part of the discrepancy mea-

sures. It is a precise quantitative refinement of the classic statement that smooth solutions

of the stationary Allen-Cahn equation −∆u + W ′(u) = 0 on Rn satisfy |∇u|2 ≤ 2W (u)

[Mod85].

Lemma 5.2.7. [RS06, Lemma 3.1] Let n = 2, 3. Then there are δ0 > 0,M ∈ N such that

for all 0 < δ ≤ δ0, 0 < ε ≤ ρ and

ρ0 := max{2, 1 + δ−Mε} ρ

we have

ρ1−nξε,+(Bρ(x)) ≤ C δ ρ1−n µε(B(x, 2ρ)) + C δ−Mε2 ρ1−n
∫
B(x,ρ0)

1

ε
h2
ε dx

+ C δ−Mε2 ρ1−n
∫
B(x,ρ0)∩{|uε|>1}

1

ε3
W ′(uε)

2 dx+
C ε δ

ρ
.

5.2.2 Lp-regularity

Now we are ready to prove the first major result. Denote

Ωβε := {x ∈ Ωε |Bεβ (x) ⊂ Ω}, Ωε := Ω1/2
ε .

Lemma 5.2.8. Assume that β < 1 and ε is so small that ε ≤ εβ/4. Then there is Cᾱ,µ̄,n,β >

94



CHAPTER 5. ON THE UNIFORM CONVERGENCE OF PHASE-FIELDS 95

0 such that

||uε||∞,Ωβε ≤ Cᾱ,µ̄,n,β .

Take x ∈ Ωβε and set Bε := Bε(x). Then uε is Hölder-continuous on Bε with

|uε(y)− uε(z)| ≤
Cᾱ,µ̄,n,β,γ

εγ
|y − z|γ

for all y, z ∈ Bε and γ ≤ 1/2 if n = 3, γ < 1 if n = 2.

Optimal interfaces have precisely these Hölder-coefficients, so they cannot be improved.

Proof. Step 1. In a first step, we will prove that for sufficiently small ε > 0 and x ∈ Ωβε we

have a bound ∫
B2ε(x)∩{|uε|>1}

1

ε3
W ′(uε)

2 dx′ ≤ Cᾱ,µ̄,n,β .

First, we observe that due to Sobolev embeddings scaled to small balls, we have

||uε||∞,B
εβ

(x) ≤ Cn ε−βn/2 ||uε||2,2,B
εβ

(x) ≤ Cn ε−(nβ+7)/2.

Now, we consider Lemma 5.2.2 for N = Nβ such that Nβ (1−β) ≥ 9 +nβ. Using εβ − 2ε ≥
εβ/2, this tells us that

∫
B2ε∩{|uε|>1}

1

ε
W ′(uε)

2 dx′ ≤ (1 + cNβ ,ε1−β )
ε2

2
αε(Bεβ )

+ ε2 2Nβ (Nβ + 2)Nβ ε2 (nβ+7)/2 (1 + ||uε||2∞,B
εβ

) 4µε(Bεβ )

≤ Cᾱ,µ̄,β,n ε2.

Note that the terms depending on β are uniformly bounded and vanish as ε→ 0.

Step 2. Defining the blow up ũε : B2(0)→ R by ũε(y
′) = uε(x+ εy′) we observe that

∫
B2(0)

(W ′(ũε))
2 dy′ ≤ Cᾱ,µ̄,n,β .
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after rescaling the previous estimate and that hence

∫
B2(0)

ũ2
ε dx′ =

∫
B2(0)

( |ũε| − 1 + 1)
2

dy′

≤
∫
B2(0)

( (|ũε| − 1)+ + 1)
2

dy′

≤ 2

∫
B2(0)

( |ũε| − 1)2
+ + 1 dy′

≤ ε3−n
∫
{|uε|>1}∩B2ε(x)

1

ε3
W ′(uε)

2 dy′ + 2n+1 ωn

≤ Cᾱ,µ̄,n,β .

As usual, ωn denotes the volume of the n-dimensional unit ball.

Step 3. Now a direct calculation shows that

∫
B2(0)

(∆ũε −W ′(ũε))2
dy′ =

∫
B2(0)

(ε2∆uε −W ′(uε))2 (x+ εy) dy′

= c0 ε
3−n αε(B2ε(x)),

thus

||∆ũε ||2,B2(0) ≤ ||∆ũε −W ′(ũε) ||2,B2(0) + ||W ′(ũε) ||2,B2(0) ≤ Cᾱ,µ̄,n,β .

In total, we see that

|| ũε ||2,B2(0) + ||∆ũε ||2,B2(0) ≤ Cᾱ,µ̄,n,β .

Therefore, the elliptic estimate [GT83, Theorem 9.11] implies that

||ũε||2,2,B1(0) ≤ Cᾱ,µ̄,n,β .

Using the Sobolev embeddings

W 2,2(B1(0)) ↪−→W 1,p(B1(0)) ↪−→ C0,γ(B1(0))

for p ≤ 6, γ ≤ 1/2 if n = 3 and p <∞, γ < 1 if n = 2, we deduce that

|ũε|0,γ,B1(0) ≤ Cᾱ,µ̄,n,β,γ .

In particular, this shows that

||ũε||∞,B1(0) ≤ Cᾱ,µ̄,n,β .
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Since this holds for all balls Bε(x) with x ∈ Ωβε , we can deduce that

||uε ||∞,Ωβε ≤ Cᾱ,µ̄,n,β .

Furthermore, for x ∈ Ωβε and y, z ∈ Bε(x), we deduce

|uε(z)− uε(y)| = |ũε((z − x)/ε)− ũε( (y − x)/ε)|

≤ Cᾱ,µ̄,n,β,γ | (y − x)/ε− (z − x)/ε |γ

=
Cᾱ,µ̄,n,β,γ

εγ
|z − y|γ .

Remark 5.2.9. Note that Ωε is growing as ε→ 0, so that the local boundedness and Hölder

continuity hold on every set Ω′ b Ω with constants independent of Ω′, at least for small

enough ε > 0. We shall make use of this in the following. The proof shows further more

that the dependence on β vanishes as ε→ 0.

If we have information on the boundary values of uε, the previous Lemma can be sharp-

ened and the proof be simplified. This will be discussed in detail in Chapter 6.

Remark 5.2.10. We can use blow up sequences ũε(y) = uε(xε+εy) along a sequence xε ∈ Ω.

If xε has a limit x ∈ Ω, then Br(x) ⊂ Ω for some r > 0, and thus we may define ũε on

Br/(2ε) for all ε > 0 so small that xε ∈ Br/2(x). Like above ||ũε||2,2,U ≤ C for all U b Rn,

so there is a function ũ ∈W 2,2
loc (Rn) such that ũε ⇀ ũ ∈W 2,2

loc (Rn).

Then in particular −∆ũε +W ′(ũε) ⇀ −∆ũ+W ′(ũ) (using compact embeddings on the

non-linear term), and we obtain that

|| −∆ũ+W ′(ũ)||22,U ≤ lim inf
ε→0

|| −∆ũε +W ′(ũε)||22,U = lim inf
ε→0

c0 ε
3−n αε(xε + εU).

Thus −∆ũ + W ′(ũ) = 0 if n = 2 or if n = 3 and x is not an atom of α. Elliptic regularity

shows that ũ ∈ C∞(Rn), so ũ is an entire solution of the stationary Allen-Cahn-Equation.

In this way, Lemma 5.2.8 implies an analogue of Theorem 4.3.4 for the Willmore case.

Corollary 5.2.11. Let 1 ≤ p <∞. Then uε → u in Lp(Ω′) for all Ω′ b Ω.

Proof. We know that uε → u in L2(Ω) and that the sequence uε is bounded uniformly in

L∞(Ω′). Hölder’s inequality does the rest.
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5.2.3 Convergence in Two Dimensions

In this section, we shall consider n = 2. Our first result resembles Lemma 6.2.4 on the

convergence of phase-fields from outside [−1, 1] also at the interface. This version does not

require boundary values.

Theorem 5.2.12. Take Ωβε as in Lemma 5.2.8. Then there exists C > 0 depending only

on ᾱ, µ̄, β such that

sup
x∈Ωβε

|uε(x)| ≤ 1 + Cε1/2.

The result is given in [NT07, Lemma 3.2]. We repeat the proof here for the reader’s

convenience, also since we use it to establish the rate of convergence also from inside [−1, 1].

Proof. We proved the estimates

1

ε3

∫
{|ũε|>1}

W ′(ũε)
2 dx ≤ C,

∫
B2(0)

h̃2
ε dx ≤ αε(Ω) ε.

Take a sequence of monotone increasing convex functions gk ∈ C2(R) such that

gk → max{0, ·}

uniformly on R and set ukε = gk(ũε − 1) where ũε is the blow up as in Lemma 5.2.8. Then

∇ukε = g′k∇ũε

∆uk = g′′k |∇ũε|2 + g′k ∆ũε

≥ g′k (∆ũε −W ′(ũε)) + g′kW
′(ũε)

≥ g′k ( ∆ũε −W ′(ũε)) .

By [GT83, Theorem 8.17] we obtain

sup
x∈B1(0)

ũkε(x) ≤ C
(
||ũkε ||2,B2(0) + || g′k h̃ε ||2,B2(0)

)
and taking k →∞, we get

sup
x∈B1(0)

max{ũε − 1, 0} ≤ C
(
|| (uε − 1)+||2,B2(0) + || h̃ε ||2,B2(0)

)
≤ C ε1/2.

Since this holds for all balls of size ε centred in Ωβε with uniform constants, the theorem is

proven. For the other direction, substitute uε by −uε.

Away from spt(µ), we get convergence from inside (−1, 1) as well.
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Theorem 5.2.13. Let Ω′ b Ω \ spt(µ). Then there exist ε, C > 0 such that

max
x∈Ω′

∣∣uε(x)− u(x)
∣∣ ≤ C ε1/2

for all ε < ε. While ε̄ cannot be estimated in terms of Ω′ and energy values, C depends only

on ᾱ, µ̄.

Proof. In a first step, it is necessary to show that uε → u uniformly on Ω′. This has been

done for example in [NT07, Proposition 4.2] or [DLW17, Theorem 2.1] – the proof is similar

to the one of Theorem 5.2.21 and will not be given here, but see Remark 5.2.24.

The second step resembles the proof of Theorem 5.2.12 when take gk to be an approxi-

mation of max{0,−z} instead by smooth convex and monotone decreasing functions. The

key estimate is µε(Ω
′) ≤ C ε2 from Corollary 5.2.3, which is applicable since |uε| ≥ 1/

√
2

due to uniform convergence.

When taking an approximating sequence of phase-fields uε → u, the convergence can

be slow in ε despite Eε(uε) ≈ E(u). When a recovery-type sequence uε for sets Eε → E

is chosen (e.g. in C2-topology), then ε̄ depends also on the speed of convergence Eε → E

which cannot be estimated by energy bounds.

Unlike its three-dimensional counterpart, this result does not require the existence of α

but only a uniform bound on Wε(uε) and infinitesimal Hölder continuity. The proof above

implicitly used the following result in the second step.

Corollary 5.2.14. Let Ω′ b Ω \ spt(µ). Then there exists C > 0 depending only on ᾱ, µ̄

and dist(Ω′, ∂Ω ∪ spt(µ)) such that

µε(Ω
′) ≤ C ε2

for all sufficiently small ε > 0.

Remark 5.2.15. While it is not possible to obtain a convergence rate better than ε1/2 (see

Example 5.4.1), there are only few points where the convergence becomes this slow. For

β < 2/3, and Br(x) b Ω \ spt(µ), set

Dε := {s ∈ (0, r) | min
∂Bs(x)

|uε| ≤ 1− εβ}.

Then for all σ < 2− 3β there exists C > 0 which depends on the Hölder continuity of uε on

ε-balls and ᾱ such that

L1(Dε) ≤ C εσ
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for all small ε. Assume the contrary. Note that due to C0,γ-Hölder continuity for all γ < 1

on ε-balls, we know that

|uε(x)| ≤ 1− εβ ⇒ |uε(y)| ≤ 1− εβ

2
∀ y ∈ Bc ε1+β/γ (x)

for some small positive c depending on γ. We take γ so close to one that σ+ 2β + β/γ < 2.

Due to our assumption, there are Nε = O(εσ−(1+β/γ)) � 1 radii s1,ε, . . . , sNε,ε radii in Dε

such that |si,ε − sj,ε| ≥ cε1+β/γ for all 1 ≤ i 6= j ≤ Nε. Now we take points

xi,ε ∈ ∂Bsi,ε(x), |uε(xi,ε)| ≤ 1− εβ

and compute

µε(Br(x)) ≥
Nε∑
i=1

µε (Bcε1+β/γ (xi,ε))

≥ Nε
[
π(cε1+β/γ)2

] 1

ε
W

(
1− εβ

2

)
= O

(
εσ−(1+β/γ)ε2(1+β/γ) ε−1 ε2β

)
= O

(
εσ+2β+β/γ

)
.

Due to Corollary 5.2.14, this is also O(ε2), but our γ is close enough to 1 to show that

lim inf
ε→0

ε−2µε(Br(x))→∞.

This suggests that on most of Ω′ b Ω \ spt(µ), the convergence should have a better rate

than
√
ε.

5.2.4 Convergence in Three Dimensions

In this section, we will investigate the convergence of uε in n = 3 dimensions. As we shall see

in Example 5.4.1, uniform convergence away from the interface does not hold in this case.

Therefore, we are forced to introduce a new notion of convergence which is better adapted

to phase-field problems.

Definition 5.2.16. Let U ⊂ Rn, fε, f : U → R continuous functions. Then we say that

fε → f essentially uniformly (e.u.) if the sets

∆τ := {x ∈ U | ∃ xε → x such that lim sup
ε→0

|fε(xε)− f(x)| ≥ τ}
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are finite for all τ > 0.

Since we assume f to be continuous, locally uniform convergence corresponds to ∆τ = ∅
for all τ > 0 and implies essentially uniform convergence. Even without the assumption of

continuity, e.u. convergence implies convergence pointwise everywhere on the complement

of a countable set. With this definition, our results on convergence in three dimensions can

be summarised as

uε → u e.u. on Ω \ spt(µ) and (|uε| − 1)+ → 0 e.u. on Ω.

Remark 5.2.17. Essentially uniform convergence is a powerful tool for our purposes, but still

quite far from uniform convergence. The following properties are easy to establish.

1. Assume that fε → f e.u. on U . Then ∆ =
⋃
τ>0 ∆τ =

⋃∞
k=1 ∆1/k is countable and

fε(x)→ f(x) for all x ∈ U \∆.

2. Let K b U \∆. Then fε → f uniformly on K.

3. ∆ is countable and may lie dense in U , in which case the previous point is vacuous. In

particular, it may happen that fε → f e.u. but there exists no open set U ′ ⊂ U such

that fε → f uniformly on U ′. We shall see in Example 5.4.1 that this may happen in

our case of finite energy sequences uε.

In one space dimension, the same kind of convergence was used by Dal Maso and Iurlano

for phase-fields governed by a Modica-Mortola energy [DMI13, Proof of Proposition 1].

In one dimension, the Modica-Mortola functional controls functions well enough to show

essentially uniform convergence. In Remark 5.2.26 we discuss under what assumptions our

techniques can be adapted to prove essentially uniform convergence in higher dimensions.

As in the two dimensional case, we begin by proving convergence from outside [−1, 1],

also at spt(µ).

Theorem 5.2.18. Let τ > 0 and x ∈ Ω a point for which there exists a sequence xε → x

such that lim supε→0 |uε(xε)| ≥ 1 + τ . Then there exists θ̄ > 0 depending only on ᾱ, µ̄ and

τ such that α({x}) ≥ θ̄. In particular, there are only finitely many such points.

Proof. Passing to a subsequence (not relabelled) and replacing τ by τ/2, we may assume

that |uε(xε)| ≥ 1 + τ for all ε. Since Ω is open, there exists r > 0 such that B4r(x) ⊂ Ω.

Thus B3r(x) ⊂ Ωε for all sufficiently small ε, so we may use Lemma 5.2.8 with uniform

constants. Since xε → x, for all sufficiently small ε > 0 we have Bε(xε) ⊂ Br(x), and by

101



102 CHAPTER 5. ON THE UNIFORM CONVERGENCE OF PHASE-FIELDS

Hölder-continuity of uε, there is 0 < c < 1 such that

|uε| ≥ 1 +
τ

2
on Bcε(xε)

which implies that

µε(Br(x)) ≥ µε(Bcε(xε)) ≥ ωn (cε)n
W (1 + τ/2)

ε
.

Using Corollary 5.2.3, we find that α(B2r) ≥ ωn cnW (1 + τ/2) where c only depends on the

Hölder constant of uε on Bcε(xε) and thus only on the energy bounds. Taking r → 0, we

see that

α({x}) ≥ Cᾱ,µ̄,τ .

A point with the properties of x is therefore an atom of α with a minimal size depending

on ᾱ, µ̄ and τ . In particular, since ᾱ <∞, there are only finitely many such points.

Note that we had to use the limiting measure α. Its existence may always be achieved by

taking a subsequence ε → 0. On the other hand, if we add bumps as Example 5.4.1 based

at points along a dense sequence in some Ω′ b Ω \ spt(µ), we see that all points x ∈ Ω′ are

limits of bad sequences. Thus the existence of α is of critical importance for the argument

above.

We slightly abuse notation and denote by Wε, Sε, Eε also the functionals given by the

same formulae as above on the function space L1(B1(0)) instead of L1(Ω).

Lemma 5.2.19. Let n = 2, 3, B = B1(0) ⊂ Rn, θ ∈ [0, 1) and

Xθ := {u ∈W 2,2(B) | |u(0)| ≤ θ}.

Then the function

e : [0, 1)→ R, e(θ) := lim inf
ε→0

inf
u∈Xθ

Eε(u)

is strictly positive.

Proof. For a contradiction, assume that there is θ ∈ [0, 1) and a sequence uε ∈ Xθ such that

Eε(uε)→ 0. As usual, denote Bρ := Bρ(0) and the diffuse mass and Willmore measures by

µε and αε, respectively, despite the change of domain. Consider the densities

fε(ρ) := ρ1−nµε(Bρ)
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for ρ ∈ [ε, 1]. By the Hölder continuity on B1/2 from Lemma 5.2.8, we get fε(ε) =

ε1−nµε(Bε) ≥ c̄ > 0 for a uniform constant depending only on θ (since µ̄ = ᾱ = 0 by

assumption). In the next step, we will apply Lemma 5.2.7 with δ = ηε (ε/ρ)β for some

0 < β < 1/M and ηε → 0 so slowly that

1. η−Mε αε(B)→ 0 and

2. η−Mε ε1−Mβ ≤ 1.

Note that the second condition also implies that δ−Mε = (ε/ρ)−Mβ η−Mε ε ≤ 1 for ρ ≥ ε.
In particular, δ < δ0 independently of ρ ≥ ε for all small enough ε > 0. Using the estimated

monotonicity formula from Lemma 5.2.5 for ε = r < R = 1/3 together with the estimates

for

– ξε,+ from Lemma 5.2.7 for the δ given above, for

– ||uε||∞,B2/3
from Lemma 5.2.8 and for

–
∫
B2/3∩{|uε|>1}

1
ε3W

′(uε)
2 dx from Lemma 5.2.2 with N = 3,

we obtain

fε(ε) ≤ 3R1−n µε(BR) + 3αε(BR) + 2

∫ R

r

ξε,+(Bρ)

ρn
dρ

≤ 3R1−n µε(BR) + 3αε(BR) + 2C

∫ R

r

ηε
εβ

ρ1+β
ρ1−n µε(B2ρ) dρ

+

∫ R

r

ε2−Mβ

ρn−Mβ
η−Mε

(
αε(B2ρ) +

∫
B2ρ∩{|uε|>1}

1

ε3
W ′(uε)

2 dx

)
+
ε1+β ηε
ρ2+β

dρ

≤ 3R1−n µε(BR) + 3αε(BR) +

∫ R

r

2C ηε ε
β

ρ1+β
fε(2ρ) dρ

+
C

1 + β
ε1+β

[
r−(1+β) −R−(1+β)

]
ηε

+
C

n− 1−Mβ
ε2−Mβ

{
r1−n+Mβ −R1−n+Mβ

}
η−Mε

·
{
αε(B2R) +

1−
(

5ε
R

)3
1− 5 ε

R

αε(B2R)+
1

ε2

(
5 ε

R

)3

||uε||∞,B2R
· 4µε(B2R)

}

≤ γε +

∫ 2R

r

2C ηε ε
β

ρ1+β
fε(ρ) dρ

with γε → 0 as ε→ 0. We may now use Grönwall’s inequality backwards in time to deduce

that

fε(ε) ≤ γε exp

(∫ 2/3

ε

C ηε ε
β

ρ1+β
dρ

)
≤ C γε.
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This is a contradiction since γε → 0, but on the other hand fε(ε) ≥ c̄ > 0 due to Hölder

continuity.

In the next step of our program, we will reduce the problem of uniform convergence to

this minimisation problem. The central tool in doing so is the following rescaling result,

compare e.g. the proof of [RS06, Theorem 5.1].

Lemma 5.2.20. Let uε : Br(x)→ R, λ > 0 and ûε : B(0, r/λ)→ R with

ûε(y) = uε(x+ λy).

Set r̂ := r/λ, ε̂ := ε/λ,

µ̂ε :=
1

c0

(
ε̂

2
|∇ûε|2 +

1

ε̂
W (ûε)

)
Ln, α̂ε :=

1

c0 ε̂

(
ε̂∆ûε −

1

ε̂
W ′(ûε)

)2

Ln.

Then

r̂1−nµ̂ε(B(0, r̂)) = r1−n µε(Br(x)), r̂3−n α̂ε(B(0, r̂)) = r3−n αε(Br(x)).

With this in mind, we proceed to our main result on convergence away from spt(µ) in

three dimensions.

Theorem 5.2.21. Let τ > 0 and x ∈ Ω \ spt(µ) such that there exists a sequence xε → x

with the property that

lim sup
ε→0

|uε(xε)− u(x)| ≥ τ.

Then there exists θ̄ > 0 depending only on τ such that α({x}) ≥ θ̄. In particular, there are

only finitely many such points.

Proof. In a first step, we reduce the argument to proving the atom property for points x

that admit a sequence xε → x such that

lim inf
ε→0

|uε(xε)| ≤ 1− τ.

Without loss of generality, we may assume that u(x) = 1. Assume that there is a subsequence

xε → x such that uε(xε) < 0. Since uε → u in L1(Ω) (so pointwise almost everywhere, up

to a subsequence), and u is locally constant, there is also a sequence x̃ε → x such that

uε(x̃ε) ≥ 1 − τ/2. Using the continuity of uε, we obtain a sequence x′ε → x such that

|uε(x′ε)| ≤ 1− τ . Passing to a subsequence in ε, we may assume that this holds for all ε.
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So assume that xε → x ∈ Ω and |uε(xε)| ≤ 1− τ . Since Ω \ spt(µ) is open, there is r > 0

such that B(x, 3r) ⊂ Ω \ spt(µ). As xε → x, B(xε, r) ⊂ B(x, 2r) for almost all ε > 0. We

have µ(B(x, 3r)) = 0, so (using the terminology of Lemmas 5.2.19 and 5.2.20)

α(B3r(x)) ≥ α(B2r(x))

≥ lim sup
ε→0

(
αε(B2r(x) + r1−nµε(B2r(x))

)
≥ lim sup

ε→0

(
αε(Br(xε)) + r1−nµε(Br(xε))

)
= lim sup

ε̂→0
(α̂ε(B1(0)) + µ̂ε(B1(0)))

≥ lim sup
ε̂→0

inf
u∈X1−τ

(Wε̂ + Sε̂) (u)

≥ θ̄

with ûε(y) = uε(xε + ry) and ε̂ = ε/r. Letting r → 0, we establish that

α({x}) ≥ θ̄

where θ̄ only depends on τ . Again, x is an atom of a fixed minimal size, so there are only

finitely many such points.

Corollary 5.2.22. Assume that Ω′ b Ω \ spt(µ). Then the following hold true.

1. For all τ > 0 there exists c̄τ > 0 such that if α has no atoms of size at least c̄ in Ω′,

then
∣∣ |uε| − 1

∣∣ < τ on Ω′.

2. If c̄ is small enough and all atoms of α in Ω′ are smaller than c̄, then for every Ω′′ b Ω′

there exists C > 0 such that µε(Ω
′′) ≤ C ε2 for all sufficiently small ε > 0.

3. If α has no atoms in Ω′ at all, then uε → u uniformly on Ω′.

4. If µ is the mass measure of a varifold V and α(Ω) = W(V ) (i.e. uε is a recovery

sequence for its limit), then uε → u locally uniformly in Ω \ spt(µ).

Proof. All but the last point are obvious. Clearly, it suffices to show that α has no atoms

outside spt(µ). For a contradiction, assume that x0 /∈ spt(µ) is an atom of α and choose

Ω′ = Ω \ Br(x0) such that Br(x0) b Ω \ spt(µ). Then consider the sequence ūε = uε

pointwise. Clearly still µ̄ε ⇀ µ, but lim infε→0Wε(ūε) <W(V ) contradicting the Γ− lim inf

inequality from [RS06].

The following is an easy corollary once essentially uniform convergence is established.

We state it here in order to illustrate the properties of this mode of convergence.

105



106 CHAPTER 5. ON THE UNIFORM CONVERGENCE OF PHASE-FIELDS

Corollary 5.2.23. There exists a countable set ∆ ⊂ Ω\ spt(µ), such that uε → u pointwise

everywhere on Ω\(spt(µ)∪∆). In particular, for C b Ω\spt(µ), s > 0 such that Hs(C) <∞
we have that uε → u Hs|C-almost everywhere.

Proof. The statement follows from Remark 5.2.17 point (1), which is evident from the defi-

nition of essentially uniform convergence.

A few remarks are in order.

Remark 5.2.24. The only difference to the case n = 2 lies in the different rescaling properties

of αε in two and three dimensions. There, we could deduce that α(B3r(x)) ≥ θ̄/r, which

gives a contradiction as r → 0 and establishes uniform convergence of |uε| → 1 on sets

Ω′ b Ω \ spt(µ).

Remark 5.2.25. As pointed out, if Ω′ b Ω and µ(Ω′) = α(Ω′) = 0, then |uε| → 1 uniformly

on every Ω′′ b Ω′. However, the convergence has no a priori rate in ε in n = 3 dimensions.

Functions like

uε = 1 + f(ε) g( (x− x0)/ε)

will not lead to atoms of α if g ∈ C∞c (Rn) and f(ε)→ 0 as ε→ 0. For similar considerations,

see Example 5.4.1.

Remark 5.2.26. The argument presented above can clearly be adapted to other situations

with the following ingredients:

1. a sequence of functions uε converging to a function u which induces two sequences of

Radon measures µε ⇀ µ,αε ⇀ α uniformly bounded on compact subsets,

2. an infinitesimal generation of mass property like

|uε(x)− u(x)| ≥ θ ⇒ ε1−nµε(Bε) ≥ c̄θ,

3. a monotonicity formula resembling

R1−nµε(BR) ≥ c1 r1−nµε(Br)− c2 αε(BR) + Ξε, c1, c2 > 0,

for µε which involves only µε, αε and an error term Ξε which goes to zero and

4. a critical or sub-critical rescaling property for αε.

Then we can re-write the problem of uniform convergence into a minimisation problem

and employ the same arguments as above. Depending on the nature of the rescaling property,

we may be able to obtain uniform convergence this way (as for n = 2) or essentially uniform

convergence (as for n = 3).
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5.2.5 Hausdorff Convergence

In applications, we like to think of spt(µ) as being approximated by the set {uε = 0}. This

is rigorously justified in the next theorem, which can be thought of as a diffuse version of

Theorem 3.1.2. In fact, we will show that Theorem 3.1.2 follows from Theorem 5.2.27 in

Lemma 5.3.4 in the case that the approximating varifolds are smooth boundaries.

Theorem 5.2.27. Let I b (−1, 1) be non-empty, not necessarily open. Then, up to a

subsequence, u−1
ε (I) converges to a compact set K ⊂ Ω in Hausdorff distance such that

1. K ∩ Ω = spt(µ) ∩ Ω if n = 2 or n = 3 and α has no atoms in Ω \ spt(µ),

2. K ∩ Ω = (spt(µ) ∩ Ω) ∪ ⋃Nk=1{xk} for finitely many points xk ∈ Ω if n = 3. The

number N of points can be bounded in terms of I and lim supε→0 Eε(uε).

Proof. In accordance with convention, we may replace u−1
ε (I) with its closure without affect-

ing the limit. Since u−1
ε (I) ⊂ Ω is bounded, there is a compact set K ⊂ Ω and a subsequence

(not relabelled) such that

u−1
ε (I)→ K

in Hausdorff distance. K can be calculated as the Kuratowski limit

K = {x ∈ Ω | ∃ xε ∈ u−1
ε (I) such that xε → x}.

We will show that spt(µ) ⊂ K anticipating the results of Chapter 7. Take x ∈ spt(µ). By

the fifth point of Corollary 5.2.3 and the fact that ξε,+ → 0, we see that for small enough

τ > 0 we have

lim inf
ε→0

Ln (Br(x) ∩ {|uε| ≥ 1− τ})
ε

> 0,

see also Corollary 5.2.3. Thus there exists y ∈ Br(x) such that uε(y) ≤ 1− τ . In fact there

exists a large set of such y as witnessed by the fact that the Lebesgue measure of this set is

greater than cε for some c > 0. We can use this as in the proof of Lemma 7.2.4 to deduce that

there exists a point y ∈ Br/2(x) to which we can apply Lemma 7.2.2 which tells us that on

a disc BLε(y) around y, uε is C0-close to an optimal profile type transition. We can choose

L > 0 arbitrarily large here, so in particular we see that there exists y′ ∈ BLε(y) ⊂ Br(x)

such that uε(y
′) ∈ I. The statements presented below are sharper, so we do not present the

proof in greater detail.

For the inverse inclusion, assume that x ∈ Ω ∩ K \ spt(µ). Take r > 0 such that

Br(x) ⊂ Ω \ spt(µ). If n = 2 or n = 3 and α has no atoms in Br(x), we see that |uε| → 1

uniformly on Br(x), which leads to a contradiction. If n = 3 in general, then x must be an
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atom of α with a minimal size depending only on

sup
θ∈I
|θ| < 1.

Since there can only be finitely many such points, the theorem is proven.

Remark 5.2.28. In the case where we have uε ∈ −1 + W 2,2
0 (Ω), we can extend uε to a

larger domain as a constant function outside Ω. Thus we obtain the stronger result that

u−1
ε (I) → spt(µ) if n = 2 (or if n = 3 and α does not have atoms outside spt(µ)) and

u−1
ε (I) → spt(µ) ∪ {x1, . . . , xN} (up to a subsequence) if n = 3 for a finite collection of

points xi ∈ Ω. If n = 2 or n = 3 and α has no atoms, the uniqueness of the limit implies

that actually the whole sequence u−1
ε (I) converges to spt(µ). The same holds for periodic

boundary conditions.

Without boundary conditions, the relationship of K ∩ ∂Ω and spt(µ) ∩ ∂Ω is more

complicated. If ∂Ω ∈ C2, we may consider an optimal interface transition for ∂Ω such

that only the positive part of the transition lies inside Ω. This induces the measure

µ = 1/2Hn−1|∂Ω. So µ may well fail to be an integral varifold at the boundary, and

the inclusion spt(µ) ∩ ∂Ω 6⊂ K ∩ ∂Ω need not hold (take I b (−1, 0)). Further details are

given in Section 6.3.

5.3 Applications

5.3.1 Minimising Sequences Converge Uniformly

In the first application, we demonstrate how essentially uniform convergence can be used to

obtain uniform convergence under additional assumptions. It formalises the intuition that

phase-fields have no energetic incentive not to converge uniformly in three dimensions.

Lemma 5.3.1. Let X = −1 +W 2,2
0 (Ω), S, V ∈ R, λ > 0, χ ≥ 0 and

Eε : X → [0,∞), Eε(u) =Wε(u) + λ (Sε(u)− S)2 + χ

(
1

2

∫
Ω

(u+ 1) dx− V
)2

an associated energy functional. Furthermore, assume that uε ∈ X and u ∈ BV (Ω) are such

that

Eε(uε) = min
v∈X
Eε(v), uε → u in L1(Ω).

As usual, let µε ⇀ µ, αε ⇀ α. Then spt(α) ⊂ spt(µ). In particular, uε → u uniformly on

compact sets K ⊂ Ω \ spt(µ).
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The parameter S and V play the roles of a preferred surface area and enclosed volume

and λ, χ express the strength of the preference.

The existence of minimisers of Eε follows from the direct method of the calculus of

variations and Sobolev embedding theorems, compare Lemma 5.2.1. A similar statement

holds if X is W 2,2(Ω) or the subspace of W 2,2(Ω) with vanishing normal derivatives.

Proof. Note that the sequence ūε ≡ −1 keeps Eε uniformly bounded, so lim supε→0 Eε(uε)
< ∞. Let us consider a subsequence ε → 0 such that all three terms in the energy have a

limit.

By Corollary 5.2.22, uε → u locally uniformly in Ω \ spt(µ) if α has no atoms outside

spt(µ), so it suffices to show the inclusion spt(α) ⊂ spt(µ). By extending uε to a slightly

larger domain Ω′ as a constant function, we only need to consider the case that spt(α) b

Ω. Recall that the support of a measure is the collection of all points, such that any

neighbourhood of the point has positive measure. Thus for a contradiction, we may assume

that there exists a ball B2r(x) ⊂ Ω \ spt(µ) such that α(Br(x)) > 0.

Since there are only finitely many points x ∈ Ω\ spt(µ) such that there exists a sequence

xε → x with the property that lim supε→0 | |uε(xε)| − 1| ≥ τ for any given τ > 0, we can

choose two radii r < r1 < r2 < 2r and the ring domain

R := {y ∈ Ω | r1 < |x− y| < r2}

such that |uε| ≥ 1/
√

2 on R′ for all sufficiently small ε and a slightly larger set R′ such that

R b R′. Since by Corollary 5.2.3 we know that

∫
R

1

ε
W ′(uε)

2 dx ≤ C ε2,

we can pick a ring

Rε = {y ∈ Ω | rε < |x− y| < rε + | log(ε)|−1} b R

such that

ε−2 µε(Rε) +

∫
Rε

1

ε3
W ′(uε)

2 dx ≤ C | log(ε)|−1.

Then we choose a cut-off function η such that η ≡ 1 insideBrε(x), η ≡ 0 outsideBrε+| log ε|−1(x),

|∇η| ≤ 2 | log ε|, |∆ε| ≤ C | log ε|2 and define

ûε = (1− η)uε + η.
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Since |uε| ≥ 1/
√

2 on R, we can suppose that without loss of generality uε ≥ 1/
√

2. It

follows directly from ûε ≥ uε > 0 that

∫
R

1

ε
W (ûε) dx ≤

∫
R

1

ε
W (uε) dx

and furthermore 0 = µ̂ε(Br1(x)) ≤ µε(Br1(x)). Finally, we note that

∫
R

ε

2
|∇ûε|2 dx ≤ ε

∫
R

|∇uε|2 (1− η)2 + (uε − 1)2 |∇η|2 dx = O(ε2 | log ε|2)

due to Corollary 5.2.3, so in particular that µ̂ε ⇀ µ and limε→0 Sε(ûε) = limε→0 Sε(uε).

Since uε → 1 in L1(B2r(x)) already before the modification, we do not change the limiting

integral either:

lim
ε→0

∫
Ω

ûε dx = lim
ε→0

∫
Ω

uε dx.

Hence the last two terms in Eε converge to the same limits as before. Thus it suffices to

show that lim infε→0Wε(ûε) < lim infε→0Wε(uε) to see that

lim inf
ε→0

Eε(ûε) < lim inf
ε→0

Eε(uε),

which means that uε cannot be a minimiser of Eε for some small ε > 0. This is the

contradiction we are looking for. So calculate

α̂ε(Brε+| log ε|−1(x)) = α̂ε(Rε)

=
1

c0 ε

∫
Rε

(
ε∆ûε −

1

ε
W ′(ûε)

)2

dx

≤ 1 + δ

c0 ε

∫
Rε

(
ε∆uε −

1

ε
W ′(uε)

)2

(1− η)2 dx

+

(
1 +

1

δ

)
1

c0 ε

∫
Rε

(
−2ε 〈∇η,∇uε〉+ ε (1− uε) ∆η +

1

ε
[W ′(uε)(1− η)−W ′(ûε)]

)2

dx

≤ 1 + δ

c0 ε

∫
Rε

(
ε∆uε −

1

ε
W ′(uε)

)2

η2 dx+

(
1 +

1

δ

)
3

c0 ε3

∫
Rε

[W ′(uε)(1− η)−W ′(ûε)]2 dx

+

(
1 +

1

δ

)
3 ε

c0

∫
Rε

4 〈∇η,∇uε〉2 + (uε − 1)2 (∆η)2 dx

≤ (1 + δ)αε(Rε) +

(
1 +

1

δ

)
3

c0 ε3

∫
Rε

W ′(uε)
2 dx+

(
1 +

1

δ

)
C
(
ε2 | log ε|2 + ε4 | log ε|4

)
≤ (1 + δ)αε(Rε) +

(
1 +

1

δ

)
3

c0 | log ε| +

(
1 +

1

δ

)
C
(
ε2 | log ε|2 + ε4 | log ε|4

)
for δ > 0. Here we used that ûε is a convex combination of uε and 1 pointwise, so that the
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estimate in the middle integral works. Taking first ε→ 0 and then δ → 0, it follows that

α̂(B2r) = α(B2r \Br0) < α(B2r)

where r0 = limε→0 rε > r. This implies the contradiction and concludes the proof.

Cases of independent geometric interest are the formal limits λ = χ = ∞ and λ = ∞,

χ = 0. The problem becomes more complex, and in the first case, solutions can only exist

if V < Ln(Ω) and S > c0 for some c0 depending on V through the isoperimetric inequality

relative to Ω. These limits can be expressed in phase-field models for example in the choice

of admissible functions

Xε(Ω) = {u ∈ −1 +W 2,2
0 (Ω) | Sε(u) = S}

as a (non-linear) sub-manifold of W 2,2
0 or simply by choosing λ = λε = ε−1, and similarly

in the first case. Our simple modification clearly does not go through in either scenario, but

we believe that the same result should still hold.

We will see that uniform convergence still holds for a penalised functional when we add

a version of the topological term discussed in Chapter 7. For simplicity, we restrict ourselves

to the case discussed there, but a total integral term could easily be included. The following

Lemma should be read after Chapter 7 and is included here because of a better fit by topic

despite the fact that it comes logically later.

Assume that C1
ε is associated to a function φ1 ∈ Cc(1/

√
2, 1) and C2

ε to a φ2(s) = φ1(−s)
and suitable F1, F2.

Lemma 5.3.2. Let X = −1 +W 2,2
0 (Ω), σ > 0, κ > 2 and

Eε : X → [0,∞), Eε(u) =Wε(u) + ε−σ (Sε(u)− S)2 + ε−κ
(
C1
ε + C2

ε

)
(u).

Assume that uε ∈ X are minimisers of Eε u, α, µ as usual. Then spt(α) ⊂ spt(µ) and

uε → u locally uniformly in Ω \ spt(µ).

Sketch of Proof: The proof proceeds in two steps. In the first one, we assume that if x ∈
spt(µ) and y ∈ Ω such that yε → y and uε(yε) ∈ supp(φ1). Then we deduce that

lim inf
ε→0

(
1

ε

∫
Br(x)

φ1(uε(x)) dx

)(
1

ε3

∫
Br(y)

φ1(uε(y)) dy

)
> 0

for all r > 0 using Lemma 7.2.4 on the first term and infinitesimal Hölder regularity on the

second, reaching a contradiction. Having excluded the situation of Example 5.4.2, we use
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the same modification as in Lemma 5.3.1 on uε in the second step of the proof. Since we

know that |uε| ≥ 1/
√

2 on the whole ball Br2(x) rather than just the ring domain R, the

difference in the diffuse area functional can be controlled to be o(εσ) for all σ < 2. Thus the

same argument as above goes through.

5.3.2 Global Solutions of the Stationary Allen-Cahn Equation

Our next application is to the stationary Allen-Cahn equation in low dimensions. While

usually the blow up is used to obtain information about the geometric object, here we can

go the other way around. Namely, we exclude the existence of solutions making a ‘bump’ in

Rn for n = 2, 3, but no proper transition.

Lemma 5.3.3. Let n = 2, 3. Then there is no global solution of the stationary Allen-Cahn

equation −∆u+W ′(u) = 0 satisfying

lim
|x|→∞

√
|x| |u(x)− 1| = 0, u(0) 6= 1.

Proof. Assume that there is such a function. Due to the condition at infinity, u is bounded,

so the Allen-Cahn equation forces that u ∈ [−1, 1] via an easy contradiction. Thus |u(0)| ≤ θ
for some θ < 1. Furthermore, we know that |∇u|2 ≤ 2W (u) from a well known gradient

estimate by Modica [Mod85].

Let uε ∈ W 2,2(B1(0)), uε(x) = u(x/ε). These functions satisfy |uε(0)| ≤ θ, Wε(uε) ≡ 0

and

Sε(uε) =

∫
B1

ε

2
|∇uε|2 +

1

ε
W (uε) dx

= εn−1

(∫
BRε

1

2
|∇u|2 +W (u) dx+

∫
B1/ε\BRε

1

2
|∇u|2 +W (u) dx

)

= εn−1

(
CuR

n
ε + 2

∫
B1/ε\BRε

W (u) dx

)

≤ εn−1

(
CuR

n
ε +

∫
B1/ε\BRε

(u− 1)2 dx

)

= εn−1

(
CuR

n
ε +

∫ 1/ε

Rε

(
ηε√
r

)2

rn−1 dr

)

= CuR
n
ε ε
n−1 +

η2
ε ε

n−1

n− 1

(
ε1−n −Rn−1

ε

)
where Rε →∞ slower than ε(1−n)/n so that the first term disappears in the limit. We can
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choose

ηε := sup
|x|≥Rε

√
|x| |u(x)− 1| → 0

due to the assumption that |u(x)−1|/|x|1/2 → 0. Thus uε ∈W 2,2(B1(0)) satisfies |uε(0)| ≤ θ
and

lim
ε→0

(Wε + Sε)(uε) = 0

in contradiction to Lemma 5.2.19.

5.3.3 Hausdorff-Convergence of Manifolds with Bounded Energy

Last but not least we show how our results can be used to obtain results on the interplay

between varifold and Hausdorff convergence using only our PDE techniques. This is a proof

of Theorem 3.1.2 for smooth boundaries using only phase-field arguments.

Lemma 5.3.4. Let Mk be a sequence of compact C2-surfaces and µk their induced (mul-

tiplicity 1) varifolds. Assume that µ is an integral varifold such that µk ⇀ µ as varifolds

and

lim sup
k→∞

[
W(Mk) +H2(Mk)

]
<∞.

Then limk→∞Mk = spt(µ)∪{x1, . . . , xN} for a finite collection of points xi, i = 1, . . . , N in

the sense of convergence in Hausdorff distance for every subsequence along which the limit

exists. Moreover, if Mk is connected for all k ∈ N or limk→∞W(Vk) =W(V ), then

spt(µ) = lim
k→∞

Mk.

Proof. A simple contradiction shows that spt(µ) ⊂ limk→∞Mk, so only the inverse direction

is difficult. This concerns the uniform or essentially uniform convergence of phase-fields away

from uε which we established using exclusively PDE techniques and no geometric measure

theory at all.

As Mk is compact, orientable and embedded, it is the boundary of a set Ek ⊂ R3. Since

furthermore Mk ∈ C2, there is a sequence εk → 0 such that the signed distance function

sdist(·,Mk) is C2-smooth on

Uk = {x ∈ Rn | dist(x,Mk) <
√
εk } b Ω

and we can consider the sequence

uk : Ω→ R, uk(x) = q(rk(x)/εk)
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where rk is a smooth approximation of sdist(x,Mk) as in the proof of Theorem 4.2.1. A

further slight modification gives us uk ∈ −1 + W 2,2
0 (Ω) and Mk ≡ {uk = 0}. If we choose

εk sufficiently small, it becomes obvious that

lim
k→∞

µk = µ, lim
k→∞

αk(R3) = lim
k→∞

W(Mk).

We can therefore invoke Corollary 5.2.27 (with boundary values) to see that

lim
k→∞

Mk = lim
k→∞

{uk = 0} = spt(µ) ∪ {x1, . . . , xN}

for a finite collection of points x1, . . . , xN ∈ BR(0). Now assume additionally that Mk is

connected for all k ∈ N. Then, by standard results on Hausdorff convergence, limk→∞Mk

is connected, so the finite collection of points must be empty.

Last, assume that we have a recovery sequence, i.e. limk→∞W(Mk) = W(V ). If we

choose εk sufficiently small also Wεk(uk)→W(V ), thus

lim
k→∞

Mk = lim
k→∞

{uk = 0} = spt(||V ||)

as explained in Corollary 5.2.22.

Corollary 5.3.5. If Mk is connected for all k ∈ N, then also spt(µ) is connected.

In particular, we have shown with phase-field techniques that the problem of minimising

Willmore’s energy in the class of connected surfaces arising as the limits of boundaries is

well posed in three dimensions (Corollary 3.1.4).

5.4 Counterexamples

In this section, we give examples showing that our results are optimal. All constructions are

simple perturbations of an optimal interface recovery sequence.

Example 5.4.1 (Simple Example in R2 and R3). Let E b Ω with ∂E ∈ C2 and denote by

d(x) = sdist(x, ∂E) the signed distance function from ∂E. We take an optimal interface

transition uε(x) = q(d(x)/ε) where d is a smooth approximation of the signed distance

function from ∂E and d is constant for dist(x, ∂E) > δ for some δ > 0. Now take x0 /∈ ∂E,

g ∈ C∞c (Rn) and set

uεg(x) := uε(x) + εβ g(ε−γ(x− x0)).

For small enough ε > 0, we know that uε ≡ ±uε(d(δ)/ε) ≈ 1 − e−δ/ε close to x0, which

simplifies the energies of the modified functions. Up to a small modification, we may assume
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that uε ≡ 1 around x0. If γ > 0 (or γ = 0 and g has sufficiently small support), this implies

the following identities.

Sε(u
ε
g) = Sε(u

ε) + ε1+2β+(n−2)γ

∫
Rn

1

2
|∇g|2 dx+ ε2β+nγ−1

∫
Rn
g2 (2 + εβg)2

4
dx,

Wε(u
ε
g) =Wε(u

ε) +

∫
Rn

1

ε

(
ε1+β−2γ ∆g − εβ−1 g (1 + εβ g) (2 + εβ g)

)2

(ε−γ(x− x0)) dx.

In the bending energy, both terms scale differently unless

1 + β − 2γ = β − 1 ⇔ γ = 1.

In this situation, we can simplify the integral to give

Wε(u
ε
γ) ≈ Wε(u

ε) + ε2β−3+n

∫
Rn

(∆g − 2 g)2 dx

under the assumption that β > 0. For a compactly supported non-zero function g the last

term cannot be zero, so we have the heuristic condition

2β − 3 + n ≥ 0 ⇔ β ≥ 3− n
2

for the energy to remain finite. Conversely, it is easy to see that the energy does remain

finite in these cases in both n = 2 and n = 3 dimensions. Setting β = 0 shows that uε

need not converge uniformly to ±1 away from the interface in three dimensions. In two

dimensions, setting β = 1/2 shows that we cannot obtain a convergence rate better than
√
ε.

Note in particular that we have µεg(Br(x)) = O(ε2) if αg has an atom at x and µεg(Br(x)) =

o(ε2) otherwise, both in two and three dimensions. In three dimensions, we can consider

the function

f : [0, 1)→ (0,∞), f(θ) := inf
{

[W1 + S1](u) | u ∈ 1 +W 2,2
0 (B1(0)), u(0) = θ

}
.

It is continuous and satisfies limθ→1 f(θ) = 0, so we can take a sequence θn → 1 such that

∞∑
n=1

f(θn) <∞.

Then we take corresponding minimisers gn, a dense subsequence xn in Ω \ ∂E and define

εn = min

{
min

1≤i 6=j≤n

|xi − xj |
2

, min
1≤i≤n

dist(xi, ∂E)

2
,

1

2n

}
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and

un(x) =

±gn((x− xi)/εn) in Bεn(xn)

u(x) else

with the choice of sign for gn such that the function is continuous. Then εn → 0, un → u in

L1(Ω) and essentially uniformly, but there exists no open set Ω′ b Ω \ ∂E such that un → u

uniformly on Ω′.

The next example gives a different modification in three dimensions only. It shows that

in R3, uniform convergence away from the interface may fail even if the discrepancy measures

|ξε| vanish exponentially fast in ε and ξε ≤ 0 for all ε > 0. Another implication is that there

is no guaranteed rate of convergence for µε(Ω
′)→ 0 for Ω′ b Ω \ spt(µ).

Example 5.4.2 (Second Example in R3). Consider a set Ω′ b Ω\spt(µ) and x0 ∈ Ω′. Assume

that uε is an optimal profile type recovery sequence, or at least that uε is constant on Ω′.

Let r > 0 such that Br(x0) b Ω′ and ε3/4 < rε < r/2. Then the functions

ūε(x) =

u
ε(x) x /∈ Br(x0)

±q(s̃dist(x, ∂Brε(x0))) x ∈ Br(x0)

are C2-smooth (if the sign of the optimal profile is chosen correctly). Here s̃dist is an appro-

priate approximation of the signed distance function modified to give the correct constant for

a continuous matchup. This is a recovery-type sequence for ∂E with an additional interface

at spheres ∂Brε(x0) and can easily be seen to satisfy

µ̄ε ⇀ µ, µ̄ε(Ω
′) ≈ 4π r2

ε

3
, αε(Ω

′) ≈ 16π

since spheres of any radius have Willmore energy 16π in three dimensions with our normal-

isation of the Willmore functional. As rε may go to zero arbitrarily slowly, so can µε(Ω
′).

This shows that no penalisation of the discrepancy measures can enforce uniform conver-

gence away from the interface in three dimensions. In two dimensions, this does not work

since small circles have large elastica energy while the Willmore functional on surfaces in

R3 is scaling invariant.
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Chapter 6

On the Boundary Regularity of

Phase-Fields

6.1 Introduction

In Chapter 7 we will assume that uε is not only W 2,2-regular but even

uε ∈ −1 +W 2,2
0 (Ω).

This can be expressed equivalently as

uε ∈W 2,2
loc (Rn) and uε ≡ −1 outside Ω (6.1.1)

due to the Sobolev extension theorems. If ∂Ω ∈ C2, it is equivalent to the modelling

assumption uε ≡ −1 on ∂Ω and ∂ν ≡ 0 on ∂Ω which expresses that surfaces are contained

in Ω by uε = −1 on ∂Ω and that they may only touch ∂Ω tangentially by ∂νuε = 0 on

∂Ω. If we assume boundary conditions (6.1.1) or periodic boundary conditions, the results

of Theorem 5.1.1 may be sharpened as follows:

1. The sequence uε is bounded in L∞(Ω) and uε → u in Lp(Ω) for all p <∞,

2. a function uε is Hölder continuous with constants as above on every ball Bε(x)∩Ω for

x ∈ Ω,

3. we may replace Ω′ b Ω by Ω and Ω′ b Ω \ spt(µ) by Ω′ b Rn \ spt(µ) in Theorem

5.1.1 for n = 2,
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4. we may replace “finitely many points in Ω (or Ω \ spt(µ))” with “finitely many points

in Ω (or Ω \ spt(µ))” if n = 3,

5. the Hausdorff limit is K = spt(µ) if n = 2 or n = 3 and α has no atoms, and

K = spt(µ) ∪ {x1, . . . , xN} in general if n = 3 with x1, . . . , xN ∈ Ω, and

6. µ is the mass measure of an integral varifold.

On the other hand, not requiring boundary values can lead to much simpler proofs as in

Theorem 5.2.21 or Corollary 5.2.22 where we would otherwise have to go through lengthy

additional arguments.

This chapter further illuminates the behaviour of uε and µε at ∂Ω. Partial regularity

results for uniformly bounded boundary values and phase-fields whose level sets meet ∂Ω

at a right angle will be discussed in Lemmas 6.2.1, 6.2.2 and 6.2.4. On the other hand,

regularity of uε and µ may fail at ∂Ω even if the boundary is smooth as we will demonstrate

in a series of examples. The case of free boundary values is important for example for

the proof of essentially uniform convergence via the minimisation problem as given above.

Due to the results listed above for the case that boundary conditions (6.1.1) are given, the

chapter can be skipped by a reader only interested in this situation.

Theorem 6.1.1. Let ∂Ω ∈ C2. Then the following hold true.

1. There exists a sequence uε ∈ W 2,2(Ω) such that (Wε + Sε)(uε) → 0, but uε is not

bounded in L∞(Ω).

2. There exists a sequence uε such that such that α = 0, µ = 0 but K contains an open

subset of ∂Ω. Similar constructions give K = {x0} or K = γ for a point x0 ∈ ∂Ω and

a closed curve γ ⊂ ∂Ω.

3. Let S > 0. Then there exists a point x0 ∈ ∂Ω and a sequence uε ∈ W 2,2(Ω) such that

|uε| ≤ 1 in Ω, Wε(uε) ≡ 0, µε(Ω) ≡ S, K = ∅ and µ = S · δx0
.

If Ω is convex, any point x0 or closed curve γ in ∂Ω can be chosen and uε may be such

that it is not uniformly bounded in Ω ∩ U for all open sets U with U ∩ ∂Ω 6= ∅.

This shows that for example the minimisation problem for

Fε =Wε + ε−σ(Sε − S)2

is not physically meaningful without boundary conditions or with partly free boundary

conditions uε ≡ +1 on Γ+, uε ≡ −1 on Γ− and uε left free on ∂Ω \ (Γ+ ∪ Γ−).
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6.2 Partial Regularity at the Boundary

In this chapter, we describe partial regularity results for weakly controlled boundary values.

Lemma 6.2.1. Assume that uε is continuous on Ω and there is θ ≥ 1 such that |uε| ≤ θ

on ∂Ω for all ε > 0. Then the following hold true.

1. There exists C > 0 such that µε({|uε| ≥ θ}) ≤ C ε2.

2. For the set Ω̃ε = {x ∈ Ω |B2ε(x) ⊂ Ω} we can show that there exists C depending only

on ᾱ, γ and θ such that

||uε||∞,Ω̃ε ≤ C, |uε(y)− uε(z)| ≤
Cᾱ,θ,γ
εγ

|y − z|γ

if there is x ∈ Ω̃ε such that y, z ∈ Bε(x) and γ ≤ 1/2 if n = 3, γ < 1 if n = 2.

Proof. This proof is an adaptation of the proof of Lemma 5.2.8 using a modified argument

in the first step of the proof. We observe that for the proof of Lemma 5.2.8 to work, we

needed that B2ε(x) ⊂ Ω to employ the elliptic inequality

||ũε||2,2,B1(0) ≤ C
(
||ũε||2,B2(0) + ||∆ũε||2,B2(0)

)
and an estimate of

∫
B2ε(x)

1
εnW

′(uε)
2 dx. The first one we are given directly by the choice

of Ωβε or Ω̃ε, for the second one we needed the separation from ∂Ω to employ Lemma 5.2.2

above. Here, we can obtain it through integration by parts

c0 αε({|uε| > θ′}) =

∫
{|uε|>θ′}

1

ε

(
ε∆uε −

1

ε
W ′(uε)

)2

dx

= −2

ε

∫
∂{|uε|>θ′}

W ′(uε) ∂νuε dHn−1

+

∫
{|uε|>θ′}

ε (∆uε)
2 +

2

ε
W ′′(uε) |∇uε|2 +

1

ε3
W ′(uε)

2 dx

≥
∫
{|uε|>θ′}

ε (∆uε)
2 +

4

ε
|∇uε|2 +

1

ε3
W ′(uε)

2 dx

for θ′ > θ when {|uε| > θ′} is a Caccioppoli set (i.e. for almost all θ′ > θ). If |uε| < θ′ on

∂Ω, the set {uε > θ′} does not touch the boundary ∂Ω, so ∂{uε > θ′} ⊂ {uε = θ′} ⊂ Ω.

Because W ′(θ) > 0 and ∂νuε is inward pointing on ∂{uε > θ}, the boundary integral is

non-positive. The rest of the argument goes through as before. Additionally, taking θ′ → θ

establishes the first claim.

Another situation with a similar improvement is that of prescribed Neumann boundary

data.
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Lemma 6.2.2. Assume that Ω is a Caccioppoli set and ∂νuε = 0 almost everywhere on ∂Ω

with respect to the boundary measure |DχΩ|. Then the following hold true.

1. There exists C > 0 such that µε({|uε| ≥ 1}) ≤ C ε2.

2. For the set Ω̃ε = {x ∈ Ω |B2ε(x) ⊂ Ω} we can show that there exists C depending only

on ᾱ and γ such that

||uε||∞,Ω̃ε ≤ C, |uε(y)− uε(z)| ≤
C

εγ
|y − z|γ

if there is x ∈ Ω̃ε such that y, z ∈ Bε(x). Here γ ≤ 1/2 if n = 3, γ < 1 if n = 2.

If ∂Ω ∈ C2 and ∂νuε = 0 almost everywhere on ∂Ω, then the second statement can be

sharpened as follows:

2’. For all x ∈ Ω there exists a constant C depending only on ᾱ, µ̄, γ and ∂Ω such that

|uε(x)| ≤ C, |uε(y)− uε(z)| ≤
C

εγ
|x− y|γ ∀ y, z ∈ Bε(x) ∩ Ω.

The dependence of C on ∂Ω vanishes in the limit ε→ 0.

In particular, for regular boundaries, the Neumann condition implies the boundedness

of solutions (in particular also on the boundary).

Proof. As before, we obtain

αε({|uε| > θ′}) =

∫
{|uε|>θ′}

1

ε

(
ε∆uε −

1

ε
W ′(uε)

)2

dx

= −2

ε

∫
∂Ω∩∂{|uε|>θ′}

W ′(uε) ∂νuε dHn−1 − 2

ε

∫
∂{|uε|>θ′}∩Ω

W ′(uε) ∂νuε dHn−1

+

∫
{|uε|>θ′}

ε (∆uε)
2 +

2

ε
W ′′(uε) |∇uε|2 +

1

ε3
W ′(uε)

2 dx

≥
∫
{|uε|>θ′}

ε (∆uε)
2 +

4

ε
|∇uε|2 +

1

ε3
W ′(uε)

2 dx

for any θ′ > 1 such that {|uε| > θ′} is a Caccioppoli set. Here the boundary integral

can be split into two parts, one of which has a sign, while the other one vanishes due to

the Neumann condition. This implies the boundedness on Ω̃ε and the bound on the mass

measures µε({|uε| > θ′}) as before. We can take θ′ → 1 to prove the first part of the Lemma.

Now assume that ∂Ω ∈ C2 and pick x ∈ ∂Ω. The rest of the argument is a fairly standard

‘straightening the boundary’ argument with the feature that the boundary becomes flatter
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as ε→ 0. Without loss of generality, we assume that x = 0. We may now blow up to

ũε : B2(0) ∩ (Ω/ε)→ R, ũε(y) = uε(εy).

We pick a C2-diffeomorphism φε : B2(0)→ B2(0) such that

1. φε(Ω/ε ∩B2(0)) = B+
2 (0),

2. φε → idB2(0) in C2(B2(0), B2(0)) as the domain becomes increasingly flat,

3. under φε, the normal to ∂Ω/ε gets mapped to en on the boundary, i.e. the orthogonality

condition is preserved.

With this we obtain a function

w̃ε : B+
2 (0)→ R, w̃ε(y) = uε(φ

−1
ε (y))

in flattened coordinates. Since φε is C2-smooth, it preserves W 2,2-functions and it is easy

to calculate

∂iũε = ∂i(w̃ε ◦ φε)

= ∂i(φε)j ((∂jw̃ε) ◦ φε)

∂ij ũε = ∂ij(φε)k ((∂kw̃ε) ◦ φε) + ∂i(φε)k ∂j(φε)l ((∂klw̃ε) ◦ φε) .

In shorter notation, this means that

∇ũε = Dφ · ∇w̃ε, ∆ũε = aijε ∂ijw̃ε + 〈∆φε,∇w̃ε〉

with

aijε = 〈∂iφε, ∂jφε〉.

The coefficients are C1-differentiable – so the associated operator Aε can be equivalently

written in divergence form – and C1-close to δij . We observe that

(∆ũε −W ′(ũε)) (φ(y)) =
(
∂i
(
aijε ∂jw̃ε

)
− (∂i a

ij
ε )∂jw̃ε + 〈∆φε,∇w̃ε〉 −W ′(w̃ε)

)
(y).

We extend w̃ε by even reflection to the whole ballB2(0), which preserves theW 2,2-smoothness

since we preserved the property that ∂ν ũε = 0 on the boundary when straightening the

boundary. We observe that

∂i (aijε ∂jw̃ε)− 〈divAε −∆φε,∇w̃ε〉 =: fε ∈ L2(B2(0))
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since

∫
B2(0)

W ′(w̃ε)
2 dy = 2

∫
B+

2 (0)

W ′(w̃ε)
2(y) dy

= 2

∫
Ω/ε∩B2(0)

W ′(ũε((z))) det(Dφ−1
ε )(z) dz

≤ 2(1 + cε)

∫
B2ε(x)

1

εn
W ′(ũε) dz

≤ C

as shown above. The constants cε vanish as ε → 0 and φε → id. The coefficients aij

are uniformly elliptic and approach δij uniformly as ε → 0, so we can employ the elliptic

estimate

||∇w̃ε||L2(B3/2) ≤ C
{
||w̃ε||L2(B2) + ||fε + 〈divAε −∆φε,∇w̃ε〉||L2(B2)

}
≤ C

{
||w̃ε||L2(B2) + ||fε||L2(B2) + ||divAε −∆φε||L∞(B2) ||∇w̃ε||L2(B2)

}
.

The constant is uniform in ε and ||divAε −∆φε||L∞(B2) → 0 as ε→ 0, so we can bring the

term to the other side and obtain a uniform W 1,2-bound for all sufficiently small ε, where

the necessary smallness depends only on Wε(uε) and ∂Ω. In a second step, this gives us a

uniform bound on ||w̃ε||W 2,2(B1(0)), which gives us a uniform bound on ||ũε||W 2,2(B3/2(0)∩Ω/ε)

after transforming back. The rest follows as before.

Remark 6.2.3. The case that Ω has finite perimeter and ∂νuε = 0 almost everywhere on the

reduced boundary is a generalisation of the situation in which ∂Ω ∈ C2 and the level sets

of uε meet ∂Ω at a ninety degrees angle. Such conditions arise naturally when we search

for surfaces of minimal perimeter bounding a prescribed volume and may be useful also for

models containing Willmore’s energy [AK14].

We give an improvement of the L∞-bound up to the boundary which implies Lp-

convergence for all finite p.

Lemma 6.2.4. Assume that there is θ ≥ 1 such that |uε| ≤ θ on ∂Ω for all ε > 0. Then

the following hold true.

1. If n = 2, ∂Ω ∈ C1,1 and θ > 1, then for every β < 1 there exists a constant C

depending only on ᾱ, θ,Ω and β such that supx∈Ω |uε(x)| ≤ θ + Cεβ for all ε > 0.

If θ = 1, then for every β < 1/2 there exists a constant C depending only on ᾱ,Ω and

β such that supx∈Ω |uε(x)| ≤ 1 + Cεβ for all ε > 0.
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2. If n = 3 and ∂Ω ∈ C1,1, then for every p < ∞ there exists C depending only on

µ̄, ᾱ, θ, p and Ω such that ||uε||p,Ω ≤ C. Furthermore, for every σ > 0 there exists C

depending only on ᾱ, θ,Ω and σ such that ||uε||∞,Ω ≤ C ε−σ.

We assume that also in three dimensions, uniformly bounded boundary values lead to

uniform interior bounds.

Proof. The proof is a modified version of that of [RS06, Proposition 3.6]. We follow that

proof closely, but use a different maximum principle.

Let θ′ > θ ≥ 1 such that {|uε| > θ′} has finite perimeter and define wε := (uε − θ′)+.

Then wε ∈W 1,2
0 (Ω) and from the same integration by parts as before we obtain that

||wε||21,2,Ω ≤
∫
{uε>θ′}

W ′(uε)
2 + |∇uε|2 ≤ αε(Ω) ε.

The function satisfies

∫
Ω

wε (−∆φ) dx =

∫
{uε>θ′}

(uε − θ′) (−∆φ) dx

= −
∫
∂{uε>θ′}

(uε − θ′) ∂νφ dHn−1 +

∫
{uε>θ′}

〈∇φ,∇uε〉dx

=

∫
∂{uε>θ′}

φ∂νuε − (uε − θ′) ∂νφ dHn−1 +

∫
{uε>θ′}

φ (−∆uε) dx

≤
∫
{uε>θ′}

φ (−∆uε) dx

for φ ≥ 0. Again, this holds true because ∂{uε > θ′} ⊂ {uε = θ′}. Obviously

∫
{uε>θ′}

φ (−∆uε) dx =

∫
{uε>θ′}

(
−∆uε +

1

ε2
W ′(uε)−

1

ε2
W ′(uε)

)
φdx

≤
∫
{uε>θ′}

1

ε

(
hε −

1

ε
W ′(θ′)

)
+

φ dx,

so −∆wε ≤ 1
ε χ{uε>θ′}

(
hε − 1

ε W
′(θ′)

)
+

in the distributional sense. When we consider the

solution ψε ∈W 1,2
0 (Ω) of the problem

−∆ψε =
1

ε

(
hε −

1

ε
W ′(θ′)

)
+

χ{uε>θ′},

the weak maximum principle [GT83, Theorem 8.1] applied to wε − ψε implies that

uε ≤ θ + wε ≤ θ + ψε. (6.2.1)
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We proceed to estimate

||∆ψε||qq,Ω = ε−q
∫
{uε>θ′}

(
hε −

1

ε
W ′(θ′)

)q
+

dx

≤ ε−q
(∫
{uε>θ′}

1 dx

)1−q/2(∫
Ω

h2
ε dx

)q/2

≤ ε−q
(

ε3

W ′(θ′)2

∫
{uε>θ′}

1

ε3
W ′(uε)

2 dx

)1−q/2(
ε

∫
Ω

1

ε
h2
ε dx

)q/2
≤ cᾱ,q (W ′(θ′))q−2 ε−q+3(1−q/2)+q/2

= cᾱ,q (W ′(θ′))q−2 ε3−2q

for 1 ≤ q < 2. Thus ||∆ψε||q,Ω ≤ Cᾱ,q (W ′(θ′))1−2/q ε3/q−2, and by the elliptic estimate

[GT83, Lemma 9.17], we have

||ψε||2,q,Ω ≤ cΩ,ᾱ,q (W ′(θ′))1−2/q ε3/q−2.

Let us insert this estimate into (6.2.1). If n = 3, we take q = 3/2 and use that W 2,3/2(Ω)

embeds into Lp(Ω) for all finite p. Thus (taking some θ′ > 1 if θ = 1), we see that uε ≤ θ′+ψε
where ψε is uniformly bounded in Lp(Ω). We may use the same argument on the negative

part of uε, so in total uε is uniformly bounded in Lp(Ω) for all 1 ≤ p < ∞ by domination

through ψε. Taking q = 3/(2− σ) > 3/2 proves the L∞-estimate by the same comparison.

If n = 2, we have a Sobolev embedding W 2,q(Ω)→ L∞(Ω) for all q > 1. Assuming that

θ > 1 and β < 1 we take θ′ → θ to obtain

uε ≤ θ + wε ≤ θ + ψε ≤ θ + CΩ,ᾱ,q (W ′(θ))1−2/q ε3/q−2.

For q = 3/(2 + β), this gives uε ≤ 1 + C εβ . Here q ∈ (1, 2) is admissible since β ∈ (0, 1). If

θ = 1, we may take 0 < β < 1/2, q = (3− 2β)/2 ∈ (1, 2) and 1 + εβ ≤ θ′ ≤ 1 + 2εβ to obtain

|uε| ≤ 1 + CΩ,ᾱ,qε
β(1−2/q)+(3/q−2) = 1 + CΩ,ᾱ,qε

β

with the approximation W ′(θ′) = O(εβ).

Corollary 6.2.5. If either

1. uε ∈ C0(Ω) and there exists θ ≥ 1 such that |uε| ≤ θ on ∂Ω for all ε > 0 or

2. ∂Ω ∈ C2 and ∂νuε = 0 a.e. on ∂Ω,

then uε → u in Lp(Ω).
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Proof. The sequence uε converges to u in L1(Ω) and is bounded in Lq(Ω) for all q <∞ (or

even L∞(Ω)). Hölder’s inequality implies Lp-convergence.

Remark 6.2.6. If n = 2, β < 1/2 and |uε| ≤ 1 + εβ on ∂Ω, then the proof still shows that

sup
Ω
|uε| ≤ 1 + C εβ

for this particular β. The case β = 1/2 is still open at the boundary.

For a counterexample to uniform boundedness on Ω without boundary conditions, see

Example 6.3.1. Even with boundary values satisfying |uε| ≤ 1 on ∂Ω ∈ C2, we shall construct

a sequence uε for which uniform Hölder continuity fails at the boundary in Example 6.3.3.

6.3 Counterexamples to Boundary Regularity

The idea here is simple: namely, the energy Wε can be seen to control the W 2,2-norm of

blow ups of phase-fields onto ε-scale since those are asymptotic to bounded entire solutions

of the stationary Allen-Cahn equation −∆ũ + W ′(ũ) = 0 at (almost all) points away from

the boundary. At the boundary on the other hand, the asymptotic behaviour corresponds

to solutions of the same equation on half-space, whose behaviour is essentially governed by

their boundary values. To make this precise, take h ∈ C∞c (Rn) and H := {xn > 0}. The

energy

F : W 1,2
loc (H)→ R ∪ {∞}, F(u) =

∫
H

1

2
|∇u|2 +W (u) dx

has a minimiser ũ in the affine space (1+h)+W 1,2
0 (H) by the direct method of the calculus of

variations. Namely, take a sequence uk such that limk→∞ F(uk) = inf F(u) ≤ F(h+1) <∞.

Then

||∇uk||L2(H) ≤ C, and (uk − 1)2(x) ≤ (uk − 1)2(uk + 1)2(x) = 4W (uk(x))

at all points x ∈ H such that uk(x) ≥ 0. Using the boundary values, also the negative part of

uk is uniformly controlled in L2(H) by the H1-semi norm. Thus the sequence uk is bounded

in W 1,2(H) and there exists ũ such that uk ⇀ ũ (up to a subsequence). Since the affine

space is convex and strongly closed, it is weakly = weakly* closed and ũ ∈ 1 +h+W 1,2
0 (H).

For any R > 0, we can use the compact embedding W 1,2(B+
R)→ L4(B+

R) to deduce that

∫
B+
R

1

2
|∇ũ|2+W (ũ) dx ≤ lim inf

k→∞

∫
B+
R

1

2
|∇uk|2+W (uk) dx ≤ lim inf

k→∞

∫
H

1

2
|∇uk|2+W (uk) dx.
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Letting R→∞ shows that ũ is in fact a minimiser of F . If h ≥ 0, then

1 + (ũ− 1)+ ∈ 1 + h+W 1,2
0 (H), F (1 + (ũ− 1)+) ≤ F(ũ)

with strict inequality unless ũ = 1 + (ũ − 1)+. Since we assume ũ to be a minimiser, we

find that ũ ≥ 1 almost everywhere. The same argument shows that ũ ≤ 1 + ||h||∞ almost

everywhere. Calculating the Euler-Lagrange equation of F , we see that ũ is a weak solution

of

−∆ũ+W ′(ũ) = 0.

On the convex set

Ch := {u ∈W 1,2(H) | u = 1 + h on ∂H, u ≥ 1}

the operator

A : Ch →W−1,2(H), A(u) = −∆u+W ′(u)

is well-defined (since n ≤ 3 and W ′ has cubical growth) and strongly monotone, so the

equation Au = 0 has a unique solution ũ ∈ Ch which coincides with the minimiser ũ of F
in 1 + h + W 1,2

0 (H)). A bootstrapping argument via elliptic regularity theory shows that

ũ ∈ C∞loc(H). By trace theory we have that

||h||22,∂H = ||ũ− 1||22,∂H ≤ ||ũ− 1||21,2,H/2 ≤ F(ũ) ≤ F(1 + h).

In this way, we can fully control the mass density µ̃ = 1
2 |∇ũ|2 +W (ũ) created by ũ in terms

of its boundary values. For later purposes, we have to obtain suitable decay estimates for

the functions ũ depending on h. In a first step, we show that the limit lim|x|→∞ ũ(x) = 1

exists. Assume the contrary. Then there exist θ > 1 and a sequence xk ∈ H such that

|xk| → ∞, ũ(xk) ≥ θ.

Taking a suitable subsequence, we may assume that the balls B1(xk) are disjoint and |xk| ≥
R + 2 is so large that h is supported in BR(0). If B2(xk) ⊂ H, we may proceed as in

Lemma 5.2.8 to deduce uniform Hölder continuity on the balls B1(xk) from the L∞-bound

to ũ and the fact that ũ solves ∆ũ = W ′(ũ). This means that there exists r > 0 such that

ũ ≥ (1 + θ)/2 on Br(xk). Otherwise, the same argument still goes through after extending

ũ by a standard reflection principle and the fact that the boundary values are constant on
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∂H ∩B2(xk). The geometry of H gives us Ln(Br(xk) ∩H) ≥ ωn rn/2. So we deduce that

F(ũ) ≥
∞∑
k=0

∫
Br(xk)

W ( (1 + θ)/2) dx ≥
∞∑
k=0

W ((1 + θ)/2)ωn r
n/2 =∞

in contradiction to the definition of ũ. Now we can estimate the decay of ũ in a more precise

fashion. Since h ∈ Cc(∂H), there is Ch > 0 such that h ≤ Ch e
−|x| on ∂H. To simplify the

following calculations, we assume that Ch = 1. Then we claim that 1 ≤ u ≤ 1 + e−|x| for all

x ∈ Rn. Assume the contrary and observe that ψ(x) = 1 + e−|x| satisfies

∆ψ(x) =

(
1 +

1− n
|x|

)
e−|x|, W ′(ψ(x)) =

(
2 + 3 e−|x| + e−2 |x|

)
e−|x|,

so in particular ∆ψ(x) ≤ W ′(ψ(x)) for all x ∈ Rn. Since ũ = h ≤ ψ on ∂H by assumption

and lim|x|→∞ ũ(x) = 1, there must be a point x0 ∈ H such that

(ψ − u)(x0) = min
H

(ψ − u) < 0,

but then

∆(ψ − u)(x0) ≤W ′(ψ(x0))−W ′(u(x0)) < 0

so ψ − u cannot be minimal at x0. This proves the claim. It follows that

∫
H\B+

R

W (ũ) dx ≤ 2

∫ ∞
R

e−2r rn−1 dr = Pn(R) e−2R

where Pn is a polynomial of degree n depending on the dimension. To estimate the second

part of the energy functional, we use the gradient bound

|∇u(x)| ≤ n√n sup
∂Q
|u|+ 1

2
sup
Q
|∆u|

from [GT83, Section 3.4] where Q is a cube of side length d = 1 with a corner at x. Applied

to our problem, for x ∈ ∂B+
R we can find a cube Q satisfying Q̄ ∩ B̄+

R = {x} such that

|∇ũ(x)| = |∇(ũ− 1)|(x) ≤ n√n sup
∂Q
|ũ− 1|+ 1

2
sup
Q
|W ′(ũ)| ≤ (n

√
n+ 5/2) e−|x|.

Thus we also have

∫
H\B+

R

1

2
|∇ũ|2 dx ≤

(
n
√
n+ 5/2

)2
Pn(R) e−2R
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Finally, we remark that the same type of estimate obviously holds for ∆ũ = W ′(ũ) ∈ L2(H).

Having given the general construction for suitable functions of zero W1 curvature energy,

we are finally ready to apply these results to obtain counterexamples. For simplicity, we

construct the counterexamples first on the half space H and transfer them to bounded Ω

later on.

Example 6.3.1 (Counterexample to Boundedness). Fix h ∈ C∞c (Rn) such that 0 ≤ h ≤ e−|x|,
h 6≡ 0 and set hθ = θ h. Every function of this type induces a minimiser ũθ. We may take

a sequence θε → ∞ such that εn−1/θ 4
ε → 0 and set uε(x) = ũθε(x/ε). Clearly, uε becomes

unbounded as ε→ 0, but

1. Wε(uε) ≡ 0 and

2. Sε(uε) = εn−1 F(ũθε) ≤ C εn−1 F(hθε)→ 0.

So the sequence uε induces limiting measures µ = α = 0, but fails to be uniformly bounded.

The next example is a technically more demanding version of this one where the energy

scaling is chosen so that we create an atom of size S > 0 at the origin.

Example 6.3.2 (Counterexample to Boundary Regularity of µ). Take hθ, ũθ as above. Then

the map

f : [0,∞)→ R, f(θ) = F(ũθ) = inf{F(u) | u ∈ 1 + hθ +W 1,2
0 (H)}

is continuous. To see this, take pairs θ1, θ2 and the corresponding minimisers ũ1, ũ2 and

observe that

ũ1,2 =
θ2

θ1
[ũ1 − 1] + 1 ∈ 1 + hθ2 +W 1,2

0 (H).

Since

W (1 + αu) = ((1 + αu)2 − 1)2/4 = (2αu+ α2u2)2/4 ≤ max{α2, α4}W (1 + u)

we have

f(θ2) = F(ũ2) ≤ F(ũ1,2) ≤ max

{(
θ2

θ1

)2

,

(
θ2

θ1

)4
}
F(ũ1) = max

{(
θ2

θ1

)2

,

(
θ2

θ1

)4
}
f(θ1).

Reversing the roles of θ1 and θ2 shows that f is continuous. Now let S > 0. Due to the

continuity of f in θ and the trace inequality

θ2||h||22,∂H = ||hθ||22,∂H ≤ F(ũθ)
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we can pick a sequence θε →∞ at most polynomially in 1/ε such that F(ũθε) = S ε1−n. As

before, set uε(x) = ũθε(x/ε) and observe that Wε(uε) ≡ 0, Sε(uε) ≡ S. It remains to show

that µ = S δ0, i.e. that the limiting measure is concentrated in one point. The functions ũθ

actually tend to shift more of their mass towards the origin as θ → ∞ since the steepness

(and overall height) is best concentrated on a ball of small radius for a low energy.

The same application of the maximum principle as before shows that ũθ ≤ w̃θ := 1 +

θ(ũ1 − 1) since

∆(w̃θ − ũθ) = θ∆ũ1 −∆ũθ = θW ′(ũ1)−W ′(ũθ) ≤W ′(w̃θ)−W ′(ũθ)

is monotone in w̃θ, ũθ and the boundary values satisfy ũθ = w̃θ on ∂H and lim|x|→∞ ũθ =

lim|x|→∞ w̃θ = 1. Like above, we now obtain that

∫
H\B+

R

1

2
|∇ũε|2 +W (ũε) dx ≤ max{θ2

ε , θ
4
ε}Pn(R) e−2R.

Thus we can choose a sequence Rε → ∞ such that θ4
ε Pn(Rε) e

−2Rε → 0 and εRε → 0

since θε grows only polynomially in 1/ε and the exponential term dominates (take e.g.

Rε = ε−1/2). Thus for all R > 0

µε(BR(0)) = ε1−n
∫
B+
R/ε

|∇ũθε |2 +W (ũθε) dx ≥ ε1−n
∫
B+
Rε

|∇ũθε |2 +W (ũθε) dx→ S

and hence µ(BR(0)) ≥ S. Taking R→ 0 shows that µ({0}) = µ(H) = S, i.e. µ = S δ0.

Functions as described above can appear as minimisers of functionals likeWε+ε−1 (Sε−
S)2 which are used to search for minimisers of Willmore’s energy with prescribed surface

area – even as functions with energy zero. The same is true for functionals including the

topological penalisation term discussed below.

By construction, the previous example shows that the inclusion spt(µ) ⊂ limε→0 u
−1
ε (I)

need not be true for any I b (−1, 1) since uε ≥ 1 and thus K = ∅. We use a similar

construction to demonstrate that the reverse inclusion need not hold, either.

Example 6.3.3 (Counterexample to Hausdorff Convergence). Using the same arguments as

above, if 0 ≤ h ≤ 2, we can find a solution ũ ∈ (1− h) +W 1,2
0 (H) ∩ C∞loc(H) of

−∆ũ+W ′(ũ) = 0 in H, ū = 1− h on ∂H

satisfying −1 ≤ ũ ≤ 1, lim|x|→∞ ũ(x) = 1 and F(ũ) ≤ F(1 + h) < ∞. Decay estimates

are harder to obtain here since W ′ is not monotone inside [−1, 1], but we will not need

them, either. If we take h such that h(0) = 2, h ∈ C∞c (B1), we can use continuity up to the
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boundary to deduce that ũ−1(ρ)∩B+
1 6= ∅ for all ρ ∈ (−1, 1). So when we set uε(x) = ũ(x/ε),

we see that

1. µε(H) = εn−1 µ̃(H) = εn−1 F(ũ)→ 0,

2. Wε(uε) ≡ 0 and

3. 0 ∈ limε→0 u
−1
ε (I) in the Hausdorff sense for all ∅ 6= I b (−1, 1).

Example 6.3.4 (Counterexample to Uniform Hölder Continuity). If we take h like in the

previous example and replace it by hω(x) = h(ωx) we observe that the associated minimisers

satisfy

F(ũω) ≤ F(hω) ≤ F(h)

for all ω ≥ 1 since the gradient term stays invariant in two dimensions and decreases in

three, while the integral of the double well potential decreases in both cases for any fixed

h. Thus, if we take any sequence ωε → ∞ and define uε(x) = ũωε(x/ε), we get the same

results as before. As the function becomes steeper and steeper on the boundary faster than

ε, uniform Hölder continuity up to the boundary cannot hold, even for uniformly bounded

boundary values.

Example 6.3.5 (Counterexample to Boundary Regularity of µ with −1 < uε < 1). We can

refine the examples to show that growth of uε on ∂Ω is not the only reason that µ might

develop atoms on ∂Ω, but that this is in fact possible with |uε| ≤ 1. This happens when

we prescribe highly oscillating boundary values on ∂H. Let h ∈ C∞c (∂H), then for any

u ∈ H1(H) with u|∂H = g we have

∫
H

|∇u|2 dx ≥ [h]2H1/2(∂H) = cn−1

∫
∂H×∂H

|h(x)− h(y)|2
|x− y|n+1

dxdy.

for a constant depending on the dimension n− 1 ∈ {1, 2}. For any S′ > 0 and δ > 0 we can

construct h ∈ C∞(H) such that

1. 0 ≤ h ≤ δ,

2. supp(h) ⊂ B1(0) and

3. [h]2
H1/2 ≥ S′.

We construct a solution of the stationary Allen-Cahn equation with the boundary values

1− h as before, but for a modified potential

W (s) =

W (1− 2δ) s ≤ 1− 2δ

W (s) s ≥ 1− 2δ

.
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An energy minimiser will never dip below 1− 2δ then, and consequently never below 1− δ
by the maximum principle if δ is chosen so small that W ′ is monotone on [1− 2δ,∞). The

rest of the proof goes through as before with suitable scaling of h to get the right energy

since W ′ behaves correctly just below 1, as it does slightly above 1. We will not repeat the

details.

The boundary values need to be constructed with slightly more care since we cannot

just have vertical growth and the H1/2-norm behaves badly under spacial scaling. This is

compensated in the boundary construction by having a larger number of faster oscillations.

When we have constructed h with a large enough half-norm, we can always reduce it by

scaling with a constant < 1.

For the sake of simplicity, we chose to construct the examples on half space due to its

scaling invariance. Let us sketch how they can be transferred to C2-domains. If Ω b Rn

and ∂Ω ∈ C2 there exists x0 ∈ ∂Ω such that |x0| = maxx∈∂Ω |x|. At x0, both principal

curvatures of ∂Ω are strictly positive, so in a ball around x0, up to a rigid motion we may

write

Ω ∩Br(x0) = {x ∈ Br(x0) | xn > φ(x̂)}

where x̂ = (x1, . . . , xn−1) and φ is a strictly convex C2-function satisfying φ(0) = 0, ∇φ(0) =

0 and Ω ⊂ H. If Ω is convex in the first place, this is possible at every point x0 ∈ ∂Ω.

Thus, the function uε(x) = ũ(x/ε) is well-defined on Ω for any of the functions ũ con-

structed above. If ε is chosen small enough, the difference between H and Ω/ε becomes

negligible for any given ũ and we can still construct counterexamples to boundedness, local

Hölder-continuity, relationship between spt(µ) and the Hausdorff limit of the level sets and

to the regularity of µ this way.

Using the exponential decay (or modifying functions to become constant for larger argu-

ments) it is also possible to create singular behaviour for example along curves in the convex

portion of the boundary by placing singular solutions of the stationary Allen-Cahn equation

at an increasing number of points distributed along the curve.

We restricted our analysis to convex boundary points since then uε = ũθ(x/ε) is well-

defined for all small ε > 0, whereas at other points, half space does not provide enough

information to fill an entire neighbourhood of x0. We believe that the same pathologies can

arise at general boundary points.
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Chapter 7

Thin Elastic Structures with

Constraint

7.1 Introduction

In this chapter, we will finally provide a partial phase-field solution to Problem 1 and a

computationally feasible method of finding minimisers. The solution is partial in that it only

controls connectedness and does not guarantee that a limiting surface can be approximated

by C2-boundaries with bounded Willmore energy. A contribution to this field will be given

in Chapter 8.

An often cited advantage of phase-fields is that they are capable of changing their topol-

ogy; in that sense our endeavour is non-standard. It should be noted that our phase-fields

may still change their topology (at least in three dimensions), only connectedness is enforced.

7.1.1 Topology and Phase-Fields

Examples of topological changes and loss of connectedness in simulations for biological prob-

lems governed by bending energies or our type are given in [DW07, Du10].

In [BLS15], a geodesic distance function has been used to minimise the length of a

connected set K containing a prescribed set of points x1, . . . , xN in two dimensions (Steiner’s

problem). Our setting is different in two ways: 1. Steiner’s problem has a finite number

of a priori known points which need to be contained in K while the transition layer of the

phase-field has no special points and 2. the phase-field approximation of Steiner’s problem

works in dimension n = 2, while we work in ambient space of dimension n = 2, 3 where the

curves used in the definition of the distance function have codimension 2.
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Previous work in [DMR11] provides a first attempt at an implementation of a topological

constraint in a phase-field model for elastic strings modelled by the one-dimensional version

of the Willmore energy, Euler’s elastica. This technique prevents transitions in simulations

for simple situations, but may fail in more complex cases, see Section 9.3. Similar numerical

approaches to tracking the topology using a diffuse Euler number are discussed in [DLW05,

DLRW07].

This approach was complemented by a method put forth in [DMR14], which relies on a

second phase-field subject to an auxiliary minimisation problem used to identify connected

components of the transition layer. While our functional can be seen as using a diffuse

measure of path-connectedness, the functional in [DMR14] generalises more directly the

notion of connectedness. For this model, a Γ-convergence result was obtained, showing that

limits of bounded-energy sequences must describe a connected structure. Unfortunately, the

complicated nested minimisation problem makes it unsuitable for computation.

Approaches of regularising limit interfaces have been developed by Bellettini in [Bel97]

and investigated analytically and numerically in [ERR14]. The approaches work by intro-

ducing non-linear terms of the phase-field in order to control the Willmore energies of the

level sets individually and exclude transversal crossings (which phase-fields for De Giorgi’s

functional can develop). These regularisations may prevent loss of connectedness along a

gradient flow in practice, but do not lead to a variational statement via Γ-convergence.

Furthermore, we would like to emphasise that we can easily describe a weakly* continuous

evolution of varifolds along which connectedness is lost. Except at one singular time, the

varifolds are embedded C2-manifolds and the evolution is C2-smooth – see Remark 3.2.14.

It thus is not clear whether the approach of [Bel97] does prevent topological transitions,

in particular, the loss of connectedness, in three ambient space dimensions. At least, it

is more difficult to implement due to the highly non-linear term including the Willmore

energies of level sets.

As we have seen in Chapter 3, topological genus is not continuous under varifold con-

vergence and minimising sequences of a constrained minimisation problem with fixed genus

may change topological type in the limit.

At this point, we thus know of no other model which can control the topology of phase-

field limits. Furthermore, our results are optimal since they allow us to control as much

of the topology as can be controlled even for a sharp interface and they allow for efficient

implementation.
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7.1.2 Connectedness

In order to ensure that the support of the limiting measure µ is connected we include an

auxiliary term Cε in the energy functional. The heuristic idea behind this is that if the

support of the limiting measure spt(µ) is connected, then so should the set {ρ1 < uε < ρ2}
for −1 < ρ1 < ρ2 < 1. These level sets away from ±1 can be heuristically viewed as

approximations of spt(µ) as supported by Lemma 5.3.4.

Our concept is to introduce a quantitative notion of path-connectedness and penalise the

measured disconnectedness. Take a weight function F ∈ C0(R) such that

F ≥ 0, F ≡ 0 on [ρ1, ρ2], F (−1), F (1) > 0.

and the associated geodesic distance

dF (u)(x, y) = inf

{∫
K

F (u) dH1

∣∣∣∣K connected, x, y ∈ K,H1(K) ≤ ω(ε)

}
,

where ω(ε) → ∞ as ε → 0. In particular, ω(ε) ≡ ∞ is not excluded. If {ρ1 < uε < ρ2}
is connected, we can connect any two points x, y ∈ u−1

ε (ρ1, ρ2) by a curve of length zero.

If it is not, then dF (u)(x, y) gives a quantitative notion of how badly path-connectedness

fails between these two points. To obtain a global notion, we take a second weight function

φ ∈ Cc(−1, 1) resembling a bump, i.e.,

φ ≥ 0, {φ > 0} = (ρ1, ρ2) b (−1, 1),

∫ 1

−1

φ(u) du > 0

and take the double integral

Cε(u) =
1

ε2

∫
Ω

∫
Ω

φ(u(x))φ(u(y)) dF (u)(x, y) dx dy.

As connectedness is a non-local concept, the non-local nature of the functional is not sur-

prising. So, if {φ(uε) > 0} = {ρ1 < uε < ρ2} is connected, we can connect any two points

x, y ∈ Ω such that φ(uε(x))φ(uε(y)) > 0 with a curve of length zero, hence dF (uε)(x, y) = 0

and both the integrand and the double integral vanish.

If on the other hand spt(µ) is disconnected, then we expect that dF (uε) should be able

to discern different connected components such that lim infε→0 Cε(uε) > 0. The core part of

our proof is concerned with precisely that. We need to show that φ detects components of

the interface and that dF (uε) distinguishes them. For the first result, we need to understand

the structure of the interfaces converging to µ and make sure they cannot be so steep in

u−1
ε (ρ1, ρ2) that the double integral does not see them in the limit. For the second part, the
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challenge is to understand how phase-fields converge away from the interface which has been

treated above. Precisely, we need convergence on curves, i.e. on objects of co-dimension two.

7.1.3 Main Results

For our application to connectedness, we define the total energy of an ε-phase-field as

Eε(u) =

Wε(u) + ε−σ (Sε(u)− S)2 + ε−κ Cε(u) u ∈ −1 +W 2,2
0 (Ω)

+∞ else

(7.1.1)

for σ, κ > 0.

Remark 7.1.1. If ω(ε) < ∞, existence of mininimisers for the functional Eε is a simple

exercise in the direct method of the calculus of variations, since uniform convergence of a

minimising sequence uε,k ∈ W 2,2(Ω) → C0(Ω) for fixed ε guarantees convergence of the

distance term.

Theorem 7.1.2. Let uε ∈ X be a sequence such that (Wε + Sε)(uε) ≤ C for some C > 0

and µ, α Radon measures such that µε
∗
⇀ µ, αε

∗
⇀ α. If spt(µ) is disconnected, then

lim inf
ε→0

Cε(uε) > 0.

Corollary 7.1.3. Let n = 2, 3 and uε ∈ X a sequence such that lim infε→0 Eε(uε) < ∞.

Then the diffuse mass measures µε converge weakly* to a measure µ with connected support

spt(µ) ⊂ Ω and area µ(Ω) = S.

The main result of [RS06] can be applied to deduce Γ-convergence of our functionals in

the following sense:

Corollary 7.1.4. Let n = 2, 3, S > 0, Ω b Rn and E b Ω, with smooth boundary ∂E ∈ C2

with area Hn−1(∂E) = S. Then

Γ(L1(Ω))− lim
ε→0
Eε(χE − χEc) =

 W(∂E) ∂E is connected

+∞ otherwise
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7.2 Proofs

The proofs are organised in the following way. We begin with technical Lemmata (Section

7.2.1) and give the proofs of Theorems 7.1.2, 7.1.3 and 7.1.4 in Section 7.2.2.

7.2.1 Auxiliary Results

In this section, we will derive technical results concerning how phase-field approximations

interact with the function φ as needed for the functional Cε to impose connectedness.

The following arguments rely on the rectifiable structure of the measure µ that we are

approximating. Specifically, we introduce the diffuse normal direction by

νε :=
∇uε
|∇uε|

when ∇uε 6= 0 and 0 else.

Lemma 7.2.1. [RS06, Propositions 4.1, 5.1] Define the n− 1-varifold Vε := µε ⊗ νε by

Vε(f) =

∫
Rn
f(x, 〈νε〉⊥) dµε ∀ f ∈ Cc(Rn ×G(n, n− 1)).

Then there is an integral varifold V such that Vε → V weakly as Radon measures on Rn ×
G(n, n− 1) (varifold convergence). The limit satisfies

µV = µ, H2
µ µ ≤ α

where µV is the mass measure of V and Hµ denotes the generalised mean curvature of µ.

In particular, W(µ) ≤ ᾱ.

The following result is a suitably adapted version of [RS06, Proposition 5.5] for our pur-

poses. It shows that given small discrepancy measures and small oscillation of the gradient,

a bounded energy sequence looks very much like an optimal interface in small balls. Using

our improved bounds from Lemma 5.2.8, we can drop most of their technical assumptions.

Lemma 7.2.2. Let δ, τ > 0 and denote νε,n = 〈νε, en〉. Then there exist 0 < L < ∞
depending on δ and τ only and γ > 0 depending on ᾱ, δ and τ such that the following holds

for all x0 ∈ Rn. If

1. |uε(x0)| ≤ 1− τ and

2. |ξε|(B4Lε(x0)) +
∫
B4Lε(x0)

1− ν2
ε,n dµε ≤ γ (4Lε)n−1

then also the following two properties hold:
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• The blow up ũε(y) = uε(x0 + εy) is C0,1/4-close to an optimal profile q on B3L(0):

| ± ũε − q(πn(·)− t1)|0,1/4,B3L(0) < δ.

The optimal profile q is the function from the lim sup-construction, t1 = q−1(uε(x))

and πn denotes the projection onto the n-th coordinate.

• |uε(x̂, xn + t)| ≥ 1 − τ/2 for all Lε ≤ |t| ≤ 3Lε, where x̂ = (x1, . . . , xn−1) and u

changes sign in between.

Proof. Without loss of generality, we may assume that x0 = 0 and write Br := Br(0).

Recall that q′(t) =
√

2W (q(t)) and limt→±∞ q(t) = ±1. Thus we can pick L > 0 such that

|q(t)| ≥ 1− τ/4 for all t > L.

Assume for a contradiction that there is no constant γ > 0 such that the results of the

Lemma hold. Then for γj → 0, there must be a sequence ujε such that |ujε(0)| ≤ 1 − τ ,

Wε(u
j
ε) ≤ ᾱ+ 1 and

|ξjε |(B4Lε) +

∫
B4Lε

1− (νjε,n)2 dµε ≤ γj (4Lε)n−1,

but the conclusions of the Lemma do not hold. Considering the blow ups ũj : B4L → R

with ũj(y) = ujε(εy) we obtain

||ũj ||2,2,B3L
≤ Cᾱ,n,L

like in Lemma 5.2.8. Hence there is ũ ∈W 2,2(B3L) such that

ũj ⇀ ũ in W 2,2(B3L).

Since W 2,2 embeds compactly into W 1,2 and L4, we see that

∫
B3L

∣∣ |∇ũ|2/2−W (ũ)
∣∣dx = lim

j→∞

∫
B3L

∣∣ |∇ũj |2/2−W (ũj)
∣∣ dx

≤ lim
j→∞

ε1−n|ξjε |(B4Lε)

≤ lim inf
j→∞

(4L)n−1γj

= 0
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and when we set ∇̂u = (∂1u, . . . , ∂n−1u), we get

∫
B3L

|∇̂ũ|dx = lim
j→∞

∫
B3L

|∇̂ũj |dx

= lim
j→∞

∫
B3L

√
|∇ũj |2 − |∂nũj |2 dx

≤ lim inf
j→∞

∫
B4L

|∇ũj |
√

1−
(
ν̃jn
)2

dx

≤ lim inf
j→∞

(ωn (4L)n)
1/2

(∫
B4L

|∇ũj |2
(
1− (ν̃jn)2

)
dx

) 1
2

≤ lim inf
j→∞

√
8Lωn

(
ε1−n

∫
B4Lε

1− (νjn)2 dµε

) 1
2

≤ lim inf
j→∞

√
8Lωn γj

= 0.

Thus we can see that

|∇ũ|2 = 2W (ũ), ∇ũ = (0, . . . , 0, ∂nũ).

Clearly, this means that ũ(y) = p(yn) for a function p with p′ = ±
√

2W (p) . Using that

|ũ(0)| ≤ 1− τ and the Picard-Lindelöff theorem on the uniqueness of the solutions to ODEs,

we see that p(yn) = ±q(yn − ȳ) for some ȳ ∈ R which can easily be fixed by the initial

condition for p(0).

Since weak W 2,2-convergence implies strong C0,1/4-convergence in n = 2, 3 dimensions,

we see that there is j ∈ N such that the claim of the Lemma holds for ujε contradicting our

assumption. Thus the Lemma is proven.

To deal with the rectifiable sets in the next section more easily we prove a structure

result for rectifiable sets. The result seems standard, but we have been unable to find a

reference for it. As usual, we call a function on a closed set differentiable if it admits a

differentiable extension to a larger open set.

Lemma 7.2.3. Let M be a countably k-rectifiable set in Rn. Denote by B the closed unit

ball in k dimensions. Then there exist injective C1-functions fi : B → Rn with ∇fi 6= 0 on

B such that

Hk
(
M \

∞⋃
i=1

fi(B)

)
= 0

and such that fi(B) ∩ fj(B) = ∅ for all i 6= j.

Proof. According to [KP08, Lemma 5.4.2] or [Sim83, Lemma 11.1] there is a countable
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collection of C1-maps gi : Rk → Rn such that

M ⊂ N ∪
∞⋃
i=1

gi
(
Rk
)

where Hk(N) = 0. Without loss of generality, N is assumed to be disjoint from the other

sets. First we need to make the individual maps gi one-to-one. To do that, we define the

set where injectivity fails in a bad way:

Ai :=
{
x ∈ Rk | ∀ r > 0 ∃ y ∈ Br(x) such that gi(x) = gi(y)

}
.

Due to the failure of local injectivity, we see that the Jacobian Jgi(x) vanishes on Ai. Since

gi is a C1-function, the set Di := J−1
gi (0) is closed and by the Morse-Sard Lemma [Fed69,

3.4.3]

Hk (gi(Di)) = 0.

Set Ui := Rk \Di. Now as in [EG92, Chapter 1.5, Corollary 2] we can use Vitali’s covering

theorem [EG92, Chapter 1.5, Theorem 1] to obtain a countable selection of closed balls Bji

such that fi is injective with non-vanishing gradient on Bji for all j ∈ N and

Lk
Ui \ ∞⋃

j=1

Bji

 = 0.

Since the boundary of a k-ball has Hausdorff dimension k − 1, we could equally well take

open balls. Since C1-functions map sets of Lk-measure zero to sets of Hk-measure zero, we

have shown that we can write

M ⊂ Ñ ∪
∞⋃
j=1

g̃i(B
◦)

where Hk(Ñ) = 0, g̃i : B → Rn is one-to-one, C1, and has a non-vanishing gradient

everywhere on the closed ball B. The functions g̃m are obtained by rescaling suitable

restrictions of gi from Bji to the unit ball. Finally, we have to cut out the sets that get hit

by more than one function g̃m. Inductively, we define

Ũm := B◦ \ g̃−1
m

(
m−1⋃
l=1

g̃l(B)

)
.

Finally, we use Vitali’s Lemma again to pick collections of closed balls B̃lm such that

Lk
(
Ũm \

∞⋃
l=1

B̃lm

)
= 0.
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Rescaling the restricted functions from these balls and translating to the unit ball gives us

the result.

The proof of the following Lemma resembles that of the integrality of µ in [RS06, Lemma

4.2]. It faces different challenges: while we do not need to prove multi-layeredness, we cannot

zoom in on the tangent space since we need a macroscopic measure contribution to the double

integral. Thus we need Lemma 7.2.3 to approximate macroscopically the structure of µ.

Lemma 7.2.4. Let φ ∈ C0(R) such that φ ≥ 0 and
∫ 1

−1
φ(u) du > 0. If x ∈ spt(µ), then

lim inf
ε→0

1

ε

∫
Br(x)

φ(uε) dz > 0

for all r > 0.

Proof. Step 1. As usual, we assume that x = 0, µ(∂Br/2(x)) = 0 and denote B = Br/2(x).

This means that all the ε-balls of positive integral we are going to find will actually lie in

Br(x) and is a purely technical condition. Let ζ be a small constant to be specified later.

For further use, denote by B̂ the closed unit ball in Rn−1.

As µ is an integral varifold, we know that spt(µ) is rectifiable. This means by Lemma

7.2.3 that there are countably many C1-functions fi : B̂ → Rn such that

spt(µ) ⊂M0 ∪
∞⋃
i=1

fi(B̂), Hn−1(M0) = 0 fi(B̂) ∩ fj(B̂) = ∅

for i 6= j. Since µ has second integrable mean curvature H2
µ · µ ≤ α, we can further use the

Li-Yau inequality (5.2.4) to bound the maximum multiplicity of µ uniformly by

θmax ≤
α(Ω)

16π
,

at least Hn−1-almost everywhere. Now since Hn−1(spt(µ)) < +∞ we can find N ∈ N such

that

Hn−1

((
spt(µ) ∩B

)
\
N⋃
i=1

fi(B̂)

)
<

ζ

θmax
.

Since fi is injective and has non-vanishing tangent maps everywhere, M :=
⋃N
i=1 fi

(
B̂◦
)

is

a C1-manifold. We observe that

Hn−1(spt(µ) ∩B \M) <
ζ

θmax

and hence

µ (B \M) < ζ.
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Since the maps in question are smooth and the unit discs are orientable, for every i we can

pick a continuous unit normal field to fi(B̂) (e.g. using cross products). Since the discs

are compact and disjoint (thus a positive distance apart), the fields defined on each disc

separately induce a continuous unit vector field on the union of their closures.

Now we use the Tietze-Urysohn extension theorem to obtain a vector field X on B such

that X = νM on M and projecting on the unit ball we ensure |X| ≤ 1. After an easy

modification, we may assume that |X| = 1 on a neighbourhood of M . We then define

G : Rn ×G(n, n− 1)→ R, G(x, S) = 〈Xx, νS〉2

where νS is one of the unit normals to S. Note that G is continuous since X is. Using the

non-negativity of G and the fact that Txµ = TxM for Hn−1-almost every x ∈ M ∩ spt(µ)

we interpret µ as dual to C0(Rn ×G(n, n− 1)) and observe

〈µ,G〉 =

∫
spt(µ)

θ(x)G(x, Txµ) dHn−1

≥
∫

spt(µ)∩M
θ(x)G(x, TxM) dHn−1

=

∫
spt(µ)∩M

θ(x) dHn−1

= µ(M)

≥ µ(B)− ζ.

Step 2. By varifold convergence, we know that limε→0〈µε, G〉 = 〈µ,G〉 ≥ µ(B) − ζ, and

|X|, |νε| ≤ 1 so

lim sup
ε→0

∫
B

∣∣1− 〈νε, X〉2∣∣dµε = lim sup
ε→0

∫
B

1− 〈νε, X〉2 dµε

≤ lim sup
ε→0

(µε(B)− 〈µε, G〉)

≤ ζ.

For γ, ε, L > 0 we define the set

Uε,γ,L :=

{
x ∈ B

∣∣∣∣ 1

(4Lε)n−1

∫
B4Lε(x)

∣∣1− 〈νε, X〉2 ∣∣ dµε > γ/4

}
.

Let x1, . . . , xK be points in Uε,γ,L being maximal for the property that the balls B4Lε(xi)
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are disjoint. Then by definition

ζ ≥
∫
B

∣∣1− 〈νε, X〉2∣∣dµε ≥ K∑
i=1

∫
B4Lε(xi)

∣∣1− 〈νε, X〉2∣∣dµε ≥ K (4Lε)n−1 γ/4.

At the same time, we know that the balls B(xi, 8Lε) cover Uε,γ,L because otherwise we could

bring in more disjoint balls, therefore

Ln(Uε,γ,L)

ε
≤ K ωn (8Lε)n

ε

≤ 4 ζ

γ (4Lε)n−1

ωn (8Lε)n

ε

= 2n+4 ωn Lζ/γ.

For a given γ, we choose ζ = ζ(γ) such that this is ≤ µ(B)/4.

Step 3. Knowing that |ξε|(B)→ 0, we can use the same argument as in the second step

to show for

Vε,γ,L :=

{
x ∈ B

∣∣∣∣ |ξε| (B4Lε(x))

(4Lε)n−1
> γ/2

}
the estimate

Ln(Vε,γ,L)

ε
≤ µ(B)/4

for all sufficiently small ε > 0.

Step 4. Now choose U as a neighbourhood of M on which |X| = 1 and τ > 0 like in

Corollary 5.2.3 satisfying

lim inf
ε→0

µε (U ∩ {|uε| ≤ 1− τ}) ≥ 3µ(B)

4
.

This is easily achieved when µ(M) > 3µ(B)/4. Furthermore we take δ � 1 suitably small

for small deviations of the optimal interface to behave similarly enough, L and γ as in

Lemma 7.2.2 and ζ = ζ(γ). Using steps one through three, we see that

lim inf
ε→0

Ln ({|uε| ≤ 1− τ} ∩ U \ (Uε,γ,L ∪ Vε,γ,L))

ε

≥ lim inf
ε→0

Ln ({|uε| ≤ 1− τ} ∩ U)

ε
− L

n (Uε,γ,L)

ε
− L

n (Vε,γ,L)

ε

≥ 3µ(B) /4− µ(B)/4− µ(B)/4

= µ(B)/4.

Using the reverse argument of step 2, we can see that there are at least K points x1, . . . , xK
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in {|uε| ≤ 1− τ} ∩ U \ (Uε,γ,L ∪ Vε,γ,L) such that the balls B4Lε(xi) are disjoint with

K ≥ µ(B)

8n+1 Ln εn−1
.

Step 5. To apply Lemma 7.2.2, we must “freeze” the coefficients of the vector field X to a

single unit vector. We compute

1

(4Lε)n−1

∣∣∣∣ ∫
B4Lε(xi)

(
1− 〈νε, X〉2

)
−
(
1− 〈νε, Xi〉2

)
dµε

∣∣∣∣
=

1

(4Lε)n−1

∣∣∣∣ ∫
B4Lε(xi)

〈νε, Xi〉2 − 〈νε, X〉2 dµε
∣∣∣∣

=
1

(4Lε)n−1

∣∣∣∣ ∫
B4Lε(xi)

〈νε, Xi −X〉 〈νε, Xi +X〉 dµε
∣∣∣∣

≤ |Xi +X|C0(B4Lε(xi)) · |Xi −X|C0(B4Lε(xi))
1

(4Lε)n−1
·
∫
B4Lε(xi)

dµε

≤ 2Cᾱ,L,n |Xi −X|C0(B4Lε(xi))

for all Xi such that |Xi| ≤ 1. When we set Xi = X(xi), the last term converges to zero –

so eventually it is smaller than γ/4 and

1

(4Lε)n−1

∫
B4Lε(xi)

1− 〈νε, Xi〉2 dµε < γ/2.

Since xi ∈ U , we finally see that |Xi| = 1 and Lemma 7.2.2 can be applied.

Step 6. Since uε is C0,1/4-close to a one-dimensional optimal profile on B3Lε(xi) which

transitions from −1 to 1, we see that for each s ∈ (−(1− τ), (1− τ)) there must be a point

yi ∈ B3Lε(xi) such that uε(yi) = s. By Hölder continuity, we deduce that

∫
B3Lε(xi)

φ(uε) dx ≥ θ̄ εn

for a constant θ̄ depending on the support of φ and on ᾱ, n for the Hölder constant. Since

the balls are disjoint by construction, we can add this up to

1

ε

∫
B

φ(uε) dx ≥
1

ε

M∑
j=1

∫
B3Lε(xi)

φ(uε) dx

≥ 1

ε
M θ̄ εn

≥ µ(B) θ̄

8n+1 Ln

> 0.
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This concludes the proof.

At this point, also the reverse inclusion for the Hausdorff limits that was claimed in

Lemma 5.3.4 can been proven – compare the sketch of the proof there and the proof above.

7.2.2 Proof of the Main Results

Having dealt with the necessary auxiliary results, we can proceed to prove our main results.

We begin with the main statement about connectedness.

Proof of Theorem 7.1.2. The proof is structured as follows. First, we show that we can find

neighbourhoods of connected components which have positive distance with respect to the

usual metric on Rn. Then we need to show that they also have positive distance with respect

to the pseudometric dF (uε). Intuitively, this makes sense since any connecting curve should

have to leave the interfacial layer between the two sets. This is simple if n = 2 and slightly

more technical if n = 3.

Without loss of generality, we may assume that there are −1 < θ1 < θ2 < 1 such that

{φ > 0} ⊂ (θ1, θ2) and F ≥ 1 outside (θ1, θ2). This is only a minor assumption and could

easily be removed, but simplifies the proof.

Step 1. Assume that spt(µ) is not connected. Since spt(µ) is compact, according to

Lemma 3.2.6 there are disjoint open sets U1, U2 such that

spt(µ) ⊂ U1 ∪ U2, µ(Ui) > 0, i = 1, 2, δ := dist(U1, U2) > 0.

Now

lim inf
ε→0

Cε(uε) ≥ lim inf
ε→0

∫
U1

φ(uε(x)) dx · lim inf
ε→0

∫
U2

φ(uε(y)) dy

· lim inf
ε→0

distF (uε)(U1, U2).

Since the first two factors are strictly positive according to Lemma 7.2.4, it suffices to show

that lim infε→0 distF (uε)(U1, U2) > 0.

Step 2. For a contradiction, assume that distF (uε)(U1, U2)→ 0. Pick a sequence cε such

that cε → 0 but still distF (uε)(U1,U2)
cε

→ 0. Then there exist a connected set Kε and points

xε, yε ∈ Ω such that

xε ∈ Kε ∩ ∂U1, yε ∈ Kε ∩ ∂U2,

∫
Kε

F (uε) dH1 ≤ cε.

If n = 2, we know that |uε| → 1 uniformly on Ω \ (U1 ∪U2), so in particular uε /∈ [θ1, θ2] on
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Kε ⊂ Ω \ (U1 ∪ U2) and

∫
Kε

F (uε) dH1 ≥ H1(Kε \ (U1 ∪ U2)) ≥ δ > 0

since Kε connects U1 to U2. This is a contradiction to our assumption. In the case n = 3

we need a further argument.

Step 3. In this step, we will use the competition between the distance function driving

uε away from ±1 along Kε and the energy bounds in three dimensions.

Take a subsequence realising the lim inf. The 1-Lipschitz map π(x) := dist(x, U1) maps

Kε to a connected set containing 0 = π(xε) and δ = π(yε), so [0, δ] ⊂ π(Kε). Furthermore,

π−1(0, δ) ⊂ R2 \ (U1 ∪ U2) since dist(U1, U2) = δ. Take the set

K ′ε := {t ∈ [0, δ] : ∃ x ∈ Kε such that t = π(x) and uε(x) /∈ [θ1, θ2]}

of points whose pre-image contributes a lot to the weighted length of Kε. Then

H1(K ′ε) ≤ H1 (Kε ∩ {uε /∈ [θ1, θ2]})

≤
∫
Kε

F (uε) dH1

≤ cε.

Pick M intervals

Ik =

[
2k − 1

2M
δ,

k

M
δ

]
inside [0, δ]. Fix 1 ≤ k ≤M . When ε is so small that cε <

δ
4M , we deduce that

H1(Ik \K ′ε) ≥ H1(Ik)−H1(K ′ε) ≥
δ

2M
− δ

4M
=

δ

4M
. (7.2.1)

In particular, there exist points xi,ε ∈ π−1(Ik \ K ′ε) and (up to a subsequence) xi,ε →
xi ∈ Ω \ spt(µ) for i = 1, . . . ,M . By construction, xi is in the δ-distant set Aδ for δ =

min{|1 + θ1|, |1− θ2|}. Letting M →∞, we show that there is a countable collection of such

points, contradicting the essentially uniform convergence of |uε| → 1 in Rn \ spt(µ).

Now Corollary 7.1.3 is an obvious consequence of Theorem 7.1.2.

Proof of Corollary 7.1.3: Let uε be a sequence such that Eε(uε) is bounded. Then in partic-

ular |µε(Ω)−S| ≤ εσ/2, so µε(Rn) = µε(Ω) is bounded and µε ⇀ µ for some Radon measure

145



146 CHAPTER 7. THIN ELASTIC STRUCTURES WITH CONSTRAINT

µ – for this and other properties see [EG92, Chapter 1]. Clearly

µ(Ω) ≥ lim sup
ε→0

µε(Ω) = S

and on the other hand

µ(Ω) ≤ µ(Rn) ≤ lim inf
ε→0

µε(Rn) = S

so µ(Ω) = S. If U = Rn \ Ω, we have

µ(U) ≤ lim inf
ε→0

µε(U) = 0,

so spt(µ) =
⋂
U open,µ(U)=0 U

c ⊂ Ω. Since Eε(uε) is bounded, we have Cε(uε)→ 0, so due to

Theorem 7.1.2, spt(µ) is connected.

We now proceed to prove Corollary 7.1.4.

Proof of the lim inf-inequality: It follows from Theorem 7.1.3 that Eε(uε) → ∞ if ∂E is

disconnected. If ∂E is connected, the main part of this inequality is to show that if uε →
χE − χEc in L1(Ω) and µε(Ω) ≤ S + 1, then lim infε→0 Eε(uε) ≥ W(∂E). Since Eε ≥ Wε

and enforces the surface area estimate, we obtain with [RS06] that

lim inf
ε→0

Eε(uε) ≥ W(∂E).

Proof of the lim sup-inequality: We may restrict our analysis to the case of connected bound-

aries with area Hn−1(∂E) = S. Since E b Ω, Uδ := {dist(·, E) < δ} ⊂ Ω for all sufficiently

small δ, and since ∂E ∈ C2 is embedded, there is δ > 0 such that

ψ : ∂E × (−δ, δ)→ Uδ, ψ(x, t) = x+ t νx

is a diffeomorphism. Considering Chapter 4, it only remains to show that limε→0 ε
−κCε(uε) =

0. We will show that even Cε(uε) ≡ 0 along this sequence. Since ∂E is connected and ψ is

a diffeomorphism, all the level sets

{uε = ρ} = ψ(∂E, ε q−1
ε (ρ))

are connected manifolds for ρ ∈ (−1, 1). We know that

{φ(uε) > 0} = {ρ1 < uε < ρ2}
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and pick any ρ ∈ (ρ1, ρ2). Now let x, y ∈ Ω, φ(uε(x)), φ(uε(y)) > 0. We can construct a

curve from x to y by setting piecewise

γ1 : [0, d(x)]]→ Ω , γ1(t) = π(x) + t νπ(x),

γ3 : [0, d(y)]→ Ω , γ3(t) = π(y) + t νπ(y)

and γ2 any curve connecting π(x) to π(y) in {uε = ρ}. This curve exists since connected

manifolds are path-connected. The curve γ = γ3 ⊕ γ2 ⊕ γ−1
1 connects x and y and satisfies

by construction φ(γ(t)) > 0, so F (γ(t)) ≡ 0. Therefore we deduce

dF (uε)(x, y) = 0

if φ(uε(x)), φ(uε(y)) 6= 0 since the connecting curves have uniformly bounded length and

ω(ε)→∞. Thus in particular

1

ε2

∫
Ω×Ω

φ(uε(x))φ(uε(y)) dF (uε)(x, y) dxdy ≡ 0.

Like in Remark 4.2.2, we can satisfy the boundary conditions uε ∈ −1 +W 2,2
0 (Ω) by a slight

modification of the usual recovery sequence.

7.3 Extensions

In this chapter, we have developed a strategy to enforce connectedness of diffuse interfaces.

Below we shall see that the strategy fares well in applications and can efficiently be imple-

mented and seems to be more generally applicable to a wider class of problems. Our results

can be extended to the following situations.

• We can include a soft volume constraint like

F

(
1

2

∫
Ω

uε + 1 dx

)

for continuous functions F ≥ 0. We could also include a hard volume constraint under

the assumption that the sharp interface limit supports the hard volume constraint, in

particular we have to prescribe a volume smaller than that of Ω and compatible with

the area constraint through an isoperimetric inequality in Ω.

• Another popular constraint compatible with our functional and results is minimising
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a distance from a given configuration as

Aε(u) =

∫
Ω

|u− g|dλ

where λ is a finite Radon measure on Ω and g ∈ L1(λ). This functional originates in

problems in image segmentation, but in our context it can be understood as prescribing

certain points to lie inside or outside the membrane according to experimental data.

• We can use the same modelling techniques for a finite collection of membranes given

by u1
ε, . . . , u

N
ε inside an elastic container given by Uε. The governing energy could be

composed of a sum of the individual elastic energies Eε and interaction energies Iε like

Iε(u
i
ε, u

j
ε) =

1

ε

∫
Ω

(uiε + 1)2 (ujε + 1)2 dx

which prevent penetration of the phases uiε ≈ 1 and ujε ≈ 1 or, in a slight variation,

enforce confinement of uiε ≈ 1 to Uε ≈ 1.

• As mentioned above, we can use the phase-field approximation of Helfrich’s energy

[BM10] in place of the diffuse Willmore functional.
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Chapter 8

The Role of Blow-Ups

8.1 Introduction

We have demonstrated above how we can force the limiting surface µ to be connected through

an appropriate penalty term. In the first part of this chapter, we instead concentrate on the

approximability of µ by smooth boundaries. In the second we will demonstrate that this

method controls the topology of phase-fields on a finer level than before along a continuous

time-evolution and can in particular be used to preserve connectedness.

Characterising the Γ-limit of the functionals Wε at sets E which do not have a C2-

boundary is an open problem. A natural candidate for the Γ-limit is the L1-lower semi-

continuous envelope

W̃(E) = inf

{
lim inf
k→∞

W(∂Ek)

∣∣∣∣ χEk L1

→ χE , ∂Ek ∈ C2

}

of the functional W defined on C2-sets, which picks the best approximation of E by C2-sets

Ek and returns the limit energy of the approximating sets. Indeed, W̃ is an upper bound

for Γ − limε→0Wε by a diagonal sequence argument. Nonetheless, the two functionals do

not agree.

Figure 8.1: The lower semi-continuous envelope is calculated by the energy of approximating
sets with C2-boundaries.
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Figure 8.2: The lower semi-continuous envelope of Willmore’s energy is not an integral
functional. Both grey sets sketched above have the same elastica integral quantities, but
approximation by C2-boundaries leads to multiplicity two ghost interfaces which are straight
for the left set (not contributing to W̃) but need to be curved for the right one (positive
contribution). For a more rigorous argument, see [BM04].

8.1.1 The Relaxed Willmore Functional

For technical reasons, we may rather consider the relaxation of W + Per instead of the

relaxation of W alone. Note that the lower-semi continuous envelope W + Per depends on

the class of admissible sets. As we wish to prescribe boundary conditions uε ∈ −1+W 2,2
0 (Ω)

for the phase-fields, we take the lower semi-continuous envelope with respect to Ω

˜(W + Per)Ω(E) = inf

{
lim inf
k→∞

(W + Per)(∂Ek)

∣∣∣∣ χEk L1

→ χE , ∂Ek ∈ C2, Ek b Ω

}
. (8.1.1)

This differs from the lower semi-continuous envelope of W + Per with respect to Rn and

the lower semi-continuous envelope if general C2-boundaries relative to Ω are permitted, see

also Figure 8.3. From the opening question posed in Problem 1, we see that the definition

given in (8.1.1) is the correct one for us. We will identify W̃ + Per = (W̃ + Per)Ω in the

following.

Lemma 8.1.1. The following are true.

1. If W̃Ω(E) <∞ and Ek b Ω with ∂Ek ∈ C2 such that Ek → E in L1 with

lim
k→∞

W(∂Ek) = W̃(E),

then lim supk→∞ Per(Ek) <∞.

2. In general, the lower semi-continuous envelope (W̃ + Per)Ω of the sum of Willmore’s

energy and the perimeter functional does not agree with the sum W̃Ω + Per of the

perimeter functional and the lower semi-continuous envelope of Willmore’s energy,

even when evaluated at sets E b Ω.

3. limλ→0( ˜W + λPer)Ω = W̃Ω uniformly on BV (Ω, {−1, 1}).
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Figure 8.3: The lower semicontinuous envelope ofW (orW+Per) at the set of the left hand
side inside the domain Ω = B1(0) depends on the domain of definition for W (or W + Per
respectively). If general sets E b Rn with C2-boundary ∂E (not necessarily contained in
Ω) are permitted and the convergence is taken in L1(Ω), both functionals are finite, whereas
if the sets have to be compactly contained in Ω, the sharp bend at the boundary forces a
blow up of curvature energy in the relaxation process. Depending on the situation, either
functional can be more meaningful, but we will always take the right hand version of the
relaxation.

The Lemma is presumably classic, but we have not found a proof in the literature, so we

will proceed to prove it here.

Proof. 1. Since Ω b Rn, we have diam(Ω) < ∞ and we have Ω ⊂ B2 diam(Ω)(x) for all

x ∈ Ω. Without loss of generality, 0 ∈ Ω and we use Lemma 3.2.3 to compute

W(∂Ek) =W
(
∂

Ek
2 diam(Ω)

)
≥ 4H2

(
∂

Ek
2 diam(Ω)

)
=

1

diam(Ω)2
Per(Ek).

This gives us the uniform perimeter bound in n = 3 dimensions, the same argument goes

through in dimension n = 2 with slightly different scaling.

2. Any set which requires ghost interfaces in the approximation violates equality. Ex-

amples in two dimensions can be seen in Figures 8.1 and 8.2.

3. From the first point, we obtain that

W̃Ω ≤ ( ˜W + λPer)Ω ≤
(
1 + λ diam(Ω)2

)
W̃Ω.

Remark 8.1.2. Any functional F : X → [0,∞) on a metric space (X, d) can be relaxed in

the way described above with respect to the metric topology. The relaxed function F̃ is

always lower semi-continuous with respect to the metric topology.
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Generalisations for topological spaces are also available. Here the relaxation of F is

defined to be the largest lower semi-continuous functional G such that G ≤ F . Formulae like

(8.1.1) which allow a direct computation are only valid in first countable spaces, of course.

8.1.2 The Figure Eight

The figure eight space in R2 is the prime example of a set for which the L1-lower semi-

continuous envelope of W (Euler’s elastica energy) does not agree with the Γ(L1)-limit of

Wε. The exotic saddle-solutions to the stationary Allen-Cahn equation described in Section

4.3 can be used to create a singular transition which can be matched to the usual optimal

profile construction already a distance for example ∼ √ε away from the singular point. For

such a sequence of phase-fields uε, one can compute that Wε(uε) → W(γ), where W(γ) is

the Euler elastica energy of the figure eight space, viewed as an immersed parametrised curve

in two dimensions (and thus in particular finite). By the converse estimate from the lim inf-

construction in [RS06] and the locality of the mean curvature of 1-varifolds established in

[LM09], we see that [
Γ− lim

ε→0
(Wε + Sε)

]
(E) = (W +H1)(γ)

if γ is a figure eight curve and E its enclosed set. For a more detailed account of this process,

see [BP93].

However, W̃(E) is infinite since any approximation of the figure eight by embedded

curves must approximate the self-crossing by two sharp bends, leading to asymptotically

infinite energy. A simple proof of this fact goes as follows, if we consider the sum W + Per

instead of W only.

1. Assume that W̃(E) is finite and take a sequence of a sets Ek realising the lower limit.

Then the boundaries of the sets Ek are compact embedded one-dimensional manifolds,

so they are given by a finite union of smooth C2-curves γlk, 1 ≤ l ≤ Nk, and the energy

bound on (W +H1)(∂Ek) implies a uniform bound on the number Nk of curves since

for any γ = γlk we have

W(γ) =

∫
γ

κ2 dH1

=
1

H1(γ)

∫
γ

κ2 dH1

∫
γ

1 dH1

≥ 1

H1(γ)

(∫
γ

|κ|dH1

)2

≥ 4π2

H1(γ)
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Figure 8.4: Two different interpretations of the figure eight in two dimensions: As an
immersed smooth curve on the left and approximated by smooth embedded boundaries
in two different ways on the right.

by Hölder’s inequality and the fact that the integral of the curvature κ of an embedded

closed curve is ±2π, depending on its orientation.

2. Now we choose a subsequence of approximating sets which always have the same

number of curves. The uniform bounds on length and curvature integral imply bounds

on the W 2,2-norm of an arclength-parametrisation since the lengths of the curves

γlk are bounded from below for energetic reasons and |κ| = |γ̈|. The W 2,2-bounds

induce C1,1/2-bounds, and for example the Arzela-Ascoli theorem yields the existence

of a C1-converging subsequence of the parametrised boundary curves. Clearly, the

limiting family of curves {γl}Nl=1 need not be embedded anymore. We assume that

γl1(t1) = γl2(t2) where l1 and l2 need not be distinct.

It is easy to show that if γ̇l2(t2) 6= ±γ̇l1(t1), then the curves cross, and uniform

convergence shows that this is also true for some large enough k ∈ N, contradicting

the embeddedness of {γlk}Nl=1.

3. On the other hand, ∂E must be contained in this limit (although the two can well

be distinct – see Section 3.2.4), which means that there must be a double point with

non-tangential contact. This gives us the desired contradiction.

This demonstrates how exotic solutions to the stationary Allen-Cahn equation can lead

to strict inequality

[
Γ− lim

ε→0
(Wε + Sε)

]
(χE) <

(
W̃ + Per

)
(E) =∞

at sets E ⊂ R2 whose boundary is not C2-embedded. The figure eight is, however, connected,

and thus not a priori excluded by the functionals Cε described in the previous chapter.

To the author’s knowledge, the question whether strict inequality can occur at sets with

(W̃ + Per)(E) <∞ is open.

It seems that the fundamental object for the functionals Sε,Wε are rather the measures
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µε and not the functions uε – this is supported by the fact that we obtain the Willmore

energy of the figure eight varifold µ as the Γ-limit at this point, rather than the lower

semicontinuous envelope of Willmore’s energy.

In this chapter we will develop a functional which does not control the connectedness of

a limiting varifold, but its approximability by C2-boundaries.

8.2 Approximating the Relaxed Willmore Functional

For slender structures, we must think of a non-embedded configuration as the limit of em-

bedded surfaces, so the fundamental object is W̃ rather than the Willmore energy of a

varifold interpretation of a limiting measure. Therefore we are interested in approximating

the lower semicontinuous envelope of Willmore’s energy.

Heuristically, it seems that an exotic solution must occur at such singular points and that

sequences which have a recovery sequence structure with optimal profiles cannot exhibit such

behaviour. Recall that we established the existence of a W 2,2
loc -weak limit ũ of the blow-ups

ũε(y) = uε(xε + εy)

of a sequence of phase-fields uε along a sequence of points xε ∈ Ω′ b Ω. In two dimensions,

we further saw that

∆ũε −W ′(ũε)
→ 0 strongly in L2

loc(R2)

⇀ ∆ũ−W ′(ũ) weakly in L2
loc(R2)

,

so that ũ is a global solution of the stationary Allen-Cahn equation. Furthermore

∆ũε = (∆ũε −W ′(ũε)) +W ′(ũε)→W ′(ũ) = ∆ũ

strongly in L2
loc(R2), so ũε → ũ even strongly in W 2,2

loc (R2) by the elliptic estimate

||D2u ||L2(BR) ≤ C
{
||u||L2(B2R) + ||∆u||L2(BR)

}
.

Definition 8.2.1. Let Ω ⊂ Rn be open. We say that a sequence of phase-fields uε ∈W 2,2
loc (Ω)

has the blow-up property if for all compact Ω′ b Ω and all sequences xε ∈ Ω′ the blow-up

sequence ũε has a subsequence ε→ 0 such that ũε has a W 2,2
loc (Rn)-strong limit ũ and either

ũ = ±1 or

ũ(y) = q(〈v, y〉+ b)
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for some v ∈ Sn−1 and b ∈ R.

Remark 8.2.2. A simple contradiction argument shows that the constant functions and

optimal profiles are in fact the only blow-up limits which can occur along sequences with

the blow-up property. In two dimensions, the existence of the limit follows automatically.

Conjecture 8.2.3. Let Ω b Rn for n = 2, 3 and uε ∈ −1 + W 2,2
0 (Ω) a sequence of phase-

fields with the blow-up property such that uε → χE strongly in L1(Ω) for some E b Ω.

Then

lim inf
ε→0

(Wε + Sε)(uε) ≥ (W̃ + Per)Ω (E).

The conjecture would of course determine the Γ-limit of certain extended functionals if

we introduce a penalisation which vanishes at recovery sequences, but enforces the blow-up

property.

Corollary 8.2.4. Assume that Conjecture 8.2.3 is true. Let Ω b Rn for n = 2, 3 and

Gε : W 2,2(Ω)→ R a functional such that

(1) Sequences uε ∈ −1 +W 2,2
0 (Ω) such that

lim sup
ε→0

(Wε + Sε + Gε)(uε) <∞

have the blow-up property, and

(2) at sets with ∂E ∈ C2 we have

[
Γ− lim

ε→0
(Wε + Sε + Gε)

]
(χE) =W(∂E) + Per(E).

Then

Γ− lim
ε→0

(Wε + Sε + Gε) = W̃ + PerΩ

at all u ∈ BV (Ω, {−1, 1}).

Similar results could be established for functionals involving penalties like ε−σ(Sε−S)2.

We only give examples of functionals Gε for which the Corollary holds.

8.2.1 Blow-Up Controlling Functionals

In this section, we describe various examples of functionals Gε that satisfy the conditions

of Conjecture 8.2.3. The idea is to use Lemma 4.3.3 and suitable penalisations which force

blow-ups into a geometrically rigid situation where only small perturbations of optimal

profiles are admissible.
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In a slight abuse of notation, we denote the density of the discrepancy measures also by

ξε = ε
2 |∇uε|2 − 1

ε W (uε). In two dimensions, we consider the functionals

G(2)
ε,1 (u) =

ε−(n−1+σ)

c0

∫
Ω

|ξε|dx

G(2)
ε,2 (u) = ε−(n−2+σ)

∫
Ω

|ξε|2 dx

G(2)
ε,3 (u) = ε−(3+σ)

∫
Ω

|ξε|2 dx+ ε1−σ
∫

Ω

|∇ξε|2 dx

for some σ > 0. We will see, that in three dimensions an additional penalty is needed.

Consider the energy

Wε,p(u) =
1

c0 ε

∫
Ω

∣∣∣∣−ε∆u+
1

ε
W ′(u)

∣∣∣∣p dx.

We can think of Wε,p as an approximation of the energy functional Wp(M) =
∫
M
|H|p dH2

(although no proof of Γ-convergence has been given for p 6= 2). In three dimensions, we

define

G(3)
ε,k = G(2)

ε,k + ελWε,p

for k ∈ {1, 2, 3} and some p > 2 and 0 < λ < p − 2. These functionals are sufficiently

regularising to exclude saddle configurations and thus also limiting varifolds which are not

smoothly approximable.

Due to the Sobolev embedding theorems, all functionals are well-defined on W 2,2(Ω) if

n = 2 and W 2,p(Ω) if n = 3. We will show that Wε + Sε + G(n)
ε,k are blow-up controlling

functionals, by which we mean that they force finite energy sequences to have the blow-up

property.

Lemma 8.2.5. Let Ω b Rn for n = 2, 3 and uε ∈ −1 +W 2,2
0 (Ω) be a sequence such that

sup
ε>0

(
Wε + Sε + G(n)

ε,k

)
(uε) <∞

for k ∈ {1, 2, 3}. Take any sequence xε ∈ Rn and consider the blow up functions

ũε(y) = uε(xε + εy).

Then there exists a subsequence ε→ 0 and a function ũ ∈ C∞(Rn) such that ũε → ũ strongly

in W 2,2(U) for all U b Rn and W 2,p
loc (Rn) in three dimensions or if the penalty term ελWε,p

is included also in two dimensions. The function ũ satisfies

ũ ≡ ±1 or ∃ v ∈ Sn−1, b ∈ R such that u = q(〈v, ·〉+ b).

156



CHAPTER 8. THE ROLE OF BLOW-UPS 157

Proof. We only focus on the case n = 3 as the two-dimensional case is a simpler application

of the same argument. Since Gε,3 ≥ Gε,2, it suffices to consider Gε,1,Gε,2. As in Lemma

5.2.8, we compute that

|| −∆ũε +W ′(ũε) ||pLp(BR(0)) = εp+1−n
∫
BRε(xε)

∣∣∣∣−ε∆uε +
1

ε
W ′(uε)

∣∣∣∣p dx

≤ εp+1−nWε,p(uε)

≤ Cεp−2−λ,∫
BR

∣∣∣∣12 |∇ũε|2 −W (ũε)

∣∣∣∣ dx = ε1−n |ξε|(BRε(xε))

≤ Cεσ,∫
BR

∣∣∣∣12 |∇ũε|2 −W (ũε)

∣∣∣∣2 dx = ε2−n
∫
BRε(xε)

∣∣∣∣ε2 |∇u|2 − 1

ε
W (u)

∣∣∣∣2 dx

≤ Cεσ.

We have the bound ||uε||L∞(Rn) ≤ C from Lemma 5.2.8 and Calderon-Zygmund theory

shows that

ũε ⇀ ũR

weakly in W 2,p(BR) for a subsequence in ε for any R > 0. A diagonal sequence argument

shows that ũR can in fact be chose as the restriction of a single function ũ ∈W 2,p
loc (Rn) onto

BR. By the lower semi-continuity of the norm under weak convergence we deduce

−∆ũ+W ′(ũ) = 0, |∇ũ|2 = 2W (ũ). (8.2.1)

By Sobolev embeddings, ũε → ũ strongly in C0(BR) and hence ũ is bounded on BR by the

L∞-bound on uε. This also shows that W ′(ũε)→W ′(ũ) converges strongly in Lp(BR) and

thus

−∆ũε = (−∆ũε +W ′(ũε))−W ′(ũε)→ −W ′(ũ) = −∆ũ

converges strongly in Lp(BR) for all R > 0. A usual elliptic argument then shows that

ũε → ũ

strongly in W 2,p(BR) for all R > 0. By Hölder’s inequality, the convergence also holds

in W 2,2(BR), which is optimal in the two-dimensional case without penalisation. Due to

Lemma 4.3.3 and (8.2.1), the function ũ is either an optimal profile or a constant function

as in the statement of the Lemma.
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Note that a penalisation only of the discrepancy would be insufficient in three space

dimensions, since for example functions like

ũ(y) = q (|x|+ c0) , c0 ∈ R

could arise as blow-up limits of finite energy sequences and only create finite-sized atoms of

Wε – this illustrates the necessity of using a small multiple of Wε,p for p > 2.

Lemma 8.2.6. Let Ω b Rn for n = 2, 3. Then

[
Γ(L1)− lim

ε→0

(
Wε + Sε + G(d)

ε,k

)]
(χE) = (W +Hn−1) (∂E)

if E b Ω and ∂E ∈ C2 and k ∈ {1, 2, 3}, d ∈ {2, 3}.

Here we set the functionals to +∞ if u /∈ −1 + W 2,2
0 (Ω). In applications, we will of

course assume that d = n.

Proof. Write Gε = G(d)
ε,k . We trivially have

lim inf
ε→0

(Wε + Sε + Gε) (uε) ≥ lim
ε→0

(Wε + Sε)(uε)

≥ (W +Hn−1) (∂E)

if uε → χE strongly in L1(Ω) due to Theorem 4.5.1, so the lim inf-inequality holds trivially.

For the usual recovery sequence

uε(x) = q

(
sdist(x, ∂E)

ε

)

the discrepancy term ε
2 |∇uε|2 − 1

ε W (uε) vanishes identically at the interface. It does not

vanish away from the interface, since we need to smooth the distance function a little bit

and satisfy boundary conditions, but since q(z) → ±1, q′(z), q′′(z) → 0 exponentially fast

as z → ±∞, the penalisation Gε vanishes as ε→ 0.

If n = 3, observe additionally that the recovery sequence satisfies

Wε,p(uε)→
∫
∂E

|H|p dHn−1 <∞

by the same proof as for the usual Willmore functional. Thus also this penalisation vanishes

at C2-boundaries.
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8.2.2 An Approximation of W̃

We finally prove a special case of the conjecture. We denote

Gε(u) = G(3)
ε,3 (u) = ε−(3+σ)

∫
Ω

|ξε|2 dx+ ε1−σ
∫

Ω

|∇ξε|2 dx+ ελWε,p(u)

with p > n, 0 < λ < p − 2 and σ > 0. Note that we use the three-dimensional penalty

functional with the curvature-dependent term Wε,p also in two dimensions.

Theorem 8.2.7. Let Ω b Rn for n = 2, 3 and uε ∈ −1+W 2,2
0 (Ω) a sequence of phase-fields

such that uε → χE strongly in L1(Ω) for some E b Ω. Then

lim inf
ε→0

(Wε + Sε + Gε)(uε) ≥ (W̃ + Per)Ω (E).

This easily implies the following Γ-convergence.

Corollary 8.2.8. We have

Γ− lim
ε→0

(Wε + Sε + Gε) = W̃ + Per

at all functions u ∈ BV (Ω, {−1, 1}).

Analogous statements can be made for functionals like

Ẽε =Wε + ε−σ(Sε − S)2 + Gε.

Proof of Theorem 8.2.7. In an abuse of notation, we identify the measures µε, ξε with their

densities. On Ωε = {|uε| < 1} we can define rε = ε q−1(uε) such that uε = q
(
rε
ε

)
and thus

µε =
ε

2
|∇uε|2 +

1

ε
W (uε)

=
1

ε
W
(
q
(rε
ε

)) [
|∇rε|2 + 1

]
(8.2.2)

ξε =
ε

2
|∇uε|2 −

1

ε
W (uε)

=
1

ε
W
(
q
(rε
ε

)) [
|∇rε|2 − 1

]
(8.2.3)

∇ξε =
1

ε
W ′
(
q
(rε
ε

))
q′
(rε
ε

) [
|∇rε|2 − 1

] ∇rε
ε

+
1

ε
W
(
q
(rε
ε

))
∇
(
|∇rε|2

)
(8.2.4)

hε = ε∆uε −
1

ε
W ′(uε)

= q′
(rε
ε

)
∆rε +

1

ε
W
(
q
(rε
ε

)) [
|∇rε|2 − 1

]
. (8.2.5)

To simplify expressions, we will in the following leave out the arguments of q, q′, q′′ and
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always assume that the functions are evaluated at rε
ε .

Since Wε + Sε + Gε is blow-up controlling, we see that ũε(y) := uε(x+ εy) is W 2,p-close

to an optimal profile transition qv = q(〈·, v〉) in some direction v ∈ Sn−1 on a ball BR for

x ∈ {uε = 0} and small enough ε. In particular, ũε is C1,α-close to qv since we took p > n

and thus

q(−2R) < uε < q(2R) and ∇ũε 6= 0

on BR. It follows that

∇ũε 6= 0 on BRε(Nε) := {y ∈ Rn | dist(y,Nε) < Rε}

where Nε := {uε = 0} and by the same argument

{q(−R/2) < uε < q(R/2)} ⊂ BRε(Nε).

Thus we see that for α ∈ (q(−R/2), q(R/2)) the sets {uε > α} satisfy

1. ∂{uε > α} ∈ C2,

2. dH(∂{uε > α}, Nε) ≤ Rε and consequently

3. χ{uε>α} → χE as ε→ 0.

In particular,

lim inf
ε→0

W(∂{uε > α}) ≥ W̃(E)

due to the definition of W̃. We compute

αε(Ω) ≥ 1

c0 ε

∫
BRε(Nε)

(
ε∆uε −

1

ε
W ′(uε)

)2

dx

=
1

c0 ε

∫
BRε(Nε)

(
q′∆rε +

1

ε
W ′(q)

[
|∇rε|2 − 1

])2

dx

≥ 1

c0 ε

∫
BRε(Nε)

(1− δ) (q′)2 (∆rε)
2 − 1

4δ

1

ε2
W ′ (q)

2 [|∇rε|2 − 1
]2

dx

for all δ > 0. Since q(−2R) < q(rε/ε) < q(2R) on BRε(Nε) due to the local uniform

continuity, we see that the second term goes to zero as ε→ 0 since

1

ε

∫
BRε(Nε)

1

ε2
W ′ (q)

2 [|∇rε|2 − 1
]2

dx ≤ 4

W (q(2R)) ε3

∫
Ω

W (uε)
2
[
|∇rε|2 − 1

]2
dx

since (W ′)2 ≤ 4W on (−1, 1). The right hand side vanishes due to the penalisation of the

quadratic discrepancy density. Now we observe that the level sets of uε agree with the level
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sets of rε and thus have mean curvatures (see e.g. [ES91])

H = div

( ∇rε
|∇rε|

)
=

1

|∇rε|

(
∆rε −

〈
∇rε,∇

(
|∇rε|2

) 〉
2 |∇rε|2

)
.

We continue the computation with the first term

1

c0ε

∫
BRε(Nε)

(q′)2 (∆rε)
2 dx

=
1

c0ε

∫
BRε(Nε)

(q′)2

(
div

( ∇rε
|∇rε|

)
+

〈
∇rε,∇

(
|∇rε|2

) 〉
2 |∇rε|3

)2

|∇rε|2 dx

≥ 1

c0ε

∫
BRε(Nε)

(1− δ) (q′)2

[
div

( ∇rε
|∇rε|

)]2

|∇rε|2 dx

− 1

c0ε

∫
BRε(Nε)

1

4δ
(q′)2

(〈
∇rε,∇

(
|∇rε|2

) 〉
2 |∇rε|3

)2

|∇rε|2 dx.

Note that |∇rε| ≥ β for some β close to 1. Again, the second term vanishes as ε→ 0 since

1

ε

∫
BRε(Nε)

(q′)2

(〈
∇rε,∇

(
|∇rε|2

) 〉
2 |∇rε|3

)2

|∇rε|2 dx

≤ 1

4β2ε

∫
BRε(Nε)

W (q)
∣∣∇ (|∇rε|2)∣∣2 dx

≤ 1

4β2ε

∫
BRε(Nε)

W (q)2

W (q(2R))

∣∣∇ (|∇rε|2)∣∣2 dx

=
1

4β2W (q(2R)) ε

∫
BRε(Nε)

ε2

∣∣∣∣∇ξε − 1

ε2
W ′(q) q′

[
|∇rε|2 − 1

]
∇rε

∣∣∣∣2 dx

≤ 1

2β2W (q(2R))

∫
Ω

ε |∇ξε|2 +
4W (q)2

ε3

[
|∇rε|2 − 1

]2
dx

≤ ε

2β2W (q(2R))

∫
Ω

|∇ξε|2 dx+
1

2W (q(2R))β2 ε3

∫
Ω

|ξε|2 dx

vanishes due to our penalisation. Finally, we calculate the remaining term.

1

c0ε

∫
BRε(Nε)

(q′)2

[
div

( ∇rε
|∇rε|

)]2

|∇rε|2 dx

≥ β

c0

∫
BRε(Nε)

(q′)2

[
div

( ∇rε
|∇rε|

)]2 |∇rε|
ε

dx

=
β

c0

∫ R/2

−R/2

(∫
{rε=z}

H2 dHn−1

)
(q′)2(z) dz

≥
[
W̃(E)− o(1)

] β

c0

∫ R/2

−R/2
(q′)2 dz
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so finally

lim inf
ε→0

Wε(uε) ≥ β (1− δ)2

∫ q(R/2)

q(−R/2)

√
2W (s) ds

c0
W̃(E)

since the o(1) error term vanishes automatically as ε→ 0. We may take δ → 0 and R→∞
now to obtain

lim inf
ε→0

Wε(uε) ≥ β W̃(E).

Now, since the blow-ups converge to optimal profiles as ε→ 0, we can choose β arbitrarily

close to 1 for small enough ε, thus in total

lim inf
ε→0

Wε(uε) ≥ W̃(E).

A simpler argument establishes the same result for Sε, so the proof is complete.

Remark 8.2.9. Despite the lengthy calculations, the functional Gε was chosen specifically to

allow a simple proof. We believe that the same should be true under a lot milder penali-

sations (or even general phase-fields with the blow-up property) and will pursue this in the

future.

We will see below that we can say a lot more about phase-fields with a blow-up property

on the topological level. We believe that some of the techniques could be extended to the

smooth setting, but we have been unable to establish the quantitative estimates needed for

this purpose so far.

8.2.3 Comparison with Existing Methods

Other phase-field approximations of W̃ have been proposed, for example the functionals

WBel
ε (u) =

∫
Ω

[
∇ ·
( ∇u
|∇u|

)]2

dµε

=

∫
Ω

[
∇ ·
( ∇u
|∇u|

)]2(
ε

2
|∇u|2 +

W (u)

ε

)
dx

introduced by Bellettini in [Bel97], which converge to W̃ in the Γ(L1)-sense in any dimension

n ≥ 2. The advantage of WBel
ε over Wε is that the integrand with respect to the diffuse

surface measures is given precisely by the mean curvature of the level sets of uε, so that

the lower semicontinuous envelope is automatically controlled by diffuse quantities and the

Modica-Mortola functional.

The disadvantage of WBel
ε with respect to an implementation is the high degree of non-

linearity in the highest order term. The term div
(
∇u
|∇u|

)
is discussed in detail in [ES91],

where it is shown that it is uniformly elliptic along level sets and totally degenerate in
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the normal direction. The numerical implementation is challenging at best even for the

operator, let alone a gradient flow for an energy functional which contains the square of this

term integrated with respect to a non-trivial measure.

Other functionals with similar approaches and deficiencies have been proposed for ex-

ample in [ERR14] and [Mug13], see also the overview article [BMO13].

By comparison, the philosophy put forth in this chapter is different: Instead of intro-

ducing a new, directly geometric term into the energy, we introduce a term which only acts

on the phase-field level without geometric meaning, which forces the phase-field to adopt

geometrically meaningful behaviour. This may be less philosophically satisfying (or not,

depending on one’s taste), but has clear advantages with respect to an implementation. In

two dimensions, the highest order terms in the energy

Ẽε =Wε + ε−2(Sε − S)2 + G(2)
ε, 2

are simply given by

ε (∆u)2,

leading to a semi-linear evolution equation with constant coefficients in time. This means

that matrices can be assembled once at the very beginning of a simulation rather than in

every time-step, which speeds up simulations significantly and allows for example for direct

solvers based on factorisations rather than iterative solvers (if desired).

While the three-dimensional counterpart of Ẽε does not enjoy this feature anymore, the

choice p = 4, λ = 1.5 and σ = 1 would lead to a functional

1

c0ε

∫
Ω

(
ε∆u− W ′(u)

ε

)2

+ ε3/2

(
ε∆u− W ′(u)

ε

)4

+ ε−4

(
ε

2
|∇u|2 − W (u)

ε

)2

dx

with leading order contribution

ε (∆u)2 + ε7/2(∆u)4

which is convex and relatively ‘tame’ compared to functionals like WBel
ε . We also avoid

potential problems associated to points where ∇u = 0. Even with the mild penalisation

of ∇ξε which we needed in the proof of Theorem 8.2.7, the functionals are relatively well-

behaved, although the elimination of the second-order penalty term in the energy will be

the focus of future work.

It should be noted that also the topological functionals Cε have a regularising effect in

simulations – compare Figures 9.1 and 9.3 in Chapter 9. Without the topological penalty, we
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observe self-crossings along saddle-solutions of the stationary Allen-Cahn equation, which

do not occur with the penalty term.

This is assumed to depend on the specific implementation – we chose α, β close to 1 and

κ = 1 and a second associated functional corresponding to α′, β′ close to −1 and κ′ = 1.

If 0 ∈ (α, β), then at least certain saddle solutions are expected to be permitted, as a

level set close to zero is connected. If κ < 1, then the penalty should not be regularising

enough for small ε, since the level-sets are only disconnected on a length scale ∼ ε. In both

cases, we expect to see saddle solutions as blow-ups, while they seem to be prevented in

two-dimensional simulations for suitably chosen topological penalties.

Remark 8.2.10. The existence problem for the gradient flow of WBel
ε is open, but formal

asymptotic expansions suggest that the gradient flows of WBel
ε approach Willmore flow as

ε → 0 for an appropriate scaling of the time-parameter. This result is only valid as long

as formal asymptotic expansions hold, and in particular not when self-intersections occur in

Willmore flow. Self-intersections are a stable property of a class of initial conditions [MS03],

but non-tangential self-intersections should heuristically lead to infinite energy in W̃.

Thus we are lead to conjecture that the gradient flows of WBel
ε or more generally any

functional W̃ε which approximates W̃ fail to approach the gradient flow of W in singular

situations. The motion could be compared to a version of Willmore flow which has been

modified to satisfy a maximum principle and has not been described yet. This idea will be

pursued further in the following section.

Numerical simulations for the gradient flow ofWε on the other hand suggest convergence

to Willmore flow past the critical time [BMO13]. Again, this seems to suggest that the

fundamental object for the model based on Wε is the diffuse surface µε (associated to W)

rather than the function uε (associated to W̃).

8.3 Topology-preserving Time-evolution

8.3.1 Intuition and Heuristics

As pointed out above, the topological concept of connectedness is a non-local invariant of a

space, and it is thus clear that our topological functional Cε has to be non-local to capture the

notion. The change of topology (in particular, loss of connectedness) in a surface evolution

on the other hand happens locally, so entirely local functionals are suited for preventing a

loss of connectedness (among other things) in a continuous time evolution.

Since level sets {uε = θ} and even approximate level sets {α < uε < β} are highly

unstable under perturbations, we introduce a more stable notion of topology for a phase-
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field in this chapter. For a set A ⊂ Rn, denote

Br(A) := {x ∈ Rn | dist(x,A) < r}

and again

Nε := {x ∈ Ω | uε(x) = 0}.

Lemma 8.3.1. Let E b Ω, ∂E ∈ C2 and uε the usual recovery sequence for χE. Then ∂E

is a deformation retract of Bλε({uε = 0}) = {q(−λ) < uε < q(λ)} for all λ > 0 and all

small enough ε > 0.

The required smallness of ε may of course depend on λ and E.

Proof. For some small r > 0, the map

ψ : Br(∂E)→ ∂E × (−r, r), x 7→ (π(x), sdist(x, ∂E))

composed of the closest point projection and the signed distance function is a diffeomor-

phism. For any ε > 0, the nearest point projection

π : Bλε(∂E)→ ∂E

is a retraction. The map π : Bλε(∂E)→ Bλε(∂E) is homotopic to the identity on Bλε(∂E)

relative to ∂E by

h(t, x) = π(x) + t sdist(x, ∂E) νπ(x).

In particular, the fattened zero level set captures not only the number of connected

components of the zero level set, but also the cohomology groups (in this smooth case). We

will show that the topology of the fattened zero-level set is stable under small perturbations.

For the proof, we need a discrete version of the blow-up property.

Definition 8.3.2. We say that a function u ∈ −1+W 2,2
0 (Ω) satisfies an ε-blow-up criterion

at level (R, δ) if for all points x ∈ Ω the blow-up function

ũ(y) = u(x+ εy)

satisfies either

|| ũ− q(〈·, v〉+ b)||W 2,2(BR(x)) < δ
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for b = q−1(u(x)) and appropriately chosen v ∈ Sn−1 or

||ũ− (±1)||W 2,2(BR(x)) < δ

where ±1 denotes the constant function of that value. For the purpose of the blow up, we

use constant continuations of u to Rn to avoid dealing with boundary behaviour separately.

8.3.2 On the Approximation of Level Sets by Manifolds

Before we come to the main results of this section, we need a Lemma about the approxima-

tion of there zero level sets of phase-fields uε with the blow-up property by smooth manifolds.

We blow up to an ε-scale, where we simply consider the approximation of linear spaces. Let

R � 1 and η ∈ C∞c (B1) be a standard mollifier, i.e. η ≥ 0 and
∫
Rn η dx = 1. Additionally,

we assume that η is radially symmetric, so that η ∗ f = f for all linear functions f . Then

for r ∈ L1(BR) we define r̂ ∈ L1(BR−1) by the convolution r̂ = r ∗ η.

Lemma 8.3.3. Let R � 1 and denote π1 : BR → R, π1(x) = x1. Then for k = 1, 2 and

δ > 0, there exists a β > 0 such that if

|| r − π1 ||Wk,2(BR) < β

then {r̂ = 0} is a C∞-graph over {x1 = 0} of a function φ : {x1 = 0} ∩ BR/2 → R and

|φ|Ck < δ.

Proof. Assume that there is a sequence of functions un such that rn → π1 in W k,2(BR),

and note that by construction r̂n − π1 = ̂rn − π1 since the second function is linear and η is

radially symmetric. Since rn−π1 → 0 in L1(BR), standard analysis shows that ̂rn − π1 → 0

in Cm(BR−2) for any m ∈ N since the mollifier is not rescaled as in other applications.

In particular, ∇r̂n 6= 0 on BR−2 for all sufficiently large n and all level sets of ûn are

embedded C∞-manifolds. It is immediately obvious that {r̂n = 0} and {x1 = 0} are close

in Hausdorff-distance, and careful examination of the proof of the regular value theorem via

the inverse function theorem shows that they are close also in Ck-parametrisation.

8.3.3 On the Fine Topology of Phase-Fields

We will apply the result of the previous section to r = ε q−1(u) and set û = q
(
r̂
ε

)
. Note

that if u,w are W k,p-close and |u|, |w| ≤ 1− δ̄, then the associated functions ru, rw are also

W k,p-close (but with large constants for small δ̄ > 0).
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Lemma 8.3.4. Assume that u is a phase-field with the blow-up property at the level (R, δ).

For all sufficiently small δ > 0, there exist 0 < λR,δ < λR,δ < R/2 such that for all

λR,δ < λ, µ < λR,δ, the sets Bλε({uε = 0}) and Bµε({uε = 0}) are homeomorphic.

The lower bound λR,δ is needed since for too small λ, the fattened level sets would

be just as unstable under perturbations as the level sets themselves. The upper bound is

needed since for very large λ� R, the fattened set might develop points of self-contact not

corresponding to the behaviour of the phase-field.

Proof of Lemma 8.3.4. Step 1. We demonstrate that the boundary [∂Bλ({ũ = 0})] ∩BR is

the union of the graphs of two continuous functions over a linear space, at least inside BR/2.

Take any x ∈ {u = 0}, then on the ball BR the blow up of u around x is δ-close

to an optimal profile in some direction v. Without loss of generality, v = en. For x̂ =

(x1, . . . , xn−1) we define

Γx̂ = {xn | (x̂, xn) ∈ Bλ({ũ = 0}) ∩BR}.

Let us show that for all x̂ ∈ {xn = 0} ∩ BR/2, the slice Γx̂ is an open interval. Due to the

continuous embedding W 2,2(BR)→ C0(BR), we see that in Hausdorff distance

dH({ũ = 0} ∩BR/2, {xn = 0} ∩BR/2) ≤ Cδ

since ũ must cross between positive and negative values to stay close to an optimal profile.

Thus in particular

{
−λ

2
< xn <

λ

2

}
∩BR/2 ⊂ Bλ({ũ = 0}) ∩BR/2.

for all small enough δ > 0. Now assume that there exist λ/2 ≤ s < t such that s 6∈ Γx̂ but

t ∈ Γx̂ for some x̂ ∈ BR/2. Then there exists

y ∈ {u = 0} ∩B3R/4 ⊂ BCδ({xn = 0}) ∩B3R/4

such that

|(x̂, t)− y| < λ, |(x̂, s)− y| > λ ⇒ |y − (x̂, s)| > |y − (x̂, t)|

so we have reached a contradiction. Thus [∂Bλ({ũ = 0})]∩BR can be written as the union

of the graphs of two functions g±, without any statement about the continuity of these
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functions so far. It is, however, clear from the Hausdorff-distance estimate that

−λ− Cδ ≤ g− ≤ −λ+ Cδ, λ− Cδ ≤ g+ ≤ λ+ Cδ.

Pick any y ∈ [∂Bλ({ũ = 0})]∩BR. Then dist(y, {ũ = 0}) = λ and since ũ is continuous,

there exists x ∈ {ũ = 0} such that |y − x| = λ. By definition, Bλ(x) ⊂ Bλ({ũ = 0}), and

we calculate

λ2 = |x− y|2 = |x̂− ŷ|2 + |xn − yn|2 ≥ |x̂− ŷ|2 + |λ− 2Cδ|2 ⇒ |x̂− ŷ|2 ≤ 4Cλδ.

In particular, if δ is small enough, we can write g+ ≥ f around x̂, where f is the graph

representation of ∂Bλ(ŷ). So at every point x̂, there is a continuous function fx̂ on a small

ball Br(x̂) in {xn = 0} for some r independent of x̂ such that

1. fx̂(x̂) = g+(x̂) and

2. g+ ≥ fx̂ on Br(x̂).

It follows that g+ is continuous, and the same is true for g−.

Step 2. Like in the previous section, we observe that the set {û = 0} is C2-close to a

linear space in a ball BRε(x) if δ is small enough. Thus we can write the linear space as

a graph over the smooth manifold {û = 0}, and successively also the boundaries of the set

Bλε({u = 0}). There is a canonical choice of g+ and g− by choosing g+ always on the side

where the optimal profile approximated by the local blow up is positive. Thus we have

∂Bλε({u = 0}) = {y + ĝλ,+(y) νy | y ∈ {û = 0}} ∪ {y + ĝλ,−(y) νy | y ∈ {û = 0}}

and

Bλε({u = 0}) = {y + t νy | y ∈ {û = 0}, gλ,−(y) < t < gλ,+} .

Therefore we have a homeomorphism

φ : {û = 0} × (0, 1)→ Bλε({u = 0}), φ(y, t) = y + [t gλ,−(y) + (1− t) gλ,+(y)] νy.

The same is true for µ in the same regime as λ, and thus the two fattenings are homeomor-

phic.

So the choice of topology of a phase-field does not depend on the fattening parameter

λ > 0 in a sensible regime. The dependence on R is only relevant for being able to choose

λ large enough, the relevant control is about the C0-norm of u close to the zero level.
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Lemma 8.3.5. Assume that u,w are phase-fields with the blow-up property at the level

(R, δ). For λ� R and small enough δ, we have the following property: There exists β > 0

such that if

ε−n
∫

Ω

(u− w)2 dx < β,

then the sets Bλε({u = 0}) and Bλε({w = 0}) are homotopy equivalent.

The condition is likely not optimal and could be improved, but it implies a sufficient

stability for our application to gradient flow evolutions.

Proof. The proof of this Lemma is similar to the previous one with slight modifications

as we let u change this time, not λ. When we blow up u and w around the same point

x ∈ {ũ = 0}, we observe that

|| ũ− w̃ ||2,2,BR ≤ || ũ− φv1,b1 ||2,2,BR + ||φv1,b1 − φv2,b2 ||2,2,BR + || w̃ − φv2,b2 ||2,2,BR
≤ || ũ− φv1,b1 ||2,2,BR + C ||φv1,b1 − φv2,b2 ||2,BR + || w̃ − φv2,b2 ||2,2,BR
≤ || ũ− φv1,b1 ||2,2,BR − φv2,b2 ||2,BR + || w̃ − φv2,b2 ||2,2,BR

+ C {|| ũ− φv1,b1 ||2,BR + ||ũ− ṽ ||2,BR + || w̃ − φv2,b2 ||2,BR}

≤ Cβ + 2(C + 1) δ

since on the finite dimensional space of optimal profiles φv,b = q(〈·, v〉 + b) parametrised

by (v, b) ∈ Rn × R, the norms induced by W 2,2(BR) and L2(BR) are equivalent. Thus the

blow-ups ũ, w̃ are W 2,2-close on BR.

This implies that the smoothed functions û = u ∗ η, ŵ = w ∗ η are C2-close after blowing

up, and a close examination of the proof of the regular value theorem via the implicit function

theorem shows that {ŵ = 0} and {û = 0} are both C2-graphs over the same linear space

in small enough neighbourhoods. It follows that we can write {ŵ = 0} as a graph over

{û = 0} locally, and thus also globally, since {û = 0} has a smooth choice of normal vector.

Consequently the sets {û = 0} and {ŵ = 0} are homeomorphic.

We have seen above that the fattenings Bε({u = 0}), Bε({w = 0}) are homotopy equiv-

alent to the zero level sets of the smoothed function {û = 0}, {ŵ = 0}. We now use the

transitivity of the homotopy equivalence of spaces to conclude the proof.

Thus if we use blow-up controlling functionals to approximate Willmore’s energy, the

topology of the fattened zero level set is a meaningful concept for phase-fields and does not

depend on the choice of the fattening parameter λ > 0 except in possibly requiring smaller

ε for larger or too small λ.
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8.3.4 Gradient-Flows

We will show that all solutions of a gradient flow associated to an energy which enforces

an approximate blow-up property for positive ε have a topology-preserving property. The

natural space for a gradient flow solution is the Bochner space

V =

{
u ∈ L2

(
[0, T ], −1 +W 2,2

0 (Ω)
) ∣∣∣∣ du

dt
∈ L2

(
[0, T ],W−2,2(Ω)

)}
.

It is well known that this space embeds into

C0
(
[0, T ], L2(Ω)

)
,

see for example [Eva10, Section 5.9.2], where the proof is given in the case of functions with

values in H1 instead of H2. However, the proof goes through in the exact same way in our

case. The previous Lemma immediately implies the following.

Corollary 8.3.6. Let u ∈ C0([0, T ], L2(Ω)) be a function such that u(t, ·) satisfies the blow-

up criterion at the level (R, δ) for some small positive ε > 0 with constants independent

of the time. If δ is small enough, the fattened level-sets Bλε({u(t, ·) = 0}) are homotopy

equivalent for all times t ∈ [0, T ] and λ ∈ [1/2, 2] (for small enough ε).

So we have shown that phase-fields satisfying the positive ε blow-up criterion preserve the

topological type of the fattened zero level set in a continuous time-evolution (for example,

the L2-gradient flow). Of course, loss of genus phenomena like the one described in Remark

3.2.14 can also occur in the limit ε → 0 as smaller and smaller catenoidal connections can

be captured by phase-field approximations as ε→ 0.

Thus we have a stability of genus phenomenon for phase-field evolutions for positive ε but

not for the singular limit if we enforce ‘good’ behaviour of the phase-field at the transition

layer. Topological changes can only occur on the phase-field level when passing through

an exotic solution of the stationary Allen-Cahn equation in two dimensions or, possibly, an

entirely different function in three dimensions (leading to a high concentration of curvature

on a small ball). Excluding those ‘bad’ blow-up behaviours leads to a higher rigidity in the

phase-fields and seems to induce a minimal bending scale or a type of interior and exterior

sphere condition. The length-scale of this minimal bending seems to be larger Rε for all

R > 0, but since q approaches pure phase ±1 exponentially fast on R, a recovery sequence

for a sequence of C2-surfaces with interior and exterior spheres of radius proportional to dε

can be constructed provided that

dε � ε | log ε|.
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We can call the idea of following the gradient flow of a suitable blow-up controlling ap-

proximation of Willmore’s energy the blow-up control method and compare it to the topology

controlling functionals of the last chapter, which we could dub the distance function method.

Let us compare the two methods. The following table comprises the most important prop-

erties.

Distance function method Blow-up control method

• Unclear Γ-limit at immersed curves

• Only controls connectedness, allows

topological transitions

• Admits a variational statement

• Non-local functional

• Requires computation of a geodesic dis-

tance function

• Can approximate W̃

• Controls topological type and

‘smoothness’ through W̃

• Admits a dynamical statement

• Local functional

• Destroys quasi-linearity

So in particular, the blow-up control method allows us to begin with a given number of

connected components at time t = 0 of a continuous time-evolution and will preserve the

number of components. The components may come into contact and changes of topological

type may occur in the singular limit ε→ 0 (but not for fixed ε > 0). The description of the

limit of such gradient flow dynamics is entirely open at the moment.

It seems that more could be said for example for initial conditions with knotted tori for

the blow-up control method, but we shall not investigate such questions here.
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Chapter 9

An Implementation of the

Topological Constraint

9.1 Introduction

At first glance, the energy Eε looks dreadful from an implementation point of view since in

every time-step, we have to find the geodesic distance dF (uε)(x, y) for all points x, y ∈ Ω.

This can be significantly simplified to allow for an efficient implementation. For convenience,

we take ωε ≡ ∞.

1. The distance only needs to computed between points x, y in the diffuse surface

Σε = {x ∈ Ω | φ(uε(x)) > 0}.

2. If x0, x1 and y0, y1 lie in the same path-component Cx, Cy of Σε respectively, then

dF (uε)(x1, y1) = dF (uε)(x0, y0)

since x0 and x1 (or y0 and y1) can be connected by a curve γ lying entirely in Σε which

has length zero due to the fact that F ≡ 0 on [α, β]. This means that (provided the

connected components of Σε have been found) the distance only has to be computed

between connected components.

In simulations, it has also proven favourable to use two topological functionals C1
ε , C2

ε

associated to functions φ1, F1 and φ2, F2 respectively such that φ1 has support close to +1

and φ2 has support close to −1. By keeping a diffuse level set close to +1 and one close to
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−1 connected, we create two barriers against a disintegrating interface. It is clear that this

case is also covered by the results of Chapter 7.

We will now describe an efficient implementation of phase-field Willmore flow with topo-

logical constraint and area penalisation.

9.2 The Algorithm

We use a variant of Dijkstra’s algorithm similar to the one of [BCPS10] to compute the

geodesic distance function used in the topological term of our energy functional.

9.2.1 The Distance Function on a Graph

Let Γ be a finite connected (undirected) graph with vertices v and edges e that have weights

we ≥ 0. The distance of two vertices v, v′ is defined as the length of the shortest path

connecting v and v′. Here the length of a path is the sum of the weights of all the edges

along the path and continuity is expressed via the condition that consecutive edges share a

node. Precisely, we have

d(v, v′) = inf

{
n∑
i=1

wei | v = v0, v
′ = vn, vi−1, vi ∈ ei, ∀ 1 ≤ i ≤ n ∈ N

}

where the infimum goes over n ∈ N and over all paths of length n connecting v = v0

to v′ = vn. Assume that we are given a sequence of graphs Γh associated to a sequence

of triangulations with a spacial grid scale h for h → 0 in the sense that a vertex of Γh

corresponds bijectively to a triangle and that the weight of the edge e is computed as a

convex combination of the values a continuous function f ≥ 0 assumes on e.

The triangulations may force us to walk zig-zagging to connect two points, so the distance

on the graph may not approximate the distance function

df (x, y) = inf

{∫
γ

f dH1

∣∣∣∣ γ curve from x to y

}
,

but assuming that triangulations do not degenerate, it approximates a function which is

related to df in a bi-Lipschitz sense uniformly in h:

c dΓh(v, v′) ≤ df (xv, xv′) ≤ C dΓh(v, v′)

where the points xv, xv′ are the centres of mass of their triangles, v and v′ do not lie in

the same triangle, and the constants c, C > 0 are uniform in h. Note that if there exists a
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unique shortest curve γ̄ between x and y then

d

dt

∣∣∣∣
t=0

dF (u+ts)(x, y) =

∫
γ̄

F ′(u) sdH1 ∀ s ∈ C∞(Rn).

This identity will be postulated heuristically for the procedure below.

9.2.2 Dijkstra’s Algorithm

Dijkstra’s algorithm describes a procedure to calculate the distance function v 7→ d(v, v̄) for

a given v̄ ∈ Γ. Our version is a simplified version of the one that was proposed in [BCPS10]

for the fast marching method.

The idea is to find the shortest path connecting two elements by marking elements as

known when we are sure from the algorithm that a shorter path cannot exist and checking

whether they give a shorter path to their neighbours than has been found before.

To keep things simple, in the description we assume that to every vertex we associate

a data structure which includes a distance D and a predecessor vertex pointer P . In the

set-up of the algorithm, set Dv̄ = 0 for the given vertex v̄, Dv =∞ for all v 6= v̄, Pv = NIL

for all v. Here NIL is the pointer equivalent of an empty set and a convenient abstraction,

but could be replaced by any given value. Create two lists K and U of known and unknown

vertices and set K = ∅, U = Γ.

1. Take an element v ∈ U such that Dv = min{Dv′ | v′ ∈ U}. (In the first step, this is

v̄.) Move v from U to K. For all elements u connected to u by an edge evu, check if

Dv + wuv < Du.

If so, replace Du by Dv + wuv and set Pu = v.

2. Repeat step 1 until K = Γ and U = ∅. If all elements in U have distance ∞, the

graph is disconnected. In this case, the algorithm can be aborted (and all remaining

predecessor pointers be set to some common value, for example, all distances left at

∞).

In the following, we will always assume that our graphs are connected. The algorithm

can be terminated prematurely according to certain criteria, e.g. when the last vertex out

of a list of nodes we are interested in is marked as known. This will be used below.

The algorithm could easily be adapted for asymmetric graphs. If only the distance

function is needed and its derivative is not, we need not remember the predecessor pointers.
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By following predecessor pointers back from an element v through the predecessor pointers

(until the pointer becomes NULL) we obtain a shortest path between v̄ and v.

9.2.3 Treating the Topological Term

Now, we will describe how to include the topological term in an explicit fashion in given

finite element code.

The description is given in the two-dimensional case assuming that the finite element

space corresponds to a triangulation of Ω with grid length scale h. Dimension three and

more general basis element shapes can obviously be treated by the same method.

In the set up of the simulation, create a graph Γ such that

1. every node v of Γ corresponds to a triangle ∆ = ∆v in the triangulation of the domain

Ω associated to our finite element space and vice versa and

2. two vertices v1, v2 are connected by an edge e if and only if the triangles ∆1,∆2 share

a side.

This can, of course, be done implicitly. It is also advantageous if an element knows its

volume |∆| and potentially diameter diam(∆). Given a Galerkin space function u = uk in

time step k, do the following.

1. For all triangles ∆ in the triangulation, compute the average integral

u∆ =
1

|∆|

∫
∆

udx.

2. For the edge e between two triangles ∆,∆′ define the weight of the edge by

we =
F (u∆) + F (u∆′)

2
h.

The constant h is included as an approximation of the distance between the midpoints

of ∆ and ∆′ up to bounded scalar factor.

3. Create a list I of all interface elements, i.e. all elements such that

u∆ ∈ [α, β].

Remember the length |I| of the list.

4. Create a new list T whose components will be lists C of triangles ∆. We think of the

C’s as connected components of the interface and T as expressing the topology.
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5. Take an arbitrary element ∆ ∈ I and create a new list C containing only the element

∆ and remove ∆ from I. Run Dijkstra’s Algorithm to compute the distance function

d(·,∆) on the graph Γ. When you encounter an interface element ∆′ ∈ I such that

d(∆,∆′) = 0, transfer ∆′ from I to C.

Abort the algorithm when you encounter the first element ∆′ ∈ Γ such that d(∆,∆′) >

0. Do not add ∆′ to C.

6. Repeat step 5 until I is empty. Now we have lists C1, . . . , Cn of equivalence classes of I

inside Γ. If there is only one list C = C1, the interface is connected and Cε = δCε = 0.

In this case, abort the algorithm.

7. Iterate through the list T over the components Ci and create a list Φ of the integrals

Φi =
1

ε

∫
Ci

φ(u) dx

for later use.

8. If there are at least two components, create a symmetric array G whose elements Gij ,

1 ≤ i, j ≤ n are lists of vertices. We will store the shortest curve (geodesic) between

the components Ci and Cj in Gij .

Also create a symmetric array dij in which to store the distance dist(Ci, Cj) =

d(∆i,∆j) for arbitrary triangles ∆i ∈ Ci, ∆j ∈ Cj .

9. Take the component Ci and run Dijkstra’s algorithm from an arbitrary element ∆ ∈ Ci.
Use a counter to abort the algorithm when you have found d(∆,∆′) for the remaining

|I| − 1 interface elements ∆′.

Take j = i+ 1 and a triangle ∆′ ∈ Cj . Set dij = d(∆,∆′). Then, use the predecessor

pointer from Dijkstra’s algorithm to find the element ∆′′ before ∆′. If ∆′′ ∈ Cj ,

replace ∆′ = ∆′′ and repeat. If ∆′′ /∈ Cj , add ∆′′ to the list Gij . Take the predecessor

element ∆′′′ of ∆′′. If ∆′′′ /∈ Ci, add it to Gij , otherwise stop and move on to the next

component j′ = j + 1 < n.

10. Repeat step 9 for i = 1, . . . , n. Now we know all connected components Ci of the

interface, their distances dij and shortest connections Gij in the graph.

11. Compute the value of the topological functional

Cε(u) =
2

ε2

n−1∑
i=1

n∑
j=i+1

dij Φi Φj .
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12. We do a three-fold nested iteration: Iterate over the components Ci, over the elements

∆ ∈ Ci and over the basis functions s whose support overlaps with ∆ to compute the

component contributions to the force

[δCε]Ci (u; s) =

2
∑
j 6=i

dijΦj

 1

ε

∫
Ci

φ′(u) sdx.

13. We do a three-fold nested iteration: Iterate over the geodesics Gij , over the elements

∆ ∈ Gij and over the basis functions s whose support overlaps with ∆ to compute the

geodesic contributions to the force

[δCε]
Gij (u; s) = Φi Φj

∫
Gij

F ′(u) sdH1.

The line integral can be approximated by taking the integral over the element ∆ and

multiplying by

c∆ =
diam(∆)

|∆|

to account for the fact that we integrate with respect to a different measure. The quan-

tity can be approximated globally if the elements of the triangulation are sufficiently

similar. In particular, for regular sequences of triangulations, this can be chosen to

simply be c∆ ≡ h1−n where h is the spacial grid scale.

This algorithm can easily be implemented fully nested in a given implementation with

explicit or implicit time-stepping, but only leads to explicit treatment of the topological term.

An implicit implementation has been found to be less efficient due to the high instability of

the topological term.

Clearly, steps 1 – 3 can be parallelised. Dijkstra’s algorithm is not suitable for paral-

lelisation, but it has to be called only a small number of times and can be aborted after

running through only a small number of elements before the interface has been understood

completely in real simulations.

In this way it is easy to include the topological term in given finite elements code for

diffuse Willmore flow. Variations with respect to the structure of the graph are easy, like

taking integration points as vertices or connecting triangles by an edge in the graph if they

share a corner.
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9.3 Simulations in Two Dimensions

In our simulation, we follow a finite element version of the L2-gradient flow of

Eε =Wε + ε−σ(Sε − S)2 + ε−κ
(
C(1)
ε + C(2)

ε

)
for σ = 2, κ = 1 and ε = 1.5 · 10−2. The domain of the phase-fields is chosen to be the unit

disc in two dimensions which is triangulated by a mesh of triangular elements of diameter

approximately h = 6 · 10−3. The basis functions are approximately 250.000 subdivision

surfaces supported in the two-ring around a node and in particular H2-conforming, using

a finite element backend by P. W. Dondl also described in [DMR11, DHR16]. This allows

for a direct implementation of the weak formulation of the gradient flow equation since the

highest order term is the parabolic bi-Laplace evolution equation, i.e. of fourth order.

Time stepping is done with a hybrid implicit/explicit Euler method, namely the leading

fourth order term εut = −ε∆2u is discretised implicitly and the lower order non-linear

terms are discretised explicitly in time. The time step size is τ̂ = ετ = 10−5 (in rescaled

time). In this semi-implicit formulation, the system matrix for time-stepping is constant in

time and has to be assembled only once. For this reason, a direct QR-factorisation solver

from the C++ library CHOLMOD [Dav08] was used. Matrices were implemented using the

Armadillo library. This appeared to have a comparable performance to iterative solvers, but

proved to be slightly faster and more user-friendly.

We also attempted a fully implicit time-stepping scheme with iterative solvers, but it

seems that the coarse discretisation of the geodesic distance function does not support this

well. The geodesic contributions to the force are concentrated along curves or chains of

elements which are much thinner than an interface, so a small time-step has to be chosen for

the sake of numerical stability and the second derivatives of the geodesic distance function

(which are not even guaranteed to exist in a satisfactory theoretical sense) are not well

approximated.

The functions φ1, φ2 and F1, F2 were chosen via φ2(z) = φ1(−z) and F2(z) = F1(−z)
where φ1 and F1 are piecewise C∞- and globally C1,1-functions created with fourth order

polynomials

φ1(z) =


30

(β−α)5 (z − α)2(β − z)2 z ∈ [α, β]

0 else
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F1(z) =


4

(1+α)2 (z − α)2 z ∈ (−∞, α]

0 z ∈ [α, β]

4
(1−β)2 (z − β)2 z ∈ [β,∞)

where the normalising constants insure that
∫ 1

−1
φ1(z) dz = 1 and F1(±1) = 4. In our

simulation, α = 0.85 and β = 0.95.

We see in Figure 9.1 that without the inclusion of the topological term, the tran-

sition layer disintegrates into several connected components along the gradient flow of

Wε + ε−σ (Sε − S)2.

Figure 9.1: Gradient flow of Wε + ε−σ (Sε − S)2. From left to right: Phase-field u for
approximately t = 7.5 · 10−5, t = 3 · 10−4, t = 7.5 · 10−4 and t = 1.8 · 10−3.

To compare implementations of topological side conditions, we include the topological

term suggested in [DMR11], which penalises a deviation of a diffuse signed curvature integral

from 2π in the simulation. This term prevents the initial pinch-off, but at a later time, the

interface will pinch off in a more complicated way which keeps the diffuse winding number

close to 2π. The phenomenon is a simultaneous pinch off at several points as seen in

Figure 9.2. The far right plot in Figure 9.2 illustrates the diffuse curvature density as

distributed along the curve at pinch off time. We can observe the formation of a circle with

negative total curvature ≈ −2π (due to the phase-field switching in the other direction from

+1 to −1), and two components with total curvature ≈ 2π so that the total curvature of

the whole interface stays close to 2π.

Unfortunately we have been unable to implement the topology controlling term Au,ε
from [DMR14] and the associated gradient flow in practice due to the complicated nested

minimisation procedure of the energy functional. The need to find in each time-step an

absolute minimiser of Au,ε has prevented us from giving a practical implementation and

convinced us to develop the simpler functional Cε instead. For this reason, we do not have

an implementation for comparison.

In Figure 9.3, a flow for Eε with the additional term of Cε on the other hand can be seen
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Figure 9.2: Gradient flow with penalty on a diffuse winding number as suggested in [DMR11].
From left to right: Phase-field u for approximately t = 3·10−4, t = 7.5·10−4 and t = 1.8·10−3,
then a plot of the diffuse winding number density denoted T at time t = 1.8 · 10−3.

to stably flow past those singular situations.

Figure 9.3: Evolution including our new topological penalty term Cε. Top line, from left to
right: phase-field u for approximately t = 3·10−4, t = 7.5·10−4 and t = 1.8·10−3, then a plot
of the diffuse Willmore energy density (denoted W here) of the initial condition. Bottom
line, left to right: Phase-field u and diffuse Willmore energy density first for approximately
t = 6.6 · 10−3 and then for approximately t = 3.6 · 10−2.

Comparing the three scenarios above, we observe that there is virtually no difference in

the plots at time 3 · 10−4 and that the plots for both modified (penalised using either the

old or the new method) functionals at time 7.5 · 10−4 still look very similar. It can thus be

argued that the topological condition does not affect the shape of the curve in a major way

except when it has to in order to prevent loss of connectedness.

In Figure 9.3, we see non-trivial geometric changes along the gradient flow for later times.

This demonstrates the necessity of continuing the flow beyond the critical times. It should

be emphasised that our focus is not on implementing a scheme to approximate Willmore
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flow using phase-fields but on finding minimisers of the diffuse interface problem using a

gradient flow. Existence of Willmore flow for long time and topological changes along it are

still an open field of research.
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Chapter 10

Summary

The problem we had set for ourselves in the beginning of this dissertation was to min-

imise Willmore’s energy among connected structures with large surface area confined to a

small container and in the subclass of such structures which are weakly approximable by C2-

boundaries. We have demonstrated that a solution to both problems exists in a weak sense

in Corollary 3.1.4 and gave elementary properties of such minimisers in Theorem 3.1.1. In

the proof we employed the direct method of the calculus of variations, complemented with

a result on the relationship between varifold convergence and Hausdorff convergence of the

support of the associated mass measures, which we established in Theorem 3.1.2. We further

demonstrated in Theorem 3.1.6 that connectedness is indeed the only topological quantity

which can be controlled in terms of Willmore’s energy, even for minimising sequences. As-

sociated results for the more general Helfrich functional were given in Corollaries 3.1.7 and

3.1.8 and for more general Willmore-type functionals with exponent p 6= 2 in Remark 3.2.15.

For use in the second part of the dissertation, we also established a link to the theory of

Caccioppoli sets in Theorem 3.2.9.

In the second part of this dissertation, we designed a phase field approach which allows

for a numerical approximation of the minimisation problem to find approximate minimisers

numerically. To this end, we introduced the new notion of essentially uniform convergence

in Definition 5.2.16 and proved new sharp results on the L∞-boundedness of phase-fields in

Theorem 5.1.1. Among others, we gave a precise description of the Hausdorff convergence

of level sets of phase-fields in Theorem 5.2.27 which provides a partial justification of the

common identification of the zero level set with a sharp interface limiting surface. These

results were then used in Theorem 7.1.2 and Corollaries 7.1.3 and 7.1.4 to demonstrate that

a sequence of topological penalty functionals designed in Section 7.1.2 enforce connectedness

of the limit of diffuse surface measures. In Chapter 8, we described a different penalisation
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method which can be used to obtain a Γ-approximation of the relaxed function W̃ + Per

(Theorem 8.2.7) and showed that the gradient-flow evolutions of a wide class of functionals

with similar penalty terms have a topology-preserving property (Corollary 8.3.6) which

is distinct from both the gradient flow of Wε and continuous surface evolutions of finite

energy, potentially even the gradient flow of W in non-smooth situations. In Chapter 9 we

described an efficient numerical implementation of a gradient flow of the diffuse Willmore-

functionals and presented numerical proof that the penalty term is successful in finite element

simulations. Further results, especially of a more technical nature and on the boundary

behaviour of phase fields, can be found in the text.

We have thus given an analytic solution to the original problem and provided a numerical

method of explicitly finding energy minimisers. Remaining open questions, especially as

outlined in Conjecture 8.2.3 and Remark 8.2.10, will be the focus of future research.
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[MR14] S. Müller and M. Röger. Confined structures of least bending energy. Journal

of Differential Geometry, 97(1):109–139, 2014.

[MR16] R. Murray and M. Rinaldi. Slow motion for the nonlocal Allen-Cahn equation

in n dimensions. Calc. Var. Partial Differential Equations, 55(6):Art. 147, 33,

2016.

[MS02] U. F. Mayer and G. Simonett. A numerical scheme for axisymmetric solutions

of curvature-driven free boundary problems, with applications to the Willmore

flow. Interfaces and Free Boundaries, 4(1):89–109, 2002.

[MS03] U. F. Mayer and G. Simonett. Self-intersections for Willmore flow. In Evolution

Equations: Applications to Physics, Industry, Life Sciences and Economics,

pages 341–348. Springer, 2003.

[Mug13] L. Mugnai. Gamma-convergence results for phase-field approximations of the

2D-Euler elastica functional. ESAIM Control Optim. Calc. Var., 19(3):740–

753, 2013.

[NT07] Y. Nagase and Y. Tonegawa. A singular perturbation problem with integral

curvature bound. Hiroshima mathematical journal, 37(3):455–489, 2007.

193



194 CHAPTER 11. BIBLIOGRAPHY

[OR07] F. Otto and M. G. Reznikoff. Slow motion of gradient flows. J. Differential

Equations, 237(2):372–420, 2007.

[Peg89] R. L. Pego. Front migration in the nonlinear Cahn-Hilliard equation. Proc.

Roy. Soc. London Ser. A, 422(1863):261–278, 1989.
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[Riv16] T. Riviére. Weak immersions of surfaces with L2-bounded second fundamental

form. In Geometric analysis, volume 22 of IAS/Park City Math. Ser., pages

303–384. Amer. Math. Soc., Providence, RI, 2016.
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